
new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr.h 1

**
 10945 Fri Jul 20 12:37:50 2012
new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr.h
*** NO COMMENTS ***
**
______unchanged_portion_omitted_
149 typedef struct smbfs_fctx smbfs_fctx_t;

151 #define f_rq f_urq.uf_rq
152 #define f_t2 f_urq.uf_t2

154 /*
155 * smb level (smbfs_smb.c)
156 */
157 int smbfs_smb_lock(struct smbnode *np, int op, caddr_t id,
158 offset_t start, uint64_t len, int largelock,
159 struct smb_cred *scrp, uint32_t timeout);
160 int smbfs_smb_qfsattr(struct smb_share *ssp, struct smb_fs_attr_info *,
161 struct smb_cred *scrp);
162 int smbfs_smb_statfs(struct smb_share *ssp, statvfs64_t *sbp,
163 struct smb_cred *scrp);
164 int smbfs_smb_setfsize(struct smbnode *np, uint16_t fid, uint64_t newsize,
165 struct smb_cred *scrp);

167 int smbfs_smb_getfattr(struct smbnode *np, struct smbfattr *fap,
168 struct smb_cred *scrp);

170 int smbfs_smb_setfattr(struct smbnode *np, int fid,
171 uint32_t attr, struct timespec *mtime, struct timespec *atime,
172 struct smb_cred *scrp);

174 int smbfs_smb_open(struct smbnode *np, const char *name, int nmlen,
175 int xattr, uint32_t rights, struct smb_cred *scrp,
176 uint16_t *fidp, uint32_t *rightsp, struct smbfattr *fap);
177 int smbfs_smb_tmpopen(struct smbnode *np, uint32_t rights,
178 struct smb_cred *scrp, uint16_t *fidp);
179 int smbfs_smb_close(struct smb_share *ssp, uint16_t fid,
180 struct timespec *mtime, struct smb_cred *scrp);
181 int smbfs_smb_tmpclose(struct smbnode *ssp, uint16_t fid,
182 struct smb_cred *scrp);
183 int smbfs_smb_create(struct smbnode *dnp, const char *name, int nmlen,
184 int xattr, uint32_t disp, struct smb_cred *scrp, uint16_t *fidp);
185 int smbfs_smb_delete(struct smbnode *np, struct smb_cred *scrp,
186 const char *name, int len, int xattr);
187 int smbfs_smb_rename(struct smbnode *src, struct smbnode *tdnp,
188 const char *tname, int tnmlen, struct smb_cred *scrp);
189 int smbfs_smb_t2rename(struct smbnode *np, struct smbnode *tdnp,
190 const char *tname, int tnmlen, struct smb_cred *scrp, int overwrite);
191 int smbfs_smb_move(struct smbnode *src, struct smbnode *tdnp,
192 const char *tname, int tnmlen, uint16_t flags, struct smb_cred *scrp);
193 int smbfs_smb_mkdir(struct smbnode *dnp, const char *name, int len,
194 struct smb_cred *scrp);
195 int smbfs_smb_rmdir(struct smbnode *np, struct smb_cred *scrp);
196 int smbfs_smb_findopen(struct smbnode *dnp, const char *wildcard, int wclen,
197 int attr, struct smb_cred *scrp, struct smbfs_fctx **ctxpp);
198 int smbfs_smb_findnext(struct smbfs_fctx *ctx, int limit,
199 struct smb_cred *scrp);
200 int smbfs_smb_findclose(struct smbfs_fctx *ctx, struct smb_cred *scrp);
201 int smbfs_fullpath(struct mbchain *mbp, struct smb_vc *vcp,
202 struct smbnode *dnp, const char *name, int nmlen, uint8_t sep);
203 int smbfs_smb_lookup(struct smbnode *dnp, const char **namep, int *nmlenp,
204 struct smbfattr *fap, struct smb_cred *scrp);
205 int smbfs_smb_hideit(struct smbnode *np, const char *name, int len,
206 struct smb_cred *scrp);
207 int smbfs_smb_unhideit(struct smbnode *np, const char *name, int len,
208 struct smb_cred *scrp);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr.h 2

209 int smbfs_smb_flush(struct smbnode *np, struct smb_cred *scrp);
210 int smbfs_0extend(vnode_t *vp, uint16_t fid, len_t from, len_t to,
211 struct smb_cred *scredp, int timo);

213 /* get/set security descriptor */
214 int smbfs_smb_getsec_m(struct smb_share *ssp, uint16_t fid,
215 struct smb_cred *scrp, uint32_t selector,
216 mblk_t **res, uint32_t *reslen);
217 int smbfs_smb_setsec_m(struct smb_share *ssp, uint16_t fid,
218 struct smb_cred *scrp, uint32_t selector, mblk_t **mp);

220 /*
221 * VFS-level init, fini stuff
222 */

224 int smbfs_vfsinit(void);
225 void smbfs_vfsfini(void);
226 int smbfs_subrinit(void);
227 void smbfs_subrfini(void);
228 int smbfs_clntinit(void);
229 void smbfs_clntfini(void);

231 void smbfs_zonelist_add(smbmntinfo_t *smi);
232 void smbfs_zonelist_remove(smbmntinfo_t *smi);

234 int smbfs_check_table(struct vfs *vfsp, struct smbnode *srp);
235 void smbfs_destroy_table(struct vfs *vfsp);
236 void smbfs_rflush(struct vfs *vfsp, cred_t *cr);

238 /*
239 * Function definitions - those having to do with
240 * smbfs nodes, vnodes, etc
241 */

243 void smbfs_attrcache_prune(struct smbnode *np);
244 void smbfs_attrcache_remove(struct smbnode *np);
245 void smbfs_attrcache_rm_locked(struct smbnode *np);
246 #ifndef DEBUG
247 #define smbfs_attrcache_rm_locked(np) (np)->r_attrtime = gethrtime()
248 #endif
249 void smbfs_attr_touchdir(struct smbnode *dnp);
250 void smbfs_attrcache_fa(vnode_t *vp, struct smbfattr *fap);
251 void smbfs_cache_check(struct vnode *vp, struct smbfattr *fap);

253 void smbfs_addfree(struct smbnode *sp);
254 void smbfs_rmhash(struct smbnode *);

256 void smbfs_invalidate_pages(vnode_t *vp, u_offset_t off, cred_t *cr);

258 #endif /* ! codereview */
259 /* See avl_create in smbfs_vfsops.c */
260 void smbfs_init_hash_avl(avl_tree_t *);

262 uint32_t smbfs_gethash(const char *rpath, int prlen);
263 uint32_t smbfs_getino(struct smbnode *dnp, const char *name, int nmlen);

265 extern struct smbfattr smbfs_fattr0;
266 smbnode_t *smbfs_node_findcreate(smbmntinfo_t *mi,
267 const char *dir, int dirlen,
268 const char *name, int nmlen,
269 char sep, struct smbfattr *fap);

271 int smbfs_nget(vnode_t *dvp, const char *name, int nmlen,
272 struct smbfattr *fap, vnode_t **vpp);

274 void smbfs_fname_tolocal(struct smbfs_fctx *ctx);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr.h 3

275 char *smbfs_name_alloc(const char *name, int nmlen);
276 void smbfs_name_free(const char *name, int nmlen);

278 int smbfs_readvnode(vnode_t *, uio_t *, cred_t *, struct vattr *);
279 int smbfs_writevnode(vnode_t *vp, uio_t *uiop, cred_t *cr,
280 int ioflag, int timo);
281 int smbfsgetattr(vnode_t *vp, struct vattr *vap, cred_t *cr);

283 /* smbfs ACL support */
284 int smbfs_acl_getids(vnode_t *, cred_t *);
285 int smbfs_acl_setids(vnode_t *, vattr_t *, cred_t *);
286 int smbfs_acl_getvsa(vnode_t *, vsecattr_t *, int, cred_t *);
287 int smbfs_acl_setvsa(vnode_t *, vsecattr_t *, int, cred_t *);
288 int smbfs_acl_iocget(vnode_t *, intptr_t, int, cred_t *);
289 int smbfs_acl_iocset(vnode_t *, intptr_t, int, cred_t *);

291 /* smbfs_xattr.c */
292 int smbfs_get_xattrdir(vnode_t *dvp, vnode_t **vpp, cred_t *cr, int);
293 int smbfs_xa_parent(vnode_t *vp, vnode_t **vpp);
294 int smbfs_xa_exists(vnode_t *vp, cred_t *cr);
295 int smbfs_xa_getfattr(struct smbnode *np, struct smbfattr *fap,
296 struct smb_cred *scrp);
297 int smbfs_xa_findopen(struct smbfs_fctx *ctx, struct smbnode *dnp,
298 const char *name, int nmlen);
299 int smbfs_xa_findnext(struct smbfs_fctx *ctx, uint16_t limit);
300 int smbfs_xa_findclose(struct smbfs_fctx *ctx);

302 /* For Solaris, interruptible rwlock */
303 int smbfs_rw_enter_sig(smbfs_rwlock_t *l, krw_t rw, int intr);
304 int smbfs_rw_tryenter(smbfs_rwlock_t *l, krw_t rw);
305 void smbfs_rw_exit(smbfs_rwlock_t *l);
306 int smbfs_rw_lock_held(smbfs_rwlock_t *l, krw_t rw);
307 void smbfs_rw_init(smbfs_rwlock_t *l, char *name, krw_type_t type, void *arg);
308 void smbfs_rw_destroy(smbfs_rwlock_t *l);

310 #endif /* !_FS_SMBFS_SMBFS_SUBR_H_ */

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr2.c 1

**
 29723 Fri Jul 20 12:37:51 2012
new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr2.c
*** NO COMMENTS ***
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 *
25 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T.
26 * All rights reserved.
27 */

29 /*
30 * Node hash implementation initially borrowed from NFS (nfs_subr.c)
31 * but then heavily modified. It’s no longer an array of hash lists,
32 * but an AVL tree per mount point. More on this below.
33 */

35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/time.h>
38 #include <sys/vnode.h>
39 #include <sys/bitmap.h>
40 #include <sys/dnlc.h>
41 #include <sys/kmem.h>
42 #include <sys/sunddi.h>
43 #include <sys/sysmacros.h>

45 #include <netsmb/smb_osdep.h>

47 #include <netsmb/smb.h>
48 #include <netsmb/smb_conn.h>
49 #include <netsmb/smb_subr.h>
50 #include <netsmb/smb_rq.h>

52 #include <smbfs/smbfs.h>
53 #include <smbfs/smbfs_node.h>
54 #include <smbfs/smbfs_subr.h>

56 /*
57 * The AVL trees (now per-mount) allow finding an smbfs node by its
58 * full remote path name. It also allows easy traversal of all nodes
59 * below (path wise) any given node. A reader/writer lock for each
60 * (per mount) AVL tree is used to control access and to synchronize
61 * lookups, additions, and deletions from that AVL tree.

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr2.c 2

62 *
63 * Previously, this code use a global array of hash chains, each with
64 * its own rwlock. A few struct members, functions, and comments may
65 * still refer to a "hash", and those should all now be considered to
66 * refer to the per-mount AVL tree that replaced the old hash chains.
67 * (i.e. member smi_hash_lk, function sn_hashfind, etc.)
68 *
69 * The smbnode freelist is organized as a doubly linked list with
70 * a head pointer. Additions and deletions are synchronized via
71 * a single mutex.
72 *
73 * In order to add an smbnode to the free list, it must be linked into
74 * the mount’s AVL tree and the exclusive lock for the AVL must be held.
75 * If an smbnode is not linked into the AVL tree, then it is destroyed
76 * because it represents no valuable information that can be reused
77 * about the file. The exclusive lock for the AVL tree must be held
78 * in order to prevent a lookup in the AVL tree from finding the
79 * smbnode and using it and assuming that the smbnode is not on the
80 * freelist. The lookup in the AVL tree will have the AVL tree lock
81 * held, either exclusive or shared.
82 *
83 * The vnode reference count for each smbnode is not allowed to drop
84 * below 1. This prevents external entities, such as the VM
85 * subsystem, from acquiring references to vnodes already on the
86 * freelist and then trying to place them back on the freelist
87 * when their reference is released. This means that the when an
88 * smbnode is looked up in the AVL tree, then either the smbnode
89 * is removed from the freelist and that reference is tranfered to
90 * the new reference or the vnode reference count must be incremented
91 * accordingly. The mutex for the freelist must be held in order to
92 * accurately test to see if the smbnode is on the freelist or not.
93 * The AVL tree lock might be held shared and it is possible that
94 * two different threads may race to remove the smbnode from the
95 * freelist. This race can be resolved by holding the mutex for the
96 * freelist. Please note that the mutex for the freelist does not
97 * need to held if the smbnode is not on the freelist. It can not be
98 * placed on the freelist due to the requirement that the thread
99 * putting the smbnode on the freelist must hold the exclusive lock
100 * for the AVL tree and the thread doing the lookup in the AVL tree
101 * is holding either a shared or exclusive lock for the AVL tree.
102 *
103 * The lock ordering is:
104 *
105 * AVL tree lock -> vnode lock
106 * AVL tree lock -> freelist lock
107 */

109 static kmutex_t smbfreelist_lock;
110 static smbnode_t *smbfreelist = NULL;
111 static ulong_t smbnodenew = 0;
112 long nsmbnode = 0;

114 static struct kmem_cache *smbnode_cache;

116 static const vsecattr_t smbfs_vsa0 = { 0 };

118 /*
119 * Mutex to protect the following variables:
120 * smbfs_major
121 * smbfs_minor
122 */
123 kmutex_t smbfs_minor_lock;
124 int smbfs_major;
125 int smbfs_minor;

127 /* See smbfs_node_findcreate() */

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr2.c 3

128 struct smbfattr smbfs_fattr0;

130 /*
131 * Local functions.
132 * SN for Smb Node
133 */
134 static void sn_rmfree(smbnode_t *);
135 static void sn_inactive(smbnode_t *);
136 static void sn_addhash_locked(smbnode_t *, avl_index_t);
137 static void sn_rmhash_locked(smbnode_t *);
138 static void sn_destroy_node(smbnode_t *);
139 void smbfs_kmem_reclaim(void *cdrarg);

141 static smbnode_t *
142 sn_hashfind(smbmntinfo_t *, const char *, int, avl_index_t *);

144 static smbnode_t *
145 make_smbnode(smbmntinfo_t *, const char *, int, int *);

147 /*
148 * Free the resources associated with an smbnode.
149 * Note: This is different from smbfs_inactive
150 *
151 * NFS: nfs_subr.c:rinactive
152 */
153 static void
154 sn_inactive(smbnode_t *np)
155 {
156 vsecattr_t ovsa;
157 cred_t *oldcr;
158 char *orpath;
159 int orplen;
160 vnode_t *vp;
161 #endif /* ! codereview */

163 /*
164 * Flush and invalidate all pages
160 * Flush and invalidate all pages (todo)
165 * Free any held credentials and caches...
166 * etc. (See NFS code)
167 */
168 mutex_enter(&np->r_statelock);

170 ovsa = np->r_secattr;
171 np->r_secattr = smbfs_vsa0;
172 np->r_sectime = 0;

174 oldcr = np->r_cred;
175 np->r_cred = NULL;

177 orpath = np->n_rpath;
178 orplen = np->n_rplen;
179 np->n_rpath = NULL;
180 np->n_rplen = 0;

182 mutex_exit(&np->r_statelock);

184 vp = SMBTOV(np);
185 if (vn_has_cached_data(vp)) {
186 smbfs_invalidate_pages(vp, (u_offset_t) 0, oldcr);
187 }

189 #endif /* ! codereview */
190 if (ovsa.vsa_aclentp != NULL)
191 kmem_free(ovsa.vsa_aclentp, ovsa.vsa_aclentsz);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr2.c 4

193 if (oldcr != NULL)
194 crfree(oldcr);

196 if (orpath != NULL)
197 kmem_free(orpath, orplen + 1);
198 }

200 /*
201 * Find and optionally create an smbnode for the passed
202 * mountinfo, directory, separator, and name. If the
203 * desired smbnode already exists, return a reference.
204 * If the file attributes pointer is non-null, the node
205 * is created if necessary and linked into the AVL tree.
206 *
207 * Callers that need a node created but don’t have the
208 * real attributes pass smbfs_fattr0 to force creation.
209 *
210 * Note: make_smbnode() may upgrade the "hash" lock to exclusive.
211 *
212 * NFS: nfs_subr.c:makenfsnode
213 */
214 smbnode_t *
215 smbfs_node_findcreate(
216 smbmntinfo_t *mi,
217 const char *dirnm,
218 int dirlen,
219 const char *name,
220 int nmlen,
221 char sep,
222 struct smbfattr *fap)
223 {
224 char tmpbuf[256];
225 size_t rpalloc;
226 char *p, *rpath;
227 int rplen;
228 smbnode_t *np;
229 vnode_t *vp;
230 int newnode;

232 /*
233 * Build the search string, either in tmpbuf or
234 * in allocated memory if larger than tmpbuf.
235 */
236 rplen = dirlen;
237 if (sep != ’\0’)
238 rplen++;
239 rplen += nmlen;
240 if (rplen < sizeof (tmpbuf)) {
241 /* use tmpbuf */
242 rpalloc = 0;
243 rpath = tmpbuf;
244 } else {
245 rpalloc = rplen + 1;
246 rpath = kmem_alloc(rpalloc, KM_SLEEP);
247 }
248 p = rpath;
249 bcopy(dirnm, p, dirlen);
250 p += dirlen;
251 if (sep != ’\0’)
252 *p++ = sep;
253 if (name != NULL) {
254 bcopy(name, p, nmlen);
255 p += nmlen;
256 }
257 ASSERT(p == rpath + rplen);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr2.c 5

259 /*
260 * Find or create a node with this path.
261 */
262 rw_enter(&mi->smi_hash_lk, RW_READER);
263 if (fap == NULL)
264 np = sn_hashfind(mi, rpath, rplen, NULL);
265 else
266 np = make_smbnode(mi, rpath, rplen, &newnode);
267 rw_exit(&mi->smi_hash_lk);

269 if (rpalloc)
270 kmem_free(rpath, rpalloc);

272 if (fap == NULL) {
273 /*
274 * Caller is "just looking" (no create)
275 * so np may or may not be NULL here.
276 * Either way, we’re done.
277 */
278 return (np);
279 }

281 /*
282 * We should have a node, possibly created.
283 * Do we have (real) attributes to apply?
284 */
285 ASSERT(np != NULL);
286 if (fap == &smbfs_fattr0)
287 return (np);

289 /*
290 * Apply the given attributes to this node,
291 * dealing with any cache impact, etc.
292 */
293 vp = SMBTOV(np);
294 if (!newnode) {
295 /*
296 * Found an existing node.
297 * Maybe purge caches...
298 */
299 smbfs_cache_check(vp, fap);
300 }
301 smbfs_attrcache_fa(vp, fap);

303 /*
304 * Note NFS sets vp->v_type here, assuming it
305 * can never change for the life of a node.
306 * We allow v_type to change, and set it in
307 * smbfs_attrcache(). Also: mode, uid, gid
308 */
309 return (np);
310 }

312 /*
313 * NFS: nfs_subr.c:rtablehash
314 * We use smbfs_hash().
315 */

317 /*
318 * Find or create an smbnode.
319 * NFS: nfs_subr.c:make_rnode
320 */
321 static smbnode_t *
322 make_smbnode(
323 smbmntinfo_t *mi,
324 const char *rpath,

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr2.c 6

325 int rplen,
326 int *newnode)
327 {
328 smbnode_t *np;
329 smbnode_t *tnp;
330 vnode_t *vp;
331 vfs_t *vfsp;
332 avl_index_t where;
333 char *new_rpath = NULL;

335 ASSERT(RW_READ_HELD(&mi->smi_hash_lk));
336 vfsp = mi->smi_vfsp;

338 start:
339 np = sn_hashfind(mi, rpath, rplen, NULL);
340 if (np != NULL) {
341 *newnode = 0;
342 return (np);
343 }

345 /* Note: will retake this lock below. */
346 rw_exit(&mi->smi_hash_lk);

348 /*
349 * see if we can find something on the freelist
350 */
351 mutex_enter(&smbfreelist_lock);
352 if (smbfreelist != NULL && smbnodenew >= nsmbnode) {
353 np = smbfreelist;
354 sn_rmfree(np);
355 mutex_exit(&smbfreelist_lock);

357 vp = SMBTOV(np);

359 if (np->r_flags & RHASHED) {
360 smbmntinfo_t *tmp_mi = np->n_mount;
361 ASSERT(tmp_mi != NULL);
362 rw_enter(&tmp_mi->smi_hash_lk, RW_WRITER);
363 mutex_enter(&vp->v_lock);
364 if (vp->v_count > 1) {
365 vp->v_count--;
366 mutex_exit(&vp->v_lock);
367 rw_exit(&tmp_mi->smi_hash_lk);
368 /* start over */
369 rw_enter(&mi->smi_hash_lk, RW_READER);
370 goto start;
371 }
372 mutex_exit(&vp->v_lock);
373 sn_rmhash_locked(np);
374 rw_exit(&tmp_mi->smi_hash_lk);
375 }

377 sn_inactive(np);

379 mutex_enter(&vp->v_lock);
380 if (vp->v_count > 1) {
381 vp->v_count--;
382 mutex_exit(&vp->v_lock);
383 rw_enter(&mi->smi_hash_lk, RW_READER);
384 goto start;
385 }
386 mutex_exit(&vp->v_lock);
387 vn_invalid(vp);
388 /*
389 * destroy old locks before bzero’ing and
390 * recreating the locks below.

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr2.c 7

391 */
392 smbfs_rw_destroy(&np->r_rwlock);
393 smbfs_rw_destroy(&np->r_lkserlock);
394 mutex_destroy(&np->r_statelock);
395 cv_destroy(&np->r_cv);
396 /*
397 * Make sure that if smbnode is recycled then
398 * VFS count is decremented properly before
399 * reuse.
400 */
401 VFS_RELE(vp->v_vfsp);
402 vn_reinit(vp);
403 } else {
404 /*
405 * allocate and initialize a new smbnode
406 */
407 vnode_t *new_vp;

409 mutex_exit(&smbfreelist_lock);

411 np = kmem_cache_alloc(smbnode_cache, KM_SLEEP);
412 new_vp = vn_alloc(KM_SLEEP);

414 atomic_add_long((ulong_t *)&smbnodenew, 1);
415 vp = new_vp;
416 }

418 /*
419 * Allocate and copy the rpath we’ll need below.
420 */
421 new_rpath = kmem_alloc(rplen + 1, KM_SLEEP);
422 bcopy(rpath, new_rpath, rplen);
423 new_rpath[rplen] = ’\0’;

425 /* Initialize smbnode_t */
426 bzero(np, sizeof (*np));

428 smbfs_rw_init(&np->r_rwlock, NULL, RW_DEFAULT, NULL);
429 smbfs_rw_init(&np->r_lkserlock, NULL, RW_DEFAULT, NULL);
430 mutex_init(&np->r_statelock, NULL, MUTEX_DEFAULT, NULL);
431 cv_init(&np->r_cv, NULL, CV_DEFAULT, NULL);
432 /* cv_init(&np->r_commit.c_cv, NULL, CV_DEFAULT, NULL); */

434 np->r_vnode = vp;
435 np->n_mount = mi;

437 np->n_fid = SMB_FID_UNUSED;
438 np->n_uid = mi->smi_uid;
439 np->n_gid = mi->smi_gid;
440 /* Leave attributes "stale." */

442 #if 0 /* XXX dircache */
443 /*
444 * We don’t know if it’s a directory yet.
445 * Let the caller do this? XXX
446 */
447 avl_create(&np->r_dir, compar, sizeof (rddir_cache),
448 offsetof(rddir_cache, tree));
449 #endif

451 /* Now fill in the vnode. */
452 vn_setops(vp, smbfs_vnodeops);
453 vp->v_data = (caddr_t)np;
454 VFS_HOLD(vfsp);
455 vp->v_vfsp = vfsp;
456 vp->v_type = VNON;

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr2.c 8

458 /*
459 * We entered with mi->smi_hash_lk held (reader).
460 * Retake it now, (as the writer).
461 * Will return with it held.
462 */
463 rw_enter(&mi->smi_hash_lk, RW_WRITER);

465 /*
466 * There is a race condition where someone else
467 * may alloc the smbnode while no locks are held,
468 * so check again and recover if found.
469 */
470 tnp = sn_hashfind(mi, rpath, rplen, &where);
471 if (tnp != NULL) {
472 /*
473 * Lost the race. Put the node we were building
474 * on the free list and return the one we found.
475 */
476 rw_exit(&mi->smi_hash_lk);
477 kmem_free(new_rpath, rplen + 1);
478 smbfs_addfree(np);
479 rw_enter(&mi->smi_hash_lk, RW_READER);
480 *newnode = 0;
481 return (tnp);
482 }

484 /*
485 * Hash search identifies nodes by the remote path
486 * (n_rpath) so fill that in now, before linking
487 * this node into the node cache (AVL tree).
488 */
489 np->n_rpath = new_rpath;
490 np->n_rplen = rplen;
491 np->n_ino = smbfs_gethash(new_rpath, rplen);

493 sn_addhash_locked(np, where);
494 *newnode = 1;
495 return (np);
496 }

498 /*
499 * smbfs_addfree
500 * Put an smbnode on the free list, or destroy it immediately
501 * if it offers no value were it to be reclaimed later. Also
502 * destroy immediately when we have too many smbnodes, etc.
503 *
504 * Normally called by smbfs_inactive, but also
505 * called in here during cleanup operations.
506 *
507 * NFS: nfs_subr.c:rp_addfree
508 */
509 void
510 smbfs_addfree(smbnode_t *np)
511 {
512 vnode_t *vp;
513 struct vfs *vfsp;
514 smbmntinfo_t *mi;

516 ASSERT(np->r_freef == NULL && np->r_freeb == NULL);

518 vp = SMBTOV(np);
519 ASSERT(vp->v_count >= 1);

521 vfsp = vp->v_vfsp;
522 mi = VFTOSMI(vfsp);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr2.c 9

524 /*
525 * If there are no more references to this smbnode and:
526 * we have too many smbnodes allocated, or if the node
527 * is no longer accessible via the AVL tree (!RHASHED),
528 * or an i/o error occurred while writing to the file,
529 * or it’s part of an unmounted FS, then try to destroy
530 * it instead of putting it on the smbnode freelist.
531 */
532 if (np->r_count == 0 && (
533 (np->r_flags & RHASHED) == 0 ||
534 (np->r_error != 0) ||
535 (vfsp->vfs_flag & VFS_UNMOUNTED) ||
536 (smbnodenew > nsmbnode))) {

538 /* Try to destroy this node. */

540 if (np->r_flags & RHASHED) {
541 rw_enter(&mi->smi_hash_lk, RW_WRITER);
542 mutex_enter(&vp->v_lock);
543 if (vp->v_count > 1) {
544 vp->v_count--;
545 mutex_exit(&vp->v_lock);
546 rw_exit(&mi->smi_hash_lk);
547 return;
548 /*
549 * Will get another call later,
550 * via smbfs_inactive.
551 */
552 }
553 mutex_exit(&vp->v_lock);
554 sn_rmhash_locked(np);
555 rw_exit(&mi->smi_hash_lk);
556 }

558 sn_inactive(np);

560 /*
561 * Recheck the vnode reference count. We need to
562 * make sure that another reference has not been
563 * acquired while we were not holding v_lock. The
564 * smbnode is not in the smbnode "hash" AVL tree, so
565 * the only way for a reference to have been acquired
566 * is for a VOP_PUTPAGE because the smbnode was marked
567 * with RDIRTY or for a modified page. This vnode
568 * reference may have been acquired before our call
569 * to sn_inactive. The i/o may have been completed,
570 * thus allowing sn_inactive to complete, but the
571 * reference to the vnode may not have been released
572 * yet. In any case, the smbnode can not be destroyed
573 * until the other references to this vnode have been
574 * released. The other references will take care of
575 * either destroying the smbnode or placing it on the
576 * smbnode freelist. If there are no other references,
577 * then the smbnode may be safely destroyed.
578 */
579 mutex_enter(&vp->v_lock);
580 if (vp->v_count > 1) {
581 vp->v_count--;
582 mutex_exit(&vp->v_lock);
583 return;
584 }
585 mutex_exit(&vp->v_lock);

587 sn_destroy_node(np);
588 return;

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr2.c 10

589 }

591 /*
592 * Lock the AVL tree and then recheck the reference count
593 * to ensure that no other threads have acquired a reference
594 * to indicate that the smbnode should not be placed on the
595 * freelist. If another reference has been acquired, then
596 * just release this one and let the other thread complete
597 * the processing of adding this smbnode to the freelist.
598 */
599 rw_enter(&mi->smi_hash_lk, RW_WRITER);

601 mutex_enter(&vp->v_lock);
602 if (vp->v_count > 1) {
603 vp->v_count--;
604 mutex_exit(&vp->v_lock);
605 rw_exit(&mi->smi_hash_lk);
606 return;
607 }
608 mutex_exit(&vp->v_lock);

610 /*
611 * Put this node on the free list.
612 */
613 mutex_enter(&smbfreelist_lock);
614 if (smbfreelist == NULL) {
615 np->r_freef = np;
616 np->r_freeb = np;
617 smbfreelist = np;
618 } else {
619 np->r_freef = smbfreelist;
620 np->r_freeb = smbfreelist->r_freeb;
621 smbfreelist->r_freeb->r_freef = np;
622 smbfreelist->r_freeb = np;
623 }
624 mutex_exit(&smbfreelist_lock);

626 rw_exit(&mi->smi_hash_lk);
627 }

629 /*
630 * Remove an smbnode from the free list.
631 *
632 * The caller must be holding smbfreelist_lock and the smbnode
633 * must be on the freelist.
634 *
635 * NFS: nfs_subr.c:rp_rmfree
636 */
637 static void
638 sn_rmfree(smbnode_t *np)
639 {

641 ASSERT(MUTEX_HELD(&smbfreelist_lock));
642 ASSERT(np->r_freef != NULL && np->r_freeb != NULL);

644 if (np == smbfreelist) {
645 smbfreelist = np->r_freef;
646 if (np == smbfreelist)
647 smbfreelist = NULL;
648 }

650 np->r_freeb->r_freef = np->r_freef;
651 np->r_freef->r_freeb = np->r_freeb;

653 np->r_freef = np->r_freeb = NULL;
654 }

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr2.c 11

656 /*
657 * Put an smbnode in the "hash" AVL tree.
658 *
659 * The caller must be hold the rwlock as writer.
660 *
661 * NFS: nfs_subr.c:rp_addhash
662 */
663 static void
664 sn_addhash_locked(smbnode_t *np, avl_index_t where)
665 {
666 smbmntinfo_t *mi = np->n_mount;

668 ASSERT(RW_WRITE_HELD(&mi->smi_hash_lk));
669 ASSERT(!(np->r_flags & RHASHED));

671 avl_insert(&mi->smi_hash_avl, np, where);

673 mutex_enter(&np->r_statelock);
674 np->r_flags |= RHASHED;
675 mutex_exit(&np->r_statelock);
676 }

678 /*
679 * Remove an smbnode from the "hash" AVL tree.
680 *
681 * The caller must hold the rwlock as writer.
682 *
683 * NFS: nfs_subr.c:rp_rmhash_locked
684 */
685 static void
686 sn_rmhash_locked(smbnode_t *np)
687 {
688 smbmntinfo_t *mi = np->n_mount;

690 ASSERT(RW_WRITE_HELD(&mi->smi_hash_lk));
691 ASSERT(np->r_flags & RHASHED);

693 avl_remove(&mi->smi_hash_avl, np);

695 mutex_enter(&np->r_statelock);
696 np->r_flags &= ~RHASHED;
697 mutex_exit(&np->r_statelock);
698 }

700 /*
701 * Remove an smbnode from the "hash" AVL tree.
702 *
703 * The caller must not be holding the rwlock.
704 */
705 void
706 smbfs_rmhash(smbnode_t *np)
707 {
708 smbmntinfo_t *mi = np->n_mount;

710 rw_enter(&mi->smi_hash_lk, RW_WRITER);
711 sn_rmhash_locked(np);
712 rw_exit(&mi->smi_hash_lk);
713 }

715 /*
716 * Lookup an smbnode by remote pathname
717 *
718 * The caller must be holding the AVL rwlock, either shared or exclusive.
719 *
720 * NFS: nfs_subr.c:rfind

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr2.c 12

721 */
722 static smbnode_t *
723 sn_hashfind(
724 smbmntinfo_t *mi,
725 const char *rpath,
726 int rplen,
727 avl_index_t *pwhere) /* optional */
728 {
729 smbfs_node_hdr_t nhdr;
730 smbnode_t *np;
731 vnode_t *vp;

733 ASSERT(RW_LOCK_HELD(&mi->smi_hash_lk));

735 bzero(&nhdr, sizeof (nhdr));
736 nhdr.hdr_n_rpath = (char *)rpath;
737 nhdr.hdr_n_rplen = rplen;

739 /* See smbfs_node_cmp below. */
740 np = avl_find(&mi->smi_hash_avl, &nhdr, pwhere);

742 if (np == NULL)
743 return (NULL);

745 /*
746 * Found it in the "hash" AVL tree.
747 * Remove from free list, if necessary.
748 */
749 vp = SMBTOV(np);
750 if (np->r_freef != NULL) {
751 mutex_enter(&smbfreelist_lock);
752 /*
753 * If the smbnode is on the freelist,
754 * then remove it and use that reference
755 * as the new reference. Otherwise,
756 * need to increment the reference count.
757 */
758 if (np->r_freef != NULL) {
759 sn_rmfree(np);
760 mutex_exit(&smbfreelist_lock);
761 } else {
762 mutex_exit(&smbfreelist_lock);
763 VN_HOLD(vp);
764 }
765 } else
766 VN_HOLD(vp);

768 return (np);
769 }

771 static int
772 smbfs_node_cmp(const void *va, const void *vb)
773 {
774 const smbfs_node_hdr_t *a = va;
775 const smbfs_node_hdr_t *b = vb;
776 int clen, diff;

778 /*
779 * Same semantics as strcmp, but does not
780 * assume the strings are null terminated.
781 */
782 clen = (a->hdr_n_rplen < b->hdr_n_rplen) ?
783 a->hdr_n_rplen : b->hdr_n_rplen;
784 diff = strncmp(a->hdr_n_rpath, b->hdr_n_rpath, clen);
785 if (diff < 0)
786 return (-1);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr2.c 13

787 if (diff > 0)
788 return (1);
789 /* they match through clen */
790 if (b->hdr_n_rplen > clen)
791 return (-1);
792 if (a->hdr_n_rplen > clen)
793 return (1);
794 return (0);
795 }

797 /*
798 * Setup the "hash" AVL tree used for our node cache.
799 * See: smbfs_mount, smbfs_destroy_table.
800 */
801 void
802 smbfs_init_hash_avl(avl_tree_t *avl)
803 {
804 avl_create(avl, smbfs_node_cmp, sizeof (smbnode_t),
805 offsetof(smbnode_t, r_avl_node));
806 }

808 /*
809 * Invalidate the cached attributes for all nodes "under" the
810 * passed-in node. Note: the passed-in node is NOT affected by
811 * this call. This is used both for files under some directory
812 * after the directory is deleted or renamed, and for extended
813 * attribute files (named streams) under a plain file after that
814 * file is renamed or deleted.
815 *
816 * Do this by walking the AVL tree starting at the passed in node,
817 * and continuing while the visited nodes have a path prefix matching
818 * the entire path of the passed-in node, and a separator just after
819 * that matching path prefix. Watch out for cases where the AVL tree
820 * order may not exactly match the order of an FS walk, i.e.
821 * consider this sequence:
822 * "foo" (directory)
823 * "foo bar" (name containing a space)
824 * "foo/bar"
825 * The walk needs to skip "foo bar" and keep going until it finds
826 * something that doesn’t match the "foo" name prefix.
827 */
828 void
829 smbfs_attrcache_prune(smbnode_t *top_np)
830 {
831 smbmntinfo_t *mi;
832 smbnode_t *np;
833 char *rpath;
834 int rplen;

836 mi = top_np->n_mount;
837 rw_enter(&mi->smi_hash_lk, RW_READER);

839 np = top_np;
840 rpath = top_np->n_rpath;
841 rplen = top_np->n_rplen;
842 for (;;) {
843 np = avl_walk(&mi->smi_hash_avl, np, AVL_AFTER);
844 if (np == NULL)
845 break;
846 if (np->n_rplen < rplen)
847 break;
848 if (0 != strncmp(np->n_rpath, rpath, rplen))
849 break;
850 if (np->n_rplen > rplen && (
851 np->n_rpath[rplen] == ’:’ ||
852 np->n_rpath[rplen] == ’\\’))

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr2.c 14

853 smbfs_attrcache_remove(np);
854 }

856 rw_exit(&mi->smi_hash_lk);
857 }

859 #ifdef SMB_VNODE_DEBUG
860 int smbfs_check_table_debug = 1;
861 #else /* SMB_VNODE_DEBUG */
862 int smbfs_check_table_debug = 0;
863 #endif /* SMB_VNODE_DEBUG */

866 /*
867 * Return 1 if there is a active vnode belonging to this vfs in the
868 * smbnode cache.
869 *
870 * Several of these checks are done without holding the usual
871 * locks. This is safe because destroy_smbtable(), smbfs_addfree(),
872 * etc. will redo the necessary checks before actually destroying
873 * any smbnodes.
874 *
875 * NFS: nfs_subr.c:check_rtable
876 *
877 * Debugging changes here relative to NFS.
878 * Relatively harmless, so left ’em in.
879 */
880 int
881 smbfs_check_table(struct vfs *vfsp, smbnode_t *rtnp)
882 {
883 smbmntinfo_t *mi;
884 smbnode_t *np;
885 vnode_t *vp;
886 int busycnt = 0;

888 mi = VFTOSMI(vfsp);
889 rw_enter(&mi->smi_hash_lk, RW_READER);
890 for (np = avl_first(&mi->smi_hash_avl); np != NULL;
891 np = avl_walk(&mi->smi_hash_avl, np, AVL_AFTER)) {

893 if (np == rtnp)
894 continue; /* skip the root */
895 vp = SMBTOV(np);

897 /* Now the ’busy’ checks: */
898 /* Not on the free list? */
899 if (np->r_freef == NULL) {
900 SMBVDEBUG("!r_freef: node=0x%p, rpath=%s\n",
901 (void *)np, np->n_rpath);
902 busycnt++;
903 }

905 /* Has dirty pages? */
906 if (vn_has_cached_data(vp) &&
907 (np->r_flags & RDIRTY)) {
908 SMBVDEBUG("is dirty: node=0x%p, rpath=%s\n",
909 (void *)np, np->n_rpath);
910 busycnt++;
911 }

913 /* Other refs? (not reflected in v_count) */
914 if (np->r_count > 0) {
915 SMBVDEBUG("+r_count: node=0x%p, rpath=%s\n",
916 (void *)np, np->n_rpath);
917 busycnt++;
918 }

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr2.c 15

920 if (busycnt && !smbfs_check_table_debug)
921 break;

923 }
924 rw_exit(&mi->smi_hash_lk);

926 return (busycnt);
927 }

929 /*
930 * Destroy inactive vnodes from the AVL tree which belong to this
931 * vfs. It is essential that we destroy all inactive vnodes during a
932 * forced unmount as well as during a normal unmount.
933 *
934 * NFS: nfs_subr.c:destroy_rtable
935 *
936 * In here, we’re normally destrying all or most of the AVL tree,
937 * so the natural choice is to use avl_destroy_nodes. However,
938 * there may be a few busy nodes that should remain in the AVL
939 * tree when we’re done. The solution: use a temporary tree to
940 * hold the busy nodes until we’re done destroying the old tree,
941 * then copy the temporary tree over the (now emtpy) real tree.
942 */
943 void
944 smbfs_destroy_table(struct vfs *vfsp)
945 {
946 avl_tree_t tmp_avl;
947 smbmntinfo_t *mi;
948 smbnode_t *np;
949 smbnode_t *rlist;
950 void *v;

952 mi = VFTOSMI(vfsp);
953 rlist = NULL;
954 smbfs_init_hash_avl(&tmp_avl);

956 rw_enter(&mi->smi_hash_lk, RW_WRITER);
957 v = NULL;
958 while ((np = avl_destroy_nodes(&mi->smi_hash_avl, &v)) != NULL) {

960 mutex_enter(&smbfreelist_lock);
961 if (np->r_freef == NULL) {
962 /*
963 * Busy node (not on the free list).
964 * Will keep in the final AVL tree.
965 */
966 mutex_exit(&smbfreelist_lock);
967 avl_add(&tmp_avl, np);
968 } else {
969 /*
970 * It’s on the free list. Remove and
971 * arrange for it to be destroyed.
972 */
973 sn_rmfree(np);
974 mutex_exit(&smbfreelist_lock);

976 /*
977 * Last part of sn_rmhash_locked().
978 * NB: avl_destroy_nodes has already
979 * removed this from the "hash" AVL.
980 */
981 mutex_enter(&np->r_statelock);
982 np->r_flags &= ~RHASHED;
983 mutex_exit(&np->r_statelock);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr2.c 16

985 /*
986 * Add to the list of nodes to destroy.
987 * Borrowing avl_child[0] for this list.
988 */
989 np->r_avl_node.avl_child[0] =
990 (struct avl_node *)rlist;
991 rlist = np;
992 }
993 }
994 avl_destroy(&mi->smi_hash_avl);

996 /*
997 * Replace the (now destroyed) "hash" AVL with the
998 * temporary AVL, which restores the busy nodes.
999 */

1000 mi->smi_hash_avl = tmp_avl;
1001 rw_exit(&mi->smi_hash_lk);

1003 /*
1004 * Now destroy the nodes on our temporary list (rlist).
1005 * This call to smbfs_addfree will end up destroying the
1006 * smbnode, but in a safe way with the appropriate set
1007 * of checks done.
1008 */
1009 while ((np = rlist) != NULL) {
1010 rlist = (smbnode_t *)np->r_avl_node.avl_child[0];
1011 smbfs_addfree(np);
1012 }
1013 }

1015 /*
1016 * This routine destroys all the resources associated with the smbnode
1017 * and then the smbnode itself. Note: sn_inactive has been called.
1018 *
1019 * NFS: nfs_subr.c:destroy_rnode
1020 */
1021 static void
1022 sn_destroy_node(smbnode_t *np)
1023 {
1024 vnode_t *vp;
1025 vfs_t *vfsp;

1027 vp = SMBTOV(np);
1028 vfsp = vp->v_vfsp;

1030 ASSERT(vp->v_count == 1);
1031 ASSERT(np->r_count == 0);
1032 ASSERT(np->r_mapcnt == 0);
1033 ASSERT(np->r_secattr.vsa_aclentp == NULL);
1034 ASSERT(np->r_cred == NULL);
1035 ASSERT(np->n_rpath == NULL);
1036 ASSERT(!(np->r_flags & RHASHED));
1037 ASSERT(np->r_freef == NULL && np->r_freeb == NULL);
1038 atomic_add_long((ulong_t *)&smbnodenew, -1);
1039 vn_invalid(vp);
1040 vn_free(vp);
1041 kmem_cache_free(smbnode_cache, np);
1042 VFS_RELE(vfsp);
1043 }

1045 /*
1046 * Flush all vnodes in this (or every) vfs.
1047 * Used by nfs_sync and by nfs_unmount.
1048 */
1049 /*ARGSUSED*/
1050 void

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_subr2.c 17

1051 smbfs_rflush(struct vfs *vfsp, cred_t *cr) {

1053 smbmntinfo_t *mi;
1054 smbnode_t *np;
1055 vnode_t *vp;

1057 long num, cnt;

1059 vnode_t **vplist;

1061 mi = VFTOSMI(vfsp);

1063 cnt = 0;
1064 num = mi->smi_hash_avl.avl_numnodes;
1065 vplist = kmem_alloc(num * sizeof (vnode_t*), KM_SLEEP);

1067 rw_enter(&mi->smi_hash_lk, RW_READER);
1068 for (np = avl_first(&mi->smi_hash_avl); np != NULL;
1069 np = avl_walk(&mi->smi_hash_avl, np, AVL_AFTER)) {
1070 vp = SMBTOV(np);
1071 if (vn_is_readonly(vp))
1072 continue;

1074 if (vn_has_cached_data(vp) && (np->r_flags & RDIRTY || np->r_mapcnt > 0)
1075 VN_HOLD(vp);
1076 vplist[cnt++] = vp;
1077 if (cnt == num)
1078 break;
1079 }
1080 }
1081 rw_exit(&mi->smi_hash_lk);

1083 while (cnt-- > 0) {
1084 vp = vplist[cnt];
1085 (void) VOP_PUTPAGE(vp, 0, 0, 0, cr, NULL);
1086 VN_RELE(vp);
1087 }

1089 kmem_free(vplist, num * sizeof (vnode_t*));
180 smbfs_rflush(struct vfs *vfsp, cred_t *cr)
181 {
182 /* Todo: mmap support. */
1090 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 1

**
 93502 Fri Jul 20 12:37:51 2012
new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c
*** NO COMMENTS ***
**

1 /*
2 * Copyright (c) 2000-2001 Boris Popov
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.

10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by Boris Popov.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ‘‘AS IS’’ AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * $Id: smbfs_vnops.c,v 1.128.36.1 2005/05/27 02:35:28 lindak Exp $
33 */

35 /*
36 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
37 */

39 #include <sys/systm.h>
40 #include <sys/cred.h>
41 #include <sys/vnode.h>
42 #include <sys/vfs.h>
43 #include <sys/filio.h>
44 #include <sys/uio.h>
45 #include <sys/dirent.h>
46 #include <sys/errno.h>
47 #include <sys/sunddi.h>
48 #include <sys/sysmacros.h>
49 #include <sys/kmem.h>
50 #include <sys/cmn_err.h>
51 #include <sys/vfs_opreg.h>
52 #include <sys/policy.h>

54 #include <sys/param.h>
55 #include <sys/vm.h>
56 #include <vm/seg_vn.h>
57 #include <vm/pvn.h>
58 #include <vm/as.h>
59 #include <vm/hat.h>
60 #include <vm/page.h>
61 #include <vm/seg.h>

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 2

62 #include <vm/seg_map.h>
63 #include <vm/seg_kmem.h>
64 #include <vm/seg_kpm.h>

66 #endif /* ! codereview */
67 #include <netsmb/smb_osdep.h>
68 #include <netsmb/smb.h>
69 #include <netsmb/smb_conn.h>
70 #include <netsmb/smb_subr.h>

72 #include <smbfs/smbfs.h>
73 #include <smbfs/smbfs_node.h>
74 #include <smbfs/smbfs_subr.h>

76 #include <sys/fs/smbfs_ioctl.h>
77 #include <fs/fs_subr.h>

79 /*
80 * We assign directory offsets like the NFS client, where the
81 * offset increments by _one_ after each directory entry.
82 * Further, the entries "." and ".." are always at offsets
83 * zero and one (respectively) and the "real" entries from
84 * the server appear at offsets starting with two. This
85 * macro is used to initialize the n_dirofs field after
86 * setting n_dirseq with a _findopen call.
87 */
88 #define FIRST_DIROFS 2

90 /*
91 * These characters are illegal in NTFS file names.
92 * ref: http://support.microsoft.com/kb/147438
93 *
94 * Careful! The check in the XATTR case skips the
95 * first character to allow colon in XATTR names.
96 */
97 static const char illegal_chars[] = {
98 ’:’, /* colon - keep this first! */
99 ’\\’, /* back slash */
100 ’/’, /* slash */
101 ’*’, /* asterisk */
102 ’?’, /* question mark */
103 ’"’, /* double quote */
104 ’<’, /* less than sign */
105 ’>’, /* greater than sign */
106 ’|’, /* vertical bar */
107 0
108 };

110 /*
111 * Turning this on causes nodes to be created in the cache
112 * during directory listings, normally avoiding a second
113 * OtW attribute fetch just after a readdir.
114 */
115 int smbfs_fastlookup = 1;

117 /* local static function defines */

119 static int smbfslookup_cache(vnode_t *, char *, int, vnode_t **,
120 cred_t *);
121 static int smbfslookup(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr,
122 int cache_ok, caller_context_t *);
123 static int smbfsrename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm,
124 cred_t *cr, caller_context_t *);
125 static int smbfssetattr(vnode_t *, struct vattr *, int, cred_t *);
126 static int smbfs_accessx(void *, int, cred_t *);
127 static int smbfs_readvdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 3

128 caller_context_t *);
129 static void smbfs_rele_fid(smbnode_t *, struct smb_cred *);

131 /*
132 * These are the vnode ops routines which implement the vnode interface to
133 * the networked file system. These routines just take their parameters,
134 * make them look networkish by putting the right info into interface structs,
135 * and then calling the appropriate remote routine(s) to do the work.
136 *
137 * Note on directory name lookup cacheing: If we detect a stale fhandle,
138 * we purge the directory cache relative to that vnode. This way, the
139 * user won’t get burned by the cache repeatedly. See <smbfs/smbnode.h> for
140 * more details on smbnode locking.
141 */

143 static int smbfs_open(vnode_t **, int, cred_t *, caller_context_t *);
144 static int smbfs_close(vnode_t *, int, int, offset_t, cred_t *,
145 caller_context_t *);
146 static int smbfs_read(vnode_t *, struct uio *, int, cred_t *,
147 caller_context_t *);
148 static int smbfs_write(vnode_t *, struct uio *, int, cred_t *,
149 caller_context_t *);
150 static int smbfs_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *,
151 caller_context_t *);
152 static int smbfs_getattr(vnode_t *, struct vattr *, int, cred_t *,
153 caller_context_t *);
154 static int smbfs_setattr(vnode_t *, struct vattr *, int, cred_t *,
155 caller_context_t *);
156 static int smbfs_access(vnode_t *, int, int, cred_t *, caller_context_t *);
157 static int smbfs_fsync(vnode_t *, int, cred_t *, caller_context_t *);
158 static void smbfs_inactive(vnode_t *, cred_t *, caller_context_t *);
159 static int smbfs_lookup(vnode_t *, char *, vnode_t **, struct pathname *,
160 int, vnode_t *, cred_t *, caller_context_t *,
161 int *, pathname_t *);
162 static int smbfs_create(vnode_t *, char *, struct vattr *, enum vcexcl,
163 int, vnode_t **, cred_t *, int, caller_context_t *,
164 vsecattr_t *);
165 static int smbfs_remove(vnode_t *, char *, cred_t *, caller_context_t *,
166 int);
167 static int smbfs_rename(vnode_t *, char *, vnode_t *, char *, cred_t *,
168 caller_context_t *, int);
169 static int smbfs_mkdir(vnode_t *, char *, struct vattr *, vnode_t **,
170 cred_t *, caller_context_t *, int, vsecattr_t *);
171 static int smbfs_rmdir(vnode_t *, char *, vnode_t *, cred_t *,
172 caller_context_t *, int);
173 static int smbfs_readdir(vnode_t *, struct uio *, cred_t *, int *,
174 caller_context_t *, int);
175 static int smbfs_rwlock(vnode_t *, int, caller_context_t *);
176 static void smbfs_rwunlock(vnode_t *, int, caller_context_t *);
177 static int smbfs_seek(vnode_t *, offset_t, offset_t *, caller_context_t *);
178 static int smbfs_frlock(vnode_t *, int, struct flock64 *, int, offset_t,
179 struct flk_callback *, cred_t *, caller_context_t *);
180 static int smbfs_space(vnode_t *, int, struct flock64 *, int, offset_t,
181 cred_t *, caller_context_t *);
182 static int smbfs_pathconf(vnode_t *, int, ulong_t *, cred_t *,
183 caller_context_t *);
184 static int smbfs_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
185 caller_context_t *);
186 static int smbfs_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
187 caller_context_t *);
188 static int smbfs_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *,
189 caller_context_t *);

191 static int uio_page_mapin(uio_t *uiop, page_t *pp);

193 static void uio_page_mapout(uio_t *uiop, page_t *pp);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 4

195 static int smbfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
196 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
197 caller_context_t *ct);

199 static int smbfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
200 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
201 caller_context_t *ct);

203 static int smbfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
204 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
205 caller_context_t *ct);

207 static int smbfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags,
208 cred_t *cr, caller_context_t *ct);

210 static int smbfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *len
211 int flags, cred_t *cr);

213 static int smbfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
214 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
215 enum seg_rw rw, cred_t *cr, caller_context_t *ct);

217 static int smbfs_getapage(vnode_t *vp, u_offset_t off, size_t len,
218 uint_t *protp, page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
219 enum seg_rw rw, cred_t *cr);

223 #endif /* ! codereview */
224 /* Dummy function to use until correct function is ported in */
225 int noop_vnodeop() {
226 return (0);
227 }

229 struct vnodeops *smbfs_vnodeops = NULL;

231 /*
232 * Most unimplemented ops will return ENOSYS because of fs_nosys().
233 * The only ops where that won’t work are ACCESS (due to open(2)
234 * failures) and ... (anything else left?)
235 */
236 const fs_operation_def_t smbfs_vnodeops_template[] = {
237 { VOPNAME_OPEN, { .vop_open = smbfs_open } },
238 { VOPNAME_CLOSE, { .vop_close = smbfs_close } },
239 { VOPNAME_READ, { .vop_read = smbfs_read } },
240 { VOPNAME_WRITE, { .vop_write = smbfs_write } },
241 { VOPNAME_IOCTL, { .vop_ioctl = smbfs_ioctl } },
242 { VOPNAME_GETATTR, { .vop_getattr = smbfs_getattr } },
243 { VOPNAME_SETATTR, { .vop_setattr = smbfs_setattr } },
244 { VOPNAME_ACCESS, { .vop_access = smbfs_access } },
245 { VOPNAME_LOOKUP, { .vop_lookup = smbfs_lookup } },
246 { VOPNAME_CREATE, { .vop_create = smbfs_create } },
247 { VOPNAME_REMOVE, { .vop_remove = smbfs_remove } },
248 { VOPNAME_LINK, { .error = fs_nosys } }, /* smbfs_link, */
249 { VOPNAME_RENAME, { .vop_rename = smbfs_rename } },
250 { VOPNAME_MKDIR, { .vop_mkdir = smbfs_mkdir } },
251 { VOPNAME_RMDIR, { .vop_rmdir = smbfs_rmdir } },
252 { VOPNAME_READDIR, { .vop_readdir = smbfs_readdir } },
253 { VOPNAME_SYMLINK, { .error = fs_nosys } }, /* smbfs_symlink, */
254 { VOPNAME_READLINK, { .error = fs_nosys } }, /* smbfs_readlink, */
255 { VOPNAME_FSYNC, { .vop_fsync = smbfs_fsync } },
256 { VOPNAME_INACTIVE, { .vop_inactive = smbfs_inactive } },
257 { VOPNAME_FID, { .error = fs_nosys } }, /* smbfs_fid, */
258 { VOPNAME_RWLOCK, { .vop_rwlock = smbfs_rwlock } },
259 { VOPNAME_RWUNLOCK, { .vop_rwunlock = smbfs_rwunlock } },

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 5

260 { VOPNAME_SEEK, { .vop_seek = smbfs_seek } },
261 { VOPNAME_FRLOCK, { .vop_frlock = smbfs_frlock } },
262 { VOPNAME_SPACE, { .vop_space = smbfs_space } },
263 { VOPNAME_REALVP, { .error = fs_nosys } }, /* smbfs_realvp, */
264 { VOPNAME_GETPAGE, { .vop_getpage = smbfs_getpage } }, /* smbfs_get
265 { VOPNAME_PUTPAGE, { .vop_putpage = smbfs_putpage } }, /* smbfs_put
266 { VOPNAME_MAP, { .vop_map = smbfs_map } }, /* smbfs_map, */
267 { VOPNAME_ADDMAP, { .vop_addmap = smbfs_addmap } }, /* smbfs_addma
268 { VOPNAME_DELMAP, { .vop_delmap = smbfs_delmap } }, /* smbfs_delma
269 { VOPNAME_DISPOSE, { .vop_dispose = fs_dispose}},
54 { VOPNAME_GETPAGE, { .error = fs_nosys } }, /* smbfs_getpage, */
55 { VOPNAME_PUTPAGE, { .error = fs_nosys } }, /* smbfs_putpage, */
56 { VOPNAME_MAP, { .error = fs_nosys } }, /* smbfs_map, */
57 { VOPNAME_ADDMAP, { .error = fs_nosys } }, /* smbfs_addmap, */
58 { VOPNAME_DELMAP, { .error = fs_nosys } }, /* smbfs_delmap, */
270 { VOPNAME_DUMP, { .error = fs_nosys } }, /* smbfs_dump, */
271 { VOPNAME_PATHCONF, { .vop_pathconf = smbfs_pathconf } },
272 { VOPNAME_PAGEIO, { .error = fs_nosys } }, /* smbfs_pageio, */
273 { VOPNAME_SETSECATTR, { .vop_setsecattr = smbfs_setsecattr } },
274 { VOPNAME_GETSECATTR, { .vop_getsecattr = smbfs_getsecattr } },
275 { VOPNAME_SHRLOCK, { .vop_shrlock = smbfs_shrlock } },
276 { NULL, NULL }
277 };

______unchanged_portion_omitted_

462 /*ARGSUSED*/
463 static int
464 smbfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
465 caller_context_t *ct)
466 {
467 smbnode_t *np;
468 smbmntinfo_t *smi;
469 struct smb_cred scred;

471 np = VTOSMB(vp);
472 smi = VTOSMI(vp);

474 /*
475 * Don’t "bail out" for VFS_UNMOUNTED here,
476 * as we want to do cleanup, etc.
477 */

479 /*
480 * zone_enter(2) prevents processes from changing zones with SMBFS files
481 * open; if we happen to get here from the wrong zone we can’t do
482 * anything over the wire.
483 */
484 if (smi->smi_zone_ref.zref_zone != curproc->p_zone) {
485 /*
486 * We could attempt to clean up locks, except we’re sure
487 * that the current process didn’t acquire any locks on
488 * the file: any attempt to lock a file belong to another zone
489 * will fail, and one can’t lock an SMBFS file and then change
490 * zones, as that fails too.
491 *
492 * Returning an error here is the sane thing to do. A
493 * subsequent call to VN_RELE() which translates to a
494 * smbfs_inactive() will clean up state: if the zone of the
495 * vnode’s origin is still alive and kicking, an async worker
496 * thread will handle the request (from the correct zone), and
497 * everything (minus the final smbfs_getattr_otw() call) should
498 * be OK. If the zone is going away smbfs_async_inactive() will
499 * throw away cached pages inline.
500 */
501 return (EIO);
502 }

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 6

504 /*
505 * If we are using local locking for this filesystem, then
506 * release all of the SYSV style record locks. Otherwise,
507 * we are doing network locking and we need to release all
508 * of the network locks. All of the locks held by this
509 * process on this file are released no matter what the
510 * incoming reference count is.
511 */
512 if (smi->smi_flags & SMI_LLOCK) {
513 pid_t pid = ddi_get_pid();
514 cleanlocks(vp, pid, 0);
515 cleanshares(vp, pid);
516 }

518 /*
519 * This (passed in) count is the ref. count from the
520 * user’s file_t before the closef call (fio.c).
521 * We only care when the reference goes away.
522 */
523 if (count > 1)
524 return (0);

526 /*
527 * Decrement the reference count for the FID
528 * and possibly do the OtW close.
529 *
530 * Exclusive lock for modifying n_fid stuff.
531 * Don’t want this one ever interruptible.
532 */
533 (void) smbfs_rw_enter_sig(&np->r_lkserlock, RW_WRITER, 0);
534 smb_credinit(&scred, cr);

536 /*
537 * If FID ref. count is 1 and count of mmaped pages isn’t 0,
538 * we won’t call smbfs_rele_fid(), because it will result in the otW clo
539 * The count of mapped pages isn’t 0, which means the mapped pages
540 * possibly will be accessed after close(), we should keep the FID valid
541 * i.e., dont do the otW close.
542 * Dont worry that FID will be leaked, because when the
543 * vnode’s count becomes 0, smbfs_inactive() will
544 * help us release FID and eventually do the otW close.
545 */
546 if (np->n_fidrefs > 1) {
547 smbfs_rele_fid(np, &scred);
548 } else if (np->r_mapcnt == 0) {
549 /*
550 * Before otW close, make sure dirty pages written back.
551 */
552 if ((flag & FWRITE) && vn_has_cached_data(vp)) {
553 /* smbfs_putapage() will acquire shared lock, so release
554 * exclusive lock temporally.
555 */
556 smbfs_rw_exit(&np->r_lkserlock);

558 (void) smbfs_putpage(vp, (offset_t) 0, 0, B_INVAL | B_AS

560 /* acquire exclusive lock again. */
561 (void) smbfs_rw_enter_sig(&np->r_lkserlock, RW_WRITER, 0
562 }
563 #endif /* ! codereview */
564 smbfs_rele_fid(np, &scred);
565 }
566 #endif /* ! codereview */

568 smb_credrele(&scred);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 7

569 smbfs_rw_exit(&np->r_lkserlock);

571 return (0);
572 }

574 /*
575 * Helper for smbfs_close. Decrement the reference count
576 * for an SMB-level file or directory ID, and when the last
577 * reference for the fid goes away, do the OtW close.
578 * Also called in smbfs_inactive (defensive cleanup).
579 */
580 static void
581 smbfs_rele_fid(smbnode_t *np, struct smb_cred *scred)
582 {
583 smb_share_t *ssp;
584 cred_t *oldcr;
585 struct smbfs_fctx *fctx;
586 int error;
587 uint16_t ofid;

589 ssp = np->n_mount->smi_share;
590 error = 0;

592 /* Make sure we serialize for n_dirseq use. */
593 ASSERT(smbfs_rw_lock_held(&np->r_lkserlock, RW_WRITER));

595 /*
596 * Note that vp->v_type may change if a remote node
597 * is deleted and recreated as a different type, and
598 * our getattr may change v_type accordingly.
599 * Now use n_ovtype to keep track of the v_type
600 * we had during open (see comments above).
601 */
602 switch (np->n_ovtype) {
603 case VDIR:
604 ASSERT(np->n_dirrefs > 0);
605 if (--np->n_dirrefs)
606 return;
607 if ((fctx = np->n_dirseq) != NULL) {
608 np->n_dirseq = NULL;
609 np->n_dirofs = 0;
610 error = smbfs_smb_findclose(fctx, scred);
611 }
612 break;

614 case VREG:
615 ASSERT(np->n_fidrefs > 0);
616 if (--np->n_fidrefs)
617 return;
618 if ((ofid = np->n_fid) != SMB_FID_UNUSED) {
619 np->n_fid = SMB_FID_UNUSED;
620 /* After reconnect, n_fid is invalid */
621 if (np->n_vcgenid == ssp->ss_vcgenid) {
622 error = smbfs_smb_close(
623 ssp, ofid, NULL, scred);
624 }
625 }
626 break;

628 default:
629 SMBVDEBUG("bad n_ovtype %d\n", np->n_ovtype);
630 break;
631 }
632 if (error) {
633 SMBVDEBUG("error %d closing %s\n",
634 error, np->n_rpath);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 8

635 }

637 /* Allow next open to use any v_type. */
638 np->n_ovtype = VNON;

640 /*
641 * Other "last close" stuff.
642 */
643 mutex_enter(&np->r_statelock);
644 if (np->n_flag & NATTRCHANGED)
645 smbfs_attrcache_rm_locked(np);
646 oldcr = np->r_cred;
647 np->r_cred = NULL;
648 mutex_exit(&np->r_statelock);
649 if (oldcr != NULL)
650 crfree(oldcr);
651 }

653 /* ARGSUSED */
654 static int
655 smbfs_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
656 caller_context_t *ct)
657 {
658 struct smb_cred scred;
659 struct vattr va;
660 smbnode_t *np;
661 smbmntinfo_t *smi;
662 smb_share_t *ssp;
663 offset_t endoff;
664 ssize_t past_eof;
665 int error;

667 np = VTOSMB(vp);
668 smi = VTOSMI(vp);
669 ssp = smi->smi_share;

671 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
672 return (EIO);

674 if (smi->smi_flags & SMI_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
675 return (EIO);

677 ASSERT(smbfs_rw_lock_held(&np->r_rwlock, RW_READER));

679 if (vp->v_type != VREG)
680 return (EISDIR);

682 if (uiop->uio_resid == 0)
683 return (0);

685 /*
686 * Like NFS3, just check for 63-bit overflow.
687 * Our SMB layer takes care to return EFBIG
688 * when it has to fallback to a 32-bit call.
689 */
690 endoff = uiop->uio_loffset + uiop->uio_resid;
691 if (uiop->uio_loffset < 0 || endoff < 0)
692 return (EINVAL);

694 /* get vnode attributes from server */
695 va.va_mask = AT_SIZE | AT_MTIME;
696 if (error = smbfsgetattr(vp, &va, cr))
697 return (error);

699 /* Update mtime with mtime from server here? */

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 9

701 /* if offset is beyond EOF, read nothing */
702 if (uiop->uio_loffset >= va.va_size)
703 return (0);

705 /*
706 * Limit the read to the remaining file size.
707 * Do this by temporarily reducing uio_resid
708 * by the amount the lies beyoned the EOF.
709 */
710 if (endoff > va.va_size) {
711 past_eof = (ssize_t)(endoff - va.va_size);
712 uiop->uio_resid -= past_eof;
713 } else
714 past_eof = 0;

716 /* Shared lock for n_fid use in smb_rwuio */
717 if (smbfs_rw_enter_sig(&np->r_lkserlock, RW_READER, SMBINTR(vp)))
718 return (EINTR);
719 smb_credinit(&scred, cr);

721 /* After reconnect, n_fid is invalid */
722 if (np->n_vcgenid != ssp->ss_vcgenid)
723 error = ESTALE;
724 else
725 error = smb_rwuio(ssp, np->n_fid, UIO_READ,
726 uiop, &scred, smb_timo_read);

728 smb_credrele(&scred);
729 smbfs_rw_exit(&np->r_lkserlock);

731 /* undo adjustment of resid */
732 uiop->uio_resid += past_eof;

734 return (error);
735 }

738 /* ARGSUSED */
739 static int
740 smbfs_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
741 caller_context_t *ct)
742 {
743 struct smb_cred scred;
744 struct vattr va;
745 smbnode_t *np;
746 smbmntinfo_t *smi;
747 smb_share_t *ssp;
748 offset_t endoff, limit;
749 ssize_t past_limit;
750 int error, timo;

752 np = VTOSMB(vp);
753 smi = VTOSMI(vp);
754 ssp = smi->smi_share;

756 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
757 return (EIO);

759 if (smi->smi_flags & SMI_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
760 return (EIO);

762 ASSERT(smbfs_rw_lock_held(&np->r_rwlock, RW_WRITER));

764 if (vp->v_type != VREG)
765 return (EISDIR);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 10

767 if (uiop->uio_resid == 0)
768 return (0);

770 /*
771 * Handle ioflag bits: (FAPPEND|FSYNC|FDSYNC)
772 */
773 if (ioflag & (FAPPEND | FSYNC)) {
774 if (np->n_flag & NMODIFIED) {
775 smbfs_attrcache_remove(np);
776 /* XXX: smbfs_vinvalbuf? */
777 }
778 }
779 if (ioflag & FAPPEND) {
780 /*
781 * File size can be changed by another client
782 */
783 va.va_mask = AT_SIZE;
784 if (error = smbfsgetattr(vp, &va, cr))
785 return (error);
786 uiop->uio_loffset = va.va_size;
787 }

789 /*
790 * Like NFS3, just check for 63-bit overflow.
791 */
792 endoff = uiop->uio_loffset + uiop->uio_resid;
793 if (uiop->uio_loffset < 0 || endoff < 0)
794 return (EINVAL);

796 /*
797 * Check to make sure that the process will not exceed
798 * its limit on file size. It is okay to write up to
799 * the limit, but not beyond. Thus, the write which
800 * reaches the limit will be short and the next write
801 * will return an error.
802 *
803 * So if we’re starting at or beyond the limit, EFBIG.
804 * Otherwise, temporarily reduce resid to the amount
805 * the falls after the limit.
806 */
807 limit = uiop->uio_llimit;
808 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
809 limit = MAXOFFSET_T;
810 if (uiop->uio_loffset >= limit)
811 return (EFBIG);
812 if (endoff > limit) {
813 past_limit = (ssize_t)(endoff - limit);
814 uiop->uio_resid -= past_limit;
815 } else
816 past_limit = 0;

818 /* Timeout: longer for append. */
819 timo = smb_timo_write;
820 if (endoff > np->r_size)
821 timo = smb_timo_append;

823 /* Shared lock for n_fid use in smb_rwuio */
824 if (smbfs_rw_enter_sig(&np->r_lkserlock, RW_READER, SMBINTR(vp)))
825 return (EINTR);
826 smb_credinit(&scred, cr);

828 /* After reconnect, n_fid is invalid */
829 if (np->n_vcgenid != ssp->ss_vcgenid)
830 error = ESTALE;
831 else
832 error = smb_rwuio(ssp, np->n_fid, UIO_WRITE,

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 11

833 uiop, &scred, timo);

835 if (error == 0) {
836 mutex_enter(&np->r_statelock);
837 np->n_flag |= (NFLUSHWIRE | NATTRCHANGED);
838 if (uiop->uio_loffset > (offset_t)np->r_size)
839 np->r_size = (len_t)uiop->uio_loffset;
840 mutex_exit(&np->r_statelock);
841 if (ioflag & (FSYNC|FDSYNC)) {
842 /* Don’t error the I/O if this fails. */
843 (void) smbfs_smb_flush(np, &scred);
844 }
845 }

847 smb_credrele(&scred);
848 smbfs_rw_exit(&np->r_lkserlock);

850 /* undo adjustment of resid */
851 uiop->uio_resid += past_limit;

853 return (error);
854 }

857 /* ARGSUSED */
858 static int
859 smbfs_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag,
860 cred_t *cr, int *rvalp, caller_context_t *ct)
861 {
862 int error;
863 smbmntinfo_t *smi;

865 smi = VTOSMI(vp);

867 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
868 return (EIO);

870 if (smi->smi_flags & SMI_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
871 return (EIO);

873 switch (cmd) {
874 /* First three from ZFS. XXX - need these? */

876 case _FIOFFS:
877 error = smbfs_fsync(vp, 0, cr, ct);
878 break;

880 /*
881 * The following two ioctls are used by bfu.
882 * Silently ignore to avoid bfu errors.
883 */
884 case _FIOGDIO:
885 case _FIOSDIO:
886 error = 0;
887 break;

889 #ifdef NOT_YET /* XXX - from the NFS code. */
890 case _FIODIRECTIO:
891 error = smbfs_directio(vp, (int)arg, cr);
892 #endif

894 /*
895 * Allow get/set with "raw" security descriptor (SD) data.
896 * Useful for testing, diagnosing idmap problems, etc.
897 */
898 case SMBFSIO_GETSD:

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 12

899 error = smbfs_acl_iocget(vp, arg, flag, cr);
900 break;

902 case SMBFSIO_SETSD:
903 error = smbfs_acl_iocset(vp, arg, flag, cr);
904 break;

906 default:
907 error = ENOTTY;
908 break;
909 }

911 return (error);
912 }

915 /*
916 * Return either cached or remote attributes. If get remote attr
917 * use them to check and invalidate caches, then cache the new attributes.
918 *
919 * XXX
920 * This op should eventually support PSARC 2007/315, Extensible Attribute
921 * Interfaces, for richer metadata.
922 */
923 /* ARGSUSED */
924 static int
925 smbfs_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
926 caller_context_t *ct)
927 {
928 smbnode_t *np;
929 smbmntinfo_t *smi;

931 smi = VTOSMI(vp);

933 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
934 return (EIO);

936 if (smi->smi_flags & SMI_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
937 return (EIO);

939 /*
940 * If it has been specified that the return value will
941 * just be used as a hint, and we are only being asked
942 * for size, fsid or rdevid, then return the client’s
943 * notion of these values without checking to make sure
944 * that the attribute cache is up to date.
945 * The whole point is to avoid an over the wire GETATTR
946 * call.
947 */
948 np = VTOSMB(vp);
949 if (flags & ATTR_HINT) {
950 if (vap->va_mask ==
951 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) {
952 mutex_enter(&np->r_statelock);
953 if (vap->va_mask | AT_SIZE)
954 vap->va_size = np->r_size;
955 if (vap->va_mask | AT_FSID)
956 vap->va_fsid = vp->v_vfsp->vfs_dev;
957 if (vap->va_mask | AT_RDEV)
958 vap->va_rdev = vp->v_rdev;
959 mutex_exit(&np->r_statelock);
960 return (0);
961 }
962 }

964 return (smbfsgetattr(vp, vap, cr));

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 13

965 }

967 /* smbfsgetattr() in smbfs_client.c */

969 /*
970 * XXX
971 * This op should eventually support PSARC 2007/315, Extensible Attribute
972 * Interfaces, for richer metadata.
973 */
974 /*ARGSUSED4*/
975 static int
976 smbfs_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
977 caller_context_t *ct)
978 {
979 vfs_t *vfsp;
980 smbmntinfo_t *smi;
981 int error;
982 uint_t mask;
983 struct vattr oldva;

985 vfsp = vp->v_vfsp;
986 smi = VFTOSMI(vfsp);

988 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
989 return (EIO);

991 if (smi->smi_flags & SMI_DEAD || vfsp->vfs_flag & VFS_UNMOUNTED)
992 return (EIO);

994 mask = vap->va_mask;
995 if (mask & AT_NOSET)
996 return (EINVAL);

998 if (vfsp->vfs_flag & VFS_RDONLY)
999 return (EROFS);

1001 /*
1002 * This is a _local_ access check so that only the owner of
1003 * this mount can set attributes. With ACLs enabled, the
1004 * file owner can be different from the mount owner, and we
1005 * need to check the _mount_ owner here. See _access_rwx
1006 */
1007 bzero(&oldva, sizeof (oldva));
1008 oldva.va_mask = AT_TYPE | AT_MODE;
1009 error = smbfsgetattr(vp, &oldva, cr);
1010 if (error)
1011 return (error);
1012 oldva.va_mask |= AT_UID | AT_GID;
1013 oldva.va_uid = smi->smi_uid;
1014 oldva.va_gid = smi->smi_gid;

1016 error = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
1017 smbfs_accessx, vp);
1018 if (error)
1019 return (error);

1021 if (mask & (AT_UID | AT_GID)) {
1022 if (smi->smi_flags & SMI_ACL)
1023 error = smbfs_acl_setids(vp, vap, cr);
1024 else
1025 error = ENOSYS;
1026 if (error != 0) {
1027 SMBVDEBUG("error %d seting UID/GID on %s",
1028 error, VTOSMB(vp)->n_rpath);
1029 /*
1030 * It might be more correct to return the

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 14

1031 * error here, but that causes complaints
1032 * when root extracts a cpio archive, etc.
1033 * So ignore this error, and go ahead with
1034 * the rest of the setattr work.
1035 */
1036 }
1037 }

1039 return (smbfssetattr(vp, vap, flags, cr));
1040 }

1042 /*
1043 * Mostly from Darwin smbfs_setattr()
1044 * but then modified a lot.
1045 */
1046 /* ARGSUSED */
1047 static int
1048 smbfssetattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr)
1049 {
1050 int error = 0;
1051 smbnode_t *np = VTOSMB(vp);
1052 uint_t mask = vap->va_mask;
1053 struct timespec *mtime, *atime;
1054 struct smb_cred scred;
1055 int cerror, modified = 0;
1056 unsigned short fid;
1057 int have_fid = 0;
1058 uint32_t rights = 0;

1060 ASSERT(curproc->p_zone == VTOSMI(vp)->smi_zone_ref.zref_zone);

1062 /*
1063 * There are no settable attributes on the XATTR dir,
1064 * so just silently ignore these. On XATTR files,
1065 * you can set the size but nothing else.
1066 */
1067 if (vp->v_flag & V_XATTRDIR)
1068 return (0);
1069 if (np->n_flag & N_XATTR) {
1070 if (mask & AT_TIMES)
1071 SMBVDEBUG("ignore set time on xattr\n");
1072 mask &= AT_SIZE;
1073 }

1075 /*
1076 * If our caller is trying to set multiple attributes, they
1077 * can make no assumption about what order they are done in.
1078 * Here we try to do them in order of decreasing likelihood
1079 * of failure, just to minimize the chance we’ll wind up
1080 * with a partially complete request.
1081 */

1083 /* Shared lock for (possible) n_fid use. */
1084 if (smbfs_rw_enter_sig(&np->r_lkserlock, RW_READER, SMBINTR(vp)))
1085 return (EINTR);
1086 smb_credinit(&scred, cr);

1088 /*
1089 * Will we need an open handle for this setattr?
1090 * If so, what rights will we need?
1091 */
1092 if (mask & (AT_ATIME | AT_MTIME)) {
1093 rights |=
1094 SA_RIGHT_FILE_WRITE_ATTRIBUTES;
1095 }
1096 if (mask & AT_SIZE) {

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 15

1097 rights |=
1098 SA_RIGHT_FILE_WRITE_DATA |
1099 SA_RIGHT_FILE_APPEND_DATA;
1100 }

1102 /*
1103 * Only SIZE really requires a handle, but it’s
1104 * simpler and more reliable to set via a handle.
1105 * Some servers like NT4 won’t set times by path.
1106 * Also, we’re usually setting everything anyway.
1107 */
1108 if (mask & (AT_SIZE | AT_ATIME | AT_MTIME)) {
1109 error = smbfs_smb_tmpopen(np, rights, &scred, &fid);
1110 if (error) {
1111 SMBVDEBUG("error %d opening %s\n",
1112 error, np->n_rpath);
1113 goto out;
1114 }
1115 have_fid = 1;
1116 }

1118 /*
1119 * If the server supports the UNIX extensions, right here is where
1120 * we’d support changes to uid, gid, mode, and possibly va_flags.
1121 * For now we claim to have made any such changes.
1122 */

1124 if (mask & AT_SIZE) {
1125 /*
1126 * If the new file size is less than what the client sees as
1127 * the file size, then just change the size and invalidate
1128 * the pages.
1129 * I am commenting this code at present because the function
1130 * smbfs_putapage() is not yet implemented.
1131 */

1133 /*
1134 * Set the file size to vap->va_size.
1135 */
1136 ASSERT(have_fid);
1137 error = smbfs_smb_setfsize(np, fid, vap->va_size, &scred);
1138 if (error) {
1139 SMBVDEBUG("setsize error %d file %s\n",
1140 error, np->n_rpath);
1141 } else {
1142 /*
1143 * Darwin had code here to zero-extend.
1144 * Tests indicate the server will zero-fill,
1145 * so looks like we don’t need to do this.
1146 * Good thing, as this could take forever.
1147 *
1148 * XXX: Reportedly, writing one byte of zero
1149 * at the end offset avoids problems here.
1150 */
1151 mutex_enter(&np->r_statelock);
1152 np->r_size = vap->va_size;
1153 mutex_exit(&np->r_statelock);
1154 modified = 1;
1155 }
1156 }

1158 /*
1159 * XXX: When Solaris has create_time, set that too.
1160 * Note: create_time is different from ctime.
1161 */
1162 mtime = ((mask & AT_MTIME) ? &vap->va_mtime : 0);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 16

1163 atime = ((mask & AT_ATIME) ? &vap->va_atime : 0);

1165 if (mtime || atime) {
1166 /*
1167 * Always use the handle-based set attr call now.
1168 * Not trying to set DOS attributes here so pass zero.
1169 */
1170 ASSERT(have_fid);
1171 error = smbfs_smb_setfattr(np, fid,
1172 0, mtime, atime, &scred);
1173 if (error) {
1174 SMBVDEBUG("set times error %d file %s\n",
1175 error, np->n_rpath);
1176 } else {
1177 modified = 1;
1178 }
1179 }

1181 out:
1182 if (modified) {
1183 /*
1184 * Invalidate attribute cache in case the server
1185 * doesn’t set exactly the attributes we asked.
1186 */
1187 smbfs_attrcache_remove(np);
1188 }

1190 if (have_fid) {
1191 cerror = smbfs_smb_tmpclose(np, fid, &scred);
1192 if (cerror)
1193 SMBVDEBUG("error %d closing %s\n",
1194 cerror, np->n_rpath);
1195 }

1197 smb_credrele(&scred);
1198 smbfs_rw_exit(&np->r_lkserlock);

1200 return (error);
1201 }

1203 /*
1204 * smbfs_access_rwx()
1205 * Common function for smbfs_access, etc.
1206 *
1207 * The security model implemented by the FS is unusual
1208 * due to the current "single user mounts" restriction:
1209 * All access under a given mount point uses the CIFS
1210 * credentials established by the owner of the mount.
1211 *
1212 * Most access checking is handled by the CIFS server,
1213 * but we need sufficient Unix access checks here to
1214 * prevent other local Unix users from having access
1215 * to objects under this mount that the uid/gid/mode
1216 * settings in the mount would not allow.
1217 *
1218 * With this model, there is a case where we need the
1219 * ability to do an access check before we have the
1220 * vnode for an object. This function takes advantage
1221 * of the fact that the uid/gid/mode is per mount, and
1222 * avoids the need for a vnode.
1223 *
1224 * We still (sort of) need a vnode when we call
1225 * secpolicy_vnode_access, but that only uses
1226 * the vtype field, so we can use a pair of fake
1227 * vnodes that have only v_type filled in.
1228 *

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 17

1229 * XXX: Later, add a new secpolicy_vtype_access()
1230 * that takes the vtype instead of a vnode, and
1231 * get rid of the tmpl_vxxx fake vnodes below.
1232 */
1233 static int
1234 smbfs_access_rwx(vfs_t *vfsp, int vtype, int mode, cred_t *cr)
1235 {
1236 /* See the secpolicy call below. */
1237 static const vnode_t tmpl_vdir = { .v_type = VDIR };
1238 static const vnode_t tmpl_vreg = { .v_type = VREG };
1239 vattr_t va;
1240 vnode_t *tvp;
1241 struct smbmntinfo *smi = VFTOSMI(vfsp);
1242 int shift = 0;

1244 /*
1245 * Build our (fabricated) vnode attributes.
1246 * XXX: Could make these templates in the
1247 * per-mount struct and use them here.
1248 */
1249 bzero(&va, sizeof (va));
1250 va.va_mask = AT_TYPE | AT_MODE | AT_UID | AT_GID;
1251 va.va_type = vtype;
1252 va.va_mode = (vtype == VDIR) ?
1253 smi->smi_dmode : smi->smi_fmode;
1254 va.va_uid = smi->smi_uid;
1255 va.va_gid = smi->smi_gid;

1257 /*
1258 * Disallow write attempts on read-only file systems,
1259 * unless the file is a device or fifo node. Note:
1260 * Inline vn_is_readonly and IS_DEVVP here because
1261 * we may not have a vnode ptr. Original expr. was:
1262 * (mode & VWRITE) && vn_is_readonly(vp) && !IS_DEVVP(vp))
1263 */
1264 if ((mode & VWRITE) &&
1265 (vfsp->vfs_flag & VFS_RDONLY) &&
1266 !(vtype == VCHR || vtype == VBLK || vtype == VFIFO))
1267 return (EROFS);

1269 /*
1270 * Disallow attempts to access mandatory lock files.
1271 * Similarly, expand MANDLOCK here.
1272 * XXX: not sure we need this.
1273 */
1274 if ((mode & (VWRITE | VREAD | VEXEC)) &&
1275 va.va_type == VREG && MANDMODE(va.va_mode))
1276 return (EACCES);

1278 /*
1279 * Access check is based on only
1280 * one of owner, group, public.
1281 * If not owner, then check group.
1282 * If not a member of the group,
1283 * then check public access.
1284 */
1285 if (crgetuid(cr) != va.va_uid) {
1286 shift += 3;
1287 if (!groupmember(va.va_gid, cr))
1288 shift += 3;
1289 }

1291 /*
1292 * We need a vnode for secpolicy_vnode_access,
1293 * but the only thing it looks at is v_type,
1294 * so pass one of the templates above.

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 18

1295 */
1296 tvp = (va.va_type == VDIR) ?
1297 (vnode_t *)&tmpl_vdir :
1298 (vnode_t *)&tmpl_vreg;

1300 return (secpolicy_vnode_access2(cr, tvp, va.va_uid,
1301 va.va_mode << shift, mode));
1302 }

1304 /*
1305 * See smbfs_setattr
1306 */
1307 static int
1308 smbfs_accessx(void *arg, int mode, cred_t *cr)
1309 {
1310 vnode_t *vp = arg;
1311 /*
1312 * Note: The caller has checked the current zone,
1313 * the SMI_DEAD and VFS_UNMOUNTED flags, etc.
1314 */
1315 return (smbfs_access_rwx(vp->v_vfsp, vp->v_type, mode, cr));
1316 }

1318 /*
1319 * XXX
1320 * This op should support PSARC 2007/403, Modified Access Checks for CIFS
1321 */
1322 /* ARGSUSED */
1323 static int
1324 smbfs_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct)
1325 {
1326 vfs_t *vfsp;
1327 smbmntinfo_t *smi;

1329 vfsp = vp->v_vfsp;
1330 smi = VFTOSMI(vfsp);

1332 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
1333 return (EIO);

1335 if (smi->smi_flags & SMI_DEAD || vfsp->vfs_flag & VFS_UNMOUNTED)
1336 return (EIO);

1338 return (smbfs_access_rwx(vfsp, vp->v_type, mode, cr));
1339 }

1342 /*
1343 * Flush local dirty pages to stable storage on the server.
1344 *
1345 * If FNODSYNC is specified, then there is nothing to do because
1346 * metadata changes are not cached on the client before being
1347 * sent to the server.
1348 */
1349 /* ARGSUSED */
1350 static int
1351 smbfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
1352 {
1353 int error = 0;
1354 smbmntinfo_t *smi;
1355 smbnode_t *np;
1356 struct smb_cred scred;

1358 np = VTOSMB(vp);
1359 smi = VTOSMI(vp);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 19

1361 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
1362 return (EIO);

1364 if (smi->smi_flags & SMI_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
1365 return (EIO);

1367 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp))
1368 return (0);

1370 if ((syncflag & (FSYNC|FDSYNC)) == 0)
1371 return (0);

1373 /* Shared lock for n_fid use in _flush */
1374 if (smbfs_rw_enter_sig(&np->r_lkserlock, RW_READER, SMBINTR(vp)))
1375 return (EINTR);
1376 smb_credinit(&scred, cr);

1378 error = smbfs_smb_flush(np, &scred);

1380 smb_credrele(&scred);
1381 smbfs_rw_exit(&np->r_lkserlock);

1383 return (error);
1384 }

1386 /*
1387 * Last reference to vnode went away.
1388 */
1389 /* ARGSUSED */
1390 static void
1391 smbfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
1392 {
1393 smbnode_t *np;
1394 struct smb_cred scred;

1396 /*
1397 * Don’t "bail out" for VFS_UNMOUNTED here,
1398 * as we want to do cleanup, etc.
1399 * See also pcfs_inactive
1400 */

1402 np = VTOSMB(vp);

1404 /*
1405 * If this is coming from the wrong zone, we let someone in the right
1406 * zone take care of it asynchronously. We can get here due to
1407 * VN_RELE() being called from pageout() or fsflush(). This call may
1408 * potentially turn into an expensive no-op if, for instance, v_count
1409 * gets incremented in the meantime, but it’s still correct.
1410 */

1412 /*
1413 * Defend against the possibility that higher-level callers
1414 * might not correctly balance open and close calls. If we
1415 * get here with open references remaining, it means there
1416 * was a missing VOP_CLOSE somewhere. If that happens, do
1417 * the close here so we don’t "leak" FIDs on the server.
1418 *
1419 * Exclusive lock for modifying n_fid stuff.
1420 * Don’t want this one ever interruptible.
1421 */
1422 (void) smbfs_rw_enter_sig(&np->r_lkserlock, RW_WRITER, 0);
1423 smb_credinit(&scred, cr);

1425 switch (np->n_ovtype) {
1426 case VNON:

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 20

1427 /* not open (OK) */
1428 break;

1430 case VDIR:
1431 if (np->n_dirrefs == 0)
1432 break;
1433 SMBVDEBUG("open dir: refs %d path %s\n",
1434 np->n_dirrefs, np->n_rpath);
1435 /* Force last close. */
1436 np->n_dirrefs = 1;
1437 smbfs_rele_fid(np, &scred);
1438 break;

1440 case VREG:
1441 if (np->n_fidrefs == 0)
1442 break;
1443 SMBVDEBUG("open file: refs %d id 0x%x path %s\n",
1444 np->n_fidrefs, np->n_fid, np->n_rpath);
1445 /*
1446 * Before otW close, make sure dirty pages written back.
1447 */
1448 if (vn_has_cached_data(vp)) {
1449 /* smbfs_putapage() will acquire shared lock, so release
1450 * exclusive lock temporally.
1451 */
1452 smbfs_rw_exit(&np->r_lkserlock);

1454 (void) smbfs_putpage(vp, (offset_t) 0, 0, B_INVAL | B_AS

1456 /* acquire exclusive lock again. */
1457 (void) smbfs_rw_enter_sig(&np->r_lkserlock, RW_WRITER, 0
1458 }
1459 #endif /* ! codereview */
1460 /* Force last close. */
1461 np->n_fidrefs = 1;
1462 smbfs_rele_fid(np, &scred);
1463 break;

1465 default:
1466 SMBVDEBUG("bad n_ovtype %d\n", np->n_ovtype);
1467 np->n_ovtype = VNON;
1468 break;
1469 }

1471 smb_credrele(&scred);
1472 smbfs_rw_exit(&np->r_lkserlock);

1474 smbfs_addfree(np);
1475 }

1477 /*
1478 * Remote file system operations having to do with directory manipulation.
1479 */
1480 /* ARGSUSED */
1481 static int
1482 smbfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1483 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
1484 int *direntflags, pathname_t *realpnp)
1485 {
1486 vfs_t *vfs;
1487 smbmntinfo_t *smi;
1488 smbnode_t *dnp;
1489 int error;

1491 vfs = dvp->v_vfsp;
1492 smi = VFTOSMI(vfs);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 21

1494 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
1495 return (EPERM);

1497 if (smi->smi_flags & SMI_DEAD || vfs->vfs_flag & VFS_UNMOUNTED)
1498 return (EIO);

1500 dnp = VTOSMB(dvp);

1502 /*
1503 * Are we looking up extended attributes? If so, "dvp" is
1504 * the file or directory for which we want attributes, and
1505 * we need a lookup of the (faked up) attribute directory
1506 * before we lookup the rest of the path.
1507 */
1508 if (flags & LOOKUP_XATTR) {
1509 /*
1510 * Require the xattr mount option.
1511 */
1512 if ((vfs->vfs_flag & VFS_XATTR) == 0)
1513 return (EINVAL);

1515 error = smbfs_get_xattrdir(dvp, vpp, cr, flags);
1516 return (error);
1517 }

1519 if (smbfs_rw_enter_sig(&dnp->r_rwlock, RW_READER, SMBINTR(dvp)))
1520 return (EINTR);

1522 error = smbfslookup(dvp, nm, vpp, cr, 1, ct);

1524 smbfs_rw_exit(&dnp->r_rwlock);

1526 return (error);
1527 }

1529 /* ARGSUSED */
1530 static int
1531 smbfslookup(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr,
1532 int cache_ok, caller_context_t *ct)
1533 {
1534 int error;
1535 int supplen; /* supported length */
1536 vnode_t *vp;
1537 smbnode_t *np;
1538 smbnode_t *dnp;
1539 smbmntinfo_t *smi;
1540 /* struct smb_vc *vcp; */
1541 const char *ill;
1542 const char *name = (const char *)nm;
1543 int nmlen = strlen(nm);
1544 int rplen;
1545 struct smb_cred scred;
1546 struct smbfattr fa;

1548 smi = VTOSMI(dvp);
1549 dnp = VTOSMB(dvp);

1551 ASSERT(curproc->p_zone == smi->smi_zone_ref.zref_zone);

1553 #ifdef NOT_YET
1554 vcp = SSTOVC(smi->smi_share);

1556 /* XXX: Should compute this once and store it in smbmntinfo_t */
1557 supplen = (SMB_DIALECT(vcp) >= SMB_DIALECT_LANMAN2_0) ? 255 : 12;
1558 #else

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 22

1559 supplen = 255;
1560 #endif

1562 /*
1563 * RWlock must be held, either reader or writer.
1564 * XXX: Can we check without looking directly
1565 * inside the struct smbfs_rwlock_t?
1566 */
1567 ASSERT(dnp->r_rwlock.count != 0);

1569 /*
1570 * If lookup is for "", just return dvp.
1571 * No need to perform any access checks.
1572 */
1573 if (nmlen == 0) {
1574 VN_HOLD(dvp);
1575 *vpp = dvp;
1576 return (0);
1577 }

1579 /*
1580 * Can’t do lookups in non-directories.
1581 */
1582 if (dvp->v_type != VDIR)
1583 return (ENOTDIR);

1585 /*
1586 * Need search permission in the directory.
1587 */
1588 error = smbfs_access(dvp, VEXEC, 0, cr, ct);
1589 if (error)
1590 return (error);

1592 /*
1593 * If lookup is for ".", just return dvp.
1594 * Access check was done above.
1595 */
1596 if (nmlen == 1 && name[0] == ’.’) {
1597 VN_HOLD(dvp);
1598 *vpp = dvp;
1599 return (0);
1600 }

1602 /*
1603 * Now some sanity checks on the name.
1604 * First check the length.
1605 */
1606 if (nmlen > supplen)
1607 return (ENAMETOOLONG);

1609 /*
1610 * Avoid surprises with characters that are
1611 * illegal in Windows file names.
1612 * Todo: CATIA mappings XXX
1613 */
1614 ill = illegal_chars;
1615 if (dnp->n_flag & N_XATTR)
1616 ill++; /* allow colon */
1617 if (strpbrk(nm, ill))
1618 return (EINVAL);

1620 /*
1621 * Special handling for lookup of ".."
1622 *
1623 * We keep full pathnames (as seen on the server)
1624 * so we can just trim off the last component to

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 23

1625 * get the full pathname of the parent. Note:
1626 * We don’t actually copy and modify, but just
1627 * compute the trimmed length and pass that with
1628 * the current dir path (not null terminated).
1629 *
1630 * We don’t go over-the-wire to get attributes
1631 * for ".." because we know it’s a directory,
1632 * and we can just leave the rest "stale"
1633 * until someone does a getattr.
1634 */
1635 if (nmlen == 2 && name[0] == ’.’ && name[1] == ’.’) {
1636 if (dvp->v_flag & VROOT) {
1637 /*
1638 * Already at the root. This can happen
1639 * with directory listings at the root,
1640 * which lookup "." and ".." to get the
1641 * inode numbers. Let ".." be the same
1642 * as "." in the FS root.
1643 */
1644 VN_HOLD(dvp);
1645 *vpp = dvp;
1646 return (0);
1647 }

1649 /*
1650 * Special case for XATTR directory
1651 */
1652 if (dvp->v_flag & V_XATTRDIR) {
1653 error = smbfs_xa_parent(dvp, vpp);
1654 return (error);
1655 }

1657 /*
1658 * Find the parent path length.
1659 */
1660 rplen = dnp->n_rplen;
1661 ASSERT(rplen > 0);
1662 while (--rplen >= 0) {
1663 if (dnp->n_rpath[rplen] == ’\\’)
1664 break;
1665 }
1666 if (rplen <= 0) {
1667 /* Found our way to the root. */
1668 vp = SMBTOV(smi->smi_root);
1669 VN_HOLD(vp);
1670 *vpp = vp;
1671 return (0);
1672 }
1673 np = smbfs_node_findcreate(smi,
1674 dnp->n_rpath, rplen, NULL, 0, 0,
1675 &smbfs_fattr0); /* force create */
1676 ASSERT(np != NULL);
1677 vp = SMBTOV(np);
1678 vp->v_type = VDIR;

1680 /* Success! */
1681 *vpp = vp;
1682 return (0);
1683 }

1685 /*
1686 * Normal lookup of a name under this directory.
1687 * Note we handled "", ".", ".." above.
1688 */
1689 if (cache_ok) {
1690 /*

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 24

1691 * The caller indicated that it’s OK to use a
1692 * cached result for this lookup, so try to
1693 * reclaim a node from the smbfs node cache.
1694 */
1695 error = smbfslookup_cache(dvp, nm, nmlen, &vp, cr);
1696 if (error)
1697 return (error);
1698 if (vp != NULL) {
1699 /* hold taken in lookup_cache */
1700 *vpp = vp;
1701 return (0);
1702 }
1703 }

1705 /*
1706 * OK, go over-the-wire to get the attributes,
1707 * then create the node.
1708 */
1709 smb_credinit(&scred, cr);
1710 /* Note: this can allocate a new "name" */
1711 error = smbfs_smb_lookup(dnp, &name, &nmlen, &fa, &scred);
1712 smb_credrele(&scred);
1713 if (error == ENOTDIR) {
1714 /*
1715 * Lookup failed because this directory was
1716 * removed or renamed by another client.
1717 * Remove any cached attributes under it.
1718 */
1719 smbfs_attrcache_remove(dnp);
1720 smbfs_attrcache_prune(dnp);
1721 }
1722 if (error)
1723 goto out;

1725 error = smbfs_nget(dvp, name, nmlen, &fa, &vp);
1726 if (error)
1727 goto out;

1729 /* Success! */
1730 *vpp = vp;

1732 out:
1733 /* smbfs_smb_lookup may have allocated name. */
1734 if (name != nm)
1735 smbfs_name_free(name, nmlen);

1737 return (error);
1738 }

1740 /*
1741 * smbfslookup_cache
1742 *
1743 * Try to reclaim a node from the smbfs node cache.
1744 * Some statistics for DEBUG.
1745 *
1746 * This mechanism lets us avoid many of the five (or more)
1747 * OtW lookup calls per file seen with "ls -l" if we search
1748 * the smbfs node cache for recently inactive(ated) nodes.
1749 */
1750 #ifdef DEBUG
1751 int smbfs_lookup_cache_calls = 0;
1752 int smbfs_lookup_cache_error = 0;
1753 int smbfs_lookup_cache_miss = 0;
1754 int smbfs_lookup_cache_stale = 0;
1755 int smbfs_lookup_cache_hits = 0;
1756 #endif /* DEBUG */

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 25

1758 /* ARGSUSED */
1759 static int
1760 smbfslookup_cache(vnode_t *dvp, char *nm, int nmlen,
1761 vnode_t **vpp, cred_t *cr)
1762 {
1763 struct vattr va;
1764 smbnode_t *dnp;
1765 smbnode_t *np;
1766 vnode_t *vp;
1767 int error;
1768 char sep;

1770 dnp = VTOSMB(dvp);
1771 *vpp = NULL;

1773 #ifdef DEBUG
1774 smbfs_lookup_cache_calls++;
1775 #endif

1777 /*
1778 * First make sure we can get attributes for the
1779 * directory. Cached attributes are OK here.
1780 * If we removed or renamed the directory, this
1781 * will return ENOENT. If someone else removed
1782 * this directory or file, we’ll find out when we
1783 * try to open or get attributes.
1784 */
1785 va.va_mask = AT_TYPE | AT_MODE;
1786 error = smbfsgetattr(dvp, &va, cr);
1787 if (error) {
1788 #ifdef DEBUG
1789 smbfs_lookup_cache_error++;
1790 #endif
1791 return (error);
1792 }

1794 /*
1795 * Passing NULL smbfattr here so we will
1796 * just look, not create.
1797 */
1798 sep = SMBFS_DNP_SEP(dnp);
1799 np = smbfs_node_findcreate(dnp->n_mount,
1800 dnp->n_rpath, dnp->n_rplen,
1801 nm, nmlen, sep, NULL);
1802 if (np == NULL) {
1803 #ifdef DEBUG
1804 smbfs_lookup_cache_miss++;
1805 #endif
1806 return (0);
1807 }

1809 /*
1810 * Found it. Attributes still valid?
1811 */
1812 vp = SMBTOV(np);
1813 if (np->r_attrtime <= gethrtime()) {
1814 /* stale */
1815 #ifdef DEBUG
1816 smbfs_lookup_cache_stale++;
1817 #endif
1818 VN_RELE(vp);
1819 return (0);
1820 }

1822 /*

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 26

1823 * Success!
1824 * Caller gets hold from smbfs_node_findcreate
1825 */
1826 #ifdef DEBUG
1827 smbfs_lookup_cache_hits++;
1828 #endif
1829 *vpp = vp;
1830 return (0);
1831 }

1833 /*
1834 * XXX
1835 * vsecattr_t is new to build 77, and we need to eventually support
1836 * it in order to create an ACL when an object is created.
1837 *
1838 * This op should support the new FIGNORECASE flag for case-insensitive
1839 * lookups, per PSARC 2007/244.
1840 */
1841 /* ARGSUSED */
1842 static int
1843 smbfs_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
1844 int mode, vnode_t **vpp, cred_t *cr, int lfaware, caller_context_t *ct,
1845 vsecattr_t *vsecp)
1846 {
1847 int error;
1848 int cerror;
1849 vfs_t *vfsp;
1850 vnode_t *vp;
1851 #ifdef NOT_YET
1852 smbnode_t *np;
1853 #endif
1854 smbnode_t *dnp;
1855 smbmntinfo_t *smi;
1856 struct vattr vattr;
1857 struct smbfattr fattr;
1858 struct smb_cred scred;
1859 const char *name = (const char *)nm;
1860 int nmlen = strlen(nm);
1861 uint32_t disp;
1862 uint16_t fid;
1863 int xattr;

1865 vfsp = dvp->v_vfsp;
1866 smi = VFTOSMI(vfsp);
1867 dnp = VTOSMB(dvp);
1868 vp = NULL;

1870 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
1871 return (EPERM);

1873 if (smi->smi_flags & SMI_DEAD || vfsp->vfs_flag & VFS_UNMOUNTED)
1874 return (EIO);

1876 /*
1877 * Note: this may break mknod(2) calls to create a directory,
1878 * but that’s obscure use. Some other filesystems do this.
1879 * XXX: Later, redirect VDIR type here to _mkdir.
1880 */
1881 if (va->va_type != VREG)
1882 return (EINVAL);

1884 /*
1885 * If the pathname is "", just use dvp, no checks.
1886 * Do this outside of the rwlock (like zfs).
1887 */
1888 if (nmlen == 0) {

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 27

1889 VN_HOLD(dvp);
1890 *vpp = dvp;
1891 return (0);
1892 }

1894 /* Don’t allow "." or ".." through here. */
1895 if ((nmlen == 1 && name[0] == ’.’) ||
1896 (nmlen == 2 && name[0] == ’.’ && name[1] == ’.’))
1897 return (EISDIR);

1899 /*
1900 * We make a copy of the attributes because the caller does not
1901 * expect us to change what va points to.
1902 */
1903 vattr = *va;

1905 if (smbfs_rw_enter_sig(&dnp->r_rwlock, RW_WRITER, SMBINTR(dvp)))
1906 return (EINTR);
1907 smb_credinit(&scred, cr);

1909 /*
1910 * XXX: Do we need r_lkserlock too?
1911 * No use of any shared fid or fctx...
1912 */

1914 /*
1915 * NFS needs to go over the wire, just to be sure whether the
1916 * file exists or not. Using a cached result is dangerous in
1917 * this case when making a decision regarding existence.
1918 *
1919 * The SMB protocol does NOT really need to go OTW here
1920 * thanks to the expressive NTCREATE disposition values.
1921 * Unfortunately, to do Unix access checks correctly,
1922 * we need to know if the object already exists.
1923 * When the object does not exist, we need VWRITE on
1924 * the directory. Note: smbfslookup() checks VEXEC.
1925 */
1926 error = smbfslookup(dvp, nm, &vp, cr, 0, ct);
1927 if (error == 0) {
1928 /*
1929 * The file already exists. Error?
1930 * NB: have a hold from smbfslookup
1931 */
1932 if (exclusive == EXCL) {
1933 error = EEXIST;
1934 VN_RELE(vp);
1935 goto out;
1936 }
1937 /*
1938 * Verify requested access.
1939 */
1940 error = smbfs_access(vp, mode, 0, cr, ct);
1941 if (error) {
1942 VN_RELE(vp);
1943 goto out;
1944 }

1946 /*
1947 * Truncate (if requested).
1948 */
1949 if ((vattr.va_mask & AT_SIZE) && vattr.va_size == 0) {
1950 vattr.va_mask = AT_SIZE;
1951 error = smbfssetattr(vp, &vattr, 0, cr);
1952 if (error) {
1953 VN_RELE(vp);
1954 goto out;

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 28

1955 }
1956 }
1957 /* Success! */
1958 #ifdef NOT_YET
1959 vnevent_create(vp, ct);
1960 #endif
1961 *vpp = vp;
1962 goto out;
1963 }

1965 /*
1966 * The file did not exist. Need VWRITE in the directory.
1967 */
1968 error = smbfs_access(dvp, VWRITE, 0, cr, ct);
1969 if (error)
1970 goto out;

1972 /*
1973 * Now things get tricky. We also need to check the
1974 * requested open mode against the file we may create.
1975 * See comments at smbfs_access_rwx
1976 */
1977 error = smbfs_access_rwx(vfsp, VREG, mode, cr);
1978 if (error)
1979 goto out;

1981 /*
1982 * Now the code derived from Darwin,
1983 * but with greater use of NT_CREATE
1984 * disposition options. Much changed.
1985 *
1986 * Create (or open) a new child node.
1987 * Note we handled "." and ".." above.
1988 */

1990 if (exclusive == EXCL)
1991 disp = NTCREATEX_DISP_CREATE;
1992 else {
1993 /* Truncate regular files if requested. */
1994 if ((va->va_type == VREG) &&
1995 (va->va_mask & AT_SIZE) &&
1996 (va->va_size == 0))
1997 disp = NTCREATEX_DISP_OVERWRITE_IF;
1998 else
1999 disp = NTCREATEX_DISP_OPEN_IF;
2000 }
2001 xattr = (dnp->n_flag & N_XATTR) ? 1 : 0;
2002 error = smbfs_smb_create(dnp,
2003 name, nmlen, xattr,
2004 disp, &scred, &fid);
2005 if (error)
2006 goto out;

2008 /*
2009 * XXX: Missing some code here to deal with
2010 * the case where we opened an existing file,
2011 * it’s size is larger than 32-bits, and we’re
2012 * setting the size from a process that’s not
2013 * aware of large file offsets. i.e.
2014 * from the NFS3 code:
2015 */
2016 #if NOT_YET /* XXX */
2017 if ((vattr.va_mask & AT_SIZE) &&
2018 vp->v_type == VREG) {
2019 np = VTOSMB(vp);
2020 /*

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 29

2021 * Check here for large file handled
2022 * by LF-unaware process (as
2023 * ufs_create() does)
2024 */
2025 if (!(lfaware & FOFFMAX)) {
2026 mutex_enter(&np->r_statelock);
2027 if (np->r_size > MAXOFF32_T)
2028 error = EOVERFLOW;
2029 mutex_exit(&np->r_statelock);
2030 }
2031 if (!error) {
2032 vattr.va_mask = AT_SIZE;
2033 error = smbfssetattr(vp,
2034 &vattr, 0, cr);
2035 }
2036 }
2037 #endif /* XXX */
2038 /*
2039 * Should use the fid to get/set the size
2040 * while we have it opened here. See above.
2041 */

2043 cerror = smbfs_smb_close(smi->smi_share, fid, NULL, &scred);
2044 if (cerror)
2045 SMBVDEBUG("error %d closing %s\\%s\n",
2046 cerror, dnp->n_rpath, name);

2048 /*
2049 * In the open case, the name may differ a little
2050 * from what we passed to create (case, etc.)
2051 * so call lookup to get the (opened) name.
2052 *
2053 * XXX: Could avoid this extra lookup if the
2054 * "createact" result from NT_CREATE says we
2055 * created the object.
2056 */
2057 error = smbfs_smb_lookup(dnp, &name, &nmlen, &fattr, &scred);
2058 if (error)
2059 goto out;

2061 /* update attr and directory cache */
2062 smbfs_attr_touchdir(dnp);

2064 error = smbfs_nget(dvp, name, nmlen, &fattr, &vp);
2065 if (error)
2066 goto out;

2068 /* XXX invalidate pages if we truncated? */

2070 /* Success! */
2071 *vpp = vp;
2072 error = 0;

2074 out:
2075 smb_credrele(&scred);
2076 smbfs_rw_exit(&dnp->r_rwlock);
2077 if (name != nm)
2078 smbfs_name_free(name, nmlen);
2079 return (error);
2080 }

2082 /*
2083 * XXX
2084 * This op should support the new FIGNORECASE flag for case-insensitive
2085 * lookups, per PSARC 2007/244.
2086 */

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 30

2087 /* ARGSUSED */
2088 static int
2089 smbfs_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct,
2090 int flags)
2091 {
2092 int error;
2093 vnode_t *vp;
2094 smbnode_t *np;
2095 smbnode_t *dnp;
2096 struct smb_cred scred;
2097 /* enum smbfsstat status; */
2098 smbmntinfo_t *smi;

2100 smi = VTOSMI(dvp);

2102 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
2103 return (EPERM);

2105 if (smi->smi_flags & SMI_DEAD || dvp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
2106 return (EIO);

2108 dnp = VTOSMB(dvp);
2109 if (smbfs_rw_enter_sig(&dnp->r_rwlock, RW_WRITER, SMBINTR(dvp)))
2110 return (EINTR);
2111 smb_credinit(&scred, cr);

2113 /*
2114 * Verify access to the dirctory.
2115 */
2116 error = smbfs_access(dvp, VWRITE|VEXEC, 0, cr, ct);
2117 if (error)
2118 goto out;

2120 /*
2121 * NOTE: the darwin code gets the "vp" passed in so it looks
2122 * like the "vp" has probably been "lookup"ed by the VFS layer.
2123 * It looks like we will need to lookup the vp to check the
2124 * caches and check if the object being deleted is a directory.
2125 */
2126 error = smbfslookup(dvp, nm, &vp, cr, 0, ct);
2127 if (error)
2128 goto out;

2130 /* Never allow link/unlink directories on CIFS. */
2131 if (vp->v_type == VDIR) {
2132 VN_RELE(vp);
2133 error = EPERM;
2134 goto out;
2135 }

2137 /*
2138 * Now we have the real reference count on the vnode
2139 * Do we have the file open?
2140 */
2141 np = VTOSMB(vp);
2142 mutex_enter(&np->r_statelock);
2143 if ((vp->v_count > 1) && (np->n_fidrefs > 0)) {
2144 /*
2145 * NFS does a rename on remove here.
2146 * Probably not applicable for SMB.
2147 * Like Darwin, just return EBUSY.
2148 *
2149 * XXX: Todo - Use Trans2rename, and
2150 * if that fails, ask the server to
2151 * set the delete-on-close flag.
2152 */

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 31

2153 mutex_exit(&np->r_statelock);
2154 error = EBUSY;
2155 } else {
2156 smbfs_attrcache_rm_locked(np);
2157 mutex_exit(&np->r_statelock);

2159 error = smbfs_smb_delete(np, &scred, NULL, 0, 0);

2161 /*
2162 * If the file should no longer exist, discard
2163 * any cached attributes under this node.
2164 */
2165 switch (error) {
2166 case 0:
2167 case ENOENT:
2168 case ENOTDIR:
2169 smbfs_attrcache_prune(np);
2170 break;
2171 }
2172 }

2174 VN_RELE(vp);

2176 out:
2177 smb_credrele(&scred);
2178 smbfs_rw_exit(&dnp->r_rwlock);

2180 return (error);
2181 }

2184 /*
2185 * XXX
2186 * This op should support the new FIGNORECASE flag for case-insensitive
2187 * lookups, per PSARC 2007/244.
2188 */
2189 /* ARGSUSED */
2190 static int
2191 smbfs_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr,
2192 caller_context_t *ct, int flags)
2193 {
2194 /* vnode_t *realvp; */

2196 if (curproc->p_zone != VTOSMI(odvp)->smi_zone_ref.zref_zone ||
2197 curproc->p_zone != VTOSMI(ndvp)->smi_zone_ref.zref_zone)
2198 return (EPERM);

2200 if (VTOSMI(odvp)->smi_flags & SMI_DEAD ||
2201 VTOSMI(ndvp)->smi_flags & SMI_DEAD ||
2202 odvp->v_vfsp->vfs_flag & VFS_UNMOUNTED ||
2203 ndvp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
2204 return (EIO);

2206 return (smbfsrename(odvp, onm, ndvp, nnm, cr, ct));
2207 }

2209 /*
2210 * smbfsrename does the real work of renaming in SMBFS
2211 */
2212 /* ARGSUSED */
2213 static int
2214 smbfsrename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr,
2215 caller_context_t *ct)
2216 {
2217 int error;
2218 int nvp_locked = 0;

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 32

2219 vnode_t *nvp = NULL;
2220 vnode_t *ovp = NULL;
2221 smbnode_t *onp;
2222 smbnode_t *nnp;
2223 smbnode_t *odnp;
2224 smbnode_t *ndnp;
2225 struct smb_cred scred;
2226 /* enum smbfsstat status; */

2228 ASSERT(curproc->p_zone == VTOSMI(odvp)->smi_zone_ref.zref_zone);

2230 if (strcmp(onm, ".") == 0 || strcmp(onm, "..") == 0 ||
2231 strcmp(nnm, ".") == 0 || strcmp(nnm, "..") == 0)
2232 return (EINVAL);

2234 /*
2235 * Check that everything is on the same filesystem.
2236 * vn_rename checks the fsid’s, but in case we don’t
2237 * fill those in correctly, check here too.
2238 */
2239 if (odvp->v_vfsp != ndvp->v_vfsp)
2240 return (EXDEV);

2242 odnp = VTOSMB(odvp);
2243 ndnp = VTOSMB(ndvp);

2245 /*
2246 * Avoid deadlock here on old vs new directory nodes
2247 * by always taking the locks in order of address.
2248 * The order is arbitrary, but must be consistent.
2249 */
2250 if (odnp < ndnp) {
2251 if (smbfs_rw_enter_sig(&odnp->r_rwlock, RW_WRITER,
2252 SMBINTR(odvp)))
2253 return (EINTR);
2254 if (smbfs_rw_enter_sig(&ndnp->r_rwlock, RW_WRITER,
2255 SMBINTR(ndvp))) {
2256 smbfs_rw_exit(&odnp->r_rwlock);
2257 return (EINTR);
2258 }
2259 } else {
2260 if (smbfs_rw_enter_sig(&ndnp->r_rwlock, RW_WRITER,
2261 SMBINTR(ndvp)))
2262 return (EINTR);
2263 if (smbfs_rw_enter_sig(&odnp->r_rwlock, RW_WRITER,
2264 SMBINTR(odvp))) {
2265 smbfs_rw_exit(&ndnp->r_rwlock);
2266 return (EINTR);
2267 }
2268 }
2269 smb_credinit(&scred, cr);
2270 /*
2271 * No returns after this point (goto out)
2272 */

2274 /*
2275 * Need write access on source and target.
2276 * Server takes care of most checks.
2277 */
2278 error = smbfs_access(odvp, VWRITE|VEXEC, 0, cr, ct);
2279 if (error)
2280 goto out;
2281 if (odvp != ndvp) {
2282 error = smbfs_access(ndvp, VWRITE, 0, cr, ct);
2283 if (error)
2284 goto out;

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 33

2285 }

2287 /*
2288 * Lookup the source name. Must already exist.
2289 */
2290 error = smbfslookup(odvp, onm, &ovp, cr, 0, ct);
2291 if (error)
2292 goto out;

2294 /*
2295 * Lookup the target file. If it exists, it needs to be
2296 * checked to see whether it is a mount point and whether
2297 * it is active (open).
2298 */
2299 error = smbfslookup(ndvp, nnm, &nvp, cr, 0, ct);
2300 if (!error) {
2301 /*
2302 * Target (nvp) already exists. Check that it
2303 * has the same type as the source. The server
2304 * will check this also, (and more reliably) but
2305 * this lets us return the correct error codes.
2306 */
2307 if (ovp->v_type == VDIR) {
2308 if (nvp->v_type != VDIR) {
2309 error = ENOTDIR;
2310 goto out;
2311 }
2312 } else {
2313 if (nvp->v_type == VDIR) {
2314 error = EISDIR;
2315 goto out;
2316 }
2317 }

2319 /*
2320 * POSIX dictates that when the source and target
2321 * entries refer to the same file object, rename
2322 * must do nothing and exit without error.
2323 */
2324 if (ovp == nvp) {
2325 error = 0;
2326 goto out;
2327 }

2329 /*
2330 * Also must ensure the target is not a mount point,
2331 * and keep mount/umount away until we’re done.
2332 */
2333 if (vn_vfsrlock(nvp)) {
2334 error = EBUSY;
2335 goto out;
2336 }
2337 nvp_locked = 1;
2338 if (vn_mountedvfs(nvp) != NULL) {
2339 error = EBUSY;
2340 goto out;
2341 }

2343 /*
2344 * CIFS gives a SHARING_VIOLATION error when
2345 * trying to rename onto an exising object,
2346 * so try to remove the target first.
2347 * (Only for files, not directories.)
2348 */
2349 if (nvp->v_type == VDIR) {
2350 error = EEXIST;

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 34

2351 goto out;
2352 }

2354 /*
2355 * Nodes that are "not active" here have v_count=2
2356 * because vn_renameat (our caller) did a lookup on
2357 * both the source and target before this call.
2358 * Otherwise this similar to smbfs_remove.
2359 */
2360 nnp = VTOSMB(nvp);
2361 mutex_enter(&nnp->r_statelock);
2362 if ((nvp->v_count > 2) && (nnp->n_fidrefs > 0)) {
2363 /*
2364 * The target file exists, is not the same as
2365 * the source file, and is active. Other FS
2366 * implementations unlink the target here.
2367 * For SMB, we don’t assume we can remove an
2368 * open file. Return an error instead.
2369 */
2370 mutex_exit(&nnp->r_statelock);
2371 error = EBUSY;
2372 goto out;
2373 }

2375 /*
2376 * Target file is not active. Try to remove it.
2377 */
2378 smbfs_attrcache_rm_locked(nnp);
2379 mutex_exit(&nnp->r_statelock);

2381 error = smbfs_smb_delete(nnp, &scred, NULL, 0, 0);

2383 /*
2384 * Similar to smbfs_remove
2385 */
2386 switch (error) {
2387 case 0:
2388 case ENOENT:
2389 case ENOTDIR:
2390 smbfs_attrcache_prune(nnp);
2391 break;
2392 }

2394 if (error)
2395 goto out;
2396 /*
2397 * OK, removed the target file. Continue as if
2398 * lookup target had failed (nvp == NULL).
2399 */
2400 vn_vfsunlock(nvp);
2401 nvp_locked = 0;
2402 VN_RELE(nvp);
2403 nvp = NULL;
2404 } /* nvp */

2406 onp = VTOSMB(ovp);
2407 smbfs_attrcache_remove(onp);

2409 error = smbfs_smb_rename(onp, ndnp, nnm, strlen(nnm), &scred);

2411 /*
2412 * If the old name should no longer exist,
2413 * discard any cached attributes under it.
2414 */
2415 if (error == 0)
2416 smbfs_attrcache_prune(onp);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 35

2418 out:
2419 if (nvp) {
2420 if (nvp_locked)
2421 vn_vfsunlock(nvp);
2422 VN_RELE(nvp);
2423 }
2424 if (ovp)
2425 VN_RELE(ovp);

2427 smb_credrele(&scred);
2428 smbfs_rw_exit(&odnp->r_rwlock);
2429 smbfs_rw_exit(&ndnp->r_rwlock);

2431 return (error);
2432 }

2434 /*
2435 * XXX
2436 * vsecattr_t is new to build 77, and we need to eventually support
2437 * it in order to create an ACL when an object is created.
2438 *
2439 * This op should support the new FIGNORECASE flag for case-insensitive
2440 * lookups, per PSARC 2007/244.
2441 */
2442 /* ARGSUSED */
2443 static int
2444 smbfs_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp,
2445 cred_t *cr, caller_context_t *ct, int flags, vsecattr_t *vsecp)
2446 {
2447 vnode_t *vp;
2448 struct smbnode *dnp = VTOSMB(dvp);
2449 struct smbmntinfo *smi = VTOSMI(dvp);
2450 struct smb_cred scred;
2451 struct smbfattr fattr;
2452 const char *name = (const char *) nm;
2453 int nmlen = strlen(name);
2454 int error, hiderr;

2456 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
2457 return (EPERM);

2459 if (smi->smi_flags & SMI_DEAD || dvp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
2460 return (EIO);

2462 if ((nmlen == 1 && name[0] == ’.’) ||
2463 (nmlen == 2 && name[0] == ’.’ && name[1] == ’.’))
2464 return (EEXIST);

2466 /* Only plain files are allowed in V_XATTRDIR. */
2467 if (dvp->v_flag & V_XATTRDIR)
2468 return (EINVAL);

2470 if (smbfs_rw_enter_sig(&dnp->r_rwlock, RW_WRITER, SMBINTR(dvp)))
2471 return (EINTR);
2472 smb_credinit(&scred, cr);

2474 /*
2475 * XXX: Do we need r_lkserlock too?
2476 * No use of any shared fid or fctx...
2477 */

2479 /*
2480 * Require write access in the containing directory.
2481 */
2482 error = smbfs_access(dvp, VWRITE, 0, cr, ct);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 36

2483 if (error)
2484 goto out;

2486 error = smbfs_smb_mkdir(dnp, name, nmlen, &scred);
2487 if (error)
2488 goto out;

2490 error = smbfs_smb_lookup(dnp, &name, &nmlen, &fattr, &scred);
2491 if (error)
2492 goto out;

2494 smbfs_attr_touchdir(dnp);

2496 error = smbfs_nget(dvp, name, nmlen, &fattr, &vp);
2497 if (error)
2498 goto out;

2500 if (name[0] == ’.’)
2501 if ((hiderr = smbfs_smb_hideit(VTOSMB(vp), NULL, 0, &scred)))
2502 SMBVDEBUG("hide failure %d\n", hiderr);

2504 /* Success! */
2505 *vpp = vp;
2506 error = 0;
2507 out:
2508 smb_credrele(&scred);
2509 smbfs_rw_exit(&dnp->r_rwlock);

2511 if (name != nm)
2512 smbfs_name_free(name, nmlen);

2514 return (error);
2515 }

2517 /*
2518 * XXX
2519 * This op should support the new FIGNORECASE flag for case-insensitive
2520 * lookups, per PSARC 2007/244.
2521 */
2522 /* ARGSUSED */
2523 static int
2524 smbfs_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr,
2525 caller_context_t *ct, int flags)
2526 {
2527 vnode_t *vp = NULL;
2528 int vp_locked = 0;
2529 struct smbmntinfo *smi = VTOSMI(dvp);
2530 struct smbnode *dnp = VTOSMB(dvp);
2531 struct smbnode *np;
2532 struct smb_cred scred;
2533 int error;

2535 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
2536 return (EPERM);

2538 if (smi->smi_flags & SMI_DEAD || dvp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
2539 return (EIO);

2541 if (smbfs_rw_enter_sig(&dnp->r_rwlock, RW_WRITER, SMBINTR(dvp)))
2542 return (EINTR);
2543 smb_credinit(&scred, cr);

2545 /*
2546 * Require w/x access in the containing directory.
2547 * Server handles all other access checks.
2548 */

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 37

2549 error = smbfs_access(dvp, VEXEC|VWRITE, 0, cr, ct);
2550 if (error)
2551 goto out;

2553 /*
2554 * First lookup the entry to be removed.
2555 */
2556 error = smbfslookup(dvp, nm, &vp, cr, 0, ct);
2557 if (error)
2558 goto out;
2559 np = VTOSMB(vp);

2561 /*
2562 * Disallow rmdir of "." or current dir, or the FS root.
2563 * Also make sure it’s a directory, not a mount point,
2564 * and lock to keep mount/umount away until we’re done.
2565 */
2566 if ((vp == dvp) || (vp == cdir) || (vp->v_flag & VROOT)) {
2567 error = EINVAL;
2568 goto out;
2569 }
2570 if (vp->v_type != VDIR) {
2571 error = ENOTDIR;
2572 goto out;
2573 }
2574 if (vn_vfsrlock(vp)) {
2575 error = EBUSY;
2576 goto out;
2577 }
2578 vp_locked = 1;
2579 if (vn_mountedvfs(vp) != NULL) {
2580 error = EBUSY;
2581 goto out;
2582 }

2584 smbfs_attrcache_remove(np);
2585 error = smbfs_smb_rmdir(np, &scred);

2587 /*
2588 * Similar to smbfs_remove
2589 */
2590 switch (error) {
2591 case 0:
2592 case ENOENT:
2593 case ENOTDIR:
2594 smbfs_attrcache_prune(np);
2595 break;
2596 }

2598 if (error)
2599 goto out;

2601 mutex_enter(&np->r_statelock);
2602 dnp->n_flag |= NMODIFIED;
2603 mutex_exit(&np->r_statelock);
2604 smbfs_attr_touchdir(dnp);
2605 smbfs_rmhash(np);

2607 out:
2608 if (vp) {
2609 if (vp_locked)
2610 vn_vfsunlock(vp);
2611 VN_RELE(vp);
2612 }
2613 smb_credrele(&scred);
2614 smbfs_rw_exit(&dnp->r_rwlock);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 38

2616 return (error);
2617 }

2620 /* ARGSUSED */
2621 static int
2622 smbfs_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp,
2623 caller_context_t *ct, int flags)
2624 {
2625 struct smbnode *np = VTOSMB(vp);
2626 int error = 0;
2627 smbmntinfo_t *smi;

2629 smi = VTOSMI(vp);

2631 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
2632 return (EIO);

2634 if (smi->smi_flags & SMI_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
2635 return (EIO);

2637 /*
2638 * Require read access in the directory.
2639 */
2640 error = smbfs_access(vp, VREAD, 0, cr, ct);
2641 if (error)
2642 return (error);

2644 ASSERT(smbfs_rw_lock_held(&np->r_rwlock, RW_READER));

2646 /*
2647 * XXX: Todo readdir cache here
2648 * Note: NFS code is just below this.
2649 *
2650 * I am serializing the entire readdir opreation
2651 * now since we have not yet implemented readdir
2652 * cache. This fix needs to be revisited once
2653 * we implement readdir cache.
2654 */
2655 if (smbfs_rw_enter_sig(&np->r_lkserlock, RW_WRITER, SMBINTR(vp)))
2656 return (EINTR);

2658 error = smbfs_readvdir(vp, uiop, cr, eofp, ct);

2660 smbfs_rw_exit(&np->r_lkserlock);

2662 return (error);
2663 }

2665 /* ARGSUSED */
2666 static int
2667 smbfs_readvdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2668 caller_context_t *ct)
2669 {
2670 /*
2671 * Note: "limit" tells the SMB-level FindFirst/FindNext
2672 * functions how many directory entries to request in
2673 * each OtW call. It needs to be large enough so that
2674 * we don’t make lots of tiny OtW requests, but there’s
2675 * no point making it larger than the maximum number of
2676 * OtW entries that would fit in a maximum sized trans2
2677 * response (64k / 48). Beyond that, it’s just tuning.
2678 * WinNT used 512, Win2k used 1366. We use 1000.
2679 */
2680 static const int limit = 1000;

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 39

2681 /* Largest possible dirent size. */
2682 static const size_t dbufsiz = DIRENT64_RECLEN(SMB_MAXFNAMELEN);
2683 struct smb_cred scred;
2684 vnode_t *newvp;
2685 struct smbnode *np = VTOSMB(vp);
2686 struct smbfs_fctx *ctx;
2687 struct dirent64 *dp;
2688 ssize_t save_resid;
2689 offset_t save_offset; /* 64 bits */
2690 int offset; /* yes, 32 bits */
2691 int nmlen, error;
2692 ushort_t reclen;

2694 ASSERT(curproc->p_zone == VTOSMI(vp)->smi_zone_ref.zref_zone);

2696 /* Make sure we serialize for n_dirseq use. */
2697 ASSERT(smbfs_rw_lock_held(&np->r_lkserlock, RW_WRITER));

2699 /*
2700 * Make sure smbfs_open filled in n_dirseq
2701 */
2702 if (np->n_dirseq == NULL)
2703 return (EBADF);

2705 /* Check for overflow of (32-bit) directory offset. */
2706 if (uio->uio_loffset < 0 || uio->uio_loffset > INT32_MAX ||
2707 (uio->uio_loffset + uio->uio_resid) > INT32_MAX)
2708 return (EINVAL);

2710 /* Require space for at least one dirent. */
2711 if (uio->uio_resid < dbufsiz)
2712 return (EINVAL);

2714 SMBVDEBUG("dirname=’%s’\n", np->n_rpath);
2715 smb_credinit(&scred, cr);
2716 dp = kmem_alloc(dbufsiz, KM_SLEEP);

2718 save_resid = uio->uio_resid;
2719 save_offset = uio->uio_loffset;
2720 offset = uio->uio_offset;
2721 SMBVDEBUG("in: offset=%d, resid=%d\n",
2722 (int)uio->uio_offset, (int)uio->uio_resid);
2723 error = 0;

2725 /*
2726 * Generate the "." and ".." entries here so we can
2727 * (1) make sure they appear (but only once), and
2728 * (2) deal with getting their I numbers which the
2729 * findnext below does only for normal names.
2730 */
2731 while (offset < FIRST_DIROFS) {
2732 /*
2733 * Tricky bit filling in the first two:
2734 * offset 0 is ".", offset 1 is ".."
2735 * so strlen of these is offset+1.
2736 */
2737 reclen = DIRENT64_RECLEN(offset + 1);
2738 if (uio->uio_resid < reclen)
2739 goto out;
2740 bzero(dp, reclen);
2741 dp->d_reclen = reclen;
2742 dp->d_name[0] = ’.’;
2743 dp->d_name[1] = ’.’;
2744 dp->d_name[offset + 1] = ’\0’;
2745 /*
2746 * Want the real I-numbers for the "." and ".."

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 40

2747 * entries. For these two names, we know that
2748 * smbfslookup can get the nodes efficiently.
2749 */
2750 error = smbfslookup(vp, dp->d_name, &newvp, cr, 1, ct);
2751 if (error) {
2752 dp->d_ino = np->n_ino + offset; /* fiction */
2753 } else {
2754 dp->d_ino = VTOSMB(newvp)->n_ino;
2755 VN_RELE(newvp);
2756 }
2757 /*
2758 * Note: d_off is the offset that a user-level program
2759 * should seek to for reading the NEXT directory entry.
2760 * See libc: readdir, telldir, seekdir
2761 */
2762 dp->d_off = offset + 1;
2763 error = uiomove(dp, reclen, UIO_READ, uio);
2764 if (error)
2765 goto out;
2766 /*
2767 * Note: uiomove updates uio->uio_offset,
2768 * but we want it to be our "cookie" value,
2769 * which just counts dirents ignoring size.
2770 */
2771 uio->uio_offset = ++offset;
2772 }

2774 /*
2775 * If there was a backward seek, we have to reopen.
2776 */
2777 if (offset < np->n_dirofs) {
2778 SMBVDEBUG("Reopening search %d:%d\n",
2779 offset, np->n_dirofs);
2780 error = smbfs_smb_findopen(np, "*", 1,
2781 SMB_FA_SYSTEM | SMB_FA_HIDDEN | SMB_FA_DIR,
2782 &scred, &ctx);
2783 if (error) {
2784 SMBVDEBUG("can not open search, error = %d", error);
2785 goto out;
2786 }
2787 /* free the old one */
2788 (void) smbfs_smb_findclose(np->n_dirseq, &scred);
2789 /* save the new one */
2790 np->n_dirseq = ctx;
2791 np->n_dirofs = FIRST_DIROFS;
2792 } else {
2793 ctx = np->n_dirseq;
2794 }

2796 /*
2797 * Skip entries before the requested offset.
2798 */
2799 while (np->n_dirofs < offset) {
2800 error = smbfs_smb_findnext(ctx, limit, &scred);
2801 if (error != 0)
2802 goto out;
2803 np->n_dirofs++;
2804 }

2806 /*
2807 * While there’s room in the caller’s buffer:
2808 * get a directory entry from SMB,
2809 * convert to a dirent, copyout.
2810 * We stop when there is no longer room for a
2811 * maximum sized dirent because we must decide
2812 * before we know anything about the next entry.

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 41

2813 */
2814 while (uio->uio_resid >= dbufsiz) {
2815 error = smbfs_smb_findnext(ctx, limit, &scred);
2816 if (error != 0)
2817 goto out;
2818 np->n_dirofs++;

2820 /* Sanity check the name length. */
2821 nmlen = ctx->f_nmlen;
2822 if (nmlen > SMB_MAXFNAMELEN) {
2823 nmlen = SMB_MAXFNAMELEN;
2824 SMBVDEBUG("Truncating name: %s\n", ctx->f_name);
2825 }
2826 if (smbfs_fastlookup) {
2827 /* See comment at smbfs_fastlookup above. */
2828 if (smbfs_nget(vp, ctx->f_name, nmlen,
2829 &ctx->f_attr, &newvp) == 0)
2830 VN_RELE(newvp);
2831 }

2833 reclen = DIRENT64_RECLEN(nmlen);
2834 bzero(dp, reclen);
2835 dp->d_reclen = reclen;
2836 bcopy(ctx->f_name, dp->d_name, nmlen);
2837 dp->d_name[nmlen] = ’\0’;
2838 dp->d_ino = ctx->f_inum;
2839 dp->d_off = offset + 1; /* See d_off comment above */
2840 error = uiomove(dp, reclen, UIO_READ, uio);
2841 if (error)
2842 goto out;
2843 /* See comment re. uio_offset above. */
2844 uio->uio_offset = ++offset;
2845 }

2847 out:
2848 /*
2849 * When we come to the end of a directory, the
2850 * SMB-level functions return ENOENT, but the
2851 * caller is not expecting an error return.
2852 *
2853 * Also note that we must delay the call to
2854 * smbfs_smb_findclose(np->n_dirseq, ...)
2855 * until smbfs_close so that all reads at the
2856 * end of the directory will return no data.
2857 */
2858 if (error == ENOENT) {
2859 error = 0;
2860 if (eofp)
2861 *eofp = 1;
2862 }
2863 /*
2864 * If we encountered an error (i.e. "access denied")
2865 * from the FindFirst call, we will have copied out
2866 * the "." and ".." entries leaving offset == 2.
2867 * In that case, restore the original offset/resid
2868 * so the caller gets no data with the error.
2869 */
2870 if (error != 0 && offset == FIRST_DIROFS) {
2871 uio->uio_loffset = save_offset;
2872 uio->uio_resid = save_resid;
2873 }
2874 SMBVDEBUG("out: offset=%d, resid=%d\n",
2875 (int)uio->uio_offset, (int)uio->uio_resid);

2877 kmem_free(dp, dbufsiz);
2878 smb_credrele(&scred);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 42

2879 return (error);
2880 }

2883 /*
2884 * The pair of functions VOP_RWLOCK, VOP_RWUNLOCK
2885 * are optional functions that are called by:
2886 * getdents, before/after VOP_READDIR
2887 * pread, before/after ... VOP_READ
2888 * pwrite, before/after ... VOP_WRITE
2889 * (other places)
2890 *
2891 * Careful here: None of the above check for any
2892 * error returns from VOP_RWLOCK / VOP_RWUNLOCK!
2893 * In fact, the return value from _rwlock is NOT
2894 * an error code, but V_WRITELOCK_TRUE / _FALSE.
2895 *
2896 * Therefore, it’s up to _this_ code to make sure
2897 * the lock state remains balanced, which means
2898 * we can’t "bail out" on interrupts, etc.
2899 */

2901 /* ARGSUSED2 */
2902 static int
2903 smbfs_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
2904 {
2905 smbnode_t *np = VTOSMB(vp);

2907 if (!write_lock) {
2908 (void) smbfs_rw_enter_sig(&np->r_rwlock, RW_READER, FALSE);
2909 return (V_WRITELOCK_FALSE);
2910 }

2913 (void) smbfs_rw_enter_sig(&np->r_rwlock, RW_WRITER, FALSE);
2914 return (V_WRITELOCK_TRUE);
2915 }

2917 /* ARGSUSED */
2918 static void
2919 smbfs_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
2920 {
2921 smbnode_t *np = VTOSMB(vp);

2923 smbfs_rw_exit(&np->r_rwlock);
2924 }

2927 /* ARGSUSED */
2928 static int
2929 smbfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct)
2930 {
2931 smbmntinfo_t *smi;

2933 smi = VTOSMI(vp);

2935 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
2936 return (EPERM);

2938 if (smi->smi_flags & SMI_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
2939 return (EIO);

2941 /*
2942 * Because we stuff the readdir cookie into the offset field
2943 * someone may attempt to do an lseek with the cookie which
2944 * we want to succeed.

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 43

2945 */
2946 if (vp->v_type == VDIR)
2947 return (0);

2949 /* Like NFS3, just check for 63-bit overflow. */
2950 if (*noffp < 0)
2951 return (EINVAL);

2953 return (0);
2954 }

2957 /*
2958 * XXX
2959 * This op may need to support PSARC 2007/440, nbmand changes for CIFS Service.
2960 */
2961 static int
2962 smbfs_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag,
2963 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr,
2964 caller_context_t *ct)
2965 {
2966 if (curproc->p_zone != VTOSMI(vp)->smi_zone_ref.zref_zone)
2967 return (EIO);

2969 if (VTOSMI(vp)->smi_flags & SMI_LLOCK)
2970 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
2971 else
2972 return (ENOSYS);
2973 }

2975 /*
2976 * Free storage space associated with the specified vnode. The portion
2977 * to be freed is specified by bfp->l_start and bfp->l_len (already
2978 * normalized to a "whence" of 0).
2979 *
2980 * Called by fcntl(fd, F_FREESP, lkp) for libc:ftruncate, etc.
2981 */
2982 /* ARGSUSED */
2983 static int
2984 smbfs_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag,
2985 offset_t offset, cred_t *cr, caller_context_t *ct)
2986 {
2987 int error;
2988 smbmntinfo_t *smi;

2990 smi = VTOSMI(vp);

2992 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
2993 return (EIO);

2995 if (smi->smi_flags & SMI_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
2996 return (EIO);

2998 /* Caller (fcntl) has checked v_type */
2999 ASSERT(vp->v_type == VREG);
3000 if (cmd != F_FREESP)
3001 return (EINVAL);

3003 /*
3004 * Like NFS3, no 32-bit offset checks here.
3005 * Our SMB layer takes care to return EFBIG
3006 * when it has to fallback to a 32-bit call.
3007 */

3009 error = convoff(vp, bfp, 0, offset);
3010 if (!error) {

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 44

3011 ASSERT(bfp->l_start >= 0);
3012 if (bfp->l_len == 0) {
3013 struct vattr va;

3015 /*
3016 * ftruncate should not change the ctime and
3017 * mtime if we truncate the file to its
3018 * previous size.
3019 */
3020 va.va_mask = AT_SIZE;
3021 error = smbfsgetattr(vp, &va, cr);
3022 if (error || va.va_size == bfp->l_start)
3023 return (error);
3024 va.va_mask = AT_SIZE;
3025 va.va_size = bfp->l_start;
3026 error = smbfssetattr(vp, &va, 0, cr);
3027 } else
3028 error = EINVAL;
3029 }

3031 return (error);
3032 }

3034 /* ARGSUSED */
3035 static int
3036 smbfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
3037 caller_context_t *ct)
3038 {
3039 vfs_t *vfs;
3040 smbmntinfo_t *smi;
3041 struct smb_share *ssp;

3043 vfs = vp->v_vfsp;
3044 smi = VFTOSMI(vfs);

3046 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
3047 return (EIO);

3049 if (smi->smi_flags & SMI_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
3050 return (EIO);

3052 switch (cmd) {
3053 case _PC_FILESIZEBITS:
3054 ssp = smi->smi_share;
3055 if (SSTOVC(ssp)->vc_sopt.sv_caps & SMB_CAP_LARGE_FILES)
3056 *valp = 64;
3057 else
3058 *valp = 32;
3059 break;

3061 case _PC_LINK_MAX:
3062 /* We only ever report one link to an object */
3063 *valp = 1;
3064 break;

3066 case _PC_ACL_ENABLED:
3067 /*
3068 * Always indicate that ACLs are enabled and
3069 * that we support ACE_T format, otherwise
3070 * libsec will ask for ACLENT_T format data
3071 * which we don’t support.
3072 */
3073 *valp = _ACL_ACE_ENABLED;
3074 break;

3076 case _PC_SYMLINK_MAX: /* No symlinks until we do Unix extensions */

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 45

3077 *valp = 0;
3078 break;

3080 case _PC_XATTR_EXISTS:
3081 if (vfs->vfs_flag & VFS_XATTR) {
3082 *valp = smbfs_xa_exists(vp, cr);
3083 break;
3084 }
3085 return (EINVAL);

3087 case _PC_TIMESTAMP_RESOLUTION:
3088 /*
3089 * Windows times are tenths of microseconds
3090 * (multiples of 100 nanoseconds).
3091 */
3092 *valp = 100L;
3093 break;

3095 default:
3096 return (fs_pathconf(vp, cmd, valp, cr, ct));
3097 }
3098 return (0);
3099 }

3101 /* ARGSUSED */
3102 static int
3103 smbfs_getsecattr(vnode_t *vp, vsecattr_t *vsa, int flag, cred_t *cr,
3104 caller_context_t *ct)
3105 {
3106 vfs_t *vfsp;
3107 smbmntinfo_t *smi;
3108 int error;
3109 uint_t mask;

3111 vfsp = vp->v_vfsp;
3112 smi = VFTOSMI(vfsp);

3114 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
3115 return (EIO);

3117 if (smi->smi_flags & SMI_DEAD || vfsp->vfs_flag & VFS_UNMOUNTED)
3118 return (EIO);

3120 /*
3121 * Our _pathconf indicates _ACL_ACE_ENABLED,
3122 * so we should only see VSA_ACE, etc here.
3123 * Note: vn_create asks for VSA_DFACLCNT,
3124 * and it expects ENOSYS and empty data.
3125 */
3126 mask = vsa->vsa_mask & (VSA_ACE | VSA_ACECNT |
3127 VSA_ACE_ACLFLAGS | VSA_ACE_ALLTYPES);
3128 if (mask == 0)
3129 return (ENOSYS);

3131 if (smi->smi_flags & SMI_ACL)
3132 error = smbfs_acl_getvsa(vp, vsa, flag, cr);
3133 else
3134 error = ENOSYS;

3136 if (error == ENOSYS)
3137 error = fs_fab_acl(vp, vsa, flag, cr, ct);

3139 return (error);
3140 }

3142 /* ARGSUSED */

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 46

3143 static int
3144 smbfs_setsecattr(vnode_t *vp, vsecattr_t *vsa, int flag, cred_t *cr,
3145 caller_context_t *ct)
3146 {
3147 vfs_t *vfsp;
3148 smbmntinfo_t *smi;
3149 int error;
3150 uint_t mask;

3152 vfsp = vp->v_vfsp;
3153 smi = VFTOSMI(vfsp);

3155 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
3156 return (EIO);

3158 if (smi->smi_flags & SMI_DEAD || vfsp->vfs_flag & VFS_UNMOUNTED)
3159 return (EIO);

3161 /*
3162 * Our _pathconf indicates _ACL_ACE_ENABLED,
3163 * so we should only see VSA_ACE, etc here.
3164 */
3165 mask = vsa->vsa_mask & (VSA_ACE | VSA_ACECNT);
3166 if (mask == 0)
3167 return (ENOSYS);

3169 if (vfsp->vfs_flag & VFS_RDONLY)
3170 return (EROFS);

3172 /*
3173 * Allow only the mount owner to do this.
3174 * See comments at smbfs_access_rwx.
3175 */
3176 error = secpolicy_vnode_setdac(cr, smi->smi_uid);
3177 if (error != 0)
3178 return (error);

3180 if (smi->smi_flags & SMI_ACL)
3181 error = smbfs_acl_setvsa(vp, vsa, flag, cr);
3182 else
3183 error = ENOSYS;

3185 return (error);
3186 }

3189 /*
3190 * XXX
3191 * This op should eventually support PSARC 2007/268.
3192 */
3193 static int
3194 smbfs_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr,
3195 caller_context_t *ct)
3196 {
3197 if (curproc->p_zone != VTOSMI(vp)->smi_zone_ref.zref_zone)
3198 return (EIO);

3200 if (VTOSMI(vp)->smi_flags & SMI_LLOCK)
3201 return (fs_shrlock(vp, cmd, shr, flag, cr, ct));
3202 else
3203 return (ENOSYS);
3204 }

3206 static int uio_page_mapin(uio_t *uiop, page_t *pp) {
3207 u_offset_t off;
3208 size_t size;

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 47

3209 pgcnt_t npages;
3210 caddr_t kaddr;
3211 pfn_t pfnum;

3213 off = (uintptr_t) uiop->uio_loffset & PAGEOFFSET;
3214 size = P2ROUNDUP(uiop->uio_resid + off, PAGESIZE);
3215 npages = btop(size);

3217 ASSERT(pp != NULL);

3219 if (npages == 1 && kpm_enable) {
3220 kaddr = hat_kpm_mapin(pp, NULL);
3221 if (kaddr == NULL)
3222 return (EFAULT);

3224 uiop->uio_iov->iov_base = kaddr + off;
3225 uiop->uio_iov->iov_len = PAGESIZE - off;

3227 } else {
3228 kaddr = vmem_xalloc(heap_arena, size, PAGESIZE, 0, 0, NULL, NULL, VM_SLE
3229 if (kaddr == NULL)
3230 return (EFAULT);

3232 uiop->uio_iov->iov_base = kaddr + off;
3233 uiop->uio_iov->iov_len = size - off;

3235 /*map pages into kaddr*/
3236 uint_t attr = PROT_READ | PROT_WRITE | HAT_NOSYNC;
3237 while (npages-- > 0) {
3238 pfnum = pp->p_pagenum;
3239 pp = pp->p_next;

3241 hat_devload(kas.a_hat, kaddr, PAGESIZE, pfnum, attr, HAT_LOAD_LOCK);
3242 kaddr += PAGESIZE;
3243 }
3244 }
3245 return (0);
3246 }

3248 static void uio_page_mapout(uio_t *uiop, page_t *pp) {
3249 u_offset_t off;
3250 size_t size;
3251 pgcnt_t npages;
3252 caddr_t kaddr;

3254 kaddr = uiop->uio_iov->iov_base;
3255 off = (uintptr_t) kaddr & PAGEOFFSET;
3256 size = P2ROUNDUP(uiop->uio_iov->iov_len + off, PAGESIZE);
3257 npages = btop(size);

3259 ASSERT(pp != NULL);

3261 kaddr = (caddr_t) ((uintptr_t) kaddr & MMU_PAGEMASK);

3263 if (npages == 1 && kpm_enable) {
3264 hat_kpm_mapout(pp, NULL, kaddr);

3266 } else {
3267 hat_unload(kas.a_hat, (void*) kaddr, size,
3268 HAT_UNLOAD_NOSYNC | HAT_UNLOAD_UNLOCK);
3269 vmem_free(heap_arena, (void*) kaddr, size);
3270 }
3271 uiop->uio_iov->iov_base = 0;
3272 uiop->uio_iov->iov_len = 0;
3273 }

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 48

3275 static int smbfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
3276 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
3277 caller_context_t *ct) {
3278 smbnode_t *np;
3279 smbmntinfo_t *smi;
3280 struct vattr va;
3281 segvn_crargs_t vn_a;
3282 int error;

3284 np = VTOSMB(vp);
3285 smi = VTOSMI(vp);

3287 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
3288 return (EIO);

3290 if (smi->smi_flags & SMI_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
3291 return (EIO);

3293 if (vp->v_flag & VNOMAP || vp->v_flag & VNOCACHE)
3294 return (EAGAIN);

3296 if (vp->v_type != VREG)
3297 return (ENODEV);

3299 va.va_mask = AT_ALL;
3300 if (error = smbfsgetattr(vp, &va, cr))
3301 return (error);

3303 if (smbfs_rw_enter_sig(&np->r_lkserlock, RW_WRITER, SMBINTR(vp)))
3304 return (EINTR);

3306 if (MANDLOCK(vp, va.va_mode)) {
3307 error = EAGAIN;
3308 goto out;
3309 }

3311 as_rangelock(as);
3312 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);

3314 if (error != 0) {
3315 as_rangeunlock(as);
3316 goto out;
3317 }

3319 vn_a.vp = vp;
3320 vn_a.offset = off;
3321 vn_a.type = flags & MAP_TYPE;
3322 vn_a.prot = prot;
3323 vn_a.maxprot = maxprot;
3324 vn_a.flags = flags & ~MAP_TYPE;
3325 vn_a.cred = cr;
3326 vn_a.amp = NULL;
3327 vn_a.szc = 0;
3328 vn_a.lgrp_mem_policy_flags = 0;

3330 error = as_map(as, *addrp, len, segvn_create, &vn_a);

3332 as_rangeunlock(as);

3334 out:
3335 smbfs_rw_exit(&np->r_lkserlock);

3337 return (error);
3338 }

3340 static int smbfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 49

3341 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
3342 caller_context_t *ct) {
3343 atomic_add_long((ulong_t *) & VTOSMB(vp)->r_mapcnt, btopr(len));
3344 return (0);
3345 }

3347 static int smbfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
3348 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
3349 caller_context_t *ct) {

3351 smbnode_t *np;

3353 atomic_add_long((ulong_t *) & VTOSMB(vp)->r_mapcnt, -btopr(len));

3355 /* mark RDIRTY here, will be used to check if a file is dirty when unmount s
3356 if (vn_has_cached_data(vp) && !vn_is_readonly(vp) && maxprot & PROT_WRITE &&
3357 np = VTOSMB(vp);
3358 mutex_enter(&np->r_statelock);
3359 np->r_flags |= RDIRTY;
3360 mutex_exit(&np->r_statelock);
3361 }
3362 return (0);
3363 }

3365 static int smbfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags,
3366 cred_t *cr, caller_context_t *ct) {

3368 smbnode_t *np;
3369 size_t io_len;
3370 u_offset_t io_off;
3371 u_offset_t eoff;
3372 int error = 0;
3373 page_t *pp;

3375 np = VTOSMB(vp);

3377 if (len == 0) {
3378 /* will flush the file, so clear RDIRTY */
3379 if (off == (u_offset_t) 0 && (np->r_flags & RDIRTY)) {
3380 mutex_enter(&np->r_statelock);
3381 np->r_flags &= ~RDIRTY;
3382 mutex_exit(&np->r_statelock);
3383 }

3385 error = pvn_vplist_dirty(vp, off, smbfs_putapage, flags, cr);
3386 } else {

3388 eoff = off + len;

3390 mutex_enter(&np->r_statelock);
3391 if (eoff > np->r_size)
3392 eoff = np->r_size;
3393 mutex_exit(&np->r_statelock);

3395 for (io_off = off; io_off < eoff; io_off += io_len) {
3396 if ((flags & B_INVAL) || (flags & B_ASYNC) == 0) {
3397 pp = page_lookup(vp, io_off,
3398 (flags & (B_INVAL | B_FREE) ? SE_EXCL : SE_SHARED));
3399 } else {
3400 pp = page_lookup_nowait(vp, io_off,
3401 (flags & B_FREE) ? SE_EXCL : SE_SHARED);
3402 }

3404 if (pp == NULL || !pvn_getdirty(pp, flags))
3405 io_len = PAGESIZE;
3406 else {

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 50

3407 error = smbfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
3408 }
3409 }

3411 }

3413 return (error);
3414 }

3416 static int smbfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *len
3417 int flags, cred_t *cr) {

3419 struct smb_cred scred;
3420 smbnode_t *np;
3421 smbmntinfo_t *smi;
3422 smb_share_t *ssp;
3423 uio_t uio;
3424 iovec_t uiov, uiov_bak;

3426 size_t io_len;
3427 u_offset_t io_off;
3428 size_t bsize;
3429 size_t blksize;
3430 u_offset_t blkoff;
3431 int error;

3433 np = VTOSMB(vp);
3434 smi = VTOSMI(vp);
3435 ssp = smi->smi_share;

3437 /*do block io, get a kluster of dirty pages in a block.*/
3438 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
3439 blkoff = pp->p_offset / bsize;
3440 blkoff *= bsize;
3441 blksize = roundup(bsize, PAGESIZE);

3443 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, blkoff, blksize, flags);

3445 ASSERT(pp->p_offset >= blkoff);

3447 if (io_off + io_len > blkoff + blksize) {
3448 ASSERT((io_off + io_len)-(blkoff + blksize) < PAGESIZE);
3449 io_len = blkoff + blksize - io_off;
3450 }

3452 /*currently, don’t allow put pages beyond EOF, unless smbfs_read/smbfs_write
3453 *can do io through segkpm or vpm.*/
3454 mutex_enter(&np->r_statelock);
3455 if (io_off >= np->r_size) {
3456 mutex_exit(&np->r_statelock);
3457 error = 0;
3458 goto out;
3459 } else if (io_off + io_len > np->r_size) {
3460 int npages = btopr(np->r_size - io_off);
3461 page_t *trunc;
3462 page_list_break(&pp, &trunc, npages);
3463 if (trunc)
3464 pvn_write_done(trunc, flags);
3465 io_len = np->r_size - io_off;
3466 }
3467 mutex_exit(&np->r_statelock);

3469 if (smbfs_rw_enter_sig(&np->r_lkserlock, RW_READER, SMBINTR(vp)))
3470 return (EINTR);
3471 smb_credinit(&scred, cr);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 51

3473 if (np->n_vcgenid != ssp->ss_vcgenid)
3474 error = ESTALE;
3475 else {
3476 /*just use uio instead of buf, since smb_rwuio need uio.*/
3477 uiov.iov_base = 0;
3478 uiov.iov_len = 0;
3479 uio.uio_iov = &uiov;
3480 uio.uio_iovcnt = 1;
3481 uio.uio_loffset = io_off;
3482 uio.uio_resid = io_len;
3483 uio.uio_segflg = UIO_SYSSPACE;
3484 uio.uio_llimit = MAXOFFSET_T;
3485 /*map pages into kernel address space, and setup uio.*/
3486 error = uio_page_mapin(&uio, pp);
3487 if (error == 0) {
3488 uiov_bak.iov_base = uiov.iov_base;
3489 uiov_bak.iov_len = uiov.iov_len;
3490 error = smb_rwuio(ssp, np->n_fid, UIO_WRITE, &uio, &scred, smb_timo_
3491 if (error == 0) {
3492 mutex_enter(&np->r_statelock);
3493 np->n_flag |= (NFLUSHWIRE | NATTRCHANGED);
3494 mutex_exit(&np->r_statelock);
3495 (void) smbfs_smb_flush(np, &scred);
3496 }
3497 /*unmap pages from kernel address space.*/
3498 uio.uio_iov = &uiov_bak;
3499 uio_page_mapout(&uio, pp);
3500 }
3501 }

3503 smb_credrele(&scred);
3504 smbfs_rw_exit(&np->r_lkserlock);

3506 out:
3507 pvn_write_done(pp, ((error) ? B_ERROR : 0) | B_WRITE | flags);

3509 if (offp)
3510 *offp = io_off;
3511 if (lenp)
3512 *lenp = io_len;

3514 return (error);
3515 }

3517 static int smbfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
3518 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
3519 enum seg_rw rw, cred_t *cr, caller_context_t *ct) {

3521 int error;

3523 /*these pages have all protections.*/
3524 if (protp)
3525 *protp = PROT_ALL;

3527 if (len <= PAGESIZE) {
3528 error = smbfs_getapage(vp, off, len, protp, pl, plsz, seg, addr, rw,
3529 cr);
3530 } else {
3531 error = pvn_getpages(smbfs_getapage, vp, off, len, protp, pl, plsz, seg,
3532 addr, rw, cr);
3533 }

3535 return (error);
3536 }

3538 static int smbfs_getapage(vnode_t *vp, u_offset_t off, size_t len,

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 52

3539 uint_t *protp, page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
3540 enum seg_rw rw, cred_t *cr) {

3542 smbnode_t *np;
3543 smbmntinfo_t *smi;
3544 smb_share_t *ssp;
3545 smb_cred_t scred;

3547 page_t *pp;
3548 uio_t uio;
3549 iovec_t uiov, uiov_bak;

3551 u_offset_t blkoff;
3552 size_t bsize;
3553 size_t blksize;

3555 u_offset_t io_off;
3556 size_t io_len;
3557 size_t pages_len;

3559 int error = 0;

3561 np = VTOSMB(vp);
3562 smi = VTOSMI(vp);
3563 ssp = smi->smi_share;

3565 /*if pl is null,it’s meaningless*/
3566 if (pl == NULL)
3567 return (EFAULT);

3569 again:
3570 if (page_exists(vp, off) == NULL) {
3571 if (rw == S_CREATE) {
3572 /*just return a empty page if asked to create.*/
3573 if ((pp = page_create_va(vp, off, PAGESIZE, PG_WAIT | PG_EXCL, seg,
3574 goto again;
3575 pages_len = PAGESIZE;
3576 } else {

3578 /*do block io, get a kluster of non-exist pages in a block.*/
3579 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
3580 blkoff = off / bsize;
3581 blkoff *= bsize;
3582 blksize = roundup(bsize, PAGESIZE);

3584 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, &io_len, blkoff,

3586 if (pp == NULL)
3587 goto again;

3589 pages_len = io_len;

3591 /*currently, don’t allow get pages beyond EOF, unless smbfs_read/smb
3592 *can do io through segkpm or vpm.*/
3593 mutex_enter(&np->r_statelock);
3594 if (io_off >= np->r_size) {
3595 mutex_exit(&np->r_statelock);
3596 error = 0;
3597 goto out;
3598 } else if (io_off + io_len > np->r_size) {
3599 int npages = btopr(np->r_size - io_off);
3600 page_t *trunc;

3602 page_list_break(&pp, &trunc, npages);
3603 if (trunc)
3604 pvn_read_done(trunc, 0);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 53

3605 io_len = np->r_size - io_off;
3606 }
3607 mutex_exit(&np->r_statelock);

3609 if (smbfs_rw_enter_sig(&np->r_lkserlock, RW_READER, SMBINTR(vp)))
3610 return EINTR;
3611 smb_credinit(&scred, cr);

3613 /*just use uio instead of buf, since smb_rwuio need uio.*/
3614 uiov.iov_base = 0;
3615 uiov.iov_len = 0;
3616 uio.uio_iov = &uiov;
3617 uio.uio_iovcnt = 1;
3618 uio.uio_loffset = io_off;
3619 uio.uio_resid = io_len;
3620 uio.uio_segflg = UIO_SYSSPACE;
3621 uio.uio_llimit = MAXOFFSET_T;

3623 /*map pages into kernel address space, and setup uio.*/
3624 error = uio_page_mapin(&uio, pp);
3625 if (error == 0) {
3626 uiov_bak.iov_base = uiov.iov_base;
3627 uiov_bak.iov_len = uiov.iov_len;
3628 error = smb_rwuio(ssp, np->n_fid, UIO_READ, &uio, &scred, smb_ti
3629 /*unmap pages from kernel address space.*/
3630 uio.uio_iov = &uiov_bak;
3631 uio_page_mapout(&uio, pp);
3632 }

3634 smb_credrele(&scred);
3635 smbfs_rw_exit(&np->r_lkserlock);
3636 }
3637 } else {
3638 se_t se = rw == S_CREATE ? SE_EXCL : SE_SHARED;
3639 if ((pp = page_lookup(vp, off, se)) == NULL) {
3640 goto again;
3641 }
3642 }

3644 out:
3645 if (pp) {
3646 if (error) {
3647 pvn_read_done(pp, B_ERROR);
3648 } else {
3649 /*init page list, unlock pages.*/
3650 pvn_plist_init(pp, pl, plsz, off, pages_len, rw);
3651 }
3652 }

3654 return (error);
3655 }

3658 void smbfs_invalidate_pages(vnode_t *vp, u_offset_t off, cred_t *cr) {

3660 smbnode_t *np;

3662 np = VTOSMB(vp);
3663 /* will flush the file, so clear RDIRTY */
3664 if (off == (u_offset_t) 0 && (np->r_flags & RDIRTY)) {
3665 mutex_enter(&np->r_statelock);
3666 np->r_flags &= ~RDIRTY;
3667 mutex_exit(&np->r_statelock);
3668 }

3670 (void) pvn_vplist_dirty(vp, off, smbfs_putapage, B_INVAL | B_TRUNC, cr);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 54

3671 }

3674 #endif /* ! codereview */

