new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbf s_subr. h

R R R R

10945 Fri Jul 20 12:37:50 2012

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_subr. h

% NO COMMENTS *

IR E SR EE RS RS E R E SRR R R R R R R R R SRR EEEEREEREEEEEEEERSE]

__unchanged_portion_onmtted

149 typedef struct snbfs_fctx smbfs_fctx_t;

151 #define f_rq f_urqg.uf_rq
f_t2 f_urq.uf _t2

152 #define

154 /*

155 * snb level (snbfs_snb.c)

156 */

157 int snbfs_snb_| ock(struct snbnode *np, int op, caddr_t id,
158 of fset _t start, uint64_t Ilen, int |argel ock,

159 struct smb_cred *scrp, uint32_t timeout);

160 int snbfs_snmb_gfsattr(struct snmb_share *ssp, struct snb_fs_attr_i
161 struct smb_cred *scrp);

162 int snbfs_snb_statfs(struct snmb_share *ssp, statvfs64_t *sbp,
163 struct snb_cred *scrp);

164 int snbfs_snb_setfsize(struct snbnode *np, uint16_t fid, uint64_t
165 struct snb_cred *scrp);

167 int snbfs_snb_getfattr(struct smbnode *np, struct smbfattr *fap,
168 struct snmb_cred *scrp);

170 int snbfs_snb_setfattr(struct smbnode *np, int fid,

nfo *,

newsi ze,

ine,

*fidp);

171 uint32_t attr, struct timespec *ntine, struct tinespec *at
172 struct snmb_cred *scrp);

174 int snbfs_snmb_open(struct snbnode *np, const char *name, int nnien,
175 int xattr, uint32_t rights, struct snb_cred *scrp

176 ui nt16_t *fldp uint32_t *rightsp, struct smbfattr *fap);
177 int snbfs_snb_t npopen(struct smbnode *np, uint32_t rights,

178 struct snb_cred *scrp, uintl1l6_t *fidp);

179 int snbfs_snb_close(struct snb_share *ssp, uintl6_t fid,

180 struct tinespec *ntinme, struct smb_cred *scrp);

181 int snbfs_snb_tnpcl ose(struct snmbnode *ssp, uintl6_t fid,

182 struct snmb_cred *scrp);

183 int snbfs_snb_creat e(struct smbnode *dnp, const char *nane, int nnlen,
184 int xattr, uint32_t disp, struct smb_cred *scrp, uint16_t
185 int snbf s_snb_del ete(struct smbnode *np, struct snb_cred *scrp,
186 const char *nane, int len, int xattr);

187 int snbfs_snb_renanme(struct smbnode *src, struct snbnode *tdnp,
188 const char *tname, int tnmen, struct smb_cred *scrp);

189 int snbfs_snb_t 2renanme(struct smbnode *np, struct snbnode *tdnp,
190 const char *tnane, int tnnmlen, struct snb_cred *scrp, int

191 int snbfs_snb_nove(struct smbnode *src, struct snbnode *tdnp,

192 const char *tname, int tnmen, uintl6_t flags, struct snb_cred *scrp);

overwite);

193 int snbfs_snb_nkdir(struct snbnode *dnp, const char *nane, int |en,

194 struct smb_cred *scrp);
195 int snbfs_snb_rndir(struct snmbnode *np, struct snb_cred *scrp);
196 int snbfs_snb_findopen(struct smbnode *dnp, const char *w | dcard,

int wlen,

197 int attr, struct smb_cred *scrp, struct snbfs_fctx **ctxpp);

198 int snbfs snb flndnext(struct snbfs_fctx *ctx, int limt,
199 struct snb_cred *scrp);

200 int snbfs_snb_fi ndclose(struct smbfs_fctx *ctx, struct smb_cred *scrp);

201 int snbfs_fullpath(struct nmbchain *nbp, struct smb_vc *vcp,

202 struct snbnode *dnp, const char *nane, int nmen, uint8_t
203 int snbfs_snb_| ookup(struct snbnode *dnp, const char **nanep, int
204 struct snmbfattr *fap, struct snb_cred *scrp);

sep);
*nni enp,

205 int snbfs_snb_hideit(struct snbnode *np, const char *nane, int |en,

206 struct snb_cred *scrp);
207 int snbfs_snb_unhideit(struct snbnode *np, const char *name, int
208 struct smb_cred *scrp);

|l en,

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbf s_subr. h

209 int snbfs_snb_flush(struct snmbnode *np, struct smb_cred *scrp);
210 int smbfs_Oextend(vnode_t *vp, uint16_t fid, len_t from len_t to,
211 struct snb_cred *scredp, int ti) ;

213 /* get/set security descriptor */
214 int snbfs_snb_getsec_n(struct snb_share *ssp, uint16_t fid,

215 struct snb_cred *scrp, uint32_t selector,

216 mbl k_t **res, uint32_t *reslen);

217 int snbfs_snb_setsec_m(struct snb_share *ssp, uintl6_t fid,
218 struct smb_cred *scrp, uint32_t selector, nblk_t **np);
220 /*

221 * VFS-level init, fini stuff

222 */

224 int snbfs_vfsinit(void)
225 voi d snbfs_vfsfini(voi d)
226 int snbfs_subrinit(void);
227 void snbfs_subrfini(voi d);
228 int snmbfs_clntinit(void);
229 void snbfs_clntfini(void);

231 void snbfs_zonelist_add(snbmtinfo_t *sm);
232 void snbfs_zonelist_renove(snbmtinfo_t *smi);

234 int snbfs_check_table(struct vfs *vfsp, struct smbnode *srp);
235 void snbfs_destroy_tabl e(struct vfs *vfsp);
236 void snbfs_rflush(struct vfs *vfsp, cred_t *cr);

238 [/ *

239 * Function definitions - those having to do with
240 * snbfs nodes, vnodes, etc

241 */

243 void snbfs_attrcache_prune(struct snbnode *np);
244 void snbfs_attrcache_renove(struct snbnode *np);
245 void snbfs_attrcache_rm| ocked(struct snbnode *np);
246 #ifndef DEBUG

247 #define snbfs_attrcache_rm| ocked(np)
248 #endi f

249 void snbfs_attr_touchdir(struct snbnode *dnp);

250 void snbfs_attrcache_fa(vnode_t *vp, struct snbfattr *fap);
251 voi d snbfs_cache_check(struct vnode *vp, struct snbfattr *fap);

253 voi d snbfs_addfree(struct snbnode *sp);
254 void snbfs_rnmhash(struct snbnode *);

256 voi d snbfs_invalidate_pages(vnode_t *vp, u_offset_t off, cred_t *cr);

258 #endif /* | codereview */
259 /* See avl _create in snbfs_vfsops.c */
260 void snbfs_init_hash_avl (avl _tree_t *);

262 uint32_t snbfs_gethash(const char *rpath, int prlen);

263 uint32_t snbfs_getino(struct snbnode *dnp, const char *nane, int nnlen);

265 extern struct snbfattr snbfs_fattroO;
266 snbnode_t *snbfs_node_findcreate(smbmtinfo_t *m,

267 const char *dir, int dirlen,
268 const char *nane, int nmien,
269 char sep, struct snbfattr *fap);

271 int snbfs_nget(vnode_t *dvp, const char *nane, int nnlen,
272 struct snbfattr *fap, vnode_t **vpp);

274 void snbfs_fname_tol ocal (struct snbfs_fctx *ctx);

(np)->r_attrtine = gethrtine()

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbf s_subr. h

275 char *snbf s_nane_al | oc(const char *name, int nmen);
276 void snbf s_nanme_free(const char *nane, int nnien);

278 int snbfs_readvnode(vnode_t *, uio_t *, cred_t *, struct vattr *);
279 int snbfs_witevnode(vnode_t *vp, uio_t *uiop, cred_t *cr,

280 int ioflag, int tinmo);

281 int snbfsgetattr(vnode_t *vp, struct vattr *vap, cred_t *cr);

283 /* snbfs ACL support */

284 int snbfs_acl _getids(vnode_t *, cred_t *);

285 int smbfs_acl _setids(vnode_t *, vattr_t *, cred_t *);

286 int smbfs_acl _getvsa(vnode_t *, vsecattr_t *, int, cred_t *);
287 int snbfs_acl _setvsa(vnode_t *, vsecattr_t *, |nt, cred_t *);
288 int snbfs_acl _iocget(vnode t *, intptr_t, int, cred_t *);
289 int snbfs_acl _iocset(vnode_t *, intptr_t, int, cred_t *);

291 /* snbfs_xattr.c */
292 int snbfs_get xattrdir(vnode_t *dvp, vnode_t **vpp, cred_t *cr, int);
293 int snbfs_xa_parent(vnode_t *vp, vnode_t **vpp);
294 int snbfs_xa_exists(vnode_t *vp, cred_t *cr);
int snmbfs_xa_getfattr(struct smbnode *np, struct smbfattr *fap,

295

296 struct smb_cred *scrp);

297 int snbfs_xa_findopen(struct snbfs_fctx *ctx, struct snmbnode *dnp,
298 const char *nane, int nnlen);

299 int snbfs_xa_findnext(struct snbfs_fctx *ctx, uintl6_t limt);
300 int snbfs_xa_findclose(struct snbfs_fctx *ctx);

302 /* For Solaris, interruptible rw ock */

303 int snbfs_rw enter_sig(snbfs_rwock_t *I, krw.t rw, int intr);
304 int snbfs_rw tryenter(snbfs_rw ock_t *I, krw.t rw;

305 void snbfs_rw exit(snbfs_rwock_t *I);

306 int snbfs_rw | ock_held(snbfs_rwliock_ t *I, krwt rw;
307 void snbfs_rw.init(snbfs_rwock_t *T, char *nanme, krw type_t type, void *arg);
308 void snbfs_rw destroy(snbfs_rw ock_t *I);

310 #endif /* | _FS SVBFS_SMBFS_SUBR H_*/

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_subr2.c

R R R R

29723 Fri Jul 20 12:37:51 2012
new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_subr2.c

*x%x NO

COMVENTS ***

R R R R R

1/*

35 #i
36 #i
37 #i
38 #i
39 #i
40 #i
41 #i
42 #i
43 #i

45 #i

47 #i
48 #i
49 #i
50 #i

52 #i
53 #i
54 #i

ol
[ee]
L

[N
~
L I I S I I I S R I I I R
<

CDDL HEADER START

The contents of this file are subject to the ternms of the
Common Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific | anguage governing perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

CDDL HEADER END
Copyright 2010 Sun Mcrosystens, Inc. Al rights reserved.
Use is subject to license terns.

Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T.
Al rights reserved.

Node hash inplenmentation initially borrowed from NFS (nfs_subr.c)
but then heavily nodified. It’s no longer an array of hash lists,

* but an AVL tree per nount point. Mre on this bel ow
*/

ncl ude <sys/param h>

ncl ude <sys/systm h>

ncl ude <sys/tine.h>

ncl ude <sys/vnode. h>

ncl ude <sys/bitmap. h>

ncl ude <sys/dnlc. h>

ncl ude <sys/knem h>

ncl ude <sys/sunddi . h>
ncl ude <sys/sysmacros. h>

ncl ude <netsnb/snb_osdep. h>

ncl ude <netsnb/snb. h>

ncl ude <netsnb/snmb_conn. h>
ncl ude <netsnb/snmb_subr. h>
ncl ude <netsnb/snmb_rq. h>

ncl ude <snbfs/snbfs. h>
ncl ude <snbfs/snbfs_node. h>
ncl ude <snbfs/snbfs_subr. h>

The AVL trees (now per-nount) allow finding an snbfs node by its
full rempte path name. It also allows easy traversal of all nodes
bel ow (path w se) any given node. A reader/witer |ock for each
(per mount) AVL tree is used to control access and to synchronize
| ookups, additions, and deletions fromthat AVL tree.

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_subr2.c

112
114

118
119
120
121
122
123
124
125

Previously, this code use a global array of hash chains, each with
its owmn rw ock. A few struct nenbers, functions, and comments may
still refer to a "hash", and those should all now be considered to
refer to the per-nmount AVL tree that replaced the ol d hash chains.
(i.e. menber sm _hash_l k, function sn_hashfind, etc.)

The snbnode freelist is organized as a doubly linked list with
a head pointer. Additions and deletions are synchronized via
a single nmutex.

In order to add an snbnode to the free list, it nust be linked into
the nount’s AVL tree and the exclusive |ock for the AVL nust be hel d.
If an snbnode is not linked into the AVL tree, then it is destroyed
because it represents no valuable infornation that can be reused
about the file. The exclusive lock for the AVL tree nust be held

in order to prevent a |lookup in the AVL tree fromfinding the
snbnode and using it and assuming that the snmbnode is not on the
freelist. The lookup in the AVL tree will have the AVL tree | ock

hel d, either exclusive or shared.

The vnode reference count for each smbnode is not allowed to drop
below 1. This prevents external entities, such as the VM
subsystem from acquiring references to vnodes already on the
freelist and then trying to place them back on the freelist

when their reference is released. This neans that the when an
snbnode is |ooked up in the AVL tree, then either the snbnode

is removed fromthe freelist and that reference is tranfered to
the new reference or the vnode reference count nust be increnented
accordingly. The mutex for the freelist nust be held in order to
accurately test to see if the snbnode is on the freelist or not.
The AVL tree lock m ght be held shared and it is possible that

two different threads nmay race to renove the snbnode fromthe
freelist. This race can be resolved by holding the nutex for the
freelist. Please note that the nmutex for the freelist does not
need to held if the snbnode is not on the freelist. 1t can not be
placed on the freelist due to the requirenent that the thread
putting the snbnode on the freelist nust hold the exclusive |ock
for the AVL tree and the thread doing the | ookup in the AVL tree
is holding either a shared or exclusive lock for the AVL tree.

The | ock ordering is:

AVL tree lock -> vnode | ock
AVL tree lock -> freelist |ock

® Ok ok R ok ok ok SR F Sk F b Sk O 3E R ok b SR F Sk F Sk ok SR E Ok b ok OF F ok ok b Rk ok ok % b % b % ok

/

static krmutex_t snbfreelist_Iock;
static snmbnode_t *snbfreelist = NULL;
static ulong_t snbnodenew = O;

| ong nsnbnode = 0;

static struct knem cache *snbnode_cache;
static const vsecattr_t smbfs_vsa0 = { 0 };

/*

* Mutex to protect the follow ng variabl es:
* snmbf s_maj or

* smbf s_m nor

*/

kmut ex_t snbfs_m nor_| ock;

int snbfs_mgjor;

int snbfs_m nor;

/* See snbfs_node_findcreate() */

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_subr2.c
128 struct snbfattr snbfs_fattro;

130 /*

131 * Local functions.

132 * SN for Snb Node

133 */

134 static void sn_rnfree(snbnode_t *);

135 static void sn_inactive(snbnode_t *);

136 static void sn_addhash Iocked(snbnode t *, avl_index_t);
137 static void sn_rmhash_T ocked(snbnode_t *);

138 static void sn destroy node(snbnode_t *);

139 void snbfs_kmemreclain{void *cdrarg);

141 static snbnode_t *
142 sn_hashfind(snmbmtinfo_t *, const char *, int, avl_index_t

144 static snbnode_t *
145 make_snbnode(snmbmtinfo_t *, const char *, int, int *);

147 | *

148 * Free the resources associated with an snbnode.
149 * Note: This is different from snbfs_inactive
150 *

151 * NFS: nfs_subr.c:rinactive

152 *

153 static void
154 sn_inactive(snbnode_t *np)

155 {

156 vsecattr_t ovsa;

157 cred_t *ol dcr;

158 char *or pat h;

159 int orpl en;

160 vnode_t *vp;

161 #endif /* | codereview */

163 I*

164 * Flush and invalidate all pages

160 * Flush and invalidate all pages (todo)
165 * Free any held credentials and caches...
166 * etc. (See NFS code)

167 */

168 mut ex_ent er (&np->r _st at el ock) ;

170 ovsa = np->r_secattr;

171 np->r_secattr = snbfs_vsa0;

172 np->r_sectinme = 0;

174 ol dcr = np->r_cred;

175 np->r_cred = NULL;

177 orpath = np->n_rpath;

178 orplen = np->n_rplen;

179 np->n_rpath = NULL;

180 np->n_rplen = 0;

182 mut ex_exi t (&p->r_st at el ock) ;

184 vp = SMBTOV(np);

185 if (vn_has_cached_data(vp)) {

186 snbf s_i nval i dat e_pages(vp, (u_offset_t) O,
187 1

189 #endif /* ! codereview */
190 if (ovsa.vsa_aclentp !'= NULL)

191 kmem free(ovsa. vsa_acl entp, ovsa.vsa_acl entsz);

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_subr2.c

193 if (oldcr !'= NULL)

194 crfree(ol dcr);

196 if (orpath !'= NULL)

197 kmem free(orpath, orplen + 1);

198 }

200 /*

201 * Find and optionally create an snbnode for the passed
202 * mountinfo, directory, separator, and nane. |f the
203 * desired snbnode already exists, return a reference.
204 * If the file attributes pointer is non-null, the node
205 * is created if necessary and linked into the AVL tree.
206 *

207 * Callers that need a node created but don't have the
208 * real attributes pass snbfs_fattrO to force creation.
209 *

210 * Note: mmke_snbnode() nay upgrade the "hash" |ock to exclusive.
211 *

212 * NFS: nfs_subr.c: nekenf snode

213 */

214 snbnode_t *
215 snbfs_node_fi ndcreat e(

216 smbmtinfo_t *m,

217 const char *dirnm

218 int dirlen,

219 const char *nane,

220 int nmen,

221 char sep,

222 struct snbfattr *fap)

223 {

224 char tnpbuf[256];

225 size_t rpalloc;

226 char *p, *rpath;

227 int rplen;

228 snbnode_t *np;

229 vnode_t *vp;

230 i nt newnode;

232 /*

233 * Build the search string, either in tnpbuf or
234 * in allocated menory if larger than tnpbuf.
235 */

236 rplen = dirlen;

237 if (sep!="'\0")

238 rpl en++;

239 rplen += nml en;

240 if (rplen<5|zeof (trrpbuf)) {
241 /* use tnpbuf */

242 rpalloc = 0O;

243 rpath = tnpbuf;

244 } else {

245 rpalloc = rplen + 1;
246 rpath = kmem al | oc(rpal | oc, KM SLEEP);
247 }

248 p = rpath;

249 bcopy(dirnm p, dirlen);

250 p += dirlen;

251 | f (sep!:’\O’)

252 *p++ = sep;

253 if (name = NULL) {

254 bcopy(nanme, p, nnien);
255 p += nmlen;

256 }

257 ASSERT(p == rpath + rplen);

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_subr2.c

259
260
261
262
263
264
265
266
267

269
270

272
273
274
275
276
277
278
279

281
282
283
284
285
286
287

289
290
291
292
293
294
295
296
297
298
299
300
301

303
304
305
306
307
308
309
310

312
313
314
315

317
318
319
320
321
322
323
324

}

/ *

/*

/*
* Find or create a node with this path.
*
/
rw_enter (&m ->sm _hash_| k, RW READER);
if (fap == NULL)
np = sn_hashfind(m, rpath, rplen, NULL);
el se
np = make_snbnode(m , rpath, rplen, &newnode);
rw_exit(&m ->sm _hash_l k);

if (rpalloc)
kmem free(rpath, rpalloc);

if (fap == NULL) {

* Caller is "just |ooking" (no create)
* so np may or may not be NULL here.

* Either way, we're done.

*/

return (np);

-

*

* We shoul d have a node, possibly created.
* Do we have (real) attributes to apply?
*

/

ASSERT(np != NULL);

if (fap == &snbfs_fattr0)

return (np);

Apply the given attributes to this node,
dealing with any cache inpact, etc.

<
T * ok ok *
-

= SMBTOV(np) ;
if (!newnode) {
/*

* Found an exi sting node.
* Maybe purge caches. ..
*/

snbf s_cache_check(vp, fap);
}
smbf s_attrcache_fa(vp, fap);

/
Note NFS sets vp->v_type here, assuming it
can never change for the life of a node.
We allow v_type to change, and set it in
snbfs_attrcache(). Al so: node, uid, gid

EE
-

return (np);

nfs_subr.c:rtabl ehash

* W use snbfs_hash().
*
/

Find or create an snbnode.

nfs_subr. c: make_r node

static snmbnode_t *
make_snbnode(

smbmtinfo_t *m,
const char *rpath,

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_subr2.c

325
326
327
328
329
330
331
332
333

335
336

338
339
340
341
342
343

345
346

348
349
350
351
352
353
354
355

357

359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

377

379
380
381
382
383
384
385
386
387
388
389
390

start:

int rplen,
int *newnode)

snmbnode_t *np;
snbnode_t *tnp;

vnode_t *vp;

vis_ t *vfsp;

avl _i ndex_t where;

char *new_rpath = NULL;

ASSERT(RW READ_HELD(&ni - >sni _hash_I k)) ;
visp = m->sm _vfsp;

np = sn_hashfind(m, rpath, rplen, NULL);
if (np !'= NULL) {

*newnode = 0;

return (np);

}

/* Note: will retake this |ock below */
rw_exit(&m->sm _hash_| k) ;

/*
* see if we can find sonething on the freelist
*/

mut ex_ent er (&snbfreel i st_| ock);

if (snbfreelist = NULL && snbnodenew >= nsnbnode) {
np = snbfreelist;
sn_rnfree(np);
mut ex_exi t (&nbfreelist_I| ock);

vp = SMBTOV(np);
if (np->r_flags & RHASHED) ({

snbmtinfo_t *tnp_m = np->n_nount;
ASSERT(tnp_nmi != NULL);

rw_enter (& nmp_m ->sm _hash_l k, RWWRI TER);

mut ex_ent er (&p- >v_| ock) ;

if (vp->v_count > 1) {
vp->v_count - -;
mut ex_exi t (& p->v_| ock);
rw_exit(& nmp_m ->sm _hash_| k) ;
/* start over */

rw_enter (&m ->sm _hash_| k, RW READER);

goto start;

}

mut ex_exi t (& p->v_I| ock);
sn_rnmhash_| ocked(np);
rw_exit(& nmp_m ->sm _hash_| k);

}
sn_i nacti ve(np);

mut ex_ent er (& p->v_| ock);
if (vp->v_count > 1)
vp->v_count - -;
nut ex_exi t (& p->v_| ock);
rw_enter (&m ->sm _hash_| k, RW READER);
goto start;

mut ex_exi t (& p->v_I ock);
vn_i nval i d(vp);
/*

* destroy old | ocks before bzero’'ing and
* recreating the | ocks bel ow

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_subr2.c

391 */

392 snbf s_rw_dest roy(&p->r_rw ock);

393 snbf s_rw_destroy(&p->r_I kserl ock) ;

394 mut ex_dest r oy(&np- >r_st at el ock);

395 cv_destroy(&np->r_cv);

396 /*

397 * Make sure that if snmbnode is recycled then
398 * VFS count is decrenmented properly before
399 * reuse.

400 */

401 VFS_RELE(vp->v_vfsp);

402 vn_reinit(vp);

403 } else {

404

405 * allocate and initialize a new snbnode

406 */

407 vnode_t *new_vp;

409 mut ex_exi t (&nbfreelist_I| ock);

411 np = kmem cache_al | oc(snbnode_cache, KM SLEEP);
412 new vp = vn_al | oc(KM SLEEP) ;

414 atom c_add_l ong((ul ong_t *)&snbnodenew, 1);
415 Vp = new_vp;

416 }

418 /*

419 */AI | ocate and copy the rpath we’'ll need bel ow.

420 *

421 new rpath = knmem al l oc(rplen + 1, KM SLEEP);

422 bcopy(rpath, new rpath, rplen);

423 new rpath[rplen] = '\0";

425 /* Initialize snbnode_t */

426 bzero(np, sizeof (*np));

428 smbfs_rw_init(&wp->r_rw ock, NULL, RWDEFAULT, NULL);
429 smbf s_rw_i nit (& p->r_| kserl ock, NULL, RWDEFAULT, NULL);
430 mut ex_init (&np->r_statel ock, NULL, MJUTEX_DEFAULT, NULL);
431 cv_init(&p->r_cv, NULL, CV_DEFAULT, NULL);

432 /* cv_init(&p->r_commt.c_cv, NULL, CV_DEFAULT, NULL);
434 np- >r_vnode = vp;

435 np->n_nount = m;

437 np->n_fid = SMB_FI D_UNUSED;

438 np->n_uid = m->sm _uid;

439 np->n_gid = m->sm _gid;

440 /* Leave attributes "stale." */

442 #if 0 /* XXX dircache */
*

443

444 * We don’t know if it’s a directory yet.
445 * Let the caller do this? XXX

446 */

447 avl _create(&np->r_dir, conpar, sizeof (rddir_cache),
448 of fsetof (rddir_cache, tree));

449 #endi f

451 /* Now fill in the vnode. */

452 vn_set ops(vp, snbfs_vnodeops);

453 vp->v_data = (caddr_t)np;

454 VFS_HOLD(vfsp);

455 vp->v_vfsp = vfsp;

456 vp->v_type = VNON,

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_subr2.c

458 I*

459 * W& entered with mi->sm _hash_|I k held (reader).
460 * Retake it now, (as the witer).

461 * WIl return with it held.

462 *

463 rw_enter(&m ->sm _hash_|l k, RWWRI TER);

465 /*

466 * There is a race condition where sonmeone el se
467 * may alloc the snbnode while no | ocks are held,
468 * so check again and recover if found.

469 */

470 tnp = sn_hashfind(m, rpath, rplen, &were);

471 if (tnp T= NULL) {

472 I*

473 * Lost the race. Put the node we were building
474 * on the free list and return the one we found.
475 */

476 rw_exit(&m->sm _hash_l k);

477 knmem free(new rpath, rplen + 1);

478 snbf s_addf ree(np);

479 rw_enter(&m ->sm _hash_| k, RW READER);

480 *newnode = 0;

481 return (tnp);

482 }

484 /*

485 * Hash search identifies nodes by the rempte path
486 * (n_rpath) so fill that in now, before |inking
487 * this node into the node cache (AVL tree).

488 */

489 np->n_rpath = new_rpath;

490 np->n_rplen = rplen;

491 np->n_i no = snbfs_get hash(new_rpath, rplen);

493 sn_addhash_I| ocked(np, where);

494 *newnode = 1;

495 return (np);

496 }

498 [*

499 * snbfs_addfree

500 * Put an snbnode on the free list, or destroy it inmmediately
501 * if it offers no value were it to be reclained later.
502 * destroy inmediately when we have too many snbnodes, etc.
503 *

504 * Normally called by snbfs_inactive, but also

505 * called in here during cleanup operations.

506 *

507 * NFS: nfs_subr.c:rp_addfree

508 */

509 void

510 snbfs_addfree(snbnode_t *np)

511 {

512 vnode_t *vp;

513 struct vfs *vfsp;

514 smbmtinfo_t *m;

516 ASSERT(np->r_freef == NULL && np->r_freeb == NULL);
518 vp = SMBTOV(np);

519 ASSERT(vp->v_count >= 1);

521 vfsp = vp->v_vfsp;

522 m = VFTOSM (vfsp);

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_subr2.c

524
525
526
527
528
529
530
531
532
533
534
535
536

538

540
541
542
543
544
545
546
547
548
549
550
551
552,
553
554
555
556

558

560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585

587
588

If there are no nore references to this snmbnode and:
we have too nany snbnodes allocated, or if the node
is no longer accessible via the AVL tree (! RHASHED),
or an i/o error occurred while witing to the file,
or it's part of an unnmobunted FS, then try to destroy
/it instead of putting it on the snbnode freelist.
*
if (np->r_count == 0 &&
(np->r_flags & RHASHED) == 0 ||
(np->r_error !'= 0)
(vfsp->vfs_flag & VFS_UNMOUNTED) | |
(snmbnodenew > nsnbnode))) {

EE N
2

/* Try to destroy this node. */

if (np->r_flags & RHASHED) ({
rw_enter(&m ->sm _hash_| k, RWWRI TER);
mut ex_ent er (& p- >v_I ock) ;
if (vp->v_count > 1) {
vp->v_count - -;
mut ex_exi t (&p->v_| ock);
rw_exit(&m ->sm _hash_l k) ;
return;
/*
* WII get another call later,
* via snbfs_inactive.
*
/

mut ex_exi t (&p->v_| ock);
sn_r mhash_| ocked(np);
rw_exit(&m ->sm _hash_| k);

}
sn_i nactive(np);

/
Recheck the vnode reference count. W need to
make sure that another reference has not been
acquired while we were not holding v_lock. The
snbnode is not in the snbnode "hash" AVL tree, so
the only way for a reference to have been acquired
is for a VOP_PUTPAGE because the snbnode was marked
with RDIRTY or for a nodified page. This vnode
reference may have been acquired before our call
to sn_inactive. The i/o nay have been conpl eted,
thus allowi ng sn_inactive to conplete, but the
reference to the vnode may not have been rel eased
yet. In any case, the snbnode can not be destroyed
until the other references to this vnode have been
rel eased. The other references will take care of
either destroying the snbnode or placing it on the
snbnode freelist. |If there are no other references,
then the snmbnode may be safely destroyed.

/

mut ex_ent er (& p->v_| ock);

if (vp->v_count > 1) {

vp->v_count - -;
mut ex_exi t (&p->v_| ock);
return;

I T T

mut ex_exi t (&p->v_| ock);

sn_dest roy_node(np);
return;

new usr/src/uts/comon/ fs/snbcl nt/snbfs/snbfs_subr2.c

589

591
592
593
594
595
596
597
598
599

601
602
603
604
605
606
607
608

610
611
612
613
614
615
616
617
618
619
620
621
622
623
624

626
627 }
629 /
630
631
632
633
634
635
636

637 static void

* Ok Ok ok Ok Ok * o

* ok % ok k ok * %
—~

Lock the AVL tree and then recheck the reference count

to ensure that no other threads have acquired a reference
to indicate that the snbnode should not be placed on the
freelist. |f another reference has been acquired, then
just release this one and |l et the other thread conplete
the processing of adding this snbnode to the freelist.

rw_enter(&m ->sm _hash_| k, RWWRI TER);

mut ex_ent er (&p->v_| ock);
if (vp->v_count > 1) {

vp->v_count - -;

mut ex_exi t (&p->v_| ock);
rw_exit(&m->sm _hash_l k);
return;

}
mut ex_exi t (& p->v_I ock);

/

*
*

*/

Put this node on the free list.

nmut ex_ent er (&snbfreelist_| ock);
if (smbfreelist == NULL) {

np->r_freef = np;

np->r_freeb = np;

smbfreelist = np;
} else {

np->r_freef = snbfreelist;
np->r_freeb = snbfreelist->r_freeb;
snbfreelist->r_freeb->r_freef = np;
snbfreelist->r_freeb = np;

}
mut ex_exi t (&snbfreelist_| ock);

rw_exit(&m->sm _hash_| k);

Rermove an snbnode fromthe free list.

The cal l er nust be hol ding snbfreelist_|ock and the snbnode
must be on the freelist.

NFS: nfs_subr.c:rp_rnfree

638 sn_rnfree(snbnode_t *np)

639 {

641
642

644
645
646
647
648

650
651

653
654 }

ASSERT(MUTEX_HELD(& nbf reel i st_l ock));
ASSERT(np->r_freef != NULL & np->r_freeb != NULL);

if (np == snbfreelist)

}

np->r_freeb->r_freef

snbfreelist = np->r_freef;
if (np == snbfreelist)
snbfreelist = NULL;

np->r_freef;

np->r_freef->r_freeb = np->r_freeb;

np->r_freef = np->r_freeb = NULL;

10

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_subr2.c 11 new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_subr2.c
721 */
656 /* 722 static snbnode_t *
657 * Put an snbnode in the "hash" AVL tree. 723 sn_hashfi nd(
658 * 724 smbmtinfo_t *m,
659 * The caller nmust be hold the rw ock as witer. 725 const char *rpath,
660 * 726 int rplen,
661 * NFS: nfs_subr.c:rp_addhash 727 avl _i ndex_t *pwhere) /* optional */
662 */ 728 {
663 static void 729 snbf s_node_hdr_t nhdr;
664 sn_addhash_| ocked(snbnode_t *np, avl _index_t where) 730 smbnode_t *np;
665 { 731 vnode_t *vp;
666 smbmtinfo_t *m = np->n_nount;
733 ASSERT(RW_ LOCK_HELD(&ni - >smi _hash_l k));
668 ASSERT(RW WRI TE_HELD(&ni - >smi _hash_I k)) ;
669 ASSERT(! (np->r_flags & RHASHED)) ; 735 bzer o(&nhdr, sizeof (nhdr));
736 nhdr. hdr_n_rpath = (char *)rpath;
671 avl _insert(&m ->sm _hash_avl, np, where); 737 nhdr. hdr_n_rplen = rplen;
673 mut ex_ent er (&p- >r _st at el ock) ; 739 /* See snbfs_node_cnp bel ow. */
674 np->r_flags | = RHASHED; 740 np = avl _find(&m ->sm _hash_avl, &nhdr, pwhere);
675 mut ex_exi t (&p->r_st at el ock) ;
676 } 742 if (np == NULL)
743 return (NULL);
678 /[*
679 * Renmpve an snbnode fromthe "hash" AVL tree. 745 /*
680 * 746 * Found it in the "hash" AVL tree.
681 * The caller must hold the rwock as witer. 747 * Renpve fromfree list, if necessary.
682 * 748 */
683 * NFS: nfs_subr.c:rp_rmhash_| ocked 749 vp = SMBTOV(np);
684 */ 750 if (np->r_freef !'= NULL)
685 static void 751 mut ex_ent er (&nbfreel i st_| ock);
686 sn_rnhash_| ocked(snbnode_t *np) 752 /*
687 { 753 * |f the snbnode is on the freelist,
688 smbmtinfo_t *m = np->n_nount; 754 * then renpve it and use that reference
755 * as the new reference. O herw se,
690 ASSERT(RW VRl TE_HELD(& - >sm _hash_l k)) ; 756 * need to increment the reference count.
691 ASSERT(np->r _flags & RHASHED); 757 *
758 if (np->r_freef != NULL) {
693 avl _renove(& ->snmi _hash_avl, np); 759 sn_rnfree(np);
760 mut ex_exit (&nbfreelist_l ock);
695 mut ex_ent er (&np- >r _st at el ock) ; 761 } else {
696 np->r_fl ags &= ~RHASHED; 762 nut ex_exi t (&snbfreelist_|ock);
697 mut ex_exi t (&p- >r_st at el ock) ; 763 VN_HOLD(vp) ;
698 } 764
765 } else
700 /* 766 VN_HOLD(vp) ;
701 * Renmpve an snbnode fromthe "hash" AVL tree.
702 * 768 return (np);
703 * The caller nmust not be holding the rw ock. 769 }
704 */
705 void 771 static int
706 snbfs_rmhash(snbnode_t *np) 772 snbfs_node_cnp(const void *va, const void *vb)
707 { 773 {
708 smbmtinfo_t *m = np->n_nount; 774 const snmbfs_node_hdr_t *a = va;
775 const snmbfs_node_hdr_t *b = vb;
710 rw_enter(&m ->sm _hash_| k, RWWRI TER); 776 int clen, diff;
711 sn_rmhash_| ocked(np);
712 rw_exit(&m ->sm _hash_| k); 778 /*
713 } 779 * Sane semantics as strcnp, but does not
780 * assune the strings are null terninated.
715 | * 781 */
716 * Lookup an snbnode by renote pathnane 782 clen = (a->hdr_n_rplen < b->hdr_n_rplen) ?
717 * 783 a->hdr_n_rplen : b->hdr_n_rplen;
718 * The caller nust be holding the AVL rw ock, either shared or exclusive. 784 di ff = strncnp(a->hdr_n_rpath, b->hdr_n_rpath, clen);
719 * 785 if (diff < 0)
720 * NFS: nfs_subr.c:rfind 786 return (-1);

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_subr2.c

787 if (diff > 0)

788 return (1);

789 /* they match through clen */
790 if (b->hdr_n_rplen > clen)
791 return (-1);

792 if (a->hdr_n_rplen > clen)
793 return (1);

794 return (0);

795 }

797 |*

798 * Setup the "hash" AVL tree used for our node cache.
799 * See: snbfs_mount, snbfs_destroy_table.

*

/

800

801 void

802 snbfs_init_hash_avl (avl _tree_t *avl)

803 {

804 avl _create(avl, snbfs_node_cnp, sizeof (snbnode_t),

805 of f set of (snbnode_t, r_avl _node));

806 }

808 /*

809 * Invalidate the cached attributes for all nodes "under" the
810 * passed-in node. Note: the passed-in node is NOT affected by
811 * this call. This is used both for files under sone directory
812 * after the directory is deleted or renaned, and for extended
813 * attribute files (naned streans) under a plain file after that
814 * file is renamed or del eted.

815 *

816 * Do this by wal king the AVL tree starting at the passed in node,
817 * and continuing while the visited nodes have a path prefix matching
818 * the entire path of the passed-in node, and a separator just after
819 * that matching path prefix. Watch out for cases where the AVL tree
820 * order may not exactly match the order of an FS walk, i.e.

821 * consider this sequence:

822 * "foo" (directory)

823 * "foo bar" (name containing a space)

824 * "f ool bar"

825 * The wal k needs to skip "foo bar" and keep going until it finds
826 * sonmething that doesn’t natch the "foo" nane prefix.

827 *

828 void

829 snbfs_attrcache_prune(snbnode_t *top_np)

830 {

831 smbmtinfo_t *m;

832 snbnode_t *np;

833 char *rpath;

834 int rplen;

836 m = top_np->n_nount;

837 rw_enter (& ->sm _hash_| k, RW READER);

839 np = top_np;

840 rpath = top_np->n_rpath;

841 rplen = top_np->n_rplen;

842 for (;;) {

843 np = avl _wal k(&m ->sm _hash_avl, np, AVL_AFTER);
844 if (np == NULL)

845 br eak;

846 if (np->n_rplen < rplen)

847 break;

848 if (0 != strncnp(np->n_rpath, rpath, rplen))

849 br eak;

850 if (np->n_rplen > rplen && (

851 np->n_rpath[rplen] == ":" ||

852 np->n_rpath[rplen] == 'i\’))

13

new usr/src/uts/comon/ fs/snbcl nt/snbfs/snbfs_subr2.c

853 snbfs_attrcache_renmove(np);
854 1

856 rw_exit(&m->sm _hash_l k);

857 }

859 #ifdef SMB_VNCODE_DEBUG

860 int snbfs_check_tabl e_debug =
861 #el se /* SMB_VNODE_DEBUG */
862 int snbfs_check_tabl e_debug = O;
863 #endi f /* SMB_VNODE_DEBUG */

1
=

866 /*

867 * Return 1 if there is a active vnode belonging to this vfs in the
868 * snbnode cache.

869 *

870 * Several of these checks are done without holding the usual

871 * locks. This is safe because destroy_snbtabl e(), snbfs_addfree(),
872 * etc. will redo the necessary checks before actually destroying
873 * any snbnodes.

874 *

875 * NFS: nfs_subr.c:check_rtable

876 *

877 * Debuggi ng changes here relative to NFS.

878 * Relatively harnmless, so left "emin.

879 */

880 int

881 {snbfs_check_t abl e(struct vfs *vfsp, snbnode_t *rtnp)

882

883 smbmtinfo_t *m;

884 snbnode_t *np;

885 vnode_t *vp;

886 int busycnt = 0;

888 m = VFTOSM (vfsp);

889 rw_enter (& ->sm _hash_| k, RW READER);

890 for (np = avl _first(&m ->sm _hash_avl); np != NULL;

891 np = avl _wal k(&m ->smi _hash_avl, np, AVL_AFTER)) {

893 if (np == rtnp)

894 continue; /* skip the root */

895 vp = SMBTOV(np);

897 /* Now t he ’busy’ checks: */

898 /* Not on the free list? */

899 if (np->r_freef == NULL)

900 SMBVDEBUG "!'r _freef: node=0x%p, rpath=%\n",
901 (void *)np, np->n_rpath);

902 busycnt ++;

903 }

905 /* Has dirty pages? */

906 if (vn_has_cached_data(vp) &&

907 (np->r_flags & RDI RTY))

908 SMBVDEBUG "is dirty: node=0x%p, rpath=%\n",
909 (void *)np, np->n_rpath);

910 busycnt ++;

911 }

913 /* Other refs? (not reflected in v_count) */

914 if (np->r_count > 0)

915 SMBVDEBUG(" +r _count: node=0x%p, rpat h=%\n",
916 (void *)np, np->n_rpath);

917 busycnt ++;

918 }

14

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_subr2.c

920
921

923
924

926
927

929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950

952
953
954

956
957
958

960
961
962
963
964
965
966
967
968
969
970
971
972
973
974

976
977
978
979
980
981
982
983

if (busycnt && !snbfs_check_tabl e_debug)
br eak;

}
rw_exit(&m->sm _hash_Il k);

return (busycnt);

}
/*
* Destroy inactive vnodes fromthe AVL tree which belong to this
* vfs. It is essential that we destroy all inactive vnodes during a
* forced unnount as well as during a normal unnount.
*
* NFS: nfs_subr.c:destroy_rtable
*
* In here, we're nornally destrying all or nost of the AVL tree,
* so the natural choice is to use avl_destroy_nodes. However,
* there may be a few busy nodes that should remain in the AVL
* tree when we’'re done. The solution: use a tenporary tree to
* hold the busy nodes until we're done destroying the old tree,
* then copy the tenporary tree over the (now entpy) real tree.
*/
voi d
snbfs_destroy_tabl e(struct vfs *vfsp)
{
avl _tree_t tnp_avl;
smbmmtinfo_t *mi;
snbnode_t *np;
smbnode_t *rlist;
void *v;
m = VFTOSM (vfsp);
rlist = NULL;
snbf s_i nit _hash_avl (& np_avl);
rw_enter (& ->sm _hash_| k, RWWR TER);
Vv = NULL;
while ((np = avl _destroy_nodes(&m ->sm _hash_avl, &v)) != NULL) {

mut ex_ent er (&snbfreelist_| ock);
if (np->r_freef == NULL) {
/*

* Busy node (not on the free list).

* WII keep in the final AVL tree.
*

/
mut ex_exit (&snbfreelist_l ock);

avl _add(& np_avl,
} else {/

np);

* It'’s on the free list. Renpve and
* arrange for it to be destroyed.
*/

sn_rnfree(np);

mut ex_exit (&snbfreelist_| ock);

/*

* Last part of sn_rmhash_| ocked().
* NB: avl _destroy_nodes has al ready
* renoved this fromthe "hash" AVL.
*/

nut ex_ent er (&np- >r _st at el ock);
np->r_fl ags &= ~RHASHED;

nut ex_exi t (&p->r _st at el ock) ;

15

new usr/src/ uts/ comon/fs/snbcl nt/snbf s/ snbfs_subr2.c 16
985 /*
986 * Add to the list of nodes to destroy.

987 * Borrowing avl_child[0] for this list.
988 *

989 np->r_avl _node. avl _child[0] =

990 (struct avl_node *)rlist;

991 rlist = np;

992 }

993

994 avl _destroy(&m ->sni _hash_avl);

996 /*

997 * Repl ace the (now destroyed) "hash" AVL with the

998 * tenporary AVL, which restores the busy nodes.

999 */

1000 m ->sm _hash_avl = tnp_avl;

1001 rw_exit (&ni->smi _hash_TKk);

1003 /*

1004 * Now destroy the nodes on our tenporary list (rlist).
1005 * This call to snbfs_addfree will end up destroying the
1006 * snbnode, but in a safe way with the appropriate set
1007 * of checks done.

1008 */

1009 while ((np =rli st) I'= NULL) {

1010 rlist = (snbnode_t *)np->r_avl _node. avl _child[0];
1011 snmbf s_addf ree(np);

1012 }

1013 }

1015 /*

1016 * This routine destroys all the resources associated with the snbnode
1017 * and then the snbnode itself. Note: sn_inactive has been call ed.
1018 *

1019 * NFS: nfs_subr.c:destroy_rnode

1020

1021 static void

1022 sn_destroy_node(snbnode_t *np)

1023 {

1024 vnode_t *vp;

1025 vis_t *vfsp;

1027 vp = SMBTOV(np);

1028 vfsp = vp->v_vfsp;

1030 ASSERT(vp->v_count == 1);

1031 ASSERT(np- >r _count == 0)

1032 ASSERT(np->r _mapcnt ==

1033 ASSERT(np- >r secattr vsa acI entp == NULL);

1034 ASSERT(np->r_cred == NULL);

1035 ASSERT(np- >n_r path == NULL);

1036 ASSERT(! (np->r _f1 ags & RHASHED)) ;

1037 ASSERT(np->r _freef == NULL && np->r_freeb == NULL);
1038 atom c_add_|l ong((ul ong_t *)&snbnodenew, -1);

1039 vn_inval i d(vp);

1040 vn_free(vp);

1041 kmem cache free(srrbnode cache, np);

1042 VFS_RELE(vfsp);

1043 }

1045 /*

1046 * Flush all vnodes in this (or every) vfs.

1047 * Used by nfs_sync and by nfs_unnmount.

1048 */

1049 /* ARGSUSED*/

1050 void

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_subr2.c

1051

1053
1054
1055

1057
1059
1061

1063
1064
1065

1067
1068
1069
1070
1071
1072

1074
1075
1076
1077
1078
1079
1080
1081

1083
1084
1085
1086
1087

1089
180

snbfs_rflush(struct vfs *vfsp, cred_t *cr) {
smbmtinfo_t *m;
snbnode_t *np;
vnode_t *vp;
long num cnt;
vnode_t **vplist;

m = VFTOSM (vfsp);

cnt = 0;
num = m - >sm _hash_avl . avl _numodes;
vplist = knem all oc(num* sizeof (vnode_t*), KM SLEEP);

rw_enter (& ->smi _hash_| k, RW READER);
for (np = avl _first(&nm ->sni _hash avl) np != NULL;
np = avl _wal k(&ni - >sm _hash__ avl np, AVL AFTER)) {

vp = SMBTOV(np);
if (vn_is readonl y(vp))
conti nue;

if (vn_has cached _data(vp) && (np->r_flags & RDIRTY ||
VN_HOLDY v
vpli st[cnt ++] = vp;
if (cnt == num
br eak;

}
rw_exit(&nm->sm _hash_| k);
while (cnt-- > 0) {

vp = vplist[cnt];

(void) VOP_PUTPAGE(vp, O, O, O, cr, NULL);
VN_RELE(vp) ;

kmem free(vplist, num?* sizeof (vnode_t*));
snbfs_rflush(struct vfs *vfsp, cred_t *cr)

/* Todo: mmap support. */

__unchanged_portion_onitted_

np->r

17

_mapcnt > 0)

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

R R R R

93502 Fri Jul 20 12:37:51 2012
new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbf s_vnops. ¢
% NO COMVENTS *

R R R R R

1/*

2 * Copyright (c) 2000-2001 Boris Popov

3 * Al rights reserved.

4 *

5 * Redistribution and use in source and binary forms, with or w thout

6 * nodification, are pernitted provided that the follow ng conditions

7 * are net:

8 * 1. Redistributions of source code nust retain the above copyright

9 * notice, this list of conditions and the follow ng disclainer.

10 * 2. Redistributions in binary formnust reproduce the above copyright

11~ notice, this list of conditions and the follow ng disclainmer in the
12 * docunentation and/or other materials provided with the distribution.

13 * 3. Al advertising materials nentioning features or use of this software
14 = must di splay the foll ow ng acknow edgenent:

15 * Thi s product includes software devel oped by Boris Popov.

16 * 4. Neither the name of the author nor the names of any co-contributors

17 = may be used to endorse or pronote products derived fromthis software
18 * Wi t hout specific prior witten perm ssion.

19 =

20 * THI'S SOFTWARE | S PROVI DED BY THE AUTHOR AND CONTRIBUTCRS ‘*AS IS’ AND

21 * ANY EXPRESS OR | MPLI ED WARRANTI ES, | NCLUDI NG, BUT NOT LIM TED TO, THE

22 * | MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE
23 * ARE DI SCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRI BUTORS BE LI ABLE
24 * FOR ANY DI RECT, | NDI RECT, | NCI DENTAL, SPECI AL, EXEMPLARY, OR CONSEQUENTI AL
25 * DAMAGES (I NCLUDING BUT NOT LIM TED TO, PROCUREMENT OF SUBSTI TUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI NESS | NTERRUPTI ON)

27 * HOWEVER CAUSED AND ON ANY THEORY OF LI ABILITY, WHETHER I N CONTRACT, STRICT
28 * LIABILITY, OR TORT (I NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SI NG I N ANY WAY
29 * QUT OF THE USE OF THI S SOFTWARE, EVEN |F ADVI SED OF THE PGSSI BI LI TY OF
30 * SUCH DAMAGE.
31 *
32 */$I d: snbfs_vnops.c,v 1.128.36.1 2005/05/27 02:35:28 |indak Exp $
33 *

35 /*

39 #include <sys/systm h>

40 #include <sys/cred. h>

41 #i ncl ude <sys/vnode. h>

42 #include <sys/vfs.h>

43 #include <sys/filio.h>

44 #incl ude <sys/uio. h>

45 #incl ude <sys/dirent. h>

46 #incl ude <sys/errno. h>

47 #incl ude <sys/sunddi . h>

48 #include <sys/sysnacros. h>
49 #include <sys/kmem h>

50 #include <sys/cm_err. h>
51 #include <sys/vfs_opreg. h>
52 #include <sys/policy.h>

54 #incl ude <sys/param h>
55 #i nclude <sys/vm h>

56 #i nclude <vni seg_vn. h>
57 #include <vnl pvn. h>

58 #include <vnias. h>

59 #include <vni hat.h>

60 #i nclude <vnl page. h>
61 #i nclude <vniseg. h>

36 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. Al rights reserved.
*/

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

62
63
64

115

119
120
121
122
123
124
125
126
127

#i ncl ude <vm seg_nap. h>
#i ncl ude <vm seg_knem h>
#i ncl ude <vm seg_kpm h>

#endif /* ! codereview */

#i ncl ude <net snb/ snb_osdep. h>
#i ncl ude <net snb/ snb. h>

#i ncl ude <net snb/ snb_conn. h>
#i ncl ude <netsnb/snb_subr. h>

#i ncl ude <snbfs/snbfs. h>
#i ncl ude <snbfs/snbfs_node. h>
#i ncl ude <snbfs/snbfs_subr. h>

#i ncl ude <sys/fs/snbfs_ioctl.h>
#i nclude <fs/fs_subr.h>

/*
* W assign directory offsets |ike the NFS client, where the
* offset increnents by _one_ after each directory entry.
* Further, the entries "." and ".." are always at offsets
* zero and one (respectively) and the "real" entries from
* the server appear at offsets starting with two. This
* macro is used to initialize the n_dirofs field after
* setting n_dirseq with a _findopen call.
*/
#def i ne FI RST_DI ROFS 2
/*
These characters are illegal in NTFS file nanes.

ref: http://support. mcrosoft.com kb/ 147438

*

*

*

* Careful! The check in the XATTR case skips the
* first character to allow colon in XATTR nanes.
S
st

atic const char illegal _chars[] = {
/* colon - keep this first! */
A\ [* back slash */
N, /* slash */
Qo /* asterisk */
T, /* question mark */
/* doubl e quote */
< /* less than sign */
TS /* greater than sign */
N /* vertical bar */
0
§i5
/*
* Turning this on causes nodes to be created in the cache
* during directory listings, normally avoiding a second
* XWattribute fetch just after a readdir.
*
int snbfs_fastlookup = 1;
/* local static function defines */

static int snbf sl ookup_cache(vnode_t *, char *, int, vnode_t **,
cred_t *);

static int snbf sl ookup(vnode_t *dvp, char *nm vnode_t **vpp, cred_t *cr,
int cache_ok, caller_context_t *);

static int snbf srenane(vnode_t *odvp, char *onm vnode_t *ndvp, char *nnm
cred_t *cr, caller_context_t *);

static int snbf ssetattr(vnode_t *, struct vattr *, int, cred_t *);

static int snbf s_accessx(void *, int, cred_t *);

static int snbf s_readvdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

128 caller_context_t *);

129 static void smbfs_rele_fid(smbnode_t *, struct smb_cred *);

131 /*

132 * These are the vnode ops routines which inplenment the vnode interface to
133 * the networked file system These routines just take their paraneters,

134 * npeke them | ook networkish by putting the right info into interface structs,
135 * and then calling the appropriate renmpote routine(s) to do the work.

136 *

137 * Note on directory nanme | ookup cacheing: |If we detect a stale fhandl e,

138 * we purge the directory cache relative to that vnode. This way, the

139 * user won't get burned by the cache repeatedly. See <snbfs/snbnode. h> for
140 * nore details on snmbnode | ocking.

141 */

143 static int snbf s_open(vnode_t **, int, cred_t *, caller_context_t *);
144 static int smbfs_cl ose(vnode_t *, int, int, offset_t, cred_t *,

145 cal l er_context_t *);

146 static int snbf s_read(vnode_t *, struct uio *, int, cred_t *,

147 call er_context_t *);

148 static int snmbfs_wite(vnode_t *, struct uio *, int, cred_t *,

149 call er_context_t *);

150 static int smbfs_ioctl (vnode_t *, int, intptr_t, int, cred_t *, int *,
151 call er_context_t *);

152 static int smbfs_getattr(vnode_t *, struct vattr *, int, cred_t *,

153 cal ler_context_t *);

154 static int snbfs_setattr(vnode_t *, struct vattr *, int, cred_t *,

155 caller_context_t *);

156 static int snbfs_access(vnode_t *, int, int, cred_t *, caller_context_t *);
157 static int snbfs_fsync(vnode_t *, int, cred_t *, caller_context_t *);
158 static void snbf s_i nacti ve(vnode_t *, ed_t *, caller_context_t *);

159 static int snbf s_| ookup(vnode_t *, char *, vnode_t ** struct pathnarre *,
160 int, vnode t *, cred_t *, caller_context_t *,

161 int *, pathnane_t *);

162 static int snbfs_create(vnode_t *, char *, struct vattr *, enum vcexcl,
163 int, vnode_t **, cred_t *, int, caller_context_t *,
164 vsecattr_t *);

165 static int snbfs_renove(vnode_t *, char *, cred_t *, caller_context_t *,
166 int);

167 static int snbf s renane(vnodet *, char *, vnode_t *, char *, cred_t *,
168 caller_context_t *, int);

169 static int snmbfs_nkdir(vnode_t *, char *, struct vattr *, vnode_t **,
170 cred_t *, caller_context_t *, int, vsecattr_t *);
171 static int snbf s_rndir(vnode_t *, char *, vnode_t *, cred_t *,

172 caller_context_t *, int);

173 static int snbfs_readdir(vnode_t *, struct uio *, cred_t *, int *,

174 caller_context_t *, int);

175 static int snbf s_rw ock(vnode_t *, int, caller_context_t *);

176 static void smbf s_rwunl ock(vnode_t *, int, caller_context_t *);

177 static int snbfs_seek(vnode_t *, offset_t, offset_t *, caller_context_t *);
178 static int smbfs_frlock(vnode_t *, int, struct flock64 *, int, offset_t,
179 struct flk_callback *, cred_t *, caller_context_t *);
180 static int snbf s_space(vnode_t *, int, struct flock64 *, int, offset_t,
181 cred_t *, caller_context_t *);

182 static int snmbf s_pat hconf (vnode_t *, int, ulong_t *, cred_t *,

183 cal l er_context_t *);

184 static int snbf s_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *,

185 call er_context _t *);

186 static int snbfs_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *,

187 cal l er_context_t *);

188 static int snbf s_shrl ock(vnode_t *, int, struct shrlock *, int, cred_t *,
189 call er_context _t *);

191 static int uio_page_mapin(uio_t *uiop, page_t *pp);

193 static void ui o_page_napout (ui o_t *uiop, page_t *pp);

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢ 4
195 static int snbfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
196 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
197 caller_context_t *ct);

199 static int snbfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
200 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
201 caller_context_t *ct);

203 static int snbfs_del map(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
204 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
205 cal l er_context _t *ct);

207 static int snbfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags,
208 cred_t *cr, caller_context_t *ct);

210 static int snbfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *len
211 int flags, cred_t *cr);

213 static int snbfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
214 page_t *pl[], size_t plsz, struct seg *seg, caddr _t addr,

215 enumseg rwrw, cred_t *cr, caller_context_t *ct);

217 static int snrbfs _get apage(vnode_ *vp, u_offset_t off, size_t len,

218 uint_t *protp, page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
219 enum seg_rw rw, cred_t *cr);

223 #endif /* | codereview */

224 |/* Dummy function to use until correct function is ported in */

225 int noop_vnodeop() {

226 return (0);

227 }

229 struct vnodeops *snbfs_vnodeops = NULL;

231 [*

232 * Most uninplemented ops will return ENOSYS because of fs_nosys().

233 * The only ops where that won't work are ACCESS (due to open(2)

234 * failures) and ... (anything else left?)

235 */

236 const fs_operation_def_t snbfs_vnodeops_tenplate[] = {

237 VOPNAME_OPEN, .vop_open = snbfs_open } },

238 VOPNAME_CLCSE, .vop_close = snbfs_close } },

239 VOPNAME_READ, .vop_read = snbfs_read } },

240 VOPNAME_V\RI TE, .vop_wite = snbfs_wite } },

241 VOPNAME_| OCTL, .vop_ioctl = snbfs_ioctl } },

242 VOPNAME_GETATTR, .vop_getattr = snbfs_getattr } },

243 VOPNAME_SETATTR, .vop_setattr = snbfs_setattr } },

244 VOPNAME_ACCESS, .vop_access = snbfs_access } },

245 VOPNAME_ L OOKUP, .vop_| ookup = snbfs_| ookup } },

246 VOPNAME_CREATE, .vop_create = snbfs_create } },

247 VOPNAME_REMOVE, .vop_renove = snbfs_renove } },

248 VOPNAME_LI NK, .error = fs_nosys } }, /* snbfs_link, */
249 VOPNAME_RENAME, .vop_renane = snbfs_rename } },

250 VOPNAMVE_MKDI R, .vop_nkdir = snbfs_nkdir } },

251 VOPNAME_RMDI R, .vop_rndir = snbfs_rmdir } },

252 VOPNAME_READDI R, .vop_readdir = snbfs_readdir } },

253 VOPNAME_SYMLI NK, .error = fs_nosys } }, /* snbfs_symink, */
254 VOPNAME_READLI NK, .error = fs_nosys } }, /* snbfs_readlink, */
255 VOPNAME_FSYNC, .vop_fsync = snbfs_fsync } },

256 VOPNAME_| NACTI VE, .vop_i nactive = snbfs inactive } },

257 VOPNAME_FI D, .error = fs _nosys } }, /* snbfs_fid, */

258 VOPNAME_RW.OCK, .vop_ rvw ock = smbfs_rw ock } 1

259 VOPNAME_ RWUNL OCK, .vop_rwunl ock = snbfs_rwunl ock } },

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢ 5

260
261
262
263
264
265
266
267
268

277 }

VOPNAME_SEEK, .vop_seek = snbfs seek } },

VOPNAME_FRLOCK, .vop_frlock = snbfs_frlock } },
VOPNAME_SPACE, .vop_space = snbfs_space } },

VOPNAME_REAL VP, .error = fs_nosys } }, /* snbfs_realvp, */

VOPNAME_GETPAGE, .vop_get page = snbfs_getpage } }, /* snbfs_get
VOPNAME_PUTPAGE, . vop_put page = snbf s_put page } }, /* snbfs_put
VOPNAME_ VAP, .vop_map = snbfs_map } }, /* snbfs_map, */

VOPNAME_ADDNVAP, .vop_addmap = snbfs_addmap } }, /* snbfs_addma
VOPNAME_DEL VAP, .vop_del map = snbfs_delmap } }, /* snbfs_delm

VOPNAMVE_DI SPOSE,

= .vop_di spose = fs_dispose}},
VOPNAME_GETPAGE,

.error = fs_nosys } }, /* snbfs_getpage, */

VOPNAME_PUTPAGE, .error = fs_nosys } }, /* snbfs_putpage, */
VOPNAME_MAP, .error = fs_nosys } }, /* snbfs_map, */
VOPNAME_ADDVAP, .error = fs_nosys } }, /* snbfs_addmap, */
VOPNAME_DEL VAP, .error = fs_nosys } }, /* snbfs_del map, */
VOPNAME_DUMP, .error = fs _nosys } }, /* snbfs_dunmp, */
VOPNAME_ PATHCONF, .vop_ pat hconf = snbfs_pathconf } },

VOPNAME_PAGEI O
VOPNAME_SETSECATTR,
VOPNAME_GETSECATTR,
VOPNAME_SHRL COCK,
NULL, NULL }

.error = fs_nosys } }, /* snbfs_pageio, */
.vop_ setsecattr = srrbfs_setsecattr } 1
.vop_getsecattr = snbfs_getsecattr } },
.vop_shrlock = snbfs_shrliock } },

_hnchanged_port ion_omtted_

462 | * ARGSUSED* /
463 static int
464 snbfs_cl ose(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,

465
466 {
467
468
469

471
472

474
475
476
477

479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502

cal ler_context_t *ct)

smbnode_t *np;
smbmti nfo_t *sm ;
struct snb_cred scred;

np = VIOSMB(vp);
sm = VIOSM (vp);

/*
* Don't "bail out" for VFS_UNMOUNTED here,
* as we want to do cleanup, etc.

*/

/*

* zone_enter(2) prevents processes from changi ng zones with SMBFS files
* open; if we happen to get here fromthe wong zone we can’t do

* anything over the wre.

*/

if (sm->sm_zone_ref.zref_zone != curproc->p_zone) {
/*

We could attenpt to clean up | ocks, except we're sure

that the current process didn’'t acquire any |ocks on

the file: any attenpt to lock a file belong to another zone
will fail, and one can’'t lock an SMBFS file and then change
zones, as that fails too.

*
*
*
*
*
*
* Returning an error here is the sane thing to do. A
* subsequent call to VN _RELE() which translates to a
* snbfs_inactive() will clean up state: if the zone of the
* vnode’s originis still alive and kicking, an async worker
* thread will handle the request (fromthe correct zone), and
* everything (mnus the final snbfs_getattr_otw() call) should
* be OK. |If the zone is going away snbfs_async_inactive() wll
* throw away cached pages inline.
*
/

return (EIO;

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢ 6
504 I*

505 * |f we are using local locking for this filesystem then

506 * release all of the SYSV style record | ocks. Qherw se,

507 * we are doing network |ocking and we need to rel ease all

508 * of the network locks. Al of the locks held by this

509 * process on this file are released no matter what the

510 * 1ncom ng reference count is.

511 */

512 if (sm->sm_flags & SM _LLOCK) {

513 pid_t pid = ddi _get_pid();

514 cl eanl ocks(vp, pid, 0);

515 cl eanshares(vp, pi d)

516 }

518 /*

519 * This (passed in) count is the ref. count fromthe

520 * user’'s file_t before the closef call (fio.c).

521 * We only care when the reference goes away.

522 */

523 if (count > 1)

524 return (0);

526 /*

527 * Decrement the reference count for the FID

528 * and possibly do the O Wcl ose.

529 *

530 * Exclusive lock for nmodifying n_fid stuff.

531 * Don't want this one ever interruptible.

532 */

533 (void) snbfs_rw enter_sig(&p->r_I| kserlock, RWWRI TER, 0);

534 smb_credinit(&scred, cr);

536 I

537 * |If FIDref. count is 1 and count of nmmaped pages isn't O,

538 * we won't call snbfs_rele f|d() because it will result in the otWclo
539 * The count of mapped pages isn't 0, which nmeans the mapped pages

540 * possibly will be accessed after cl ose(), we should keep the FID valid
541 * |1.e., dont do the otWcl ose.

542 * Dont worry that FID will be |eaked, because when the

543 * vnode’s count beconmes 0, snbfs |nact|ve() will

544 * help us release FID and eventual |y do the otWcl ose.

545 */

546 if (np->n_fidrefs > 1) {

547 snbfs_rel e_fid(np, &scred);

548 } else if (np->r_mapcnt == 0) {

549 1=

550 * Before otWclose, nake sure dirty pages witten back.

Bl *

552 if ((flag & FWRITE) && vn_has_cached_data(vp)) {

553 /* snbfs_putapage() will acquire shared | ock, so rel ease
554 * exclusive lock tenporally.

555 */

556 snbfs_rw_exit (&np->r_| kserl ock);

558 (voi d) snbfs_putpage(vp, (offset_t) O, O, B_INVAL | B_AS
560 /* acquire exclusive |ock again. */

561 (void) snbfs_rw enter_sig(&p->r_| kserlock, RWWRI TER 0
562 }

563 #endif /* | codereview */

564 snbfs_rele_fid(np, &scred);

565 }

566 #endif /* ! codereview */

568

snb_credrel e(&scred);

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

569

571
572

574
575
576
577
578
579
580
581

583
584
585
586
587

589
590

592
593

595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612

614
615
616
617
618
619
620
621
622
623
624
625
626

628
629
630
631
632
633
634

*
*
*
*
*

*/

snmbf s_rw_exi t (&p->r_| kser| ock);

return (0);

Hel per for snbfs_close. Decrenent the reference count
for an SMB-level file or directory ID, and when the |ast
reference for the fid goes away, do the O Wcl ose.

Al'so called in snbfs_inactive (defensive cleanup).

static void
snbfs_rel e_fid(snbnode_t *np, struct smb_cred *scred)
582 {

snb_share_t *ssp;
cred_t *ol dcr;
struct snmbfs_fctx *fctx;
int error;

uint16_t ofid;

ssp = np->n_nount->sm _share;
error = 0;

/* Make sure we serialize for n_dirseq use. */
ASSERT(snmbf s_rw_| ock_hel d(&p->r _| kserl ock, RWWRI TER));

/*

* Note that vp->v_type may change if a renote node
* is deleted and recreated as a different type, and
* our getattr may change v_type accordingly.

* Now use n_ovtype to keep track of the v_type

* we had during open (see conments above).

*

/

switch (np >n_ovtype) {

case VDI R
ASSERT(np >n_dirrefs > 0);
if (--np->n_dirrefs)
return;
if ((fetx = np—>n_dirseq) I'= NULL) {
np->n_di rseq = NULL;
np->n_dirofs = 0;
error = snbfs_snb_findclose(fctx, scred);
}
br eak;
case VREG
ASSERT(np->n_fidrefs > 0);
if (--np->n_fidrefs)
return;
if ((ofid = np->n_fid) !'= SMB_FI D UNUSED) {
np->n_fid = SMB_FI D_UNUSED,
/* After reconnect, n_fid is invalid */
if (np->n_vcgenid == ssp->ss_vcgenid) {
error = snbfs_snb_cl ose(
ssp, ofid, NULL, scred);
}
}
br eak;
defaul t:

SMBVDEBUG "bad n_ovtype %\ n", np->n_ovtype);
br eak;

}
i1f (error) {
SMBVDEBUG("error %l cl osi ng %\ n"
error, np->n_rpath);

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

635

637
638

640
641
642
643
644
645
646
647
648
649
650
651

653
654
655
656
657
658
659
660
661
662
663
664
665

667
668
669

671
672

674
675

677

679
680

682
683

685
686
687
688
689
690
691
692

694
695
696
697

699

}

/*

}

/* Al ow next open to use any v_type. */
np->n_ovtype = VNO\;

/*
* Qther "last close" stuff.
*
/
nmut ex_ent er (&np->r _st at el ock) ;
if (np->n_flag & NATTRCHANGED)
snbf s_attrcache_rm | ocked(np);
ol dcr = np->r_cred;
np->r_cred = NULL;
mut ex_exi t (&p->r _st at el ock) ;
if (older != NULL)
crfree(ol dcr);

ARGSUSED */

static int
snbfs_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t

{

cal | er_context_t *ct)

struct snb_cred scred;
struct vattr va;
snmbnode_t *np;
smbmt i nf o_t *smi;
snb_share_t *ssp

of fset _t endof f ;
ssize_t past _eof;
int error;

np = VTOSMB(vp) ;
VTOSM (vp)
sm ->sm _share;

ssp

if (curproc->p_zone != sm->sm _zone_ref.zref_zone)
return (EIO;

if (sm->sm_flags & SM_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)

return (EIO;

ASSERT(snbfs_rw_| ock_hel d(&np->r_rw ock, RW READER));

if (vp->v_type != VREG
return (EISDIR);

if (uiop->uio_resid == 0)
return (0);

/*

* Like NFS3, just check for 63-bit overflow.
* Qur SMB | ayer takes care to return EFBI G
*/v\hen it has to fallback to a 32-bit call.
*

endof f = ui op->ui o_| of fset + ui op->uio_resid;
if (uiop->uio_loffset < 0 || endoff < 0)

return (EINVAL);

/* get vnode attributes from server */

va.va_mask = AT_SIZE | AT_MII MVE;

if (error = snbfsgetattr(vp, &va, cr))
return (error);

/* Update ntime with ntime fromserver here? */

*cr,

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

701
702
703

705
706
707
708
709
710
711
712
713
714

716
717
718
719

721
722
723
724
725
726

728
729

731
732

734
735

738
739
740
741
742
743
744
745
746
747
748
749
750

752
753
754

756
757

759
760

764
765

/* if offset is beyond EOF, read nothing */
if (uiop->uio_loffset >= va.va_size)
return (0);

/*

* Limt the read to the remaining file size.

* Do this by tenmporarily reducing uio_resid

* by the anpunt the |ies beyoned the ECF.

*

if (endoff > va.va_size)
past _eof = (ssize_t)(endoff - va.va_size);
ui op->ui o_resid -= past_eof;

} else
past_eof = 0;

/* Shared lock for n_fid use in snb_rwio */

if (snbfs_rw enter_sig(&p->r_| kserTock, RW READER, SMBINTR(vp)))
return (EINTR);

snb_credinit(&scred, cr);

/* After reconnect, n_fid is invalid */
if (np->n_vcgenid = Ssp->ss_vcgeni d)
error = ESTALE;
el se
error = snb_rwui o(ssp, np->n_fid, U O READ,
ui op, &scred, snb_tino_read);

snb_credrel e(&scred);
snbfs_rw_exit (&p->r_| kserl ock);

/* undo adjustnent of resid */
ui op->ui o_resid += past_eof;

return (error);

}
/* ARGSUSED */
static int

snbfs_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,

{

cal l er_context _t *ct)

struct snb_cred scred,;

struct vattr va,;

snbnode_t *np;

smbmti nfo_t *sm ;
snb_share_t *ssp;

of fset _t endoff, limt;
ssi ze_t past_limt;
int error, tino;
np = VIOSMB(vp);

sm = VIOSM (vp);

ssp = sm ->sm _share;

if (curproc->p_zone != sm->sni _zone_ref.zref_zone)

return (ElO;

if (sm->sm_flags & SM_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
return (EIO;

ASSERT(snmbf s_rw_| ock_hel d(&p->r_rw ock, RWWRI TER));

if (vp->v_type != VREQ
return (EISDIR);

new usr/src/ uts/ comon/ fs/snbcl nt/snbf s/ snbfs_vnops. c 10
767 if (uiop->uio_resid == 0)

768 return (0);

770 *

771 * Handl e ioflag bits: (FAPPEND| FSYNC| FDSYNC)

772 */

773 if (ioflag & (FAPPEND | FSYNC)) {

774 if (np->n_flag & NMODI FI ED)

775 snbfs_attrcache_renmove(np);

776 /* XXX: snbfs_vinval buf ? *)

777 }

778 }

779 if (ioflag & FAPPEND) {

780 /*

781 * File size can be changed by another client
782 */

783 va.va_mask = AT_SI ZE;

784 if (error = snbfsgetattr(vp, &va, cr))

785 return (error);

786 ui op->ui o_| of fset = va.va_si ze;

787 }

789 /*

790 * Like NFS3, just check for 63-bit overflow.

791 */

792 endoff = uiop->uio_| offset + uiop->uio_resid;

793 if (uiop->uio_loffset < 0 || endoff < 0)

794 return (EINVAL);

796 /*

797 * Check to nake sure that the process will not exceed
798 * its limt on file size. It is okay to wite up to
799 * the limt, but not beyond. Thus, the wite which
800 * reaches the limt will be short and the next wite
801 * Wwill return an error.

802 *

803 * So if we're starting at or beyond the linmt, EFBIG
804 * Otherwise, tenporarily reduce resid to the anmpunt
805 * the falls after the linmt.

806 */

807 limt = uiop->uio_llimt

808 |f(||mt==RLINB4INFINITY|| limt > MAXOFFSET_T)
809 limt = MAXOFFSET_T;

810 if (uiop->uio_loffset >=1limt)

811 return (EFBIG;

812 if (endoff > limt) {

813 past_limt = (ssize_t)(endoff - limt);

814 uiop->uio_resid -= past_limt;

815 } else

816 past_limt = 0;

818 /* Tineout: |onger for append. */

819 tim = snb_tino_wite;

820 if (endoff > np->r_si ze)

821 tim = snb_tino_append;

823 /* Shared lock for n_fid use in snb_rwiio */

824 if (smbfs_rw enter_sig(&p->r_| kserlock, RWREADER, SMBINTR(vp)))
825 return (EINTR);

826 smb_credinit(&scred, cr);

828 /* After reconnect, n_fid is invalid */

829 if (np- >n_vcgeni d!= ssp >ss_vcgeni d)

830 error = ESTAL

831 el se

832 error = snb_rwii o(ssp, np->n_fid, U O WRITE,

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢
833 ui op, &scred, tinpo);
835 if (error == 0) {
836 mut ex_ent er (&np->r _st at el ock) ;
837 np->n_flag | = (NFLUSHW RE | NATTRCHANGED) ;
838 if (uiop->uio_|offset > (offset_t)np->r S|ze)
839 np->r_size = (len_t)uiop->uio_|loffset;
840 nut ex_exi t (&p->r _st at el ock);
841 if (|of|ag&(FSYNC|FDSYNC)) {
842 /* Don't error the I/Oif this fails. */
843 (void) snbfs_snb_flush(np, &scred);
844 }
845 }
847 snb_credrel e(&scred);
848 snbf s_rw_exi t (&p->r _| kserl ock) ;
850 /* undo adjustnent of resid */
851 uiop->uio_resid += past_limt;
853 return (error);
854 }
857 /* ARGSUSED */
858 static int
859 snbfs_ioctl (vnode_t *vp, int cnd, intptr_t arg, int flag,
860 cred_t *cr, int *rvalp, caller_context_t *ct)
861 {
862 int error;
863 smbmt i nf o_t *sm ;
865 sm = VIOSM (vp);
867 if (curproc->p_zone != sm->sni _zone_ref.zref_zone)
868 return (ElO;
870 if (sm->sm_flags & SM_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
871 return (EIO;
873 switch (cnd) {
874 /* First three fromZFS. XXX - need these? */
876 case _FI OFFS:
877 error = snbfs_fsync(vp, 0, cr, ct);
878 br eak;
880 /*
881 * The following two ioctls are used by bfu.
882 * Silently ignore to avoid bfu errors.
883 */
884 case _FI OCGDI O
885 case _FICsD O
886 error = 0;
887 br eak;
889 #ifdef NOT_YET /* XXX - fromthe NFS code. */
890 case _FI ODI RECTI O
891 error = snbfs_directio(vp, (int)arg, cr);
892 #endi f
894 /*
895 * Allow get/set with "raw' security descriptor (SD) data.
896 * Useful for testing, diagnosing idmap problens, etc.
897 */
898 case SMBFSI O GETSD:

11

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

899 error = snbfs_acl _iocget(vp, arg, flag, cr);

900 br eak;

902 case SMBFS| O_SETSD:

903 error = snbfs_acl _iocset(vp, arg, flag, cr);

904 br eak;

906 defaul t:

907 error = ENOTTY;

908 br eak;

909 1

911 return (error);

912 }

915 /*

916 * Return either cached or renpote attributes. If get renpte attr
917 * use themto check and invalidate caches, then cache the new attri butes.
918 *

919 * XXX

920 * This op should eventual |y support PSARC 2007/315, Extensible Attribute
921 * Interfaces, for richer netadata.

922 *

923 /* ARGSUSED */

924 static int

925 snbfs_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
926 caller_context_t *ct)

927 {

928 snmbnode_t *np;

929 smbmmtinfo_t *smi;

931 sm = VIOSM (vp);

933 if (curproc->p_zone != sm->sni _zone_ref.zref_zone)

934 return (ElO;

936 if (sm->sm_flags & SM_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
937 return (EIO;

939 /*

940 * |f it has been specified that the return value will

941 * just be used as a hint, and we are only being asked

942 * for size, fsid or rdevid, then return the client’s

943 * notion of these values wi thout checking to nmake sure
944 * that the attribute cache is up to date.

945 * The whole point is to avoid an over the wire GETATTR
946 * call.

947 */

948 np = VTOSMB(vp);

949 if (flags & ATTR_HI NT) {

950 if (vap->va_mask ==

951 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) {
952 nut ex_ent er (&np- >r _st at el ock) ;

953 if (vap->va_mask | AT_SI ZE)

954 vap- >va_si ze = np->r_si ze;

955 if (vap->va_mask | AT_FSI D)

956 vap->va_fsid = vp->v_vfsp->vfs_dev;
957 if (vap->va_mask | AT_RDEV)

958 vap->va_rdev = vp->v_rdev;

959 mut ex_exi t (&np->r_st at el ock) ;

960 return (0);

961 }

962 }

964 return (snbfsgetattr(vp, vap, cr));

12

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢ 13 new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢
965 } 1031 * error here, but that causes conplaints
1032 * when root extracts a cpio archive, etc.
967 /* snbfsgetattr() in snbfs_client.c */ 1033 * So ignore this error, and go ahead with
1034 * the rest of the setattr work.
969 /* 1035 */
970 * XXX 1036 }
971 * This op should eventually support PSARC 2007/315, Extensible Attribute 1037 }
972 * Interfaces, for richer netadata.
973 */ 1039 return (snbfssetattr(vp, vap, flags, cr));
974 | * ARGSUSED4* / 1040 }
975 static int
976 snbfs_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 1042 /*
977 cal ler_context_t *ct) 1043 * Mostly from Darwi n snbfs_setattr()
978 { 1044 * but then nodified a lot.
979 vis_t *vf sp; 1045 */
980 snmbmtinfo_t *smi; 1046 /* ARGSUSED */
981 int error; 1047 static int
982 uint_t mask; 1048 snbfssetattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr)
983 struct vattr ol dva; 1049 {
1050 int error = 0;
985 vfsp = vp->v_vfsp; 1051 snmbnode_t *np = VTGSMB(vp);
986 sm = VFTOSM (vfsp); 1052 uint_t mask = vap->va_mask;
1053 struct tinmespec *ntine, *atine;
988 if (curproc->p_zone != sm->sni _zone_ref.zref_zone) 1054 struct snb_cred scred;
989 return (EIO; 1055 int cerror, nodified = 0;
1056 unsi gned short fid;
991 if (sm->sm_flags & SM_DEAD || vfsp->vfs_flag & VFS_UNMOUNTED) 1057 int have_fid = 0O;
992 return (EIO; 1058 uint32_t rights = 0;
994 mask = vap- >va_nask; 1060 ASSERT(cur proc->p_zone == VTOSM (vp)->sm _zone_ref.zref_zone);
995 if (mask & AT_NGCSET)
996 return (EINVAL); 1062 I*
1063 * There are no settable attributes on the XATTR dir,
998 if (vfsp->vfs_flag & VFS_RDONLY) 1064 * so just silently ignore these. On XATTR files,
999 return (EROFS); 1065 * you can set the size but nothing el se.
1066 */
1001 /* 1067 if (vp->v_flag & V_XATTRDI R
1002 * This is a _local _ access check so that only the owner of 1068 return (0);
1003 * this nount can set attributes. Wth ACLs enabl ed, the 1069 if (np->n_flag & N_XATTR) {
1004 * file owner can be different fromthe nount owner, and we 1070 if (mask & AT_TI MES)
1005 * need to check the _nount_ owner here. See _access_rwx 1071 SMBVDEBUG("i gnore set tine on xattr\n");
1006 */ 1072 mask & AT_SI ZE;
1007 bzero(&ol dva, sizeof (oldva)); 1073 }
1008 ol dva.va_mask = AT TYPE | AT MXDE;
1009 error = snbfsgetattr(vp, &oldva, cr); 1075 /*
1010 if (error) 1076 * |f our caller is trying to set nultiple attributes, they
1011 return (error); 1077 * can make no assunption about what order they are done in.
1012 ol dva.va_mask |= AT_U D | AT_d D, 1078 * Here we try to do themin order of decreasing |likelihood
1013 oldva.va_uid = sm->sm _uid; 1079 * of failure, just to mnimze the chance we'Il w nd up
1014 oldva.va_gid = sm->sm _gid; 1080 */Wi th a partially conplete request.
1081 *
1016 error = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
1017 snbf s_accessx, vp); 1083 /* Shared | ock for (possible) n_fid use. */
1018 if (error) 1084 if (smbfs_rw enter_sig(&p->r_| kserlock, RWREADER, SMBINTR(vp)))
1019 return (error); 1085 return (EINTR);
1086 smb_credinit(&scred, cr);
1021 if (mask & (AT UD| AT G D) {
1022 if (sm->sm_flags & SM _ACL) 1088 /*
1023 error = snbfs_acl _setids(vp, vap, cr); 1089 * WIl we need an open handle for this setattr?
1024 el se 1090 * |f so, what rights will we need?
1025 error = ENOSYS; 1091 */
1026 if (error !=0) { 1092 if (mask & (AT_ATIME | AT_MIIME)) {
1027 SMBVDEBUG("error %l seting UD G D on %", 1093 rights | =
1028 error, VTOSMB(vp)->n_rpath); 1094 SA Rl GHT_FI LE_WRI TE_ATTRI BUTES;
1029 /* 1095 }
1030 * |t mght be nore correct to return the 1096 if (mask & AT_SIZE) {

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

1097
1098
1099
1100

1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116

1118
1119
1120
1121
1122

1124
1125
1126
1127
1128
1129
1130
1131

1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156

1158
1159
1160
1161
1162

rights | =
SA RIGHT_FI LE_WRI TE_DATA |
SA_RI GHT_FI LE_APPEND_DATA

*
* Only SIZE really requires a handle, but it’s
* sinpler and nore reliable to set via a handle.
* Sone servers |like NT4 won’'t set tinmes by path.
* Also, we’'re usually setting everything anyway.
*
/

f (mask & (AT_SIZE | AT_ATIME | AT_MIIME)) {
error = snbfs_snb_tnmpopen(np, rights, &scred, &fid);
if (error) {
SMBVDEBUG("error % openi ng %s\n",

error, np->n_rpath)

goto out;

have _fid = 1;
}
/*
* |If the server supports the UNI X extensions, right here is where
* we'd support changes to uid, gid, node, and possibly va_flags.
* For now we claimto have made any such changes.
*

/
if (mask & AT_SIZE) {
/*

If the newfile size is less than what the client sees as
the file size, then just change the size and invalidate

t he pages.

snmbf s_putapage() is not yet inplenented.
/

*

* Set the file size to vap->va_size.
)
ASSERT(have_fid);

error = snbfs_snb_setfsize(np, fid, vap->va_size, &scred);

if (error) {
SMBVDEBUG "setsi ze error % file 9%\n",
error, np->n_rpath);
} else {/

*
* Darwin had code here to zero-extend.

* Tests indicate the server will zero-fill,
* so |ooks like we don’t need to do this.

* Good thing, as this could take forever.
*
*
*
*

XXX: Reportedly, witing one byte of zero
at the end offset avoids problens here.
/

nut ex_ent er (&np- >r _st at el ock);
np->r_si ze = vap->va_si ze;

nut ex_exi t (&p->r _st at el ock) ;
nodi fied = 1;

}

/*

* XXX: When Sol aris has create_tinme, set that too.
* Note: create_tine is different fromctine.

*/

nime = ((mask & AT_MII ME) ? &ap->va_ntine : 0);

*
*
*
* | amcommenting this code at present because the function
*
*

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

1163

1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179

1181
1182
1183
1184
1185
1186
1187
1188

1190
1191
1192
1193
1194
1195

1197
1198

1200
1201

1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228

atine = ((mask & AT_ATIME) ? &vap->va_atinme : 0);
if (minme || atinme) {
/*

* Always use the handl e-based set attr call now.

* Not trying to set DOS attributes here so pass zero.

*

/

ASSERT(have_fid);

error = snbfs_snb_setfattr(np, fid,

0, ntime, atinme, &scred);

if (error) {

SMBVDEBUG("set tines error % file %\n",
error, np->n_rpath);

} else {
nodi fied = 1;

}

out :

® Ok ok ok ok Rk Ok Ok b Sk b 3k Ok R Ok Rk ok % b % b %

if (nDdi;Led) {

* Invalidate attribute cache in case the server
* doesn’t set exactly the attributes we asked.
*/

smbf s_attrcache_renove(np);

}
if (have_fid)
cerror = snbfs_snb_tnpclose(np, fid, &scred);
if (cerror)
SMBVDEBUG "error % cl osing %\ n",
cerror, np->n_rpath);
}

smb_credrel e(&scred);
snbf s_rw_exi t (&p->r _| kserl ock) ;

return (error);

smbf s_access_rwx()
Common function for snbfs_access, etc.

The security nodel inplenented by the FS is unusual
due to the current "single user nounts" restriction:
Al'l access under a given nount point uses the CIFS
credential s established by the owner of the nount.

Most access checking is handl ed by the CFS server,
but we need sufficient Unix access checks here to
prevent other |ocal Unix users from having access
to objects under this nmount that the uid/gid/ node
settings in the nount woul d not allow

Wth this nodel, there is a case where we need the
ability to do an access check before we have the
vnode for an object. This function takes advantage
of the fact that the uid/gid/ node is per nount, and
avoi ds the need for a vnode.

We still (sort of) need a vnode when we call
secpol i cy_vnode_access, but that only uses
the vtype field, so we can use a pair of fake
vnodes that have only v_type filled in.

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242

1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255

1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267

1269
1270
1271
1272
1273
1274
1275
1276

1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289

1291
1292
1293
1294

* XXX: Later, add a new secpolicy_vtype_ access()
* that takes the vtype instead of a vnode, and
* get rid of the tnpl_vxxx fake vnodes bei ow.
*
/
static int
snbfs_access_rwx(vfs_t *vfsp, int vtype, int node, cred_t *cr)
{
/* See the secpolicy call below *
static const vnode_t tnpl_vdir ={ .v_type = VDIR };
static const vnode_t tnpl _vreg = { .v_type = VREG };
vattr_t va;
vnode_t *tvp;
struct snbrmtl nfo *sm = VFTOSM (vfsp);
int shift =0;
/*
* Build our (fabricated) vnode attributes.
* XXX: Could nake these tenplates in the
* per-nount struct and use them here.
*
bzero(&va, sizeof (va));
va.va_mask = AT _TYPE | AT_MODE | AT_UD | AT G D
va.va_type = vtype;
va.va_node = (vtype == VDIR) ?
sm ->sm _dnode : smi->smi _f node;
va.va_uid = sm->sm _uid;
va.va_gid = sni->sm _gi d;
/*
* Disallow wite attenpts on read-only file systens,
* unless the file is a device or fifo node. Note:
* Inline vn_is_readonly and IS DEVWP here because
* we may not have a vnode ptr. Original expr.
* (mode & WARITE) && vn_is_readonly(vp) && !'1S DEVVP(vp))
*
/
if ((mde & WRITE) &&
(vfsp- >vfs _flag & VFS_RDONLY) &&
I'(vtype == VCHR || vtype == VBLK || vtype == VFIFO))
return (EROFS);
*
* Disallow attenpts to access nandatory |ock files.
* Similarly, expand MANDLOCK here.
* XXX: not sure we need this.
*
f ((mode & (WWRRITE | VREAD | VEXEC)) &&
va.va_type == VREG && MANDMODE(va. va_node))
return (EACCES);
/*
* Access check is based on only
* one of owner, group, public.
* |f not owner, then check group.
* |f not a nenber of the group,
* then check public access.
*
/
if (crgetuid(cr) !'=va.va_uid) {
shift += 3;
if (!groupnenber(va.va_gid, cr))
shift += 3;
}
/*
* W need a vnode for secpolicy_vnode_access,
* but the only thing it |ooks at is v_type,
* so pass one of the tenpl ates above.

17

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

1295
1296
1297
1298

1300
1301
1302

1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316

1318
1319
1320
1321
1322

*
/
tvp = (va.va_type == VDI R) ?
(vnode_t *)& npl _vdir
(vnode_t *) & npl _vreg;
return (secpolicy_vnode_access2(cr, tvp, va.va_uid,
va.va_node << shift, node));
}
/*
* See snbfs_setattr
*
/
static int
snbf s_accessx(void *arg, int node, cred_t *cr)
{
vnode_t *vp = arg;
/*
* Note: The caller has checked the current zone,
* the SM _DEAD and VFS_UNMOUNTED fl ags, etc.
*
/
return (snbfs_access_rwx(vp->v_vfsp, vp->v_type, node, cr));
}
/*
* XXX
* This op shoul d support PSARC 2007/ 403, Modified Access Checks for CIFS
*
/
/* ARGSUSED */

1323 static int

1324 snbfs_access(vnode_t *vp, int node, int flags, cred_t *cr, caller_context_t *ct)
1325 {

1326 vis_t *vf sp;

1327 smbmti nfo_t *sm ;

1329 vfsp = vp->v_vfsp;

1330 sni = VFTOSM (vfsp);

1332 if (curproc->p_zone != sm->sm _zone_ref.zref_zone)

1333 return (ElIO;

1335 if (sm->sm_flags & SM_DEAD || vfsp->vfs_flag & VFS_UNMOUNTED)
1336 return (EIO;

1338 return (snmbfs_access_rwx(vfsp, vp->v_type, node, cr))

1339 }

1342 /*

1343 * Flush local dirty pages to stable storage on the server

1344 *

1345 * |If FNODSYNC is specified, then there is nothing to do because

1346 * netadata changes are not cached on the client before being

1347 * sent to the server

1348 */

1349 /* ARGSUSED */

1350 static int

1351 snbfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
1352 {

1353 int error = 0;

1354 smbmti nfo_t *sm ;

1355 snbnode_t *np;

1356 struct snb_cred scred;

1358 np = VTOSMB(vp)

1359 shi = VTOSM (vp);

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

1361
1362

1364
1365

1367
1368

1370
1371

1373
1374
1375
1376

1378

1380
1381

1383
1384

1386
1387
1388
1389
1390
1391
1392
1393
1394

1396
1397
1398
1399
1400

1402

1404
1405
1406
1407
1408
1409
1410

1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423

1425
1426

}
| *

*

*/

| *

if (curproc->p_zone != sm->sm _zone_ref.zref_zone)
return (EIO;

if (sm->sm_flags & SM _DEAD | |
return (EIO;

vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)

if ((syncflag & FNODSYNC) ||
return (0);

| S_SWAPVP(vp))

if ((syncflag & (FSYNC| FDSYNC)) == 0)
return (0);

/* Shared lock for n_fid use in _flush */

if (snbfs_rw enter_sig(&np->r_| kserl ock,
return (EINTR);

snb_credinit(&scred, cr);

RW READER, SMBI NTR(vp)))
error = snbfs_snb_flush(np, &scred);

snb_credrel e(&scred);
snbfs_rw_exit (&p->r_| kserl ock) ;

return (error);

reference to vnode went away.

ARGSUSED */

static void

{

snbf s_i nacti ve(vnode_t *vp, cred_t *cr, caller_context_t *ct)
snbnode_t *np;
struct snmb_cred scred;
/*
* Don't "bail out" for VFS_UNMOUNTED here,

* as we want to do cleanup, etc.
* See al so pcfs_inactive
*/

np = VIOSMB(vp);

*

* |f this is comng fromthe wong zone, we |et soneone in the right
* zone take care of it asynchronously. W can get here due to

* VN_RELE() being called from pageout() or fsflush(). This call may
* potentially turn into an expensive no-op if, for iInstance, v_count

* gets increnented in the neantinme, but it's stlll correct.
*/
/
Def end agai nst the possibility that higher-level callers
m ght not correctly bal ance open and close calls. |If we

get here with open references remaining, it neans there
was a m ssing VOP_CLCSE somamhere I f that happens, do
the close here so we don't "leak"” FIDs on the server.

* ok k ok k% *

Excl usive |l ock for nodifying n_fid stuff.
* Don't want this one ever interruptible.
*
/
(void) snbfs_rw enter_sig(&p->r
snmb_credinit(&scred, cr);

_lkserl ock, RWWRI TER, 0)

switch (np->n_ovtype) {
case VNON:

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

1427
1428

1430
1431
1432
1433
1434
1435
1436
1437
1438

1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452

1454

1456
1457
1458
1459
1460
1461
1462
1463

1465
1466
1467
1468
1469

1471
1472

1474
1475

1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489

1491
1492

20

/* not open (OK)
br eak;
case VDIR
if (np->n_dirrefs == 0)
break;
SMBVDEBUG "open dir: refs %l path %\n",
np->n_dirrefs, np->n _rpath);
/* Force last close. */
np->n_dirrefs = 1;
snbfs_rele fi d(np, &scred);
break;
case VREG
if (np->n_fidrefs == 0)
br eak;
SMBVDEBUG(“open file: refs 9% id Ox% path %\n",
np->n_fidrefs, np->n_fid, np->n_rpath);
/*
* Before otWclose, nake sure dirty pages witten back.
*
if (vn_has_cached_data(vp)) {
/* snbfs_putapage() will acquire shared | ock, so rel ease
* exclusive lock tenporally.
*
/
snbfs_rw_exi t (&p->r_| kser| ock);
(voi d) snbfs_putpage(vp, (offset_t) O, O, B_INVAL | B_AS
/* acquire exclusive |lock again. */
(void) snbfs_rw enter_sig(&p->r_| kserlock, RWWRI TER, 0
}
#endif /* | codereview */
/* Force last close. */
np->n_fidrefs = 1;
snmbfs_rele_fid(np, &scred);
br eak;
defaul t:
SMBVDEBUG "bad n_ovtype %\ n", np->n_ovtype);
np->n_ovtype = VNO\;
br eak;
}
snmb_credrel e(&scred);
snmbfs_rw_exi t (&p->r_| kser| ock) ;
snbf s_addf ree(np) ;
}
/*
* Renote file system operations having to do with directory manipul ati on.
*
/* ARGSUSED */

static int

snbf s_| ookup(vnode_t
fl ags,
int *direntflags,

int

vfs

smbmtinfo_t
snbnode_t

int

vfs
sm

t

*dvp,
vnode_t

char *nm vnode_t
*rdir, cred_t *cr,
pat hnane_t *real pnp)

**ypp, struct pathname
cal l er_context_t *ct,

*vfs;
*sm;
*dnp:
error;

dvp->v_vf sp;
VFTOSM (vfs);

*pnp,

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

1494 if (curproc->p_zone != sm->sni _zone_ref.zref_zone)

1495 return (EPERV;

1497 if (sm->sm_flags & SM_DEAD || vfs->vfs_flag & VFS_UNMOUNTED)
1498 return (EIO;

1500 dnp = VTOSMB(dvp);

1502 /*

1503 * Are we | ooking up extended attributes? |If so, "dvp" is
1504 * the file or directory for which we want attributes, and
1505 * we need a | ookup of the (faked up) attribute directory
1506 * pbefore we | ookup the rest of the path.

1507 */

1508 if (flags & LOOKUP_XATTR) {

1509 /*

1510 * Require the xattr nount option.

1511 */

1512 if ((vfs->vis_flag & VFS_XATTR) == 0)

1513 return (EINVAL);

1515 error = snbfs_get_xattrdir(dvp, vpp, cr, flags);
1516 return (error);

1517 }

1519 if (smbfs_rw enter_sig(&np->r_rw ock, RW READER, SMBI NTR(dvp)))
1520 return (EINTR);

1522 error = snbfsl ookup(dvp, nm vpp, cr, 1, ct);

1524 snbf s_rw_exi t (&np->r _rw ock) ;

1526 return (error);

1527 }

1529 /* ARGSUSED */

1530 static int

1531 snbf sl ookup(vnode_t *dvp, char *nm vnode_t **vpp, cred_t *cr,
1532 int cache_ok, caller_context_t *ct)

1533 {

1534 int error;

1535 int suppl en; /* supported |ength */

1536 vnode_t *vp;

1537 snbnode_t *np;

1538 snmbnode_t *dnp;

1539 snmbmmti nfo_t *sm ;

1540 /* struct snb_vc *vep; */

1541 const char *ill;

1542 const char *name = (const char *)nm

1543 int nmen = strlen(nm;

1544 int rplen;

1545 struct snb_cred scred;

1546 struct snbfattr fa;

1548 sm = VIOSM (dvp);

1549 dnp = VTOSMB(dvp);

1551 ASSERT(cur proc->p_zone == smi ->smi _zone_ref.zref_zone);
1553 #ifdef NOT_YET

1554 vcp = SSTOVC(smi ->smi _share);

1556 /* XXX: Shoul d conpute this once and store it in snbmtinfo_t */
1557 suppl en = (SMB DI ALECT(vcp) >= SMB DI ALECT LANMAN2 0) ? 255 : 12;
1558 #el se

21

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

1559
1560

1562
1563
1564
1565
1566
1567

1569
1570
1571
1572
1573
1574
1575
1576
1577

1579
1580
1581
1582
1583

1585
1586
1587
1588
1589
1590

1592
1593
1594
1595
1596
1597
1598
1599
1600

1602
1603
1604
1605
1606
1607

1609
1610
1611
1612
1613
1614
1615
1616
1617
1618

1620
1621
1622
1623
1624

#endi f

suppl en = 255;

/*
* RWock nust be held, either reader or witer.
* XXX: Can we check without |ooking directly
* inside the struct smbfs_rw ock_t?
*
/
ASSERT(dnp->r _rw ock. count != 0);

/

*

* | f lookup is for , just return dvp.
* No need to perform any access checks.
S
f

(nmen == 0) {
VN_HOLD(dvp) ;
*vpp = dvp;
return (0);

}

*

* Can’'t do | ookups in non-directories.
*
/
if (dvp->v_type != VDR
return (ENOTDlR)

/*
* Need search pernmission in the directory.
*
error = snbfs_access(dvp, VEXEC, 0, cr, ct);
if (error)

return (error);

/*
* If lookup is for ".", just return dvp.
* Access check was done above.
*
if (nmMen == 1 & nang[0] == ".") {
VN_HOLD(dvp) ;
*vpp = dvp;
return (0);
}
/*

* Now sone sanity checks on the nane.
* First check the |ength.
*
/
if (nmen > supplen)
return (ENAMETOOLONG ;

/*
* Avoid surprises with characters that are
* illegal in Wndows file names.
*/Todo: CATI A mappi ngs XXX
*
ill =1illegal_chars;
if (dnp->n_flag & N_XATTR)
ill++ /* allow colon */
if (strpbrk(nm ill))
return (EINVAL);

Speci al handling for |ookup of

* Ok k ok ¥

We keep full pathnanes (as seen on the server)
so we can just trimoff the |ast conponent to

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢ 23 new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢ 24
1625 * get the full pathname of the parent. Note: 1691 * The caller indicated that it’s OKto use a
1626 * W don’t actually copy and nodify, but just 1692 * cached result for this |ookup, so try to
1627 * conpute the trimmed length and pass that with 1693 * reclaima node fromthe snbfs node cache.
1628 * the current dir path (not null term nated). 1694 */
1629 * 1695 error = snbfsl ookup_cache(dvp, nm nnien, &p, cr);
1630 * W don't go over-the-wire to get attributes 1696 if (error)
1631 * for ".." because we knowit’'s a directory, 1697 return (error);
1632 * and we can just |eave the rest "stale" 1698 if (vp !'= NULL
1633 * until soneone does a getattr. 1699 /* hold taken in | ookup_cache */
1634 */ 1700 *vpp = vp;
1635 if (nmMen == 2 && nane[0] == "'." && nane[l] == ".") { 1701 return (0);
1636 if (dvp->v_flag & VROOT) { 1702 }
1637 /* 1703 }
1638 * Already at the root. This can happen
1639 * with directory listings at the root, 1705 I*
1640 * which lookup "." and ".." to get the 1706 * OK, go over-the-wire to get the attributes,
1641 * inode nunmbers. Let ".." be the sanme 1707 * then create the node.
1642 *as "." in the FS root. 1708 */
1643 */ 1709 snb_credinit(&scred, cr);
1644 VN_HOLD(dvp) ; 1710 /* Note: this can allocate a new "name" */
1645 *vpp = dvp; 1711 error = snbfs_snb_| ookup(dnp, &name, &nmen, & a, &scred);
1646 return (0); 1712 smb_credrel e(&scred);
1647 } 1713 if (error == ENOTDIR) {
1714 /*
1649 /* 1715 * Lookup failed because this directory was
1650 * Special case for XATTR directory 1716 * renoved or renamed by another client.
1651 */ 1717 * Renove any cached attributes under it.
1652 if (dvp->v_flag & V_XATTRDIR) { 1718 o
1653 error = snbfs_xa_parent(dvp, vpp); 1719 snmbfs_attrcache_renove(dnp);
1654 return (error); 1720 snmbf s_attrcache_prune(dnp);
1655 } 1721 1
1722 if (error)
1657 /* 1723 goto out;
1658 * Find the parent path |ength.
1659 */ 1725 error = snbfs_nget (dvp, nane, nmen, &a, &p);
1660 rplen = dnp->n_rpl en; 1726 if (error)
1661 ASSERT(rplen > 0); 1727 goto out;
1662 while (--rplen >= 0) {
1663 if (dnp->n_rpath[rplen] == "'\\") 1729 /* Success! */
1664 br eak; 1730 *vVpp = vp;
1665 }
1666 if (rplen <= 0) { 1732 out:
1667 /* Found our way to the root. */ 1733 /* snbfs_snb_| ookup may have al |l ocated nane. */
1668 vp = SMBTOV(smi ->sm _root); 1734 if (name !'= nm
1669 VN_HOLD(vp) ; 1735 snbf s_name_free(nane, nnlen);
1670 *vVpp = vp;
1671 return (0); 1737 return (error);
1672 } 1738 }
1673 np = snbfs_node_findcreate(sm,
1674 dnp->n_rpath, rplen, NULL, 0, O, 1740 /*
1675 &snbfs_fattr0); /* force create */ 1741 * snbf sl ookup_cache
1676 ASSERT(np T= NULL); 1742 *
1677 vp = SMBTOV(np); 1743 * Try to reclaima node fromthe snbfs node cache.
1678 vp->v_type = VDI R 1744 * Some statistics for DEBUG
1745 ~*
1680 /* Success! */ 1746 * This nmechanismlets us avoid many of the five (or nore)
1681 *vpp = vp; 1747 * W/l ookup calls per file seen with "Is -1" if we search
1682 return (0); 1748 * the snbfs node cache for recently inactive(ated) nodes.
1683 } 1749 */
1750 #ifdef DEBUG
1685 I* 1751 int snbfs_|l ookup_cache_calls = 0;
1686 * Normal |ookup of a nane under this directory. 1752 int snbfs_| ookup_cache_error = 0;
1687 * Note we handled "", ".", ".." above. 1753 int snbfs_| ookup_cache_miss = O;
1688 */ 1754 int snbfs_| ookup_cache_stale = O;
1689 if (cache_ok) { 1755 int snbfs_l ookup_cache_hits = 0;
1690 /* 1756 #endif /* DEBUG */

new usr/ src/ uts/ comon/ fs/snbcl nt/snbf s/ snbfs_vnops. c 25

1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768

1770
1771

1773
1774
1775

1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792

1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807

1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820

1822

/* ARGSUSED */
static int

snbf sl ookup_cache(vnode_t *dvp,

{

#i f def
#endi f

#i f def
#endi f

#i f def
#endi f

#i f def
#endi f

char *nm int nmen,

vnode_t **vpp, cred_t *cr)
struct vattr va;

snbnode_t *dnp;

smbnode_t *np;

vnode_t *vp;

int error;

char sep;

dnp = VTOSMB(dvp);
*vpp = NULL;

DEBUG
smbf s_| ookup_cache_cal | s++;

First make sure we can get attributes for the
directory. Cached attributes are OK here.

If we renoved or renaned the directory, this
will return ENCENT. |f soneone el se renoved
this directory or file, we'll find out when we
try to open or get attributes.

* ok % ok ok ok

*/

va.va_mask = AT_TYPE | AT_MCDE;

error = snbfsgetattr(dvp, &a, cr);
if (error) {
DEBUG

smbf s_| ookup_cache_error ++;

return (error);

}

/*

* Passing NULL snbfattr here so we will

* just | ook, not create.

*

sep = SMBFS_DNP_SEP(dnp) ;

np = snbfs_node_fi ndcreat e(dnp->n_nount,
dnp->n_rpath, dnp->n_rplen,

nm nmlen, sep, NULL);
if (np == NULL) {
DEBUG
snbf s_| ookup_cache_m ss++;
return (0);
}

*

* Found it. Attributes still valid?

*/

vp = SMBTOV(np);
if (np->r_attrtime <= gethrtinme()) {
/* stale */

DEBUG
snbf s_| ookup_cache_st al e++;
VN_RELE(vp) ;
return (0);
}
/*

new usr/src/ uts/ comon/ fs/snbcl nt/snbf s/ snbfs_vnops. c 26
1823 * Success!

1824 * Caller gets hold from snbfs_node_findcreate

1825 */

1826 #ifdef DEBUG

1827 snmbf s_| ookup_cache_hi t s++;

1828 #endi f

1829 *Vpp = vp;

1830 return (0);

1831 }

1833 /*

1834 * XXX

1835 * vsecattr_t is newto build 77, and we need to eventual |y support
1836 * it in order to create an ACL when an object is created.

1837 *

1838 * This op shoul d support the new FI GNORECASE flag for case-insensitive
1839 * | ookups, per PSARC 2007/ 244.

1840 */

1841 /* ARGSUSED */

1842 static int

1843 snbfs_create(vnode_t *dvp, char *nm struct vattr *va, enum vcexcl exclusive,
1844 int node, vnode_t **vpp, cred_t *cr, int |faware, caller_context_t *ct,
1845 vsecattr_t *vsecp)

1846 {

1847 int error;

1848 int cerror;

1849 vis_t *vf sp;

1850 vnode_t *vp;

1851 #ifdef NOT_YET

1852 snmbnode_t *np;

1853 #endi f

1854 snbnode_t *dnp;

1855 smbmti nfo_t *sm ;

1856 struct vattr vattr;

1857 struct snbfattr fattr;

1858 struct snb_cred scred;

1859 const char *name = (const char *)nm

1860 int nmen = strlen(nm;

1861 ui nt 32_t di sp;

1862 ui nt 16t fid;

1863 int xattr;

1865 vfsp = dvp->v_vfsp;

1866 sni = VFTOSM (Vvfsp);

1867 dnp = VTOSMB(dvp);

1868 vp = NULL;

1870 if (curproc->p_zone != sm->sni _zone_ref.zref_zone)

1871 return (EPERV;

1873 if (sm->smi_flags & SM_DEAD || vfsp->vfs_flag & VFS_UNMOUNTED)
1874 return (EIO;

1876 /*

1877 * Note: this may break nknod(2) calls to create a directory,
1878 * but that’'s obscure use. Some other filesystens do this.
1879 * XXX: Later, redirect VDIR type here to _nkdir.

1880 */

1881 if (va->va_type != VREQ

1882 return (EINVAL);

1884 /*

1885 * |f the pathname is "", just use dvp, no checks.

1886 * Do this outside of the rwock (like zfs).

1887 */

1888 if (nmen ==0) {

new usr/ src/ uts/ comon/ fs/snbcl nt/snbf s/ snbfs_vnops. c 27

1889
1890
1891
1892

1894
1895
1896
1897

1899
1900
1901
1902
1903

1905
1906
1907

1909
1910
1911
1912

1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944

1946
1947
1948
1949
1950
1951
1952
1953
1954

VN_HOLD(dvp) ;
*vpp = dvp;
return (0);

}

/* Don't allow"." or ".." through here. */
if ((nmMen ==1 & nane[0] ==".") ||
(nmMen == 2 & nane[0] =="." && name[l] == "."))
return (EISDIR);

/*

* We make a copy of the attributes because the caller does not
* expect us to change what va points to.

*/

vattr = *va;

if (smbfs_rw enter_sig(&np->r_rw ock, RWWRI TER, SMBI NTR(dvp)))
return (EINTR);
snb_credinit(&scred, cr);

/
XXX: Do we need r_| kserl ock too?
No use of any shared fid or fctx...

/

B

NFS needs to go over the wire, just to be sure whether the
file exists or not. Using a cached result is dangerous in
this case when maki ng a decision regarding existence.

The SMB protocol does NOT really need to go OTWhere
thanks to the expressive NTCREATE di sposition val ues.
Unfortunately, to do Unix access checks correctly,
we need to know if the object already exists.

Wien t he object does not exist, we need VWARI TE on
the directory. Note: snbfslookup() checks VEXEC.

=k ok ok ok K ok K ok X ok ¥ ok

/
error = snbfsl ookup(dvp, nm &vp, cr, 0, ct);
if (error == 0) {

/*

* The file already exists. FError?
* NB: have a hold from snbf sl ookup
*
/

if (exclusive == EXCL)

error = EEXI ST;

VN_RELE(vp);

goto out;
}
/*

* Verify requested access.
*/

error = snbfs_access(vp, node, 0, cr, ct);

if (error)
VN_RELE(vp);
goto out;

}

/*

* Truncate (if requested).
*

if ((vattr.va_mask & AT_SIZE) && vattr.va_size == 0) {

vattr.va_mask = AT_SI ZE;

error = snbfssetattr(vp, &attr, 0, cr);

if (error) {
VN_RELE(vp) ;
goto out;

new usr/src/uts/ comon/ fs/snbcl nt/snbf s/ snbfs_vnops. c 28
1955 }

1956

1957 /* Success! */

1958 #ifdef NOT_YET

1959 vnevent _create(vp, ct);

1960 #endi f

1961 *Vpp = vp;

1962 goto out;

1963 }

1965 I*

1966 * The file did not exist. Need VWIITE in the directory.
1967 *

1968 error = snbfs_access(dvp, VWRITE, 0, cr, ct);
1969 if (error)

1970 goto out;

1972 /*

1973 * Now things get tricky. W also need to check the
1974 * requested open node against the file we may create.
1975 * See comments at snbfs_access_rwx

1976 */

1977 error = snbfs_access_rwx(vfsp, VREG node, cr);
1978 if (error)

1979 goto out;

1981 /*

1982 * Now the code derived from Darwi n,

1983 * but with greater use of NT_CREATE

1984 * di sposition options. Mich changed.

1985 *

1986 * Create (or open) a new child node.

1987 * Note we handled "." and ".." above.

1988 */

1990 if (exclusive == CL)

1991 di sp = NTCREATEX_DI SP_CREATE;

1992 el se {

1993 /* Truncate regular files if requested. */
1994 if ((va->va_type == VREQ &&

1995 (va->va_mask & AT_SI ZE) &&

1996 (va->va_size == 0))

1997 di sp = NTCREATEX_DI SP_OVERWRI TE_I F;
1998 el se

1999 di sp = NTCREATEX_DI SP_COPEN_I F;
2000 }

2001 xattr = (dnp->n_flag & N.XATTR) ? 1 : O;

2002 error = snbfs_snb_create(dnp,

2003 nanme, nnlen, xattr,

2004 di sp, &scred, &fid);

2005 if (error)

2006 goto out;

2008 /*

2009 * XXX: M ssing sone code here to deal with
2010 * the case where we opened an existing file,
2011 *it's size is larger than 32-bits, and we're
2012 * setting the size froma process that’s not
2013 * aware of large file offsets. i.e.

2014 * fromthe NFS3 code:

2015 */

2016 #if NOT_YET /* XXX */

2017 if ((vattr.va_nask & AT_SIZE) &&

2018 vp->v_type == VREQ

2019 np = VTIGSMB(vp);

2020 /*

new usr/ src/ uts/ comon/ fs/snbcl nt/snbf s/ snbfs_vnops. c 29 new usr/ src/ uts/ comon/ fs/snbcl nt/snbf s/ snbfs_vnops. c 30
2021 * Check here for large file handl ed 2087 /* ARGSUSED */
2022 * by LF-unaware process (as 2088 static int
2023 * ufs_create() does) 2089 snbfs_renove(vnode_t *dvp, char *nm cred_t *cr, caller_context_t *ct,
2024 */ 2090 int flags)
2025 if (!(lfaware & FOFFMAX)) { 2091 {
2026 nmut ex_ent er (&np- >r _st at el ock) ; 2092 int error;
2027 if (np->r_size > MAXOFF32_T) 2093 vnode_t *vp;
2028 error = EOVERFLOW 2094 snbnode_t *np;
2029 nut ex_exi t (&np->r_st at el ock) ; 2095 snmbnode_t *dnp;
2030 1 2096 struct snb_cred scred;
2031 i1f (terror) { 2097 /* enum snbf sstat status; */
2032 vattr.va_mask = AT_SI ZE; 2098 smbmti nfo_t *sm ;
2033 error = snbfssetattr(vp,
2034 &vattr, 0, cr); 2100 sm = VIOSM (dvp);
2035 }
2036 } 2102 if (curproc->p_zone != sm->sm _zone_ref.zref_zone)
2037 #endif /* XXX */ 2103 return (EPERV;
2038 /*
2039 * Should use the fid to get/set the size 2105 if (sm->sm_flags & SM_DEAD || dvp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
2040 */Wni le we have it opened here. See above. 2106 return (EIO;
2041 *
2108 dnp = VTOSMB(dvp);
2043 cerror = snbfs_snb_cl ose(sm ->sm _share, fid, NULL, &scred); 2109 if (snmbfs_rw enter_sig(&np->r_rw ock, RWWRI TER, SMBI NTR(dvp)))
2044 if (cerror) 2110 return (EINTR);
2045 SMBVDEBUG("error %l closing %\\%\n", 2111 snmb_credinit(&scred, cr);
2046 cerror, dnp->n_rpath, nane);
2113 /*
2048 /* 2114 * Verify access to the dirctory.
2049 * In the open case, the name may differ a little 2115 */
2050 * fromwhat we passed to create (case, etc.) 2116 error = snbfs_access(dvp, WRI TE| VEXEC, 0, cr, ct);
2051 * so call |ookup to get the (opened) nane. 2117 if (error)
2052 * 2118 goto out;
2053 * XXX: Could avoid this extra |ookup if the
2054 * "createact" result from NT_CREATE says we 2120 /*
2055 * created the object. 2121 * NOTE: the darwin code gets the "vp" passed in so it |ooks
2056 */ 2122 * like the "vp" has probably been "l ookup"ed by the VFS | ayer.
2057 error = snbfs_snb_| ookup(dnp, &name, &nmen, & attr, &scred); 2123 * |t looks like we wll need to | ookup the vp to check the
2058 if (error) 2124 * caches and check if the object being deleted is a directory.
2059 goto out; 2125 &
2126 error = snbfslookup(dvp, nm &vp, cr, 0, ct);
2061 /* update attr and directory cache */ 2127 if (error)
2062 snmbfs_attr_touchdir(dnp); 2128 goto out;
2064 error = snbfs_nget (dvp, nane, nmen, & attr, &vp); 2130 /* Never allow link/unlink directories on CIFS. */
2065 if (error) 2131 if (vp->v_type == VDIR) {
2066 goto out; 2132 VN_RELE(vp);
2133 error = EPERM
2068 /* XXX invalidate pages if we truncated? */ 2134 goto out;
2135
2070 /* Success! */
2071 *vpp = vp; 2137 /*
2072 error = 0; 2138 * Now we have the real reference count on the vnode
2139 * Do we have the file open?
2074 out: 2140 */
2075 snmb_credrel e(&scred); 2141 np = VTOSMB(vp);
2076 smbf s_rw_exi t (&np->r _rw ock); 2142 mut ex_ent er (&np- >r _st at el ock) ;
2077 if (name !'= nm 2143 if ((vp->v_count > 1) && (np->n_fidrefs > 0)) {
2078 snbfs_name_free(nane, nnlen); 2144 /*
2079 return (error); 2145 * NFS does a renane on renove here.
2080 } 2146 * Probably not applicable for SMB.
2147 * Like Darwin, just return EBUSY.
2082 /* 2148 i
2083 * XXX 2149 * XXX: Todo - Use Trans2rename, and
2084 * This op should support the new FlI GNORECASE flag for case-insensitive 2150 * if that fails, ask the server to
2085 * | ookups, per PSARC 2007/ 244. 2151 * set the del ete-on-close flag.
2086 */ 2152 =Y

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

2153
2154
2155
2156
2157

2159

2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172

2174

2176
2177
2178

2180
2181

2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194

2196
2197
2198

2200
2201
2202
2203
2204

2206
2207

2209
2210
2211
2212
2213
2214
2215
2216
2217
2218

mut ex_exi t (&p->r _st at el ock);
error = EBUSY;

} else {
smbf s_attrcache_rm.| ocked(np);
mut ex_exi t (&p->r _st at el ock);

error = snbfs_snb_del ete(np, &scred, NULL, 0, 0);

*

* If the file should no | onger exist, discard
* any cached attributes under this node.

swtch (error) {

case 0:

case EhEENT

case ENOIDI R:
snbfs_attrcache_prune(np);
break;

}
VN_RELE(vp) ;
out :
snmb_credrel e(&scred);
snbf s_rw_exi t (&np->r_rw ock);

return (error);

XXX
This op shoul d support the new FI GNORECASE flag for case-insensitive
| ookups, per PSARC 2007/ 244.

* ok Ok Ok

/* ARGSUSED */

static int

snmbf s_rename(vnode_t *odvp, char *onm vnode_t *ndvp, char *nnm cred_t *cr,
cal l er_context _t *ct, int flags)

{
/* vnode_t *real vp; */
if (curproc->p_zone != VIOSM (odvp)->snmi _zone_ref.zref_zone ||
curproc->p_zone != VIOSM (ndvp)->smi _zone_ref.zref_zone)
return (EPERV);
if (VIOSM (odvp)->sm _flags & SM _DEAD | |
VTOSM (ndvp) - >sni _flags & SM _DEAD | |
odvp->v_vfsp->vfs_flag & VFS_UNMOUNTED | |
ndvp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
return (EIO;
return (snbfsrename(odvp, onm ndvp, nnm cr, ct));
}
/*
* snbf srenane does the real work of renam ng in SMBFS
*/
/* ARGSUSED */
static int

snbf srename(vnode_t *odvp, char *onm vnode_t *ndvp, char *nnm cred_t *cr,
caller_context_t *ct)
{

int error;
int nvp_| ocked =

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

2219
2220
2221
2222
2223
2224
2225
2226

2228

2230
2231
2232

2234
2235
2236
2237
2238
2239
2240

2242
2243

2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272

2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284

vnode_t *nvp = NULL;
vnode_t *ovp = NULL;
snmbnode_t *onp;

snbnode_t *nnp;

snbnode_t *odnp;

smbnode_t *ndnp;

struct snb_cred scred;

/* enum snbf sst at status; */

ASSERT(cur proc->p_zone ==

if (strenp(onm ".") == 0 || strcnp(onm "..") == 0 ||
strenp(nnm ".") == 0 || strcnp(nnm "..") == 0)
return (EI NVAL) ;

*

* Check that everything is on the sane fil esystem
* vn_renane checks the fsid' s, but in case we don’t
*

fiTl those in correctly, check here too.
*/
if (odvp->v_vfsp !'= ndvp->v_vfsp)
return (EXDEV);
odnp = VTOSMB(odvp);

ndnp = VTOSMB(ndvp) ;

/*
* Avoi d deadl ock here on old vs new directory nodes
* by always taking the locks in order of address.
* The order is arbitrary, but nust be consistent.
*/
if (odnp < ndnp)
if

{
(snbfs_rw_enter_si g(&dnp->r_rw ock, RWWR TER,

SMBI NTR(odvp)))
return (EINTR);

if (snbfs_rw enter_sig(&ndnp->r_rw ock, RWWRI TER,
{

SMBI NTR(ndvp)))
snbfs_rw_exi t (&odnp->r_rw ock);
return (EINTR);

} else {

if (smbfs_rw enter_sig(&dnp->r_rw ock, RWWRI TER

SMBI NTR(ndvp)))
return (EINTR);

if (smbfs_rw enter 5|g(&odnp >r _rw ock, RWWRI TER

SMBI NTR(odvp))) {
snbf s_rw_exi t (&dnp->r_rw ock);
return (EINTR);
}

}
smb_credinit(&scred, cr);
/*

* No returns after this point (goto out)

*/

/*
* Need wite access on source and target.
* Server takes care of npbst checks.

*/
error = snbfs_access(odvp, VWMRI TE| VEXEC, 0, cr, ct);
if (error)

goto out;
if (odvp != ndvp)
error = snbfs_access(ndvp, VW TE, 0, cr, ct);
if (error)
goto out;

VTOSM (odvp) - >smi _zone_ref.zref_zone);

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

2285

2287
2288
2289
2290
2291
2292

2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317

2319
2320
2321
2322
2323
2324
2325
2326
2327

2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341

2343
2344
2345
2346
2347
2348
2349
2350

}

/*
* Lookup the source name. Must already exist.
*

error = snbfsl ookup(odvp, onm &ovp, cr, 0, ct);
if (error)
goto out;

/*
* Lookup the target file. |If it exists, it needs to be
* checked to see whether it is a nmount point and whet her
* it is active (open).
*/
error = snbfslookup(ndvp, nnm &nvp, cr, 0, ct);
if (lerror) {
/*

* Target (nvp) already exists. Check that it
* has the sane type as the source. The server
* will check this also, (and nore reliably) but
* this lets us return the correct error codes.
*

/

if (ovp->v_type == VDIR)
if (nvp->v_type != VD R)
error = ENOTDI R,

goto out;
} else {
if (nvp->v_type == VDI R)
error = EISDR;
goto out;
}
}

/*
* PCSI X dictates that when the source and target
* entries refer to the sane file object, renane
* must do nothing and exit w thout error.
*/
if (ovp == nvp) {

error = 0;

goto out;

}

/*

* Also nmust ensure the target is not a nmount point,
* and keep nount/urmount away until we’'re done.

*

if (vn_vfsrlock(nvp)) {
error = EBUSY;
goto out;

}
nvp_|l ocked = 1;
if (vn_mountedvfs(nvp) != NULL) {
error = EBUSY;
goto out;
}
/*
* CIFS gives a SHARI NG VI OLATI ON error when
* trying to renane onto an exising object,
* so try to renpve the target first.
* (Only for files, not directories.)
*
if (nvp->v_type == VDIR) {
error = EEXI ST;

33

new usr/src/uts/ comon/ fs/snbcl nt/snbf s/ snbfs_vnops. c 34
2351 goto out;

2352 }

2354 /*

2355 * Nodes that are "not active" here have v_count=2
2356 * because vn_renaneat (our caller) did a |Iookup on
2357 * both the source and target before this call.
2358 * Otherwise this simlar to snbfs_renove.

2359 *

2360 nnp = VTOSMB(nvp);

2361 mut ex_ent er (&np- >r _st at el ock) ;

2362 if ((nvp->v_count > 2) && (nnp->n_fidrefs > 0)) {
2363 /*

2364 * The target file exists, is not the same as
2365 * the source file, and is active. Qher FS
2366 * inplenentations unlink the target here.
2367 * For SMB, we don’t assune we can renobve an
2368 * open file. Return an error instead.
2369 *

2370 nut ex_exi t (&np->r_st at el ock) ;

2371 error = EBUSY;

2372 goto out;

2373 }

2375 /*

2376 * Target file is not active. Try to renove it.
2377 */

2378 smbf s_attrcache_rm. | ocked(nnp);

2379 mut ex_exi t (&np->r_st at el ock) ;

2381 error = snbfs_snb_del ete(nnp, &scred, NULL, 0, 0);
2383 *

2384 * Simlar to snbfs_renpve

2385 */

2386 switch (error) {

2387 case 0:

2388 case ENOCENT:

2389 case ENOTDI R

2390 snbf s_attrcache_prune(nnp);

2391 br eak;

2392 }

2394 if (error)

2395 goto out;

2396 /*

2397 * OK, renmpved the target file. Continue as if
2398 * | ookup target had failed (nvp == NULL).

2399 */

2400 vn_vfsunl ock(nvp);

2401 nvp_| ocked = 0;

2402 VN_RELE(nvp) ;

2403 nvp = NULL

2404 } /* nvp */

2406 onp = VTOSMB(ovp);

2407 snbf s_attrcache_r enove(onp);

2409 error = snbfs_snb_renane(onp, ndnp, nnm strlen(nnm, &scred);
2411 /*

2412 * |If the old nane should no | onger exist,

2413 * discard any cached attributes under it.

2414 */

2415 if (error == 0)

2416 snbf s_at trcache_prune(onp);

new usr/ src/ uts/ comon/ fs/snbcl nt/snbf s/ snbfs_vnops. c 35 new usr/src/ uts/ comon/ fs/snbcl nt/snbf s/ snbfs_vnops. c 36
2483 if (error)
2418 out: 2484 goto out;
2419 if (nvp) {
2420 if (nvp_l ocked) 2486 error = snbfs_snb_nkdir(dnp, nane, nnlen, &scred);
2421 vn_vfsunl ock(nvp); 2487 if (error)
2422 VN_RELE(nvp) ; 2488 goto out;
2423 1
2424 if (ovp) 2490 error = snbfs_snb_| ookup(dnp, &name, &nmen, & attr, &scred);
2425 VN_RELE(ovp) ; 2491 if (error)
2492 goto out;
2427 snb_credrel e(&scred);
2428 snbf s_rw_exi t (&odnp->r _rw ock) ; 2494 snbf s_attr_touchdir(dnp);
2429 smbfs_rw_exi t (&dnp->r_rw ock);
2496 error = snbfs_nget (dvp, nane, nmen, & attr, &vp);
2431 return (error); 2497 if (error)
2432 } 2498 goto out;
2434 | * 2500 if (nane[0] ==".")
2435 * XXX 2501 i1f ((hiderr = snbfs_snb_hideit(VTOSMB(vp), NULL, 0, &scred)))
2436 * vsecattr_t is newto build 77, and we need to eventually support 2502 SMBVDEBUG " hi de failure %\ n", hiderr);
2437 * it in order to create an ACL when an object is created.
2438 * 2504 /* Success! */
2439 * This op should support the new FlI GNORECASE flag for case-insensitive 2505 *vVpp = vp;
2440 * | ookups, per PSARC 2007/ 244. 2506 error = 0;
2441 */ 2507 out:
2442 |* ARGSUSED */ 2508 snmb_credrel e(&scred);
2443 static int 2509 smbf s_rw_exi t (&np->r _rw ock) ;
2444 snbfs_nkdir(vnode_t *dvp, char *nm struct vattr *va, vnode_t **vpp,
2445 cred_t *cr, caller_context_t *ct, int flags, vsecattr_t *vsecp) 2511 if (name !'= nm
2446 { 2512 snbf s_nanme_free(nane, nnlen);
2447 vnode_t *vp;
2448 struct snmbnode *dnp = VTOSMB(dvp); 2514 return (error);
2449 struct smbmtinfo *sm = VIOSM (dvp); 2515 }
2450 struct snmb_cred scred;
2451 struct snbfattr fattr; 2517 | *
2452 const char *name = (const char *) nm 2518 * XXX
2453 int nm en = strlen(nane); 2519 * This op should support the new FI GNORECASE flag for case-insensitive
2454 int error, hiderr; 2520 * | ookups, per PSARC 2007/ 244.
2521 */
2456 if (curproc->p_zone != sm->sni _zone_ref.zref_zone) 2522 /* ARGSUSED */
2457 return (EPERV; 2523 static int
2524 snbfs_rndir(vnode_t *dvp, char *nm vnode_t *cdir, cred_t *cr,
2459 if (sm->sm_flags & SM_DEAD || dvp->v_vfsp->vfs_flag & VFS_UNMOUNTED) 2525 cal l er_context _t *ct, int flags)
2460 return (EIO; 2526 {
2527 vnode_t *vp = NULL;
2462 if ((nmMen ==1 & nane[0] == ".") || 2528 int vp_l ocked = 0;
2463 (nmen == 2 & nanme[0] =="." && nanme[l] == "'.")) 2529 struct snmbmtinfo *sm = VTOSM (dvp);
2464 return (EEXIST); 2530 struct snmbnode *dnp = VTOSMB(dvp);
2531 struct snbnode *np;
2466 /* Only plain files are allowed in V_XATTRDIR */ 2532 struct snmb_cred scred;
2467 if (dvp->v_flag & V_XATTRDI R 2533 int error;
2468 return (EINVAL);
2535 if (curproc->p_zone != sm->sm _zone_ref.zref_zone)
2470 if (smbfs_rw enter_sig(&np->r_rw ock, RWWRI TER, SMBI NTR(dvp))) 2536 return (EPERV;
2471 return (EINTR);
2472 smb_credinit(&scred, cr); 2538 if (sm->sm_flags & SM_DEAD || dvp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
2539 return (ElO;
2474 /*
2475 * XXX: Do we need r_| kserlock too? 2541 if (smbfs_rw enter_sig(&np->r_rw ock, RWWRI TER, SMBI NTR(dvp)))
2476 * No use of any shared fid or fctx... 2542 return (EINTR);
2477 */ 2543 snb_credinit(&scred, cr);
2479 /* 2545 /*
2480 * Require wite access in the containing directory. 2546 * Require w x access in the containing directory.
2481 */ 2547 * Server handles all other access checks.
2482 error = snbfs_access(dvp, VWRITE, 0, cr, ct); 2548 */

new usr/ src/ uts/ comon/ fs/snbcl nt/snbf s/ snbfs_vnops. c 37

2549
2550
2551

2553
2554
2555
2556
2557
2558
2559

2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582

2584
2585

2587
2588
2589
2590
2591
2592
2593
2594
2595
2596

2598
2599

2601
2602
2603
2604
2605

2607
2608
2609
2610
2611
2612
2613
2614

out :

error = snbfs_access(dvp, VEXEC| WRITE, 0, cr, ct);
if (error)
goto out;

/*

* First |ookup the entry to be renpved.

*

/
error = snbfsl ookup(dvp, nm &vp, cr, 0, ct);
if (error)

goto out;

np = VTGSMB(vp);

/*

* Disallow rndir of or current dir, or the FS root.

* Also nake sure it’s a directory, not a nount point,

*/and lock to keep nmount/unmount away until we’re done.

*

if ((vp == dvp) || (vp == cdir) || (vp->v_flag & VROOT)) {
error = EI NVAL;
goto out;

}

1f (vp->v_type !'= VDIR) {
error = ENOTDI R;
goto out;

if (vn_vfsrlock(vp)) {
error = EBUSY;

goto out;

}

vp_l ocked =

if (vn_nount edvfs(vp) I'= NULL) {
error = EBUSY;
goto out;

}

snbf s_attrcache_renove(np);
error = snbfs_snb rrrdlr(np, &scred);

/*
* Simlar to snbfs_renove
*

switch (error) {

case O:

case ENOENT:

case ENOTDI R
smbf s_attrcache_prune(np);
br eak;

}

if (error)
goto out;

nmut ex_ent er (&np- >r _st at eI ock) ;
dnp->n_flag | = NVODI F

mut ex_exi t (&np->r stat eI ock),
smbfs_attr_t ouchdir (dnp);

smbf s_r mhash(np) ;

if (vp) {
if (vp_l ocked)
vn_vf sunl ock(vp)
VN_RELE(vp);

}
snb_credrel e(&scred);
snbfs_rw_exi t (&np->r_rw ock);

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

2616
2617

2620
2621
2622
2623
2624
2625
2626
2627

2629

2631
2632

2634
2635

2637
2638
2639
2640
2641
2642

2644

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656

2658
2660

2662
2663

2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680

return (error);

}

/* ARGSUSED */
static int

snbfs_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp,

caller_context_t *ct, int flags)
{
struct snbnode *np = VTOSMB(vp);
int error = 0;
smbmti nfo_t *sm ;
sm = VIOSM (vp);
if (curproc->p_zone != sm->sm _zone_ref.zref_zone)
return (EIO;
if (smi->smi_flags & SM_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
return (EIO;
/*
* Require read access in the directory.
*
error = snbfs_access(vp, VREAD, 0, cr, ct);
if (error)
return (error);
ASSERT(snmbf s_rw_| ock_hel d(&p->r_rw ock, RW READER));
/*
* XXX: Todo readdir cache here
* Note: NFS code is just below this.
*
* | amserializing the entire readdir opreation
* now since we have not yet inplenented readdir
* cache. This fix needs to be revisited once
* we inplenent readdir cache.
*
if (smbfs_rw enter_sig(&p->r_| kserlock, RWWRI TER, SMBINTR(vp)))
return (EINTR);
error = snbfs_readvdir(vp, uiop, cr, eofp, ct);
snmbfs_rw_exit (&p->r_| kser| ock) ;
return (error);
}
/* ARGSUSED */
static int
snbf s_readvdi r(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,

caller_context_t *ct)
s /
Note: "limt" tells the SMB-level FindFirst/FindNext
functions how many directory entries to request in
each G Wcall. It needs to be |arge enough so that
we don’t nake lots of tiny GWrequests, but there's
no point making it larger than the maxi num nunber of
G Wentries that would fit in a maxi num sized trans2
response (64k / 48). Beyond that, it’s just tuning.
* WnNT used 512, Wn2k used 1366. W use 1000.
*/
static const int limt = 1000;

* ok ok ok k% o F

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692

2694

2696
2697

2699
2700
2701
2702
2703

2705
2706
2707
2708

2710
2711
2712

2714
2715
2716

2718
2719
2720
2721
2722
2723

2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746

/* Largest possible dirent size. */

static const size_t dbufsiz = DI RENT64_RECLEN(SMB_MAXFNANMELEN) ;

struct snb_cred scred;

vnode_t *newp;

struct snmbnode *np = VTOSMB(vp);
struct snbfs_fctx *ctx;

struct dirent64 *dp;

ssi ze_t save_resid;

of fset _t save_offset; /* 64 bits */
int offset; /* yes, 32 bits */
int nm en, error;

ushort _t recl en;

ASSERT(cur proc->p_zone == VTOSM (vp)->sm _zone_ref.zref _zone);

/* Make sure we serialize for n_dirseq use. */
ASSERT(snmbf s_rw_| ock_hel d(&p->r _| kserl ock, RWWRI TER));

/*
* Make sure snbfs_open filled in n_dirseq
*
if (np->n_dirseq == NULL)
return (EBADF);

/* Check for overflow of (32-bit) directory offset. */
if (uio->uio_loffset < O || uio->uio_loffset > I NT32_MAX ||
(uio->uio_| offset + uio->uio_resid) > | NT32_MAX)
return (EINVAL);

/* Require space for at |east one dirent. */
if (uio->uio_resid < dbufsiz)
return (EINVAL);

SMBVDEBUQ(" di r name=" %'\ n", np->n_rpath);
smb_credinit(&scred, cr);
dp = knmem al | oc(dbufsiz, KM SLEEP);

save_resid = uio->uio_resid,;

save_of f set = ui o->ui o_| of f set;

of fset = ui o->ui o_of fset;

SMBVDEBUG "i n: of fset =%, resid=%\n",
(int)uio->uio_offset, (int)uio->uio_resid);

error = 0;
/*
* Generate the "." and ".." entries here so we can

* (1) meke sure they appear (but only once), and
* (2) deal with getting their | nunbers which the
* findnext bel ow does only for normal nanes.
*

/

while (offset < FIRST_DI ROFS) {
/*

* Tricky bit filling in the first two:
* offset 0is ".", offset 1is ".."

* so strlen of these is offset+1.

*

/
recl en = DI RENT64_RECLEN(of fset + 1);
if (uio->uio_resid < reclen)

goto out;

bzero(dp, recl en)
dp->d_reclen = reclen
dp->d_nane[0] ="'.";
dp->d_nane[1] ="'.";
dp >d nama[offset + 1] ='\0";

* Want the real |-nunbers for the "." and ".."

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772

2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794

2796
2797
2798
2799
2800
2801
2802
2803
2804

2806
2807
2808
2809
2810
2811
2812

* entries. For these two nanes, we know t hat
* snbf sl ookup can get the nodes efficiently.

*/
error = snbfslookup(vp, dp->d_name, &newp, cr, 1, ct);
if (error)
dp->d_ino = np->n_ino + offset; /* fiction */
} else {
dp->d_i no = VTOSMB(newp) - >n_i no;
VN_RELE(neva)
}
/*

* Note: d_off is the offset that a user-level program
* shoul d seek to for reading the NEXT directory entry.
* See libc: readdir, telldir, seekdir
*/
dp->d_of f = offset + 1;
error = uionove(dp, reclen, U O READ, uio);
if (error)
goto out;
/*
* Note: uionpbve updates ui o- >ui o_of f set,
* but we want it to be our “"cookie" value,
* which just counts dirents ignoring size.
*/
ui 0->ui o_of fset = ++of fset;

}

*

* |f there was a backward seek, we have to reopen.
*/

if (offset < np->n_dirofs)
SMBVDEBUG " Reopeni ng search %d: %@\ n",
offset np->n_dirofs);
error = smbfs_snb_fi ndopen(np e,
SVB_FA SYSTEM | SMB FA HI DDEN | SVMB_FA DI R,
&scred, &ctx);
if (error) {
SMBVI

goto out;

}
/* free the old one */
(voi d) snbfs_snb_findcl ose(np->n_dirseq, &scred);
/* save the new one */
np->n_dirseq = ctx;
np->n_di rof s = FI RST_DI ROFS;
} else {
ctx = np->n_dirseq;
}

/*
* Skip entries before the requested offset.

while (np->n_dirofs < offset) {
error = snbfs_snb_findnext(ctx, limt, &scred);
if (error 1= 0)
goto out;
np->n_di r of s++;

}

/*
* Wiile there’s roomin the caller’s buffer:
* get a directory entry from SMB,
* convert to a dirent, copyout.
* W stop when there is no |longer roomfor a
* maxi num si zed dirent because we nust decide
*

bef ore we know anyt hi ng about the next entry.

DEBUG("can not open search, error = %", error);

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢ 41 new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢ 42
2813 */ 2879 return (error);
2814 whil e (uio->uio_resid >= dbufsiz) { 2880 }
2815 error = snbfs_snb_findnext(ctx, limt, &scred);
2816 if (error 1= 0)
2817 goto out; 2883 /*
2818 np- >n_di r of s++; 2884 * The pair of functions VOP_RW.OCK, VOP_RWINLOCK
2885 * are optional functions that are called by:
2820 /* Sanity check the name length. */ 2886 * getdents, before/after VOP_READDI R
2821 nm en = ctx->f_nnlen; 2887 * pread, before/after ... VOP_READ
2822 if (nmen > SVB_VMAXFNAMELEN) { 2888 * pwite, before/after ... VOP_WRI TE
2823 nm en = SMB_MAXFNAMELEN; 2889 * (ot her pl aces)
2824 SMBVDEBUG(" Truncat i ng nane: %\n", ctx->f_nane); 2890 *
2825 } 2891 * Careful here: None of the above check for any
2826 1 f (snbfs_fastl ookup) { 2892 * error returns from VOP_RWALOCK / VOP_RWINLOCK!
2827 /* See comment at snbfs_fastl ookup above. */ 2893 * In fact, the return value from _rw ock is NOT
2828 if (snmbfs_nget(vp, ctx->f_nanme, nnlen, 2894 * an error code, but V_WRI TELOCK TRUE / _FALSE.
2829 &ctx->f _attr, &newp) == 0) 2895 *
2830 VN_RELE(newp) ; 2896 * Therefore, it’'s up to _this_ code to make sure
2831 1 2897 * the lock state renmmins bal anced, which nmeans
2898 * we can’'t "bail out" on interrupts, etc.
2833 recl en = DI RENT64_RECLEN(nml en); 2899 */
2834 bzero(dp, reclen);
2835 dp->d_reclen = reclen; 2901 /* ARGSUSED2 */
2836 bcopy(ct x->f _name, dp->d_nane, nnlen); 2902 static int
2837 dp->d_nane[nmen] = '\0"; 2903 snbfs_rw ock(vnode_t *vp, int wite_lock, caller_context_t *ctp)
2838 dp->d_ino = ctx->f _i num 2904 {
2839 dp->d_off = offset + 1; /* See d_off comment above */ 2905 smbnode_t *np = VTOSMB(vp);
2840 error = ui omove(dp, reclen, U O READ, uio);
2841 if (error) 2907 if (!wite_l ock)
2842 goto out; 2908 (void) snbfs_rw enter_sig(&p->r_rw ock, RWREADER, FALSE);
2843 /* See comment re. uio_offset above. */ 2909 return (V_WRI TELOCK_FALSE) ;
2844 ui o->ui o_of fset = ++of fset; 2910 }
2845 }
2847 out: 2913 (void) snbfs_rw enter_sig(&p->r_rw ock, RWWR TER, FALSE);
2848 /* 2914 return (V_WRI TELOCK TRUE) ;
2849 * When we cone to the end of a directory, the 2915 }
2850 * SMB-level functions return ENCENT, but the
2851 * caller is not expecting an error return. 2917 /* ARGSUSED */
2852 * 2918 static void
2853 * Also note that we nust delay the call to 2919 snbfs_rwunl ock(vnode_t *vp, int wite_lock, caller_context_t *ctp)
2854 * snmbfs_snb_findcl ose(np->n_dirseq, ...) 2920 {
2855 * until snbfs_close so that all reads at the 2921 smbnode_t *np = VTOSMB(vp);
2856 * end of the directory will return no data.
2857 */ 2923 snmbfs_rw_exit (&p->r_rw ock);
2858 if (error == ENCENT) { 2924 }
2859 error = 0;
2860 if (eofp)
2861 *eofp = 1; 2927 /* ARGSUSED */
2862 } 2928 static int
2863 [* 2929 snbfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct)
2864 * |If we encountered an error (i.e. "access denied") 2930 {
2865 * fromthe FindFirst call, we will have copied out 2931 snmbmti nfo_t *sm ;
2866 * the "." and ".." entries |eaving offset == 2.
2867 * In that case, restore the original offset/resid 2933 sm = VIOSM (vp);
2868 * so the caller gets no data with the error.
2869 */ 2935 if (curproc->p_zone != sm->sm _zone_ref.zref_zone)
2870 if (error =0 & offset == FIRST_DI ROFS) { 2936 return (EPERV;
2871 ui o->ui o_| of fset = save_offset;
2872 ui 0->ui o_resid = save_resid; 2938 if (sm->sm_flags & SM_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
2873 } 2939 return (EIO;
2874 SMBVDEBUG "out : of f set =%, resi d=%l\n",
2875 (int)uio->uio_offset, (int)uio->uio_resid); 2941 /*
2942 * Because we stuff the readdir cookie into the offset field
2877 kmem free(dp, dbufsiz); 2943 * soneone nay attenpt to do an |seek with the cookie which
2878 snb_credrel e(&scred); 2944 * we want to succeed.

new usr/ src/ uts/ comon/ fs/snbcl nt/snbf s/ snbfs_vnops. c 43

2945
2946
2947

2949
2950
2951

2953
2954

2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967

2969
2970
2971
2972
2973

2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988

2990

2992
2993

2995
2996

2998
2999
3000
3001

3003
3004
3005
3006
3007

3009
3010

*/
if (vp->v_type == VDIR)
return (0);

/* Like NFS3, just check for 63-bit overflow */
if (*noffp < 0)
return (EINVAL);

return (0);
}
/*
* XXX
* This op may need to support PSARC 2007/ 440, nbmand changes for CIFS Service.
*
static int

smbf s_frl ock(vnode_t *vp,

)| int cmd, struct flock64 *bfp, int flag,
of fset _t offset, struct flk_callback *flk_cbp, cred_t *cr,
cal l er_context _t *ct)

{
if (curproc->p_zone != VTIOSM (vp)->sni _zone_ref.zref_zone)
return (EIO;
if (VIOSM (vp)->sm _flags & SM _LLOCK)
return (fs_frlock(vp, cnd, bfp, flag, offset, flk_cbp, cr, ct));
el se
return (ENOSYS);
}
/*
* Free storage space associated with the specified vnode. The portion
* to be freed is specified by bfp->_start and bfp->l_len (already
* normalized to a "whence" of 0).
*
* Called by fentl (fd, F_FREESP, |kp) for libc:ftruncate, etc.
*
/* ARGSUSED */
static int

snbf s_space(vnode_t *vp, int cnd, struct flock64 *bfp,

{

int flag,
of fset _t offset, cred_t *cr, caller_context_t *ct)
int error;
smbmti nfo_t *sm ;

sm = VIOSM (vp);

if (curproc->p_zone != sm->sni _zone_ref.zref_zone)
return (EIO;

if (sm->sm_flags & SM_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
return (EIO;

/* Caller (fcntl) has checked v_type */
ASSERT(vp->v_type == VREG);
if (cnd | = F_FREESP)

return (EINVAL);

/*
* Like NFS3, no 32-bit offset checks here.
* Qur SMB | ayer takes care to return EFBI G
* when it has to fallback to a 32-bit call.
*/

error = convoff(vp, bfp, 0, offset);
if (lerror) {

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

3011
3012
3013

3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029

3031
3032

3034
3035
3036
3037
3038
3039
3040
3041

3043
3044

3046
3047

3049
3050

3052
3053
3054
3055
3056
3057
3058
3059

3061
3062
3063
3064

3066
3067
3068
3069
3070
3071
3072
3073
3074

3076

ASSERT(bf p->l _start >= 0);
if (bfp-> _len == 0) {
struct vattr va;
/*
* ftruncate should not change the ctime and
* minme if we truncate the file to its
* previous size.
*/
va.va_mask = AT_SI ZE;
error = snbfsgetattr(vp, &a, cr);
if (error || va.va_size == bfp->l_start)
return (error);
va.va_nmask = AT_SI ZE;
va.va_size = bfp->l_start;
error = snbfssetattr(vp, &a, 0, cr);
} else
error = EI NVAL;
}
return (error);
}
/* ARGSUSED */
static int
snbf s_pat hconf (vnode_t *vp, int cnmd, ulong_t *valp, cred_t *cr,
caller_context_t *ct)
{
vis_t *vfs;
smbmmtinfo_t *sm;
struct snb_share *ssp;
vfs = vp->v_vfsp;
sm = VFTOSM (vfs);
if (curproc->p_zone != sm->sn _zone_ref.zref_zone)
return (EIO;
if (sm->sm_flags & SM_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
return (ElO;
switch (cnd) {
case _PC_FI LESI ZEBI TS:
ssp = smi ->sni _share;
if (SSTOVC(ssp)->vc_sopt.sv_caps & SMB_CAP_LARGE_FI LES)
*val p = 64;
el se
*valp = 32;
br eak;
case _PC_LI NK_MAX:
/* W only ever report one link to an object */
*valp = 1;
br eak;
case _PC_ACL_ENABLED:
/*
* Always indicate that ACLs are enabl ed and
* that we support ACE T format, otherw se
* libsec will ask for ACLENT_T format data
* which we don’t support.
*/
*val p = _ACL_ACE_ENABLED,
br eak;
case _PC_SYM.I NK_MNAX: /* No syminks until we do Uni x extensions */

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

3077
3078

3080
3081
3082
3083
3084
3085

3087
3088
3089
3090
3091
3092
3093

3095
3096
3097
3098
3099 }

3101 /*

*valp = 0
br eak;

_PC_XATTR_EXI STS:
if (vfs->vfs flag & VFS_XATTR) {
*val p = snbfs_xa_exists(vp, cr);
br eak;

case

}
return (EINVAL);
case PC TI MESTAMP_RESOLUTI ON:
/*

* Wndows tinmes are tenths of mcroseconds
* (multiples of 100 nanoseconds) .
*/

*val p = 100L
br eak;

defaul t:

return (fs_pathconf(vp, cnd, valp, cr, ct));

}
return (0);

ARGSUSED */

3102 static int

3103 snbfs_getsecattr(vnode_t *vp, vsecattr_t *vsa,

3104
3105 {
3106
3107
3108
3109

3111
3112

3114
3115

3117
3118

3120
3121
3122
3123
3124
3125
3126
3127
3128
3129

3131
3132
8133
3134

3136
3137

3139
3140 }

3142 /*

int flag, cred_t *cr,
caller_context_t *ct)

vis_t *vfsp;
smbmtinfo_t *smi;
int error;
uint_t mask;

vfsp = vp->v_vfsp;
sm = VFTOSM (vfsp);

if (curproc->p_zone !=
return (ElIO;

sm ->sm _zone_ref. zref_zone)

if (sm->sm_flags & SM_DEAD || vfsp->vfs_flag & VFS_UNMOUNTED)
return (EIO;

*
* Qur _pathconf indicates _ACL_ACE_ENABLED,
* so we should only see VSA ACE, etc here.

* Note: vn_create asks for VSA DFACLCNT,
* and it expects ENOSYS and enpty dat a.
*
/

mask = vsa->vsa_mask & (VSA ACE | VSA ACECNT |
VSA ACE_ACLFLAGS | VSA ACE ALLTYPES);
if (mask == 0)
return (ENOSYS);

if (sm->sm_flags & SM _ACL)
error = snbfs_acl _getvsa(vp, vsa, flag, cr);
el se

error = ENOSYS;

if (error == ENOSYS)

error = fs_fab_acl (vp, vsa, flag, cr, ct);

return (error);

ARGSUSED */

45

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

3143 static int

3144 snbfs_setsecattr(vnode_t *vp, vsecattr_t *vsa,

3145
3146
3147
3148
3149
3150

3152
3153

3155
3156

3158
3159

3161
3162
3163
3164
3165
3166
3167

3169
3170

3172
3173
3174
3175
3176
3177
3178

3180
3181
3182
3183

3185
3186

3189
3190
3191
3192
3193
3194
3195
3196
3197
3198

3200
3201
3202
3203
3204

3206
3207
3208

int flag, cred_t *cr,

caller_context_t *ct)
{
vis_t *vfsp;
smbmtinfo_t *smi;
int error;
uint_t mask;
vfsp = vp->v_vfsp;
sm = VFTOSM (vfsp);
if (curproc->p_zone != sm->sm _zone_ref.zref_zone)
return (ElIO;
if (sm->sm_flags & SM_DEAD || vfsp->vfs_flag & VFS_UNMOUNTED)
return (EIO;
/*
* Qur _pathconf indicates _ACL_ACE ENABLED,
* so we should only see VSA _ACE, etc here.
*
/
mask = vsa->vsa_mask & (VSA_ACE | VSA ACECNT);
if (mask == 0)
return (ENOSYS);
if (vfsp->vfs_flag & VFS_RDONLY)
return (EROFS);
/*
* Allow only the nount owner to do this.
* See comments at snbfs_access_rwx.
*
/
error = secpolicy_vnode_setdac(cr, sm->sm _uid);
if (error 1= 0)
return (error);
if (sm->sm_flags & SM _ACL)
error = snbfs_acl _setvsa(vp, vsa, flag, cr);
el se
error = ENOSYS
return (error);
}
/*
* XXX
* This op should eventual |y support PSARC 2007/ 268.
*
/
static int
snbf s_shrl ock(vnode_t *vp, int cnd, struct shrlock *shr, int flag, cred_t
caller_context_t *ct)
{
if (curproc->p_zone != VTOSM (vp)->sm _zone_ref.zref_zone)
return (ElIO;
if (VIOSM (vp)->sni_flags & SM _LLOCK)
return (fs_shrlock(vp, crmd, shr, flag, cr, ct));
el se
return (ENOSYS);
}
static int uio_page_napin(uio_t *uiop, page_t *pp) {

u_offset_t off;
size_t size;

Sci

new usr/ src/ uts/ comon/ fs/snbcl nt/snbf s/ snbfs_vnops. c 47
3209 pgcnt _t npages;

3210 caddr _t kaddr;

3211 pfn_t pfnum

3213 off = (uintptr_t) uiop->uio_|offset & PAGEOFFSET;

3214 si ze = P2ROUNDUP(ui op->ui o_resid + off, PAGESIZE);
3215 npages = btop(size);

3217 ASSERT(pp != NULL);

3219 if (npages == 1 & kpm enabl e) {

3220 kaddr = hat _kpm mapi n(pp, NULL);

3221 if (kaddr == NULL)

3222 return (EFAULT);

3224 ui op- >ui o_i ov- >i ov_base = kaddr + off;

3225 ui op- >ui o_i ov->i ov_| en = PAGESI ZE - off;

3227 } else {

3228 kaddr = vmem xal | oc(heap_arena, size, PAGESIZE, 0, 0, NULL, NULL, VM SLE
3229 if (kaddr == NULL)

3230 return (EFAULT);

3232 ui op->ui o_i ov- >i ov_base = kaddr + off;

3233 ui op->ui o_iov->iov_len = size - off;

3235 /*map pages into kaddr*/

3236 uint_t attr = PROT_READ | PROT_WRI TE | HAT_NOSYNC;
3237 while (npages-- > 0)

3238 pf num = pp- >p_pagenum

3239 pp = pp->p_next;

3241 hat _devl oad(kas. a_hat, kaddr, PAGESIZE, pfnum attr, HAT_LOAD LOCK);
3242 kaddr += PAGESI ZE;

3243 }

3244 }

3245 return (0);

3246 }

3248 static void uio_page_mapout (uio_t *uiop, page_t *pp) {
3249 u_of fset _t off;

3250 si ze_t size;

3251 pgcnt _t npages;

3252 caddr _t kaddr;

3254 kaddr = ui op->ui o_i ov->i ov_base;

3255 off = (UI ntptr_t) kaddr & PAGEOFFSET;

3256 si ze = P2ROUNDUP(ui op->ui o_i ov->i ov_ ien + of f, PAGESI ZE) ;
3257 npages = btop(size);

3259 ASSERT(pp != NULL);

3261 kaddr = (caddr_t) ((uintptr_t) kaddr & MVJ_PAGEMVASK) ;
3263 if (npages == 1 && kpm enabl e) {

3264 hat _kpm mapout (pp, NULL, kaddr);

3266 } else {

3267 hat _unl oad(kas. a_hat, (void*) kaddr, size,

3268 HAT UNLCAD_NOSYNC | HAT_UNLOAD UNLOCK) :
3269 vem free(heap_arena, (void*) kaddr, size);

3270 }

3271 ui op- >ui o_i ov- >i ov_base = 0;

3272 ui op->ui o_iov->iov_len = 0;

3273 }

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

3275 static int snbfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,

3276 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t
3277 caller_context t *ct) {

3278 snbnode_t *np;

3279 smbmtinfo_t *sm;

3280 struct vattr va;

3281 segvn_crargs_t vn_a;

3282 int error;

3284 np = VTOSMB(vp);

3285 sni = VTOSM (vp);

3287 if (curproc->p_zone != sm->sm _zone_ref.zref_zone)
3288 return (EIO;

3290 if (smi->smi_flags & SM_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
3291 return (EIO;

3293 if (vp->v_flag & VNOVAP || vp->v_flag & VNOCACHE)
3294 return (EAGAIN);

3296 if (vp->v_type != VREGQ

3297 return (ENCDEV);

3299 va.va_mask = AT_ALL;

3300 if (error = snbfsgetattr(vp, &va, cr))

3301 return (error);

3303 if (smbfs_rw enter_sig(&p->r_| kserlock, RWWRI TER, SMBINTR(vp)))
3304 return (EINTR);

3306 if (MANDLOCK(vp, va.va_node)) {

3307 error = EAGAIN,;

3308 goto out;

3309 }

3311 as_r angel ock(as);

3312 error = choose_addr(as, addrp, len, off, ADDR VACALIGN, flags);
3314 if (error '=0) {

3315 as_rangeunl ock(as);

3316 goto out;

3317 }

3319 vn_a.vp = vp;

3320 vn_a. offset = of f;

3321 vn_a.type = flags & MAP_TYPE;

3322 vn_a.prot = prot;

3323 vn_a. maxprot = maxpr

3324 vn_a.flags = fI ags & NAP TYPE;

3325 vn_a.cred =

3326 vn_a.anp = NULL;

3327 vn_a.szc = 0;

3328 vn_a. |l grp_mem policy_flags = 0;

3330 error = as_map(as, *addrp, |len, segvn_create, &vn_a);
3332 as_rangeunl ock(as);

3334 out:

3335 snmbf s_rw_exi t (&p->r_I kserl ock) ;

3337 return (error);

3338 }

3340 static int snbfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,

new usr/ src/ uts/ comon/ fs/snbcl nt/snbf s/ snbfs_vnops. c 49
3341 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
3342 cal l er_context _t *ct) {

3343 atomi c_add_l ong((ulong_t *) & VTOSMB(vp)->r_mapcnt, btopr(len));

3344 return (0);

3345 }

3347 static int snbfs_del map(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
3348 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
3349 cal ler_context _t *ct) {

3351 snbnode_t *np;

3353 atomi c_add_l ong((ulong_t *) & VTOSMB(vp)->r_mapcnt, -btopr(len));

3355 /* mark RDIRTY here, will be used to check if a file is dirty when unnount s
3356 if (vn_has_cached_dat a(vp) && !vn_is_readonly(vp) && maxprot & PROT_WRI TE &&
3357 np = VIOSMB(vp) ;

3358 mut ex_ent er (&p- >r _st at el ock) ;

3359 np->r_flags | = RDIRTY;

3360 nmut ex_exi t (&np->r_st at el ock) ;

3361 }

3362 return (0);

3363 }

3365 static int snbfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags,
3366 cred_t *cr, caller_context_t *ct) {

3368 snbnode_t *np;

3369 size_t To_len;

3370 u_offset_t io_off;

3371 u_of fset _t eoff

3372 int error = 0;

3373 page_t *pp;

3375 np = VTOSMB(vp);

3377 if (len ==0) {

3378 /* will flush the file, so clear RD RTY */

3379 if (off == (u_offset_t) 0 & (np->r_flags & RDIRTY)) {

3380 mut ex_ent er (&p- >r _st at el ock) ;

3381 np->r_flags & ~RDIRTY;

3382 mut ex_exi t (&np->r _st at el ock);

3383 }

3385 error = pvn_vplist_dirty(vp, off, snbfs_putapage, flags, cr);

3386 } else {

3388 eoff = off + |en;

3390 mut ex_ent er (&np- >r _st at el ock) ;

3391 if (eoff > np->r_size)

3392 eof f = np->r_size;

3393 mut ex_exi t (&np->r_st at el ock) ;

3395 r (io_off = off; io_off < eoff; io_off +-|0Ien) {

3396 if ((flags & B_INVAL) || (flags & B_ASYNC) == 0) {

3397 pp = page_l ookup(vp, io_off,

3398 (flags & (B_INVAL | B FREE) ? SE_EXCL : SE_SHARED));
3399 } else {

3400 pp = page_| ookup_nowai t (vp, io_off,

3401 flags & B FREE) ? SE EXCL : SE_SHARED);

3402 }

3404 if (pp == NULL | Ipvn getdirty(pp, flags))

3405 10_| Ien = PAGESI Z|

3406 el se {

new usr/ src/ uts/ comon/ fs/snbcl nt/snbf s/ snbfs_vnops. c 50
3407 error = snbfs_putapage(vp, pp, & o_off, & o_len, flags, cr);
3408

3409 }

3411 }

3413 return (error);

3414 }

3416 static int snbfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *len
3417 int flags, cred_t *cr) {

3419 struct snb_cred scred;

3420 snbnode_t *np,

3421 smbmtinfo_t *sni;

3422 smb_share_t *ssp;

3423 ui o_t uio;

3424 i ovec_t ui ov, uiov_bak;

3426 size_t io_len;

3427 u_offset_t io_off;

3428 si ze_t bsi ze;

3429 size_t bl ksi ze;

3430 u_offset_t bl koff;

3431 int error;

3433 np = VTOSMB(vp);

3434 sm = VIOSM (vp);

3435 ssp = sm ->sm _share;

3437 /*do block io, get a kluster of dirty pages in a bl ock.*/

3438 bsi ze = M—\X(vp- >v_vfsp->vfs_bsize, PAGESIZE);

3439 bl kof f = pp->p_offset / bsize;

3440 bl kof f *= bsi ze;

3441 bl ksi ze = roundup(bsi ze, PAGESI ZE);

3443 pp = pvn_wite_kluster(vp, pp, & o_off, & o_len, blkoff, blksize, flags);
3445 ASSERT(pp- >p_of fset >= bl koff);

3447 if (io_off + io_len > blkoff + blksize) {

3448 ASSERT((i o_off + io_len)-(blkoff + blksize) < PAGESIZE);

3449 io_len = blkoff + blksize - io_off;

3450 1

3452 /*currently, don’t allow put pages beyond EOF, unless snbfs_read/snbfs_wite
3453 *can do io through segkpmor vpm */

3454 mut ex_ent er (&np- >r _st at el ock) ;

3455 if (io_off >= np->r_size) {

3456 mut ex_exi t (&np->r_statel ock);

3457 error = 0;

3458 goto out;

3459 }else|f(|ooff+|olen>np>r _size) {

3460 int npages = btopr(np->r_size - io_off);

3461 page_t *trunc;

3462 page_l i st_break(&p, & runc, npages);

3463 i1f (trunc)

3464 pvn_write_done(trunc, flags);

3465 io_len = np->r_size - io_off;

3466 }

3467 nut ex_exi t (&p->r _st at el ock) ;

3469 if (smbfs_rw enter_sig(&p->r_| kserlock, RWREADER, SMBINTR(vp)))
3470 return (EINTR);

3471 snb_credinit(&scred, cr);

new usr/ src/ uts/ comon/ fs/snbcl nt/snbf s/ snbfs_vnops. c 51

3473 if (np->n_vcgenid ! = ssp->ss_vcgenid)

3474 error = ESTALE;

3475 el se {

3476 /*just use uio instead of buf, since snmb_rwiio need uio.*/
3477 ui ov. i ov_base = 0;

3478 uiov.iov_len = 0;

3479 uio.uio_iov = &uiov;

3480 uio.uio_iovent = 1;

3481 uio.uio_|loffset = io_off;

3482 uio.uio_resid = io_len;

3483 uio.uio_segflg = U0 SYSSPACE

3484 uio.uio_|Ilimt = MAXOFFSET_T;

3485 /*map pages into kernel address space, and setup uio.*/
3486 error = ui o_page_napi n(&ui o, pp);

3487 if (error == 0) {

3488 ui ov_| bak i ov_base = uiov.iov_base;

3489 ui ov_bak.iov_len = uiov.iov_len;

3490 error = snb_rwui o(ssp, np->n_fi d U O WRI TE, &uio, &scred, smb_tino_
3491 if (error == 0) {

3492 mut ex_ent er (&np- >r _st at el ock) ;

3493 np->n_flag | = (NFLUSHW RE | NATTRCHANGED) ;

3494 mut ex_exi t (&p->r_st at el ock);

3495 (void) snbfs_snb_flush(np, &scred);

3496 }

3497 /*unmap pages from kernel address space. */

3498 ui 0. ui 0_I ov = &ui ov_bak;

3499 ui o_page_mapout (&ui 0, pp);

3500 }

3501 }

3503 smb_credrel e(&scred);

3504 snbf s_rw_exi t (&p->r_I kserl ock) ;

3506 out:

3507 pvn_write_done(pp, ((error) ? B.ERROR: 0) | B WRITE | flags);
3509 if (offp)

3510 *offp = io_off;

3511 if (lenp)

3512 *lenp = io_len;

3514 return (error);

3515 }

3517 static int snbfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
3518 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
3519 enumseg_rw rw, cred_t *cr, caller_context_t *ct) {

3521 int error;

3523 /*these pages have all protections.*/

3524 if (protp)

3525 *protp = PROT_ALL;

3527 if (len <= PAGESI ZE) {

3528 error = snbfs_getapage(vp, off, len, protp, pl, plsz, seg, addr, rw,
3529 cr);

3530 } else {

3531 error = pvn_get pages(snbfs_getapage, vp, off, len, protp, pl, plsz, seg,
3532 addr, rw, cr);

3533 }

3535 return (error);

3536 }

3538 static int snbfs_getapage(vnode_t *vp, u_offset_t off, size_t len,

new usr/ src/ uts/ comon/ fs/snbcl nt/snbf s/ snbfs_vnops. c 52
3539 uint_t *protp, page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
3540 enum seg_rw rw, cred_t *cr) {

3542 snbnode_t *np;

3543 snbmtinfo_t *sm;

3544 smb_share_t *ssp;

3545 snmb_cred_t scred;

3547 page_t *pp;

3548 uio_t uio;

3549 iovec_t uiov, uiov_bak;

3551 u_of fset _t bl kof f;

3552 size_t bsize;

3553 size_t blksize;

3555 u_offset_t io_off;

3556 size_t io_len;

3557 size_t pages_| Ien;

3559 int error = 0;

3561 np = VTOSMB(vp);

3562 sm = VIOSM (vp);

3563 ssp = smi ->sm _share;

3565 /*if pl is null,it’s meaningl ess*/

3566 if (pl == NULL)

3567 return (EFAULT);

3569 agai n:

3570 if (page exi sts(vp of f) == NULL) {

3571 I f (rw == S_CREATE)

3572 /*j ust return a enpty page if asked to create.*/

3573 if ((pp = page_create_va(vp, off, PAGESIZE, PGWAIT | PG EXCL, seg,
3574 got o agai n;

3575 pages_| en = PAGESI ZE;

3576 } else {

3578 /*do bl ock io, get a kluster of non-exist pages in a block.*/
3579 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);

3580 bl koff = off / bsize;

3581 bl kof f *= bsi ze;

3582 bl ksi ze = roundup(bsi ze, PACESI ZE);

3584 pp = pvn_read_kluster(vp, off, seg, addr, & o_off, & o_len, blkoff,
3586 if (pp == NULL)

3587 got o again;

3589 pages_len = io_len;

3591 /*currently, don't allow get pages beyond ECF, unless snbfs_read/snb
3592 *can do i o through segkpmor vpm*

3593 mut ex_ent er (&np->r _st at el ock) ;

3594 if (io_off >= np->r_size) {

3595 nmut ex eX|t(&np >r_statel ock);

3596 error = 0;

3597 goto out;

3598 }elself(looff+|olen>np>r S|ze){

3599 int npages = btopr(np->r_size - io_off);

3600 page_t *trunc;

3602 page_l i st_break(&p, & runc, npages);

3603 1f (trunc)

3604 pvn_read_done(trunc, 0);

new usr/ src/ uts/ comon/ fs/snbcl nt/snbf s/ snbfs_vnops. c 53
3605 io_len = np->r_size - io_off;

3606

3607 mut ex_exi t (&p->r _st at el ock);

3609 if (smbfs_rw enter_sig(&p->r_| kserlock, RWREADER, SMBINTR(vp)))
3610 return EINTR;

3611 snb_credinit(&scred, cr);

3613 /*just use uio instead of buf, since snb_rwiio need uio.*/
3614 ui ov.iov_base = 0;

3615 uiov.iov_len = 0;

3616 ui 0.ui o_iov = &uiov;

3617 ui 0.uio_iovent = 1;

3618 uio.uio_|loffset = io_off;

3619 uio.uio_resid = io_len;

3620 ui 0. ui o_segfl g = U O SYSSPACE;

3621 uio.uio_llimt = MAXOFFSET_T;

3623 /*map pages into kernel address space, and setup uio.*/
3624 error = ui o_page_napi n(&ui o, pp);

3625 if (error == 0

3626 ui ov_bak. i ov_base = uiov.iov_base;

3627 ui ov_bak.iov_len = uiov.iov_|len;

3628 error = snb_rwii o(ssp, np->n_fid, U O READ, &uio, &scred, snb_ti
3629 /*unmap pages from kernel address space.*/

3630 ui 0. ui o_i ov = &ui ov_bak;

3631 ui o_page_mapout (&ui 0, pp);

3632 }

3634 smb_credrel e(&scred);

3635 snbf s_rw_exi t (&p->r_| kserl ock) ;

3636 1

3637 } else {

3638 se_t se = rw == S CREATE ? SE_EXCL : SE_SHARED;

3639 if ((pp = page_l ookup(vp, off, se)) == NULL) {

3640 goto agai n;

3641 }

3642 }

3644 out:

3645 if (pp) {

3646 I1f (error) {

3647 pvn_r ead_done(pp, B_ERROR);

3648 } else {

3649 /*init page list, unlock pages.*/

3650 pvn_plist_init(pp, pl, plsz, off, pages_len, rw;

3651 }

3652 }

3654 return (error);

3655 }

3658 voi d snbfs_invalidate_pages(vnode_t *vp, u_offset_t off, cred_t *cr) {

3660 smbnode_t *np;

3662 np = VTOSMB(vp);

3663 /* will flush the file, so clear RD RTY */

3664 if (off == (u_offset_t) 0 && (np->r_flags & RDIRTY)) {
3665 mut ex_ent er (&np- >r _st at el ock) ;

3666 np->r_flags & ~RDIRTY;

3667 mut ex_exi t (&np->r _st at el ock);

3668 }

3670 (void) pvn_vplist_dirty(vp, off, snbfs_putapage, B_INVAL | B_TRUNC, cr);

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

3671 }

3674 #endif /* | codereview */

54

