1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2018 Gary Mills
  23  * Copyright 2012 Nexenta Systems, Inc.  All rights reserved.
  24  */
  25 /*
  26  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
  27  * Use is subject to license terms.
  28  */
  29 
  30 /*      Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */
  31 /*      Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T       */
  32 /*        All Rights Reserved   */
  33 
  34 /*      Copyright (c) 1987, 1988 Microsoft Corporation  */
  35 /*        All Rights Reserved   */
  36 
  37 #include <sys/param.h>
  38 #include <sys/time.h>
  39 #include <sys/systm.h>
  40 
  41 #include <sys/cpuvar.h>
  42 #include <sys/clock.h>
  43 #include <sys/debug.h>
  44 #include <sys/rtc.h>
  45 #include <sys/archsystm.h>
  46 #include <sys/sysmacros.h>
  47 #include <sys/lockstat.h>
  48 #include <sys/stat.h>
  49 #include <sys/sunddi.h>
  50 #include <sys/ddi.h>
  51 
  52 #include <sys/acpi/acpi.h>
  53 #include <sys/acpica.h>
  54 
  55 static int todpc_rtcget(unsigned char *buf);
  56 static void todpc_rtcput(unsigned char *buf);
  57 
  58 #define CLOCK_RES       1000            /* 1 microsec in nanosecs */
  59 
  60 int clock_res = CLOCK_RES;
  61 
  62 /*
  63  * The minimum sleep time till an alarm can be fired.
  64  * This can be tuned in /etc/system, but if the value is too small,
  65  * there is a danger that it will be missed if it takes too long to
  66  * get from the set point to sleep.  Or that it can fire quickly, and
  67  * generate a power spike on the hardware.  And small values are
  68  * probably only usefull for test setups.
  69  */
  70 int clock_min_alarm = 4;
  71 
  72 /*
  73  * Machine-dependent clock routines.
  74  */
  75 
  76 extern long gmt_lag;
  77 
  78 struct rtc_offset {
  79         int8_t  loaded;
  80         uint8_t day_alrm;
  81         uint8_t mon_alrm;
  82         uint8_t century;
  83 };
  84 
  85 static struct rtc_offset pc_rtc_offset = {0, 0, 0, 0};
  86 
  87 
  88 /*
  89  * Entry point for ACPI to pass RTC or other clock values that
  90  * are useful to TOD.
  91  */
  92 void
  93 pc_tod_set_rtc_offsets(ACPI_TABLE_FADT *fadt) {
  94         int             ok = 0;
  95 
  96         /*
  97          * ASSERT is for debugging, but we don't want the machine
  98          * falling over because for some reason we didn't get a valid
  99          * pointer.
 100          */
 101         ASSERT(fadt);
 102         if (fadt == NULL) {
 103                 return;
 104         }
 105 
 106         if (fadt->DayAlarm) {
 107                 pc_rtc_offset.day_alrm = fadt->DayAlarm;
 108                 ok = 1;
 109         }
 110 
 111         if (fadt->MonthAlarm) {
 112                 pc_rtc_offset.mon_alrm = fadt->MonthAlarm;
 113                 ok = 1;
 114         }
 115 
 116         if (fadt->Century) {
 117                 pc_rtc_offset.century = fadt->Century;
 118                 ok = 1;
 119         }
 120 
 121         pc_rtc_offset.loaded = ok;
 122 }
 123 
 124 
 125 /*
 126  * Write the specified time into the clock chip.
 127  * Must be called with tod_lock held.
 128  */
 129 /*ARGSUSED*/
 130 static void
 131 todpc_set(tod_ops_t *top, timestruc_t ts)
 132 {
 133         todinfo_t tod = utc_to_tod(ts.tv_sec - ggmtl());
 134         struct rtc_t rtc;
 135 
 136         ASSERT(MUTEX_HELD(&tod_lock));
 137 
 138         if (todpc_rtcget((unsigned char *)&rtc))
 139                 return;
 140 
 141         /*
 142          * rtc bytes are in binary-coded decimal, so we have to convert.
 143          * We assume that we wrap the rtc year back to zero at 2000.
 144          */
 145         /* LINTED: YRBASE = 0 for x86 */
 146         tod.tod_year -= YRBASE;
 147         if (tod.tod_year >= 100) {
 148                 tod.tod_year -= 100;
 149                 rtc.rtc_century = BYTE_TO_BCD(20); /* 20xx year */
 150         } else
 151                 rtc.rtc_century = BYTE_TO_BCD(19); /* 19xx year */
 152         rtc.rtc_yr      = BYTE_TO_BCD(tod.tod_year);
 153         rtc.rtc_mon     = BYTE_TO_BCD(tod.tod_month);
 154         rtc.rtc_dom     = BYTE_TO_BCD(tod.tod_day);
 155         /* dow < 10, so no conversion */
 156         rtc.rtc_dow     = (unsigned char)tod.tod_dow;
 157         rtc.rtc_hr      = BYTE_TO_BCD(tod.tod_hour);
 158         rtc.rtc_min     = BYTE_TO_BCD(tod.tod_min);
 159         rtc.rtc_sec     = BYTE_TO_BCD(tod.tod_sec);
 160 
 161         todpc_rtcput((unsigned char *)&rtc);
 162 }
 163 
 164 /*
 165  * Read the current time from the clock chip and convert to UNIX form.
 166  * Assumes that the year in the clock chip is valid.
 167  * Must be called with tod_lock held.
 168  */
 169 /*ARGSUSED*/
 170 static timestruc_t
 171 todpc_get(tod_ops_t *top)
 172 {
 173         timestruc_t ts;
 174         todinfo_t tod;
 175         struct rtc_t rtc;
 176         int compute_century;
 177         static int century_warn = 1; /* only warn once, not each time called */
 178         static int range_warn = 1;
 179 
 180         ASSERT(MUTEX_HELD(&tod_lock));
 181 
 182         if (todpc_rtcget((unsigned char *)&rtc)) {
 183                 tod_status_set(TOD_GET_FAILED);
 184                 return (hrestime);
 185         }
 186 
 187         /* assume that we wrap the rtc year back to zero at 2000 */
 188         tod.tod_year    = BCD_TO_BYTE(rtc.rtc_yr);
 189         if (tod.tod_year < 69) {
 190                 if (range_warn && tod.tod_year > 38) {
 191                         cmn_err(CE_WARN, "hardware real-time clock is out "
 192                             "of range -- time needs to be reset");
 193                         range_warn = 0;
 194                 }
 195                 tod.tod_year += 100 + YRBASE; /* 20xx year */
 196                 compute_century = 20;
 197         } else {
 198                 /* LINTED: YRBASE = 0 for x86 */
 199                 tod.tod_year += YRBASE; /* 19xx year */
 200                 compute_century = 19;
 201         }
 202         if (century_warn && BCD_TO_BYTE(rtc.rtc_century) != compute_century) {
 203                 cmn_err(CE_NOTE,
 204                     "The hardware real-time clock appears to have the "
 205                     "wrong century: %d.\nSolaris will still operate "
 206                     "correctly, but other OS's/firmware agents may "
 207                     "not.\nUse date(1) to set the date to the current "
 208                     "time to correct the RTC.",
 209                     BCD_TO_BYTE(rtc.rtc_century));
 210                 century_warn = 0;
 211         }
 212         tod.tod_month   = BCD_TO_BYTE(rtc.rtc_mon);
 213         tod.tod_day     = BCD_TO_BYTE(rtc.rtc_dom);
 214         tod.tod_dow     = rtc.rtc_dow;  /* dow < 10, so no conversion needed */
 215         tod.tod_hour    = BCD_TO_BYTE(rtc.rtc_hr);
 216         tod.tod_min     = BCD_TO_BYTE(rtc.rtc_min);
 217         tod.tod_sec     = BCD_TO_BYTE(rtc.rtc_sec);
 218 
 219         /* read was successful so ensure failure flag is clear */
 220         tod_status_clear(TOD_GET_FAILED);
 221 
 222         ts.tv_sec = tod_to_utc(tod) + ggmtl();
 223         ts.tv_nsec = 0;
 224 
 225         return (ts);
 226 }
 227 
 228 #include <sys/promif.h>
 229 /*
 230  * Write the specified wakeup alarm into the clock chip.
 231  * Must be called with tod_lock held.
 232  */
 233 void
 234 /*ARGSUSED*/
 235 todpc_setalarm(tod_ops_t *top, int nsecs)
 236 {
 237         struct rtc_t rtc;
 238         int delta, asec, amin, ahr, adom, amon;
 239         int day_alrm = pc_rtc_offset.day_alrm;
 240         int mon_alrm = pc_rtc_offset.mon_alrm;
 241 
 242         ASSERT(MUTEX_HELD(&tod_lock));
 243 
 244         /* A delay of zero is not allowed */
 245         if (nsecs == 0)
 246                 return;
 247 
 248         /* Make sure that we delay no less than the minimum time */
 249         if (nsecs < clock_min_alarm)
 250                 nsecs = clock_min_alarm;
 251 
 252         if (todpc_rtcget((unsigned char *)&rtc))
 253                 return;
 254 
 255         /*
 256          * Compute alarm secs, mins and hrs, and where appropriate, dom
 257          * and mon.  rtc bytes are in binary-coded decimal, so we have
 258          * to convert.
 259          */
 260         delta = nsecs + BCD_TO_BYTE(rtc.rtc_sec);
 261         asec = delta % 60;
 262 
 263         delta = (delta / 60) + BCD_TO_BYTE(rtc.rtc_min);
 264         amin = delta % 60;
 265 
 266         delta = (delta / 60) + BCD_TO_BYTE(rtc.rtc_hr);
 267         ahr  = delta % 24;
 268 
 269         if (day_alrm == 0 && delta >= 24) {
 270                 prom_printf("No day alarm - set to end of today!\n");
 271                 asec = 59;
 272                 amin = 59;
 273                 ahr  = 23;
 274         } else {
 275                 int mon = BCD_TO_BYTE(rtc.rtc_mon);
 276                 static int dpm[] =
 277                     {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
 278 
 279                 adom = (delta / 24) + BCD_TO_BYTE(rtc.rtc_dom);
 280 
 281                 if (mon_alrm == 0) {
 282                         if (adom > dpm[mon]) {
 283                                 prom_printf("No mon alarm - "
 284                                     "set to end of current month!\n");
 285                                 asec = 59;
 286                                 amin = 59;
 287                                 ahr  = 23;
 288                                 adom = dpm[mon];
 289                         }
 290                 } else {
 291                         for (amon = mon;
 292                             amon <= 12 && adom > dpm[amon]; amon++) {
 293                                 adom -= dpm[amon];
 294                         }
 295                         if (amon > 12) {
 296                                 prom_printf("Alarm too far in future - "
 297                                     "set to end of current year!\n");
 298                                 asec = 59;
 299                                 amin = 59;
 300                                 ahr  = 23;
 301                                 adom = dpm[12];
 302                                 amon = 12;
 303                         }
 304                         rtc.rtc_amon = BYTE_TO_BCD(amon);
 305                 }
 306 
 307                 rtc.rtc_adom = BYTE_TO_BCD(adom);
 308         }
 309 
 310         rtc.rtc_asec = BYTE_TO_BCD(asec);
 311         rtc.rtc_amin = BYTE_TO_BCD(amin);
 312         rtc.rtc_ahr  = BYTE_TO_BCD(ahr);
 313 
 314         rtc.rtc_statusb |= RTC_AIE;     /* Enable alarm interrupt */
 315 
 316         todpc_rtcput((unsigned char *)&rtc);
 317 }
 318 
 319 /*
 320  * Clear an alarm.  This is effectively setting an alarm of 0.
 321  */
 322 void
 323 /*ARGSUSED*/
 324 todpc_clralarm(tod_ops_t *top)
 325 {
 326         mutex_enter(&tod_lock);
 327         todpc_setalarm(top, 0);
 328         mutex_exit(&tod_lock);
 329 }
 330 
 331 /*
 332  * Routine to read contents of real time clock to the specified buffer.
 333  * Returns ENXIO if clock not valid, or EAGAIN if clock data cannot be read
 334  * else 0.
 335  * Some RTC hardware is very slow at asserting the validity flag on
 336  * startup.  The routine will busy wait for the RTC to become valid.
 337  * The routine will also busy wait for the Update-In-Progress flag to clear.
 338  * On completion of the reads the Seconds register is re-read and the
 339  * UIP flag is rechecked to confirm that an clock update did not occur
 340  * during the accesses.  Routine will error exit after 256 attempts.
 341  * (See bugid 1158298.)
 342  * Routine returns RTC_NREG (which is 15) bytes of data, as given in the
 343  * technical reference.  This data includes both time and status registers.
 344  */
 345 
 346 static int
 347 todpc_rtcget(unsigned char *buf)
 348 {
 349         unsigned char   reg;
 350         int             i;
 351         int             uip_try = 256;
 352         int             vrt_try = 512;
 353         unsigned char   *rawp;
 354         unsigned char   century = RTC_CENTURY;
 355         unsigned char   day_alrm;
 356         unsigned char   mon_alrm;
 357 
 358         ASSERT(MUTEX_HELD(&tod_lock));
 359 
 360         day_alrm = pc_rtc_offset.day_alrm;
 361         mon_alrm = pc_rtc_offset.mon_alrm;
 362         if (pc_rtc_offset.century != 0) {
 363                 century = pc_rtc_offset.century;
 364         }
 365 
 366         for (;;) {
 367                 if (vrt_try-- < 0)
 368                         return (ENXIO);
 369                 outb(RTC_ADDR, RTC_D);          /* check if clock valid */
 370                 reg = inb(RTC_DATA);
 371                 if ((reg & RTC_VRT) != 0)
 372                         break;
 373                 drv_usecwait(5000);             /* Delay for 5000 us */
 374         }
 375 
 376 
 377 checkuip:
 378         if (uip_try-- < 0)
 379                 return (EAGAIN);
 380         outb(RTC_ADDR, RTC_A);          /* check if update in progress */
 381         reg = inb(RTC_DATA);
 382         if (reg & RTC_UIP) {
 383                 tenmicrosec();
 384                 goto checkuip;
 385         }
 386 
 387         for (i = 0, rawp = buf; i < RTC_NREG; i++) {
 388                 outb(RTC_ADDR, i);
 389                 *rawp++ = inb(RTC_DATA);
 390         }
 391         outb(RTC_ADDR, century); /* do century */
 392         ((struct rtc_t *)buf)->rtc_century = inb(RTC_DATA);
 393 
 394         if (day_alrm > 0) {
 395                 outb(RTC_ADDR, day_alrm);
 396                 ((struct rtc_t *)buf)->rtc_adom = inb(RTC_DATA) & 0x3f;
 397         }
 398         if (mon_alrm > 0) {
 399                 outb(RTC_ADDR, mon_alrm);
 400                 ((struct rtc_t *)buf)->rtc_amon = inb(RTC_DATA);
 401         }
 402 
 403         outb(RTC_ADDR, 0);              /* re-read Seconds register */
 404         reg = inb(RTC_DATA);
 405         if (reg != ((struct rtc_t *)buf)->rtc_sec ||
 406             (((struct rtc_t *)buf)->rtc_statusa & RTC_UIP))
 407                 /* update occured during reads */
 408                 goto checkuip;
 409 
 410         return (0);
 411 }
 412 
 413 /*
 414  * This routine writes the contents of the given buffer to the real time
 415  * clock.  It is given RTC_NREGP bytes of data, which are the 10 bytes used
 416  * to write the time and set the alarm.  It should be called with the priority
 417  * raised to 5.
 418  */
 419 static void
 420 todpc_rtcput(unsigned char *buf)
 421 {
 422         unsigned char   reg;
 423         int             i;
 424         unsigned char   century = RTC_CENTURY;
 425         unsigned char   day_alrm = pc_rtc_offset.day_alrm;
 426         unsigned char   mon_alrm = pc_rtc_offset.mon_alrm;
 427         unsigned char   tmp;
 428 
 429         if (pc_rtc_offset.century != 0) {
 430                 century = pc_rtc_offset.century;
 431         }
 432 
 433         outb(RTC_ADDR, RTC_B);
 434         reg = inb(RTC_DATA);
 435         outb(RTC_ADDR, RTC_B);
 436         outb(RTC_DATA, reg | RTC_SET);  /* allow time set now */
 437         for (i = 0; i < RTC_NREGP; i++) { /* set the time */
 438                 outb(RTC_ADDR, i);
 439                 outb(RTC_DATA, buf[i]);
 440         }
 441         outb(RTC_ADDR, century); /* do century */
 442         outb(RTC_DATA, ((struct rtc_t *)buf)->rtc_century);
 443 
 444         if (day_alrm > 0) {
 445                 outb(RTC_ADDR, day_alrm);
 446                 /* preserve RTC_VRT bit; some virt envs accept writes there */
 447                 tmp = inb(RTC_DATA) & RTC_VRT;
 448                 tmp |= ((struct rtc_t *)buf)->rtc_adom & ~RTC_VRT;
 449                 outb(RTC_DATA, tmp);
 450         }
 451         if (mon_alrm > 0) {
 452                 outb(RTC_ADDR, mon_alrm);
 453                 outb(RTC_DATA, ((struct rtc_t *)buf)->rtc_amon);
 454         }
 455 
 456         outb(RTC_ADDR, RTC_B);
 457         reg = inb(RTC_DATA);
 458         outb(RTC_ADDR, RTC_B);
 459         outb(RTC_DATA, reg & ~RTC_SET);     /* allow time update */
 460 }
 461 
 462 static tod_ops_t todpc_ops = {
 463         TOD_OPS_VERSION,
 464         todpc_get,
 465         todpc_set,
 466         NULL,
 467         NULL,
 468         todpc_setalarm,
 469         todpc_clralarm,
 470         NULL
 471 };
 472 
 473 /*
 474  * Initialize for the default TOD ops vector for use on hardware.
 475  */
 476 
 477 tod_ops_t *tod_ops = &todpc_ops;