
new/usr/src/cmd/tput/tput.c 1

**
 16597 Sun Oct 14 08:17:13 2012
new/usr/src/cmd/tput/tput.c
702 tput calls gets()
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 * Copyright (c) 2012 Gary Mills
26 */

28 /* Copyright (c) 1988 AT&T */
29 /* All Rights Reserved */

31 /*
32 * tput - print terminal attribute
33 *
34 * return-codes - command line arguments:
35 * 0: ok if boolean capname -> TRUE
36 * 1: for boolean capname -> FALSE
37 *
38 * return-codes - standard input arguments:
39 * 0: ok; tput for all lines was successful
40 *
41 * return-codes - both cases:
42 * 2 usage error
43 * 3 bad terminal type given or no terminfo database
44 * 4 unknown capname
45 * -1 capname is a numeric variable that is not specified in the
46 * terminfo database(E.g. tpu -T450 lines).
47 *
48 * tput printfs a value if an INT capname was given; e.g. cols.
49 * putp’s a string if a STRING capname was given; e.g. clear. and
50 * for BOOLEAN capnames, e.g. hard-copy, just returns the boolean value.
51 */

53 #include <curses.h>
54 #include <term.h>
55 #include <fcntl.h>
56 #include <ctype.h>
57 #include <stdlib.h>
58 #include <string.h>
59 #include <sys/types.h>
60 #include <unistd.h>
61 #include <locale.h>

new/usr/src/cmd/tput/tput.c 2

63 /* externs from libcurses */
64 extern int tigetnum();

66 static int outputcap(char *cap, int argc, char **argv);
67 static int allnumeric(char *string);
68 static int getpad(char *cap);
69 static void setdelay();
70 static void settabs();
71 static void cat(char *file);
72 static void initterm();
73 static void reset_term();

75 static char *progname; /* argv[0] */
76 static int CurrentBaudRate; /* current baud rate */
77 static int reset = 0; /* called as reset_term */
78 static int fildes = 1;

80 int
81 main(int argc, char **argv)
82 {
83 int i, std_argc;
84 char *term = getenv("TERM");
85 char *cap, std_input = FALSE;
86 int setuperr;

88 (void) setlocale(LC_ALL, "");
89 #if !defined(TEXT_DOMAIN)
90 #define TEXT_DOMAIN "SYS_TEST"
91 #endif
92 (void) textdomain(TEXT_DOMAIN);

94 progname = argv[0];

96 while ((i = getopt(argc, argv, "ST:")) != EOF) {
97 switch (i) {
98 case ’T’:
99 fildes = -1;
100 (void) putenv("LINES=");
101 (void) putenv("COLUMNS=");
102 term = optarg;
103 break;

105 case ’S’:
106 std_input = TRUE;
107 break;

109 case ’?’: /* FALLTHROUGH */
110 usage: /* FALLTHROUGH */
111 default:
112 (void) fprintf(stderr, gettext(
113 "usage:\t%s [-T [term]] capname "
114 "[parm argument...]\n"), progname);
115 (void) fprintf(stderr, gettext("OR:\t%s -S <<\n"),
116 progname);
117 exit(2);
118 }
119 }

121 if (!term || !*term) {
122 (void) fprintf(stderr,
123 gettext("%s: No value for $TERM and no -T specified\n"),
124 progname);
125 exit(2);
126 }

new/usr/src/cmd/tput/tput.c 3

128 (void) setupterm(term, fildes, &setuperr);

130 switch (setuperr) {
131 case -2:
132 (void) fprintf(stderr,
133 gettext("%s: unreadable terminal descriptor \"%s\"\n"),
134 progname, term);
135 exit(3);
136 break;

138 case -1:
139 (void) fprintf(stderr,
140 gettext("%s: no terminfo database\n"), progname);
141 exit(3);
142 break;

144 case 0:
145 (void) fprintf(stderr,
146 gettext("%s: unknown terminal \"%s\"\n"),
147 progname, term);
148 exit(3);
149 }

151 reset_shell_mode();

153 /* command line arguments */
154 if (!std_input) {
155 if (argc == optind)
156 goto usage;

158 cap = argv[optind++];

160 if (strcmp(cap, "init") == 0)
161 initterm();
162 else if (strcmp(cap, "reset") == 0)
163 reset_term();
164 else if (strcmp(cap, "longname") == 0)
165 (void) printf("%s\n", longname());
166 else
167 exit(outputcap(cap, argc, argv));
168 return (0);
169 } else { /* standard input argumets */
170 char buff[128];
171 char **v;

173 /* allocate storage for the ’faked’ argv[] array */
174 v = (char **)malloc(10 * sizeof (char *));
175 for (i = 0; i < 10; i++)
176 v[i] = (char *)malloc(32 * sizeof (char));

178 while (fgets(buff, sizeof (buff), stdin) != NULL) {
177 while (gets(buff) != NULL) {
179 /* read standard input line; skip over empty lines */
180 if ((std_argc =
181 sscanf(buff,
182 "%31s %31s %31s %31s %31s %31s %31s %31s "
183 "%31s %31s",
180 sscanf(buff, "%s %s %s %s %s %s %s %s %s %s",
184 v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7],
185 v[8], v[9])) < 1) {
186 continue;
187 }

189 cap = v[0];
190 optind = 1;

new/usr/src/cmd/tput/tput.c 4

192 if (strcmp(cap, "init") == 0) {
193 initterm();
194 } else if (strcmp(cap, "reset") == 0) {
195 reset_term();
196 } else if (strcmp(cap, "longname") == 0) {
197 (void) printf("%s\n", longname());
198 } else {
199 (void) outputcap(cap, std_argc, v);
200 }
201 (void) fflush(stdout);
202 }

204 return (0);
205 }
206 }

______unchanged_portion_omitted_

