1 /* trees.c -- output deflated data using Huffman coding
   2  * Copyright (C) 1995-2012 Jean-loup Gailly
   3  * detect_data_type() function provided freely by Cosmin Truta, 2006
   4  * For conditions of distribution and use, see copyright notice in zlib.h
   5  */
   6 
   7 /*
   8  *  ALGORITHM
   9  *
  10  *      The "deflation" process uses several Huffman trees. The more
  11  *      common source values are represented by shorter bit sequences.
  12  *
  13  *      Each code tree is stored in a compressed form which is itself
  14  * a Huffman encoding of the lengths of all the code strings (in
  15  * ascending order by source values).  The actual code strings are
  16  * reconstructed from the lengths in the inflate process, as described
  17  * in the deflate specification.
  18  *
  19  *  REFERENCES
  20  *
  21  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
  22  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
  23  *
  24  *      Storer, James A.
  25  *          Data Compression:  Methods and Theory, pp. 49-50.
  26  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
  27  *
  28  *      Sedgewick, R.
  29  *          Algorithms, p290.
  30  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
  31  */
  32 
  33 /* @(#) $Id$ */
  34 
  35 /* #define GEN_TREES_H */
  36 
  37 #include "deflate.h"
  38 
  39 #ifdef DEBUG
  40 #  include <ctype.h>
  41 #endif
  42 
  43 /* ===========================================================================
  44  * Constants
  45  */
  46 
  47 #define MAX_BL_BITS 7
  48 /* Bit length codes must not exceed MAX_BL_BITS bits */
  49 
  50 #define END_BLOCK 256
  51 /* end of block literal code */
  52 
  53 #define REP_3_6      16
  54 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
  55 
  56 #define REPZ_3_10    17
  57 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
  58 
  59 #define REPZ_11_138  18
  60 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
  61 
  62 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
  63    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
  64 
  65 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
  66    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
  67 
  68 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
  69    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
  70 
  71 local const uch bl_order[BL_CODES]
  72    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
  73 /* The lengths of the bit length codes are sent in order of decreasing
  74  * probability, to avoid transmitting the lengths for unused bit length codes.
  75  */
  76 
  77 /* ===========================================================================
  78  * Local data. These are initialized only once.
  79  */
  80 
  81 #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
  82 
  83 #if defined(GEN_TREES_H) || !defined(STDC)
  84 /* non ANSI compilers may not accept trees.h */
  85 
  86 local ct_data static_ltree[L_CODES+2];
  87 /* The static literal tree. Since the bit lengths are imposed, there is no
  88  * need for the L_CODES extra codes used during heap construction. However
  89  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
  90  * below).
  91  */
  92 
  93 local ct_data static_dtree[D_CODES];
  94 /* The static distance tree. (Actually a trivial tree since all codes use
  95  * 5 bits.)
  96  */
  97 
  98 uch _dist_code[DIST_CODE_LEN];
  99 /* Distance codes. The first 256 values correspond to the distances
 100  * 3 .. 258, the last 256 values correspond to the top 8 bits of
 101  * the 15 bit distances.
 102  */
 103 
 104 uch _length_code[MAX_MATCH-MIN_MATCH+1];
 105 /* length code for each normalized match length (0 == MIN_MATCH) */
 106 
 107 local int base_length[LENGTH_CODES];
 108 /* First normalized length for each code (0 = MIN_MATCH) */
 109 
 110 local int base_dist[D_CODES];
 111 /* First normalized distance for each code (0 = distance of 1) */
 112 
 113 #else
 114 #  include "trees.h"
 115 #endif /* GEN_TREES_H */
 116 
 117 struct static_tree_desc_s {
 118     const ct_data *static_tree;  /* static tree or NULL */
 119     const intf *extra_bits;      /* extra bits for each code or NULL */
 120     int     extra_base;          /* base index for extra_bits */
 121     int     elems;               /* max number of elements in the tree */
 122     int     max_length;          /* max bit length for the codes */
 123 };
 124 
 125 local static_tree_desc  static_l_desc =
 126 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
 127 
 128 local static_tree_desc  static_d_desc =
 129 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
 130 
 131 local static_tree_desc  static_bl_desc =
 132 {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
 133 
 134 /* ===========================================================================
 135  * Local (static) routines in this file.
 136  */
 137 
 138 local void tr_static_init OF((void));
 139 local void init_block     OF((deflate_state *s));
 140 local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
 141 local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
 142 local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
 143 local void build_tree     OF((deflate_state *s, tree_desc *desc));
 144 local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
 145 local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
 146 local int  build_bl_tree  OF((deflate_state *s));
 147 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
 148                               int blcodes));
 149 local void compress_block OF((deflate_state *s, const ct_data *ltree,
 150                               const ct_data *dtree));
 151 local int  detect_data_type OF((deflate_state *s));
 152 local unsigned bi_reverse OF((unsigned value, int length));
 153 local void bi_windup      OF((deflate_state *s));
 154 local void bi_flush       OF((deflate_state *s));
 155 local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
 156                               int header));
 157 
 158 #ifdef GEN_TREES_H
 159 local void gen_trees_header OF((void));
 160 #endif
 161 
 162 #ifndef DEBUG
 163 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
 164    /* Send a code of the given tree. c and tree must not have side effects */
 165 
 166 #else /* DEBUG */
 167 #  define send_code(s, c, tree) \
 168      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
 169        send_bits(s, tree[c].Code, tree[c].Len); }
 170 #endif
 171 
 172 /* ===========================================================================
 173  * Output a short LSB first on the stream.
 174  * IN assertion: there is enough room in pendingBuf.
 175  */
 176 #define put_short(s, w) { \
 177     put_byte(s, (uch)((w) & 0xff)); \
 178     put_byte(s, (uch)((ush)(w) >> 8)); \
 179 }
 180 
 181 /* ===========================================================================
 182  * Send a value on a given number of bits.
 183  * IN assertion: length <= 16 and value fits in length bits.
 184  */
 185 #ifdef DEBUG
 186 local void send_bits      OF((deflate_state *s, int value, int length));
 187 
 188 local void send_bits(s, value, length)
 189     deflate_state *s;
 190     int value;  /* value to send */
 191     int length; /* number of bits */
 192 {
 193     Tracevv((stderr," l %2d v %4x ", length, value));
 194     Assert(length > 0 && length <= 15, "invalid length");
 195     s->bits_sent += (ulg)length;
 196 
 197     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
 198      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
 199      * unused bits in value.
 200      */
 201     if (s->bi_valid > (int)Buf_size - length) {
 202         s->bi_buf |= (ush)value << s->bi_valid;
 203         put_short(s, s->bi_buf);
 204         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
 205         s->bi_valid += length - Buf_size;
 206     } else {
 207         s->bi_buf |= (ush)value << s->bi_valid;
 208         s->bi_valid += length;
 209     }
 210 }
 211 #else /* !DEBUG */
 212 
 213 #define send_bits(s, value, length) \
 214 { int len = length;\
 215   if (s->bi_valid > (int)Buf_size - len) {\
 216     int val = value;\
 217     s->bi_buf |= (ush)val << s->bi_valid;\
 218     put_short(s, s->bi_buf);\
 219     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
 220     s->bi_valid += len - Buf_size;\
 221   } else {\
 222     s->bi_buf |= (ush)(value) << s->bi_valid;\
 223     s->bi_valid += len;\
 224   }\
 225 }
 226 #endif /* DEBUG */
 227 
 228 
 229 /* the arguments must not have side effects */
 230 
 231 /* ===========================================================================
 232  * Initialize the various 'constant' tables.
 233  */
 234 local void tr_static_init()
 235 {
 236 #if defined(GEN_TREES_H) || !defined(STDC)
 237     static int static_init_done = 0;
 238     int n;        /* iterates over tree elements */
 239     int bits;     /* bit counter */
 240     int length;   /* length value */
 241     int code;     /* code value */
 242     int dist;     /* distance index */
 243     ush bl_count[MAX_BITS+1];
 244     /* number of codes at each bit length for an optimal tree */
 245 
 246     if (static_init_done) return;
 247 
 248     /* For some embedded targets, global variables are not initialized: */
 249 #ifdef NO_INIT_GLOBAL_POINTERS
 250     static_l_desc.static_tree = static_ltree;
 251     static_l_desc.extra_bits = extra_lbits;
 252     static_d_desc.static_tree = static_dtree;
 253     static_d_desc.extra_bits = extra_dbits;
 254     static_bl_desc.extra_bits = extra_blbits;
 255 #endif
 256 
 257     /* Initialize the mapping length (0..255) -> length code (0..28) */
 258     length = 0;
 259     for (code = 0; code < LENGTH_CODES-1; code++) {
 260         base_length[code] = length;
 261         for (n = 0; n < (1<<extra_lbits[code]); n++) {
 262             _length_code[length++] = (uch)code;
 263         }
 264     }
 265     Assert (length == 256, "tr_static_init: length != 256");
 266     /* Note that the length 255 (match length 258) can be represented
 267      * in two different ways: code 284 + 5 bits or code 285, so we
 268      * overwrite length_code[255] to use the best encoding:
 269      */
 270     _length_code[length-1] = (uch)code;
 271 
 272     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
 273     dist = 0;
 274     for (code = 0 ; code < 16; code++) {
 275         base_dist[code] = dist;
 276         for (n = 0; n < (1<<extra_dbits[code]); n++) {
 277             _dist_code[dist++] = (uch)code;
 278         }
 279     }
 280     Assert (dist == 256, "tr_static_init: dist != 256");
 281     dist >>= 7; /* from now on, all distances are divided by 128 */
 282     for ( ; code < D_CODES; code++) {
 283         base_dist[code] = dist << 7;
 284         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
 285             _dist_code[256 + dist++] = (uch)code;
 286         }
 287     }
 288     Assert (dist == 256, "tr_static_init: 256+dist != 512");
 289 
 290     /* Construct the codes of the static literal tree */
 291     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
 292     n = 0;
 293     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
 294     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
 295     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
 296     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
 297     /* Codes 286 and 287 do not exist, but we must include them in the
 298      * tree construction to get a canonical Huffman tree (longest code
 299      * all ones)
 300      */
 301     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
 302 
 303     /* The static distance tree is trivial: */
 304     for (n = 0; n < D_CODES; n++) {
 305         static_dtree[n].Len = 5;
 306         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
 307     }
 308     static_init_done = 1;
 309 
 310 #  ifdef GEN_TREES_H
 311     gen_trees_header();
 312 #  endif
 313 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
 314 }
 315 
 316 /* ===========================================================================
 317  * Genererate the file trees.h describing the static trees.
 318  */
 319 #ifdef GEN_TREES_H
 320 #  ifndef DEBUG
 321 #    include <stdio.h>
 322 #  endif
 323 
 324 #  define SEPARATOR(i, last, width) \
 325       ((i) == (last)? "\n};\n\n" :    \
 326        ((i) % (width) == (width)-1 ? ",\n" : ", "))
 327 
 328 void gen_trees_header()
 329 {
 330     FILE *header = fopen("trees.h", "w");
 331     int i;
 332 
 333     Assert (header != NULL, "Can't open trees.h");
 334     fprintf(header,
 335             "/* header created automatically with -DGEN_TREES_H */\n\n");
 336 
 337     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
 338     for (i = 0; i < L_CODES+2; i++) {
 339         fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
 340                 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
 341     }
 342 
 343     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
 344     for (i = 0; i < D_CODES; i++) {
 345         fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
 346                 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
 347     }
 348 
 349     fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
 350     for (i = 0; i < DIST_CODE_LEN; i++) {
 351         fprintf(header, "%2u%s", _dist_code[i],
 352                 SEPARATOR(i, DIST_CODE_LEN-1, 20));
 353     }
 354 
 355     fprintf(header,
 356         "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
 357     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
 358         fprintf(header, "%2u%s", _length_code[i],
 359                 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
 360     }
 361 
 362     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
 363     for (i = 0; i < LENGTH_CODES; i++) {
 364         fprintf(header, "%1u%s", base_length[i],
 365                 SEPARATOR(i, LENGTH_CODES-1, 20));
 366     }
 367 
 368     fprintf(header, "local const int base_dist[D_CODES] = {\n");
 369     for (i = 0; i < D_CODES; i++) {
 370         fprintf(header, "%5u%s", base_dist[i],
 371                 SEPARATOR(i, D_CODES-1, 10));
 372     }
 373 
 374     fclose(header);
 375 }
 376 #endif /* GEN_TREES_H */
 377 
 378 /* ===========================================================================
 379  * Initialize the tree data structures for a new zlib stream.
 380  */
 381 void ZLIB_INTERNAL _tr_init(s)
 382     deflate_state *s;
 383 {
 384     tr_static_init();
 385 
 386     s->l_desc.dyn_tree = s->dyn_ltree;
 387     s->l_desc.stat_desc = &static_l_desc;
 388 
 389     s->d_desc.dyn_tree = s->dyn_dtree;
 390     s->d_desc.stat_desc = &static_d_desc;
 391 
 392     s->bl_desc.dyn_tree = s->bl_tree;
 393     s->bl_desc.stat_desc = &static_bl_desc;
 394 
 395     s->bi_buf = 0;
 396     s->bi_valid = 0;
 397 #ifdef DEBUG
 398     s->compressed_len = 0L;
 399     s->bits_sent = 0L;
 400 #endif
 401 
 402     /* Initialize the first block of the first file: */
 403     init_block(s);
 404 }
 405 
 406 /* ===========================================================================
 407  * Initialize a new block.
 408  */
 409 local void init_block(s)
 410     deflate_state *s;
 411 {
 412     int n; /* iterates over tree elements */
 413 
 414     /* Initialize the trees. */
 415     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
 416     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
 417     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
 418 
 419     s->dyn_ltree[END_BLOCK].Freq = 1;
 420     s->opt_len = s->static_len = 0L;
 421     s->last_lit = s->matches = 0;
 422 }
 423 
 424 #define SMALLEST 1
 425 /* Index within the heap array of least frequent node in the Huffman tree */
 426 
 427 
 428 /* ===========================================================================
 429  * Remove the smallest element from the heap and recreate the heap with
 430  * one less element. Updates heap and heap_len.
 431  */
 432 #define pqremove(s, tree, top) \
 433 {\
 434     top = s->heap[SMALLEST]; \
 435     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
 436     pqdownheap(s, tree, SMALLEST); \
 437 }
 438 
 439 /* ===========================================================================
 440  * Compares to subtrees, using the tree depth as tie breaker when
 441  * the subtrees have equal frequency. This minimizes the worst case length.
 442  */
 443 #define smaller(tree, n, m, depth) \
 444    (tree[n].Freq < tree[m].Freq || \
 445    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
 446 
 447 /* ===========================================================================
 448  * Restore the heap property by moving down the tree starting at node k,
 449  * exchanging a node with the smallest of its two sons if necessary, stopping
 450  * when the heap property is re-established (each father smaller than its
 451  * two sons).
 452  */
 453 local void pqdownheap(s, tree, k)
 454     deflate_state *s;
 455     ct_data *tree;  /* the tree to restore */
 456     int k;               /* node to move down */
 457 {
 458     int v = s->heap[k];
 459     int j = k << 1;  /* left son of k */
 460     while (j <= s->heap_len) {
 461         /* Set j to the smallest of the two sons: */
 462         if (j < s->heap_len &&
 463             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
 464             j++;
 465         }
 466         /* Exit if v is smaller than both sons */
 467         if (smaller(tree, v, s->heap[j], s->depth)) break;
 468 
 469         /* Exchange v with the smallest son */
 470         s->heap[k] = s->heap[j];  k = j;
 471 
 472         /* And continue down the tree, setting j to the left son of k */
 473         j <<= 1;
 474     }
 475     s->heap[k] = v;
 476 }
 477 
 478 /* ===========================================================================
 479  * Compute the optimal bit lengths for a tree and update the total bit length
 480  * for the current block.
 481  * IN assertion: the fields freq and dad are set, heap[heap_max] and
 482  *    above are the tree nodes sorted by increasing frequency.
 483  * OUT assertions: the field len is set to the optimal bit length, the
 484  *     array bl_count contains the frequencies for each bit length.
 485  *     The length opt_len is updated; static_len is also updated if stree is
 486  *     not null.
 487  */
 488 local void gen_bitlen(s, desc)
 489     deflate_state *s;
 490     tree_desc *desc;    /* the tree descriptor */
 491 {
 492     ct_data *tree        = desc->dyn_tree;
 493     int max_code         = desc->max_code;
 494     const ct_data *stree = desc->stat_desc->static_tree;
 495     const intf *extra    = desc->stat_desc->extra_bits;
 496     int base             = desc->stat_desc->extra_base;
 497     int max_length       = desc->stat_desc->max_length;
 498     int h;              /* heap index */
 499     int n, m;           /* iterate over the tree elements */
 500     int bits;           /* bit length */
 501     int xbits;          /* extra bits */
 502     ush f;              /* frequency */
 503     int overflow = 0;   /* number of elements with bit length too large */
 504 
 505     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
 506 
 507     /* In a first pass, compute the optimal bit lengths (which may
 508      * overflow in the case of the bit length tree).
 509      */
 510     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
 511 
 512     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
 513         n = s->heap[h];
 514         bits = tree[tree[n].Dad].Len + 1;
 515         if (bits > max_length) bits = max_length, overflow++;
 516         tree[n].Len = (ush)bits;
 517         /* We overwrite tree[n].Dad which is no longer needed */
 518 
 519         if (n > max_code) continue; /* not a leaf node */
 520 
 521         s->bl_count[bits]++;
 522         xbits = 0;
 523         if (n >= base) xbits = extra[n-base];
 524         f = tree[n].Freq;
 525         s->opt_len += (ulg)f * (bits + xbits);
 526         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
 527     }
 528     if (overflow == 0) return;
 529 
 530     Trace((stderr,"\nbit length overflow\n"));
 531     /* This happens for example on obj2 and pic of the Calgary corpus */
 532 
 533     /* Find the first bit length which could increase: */
 534     do {
 535         bits = max_length-1;
 536         while (s->bl_count[bits] == 0) bits--;
 537         s->bl_count[bits]--;      /* move one leaf down the tree */
 538         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
 539         s->bl_count[max_length]--;
 540         /* The brother of the overflow item also moves one step up,
 541          * but this does not affect bl_count[max_length]
 542          */
 543         overflow -= 2;
 544     } while (overflow > 0);
 545 
 546     /* Now recompute all bit lengths, scanning in increasing frequency.
 547      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
 548      * lengths instead of fixing only the wrong ones. This idea is taken
 549      * from 'ar' written by Haruhiko Okumura.)
 550      */
 551     for (bits = max_length; bits != 0; bits--) {
 552         n = s->bl_count[bits];
 553         while (n != 0) {
 554             m = s->heap[--h];
 555             if (m > max_code) continue;
 556             if ((unsigned) tree[m].Len != (unsigned) bits) {
 557                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
 558                 s->opt_len += ((long)bits - (long)tree[m].Len)
 559                               *(long)tree[m].Freq;
 560                 tree[m].Len = (ush)bits;
 561             }
 562             n--;
 563         }
 564     }
 565 }
 566 
 567 /* ===========================================================================
 568  * Generate the codes for a given tree and bit counts (which need not be
 569  * optimal).
 570  * IN assertion: the array bl_count contains the bit length statistics for
 571  * the given tree and the field len is set for all tree elements.
 572  * OUT assertion: the field code is set for all tree elements of non
 573  *     zero code length.
 574  */
 575 local void gen_codes (tree, max_code, bl_count)
 576     ct_data *tree;             /* the tree to decorate */
 577     int max_code;              /* largest code with non zero frequency */
 578     ushf *bl_count;            /* number of codes at each bit length */
 579 {
 580     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
 581     ush code = 0;              /* running code value */
 582     int bits;                  /* bit index */
 583     int n;                     /* code index */
 584 
 585     /* The distribution counts are first used to generate the code values
 586      * without bit reversal.
 587      */
 588     for (bits = 1; bits <= MAX_BITS; bits++) {
 589         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
 590     }
 591     /* Check that the bit counts in bl_count are consistent. The last code
 592      * must be all ones.
 593      */
 594     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
 595             "inconsistent bit counts");
 596     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
 597 
 598     for (n = 0;  n <= max_code; n++) {
 599         int len = tree[n].Len;
 600         if (len == 0) continue;
 601         /* Now reverse the bits */
 602         tree[n].Code = bi_reverse(next_code[len]++, len);
 603 
 604         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
 605              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
 606     }
 607 }
 608 
 609 /* ===========================================================================
 610  * Construct one Huffman tree and assigns the code bit strings and lengths.
 611  * Update the total bit length for the current block.
 612  * IN assertion: the field freq is set for all tree elements.
 613  * OUT assertions: the fields len and code are set to the optimal bit length
 614  *     and corresponding code. The length opt_len is updated; static_len is
 615  *     also updated if stree is not null. The field max_code is set.
 616  */
 617 local void build_tree(s, desc)
 618     deflate_state *s;
 619     tree_desc *desc; /* the tree descriptor */
 620 {
 621     ct_data *tree         = desc->dyn_tree;
 622     const ct_data *stree  = desc->stat_desc->static_tree;
 623     int elems             = desc->stat_desc->elems;
 624     int n, m;          /* iterate over heap elements */
 625     int max_code = -1; /* largest code with non zero frequency */
 626     int node;          /* new node being created */
 627 
 628     /* Construct the initial heap, with least frequent element in
 629      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
 630      * heap[0] is not used.
 631      */
 632     s->heap_len = 0, s->heap_max = HEAP_SIZE;
 633 
 634     for (n = 0; n < elems; n++) {
 635         if (tree[n].Freq != 0) {
 636             s->heap[++(s->heap_len)] = max_code = n;
 637             s->depth[n] = 0;
 638         } else {
 639             tree[n].Len = 0;
 640         }
 641     }
 642 
 643     /* The pkzip format requires that at least one distance code exists,
 644      * and that at least one bit should be sent even if there is only one
 645      * possible code. So to avoid special checks later on we force at least
 646      * two codes of non zero frequency.
 647      */
 648     while (s->heap_len < 2) {
 649         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
 650         tree[node].Freq = 1;
 651         s->depth[node] = 0;
 652         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
 653         /* node is 0 or 1 so it does not have extra bits */
 654     }
 655     desc->max_code = max_code;
 656 
 657     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
 658      * establish sub-heaps of increasing lengths:
 659      */
 660     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
 661 
 662     /* Construct the Huffman tree by repeatedly combining the least two
 663      * frequent nodes.
 664      */
 665     node = elems;              /* next internal node of the tree */
 666     do {
 667         pqremove(s, tree, n);  /* n = node of least frequency */
 668         m = s->heap[SMALLEST]; /* m = node of next least frequency */
 669 
 670         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
 671         s->heap[--(s->heap_max)] = m;
 672 
 673         /* Create a new node father of n and m */
 674         tree[node].Freq = tree[n].Freq + tree[m].Freq;
 675         s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
 676                                 s->depth[n] : s->depth[m]) + 1);
 677         tree[n].Dad = tree[m].Dad = (ush)node;
 678 #ifdef DUMP_BL_TREE
 679         if (tree == s->bl_tree) {
 680             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
 681                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
 682         }
 683 #endif
 684         /* and insert the new node in the heap */
 685         s->heap[SMALLEST] = node++;
 686         pqdownheap(s, tree, SMALLEST);
 687 
 688     } while (s->heap_len >= 2);
 689 
 690     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
 691 
 692     /* At this point, the fields freq and dad are set. We can now
 693      * generate the bit lengths.
 694      */
 695     gen_bitlen(s, (tree_desc *)desc);
 696 
 697     /* The field len is now set, we can generate the bit codes */
 698     gen_codes ((ct_data *)tree, max_code, s->bl_count);
 699 }
 700 
 701 /* ===========================================================================
 702  * Scan a literal or distance tree to determine the frequencies of the codes
 703  * in the bit length tree.
 704  */
 705 local void scan_tree (s, tree, max_code)
 706     deflate_state *s;
 707     ct_data *tree;   /* the tree to be scanned */
 708     int max_code;    /* and its largest code of non zero frequency */
 709 {
 710     int n;                     /* iterates over all tree elements */
 711     int prevlen = -1;          /* last emitted length */
 712     int curlen;                /* length of current code */
 713     int nextlen = tree[0].Len; /* length of next code */
 714     int count = 0;             /* repeat count of the current code */
 715     int max_count = 7;         /* max repeat count */
 716     int min_count = 4;         /* min repeat count */
 717 
 718     if (nextlen == 0) max_count = 138, min_count = 3;
 719     tree[max_code+1].Len = (ush)0xffff; /* guard */
 720 
 721     for (n = 0; n <= max_code; n++) {
 722         curlen = nextlen; nextlen = tree[n+1].Len;
 723         if (++count < max_count && curlen == nextlen) {
 724             continue;
 725         } else if (count < min_count) {
 726             s->bl_tree[curlen].Freq += count;
 727         } else if (curlen != 0) {
 728             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
 729             s->bl_tree[REP_3_6].Freq++;
 730         } else if (count <= 10) {
 731             s->bl_tree[REPZ_3_10].Freq++;
 732         } else {
 733             s->bl_tree[REPZ_11_138].Freq++;
 734         }
 735         count = 0; prevlen = curlen;
 736         if (nextlen == 0) {
 737             max_count = 138, min_count = 3;
 738         } else if (curlen == nextlen) {
 739             max_count = 6, min_count = 3;
 740         } else {
 741             max_count = 7, min_count = 4;
 742         }
 743     }
 744 }
 745 
 746 /* ===========================================================================
 747  * Send a literal or distance tree in compressed form, using the codes in
 748  * bl_tree.
 749  */
 750 local void send_tree (s, tree, max_code)
 751     deflate_state *s;
 752     ct_data *tree; /* the tree to be scanned */
 753     int max_code;       /* and its largest code of non zero frequency */
 754 {
 755     int n;                     /* iterates over all tree elements */
 756     int prevlen = -1;          /* last emitted length */
 757     int curlen;                /* length of current code */
 758     int nextlen = tree[0].Len; /* length of next code */
 759     int count = 0;             /* repeat count of the current code */
 760     int max_count = 7;         /* max repeat count */
 761     int min_count = 4;         /* min repeat count */
 762 
 763     /* tree[max_code+1].Len = -1; */  /* guard already set */
 764     if (nextlen == 0) max_count = 138, min_count = 3;
 765 
 766     for (n = 0; n <= max_code; n++) {
 767         curlen = nextlen; nextlen = tree[n+1].Len;
 768         if (++count < max_count && curlen == nextlen) {
 769             continue;
 770         } else if (count < min_count) {
 771             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
 772 
 773         } else if (curlen != 0) {
 774             if (curlen != prevlen) {
 775                 send_code(s, curlen, s->bl_tree); count--;
 776             }
 777             Assert(count >= 3 && count <= 6, " 3_6?");
 778             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
 779 
 780         } else if (count <= 10) {
 781             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
 782 
 783         } else {
 784             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
 785         }
 786         count = 0; prevlen = curlen;
 787         if (nextlen == 0) {
 788             max_count = 138, min_count = 3;
 789         } else if (curlen == nextlen) {
 790             max_count = 6, min_count = 3;
 791         } else {
 792             max_count = 7, min_count = 4;
 793         }
 794     }
 795 }
 796 
 797 /* ===========================================================================
 798  * Construct the Huffman tree for the bit lengths and return the index in
 799  * bl_order of the last bit length code to send.
 800  */
 801 local int build_bl_tree(s)
 802     deflate_state *s;
 803 {
 804     int max_blindex;  /* index of last bit length code of non zero freq */
 805 
 806     /* Determine the bit length frequencies for literal and distance trees */
 807     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
 808     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
 809 
 810     /* Build the bit length tree: */
 811     build_tree(s, (tree_desc *)(&(s->bl_desc)));
 812     /* opt_len now includes the length of the tree representations, except
 813      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
 814      */
 815 
 816     /* Determine the number of bit length codes to send. The pkzip format
 817      * requires that at least 4 bit length codes be sent. (appnote.txt says
 818      * 3 but the actual value used is 4.)
 819      */
 820     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
 821         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
 822     }
 823     /* Update opt_len to include the bit length tree and counts */
 824     s->opt_len += 3*(max_blindex+1) + 5+5+4;
 825     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
 826             s->opt_len, s->static_len));
 827 
 828     return max_blindex;
 829 }
 830 
 831 /* ===========================================================================
 832  * Send the header for a block using dynamic Huffman trees: the counts, the
 833  * lengths of the bit length codes, the literal tree and the distance tree.
 834  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
 835  */
 836 local void send_all_trees(s, lcodes, dcodes, blcodes)
 837     deflate_state *s;
 838     int lcodes, dcodes, blcodes; /* number of codes for each tree */
 839 {
 840     int rank;                    /* index in bl_order */
 841 
 842     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
 843     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
 844             "too many codes");
 845     Tracev((stderr, "\nbl counts: "));
 846     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
 847     send_bits(s, dcodes-1,   5);
 848     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
 849     for (rank = 0; rank < blcodes; rank++) {
 850         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
 851         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
 852     }
 853     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
 854 
 855     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
 856     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
 857 
 858     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
 859     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
 860 }
 861 
 862 /* ===========================================================================
 863  * Send a stored block
 864  */
 865 void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
 866     deflate_state *s;
 867     charf *buf;       /* input block */
 868     ulg stored_len;   /* length of input block */
 869     int last;         /* one if this is the last block for a file */
 870 {
 871     send_bits(s, (STORED_BLOCK<<1)+last, 3);    /* send block type */
 872 #ifdef DEBUG
 873     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
 874     s->compressed_len += (stored_len + 4) << 3;
 875 #endif
 876     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
 877 }
 878 
 879 /* ===========================================================================
 880  * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
 881  */
 882 void ZLIB_INTERNAL _tr_flush_bits(s)
 883     deflate_state *s;
 884 {
 885     bi_flush(s);
 886 }
 887 
 888 /* ===========================================================================
 889  * Send one empty static block to give enough lookahead for inflate.
 890  * This takes 10 bits, of which 7 may remain in the bit buffer.
 891  */
 892 void ZLIB_INTERNAL _tr_align(s)
 893     deflate_state *s;
 894 {
 895     send_bits(s, STATIC_TREES<<1, 3);
 896     send_code(s, END_BLOCK, static_ltree);
 897 #ifdef DEBUG
 898     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
 899 #endif
 900     bi_flush(s);
 901 }
 902 
 903 /* ===========================================================================
 904  * Determine the best encoding for the current block: dynamic trees, static
 905  * trees or store, and output the encoded block to the zip file.
 906  */
 907 void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
 908     deflate_state *s;
 909     charf *buf;       /* input block, or NULL if too old */
 910     ulg stored_len;   /* length of input block */
 911     int last;         /* one if this is the last block for a file */
 912 {
 913     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
 914     int max_blindex = 0;  /* index of last bit length code of non zero freq */
 915 
 916     /* Build the Huffman trees unless a stored block is forced */
 917     if (s->level > 0) {
 918 
 919         /* Check if the file is binary or text */
 920         if (s->strm->data_type == Z_UNKNOWN)
 921             s->strm->data_type = detect_data_type(s);
 922 
 923         /* Construct the literal and distance trees */
 924         build_tree(s, (tree_desc *)(&(s->l_desc)));
 925         Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
 926                 s->static_len));
 927 
 928         build_tree(s, (tree_desc *)(&(s->d_desc)));
 929         Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
 930                 s->static_len));
 931         /* At this point, opt_len and static_len are the total bit lengths of
 932          * the compressed block data, excluding the tree representations.
 933          */
 934 
 935         /* Build the bit length tree for the above two trees, and get the index
 936          * in bl_order of the last bit length code to send.
 937          */
 938         max_blindex = build_bl_tree(s);
 939 
 940         /* Determine the best encoding. Compute the block lengths in bytes. */
 941         opt_lenb = (s->opt_len+3+7)>>3;
 942         static_lenb = (s->static_len+3+7)>>3;
 943 
 944         Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
 945                 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
 946                 s->last_lit));
 947 
 948         if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
 949 
 950     } else {
 951         Assert(buf != (char*)0, "lost buf");
 952         opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
 953     }
 954 
 955 #ifdef FORCE_STORED
 956     if (buf != (char*)0) { /* force stored block */
 957 #else
 958     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
 959                        /* 4: two words for the lengths */
 960 #endif
 961         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
 962          * Otherwise we can't have processed more than WSIZE input bytes since
 963          * the last block flush, because compression would have been
 964          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
 965          * transform a block into a stored block.
 966          */
 967         _tr_stored_block(s, buf, stored_len, last);
 968 
 969 #ifdef FORCE_STATIC
 970     } else if (static_lenb >= 0) { /* force static trees */
 971 #else
 972     } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
 973 #endif
 974         send_bits(s, (STATIC_TREES<<1)+last, 3);
 975         compress_block(s, (const ct_data *)static_ltree,
 976                        (const ct_data *)static_dtree);
 977 #ifdef DEBUG
 978         s->compressed_len += 3 + s->static_len;
 979 #endif
 980     } else {
 981         send_bits(s, (DYN_TREES<<1)+last, 3);
 982         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
 983                        max_blindex+1);
 984         compress_block(s, (const ct_data *)s->dyn_ltree,
 985                        (const ct_data *)s->dyn_dtree);
 986 #ifdef DEBUG
 987         s->compressed_len += 3 + s->opt_len;
 988 #endif
 989     }
 990     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
 991     /* The above check is made mod 2^32, for files larger than 512 MB
 992      * and uLong implemented on 32 bits.
 993      */
 994     init_block(s);
 995 
 996     if (last) {
 997         bi_windup(s);
 998 #ifdef DEBUG
 999         s->compressed_len += 7;  /* align on byte boundary */
1000 #endif
1001     }
1002     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
1003            s->compressed_len-7*last));
1004 }
1005 
1006 /* ===========================================================================
1007  * Save the match info and tally the frequency counts. Return true if
1008  * the current block must be flushed.
1009  */
1010 int ZLIB_INTERNAL _tr_tally (s, dist, lc)
1011     deflate_state *s;
1012     unsigned dist;  /* distance of matched string */
1013     unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
1014 {
1015     s->d_buf[s->last_lit] = (ush)dist;
1016     s->l_buf[s->last_lit++] = (uch)lc;
1017     if (dist == 0) {
1018         /* lc is the unmatched char */
1019         s->dyn_ltree[lc].Freq++;
1020     } else {
1021         s->matches++;
1022         /* Here, lc is the match length - MIN_MATCH */
1023         dist--;             /* dist = match distance - 1 */
1024         Assert((ush)dist < (ush)MAX_DIST(s) &&
1025                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1026                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
1027 
1028         s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
1029         s->dyn_dtree[d_code(dist)].Freq++;
1030     }
1031 
1032 #ifdef TRUNCATE_BLOCK
1033     /* Try to guess if it is profitable to stop the current block here */
1034     if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
1035         /* Compute an upper bound for the compressed length */
1036         ulg out_length = (ulg)s->last_lit*8L;
1037         ulg in_length = (ulg)((long)s->strstart - s->block_start);
1038         int dcode;
1039         for (dcode = 0; dcode < D_CODES; dcode++) {
1040             out_length += (ulg)s->dyn_dtree[dcode].Freq *
1041                 (5L+extra_dbits[dcode]);
1042         }
1043         out_length >>= 3;
1044         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1045                s->last_lit, in_length, out_length,
1046                100L - out_length*100L/in_length));
1047         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
1048     }
1049 #endif
1050     return (s->last_lit == s->lit_bufsize-1);
1051     /* We avoid equality with lit_bufsize because of wraparound at 64K
1052      * on 16 bit machines and because stored blocks are restricted to
1053      * 64K-1 bytes.
1054      */
1055 }
1056 
1057 /* ===========================================================================
1058  * Send the block data compressed using the given Huffman trees
1059  */
1060 local void compress_block(s, ltree, dtree)
1061     deflate_state *s;
1062     const ct_data *ltree; /* literal tree */
1063     const ct_data *dtree; /* distance tree */
1064 {
1065     unsigned dist;      /* distance of matched string */
1066     int lc;             /* match length or unmatched char (if dist == 0) */
1067     unsigned lx = 0;    /* running index in l_buf */
1068     unsigned code;      /* the code to send */
1069     int extra;          /* number of extra bits to send */
1070 
1071     if (s->last_lit != 0) do {
1072         dist = s->d_buf[lx];
1073         lc = s->l_buf[lx++];
1074         if (dist == 0) {
1075             send_code(s, lc, ltree); /* send a literal byte */
1076             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1077         } else {
1078             /* Here, lc is the match length - MIN_MATCH */
1079             code = _length_code[lc];
1080             send_code(s, code+LITERALS+1, ltree); /* send the length code */
1081             extra = extra_lbits[code];
1082             if (extra != 0) {
1083                 lc -= base_length[code];
1084                 send_bits(s, lc, extra);       /* send the extra length bits */
1085             }
1086             dist--; /* dist is now the match distance - 1 */
1087             code = d_code(dist);
1088             Assert (code < D_CODES, "bad d_code");
1089 
1090             send_code(s, code, dtree);       /* send the distance code */
1091             extra = extra_dbits[code];
1092             if (extra != 0) {
1093                 dist -= base_dist[code];
1094                 send_bits(s, dist, extra);   /* send the extra distance bits */
1095             }
1096         } /* literal or match pair ? */
1097 
1098         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1099         Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
1100                "pendingBuf overflow");
1101 
1102     } while (lx < s->last_lit);
1103 
1104     send_code(s, END_BLOCK, ltree);
1105 }
1106 
1107 /* ===========================================================================
1108  * Check if the data type is TEXT or BINARY, using the following algorithm:
1109  * - TEXT if the two conditions below are satisfied:
1110  *    a) There are no non-portable control characters belonging to the
1111  *       "black list" (0..6, 14..25, 28..31).
1112  *    b) There is at least one printable character belonging to the
1113  *       "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
1114  * - BINARY otherwise.
1115  * - The following partially-portable control characters form a
1116  *   "gray list" that is ignored in this detection algorithm:
1117  *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
1118  * IN assertion: the fields Freq of dyn_ltree are set.
1119  */
1120 local int detect_data_type(s)
1121     deflate_state *s;
1122 {
1123     /* black_mask is the bit mask of black-listed bytes
1124      * set bits 0..6, 14..25, and 28..31
1125      * 0xf3ffc07f = binary 11110011111111111100000001111111
1126      */
1127     unsigned long black_mask = 0xf3ffc07fUL;
1128     int n;
1129 
1130     /* Check for non-textual ("black-listed") bytes. */
1131     for (n = 0; n <= 31; n++, black_mask >>= 1)
1132         if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))
1133             return Z_BINARY;
1134 
1135     /* Check for textual ("white-listed") bytes. */
1136     if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
1137             || s->dyn_ltree[13].Freq != 0)
1138         return Z_TEXT;
1139     for (n = 32; n < LITERALS; n++)
1140         if (s->dyn_ltree[n].Freq != 0)
1141             return Z_TEXT;
1142 
1143     /* There are no "black-listed" or "white-listed" bytes:
1144      * this stream either is empty or has tolerated ("gray-listed") bytes only.
1145      */
1146     return Z_BINARY;
1147 }
1148 
1149 /* ===========================================================================
1150  * Reverse the first len bits of a code, using straightforward code (a faster
1151  * method would use a table)
1152  * IN assertion: 1 <= len <= 15
1153  */
1154 local unsigned bi_reverse(code, len)
1155     unsigned code; /* the value to invert */
1156     int len;       /* its bit length */
1157 {
1158     register unsigned res = 0;
1159     do {
1160         res |= code & 1;
1161         code >>= 1, res <<= 1;
1162     } while (--len > 0);
1163     return res >> 1;
1164 }
1165 
1166 /* ===========================================================================
1167  * Flush the bit buffer, keeping at most 7 bits in it.
1168  */
1169 local void bi_flush(s)
1170     deflate_state *s;
1171 {
1172     if (s->bi_valid == 16) {
1173         put_short(s, s->bi_buf);
1174         s->bi_buf = 0;
1175         s->bi_valid = 0;
1176     } else if (s->bi_valid >= 8) {
1177         put_byte(s, (Byte)s->bi_buf);
1178         s->bi_buf >>= 8;
1179         s->bi_valid -= 8;
1180     }
1181 }
1182 
1183 /* ===========================================================================
1184  * Flush the bit buffer and align the output on a byte boundary
1185  */
1186 local void bi_windup(s)
1187     deflate_state *s;
1188 {
1189     if (s->bi_valid > 8) {
1190         put_short(s, s->bi_buf);
1191     } else if (s->bi_valid > 0) {
1192         put_byte(s, (Byte)s->bi_buf);
1193     }
1194     s->bi_buf = 0;
1195     s->bi_valid = 0;
1196 #ifdef DEBUG
1197     s->bits_sent = (s->bits_sent+7) & ~7;
1198 #endif
1199 }
1200 
1201 /* ===========================================================================
1202  * Copy a stored block, storing first the length and its
1203  * one's complement if requested.
1204  */
1205 local void copy_block(s, buf, len, header)
1206     deflate_state *s;
1207     charf    *buf;    /* the input data */
1208     unsigned len;     /* its length */
1209     int      header;  /* true if block header must be written */
1210 {
1211     bi_windup(s);        /* align on byte boundary */
1212 
1213     if (header) {
1214         put_short(s, (ush)len);
1215         put_short(s, (ush)~len);
1216 #ifdef DEBUG
1217         s->bits_sent += 2*16;
1218 #endif
1219     }
1220 #ifdef DEBUG
1221     s->bits_sent += (ulg)len<<3;
1222 #endif
1223     while (len--) {
1224         put_byte(s, *buf++);
1225     }
1226 }