1 /* deflate.c -- compress data using the deflation algorithm 2 * Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler 3 * For conditions of distribution and use, see copyright notice in zlib.h 4 */ 5 6 /* 7 * ALGORITHM 8 * 9 * The "deflation" process depends on being able to identify portions 10 * of the input text which are identical to earlier input (within a 11 * sliding window trailing behind the input currently being processed). 12 * 13 * The most straightforward technique turns out to be the fastest for 14 * most input files: try all possible matches and select the longest. 15 * The key feature of this algorithm is that insertions into the string 16 * dictionary are very simple and thus fast, and deletions are avoided 17 * completely. Insertions are performed at each input character, whereas 18 * string matches are performed only when the previous match ends. So it 19 * is preferable to spend more time in matches to allow very fast string 20 * insertions and avoid deletions. The matching algorithm for small 21 * strings is inspired from that of Rabin & Karp. A brute force approach 22 * is used to find longer strings when a small match has been found. 23 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze 24 * (by Leonid Broukhis). 25 * A previous version of this file used a more sophisticated algorithm 26 * (by Fiala and Greene) which is guaranteed to run in linear amortized 27 * time, but has a larger average cost, uses more memory and is patented. 28 * However the F&G algorithm may be faster for some highly redundant 29 * files if the parameter max_chain_length (described below) is too large. 30 * 31 * ACKNOWLEDGEMENTS 32 * 33 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and 34 * I found it in 'freeze' written by Leonid Broukhis. 35 * Thanks to many people for bug reports and testing. 36 * 37 * REFERENCES 38 * 39 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification". 40 * Available in http://tools.ietf.org/html/rfc1951 41 * 42 * A description of the Rabin and Karp algorithm is given in the book 43 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252. 44 * 45 * Fiala,E.R., and Greene,D.H. 46 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595 47 * 48 */ 49 50 /* @(#) $Id$ */ 51 52 #include "deflate.h" 53 54 const char deflate_copyright[] = 55 " deflate 1.2.8 Copyright 1995-2013 Jean-loup Gailly and Mark Adler "; 56 /* 57 If you use the zlib library in a product, an acknowledgment is welcome 58 in the documentation of your product. If for some reason you cannot 59 include such an acknowledgment, I would appreciate that you keep this 60 copyright string in the executable of your product. 61 */ 62 63 #ifndef LONGEST_MATCH_ONLY 64 /* =========================================================================== 65 * Function prototypes. 66 */ 67 typedef enum { 68 need_more, /* block not completed, need more input or more output */ 69 block_done, /* block flush performed */ 70 finish_started, /* finish started, need only more output at next deflate */ 71 finish_done /* finish done, accept no more input or output */ 72 } block_state; 73 74 typedef block_state (*compress_func) OF((deflate_state *s, int flush)); 75 /* Compression function. Returns the block state after the call. */ 76 77 local void fill_window OF((deflate_state *s)); 78 local block_state deflate_stored OF((deflate_state *s, int flush)); 79 local block_state deflate_fast OF((deflate_state *s, int flush)); 80 #ifndef FASTEST 81 local block_state deflate_slow OF((deflate_state *s, int flush)); 82 #endif 83 local block_state deflate_rle OF((deflate_state *s, int flush)); 84 local block_state deflate_huff OF((deflate_state *s, int flush)); 85 local void lm_init OF((deflate_state *s)); 86 local void putShortMSB OF((deflate_state *s, uInt b)); 87 local void flush_pending OF((z_streamp strm)); 88 local int read_buf OF((z_streamp strm, Bytef *buf, unsigned size)); 89 #ifdef ASMV 90 void match_init OF((void)); /* asm code initialization */ 91 uInt longest_match OF((deflate_state *s, IPos cur_match)); 92 #else 93 #ifdef ORIG_LONGEST_MATCH 94 local uInt longest_match OF((deflate_state *s, IPos cur_match)); 95 #else 96 uInt longest_match OF((deflate_state *s, IPos cur_match)); 97 #endif 98 #endif 99 100 #ifdef DEBUG 101 local void check_match OF((deflate_state *s, IPos start, IPos match, 102 int length)); 103 #endif 104 #endif /* ! LONGEST_MATCH_ONLY */ 105 106 /* =========================================================================== 107 * Local data 108 */ 109 110 #define NIL 0 111 /* Tail of hash chains */ 112 113 #ifndef LONGEST_MATCH_ONLY 114 #ifndef TOO_FAR 115 # define TOO_FAR 4096 116 #endif 117 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */ 118 119 /* Values for max_lazy_match, good_match and max_chain_length, depending on 120 * the desired pack level (0..9). The values given below have been tuned to 121 * exclude worst case performance for pathological files. Better values may be 122 * found for specific files. 123 */ 124 typedef struct config_s { 125 ush good_length; /* reduce lazy search above this match length */ 126 ush max_lazy; /* do not perform lazy search above this match length */ 127 ush nice_length; /* quit search above this match length */ 128 ush max_chain; 129 compress_func func; 130 } config; 131 132 #ifdef FASTEST 133 local const config configuration_table[2] = { 134 /* good lazy nice chain */ 135 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ 136 /* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */ 137 #else 138 local const config configuration_table[10] = { 139 /* good lazy nice chain */ 140 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ 141 /* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */ 142 /* 2 */ {4, 5, 16, 8, deflate_fast}, 143 /* 3 */ {4, 6, 32, 32, deflate_fast}, 144 145 /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */ 146 /* 5 */ {8, 16, 32, 32, deflate_slow}, 147 /* 6 */ {8, 16, 128, 128, deflate_slow}, 148 /* 7 */ {8, 32, 128, 256, deflate_slow}, 149 /* 8 */ {32, 128, 258, 1024, deflate_slow}, 150 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */ 151 #endif 152 153 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 154 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different 155 * meaning. 156 */ 157 158 #define EQUAL 0 159 /* result of memcmp for equal strings */ 160 161 #ifndef NO_DUMMY_DECL 162 struct static_tree_desc_s {int dummy;}; /* for buggy compilers */ 163 #endif 164 165 /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */ 166 #define RANK(f) (((f) << 1) - ((f) > 4 ? 9 : 0)) 167 168 /* =========================================================================== 169 * Update a hash value with the given input byte 170 * IN assertion: all calls to to UPDATE_HASH are made with consecutive 171 * input characters, so that a running hash key can be computed from the 172 * previous key instead of complete recalculation each time. 173 */ 174 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask) 175 176 177 /* =========================================================================== 178 * Insert string str in the dictionary and set match_head to the previous head 179 * of the hash chain (the most recent string with same hash key). Return 180 * the previous length of the hash chain. 181 * If this file is compiled with -DFASTEST, the compression level is forced 182 * to 1, and no hash chains are maintained. 183 * IN assertion: all calls to to INSERT_STRING are made with consecutive 184 * input characters and the first MIN_MATCH bytes of str are valid 185 * (except for the last MIN_MATCH-1 bytes of the input file). 186 */ 187 #ifdef FASTEST 188 #define INSERT_STRING(s, str, match_head) \ 189 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ 190 match_head = s->head[s->ins_h], \ 191 s->head[s->ins_h] = (Pos)(str)) 192 #else 193 #define INSERT_STRING(s, str, match_head) \ 194 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ 195 match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \ 196 s->head[s->ins_h] = (Pos)(str)) 197 #endif 198 199 /* =========================================================================== 200 * Initialize the hash table (avoiding 64K overflow for 16 bit systems). 201 * prev[] will be initialized on the fly. 202 */ 203 #define CLEAR_HASH(s) \ 204 s->head[s->hash_size-1] = NIL; \ 205 zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head)); 206 207 /* ========================================================================= */ 208 int ZEXPORT deflateInit_(strm, level, version, stream_size) 209 z_streamp strm; 210 int level; 211 const char *version; 212 int stream_size; 213 { 214 return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, 215 Z_DEFAULT_STRATEGY, version, stream_size); 216 /* To do: ignore strm->next_in if we use it as window */ 217 } 218 219 /* ========================================================================= */ 220 int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy, 221 version, stream_size) 222 z_streamp strm; 223 int level; 224 int method; 225 int windowBits; 226 int memLevel; 227 int strategy; 228 const char *version; 229 int stream_size; 230 { 231 deflate_state *s; 232 int wrap = 1; 233 static const char my_version[] = ZLIB_VERSION; 234 235 ushf *overlay; 236 /* We overlay pending_buf and d_buf+l_buf. This works since the average 237 * output size for (length,distance) codes is <= 24 bits. 238 */ 239 240 if (version == Z_NULL || version[0] != my_version[0] || 241 stream_size != sizeof(z_stream)) { 242 return Z_VERSION_ERROR; 243 } 244 if (strm == Z_NULL) return Z_STREAM_ERROR; 245 246 strm->msg = Z_NULL; 247 if (strm->zalloc == (alloc_func)0) { 248 #ifdef Z_SOLO 249 return Z_STREAM_ERROR; 250 #else 251 strm->zalloc = zcalloc; 252 strm->opaque = (voidpf)0; 253 #endif 254 } 255 if (strm->zfree == (free_func)0) 256 #ifdef Z_SOLO 257 return Z_STREAM_ERROR; 258 #else 259 strm->zfree = zcfree; 260 #endif 261 262 #ifdef FASTEST 263 if (level != 0) level = 1; 264 #else 265 if (level == Z_DEFAULT_COMPRESSION) level = 6; 266 #endif 267 268 if (windowBits < 0) { /* suppress zlib wrapper */ 269 wrap = 0; 270 windowBits = -windowBits; 271 } 272 #ifdef GZIP 273 else if (windowBits > 15) { 274 wrap = 2; /* write gzip wrapper instead */ 275 windowBits -= 16; 276 } 277 #endif 278 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED || 279 windowBits < 8 || windowBits > 15 || level < 0 || level > 9 || 280 strategy < 0 || strategy > Z_FIXED) { 281 return Z_STREAM_ERROR; 282 } 283 if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */ 284 s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state)); 285 if (s == Z_NULL) return Z_MEM_ERROR; 286 strm->state = (struct internal_state FAR *)s; 287 s->strm = strm; 288 289 s->wrap = wrap; 290 s->gzhead = Z_NULL; 291 s->w_bits = windowBits; 292 s->w_size = 1 << s->w_bits; 293 s->w_mask = s->w_size - 1; 294 295 s->hash_bits = memLevel + 7; 296 s->hash_size = 1 << s->hash_bits; 297 s->hash_mask = s->hash_size - 1; 298 s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH); 299 300 s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte)); 301 s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos)); 302 s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos)); 303 304 s->high_water = 0; /* nothing written to s->window yet */ 305 306 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ 307 308 overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2); 309 s->pending_buf = (uchf *) overlay; 310 s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L); 311 312 if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL || 313 s->pending_buf == Z_NULL) { 314 s->status = FINISH_STATE; 315 strm->msg = ERR_MSG(Z_MEM_ERROR); 316 deflateEnd (strm); 317 return Z_MEM_ERROR; 318 } 319 s->d_buf = overlay + s->lit_bufsize/sizeof(ush); 320 s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize; 321 322 s->level = level; 323 s->strategy = strategy; 324 s->method = (Byte)method; 325 326 return deflateReset(strm); 327 } 328 329 /* ========================================================================= */ 330 int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength) 331 z_streamp strm; 332 const Bytef *dictionary; 333 uInt dictLength; 334 { 335 deflate_state *s; 336 uInt str, n; 337 int wrap; 338 unsigned avail; 339 z_const unsigned char *next; 340 341 if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL) 342 return Z_STREAM_ERROR; 343 s = strm->state; 344 wrap = s->wrap; 345 if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead) 346 return Z_STREAM_ERROR; 347 348 /* when using zlib wrappers, compute Adler-32 for provided dictionary */ 349 if (wrap == 1) 350 strm->adler = adler32(strm->adler, dictionary, dictLength); 351 s->wrap = 0; /* avoid computing Adler-32 in read_buf */ 352 353 /* if dictionary would fill window, just replace the history */ 354 if (dictLength >= s->w_size) { 355 if (wrap == 0) { /* already empty otherwise */ 356 CLEAR_HASH(s); 357 s->strstart = 0; 358 s->block_start = 0L; 359 s->insert = 0; 360 } 361 dictionary += dictLength - s->w_size; /* use the tail */ 362 dictLength = s->w_size; 363 } 364 365 /* insert dictionary into window and hash */ 366 avail = strm->avail_in; 367 next = strm->next_in; 368 strm->avail_in = dictLength; 369 strm->next_in = (z_const Bytef *)dictionary; 370 fill_window(s); 371 while (s->lookahead >= MIN_MATCH) { 372 str = s->strstart; 373 n = s->lookahead - (MIN_MATCH-1); 374 do { 375 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); 376 #ifndef FASTEST 377 s->prev[str & s->w_mask] = s->head[s->ins_h]; 378 #endif 379 s->head[s->ins_h] = (Pos)str; 380 str++; 381 } while (--n); 382 s->strstart = str; 383 s->lookahead = MIN_MATCH-1; 384 fill_window(s); 385 } 386 s->strstart += s->lookahead; 387 s->block_start = (long)s->strstart; 388 s->insert = s->lookahead; 389 s->lookahead = 0; 390 s->match_length = s->prev_length = MIN_MATCH-1; 391 s->match_available = 0; 392 strm->next_in = next; 393 strm->avail_in = avail; 394 s->wrap = wrap; 395 return Z_OK; 396 } 397 398 /* ========================================================================= */ 399 int ZEXPORT deflateResetKeep (strm) 400 z_streamp strm; 401 { 402 deflate_state *s; 403 404 if (strm == Z_NULL || strm->state == Z_NULL || 405 strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) { 406 return Z_STREAM_ERROR; 407 } 408 409 strm->total_in = strm->total_out = 0; 410 strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */ 411 strm->data_type = Z_UNKNOWN; 412 413 s = (deflate_state *)strm->state; 414 s->pending = 0; 415 s->pending_out = s->pending_buf; 416 417 if (s->wrap < 0) { 418 s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */ 419 } 420 s->status = s->wrap ? INIT_STATE : BUSY_STATE; 421 strm->adler = 422 #ifdef GZIP 423 s->wrap == 2 ? crc32(0L, Z_NULL, 0) : 424 #endif 425 adler32(0L, Z_NULL, 0); 426 s->last_flush = Z_NO_FLUSH; 427 428 _tr_init(s); 429 430 return Z_OK; 431 } 432 433 /* ========================================================================= */ 434 int ZEXPORT deflateReset (strm) 435 z_streamp strm; 436 { 437 int ret; 438 439 ret = deflateResetKeep(strm); 440 if (ret == Z_OK) 441 lm_init(strm->state); 442 return ret; 443 } 444 445 /* ========================================================================= */ 446 int ZEXPORT deflateSetHeader (strm, head) 447 z_streamp strm; 448 gz_headerp head; 449 { 450 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; 451 if (strm->state->wrap != 2) return Z_STREAM_ERROR; 452 strm->state->gzhead = head; 453 return Z_OK; 454 } 455 456 /* ========================================================================= */ 457 int ZEXPORT deflatePending (strm, pending, bits) 458 unsigned *pending; 459 int *bits; 460 z_streamp strm; 461 { 462 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; 463 if (pending != Z_NULL) 464 *pending = strm->state->pending; 465 if (bits != Z_NULL) 466 *bits = strm->state->bi_valid; 467 return Z_OK; 468 } 469 470 /* ========================================================================= */ 471 int ZEXPORT deflatePrime (strm, bits, value) 472 z_streamp strm; 473 int bits; 474 int value; 475 { 476 deflate_state *s; 477 int put; 478 479 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; 480 s = strm->state; 481 if ((Bytef *)(s->d_buf) < s->pending_out + ((Buf_size + 7) >> 3)) 482 return Z_BUF_ERROR; 483 do { 484 put = Buf_size - s->bi_valid; 485 if (put > bits) 486 put = bits; 487 s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid); 488 s->bi_valid += put; 489 _tr_flush_bits(s); 490 value >>= put; 491 bits -= put; 492 } while (bits); 493 return Z_OK; 494 } 495 496 /* ========================================================================= */ 497 int ZEXPORT deflateParams(strm, level, strategy) 498 z_streamp strm; 499 int level; 500 int strategy; 501 { 502 deflate_state *s; 503 compress_func func; 504 int err = Z_OK; 505 506 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; 507 s = strm->state; 508 509 #ifdef FASTEST 510 if (level != 0) level = 1; 511 #else 512 if (level == Z_DEFAULT_COMPRESSION) level = 6; 513 #endif 514 if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) { 515 return Z_STREAM_ERROR; 516 } 517 func = configuration_table[s->level].func; 518 519 if ((strategy != s->strategy || func != configuration_table[level].func) && 520 strm->total_in != 0) { 521 /* Flush the last buffer: */ 522 err = deflate(strm, Z_BLOCK); 523 if (err == Z_BUF_ERROR && s->pending == 0) 524 err = Z_OK; 525 } 526 if (s->level != level) { 527 s->level = level; 528 s->max_lazy_match = configuration_table[level].max_lazy; 529 s->good_match = configuration_table[level].good_length; 530 s->nice_match = configuration_table[level].nice_length; 531 s->max_chain_length = configuration_table[level].max_chain; 532 } 533 s->strategy = strategy; 534 return err; 535 } 536 537 /* ========================================================================= */ 538 int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain) 539 z_streamp strm; 540 int good_length; 541 int max_lazy; 542 int nice_length; 543 int max_chain; 544 { 545 deflate_state *s; 546 547 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; 548 s = strm->state; 549 s->good_match = good_length; 550 s->max_lazy_match = max_lazy; 551 s->nice_match = nice_length; 552 s->max_chain_length = max_chain; 553 return Z_OK; 554 } 555 556 /* ========================================================================= 557 * For the default windowBits of 15 and memLevel of 8, this function returns 558 * a close to exact, as well as small, upper bound on the compressed size. 559 * They are coded as constants here for a reason--if the #define's are 560 * changed, then this function needs to be changed as well. The return 561 * value for 15 and 8 only works for those exact settings. 562 * 563 * For any setting other than those defaults for windowBits and memLevel, 564 * the value returned is a conservative worst case for the maximum expansion 565 * resulting from using fixed blocks instead of stored blocks, which deflate 566 * can emit on compressed data for some combinations of the parameters. 567 * 568 * This function could be more sophisticated to provide closer upper bounds for 569 * every combination of windowBits and memLevel. But even the conservative 570 * upper bound of about 14% expansion does not seem onerous for output buffer 571 * allocation. 572 */ 573 uLong ZEXPORT deflateBound(strm, sourceLen) 574 z_streamp strm; 575 uLong sourceLen; 576 { 577 deflate_state *s; 578 uLong complen, wraplen; 579 Bytef *str; 580 581 /* conservative upper bound for compressed data */ 582 complen = sourceLen + 583 ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5; 584 585 /* if can't get parameters, return conservative bound plus zlib wrapper */ 586 if (strm == Z_NULL || strm->state == Z_NULL) 587 return complen + 6; 588 589 /* compute wrapper length */ 590 s = strm->state; 591 switch (s->wrap) { 592 case 0: /* raw deflate */ 593 wraplen = 0; 594 break; 595 case 1: /* zlib wrapper */ 596 wraplen = 6 + (s->strstart ? 4 : 0); 597 break; 598 case 2: /* gzip wrapper */ 599 wraplen = 18; 600 if (s->gzhead != Z_NULL) { /* user-supplied gzip header */ 601 if (s->gzhead->extra != Z_NULL) 602 wraplen += 2 + s->gzhead->extra_len; 603 str = s->gzhead->name; 604 if (str != Z_NULL) 605 do { 606 wraplen++; 607 } while (*str++); 608 str = s->gzhead->comment; 609 if (str != Z_NULL) 610 do { 611 wraplen++; 612 } while (*str++); 613 if (s->gzhead->hcrc) 614 wraplen += 2; 615 } 616 break; 617 default: /* for compiler happiness */ 618 wraplen = 6; 619 } 620 621 /* if not default parameters, return conservative bound */ 622 if (s->w_bits != 15 || s->hash_bits != 8 + 7) 623 return complen + wraplen; 624 625 /* default settings: return tight bound for that case */ 626 return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) + 627 (sourceLen >> 25) + 13 - 6 + wraplen; 628 } 629 630 /* ========================================================================= 631 * Put a short in the pending buffer. The 16-bit value is put in MSB order. 632 * IN assertion: the stream state is correct and there is enough room in 633 * pending_buf. 634 */ 635 local void putShortMSB (s, b) 636 deflate_state *s; 637 uInt b; 638 { 639 put_byte(s, (Byte)(b >> 8)); 640 put_byte(s, (Byte)(b & 0xff)); 641 } 642 643 /* ========================================================================= 644 * Flush as much pending output as possible. All deflate() output goes 645 * through this function so some applications may wish to modify it 646 * to avoid allocating a large strm->next_out buffer and copying into it. 647 * (See also read_buf()). 648 */ 649 local void flush_pending(strm) 650 z_streamp strm; 651 { 652 unsigned len; 653 deflate_state *s = strm->state; 654 655 _tr_flush_bits(s); 656 len = s->pending; 657 if (len > strm->avail_out) len = strm->avail_out; 658 if (len == 0) return; 659 660 zmemcpy(strm->next_out, s->pending_out, len); 661 strm->next_out += len; 662 s->pending_out += len; 663 strm->total_out += len; 664 strm->avail_out -= len; 665 s->pending -= len; 666 if (s->pending == 0) { 667 s->pending_out = s->pending_buf; 668 } 669 } 670 671 /* ========================================================================= */ 672 int ZEXPORT deflate (strm, flush) 673 z_streamp strm; 674 int flush; 675 { 676 int old_flush; /* value of flush param for previous deflate call */ 677 deflate_state *s; 678 679 if (strm == Z_NULL || strm->state == Z_NULL || 680 flush > Z_BLOCK || flush < 0) { 681 return Z_STREAM_ERROR; 682 } 683 s = strm->state; 684 685 if (strm->next_out == Z_NULL || 686 (strm->next_in == Z_NULL && strm->avail_in != 0) || 687 (s->status == FINISH_STATE && flush != Z_FINISH)) { 688 ERR_RETURN(strm, Z_STREAM_ERROR); 689 } 690 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR); 691 692 s->strm = strm; /* just in case */ 693 old_flush = s->last_flush; 694 s->last_flush = flush; 695 696 /* Write the header */ 697 if (s->status == INIT_STATE) { 698 #ifdef GZIP 699 if (s->wrap == 2) { 700 strm->adler = crc32(0L, Z_NULL, 0); 701 put_byte(s, 31); 702 put_byte(s, 139); 703 put_byte(s, 8); 704 if (s->gzhead == Z_NULL) { 705 put_byte(s, 0); 706 put_byte(s, 0); 707 put_byte(s, 0); 708 put_byte(s, 0); 709 put_byte(s, 0); 710 put_byte(s, s->level == 9 ? 2 : 711 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? 712 4 : 0)); 713 put_byte(s, OS_CODE); 714 s->status = BUSY_STATE; 715 } 716 else { 717 put_byte(s, (s->gzhead->text ? 1 : 0) + 718 (s->gzhead->hcrc ? 2 : 0) + 719 (s->gzhead->extra == Z_NULL ? 0 : 4) + 720 (s->gzhead->name == Z_NULL ? 0 : 8) + 721 (s->gzhead->comment == Z_NULL ? 0 : 16) 722 ); 723 put_byte(s, (Byte)(s->gzhead->time & 0xff)); 724 put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff)); 725 put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff)); 726 put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff)); 727 put_byte(s, s->level == 9 ? 2 : 728 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? 729 4 : 0)); 730 put_byte(s, s->gzhead->os & 0xff); 731 if (s->gzhead->extra != Z_NULL) { 732 put_byte(s, s->gzhead->extra_len & 0xff); 733 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff); 734 } 735 if (s->gzhead->hcrc) 736 strm->adler = crc32(strm->adler, s->pending_buf, 737 s->pending); 738 s->gzindex = 0; 739 s->status = EXTRA_STATE; 740 } 741 } 742 else 743 #endif 744 { 745 uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8; 746 uInt level_flags; 747 748 if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2) 749 level_flags = 0; 750 else if (s->level < 6) 751 level_flags = 1; 752 else if (s->level == 6) 753 level_flags = 2; 754 else 755 level_flags = 3; 756 header |= (level_flags << 6); 757 if (s->strstart != 0) header |= PRESET_DICT; 758 header += 31 - (header % 31); 759 760 s->status = BUSY_STATE; 761 putShortMSB(s, header); 762 763 /* Save the adler32 of the preset dictionary: */ 764 if (s->strstart != 0) { 765 putShortMSB(s, (uInt)(strm->adler >> 16)); 766 putShortMSB(s, (uInt)(strm->adler & 0xffff)); 767 } 768 strm->adler = adler32(0L, Z_NULL, 0); 769 } 770 } 771 #ifdef GZIP 772 if (s->status == EXTRA_STATE) { 773 if (s->gzhead->extra != Z_NULL) { 774 uInt beg = s->pending; /* start of bytes to update crc */ 775 776 while (s->gzindex < (s->gzhead->extra_len & 0xffff)) { 777 if (s->pending == s->pending_buf_size) { 778 if (s->gzhead->hcrc && s->pending > beg) 779 strm->adler = crc32(strm->adler, s->pending_buf + beg, 780 s->pending - beg); 781 flush_pending(strm); 782 beg = s->pending; 783 if (s->pending == s->pending_buf_size) 784 break; 785 } 786 put_byte(s, s->gzhead->extra[s->gzindex]); 787 s->gzindex++; 788 } 789 if (s->gzhead->hcrc && s->pending > beg) 790 strm->adler = crc32(strm->adler, s->pending_buf + beg, 791 s->pending - beg); 792 if (s->gzindex == s->gzhead->extra_len) { 793 s->gzindex = 0; 794 s->status = NAME_STATE; 795 } 796 } 797 else 798 s->status = NAME_STATE; 799 } 800 if (s->status == NAME_STATE) { 801 if (s->gzhead->name != Z_NULL) { 802 uInt beg = s->pending; /* start of bytes to update crc */ 803 int val; 804 805 do { 806 if (s->pending == s->pending_buf_size) { 807 if (s->gzhead->hcrc && s->pending > beg) 808 strm->adler = crc32(strm->adler, s->pending_buf + beg, 809 s->pending - beg); 810 flush_pending(strm); 811 beg = s->pending; 812 if (s->pending == s->pending_buf_size) { 813 val = 1; 814 break; 815 } 816 } 817 val = s->gzhead->name[s->gzindex++]; 818 put_byte(s, val); 819 } while (val != 0); 820 if (s->gzhead->hcrc && s->pending > beg) 821 strm->adler = crc32(strm->adler, s->pending_buf + beg, 822 s->pending - beg); 823 if (val == 0) { 824 s->gzindex = 0; 825 s->status = COMMENT_STATE; 826 } 827 } 828 else 829 s->status = COMMENT_STATE; 830 } 831 if (s->status == COMMENT_STATE) { 832 if (s->gzhead->comment != Z_NULL) { 833 uInt beg = s->pending; /* start of bytes to update crc */ 834 int val; 835 836 do { 837 if (s->pending == s->pending_buf_size) { 838 if (s->gzhead->hcrc && s->pending > beg) 839 strm->adler = crc32(strm->adler, s->pending_buf + beg, 840 s->pending - beg); 841 flush_pending(strm); 842 beg = s->pending; 843 if (s->pending == s->pending_buf_size) { 844 val = 1; 845 break; 846 } 847 } 848 val = s->gzhead->comment[s->gzindex++]; 849 put_byte(s, val); 850 } while (val != 0); 851 if (s->gzhead->hcrc && s->pending > beg) 852 strm->adler = crc32(strm->adler, s->pending_buf + beg, 853 s->pending - beg); 854 if (val == 0) 855 s->status = HCRC_STATE; 856 } 857 else 858 s->status = HCRC_STATE; 859 } 860 if (s->status == HCRC_STATE) { 861 if (s->gzhead->hcrc) { 862 if (s->pending + 2 > s->pending_buf_size) 863 flush_pending(strm); 864 if (s->pending + 2 <= s->pending_buf_size) { 865 put_byte(s, (Byte)(strm->adler & 0xff)); 866 put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); 867 strm->adler = crc32(0L, Z_NULL, 0); 868 s->status = BUSY_STATE; 869 } 870 } 871 else 872 s->status = BUSY_STATE; 873 } 874 #endif 875 876 /* Flush as much pending output as possible */ 877 if (s->pending != 0) { 878 flush_pending(strm); 879 if (strm->avail_out == 0) { 880 /* Since avail_out is 0, deflate will be called again with 881 * more output space, but possibly with both pending and 882 * avail_in equal to zero. There won't be anything to do, 883 * but this is not an error situation so make sure we 884 * return OK instead of BUF_ERROR at next call of deflate: 885 */ 886 s->last_flush = -1; 887 return Z_OK; 888 } 889 890 /* Make sure there is something to do and avoid duplicate consecutive 891 * flushes. For repeated and useless calls with Z_FINISH, we keep 892 * returning Z_STREAM_END instead of Z_BUF_ERROR. 893 */ 894 } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) && 895 flush != Z_FINISH) { 896 ERR_RETURN(strm, Z_BUF_ERROR); 897 } 898 899 /* User must not provide more input after the first FINISH: */ 900 if (s->status == FINISH_STATE && strm->avail_in != 0) { 901 ERR_RETURN(strm, Z_BUF_ERROR); 902 } 903 904 /* Start a new block or continue the current one. 905 */ 906 if (strm->avail_in != 0 || s->lookahead != 0 || 907 (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) { 908 block_state bstate; 909 910 bstate = s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) : 911 (s->strategy == Z_RLE ? deflate_rle(s, flush) : 912 (*(configuration_table[s->level].func))(s, flush)); 913 914 if (bstate == finish_started || bstate == finish_done) { 915 s->status = FINISH_STATE; 916 } 917 if (bstate == need_more || bstate == finish_started) { 918 if (strm->avail_out == 0) { 919 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */ 920 } 921 return Z_OK; 922 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call 923 * of deflate should use the same flush parameter to make sure 924 * that the flush is complete. So we don't have to output an 925 * empty block here, this will be done at next call. This also 926 * ensures that for a very small output buffer, we emit at most 927 * one empty block. 928 */ 929 } 930 if (bstate == block_done) { 931 if (flush == Z_PARTIAL_FLUSH) { 932 _tr_align(s); 933 } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */ 934 _tr_stored_block(s, (char*)0, 0L, 0); 935 /* For a full flush, this empty block will be recognized 936 * as a special marker by inflate_sync(). 937 */ 938 if (flush == Z_FULL_FLUSH) { 939 CLEAR_HASH(s); /* forget history */ 940 if (s->lookahead == 0) { 941 s->strstart = 0; 942 s->block_start = 0L; 943 s->insert = 0; 944 } 945 } 946 } 947 flush_pending(strm); 948 if (strm->avail_out == 0) { 949 s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */ 950 return Z_OK; 951 } 952 } 953 } 954 Assert(strm->avail_out > 0, "bug2"); 955 956 if (flush != Z_FINISH) return Z_OK; 957 if (s->wrap <= 0) return Z_STREAM_END; 958 959 /* Write the trailer */ 960 #ifdef GZIP 961 if (s->wrap == 2) { 962 put_byte(s, (Byte)(strm->adler & 0xff)); 963 put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); 964 put_byte(s, (Byte)((strm->adler >> 16) & 0xff)); 965 put_byte(s, (Byte)((strm->adler >> 24) & 0xff)); 966 put_byte(s, (Byte)(strm->total_in & 0xff)); 967 put_byte(s, (Byte)((strm->total_in >> 8) & 0xff)); 968 put_byte(s, (Byte)((strm->total_in >> 16) & 0xff)); 969 put_byte(s, (Byte)((strm->total_in >> 24) & 0xff)); 970 } 971 else 972 #endif 973 { 974 putShortMSB(s, (uInt)(strm->adler >> 16)); 975 putShortMSB(s, (uInt)(strm->adler & 0xffff)); 976 } 977 flush_pending(strm); 978 /* If avail_out is zero, the application will call deflate again 979 * to flush the rest. 980 */ 981 if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */ 982 return s->pending != 0 ? Z_OK : Z_STREAM_END; 983 } 984 985 /* ========================================================================= */ 986 int ZEXPORT deflateEnd (strm) 987 z_streamp strm; 988 { 989 int status; 990 991 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; 992 993 status = strm->state->status; 994 if (status != INIT_STATE && 995 status != EXTRA_STATE && 996 status != NAME_STATE && 997 status != COMMENT_STATE && 998 status != HCRC_STATE && 999 status != BUSY_STATE && 1000 status != FINISH_STATE) { 1001 return Z_STREAM_ERROR; 1002 } 1003 1004 /* Deallocate in reverse order of allocations: */ 1005 TRY_FREE(strm, strm->state->pending_buf); 1006 TRY_FREE(strm, strm->state->head); 1007 TRY_FREE(strm, strm->state->prev); 1008 TRY_FREE(strm, strm->state->window); 1009 1010 ZFREE(strm, strm->state); 1011 strm->state = Z_NULL; 1012 1013 return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; 1014 } 1015 1016 /* ========================================================================= 1017 * Copy the source state to the destination state. 1018 * To simplify the source, this is not supported for 16-bit MSDOS (which 1019 * doesn't have enough memory anyway to duplicate compression states). 1020 */ 1021 int ZEXPORT deflateCopy (dest, source) 1022 z_streamp dest; 1023 z_streamp source; 1024 { 1025 #ifdef MAXSEG_64K 1026 return Z_STREAM_ERROR; 1027 #else 1028 deflate_state *ds; 1029 deflate_state *ss; 1030 ushf *overlay; 1031 1032 1033 if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) { 1034 return Z_STREAM_ERROR; 1035 } 1036 1037 ss = source->state; 1038 1039 zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream)); 1040 1041 ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state)); 1042 if (ds == Z_NULL) return Z_MEM_ERROR; 1043 dest->state = (struct internal_state FAR *) ds; 1044 zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state)); 1045 ds->strm = dest; 1046 1047 ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte)); 1048 ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos)); 1049 ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos)); 1050 overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2); 1051 ds->pending_buf = (uchf *) overlay; 1052 1053 if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL || 1054 ds->pending_buf == Z_NULL) { 1055 deflateEnd (dest); 1056 return Z_MEM_ERROR; 1057 } 1058 /* following zmemcpy do not work for 16-bit MSDOS */ 1059 zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte)); 1060 zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos)); 1061 zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos)); 1062 zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size); 1063 1064 ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf); 1065 ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush); 1066 ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize; 1067 1068 ds->l_desc.dyn_tree = ds->dyn_ltree; 1069 ds->d_desc.dyn_tree = ds->dyn_dtree; 1070 ds->bl_desc.dyn_tree = ds->bl_tree; 1071 1072 return Z_OK; 1073 #endif /* MAXSEG_64K */ 1074 } 1075 1076 /* =========================================================================== 1077 * Read a new buffer from the current input stream, update the adler32 1078 * and total number of bytes read. All deflate() input goes through 1079 * this function so some applications may wish to modify it to avoid 1080 * allocating a large strm->next_in buffer and copying from it. 1081 * (See also flush_pending()). 1082 */ 1083 local int read_buf(strm, buf, size) 1084 z_streamp strm; 1085 Bytef *buf; 1086 unsigned size; 1087 { 1088 unsigned len = strm->avail_in; 1089 1090 if (len > size) len = size; 1091 if (len == 0) return 0; 1092 1093 strm->avail_in -= len; 1094 1095 zmemcpy(buf, strm->next_in, len); 1096 if (strm->state->wrap == 1) { 1097 strm->adler = adler32(strm->adler, buf, len); 1098 } 1099 #ifdef GZIP 1100 else if (strm->state->wrap == 2) { 1101 strm->adler = crc32(strm->adler, buf, len); 1102 } 1103 #endif 1104 strm->next_in += len; 1105 strm->total_in += len; 1106 1107 return (int)len; 1108 } 1109 1110 /* =========================================================================== 1111 * Initialize the "longest match" routines for a new zlib stream 1112 */ 1113 local void lm_init (s) 1114 deflate_state *s; 1115 { 1116 s->window_size = (ulg)2L*s->w_size; 1117 1118 CLEAR_HASH(s); 1119 1120 /* Set the default configuration parameters: 1121 */ 1122 s->max_lazy_match = configuration_table[s->level].max_lazy; 1123 s->good_match = configuration_table[s->level].good_length; 1124 s->nice_match = configuration_table[s->level].nice_length; 1125 s->max_chain_length = configuration_table[s->level].max_chain; 1126 1127 s->strstart = 0; 1128 s->block_start = 0L; 1129 s->lookahead = 0; 1130 s->insert = 0; 1131 s->match_length = s->prev_length = MIN_MATCH-1; 1132 s->match_available = 0; 1133 s->ins_h = 0; 1134 #ifndef FASTEST 1135 #ifdef ASMV 1136 match_init(); /* initialize the asm code */ 1137 #endif 1138 #endif 1139 } 1140 #endif /* ! LONGEST_MATCH_ONLY */ 1141 1142 #if defined(ORIG_LONGEST_MATCH) || defined(ORIG_LONGEST_MATCH_GLOBAL) 1143 #ifndef FASTEST 1144 /* =========================================================================== 1145 * Set match_start to the longest match starting at the given string and 1146 * return its length. Matches shorter or equal to prev_length are discarded, 1147 * in which case the result is equal to prev_length and match_start is 1148 * garbage. 1149 * IN assertions: cur_match is the head of the hash chain for the current 1150 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 1151 * OUT assertion: the match length is not greater than s->lookahead. 1152 */ 1153 #ifndef ASMV 1154 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or 1155 * match.S. The code will be functionally equivalent. 1156 */ 1157 #ifdef ORIG_LONGEST_MATCH_GLOBAL 1158 uInt longest_match(s, cur_match) 1159 #else 1160 local uInt longest_match(s, cur_match) 1161 #endif 1162 deflate_state *s; 1163 IPos cur_match; /* current match */ 1164 { 1165 unsigned chain_length = s->max_chain_length;/* max hash chain length */ 1166 register Bytef *scan = s->window + s->strstart; /* current string */ 1167 register Bytef *match; /* matched string */ 1168 register int len; /* length of current match */ 1169 int best_len = s->prev_length; /* best match length so far */ 1170 int nice_match = s->nice_match; /* stop if match long enough */ 1171 IPos limit = s->strstart > (IPos)MAX_DIST(s) ? 1172 s->strstart - (IPos)MAX_DIST(s) : NIL; 1173 /* Stop when cur_match becomes <= limit. To simplify the code, 1174 * we prevent matches with the string of window index 0. 1175 */ 1176 Posf *prev = s->prev; 1177 uInt wmask = s->w_mask; 1178 1179 #ifdef UNALIGNED_OK 1180 /* Compare two bytes at a time. Note: this is not always beneficial. 1181 * Try with and without -DUNALIGNED_OK to check. 1182 */ 1183 register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1; 1184 register ush scan_start = *(ushf*)scan; 1185 register ush scan_end = *(ushf*)(scan+best_len-1); 1186 #else 1187 register Bytef *strend = s->window + s->strstart + MAX_MATCH; 1188 register Byte scan_end1 = scan[best_len-1]; 1189 register Byte scan_end = scan[best_len]; 1190 #endif 1191 1192 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. 1193 * It is easy to get rid of this optimization if necessary. 1194 */ 1195 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); 1196 1197 /* Do not waste too much time if we already have a good match: */ 1198 if (s->prev_length >= s->good_match) { 1199 chain_length >>= 2; 1200 } 1201 /* Do not look for matches beyond the end of the input. This is necessary 1202 * to make deflate deterministic. 1203 */ 1204 if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead; 1205 1206 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); 1207 1208 do { 1209 Assert(cur_match < s->strstart, "no future"); 1210 match = s->window + cur_match; 1211 1212 /* Skip to next match if the match length cannot increase 1213 * or if the match length is less than 2. Note that the checks below 1214 * for insufficient lookahead only occur occasionally for performance 1215 * reasons. Therefore uninitialized memory will be accessed, and 1216 * conditional jumps will be made that depend on those values. 1217 * However the length of the match is limited to the lookahead, so 1218 * the output of deflate is not affected by the uninitialized values. 1219 */ 1220 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258) 1221 /* This code assumes sizeof(unsigned short) == 2. Do not use 1222 * UNALIGNED_OK if your compiler uses a different size. 1223 */ 1224 if (*(ushf*)(match+best_len-1) != scan_end || 1225 *(ushf*)match != scan_start) continue; 1226 1227 /* It is not necessary to compare scan[2] and match[2] since they are 1228 * always equal when the other bytes match, given that the hash keys 1229 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at 1230 * strstart+3, +5, ... up to strstart+257. We check for insufficient 1231 * lookahead only every 4th comparison; the 128th check will be made 1232 * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is 1233 * necessary to put more guard bytes at the end of the window, or 1234 * to check more often for insufficient lookahead. 1235 */ 1236 Assert(scan[2] == match[2], "scan[2]?"); 1237 scan++, match++; 1238 do { 1239 } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) && 1240 *(ushf*)(scan+=2) == *(ushf*)(match+=2) && 1241 *(ushf*)(scan+=2) == *(ushf*)(match+=2) && 1242 *(ushf*)(scan+=2) == *(ushf*)(match+=2) && 1243 scan < strend); 1244 /* The funny "do {}" generates better code on most compilers */ 1245 1246 /* Here, scan <= window+strstart+257 */ 1247 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); 1248 if (*scan == *match) scan++; 1249 1250 len = (MAX_MATCH - 1) - (int)(strend-scan); 1251 scan = strend - (MAX_MATCH-1); 1252 1253 #else /* UNALIGNED_OK */ 1254 1255 if (match[best_len] != scan_end || 1256 match[best_len-1] != scan_end1 || 1257 *match != *scan || 1258 *++match != scan[1]) continue; 1259 1260 /* The check at best_len-1 can be removed because it will be made 1261 * again later. (This heuristic is not always a win.) 1262 * It is not necessary to compare scan[2] and match[2] since they 1263 * are always equal when the other bytes match, given that 1264 * the hash keys are equal and that HASH_BITS >= 8. 1265 */ 1266 scan += 2, match++; 1267 Assert(*scan == *match, "match[2]?"); 1268 1269 /* We check for insufficient lookahead only every 8th comparison; 1270 * the 256th check will be made at strstart+258. 1271 */ 1272 do { 1273 } while (*++scan == *++match && *++scan == *++match && 1274 *++scan == *++match && *++scan == *++match && 1275 *++scan == *++match && *++scan == *++match && 1276 *++scan == *++match && *++scan == *++match && 1277 scan < strend); 1278 1279 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); 1280 1281 len = MAX_MATCH - (int)(strend - scan); 1282 scan = strend - MAX_MATCH; 1283 1284 #endif /* UNALIGNED_OK */ 1285 1286 if (len > best_len) { 1287 s->match_start = cur_match; 1288 best_len = len; 1289 if (len >= nice_match) break; 1290 #ifdef UNALIGNED_OK 1291 scan_end = *(ushf*)(scan+best_len-1); 1292 #else 1293 scan_end1 = scan[best_len-1]; 1294 scan_end = scan[best_len]; 1295 #endif 1296 } 1297 } while ((cur_match = prev[cur_match & wmask]) > limit 1298 && --chain_length != 0); 1299 1300 if ((uInt)best_len <= s->lookahead) return (uInt)best_len; 1301 return s->lookahead; 1302 } 1303 #endif /* ASMV */ 1304 #endif /* ORIG_LONGEST_MATCHT */ 1305 1306 #else /* FASTEST */ 1307 1308 /* --------------------------------------------------------------------------- 1309 * Optimized version for FASTEST only 1310 */ 1311 local uInt longest_match(s, cur_match) 1312 deflate_state *s; 1313 IPos cur_match; /* current match */ 1314 { 1315 register Bytef *scan = s->window + s->strstart; /* current string */ 1316 register Bytef *match; /* matched string */ 1317 register int len; /* length of current match */ 1318 register Bytef *strend = s->window + s->strstart + MAX_MATCH; 1319 1320 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. 1321 * It is easy to get rid of this optimization if necessary. 1322 */ 1323 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); 1324 1325 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); 1326 1327 Assert(cur_match < s->strstart, "no future"); 1328 1329 match = s->window + cur_match; 1330 1331 /* Return failure if the match length is less than 2: 1332 */ 1333 if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1; 1334 1335 /* The check at best_len-1 can be removed because it will be made 1336 * again later. (This heuristic is not always a win.) 1337 * It is not necessary to compare scan[2] and match[2] since they 1338 * are always equal when the other bytes match, given that 1339 * the hash keys are equal and that HASH_BITS >= 8. 1340 */ 1341 scan += 2, match += 2; 1342 Assert(*scan == *match, "match[2]?"); 1343 1344 /* We check for insufficient lookahead only every 8th comparison; 1345 * the 256th check will be made at strstart+258. 1346 */ 1347 do { 1348 } while (*++scan == *++match && *++scan == *++match && 1349 *++scan == *++match && *++scan == *++match && 1350 *++scan == *++match && *++scan == *++match && 1351 *++scan == *++match && *++scan == *++match && 1352 scan < strend); 1353 1354 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); 1355 1356 len = MAX_MATCH - (int)(strend - scan); 1357 1358 if (len < MIN_MATCH) return MIN_MATCH - 1; 1359 1360 s->match_start = cur_match; 1361 return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead; 1362 } 1363 1364 #endif /* FASTEST */ 1365 1366 #ifndef LONGEST_MATCH_ONLY 1367 #ifdef DEBUG 1368 /* =========================================================================== 1369 * Check that the match at match_start is indeed a match. 1370 */ 1371 local void check_match(s, start, match, length) 1372 deflate_state *s; 1373 IPos start, match; 1374 int length; 1375 { 1376 /* check that the match is indeed a match */ 1377 if (zmemcmp(s->window + match, 1378 s->window + start, length) != EQUAL) { 1379 fprintf(stderr, " start %u, match %u, length %d\n", 1380 start, match, length); 1381 do { 1382 fprintf(stderr, "%c%c", s->window[match++], s->window[start++]); 1383 } while (--length != 0); 1384 z_error("invalid match"); 1385 } 1386 if (z_verbose > 1) { 1387 fprintf(stderr,"\\[%d,%d]", start-match, length); 1388 do { putc(s->window[start++], stderr); } while (--length != 0); 1389 } 1390 } 1391 #else 1392 # define check_match(s, start, match, length) 1393 #endif /* DEBUG */ 1394 1395 /* =========================================================================== 1396 * Fill the window when the lookahead becomes insufficient. 1397 * Updates strstart and lookahead. 1398 * 1399 * IN assertion: lookahead < MIN_LOOKAHEAD 1400 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD 1401 * At least one byte has been read, or avail_in == 0; reads are 1402 * performed for at least two bytes (required for the zip translate_eol 1403 * option -- not supported here). 1404 */ 1405 local void fill_window(s) 1406 deflate_state *s; 1407 { 1408 register unsigned n, m; 1409 register Posf *p; 1410 unsigned more; /* Amount of free space at the end of the window. */ 1411 uInt wsize = s->w_size; 1412 1413 Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead"); 1414 1415 do { 1416 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart); 1417 1418 /* Deal with !@#$% 64K limit: */ 1419 if (sizeof(int) <= 2) { 1420 if (more == 0 && s->strstart == 0 && s->lookahead == 0) { 1421 more = wsize; 1422 1423 } else if (more == (unsigned)(-1)) { 1424 /* Very unlikely, but possible on 16 bit machine if 1425 * strstart == 0 && lookahead == 1 (input done a byte at time) 1426 */ 1427 more--; 1428 } 1429 } 1430 1431 /* If the window is almost full and there is insufficient lookahead, 1432 * move the upper half to the lower one to make room in the upper half. 1433 */ 1434 if (s->strstart >= wsize+MAX_DIST(s)) { 1435 1436 zmemcpy(s->window, s->window+wsize, (unsigned)wsize); 1437 s->match_start -= wsize; 1438 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */ 1439 s->block_start -= (long) wsize; 1440 1441 /* Slide the hash table (could be avoided with 32 bit values 1442 at the expense of memory usage). We slide even when level == 0 1443 to keep the hash table consistent if we switch back to level > 0 1444 later. (Using level 0 permanently is not an optimal usage of 1445 zlib, so we don't care about this pathological case.) 1446 */ 1447 n = s->hash_size; 1448 p = &s->head[n]; 1449 do { 1450 m = *--p; 1451 *p = (Pos)(m >= wsize ? m-wsize : NIL); 1452 } while (--n); 1453 1454 n = wsize; 1455 #ifndef FASTEST 1456 p = &s->prev[n]; 1457 do { 1458 m = *--p; 1459 *p = (Pos)(m >= wsize ? m-wsize : NIL); 1460 /* If n is not on any hash chain, prev[n] is garbage but 1461 * its value will never be used. 1462 */ 1463 } while (--n); 1464 #endif 1465 more += wsize; 1466 } 1467 if (s->strm->avail_in == 0) break; 1468 1469 /* If there was no sliding: 1470 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && 1471 * more == window_size - lookahead - strstart 1472 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) 1473 * => more >= window_size - 2*WSIZE + 2 1474 * In the BIG_MEM or MMAP case (not yet supported), 1475 * window_size == input_size + MIN_LOOKAHEAD && 1476 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. 1477 * Otherwise, window_size == 2*WSIZE so more >= 2. 1478 * If there was sliding, more >= WSIZE. So in all cases, more >= 2. 1479 */ 1480 Assert(more >= 2, "more < 2"); 1481 1482 n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more); 1483 s->lookahead += n; 1484 1485 /* Initialize the hash value now that we have some input: */ 1486 if (s->lookahead + s->insert >= MIN_MATCH) { 1487 uInt str = s->strstart - s->insert; 1488 s->ins_h = s->window[str]; 1489 UPDATE_HASH(s, s->ins_h, s->window[str + 1]); 1490 #if MIN_MATCH != 3 1491 Call UPDATE_HASH() MIN_MATCH-3 more times 1492 #endif 1493 while (s->insert) { 1494 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); 1495 #ifndef FASTEST 1496 s->prev[str & s->w_mask] = s->head[s->ins_h]; 1497 #endif 1498 s->head[s->ins_h] = (Pos)str; 1499 str++; 1500 s->insert--; 1501 if (s->lookahead + s->insert < MIN_MATCH) 1502 break; 1503 } 1504 } 1505 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, 1506 * but this is not important since only literal bytes will be emitted. 1507 */ 1508 1509 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0); 1510 1511 /* If the WIN_INIT bytes after the end of the current data have never been 1512 * written, then zero those bytes in order to avoid memory check reports of 1513 * the use of uninitialized (or uninitialised as Julian writes) bytes by 1514 * the longest match routines. Update the high water mark for the next 1515 * time through here. WIN_INIT is set to MAX_MATCH since the longest match 1516 * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead. 1517 */ 1518 if (s->high_water < s->window_size) { 1519 ulg curr = s->strstart + (ulg)(s->lookahead); 1520 ulg init; 1521 1522 if (s->high_water < curr) { 1523 /* Previous high water mark below current data -- zero WIN_INIT 1524 * bytes or up to end of window, whichever is less. 1525 */ 1526 init = s->window_size - curr; 1527 if (init > WIN_INIT) 1528 init = WIN_INIT; 1529 zmemzero(s->window + curr, (unsigned)init); 1530 s->high_water = curr + init; 1531 } 1532 else if (s->high_water < (ulg)curr + WIN_INIT) { 1533 /* High water mark at or above current data, but below current data 1534 * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up 1535 * to end of window, whichever is less. 1536 */ 1537 init = (ulg)curr + WIN_INIT - s->high_water; 1538 if (init > s->window_size - s->high_water) 1539 init = s->window_size - s->high_water; 1540 zmemzero(s->window + s->high_water, (unsigned)init); 1541 s->high_water += init; 1542 } 1543 } 1544 1545 Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD, 1546 "not enough room for search"); 1547 } 1548 1549 /* =========================================================================== 1550 * Flush the current block, with given end-of-file flag. 1551 * IN assertion: strstart is set to the end of the current match. 1552 */ 1553 #define FLUSH_BLOCK_ONLY(s, last) { \ 1554 _tr_flush_block(s, (s->block_start >= 0L ? \ 1555 (charf *)&s->window[(unsigned)s->block_start] : \ 1556 (charf *)Z_NULL), \ 1557 (ulg)((long)s->strstart - s->block_start), \ 1558 (last)); \ 1559 s->block_start = s->strstart; \ 1560 flush_pending(s->strm); \ 1561 Tracev((stderr,"[FLUSH]")); \ 1562 } 1563 1564 /* Same but force premature exit if necessary. */ 1565 #define FLUSH_BLOCK(s, last) { \ 1566 FLUSH_BLOCK_ONLY(s, last); \ 1567 if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \ 1568 } 1569 1570 /* =========================================================================== 1571 * Copy without compression as much as possible from the input stream, return 1572 * the current block state. 1573 * This function does not insert new strings in the dictionary since 1574 * uncompressible data is probably not useful. This function is used 1575 * only for the level=0 compression option. 1576 * NOTE: this function should be optimized to avoid extra copying from 1577 * window to pending_buf. 1578 */ 1579 local block_state deflate_stored(s, flush) 1580 deflate_state *s; 1581 int flush; 1582 { 1583 /* Stored blocks are limited to 0xffff bytes, pending_buf is limited 1584 * to pending_buf_size, and each stored block has a 5 byte header: 1585 */ 1586 ulg max_block_size = 0xffff; 1587 ulg max_start; 1588 1589 if (max_block_size > s->pending_buf_size - 5) { 1590 max_block_size = s->pending_buf_size - 5; 1591 } 1592 1593 /* Copy as much as possible from input to output: */ 1594 for (;;) { 1595 /* Fill the window as much as possible: */ 1596 if (s->lookahead <= 1) { 1597 1598 Assert(s->strstart < s->w_size+MAX_DIST(s) || 1599 s->block_start >= (long)s->w_size, "slide too late"); 1600 1601 fill_window(s); 1602 if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more; 1603 1604 if (s->lookahead == 0) break; /* flush the current block */ 1605 } 1606 Assert(s->block_start >= 0L, "block gone"); 1607 1608 s->strstart += s->lookahead; 1609 s->lookahead = 0; 1610 1611 /* Emit a stored block if pending_buf will be full: */ 1612 max_start = s->block_start + max_block_size; 1613 if (s->strstart == 0 || (ulg)s->strstart >= max_start) { 1614 /* strstart == 0 is possible when wraparound on 16-bit machine */ 1615 s->lookahead = (uInt)(s->strstart - max_start); 1616 s->strstart = (uInt)max_start; 1617 FLUSH_BLOCK(s, 0); 1618 } 1619 /* Flush if we may have to slide, otherwise block_start may become 1620 * negative and the data will be gone: 1621 */ 1622 if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) { 1623 FLUSH_BLOCK(s, 0); 1624 } 1625 } 1626 s->insert = 0; 1627 if (flush == Z_FINISH) { 1628 FLUSH_BLOCK(s, 1); 1629 return finish_done; 1630 } 1631 if ((long)s->strstart > s->block_start) 1632 FLUSH_BLOCK(s, 0); 1633 return block_done; 1634 } 1635 1636 /* =========================================================================== 1637 * Compress as much as possible from the input stream, return the current 1638 * block state. 1639 * This function does not perform lazy evaluation of matches and inserts 1640 * new strings in the dictionary only for unmatched strings or for short 1641 * matches. It is used only for the fast compression options. 1642 */ 1643 local block_state deflate_fast(s, flush) 1644 deflate_state *s; 1645 int flush; 1646 { 1647 IPos hash_head; /* head of the hash chain */ 1648 int bflush; /* set if current block must be flushed */ 1649 1650 for (;;) { 1651 /* Make sure that we always have enough lookahead, except 1652 * at the end of the input file. We need MAX_MATCH bytes 1653 * for the next match, plus MIN_MATCH bytes to insert the 1654 * string following the next match. 1655 */ 1656 if (s->lookahead < MIN_LOOKAHEAD) { 1657 fill_window(s); 1658 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { 1659 return need_more; 1660 } 1661 if (s->lookahead == 0) break; /* flush the current block */ 1662 } 1663 1664 /* Insert the string window[strstart .. strstart+2] in the 1665 * dictionary, and set hash_head to the head of the hash chain: 1666 */ 1667 hash_head = NIL; 1668 if (s->lookahead >= MIN_MATCH) { 1669 INSERT_STRING(s, s->strstart, hash_head); 1670 } 1671 1672 /* Find the longest match, discarding those <= prev_length. 1673 * At this point we have always match_length < MIN_MATCH 1674 */ 1675 if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) { 1676 /* To simplify the code, we prevent matches with the string 1677 * of window index 0 (in particular we have to avoid a match 1678 * of the string with itself at the start of the input file). 1679 */ 1680 s->match_length = longest_match (s, hash_head); 1681 /* longest_match() sets match_start */ 1682 } 1683 if (s->match_length >= MIN_MATCH) { 1684 check_match(s, s->strstart, s->match_start, s->match_length); 1685 1686 _tr_tally_dist(s, s->strstart - s->match_start, 1687 s->match_length - MIN_MATCH, bflush); 1688 1689 s->lookahead -= s->match_length; 1690 1691 /* Insert new strings in the hash table only if the match length 1692 * is not too large. This saves time but degrades compression. 1693 */ 1694 #ifndef FASTEST 1695 if (s->match_length <= s->max_insert_length && 1696 s->lookahead >= MIN_MATCH) { 1697 s->match_length--; /* string at strstart already in table */ 1698 do { 1699 s->strstart++; 1700 INSERT_STRING(s, s->strstart, hash_head); 1701 /* strstart never exceeds WSIZE-MAX_MATCH, so there are 1702 * always MIN_MATCH bytes ahead. 1703 */ 1704 } while (--s->match_length != 0); 1705 s->strstart++; 1706 } else 1707 #endif 1708 { 1709 s->strstart += s->match_length; 1710 s->match_length = 0; 1711 s->ins_h = s->window[s->strstart]; 1712 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); 1713 #if MIN_MATCH != 3 1714 Call UPDATE_HASH() MIN_MATCH-3 more times 1715 #endif 1716 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not 1717 * matter since it will be recomputed at next deflate call. 1718 */ 1719 } 1720 } else { 1721 /* No match, output a literal byte */ 1722 Tracevv((stderr,"%c", s->window[s->strstart])); 1723 _tr_tally_lit (s, s->window[s->strstart], bflush); 1724 s->lookahead--; 1725 s->strstart++; 1726 } 1727 if (bflush) FLUSH_BLOCK(s, 0); 1728 } 1729 s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1; 1730 if (flush == Z_FINISH) { 1731 FLUSH_BLOCK(s, 1); 1732 return finish_done; 1733 } 1734 if (s->last_lit) 1735 FLUSH_BLOCK(s, 0); 1736 return block_done; 1737 } 1738 1739 #ifndef FASTEST 1740 /* =========================================================================== 1741 * Same as above, but achieves better compression. We use a lazy 1742 * evaluation for matches: a match is finally adopted only if there is 1743 * no better match at the next window position. 1744 */ 1745 local block_state deflate_slow(s, flush) 1746 deflate_state *s; 1747 int flush; 1748 { 1749 IPos hash_head; /* head of hash chain */ 1750 int bflush; /* set if current block must be flushed */ 1751 1752 /* Process the input block. */ 1753 for (;;) { 1754 /* Make sure that we always have enough lookahead, except 1755 * at the end of the input file. We need MAX_MATCH bytes 1756 * for the next match, plus MIN_MATCH bytes to insert the 1757 * string following the next match. 1758 */ 1759 if (s->lookahead < MIN_LOOKAHEAD) { 1760 fill_window(s); 1761 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { 1762 return need_more; 1763 } 1764 if (s->lookahead == 0) break; /* flush the current block */ 1765 } 1766 1767 /* Insert the string window[strstart .. strstart+2] in the 1768 * dictionary, and set hash_head to the head of the hash chain: 1769 */ 1770 hash_head = NIL; 1771 if (s->lookahead >= MIN_MATCH) { 1772 INSERT_STRING(s, s->strstart, hash_head); 1773 } 1774 1775 /* Find the longest match, discarding those <= prev_length. 1776 */ 1777 s->prev_length = s->match_length, s->prev_match = s->match_start; 1778 s->match_length = MIN_MATCH-1; 1779 1780 if (hash_head != NIL && s->prev_length < s->max_lazy_match && 1781 s->strstart - hash_head <= MAX_DIST(s)) { 1782 /* To simplify the code, we prevent matches with the string 1783 * of window index 0 (in particular we have to avoid a match 1784 * of the string with itself at the start of the input file). 1785 */ 1786 s->match_length = longest_match (s, hash_head); 1787 /* longest_match() sets match_start */ 1788 1789 if (s->match_length <= 5 && (s->strategy == Z_FILTERED 1790 #if TOO_FAR <= 32767 1791 || (s->match_length == MIN_MATCH && 1792 s->strstart - s->match_start > TOO_FAR) 1793 #endif 1794 )) { 1795 1796 /* If prev_match is also MIN_MATCH, match_start is garbage 1797 * but we will ignore the current match anyway. 1798 */ 1799 s->match_length = MIN_MATCH-1; 1800 } 1801 } 1802 /* If there was a match at the previous step and the current 1803 * match is not better, output the previous match: 1804 */ 1805 if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) { 1806 uInt max_insert = s->strstart + s->lookahead - MIN_MATCH; 1807 /* Do not insert strings in hash table beyond this. */ 1808 1809 check_match(s, s->strstart-1, s->prev_match, s->prev_length); 1810 1811 _tr_tally_dist(s, s->strstart -1 - s->prev_match, 1812 s->prev_length - MIN_MATCH, bflush); 1813 1814 /* Insert in hash table all strings up to the end of the match. 1815 * strstart-1 and strstart are already inserted. If there is not 1816 * enough lookahead, the last two strings are not inserted in 1817 * the hash table. 1818 */ 1819 s->lookahead -= s->prev_length-1; 1820 s->prev_length -= 2; 1821 do { 1822 if (++s->strstart <= max_insert) { 1823 INSERT_STRING(s, s->strstart, hash_head); 1824 } 1825 } while (--s->prev_length != 0); 1826 s->match_available = 0; 1827 s->match_length = MIN_MATCH-1; 1828 s->strstart++; 1829 1830 if (bflush) FLUSH_BLOCK(s, 0); 1831 1832 } else if (s->match_available) { 1833 /* If there was no match at the previous position, output a 1834 * single literal. If there was a match but the current match 1835 * is longer, truncate the previous match to a single literal. 1836 */ 1837 Tracevv((stderr,"%c", s->window[s->strstart-1])); 1838 _tr_tally_lit(s, s->window[s->strstart-1], bflush); 1839 if (bflush) { 1840 FLUSH_BLOCK_ONLY(s, 0); 1841 } 1842 s->strstart++; 1843 s->lookahead--; 1844 if (s->strm->avail_out == 0) return need_more; 1845 } else { 1846 /* There is no previous match to compare with, wait for 1847 * the next step to decide. 1848 */ 1849 s->match_available = 1; 1850 s->strstart++; 1851 s->lookahead--; 1852 } 1853 } 1854 Assert (flush != Z_NO_FLUSH, "no flush?"); 1855 if (s->match_available) { 1856 Tracevv((stderr,"%c", s->window[s->strstart-1])); 1857 _tr_tally_lit(s, s->window[s->strstart-1], bflush); 1858 s->match_available = 0; 1859 } 1860 s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1; 1861 if (flush == Z_FINISH) { 1862 FLUSH_BLOCK(s, 1); 1863 return finish_done; 1864 } 1865 if (s->last_lit) 1866 FLUSH_BLOCK(s, 0); 1867 return block_done; 1868 } 1869 #endif /* FASTEST */ 1870 1871 /* =========================================================================== 1872 * For Z_RLE, simply look for runs of bytes, generate matches only of distance 1873 * one. Do not maintain a hash table. (It will be regenerated if this run of 1874 * deflate switches away from Z_RLE.) 1875 */ 1876 local block_state deflate_rle(s, flush) 1877 deflate_state *s; 1878 int flush; 1879 { 1880 int bflush; /* set if current block must be flushed */ 1881 uInt prev; /* byte at distance one to match */ 1882 Bytef *scan, *strend; /* scan goes up to strend for length of run */ 1883 1884 for (;;) { 1885 /* Make sure that we always have enough lookahead, except 1886 * at the end of the input file. We need MAX_MATCH bytes 1887 * for the longest run, plus one for the unrolled loop. 1888 */ 1889 if (s->lookahead <= MAX_MATCH) { 1890 fill_window(s); 1891 if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) { 1892 return need_more; 1893 } 1894 if (s->lookahead == 0) break; /* flush the current block */ 1895 } 1896 1897 /* See how many times the previous byte repeats */ 1898 s->match_length = 0; 1899 if (s->lookahead >= MIN_MATCH && s->strstart > 0) { 1900 scan = s->window + s->strstart - 1; 1901 prev = *scan; 1902 if (prev == *++scan && prev == *++scan && prev == *++scan) { 1903 strend = s->window + s->strstart + MAX_MATCH; 1904 do { 1905 } while (prev == *++scan && prev == *++scan && 1906 prev == *++scan && prev == *++scan && 1907 prev == *++scan && prev == *++scan && 1908 prev == *++scan && prev == *++scan && 1909 scan < strend); 1910 s->match_length = MAX_MATCH - (int)(strend - scan); 1911 if (s->match_length > s->lookahead) 1912 s->match_length = s->lookahead; 1913 } 1914 Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan"); 1915 } 1916 1917 /* Emit match if have run of MIN_MATCH or longer, else emit literal */ 1918 if (s->match_length >= MIN_MATCH) { 1919 check_match(s, s->strstart, s->strstart - 1, s->match_length); 1920 1921 _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush); 1922 1923 s->lookahead -= s->match_length; 1924 s->strstart += s->match_length; 1925 s->match_length = 0; 1926 } else { 1927 /* No match, output a literal byte */ 1928 Tracevv((stderr,"%c", s->window[s->strstart])); 1929 _tr_tally_lit (s, s->window[s->strstart], bflush); 1930 s->lookahead--; 1931 s->strstart++; 1932 } 1933 if (bflush) FLUSH_BLOCK(s, 0); 1934 } 1935 s->insert = 0; 1936 if (flush == Z_FINISH) { 1937 FLUSH_BLOCK(s, 1); 1938 return finish_done; 1939 } 1940 if (s->last_lit) 1941 FLUSH_BLOCK(s, 0); 1942 return block_done; 1943 } 1944 1945 /* =========================================================================== 1946 * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table. 1947 * (It will be regenerated if this run of deflate switches away from Huffman.) 1948 */ 1949 local block_state deflate_huff(s, flush) 1950 deflate_state *s; 1951 int flush; 1952 { 1953 int bflush; /* set if current block must be flushed */ 1954 1955 for (;;) { 1956 /* Make sure that we have a literal to write. */ 1957 if (s->lookahead == 0) { 1958 fill_window(s); 1959 if (s->lookahead == 0) { 1960 if (flush == Z_NO_FLUSH) 1961 return need_more; 1962 break; /* flush the current block */ 1963 } 1964 } 1965 1966 /* Output a literal byte */ 1967 s->match_length = 0; 1968 Tracevv((stderr,"%c", s->window[s->strstart])); 1969 _tr_tally_lit (s, s->window[s->strstart], bflush); 1970 s->lookahead--; 1971 s->strstart++; 1972 if (bflush) FLUSH_BLOCK(s, 0); 1973 } 1974 s->insert = 0; 1975 if (flush == Z_FINISH) { 1976 FLUSH_BLOCK(s, 1); 1977 return finish_done; 1978 } 1979 if (s->last_lit) 1980 FLUSH_BLOCK(s, 0); 1981 return block_done; 1982 } 1983 #endif /* ! LONGEST_MATCH_ONLY */