1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  */
  25 /*
  26  * Copyright 2012 DEY Storage Systems, Inc.  All rights reserved.
  27  * Copyright (c) 2014, Joyent, Inc. All rights reserved.
  28  * Copyright (c) 2013 by Delphix. All rights reserved.
  29  */
  30 
  31 #include <sys/types.h>
  32 #include <sys/utsname.h>
  33 #include <sys/sysmacros.h>
  34 #include <sys/proc.h>
  35 
  36 #include <alloca.h>
  37 #include <rtld_db.h>
  38 #include <libgen.h>
  39 #include <limits.h>
  40 #include <string.h>
  41 #include <stdlib.h>
  42 #include <unistd.h>
  43 #include <errno.h>
  44 #include <gelf.h>
  45 #include <stddef.h>
  46 #include <signal.h>
  47 
  48 #include "libproc.h"
  49 #include "Pcontrol.h"
  50 #include "P32ton.h"
  51 #include "Putil.h"
  52 #include "Pcore_linux.h"
  53 
  54 /*
  55  * Pcore.c - Code to initialize a ps_prochandle from a core dump.  We
  56  * allocate an additional structure to hold information from the core
  57  * file, and attach this to the standard ps_prochandle in place of the
  58  * ability to examine /proc/<pid>/ files.
  59  */
  60 
  61 /*
  62  * Basic i/o function for reading and writing from the process address space
  63  * stored in the core file and associated shared libraries.  We compute the
  64  * appropriate fd and offsets, and let the provided prw function do the rest.
  65  */
  66 static ssize_t
  67 core_rw(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr,
  68     ssize_t (*prw)(int, void *, size_t, off64_t))
  69 {
  70         ssize_t resid = n;
  71 
  72         while (resid != 0) {
  73                 map_info_t *mp = Paddr2mptr(P, addr);
  74 
  75                 uintptr_t mapoff;
  76                 ssize_t len;
  77                 off64_t off;
  78                 int fd;
  79 
  80                 if (mp == NULL)
  81                         break;  /* No mapping for this address */
  82 
  83                 if (mp->map_pmap.pr_mflags & MA_RESERVED1) {
  84                         if (mp->map_file == NULL || mp->map_file->file_fd < 0)
  85                                 break;  /* No file or file not open */
  86 
  87                         fd = mp->map_file->file_fd;
  88                 } else
  89                         fd = P->asfd;
  90 
  91                 mapoff = addr - mp->map_pmap.pr_vaddr;
  92                 len = MIN(resid, mp->map_pmap.pr_size - mapoff);
  93                 off = mp->map_offset + mapoff;
  94 
  95                 if ((len = prw(fd, buf, len, off)) <= 0)
  96                         break;
  97 
  98                 resid -= len;
  99                 addr += len;
 100                 buf = (char *)buf + len;
 101         }
 102 
 103         /*
 104          * Important: Be consistent with the behavior of i/o on the as file:
 105          * writing to an invalid address yields EIO; reading from an invalid
 106          * address falls through to returning success and zero bytes.
 107          */
 108         if (resid == n && n != 0 && prw != pread64) {
 109                 errno = EIO;
 110                 return (-1);
 111         }
 112 
 113         return (n - resid);
 114 }
 115 
 116 /*ARGSUSED*/
 117 static ssize_t
 118 Pread_core(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr,
 119     void *data)
 120 {
 121         return (core_rw(P, buf, n, addr, pread64));
 122 }
 123 
 124 /*ARGSUSED*/
 125 static ssize_t
 126 Pwrite_core(struct ps_prochandle *P, const void *buf, size_t n, uintptr_t addr,
 127     void *data)
 128 {
 129         return (core_rw(P, (void *)buf, n, addr,
 130             (ssize_t (*)(int, void *, size_t, off64_t)) pwrite64));
 131 }
 132 
 133 /*ARGSUSED*/
 134 static int
 135 Pcred_core(struct ps_prochandle *P, prcred_t *pcrp, int ngroups, void *data)
 136 {
 137         core_info_t *core = data;
 138 
 139         if (core->core_cred != NULL) {
 140                 /*
 141                  * Avoid returning more supplementary group data than the
 142                  * caller has allocated in their buffer.  We expect them to
 143                  * check pr_ngroups afterward and potentially call us again.
 144                  */
 145                 ngroups = MIN(ngroups, core->core_cred->pr_ngroups);
 146 
 147                 (void) memcpy(pcrp, core->core_cred,
 148                     sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t));
 149 
 150                 return (0);
 151         }
 152 
 153         errno = ENODATA;
 154         return (-1);
 155 }
 156 
 157 /*ARGSUSED*/
 158 static int
 159 Ppriv_core(struct ps_prochandle *P, prpriv_t **pprv, void *data)
 160 {
 161         core_info_t *core = data;
 162 
 163         if (core->core_priv == NULL) {
 164                 errno = ENODATA;
 165                 return (-1);
 166         }
 167 
 168         *pprv = malloc(core->core_priv_size);
 169         if (*pprv == NULL) {
 170                 return (-1);
 171         }
 172 
 173         (void) memcpy(*pprv, core->core_priv, core->core_priv_size);
 174         return (0);
 175 }
 176 
 177 /*ARGSUSED*/
 178 static const psinfo_t *
 179 Ppsinfo_core(struct ps_prochandle *P, psinfo_t *psinfo, void *data)
 180 {
 181         return (&P->psinfo);
 182 }
 183 
 184 /*ARGSUSED*/
 185 static void
 186 Pfini_core(struct ps_prochandle *P, void *data)
 187 {
 188         core_info_t *core = data;
 189 
 190         if (core != NULL) {
 191                 extern void __priv_free_info(void *);
 192                 lwp_info_t *nlwp, *lwp = list_next(&core->core_lwp_head);
 193                 int i;
 194 
 195                 for (i = 0; i < core->core_nlwp; i++, lwp = nlwp) {
 196                         nlwp = list_next(lwp);
 197 #ifdef __sparc
 198                         if (lwp->lwp_gwins != NULL)
 199                                 free(lwp->lwp_gwins);
 200                         if (lwp->lwp_xregs != NULL)
 201                                 free(lwp->lwp_xregs);
 202                         if (lwp->lwp_asrs != NULL)
 203                                 free(lwp->lwp_asrs);
 204 #endif
 205                         free(lwp);
 206                 }
 207 
 208                 if (core->core_platform != NULL)
 209                         free(core->core_platform);
 210                 if (core->core_uts != NULL)
 211                         free(core->core_uts);
 212                 if (core->core_cred != NULL)
 213                         free(core->core_cred);
 214                 if (core->core_priv != NULL)
 215                         free(core->core_priv);
 216                 if (core->core_privinfo != NULL)
 217                         __priv_free_info(core->core_privinfo);
 218                 if (core->core_ppii != NULL)
 219                         free(core->core_ppii);
 220                 if (core->core_zonename != NULL)
 221                         free(core->core_zonename);
 222 #if defined(__i386) || defined(__amd64)
 223                 if (core->core_ldt != NULL)
 224                         free(core->core_ldt);
 225 #endif
 226 
 227                 free(core);
 228         }
 229 }
 230 
 231 /*ARGSUSED*/
 232 static char *
 233 Pplatform_core(struct ps_prochandle *P, char *s, size_t n, void *data)
 234 {
 235         core_info_t *core = data;
 236 
 237         if (core->core_platform == NULL) {
 238                 errno = ENODATA;
 239                 return (NULL);
 240         }
 241         (void) strncpy(s, core->core_platform, n - 1);
 242         s[n - 1] = '\0';
 243         return (s);
 244 }
 245 
 246 /*ARGSUSED*/
 247 static int
 248 Puname_core(struct ps_prochandle *P, struct utsname *u, void *data)
 249 {
 250         core_info_t *core = data;
 251 
 252         if (core->core_uts == NULL) {
 253                 errno = ENODATA;
 254                 return (-1);
 255         }
 256         (void) memcpy(u, core->core_uts, sizeof (struct utsname));
 257         return (0);
 258 }
 259 
 260 /*ARGSUSED*/
 261 static char *
 262 Pzonename_core(struct ps_prochandle *P, char *s, size_t n, void *data)
 263 {
 264         core_info_t *core = data;
 265 
 266         if (core->core_zonename == NULL) {
 267                 errno = ENODATA;
 268                 return (NULL);
 269         }
 270         (void) strlcpy(s, core->core_zonename, n);
 271         return (s);
 272 }
 273 
 274 #if defined(__i386) || defined(__amd64)
 275 /*ARGSUSED*/
 276 static int
 277 Pldt_core(struct ps_prochandle *P, struct ssd *pldt, int nldt, void *data)
 278 {
 279         core_info_t *core = data;
 280 
 281         if (pldt == NULL || nldt == 0)
 282                 return (core->core_nldt);
 283 
 284         if (core->core_ldt != NULL) {
 285                 nldt = MIN(nldt, core->core_nldt);
 286 
 287                 (void) memcpy(pldt, core->core_ldt,
 288                     nldt * sizeof (struct ssd));
 289 
 290                 return (nldt);
 291         }
 292 
 293         errno = ENODATA;
 294         return (-1);
 295 }
 296 #endif
 297 
 298 static const ps_ops_t P_core_ops = {
 299         .pop_pread      = Pread_core,
 300         .pop_pwrite     = Pwrite_core,
 301         .pop_cred       = Pcred_core,
 302         .pop_priv       = Ppriv_core,
 303         .pop_psinfo     = Ppsinfo_core,
 304         .pop_fini       = Pfini_core,
 305         .pop_platform   = Pplatform_core,
 306         .pop_uname      = Puname_core,
 307         .pop_zonename   = Pzonename_core,
 308 #if defined(__i386) || defined(__amd64)
 309         .pop_ldt        = Pldt_core
 310 #endif
 311 };
 312 
 313 /*
 314  * Return the lwp_info_t for the given lwpid.  If no such lwpid has been
 315  * encountered yet, allocate a new structure and return a pointer to it.
 316  * Create a list of lwp_info_t structures sorted in decreasing lwp_id order.
 317  */
 318 static lwp_info_t *
 319 lwpid2info(struct ps_prochandle *P, lwpid_t id)
 320 {
 321         core_info_t *core = P->data;
 322         lwp_info_t *lwp = list_next(&core->core_lwp_head);
 323         lwp_info_t *next;
 324         uint_t i;
 325 
 326         for (i = 0; i < core->core_nlwp; i++, lwp = list_next(lwp)) {
 327                 if (lwp->lwp_id == id) {
 328                         core->core_lwp = lwp;
 329                         return (lwp);
 330                 }
 331                 if (lwp->lwp_id < id) {
 332                         break;
 333                 }
 334         }
 335 
 336         next = lwp;
 337         if ((lwp = calloc(1, sizeof (lwp_info_t))) == NULL)
 338                 return (NULL);
 339 
 340         list_link(lwp, next);
 341         lwp->lwp_id = id;
 342 
 343         core->core_lwp = lwp;
 344         core->core_nlwp++;
 345 
 346         return (lwp);
 347 }
 348 
 349 /*
 350  * The core file itself contains a series of NOTE segments containing saved
 351  * structures from /proc at the time the process died.  For each note we
 352  * comprehend, we define a function to read it in from the core file,
 353  * convert it to our native data model if necessary, and store it inside
 354  * the ps_prochandle.  Each function is invoked by Pfgrab_core() with the
 355  * seek pointer on P->asfd positioned appropriately.  We populate a table
 356  * of pointers to these note functions below.
 357  */
 358 
 359 static int
 360 note_pstatus(struct ps_prochandle *P, size_t nbytes)
 361 {
 362 #ifdef _LP64
 363         core_info_t *core = P->data;
 364 
 365         if (core->core_dmodel == PR_MODEL_ILP32) {
 366                 pstatus32_t ps32;
 367 
 368                 if (nbytes < sizeof (pstatus32_t) ||
 369                     read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
 370                         goto err;
 371 
 372                 pstatus_32_to_n(&ps32, &P->status);
 373 
 374         } else
 375 #endif
 376         if (nbytes < sizeof (pstatus_t) ||
 377             read(P->asfd, &P->status, sizeof (pstatus_t)) != sizeof (pstatus_t))
 378                 goto err;
 379 
 380         P->orig_status = P->status;
 381         P->pid = P->status.pr_pid;
 382 
 383         return (0);
 384 
 385 err:
 386         dprintf("Pgrab_core: failed to read NT_PSTATUS\n");
 387         return (-1);
 388 }
 389 
 390 static int
 391 note_lwpstatus(struct ps_prochandle *P, size_t nbytes)
 392 {
 393         lwp_info_t *lwp;
 394         lwpstatus_t lps;
 395 
 396 #ifdef _LP64
 397         core_info_t *core = P->data;
 398 
 399         if (core->core_dmodel == PR_MODEL_ILP32) {
 400                 lwpstatus32_t l32;
 401 
 402                 if (nbytes < sizeof (lwpstatus32_t) ||
 403                     read(P->asfd, &l32, sizeof (l32)) != sizeof (l32))
 404                         goto err;
 405 
 406                 lwpstatus_32_to_n(&l32, &lps);
 407         } else
 408 #endif
 409         if (nbytes < sizeof (lwpstatus_t) ||
 410             read(P->asfd, &lps, sizeof (lps)) != sizeof (lps))
 411                 goto err;
 412 
 413         if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) {
 414                 dprintf("Pgrab_core: failed to add NT_LWPSTATUS\n");
 415                 return (-1);
 416         }
 417 
 418         /*
 419          * Erase a useless and confusing artifact of the kernel implementation:
 420          * the lwps which did *not* create the core will show SIGKILL.  We can
 421          * be assured this is bogus because SIGKILL can't produce core files.
 422          */
 423         if (lps.pr_cursig == SIGKILL)
 424                 lps.pr_cursig = 0;
 425 
 426         (void) memcpy(&lwp->lwp_status, &lps, sizeof (lps));
 427         return (0);
 428 
 429 err:
 430         dprintf("Pgrab_core: failed to read NT_LWPSTATUS\n");
 431         return (-1);
 432 }
 433 
 434 static void
 435 lx_prpsinfo32_to_psinfo(lx_prpsinfo32_t *p32, psinfo_t *psinfo)
 436 {
 437         psinfo->pr_flag = p32->pr_flag;
 438         psinfo->pr_pid = p32->pr_pid;
 439         psinfo->pr_ppid = p32->pr_ppid;
 440         psinfo->pr_uid = p32->pr_uid;
 441         psinfo->pr_gid = p32->pr_gid;
 442         psinfo->pr_sid = p32->pr_sid;
 443         psinfo->pr_pgid = p32->pr_pgrp;
 444 
 445         (void) memcpy(psinfo->pr_fname, p32->pr_fname,
 446             sizeof (psinfo->pr_fname));
 447         (void) memcpy(psinfo->pr_psargs, p32->pr_psargs,
 448             sizeof (psinfo->pr_psargs));
 449 }
 450 
 451 static void
 452 lx_prpsinfo64_to_psinfo(lx_prpsinfo64_t *p64, psinfo_t *psinfo)
 453 {
 454         psinfo->pr_flag = p64->pr_flag;
 455         psinfo->pr_pid = p64->pr_pid;
 456         psinfo->pr_ppid = p64->pr_ppid;
 457         psinfo->pr_uid = p64->pr_uid;
 458         psinfo->pr_gid = p64->pr_gid;
 459         psinfo->pr_sid = p64->pr_sid;
 460         psinfo->pr_pgid = p64->pr_pgrp;
 461         psinfo->pr_pgid = p64->pr_pgrp;
 462 
 463         (void) memcpy(psinfo->pr_fname, p64->pr_fname,
 464             sizeof (psinfo->pr_fname));
 465         (void) memcpy(psinfo->pr_psargs, p64->pr_psargs,
 466             sizeof (psinfo->pr_psargs));
 467 }
 468 
 469 static int
 470 note_linux_psinfo(struct ps_prochandle *P, size_t nbytes)
 471 {
 472         core_info_t *core = P->data;
 473         lx_prpsinfo32_t p32;
 474         lx_prpsinfo64_t p64;
 475 
 476         if (core->core_dmodel == PR_MODEL_ILP32) {
 477                 if (nbytes < sizeof (p32) ||
 478                     read(P->asfd, &p32, sizeof (p32)) != sizeof (p32))
 479                         goto err;
 480 
 481                 lx_prpsinfo32_to_psinfo(&p32, &P->psinfo);
 482         } else {
 483                 if (nbytes < sizeof (p64) ||
 484                     read(P->asfd, &p64, sizeof (p64)) != sizeof (p64))
 485                         goto err;
 486 
 487                 lx_prpsinfo64_to_psinfo(&p64, &P->psinfo);
 488         }
 489 
 490 
 491         P->status.pr_pid = P->psinfo.pr_pid;
 492         P->status.pr_ppid = P->psinfo.pr_ppid;
 493         P->status.pr_pgid = P->psinfo.pr_pgid;
 494         P->status.pr_sid = P->psinfo.pr_sid;
 495 
 496         P->psinfo.pr_nlwp = 0;
 497         P->status.pr_nlwp = 0;
 498 
 499         return (0);
 500 err:
 501         dprintf("Pgrab_core: failed to read NT_PSINFO\n");
 502         return (-1);
 503 }
 504 
 505 static void
 506 lx_prstatus64_to_lwp(lx_prstatus64_t *prs64, lwp_info_t *lwp)
 507 {
 508         LTIME_TO_TIMESPEC(lwp->lwp_status.pr_utime, prs64->pr_utime);
 509         LTIME_TO_TIMESPEC(lwp->lwp_status.pr_stime, prs64->pr_stime);
 510 
 511         lwp->lwp_status.pr_reg[REG_R15] = prs64->pr_reg.lxr_r15;
 512         lwp->lwp_status.pr_reg[REG_R14] = prs64->pr_reg.lxr_r14;
 513         lwp->lwp_status.pr_reg[REG_R13] = prs64->pr_reg.lxr_r13;
 514         lwp->lwp_status.pr_reg[REG_R12] = prs64->pr_reg.lxr_r12;
 515         lwp->lwp_status.pr_reg[REG_R11] = prs64->pr_reg.lxr_r11;
 516         lwp->lwp_status.pr_reg[REG_R10] = prs64->pr_reg.lxr_r10;
 517         lwp->lwp_status.pr_reg[REG_R9] = prs64->pr_reg.lxr_r9;
 518         lwp->lwp_status.pr_reg[REG_R8] = prs64->pr_reg.lxr_r8;
 519 
 520         lwp->lwp_status.pr_reg[REG_RDI] = prs64->pr_reg.lxr_rdi;
 521         lwp->lwp_status.pr_reg[REG_RSI] = prs64->pr_reg.lxr_rsi;
 522         lwp->lwp_status.pr_reg[REG_RBP] = prs64->pr_reg.lxr_rbp;
 523         lwp->lwp_status.pr_reg[REG_RBX] = prs64->pr_reg.lxr_rbx;
 524         lwp->lwp_status.pr_reg[REG_RDX] = prs64->pr_reg.lxr_rdx;
 525         lwp->lwp_status.pr_reg[REG_RCX] = prs64->pr_reg.lxr_rcx;
 526         lwp->lwp_status.pr_reg[REG_RAX] = prs64->pr_reg.lxr_rax;
 527 
 528         lwp->lwp_status.pr_reg[REG_RIP] = prs64->pr_reg.lxr_rip;
 529         lwp->lwp_status.pr_reg[REG_CS] = prs64->pr_reg.lxr_cs;
 530         lwp->lwp_status.pr_reg[REG_RSP] = prs64->pr_reg.lxr_rsp;
 531         lwp->lwp_status.pr_reg[REG_FS] = prs64->pr_reg.lxr_fs;
 532         lwp->lwp_status.pr_reg[REG_SS] = prs64->pr_reg.lxr_ss;
 533         lwp->lwp_status.pr_reg[REG_GS] = prs64->pr_reg.lxr_gs;
 534         lwp->lwp_status.pr_reg[REG_ES] = prs64->pr_reg.lxr_es;
 535         lwp->lwp_status.pr_reg[REG_DS] = prs64->pr_reg.lxr_ds;
 536 
 537         lwp->lwp_status.pr_reg[REG_GSBASE] = prs64->pr_reg.lxr_gs_base;
 538         lwp->lwp_status.pr_reg[REG_FSBASE] = prs64->pr_reg.lxr_fs_base;
 539 }
 540 
 541 static void
 542 lx_prstatus32_to_lwp(lx_prstatus32_t *prs32, lwp_info_t *lwp)
 543 {
 544         LTIME_TO_TIMESPEC(lwp->lwp_status.pr_utime, prs32->pr_utime);
 545         LTIME_TO_TIMESPEC(lwp->lwp_status.pr_stime, prs32->pr_stime);
 546 
 547 #ifdef __amd64
 548         lwp->lwp_status.pr_reg[REG_GS] = prs32->pr_reg.lxr_gs;
 549         lwp->lwp_status.pr_reg[REG_FS] = prs32->pr_reg.lxr_fs;
 550         lwp->lwp_status.pr_reg[REG_DS] = prs32->pr_reg.lxr_ds;
 551         lwp->lwp_status.pr_reg[REG_ES] = prs32->pr_reg.lxr_es;
 552         lwp->lwp_status.pr_reg[REG_RDI] = prs32->pr_reg.lxr_di;
 553         lwp->lwp_status.pr_reg[REG_RSI] = prs32->pr_reg.lxr_si;
 554         lwp->lwp_status.pr_reg[REG_RBP] = prs32->pr_reg.lxr_bp;
 555         lwp->lwp_status.pr_reg[REG_RBX] = prs32->pr_reg.lxr_bx;
 556         lwp->lwp_status.pr_reg[REG_RDX] = prs32->pr_reg.lxr_dx;
 557         lwp->lwp_status.pr_reg[REG_RCX] = prs32->pr_reg.lxr_cx;
 558         lwp->lwp_status.pr_reg[REG_RAX] = prs32->pr_reg.lxr_ax;
 559         lwp->lwp_status.pr_reg[REG_RIP] = prs32->pr_reg.lxr_ip;
 560         lwp->lwp_status.pr_reg[REG_CS] = prs32->pr_reg.lxr_cs;
 561         lwp->lwp_status.pr_reg[REG_RFL] = prs32->pr_reg.lxr_flags;
 562         lwp->lwp_status.pr_reg[REG_RSP] = prs32->pr_reg.lxr_sp;
 563         lwp->lwp_status.pr_reg[REG_SS] = prs32->pr_reg.lxr_ss;
 564 #else /* __amd64 */
 565         lwp->lwp_status.pr_reg[EBX] = prs32->pr_reg.lxr_bx;
 566         lwp->lwp_status.pr_reg[ECX] = prs32->pr_reg.lxr_cx;
 567         lwp->lwp_status.pr_reg[EDX] = prs32->pr_reg.lxr_dx;
 568         lwp->lwp_status.pr_reg[ESI] = prs32->pr_reg.lxr_si;
 569         lwp->lwp_status.pr_reg[EDI] = prs32->pr_reg.lxr_di;
 570         lwp->lwp_status.pr_reg[EBP] = prs32->pr_reg.lxr_bp;
 571         lwp->lwp_status.pr_reg[EAX] = prs32->pr_reg.lxr_ax;
 572         lwp->lwp_status.pr_reg[EIP] = prs32->pr_reg.lxr_ip;
 573         lwp->lwp_status.pr_reg[UESP] = prs32->pr_reg.lxr_sp;
 574 
 575         lwp->lwp_status.pr_reg[DS] = prs32->pr_reg.lxr_ds;
 576         lwp->lwp_status.pr_reg[ES] = prs32->pr_reg.lxr_es;
 577         lwp->lwp_status.pr_reg[FS] = prs32->pr_reg.lxr_fs;
 578         lwp->lwp_status.pr_reg[GS] = prs32->pr_reg.lxr_gs;
 579         lwp->lwp_status.pr_reg[CS] = prs32->pr_reg.lxr_cs;
 580         lwp->lwp_status.pr_reg[SS] = prs32->pr_reg.lxr_ss;
 581 
 582         lwp->lwp_status.pr_reg[EFL] = prs32->pr_reg.lxr_flags;
 583 #endif  /* !__amd64 */
 584 }
 585 
 586 static int
 587 note_linux_prstatus(struct ps_prochandle *P, size_t nbytes)
 588 {
 589         core_info_t *core = P->data;
 590 
 591         lx_prstatus64_t prs64;
 592         lx_prstatus32_t prs32;
 593         lwp_info_t *lwp;
 594         lwpid_t tid;
 595 
 596         dprintf("looking for model %d, %ld/%ld\n", core->core_dmodel,
 597             (ulong_t)nbytes, (ulong_t)sizeof (prs32));
 598         if (core->core_dmodel == PR_MODEL_ILP32) {
 599                 if (nbytes < sizeof (prs32) ||
 600                     read(P->asfd, &prs32, sizeof (prs32)) != nbytes)
 601                         goto err;
 602                 tid = prs32.pr_pid;
 603         } else {
 604                 if (nbytes < sizeof (prs64) ||
 605                     read(P->asfd, &prs64, sizeof (prs64)) != nbytes)
 606                         goto err;
 607                 tid = prs64.pr_pid;
 608         }
 609 
 610         if ((lwp = lwpid2info(P, tid)) == NULL) {
 611                 dprintf("Pgrab_core: failed to add lwpid2info "
 612                     "linux_prstatus\n");
 613                 return (-1);
 614         }
 615 
 616         P->psinfo.pr_nlwp++;
 617         P->status.pr_nlwp++;
 618 
 619         lwp->lwp_status.pr_lwpid = tid;
 620 
 621         if (core->core_dmodel == PR_MODEL_ILP32)
 622                 lx_prstatus32_to_lwp(&prs32, lwp);
 623         else
 624                 lx_prstatus64_to_lwp(&prs64, lwp);
 625 
 626         return (0);
 627 err:
 628         dprintf("Pgrab_core: failed to read NT_PRSTATUS\n");
 629         return (-1);
 630 }
 631 
 632 static int
 633 note_psinfo(struct ps_prochandle *P, size_t nbytes)
 634 {
 635 #ifdef _LP64
 636         core_info_t *core = P->data;
 637 
 638         if (core->core_dmodel == PR_MODEL_ILP32) {
 639                 psinfo32_t ps32;
 640 
 641                 if (nbytes < sizeof (psinfo32_t) ||
 642                     read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
 643                         goto err;
 644 
 645                 psinfo_32_to_n(&ps32, &P->psinfo);
 646         } else
 647 #endif
 648         if (nbytes < sizeof (psinfo_t) ||
 649             read(P->asfd, &P->psinfo, sizeof (psinfo_t)) != sizeof (psinfo_t))
 650                 goto err;
 651 
 652         dprintf("pr_fname = <%s>\n", P->psinfo.pr_fname);
 653         dprintf("pr_psargs = <%s>\n", P->psinfo.pr_psargs);
 654         dprintf("pr_wstat = 0x%x\n", P->psinfo.pr_wstat);
 655 
 656         return (0);
 657 
 658 err:
 659         dprintf("Pgrab_core: failed to read NT_PSINFO\n");
 660         return (-1);
 661 }
 662 
 663 static int
 664 note_lwpsinfo(struct ps_prochandle *P, size_t nbytes)
 665 {
 666         lwp_info_t *lwp;
 667         lwpsinfo_t lps;
 668 
 669 #ifdef _LP64
 670         core_info_t *core = P->data;
 671 
 672         if (core->core_dmodel == PR_MODEL_ILP32) {
 673                 lwpsinfo32_t l32;
 674 
 675                 if (nbytes < sizeof (lwpsinfo32_t) ||
 676                     read(P->asfd, &l32, sizeof (l32)) != sizeof (l32))
 677                         goto err;
 678 
 679                 lwpsinfo_32_to_n(&l32, &lps);
 680         } else
 681 #endif
 682         if (nbytes < sizeof (lwpsinfo_t) ||
 683             read(P->asfd, &lps, sizeof (lps)) != sizeof (lps))
 684                 goto err;
 685 
 686         if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) {
 687                 dprintf("Pgrab_core: failed to add NT_LWPSINFO\n");
 688                 return (-1);
 689         }
 690 
 691         (void) memcpy(&lwp->lwp_psinfo, &lps, sizeof (lps));
 692         return (0);
 693 
 694 err:
 695         dprintf("Pgrab_core: failed to read NT_LWPSINFO\n");
 696         return (-1);
 697 }
 698 
 699 static int
 700 note_fdinfo(struct ps_prochandle *P, size_t nbytes)
 701 {
 702         prfdinfo_t prfd;
 703         fd_info_t *fip;
 704 
 705         if ((nbytes < sizeof (prfd)) ||
 706             (read(P->asfd, &prfd, sizeof (prfd)) != sizeof (prfd))) {
 707                 dprintf("Pgrab_core: failed to read NT_FDINFO\n");
 708                 return (-1);
 709         }
 710 
 711         if ((fip = Pfd2info(P, prfd.pr_fd)) == NULL) {
 712                 dprintf("Pgrab_core: failed to add NT_FDINFO\n");
 713                 return (-1);
 714         }
 715         (void) memcpy(&fip->fd_info, &prfd, sizeof (prfd));
 716         return (0);
 717 }
 718 
 719 static int
 720 note_platform(struct ps_prochandle *P, size_t nbytes)
 721 {
 722         core_info_t *core = P->data;
 723         char *plat;
 724 
 725         if (core->core_platform != NULL)
 726                 return (0);     /* Already seen */
 727 
 728         if (nbytes != 0 && ((plat = malloc(nbytes + 1)) != NULL)) {
 729                 if (read(P->asfd, plat, nbytes) != nbytes) {
 730                         dprintf("Pgrab_core: failed to read NT_PLATFORM\n");
 731                         free(plat);
 732                         return (-1);
 733                 }
 734                 plat[nbytes - 1] = '\0';
 735                 core->core_platform = plat;
 736         }
 737 
 738         return (0);
 739 }
 740 
 741 static int
 742 note_utsname(struct ps_prochandle *P, size_t nbytes)
 743 {
 744         core_info_t *core = P->data;
 745         size_t ubytes = sizeof (struct utsname);
 746         struct utsname *utsp;
 747 
 748         if (core->core_uts != NULL || nbytes < ubytes)
 749                 return (0);     /* Already seen or bad size */
 750 
 751         if ((utsp = malloc(ubytes)) == NULL)
 752                 return (-1);
 753 
 754         if (read(P->asfd, utsp, ubytes) != ubytes) {
 755                 dprintf("Pgrab_core: failed to read NT_UTSNAME\n");
 756                 free(utsp);
 757                 return (-1);
 758         }
 759 
 760         if (_libproc_debug) {
 761                 dprintf("uts.sysname = \"%s\"\n", utsp->sysname);
 762                 dprintf("uts.nodename = \"%s\"\n", utsp->nodename);
 763                 dprintf("uts.release = \"%s\"\n", utsp->release);
 764                 dprintf("uts.version = \"%s\"\n", utsp->version);
 765                 dprintf("uts.machine = \"%s\"\n", utsp->machine);
 766         }
 767 
 768         core->core_uts = utsp;
 769         return (0);
 770 }
 771 
 772 static int
 773 note_content(struct ps_prochandle *P, size_t nbytes)
 774 {
 775         core_info_t *core = P->data;
 776         core_content_t content;
 777 
 778         if (sizeof (core->core_content) != nbytes)
 779                 return (-1);
 780 
 781         if (read(P->asfd, &content, sizeof (content)) != sizeof (content))
 782                 return (-1);
 783 
 784         core->core_content = content;
 785 
 786         dprintf("core content = %llx\n", content);
 787 
 788         return (0);
 789 }
 790 
 791 static int
 792 note_cred(struct ps_prochandle *P, size_t nbytes)
 793 {
 794         core_info_t *core = P->data;
 795         prcred_t *pcrp;
 796         int ngroups;
 797         const size_t min_size = sizeof (prcred_t) - sizeof (gid_t);
 798 
 799         /*
 800          * We allow for prcred_t notes that are actually smaller than a
 801          * prcred_t since the last member isn't essential if there are
 802          * no group memberships. This allows for more flexibility when it
 803          * comes to slightly malformed -- but still valid -- notes.
 804          */
 805         if (core->core_cred != NULL || nbytes < min_size)
 806                 return (0);     /* Already seen or bad size */
 807 
 808         ngroups = (nbytes - min_size) / sizeof (gid_t);
 809         nbytes = sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t);
 810 
 811         if ((pcrp = malloc(nbytes)) == NULL)
 812                 return (-1);
 813 
 814         if (read(P->asfd, pcrp, nbytes) != nbytes) {
 815                 dprintf("Pgrab_core: failed to read NT_PRCRED\n");
 816                 free(pcrp);
 817                 return (-1);
 818         }
 819 
 820         if (pcrp->pr_ngroups > ngroups) {
 821                 dprintf("pr_ngroups = %d; resetting to %d based on note size\n",
 822                     pcrp->pr_ngroups, ngroups);
 823                 pcrp->pr_ngroups = ngroups;
 824         }
 825 
 826         core->core_cred = pcrp;
 827         return (0);
 828 }
 829 
 830 #if defined(__i386) || defined(__amd64)
 831 static int
 832 note_ldt(struct ps_prochandle *P, size_t nbytes)
 833 {
 834         core_info_t *core = P->data;
 835         struct ssd *pldt;
 836         uint_t nldt;
 837 
 838         if (core->core_ldt != NULL || nbytes < sizeof (struct ssd))
 839                 return (0);     /* Already seen or bad size */
 840 
 841         nldt = nbytes / sizeof (struct ssd);
 842         nbytes = nldt * sizeof (struct ssd);
 843 
 844         if ((pldt = malloc(nbytes)) == NULL)
 845                 return (-1);
 846 
 847         if (read(P->asfd, pldt, nbytes) != nbytes) {
 848                 dprintf("Pgrab_core: failed to read NT_LDT\n");
 849                 free(pldt);
 850                 return (-1);
 851         }
 852 
 853         core->core_ldt = pldt;
 854         core->core_nldt = nldt;
 855         return (0);
 856 }
 857 #endif  /* __i386 */
 858 
 859 static int
 860 note_priv(struct ps_prochandle *P, size_t nbytes)
 861 {
 862         core_info_t *core = P->data;
 863         prpriv_t *pprvp;
 864 
 865         if (core->core_priv != NULL || nbytes < sizeof (prpriv_t))
 866                 return (0);     /* Already seen or bad size */
 867 
 868         if ((pprvp = malloc(nbytes)) == NULL)
 869                 return (-1);
 870 
 871         if (read(P->asfd, pprvp, nbytes) != nbytes) {
 872                 dprintf("Pgrab_core: failed to read NT_PRPRIV\n");
 873                 free(pprvp);
 874                 return (-1);
 875         }
 876 
 877         core->core_priv = pprvp;
 878         core->core_priv_size = nbytes;
 879         return (0);
 880 }
 881 
 882 static int
 883 note_priv_info(struct ps_prochandle *P, size_t nbytes)
 884 {
 885         core_info_t *core = P->data;
 886         extern void *__priv_parse_info();
 887         priv_impl_info_t *ppii;
 888 
 889         if (core->core_privinfo != NULL ||
 890             nbytes < sizeof (priv_impl_info_t))
 891                 return (0);     /* Already seen or bad size */
 892 
 893         if ((ppii = malloc(nbytes)) == NULL)
 894                 return (-1);
 895 
 896         if (read(P->asfd, ppii, nbytes) != nbytes ||
 897             PRIV_IMPL_INFO_SIZE(ppii) != nbytes) {
 898                 dprintf("Pgrab_core: failed to read NT_PRPRIVINFO\n");
 899                 free(ppii);
 900                 return (-1);
 901         }
 902 
 903         core->core_privinfo = __priv_parse_info(ppii);
 904         core->core_ppii = ppii;
 905         return (0);
 906 }
 907 
 908 static int
 909 note_zonename(struct ps_prochandle *P, size_t nbytes)
 910 {
 911         core_info_t *core = P->data;
 912         char *zonename;
 913 
 914         if (core->core_zonename != NULL)
 915                 return (0);     /* Already seen */
 916 
 917         if (nbytes != 0) {
 918                 if ((zonename = malloc(nbytes)) == NULL)
 919                         return (-1);
 920                 if (read(P->asfd, zonename, nbytes) != nbytes) {
 921                         dprintf("Pgrab_core: failed to read NT_ZONENAME\n");
 922                         free(zonename);
 923                         return (-1);
 924                 }
 925                 zonename[nbytes - 1] = '\0';
 926                 core->core_zonename = zonename;
 927         }
 928 
 929         return (0);
 930 }
 931 
 932 static int
 933 note_auxv(struct ps_prochandle *P, size_t nbytes)
 934 {
 935         size_t n, i;
 936 
 937 #ifdef _LP64
 938         core_info_t *core = P->data;
 939 
 940         if (core->core_dmodel == PR_MODEL_ILP32) {
 941                 auxv32_t *a32;
 942 
 943                 n = nbytes / sizeof (auxv32_t);
 944                 nbytes = n * sizeof (auxv32_t);
 945                 a32 = alloca(nbytes);
 946 
 947                 if (read(P->asfd, a32, nbytes) != nbytes) {
 948                         dprintf("Pgrab_core: failed to read NT_AUXV\n");
 949                         return (-1);
 950                 }
 951 
 952                 if ((P->auxv = malloc(sizeof (auxv_t) * (n + 1))) == NULL)
 953                         return (-1);
 954 
 955                 for (i = 0; i < n; i++)
 956                         auxv_32_to_n(&a32[i], &P->auxv[i]);
 957 
 958         } else {
 959 #endif
 960                 n = nbytes / sizeof (auxv_t);
 961                 nbytes = n * sizeof (auxv_t);
 962 
 963                 if ((P->auxv = malloc(nbytes + sizeof (auxv_t))) == NULL)
 964                         return (-1);
 965 
 966                 if (read(P->asfd, P->auxv, nbytes) != nbytes) {
 967                         free(P->auxv);
 968                         P->auxv = NULL;
 969                         return (-1);
 970                 }
 971 #ifdef _LP64
 972         }
 973 #endif
 974 
 975         if (_libproc_debug) {
 976                 for (i = 0; i < n; i++) {
 977                         dprintf("P->auxv[%lu] = ( %d, 0x%lx )\n", (ulong_t)i,
 978                             P->auxv[i].a_type, P->auxv[i].a_un.a_val);
 979                 }
 980         }
 981 
 982         /*
 983          * Defensive coding for loops which depend upon the auxv array being
 984          * terminated by an AT_NULL element; in each case, we've allocated
 985          * P->auxv to have an additional element which we force to be AT_NULL.
 986          */
 987         P->auxv[n].a_type = AT_NULL;
 988         P->auxv[n].a_un.a_val = 0L;
 989         P->nauxv = (int)n;
 990 
 991         return (0);
 992 }
 993 
 994 #ifdef __sparc
 995 static int
 996 note_xreg(struct ps_prochandle *P, size_t nbytes)
 997 {
 998         core_info_t *core = P->data;
 999         lwp_info_t *lwp = core->core_lwp;
1000         size_t xbytes = sizeof (prxregset_t);
1001         prxregset_t *xregs;
1002 
1003         if (lwp == NULL || lwp->lwp_xregs != NULL || nbytes < xbytes)
1004                 return (0);     /* No lwp yet, already seen, or bad size */
1005 
1006         if ((xregs = malloc(xbytes)) == NULL)
1007                 return (-1);
1008 
1009         if (read(P->asfd, xregs, xbytes) != xbytes) {
1010                 dprintf("Pgrab_core: failed to read NT_PRXREG\n");
1011                 free(xregs);
1012                 return (-1);
1013         }
1014 
1015         lwp->lwp_xregs = xregs;
1016         return (0);
1017 }
1018 
1019 static int
1020 note_gwindows(struct ps_prochandle *P, size_t nbytes)
1021 {
1022         core_info_t *core = P->data;
1023         lwp_info_t *lwp = core->core_lwp;
1024 
1025         if (lwp == NULL || lwp->lwp_gwins != NULL || nbytes == 0)
1026                 return (0);     /* No lwp yet or already seen or no data */
1027 
1028         if ((lwp->lwp_gwins = malloc(sizeof (gwindows_t))) == NULL)
1029                 return (-1);
1030 
1031         /*
1032          * Since the amount of gwindows data varies with how many windows were
1033          * actually saved, we just read up to the minimum of the note size
1034          * and the size of the gwindows_t type.  It doesn't matter if the read
1035          * fails since we have to zero out gwindows first anyway.
1036          */
1037 #ifdef _LP64
1038         if (core->core_dmodel == PR_MODEL_ILP32) {
1039                 gwindows32_t g32;
1040 
1041                 (void) memset(&g32, 0, sizeof (g32));
1042                 (void) read(P->asfd, &g32, MIN(nbytes, sizeof (g32)));
1043                 gwindows_32_to_n(&g32, lwp->lwp_gwins);
1044 
1045         } else {
1046 #endif
1047                 (void) memset(lwp->lwp_gwins, 0, sizeof (gwindows_t));
1048                 (void) read(P->asfd, lwp->lwp_gwins,
1049                     MIN(nbytes, sizeof (gwindows_t)));
1050 #ifdef _LP64
1051         }
1052 #endif
1053         return (0);
1054 }
1055 
1056 #ifdef __sparcv9
1057 static int
1058 note_asrs(struct ps_prochandle *P, size_t nbytes)
1059 {
1060         core_info_t *core = P->data;
1061         lwp_info_t *lwp = core->core_lwp;
1062         int64_t *asrs;
1063 
1064         if (lwp == NULL || lwp->lwp_asrs != NULL || nbytes < sizeof (asrset_t))
1065                 return (0);     /* No lwp yet, already seen, or bad size */
1066 
1067         if ((asrs = malloc(sizeof (asrset_t))) == NULL)
1068                 return (-1);
1069 
1070         if (read(P->asfd, asrs, sizeof (asrset_t)) != sizeof (asrset_t)) {
1071                 dprintf("Pgrab_core: failed to read NT_ASRS\n");
1072                 free(asrs);
1073                 return (-1);
1074         }
1075 
1076         lwp->lwp_asrs = asrs;
1077         return (0);
1078 }
1079 #endif  /* __sparcv9 */
1080 #endif  /* __sparc */
1081 
1082 static int
1083 note_spymaster(struct ps_prochandle *P, size_t nbytes)
1084 {
1085 #ifdef _LP64
1086         core_info_t *core = P->data;
1087 
1088         if (core->core_dmodel == PR_MODEL_ILP32) {
1089                 psinfo32_t ps32;
1090 
1091                 if (nbytes < sizeof (psinfo32_t) ||
1092                     read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
1093                         goto err;
1094 
1095                 psinfo_32_to_n(&ps32, &P->spymaster);
1096         } else
1097 #endif
1098         if (nbytes < sizeof (psinfo_t) || read(P->asfd,
1099             &P->spymaster, sizeof (psinfo_t)) != sizeof (psinfo_t))
1100                 goto err;
1101 
1102         dprintf("spymaster pr_fname = <%s>\n", P->psinfo.pr_fname);
1103         dprintf("spymaster pr_psargs = <%s>\n", P->psinfo.pr_psargs);
1104         dprintf("spymaster pr_wstat = 0x%x\n", P->psinfo.pr_wstat);
1105 
1106         return (0);
1107 
1108 err:
1109         dprintf("Pgrab_core: failed to read NT_SPYMASTER\n");
1110         return (-1);
1111 }
1112 
1113 /*ARGSUSED*/
1114 static int
1115 note_notsup(struct ps_prochandle *P, size_t nbytes)
1116 {
1117         dprintf("skipping unsupported note type of size %ld bytes\n",
1118             (ulong_t)nbytes);
1119         return (0);
1120 }
1121 
1122 /*
1123  * Populate a table of function pointers indexed by Note type with our
1124  * functions to process each type of core file note:
1125  */
1126 static int (*nhdlrs[])(struct ps_prochandle *, size_t) = {
1127         note_notsup,            /*  0   unassigned              */
1128         note_linux_prstatus,            /*  1   NT_PRSTATUS (old)       */
1129         note_notsup,            /*  2   NT_PRFPREG (old)        */
1130         note_linux_psinfo,              /*  3   NT_PRPSINFO (old)       */
1131 #ifdef __sparc
1132         note_xreg,              /*  4   NT_PRXREG               */
1133 #else
1134         note_notsup,            /*  4   NT_PRXREG               */
1135 #endif
1136         note_platform,          /*  5   NT_PLATFORM             */
1137         note_auxv,              /*  6   NT_AUXV                 */
1138 #ifdef __sparc
1139         note_gwindows,          /*  7   NT_GWINDOWS             */
1140 #ifdef __sparcv9
1141         note_asrs,              /*  8   NT_ASRS                 */
1142 #else
1143         note_notsup,            /*  8   NT_ASRS                 */
1144 #endif
1145 #else
1146         note_notsup,            /*  7   NT_GWINDOWS             */
1147         note_notsup,            /*  8   NT_ASRS                 */
1148 #endif
1149 #if defined(__i386) || defined(__amd64)
1150         note_ldt,               /*  9   NT_LDT                  */
1151 #else
1152         note_notsup,            /*  9   NT_LDT                  */
1153 #endif
1154         note_pstatus,           /* 10   NT_PSTATUS              */
1155         note_notsup,            /* 11   unassigned              */
1156         note_notsup,            /* 12   unassigned              */
1157         note_psinfo,            /* 13   NT_PSINFO               */
1158         note_cred,              /* 14   NT_PRCRED               */
1159         note_utsname,           /* 15   NT_UTSNAME              */
1160         note_lwpstatus,         /* 16   NT_LWPSTATUS            */
1161         note_lwpsinfo,          /* 17   NT_LWPSINFO             */
1162         note_priv,              /* 18   NT_PRPRIV               */
1163         note_priv_info,         /* 19   NT_PRPRIVINFO           */
1164         note_content,           /* 20   NT_CONTENT              */
1165         note_zonename,          /* 21   NT_ZONENAME             */
1166         note_fdinfo,            /* 22   NT_FDINFO               */
1167         note_spymaster,         /* 23   NT_SPYMASTER            */
1168 };
1169 
1170 static void
1171 core_report_mapping(struct ps_prochandle *P, GElf_Phdr *php)
1172 {
1173         prkillinfo_t killinfo;
1174         siginfo_t *si = &killinfo.prk_info;
1175         char signame[SIG2STR_MAX], sig[64], info[64];
1176         void *addr = (void *)(uintptr_t)php->p_vaddr;
1177 
1178         const char *errfmt = "core file data for mapping at %p not saved: %s\n";
1179         const char *incfmt = "core file incomplete due to %s%s\n";
1180         const char *msgfmt = "mappings at and above %p are missing\n";
1181 
1182         if (!(php->p_flags & PF_SUNW_KILLED)) {
1183                 int err = 0;
1184 
1185                 (void) pread64(P->asfd, &err,
1186                     sizeof (err), (off64_t)php->p_offset);
1187 
1188                 Perror_printf(P, errfmt, addr, strerror(err));
1189                 dprintf(errfmt, addr, strerror(err));
1190                 return;
1191         }
1192 
1193         if (!(php->p_flags & PF_SUNW_SIGINFO))
1194                 return;
1195 
1196         (void) memset(&killinfo, 0, sizeof (killinfo));
1197 
1198         (void) pread64(P->asfd, &killinfo,
1199             sizeof (killinfo), (off64_t)php->p_offset);
1200 
1201         /*
1202          * While there is (or at least should be) only one segment that has
1203          * PF_SUNW_SIGINFO set, the signal information there is globally
1204          * useful (even if only to those debugging libproc consumers); we hang
1205          * the signal information gleaned here off of the ps_prochandle.
1206          */
1207         P->map_missing = php->p_vaddr;
1208         P->killinfo = killinfo.prk_info;
1209 
1210         if (sig2str(si->si_signo, signame) == -1) {
1211                 (void) snprintf(sig, sizeof (sig),
1212                     "<Unknown signal: 0x%x>, ", si->si_signo);
1213         } else {
1214                 (void) snprintf(sig, sizeof (sig), "SIG%s, ", signame);
1215         }
1216 
1217         if (si->si_code == SI_USER || si->si_code == SI_QUEUE) {
1218                 (void) snprintf(info, sizeof (info),
1219                     "pid=%d uid=%d zone=%d ctid=%d",
1220                     si->si_pid, si->si_uid, si->si_zoneid, si->si_ctid);
1221         } else {
1222                 (void) snprintf(info, sizeof (info),
1223                     "code=%d", si->si_code);
1224         }
1225 
1226         Perror_printf(P, incfmt, sig, info);
1227         Perror_printf(P, msgfmt, addr);
1228 
1229         dprintf(incfmt, sig, info);
1230         dprintf(msgfmt, addr);
1231 }
1232 
1233 /*
1234  * Add information on the address space mapping described by the given
1235  * PT_LOAD program header.  We fill in more information on the mapping later.
1236  */
1237 static int
1238 core_add_mapping(struct ps_prochandle *P, GElf_Phdr *php)
1239 {
1240         core_info_t *core = P->data;
1241         prmap_t pmap;
1242 
1243         dprintf("mapping base %llx filesz %llx memsz %llx offset %llx\n",
1244             (u_longlong_t)php->p_vaddr, (u_longlong_t)php->p_filesz,
1245             (u_longlong_t)php->p_memsz, (u_longlong_t)php->p_offset);
1246 
1247         pmap.pr_vaddr = (uintptr_t)php->p_vaddr;
1248         pmap.pr_size = php->p_memsz;
1249 
1250         /*
1251          * If Pgcore() or elfcore() fail to write a mapping, they will set
1252          * PF_SUNW_FAILURE in the Phdr and try to stash away the errno for us.
1253          */
1254         if (php->p_flags & PF_SUNW_FAILURE) {
1255                 core_report_mapping(P, php);
1256         } else if (php->p_filesz != 0 && php->p_offset >= core->core_size) {
1257                 Perror_printf(P, "core file may be corrupt -- data for mapping "
1258                     "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr);
1259                 dprintf("core file may be corrupt -- data for mapping "
1260                     "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr);
1261         }
1262 
1263         /*
1264          * The mapping name and offset will hopefully be filled in
1265          * by the librtld_db agent.  Unfortunately, if it isn't a
1266          * shared library mapping, this information is gone forever.
1267          */
1268         pmap.pr_mapname[0] = '\0';
1269         pmap.pr_offset = 0;
1270 
1271         pmap.pr_mflags = 0;
1272         if (php->p_flags & PF_R)
1273                 pmap.pr_mflags |= MA_READ;
1274         if (php->p_flags & PF_W)
1275                 pmap.pr_mflags |= MA_WRITE;
1276         if (php->p_flags & PF_X)
1277                 pmap.pr_mflags |= MA_EXEC;
1278 
1279         if (php->p_filesz == 0)
1280                 pmap.pr_mflags |= MA_RESERVED1;
1281 
1282         /*
1283          * At the time of adding this mapping, we just zero the pagesize.
1284          * Once we've processed more of the core file, we'll have the
1285          * pagesize from the auxv's AT_PAGESZ element and we can fill this in.
1286          */
1287         pmap.pr_pagesize = 0;
1288 
1289         /*
1290          * Unfortunately whether or not the mapping was a System V
1291          * shared memory segment is lost.  We use -1 to mark it as not shm.
1292          */
1293         pmap.pr_shmid = -1;
1294 
1295         return (Padd_mapping(P, php->p_offset, NULL, &pmap));
1296 }
1297 
1298 /*
1299  * Given a virtual address, name the mapping at that address using the
1300  * specified name, and return the map_info_t pointer.
1301  */
1302 static map_info_t *
1303 core_name_mapping(struct ps_prochandle *P, uintptr_t addr, const char *name)
1304 {
1305         map_info_t *mp = Paddr2mptr(P, addr);
1306 
1307         if (mp != NULL) {
1308                 (void) strncpy(mp->map_pmap.pr_mapname, name, PRMAPSZ);
1309                 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
1310         }
1311 
1312         return (mp);
1313 }
1314 
1315 /*
1316  * libproc uses libelf for all of its symbol table manipulation. This function
1317  * takes a symbol table and string table from a core file and places them
1318  * in a memory backed elf file.
1319  */
1320 static void
1321 fake_up_symtab(struct ps_prochandle *P, const elf_file_header_t *ehdr,
1322     GElf_Shdr *symtab, GElf_Shdr *strtab)
1323 {
1324         size_t size;
1325         off64_t off, base;
1326         map_info_t *mp;
1327         file_info_t *fp;
1328         Elf_Scn *scn;
1329         Elf_Data *data;
1330 
1331         if (symtab->sh_addr == 0 ||
1332             (mp = Paddr2mptr(P, symtab->sh_addr)) == NULL ||
1333             (fp = mp->map_file) == NULL) {
1334                 dprintf("fake_up_symtab: invalid section\n");
1335                 return;
1336         }
1337 
1338         if (fp->file_symtab.sym_data_pri != NULL) {
1339                 dprintf("Symbol table already loaded (sh_addr 0x%lx)\n",
1340                     (long)symtab->sh_addr);
1341                 return;
1342         }
1343 
1344         if (P->status.pr_dmodel == PR_MODEL_ILP32) {
1345                 struct {
1346                         Elf32_Ehdr ehdr;
1347                         Elf32_Shdr shdr[3];
1348                         char data[1];
1349                 } *b;
1350 
1351                 base = sizeof (b->ehdr) + sizeof (b->shdr);
1352                 size = base + symtab->sh_size + strtab->sh_size;
1353 
1354                 if ((b = calloc(1, size)) == NULL)
1355                         return;
1356 
1357                 (void) memcpy(b->ehdr.e_ident, ehdr->e_ident,
1358                     sizeof (ehdr->e_ident));
1359                 b->ehdr.e_type = ehdr->e_type;
1360                 b->ehdr.e_machine = ehdr->e_machine;
1361                 b->ehdr.e_version = ehdr->e_version;
1362                 b->ehdr.e_flags = ehdr->e_flags;
1363                 b->ehdr.e_ehsize = sizeof (b->ehdr);
1364                 b->ehdr.e_shoff = sizeof (b->ehdr);
1365                 b->ehdr.e_shentsize = sizeof (b->shdr[0]);
1366                 b->ehdr.e_shnum = 3;
1367                 off = 0;
1368 
1369                 b->shdr[1].sh_size = symtab->sh_size;
1370                 b->shdr[1].sh_type = SHT_SYMTAB;
1371                 b->shdr[1].sh_offset = off + base;
1372                 b->shdr[1].sh_entsize = sizeof (Elf32_Sym);
1373                 b->shdr[1].sh_link = 2;
1374                 b->shdr[1].sh_info =  symtab->sh_info;
1375                 b->shdr[1].sh_addralign = symtab->sh_addralign;
1376 
1377                 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size,
1378                     symtab->sh_offset) != b->shdr[1].sh_size) {
1379                         dprintf("fake_up_symtab: pread of symtab[1] failed\n");
1380                         free(b);
1381                         return;
1382                 }
1383 
1384                 off += b->shdr[1].sh_size;
1385 
1386                 b->shdr[2].sh_flags = SHF_STRINGS;
1387                 b->shdr[2].sh_size = strtab->sh_size;
1388                 b->shdr[2].sh_type = SHT_STRTAB;
1389                 b->shdr[2].sh_offset = off + base;
1390                 b->shdr[2].sh_info =  strtab->sh_info;
1391                 b->shdr[2].sh_addralign = 1;
1392 
1393                 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size,
1394                     strtab->sh_offset) != b->shdr[2].sh_size) {
1395                         dprintf("fake_up_symtab: pread of symtab[2] failed\n");
1396                         free(b);
1397                         return;
1398                 }
1399 
1400                 off += b->shdr[2].sh_size;
1401 
1402                 fp->file_symtab.sym_elf = elf_memory((char *)b, size);
1403                 if (fp->file_symtab.sym_elf == NULL) {
1404                         free(b);
1405                         return;
1406                 }
1407 
1408                 fp->file_symtab.sym_elfmem = b;
1409 #ifdef _LP64
1410         } else {
1411                 struct {
1412                         Elf64_Ehdr ehdr;
1413                         Elf64_Shdr shdr[3];
1414                         char data[1];
1415                 } *b;
1416 
1417                 base = sizeof (b->ehdr) + sizeof (b->shdr);
1418                 size = base + symtab->sh_size + strtab->sh_size;
1419 
1420                 if ((b = calloc(1, size)) == NULL)
1421                         return;
1422 
1423                 (void) memcpy(b->ehdr.e_ident, ehdr->e_ident,
1424                     sizeof (ehdr->e_ident));
1425                 b->ehdr.e_type = ehdr->e_type;
1426                 b->ehdr.e_machine = ehdr->e_machine;
1427                 b->ehdr.e_version = ehdr->e_version;
1428                 b->ehdr.e_flags = ehdr->e_flags;
1429                 b->ehdr.e_ehsize = sizeof (b->ehdr);
1430                 b->ehdr.e_shoff = sizeof (b->ehdr);
1431                 b->ehdr.e_shentsize = sizeof (b->shdr[0]);
1432                 b->ehdr.e_shnum = 3;
1433                 off = 0;
1434 
1435                 b->shdr[1].sh_size = symtab->sh_size;
1436                 b->shdr[1].sh_type = SHT_SYMTAB;
1437                 b->shdr[1].sh_offset = off + base;
1438                 b->shdr[1].sh_entsize = sizeof (Elf64_Sym);
1439                 b->shdr[1].sh_link = 2;
1440                 b->shdr[1].sh_info =  symtab->sh_info;
1441                 b->shdr[1].sh_addralign = symtab->sh_addralign;
1442 
1443                 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size,
1444                     symtab->sh_offset) != b->shdr[1].sh_size) {
1445                         free(b);
1446                         return;
1447                 }
1448 
1449                 off += b->shdr[1].sh_size;
1450 
1451                 b->shdr[2].sh_flags = SHF_STRINGS;
1452                 b->shdr[2].sh_size = strtab->sh_size;
1453                 b->shdr[2].sh_type = SHT_STRTAB;
1454                 b->shdr[2].sh_offset = off + base;
1455                 b->shdr[2].sh_info =  strtab->sh_info;
1456                 b->shdr[2].sh_addralign = 1;
1457 
1458                 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size,
1459                     strtab->sh_offset) != b->shdr[2].sh_size) {
1460                         free(b);
1461                         return;
1462                 }
1463 
1464                 off += b->shdr[2].sh_size;
1465 
1466                 fp->file_symtab.sym_elf = elf_memory((char *)b, size);
1467                 if (fp->file_symtab.sym_elf == NULL) {
1468                         free(b);
1469                         return;
1470                 }
1471 
1472                 fp->file_symtab.sym_elfmem = b;
1473 #endif
1474         }
1475 
1476         if ((scn = elf_getscn(fp->file_symtab.sym_elf, 1)) == NULL ||
1477             (fp->file_symtab.sym_data_pri = elf_getdata(scn, NULL)) == NULL ||
1478             (scn = elf_getscn(fp->file_symtab.sym_elf, 2)) == NULL ||
1479             (data = elf_getdata(scn, NULL)) == NULL) {
1480                 dprintf("fake_up_symtab: failed to get section data at %p\n",
1481                     (void *)scn);
1482                 goto err;
1483         }
1484 
1485         fp->file_symtab.sym_strs = data->d_buf;
1486         fp->file_symtab.sym_strsz = data->d_size;
1487         fp->file_symtab.sym_symn = symtab->sh_size / symtab->sh_entsize;
1488         fp->file_symtab.sym_hdr_pri = *symtab;
1489         fp->file_symtab.sym_strhdr = *strtab;
1490 
1491         optimize_symtab(&fp->file_symtab);
1492 
1493         return;
1494 err:
1495         (void) elf_end(fp->file_symtab.sym_elf);
1496         free(fp->file_symtab.sym_elfmem);
1497         fp->file_symtab.sym_elf = NULL;
1498         fp->file_symtab.sym_elfmem = NULL;
1499 }
1500 
1501 static void
1502 core_phdr_to_gelf(const Elf32_Phdr *src, GElf_Phdr *dst)
1503 {
1504         dst->p_type = src->p_type;
1505         dst->p_flags = src->p_flags;
1506         dst->p_offset = (Elf64_Off)src->p_offset;
1507         dst->p_vaddr = (Elf64_Addr)src->p_vaddr;
1508         dst->p_paddr = (Elf64_Addr)src->p_paddr;
1509         dst->p_filesz = (Elf64_Xword)src->p_filesz;
1510         dst->p_memsz = (Elf64_Xword)src->p_memsz;
1511         dst->p_align = (Elf64_Xword)src->p_align;
1512 }
1513 
1514 static void
1515 core_shdr_to_gelf(const Elf32_Shdr *src, GElf_Shdr *dst)
1516 {
1517         dst->sh_name = src->sh_name;
1518         dst->sh_type = src->sh_type;
1519         dst->sh_flags = (Elf64_Xword)src->sh_flags;
1520         dst->sh_addr = (Elf64_Addr)src->sh_addr;
1521         dst->sh_offset = (Elf64_Off)src->sh_offset;
1522         dst->sh_size = (Elf64_Xword)src->sh_size;
1523         dst->sh_link = src->sh_link;
1524         dst->sh_info = src->sh_info;
1525         dst->sh_addralign = (Elf64_Xword)src->sh_addralign;
1526         dst->sh_entsize = (Elf64_Xword)src->sh_entsize;
1527 }
1528 
1529 /*
1530  * Perform elf_begin on efp->e_fd and verify the ELF file's type and class.
1531  */
1532 static int
1533 core_elf_fdopen(elf_file_t *efp, GElf_Half type, int *perr)
1534 {
1535 #ifdef _BIG_ENDIAN
1536         uchar_t order = ELFDATA2MSB;
1537 #else
1538         uchar_t order = ELFDATA2LSB;
1539 #endif
1540         Elf32_Ehdr e32;
1541         int is_noelf = -1;
1542         int isa_err = 0;
1543 
1544         /*
1545          * Because 32-bit libelf cannot deal with large files, we need to read,
1546          * check, and convert the file header manually in case type == ET_CORE.
1547          */
1548         if (pread64(efp->e_fd, &e32, sizeof (e32), 0) != sizeof (e32)) {
1549                 if (perr != NULL)
1550                         *perr = G_FORMAT;
1551                 goto err;
1552         }
1553         if ((is_noelf = memcmp(&e32.e_ident[EI_MAG0], ELFMAG, SELFMAG)) != 0 ||
1554             e32.e_type != type || (isa_err = (e32.e_ident[EI_DATA] != order)) ||
1555             e32.e_version != EV_CURRENT) {
1556                 if (perr != NULL) {
1557                         if (is_noelf == 0 && isa_err) {
1558                                 *perr = G_ISAINVAL;
1559                         } else {
1560                                 *perr = G_FORMAT;
1561                         }
1562                 }
1563                 goto err;
1564         }
1565 
1566         /*
1567          * If the file is 64-bit and we are 32-bit, fail with G_LP64.  If the
1568          * file is 64-bit and we are 64-bit, re-read the header as a Elf64_Ehdr,
1569          * and convert it to a elf_file_header_t.  Otherwise, the file is
1570          * 32-bit, so convert e32 to a elf_file_header_t.
1571          */
1572         if (e32.e_ident[EI_CLASS] == ELFCLASS64) {
1573 #ifdef _LP64
1574                 Elf64_Ehdr e64;
1575 
1576                 if (pread64(efp->e_fd, &e64, sizeof (e64), 0) != sizeof (e64)) {
1577                         if (perr != NULL)
1578                                 *perr = G_FORMAT;
1579                         goto err;
1580                 }
1581 
1582                 (void) memcpy(efp->e_hdr.e_ident, e64.e_ident, EI_NIDENT);
1583                 efp->e_hdr.e_type = e64.e_type;
1584                 efp->e_hdr.e_machine = e64.e_machine;
1585                 efp->e_hdr.e_version = e64.e_version;
1586                 efp->e_hdr.e_entry = e64.e_entry;
1587                 efp->e_hdr.e_phoff = e64.e_phoff;
1588                 efp->e_hdr.e_shoff = e64.e_shoff;
1589                 efp->e_hdr.e_flags = e64.e_flags;
1590                 efp->e_hdr.e_ehsize = e64.e_ehsize;
1591                 efp->e_hdr.e_phentsize = e64.e_phentsize;
1592                 efp->e_hdr.e_phnum = (Elf64_Word)e64.e_phnum;
1593                 efp->e_hdr.e_shentsize = e64.e_shentsize;
1594                 efp->e_hdr.e_shnum = (Elf64_Word)e64.e_shnum;
1595                 efp->e_hdr.e_shstrndx = (Elf64_Word)e64.e_shstrndx;
1596 #else   /* _LP64 */
1597                 if (perr != NULL)
1598                         *perr = G_LP64;
1599                 goto err;
1600 #endif  /* _LP64 */
1601         } else {
1602                 (void) memcpy(efp->e_hdr.e_ident, e32.e_ident, EI_NIDENT);
1603                 efp->e_hdr.e_type = e32.e_type;
1604                 efp->e_hdr.e_machine = e32.e_machine;
1605                 efp->e_hdr.e_version = e32.e_version;
1606                 efp->e_hdr.e_entry = (Elf64_Addr)e32.e_entry;
1607                 efp->e_hdr.e_phoff = (Elf64_Off)e32.e_phoff;
1608                 efp->e_hdr.e_shoff = (Elf64_Off)e32.e_shoff;
1609                 efp->e_hdr.e_flags = e32.e_flags;
1610                 efp->e_hdr.e_ehsize = e32.e_ehsize;
1611                 efp->e_hdr.e_phentsize = e32.e_phentsize;
1612                 efp->e_hdr.e_phnum = (Elf64_Word)e32.e_phnum;
1613                 efp->e_hdr.e_shentsize = e32.e_shentsize;
1614                 efp->e_hdr.e_shnum = (Elf64_Word)e32.e_shnum;
1615                 efp->e_hdr.e_shstrndx = (Elf64_Word)e32.e_shstrndx;
1616         }
1617 
1618         /*
1619          * If the number of section headers or program headers or the section
1620          * header string table index would overflow their respective fields
1621          * in the ELF header, they're stored in the section header at index
1622          * zero. To simplify use elsewhere, we look for those sentinel values
1623          * here.
1624          */
1625         if ((efp->e_hdr.e_shnum == 0 && efp->e_hdr.e_shoff != 0) ||
1626             efp->e_hdr.e_shstrndx == SHN_XINDEX ||
1627             efp->e_hdr.e_phnum == PN_XNUM) {
1628                 GElf_Shdr shdr;
1629 
1630                 dprintf("extended ELF header\n");
1631 
1632                 if (efp->e_hdr.e_shoff == 0) {
1633                         if (perr != NULL)
1634                                 *perr = G_FORMAT;
1635                         goto err;
1636                 }
1637 
1638                 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
1639                         Elf32_Shdr shdr32;
1640 
1641                         if (pread64(efp->e_fd, &shdr32, sizeof (shdr32),
1642                             efp->e_hdr.e_shoff) != sizeof (shdr32)) {
1643                                 if (perr != NULL)
1644                                         *perr = G_FORMAT;
1645                                 goto err;
1646                         }
1647 
1648                         core_shdr_to_gelf(&shdr32, &shdr);
1649                 } else {
1650                         if (pread64(efp->e_fd, &shdr, sizeof (shdr),
1651                             efp->e_hdr.e_shoff) != sizeof (shdr)) {
1652                                 if (perr != NULL)
1653                                         *perr = G_FORMAT;
1654                                 goto err;
1655                         }
1656                 }
1657 
1658                 if (efp->e_hdr.e_shnum == 0) {
1659                         efp->e_hdr.e_shnum = shdr.sh_size;
1660                         dprintf("section header count %lu\n",
1661                             (ulong_t)shdr.sh_size);
1662                 }
1663 
1664                 if (efp->e_hdr.e_shstrndx == SHN_XINDEX) {
1665                         efp->e_hdr.e_shstrndx = shdr.sh_link;
1666                         dprintf("section string index %u\n", shdr.sh_link);
1667                 }
1668 
1669                 if (efp->e_hdr.e_phnum == PN_XNUM && shdr.sh_info != 0) {
1670                         efp->e_hdr.e_phnum = shdr.sh_info;
1671                         dprintf("program header count %u\n", shdr.sh_info);
1672                 }
1673 
1674         } else if (efp->e_hdr.e_phoff != 0) {
1675                 GElf_Phdr phdr;
1676                 uint64_t phnum;
1677 
1678                 /*
1679                  * It's possible this core file came from a system that
1680                  * accidentally truncated the e_phnum field without correctly
1681                  * using the extended format in the section header at index
1682                  * zero. We try to detect and correct that specific type of
1683                  * corruption by using the knowledge that the core dump
1684                  * routines usually place the data referenced by the first
1685                  * program header immediately after the last header element.
1686                  */
1687                 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
1688                         Elf32_Phdr phdr32;
1689 
1690                         if (pread64(efp->e_fd, &phdr32, sizeof (phdr32),
1691                             efp->e_hdr.e_phoff) != sizeof (phdr32)) {
1692                                 if (perr != NULL)
1693                                         *perr = G_FORMAT;
1694                                 goto err;
1695                         }
1696 
1697                         core_phdr_to_gelf(&phdr32, &phdr);
1698                 } else {
1699                         if (pread64(efp->e_fd, &phdr, sizeof (phdr),
1700                             efp->e_hdr.e_phoff) != sizeof (phdr)) {
1701                                 if (perr != NULL)
1702                                         *perr = G_FORMAT;
1703                                 goto err;
1704                         }
1705                 }
1706 
1707                 phnum = phdr.p_offset - efp->e_hdr.e_ehsize -
1708                     (uint64_t)efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize;
1709                 phnum /= efp->e_hdr.e_phentsize;
1710 
1711                 if (phdr.p_offset != 0 && phnum != efp->e_hdr.e_phnum) {
1712                         dprintf("suspicious program header count %u %u\n",
1713                             (uint_t)phnum, efp->e_hdr.e_phnum);
1714 
1715                         /*
1716                          * If the new program header count we computed doesn't
1717                          * jive with count in the ELF header, we'll use the
1718                          * data that's there and hope for the best.
1719                          *
1720                          * If it does, it's also possible that the section
1721                          * header offset is incorrect; we'll check that and
1722                          * possibly try to fix it.
1723                          */
1724                         if (phnum <= INT_MAX &&
1725                             (uint16_t)phnum == efp->e_hdr.e_phnum) {
1726 
1727                                 if (efp->e_hdr.e_shoff == efp->e_hdr.e_phoff +
1728                                     efp->e_hdr.e_phentsize *
1729                                     (uint_t)efp->e_hdr.e_phnum) {
1730                                         efp->e_hdr.e_shoff =
1731                                             efp->e_hdr.e_phoff +
1732                                             efp->e_hdr.e_phentsize * phnum;
1733                                 }
1734 
1735                                 efp->e_hdr.e_phnum = (Elf64_Word)phnum;
1736                                 dprintf("using new program header count\n");
1737                         } else {
1738                                 dprintf("inconsistent program header count\n");
1739                         }
1740                 }
1741         }
1742 
1743         /*
1744          * The libelf implementation was never ported to be large-file aware.
1745          * This is typically not a problem for your average executable or
1746          * shared library, but a large 32-bit core file can exceed 2GB in size.
1747          * So if type is ET_CORE, we don't bother doing elf_begin; the code
1748          * in Pfgrab_core() below will do its own i/o and struct conversion.
1749          */
1750 
1751         if (type == ET_CORE) {
1752                 efp->e_elf = NULL;
1753                 return (0);
1754         }
1755 
1756         if ((efp->e_elf = elf_begin(efp->e_fd, ELF_C_READ, NULL)) == NULL) {
1757                 if (perr != NULL)
1758                         *perr = G_ELF;
1759                 goto err;
1760         }
1761 
1762         return (0);
1763 
1764 err:
1765         efp->e_elf = NULL;
1766         return (-1);
1767 }
1768 
1769 /*
1770  * Open the specified file and then do a core_elf_fdopen on it.
1771  */
1772 static int
1773 core_elf_open(elf_file_t *efp, const char *path, GElf_Half type, int *perr)
1774 {
1775         (void) memset(efp, 0, sizeof (elf_file_t));
1776 
1777         if ((efp->e_fd = open64(path, O_RDONLY)) >= 0) {
1778                 if (core_elf_fdopen(efp, type, perr) == 0)
1779                         return (0);
1780 
1781                 (void) close(efp->e_fd);
1782                 efp->e_fd = -1;
1783         }
1784 
1785         return (-1);
1786 }
1787 
1788 /*
1789  * Close the ELF handle and file descriptor.
1790  */
1791 static void
1792 core_elf_close(elf_file_t *efp)
1793 {
1794         if (efp->e_elf != NULL) {
1795                 (void) elf_end(efp->e_elf);
1796                 efp->e_elf = NULL;
1797         }
1798 
1799         if (efp->e_fd != -1) {
1800                 (void) close(efp->e_fd);
1801                 efp->e_fd = -1;
1802         }
1803 }
1804 
1805 /*
1806  * Given an ELF file for a statically linked executable, locate the likely
1807  * primary text section and fill in rl_base with its virtual address.
1808  */
1809 static map_info_t *
1810 core_find_text(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp)
1811 {
1812         GElf_Phdr phdr;
1813         uint_t i;
1814         size_t nphdrs;
1815 
1816         if (elf_getphdrnum(elf, &nphdrs) == -1)
1817                 return (NULL);
1818 
1819         for (i = 0; i < nphdrs; i++) {
1820                 if (gelf_getphdr(elf, i, &phdr) != NULL &&
1821                     phdr.p_type == PT_LOAD && (phdr.p_flags & PF_X)) {
1822                         rlp->rl_base = phdr.p_vaddr;
1823                         return (Paddr2mptr(P, rlp->rl_base));
1824                 }
1825         }
1826 
1827         return (NULL);
1828 }
1829 
1830 /*
1831  * Given an ELF file and the librtld_db structure corresponding to its primary
1832  * text mapping, deduce where its data segment was loaded and fill in
1833  * rl_data_base and prmap_t.pr_offset accordingly.
1834  */
1835 static map_info_t *
1836 core_find_data(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp)
1837 {
1838         GElf_Ehdr ehdr;
1839         GElf_Phdr phdr;
1840         map_info_t *mp;
1841         uint_t i, pagemask;
1842         size_t nphdrs;
1843 
1844         rlp->rl_data_base = NULL;
1845 
1846         /*
1847          * Find the first loadable, writeable Phdr and compute rl_data_base
1848          * as the virtual address at which is was loaded.
1849          */
1850         if (gelf_getehdr(elf, &ehdr) == NULL ||
1851             elf_getphdrnum(elf, &nphdrs) == -1)
1852                 return (NULL);
1853 
1854         for (i = 0; i < nphdrs; i++) {
1855                 if (gelf_getphdr(elf, i, &phdr) != NULL &&
1856                     phdr.p_type == PT_LOAD && (phdr.p_flags & PF_W)) {
1857                         rlp->rl_data_base = phdr.p_vaddr;
1858                         if (ehdr.e_type == ET_DYN)
1859                                 rlp->rl_data_base += rlp->rl_base;
1860                         break;
1861                 }
1862         }
1863 
1864         /*
1865          * If we didn't find an appropriate phdr or if the address we
1866          * computed has no mapping, return NULL.
1867          */
1868         if (rlp->rl_data_base == NULL ||
1869             (mp = Paddr2mptr(P, rlp->rl_data_base)) == NULL)
1870                 return (NULL);
1871 
1872         /*
1873          * It wouldn't be procfs-related code if we didn't make use of
1874          * unclean knowledge of segvn, even in userland ... the prmap_t's
1875          * pr_offset field will be the segvn offset from mmap(2)ing the
1876          * data section, which will be the file offset & PAGEMASK.
1877          */
1878         pagemask = ~(mp->map_pmap.pr_pagesize - 1);
1879         mp->map_pmap.pr_offset = phdr.p_offset & pagemask;
1880 
1881         return (mp);
1882 }
1883 
1884 /*
1885  * Librtld_db agent callback for iterating over load object mappings.
1886  * For each load object, we allocate a new file_info_t, perform naming,
1887  * and attempt to construct a symbol table for the load object.
1888  */
1889 static int
1890 core_iter_mapping(const rd_loadobj_t *rlp, struct ps_prochandle *P)
1891 {
1892         core_info_t *core = P->data;
1893         char lname[PATH_MAX], buf[PATH_MAX];
1894         file_info_t *fp;
1895         map_info_t *mp;
1896 
1897         if (Pread_string(P, lname, PATH_MAX, (off_t)rlp->rl_nameaddr) <= 0) {
1898                 dprintf("failed to read name %p\n", (void *)rlp->rl_nameaddr);
1899                 return (1); /* Keep going; forget this if we can't get a name */
1900         }
1901 
1902         dprintf("rd_loadobj name = \"%s\" rl_base = %p\n",
1903             lname, (void *)rlp->rl_base);
1904 
1905         if ((mp = Paddr2mptr(P, rlp->rl_base)) == NULL) {
1906                 dprintf("no mapping for %p\n", (void *)rlp->rl_base);
1907                 return (1); /* No mapping; advance to next mapping */
1908         }
1909 
1910         /*
1911          * Create a new file_info_t for this mapping, and therefore for
1912          * this load object.
1913          *
1914          * If there's an ELF header at the beginning of this mapping,
1915          * file_info_new() will try to use its section headers to
1916          * identify any other mappings that belong to this load object.
1917          */
1918         if ((fp = mp->map_file) == NULL &&
1919             (fp = file_info_new(P, mp)) == NULL) {
1920                 core->core_errno = errno;
1921                 dprintf("failed to malloc mapping data\n");
1922                 return (0); /* Abort */
1923         }
1924         fp->file_map = mp;
1925 
1926         /* Create a local copy of the load object representation */
1927         if ((fp->file_lo = calloc(1, sizeof (rd_loadobj_t))) == NULL) {
1928                 core->core_errno = errno;
1929                 dprintf("failed to malloc mapping data\n");
1930                 return (0); /* Abort */
1931         }
1932         *fp->file_lo = *rlp;
1933 
1934         if (lname[0] != '\0') {
1935                 /*
1936                  * Naming dance part 1: if we got a name from librtld_db, then
1937                  * copy this name to the prmap_t if it is unnamed.  If the
1938                  * file_info_t is unnamed, name it after the lname.
1939                  */
1940                 if (mp->map_pmap.pr_mapname[0] == '\0') {
1941                         (void) strncpy(mp->map_pmap.pr_mapname, lname, PRMAPSZ);
1942                         mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
1943                 }
1944 
1945                 if (fp->file_lname == NULL)
1946                         fp->file_lname = strdup(lname);
1947 
1948         } else if (fp->file_lname == NULL &&
1949             mp->map_pmap.pr_mapname[0] != '\0') {
1950                 /*
1951                  * Naming dance part 2: if the mapping is named and the
1952                  * file_info_t is not, name the file after the mapping.
1953                  */
1954                 fp->file_lname = strdup(mp->map_pmap.pr_mapname);
1955         }
1956 
1957         if ((fp->file_rname == NULL) &&
1958             (Pfindmap(P, mp, buf, sizeof (buf)) != NULL))
1959                 fp->file_rname = strdup(buf);
1960 
1961         if (fp->file_lname != NULL)
1962                 fp->file_lbase = basename(fp->file_lname);
1963         if (fp->file_rname != NULL)
1964                 fp->file_rbase = basename(fp->file_rname);
1965 
1966         /* Associate the file and the mapping. */
1967         (void) strncpy(fp->file_pname, mp->map_pmap.pr_mapname, PRMAPSZ);
1968         fp->file_pname[PRMAPSZ - 1] = '\0';
1969 
1970         /*
1971          * If no section headers were available then we'll have to
1972          * identify this load object's other mappings with what we've
1973          * got: the start and end of the object's corresponding
1974          * address space.
1975          */
1976         if (fp->file_saddrs == NULL) {
1977                 for (mp = fp->file_map + 1; mp < P->mappings + P->map_count &&
1978                     mp->map_pmap.pr_vaddr < rlp->rl_bend; mp++) {
1979 
1980                         if (mp->map_file == NULL) {
1981                                 dprintf("core_iter_mapping %s: associating "
1982                                     "segment at %p\n",
1983                                     fp->file_pname,
1984                                     (void *)mp->map_pmap.pr_vaddr);
1985                                 mp->map_file = fp;
1986                                 fp->file_ref++;
1987                         } else {
1988                                 dprintf("core_iter_mapping %s: segment at "
1989                                     "%p already associated with %s\n",
1990                                     fp->file_pname,
1991                                     (void *)mp->map_pmap.pr_vaddr,
1992                                     (mp == fp->file_map ? "this file" :
1993                                     mp->map_file->file_pname));
1994                         }
1995                 }
1996         }
1997 
1998         /* Ensure that all this file's mappings are named. */
1999         for (mp = fp->file_map; mp < P->mappings + P->map_count &&
2000             mp->map_file == fp; mp++) {
2001                 if (mp->map_pmap.pr_mapname[0] == '\0' &&
2002                     !(mp->map_pmap.pr_mflags & MA_BREAK)) {
2003                         (void) strncpy(mp->map_pmap.pr_mapname, fp->file_pname,
2004                             PRMAPSZ);
2005                         mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2006                 }
2007         }
2008 
2009         /* Attempt to build a symbol table for this file. */
2010         Pbuild_file_symtab(P, fp);
2011         if (fp->file_elf == NULL)
2012                 dprintf("core_iter_mapping: no symtab for %s\n",
2013                     fp->file_pname);
2014 
2015         /* Locate the start of a data segment associated with this file. */
2016         if ((mp = core_find_data(P, fp->file_elf, fp->file_lo)) != NULL) {
2017                 dprintf("found data for %s at %p (pr_offset 0x%llx)\n",
2018                     fp->file_pname, (void *)fp->file_lo->rl_data_base,
2019                     mp->map_pmap.pr_offset);
2020         } else {
2021                 dprintf("core_iter_mapping: no data found for %s\n",
2022                     fp->file_pname);
2023         }
2024 
2025         return (1); /* Advance to next mapping */
2026 }
2027 
2028 /*
2029  * Callback function for Pfindexec().  In order to confirm a given pathname,
2030  * we verify that we can open it as an ELF file of type ET_EXEC or ET_DYN.
2031  */
2032 static int
2033 core_exec_open(const char *path, void *efp)
2034 {
2035         if (core_elf_open(efp, path, ET_EXEC, NULL) == 0)
2036                 return (1);
2037         if (core_elf_open(efp, path, ET_DYN, NULL) == 0)
2038                 return (1);
2039         return (0);
2040 }
2041 
2042 /*
2043  * Attempt to load any section headers found in the core file.  If present,
2044  * this will refer to non-loadable data added to the core file by the kernel
2045  * based on coreadm(1M) settings, including CTF data and the symbol table.
2046  */
2047 static void
2048 core_load_shdrs(struct ps_prochandle *P, elf_file_t *efp)
2049 {
2050         GElf_Shdr *shp, *shdrs = NULL;
2051         char *shstrtab = NULL;
2052         ulong_t shstrtabsz;
2053         const char *name;
2054         map_info_t *mp;
2055 
2056         size_t nbytes;
2057         void *buf;
2058         int i;
2059 
2060         if (efp->e_hdr.e_shstrndx >= efp->e_hdr.e_shnum) {
2061                 dprintf("corrupt shstrndx (%u) exceeds shnum (%u)\n",
2062                     efp->e_hdr.e_shstrndx, efp->e_hdr.e_shnum);
2063                 return;
2064         }
2065 
2066         /*
2067          * Read the section header table from the core file and then iterate
2068          * over the section headers, converting each to a GElf_Shdr.
2069          */
2070         if ((shdrs = malloc(efp->e_hdr.e_shnum * sizeof (GElf_Shdr))) == NULL) {
2071                 dprintf("failed to malloc %u section headers: %s\n",
2072                     (uint_t)efp->e_hdr.e_shnum, strerror(errno));
2073                 return;
2074         }
2075 
2076         nbytes = efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize;
2077         if ((buf = malloc(nbytes)) == NULL) {
2078                 dprintf("failed to malloc %d bytes: %s\n", (int)nbytes,
2079                     strerror(errno));
2080                 free(shdrs);
2081                 goto out;
2082         }
2083 
2084         if (pread64(efp->e_fd, buf, nbytes, efp->e_hdr.e_shoff) != nbytes) {
2085                 dprintf("failed to read section headers at off %lld: %s\n",
2086                     (longlong_t)efp->e_hdr.e_shoff, strerror(errno));
2087                 free(buf);
2088                 goto out;
2089         }
2090 
2091         for (i = 0; i < efp->e_hdr.e_shnum; i++) {
2092                 void *p = (uchar_t *)buf + efp->e_hdr.e_shentsize * i;
2093 
2094                 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32)
2095                         core_shdr_to_gelf(p, &shdrs[i]);
2096                 else
2097                         (void) memcpy(&shdrs[i], p, sizeof (GElf_Shdr));
2098         }
2099 
2100         free(buf);
2101         buf = NULL;
2102 
2103         /*
2104          * Read the .shstrtab section from the core file, terminating it with
2105          * an extra \0 so that a corrupt section will not cause us to die.
2106          */
2107         shp = &shdrs[efp->e_hdr.e_shstrndx];
2108         shstrtabsz = shp->sh_size;
2109 
2110         if ((shstrtab = malloc(shstrtabsz + 1)) == NULL) {
2111                 dprintf("failed to allocate %lu bytes for shstrtab\n",
2112                     (ulong_t)shstrtabsz);
2113                 goto out;
2114         }
2115 
2116         if (pread64(efp->e_fd, shstrtab, shstrtabsz,
2117             shp->sh_offset) != shstrtabsz) {
2118                 dprintf("failed to read %lu bytes of shstrs at off %lld: %s\n",
2119                     shstrtabsz, (longlong_t)shp->sh_offset, strerror(errno));
2120                 goto out;
2121         }
2122 
2123         shstrtab[shstrtabsz] = '\0';
2124 
2125         /*
2126          * Now iterate over each section in the section header table, locating
2127          * sections of interest and initializing more of the ps_prochandle.
2128          */
2129         for (i = 0; i < efp->e_hdr.e_shnum; i++) {
2130                 shp = &shdrs[i];
2131                 name = shstrtab + shp->sh_name;
2132 
2133                 if (shp->sh_name >= shstrtabsz) {
2134                         dprintf("skipping section [%d]: corrupt sh_name\n", i);
2135                         continue;
2136                 }
2137 
2138                 if (shp->sh_link >= efp->e_hdr.e_shnum) {
2139                         dprintf("skipping section [%d]: corrupt sh_link\n", i);
2140                         continue;
2141                 }
2142 
2143                 dprintf("found section header %s (sh_addr 0x%llx)\n",
2144                     name, (u_longlong_t)shp->sh_addr);
2145 
2146                 if (strcmp(name, ".SUNW_ctf") == 0) {
2147                         if ((mp = Paddr2mptr(P, shp->sh_addr)) == NULL) {
2148                                 dprintf("no map at addr 0x%llx for %s [%d]\n",
2149                                     (u_longlong_t)shp->sh_addr, name, i);
2150                                 continue;
2151                         }
2152 
2153                         if (mp->map_file == NULL ||
2154                             mp->map_file->file_ctf_buf != NULL) {
2155                                 dprintf("no mapping file or duplicate buffer "
2156                                     "for %s [%d]\n", name, i);
2157                                 continue;
2158                         }
2159 
2160                         if ((buf = malloc(shp->sh_size)) == NULL ||
2161                             pread64(efp->e_fd, buf, shp->sh_size,
2162                             shp->sh_offset) != shp->sh_size) {
2163                                 dprintf("skipping section %s [%d]: %s\n",
2164                                     name, i, strerror(errno));
2165                                 free(buf);
2166                                 continue;
2167                         }
2168 
2169                         mp->map_file->file_ctf_size = shp->sh_size;
2170                         mp->map_file->file_ctf_buf = buf;
2171 
2172                         if (shdrs[shp->sh_link].sh_type == SHT_DYNSYM)
2173                                 mp->map_file->file_ctf_dyn = 1;
2174 
2175                 } else if (strcmp(name, ".symtab") == 0) {
2176                         fake_up_symtab(P, &efp->e_hdr,
2177                             shp, &shdrs[shp->sh_link]);
2178                 }
2179         }
2180 out:
2181         free(shstrtab);
2182         free(shdrs);
2183 }
2184 
2185 /*
2186  * Main engine for core file initialization: given an fd for the core file
2187  * and an optional pathname, construct the ps_prochandle.  The aout_path can
2188  * either be a suggested executable pathname, or a suggested directory to
2189  * use as a possible current working directory.
2190  */
2191 struct ps_prochandle *
2192 Pfgrab_core(int core_fd, const char *aout_path, int *perr)
2193 {
2194         struct ps_prochandle *P;
2195         core_info_t *core_info;
2196         map_info_t *stk_mp, *brk_mp;
2197         const char *execname;
2198         char *interp;
2199         int i, notes, pagesize;
2200         uintptr_t addr, base_addr;
2201         struct stat64 stbuf;
2202         void *phbuf, *php;
2203         size_t nbytes;
2204         boolean_t from_linux = B_FALSE;
2205 
2206         elf_file_t aout;
2207         elf_file_t core;
2208 
2209         Elf_Scn *scn, *intp_scn = NULL;
2210         Elf_Data *dp;
2211 
2212         GElf_Phdr phdr, note_phdr;
2213         GElf_Shdr shdr;
2214         GElf_Xword nleft;
2215 
2216         if (elf_version(EV_CURRENT) == EV_NONE) {
2217                 dprintf("libproc ELF version is more recent than libelf\n");
2218                 *perr = G_ELF;
2219                 return (NULL);
2220         }
2221 
2222         aout.e_elf = NULL;
2223         aout.e_fd = -1;
2224 
2225         core.e_elf = NULL;
2226         core.e_fd = core_fd;
2227 
2228         /*
2229          * Allocate and initialize a ps_prochandle structure for the core.
2230          * There are several key pieces of initialization here:
2231          *
2232          * 1. The PS_DEAD state flag marks this prochandle as a core file.
2233          *    PS_DEAD also thus prevents all operations which require state
2234          *    to be PS_STOP from operating on this handle.
2235          *
2236          * 2. We keep the core file fd in P->asfd since the core file contains
2237          *    the remnants of the process address space.
2238          *
2239          * 3. We set the P->info_valid bit because all information about the
2240          *    core is determined by the end of this function; there is no need
2241          *    for proc_update_maps() to reload mappings at any later point.
2242          *
2243          * 4. The read/write ops vector uses our core_rw() function defined
2244          *    above to handle i/o requests.
2245          */
2246         if ((P = malloc(sizeof (struct ps_prochandle))) == NULL) {
2247                 *perr = G_STRANGE;
2248                 return (NULL);
2249         }
2250 
2251         (void) memset(P, 0, sizeof (struct ps_prochandle));
2252         (void) mutex_init(&P->proc_lock, USYNC_THREAD, NULL);
2253         P->state = PS_DEAD;
2254         P->pid = (pid_t)-1;
2255         P->asfd = core.e_fd;
2256         P->ctlfd = -1;
2257         P->statfd = -1;
2258         P->agentctlfd = -1;
2259         P->agentstatfd = -1;
2260         P->zoneroot = NULL;
2261         P->info_valid = 1;
2262         Pinit_ops(&P->ops, &P_core_ops);
2263 
2264         Pinitsym(P);
2265 
2266         /*
2267          * Fstat and open the core file and make sure it is a valid ELF core.
2268          */
2269         if (fstat64(P->asfd, &stbuf) == -1) {
2270                 *perr = G_STRANGE;
2271                 goto err;
2272         }
2273 
2274         if (core_elf_fdopen(&core, ET_CORE, perr) == -1)
2275                 goto err;
2276 
2277         /*
2278          * Allocate and initialize a core_info_t to hang off the ps_prochandle
2279          * structure.  We keep all core-specific information in this structure.
2280          */
2281         if ((core_info = calloc(1, sizeof (core_info_t))) == NULL) {
2282                 *perr = G_STRANGE;
2283                 goto err;
2284         }
2285 
2286         P->data = core_info;
2287         list_link(&core_info->core_lwp_head, NULL);
2288         core_info->core_size = stbuf.st_size;
2289         /*
2290          * In the days before adjustable core file content, this was the
2291          * default core file content. For new core files, this value will
2292          * be overwritten by the NT_CONTENT note section.
2293          */
2294         core_info->core_content = CC_CONTENT_STACK | CC_CONTENT_HEAP |
2295             CC_CONTENT_DATA | CC_CONTENT_RODATA | CC_CONTENT_ANON |
2296             CC_CONTENT_SHANON;
2297 
2298         switch (core.e_hdr.e_ident[EI_CLASS]) {
2299         case ELFCLASS32:
2300                 core_info->core_dmodel = PR_MODEL_ILP32;
2301                 break;
2302         case ELFCLASS64:
2303                 core_info->core_dmodel = PR_MODEL_LP64;
2304                 break;
2305         default:
2306                 *perr = G_FORMAT;
2307                 goto err;
2308         }
2309         core_info->core_osabi = core.e_hdr.e_ident[EI_OSABI];
2310 
2311         /*
2312          * Because the core file may be a large file, we can't use libelf to
2313          * read the Phdrs.  We use e_phnum and e_phentsize to simplify things.
2314          */
2315         nbytes = core.e_hdr.e_phnum * core.e_hdr.e_phentsize;
2316 
2317         if ((phbuf = malloc(nbytes)) == NULL) {
2318                 *perr = G_STRANGE;
2319                 goto err;
2320         }
2321 
2322         if (pread64(core_fd, phbuf, nbytes, core.e_hdr.e_phoff) != nbytes) {
2323                 *perr = G_STRANGE;
2324                 free(phbuf);
2325                 goto err;
2326         }
2327 
2328         /*
2329          * Iterate through the program headers in the core file.
2330          * We're interested in two types of Phdrs: PT_NOTE (which
2331          * contains a set of saved /proc structures), and PT_LOAD (which
2332          * represents a memory mapping from the process's address space).
2333          * In the case of PT_NOTE, we're interested in the last PT_NOTE
2334          * in the core file; currently the first PT_NOTE (if present)
2335          * contains /proc structs in the pre-2.6 unstructured /proc format.
2336          */
2337         for (php = phbuf, notes = 0, i = 0; i < core.e_hdr.e_phnum; i++) {
2338                 if (core.e_hdr.e_ident[EI_CLASS] == ELFCLASS64)
2339                         (void) memcpy(&phdr, php, sizeof (GElf_Phdr));
2340                 else
2341                         core_phdr_to_gelf(php, &phdr);
2342 
2343                 switch (phdr.p_type) {
2344                 case PT_NOTE:
2345                         note_phdr = phdr;
2346                         notes++;
2347                         break;
2348 
2349                 case PT_LOAD:
2350                         if (core_add_mapping(P, &phdr) == -1) {
2351                                 *perr = G_STRANGE;
2352                                 free(phbuf);
2353                                 goto err;
2354                         }
2355                         break;
2356                 default:
2357                         dprintf("Pgrab_core: unknown phdr %d\n", phdr.p_type);
2358                         break;
2359                 }
2360 
2361                 php = (char *)php + core.e_hdr.e_phentsize;
2362         }
2363 
2364         free(phbuf);
2365 
2366         Psort_mappings(P);
2367 
2368         /*
2369          * If we couldn't find anything of type PT_NOTE, or only one PT_NOTE
2370          * was present, abort.  The core file is either corrupt or too old.
2371          */
2372         if (notes == 0 || (notes == 1 && core_info->core_osabi ==
2373             ELFOSABI_SOLARIS)) {
2374                 *perr = G_NOTE;
2375                 goto err;
2376         }
2377 
2378         /*
2379          * Advance the seek pointer to the start of the PT_NOTE data
2380          */
2381         if (lseek64(P->asfd, note_phdr.p_offset, SEEK_SET) == (off64_t)-1) {
2382                 dprintf("Pgrab_core: failed to lseek to PT_NOTE data\n");
2383                 *perr = G_STRANGE;
2384                 goto err;
2385         }
2386 
2387         /*
2388          * Now process the PT_NOTE structures.  Each one is preceded by
2389          * an Elf{32/64}_Nhdr structure describing its type and size.
2390          *
2391          *  +--------+
2392          *  | header |
2393          *  +--------+
2394          *  | name   |
2395          *  | ...    |
2396          *  +--------+
2397          *  | desc   |
2398          *  | ...    |
2399          *  +--------+
2400          */
2401         for (nleft = note_phdr.p_filesz; nleft > 0; ) {
2402                 Elf64_Nhdr nhdr;
2403                 off64_t off, namesz, descsz;
2404 
2405                 /*
2406                  * Although <sys/elf.h> defines both Elf32_Nhdr and Elf64_Nhdr
2407                  * as different types, they are both of the same content and
2408                  * size, so we don't need to worry about 32/64 conversion here.
2409                  */
2410                 if (read(P->asfd, &nhdr, sizeof (nhdr)) != sizeof (nhdr)) {
2411                         dprintf("Pgrab_core: failed to read ELF note header\n");
2412                         *perr = G_NOTE;
2413                         goto err;
2414                 }
2415 
2416                 /*
2417                  * According to the System V ABI, the amount of padding
2418                  * following the name field should align the description
2419                  * field on a 4 byte boundary for 32-bit binaries or on an 8
2420                  * byte boundary for 64-bit binaries. However, this change
2421                  * was not made correctly during the 64-bit port so all
2422                  * descriptions can assume only 4-byte alignment. We ignore
2423                  * the name field and the padding to 4-byte alignment.
2424                  */
2425                 namesz = P2ROUNDUP((off64_t)nhdr.n_namesz, (off64_t)4);
2426 
2427                 if (lseek64(P->asfd, namesz, SEEK_CUR) == (off64_t)-1) {
2428                         dprintf("failed to seek past name and padding\n");
2429                         *perr = G_STRANGE;
2430                         goto err;
2431                 }
2432 
2433                 dprintf("Note hdr n_type=%u n_namesz=%u n_descsz=%u\n",
2434                     nhdr.n_type, nhdr.n_namesz, nhdr.n_descsz);
2435 
2436                 off = lseek64(P->asfd, (off64_t)0L, SEEK_CUR);
2437 
2438                 /*
2439                  * Invoke the note handler function from our table
2440                  */
2441                 if (nhdr.n_type < sizeof (nhdlrs) / sizeof (nhdlrs[0])) {
2442                         if (nhdlrs[nhdr.n_type](P, nhdr.n_descsz) < 0) {
2443                                 dprintf("handler for type %d returned < 0",
2444                                     nhdr.n_type);
2445                                 *perr = G_NOTE;
2446                                 goto err;
2447                         }
2448                         /*
2449                          * The presence of either of these notes indicates that
2450                          * the dump was generated on Linux.
2451                          */
2452                         if (nhdr.n_type == NT_PRSTATUS ||
2453                             nhdr.n_type == NT_PRPSINFO)
2454                                 from_linux = B_TRUE;
2455                 } else {
2456                         (void) note_notsup(P, nhdr.n_descsz);
2457                 }
2458 
2459                 /*
2460                  * Seek past the current note data to the next Elf_Nhdr
2461                  */
2462                 descsz = P2ROUNDUP((off64_t)nhdr.n_descsz, (off64_t)4);
2463                 if (lseek64(P->asfd, off + descsz, SEEK_SET) == (off64_t)-1) {
2464                         dprintf("Pgrab_core: failed to seek to next nhdr\n");
2465                         *perr = G_STRANGE;
2466                         goto err;
2467                 }
2468 
2469                 /*
2470                  * Subtract the size of the header and its data from what
2471                  * we have left to process.
2472                  */
2473                 nleft -= sizeof (nhdr) + namesz + descsz;
2474         }
2475 
2476         if (from_linux) {
2477                 size_t tcount, pid;
2478                 lwp_info_t *lwp;
2479 
2480                 P->status.pr_dmodel = core_info->core_dmodel;
2481 
2482                 lwp = list_next(&core_info->core_lwp_head);
2483 
2484                 pid = P->status.pr_pid;
2485 
2486                 for (tcount = 0; tcount < core_info->core_nlwp;
2487                     tcount++, lwp = list_next(lwp)) {
2488                         dprintf("Linux thread with id %d\n", lwp->lwp_id);
2489 
2490                         /*
2491                          * In the case we don't have a valid psinfo (i.e. pid is
2492                          * 0, probably because of gdb creating the core) assume
2493                          * lowest pid count is the first thread (what if the
2494                          * next thread wraps the pid around?)
2495                          */
2496                         if (P->status.pr_pid == 0 &&
2497                             ((pid == 0 && lwp->lwp_id > 0) ||
2498                             (lwp->lwp_id < pid))) {
2499                                 pid = lwp->lwp_id;
2500                         }
2501                 }
2502 
2503                 if (P->status.pr_pid != pid) {
2504                         dprintf("No valid pid, setting to %ld\n", (ulong_t)pid);
2505                         P->status.pr_pid = pid;
2506                         P->psinfo.pr_pid = pid;
2507                 }
2508 
2509                 /*
2510                  * Consumers like mdb expect the first thread to actually have
2511                  * an id of 1, on linux that is actually the pid. Find the the
2512                  * thread with our process id, and set the id to 1
2513                  */
2514                 if ((lwp = lwpid2info(P, pid)) == NULL) {
2515                         dprintf("Couldn't find first thread\n");
2516                         *perr = G_STRANGE;
2517                         goto err;
2518                 }
2519 
2520                 dprintf("setting representative thread: %d\n", lwp->lwp_id);
2521 
2522                 lwp->lwp_id = 1;
2523                 lwp->lwp_status.pr_lwpid = 1;
2524 
2525                 /* set representative thread */
2526                 (void) memcpy(&P->status.pr_lwp, &lwp->lwp_status,
2527                     sizeof (P->status.pr_lwp));
2528         }
2529 
2530         if (nleft != 0) {
2531                 dprintf("Pgrab_core: note section malformed\n");
2532                 *perr = G_STRANGE;
2533                 goto err;
2534         }
2535 
2536         if ((pagesize = Pgetauxval(P, AT_PAGESZ)) == -1) {
2537                 pagesize = getpagesize();
2538                 dprintf("AT_PAGESZ missing; defaulting to %d\n", pagesize);
2539         }
2540 
2541         /*
2542          * Locate and label the mappings corresponding to the end of the
2543          * heap (MA_BREAK) and the base of the stack (MA_STACK).
2544          */
2545         if ((P->status.pr_brkbase != 0 || P->status.pr_brksize != 0) &&
2546             (brk_mp = Paddr2mptr(P, P->status.pr_brkbase +
2547             P->status.pr_brksize - 1)) != NULL)
2548                 brk_mp->map_pmap.pr_mflags |= MA_BREAK;
2549         else
2550                 brk_mp = NULL;
2551 
2552         if ((stk_mp = Paddr2mptr(P, P->status.pr_stkbase)) != NULL)
2553                 stk_mp->map_pmap.pr_mflags |= MA_STACK;
2554 
2555         /*
2556          * At this point, we have enough information to look for the
2557          * executable and open it: we have access to the auxv, a psinfo_t,
2558          * and the ability to read from mappings provided by the core file.
2559          */
2560         (void) Pfindexec(P, aout_path, core_exec_open, &aout);
2561         dprintf("P->execname = \"%s\"\n", P->execname ? P->execname : "NULL");
2562         execname = P->execname ? P->execname : "a.out";
2563 
2564         /*
2565          * Iterate through the sections, looking for the .dynamic and .interp
2566          * sections.  If we encounter them, remember their section pointers.
2567          */
2568         for (scn = NULL; (scn = elf_nextscn(aout.e_elf, scn)) != NULL; ) {
2569                 char *sname;
2570 
2571                 if ((gelf_getshdr(scn, &shdr) == NULL) ||
2572                     (sname = elf_strptr(aout.e_elf, aout.e_hdr.e_shstrndx,
2573                     (size_t)shdr.sh_name)) == NULL)
2574                         continue;
2575 
2576                 if (strcmp(sname, ".interp") == 0)
2577                         intp_scn = scn;
2578         }
2579 
2580         /*
2581          * Get the AT_BASE auxv element.  If this is missing (-1), then
2582          * we assume this is a statically-linked executable.
2583          */
2584         base_addr = Pgetauxval(P, AT_BASE);
2585 
2586         /*
2587          * In order to get librtld_db initialized, we'll need to identify
2588          * and name the mapping corresponding to the run-time linker.  The
2589          * AT_BASE auxv element tells us the address where it was mapped,
2590          * and the .interp section of the executable tells us its path.
2591          * If for some reason that doesn't pan out, just use ld.so.1.
2592          */
2593         if (intp_scn != NULL && (dp = elf_getdata(intp_scn, NULL)) != NULL &&
2594             dp->d_size != 0) {
2595                 dprintf(".interp = <%s>\n", (char *)dp->d_buf);
2596                 interp = dp->d_buf;
2597 
2598         } else if (base_addr != (uintptr_t)-1L) {
2599                 if (core_info->core_dmodel == PR_MODEL_LP64)
2600                         interp = "/usr/lib/64/ld.so.1";
2601                 else
2602                         interp = "/usr/lib/ld.so.1";
2603 
2604                 dprintf(".interp section is missing or could not be read; "
2605                     "defaulting to %s\n", interp);
2606         } else
2607                 dprintf("detected statically linked executable\n");
2608 
2609         /*
2610          * If we have an AT_BASE element, name the mapping at that address
2611          * using the interpreter pathname.  Name the corresponding data
2612          * mapping after the interpreter as well.
2613          */
2614         if (base_addr != (uintptr_t)-1L) {
2615                 elf_file_t intf;
2616 
2617                 P->map_ldso = core_name_mapping(P, base_addr, interp);
2618 
2619                 if (core_elf_open(&intf, interp, ET_DYN, NULL) == 0) {
2620                         rd_loadobj_t rl;
2621                         map_info_t *dmp;
2622 
2623                         rl.rl_base = base_addr;
2624                         dmp = core_find_data(P, intf.e_elf, &rl);
2625 
2626                         if (dmp != NULL) {
2627                                 dprintf("renamed data at %p to %s\n",
2628                                     (void *)rl.rl_data_base, interp);
2629                                 (void) strncpy(dmp->map_pmap.pr_mapname,
2630                                     interp, PRMAPSZ);
2631                                 dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2632                         }
2633                 }
2634 
2635                 core_elf_close(&intf);
2636         }
2637 
2638         /*
2639          * If we have an AT_ENTRY element, name the mapping at that address
2640          * using the special name "a.out" just like /proc does.
2641          */
2642         if ((addr = Pgetauxval(P, AT_ENTRY)) != (uintptr_t)-1L)
2643                 P->map_exec = core_name_mapping(P, addr, "a.out");
2644 
2645         /*
2646          * If we're a statically linked executable, then just locate the
2647          * executable's text and data and name them after the executable.
2648          */
2649         if (base_addr == (uintptr_t)-1L ||
2650             core_info->core_osabi == ELFOSABI_NONE) {
2651                 dprintf("looking for text and data: %s\n", execname);
2652                 map_info_t *tmp, *dmp;
2653                 file_info_t *fp;
2654                 rd_loadobj_t rl;
2655 
2656                 if ((tmp = core_find_text(P, aout.e_elf, &rl)) != NULL &&
2657                     (dmp = core_find_data(P, aout.e_elf, &rl)) != NULL) {
2658                         (void) strncpy(tmp->map_pmap.pr_mapname,
2659                             execname, PRMAPSZ);
2660                         tmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2661                         (void) strncpy(dmp->map_pmap.pr_mapname,
2662                             execname, PRMAPSZ);
2663                         dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2664                 }
2665 
2666                 if ((P->map_exec = tmp) != NULL &&
2667                     (fp = malloc(sizeof (file_info_t))) != NULL) {
2668 
2669                         (void) memset(fp, 0, sizeof (file_info_t));
2670 
2671                         list_link(fp, &P->file_head);
2672                         tmp->map_file = fp;
2673                         P->num_files++;
2674 
2675                         fp->file_ref = 1;
2676                         fp->file_fd = -1;
2677 
2678                         fp->file_lo = malloc(sizeof (rd_loadobj_t));
2679                         fp->file_lname = strdup(execname);
2680 
2681                         if (fp->file_lo)
2682                                 *fp->file_lo = rl;
2683                         if (fp->file_lname)
2684                                 fp->file_lbase = basename(fp->file_lname);
2685                         if (fp->file_rname)
2686                                 fp->file_rbase = basename(fp->file_rname);
2687 
2688                         (void) strcpy(fp->file_pname,
2689                             P->mappings[0].map_pmap.pr_mapname);
2690                         fp->file_map = tmp;
2691 
2692                         Pbuild_file_symtab(P, fp);
2693 
2694                         if (dmp != NULL) {
2695                                 dmp->map_file = fp;
2696                                 fp->file_ref++;
2697                         }
2698                 }
2699         }
2700 
2701         core_elf_close(&aout);
2702 
2703         /*
2704          * We now have enough information to initialize librtld_db.
2705          * After it warms up, we can iterate through the load object chain
2706          * in the core, which will allow us to construct the file info
2707          * we need to provide symbol information for the other shared
2708          * libraries, and also to fill in the missing mapping names.
2709          */
2710         rd_log(_libproc_debug);
2711 
2712         if ((P->rap = rd_new(P)) != NULL) {
2713                 (void) rd_loadobj_iter(P->rap, (rl_iter_f *)
2714                     core_iter_mapping, P);
2715 
2716                 if (core_info->core_errno != 0) {
2717                         errno = core_info->core_errno;
2718                         *perr = G_STRANGE;
2719                         goto err;
2720                 }
2721         } else
2722                 dprintf("failed to initialize rtld_db agent\n");
2723 
2724         /*
2725          * If there are sections, load them and process the data from any
2726          * sections that we can use to annotate the file_info_t's.
2727          */
2728         core_load_shdrs(P, &core);
2729 
2730         /*
2731          * If we previously located a stack or break mapping, and they are
2732          * still anonymous, we now assume that they were MAP_ANON mappings.
2733          * If brk_mp turns out to now have a name, then the heap is still
2734          * sitting at the end of the executable's data+bss mapping: remove
2735          * the previous MA_BREAK setting to be consistent with /proc.
2736          */
2737         if (stk_mp != NULL && stk_mp->map_pmap.pr_mapname[0] == '\0')
2738                 stk_mp->map_pmap.pr_mflags |= MA_ANON;
2739         if (brk_mp != NULL && brk_mp->map_pmap.pr_mapname[0] == '\0')
2740                 brk_mp->map_pmap.pr_mflags |= MA_ANON;
2741         else if (brk_mp != NULL)
2742                 brk_mp->map_pmap.pr_mflags &= ~MA_BREAK;
2743 
2744         *perr = 0;
2745         return (P);
2746 
2747 err:
2748         Pfree(P);
2749         core_elf_close(&aout);
2750         return (NULL);
2751 }
2752 
2753 /*
2754  * Grab a core file using a pathname.  We just open it and call Pfgrab_core().
2755  */
2756 struct ps_prochandle *
2757 Pgrab_core(const char *core, const char *aout, int gflag, int *perr)
2758 {
2759         int fd, oflag = (gflag & PGRAB_RDONLY) ? O_RDONLY : O_RDWR;
2760 
2761         if ((fd = open64(core, oflag)) >= 0)
2762                 return (Pfgrab_core(fd, aout, perr));
2763 
2764         if (errno != ENOENT)
2765                 *perr = G_STRANGE;
2766         else
2767                 *perr = G_NOCORE;
2768 
2769         return (NULL);
2770 }