
new/usr/src/lib/libproc/common/Pcore.c 1

**
 74002 Sat Jan 10 12:31:08 2015
new/usr/src/lib/libproc/common/Pcore.c
5383 5234 breaks build on sparc
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25 /*
26 * Copyright 2012 DEY Storage Systems, Inc. All rights reserved.
27 * Copyright (c) 2014, Joyent, Inc. All rights reserved.
28 * Copyright (c) 2013 by Delphix. All rights reserved.
29 * Copyright 2015 Gary Mills
30 */

32 #include <sys/types.h>
33 #include <sys/utsname.h>
34 #include <sys/sysmacros.h>
35 #include <sys/proc.h>

37 #include <alloca.h>
38 #include <rtld_db.h>
39 #include <libgen.h>
40 #include <limits.h>
41 #include <string.h>
42 #include <stdlib.h>
43 #include <unistd.h>
44 #include <errno.h>
45 #include <gelf.h>
46 #include <stddef.h>
47 #include <signal.h>

49 #include "libproc.h"
50 #include "Pcontrol.h"
51 #include "P32ton.h"
52 #include "Putil.h"
53 #ifdef __x86
54 #include "Pcore_linux.h"
55 #endif

57 /*
58 * Pcore.c - Code to initialize a ps_prochandle from a core dump. We
59 * allocate an additional structure to hold information from the core
60 * file, and attach this to the standard ps_prochandle in place of the
61 * ability to examine /proc/<pid>/ files.

new/usr/src/lib/libproc/common/Pcore.c 2

62 */

64 /*
65 * Basic i/o function for reading and writing from the process address space
66 * stored in the core file and associated shared libraries. We compute the
67 * appropriate fd and offsets, and let the provided prw function do the rest.
68 */
69 static ssize_t
70 core_rw(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr,
71 ssize_t (*prw)(int, void *, size_t, off64_t))
72 {
73 ssize_t resid = n;

75 while (resid != 0) {
76 map_info_t *mp = Paddr2mptr(P, addr);

78 uintptr_t mapoff;
79 ssize_t len;
80 off64_t off;
81 int fd;

83 if (mp == NULL)
84 break; /* No mapping for this address */

86 if (mp->map_pmap.pr_mflags & MA_RESERVED1) {
87 if (mp->map_file == NULL || mp->map_file->file_fd < 0)
88 break; /* No file or file not open */

90 fd = mp->map_file->file_fd;
91 } else
92 fd = P->asfd;

94 mapoff = addr - mp->map_pmap.pr_vaddr;
95 len = MIN(resid, mp->map_pmap.pr_size - mapoff);
96 off = mp->map_offset + mapoff;

98 if ((len = prw(fd, buf, len, off)) <= 0)
99 break;

101 resid -= len;
102 addr += len;
103 buf = (char *)buf + len;
104 }

106 /*
107 * Important: Be consistent with the behavior of i/o on the as file:
108 * writing to an invalid address yields EIO; reading from an invalid
109 * address falls through to returning success and zero bytes.
110 */
111 if (resid == n && n != 0 && prw != pread64) {
112 errno = EIO;
113 return (-1);
114 }

116 return (n - resid);
117 }

______unchanged_portion_omitted_

187 /*ARGSUSED*/
188 static void
189 Pfini_core(struct ps_prochandle *P, void *data)
190 {
191 core_info_t *core = data;

193 if (core != NULL) {
194 extern void __priv_free_info(void *);

new/usr/src/lib/libproc/common/Pcore.c 3

195 lwp_info_t *nlwp, *lwp = list_next(&core->core_lwp_head);
196 int i;

198 for (i = 0; i < core->core_nlwp; i++, lwp = nlwp) {
199 nlwp = list_next(lwp);
200 #ifdef __sparc
201 if (lwp->lwp_gwins != NULL)
202 free(lwp->lwp_gwins);
203 if (lwp->lwp_xregs != NULL)
204 free(lwp->lwp_xregs);
205 if (lwp->lwp_asrs != NULL)
206 free(lwp->lwp_asrs);
207 #endif
208 free(lwp);
209 }

211 if (core->core_platform != NULL)
212 free(core->core_platform);
213 if (core->core_uts != NULL)
214 free(core->core_uts);
215 if (core->core_cred != NULL)
216 free(core->core_cred);
217 if (core->core_priv != NULL)
218 free(core->core_priv);
219 if (core->core_privinfo != NULL)
220 __priv_free_info(core->core_privinfo);
221 if (core->core_ppii != NULL)
222 free(core->core_ppii);
223 if (core->core_zonename != NULL)
224 free(core->core_zonename);
225 #ifdef __x86
222 #if defined(__i386) || defined(__amd64)
226 if (core->core_ldt != NULL)
227 free(core->core_ldt);
228 #endif

230 free(core);
231 }
232 }

______unchanged_portion_omitted_

277 #ifdef __x86
274 #if defined(__i386) || defined(__amd64)
278 /*ARGSUSED*/
279 static int
280 Pldt_core(struct ps_prochandle *P, struct ssd *pldt, int nldt, void *data)
281 {
282 core_info_t *core = data;

284 if (pldt == NULL || nldt == 0)
285 return (core->core_nldt);

287 if (core->core_ldt != NULL) {
288 nldt = MIN(nldt, core->core_nldt);

290 (void) memcpy(pldt, core->core_ldt,
291 nldt * sizeof (struct ssd));

293 return (nldt);
294 }

296 errno = ENODATA;
297 return (-1);
298 }
299 #endif

new/usr/src/lib/libproc/common/Pcore.c 4

301 static const ps_ops_t P_core_ops = {
302 .pop_pread = Pread_core,
303 .pop_pwrite = Pwrite_core,
304 .pop_cred = Pcred_core,
305 .pop_priv = Ppriv_core,
306 .pop_psinfo = Ppsinfo_core,
307 .pop_fini = Pfini_core,
308 .pop_platform = Pplatform_core,
309 .pop_uname = Puname_core,
310 .pop_zonename = Pzonename_core,
311 #ifdef __x86
308 #if defined(__i386) || defined(__amd64)
312 .pop_ldt = Pldt_core
313 #endif
314 };

______unchanged_portion_omitted_

437 #ifdef __x86

439 static void
440 lx_prpsinfo32_to_psinfo(lx_prpsinfo32_t *p32, psinfo_t *psinfo)
441 {
442 psinfo->pr_flag = p32->pr_flag;
443 psinfo->pr_pid = p32->pr_pid;
444 psinfo->pr_ppid = p32->pr_ppid;
445 psinfo->pr_uid = p32->pr_uid;
446 psinfo->pr_gid = p32->pr_gid;
447 psinfo->pr_sid = p32->pr_sid;
448 psinfo->pr_pgid = p32->pr_pgrp;

450 (void) memcpy(psinfo->pr_fname, p32->pr_fname,
451 sizeof (psinfo->pr_fname));
452 (void) memcpy(psinfo->pr_psargs, p32->pr_psargs,
453 sizeof (psinfo->pr_psargs));
454 }

______unchanged_portion_omitted_

637 #endif /* __x86 */

639 static int
640 note_psinfo(struct ps_prochandle *P, size_t nbytes)
641 {
642 #ifdef _LP64
643 core_info_t *core = P->data;

645 if (core->core_dmodel == PR_MODEL_ILP32) {
646 psinfo32_t ps32;

648 if (nbytes < sizeof (psinfo32_t) ||
649 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
650 goto err;

652 psinfo_32_to_n(&ps32, &P->psinfo);
653 } else
654 #endif
655 if (nbytes < sizeof (psinfo_t) ||
656 read(P->asfd, &P->psinfo, sizeof (psinfo_t)) != sizeof (psinfo_t))
657 goto err;

659 dprintf("pr_fname = <%s>\n", P->psinfo.pr_fname);
660 dprintf("pr_psargs = <%s>\n", P->psinfo.pr_psargs);
661 dprintf("pr_wstat = 0x%x\n", P->psinfo.pr_wstat);

663 return (0);

665 err:

new/usr/src/lib/libproc/common/Pcore.c 5

666 dprintf("Pgrab_core: failed to read NT_PSINFO\n");
667 return (-1);
668 }

______unchanged_portion_omitted_

837 #ifdef __x86
830 #if defined(__i386) || defined(__amd64)
838 static int
839 note_ldt(struct ps_prochandle *P, size_t nbytes)
840 {
841 core_info_t *core = P->data;
842 struct ssd *pldt;
843 uint_t nldt;

845 if (core->core_ldt != NULL || nbytes < sizeof (struct ssd))
846 return (0); /* Already seen or bad size */

848 nldt = nbytes / sizeof (struct ssd);
849 nbytes = nldt * sizeof (struct ssd);

851 if ((pldt = malloc(nbytes)) == NULL)
852 return (-1);

854 if (read(P->asfd, pldt, nbytes) != nbytes) {
855 dprintf("Pgrab_core: failed to read NT_LDT\n");
856 free(pldt);
857 return (-1);
858 }

860 core->core_ldt = pldt;
861 core->core_nldt = nldt;
862 return (0);
863 }

______unchanged_portion_omitted_

1129 /*
1130 * Populate a table of function pointers indexed by Note type with our
1131 * functions to process each type of core file note:
1132 */
1133 static int (*nhdlrs[])(struct ps_prochandle *, size_t) = {
1134 note_notsup, /* 0 unassigned */
1135 #ifdef __x86
1136 note_linux_prstatus, /* 1 NT_PRSTATUS (old) */
1137 #else
1138 note_notsup, /* 1 NT_PRSTATUS (old) */
1139 #endif
1140 note_notsup, /* 2 NT_PRFPREG (old) */
1141 #ifdef __x86
1142 note_linux_psinfo, /* 3 NT_PRPSINFO (old) */
1143 #else
1144 note_notsup, /* 3 NT_PRPSINFO (old) */
1145 #endif
1146 #ifdef __sparc
1147 note_xreg, /* 4 NT_PRXREG */
1148 #else
1149 note_notsup, /* 4 NT_PRXREG */
1150 #endif
1151 note_platform, /* 5 NT_PLATFORM */
1152 note_auxv, /* 6 NT_AUXV */
1153 #ifdef __sparc
1154 note_gwindows, /* 7 NT_GWINDOWS */
1155 #ifdef __sparcv9
1156 note_asrs, /* 8 NT_ASRS */
1157 #else
1158 note_notsup, /* 8 NT_ASRS */
1159 #endif

new/usr/src/lib/libproc/common/Pcore.c 6

1160 #else
1161 note_notsup, /* 7 NT_GWINDOWS */
1162 note_notsup, /* 8 NT_ASRS */
1163 #endif
1164 #ifdef __x86
1149 #if defined(__i386) || defined(__amd64)
1165 note_ldt, /* 9 NT_LDT */
1166 #else
1167 note_notsup, /* 9 NT_LDT */
1168 #endif
1169 note_pstatus, /* 10 NT_PSTATUS */
1170 note_notsup, /* 11 unassigned */
1171 note_notsup, /* 12 unassigned */
1172 note_psinfo, /* 13 NT_PSINFO */
1173 note_cred, /* 14 NT_PRCRED */
1174 note_utsname, /* 15 NT_UTSNAME */
1175 note_lwpstatus, /* 16 NT_LWPSTATUS */
1176 note_lwpsinfo, /* 17 NT_LWPSINFO */
1177 note_priv, /* 18 NT_PRPRIV */
1178 note_priv_info, /* 19 NT_PRPRIVINFO */
1179 note_content, /* 20 NT_CONTENT */
1180 note_zonename, /* 21 NT_ZONENAME */
1181 note_fdinfo, /* 22 NT_FDINFO */
1182 note_spymaster, /* 23 NT_SPYMASTER */
1183 };
______unchanged_portion_omitted_

2200 /*
2201 * Main engine for core file initialization: given an fd for the core file
2202 * and an optional pathname, construct the ps_prochandle. The aout_path can
2203 * either be a suggested executable pathname, or a suggested directory to
2204 * use as a possible current working directory.
2205 */
2206 struct ps_prochandle *
2207 Pfgrab_core(int core_fd, const char *aout_path, int *perr)
2208 {
2209 struct ps_prochandle *P;
2210 core_info_t *core_info;
2211 map_info_t *stk_mp, *brk_mp;
2212 const char *execname;
2213 char *interp;
2214 int i, notes, pagesize;
2215 uintptr_t addr, base_addr;
2216 struct stat64 stbuf;
2217 void *phbuf, *php;
2218 size_t nbytes;
2219 #ifdef __x86
2220 boolean_t from_linux = B_FALSE;
2221 #endif

2223 elf_file_t aout;
2224 elf_file_t core;

2226 Elf_Scn *scn, *intp_scn = NULL;
2227 Elf_Data *dp;

2229 GElf_Phdr phdr, note_phdr;
2230 GElf_Shdr shdr;
2231 GElf_Xword nleft;

2233 if (elf_version(EV_CURRENT) == EV_NONE) {
2234 dprintf("libproc ELF version is more recent than libelf\n");
2235 *perr = G_ELF;
2236 return (NULL);
2237 }

new/usr/src/lib/libproc/common/Pcore.c 7

2239 aout.e_elf = NULL;
2240 aout.e_fd = -1;

2242 core.e_elf = NULL;
2243 core.e_fd = core_fd;

2245 /*
2246 * Allocate and initialize a ps_prochandle structure for the core.
2247 * There are several key pieces of initialization here:
2248 *
2249 * 1. The PS_DEAD state flag marks this prochandle as a core file.
2250 * PS_DEAD also thus prevents all operations which require state
2251 * to be PS_STOP from operating on this handle.
2252 *
2253 * 2. We keep the core file fd in P->asfd since the core file contains
2254 * the remnants of the process address space.
2255 *
2256 * 3. We set the P->info_valid bit because all information about the
2257 * core is determined by the end of this function; there is no need
2258 * for proc_update_maps() to reload mappings at any later point.
2259 *
2260 * 4. The read/write ops vector uses our core_rw() function defined
2261 * above to handle i/o requests.
2262 */
2263 if ((P = malloc(sizeof (struct ps_prochandle))) == NULL) {
2264 *perr = G_STRANGE;
2265 return (NULL);
2266 }

2268 (void) memset(P, 0, sizeof (struct ps_prochandle));
2269 (void) mutex_init(&P->proc_lock, USYNC_THREAD, NULL);
2270 P->state = PS_DEAD;
2271 P->pid = (pid_t)-1;
2272 P->asfd = core.e_fd;
2273 P->ctlfd = -1;
2274 P->statfd = -1;
2275 P->agentctlfd = -1;
2276 P->agentstatfd = -1;
2277 P->zoneroot = NULL;
2278 P->info_valid = 1;
2279 Pinit_ops(&P->ops, &P_core_ops);

2281 Pinitsym(P);

2283 /*
2284 * Fstat and open the core file and make sure it is a valid ELF core.
2285 */
2286 if (fstat64(P->asfd, &stbuf) == -1) {
2287 *perr = G_STRANGE;
2288 goto err;
2289 }

2291 if (core_elf_fdopen(&core, ET_CORE, perr) == -1)
2292 goto err;

2294 /*
2295 * Allocate and initialize a core_info_t to hang off the ps_prochandle
2296 * structure. We keep all core-specific information in this structure.
2297 */
2298 if ((core_info = calloc(1, sizeof (core_info_t))) == NULL) {
2299 *perr = G_STRANGE;
2300 goto err;
2301 }

2303 P->data = core_info;
2304 list_link(&core_info->core_lwp_head, NULL);

new/usr/src/lib/libproc/common/Pcore.c 8

2305 core_info->core_size = stbuf.st_size;
2306 /*
2307 * In the days before adjustable core file content, this was the
2308 * default core file content. For new core files, this value will
2309 * be overwritten by the NT_CONTENT note section.
2310 */
2311 core_info->core_content = CC_CONTENT_STACK | CC_CONTENT_HEAP |
2312 CC_CONTENT_DATA | CC_CONTENT_RODATA | CC_CONTENT_ANON |
2313 CC_CONTENT_SHANON;

2315 switch (core.e_hdr.e_ident[EI_CLASS]) {
2316 case ELFCLASS32:
2317 core_info->core_dmodel = PR_MODEL_ILP32;
2318 break;
2319 case ELFCLASS64:
2320 core_info->core_dmodel = PR_MODEL_LP64;
2321 break;
2322 default:
2323 *perr = G_FORMAT;
2324 goto err;
2325 }
2326 core_info->core_osabi = core.e_hdr.e_ident[EI_OSABI];

2328 /*
2329 * Because the core file may be a large file, we can’t use libelf to
2330 * read the Phdrs. We use e_phnum and e_phentsize to simplify things.
2331 */
2332 nbytes = core.e_hdr.e_phnum * core.e_hdr.e_phentsize;

2334 if ((phbuf = malloc(nbytes)) == NULL) {
2335 *perr = G_STRANGE;
2336 goto err;
2337 }

2339 if (pread64(core_fd, phbuf, nbytes, core.e_hdr.e_phoff) != nbytes) {
2340 *perr = G_STRANGE;
2341 free(phbuf);
2342 goto err;
2343 }

2345 /*
2346 * Iterate through the program headers in the core file.
2347 * We’re interested in two types of Phdrs: PT_NOTE (which
2348 * contains a set of saved /proc structures), and PT_LOAD (which
2349 * represents a memory mapping from the process’s address space).
2350 * In the case of PT_NOTE, we’re interested in the last PT_NOTE
2351 * in the core file; currently the first PT_NOTE (if present)
2352 * contains /proc structs in the pre-2.6 unstructured /proc format.
2353 */
2354 for (php = phbuf, notes = 0, i = 0; i < core.e_hdr.e_phnum; i++) {
2355 if (core.e_hdr.e_ident[EI_CLASS] == ELFCLASS64)
2356 (void) memcpy(&phdr, php, sizeof (GElf_Phdr));
2357 else
2358 core_phdr_to_gelf(php, &phdr);

2360 switch (phdr.p_type) {
2361 case PT_NOTE:
2362 note_phdr = phdr;
2363 notes++;
2364 break;

2366 case PT_LOAD:
2367 if (core_add_mapping(P, &phdr) == -1) {
2368 *perr = G_STRANGE;
2369 free(phbuf);
2370 goto err;

new/usr/src/lib/libproc/common/Pcore.c 9

2371 }
2372 break;
2373 default:
2374 dprintf("Pgrab_core: unknown phdr %d\n", phdr.p_type);
2375 break;
2376 }

2378 php = (char *)php + core.e_hdr.e_phentsize;
2379 }

2381 free(phbuf);

2383 Psort_mappings(P);

2385 /*
2386 * If we couldn’t find anything of type PT_NOTE, or only one PT_NOTE
2387 * was present, abort. The core file is either corrupt or too old.
2388 */
2389 if (notes == 0 || (notes == 1 && core_info->core_osabi ==
2390 ELFOSABI_SOLARIS)) {
2391 *perr = G_NOTE;
2392 goto err;
2393 }

2395 /*
2396 * Advance the seek pointer to the start of the PT_NOTE data
2397 */
2398 if (lseek64(P->asfd, note_phdr.p_offset, SEEK_SET) == (off64_t)-1) {
2399 dprintf("Pgrab_core: failed to lseek to PT_NOTE data\n");
2400 *perr = G_STRANGE;
2401 goto err;
2402 }

2404 /*
2405 * Now process the PT_NOTE structures. Each one is preceded by
2406 * an Elf{32/64}_Nhdr structure describing its type and size.
2407 *
2408 * +--------+
2409 * | header |
2410 * +--------+
2411 * | name |
2412 * | ... |
2413 * +--------+
2414 * | desc |
2415 * | ... |
2416 * +--------+
2417 */
2418 for (nleft = note_phdr.p_filesz; nleft > 0;) {
2419 Elf64_Nhdr nhdr;
2420 off64_t off, namesz, descsz;

2422 /*
2423 * Although <sys/elf.h> defines both Elf32_Nhdr and Elf64_Nhdr
2424 * as different types, they are both of the same content and
2425 * size, so we don’t need to worry about 32/64 conversion here.
2426 */
2427 if (read(P->asfd, &nhdr, sizeof (nhdr)) != sizeof (nhdr)) {
2428 dprintf("Pgrab_core: failed to read ELF note header\n");
2429 *perr = G_NOTE;
2430 goto err;
2431 }

2433 /*
2434 * According to the System V ABI, the amount of padding
2435 * following the name field should align the description
2436 * field on a 4 byte boundary for 32-bit binaries or on an 8

new/usr/src/lib/libproc/common/Pcore.c 10

2437 * byte boundary for 64-bit binaries. However, this change
2438 * was not made correctly during the 64-bit port so all
2439 * descriptions can assume only 4-byte alignment. We ignore
2440 * the name field and the padding to 4-byte alignment.
2441 */
2442 namesz = P2ROUNDUP((off64_t)nhdr.n_namesz, (off64_t)4);

2444 if (lseek64(P->asfd, namesz, SEEK_CUR) == (off64_t)-1) {
2445 dprintf("failed to seek past name and padding\n");
2446 *perr = G_STRANGE;
2447 goto err;
2448 }

2450 dprintf("Note hdr n_type=%u n_namesz=%u n_descsz=%u\n",
2451 nhdr.n_type, nhdr.n_namesz, nhdr.n_descsz);

2453 off = lseek64(P->asfd, (off64_t)0L, SEEK_CUR);

2455 /*
2456 * Invoke the note handler function from our table
2457 */
2458 if (nhdr.n_type < sizeof (nhdlrs) / sizeof (nhdlrs[0])) {
2459 if (nhdlrs[nhdr.n_type](P, nhdr.n_descsz) < 0) {
2460 dprintf("handler for type %d returned < 0",
2461 nhdr.n_type);
2462 *perr = G_NOTE;
2463 goto err;
2464 }
2465 /*
2466 * The presence of either of these notes indicates that
2467 * the dump was generated on Linux.
2468 */
2469 #ifdef __x86
2470 if (nhdr.n_type == NT_PRSTATUS ||
2471 nhdr.n_type == NT_PRPSINFO)
2472 from_linux = B_TRUE;
2473 #endif
2474 } else {
2475 (void) note_notsup(P, nhdr.n_descsz);
2476 }

2478 /*
2479 * Seek past the current note data to the next Elf_Nhdr
2480 */
2481 descsz = P2ROUNDUP((off64_t)nhdr.n_descsz, (off64_t)4);
2482 if (lseek64(P->asfd, off + descsz, SEEK_SET) == (off64_t)-1) {
2483 dprintf("Pgrab_core: failed to seek to next nhdr\n");
2484 *perr = G_STRANGE;
2485 goto err;
2486 }

2488 /*
2489 * Subtract the size of the header and its data from what
2490 * we have left to process.
2491 */
2492 nleft -= sizeof (nhdr) + namesz + descsz;
2493 }

2495 #ifdef __x86
2496 if (from_linux) {
2497 size_t tcount, pid;
2498 lwp_info_t *lwp;

2500 P->status.pr_dmodel = core_info->core_dmodel;

2502 lwp = list_next(&core_info->core_lwp_head);

new/usr/src/lib/libproc/common/Pcore.c 11

2504 pid = P->status.pr_pid;

2506 for (tcount = 0; tcount < core_info->core_nlwp;
2507 tcount++, lwp = list_next(lwp)) {
2508 dprintf("Linux thread with id %d\n", lwp->lwp_id);

2510 /*
2511 * In the case we don’t have a valid psinfo (i.e. pid is
2512 * 0, probably because of gdb creating the core) assume
2513 * lowest pid count is the first thread (what if the
2514 * next thread wraps the pid around?)
2515 */
2516 if (P->status.pr_pid == 0 &&
2517 ((pid == 0 && lwp->lwp_id > 0) ||
2518 (lwp->lwp_id < pid))) {
2519 pid = lwp->lwp_id;
2520 }
2521 }

2523 if (P->status.pr_pid != pid) {
2524 dprintf("No valid pid, setting to %ld\n", (ulong_t)pid);
2525 P->status.pr_pid = pid;
2526 P->psinfo.pr_pid = pid;
2527 }

2529 /*
2530 * Consumers like mdb expect the first thread to actually have
2531 * an id of 1, on linux that is actually the pid. Find the the
2532 * thread with our process id, and set the id to 1
2533 */
2534 if ((lwp = lwpid2info(P, pid)) == NULL) {
2535 dprintf("Couldn’t find first thread\n");
2536 *perr = G_STRANGE;
2537 goto err;
2538 }

2540 dprintf("setting representative thread: %d\n", lwp->lwp_id);

2542 lwp->lwp_id = 1;
2543 lwp->lwp_status.pr_lwpid = 1;

2545 /* set representative thread */
2546 (void) memcpy(&P->status.pr_lwp, &lwp->lwp_status,
2547 sizeof (P->status.pr_lwp));
2548 }
2549 #endif /* __x86 */

2551 if (nleft != 0) {
2552 dprintf("Pgrab_core: note section malformed\n");
2553 *perr = G_STRANGE;
2554 goto err;
2555 }

2557 if ((pagesize = Pgetauxval(P, AT_PAGESZ)) == -1) {
2558 pagesize = getpagesize();
2559 dprintf("AT_PAGESZ missing; defaulting to %d\n", pagesize);
2560 }

2562 /*
2563 * Locate and label the mappings corresponding to the end of the
2564 * heap (MA_BREAK) and the base of the stack (MA_STACK).
2565 */
2566 if ((P->status.pr_brkbase != 0 || P->status.pr_brksize != 0) &&
2567 (brk_mp = Paddr2mptr(P, P->status.pr_brkbase +
2568 P->status.pr_brksize - 1)) != NULL)

new/usr/src/lib/libproc/common/Pcore.c 12

2569 brk_mp->map_pmap.pr_mflags |= MA_BREAK;
2570 else
2571 brk_mp = NULL;

2573 if ((stk_mp = Paddr2mptr(P, P->status.pr_stkbase)) != NULL)
2574 stk_mp->map_pmap.pr_mflags |= MA_STACK;

2576 /*
2577 * At this point, we have enough information to look for the
2578 * executable and open it: we have access to the auxv, a psinfo_t,
2579 * and the ability to read from mappings provided by the core file.
2580 */
2581 (void) Pfindexec(P, aout_path, core_exec_open, &aout);
2582 dprintf("P->execname = \"%s\"\n", P->execname ? P->execname : "NULL");
2583 execname = P->execname ? P->execname : "a.out";

2585 /*
2586 * Iterate through the sections, looking for the .dynamic and .interp
2587 * sections. If we encounter them, remember their section pointers.
2588 */
2589 for (scn = NULL; (scn = elf_nextscn(aout.e_elf, scn)) != NULL;) {
2590 char *sname;

2592 if ((gelf_getshdr(scn, &shdr) == NULL) ||
2593 (sname = elf_strptr(aout.e_elf, aout.e_hdr.e_shstrndx,
2594 (size_t)shdr.sh_name)) == NULL)
2595 continue;

2597 if (strcmp(sname, ".interp") == 0)
2598 intp_scn = scn;
2599 }

2601 /*
2602 * Get the AT_BASE auxv element. If this is missing (-1), then
2603 * we assume this is a statically-linked executable.
2604 */
2605 base_addr = Pgetauxval(P, AT_BASE);

2607 /*
2608 * In order to get librtld_db initialized, we’ll need to identify
2609 * and name the mapping corresponding to the run-time linker. The
2610 * AT_BASE auxv element tells us the address where it was mapped,
2611 * and the .interp section of the executable tells us its path.
2612 * If for some reason that doesn’t pan out, just use ld.so.1.
2613 */
2614 if (intp_scn != NULL && (dp = elf_getdata(intp_scn, NULL)) != NULL &&
2615 dp->d_size != 0) {
2616 dprintf(".interp = <%s>\n", (char *)dp->d_buf);
2617 interp = dp->d_buf;

2619 } else if (base_addr != (uintptr_t)-1L) {
2620 if (core_info->core_dmodel == PR_MODEL_LP64)
2621 interp = "/usr/lib/64/ld.so.1";
2622 else
2623 interp = "/usr/lib/ld.so.1";

2625 dprintf(".interp section is missing or could not be read; "
2626 "defaulting to %s\n", interp);
2627 } else
2628 dprintf("detected statically linked executable\n");

2630 /*
2631 * If we have an AT_BASE element, name the mapping at that address
2632 * using the interpreter pathname. Name the corresponding data
2633 * mapping after the interpreter as well.
2634 */

new/usr/src/lib/libproc/common/Pcore.c 13

2635 if (base_addr != (uintptr_t)-1L) {
2636 elf_file_t intf;

2638 P->map_ldso = core_name_mapping(P, base_addr, interp);

2640 if (core_elf_open(&intf, interp, ET_DYN, NULL) == 0) {
2641 rd_loadobj_t rl;
2642 map_info_t *dmp;

2644 rl.rl_base = base_addr;
2645 dmp = core_find_data(P, intf.e_elf, &rl);

2647 if (dmp != NULL) {
2648 dprintf("renamed data at %p to %s\n",
2649 (void *)rl.rl_data_base, interp);
2650 (void) strncpy(dmp->map_pmap.pr_mapname,
2651 interp, PRMAPSZ);
2652 dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = ’\0’;
2653 }
2654 }

2656 core_elf_close(&intf);
2657 }

2659 /*
2660 * If we have an AT_ENTRY element, name the mapping at that address
2661 * using the special name "a.out" just like /proc does.
2662 */
2663 if ((addr = Pgetauxval(P, AT_ENTRY)) != (uintptr_t)-1L)
2664 P->map_exec = core_name_mapping(P, addr, "a.out");

2666 /*
2667 * If we’re a statically linked executable, then just locate the
2668 * executable’s text and data and name them after the executable.
2669 */
2670 if (base_addr == (uintptr_t)-1L ||
2671 core_info->core_osabi == ELFOSABI_NONE) {
2672 dprintf("looking for text and data: %s\n", execname);
2673 map_info_t *tmp, *dmp;
2674 file_info_t *fp;
2675 rd_loadobj_t rl;

2677 if ((tmp = core_find_text(P, aout.e_elf, &rl)) != NULL &&
2678 (dmp = core_find_data(P, aout.e_elf, &rl)) != NULL) {
2679 (void) strncpy(tmp->map_pmap.pr_mapname,
2680 execname, PRMAPSZ);
2681 tmp->map_pmap.pr_mapname[PRMAPSZ - 1] = ’\0’;
2682 (void) strncpy(dmp->map_pmap.pr_mapname,
2683 execname, PRMAPSZ);
2684 dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = ’\0’;
2685 }

2687 if ((P->map_exec = tmp) != NULL &&
2688 (fp = malloc(sizeof (file_info_t))) != NULL) {

2690 (void) memset(fp, 0, sizeof (file_info_t));

2692 list_link(fp, &P->file_head);
2693 tmp->map_file = fp;
2694 P->num_files++;

2696 fp->file_ref = 1;
2697 fp->file_fd = -1;

2699 fp->file_lo = malloc(sizeof (rd_loadobj_t));
2700 fp->file_lname = strdup(execname);

new/usr/src/lib/libproc/common/Pcore.c 14

2702 if (fp->file_lo)
2703 *fp->file_lo = rl;
2704 if (fp->file_lname)
2705 fp->file_lbase = basename(fp->file_lname);
2706 if (fp->file_rname)
2707 fp->file_rbase = basename(fp->file_rname);

2709 (void) strcpy(fp->file_pname,
2710 P->mappings[0].map_pmap.pr_mapname);
2711 fp->file_map = tmp;

2713 Pbuild_file_symtab(P, fp);

2715 if (dmp != NULL) {
2716 dmp->map_file = fp;
2717 fp->file_ref++;
2718 }
2719 }
2720 }

2722 core_elf_close(&aout);

2724 /*
2725 * We now have enough information to initialize librtld_db.
2726 * After it warms up, we can iterate through the load object chain
2727 * in the core, which will allow us to construct the file info
2728 * we need to provide symbol information for the other shared
2729 * libraries, and also to fill in the missing mapping names.
2730 */
2731 rd_log(_libproc_debug);

2733 if ((P->rap = rd_new(P)) != NULL) {
2734 (void) rd_loadobj_iter(P->rap, (rl_iter_f *)
2735 core_iter_mapping, P);

2737 if (core_info->core_errno != 0) {
2738 errno = core_info->core_errno;
2739 *perr = G_STRANGE;
2740 goto err;
2741 }
2742 } else
2743 dprintf("failed to initialize rtld_db agent\n");

2745 /*
2746 * If there are sections, load them and process the data from any
2747 * sections that we can use to annotate the file_info_t’s.
2748 */
2749 core_load_shdrs(P, &core);

2751 /*
2752 * If we previously located a stack or break mapping, and they are
2753 * still anonymous, we now assume that they were MAP_ANON mappings.
2754 * If brk_mp turns out to now have a name, then the heap is still
2755 * sitting at the end of the executable’s data+bss mapping: remove
2756 * the previous MA_BREAK setting to be consistent with /proc.
2757 */
2758 if (stk_mp != NULL && stk_mp->map_pmap.pr_mapname[0] == ’\0’)
2759 stk_mp->map_pmap.pr_mflags |= MA_ANON;
2760 if (brk_mp != NULL && brk_mp->map_pmap.pr_mapname[0] == ’\0’)
2761 brk_mp->map_pmap.pr_mflags |= MA_ANON;
2762 else if (brk_mp != NULL)
2763 brk_mp->map_pmap.pr_mflags &= ~MA_BREAK;

2765 *perr = 0;
2766 return (P);

new/usr/src/lib/libproc/common/Pcore.c 15

2768 err:
2769 Pfree(P);
2770 core_elf_close(&aout);
2771 return (NULL);
2772 }
______unchanged_portion_omitted_

