new usr

*ok ok ok ok ok Kk

/src/lib/libproc/comon/ Pcore. c

R R R R

74002 Sat Jan 10 12:31:08 2015

new usr

/src/lib/libproc/comon/Pcore.c

5383 5234 breaks build on sparc

*ok ok ok ok ok Kk

1/*

32 #i
33 #i
34 #i
35 #i

37 #i
38 #i
39 #i
40 #i
41 #i
42 #i
43 #i
44 #i
45 #i
46 #i
47 #i

49 #i
50 #i
51 #i
52 #i
53 #i
54 #i

[
(e
I T T I A
- -

R R R R R R TR

CDDL HEADER START

The contents of this file are subject to the ternms of the
Common Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific | anguage governing perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

CDDL HEADER END

Copyright 2009 Sun Mcrosystens, Inc. Al rights reserved.
Use is subject to license terns.

Copyright 2012 DEY Storage Systens, Inc. Al rights reserved.
Copyright (c) 2014, Joyent, Inc. Al rights reserved.
Copyright (c) 2013 by Del phix. Al rights reserved.

Copyright 2015 Gary MIls

/

ncl ude <sys/types. h>

ncl ude <sys/utsnane. h>
ncl ude <sys/sysmacros. h>
ncl ude <sys/proc. h>

ncl ude <al | oca. h>
ncl ude <rtld_db. h>
ncl ude <libgen. h>
nclude <limts. h>
ncl ude <string. h>
ncl ude <stdlib. h>
ncl ude <unistd. h>
ncl ude <errno. h>

ncl ude <gel f. h>

ncl ude <stddef. h>
ncl ude <signal . h>

nclude "libproc. h"

ncl ude "Pcontrol.h"
ncl ude "P32ton. h"

ncl ude "Putil.h"

fdef __x86

ncl ude "Pcore_linux.h"

55 #endi f

57 1

o
©
EE U

Pcore.c - Code to initialize a ps_prochandle froma core dunp. W
all ocate an additional structure to hold information fromthe core
file, and attach this to the standard ps_prochandle in place of the
ability to exam ne /proc/<pid>/ files.

new usr/src/lib/libproc/comrmon/Pcore.c
62 */
64 /*

65 * Basic i/o function for reading and witing fromthe process address space

66 * stored in the core file and associated shared |ibr

68
69 static ssize_t
70 core_rw(struct ps_prochandle *P, void *buf, size_t n,

aries. W conpute the

67 * appropriate fd and offsets, and let the provided prw function do the rest.
*/

uintptr_t addr,

71 ssize_t (*prw)(int, void *, size_t, off64_t))

72 {

73 ssize_t resid = n;

75 while (resid !'= 0)

76 map_info_t *np = Paddr2nptr (P, addr);

78 uintptr_t mapoff;

79 ssize_t len;

80 of f64_t off;

81 int fd;

83 if (np == NULL)

84 break; /* No mapping for this address */

86 if (nmp->map_pmap. pr_nflags & MA_RESERVED1) {

87 if (mp->map_file == NULL || np->map_file->file_fd < 0)
88 break; /* No file or file not open */
90 fd = np->map_file->file_fd;

91 } else

92 fd = P->asfd;

94 mapof f = addr - np->map_pmap. pr_vaddr;

95 len = M N(resid, np->nmap_pmap. pr_size - mapoff);

96 off = nmp->map_of fset + napoff;

98 if ((len = prw(fd, buf, len, off)) <= 0)

99 br eak;

101 resid -= len;

102 addr += len;

103 buf = (char *)buf + len;

104 }

106 /*

107 * | nportant: Be consistent with the behavior of i/o on the as file:
108 * writing to an invalid address yields EIQ reading froman invalid
109 * address falls through to returning success and zero bytes.
110 *

111 if (resid ==n & n !'= 0 & prw != pread64) {

112 errno = EIQ

113 return (-1);

114 1

116 return (n - resid);

117 }

__unchanged_portion_onitted_

187 /* ARGSUSED*/
188 static void
189 Pfini_core(struct ps_prochandle *P, void *data)

190 {

191 core_info_t *core = data;

193 if (core !'= NULL) {

194 extern void __priv_free_info(void *);



new usr/src/lib/libproc/comron/Pcore.c

195 Iwp_info_t *nlwp, *Iwp = |ist_next(&core->core_|wp_head);
196 int i;
198 for (i =0; i < core->core_nlwp; i++ Iw = nlw) {
199 nlwp = list_next(lwp);
200 #ifdef __sparc
201 if (1wp->wp_gwins !'= NULL)
202 free(l wp->l wp_gwi ns);
203 |f(Iv\4)>prxregs'—l\UL)
204 free(l wp->l wp_xregs);
205 if (lwp->wp_asrs !'= NULL)
206 free(l wp->l wp_asrs);
207 #endi f
208 free(lwp);
209
211 if (core->core_platform!= NULL)
212 free(core->core_platform;
213 if (core->core_uts !'= NULL)
214 free(core->core_uts);
215 if (core->core_cred != NULL)
216 free(core->core_cred);
217 if (core->core_priv !'= NULL)
218 free(core->core_priv);
219 if (core->core_privinfo I= NULL)
220 __priv_free_info(core->core_privinfo);
221 if (core->core_ppii !'= NULL)
222 free(core->core_ppii);
223 if (core->core_zonenane != NULL)
224 free(core->core_zonenane);
225 #ifdef __x86
222 #if defined(__i386) || defined(__and64)
226 if (core->core_ldt !'= NULL)
227 free(core->core_ldt);
228 #endif
230 free(core);
231 }
232 }
__unchanged_portion_onitted_
277 #ifdef __x86
274 #if defined(__i386) || defined(__and64)
278 | * ARGSUSED*/
279 static int
280 Pl dt_core(struct ps_prochandle *P, struct ssd *pldt, int nldt, void *data)
281 {
282 core_info_t *core = data;
284 if (pldt == NULL || nldt == 0)
285 return (core->core_nldt);
287 if (core->core_ldt !'= NULL) {
288 nldt = MN(nldt, core->core_nldt);
290 (voi d) menmcpy(pldt, core->core_|dt,
291 Idt * sizeof (struct ssd));
293 return (nldt);
294 }
296 errno = ENODATA;
297 return (-1);
298 }
299 #endi f

new usr/src/lib/libproc/comron/Pcore.c

301 static const ps_ops_t P_ core_ops = {

302 . pop_pr ead = Pread_core,

303 . pop_pwite = Pwite_core,
304 . pop_cred = Pcred_core,

305 . pop_priv = Ppriv_core,

306 . pop_psinfo = Ppsinfo_core,
307 . pop_fini = Pfini_core,

308 .pop_platform = Pplatformcore,
309 . pop_unane = Punane_core,
310 . pop_zonenane = Pzonenane_core,

311 #ifdef Xx86
308 #if defined(__i386) || defl ned(__and64)
312 . pop_| dt = Pldt_core
313 #endi f
314 };

__unchanged_portion_onitted_

437 #ifdef __x86

439 static void
440 | x_prpsinfo32_to_psinfo(lx_prpsinfo32_t *p32, psinfo_t *psinfo)
441 {

442 psinfo->pr_flag = p32->pr_flag;

443 psinfo->pr_pid = p32->pr_pid,

444 psi nfo->pr_ppid = p32 >pr_ppi d;

445 psinfo->pr_urd = p32->pr_ ui d;

446 psi nf o- >pr gl d = p32->pr_gid;

447 psinfo->pr_sid = p32->pr_si d;

448 psi nfo->pr_pgid = p32->pr_pgrp;

450 (voi d) mencpy(psinfo->pr_fnanme, p32->pr_fnane,
451 si zeof (psinfo->pr_fnane));

452 (void) menmcpy(psinfo->pr_psargs, p32->pr_psargs,
453 si zeof (psinfo->pr_psargs));

454 }

__unchanged_portion_onitted_
637 #endif /* _ x86 */

639 static int
640 note_psinfo(struct ps_prochandle *P, size_t nbytes)
641

642 #ifdef _LP64

643 core_info_t *core = P->data;

645 if (core->core_dnodel == PR _MODEL_ILP32) {

646 psinfo32_t ps32;

648 if (nbytes < sizeof (psinfo32_t) ||

649 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
650 goto err;

652 psinfo_32_to_n(&s32, &P->psinfo);

653 } else

654 #endi f

655 if (nbytes < sizeof (psinfo_t) ||

656 read(P->asfd, &P->psinfo, sizeof (psinfo_t)) != sizeof (psinfo_t))
657 goto err;

659 dprintf("pr_fnane = <%>\n", P->psinfo.pr_fnane);

660 dprintf("pr_psargs = <%>\n", P->psinfo.pr_psargs);

661 dprintf("pr_wstat = Ox%\n", P->psinfo.pr_wstat);

663 return (0);

665 err:



new usr/src/lib/libproc/comron/Pcore.c

666 dprintf("Pgrab_core: failed to read NT_PSINFOn");
667 return (-1);
668 }

____unchanged_portion_onitted_

837 #ifdef __x86

830 #if defined(__i386) || defined(__and64)

838 static int

839 note_ldt(struct ps_prochandle *P, size_t nbytes)
840 {

841 core_info_t *core = P->data;

842 struct ssd *pldt;

843 uint_t nldt;

845 if (core->core_ldt !'= NULL || nbytes < sizeof (struct
846 return (0); /* Al ready seen or bad size */
848 nldt = nbytes / sizeof (struct ssd);

849 nbytes = nldt * sizeof (struct ssd);

851 if ((pldt = malloc(nbytes)) == NULL)

852 return (-1);

854 if (read(P->asfd, pldt, nbytes) != nbytes) {

855 dprintf("Pgrab_core: failed to read NT_LDT\n");
856 free(pldt);

857 return (-1);

858 }

860 core->core_|ldt = pldt;

861 core->core_nldt = nldt;

862 return (0);

863 }

____unchanged_portion_onmitted_

1129 /*

1130 * Popul ate a table of function pointers indexed by Note type with our

1131 * functions to process each type of core file note:
1132 */

1133 static int (*nhdlrs[])(struct ps_prochandle *, size_t) = {
/*

ssd))

1134 not e_not sup, 0 unassi gned */
1135 #ifdef __x86

1136 not e_| i nux_pr st at us, /* 1 NT_PRSTATUS (ol d)
1137 #el se

1138 not e_not sup, /* 1 NT_PRSTATUS (ol d) */
1139 #endi f

1140 not e_not sup, /* 2 NT_PRFPREG (ol d) */
1141 #ifdef __x86

1142 not e_l i nux_psi nfo, /* 3 NT_PRPSI NFO (ol d)
1143 #el se

1144 not e_not sup, /* 3 NT_PRPSI NFO (ol d) */
1145 #endi f

1146 #ifdef _ sparc

1147 not e_xr eg, /* 4 NT_PRXREG */
1148 #el se

1149 not e_not sup, /* 4 NT_PRXREG */
1150 #endi f

1151 note_platform /* 5 NT_PLATFORM */
1152 not e_auxv, /* 6 NT_AUXV */
1153 #ifdef __sparc

1154 not e_gw ndows, I* 7 NT_GW NDOWB */
1155 #ifdef __sparcv9

1156 note_asrs, /* 8 NT_ASRS */
1157 #el se

1158 not e_not sup, /* 8 NT_ASRS */

1159 #endi f

*/

*/

new usr/src/lib/libproc/comron/Pcore.c

1160 #el se

1161 not e_not sup, I* 7 NT_GW NDOWS
1162 not e_not sup, /* 8 NT_ASRS

1163 #endi f

1164 #ifdef __ x86

1149 #if defined(__i386) || defined(__and64)

1165 not e T dt, 7* 9 NT_LDT

1166 #el se

1167 not e_not sup, /* 9 NT_LDT

1168 #endi f

1169 note_pstatus, /* 10  NT_PSTATUS
1170 not e_not sup, /* 11 unassi gned
1171 not e_not sup, [* 12 unassi gned
1172 not e_psi nf o, /* 13 NT_PSI NFO
1173 note_cred, /* 14 NT_PRCRED
1174 not e_ut snane, /* 15 NT_UTSNAMVE
1175 not e_| wpst at us, /* 16 NT_LWPSTATUS
1176 not e_| wpsi nf o, 1* 17 NT_LWPSI NFO
1177 note priv, /* 18 NT_PRPRIV
1178 note_priv_info, /* 19 NT_PRPRI VI NFO
1179 note_content, /* 20 NT_CONTENT
1180 not e_zonenane, /* 21 NT_ZONENAVE
1181 not e_f di nf o, 1* 22 NT_FDI NFO
1182 not e_spymaster, /* 23 NT_SPYMASTER
1183 };

____unchanged_portion_onitted_

2200 /*

2201 *

2202 * and an optional pathnanme, construct the ps_prochandl e.
2203 *

2204 *

2205 */

2206 struct ps_prochandle *

2207 Pfgrab_core(int core_fd, const char *aout_path, int *perr)

use as a possible current working directory.

*/
*/

Main engine for core file initialization: given an fd for the core file

The aout _path can

either be a suggested executabl e pathnane, or a suggested directory to

2208 {

2209 struct ps_prochandl e *P;

2210 core_info_t *core_info;

2211 map_i nfo_t *stk_np, *brk_np;
2212 const char *execnane;

2213 char *interp;

2214 int i, notes, pagesize;

2215 uintptr_t addr, base_addr;

2216 struct stat64 stbuf;

2217 voi d *phbuf, *php;

2218 size_t nbytes;

2219 #ifdef __x86

2220 bool ean_t from.linux = B_FALSE;
2221 #endif

2223 elf_file_t aout

2224 elf_file_t core;

2226 El f _Scn *scn, *intp_scn = NULL;
2227 El f _Data *dp;

2229 CEl f _Phdr phdr, note_phdr;

2230 CEl f _Shdr shdr;

2231 CEl f _Xword nleft;

2233 if (elf_version(EV_CURRENT) == EV_NONE) {
2234 dprintf("libproc ELF version is nore recent than libelf\n");
2235 *perr = G ELF;

2236 return (NULL);

2237 1



new usr/src/lib/libproc/comron/Pcore.c

2239
2240

2242
2243

2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279

2281

2283
2284
2285
2286
2287
2288
2289

2291
2292

2294
2295
2296
2297
2298
2299
2300
2301

2303
2304

aout.e_elf = NULL;
aout.e_fd = -1;

core.e_elf = NULL;
core.e_fd = core_fd;

/*

* Allocate and initialize a ps_prochandle structure for the core.

* There are several key pieces of initialization here:

*

* 1. The PS_DEAD state flag marks this prochandle as a core file.

* PS_DEAD al so thus prevents all operations which require state

* to be PS_STOP from operating on this handle.

*

* 2. We keep the core file fd in P->asfd since the core file contains
* the remmants of the process address space.

*

* 3. W set the P->info_valid bit because all information about the

* core is determned by the end of this function; there is no need
* for proc_update_naps() to rel oad mappi ngs at any |later point.

*

* 4. The read/wite ops vector uses our core_rw) function defined

* above to handle 1/0 requests.

*

f ((P= rralloc(5|zeof (struct ps_prochandle))) == NULL) {

*perr = G_STRANGE;
return (NOLL);
}

(void) nenset (P, 0, sizeof (struct ps_prochandle));
(void) mutex_init(&P->proc_| ock, USYNC_THREAD, NULL);
P->state = PS_DEAD;

P->pid = (pid_t)-1;

P->asfd = core.e_fd;

P->ctlfd = -1;

P->statfd = -1;

P->agentctlfd = -1;

P->agentstatfd = -1;

P->zoneroot = NULL;

P->info_valid = 1;

Pinit_ops(&P->ops, &P_core_ops);

PinitsymP);

*

* Fstat and open the core file and make sure it is a valid ELF core.

*/

if (fstat64(P—>and &stbuf) == -1) {
*perr = G_STRANGE;
goto err;

}

if (core_elf_fdopen(&core, ET_CORE, perr) == -1)
goto err;

/*

* Allocate and initialize a core_info_t to hang off the ps_prochandl e

* structure. W keep all core-specific information in this structure.

*/

if ((core_li nfo = calloc(1, sizeof (core_info_t))) == NULL) {
*perr = G_STRANGE;
goto err;

}

P->data = core_info;
list_link(&core_info->core_|lwp_head, NULL);

new usr/src/lib/libproc/comrmon/Pcore.c

2305
2306
2307
2308
2309
2310
2311
2312
2313

2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326

2328
2329
2330
2331
2332

2334
2335
2336
2337

2339
2340
2341
2342
2343

2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358

2360
2361
2362
2363
2364

2366
2367
2368
2369
2370

core_info->core_size = stbuf.st_size;
/*

* In the days before adjustable core file content, this was the

* default core file content. For new core files, this value wll

* be overwritten by the NT_CONTENT note section.

~k

core i nfo->core_content = CC_CONTENT_STACK | CC_CONTENT_HEAP |
CC_CONTENT_DATA | CC CONTENT_RODATA | CC_CONTENT_ANON |
CC_CONTENT_SHANON,

switch (core.e_hdr.e_ident[El _CLASS]) {

case ELFCLASS32:
core_info->core_dnodel = PR_MODEL_I LP32;
br eak;

case ELFCLASSG4
core_info->core_dnodel = PR_MODEL_LP64;
br eak;

defaul t:
*perr = G _FORMAT;
goto err;

core_info->core_osabi = core.e_hdr.e_ident[El _CSABI];

/*

* Because the core file nay be a large file, we can't use libelf to
* read the Phdrs. W use e_phnum and e_phentsize to sinplify things.
*

/
nbytes = core.e_hdr.e_phnum* core. e_hdr. e_phentsize;

if ((phbuf = mal I oc(nbytes)) == NULL) {
*perr = G_STRANGE;
goto err;

if (pread64(core fd, phbuf, nbytes, core.e_hdr.e_phoff) != nbytes) {
*perr = G STRANGE;
free(phbuf);
goto err;

*
* |terate through the program headers in the core file.
* We're interested in two types of Phdrs: PT_NOTE (which
* contains a set of saved /proc structures), and PT_LQAD (which
* represents a nenory nappi ng fromthe process’s address space).
* In the case of PT_NOTE, we're interested in the |ast PT_NOTE
*in the core file; currently the first PT_NOTE (if present)
* contains /proc structs in the pre-2.6 unstructured /proc format.
*
for (php = phbuf, notes = 0, i = 0; i < core.e_hdr.e_phnum i++) {
if (core.e_hdr.e_ident[El _CLASS] == ELFCLASS64)
(void) mencpy(&phdr, php, sizeof (CElf_Phdr));
el se
core_phdr_to_gel f (php, &phdr);

switch (phdr p_type) {
case PT_NOT
not e_phdr phdr;
not es++;
break;

case PT_LOAD:
Tif (core add_mappi ng(P, &phdr) == -1) {
*perr = G_STRANGE;
free( phbu ) ;
goto err;



new usr/src/lib/libproc/comron/Pcore.c

2371
2372
2373
2374
2375
2376

2378
2379

2381
2383

2385
2386
2387
2388
2389
2390
2391
2392
2393

2395
2396
2397
2398
2399
2400
2401
2402

2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420

2422
2423
2424
2425
2426
2427
2428
2429
2430
2431

2433
2434
2435
2436

break;

defaul t:
dprintf("Pgrab_core: unknown phdr 9%\ n", phdr.p_type);
br eak;

}

php = (char *)php + core.e_hdr.e_phentsi ze;
}

free(phbuf);
Psor t _mappi ngs(P);

/*

* If we couldn’t find anything of type PT_NOTE, or only one PT_NOTE
* was present, abort. The core file is either corrupt or too old.
*/
f

(notes == 0 || (notes == 1 && core_info->core_osabi ==
ELFGSABI _SOLARI S)) {

*perr = G_NOTE;

goto err;

/*
* Advance the seek pointer to the start of the PT_NOTE data

~k

if (lseek64(P->asfd, note_phdr.p_offset, SEEK SET) == (off64_t)-1) {
dprlntf("Pgrab core: failed to Iseek to PT_NOTE data\n");
*perr = G_STRANGE;
goto err;

}

/*

* Now process the PT_NOTE structures. Each one is preceded by

* an Elf{32/64} _Nnhdr structure describing its type and size.

*

o S +

* | header |

L +

* | name |

* e |

L +

* | desc |

o |

L +

*/

for (nleft = note_phdr.p_filesz; nleft > 0; ) {
El f 64_Nhdr nhdr;
of f64_t off, namesz, descsz;

/*

* Al though <sys/elf.h> defines both Elf32_Nhdr and El f 64_Nhdr
* as different types, they are both of the same content and

* size, so we don't need to worry about 32/64 conversion here.
*

/
if (read(P->asfd, &nhdr, sizeof (nhdr)) != sizeof (nhdr)) {

dprintf("Pgrab_core: failed to read ELF note header\n");

*perr = G_NOTE;
goto err;

}

/*

* According to the SystemV ABI, the anount of padding

* following the nane field should align the description

* field on a 4 byte boundary for 32-bit binaries or on an 8

new usr/src/lib/libproc/comron/Pcore.c 10
2437 * byte boundary for 64-bit binaries. However, this change
2438 * was not nmade correctly during the 64-bit port so all
2439 * descriptions can assune only 4-byte alignnent. W ignore
2440 * the nanme field and the padding to 4-byte alignnent.
2441 *

2442 nanmesz = P2ROUNDUP( (of f 64_t) nhdr.n_nanesz, (off64_t)4);
2444 if (Iseek64(P->asfd nanesz, SEEK CUR) == (off64_t)-1) {
2445 dpri ntf( failed to seek past nane and paddi ng\n");
2446 *perr = G_STRANGE;

2447 goto err;

2448 }

2450 dprintf("Note hdr n_type=% n_nanesz=% n_descsz=%\n",
2451 nhdr. n_type, nhdr.n_nanmesz, nhdr.n_descsz);

2453 off = | seek64(P->asfd, (off64_t)0OL, SEEK CUR);

2455 /*

2456 * Invoke the note handler function fromour table

2457 *

2458 if (nhdr.n_type < sizeof (nhdlrs) / sizeof (nhdlrs[0])) {
2459 i f (nhdlrs[nhdr. n_type] (P, nhdr.n_descsz) < 0)

2460 dprintf("handl er for type %l returned < 0",
2461 nhdr. n type)

2462 *perr = G_NOTE;

2463 goto err;

2464 }

2465 /*

2466 * The presence of either of these notes indicates that
2467 * the dunp was generated on Linux.

2468 */

2469 #ifdef _ x86

2470 if (nhdr.n_type == NT_PRSTATUS | |

2471 nhdr. n_type == NT_PRPSI NFO

2472 fromlinux = B_TRUE,

2473 #endi f

2474 } else {

2475 (void) note_notsup(P, nhdr.n_descsz);

2476 }

2478 /*

2479 * Seek past the current note data to the next EIf_Nhdr
2480 */

2481 descsz = P2ROUNDUP( ( of f 64_t ) nhdr. n_descsz, (off64 t)4);
2482 if (lseek64(P->asfd, off + descsz, SEEK SET) == (off64_t)- 1) {
2483 dprintf("Pgrab_core: failed to seek to next nhdr\n");
2484 *perr = G STRANGE;

2485 goto err;

2486 }

2488 /*

2489 * Subtract the size of the header and its data from what
2490 * we have left to process.

2491 */

2492 nleft -= sizeof (nhdr) + nanesz + descsz;

2493 1

2495 #ifdef __x86

2496 if (fromlinux)

2497 size_t tcount, pid;

2498 Iwp_info_t *lwp

2500 P- >st at us. pr_dnodel = core_i nfo->core_dnodel ;

2502 Iwp = list_next(&core_info->core_|l wp_head);



new usr/src/lib/libproc/comon/Pcore.c 11 new usr/src/lib/libproc/comon/Pcore.c
2569 br k_np- >map_pmap. pr_nfl ags | = MA_BREAK;
2504 pid = P->status. pr_pid; 2570 el se
2571 brk_np = NULL;
2506 for (tcount = 0; tcount < core_info->core_nlwp;
2507 tcount++, Iwp = list_next(lw)) { 2573 if ((stk np Paddr 2nptr (P, P->status. pr _stkbase)) != NULL)
2508 dprintf("Linux thread with id %@\n", |wp->lwp_id); 2574 _np->map_pnap. pr_nflags | = MA_STACK;
2510 /* 2576 /*
2511 * In the case we don’t have a valid psinfo (i.e. pidis 2577 * At this point, we have enough infornmation to | ook for the
2512 * 0, probably because of gdb creating the core) assune 2578 * executabl e and open it: we have access to the auxv, a psinfo_t,
2513 * |owest pid count is the first thread (what if the 2579 * and the ability to read from mappi ngs provided bythe core file
2514 * next thread waps the pid around?) 2580 */
2515 */ 2581 (voi d) Pflndexec(P aout path core_exec_open, &aout);
2516 if (P->status.pr_pid == 0 && 2582 dprintf("P->execnane = \"9%\"\n", P->execnanme ? P->execnane : "NULL");
2517 ((pid == 0 & Iwp->lwp_id > 0) |] 2583 execname = P- >execnama ? P->execnanme : "a.out";
2518 (1 wp- >pr|d<p|d))) {
2519 pid = lwp-> wo_id; 2585 /*
2520 } 2586 * Iterate through the sections, |ooking for the .dynamc and .interp
2521 } 2587 * sections. |f we encounter them renenber their section pointers.
2588 */
2523 if (P—>st atus.pr_pid !'= pid) { 2589 for (scn = NULL; (scn = elf_nextscn(aout.e_elf, scn)) !'= NULL; ) {
2524 dprintf("No valid pid, setting to %d\n", (ulong_t)pid); 2590 char *snaneg;
2525 P->status. pr_pid = pid;
2526 P->psinfo.pr_pid = pid; 2592 if ((gelf_getshdr(scn, &shdr) == NULL) ||
2527 } 2593 (sname = el f_strptr(aout.e_elf, aout.e_hdr.e_shstrndx,
2594 (size_t)shdr.sh_nanme)) == NULL)
2529 /* 2595 cont i nue;
2530 * Consuners |ike ndb expect the first thread to actually have
2531 * an id of 1, on linux that is actually the pid. Find the the 2597 if (strcnp(snane, ".interp") == 0)
2532 * thread with our process id, and set the id to 1 2598 intp_scn = scn;
2533 */ 2599 }
2534 if ((Iwp = Iwpid2info(P, pid)) == NULL) {
2535 dprintf("Couldn't find first thread\n"); 2601 /*
2536 *perr = G_STRANGE; 2602 * Get the AT_BASE auxv elerment. |If this is missing (-1), then
2537 goto err; 2603 * we assune this is a statically-1inked executable.
2538 } 2604 */
2605 base_addr = Pgetauxval (P, AT_BASE);
2540 dprintf("setting representative thread: %\ n", |wp->lwp_id);
2607 /*
2542 lwp->lwp_id = 1; 2608 * In order to get librtlid_db initialized, we'll need to identify
2543 I wp->l wp_status. pr_lwid = 1; 2609 * and name the mapping corresponding to the run-tine linker. The
2610 * AT_BASE auxv elenent tells us the address where it was napped,
2545 /* set representative thread */ 2611 * and the .interp section of the executable tells us its path.
2546 (void) mencpy(&P->status. pr_|wp, & wp->lwp_status, 2612 * |f for sone reason that doesn’t pan out, just use |d.so.1.
2547 sizeof (P->status.pr_lwp)); 2613 *
2548 } 2614 f (intp_scn != NULL && (dp = el f_getdata(intp_scn, NULL)) != NULL &&
2549 #endif /* _ x86 */ 2615 dp->d_size !'= 0)
2616 dprintf(".interp = <%>\n", (char *)dp->d_buf);
2551 if (nleft 1=0) { 2617 interp = dp->d_buf;
2552 dprl ntf("Pgrab_core: note section malformed\n");
2553 *perr = G_STRANGE, 2619 } else if (base_addr != (uintptr_t)-1L) {
2554 goto err; 2620 if (core_info- >core dnodel == PR_ MZDEL LP64)
2555 } 2621 interp = "/usr/lib/ 64/ Id so. 1"
2622 el se
2557 if ((pagesize = Pget auxval (P, AT_PAGESZ)) == -1) { 2623 interp = "/usr/lib/ld.so.1";
2558 pagesi ze = get pagesi ze();
2559 dprintf("AT_PAGESZ m ssing; defaulting to %@\ n", pagesize); 2625 dprintf(".interp section is mssing or could not be read;
2560 } 2626 "defaulting to %\n", interp);
2627 } else
2562 I* 2628 dprintf("detected statically |inked executable\n");
2563 * Locate and | abel the mappings corresponding to the end of the
2564 * heap (MA_BREAK) and the base of the stack (MA_STACK). 2630 /*
2565 */ 2631 * |f we have an AT_BASE el ement, nane the mapping at that address
2566 if ((P—>st atus. pr_brkbase != 0 || P->status.pr_brksize != 0) && 2632 * using the interpreter pathname. Nanme the corresponding data
2567 (brk_np = Paddr2nptr (P, P->status.pr_brkbase + 2633 * mapping after the interpreter as well.
2568 P->st atus. pr_brksize - 1)) != NULL) 2634 */




new usr/src/lib/libproc/comron/Pcore.c 13

2635
2636

2638

2640
2641
2642

2644
2645

2647
2648
2649
2650
2651
2652
2653
2654

2656
2657

2659
2660
2661
2662
2663
2664

2666
2667
2668
2669
2670
2671
2672
2673
2674
2675

2677
2678
2679
2680
2681
2682
2683
2684
2685

2687
2688

2690
2692
2693
2694

2696
2697

2699
2700

if

}
| *
if
/*

*
*

if

(base_addr != (uint ptr _t)-1L) {
elf_file_t intf
P->map_| dso = core_nanme_mappi ng(P, base_addr, interp);

if (core_elf_open(& ntf, interp, ET_DYN, NULL) == 0) {
rd_l oadobj _t rl;
map_i nfo_t *dnp;

rl.rl_base = base_addr;
dmp = core_find_data(P, intf.e_elf, &l);

if (dmp !'= NULL) {
dpri ntf("renamed data at % to %\n",
(void *)rl. dat a_base, interp);
(voi d) strncpy(drrp >MRp_pnMap. pr_napnane,
interp, PRVAPSZ);
dnp- >map_pnap. pr_mapnan'e[ PRVAPSZ - 1] = '\0";

}

core_el f_close(& ntf);

If we have an AT_ENTRY el enent, nane the mapping at that address
using the special nanme "a.out" just like /proc does.

((addr = Pgetauxval (P, AT_ENTRY)) != (uintptr_t)-1L)
P->map_exec = core_nanme_mappi ng(P, addr, "a.out");

If we're a statically |linked executable, then just locate the

executabl e’s text and data and nanme them after the executable.
*/

(base_addr == (uintptr_t)-1L ||
core_info->core_osabi == ELFOSABI _NONE) {
dprintf("looking for text and data: %\n", execnane);
map_info_t *tnmp, *dnp;
file_info_t *fp;
rd_l oadobj _t rl;

NULL &&

if ((tmp = core_find_text(P, aout.e_elf, !
= NULL) {

&rl))
(dmp = core_find_data(P, aout.e_elf, &l)) !
(void) strncpy(tnp->map_pmap. pr_nmapnane
execnanme, PRMAPSZ);
t np- >map_pnmap. pr rrapnar’re[PRl\/APSZ - 1] ='\0";
(void) strncpy(dnp- >map pmap. pr_mapnane,
PSZ7) ;

execnanme, PRVA
dnp- >map_pnap. pr rrapnar're[PRl\/APSZ - 1] ='\0;
}

if ((P->map_exec = tnp) != NULL &&
(fp = malloc(sizeof (file_info_t))) != NULL) {

(void) memset (fp, 0, sizeof (file_info_t));
list_link(fp, &P->file_head);

tmp->map_file = fp;
P->num fil es++;

fp->file_ref =1

fp->file_fd = -1,

fp->file_lo = malloc(sizeof (rd_|loadobj_t));
fp->file_l nane = strdup(execnane);

new usr/src/lib/libproc/common/Pcore.c

2702
2703
2704
2705
2706
2707

2709
2710
2711

2713

2715
2716
2717
2718
2719
2720

2722

2724
2725
2726
2727
2728
2729
2730
2731

2733
2734
2735

2737
2738
2739
2740
2741
2742
2743

2745
2746
2747
2748
2749

2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763

2765
2766

if (fp->file_lo)

*fp->file_l
if (fp- >f||e Inarre)
f = basenane(fp->file_l nanme);

fp->file_rbase = basenane(fp->file_rnane);

(void) strcpy(fp->file_pnane,
P- >mappi ngs[ 0] . map_pmap. pr _mapnane) ;
fp->file_map = tnp;

Pbuil d_file_syntab(P, fp);

if (dmp !'= NULL) {
dmp->map_file = fp
fp->file_ref++

}
core_el f_cl ose(&aout);

/
We now have enough information to initialize librtld_db.

After it warms up, we can iterate through the | oad object chain
in the core, which will allow us to construct the file info

we need to provide synbol infornmation for the other shared
libraries, and also to fill in the m ssing mappi ng nanes.

S

rd_l og(_libproc_debug);

if ((P->rap = rd_new(P)) != NULL)
(void) rd_l oadobj _iter(P->rap, (rl_iter_f *)
core_iter_mapping, P);

if (core_info->core_errno !=0) {
errno = core_info->core_errno;
*perr = G_STRANGE;
goto err;

} else
dprintf("failed to initialize rtld_db agent\n");

*

* |f there are sections, |oad them and process the data from any
* sections that we can use to annotate the file_info_t’'s.

*/

core_|l oad_shdrs(P, &core);

/
If we previously located a stack or break napping, and they are
still anonynous, we now assune that they were MAP_ANON mappi ngs.
I'f brk_np turns out to now have a nane, then the heap is still
sitting at the end of the executable’s data+bss nappi ng: renove
the previous MA BREAK setting to be consistent with /proc.

* ok ok ok ko

*/

if (stk_np !'= NULL && stk_np->map_pnap. pr mapnarTE[O] =="\0")
st k_np- >map_pmap. pr_nflags | = MA

if (brk_i np I'= NULL && brk_np->map_pmap. pr mipname[O] ="'\0")
br k_np->map_pmap. pr_nflags | = MA_ANON,

else if (brk_mp != NULL)
brk_np- >map_pmap. pr_nfl ags & ~MA BREAK;

*perr = 0;
return (P);



new usr/src/lib/libproc/comron/Pcore.c

2768 err:

2769 Pfree(P);

2770 core_el f_cl ose(&aout);
2771 return (NULL);

2772 }

____unchanged_portion_onitted_

15




