new usr/src/lib/libnsl/rpc/rpcb_clnt.c

R R R R

34869 Wed Apr 9 14:17:36 2014
new usr/src/lib/libnsl/rpc/rpcb_clnt.c

4729

_rpcb_findaddr_timed should try rpchind protocol 4 first

Kk k kTR A A AR TR R KRR A K IR A A AR A A ARk I ARk h Ak hhkkhhkkkkkkk kk k Kk k k&

1

©oO~NOUTh~WN

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terns of the
* Common Devel opnent and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in conpliance
* with the License.
*
* You can obtain a copy of the Ilicense at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.
* See the License for the specific |anguage governing pernm ssions
* and |initations under the License.
*
* \When distributing Covered Code, include this CDDL HEADER i n each
* file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
* | f applicable, add the follow ng below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*
/
/*
* Copyright (c) 2014 Gary Mlls
* Copyright 2006 Sun Mcrosystens, Inc. Al rights reserved.
* Use is subject to license terns.
*
/
[* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
/* Al Rights Reserved */
/*
* Portions of this source code were derived from Berkel ey
* 4.3 BSD under license fromthe Regents of the University of
* California.
*/
#pragnma i dent " %Yo U % %Y SM "

/*

*

#i
#i
#i
#i
#i
#i
#i
#i
#i

interface to rpchind rpc service.
*/

nclude "nt.h"

nclude "rpc_nt.h"

ncl ude <assert.h>

ncl ude <rpc/rpc. h>

ncl ude <rpc/rpch_prot. h>
ncl ude <netconfig. h>

ncl ude <netdir. h>

ncl ude <rpc/nettype. h>
ncl ude <sysl og. h>

#i f def PORTVAP

#i
#i

ncl ude <netinet/in.h> /* FOR | PPROTO TCP/ UDP definitions */
ncl ude <rpc/ pnmap_prot. h>

#endi f
#i f def ND_DEBUG

#i

ncl ude <stdio. h>

#endi f

#i
#i
#i

ncl ude <sys/utsnane. h>
ncl ude <errno. h>
ncl ude <stdlib. h>

new usr/src/lib/libnsl/rpc/rpcb_clnt.c

60
61

63
64
65

439
440
441
442
443
444
445
446
447
448

450
451
452
453
454
455

457
458
459
460
461
462
463
464
464
465

#i ncl ude <string. h>
#i ncl ude <uni std. h>

static struct tineval tottimeout = { 60, 0},
static const struct tineval rnttimeout ={ , 0},
static struct tinmeval rpcbrnttine = { 15, 0 };

extern bool _t xdr_wrapstring(XDR *, char **);
static const char nullstring[] = "\000";

extern CLIENT *_clnt_tli_create_tined(int, const struct netconfig *,
struct netbuf *, rpcprog_t, rpcvers_t, uint_t, uint_t,
const struct tineval *);

static CLIENT *_getclnthandl e_tined(char *, struct netconfig *, char **,
struct tineval *);

/*

* The life time of a cached entry should not exceed 5 minutes
* since autonountd attenpts an unmount every 5 minutes.

* It is arbitrarily set alittle lower (3 mn = 180 sec)

* to reduce the tine during which an entry is stale.

*

/

#defi ne CACHE_TTL 180

#def i ne CACHESI ZE 6

struct address_cache {
char *ac_host;
char *ac_netid;
char *ac_uaddr;
struct netbuf *ac_taddr;
struct address_cache *ac_next;

tinme_t ac_maxtime;
b
__unchanged_portion_onitted_

/*
* This routine will return a client handle that is connected to the | ocal
* rpcbind. Returns NULL on error and free' s everything.
*/

static CLIENT *

| ocal _rpcb(void)
{

static struct netconfig *loopnconf;
static char *host nane;
extern nutex_t | oopnconf_| ock;

/* VAR ABLES PROTECTED BY | oopnconf _| ock: | oopnconf */
(voi d) nutex_| ock(& oopnconf_I ock);
if (loopnconf == NULL)
struct utsnane utsnane;
struct netconfig *nconf, *tnmpnconf = NULL;
void *nc_handl e;

if (hostname == NULL) {

#if defined(__i386) && !defined(__and64)
if ((_nunanme(&utsnane) == -1) ||
((hostname = strdup(utsname. nodenane)) == NULL)) {
#el se
if ((unane(&utsname) == -1) ||
((hostnane = strdup(utsnanme. nodenane)) == NULL)) {
#endi f
((hostname = strdup(utsname. nodenane)) == NULL)) {
sysl og(LOG ERR, "local _rpcb : strdup failed.");

new usr/src/lib/libnsl/rpc/rpcb_clnt.c

466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496 }

rpc_createerr.cf_stat = RPC_UNKNOMHOST;
(voi d) mutex_unl ock(& oopnconf _| ock);
return (NULL);

}

nc_handl e = setnetconfig();

if (nc_handle == NULL) {
/* fails to open netconfig file */
rpc_createerr.cf_stat = RPC_UNKNOWNPROTG,
(void) mutex_unl ock(& oopnconf_l ock);
return (NULL);

}
whil e (nconf = getnetconfig(nc_handle))
if (strcmp(nconf->nc_protofmy,
t npnconf = nconf;
if (nconf->nc_semantics == NC_TPI_CLTS)
br eak;

F\IC_L(IPBACK) == 0) {

}

}

if (tnmpnconf == NULL)
rpc_createerr.cf_stat = RPC_UNKNOWNPROTG,
(void) mutex_unl ock(& oopnconf_| ock);
return (NULL);

opnconf = getnetconfigent(tnpnconf->nc_netid);
| oopnconf is never freed */

oi d) endnet config(nc_handl e);

}

(voi d) nutex_unl ock(& oopnconf _| ock);

return (getclnthandl e(hostnane, |oopnconf, NULL));

___unchanged_portion_onitted_

688 /
689
690
689
691
692
693
694
695
692
693
694
695
696
697
698
699
700
699
700
701
702
703

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*/

An internal function which optimzes rpcb_getaddr function. It returns
the universal address of the renpte service or NULL. It also optionally
An internal function which optimzes rpcb_getaddr function. It also

returns the client handle that it uses to contact the renote rpchind.

The algorithmused: First try version 4. Then try version 3 (svr4).
Finally, if the transport is TCP or UDP, try version 2 (portnap).

We assune that version 4 is now avail able on many machi nes on the network.
The al gorithmused: If the transports is TCP or UDP, it first tries
version 2 (portmap), 4 and then 3 (svr4). This order should be

changed in the next CSrelease to 4, 2 and 3. W are assuming that by
that time, version 4 would be avail able on nmany machi nes on the network.
Wth this algorithm we get performance as well as a plan for

obsol eting version 2.

For all other transports, the algorithmremins as 4 and then 3.

XXX: Due to sone problens with t_connect(), we do not reuse the sane client
handl e for COTS cases and hence in these cases we do not return the

client handle. This code will change if t_connect() ever

starts working properly. Also |ook under clnt_vc.c.

704 struct netbuf *

705 __rpcb_findaddr_tinmed(rpcprog_t program

706
707 {
708
709
710
711
712

rpcvers_t ver si on,

struct netconfig *nconf, char *host, CLIENT **clpp, struct tinmeval

*tp)
static bool _t check_rpchind = TRUE;

CLI ENT *client = NULL;

RPCB par ms;

enum cl nt_stat clnt_st;

char *ua = NULL;

new usr/src/lib/libnsl/rpc/rpcb_clnt.c

713
714
715
716
717
717

719
720
721
722
723

725

727
728
729
730
731

733
734
735
736
737
738
739

733
742
743
744
745
746
747

749
750
751
752

754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
77

uint_t vers;

struct netbuf

*address = NULL;

voi d *handl e,
rpcb_entry_list_ptr relp = NULL;
bool _t tnp_client = FALSE;
uint_t start_vers = RPCBVERS4;

/* paraneter checking */
if (nconf == NULL)

}

rpc_createerr.cf_stat = RPC_UNKNOMPROTO,
return (NULL);

parms. r_addr = NULL;

*

* Use default total

*/

timeout if no timeout is specified.

if (tp == NULL)

#i f def PORTNVAP

tp = &ottineout;

/* Try version 2 for TCP or UDP */

if (strcnp(nconf->nc_protofnmy,

NC_I NET) == 0) {
ushort_t port = O;

struct netbuf renote;

uint_t pmapvers = 2;

struct pnap prappar ns;

* Try UDP only - there are sone portnappers out
* there that use UDP only.
*
if (strcnp(nconf->nc_proto, NC_TCP) == 0) {
struct netconfig *newnconf;
voi d *handl e;

if ((handle = __rpc_setconf("udp")) == NULL) {

rpc_createerr.cf_stat = RPC_UNKNOMPROTO,

return (NULL);

—

*

* The following to reinforce that you can
* only request for renpte address through
* the same transport you are requesting.
* je. requesting unversial address

* of IPv4 has to be carried through |Pv4.
* Can't use IPv6 to send out the request.
* The mergeaddr in rpchind can't
* this.

*/

for (;3) {

if ((newnconf = __rpc_getconf(handle))

handl e

__rpc_endconf (handl e) ;
rpc_createerr.cf_stat =
RPC_UNKNOWNPROT G,
return (NULL);
}
/*
* here check the protocol famly to
* be consistent wth the request one

if (strcmp(newnconf->nc_protofnly,
nconf->nc_protofmy) == NULL)

new usr/src/lib/libnsl/rpc/rpcb_clnt.c

778 br eak;

779 }

781 client = _getclnthandl e_timed(host, newnconf,
782 &parns. r_addr, tp);

783 __rpc_endconf (handl e) ;

784 } else {

785 client = _getclnthandl e_timed(host, nconf,

786 &parns. r_addr, tp);

787 }

788 i1f (client == NULL)

789 return (NULL);

791 /*

792 * Set version and retry tineout.

793 */

794 CLNT_CONTROL(cl i ent, CLSET_RETRY_TI MEQUT, (char *)& pcbrnttine);
795 CLNT_CONTROL(cl i ent, CLSET_VERS, (char *)&pmapvers);
797 pmappar ms. pm_prog = program

798 pneppar ns. pmyvers = version;

799 pmappar ms. pm prot = strcrrp(nconf >nc_proto, NC TCP) ?
800 | PPROTO_UDP : | PPROTO_TCP;

801 pmapparnms. pmport = 0; /* not needed */

802 clnt_st = CLNT_CALL(cI i ent, PVAPPROC_GETPORT,

803 (xdrproc t)xdr _pmap, (caddr_t)&pnapparns,
804 (xdrproc t)xdr_u_short, (caddr_t)&port,
805 *tp);

806 if (cl nt st = RPC SUCCESS) {

807 f ((clnt_st == RPC_PROGVERSM SMATCH) | |

808 (clnt_st == RPC_PROGUNAVAI L))

809 goto try rpchind; /* Try different versions */
810 rpc_createerr.cf_stat = RPC_PMAPFAI LURE;

811 clnt_geterr(client, &pc_createerr.cf_error);
812 goto error;

813 } else if (port == 0) {

814 address = NULL;

815 rpc_creat eerr. cf_st at = RPC_PROGNOTREG STERED;
816 goto error;

817 }

818 port = htons(port);

819 CLNT_CONTROL(client, CLCGET_SVC ADDR, (char *)&renpote);
820 if (((address = mall oc(sizeof (struct netbuf))) == NULL) ||
821 ((address->buf = malloc(renote.len)) == NULL)) {
822 rpc_createerr.cf_stat = RPC_SYSTEMERROR;

823 clnt_geterr(client, & pc_createerr.cf_error);
824 if (address) {

825 free(address);

826 address = NULL;

827 }

828 goto error;

829 }

830 (voi d) mencpy(address->buf, renote.buf, renote.len);
831 (voi d) menctpy(&address->buf[sizeof (short)], &port,
832 si zeof (short));
833 addr ess- >l en = address->maxlen = renote. | en;

834 got o done;

835

836 #endi f

838 try_rpchind:

839 /*

734 * Check if rpcbind is up. This prevents needl ess del ays when
735 * accessing applications such as the keyserver while booting
736 * di skl essly.

737 */

new usr/src/lib/libnsl/rpc/rpcb_clnt.c 6
738 if (check rpcbind && strcnp(nconf->nc_protofmy, NCLOOPBACK) == 0) {
739 (!'__rpchbind_is_up()) {

740 rpc_createerr.cf_stat = RPC_ PI\/APFAI LURE;

741 rpc_createerr.cf_error.re_errno = 0;

742 rpc_createerr.cf_error.re_terrno = 0;

743 goto error;

744 }

745 check_r pcbi nd = FALSE;

746 }

748 /*

749 * First try version 4.

855 * Now we try version 4 and then 3.

856 * W also send the renpte systemthe address we used to

857 * contact it in case it can help to connect back with us

750 */

751 parms.r_prog = program

752 parms.r_vers = version;

753 parms.r_owner = (char *)&nullstring[0]; /* not needed; */

754 /* just for xdring */

755 parnms.r_netid = nconf->nc_netid; /* not really needed */

757 I*

758 * |f a COTS transport is being used, try getting address via CLTS
759 * transport. This works only with version 4.

760 */

761 if (nconf->nc_semantics == NC_TPI _COTS_CRD | |

762 nconf - >nc semantlcs == NC_TPI _CQOTS)

763 handl e = __rpc_setconf("datagramv");

764 } else {

765 handl e = __rpc_setconf (nconf->nc_proto);

766 1

768 if (handle != NULL) {

871 voi d *handl e;

769 struct netconfi g *nconf_clts;

873 rpch_entry list_ptr relp = NULL

875 if (client == NULL) {

876 /* This did not go through the above PORTMAP/ TCP code */
877 if ((handle = __rpc_setconf("datagramv")) != NULL) {
771 while ((nconf_clts = __rpc_getconf(handle))

772 I'= NULL)

773 if (strcnp(nconf_clts->nc_protofnly,

774 nconf->nc_protofmy) = 0) {

775 continue;

776 }

777 client = _getclnthandl e_tined(host,

778 nconf_clts, &parns.r_addr,

779 tp);

780 br eak;

781 }

782 __rpc_endconf (handl e) ;

783 }

784 if (client !'= NULL) {

786 if (nconf->nc_semantics == NC_TPI _COTS_ORD | |

787 nconf ->nc_semantics == NC_TPI _COTS)

788 tmp_client = TRUE

790 /* Set rpchind version 4 */

891 if (client == NULL)

892 goto regul ar_rpchi nd; /* Go the regular way */
893 } else {

894 /* This is a UDP PORTMAP handl e. Change to version 4 */
791 vers = RPCBVERS4;

new usr/src/lib/libnsl/rpc/rpcb_clnt.c

792

897
794
795
796
797
798
799
800
801
802
803
804
805
806
807

809
810
913

812
813
814
815
816
817
919
818
819
820
821
822
823
824
825
826
827
828
829
830
932
831
832
833
834
835
836
837
838
934
935
936
937
938
939
839
840
841
842
843
844
944

846

CLNT_CONTROL(cl i ent, CLSET_VERS, (char *)&vers);

;*
* W al so send the renpte systemthe address we used to
* contact it in case it can help it connect back with us
*
/
if (parms.r_addr == NULL) {
parms. r_addr = strdup(""); /* for XDRing */
I f (parms.r_addr == NULL) {
sysl og(LOG ERR, "__rpcb_findaddr_ti ned:
"strdup failed.");
rpc_createerr.cf_stat = RPC_SYSTEMERROR,
address = NULL;
goto error;

}

CLNT_CONTROL(cl i ent, CLSET_RETRY_TI MEQUT,
(char *)& pcbrnttine);

)
CLNT_CONTROL(cli ent, CLSET_RETRY_TI MEQUT, (char *)& pcbrnttine);

clnt_st = CLNT_CALL(client, RPCBPROC GETADDRLI ST,
(xdrproc_t)xdr_rpch, (char *)&parns,
(xdrproc_t)xdr_rpcb_entry_list_ptr,
(char *)&relp, *tp);
switch (clnt_st) {
case RPC_SUCCESS:
if (clnt_st == RPC_SUCCESS) {
if (address = got_entry(relp, nconf))
xdr _free((xdrproc_t)xdr_rpcb_entry_list_ptr,
(char *)&relp);
got o done;

}

/* Entry not found for this transport */

xdr _free((xdrproc_t)xdr_rpcb_entry_list_ptr,
(char *)&relp);

/

*
* XXX: shoul d have perhaps returned with error but
* since the renote nmachine m ght not always be able
* to send the address on all transports, we try the
* regular way with version 3, then 2
* regular way with regul ar_rpcbind
*
/
/* Try the next version */
br eak;
case RPC_PROGVERSM SVATCH:
case RPC_PROGUNAVAI L:
/* Try the next version */
br eak;
defaul t:
got o regul ar _r pchi nd;
} else if ((clnt_st == RPC_PROGVERSM SVATCH) ||
(clnt_st == RPC_PROGUNAVAI L)) {
start_vers = RPCBVERS; /* Try version 3 now */
goto regular_rpcbind; /* Try different versions */
} else {
rpc_createerr.cf_stat = RPC_PMAPFAI LURE;
clnt_geterr(client, &pc_createerr.cf_error);
goto error;
break;

}
} /* End of version 4 */

| *

new usr/src/lib/libnsl/rpc/rpcb_clnt.c

847
848
946

850
851
852
853
854
855
856
857
858

860
861
960
961
962
862
863
864
964
865
866
867
868
869
870
871
872
873
874

876
877
878
976

978
979
980
879
880
881
882
883
884
885
886
887
888

890
891
892
893
894
986
987
988
895
896

898
899

* Try version 3
*
/

regul ar _r pchi nd:

/* Now the sanme transport is to be used to get the address */
if (client & ((nconf->nc_semantics == NC_TPI _COTS_ORD) ||
(nconf->nc_semantics == NC_TPI _COTS))) {
/* A CLTS type of client - destroy it */
CLNT_DESTROY(client);
client = NULL;
free(parns.r_addr);
) parns. r_addr = NULL;

if (client == NULL) {

client = _getclnthandl e_tinmed(host, nconf, &parns.r_addr,

if (client == NULL)
address = NULL;
goto error;

}
if (client !'= NULL) {
tnp_client = FALSE;

if (parms.r_addr == NULL) {

parms. r_addr = strdup("");

i f (parms.r_addr == NULL) {
sysl og(LOG _ERR, "__rpcb_findaddr_ti ned:

"strdup failed.");

address = NULL;
rpc_createerr.cf_stat = RPC_SYSTEMERROR;
goto error;

/* for XDRing */

}

CLNT_CONTROL(cl i ent, CLSET_RETRY_TI MEQUT,
(char *)& pcbrnttine);
vers = RPCBVERS; /* Set the version */
/* First try fromstart_vers and then version 3 (RPCBVERS) */

CLNT_CONTROL(cl i ent, CLSET_RETRY_TI MEQUT, (char *)&r pcbrnttinme);
for (vers = start_vers; vers >= RPCBVERS; vers--) {
/* Set the version */
CLNT_CONTROL(cl i ent, CLSET_VERS, (char *)&vers);
clnt_st = CLNT_CALL(client, RPCBPROC_GETADDR,
(xdrproc_t)xdr_rpch, (char *)&parns,
(xdrproc_t)xdr_wapstring,
(char *)&ua, *tp);
switch (clnt_st) {
case RPC_SUCCESS:
if ((ua !'= NULL) & (ua[O] !="\0")) {
addr ess = uaddr 2t addr (nconf, ua);
#i f def ND_DEBUG

tp);

fprintf(stderr, "\tRenbte address is [%]\n",

ua);
#endi f
xdr _free((xdrproc_t)xdr_w apstring,
(char *)&ua);
} else if (ua !'= NULL) {
if (clnt_st == RPC_SUCCESS) {
if ((ua == NULL) || (ua[O] == NULL)) {
if (ua !'= NULL)
xdr _free(xdr_wrapstring, (char *)&ua);

}

if (ua !'= NULL &% address != NULL) {
got o done;

new usr/src/lib/libnsl/rpc/rpcb_clnt.c 9
900 } else if (address == NULL)

901 /* We don’t know about your universal addr */
991 /* address unknown */

992 rpc_createerr.cf_stat = RPC_PROGNOTREG STERED;
993 goto error;

994 }

995 address = uaddr 2t addr (nconf, ua);

902 #ifdef ND_DEBUG

997 fprintf(stderr, "\tRenpte address is [¥%]\n", ua);
998 if (!address)

903 fprintf(stderr,

904 "\tCoul dn’t resolve renote address!\n");
905 #endi f

906 rpc_createerr.cf_stat = RPC_PROGNOTREG STERED;
1002 xdr _free((xdrproc_t)xdr_wrapstring, (char *)&ua);
1004 if (laddress) {

1005 /* We don’t know about your universal address */
1006 rpc_creat eerr.cf _stat = RPC_N2AXLATEFAI LURE;
907 goto error;

908

909 /* Try the next version */

910 br eak;

911 case RPC_ PROGVERSM SMATCH;

912 clnt_geterr(client, & pc_createerr.cf_error);

913 if (rpc_createerr. cf_error. re_vers. | ow > RPCBVERS4)
1009 got o done;

1010 }

1011 if (clnt_st == RPC_PROGVERSM SVATCH) {

1012 struct rpc_err rpcerr;

1014 clnt_geterr(client, &pcerr);

1015 if (rpcerr.re_vers.|ow > RPCBVERS4)

914 goto error; /* a new version, can't handle */
915 /* Try the next version */

916 break;

917 case RPC_PROGUNAVAI L:

918 /* Try the next version */

919 break;

920 defaul t:

921 clnt_geterr(client, &rpc_creat eerr.cf_error);

922 rpc_createerr.cf_stat = RPC_PMAPFAI LURE;

1017 } else if (clnt_st !'= RPC_PROGUNAVAIL) {

1018 /* Cant handle this error */

923 goto error;

924 br eak;

925 }

926 } else {

927 address = NULL;

928 } /* End of version 3 */

930 /*

931 * Try version 2

932 */

934 #ifdef PORTMAP

935 /* Try version 2 for TCP or UDP */

936 if (strcnp(nconf->nc_protofmy, NC.INET) == 0) {

937 ushort_t port = O;

938 struct netbuf renote;

939 uint_t pmapvers = 2;

940 struct pmap pmappar Ims;

942 /*

943 * Try UDP only - there are sone portnappers out

944 * there that use UDP only.

new usr/src/lib/libnsl/rpc/rpcb_clnt.c 10
945 */

946 if (strcnp(nconf->nc_proto, NC TCP) == 0) {

947 struct netconfig *newnconf;

949 if (cllent) {

950 NT_DESTROY(client);

951 cI ient = NULL;

952 free(parms. r_addr) ;

953 parms. r_addr = NULL;

954 }

955 if ((handle = __rpc_setconf("udp")) == NULL) {
956 rpc_createerr.cf_stat = RPC_UNKNOMPROTO,
957 return (NULL);

958 }

960 /*

961 * The following to reinforce that you can
962 * only request for renote address through
963 * the sane transport you are requesting.

964 * jie. requesting unversial address

965 * of IPv4 has to be carried through | Pv4.
966 * Can't use |Pv6 to send out the request.
967 * The nergeaddr in rpchind can’t handl e

968 * this.

969 */

970 for (;;) {

971 if ((newnconf = _ rpc_getconf(handle))
972 == NULL)

973 __rpc_endconf (handl e) ;

974 rpc_createerr.cf_stat =

975 RPC_UNKNOWNPROTG;

976 return (NULL);

977 }

978 /*

979 * here check the protocol famly to
980 * be consistent with the request one
981

982 if (strcnp(newnconf->nc_protofmy,
983 nconf->nc_protofmy) == NULL)

984 br eak;

985 }

987 client = _getclnt handl e_timed(host, newnconf,
988 &parms. r_addr, tp);

989 __rpc_ endconf(handl e)

990 }

991 if (client == NULL)

992 return (NULL);

994 if (strcnp(nconf->nc_proto, NC_TCP) == 0)

995 tmp_client = TRUE

997 /*

998 * Set version and retry timeout.

999 */

1000 CLNT_CONTROL(cl i ent, CLSET_RETRY_TI MEQUT, (char *)&rpcbrnttinme);
1001 CLNT_CONTROL(cli ent, CLSET_VERS, (char *)&pmapvers)
1003 prmappar ms. pm_prog = program

1004 prmappar ms. pm.vers = version;

1005 pmappar ms. pm prot = strcnp(nconf->nc_proto, NC TCP) ?
1006 | PPROTO_UDP : | PPROTO_TO:’;

1007 prEppar ms. pm_ port = 0; /* not needed */

1008 clnt_st CLNT_CALL(client, PVMAPPROC_ GETPORT,

1009 (xdrproc t) xdr _pnap, (caddr _t) &nmmappar s,

1010 (xdrproc_t)xdr_u_short, (caddr_t)&port,

new usr/src/lib/libnsl/rpc/rpcb_clnt.c

1011
1012
1013
1014
1015
1016
1017
1023
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039 #endi f

1041 error:
1042
1043
1044
1045
1046

1048 done:
1049
1050
1051
1034
1035
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065 }

*tp);

if (clnt_st !'= RPC_SUCCESS) {
rpc_createerr.cf_stat = RPC_PMAPFAI LURE;
clnt_geterr(client, & pc_createerr.cf_error)
goto error;

} else if (port == 0) {
address = NULL;

if ((address == NULL) || (address->len == 0)) {

rpc_createerr.cf_stat = RPC_PROGNOTREG STERED
goto error;

}

port = htons(port);

CLNT_CONTROL(client, CLCGET_SVC ADDR, (char *)&renpte)

if (((address = mal |l oc(sizeof (struct netbuf))) == NULL) |

((address->buf = malloc(renpte.len)) == NULL)) {
rpc_createerr.cf_stat = RPC_SYSTEMERROR;
clnt_geterr(client, & pc_createerr.cf_error)
if (address) {
free(address);
address = NULL;

goto error;

}

(voi d) mencpy(address->buf, renote.buf, renote.len)

(voi d) mentpy(&address->buf[sizeof (short)], &port
si zeof (short))

address->l en = address->maxlen = renote. | en;

goto done

/* Return NULL address and NULL client */
if (client) {

CLNT_DESTROY(client);

client = NULL;

/* Return an address and optional client */
if (tmp_client) {
/* This client is the tenporary one */
if (nconf->nc_semantics != NC_TPI_CLTS)
/* This client is the connectionless one */
if (client) {
CLNT_DESTROY(client);
client = NULL
}

}

if (clpp) { ,
*clpp = client

} else if (client) {
CLNT_DESTROY(client);

if (parns.r_addr)
free(parns. r_addr)
return (address);

____unchanged_portion_onitted_

11

