
new/usr/src/lib/libnsl/rpc/rpcb_clnt.c 1

**
 34869 Wed Apr 9 14:17:36 2014
new/usr/src/lib/libnsl/rpc/rpcb_clnt.c
4729 __rpcb_findaddr_timed should try rpcbind protocol 4 first
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */

23 /*
24 * Copyright (c) 2014 Gary Mills
25 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
26 * Use is subject to license terms.
27 */

29 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
30 /* All Rights Reserved */
31 /*
32 * Portions of this source code were derived from Berkeley
33 * 4.3 BSD under license from the Regents of the University of
34 * California.
35 */

36 #pragma ident "%Z%%M% %I% %E% SMI"

37 /*
38 * interface to rpcbind rpc service.
39 */

41 #include "mt.h"
42 #include "rpc_mt.h"
43 #include <assert.h>
44 #include <rpc/rpc.h>
45 #include <rpc/rpcb_prot.h>
46 #include <netconfig.h>
47 #include <netdir.h>
48 #include <rpc/nettype.h>
49 #include <syslog.h>
50 #ifdef PORTMAP
51 #include <netinet/in.h> /* FOR IPPROTO_TCP/UDP definitions */
52 #include <rpc/pmap_prot.h>
53 #endif
54 #ifdef ND_DEBUG
55 #include <stdio.h>
56 #endif
57 #include <sys/utsname.h>
58 #include <errno.h>
59 #include <stdlib.h>

new/usr/src/lib/libnsl/rpc/rpcb_clnt.c 2

60 #include <string.h>
61 #include <unistd.h>

63 static struct timeval tottimeout = { 60, 0 };
64 static const struct timeval rmttimeout = { 3, 0 };
65 static struct timeval rpcbrmttime = { 15, 0 };

67 extern bool_t xdr_wrapstring(XDR *, char **);

69 static const char nullstring[] = "\000";

71 extern CLIENT *_clnt_tli_create_timed(int, const struct netconfig *,
72 struct netbuf *, rpcprog_t, rpcvers_t, uint_t, uint_t,
73 const struct timeval *);

75 static CLIENT *_getclnthandle_timed(char *, struct netconfig *, char **,
76 struct timeval *);

79 /*
80 * The life time of a cached entry should not exceed 5 minutes
81 * since automountd attempts an unmount every 5 minutes.
82 * It is arbitrarily set a little lower (3 min = 180 sec)
83 * to reduce the time during which an entry is stale.
84 */
85 #define CACHE_TTL 180
86 #define CACHESIZE 6

88 struct address_cache {
89 char *ac_host;
90 char *ac_netid;
91 char *ac_uaddr;
92 struct netbuf *ac_taddr;
93 struct address_cache *ac_next;
94 time_t ac_maxtime;
95 };

______unchanged_portion_omitted_

439 /*
440 * This routine will return a client handle that is connected to the local
441 * rpcbind. Returns NULL on error and free’s everything.
442 */
443 static CLIENT *
444 local_rpcb(void)
445 {
446 static struct netconfig *loopnconf;
447 static char *hostname;
448 extern mutex_t loopnconf_lock;

450 /* VARIABLES PROTECTED BY loopnconf_lock: loopnconf */
451 (void) mutex_lock(&loopnconf_lock);
452 if (loopnconf == NULL) {
453 struct utsname utsname;
454 struct netconfig *nconf, *tmpnconf = NULL;
455 void *nc_handle;

457 if (hostname == NULL) {
458 #if defined(__i386) && !defined(__amd64)
459 if ((_nuname(&utsname) == -1) ||
460 ((hostname = strdup(utsname.nodename)) == NULL)) {
461 #else
462 if ((uname(&utsname) == -1) ||
463 ((hostname = strdup(utsname.nodename)) == NULL)) {
464 #endif
464 ((hostname = strdup(utsname.nodename)) == NULL)) {
465 syslog(LOG_ERR, "local_rpcb : strdup failed.");

new/usr/src/lib/libnsl/rpc/rpcb_clnt.c 3

466 rpc_createerr.cf_stat = RPC_UNKNOWNHOST;
467 (void) mutex_unlock(&loopnconf_lock);
468 return (NULL);
469 }
470 }
471 nc_handle = setnetconfig();
472 if (nc_handle == NULL) {
473 /* fails to open netconfig file */
474 rpc_createerr.cf_stat = RPC_UNKNOWNPROTO;
475 (void) mutex_unlock(&loopnconf_lock);
476 return (NULL);
477 }
478 while (nconf = getnetconfig(nc_handle)) {
479 if (strcmp(nconf->nc_protofmly, NC_LOOPBACK) == 0) {
480 tmpnconf = nconf;
481 if (nconf->nc_semantics == NC_TPI_CLTS)
482 break;
483 }
484 }
485 if (tmpnconf == NULL) {
486 rpc_createerr.cf_stat = RPC_UNKNOWNPROTO;
487 (void) mutex_unlock(&loopnconf_lock);
488 return (NULL);
489 }
490 loopnconf = getnetconfigent(tmpnconf->nc_netid);
491 /* loopnconf is never freed */
492 (void) endnetconfig(nc_handle);
493 }
494 (void) mutex_unlock(&loopnconf_lock);
495 return (getclnthandle(hostname, loopnconf, NULL));
496 }

______unchanged_portion_omitted_

688 /*
689 * An internal function which optimizes rpcb_getaddr function. It returns
690 * the universal address of the remote service or NULL. It also optionally
689 * An internal function which optimizes rpcb_getaddr function. It also
691 * returns the client handle that it uses to contact the remote rpcbind.
692 *
693 * The algorithm used: First try version 4. Then try version 3 (svr4).
694 * Finally, if the transport is TCP or UDP, try version 2 (portmap).
695 * We assume that version 4 is now available on many machines on the network.
692 * The algorithm used: If the transports is TCP or UDP, it first tries
693 * version 2 (portmap), 4 and then 3 (svr4). This order should be
694 * changed in the next OS release to 4, 2 and 3. We are assuming that by
695 * that time, version 4 would be available on many machines on the network.
696 * With this algorithm, we get performance as well as a plan for
697 * obsoleting version 2.
698 *
699 * For all other transports, the algorithm remains as 4 and then 3.
700 *
699 * XXX: Due to some problems with t_connect(), we do not reuse the same client
700 * handle for COTS cases and hence in these cases we do not return the
701 * client handle. This code will change if t_connect() ever
702 * starts working properly. Also look under clnt_vc.c.
703 */
704 struct netbuf *
705 __rpcb_findaddr_timed(rpcprog_t program, rpcvers_t version,
706 struct netconfig *nconf, char *host, CLIENT **clpp, struct timeval *tp)
707 {
708 static bool_t check_rpcbind = TRUE;
709 CLIENT *client = NULL;
710 RPCB parms;
711 enum clnt_stat clnt_st;
712 char *ua = NULL;

new/usr/src/lib/libnsl/rpc/rpcb_clnt.c 4

713 uint_t vers;
714 struct netbuf *address = NULL;
715 void *handle;
716 rpcb_entry_list_ptr relp = NULL;
717 bool_t tmp_client = FALSE;
717 uint_t start_vers = RPCBVERS4;

719 /* parameter checking */
720 if (nconf == NULL) {
721 rpc_createerr.cf_stat = RPC_UNKNOWNPROTO;
722 return (NULL);
723 }

725 parms.r_addr = NULL;

727 /*
728 * Use default total timeout if no timeout is specified.
729 */
730 if (tp == NULL)
731 tp = &tottimeout;

733 #ifdef PORTMAP
734 /* Try version 2 for TCP or UDP */
735 if (strcmp(nconf->nc_protofmly, NC_INET) == 0) {
736 ushort_t port = 0;
737 struct netbuf remote;
738 uint_t pmapvers = 2;
739 struct pmap pmapparms;

733 /*
742 * Try UDP only - there are some portmappers out
743 * there that use UDP only.
744 */
745 if (strcmp(nconf->nc_proto, NC_TCP) == 0) {
746 struct netconfig *newnconf;
747 void *handle;

749 if ((handle = __rpc_setconf("udp")) == NULL) {
750 rpc_createerr.cf_stat = RPC_UNKNOWNPROTO;
751 return (NULL);
752 }

754 /*
755 * The following to reinforce that you can
756 * only request for remote address through
757 * the same transport you are requesting.
758 * ie. requesting unversial address
759 * of IPv4 has to be carried through IPv4.
760 * Can’t use IPv6 to send out the request.
761 * The mergeaddr in rpcbind can’t handle
762 * this.
763 */
764 for (;;) {
765 if ((newnconf = __rpc_getconf(handle))
766 == NULL) {
767 __rpc_endconf(handle);
768 rpc_createerr.cf_stat =
769 RPC_UNKNOWNPROTO;
770 return (NULL);
771 }
772 /*
773 * here check the protocol family to
774 * be consistent with the request one
775 */
776 if (strcmp(newnconf->nc_protofmly,
777 nconf->nc_protofmly) == NULL)

new/usr/src/lib/libnsl/rpc/rpcb_clnt.c 5

778 break;
779 }

781 client = _getclnthandle_timed(host, newnconf,
782 &parms.r_addr, tp);
783 __rpc_endconf(handle);
784 } else {
785 client = _getclnthandle_timed(host, nconf,
786 &parms.r_addr, tp);
787 }
788 if (client == NULL)
789 return (NULL);

791 /*
792 * Set version and retry timeout.
793 */
794 CLNT_CONTROL(client, CLSET_RETRY_TIMEOUT, (char *)&rpcbrmttime);
795 CLNT_CONTROL(client, CLSET_VERS, (char *)&pmapvers);

797 pmapparms.pm_prog = program;
798 pmapparms.pm_vers = version;
799 pmapparms.pm_prot = strcmp(nconf->nc_proto, NC_TCP) ?
800 IPPROTO_UDP : IPPROTO_TCP;
801 pmapparms.pm_port = 0; /* not needed */
802 clnt_st = CLNT_CALL(client, PMAPPROC_GETPORT,
803 (xdrproc_t)xdr_pmap, (caddr_t)&pmapparms,
804 (xdrproc_t)xdr_u_short, (caddr_t)&port,
805 *tp);
806 if (clnt_st != RPC_SUCCESS) {
807 if ((clnt_st == RPC_PROGVERSMISMATCH) ||
808 (clnt_st == RPC_PROGUNAVAIL))
809 goto try_rpcbind; /* Try different versions */
810 rpc_createerr.cf_stat = RPC_PMAPFAILURE;
811 clnt_geterr(client, &rpc_createerr.cf_error);
812 goto error;
813 } else if (port == 0) {
814 address = NULL;
815 rpc_createerr.cf_stat = RPC_PROGNOTREGISTERED;
816 goto error;
817 }
818 port = htons(port);
819 CLNT_CONTROL(client, CLGET_SVC_ADDR, (char *)&remote);
820 if (((address = malloc(sizeof (struct netbuf))) == NULL) ||
821 ((address->buf = malloc(remote.len)) == NULL)) {
822 rpc_createerr.cf_stat = RPC_SYSTEMERROR;
823 clnt_geterr(client, &rpc_createerr.cf_error);
824 if (address) {
825 free(address);
826 address = NULL;
827 }
828 goto error;
829 }
830 (void) memcpy(address->buf, remote.buf, remote.len);
831 (void) memcpy(&address->buf[sizeof (short)], &port,
832 sizeof (short));
833 address->len = address->maxlen = remote.len;
834 goto done;
835 }
836 #endif

838 try_rpcbind:
839 /*
734 * Check if rpcbind is up. This prevents needless delays when
735 * accessing applications such as the keyserver while booting
736 * disklessly.
737 */

new/usr/src/lib/libnsl/rpc/rpcb_clnt.c 6

738 if (check_rpcbind && strcmp(nconf->nc_protofmly, NC_LOOPBACK) == 0) {
739 if (!__rpcbind_is_up()) {
740 rpc_createerr.cf_stat = RPC_PMAPFAILURE;
741 rpc_createerr.cf_error.re_errno = 0;
742 rpc_createerr.cf_error.re_terrno = 0;
743 goto error;
744 }
745 check_rpcbind = FALSE;
746 }

748 /*
749 * First try version 4.
855 * Now we try version 4 and then 3.
856 * We also send the remote system the address we used to
857 * contact it in case it can help to connect back with us
750 */
751 parms.r_prog = program;
752 parms.r_vers = version;
753 parms.r_owner = (char *)&nullstring[0]; /* not needed; */
754 /* just for xdring */
755 parms.r_netid = nconf->nc_netid; /* not really needed */

757 /*
758 * If a COTS transport is being used, try getting address via CLTS
759 * transport. This works only with version 4.
760 */
761 if (nconf->nc_semantics == NC_TPI_COTS_ORD ||
762 nconf->nc_semantics == NC_TPI_COTS) {
763 handle = __rpc_setconf("datagram_v");
764 } else {
765 handle = __rpc_setconf(nconf->nc_proto);
766 }

768 if (handle != NULL) {
871 void *handle;
769 struct netconfig *nconf_clts;
873 rpcb_entry_list_ptr relp = NULL;

875 if (client == NULL) {
876 /* This did not go through the above PORTMAP/TCP code */
877 if ((handle = __rpc_setconf("datagram_v")) != NULL) {
771 while ((nconf_clts = __rpc_getconf(handle))
772 != NULL) {
773 if (strcmp(nconf_clts->nc_protofmly,
774 nconf->nc_protofmly) != 0) {
775 continue;
776 }
777 client = _getclnthandle_timed(host,
778 nconf_clts, &parms.r_addr,
779 tp);
780 break;
781 }
782 __rpc_endconf(handle);
783 }
784 if (client != NULL) {

786 if (nconf->nc_semantics == NC_TPI_COTS_ORD ||
787 nconf->nc_semantics == NC_TPI_COTS)
788 tmp_client = TRUE;

790 /* Set rpcbind version 4 */
891 if (client == NULL)
892 goto regular_rpcbind; /* Go the regular way */
893 } else {
894 /* This is a UDP PORTMAP handle. Change to version 4 */
791 vers = RPCBVERS4;

new/usr/src/lib/libnsl/rpc/rpcb_clnt.c 7

792 CLNT_CONTROL(client, CLSET_VERS, (char *)&vers);

897 }
794 /*
795 * We also send the remote system the address we used to
796 * contact it in case it can help it connect back with us
797 */
798 if (parms.r_addr == NULL) {
799 parms.r_addr = strdup(""); /* for XDRing */
800 if (parms.r_addr == NULL) {
801 syslog(LOG_ERR, "__rpcb_findaddr_timed: "
802 "strdup failed.");
803 rpc_createerr.cf_stat = RPC_SYSTEMERROR;
804 address = NULL;
805 goto error;
806 }
807 }

809 CLNT_CONTROL(client, CLSET_RETRY_TIMEOUT,
810 (char *)&rpcbrmttime);
913 CLNT_CONTROL(client, CLSET_RETRY_TIMEOUT, (char *)&rpcbrmttime);

812 clnt_st = CLNT_CALL(client, RPCBPROC_GETADDRLIST,
813 (xdrproc_t)xdr_rpcb, (char *)&parms,
814 (xdrproc_t)xdr_rpcb_entry_list_ptr,
815 (char *)&relp, *tp);
816 switch (clnt_st) {
817 case RPC_SUCCESS:
919 if (clnt_st == RPC_SUCCESS) {
818 if (address = got_entry(relp, nconf)) {
819 xdr_free((xdrproc_t)xdr_rpcb_entry_list_ptr,
820 (char *)&relp);
821 goto done;
822 }
823 /* Entry not found for this transport */
824 xdr_free((xdrproc_t)xdr_rpcb_entry_list_ptr,
825 (char *)&relp);
826 /*
827 * XXX: should have perhaps returned with error but
828 * since the remote machine might not always be able
829 * to send the address on all transports, we try the
830 * regular way with version 3, then 2
932 * regular way with regular_rpcbind
831 */
832 /* Try the next version */
833 break;
834 case RPC_PROGVERSMISMATCH:
835 case RPC_PROGUNAVAIL:
836 /* Try the next version */
837 break;
838 default:
934 goto regular_rpcbind;
935 } else if ((clnt_st == RPC_PROGVERSMISMATCH) ||
936 (clnt_st == RPC_PROGUNAVAIL)) {
937 start_vers = RPCBVERS; /* Try version 3 now */
938 goto regular_rpcbind; /* Try different versions */
939 } else {
839 rpc_createerr.cf_stat = RPC_PMAPFAILURE;
840 clnt_geterr(client, &rpc_createerr.cf_error);
841 goto error;
842 break;
843 }
844 } /* End of version 4 */
944 }

846 /*

new/usr/src/lib/libnsl/rpc/rpcb_clnt.c 8

847 * Try version 3
848 */
946 regular_rpcbind:

850 /* Now the same transport is to be used to get the address */
851 if (client && ((nconf->nc_semantics == NC_TPI_COTS_ORD) ||
852 (nconf->nc_semantics == NC_TPI_COTS))) {
853 /* A CLTS type of client - destroy it */
854 CLNT_DESTROY(client);
855 client = NULL;
856 free(parms.r_addr);
857 parms.r_addr = NULL;
858 }

860 if (client == NULL) {
861 client = _getclnthandle_timed(host, nconf, &parms.r_addr, tp);
960 if (client == NULL) {
961 address = NULL;
962 goto error;
862 }
863 if (client != NULL) {
864 tmp_client = FALSE;
964 }
865 if (parms.r_addr == NULL) {
866 parms.r_addr = strdup(""); /* for XDRing */
867 if (parms.r_addr == NULL) {
868 syslog(LOG_ERR, "__rpcb_findaddr_timed: "
869 "strdup failed.");
870 address = NULL;
871 rpc_createerr.cf_stat = RPC_SYSTEMERROR;
872 goto error;
873 }
874 }

876 CLNT_CONTROL(client, CLSET_RETRY_TIMEOUT,
877 (char *)&rpcbrmttime);
878 vers = RPCBVERS; /* Set the version */
976 /* First try from start_vers and then version 3 (RPCBVERS) */

978 CLNT_CONTROL(client, CLSET_RETRY_TIMEOUT, (char *)&rpcbrmttime);
979 for (vers = start_vers; vers >= RPCBVERS; vers--) {
980 /* Set the version */
879 CLNT_CONTROL(client, CLSET_VERS, (char *)&vers);
880 clnt_st = CLNT_CALL(client, RPCBPROC_GETADDR,
881 (xdrproc_t)xdr_rpcb, (char *)&parms,
882 (xdrproc_t)xdr_wrapstring,
883 (char *)&ua, *tp);
884 switch (clnt_st) {
885 case RPC_SUCCESS:
886 if ((ua != NULL) && (ua[0] != ’\0’)) {
887 address = uaddr2taddr(nconf, ua);
888 #ifdef ND_DEBUG
889 fprintf(stderr, "\tRemote address is [%s]\n",
890 ua);
891 #endif
892 xdr_free((xdrproc_t)xdr_wrapstring,
893 (char *)&ua);
894 } else if (ua != NULL) {
986 if (clnt_st == RPC_SUCCESS) {
987 if ((ua == NULL) || (ua[0] == NULL)) {
988 if (ua != NULL)
895 xdr_free(xdr_wrapstring, (char *)&ua);
896 }

898 if (ua != NULL && address != NULL) {
899 goto done;

new/usr/src/lib/libnsl/rpc/rpcb_clnt.c 9

900 } else if (address == NULL) {
901 /* We don’t know about your universal addr */
991 /* address unknown */
992 rpc_createerr.cf_stat = RPC_PROGNOTREGISTERED;
993 goto error;
994 }
995 address = uaddr2taddr(nconf, ua);
902 #ifdef ND_DEBUG
997 fprintf(stderr, "\tRemote address is [%s]\n", ua);
998 if (!address)
903 fprintf(stderr,
904 "\tCouldn’t resolve remote address!\n");
905 #endif
906 rpc_createerr.cf_stat = RPC_PROGNOTREGISTERED;
1002 xdr_free((xdrproc_t)xdr_wrapstring, (char *)&ua);

1004 if (!address) {
1005 /* We don’t know about your universal address */
1006 rpc_createerr.cf_stat = RPC_N2AXLATEFAILURE;
907 goto error;
908 }
909 /* Try the next version */
910 break;
911 case RPC_PROGVERSMISMATCH:
912 clnt_geterr(client, &rpc_createerr.cf_error);
913 if (rpc_createerr.cf_error.re_vers.low > RPCBVERS4)
1009 goto done;
1010 }
1011 if (clnt_st == RPC_PROGVERSMISMATCH) {
1012 struct rpc_err rpcerr;

1014 clnt_geterr(client, &rpcerr);
1015 if (rpcerr.re_vers.low > RPCBVERS4)
914 goto error; /* a new version, can’t handle */
915 /* Try the next version */
916 break;
917 case RPC_PROGUNAVAIL:
918 /* Try the next version */
919 break;
920 default:
921 clnt_geterr(client, &rpc_createerr.cf_error);
922 rpc_createerr.cf_stat = RPC_PMAPFAILURE;
1017 } else if (clnt_st != RPC_PROGUNAVAIL) {
1018 /* Cant handle this error */
923 goto error;
924 break;
925 }
926 } else {
927 address = NULL;
928 } /* End of version 3 */

930 /*
931 * Try version 2
932 */

934 #ifdef PORTMAP
935 /* Try version 2 for TCP or UDP */
936 if (strcmp(nconf->nc_protofmly, NC_INET) == 0) {
937 ushort_t port = 0;
938 struct netbuf remote;
939 uint_t pmapvers = 2;
940 struct pmap pmapparms;

942 /*
943 * Try UDP only - there are some portmappers out
944 * there that use UDP only.

new/usr/src/lib/libnsl/rpc/rpcb_clnt.c 10

945 */
946 if (strcmp(nconf->nc_proto, NC_TCP) == 0) {
947 struct netconfig *newnconf;

949 if (client) {
950 CLNT_DESTROY(client);
951 client = NULL;
952 free(parms.r_addr);
953 parms.r_addr = NULL;
954 }
955 if ((handle = __rpc_setconf("udp")) == NULL) {
956 rpc_createerr.cf_stat = RPC_UNKNOWNPROTO;
957 return (NULL);
958 }

960 /*
961 * The following to reinforce that you can
962 * only request for remote address through
963 * the same transport you are requesting.
964 * ie. requesting unversial address
965 * of IPv4 has to be carried through IPv4.
966 * Can’t use IPv6 to send out the request.
967 * The mergeaddr in rpcbind can’t handle
968 * this.
969 */
970 for (;;) {
971 if ((newnconf = __rpc_getconf(handle))
972 == NULL) {
973 __rpc_endconf(handle);
974 rpc_createerr.cf_stat =
975 RPC_UNKNOWNPROTO;
976 return (NULL);
977 }
978 /*
979 * here check the protocol family to
980 * be consistent with the request one
981 */
982 if (strcmp(newnconf->nc_protofmly,
983 nconf->nc_protofmly) == NULL)
984 break;
985 }

987 client = _getclnthandle_timed(host, newnconf,
988 &parms.r_addr, tp);
989 __rpc_endconf(handle);
990 }
991 if (client == NULL)
992 return (NULL);

994 if (strcmp(nconf->nc_proto, NC_TCP) == 0)
995 tmp_client = TRUE;

997 /*
998 * Set version and retry timeout.
999 */

1000 CLNT_CONTROL(client, CLSET_RETRY_TIMEOUT, (char *)&rpcbrmttime);
1001 CLNT_CONTROL(client, CLSET_VERS, (char *)&pmapvers);

1003 pmapparms.pm_prog = program;
1004 pmapparms.pm_vers = version;
1005 pmapparms.pm_prot = strcmp(nconf->nc_proto, NC_TCP) ?
1006 IPPROTO_UDP : IPPROTO_TCP;
1007 pmapparms.pm_port = 0; /* not needed */
1008 clnt_st = CLNT_CALL(client, PMAPPROC_GETPORT,
1009 (xdrproc_t)xdr_pmap, (caddr_t)&pmapparms,
1010 (xdrproc_t)xdr_u_short, (caddr_t)&port,

new/usr/src/lib/libnsl/rpc/rpcb_clnt.c 11

1011 *tp);
1012 if (clnt_st != RPC_SUCCESS) {
1013 rpc_createerr.cf_stat = RPC_PMAPFAILURE;
1014 clnt_geterr(client, &rpc_createerr.cf_error);
1015 goto error;
1016 } else if (port == 0) {
1017 address = NULL;
1023 if ((address == NULL) || (address->len == 0)) {
1018 rpc_createerr.cf_stat = RPC_PROGNOTREGISTERED;
1019 goto error;
1020 }
1021 port = htons(port);
1022 CLNT_CONTROL(client, CLGET_SVC_ADDR, (char *)&remote);
1023 if (((address = malloc(sizeof (struct netbuf))) == NULL) ||
1024 ((address->buf = malloc(remote.len)) == NULL)) {
1025 rpc_createerr.cf_stat = RPC_SYSTEMERROR;
1026 clnt_geterr(client, &rpc_createerr.cf_error);
1027 if (address) {
1028 free(address);
1029 address = NULL;
1030 }
1031 goto error;
1032 }
1033 (void) memcpy(address->buf, remote.buf, remote.len);
1034 (void) memcpy(&address->buf[sizeof (short)], &port,
1035 sizeof (short));
1036 address->len = address->maxlen = remote.len;
1037 goto done;
1038 }
1039 #endif

1041 error:
1042 /* Return NULL address and NULL client */
1043 if (client) {
1044 CLNT_DESTROY(client);
1045 client = NULL;
1046 }

1048 done:
1049 /* Return an address and optional client */
1050 if (tmp_client) {
1051 /* This client is the temporary one */
1034 if (nconf->nc_semantics != NC_TPI_CLTS) {
1035 /* This client is the connectionless one */
1052 if (client) {
1053 CLNT_DESTROY(client);
1054 client = NULL;
1055 }
1056 }
1057 if (clpp) {
1058 *clpp = client;
1059 } else if (client) {
1060 CLNT_DESTROY(client);
1061 }
1062 if (parms.r_addr)
1063 free(parms.r_addr);
1064 return (address);
1065 }
______unchanged_portion_omitted_

