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_rpcb_findaddr_timed should try rpchind protocol 4 first
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/*
* CDDL HEADER START
*
* The contents of this file are subject to the terns of the
* Common Devel opnent and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in conpliance
* with the License.
*
* You can obtain a copy of the Ilicense at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.
* See the License for the specific |anguage governing pernm ssions
* and |initations under the License.
*
* \When distributing Covered Code, include this CDDL HEADER i n each
* file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
* | f applicable, add the follow ng below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*
/
/*
* Copyright (c) 2014 Gary Mlls
* Copyright 2006 Sun Mcrosystens, Inc. Al rights reserved.
* Use is subject to license terns.
*
/
[* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
/* Al Rights Reserved */
/*
* Portions of this source code were derived from Berkel ey
* 4.3 BSD under license fromthe Regents of the University of
* California.
*/
#pragnma i dent " %Yo U % %Y SM "

/*

*

#i
#i
#i
#i
#i
#i
#i
#i
#i

interface to rpchind rpc service.
*/

nclude "nt.h"

nclude "rpc_nt.h"

ncl ude <assert.h>

ncl ude <rpc/rpc. h>

ncl ude <rpc/rpch_prot. h>
ncl ude <netconfig. h>

ncl ude <netdir. h>

ncl ude <rpc/nettype. h>
ncl ude <sysl og. h>

#i f def PORTVAP

#i
#i

ncl ude <netinet/in.h> /* FOR | PPROTO TCP/ UDP definitions */
ncl ude <rpc/ pnmap_prot. h>

#endi f
#i f def ND_DEBUG

#i

ncl ude <stdio. h>

#endi f

#i
#i
#i

ncl ude <sys/utsnane. h>
ncl ude <errno. h>
ncl ude <stdlib. h>
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#i ncl ude <string. h>
#i ncl ude <uni std. h>

static struct tineval tottimeout = { 60, 0},
static const struct tineval rnttimeout ={ , 0},
static struct tinmeval rpcbrnttine = { 15, 0 };

extern bool _t xdr_wrapstring(XDR *, char **);
static const char nullstring[] = "\000";

extern CLIENT *_clnt_tli_create_tined(int, const struct netconfig *,
struct netbuf *, rpcprog_t, rpcvers_t, uint_t, uint_t,
const struct tineval *);

static CLIENT *_getclnthandl e_tined(char *, struct netconfig *, char **,
struct tineval *);

/*

* The life time of a cached entry should not exceed 5 minutes
* since autonountd attenpts an unmount every 5 minutes.

* It is arbitrarily set alittle lower (3 mn = 180 sec)

* to reduce the tine during which an entry is stale.

*

/

#defi ne CACHE_TTL 180

#def i ne CACHESI ZE 6

struct address_cache {
char *ac_host;
char *ac_netid;
char *ac_uaddr;
struct netbuf *ac_taddr;
struct address_cache *ac_next;

tinme_t ac_maxtime;
b
__unchanged_portion_onitted_

/*
* This routine will return a client handle that is connected to the | ocal
* rpcbind. Returns NULL on error and free' s everything.
*/

static CLIENT *

| ocal _rpcb(void)
{

static struct netconfig *loopnconf;
static char *host nane;
extern nutex_t | oopnconf_| ock;

/* VAR ABLES PROTECTED BY | oopnconf _| ock: | oopnconf */
(voi d) nutex_| ock(& oopnconf_I ock);
if (loopnconf == NULL)
struct utsnane utsnane;
struct netconfig *nconf, *tnmpnconf = NULL;
void *nc_handl e;

if (hostname == NULL) {

#if defined(__i386) && !defined(__and64)
if ((_nunanme(&utsnane) == -1) ||
((hostname = strdup(utsname. nodenane)) == NULL)) {
#el se
if ((unane(&utsname) == -1) ||
((hostnane = strdup(utsnanme. nodenane)) == NULL)) {
#endi f
((hostname = strdup(utsname. nodenane)) == NULL)) {
sysl og(LOG ERR, "local _rpcb : strdup failed.");
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rpc_createerr.cf_stat = RPC_UNKNOMHOST;
(voi d) mutex_unl ock(& oopnconf _| ock);
return (NULL);

}

nc_handl e = setnetconfig();

if (nc_handle == NULL) {
/* fails to open netconfig file */
rpc_createerr.cf_stat = RPC_UNKNOWNPROTG,
(void) mutex_unl ock(& oopnconf_l ock);
return (NULL);

}
whil e (nconf = getnetconfig(nc_handle))
if (strcmp(nconf->nc_protofmy,
t npnconf = nconf;
if (nconf->nc_semantics == NC_TPI_CLTS)
br eak;

F\IC_L(IPBACK) == 0) {

}

}

if (tnmpnconf == NULL)
rpc_createerr.cf_stat = RPC_UNKNOWNPROTG,
(void) mutex_unl ock(& oopnconf_| ock);
return (NULL);

opnconf = getnetconfigent(tnpnconf->nc_netid);
| oopnconf is never freed */

oi d) endnet config(nc_handl e);

}

(voi d) nutex_unl ock(& oopnconf _| ock);

return (getclnthandl e(hostnane, |oopnconf, NULL));

___unchanged_portion_onitted_
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An internal function which optimzes rpcb_getaddr function. It returns
the universal address of the renpte service or NULL. It also optionally
An internal function which optimzes rpcb_getaddr function. It also

returns the client handle that it uses to contact the renote rpchind.

The algorithmused: First try version 4. Then try version 3 (svr4).
Finally, if the transport is TCP or UDP, try version 2 (portnap).

We assune that version 4 is now avail able on many machi nes on the network.
The al gorithmused: If the transports is TCP or UDP, it first tries
version 2 (portmap), 4 and then 3 (svr4). This order should be

changed in the next CSrelease to 4, 2 and 3. W are assuming that by
that time, version 4 would be avail able on nmany machi nes on the network.
Wth this algorithm we get performance as well as a plan for

obsol eting version 2.

For all other transports, the algorithmremins as 4 and then 3.

XXX: Due to sone problens with t_connect(), we do not reuse the sane client
handl e for COTS cases and hence in these cases we do not return the

client handle. This code will change if t_connect() ever

starts working properly. Also |ook under clnt_vc.c.

704 struct netbuf *

705 __rpcb_findaddr_tinmed(rpcprog_t program

706
707 {
708
709
710
711
712

rpcvers_t ver si on,

struct netconfig *nconf, char *host, CLIENT **clpp, struct tinmeval

*tp)
static bool _t check_rpchind = TRUE;

CLI ENT *client = NULL;

RPCB par ms;

enum cl nt_stat clnt_st;

char *ua = NULL;
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uint_t vers;

struct netbuf

*address = NULL;

voi d *handl e,
rpcb_entry_list_ptr relp = NULL;
bool _t tnp_client = FALSE;
uint_t start_vers = RPCBVERS4;

/* paraneter checking */
if (nconf == NULL)

}

rpc_createerr.cf_stat = RPC_UNKNOMPROTO,
return (NULL);

parms. r_addr = NULL;

*

* Use default total

*/

timeout if no timeout is specified.

if (tp == NULL)

#i f def PORTNVAP

tp = &ottineout;

/* Try version 2 for TCP or UDP */

if (strcnp(nconf->nc_protofnmy,

NC_I NET) == 0) {
ushort_t port = O;

struct netbuf renote;

uint_t pmapvers = 2;

struct pnap prappar ns;

* Try UDP only - there are sone portnappers out
* there that use UDP only.
*
if (strcnp(nconf->nc_proto, NC_TCP) == 0) {
struct netconfig *newnconf;
voi d *handl e;

if ((handle = __rpc_setconf("udp")) == NULL) {

rpc_createerr.cf_stat = RPC_UNKNOMPROTO,

return (NULL);

—

*

* The following to reinforce that you can
* only request for renpte address through
* the same transport you are requesting.
* je. requesting unversial address

* of IPv4 has to be carried through |Pv4.
* Can't use IPv6 to send out the request.
* The mergeaddr in rpchind can't
* this.

*/

for (;3) {

if ((newnconf = __rpc_getconf(handle))

handl e

__rpc_endconf (handl e) ;
rpc_createerr.cf_stat =
RPC_UNKNOWNPROT G,
return (NULL);
}
/*
* here check the protocol famly to
* be consistent wth the request one

if (strcmp(newnconf->nc_protofnly,
nconf->nc_protofmy) == NULL)
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778 br eak;

779 }

781 client = _getclnthandl e_timed(host, newnconf,
782 &parns. r_addr, tp);

783 __rpc_endconf (handl e) ;

784 } else {

785 client = _getclnthandl e_timed(host, nconf,

786 &parns. r_addr, tp);

787 }

788 i1f (client == NULL)

789 return (NULL);

791 /*

792 * Set version and retry tineout.

793 */

794 CLNT_CONTROL(cl i ent, CLSET_RETRY_TI MEQUT, (char *)& pcbrnttine);
795 CLNT_CONTROL(cl i ent, CLSET_VERS, (char *)&pmapvers);
797 pmappar ms. pm_prog = program

798 pneppar ns. pmyvers = version;

799 pmappar ms. pm prot = strcrrp(nconf >nc_proto, NC TCP) ?
800 | PPROTO_UDP : | PPROTO_TCP;

801 pmapparnms. pmport = 0; /* not needed */

802 clnt_st = CLNT_CALL(cI i ent, PVAPPROC_GETPORT,

803 (xdrproc t)xdr _pmap, (caddr_t)&pnapparns,
804 (xdrproc t)xdr_u_short, (caddr_t)&port,
805 *tp);

806 if (cl nt st = RPC SUCCESS) {

807 f ((clnt_st == RPC_PROGVERSM SMATCH) | |

808 (clnt_st == RPC_PROGUNAVAI L))

809 goto try rpchind; /* Try different versions */
810 rpc_createerr.cf_stat = RPC_PMAPFAI LURE;

811 clnt_geterr(client, &pc_createerr.cf_error);
812 goto error;

813 } else if (port == 0) {

814 address = NULL;

815 rpc_creat eerr. cf_st at = RPC_PROGNOTREG STERED;
816 goto error;

817 }

818 port = htons(port);

819 CLNT_CONTROL(client, CLCGET_SVC ADDR, (char *)&renpote);
820 if (((address = mall oc(sizeof (struct netbuf))) == NULL) ||
821 ((address->buf = malloc(renote.len)) == NULL)) {
822 rpc_createerr.cf_stat = RPC_SYSTEMERROR;

823 clnt_geterr(client, & pc_createerr.cf_error);
824 if (address) {

825 free(address);

826 address = NULL;

827 }

828 goto error;

829 }

830 (voi d) mencpy(address->buf, renote.buf, renote.len);
831 (voi d) menctpy(&address->buf[sizeof (short)], &port,
832 si zeof (short));
833 addr ess- >l en = address->maxlen = renote. | en;

834 got o done;

835

836 #endi f

838 try_rpchind:

839 /*

734 * Check if rpcbind is up. This prevents needl ess del ays when
735 * accessing applications such as the keyserver while booting
736 * di skl essly.

737 */
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738 if (check rpcbind && strcnp(nconf->nc_protofmy, NCLOOPBACK) == 0) {
739 (!'__rpchbind_is_up()) {

740 rpc_createerr.cf_stat = RPC_ PI\/APFAI LURE;

741 rpc_createerr.cf_error.re_errno = 0;

742 rpc_createerr.cf_error.re_terrno = 0;

743 goto error;

744 }

745 check_r pcbi nd = FALSE;

746 }

748 /*

749 * First try version 4.

855 * Now we try version 4 and then 3.

856 * W also send the renpte systemthe address we used to

857 * contact it in case it can help to connect back with us

750 */

751 parms.r_prog = program

752 parms.r_vers = version;

753 parms.r_owner = (char *)&nullstring[0]; /* not needed; */

754 /* just for xdring */

755 parnms.r_netid = nconf->nc_netid; /* not really needed */

757 I*

758 * |f a COTS transport is being used, try getting address via CLTS
759 * transport. This works only with version 4.

760 */

761 if (nconf->nc_semantics == NC_TPI _COTS_CRD | |

762 nconf - >nc semantlcs == NC_TPI _CQOTS)

763 handl e = __rpc_setconf("datagramv");

764 } else {

765 handl e = __rpc_setconf (nconf->nc_proto);

766 1

768 if (handle != NULL) {

871 voi d *handl e;

769 struct netconfi g *nconf_clts;

873 rpch_entry list_ptr relp = NULL

875 if (client == NULL) {

876 /* This did not go through the above PORTMAP/ TCP code */
877 if ((handle = __rpc_setconf("datagramv")) != NULL) {
771 while ((nconf_clts = __rpc_getconf(handle))

772 I'= NULL)

773 if (strcnp(nconf_clts->nc_protofnly,

774 nconf->nc_protofmy) = 0) {

775 continue;

776 }

777 client = _getclnthandl e_tined(host,

778 nconf_clts, &parns.r_addr,

779 tp);

780 br eak;

781 }

782 __rpc_endconf (handl e) ;

783 }

784 if (client !'= NULL) {

786 if (nconf->nc_semantics == NC_TPI _COTS_ORD | |

787 nconf ->nc_semantics == NC_TPI _COTS)

788 tmp_client = TRUE

790 /* Set rpchind version 4 */

891 if (client == NULL)

892 goto regul ar_rpchi nd; /* Go the regular way */
893 } else {

894 /* This is a UDP PORTMAP handl e. Change to version 4 */
791 vers = RPCBVERS4;
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CLNT_CONTROL(cl i ent, CLSET_VERS, (char *)&vers);

;*
* W al so send the renpte systemthe address we used to
* contact it in case it can help it connect back with us
*
/
if (parms.r_addr == NULL) {
parms. r_addr = strdup(""); /* for XDRing */
I f (parms.r_addr == NULL) {
sysl og(LOG ERR, "__rpcb_findaddr_ti ned:
"strdup failed.");
rpc_createerr.cf_stat = RPC_SYSTEMERROR,
address = NULL;
goto error;

}

CLNT_CONTROL(cl i ent, CLSET_RETRY_TI MEQUT,
(char *)& pcbrnttine);

)
CLNT_CONTROL(cli ent, CLSET_RETRY_TI MEQUT, (char *)& pcbrnttine);

clnt_st = CLNT_CALL(client, RPCBPROC GETADDRLI ST,
(xdrproc_t)xdr_rpch, (char *)&parns,
(xdrproc_t)xdr_rpcb_entry_list_ptr,
(char *)&relp, *tp);
switch (clnt_st) {
case RPC_SUCCESS:
if (clnt_st == RPC_SUCCESS) {
if (address = got_entry(relp, nconf))
xdr _free((xdrproc_t)xdr_rpcb_entry_list_ptr,
(char *)&relp);
got o done;

}

/* Entry not found for this transport */

xdr _free((xdrproc_t)xdr_rpcb_entry_list_ptr,
(char *)&relp);

/

*
* XXX: shoul d have perhaps returned with error but
* since the renote nmachine m ght not always be able
* to send the address on all transports, we try the
* regular way with version 3, then 2
* regular way with regul ar_rpcbind
*
/
/* Try the next version */
br eak;
case RPC_PROGVERSM SVATCH:
case RPC_PROGUNAVAI L:
/* Try the next version */
br eak;
defaul t:
got o regul ar _r pchi nd;
} else if ((clnt_st == RPC_PROGVERSM SVATCH) ||
(clnt_st == RPC_PROGUNAVAI L)) {
start_vers = RPCBVERS; /* Try version 3 now */
goto regular_rpcbind; /* Try different versions */
} else {
rpc_createerr.cf_stat = RPC_PMAPFAI LURE;
clnt_geterr(client, &pc_createerr.cf_error);
goto error;
break;

}
} /* End of version 4 */

| *
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* Try version 3
*
/

regul ar _r pchi nd:

/* Now the sanme transport is to be used to get the address */
if (client & ((nconf->nc_semantics == NC_TPI _COTS_ORD) ||
(nconf->nc_semantics == NC_TPI _COTS))) {
/* A CLTS type of client - destroy it */
CLNT_DESTROY(client);
client = NULL;
free(parns.r_addr);
) parns. r_addr = NULL;

if (client == NULL) {

client = _getclnthandl e_tinmed(host, nconf, &parns.r_addr,

if (client == NULL)
address = NULL;
goto error;

}
if (client !'= NULL) {
tnp_client = FALSE;

if (parms.r_addr == NULL) {

parms. r_addr = strdup("");

i f (parms.r_addr == NULL) {
sysl og(LOG _ERR, "__rpcb_findaddr_ti ned:

"strdup failed.");

address = NULL;
rpc_createerr.cf_stat = RPC_SYSTEMERROR;
goto error;

/* for XDRing */

}

CLNT_CONTROL(cl i ent, CLSET_RETRY_TI MEQUT,
(char *)& pcbrnttine);
vers = RPCBVERS; /* Set the version */
/* First try fromstart_vers and then version 3 (RPCBVERS) */

CLNT_CONTROL(cl i ent, CLSET_RETRY_TI MEQUT, (char *)&r pcbrnttinme);
for (vers = start_vers; vers >= RPCBVERS; vers--) {
/* Set the version */
CLNT_CONTROL(cl i ent, CLSET_VERS, (char *)&vers);
clnt_st = CLNT_CALL(client, RPCBPROC_GETADDR,
(xdrproc_t)xdr_rpch, (char *)&parns,
(xdrproc_t)xdr_wapstring,
(char *)&ua, *tp);
switch (clnt_st) {
case RPC_SUCCESS:
if ((ua !'= NULL) & (ua[O] !="\0")) {
addr ess = uaddr 2t addr (nconf, ua);
#i f def ND_DEBUG

tp);

fprintf(stderr, "\tRenbte address is [%]\n",

ua);
#endi f
xdr _free((xdrproc_t)xdr_w apstring,
(char *)&ua);
} else if (ua !'= NULL) {
if (clnt_st == RPC_SUCCESS) {
if ((ua == NULL) || (ua[O] == NULL)) {
if (ua !'= NULL)
xdr _free(xdr_wrapstring, (char *)&ua);

}

if (ua !'= NULL &% address != NULL) {
got o done;
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900 } else if (address == NULL)

901 /* We don’t know about your universal addr */
991 /* address unknown */

992 rpc_createerr.cf_stat = RPC_PROGNOTREG STERED;
993 goto error;

994 }

995 address = uaddr 2t addr (nconf, ua);

902 #ifdef ND_DEBUG

997 fprintf(stderr, "\tRenpte address is [¥%]\n", ua);
998 if (!address)

903 fprintf(stderr,

904 "\tCoul dn’t resolve renote address!\n");
905 #endi f

906 rpc_createerr.cf_stat = RPC_PROGNOTREG STERED;
1002 xdr _free((xdrproc_t)xdr_wrapstring, (char *)&ua);
1004 if (laddress) {

1005 /* We don’t know about your universal address */
1006 rpc_creat eerr.cf _stat = RPC_N2AXLATEFAI LURE;
907 goto error;

908

909 /* Try the next version */

910 br eak;

911 case RPC_ PROGVERSM SMATCH;

912 clnt_geterr(client, & pc_createerr.cf_error);

913 if (rpc_createerr. cf_error. re_vers. | ow > RPCBVERS4)
1009 got o done;

1010 }

1011 if (clnt_st == RPC_PROGVERSM SVATCH) {

1012 struct rpc_err rpcerr;

1014 clnt_geterr(client, &pcerr);

1015 if (rpcerr.re_vers.|ow > RPCBVERS4)

914 goto error; /* a new version, can't handle */
915 /* Try the next version */

916 break;

917 case RPC_PROGUNAVAI L:

918 /* Try the next version */

919 break;

920 defaul t:

921 clnt_geterr(client, &rpc_creat eerr.cf_error);

922 rpc_createerr.cf_stat = RPC_PMAPFAI LURE;

1017 } else if (clnt_st !'= RPC_PROGUNAVAIL) {

1018 /* Cant handle this error */

923 goto error;

924 br eak;

925 }

926 } else {

927 address = NULL;

928 } /* End of version 3 */

930 /*

931 * Try version 2

932 */

934 #ifdef PORTMAP

935 /* Try version 2 for TCP or UDP */

936 if (strcnp(nconf->nc_protofmy, NC.INET) == 0) {

937 ushort_t port = O;

938 struct netbuf renote;

939 uint_t pmapvers = 2;

940 struct pmap pmappar Ims;

942 /*

943 * Try UDP only - there are sone portnappers out

944 * there that use UDP only.
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945 */

946 if (strcnp(nconf->nc_proto, NC TCP) == 0) {

947 struct netconfig *newnconf;

949 if (cllent) {

950 NT_DESTROY(client);

951 cI ient = NULL;

952 free(parms. r_addr) ;

953 parms. r_addr = NULL;

954 }

955 if ((handle = __rpc_setconf("udp")) == NULL) {
956 rpc_createerr.cf_stat = RPC_UNKNOMPROTO,
957 return (NULL);

958 }

960 /*

961 * The following to reinforce that you can
962 * only request for renote address through
963 * the sane transport you are requesting.

964 * jie. requesting unversial address

965 * of IPv4 has to be carried through | Pv4.
966 * Can't use |Pv6 to send out the request.
967 * The nergeaddr in rpchind can’t handl e

968 * this.

969 */

970 for (;;) {

971 if ((newnconf = _ rpc_getconf(handle))
972 == NULL)

973 __rpc_endconf (handl e) ;

974 rpc_createerr.cf_stat =

975 RPC_UNKNOWNPROTG;

976 return (NULL);

977 }

978 /*

979 * here check the protocol famly to
980 * be consistent with the request one
981

982 if (strcnp(newnconf->nc_protofmy,
983 nconf->nc_protofmy) == NULL)

984 br eak;

985 }

987 client = _getclnt handl e_timed(host, newnconf,
988 &parms. r_addr, tp);

989 __rpc_ endconf(handl e)

990 }

991 if (client == NULL)

992 return (NULL);

994 if (strcnp(nconf->nc_proto, NC_TCP) == 0)

995 tmp_client = TRUE

997 /*

998 * Set version and retry timeout.

999 */

1000 CLNT_CONTROL(cl i ent, CLSET_RETRY_TI MEQUT, (char *)&rpcbrnttinme);
1001 CLNT_CONTROL(cli ent, CLSET_VERS, (char *)&pmapvers)
1003 prmappar ms. pm_prog = program

1004 prmappar ms. pm.vers = version;

1005 pmappar ms. pm prot = strcnp(nconf->nc_proto, NC TCP) ?
1006 | PPROTO_UDP : | PPROTO_TO:’;

1007 prEppar ms. pm_ port = 0; /* not needed */

1008 clnt_st CLNT_CALL(client, PVMAPPROC_ GETPORT,

1009 (xdrproc t) xdr _pnap, (caddr _t) &nmmappar s,

1010 (xdrproc_t)xdr_u_short, (caddr_t)&port,
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1011
1012
1013
1014
1015
1016
1017
1023
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039 #endi f

1041 error:
1042
1043
1044
1045
1046

1048 done:
1049
1050
1051
1034
1035
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065 }

*tp);

if (clnt_st !'= RPC_SUCCESS) {
rpc_createerr.cf_stat = RPC_PMAPFAI LURE;
clnt_geterr(client, & pc_createerr.cf_error)
goto error;

} else if (port == 0) {
address = NULL;

if ((address == NULL) || (address->len == 0)) {

rpc_createerr.cf_stat = RPC_PROGNOTREG STERED
goto error;

}

port = htons(port);

CLNT_CONTROL(client, CLCGET_SVC ADDR, (char *)&renpte)

if (((address = mal |l oc(sizeof (struct netbuf))) == NULL) |

((address->buf = malloc(renpte.len)) == NULL)) {
rpc_createerr.cf_stat = RPC_SYSTEMERROR;
clnt_geterr(client, & pc_createerr.cf_error)
if (address) {
free(address);
address = NULL;

goto error;

}

(voi d) mencpy(address->buf, renote.buf, renote.len)

(voi d) mentpy(&address->buf[sizeof (short)], &port
si zeof (short))

address->l en = address->maxlen = renote. | en;

goto done

/* Return NULL address and NULL client */
if (client) {

CLNT_DESTROY(client);

client = NULL;

/* Return an address and optional client */
if (tmp_client) {
/* This client is the tenporary one */
if (nconf->nc_semantics != NC_TPI_CLTS)
/* This client is the connectionless one */
if (client) {
CLNT_DESTROY(client);
client = NULL
}

}

if (clpp) { ,
*clpp = client

} else if (client) {
CLNT_DESTROY(client);

if (parns.r_addr)
free(parns. r_addr)
return (address);

____unchanged_portion_onitted_
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