
new/usr/src/lib/libc/port/locale/strptime.c 1

**
 10564 Sun Jan 12 10:08:59 2014
new/usr/src/lib/libc/port/locale/strptime.c
3141 strptime() doesn’t support %t
**

1 /*
2 * Copyright (c) 2014 Gary Mills
3 * Copyright 2011, Nexenta Systems, Inc. All rights reserved.
4 * Copyright (c) 1994 Powerdog Industries. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *

10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer
15 * in the documentation and/or other materials provided with the
16 * distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY POWERDOG INDUSTRIES ‘‘AS IS’’ AND ANY
19 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE POWERDOG INDUSTRIES BE
22 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
25 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
26 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
27 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
28 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 *
30 * The views and conclusions contained in the software and documentation
31 * are those of the authors and should not be interpreted as representing
32 * official policies, either expressed or implied, of Powerdog Industries.
33 */

35 #include "lint.h"
36 #include <time.h>
37 #include <ctype.h>
38 #include <errno.h>
39 #include <stdlib.h>
40 #include <string.h>
41 #include <pthread.h>
42 #include <alloca.h>
43 #include "timelocal.h"

45 #define asizeof(a) (sizeof (a) / sizeof ((a)[0]))

47 #define F_GMT (1 << 0)
48 #define F_ZERO (1 << 1)
49 #define F_RECURSE (1 << 2)

51 static char *
52 __strptime(const char *buf, const char *fmt, struct tm *tm, int *flagsp)
53 {
54 char c;
55 const char *ptr;
56 int i, len, recurse = 0;
57 int Ealternative, Oalternative;
58 struct lc_time_T *tptr = __get_current_time_locale();

60 if (*flagsp & F_RECURSE)
61 recurse = 1;

new/usr/src/lib/libc/port/locale/strptime.c 2

62 *flagsp |= F_RECURSE;

64 if (*flagsp & F_ZERO)
65 (void) memset(tm, 0, sizeof (*tm));
66 *flagsp &= ~F_ZERO;

68 ptr = fmt;
69 while (*ptr != 0) {
70 if (*buf == 0)
71 break;

73 c = *ptr++;

75 if (c != ’%’) {
76 if (isspace(c))
77 while (isspace(*buf))
78 buf++;
79 else if (c != *buf++)
80 return (NULL);
81 continue;
82 }

84 Ealternative = 0;
85 Oalternative = 0;
86 label:
87 c = *ptr++;
88 switch (c) {
89 case 0:
90 case ’%’:
91 if (*buf++ != ’%’)
92 return (NULL);
93 break;

95 case ’+’:
96 buf = __strptime(buf, tptr->date_fmt, tm, flagsp);
97 if (buf == NULL)
98 return (NULL);
99 break;

101 case ’C’:
102 if (!isdigit(*buf))
103 return (NULL);

105 /* XXX This will break for 3-digit centuries. */
106 len = 2;
107 for (i = 0; len && isdigit(*buf); buf++) {
108 i *= 10;
109 i += *buf - ’0’;
110 len--;
111 }
112 if (i < 19)
113 return (NULL);

115 tm->tm_year = i * 100 - 1900;
116 break;

118 case ’c’:
119 buf = __strptime(buf, tptr->c_fmt, tm, flagsp);
120 if (buf == NULL)
121 return (NULL);
122 break;

124 case ’D’:
125 buf = __strptime(buf, "%m/%d/%y", tm, flagsp);
126 if (buf == NULL)
127 return (NULL);

new/usr/src/lib/libc/port/locale/strptime.c 3

128 break;

130 case ’E’:
131 if (Ealternative || Oalternative)
132 break;
133 Ealternative++;
134 goto label;

136 case ’O’:
137 if (Ealternative || Oalternative)
138 break;
139 Oalternative++;
140 goto label;

142 case ’F’:
143 buf = __strptime(buf, "%Y-%m-%d", tm, flagsp);
144 if (buf == NULL)
145 return (NULL);
146 break;

148 case ’R’:
149 buf = __strptime(buf, "%H:%M", tm, flagsp);
150 if (buf == NULL)
151 return (NULL);
152 break;

154 case ’r’:
155 buf = __strptime(buf, tptr->ampm_fmt, tm, flagsp);
156 if (buf == NULL)
157 return (NULL);
158 break;

160 case ’T’:
161 buf = __strptime(buf, "%H:%M:%S", tm, flagsp);
162 if (buf == NULL)
163 return (NULL);
164 break;

166 case ’X’:
167 buf = __strptime(buf, tptr->X_fmt, tm, flagsp);
168 if (buf == NULL)
169 return (NULL);
170 break;

172 case ’x’:
173 buf = __strptime(buf, tptr->x_fmt, tm, flagsp);
174 if (buf == NULL)
175 return (NULL);
176 break;

178 case ’j’:
179 if (!isdigit(*buf))
180 return (NULL);

182 len = 3;
183 for (i = 0; len && isdigit(*buf); buf++) {
184 i *= 10;
185 i += *buf - ’0’;
186 len--;
187 }
188 if (i < 1 || i > 366)
189 return (NULL);

191 tm->tm_yday = i - 1;
192 break;

new/usr/src/lib/libc/port/locale/strptime.c 4

194 case ’M’:
195 case ’S’:
196 if (*buf == 0 || isspace(*buf))
197 break;

199 if (!isdigit(*buf))
200 return (NULL);

202 len = 2;
203 for (i = 0; len && isdigit(*buf); buf++) {
204 i *= 10;
205 i += *buf - ’0’;
206 len--;
207 }

209 if (c == ’M’) {
210 if (i > 59)
211 return (NULL);
212 tm->tm_min = i;
213 } else {
214 if (i > 60)
215 return (NULL);
216 tm->tm_sec = i;
217 }

218 if (isspace(*buf))
219 while (*ptr != 0 && !isspace(*ptr))
220 ptr++;
219 break;

221 case ’H’:
222 case ’I’:
223 case ’k’:
224 case ’l’:
225 /*
226 * Of these, %l is the only specifier explicitly
227 * documented as not being zero-padded. However,
228 * there is no harm in allowing zero-padding.
229 *
230 * XXX The %l specifier may gobble one too many
231 * digits if used incorrectly.
232 */
233 if (!isdigit(*buf))
234 return (NULL);

236 len = 2;
237 for (i = 0; len && isdigit(*buf); buf++) {
238 i *= 10;
239 i += *buf - ’0’;
240 len--;
241 }
242 if (c == ’H’ || c == ’k’) {
243 if (i > 23)
244 return (NULL);
245 } else if (i > 12)
246 return (NULL);

248 tm->tm_hour = i;

252 if (isspace(*buf))
253 while (*ptr != 0 && !isspace(*ptr))
254 ptr++;
250 break;

252 case ’p’:
253 /*

new/usr/src/lib/libc/port/locale/strptime.c 5

254 * XXX This is bogus if parsed before hour-related
255 * specifiers.
256 */
257 len = strlen(tptr->am);
258 if (strncasecmp(buf, tptr->am, len) == 0) {
259 if (tm->tm_hour > 12)
260 return (NULL);
261 if (tm->tm_hour == 12)
262 tm->tm_hour = 0;
263 buf += len;
264 break;
265 }

267 len = strlen(tptr->pm);
268 if (strncasecmp(buf, tptr->pm, len) == 0) {
269 if (tm->tm_hour > 12)
270 return (NULL);
271 if (tm->tm_hour != 12)
272 tm->tm_hour += 12;
273 buf += len;
274 break;
275 }

277 return (NULL);

279 case ’A’:
280 case ’a’:
281 for (i = 0; i < asizeof(tptr->weekday); i++) {
282 len = strlen(tptr->weekday[i]);
283 if (strncasecmp(buf, tptr->weekday[i], len) ==
284 0)
285 break;
286 len = strlen(tptr->wday[i]);
287 if (strncasecmp(buf, tptr->wday[i], len) == 0)
288 break;
289 }
290 if (i == asizeof(tptr->weekday))
291 return (NULL);

293 tm->tm_wday = i;
294 buf += len;
295 break;

297 case ’U’:
298 case ’W’:
299 /*
300 * XXX This is bogus, as we can not assume any valid
301 * information present in the tm structure at this
302 * point to calculate a real value, so just check the
303 * range for now.
304 */
305 if (!isdigit(*buf))
306 return (NULL);

308 len = 2;
309 for (i = 0; len && isdigit(*buf); buf++) {
310 i *= 10;
311 i += *buf - ’0’;
312 len--;
313 }
314 if (i > 53)
315 return (NULL);

322 if (isspace(*buf))
323 while (*ptr != 0 && !isspace(*ptr))
324 ptr++;

new/usr/src/lib/libc/port/locale/strptime.c 6

317 break;

319 case ’w’:
320 if (!isdigit(*buf))
321 return (NULL);

323 i = *buf - ’0’;
324 if (i > 6)
325 return (NULL);

327 tm->tm_wday = i;

337 if (isspace(*buf))
338 while (*ptr != 0 && !isspace(*ptr))
339 ptr++;
329 break;

331 case ’d’:
332 case ’e’:
333 /*
334 * The %e format has a space before single digits
335 * which we need to skip.
336 */
337 if (isspace(*buf))
338 buf++;
349 /* FALLTHROUGH */
350 case ’d’:
339 /*
340 * The %e specifier is explicitly documented as not
341 * being zero-padded but there is no harm in allowing
342 * such padding.
343 *
344 * XXX The %e specifier may gobble one too many
345 * digits if used incorrectly.
346 */
347 if (!isdigit(*buf))
348 return (NULL);

350 len = 2;
351 for (i = 0; len && isdigit(*buf); buf++) {
352 i *= 10;
353 i += *buf - ’0’;
354 len--;
355 }
356 if (i > 31)
357 return (NULL);

359 tm->tm_mday = i;

373 if (isspace(*buf))
374 while (*ptr != 0 && !isspace(*ptr))
375 ptr++;
361 break;

363 case ’B’:
364 case ’b’:
365 case ’h’:
366 for (i = 0; i < asizeof(tptr->month); i++) {
367 len = strlen(tptr->month[i]);
368 if (strncasecmp(buf, tptr->month[i], len) == 0)
369 break;
370 }
371 /*
372 * Try the abbreviated month name if the full name
373 * wasn’t found.
374 */

new/usr/src/lib/libc/port/locale/strptime.c 7

375 if (i == asizeof(tptr->month)) {
376 for (i = 0; i < asizeof(tptr->month); i++) {
377 len = strlen(tptr->mon[i]);
378 if (strncasecmp(buf, tptr->mon[i],
379 len) == 0)
380 break;
381 }
382 }
383 if (i == asizeof(tptr->month))
384 return (NULL);

386 tm->tm_mon = i;
387 buf += len;
388 break;

390 case ’m’:
391 if (!isdigit(*buf))
392 return (NULL);

394 len = 2;
395 for (i = 0; len && isdigit(*buf); buf++) {
396 i *= 10;
397 i += *buf - ’0’;
398 len--;
399 }
400 if (i < 1 || i > 12)
401 return (NULL);

403 tm->tm_mon = i - 1;

420 if (isspace(*buf))
421 while (*ptr != NULL && !isspace(*ptr))
422 ptr++;
405 break;

407 case ’s’:
408 {
409 char *cp;
410 int sverrno;
411 time_t t;

413 sverrno = errno;
414 errno = 0;
415 t = strtol(buf, &cp, 10);
416 if (errno == ERANGE) {
417 errno = sverrno;
418 return (NULL);
419 }
420 errno = sverrno;
421 buf = cp;
422 (void) gmtime_r(&t, tm);
423 *flagsp |= F_GMT;
424 }
425 break;

427 case ’Y’:
428 case ’y’:
429 if (*buf == NULL || isspace(*buf))
430 break;

432 if (!isdigit(*buf))
433 return (NULL);

435 len = (c == ’Y’) ? 4 : 2;
436 for (i = 0; len && isdigit(*buf); buf++) {
437 i *= 10;

new/usr/src/lib/libc/port/locale/strptime.c 8

438 i += *buf - ’0’;
439 len--;
440 }
441 if (c == ’Y’)
442 i -= 1900;
443 if (c == ’y’ && i < 69)
444 i += 100;
445 if (i < 0)
446 return (NULL);

448 tm->tm_year = i;

468 if (isspace(*buf))
469 while (*ptr != 0 && !isspace(*ptr))
470 ptr++;
450 break;

452 case ’Z’:
453 {
454 const char *cp = buf;
455 char *zonestr;

457 while (isupper(*cp))
458 ++cp;
459 if (cp - buf) {
460 zonestr = alloca(cp - buf + 1);
461 (void) strncpy(zonestr, buf, cp - buf);
462 zonestr[cp - buf] = ’\0’;
463 tzset();
464 if (strcmp(zonestr, "GMT") == 0) {
465 *flagsp |= F_GMT;
466 } else if (0 == strcmp(zonestr, tzname[0])) {
467 tm->tm_isdst = 0;
468 } else if (0 == strcmp(zonestr, tzname[1])) {
469 tm->tm_isdst = 1;
470 } else {
471 return (NULL);
472 }
473 buf += cp - buf;
474 }
475 }
476 break;

478 case ’z’:
479 {
480 int sign = 1;

482 if (*buf != ’+’) {
483 if (*buf == ’-’)
484 sign = -1;
485 else
486 return (NULL);
487 }
488 buf++;
489 i = 0;
490 for (len = 4; len > 0; len--) {
491 if (!isdigit(*buf))
492 return (NULL);
493 i *= 10;
494 i += *buf - ’0’;
495 buf++;
496 }

498 tm->tm_hour -= sign * (i / 100);
499 tm->tm_min -= sign * (i % 100);
500 *flagsp |= F_GMT;

new/usr/src/lib/libc/port/locale/strptime.c 9

501 }
502 break;
503 case ’n’:
504 case ’t’:
505 while (isspace(*buf))
506 buf++;
507 break;
508 }
509 }

511 if (!recurse) {
512 if (buf && (*flagsp & F_GMT)) {
513 time_t t = timegm(tm);
514 (void) localtime_r(&t, tm);
515 }
516 }

518 return ((char *)buf);
519 }

______unchanged_portion_omitted_

