
new/usr/src/cmd/sgs/lex/common/main.c 1

**
 8630 Fri Jan 3 08:20:33 2014
new/usr/src/cmd/sgs/lex/common/main.c
2926 lex ignores -Y
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2014 Gary Mills
23 *
24 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
25 * Use is subject to license terms.
26 */

28 /* Copyright (c) 1988 AT&T */
29 /* All Rights Reserved */

31 /* Copyright 1976, Bell Telephone Laboratories, Inc. */

31 #pragma ident "%Z%%M% %I% %E% SMI"

33 #include <string.h>
34 #include "once.h"
35 #include "sgs.h"
36 #include <locale.h>
37 #include <limits.h>

39 static wchar_t L_INITIAL[] = {’I’, ’N’, ’I’, ’T’, ’I’, ’A’, ’L’, 0};
40 static void get1core(void);
41 static void free1core(void);
42 static void get2core(void);
43 static void free2core(void);
44 static void get3core(void);
45 #ifdef DEBUG
46 static void free3core(void);
47 #endif

49 int
50 main(int argc, char **argv)
51 {
52 int i;
53 int c;
54 char *apath = NULL;
55 char *ypath;
54 char *path = NULL;
56 Boolean eoption = 0, woption = 0;

58 sargv = argv;

new/usr/src/cmd/sgs/lex/common/main.c 2

59 sargc = argc;
60 (void) setlocale(LC_ALL, "");
61 #ifdef DEBUG
62 while ((c = getopt(argc, argv, "dyctvnewVQ:Y:")) != EOF) {
63 #else
64 while ((c = getopt(argc, argv, "ctvnewVQ:Y:")) != EOF) {
65 #endif
66 switch (c) {
67 #ifdef DEBUG
68 case ’d’:
69 debug++;
70 break;
71 case ’y’:
72 yydebug = TRUE;
73 break;
74 #endif
75 case ’V’:
76 (void) fprintf(stderr, "lex: %s %s\n",
77 (const char *)SGU_PKG,
78 (const char *)SGU_REL);
79 break;
80 case ’Q’:
81 v_stmp = optarg;
82 if (*v_stmp != ’y’ && *v_stmp != ’n’)
83 error(
84 "lex: -Q should be followed by [y/n]");
85 break;
86 case ’Y’:
87 apath = (char *)malloc(strlen(optarg) +
86 path = (char *)malloc(strlen(optarg) +
88 sizeof ("/nceucform") + 1);
89 if (apath == NULL)
90 error("No available memory "
91 "for directory name.");
92 else
93 apath = strcpy(apath, optarg);
88 path = strcpy(path, optarg);
94 break;
95 case ’c’:
96 ratfor = FALSE;
97 break;
98 case ’t’:
99 fout = stdout;
100 break;
101 case ’v’:
102 report = 1;
103 break;
104 case ’n’:
105 report = 0;
106 break;
107 case ’w’:
108 case ’W’:
109 woption = 1;
110 handleeuc = 1;
111 widecio = 1;
112 break;
113 case ’e’:
114 case ’E’:
115 eoption = 1;
116 handleeuc = 1;
117 widecio = 0;
118 break;
119 default:
120 (void) fprintf(stderr,
121 "Usage: lex [-ewctvnV] [-Y directory] "
122 "[-Q(y/n)] [file]\n");

new/usr/src/cmd/sgs/lex/common/main.c 3

116 "Usage: lex [-ewctvnVY] [-Q(y/n)] [file]\n");
123 exit(1);
124 }
125 }
126 if (woption && eoption) {
127 error(
128 "You may not specify both -w and -e simultaneously.");
129 }
130 no_input = argc - optind;
131 if (no_input) {
132 /* XCU4: recognize "-" file operand for stdin */
133 if (strcmp(argv[optind], "-") == 0)
134 fin = stdin;
135 else {
136 fin = fopen(argv[optind], "r");
137 if (fin == NULL)
138 error(
139 "Can’t open input file -- %s", argv[optind]);
140 }
141 } else
142 fin = stdin;

144 /* may be gotten: def, subs, sname, schar, ccl, dchar */
145 (void) gch();

147 /* may be gotten: name, left, right, nullstr, parent */
148 get1core();

150 scopy(L_INITIAL, sp);
151 sname[0] = sp;
152 sp += slength(L_INITIAL) + 1;
153 sname[1] = 0;

155 /* XCU4: %x exclusive start */
156 exclusive[0] = 0;

158 if (!handleeuc) {
159 /*
160 * Set ZCH and ncg to their default values
161 * as they may be needed to handle %t directive.
162 */
163 ZCH = ncg = NCH; /* ncg behaves as constant in this mode. */
164 }

166 /* may be disposed of: def, subs, dchar */
167 if (yyparse())
168 exit(1); /* error return code */

170 if (handleeuc) {
171 ncg = ncgidtbl * 2;
172 ZCH = ncg;
173 if (ncg >= MAXNCG)
174 error(
175 "Too complex rules -- requires too many char groups.");
176 sortcgidtbl();
177 }
178 repbycgid(); /* Call this even in ASCII compat. mode. */

180 /*
181 * maybe get:
182 * tmpstat, foll, positions, gotof, nexts,
183 * nchar, state, atable, sfall, cpackflg
184 */
185 free1core();
186 get2core();
187 ptail();

new/usr/src/cmd/sgs/lex/common/main.c 4

188 mkmatch();
189 #ifdef DEBUG
190 if (debug)
191 pccl();
192 #endif
193 sect = ENDSECTION;
194 if (tptr > 0)
195 cfoll(tptr-1);
196 #ifdef DEBUG
197 if (debug)
198 pfoll();
199 #endif
200 cgoto();
201 #ifdef DEBUG
202 if (debug) {
203 (void) printf("Print %d states:\n", stnum + 1);
204 for (i = 0; i <= stnum; i++)
205 stprt(i);
206 }
207 #endif
208 /*
209 * may be disposed of:
210 * positions, tmpstat, foll, state, name,
211 * left, right, parent, ccl, schar, sname
212 * maybe get: verify, advance, stoff
213 */
214 free2core();
215 get3core();
216 layout();
217 /*
218 * may be disposed of:
219 * verify, advance, stoff, nexts, nchar,
220 * gotof, atable, ccpackflg, sfall
221 */

223 #ifdef DEBUG
224 free3core();
225 #endif

227 if (handleeuc) {
228 if (ratfor)
229 error("Ratfor is not supported by -w or -e option.");
230 ypath = EUCNAME;
224 path = EUCNAME;
231 }
232 else
233 ypath = ratfor ? RATNAME : CNAME;
227 path = ratfor ? RATNAME : CNAME;

235 if (apath != NULL)
236 ypath = strcat(apath, strrchr(ypath, ’/’));
237 fother = fopen(ypath, "r");
229 fother = fopen(path, "r");
238 if (fother == NULL)
239 error("Lex driver missing, file %s", ypath);
231 error("Lex driver missing, file %s", path);
240 while ((i = getc(fother)) != EOF)
241 (void) putc((char)i, fout);
242 (void) fclose(fother);
243 (void) fclose(fout);
244 free(apath);
245 if (report == 1)
246 statistics();
247 (void) fclose(stdout);
248 (void) fclose(stderr);
249 return (0); /* success return code */

new/usr/src/cmd/sgs/lex/common/main.c 5

250 }
______unchanged_portion_omitted_

new/usr/src/man/man1/lex.1 1

**
 32535 Fri Jan 3 08:20:33 2014
new/usr/src/man/man1/lex.1
2926 lex ignores -Y
**

1 ’\" te
2 .\" Copyright (c) 2014 Gary Mills
3 .\" Copyright (c) 1992, X/Open Company Limited All Rights Reserved Portions C
4 .\" Sun Microsystems, Inc. gratefully acknowledges The Open Group for permission
5 .\" http://www.opengroup.org/bookstore/.
6 .\" The Institute of Electrical and Electronics Engineers and The Open Group, ha
7 .\" This notice shall appear on any product containing this material.
8 .\" The contents of this file are subject to the terms of the Common Development
9 .\" You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE or http:

10 .\" When distributing Covered Code, include this CDDL HEADER in each file and in
11 .TH LEX 1 "Jan 1, 2014"
10 .TH LEX 1 "Aug 22, 1997"
12 .SH NAME
13 lex \- generate programs for lexical tasks
14 .SH SYNOPSIS
15 .LP
16 .nf
17 \fBlex\fR [\fB-cntv\fR] [\fB-e\fR | \fB-w\fR] [\fB-V\fR \fB-Q\fR [y | n]] [\fB-Y
16 \fBlex\fR [\fB-cntv\fR] [\fB-e\fR | \fB-w\fR] [\fB-V\fR \fB-Q\fR [y | n]] [\fIfi
18 .fi

20 .SH DESCRIPTION
21 .sp
22 .LP
23 The \fBlex\fR utility generates C programs to be used in lexical processing of
24 character input, and that can be used as an interface to \fByacc\fR. The C
25 programs are generated from \fBlex\fR source code and conform to the ISO C
26 standard. Usually, the \fBlex\fR utility writes the program it generates to the
27 file \fBlex.yy.c\fR. The state of this file is unspecified if \fBlex\fR exits
28 with a non-zero exit status. See \fBEXTENDED DESCRIPTION\fR for a complete
29 description of the \fBlex\fR input language.
30 .SH OPTIONS
31 .sp
32 .LP
33 The following options are supported:
34 .sp
35 .ne 2
36 .na
37 \fB\fB-c\fR \fR
38 .ad
39 .RS 12n
40 Indicates C-language action (default option).
41 .RE

43 .sp
44 .ne 2
45 .na
46 \fB\fB-e\fR \fR
47 .ad
48 .RS 12n
49 Generates a program that can handle \fBEUC\fR characters (cannot be used with
50 the \fB-w\fR option). \fByytext[\|]\fR is of type \fBunsigned char[\|]\fR.
51 .RE

53 .sp
54 .ne 2
55 .na
56 \fB\fB-n\fR \fR
57 .ad
58 .RS 12n
59 Suppresses the summary of statistics usually written with the \fB-v\fR option.

new/usr/src/man/man1/lex.1 2

60 If no table sizes are specified in the \fBlex\fR source code and the \fB-v\fR
61 option is not specified, then \fB-n\fR is implied.
62 .RE

64 .sp
65 .ne 2
66 .na
67 \fB\fB-t\fR \fR
68 .ad
69 .RS 12n
70 Writes the resulting program to standard output instead of \fBlex.yy.c\fR.
71 .RE

73 .sp
74 .ne 2
75 .na
76 \fB\fB-v\fR \fR
77 .ad
78 .RS 12n
79 Writes a summary of \fBlex\fR statistics to the standard error. (See the
80 discussion of \fBlex\fR table sizes under the heading \fBDefinitions in
81 lex\fR.) If table sizes are specified in the \fBlex\fR source code, and if the
82 \fB-n\fR option is not specified, the \fB-v\fR option may be enabled.
83 .RE

85 .sp
86 .ne 2
87 .na
88 \fB\fB-w\fR \fR
89 .ad
90 .RS 12n
91 Generates a program that can handle \fBEUC\fR characters (cannot be used with
92 the \fB-e\fR option). Unlike the \fB-e\fR option, \fByytext[\|]\fR is of type
93 \fBwchar_t[\|]\fR.
94 .RE

96 .sp
97 .ne 2
98 .na
99 \fB\fB-V\fR \fR
100 .ad
101 .RS 12n
102 Prints out version information on standard error.
103 .RE

105 .sp
106 .ne 2
107 .na
108 \fB\fB\fR\fB-Q\fR\fB[y|n]\fR \fR
109 .ad
110 .RS 12n
111 Prints out version information to output file \fBlex.yy.c\fR by using
112 \fB-Qy\fR. The \fB-Qn\fR option does not print out version information and is
113 the default.
114 .RE

116 .sp
117 .ne 2
118 .na
119 \fB\fB\fR\fB-Y\fR \fBdirectory\fR \fR
120 .ad
121 .RS 12n
122 Designates an alternate directory that contains the driver files
123 used by \fBlex\fR.
124 .RE

new/usr/src/man/man1/lex.1 3

126 .SH OPERANDS
127 .sp
128 .LP
129 The following operand is supported:
130 .sp
131 .ne 2
132 .na
133 \fB\fIfile\fR \fR
134 .ad
135 .RS 9n
136 A pathname of an input file. If more than one such \fIfile\fR is specified, all
137 files will be concatenated to produce a single \fBlex\fR program. If no
138 \fIfile\fR operands are specified, or if a \fIfile\fR operand is \fB\(mi\fR,
139 the standard input will be used.
140 .RE

142 .SH OUTPUT
143 .sp
144 .LP
145 The \fBlex\fR output files are described below.
146 .SS "Stdout"
147 .sp
148 .LP
149 If the \fB-t\fR option is specified, the text file of C source code output of
150 \fBlex\fR will be written to standard output.
151 .SS "Stderr"
152 .sp
153 .LP
154 If the \fB-t\fR option is specified informational, error and warning messages
155 concerning the contents of \fBlex\fR source code input will be written to the
156 standard error.
157 .sp
158 .LP
159 If the \fB-t\fR option is not specified:
160 .RS +4
161 .TP
162 1.
163 Informational error and warning messages concerning the contents of
164 \fBlex\fR source code input will be written to either the standard output or
165 standard error.
166 .RE
167 .RS +4
168 .TP
169 2.
170 If the \fB-v\fR option is specified and the \fB-n\fR option is not
171 specified, \fBlex\fR statistics will also be written to standard error. These
172 statistics may also be generated if table sizes are specified with a \fB%\fR
173 operator in the \fBDefinitions\fR \fBin\fR \fBlex\fR section (see \fBEXTENDED
174 DESCRIPTION\fR), as long as the \fB-n\fR option is not specified.
175 .RE
176 .SS "Output Files"
177 .sp
178 .LP
179 A text file containing C source code will be written to \fBlex.yy.c\fR, or to
180 the standard output if the \fB-t\fR option is present.
181 .SH EXTENDED DESCRIPTION
182 .sp
183 .LP
184 Each input file contains \fBlex\fR source code, which is a table of regular
185 expressions with corresponding actions in the form of C program fragments.
186 .sp
187 .LP
188 When \fBlex.yy.c\fR is compiled and linked with the \fBlex\fR library (using
189 the \fB\fR\fB-l\fR\fB l\fR operand with \fBc89\fR or \fBcc\fR), the resulting
190 program reads character input from the standard input and partitions it into
191 strings that match the given expressions.

new/usr/src/man/man1/lex.1 4

192 .sp
193 .LP
194 When an expression is matched, these actions will occur:
195 .RS +4
196 .TP
197 .ie t \(bu
198 .el o
199 The input string that was matched is left in \fIyytext\fR as a null-terminated
200 string; \fIyytext\fR is either an external character array or a pointer to a
201 character string. As explained in \fBDefinitions in lex\fR, the type can be
202 explicitly selected using the \fB%array\fR or \fB%pointer\fR declarations, but
203 the default is \fB%array\fR.
204 .RE
205 .RS +4
206 .TP
207 .ie t \(bu
208 .el o
209 The external \fBint\fR \fIyyleng\fR is set to the length of the matching
210 string.
211 .RE
212 .RS +4
213 .TP
214 .ie t \(bu
215 .el o
216 The expression’s corresponding program fragment, or action, is executed.
217 .RE
218 .sp
219 .LP
220 During pattern matching, \fBlex\fR searches the set of patterns for the single
221 longest possible match. Among rules that match the same number of characters,
222 the rule given first will be chosen.
223 .sp
224 .LP
225 The general format of \fBlex\fR source is:
226 .sp
227 .in +2
228 .nf
229 \fIDefinitions\fR
230 %%
231 \fIRules\fR
232 %%
233 \fIUser Subroutines\fR
234 .fi
235 .in -2

237 .sp
238 .LP
239 The first \fB%%\fR is required to mark the beginning of the rules (regular
240 expressions and actions); the second \fB%%\fR is required only if user
241 subroutines follow.
242 .sp
243 .LP
244 Any line in the \fBDefinitions\fR \fBin\fR \fBlex\fR section beginning with a
245 blank character will be assumed to be a C program fragment and will be copied
246 to the external definition area of the \fBlex.yy.c\fR file. Similarly, anything
247 in the \fBDefinitions\fR \fBin\fR \fBlex\fR section included between delimiter
248 lines containing only \fB%{\fR and \fB%}\fR will also be copied unchanged to
249 the external definition area of the \fBlex.yy.c\fR file.
250 .sp
251 .LP
252 Any such input (beginning with a blank character or within \fB%{\fR and
253 \fB%}\fR delimiter lines) appearing at the beginning of the \fIRules\fR section
254 before any rules are specified will be written to \fBlex.yy.c\fR after the
255 declarations of variables for the \fByylex\fR function and before the first
256 line of code in \fByylex\fR. Thus, user variables local to \fByylex\fR can be
257 declared here, as well as application code to execute upon entry to

new/usr/src/man/man1/lex.1 5

258 \fByylex\fR.
259 .sp
260 .LP
261 The action taken by \fBlex\fR when encountering any input beginning with a
262 blank character or within \fB%{\fR and \fB%}\fR delimiter lines appearing in
263 the \fIRules\fR section but coming after one or more rules is undefined. The
264 presence of such input may result in an erroneous definition of the \fByylex\fR
265 function.
266 .SS "Definitions in lex"
267 .sp
268 .LP
269 \fBDefinitions\fR \fBin\fR \fBlex\fR appear before the first \fB%%\fR
270 delimiter. Any line in this section not contained between \fB%{\fR and \fB%}\fR
271 lines and not beginning with a blank character is assumed to define a \fBlex\fR
272 substitution string. The format of these lines is:
273 .sp
274 .in +2
275 .nf
276 \fIname substitute\fR
277 .fi
278 .in -2
279 .sp

281 .sp
282 .LP
283 If a \fIname\fR does not meet the requirements for identifiers in the ISO C
284 standard, the result is undefined. The string \fIsubstitute\fR will replace the
285 string \fI{\fR \fIname\fR \fI}\fR when it is used in a rule. The \fIname\fR
286 string is recognized in this context only when the braces are provided and when
287 it does not appear within a bracket expression or within double-quotes.
288 .sp
289 .LP
290 In the \fBDefinitions\fR \fBin\fR \fBlex\fR section, any line beginning with a
291 \fB%\fR (percent sign) character and followed by an alphanumeric word beginning
292 with either \fBs\fR or \fBS\fR defines a set of start conditions. Any line
293 beginning with a \fB%\fR followed by a word beginning with either \fBx\fR or
294 \fBX\fR defines a set of exclusive start conditions. When the generated scanner
295 is in a \fB%s\fR state, patterns with no state specified will be also active;
296 in a \fB%x\fR state, such patterns will not be active. The rest of the line,
297 after the first word, is considered to be one or more blank-character-separated
298 names of start conditions. Start condition names are constructed in the same
299 way as definition names. Start conditions can be used to restrict the matching
300 of regular expressions to one or more states as described in \fBRegular
301 expressions in lex\fR.
302 .sp
303 .LP
304 Implementations accept either of the following two mutually exclusive
305 declarations in the \fBDefinitions\fR \fBin\fR \fBlex\fR section:
306 .sp
307 .ne 2
308 .na
309 \fB\fB%array\fR \fR
310 .ad
311 .RS 13n
312 Declare the type of \fIyytext\fR to be a null-terminated character array.
313 .RE

315 .sp
316 .ne 2
317 .na
318 \fB\fB%pointer\fR \fR
319 .ad
320 .RS 13n
321 Declare the type of \fIyytext\fR to be a pointer to a null-terminated character
322 string.
323 .RE

new/usr/src/man/man1/lex.1 6

325 .sp
326 .LP
327 \fBNote:\fR When using the \fB%pointer\fR option, you may not also use the
328 \fByyless\fR function to alter \fIyytext\fR.
329 .sp
330 .LP
331 \fB%array\fR is the default. If \fB%array\fR is specified (or neither
332 \fB%array\fR nor \fB%pointer\fR is specified), then the correct way to make an
333 external reference to \fIyyext\fR is with a declaration of the form:
334 .sp
335 .LP
336 \fBextern char\fR\fI yytext\fR\fB[\|]\fR
337 .sp
338 .LP
339 If \fB%pointer\fR is specified, then the correct external reference is of the
340 form:
341 .sp
342 .LP
343 \fBextern char *\fR\fIyytext\fR\fB;\fR
344 .sp
345 .LP
346 \fBlex\fR will accept declarations in the \fBDefinitions in lex\fR section for
347 setting certain internal table sizes. The declarations are shown in the
348 following table.
349 .sp
350 .LP
351 \fBTable\fR \fBSize\fR \fBDeclaration\fR \fBin\fR \fBlex\fR
352 .sp

354 .sp
355 .TS
356 box;
357 c c c
358 l l l .
359 \fBDeclaration\fR \fBDescription\fR \fBDefault\fR
360 _
361 \fB%p\fR\fIn\fR Number of positions 2500
362 \fB%n\fR\fIn\fR Number of states 500
363 \fB%a\fR\fI n\fR Number of transitions 2000
364 \fB%e\fR\fIn\fR Number of parse tree nodes 1000
365 \fB%k\fR\fIn\fR Number of packed character classes 10000
366 \fB%o\fR\fIn\fR Size of the output array 3000
367 .TE

369 .sp
370 .LP
371 Programs generated by \fBlex\fR need either the \fB-e\fR or \fB-w\fR option to
372 handle input that contains \fBEUC\fR characters from supplementary codesets. If
373 neither of these options is specified, \fByytext\fR is of the type
374 \fBchar[\|]\fR, and the generated program can handle only \fBASCII\fR
375 characters.
376 .sp
377 .LP
378 When the \fB-e\fR option is used, \fByytext\fR is of the type \fBunsigned\fR
379 \fBchar[\|]\fR and \fByyleng\fR gives the total number of \fIbytes\fR in the
380 matched string. With this option, the macros \fBinput()\fR,
381 \fBunput(\fIc\fR)\fR, and \fBoutput(\fIc\fR)\fR should do a byte-based
382 \fBI/O\fR in the same way as with the regular \fBASCII\fR \fBlex\fR. Two more
383 variables are available with the \fB-e\fR option, \fByywtext\fR and
384 \fByywleng\fR, which behave the same as \fByytext\fR and \fByyleng\fR would
385 under the \fB-w\fR option.
386 .sp
387 .LP
388 When the \fB-w\fR option is used, \fByytext\fR is of the type \fBwchar_t[\|]\fR
389 and \fByyleng\fR gives the total number of \fIcharacters\fR in the matched

new/usr/src/man/man1/lex.1 7

390 string. If you supply your own \fBinput()\fR, \fBunput(\fIc\fR)\fR, or
391 \fBoutput(\fR\fIc\fR\fB)\fR macros with this option, they must return or accept
392 \fBEUC\fR characters in the form of wide character (\fBwchar_t\fR). This allows
393 a different interface between your program and the lex internals, to expedite
394 some programs.
395 .SS "Rules in lex"
396 .sp
397 .LP
398 The \fBRules\fR \fBin\fR \fBlex\fR source files are a table in which the left
399 column contains regular expressions and the right column contains actions (C
400 program fragments) to be executed when the expressions are recognized.
401 .sp
402 .in +2
403 .nf
404 \fIERE action\fR
405 \fIERE action\fR
406 \&...
407 .fi
408 .in -2

410 .sp
411 .LP
412 The extended regular expression (ERE) portion of a row will be separated from
413 \fIaction\fR by one or more blank characters. A regular expression containing
414 blank characters is recognized under one of the following conditions:
415 .RS +4
416 .TP
417 .ie t \(bu
418 .el o
419 The entire expression appears within double-quotes.
420 .RE
421 .RS +4
422 .TP
423 .ie t \(bu
424 .el o
425 The blank characters appear within double-quotes or square brackets.
426 .RE
427 .RS +4
428 .TP
429 .ie t \(bu
430 .el o
431 Each blank character is preceded by a backslash character.
432 .RE
433 .SS "User Subroutines in lex"
434 .sp
435 .LP
436 Anything in the user subroutines section will be copied to \fBlex.yy.c\fR
437 following \fByylex\fR.
438 .SS "Regular Expressions in lex"
439 .sp
440 .LP
441 The \fBlex\fR utility supports the set of Extended Regular Expressions (EREs)
442 described on \fBregex\fR(5) with the following additions and exceptions to the
443 syntax:
444 .sp
445 .ne 2
446 .na
447 \fB\fB\|.\|.\|.\fR \fR
448 .ad
449 .RS 14n
450 Any string enclosed in double-quotes will represent the characters within the
451 double-quotes as themselves, except that backslash escapes (which appear in the
452 following table) are recognized. Any backslash-escape sequence is terminated by
453 the closing quote. For example, "\|\e\|01""1" represents a single string: the
454 octal value 1 followed by the character 1.
455 .RE

new/usr/src/man/man1/lex.1 8

457 .sp
458 .LP
459 \fI<\fR\fIstate\fR\fI>\fR\fIr\fR
460 .sp
461 .ne 2
462 .na
463 \fB<\fIstate1\fR, \fIstate2\fR, \|.\|.\|.\|>\fIr\fR\fR
464 .ad
465 .sp .6
466 .RS 4n
467 The regular expression \fIr\fR will be matched only when the program is in one
468 of the start conditions indicated by \fIstate\fR, \fIstate1\fR, and so forth.
469 For more information, see \fBActions in lex\fR. As an exception to the
470 typographical conventions of the rest of this document, in this case
471 <\fIstate\fR> does not represent a metavariable, but the literal angle-bracket
472 characters surrounding a symbol. The start condition is recognized as such only
473 at the beginning of a regular expression.
474 .RE

476 .sp
477 .ne 2
478 .na
479 \fB\fIr\fR/\fIx\fR \fR
480 .ad
481 .sp .6
482 .RS 4n
483 The regular expression \fIr\fR will be matched only if it is followed by an
484 occurrence of regular expression \fIx\fR. The token returned in \fIyytext\fR
485 will only match \fIr\fR. If the trailing portion of \fIr\fR matches the
486 beginning of \fIx\fR, the result is unspecified. The \fIr\fR expression cannot
487 include further trailing context or the \fB$\fR (match-end-of-line) operator;
488 \fIx\fR cannot include the \fB^\fR (match-beginning-of-line) operator, nor
489 trailing context, nor the \fB$\fR operator. That is, only one occurrence of
490 trailing context is allowed in a \fBlex\fR regular expression, and the \fB^\fR
491 operator only can be used at the beginning of such an expression. A further
492 restriction is that the trailing-context operator \fB/\fR (slash) cannot be
493 grouped within parentheses.
494 .RE

496 .sp
497 .ne 2
498 .na
499 \fB\fB{\fR\fIname\fR\fB}\fR \fR
500 .ad
501 .sp .6
502 .RS 4n
503 When \fIname\fR is one of the substitution symbols from the \fIDefinitions\fR
504 section, the string, including the enclosing braces, will be replaced by the
505 \fIsubstitute\fR value. The \fIsubstitute\fR value will be treated in the
506 extended regular expression as if it were enclosed in parentheses. No
507 substitution will occur if \fB{\fR\fIname\fR\fB}\fR occurs within a bracket
508 expression or within double-quotes.
509 .RE

511 .sp
512 .LP
513 Within an \fBERE,\fR a backslash character (\fB\|\e\e\fR, \fB\e\|a\fR,
514 \fB\e\|b\fR, \fB\e\|f\fR, \fB\e\|n\fR, \fB\e\|r\fR, \fB\e\|t\fR, \fB\e\|v\fR)
515 is considered to begin an escape sequence. In addition, the escape sequences in
516 the following table will be recognized.
517 .sp
518 .LP
519 A literal newline character cannot occur within an \fBERE;\fR the escape
520 sequence \fB\e\|n\fR can be used to represent a newline character. A newline
521 character cannot be matched by a period operator.

new/usr/src/man/man1/lex.1 9

522 .sp
523 .LP
524 \fBEscape Sequences in lex\fR
525 .sp

527 .sp
528 .TS
529 box;
530 c c c
531 c c c .
532 Escape Sequences in lex
533 _
534 Escape Sequence Description Meaning
535 _
536 \e\fIdigits\fR T{
537 A backslash character followed by the longest sequence of one, two or three octa
538 T} T{
539 The character whose encoding is represented by the one-, two- or three-digit oct
540 T}
541 _
542 \e\fBx\fR\fIdigits\fR T{
543 A backslash character followed by the longest sequence of hexadecimal-digit char
544 T} T{
545 The character whose encoding is represented by the hexadecimal integer.
546 T}
547 _
548 \e\fIc\fR T{
549 A backslash character followed by any character not described in this table. (\
550 T} The character c, unchanged.
551 .TE

553 .sp
554 .LP
555 The order of precedence given to extended regular expressions for \fBlex\fR is
556 as shown in the following table, from high to low.
557 .sp
558 .ne 2
559 .na
560 \fB\fBNote\fR: \fR
561 .ad
562 .RS 10n
563 The escaped characters entry is not meant to imply that these are operators,
564 but they are included in the table to show their relationships to the true
565 operators. The start condition, trailing context and anchoring notations have
566 been omitted from the table because of the placement restrictions described in
567 this section; they can only appear at the beginning or ending of an \fBERE.\fR
568 .RE

570 .sp

572 .sp
573 .TS
574 box;
575 c c
576 l l .
577 ERE Precedence in lex
578 _
579 \fIcollation-related bracket symbols\fR \fB[= =] [: :] [. .]\fR
580 \fIescaped characters\fR \fB\e<\fR\fIspecial character\fR>
581 \fIbracket expression\fR \fB[]\fR
582 \fIquoting\fR \fB".\|.\|."\fR
583 \fIgrouping\fR \fB()\fR
584 \fIdefinition\fR \fB{\fR\fIname\fR}
585 \fIsingle-character RE duplication\fR \fB* + ?\fR
586 \fIconcatenation\fR
587 \fIinterval expression\fR \fB{\fR\fIm\fR,\fIn\fR}

new/usr/src/man/man1/lex.1 10

588 \fIalternation\fR \fB|\fR
589 .TE

591 .sp
592 .LP
593 The \fBERE\fR anchoring operators (\fB\|^\fR and \fB$\fR\|) do not appear in
594 the table. With \fBlex\fR regular expressions, these operators are restricted
595 in their use: the \fB^\fR operator can only be used at the beginning of an
596 entire regular expression, and the \fB$\fR operator only at the end. The
597 operators apply to the entire regular expression. Thus, for example, the
598 pattern (\fB^abc)|(def$\fR) is undefined; it can instead be written as two
599 separate rules, one with the regular expression \fB^abc\fR and one with
600 \fBdef$\fR, which share a common action via the special \fB|\fR action (see
601 below). If the pattern were written \fB^abc|def$\fR, it would match either of
602 \fBabc\fR or \fBdef\fR on a line by itself.
603 .sp
604 .LP
605 Unlike the general \fBERE\fR rules, embedded anchoring is not allowed by most
606 historical \fBlex\fR implementations. An example of embedded anchoring would be
607 for patterns such as (^)foo($) to match \fBfoo\fR when it exists as a complete
608 word. This functionality can be obtained using existing \fBlex\fR features:
609 .sp
610 .in +2
611 .nf
612 ^foo/[\e\|n]|
613 " foo"/[\e\|n] /* found foo as a separate word */
614 .fi
615 .in -2

617 .sp
618 .LP
619 Notice also that \fB$\fR is a form of trailing context (it is equivalent to
620 \fB/\e\|n\fR and as such cannot be used with regular expressions containing
621 another instance of the operator (see the preceding discussion of trailing
622 context).
623 .sp
624 .LP
625 The additional regular expressions trailing-context operator \fB/\fR (slash)
626 can be used as an ordinary character if presented within double-quotes,
627 \fB"\|/\|"\fR; preceded by a backslash, \fB\e\|/\fR; or within a bracket
628 expression, \fB[\|/\|]\fR. The start-condition \fB<\fR and \fB>\fR operators
629 are special only in a start condition at the beginning of a regular expression;
630 elsewhere in the regular expression they are treated as ordinary characters.
631 .sp
632 .LP
633 The following examples clarify the differences between \fBlex\fR regular
634 expressions and regular expressions appearing elsewhere in this document. For
635 regular expressions of the form \fIr\fR/\fIx\fR, the string matching \fIr\fR is
636 always returned; confusion may arise when the beginning of \fIx\fR matches the
637 trailing portion of \fIr\fR. For example, given the regular expression a*b/cc
638 and the input \fBaaabcc\fR, \fIyytext\fR would contain the string \fBaaab\fR on
639 this match. But given the regular expression x*/xy and the input \fBxxxy\fR,
640 the token \fBxxx\fR, not \fBxx\fR, is returned by some implementations because
641 \fBxxx\fR matches x*.
642 .sp
643 .LP
644 In the rule ab*/bc, the b* at the end of \fIr\fR will extend \fIr\fR’s match
645 into the beginning of the trailing context, so the result is unspecified. If
646 this rule were ab/bc, however, the rule matches the text \fBab\fR when it is
647 followed by the text \fBbc\fR. In this latter case, the matching of \fIr\fR
648 cannot extend into the beginning of \fIx\fR, so the result is specified.
649 .SS "Actions in lex"
650 .sp
651 .LP
652 The action to be taken when an \fBERE\fR is matched can be a C program fragment
653 or the special actions described below; the program fragment can contain one or

new/usr/src/man/man1/lex.1 11

654 more C statements, and can also include special actions. The empty C statement
655 \fB;\fR is a valid action; any string in the \fBlex.yy.c\fR input that matches
656 the pattern portion of such a rule is effectively ignored or skipped. However,
657 the absence of an action is not valid, and the action \fBlex\fR takes in such a
658 condition is undefined.
659 .sp
660 .LP
661 The specification for an action, including C statements and special actions,
662 can extend across several lines if enclosed in braces:
663 .sp
664 .in +2
665 .nf
666 ERE <one or more blanks> { program statement
667 program statement }
668 .fi
669 .in -2
670 .sp

672 .sp
673 .LP
674 The default action when a string in the input to a \fBlex.yy.c\fR program is
675 not matched by any expression is to copy the string to the output. Because the
676 default behavior of a program generated by \fBlex\fR is to read the input and
677 copy it to the output, a minimal \fBlex\fR source program that has just
678 \fB%%\fR generates a C program that simply copies the input to the output
679 unchanged.
680 .sp
681 .LP
682 Four special actions are available:
683 .sp
684 .in +2
685 .nf
686 | ECHO; REJECT; BEGIN
687 .fi
688 .in -2
689 .sp

691 .sp
692 .ne 2
693 .na
694 \fB|\fR
695 .ad
696 .RS 12n
697 The action | means that the action for the next rule is the action for this
698 rule. Unlike the other three actions, | cannot be enclosed in braces or be
699 semicolon-terminated. It must be specified alone, with no other actions.
700 .RE

702 .sp
703 .ne 2
704 .na
705 \fB\fBECHO;\fR \fR
706 .ad
707 .RS 12n
708 Writes the contents of the string \fIyytext\fR on the output.
709 .RE

711 .sp
712 .ne 2
713 .na
714 \fB\fBREJECT;\fR \fR
715 .ad
716 .RS 12n
717 Usually only a single expression is matched by a given string in the input.
718 \fBREJECT\fR means "continue to the next expression that matches the current
719 input," and causes whatever rule was the second choice after the current rule

new/usr/src/man/man1/lex.1 12

720 to be executed for the same input. Thus, multiple rules can be matched and
721 executed for one input string or overlapping input strings. For example, given
722 the regular expressions \fBxyz\fR and \fBxy\fR and the input \fBxyz\fR, usually
723 only the regular expression \fBxyz\fR would match. The next attempted match
724 would start after z. If the last action in the \fBxyz\fR rule is \fBREJECT\fR ,
725 both this rule and the \fBxy\fR rule would be executed. The \fBREJECT\fR action
726 may be implemented in such a fashion that flow of control does not continue
727 after it, as if it were equivalent to a \fBgoto\fR to another part of
728 \fByylex\fR. The use of \fBREJECT\fR may result in somewhat larger and slower
729 scanners.
730 .RE

732 .sp
733 .ne 2
734 .na
735 \fB\fBBEGIN\fR \fR
736 .ad
737 .RS 12n
738 The action:
739 .sp
740 \fBBEGIN\fR \fInewstate\fR\fB;\fR
741 .sp
742 switches the state (start condition) to \fInewstate\fR. If the string
743 \fInewstate\fR has not been declared previously as a start condition in the
744 \fBDefinitions\fR \fBin\fR \fBlex\fR section, the results are unspecified. The
745 initial state is indicated by the digit \fB0\fR or the token \fBINITIAL\fR.
746 .RE

748 .sp
749 .LP
750 The functions or macros described below are accessible to user code included in
751 the \fBlex\fR input. It is unspecified whether they appear in the C code output
752 of \fBlex\fR, or are accessible only through the \fB\fR\fB-l\fR\fB l\fR operand
753 to \fBc89\fR or \fBcc\fR (the \fBlex\fR library).
754 .sp
755 .ne 2
756 .na
757 \fB\fBint\fR \fByylex(void)\fR \fR
758 .ad
759 .RS 21n
760 Performs lexical analysis on the input; this is the primary function generated
761 by the \fBlex\fR utility. The function returns zero when the end of input is
762 reached; otherwise it returns non-zero values (tokens) determined by the
763 actions that are selected.
764 .RE

766 .sp
767 .ne 2
768 .na
769 \fB\fBint\fR \fByymore(void)\fR \fR
770 .ad
771 .RS 21n
772 When called, indicates that when the next input string is recognized, it is to
773 be appended to the current value of \fIyytext\fR rather than replacing it; the
774 value in \fIyyleng\fR is adjusted accordingly.
775 .RE

777 .sp
778 .ne 2
779 .na
780 \fB\fBint\fR\fIyyless(int\fR\fB n\fR\fI)\fR \fR
781 .ad
782 .RS 21n
783 Retains \fIn\fR initial characters in \fIyytext\fR, NUL-terminated, and treats
784 the remaining characters as if they had not been read; the value in
785 \fIyyleng\fR is adjusted accordingly.

new/usr/src/man/man1/lex.1 13

786 .RE

788 .sp
789 .ne 2
790 .na
791 \fB\fBint\fR \fBinput(void)\fR \fR
792 .ad
793 .RS 21n
794 Returns the next character from the input, or zero on end-of-file. It obtains
795 input from the stream pointer \fIyyin\fR, although possibly via an intermediate
796 buffer. Thus, once scanning has begun, the effect of altering the value of
797 \fIyyin\fR is undefined. The character read is removed from the input stream of
798 the scanner without any processing by the scanner.
799 .RE

801 .sp
802 .ne 2
803 .na
804 \fB\fBint\fR \fBunput(int\fR \fB\fIc\fR\fR\fB)\fR \fR
805 .ad
806 .RS 21n
807 Returns the character \fIc\fR to the input; \fIyytext\fR and \fIyyleng\fR are
808 undefined until the next expression is matched. The result of using \fIunput\fR
809 for more characters than have been input is unspecified.
810 .RE

812 .sp
813 .LP
814 The following functions appear only in the \fBlex\fR library accessible through
815 the \fB\fR\fB-l\fR\fB l\fR operand; they can therefore be redefined by a
816 portable application:
817 .sp
818 .ne 2
819 .na
820 \fB\fBint\fR \fByywrap(void)\fR \fR
821 .ad
822 .sp .6
823 .RS 4n
824 Called by \fByylex\fR at end-of-file; the default \fByywrap\fR always will
825 return 1. If the application requires \fByylex\fR to continue processing with
826 another source of input, then the application can include a function
827 \fByywrap\fR, which associates another file with the external variable
828 \fBFILE\fR *\fIyyin\fR and will return a value of zero.
829 .RE

831 .sp
832 .ne 2
833 .na
834 \fB\fBint\fR \fBmain(int\fR \fB\fIargc\fR,\fR \fBchar\fR \fB*\fIargv\fR[\|])\fR
835 \fR
836 .ad
837 .sp .6
838 .RS 4n
839 Calls \fByylex\fR to perform lexical analysis, then exits. The user code can
840 contain \fBmain\fR to perform application-specific operations, calling
841 \fByylex\fR as applicable.
842 .RE

844 .sp
845 .LP
846 The reason for breaking these functions into two lists is that only those
847 functions in \fBlibl.a\fR can be reliably redefined by a portable application.
848 .sp
849 .LP
850 Except for \fBinput\fR, \fBunput\fR and \fBmain\fR, all external and static
851 names generated by \fBlex\fR begin with the prefix \fByy\fR or \fBYY\fR.

new/usr/src/man/man1/lex.1 14

852 .SH USAGE
853 .sp
854 .LP
855 Portable applications are warned that in the \fBRules in lex\fR section, an
856 \fBERE\fR without an action is not acceptable, but need not be detected as
857 erroneous by \fBlex\fR. This may result in compilation or run-time errors.
858 .sp
859 .LP
860 The purpose of \fBinput\fR is to take characters off the input stream and
861 discard them as far as the lexical analysis is concerned. A common use is to
862 discard the body of a comment once the beginning of a comment is recognized.
863 .sp
864 .LP
865 The \fBlex\fR utility is not fully internationalized in its treatment of
866 regular expressions in the \fBlex\fR source code or generated lexical analyzer.
867 It would seem desirable to have the lexical analyzer interpret the regular
868 expressions given in the \fBlex\fR source according to the environment
869 specified when the lexical analyzer is executed, but this is not possible with
870 the current \fBlex\fR technology. Furthermore, the very nature of the lexical
871 analyzers produced by \fBlex\fR must be closely tied to the lexical
872 requirements of the input language being described, which will frequently be
873 locale-specific anyway. (For example, writing an analyzer that is used for
874 French text will not automatically be useful for processing other languages.)
875 .SH EXAMPLES
876 .LP
877 \fBExample 1 \fRUsing lex
878 .sp
879 .LP
880 The following is an example of a \fBlex\fR program that implements a
881 rudimentary scanner for a Pascal-like syntax:

883 .sp
884 .in +2
885 .nf
886 %{
887 /* need this for the call to atof() below */
888 #include <math.h>
889 /* need this for printf(), fopen() and stdin below */
890 #include <stdio.h>
891 %}

893 DIGIT [0-9]
894 ID [a-z][a-z0-9]*
895 %%

897 {DIGIT}+ {
898 printf("An integer: %s (%d)\en", yytext,
899 atoi(yytext));
900 }

902 {DIGIT}+"."{DIGIT}* {
903 printf("A float: %s (%g)\en", yytext,
904 atof(yytext));
905 }

907 if|then|begin|end|procedure|function {
908 printf("A keyword: %s\en", yytext);
909 }

911 {ID} printf("An identifier: %s\en", yytext);

913 "+"|"-"|"*"|"/" printf("An operator: %s\en", yytext);

915 "{"[^}\en]*"}" /* eat up one-line comments */

917 [\et\en]+ /* eat up white space */

new/usr/src/man/man1/lex.1 15

919 \&. printf("Unrecognized character: %s\en", yytext);

921 %%

923 int main(int argc, char *argv[\|])
924 {
925 ++argv, --argc; /* skip over program name */
926 if (argc > 0)
927 yyin = fopen(argv[0], "r");
928 else
929 yyin = stdin;
930
931 yylex();
932 }

______unchanged_portion_omitted_

