
new/usr/src/cmd/ssh/include/config.h 1

**********************************************************
   27029 Wed Mar  6 08:38:25 2013
new/usr/src/cmd/ssh/include/config.h
1097 glob(3c) needs to support non-POSIX options
3341 The sftp command should use the native glob()
**********************************************************

1 /* config.h.  Generated by configure.  */
2 /* config.h.in.  Generated from configure.ac by autoheader.  */
3 /* $Id: acconfig.h,v 1.145 2002/09/26 00:38:48 tim Exp $ */

5 /*
6  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
7  * Copyright (c) 2013 Gary Mills
8  */

10 #ifndef _CONFIG_H
11 #define _CONFIG_H

13 #ifdef __cplusplus
14 extern "C" {
15 #endif

18 /* Generated automatically from acconfig.h by autoheader. */
19 /* Please make your changes there */

22 /* Define to a Set Process Title type if your system is */
23 /* supported by bsd-setproctitle.c */
24 /* #undef SPT_TYPE */

26 /* setgroups() NOOP allowed */
27 /* #undef SETGROUPS_NOOP */

29 /* SCO workaround */
30 /* #undef BROKEN_SYS_TERMIO_H */

32 /* If your header files don’t define LOGIN_PROGRAM, then use this (detected) */
33 /* from environment and PATH */
34 #define LOGIN_PROGRAM_FALLBACK "/usr/bin/login"

36 /* Define if your password has a pw_class field */
37 /* #undef HAVE_PW_CLASS_IN_PASSWD */

39 /* Define if your password has a pw_expire field */
40 /* #undef HAVE_PW_EXPIRE_IN_PASSWD */

42 /* Define if your password has a pw_change field */
43 /* #undef HAVE_PW_CHANGE_IN_PASSWD */

45 /* Define if your system uses access rights style file descriptor passing */
46 #define HAVE_ACCRIGHTS_IN_MSGHDR 1

48 /* Define if your system uses ancillary data style file descriptor passing */
49 /* #undef HAVE_CONTROL_IN_MSGHDR */

51 /* Define if you system’s inet_ntoa is busted (e.g. Irix gcc issue) */
52 /* #undef BROKEN_INET_NTOA */

54 /* Define if your system defines sys_errlist[] */
55 #define HAVE_SYS_ERRLIST 1

57 /* Define if your system defines sys_nerr */
58 #define HAVE_SYS_NERR 1

60 /* Define if your system choked on IP TOS setting */

new/usr/src/cmd/ssh/include/config.h 2

61 #define IP_TOS_IS_BROKEN 1

63 /* Define if you have the getuserattr function.  */
64 /* #undef HAVE_GETUSERATTR */

66 /* Work around problematic Linux PAM modules handling of PAM_TTY */
67 #define PAM_TTY_KLUDGE 1

69 /* Define if your snprintf is busted */
70 /* #undef BROKEN_SNPRINTF */

72 /* Define if you are on Cygwin */
73 /* #undef HAVE_CYGWIN */

75 /* Define if you have a broken realpath. */
76 /* #undef BROKEN_REALPATH */

78 /* Define if you are on NEWS-OS */
79 /* #undef HAVE_NEWS4 */

81 /* Define if you want to enable PAM support */
82 #define USE_PAM 1

84 /* Define if you want to enable AIX4’s authenticate function */
85 /* #undef WITH_AIXAUTHENTICATE */

87 /*
88  * Define if you have/want arrays (cluster-wide session managment, not C
89  * arrays)
90  */
91 /* #undef WITH_IRIX_ARRAY */

93 /* Define if you want IRIX project management */
94 /* #undef WITH_IRIX_PROJECT */

96 /* Define if you want IRIX audit trails */
97 /* #undef WITH_IRIX_AUDIT */

99 /* Define if you want IRIX kernel jobs */
100 /* #undef WITH_IRIX_JOBS */

102 /* Location of PRNGD/EGD random number socket */
103 /* #undef PRNGD_SOCKET */

105 /* Port number of PRNGD/EGD random number socket */
106 /* #undef PRNGD_PORT */

108 /* Builtin PRNG command timeout */
109 #define ENTROPY_TIMEOUT_MSEC 200

111 /* non-privileged user for privilege separation */
112 #define SSH_PRIVSEP_USER "sshd"

114 /* Define if you want to install preformatted manpages. */
115 /* #undef MANTYPE */

117 /* Define if your ssl headers are included with #include <openssl/header.h>  */
118 #define HAVE_OPENSSL 1

120 /* Define if Solaris’ OpenSSL lacks AES support */
121 #define SOLARIS_OPENSSL_NO_AES 1

123 /* Define if Solaris-style Least Privilege is available */
124 #define HAVE_SOLARIS_PRIVILEGE 1

126 /* Define if you want Sun’s alternative privilege separation */



new/usr/src/cmd/ssh/include/config.h 3

127 #define ALTPRIVSEP

129 /* Define if you have Solaris-style Contracts */
130 #define HAVE_SOLARIS_CONTRACTS 1

132 /* Define if SVR4-style libcmd (for accessing /etc/default/ files) */
133 #define HAVE_DEFOPEN 1

135 /*
136  * Define if you are linking against RSAref. Used only to print the right
137  * message at run-time.
138  */
139 /* #undef RSAREF */

141 /* struct timeval */
142 #define HAVE_STRUCT_TIMEVAL 1

144 /* struct utmp and struct utmpx fields */
145 /* #undef HAVE_HOST_IN_UTMP */
146 #define HAVE_HOST_IN_UTMPX 1
147 /* #undef HAVE_ADDR_IN_UTMP */
148 /* #undef HAVE_ADDR_IN_UTMPX */
149 /* #undef HAVE_ADDR_V6_IN_UTMP */
150 /* #undef HAVE_ADDR_V6_IN_UTMPX */
151 #define HAVE_SYSLEN_IN_UTMPX 1
152 #define HAVE_PID_IN_UTMP 1
153 #define HAVE_TYPE_IN_UTMP 1
154 #define HAVE_TYPE_IN_UTMPX 1
155 /* #undef HAVE_TV_IN_UTMP */
156 #define HAVE_TV_IN_UTMPX 1
157 #define HAVE_ID_IN_UTMP 1
158 #define HAVE_ID_IN_UTMPX 1
159 #define HAVE_EXIT_IN_UTMP 1
160 #define HAVE_TIME_IN_UTMP 1
161 #define HAVE_TIME_IN_UTMPX 1

163 /* Define if you don’t want to use your system’s login() call */
164 /* #undef DISABLE_LOGIN */

166 /* Define if you don’t want to use pututline() etc. to write [uw]tmp */
167 /* #undef DISABLE_PUTUTLINE */

169 /* Define if you don’t want to use pututxline() etc. to write [uw]tmpx */
170 /* #undef DISABLE_PUTUTXLINE */

172 /* Define if you don’t want to use lastlog */
173 /* #undef DISABLE_LASTLOG */

175 /* Define if you don’t want to use lastlog in session.c */
176 /* #undef NO_SSH_LASTLOG */

178 /* Define if you don’t want to use utmp */
179 #define DISABLE_UTMP 1

181 /* Define if you don’t want to use utmpx */
182 /* #undef DISABLE_UTMPX */

184 /* Define if you don’t want to use wtmp */
185 #define DISABLE_WTMP 1

187 /* Define if you don’t want to use wtmpx */
188 /* #undef DISABLE_WTMPX */

190 /* Some systems need a utmpx entry for /bin/login to work */
191 #define LOGIN_NEEDS_UTMPX 1

new/usr/src/cmd/ssh/include/config.h 4

193 /* Some versions of /bin/login need the TERM supplied on the commandline */
194 #define LOGIN_NEEDS_TERM 1

196 /* Define if your login program cannot handle end of options ("--") */
197 /* #undef LOGIN_NO_ENDOPT */

199 /* Define if you want to specify the path to your lastlog file */
200 #define CONF_LASTLOG_FILE "/var/adm/lastlog"

202 /* Define if you want to specify the path to your utmp file */
203 /* #undef CONF_UTMP_FILE */

205 /* Define if you want to specify the path to your wtmp file */
206 /* #undef CONF_WTMP_FILE */

208 /* Define if you want to specify the path to your utmpx file */
209 /* #undef CONF_UTMPX_FILE */

211 /* Define if you want to specify the path to your wtmpx file */
212 /* #undef CONF_WTMPX_FILE */

214 /* Define if you want external askpass support */
215 /* #undef USE_EXTERNAL_ASKPASS */

217 /* Define if libc defines __progname */
218 #define HAVE___PROGNAME 1

220 /* Define if compiler implements __FUNCTION__ */
221 #define HAVE___FUNCTION__ 1

223 /* Define if compiler implements __func__ */
224 #define HAVE___func__ 1

226 /* Define if you want GSS-API support */
227 #define GSSAPI 1

229 /* Define if you have <gssapi/gssapi.h> */
230 #define SUNW_GSSAPI 1

232 /* Define if you have GSS_Store_cred() */
233 #define HAVE_GSS_STORE_CRED  1

235 /* Define if you have __gss_userok() */
236 #define HAVE___GSS_USEROK 1

238 /* Define for simple authorization of GSS-API principals */
239 /* #undef GSSAPI_SIMPLE_USEROK */

241 /* Define if you have gsscred_name_to_unix_cred() (Solaris) */
242 #define HAVE_GSSCRED_API 1

244 /* Define if you have __gss_oid_to_mech() */
245 #define HAVE_GSS_OID_TO_MECH 1

247 /* Define if you have gss_oid_to_str() */
248 #define HAVE_GSS_OID_TO_STR 1

250 /* Define if you want support for MIT krb5 GSS internals */
251 /* #undef KRB5_GSS */

253 /* Define if you want support for GSI GSS internals */
254 /* #undef GSI_GSS */

256 /* Define if you want raw Kerberos 5 support */
257 /* #undef KRB5 */



new/usr/src/cmd/ssh/include/config.h 5

259 /* Define if you want GSI/Globus authentication support */
260 /* #undef GSI */

262 /* Define this if you are using the Heimdal version of Kerberos V5 */
263 /* #undef HEIMDAL */

265 /* Define if you want Kerberos 4 support */
266 /* #undef KRB4 */

268 /* Define if you want AFS support */
269 /* #undef AFS */

271 /* Define if you want S/Key support */
272 /* #undef SKEY */

274 /* Define if you want TCP Wrappers support */
275 #define LIBWRAP 1

277 /* Define if your libraries define login() */
278 /* #undef HAVE_LOGIN */

280 /* Define if your libraries define getpagesize() */
281 #define HAVE_GETPAGESIZE 1

283 /* Define if xauth is found in your path */
284 #define XAUTH_PATH "/usr/X11/bin/xauth"

286 /* Define if rsh is found in your path */
287 #define RSH_PATH "/usr/bin/rsh"

289 /* Define if you want to allow MD5 passwords */
290 /* #undef HAVE_MD5_PASSWORDS */

292 /* Define if you want to disable shadow passwords */
293 /* #undef DISABLE_SHADOW */

295 /* Define if you want to use shadow password expire field */
296 /* #undef HAS_SHADOW_EXPIRE */

298 /* Define if you have Digital Unix Security Integration Architecture */
299 /* #undef HAVE_OSF_SIA */

301 /* Define if you have getpwanam(3) [SunOS 4.x] */
302 /* #undef HAVE_GETPWANAM */

304 /* Define if you have an old version of PAM which takes only one argument */
305 /* to pam_strerror */
306 /* #undef HAVE_OLD_PAM */

308 /* Define if you are using Solaris-derived PAM which passes pam_messages  */
309 /* to the conversation function with an extra level of indirection */
310 #define PAM_SUN_CODEBASE 1

312 /* Set this to your mail directory if you don’t have maillock.h */
313 /* #undef MAIL_DIRECTORY */

315 /* Data types */
316 #define HAVE_U_INT 1
317 #define HAVE_INTXX_T 1
318 /* #undef HAVE_U_INTXX_T */
319 #define HAVE_UINTXX_T 1
320 #define HAVE_INT64_T 1
321 /* #undef HAVE_U_INT64_T */
322 #define HAVE_U_CHAR 1
323 #define HAVE_SIZE_T 1
324 #define HAVE_SSIZE_T 1

new/usr/src/cmd/ssh/include/config.h 6

325 #define HAVE_CLOCK_T 1
326 #define HAVE_MODE_T 1
327 #define HAVE_PID_T 1
328 #define HAVE_SA_FAMILY_T 1
329 #define HAVE_STRUCT_SOCKADDR_STORAGE 1
330 #define HAVE_STRUCT_ADDRINFO 1
331 #define HAVE_STRUCT_IN6_ADDR 1
332 #define HAVE_STRUCT_SOCKADDR_IN6 1

334 /* Fields in struct sockaddr_storage */
335 #define HAVE_SS_FAMILY_IN_SS 1
336 /* #undef HAVE___SS_FAMILY_IN_SS */

338 /* Define if you have /dev/ptmx */
339 #define HAVE_DEV_PTMX 1

341 /* Define if you have /dev/ptc */
342 /* #undef HAVE_DEV_PTS_AND_PTC */

344 /* Define if you need to use IP address instead of hostname in $DISPLAY */
345 /* #undef IPADDR_IN_DISPLAY */

347 /*
348  * Specify the default $PATH. While /bin is a symbolic link to /usr/bin in
349  * Solaris, to include both of them there may help when users use
350  * ChrootDirectory options with plain SSH connections, without their own shell
351  * profiles.
352  */
353 #define USER_PATH "/usr/bin:/bin"

355 /* Specify location of ssh.pid */
356 #define _PATH_SSH_PIDDIR "/var/run"

358 /* Use IPv4 for connection by default, IPv6 can still if explicity asked */
359 /* #undef IPV4_DEFAULT */

361 /* getaddrinfo is broken (if present) */
362 /* #undef BROKEN_GETADDRINFO */

364 /* Workaround more Linux IPv6 quirks */
365 /* #undef DONT_TRY_OTHER_AF */

367 /* Detect IPv4 in IPv6 mapped addresses and treat as IPv4 */
368 #define IPV4_IN_IPV6 1

370 /* Define if you have BSD auth support */
371 /* #undef BSD_AUTH */

373 /* Define if X11 doesn’t support AF_UNIX sockets on that system */
374 /* #undef NO_X11_UNIX_SOCKETS */

376 /* Define if the concept of ports only accessible to superusers isn’t known */
377 /* #undef NO_IPPORT_RESERVED_CONCEPT */

379 /* Needed for SCO and NeXT */
380 /* #undef BROKEN_SAVED_UIDS */

382 /* Define if your system glob() function has the GLOB_ALTDIRFUNC extension */
383 /* #undef GLOB_HAS_ALTDIRFUNC */
384 #define GLOB_HAS_ALTDIRFUNC 1

386 /* Define if your system glob() function has gl_matchc options in glob_t */
387 /* #undef GLOB_HAS_GL_MATCHC */
388 #define GLOB_HAS_GL_MATCHC 1

390 /*



new/usr/src/cmd/ssh/include/config.h 7

391  * Define in your struct dirent expects you to allocate extra space for
392  * d_name
393  */
394 #define BROKEN_ONE_BYTE_DIRENT_D_NAME 1

396 /* Define if your getopt(3) defines and uses optreset */
397 /* #undef HAVE_GETOPT_OPTRESET */

399 /* Define on *nto-qnx systems */
400 /* #undef MISSING_NFDBITS */

402 /* Define on *nto-qnx systems */
403 /* #undef MISSING_HOWMANY */

405 /* Define on *nto-qnx systems */
406 /* #undef MISSING_FD_MASK */

408 /*
409  * Use libedit or libtecla for sftp
410  * If both USE_LIBEDIT and USE_LIBTECLA are defined, then USE_LIBEDIT will
411  * have higher precedence.
412  */
413 #undef USE_LIBEDIT
414 #define USE_LIBTECLA 1

416 /* Define if you want to use OpenSSL’s internally seeded PRNG only */
417 #define OPENSSL_PRNG_ONLY 1

419 /* Define if you shouldn’t strip ’tty’ from your ttyname in [uw]tmp */
420 /* #undef WITH_ABBREV_NO_TTY */

422 /* Define if you want a different $PATH for the superuser */
423 #define SUPERUSER_PATH "/usr/sbin:/usr/bin"

425 /* Path that unprivileged child will chroot() to in privep mode */
426 /* #undef PRIVSEP_PATH */

428 /* Define if your platform needs to skip post auth file descriptor passing */
429 /* #undef DISABLE_FD_PASSING */

432 /* Define to 1 if the ‘getpgrp’ function requires zero arguments. */
433 #define GETPGRP_VOID 1

435 /* Define to 1 if you have the ‘arc4random’ function. */
436 /* #undef HAVE_ARC4RANDOM */

438 /* Define to 1 if you have the ‘asprintf’ function. */
439 #define HAVE_ASPRINTF 1

441 /* Define to 1 if you have the ‘b64_ntop’ function. */
442 /* #undef HAVE_B64_NTOP */

444 /* Define to 1 if you have the ‘bcopy’ function. */
445 #define HAVE_BCOPY 1

447 /* Define to 1 if you have the ‘bindresvport_sa’ function. */
448 /* #undef HAVE_BINDRESVPORT_SA */

450 /* Define to 1 if you have the <bstring.h> header file. */
451 /* #undef HAVE_BSTRING_H */

453 /* Define to 1 if you have the ‘clock’ function. */
454 #define HAVE_CLOCK 1

456 /* Define to 1 if you have the <crypt.h> header file. */

new/usr/src/cmd/ssh/include/config.h 8

457 #define HAVE_CRYPT_H 1

459 /* Define to 1 if you have the ‘dirname’ function. */
460 #define HAVE_DIRNAME 1

462 /* Define to 1 if you have the <endian.h> header file. */
463 /* #undef HAVE_ENDIAN_H */

465 /* Define to 1 if you have the ‘endutent’ function. */
466 #define HAVE_ENDUTENT 1

468 /* Define to 1 if you have the ‘endutxent’ function. */
469 #define HAVE_ENDUTXENT 1

471 /* Define to 1 if you have the ‘fchmod’ function. */
472 #define HAVE_FCHMOD 1

474 /* Define to 1 if you have the ‘fchown’ function. */
475 #define HAVE_FCHOWN 1

477 /* Define to 1 if you have the <floatingpoint.h> header file. */
478 #define HAVE_FLOATINGPOINT_H 1

480 /* Define to 1 if you have the ‘freeaddrinfo’ function. */
481 #define HAVE_FREEADDRINFO 1

483 /* Define to 1 if you have the ‘futimes’ function. */
484 /* #undef HAVE_FUTIMES */

486 /* Define to 1 if you have the ‘gai_strerror’ function. */
487 #define HAVE_GAI_STRERROR 1

489 /* Define to 1 if you have the ‘getaddrinfo’ function. */
490 #define HAVE_GETADDRINFO 1

492 /* Define to 1 if you have the ‘getcwd’ function. */
493 #define HAVE_GETCWD 1

495 /* Define to 1 if you have the ‘getgrouplist’ function. */
496 /* #undef HAVE_GETGROUPLIST */

498 /* Define to 1 if you have the ‘getluid’ function. */
499 /* #undef HAVE_GETLUID */

501 /* Define to 1 if you have the ‘getnameinfo’ function. */
502 #define HAVE_GETNAMEINFO 1

504 /* Define to 1 if you have the ‘getopt’ function. */
505 #define HAVE_GETOPT 1

507 /* Define to 1 if you have the <getopt.h> header file. */
508 /* #undef HAVE_GETOPT_H */

510 /* Define to 1 if you have the ‘getpeereid’ function. */
511 /* #undef HAVE_GETPEEREID */

513 /* Define to 1 if you have the ‘getpeerucred’ function. */
514 #define HAVE_GETPEERUCRED 1

516 /* Define to 1 if you have the ‘getpwanam’ function. */
517 /* #undef HAVE_GETPWANAM */

519 /* Define to 1 if you have the ‘getrlimit’ function. */
520 #define HAVE_GETRLIMIT 1

522 /* Define to 1 if you have the ‘getrusage’ function. */



new/usr/src/cmd/ssh/include/config.h 9

523 #define HAVE_GETRUSAGE 1

525 /* Define to 1 if you have the ‘gettimeofday’ function. */
526 #define HAVE_GETTIMEOFDAY 1

528 /* Define to 1 if you have the ‘getttyent’ function. */
529 /* #undef HAVE_GETTTYENT */

531 /* Define to 1 if you have the ‘getutent’ function. */
532 #define HAVE_GETUTENT 1

534 /* Define to 1 if you have the ‘getutid’ function. */
535 #define HAVE_GETUTID 1

537 /* Define to 1 if you have the ‘getutline’ function. */
538 #define HAVE_GETUTLINE 1

540 /* Define to 1 if you have the ‘getutxent’ function. */
541 #define HAVE_GETUTXENT 1

543 /* Define to 1 if you have the ‘getutxid’ function. */
544 #define HAVE_GETUTXID 1

546 /* Define to 1 if you have the ‘getutxline’ function. */
547 #define HAVE_GETUTXLINE 1

549 /* Define to 1 if you have the ‘glob’ function. */
550 #define HAVE_GLOB 1

552 /* Define to 1 if you have the <glob.h> header file. */
553 #define HAVE_GLOB_H 1

555 /* Define to 1 if you have the <ia.h> header file. */
556 /* #undef HAVE_IA_H */

558 /* Define to 1 if you have the ‘inet_aton’ function. */
559 /* #undef HAVE_INET_ATON */

561 /* Define to 1 if you have the ‘inet_ntoa’ function. */
562 #define HAVE_INET_NTOA 1

564 /* Define to 1 if you have the ‘inet_ntop’ function. */
565 #define HAVE_INET_NTOP 1

567 /* Define to 1 if you have the ‘innetgr’ function. */
568 #define HAVE_INNETGR 1

570 /* Define to 1 if you have the <inttypes.h> header file. */
571 #define HAVE_INTTYPES_H 1

573 /* Define to 1 if you have the <krb.h> header file. */
574 /* #undef HAVE_KRB_H */

576 /* Define to 1 if you have the <lastlog.h> header file. */
577 #define HAVE_LASTLOG_H 1

579 /* Define to 1 if you have the ‘crypt’ library (-lcrypt). */
580 /* #undef HAVE_LIBCRYPT */

582 /* Define to 1 if you have the ‘des’ library (-ldes). */
583 /* #undef HAVE_LIBDES */

585 /* Define to 1 if you have the ‘des425’ library (-ldes425). */
586 /* #undef HAVE_LIBDES425 */

588 /* Define to 1 if you have the ‘dl’ library (-ldl). */

new/usr/src/cmd/ssh/include/config.h 10

589 #define HAVE_LIBDL 1

591 /* Define to 1 if you have the <libgen.h> header file. */
592 #define HAVE_LIBGEN_H 1

594 /* Define to 1 if you have the ‘krb’ library (-lkrb). */
595 /* #undef HAVE_LIBKRB */

597 /* Define to 1 if you have the ‘krb4’ library (-lkrb4). */
598 /* #undef HAVE_LIBKRB4 */

600 /* Define to 1 if you have the ‘nsl’ library (-lnsl). */
601 #define HAVE_LIBNSL 1

603 /* Define to 1 if you have the ‘pam’ library (-lpam). */
604 #define HAVE_LIBPAM 1

606 /* Define to 1 if you have the ‘resolv’ library (-lresolv). */
607 /* #undef HAVE_LIBRESOLV */

609 /* Define to 1 if you have the ‘sectok’ library (-lsectok). */
610 /* #undef HAVE_LIBSECTOK */

612 /* Define to 1 if you have the ‘socket’ library (-lsocket). */
613 #define HAVE_LIBSOCKET 1

615 /* Define to 1 if you have the <libutil.h> header file. */
616 /* #undef HAVE_LIBUTIL_H */

618 /* Define to 1 if you have the ‘xnet’ library (-lxnet). */
619 /* #undef HAVE_LIBXNET */

621 /* Define to 1 if you have the ‘z’ library (-lz). */
622 #define HAVE_LIBZ 1

624 /* Define to 1 if you have the <limits.h> header file. */
625 #define HAVE_LIMITS_H 1

627 /* Define to 1 if you have the <login.h> header file. */
628 /* #undef HAVE_LOGIN_H */

630 /* Define to 1 if you have the ‘logout’ function. */
631 /* #undef HAVE_LOGOUT */

633 /* Define to 1 if you have the ‘logwtmp’ function. */
634 /* #undef HAVE_LOGWTMP */

636 /* Define to 1 if you have the <maillock.h> header file. */
637 #define HAVE_MAILLOCK_H 1

639 /* Define to 1 if you have the ‘md5_crypt’ function. */
640 /* #undef HAVE_MD5_CRYPT */

642 /* Define to 1 if you have the ‘memmove’ function. */
643 #define HAVE_MEMMOVE 1

645 /* Define to 1 if you have the <memory.h> header file. */
646 #define HAVE_MEMORY_H 1

648 /* Define to 1 if you have mkstemp, mkstemps and mkdtemp */
649 #define HAVE_MKDTEMP 1

651 /* Define to 1 if you have the ‘mmap’ function. */
652 #define HAVE_MMAP 1

654 /* Define to 1 if you have the <netdb.h> header file. */



new/usr/src/cmd/ssh/include/config.h 11

655 #define HAVE_NETDB_H 1

657 /* Define to 1 if you have the <netgroup.h> header file. */
658 /* #undef HAVE_NETGROUP_H */

660 /* Define to 1 if you have the <netinet/in_systm.h> header file. */
661 #define HAVE_NETINET_IN_SYSTM_H 1

663 /* Define to 1 if you have the ‘ngetaddrinfo’ function. */
664 /* #undef HAVE_NGETADDRINFO */

666 /* Define to 1 if you have the ‘ogetaddrinfo’ function. */
667 /* #undef HAVE_OGETADDRINFO */

669 /* Define to 1 if you have the ‘openpty’ function. */
670 /* #undef HAVE_OPENPTY */

672 /* Define to 1 if you have the ‘pam_getenvlist’ function. */
673 #define HAVE_PAM_GETENVLIST 1

675 /* Define to 1 if you have the <paths.h> header file. */
676 /* #undef HAVE_PATHS_H */

678 /* Define to 1 if you have the <pty.h> header file. */
679 /* #undef HAVE_PTY_H */

681 /* Define to 1 if you have the ‘pututline’ function. */
682 #define HAVE_PUTUTLINE 1

684 /* Define to 1 if you have the ‘pututxline’ function. */
685 #define HAVE_PUTUTXLINE 1

687 /* Define to 1 if you have the ‘readpassphrase’ function. */
688 /* #undef HAVE_READPASSPHRASE */

690 /* Define to 1 if you have the <readpassphrase.h> header file. */
691 /* #undef HAVE_READPASSPHRASE_H */

693 /* Define to 1 if you have the ‘realpath’ function. */
694 #define HAVE_REALPATH 1

696 /* Define to 1 if you have the ‘recvmsg’ function. */
697 #define HAVE_RECVMSG 1

699 /* Define to 1 if you have the <rpc/types.h> header file. */
700 #define HAVE_RPC_TYPES_H 1

702 /* Define to 1 if you have the ‘rresvport_af’ function. */
703 #define HAVE_RRESVPORT_AF 1

705 /* Define to 1 if you have the <sectok.h> header file. */
706 /* #undef HAVE_SECTOK_H */

708 /* Define to 1 if you have the <security/pam_appl.h> header file. */
709 #define HAVE_SECURITY_PAM_APPL_H 1

711 /* Define to 1 if you have the ‘sendmsg’ function. */
712 #define HAVE_SENDMSG 1

714 /* Define to 1 if you have the ‘setdtablesize’ function. */
715 /* #undef HAVE_SETDTABLESIZE */

717 /* Define to 1 if you have the ‘setegid’ function. */
718 #define HAVE_SETEGID 1

720 /* Define to 1 if you have the ‘setenv’ function. */

new/usr/src/cmd/ssh/include/config.h 12

721 #define HAVE_SETENV 1

723 /* Define to 1 if you have the ‘seteuid’ function. */
724 #define HAVE_SETEUID 1

726 /* Define to 1 if you have the ‘setgroups’ function. */
727 #define HAVE_SETGROUPS 1

729 /* Define to 1 if you have the ‘setlogin’ function. */
730 /* #undef HAVE_SETLOGIN */

732 /* Define to 1 if you have the ‘setluid’ function. */
733 /* #undef HAVE_SETLUID */

735 /* Define to 1 if you have the ‘setpcred’ function. */
736 /* #undef HAVE_SETPCRED */

738 /* Define to 1 if you have the ‘setproctitle’ function. */
739 /* #undef HAVE_SETPROCTITLE */

741 /* Define to 1 if you have the ‘setresgid’ function. */
742 /* #undef HAVE_SETRESGID */

744 /* Define to 1 if you have the ‘setreuid’ function. */
745 #define HAVE_SETREUID 1

747 /* Define to 1 if you have the ‘setrlimit’ function. */
748 #define HAVE_SETRLIMIT 1

750 /* Define to 1 if you have the ‘setsid’ function. */
751 #define HAVE_SETSID 1

753 /* Define to 1 if you have the ‘setutent’ function. */
754 #define HAVE_SETUTENT 1

756 /* Define to 1 if you have the ‘setutxent’ function. */
757 #define HAVE_SETUTXENT 1

759 /* Define to 1 if you have the ‘setvbuf’ function. */
760 #define HAVE_SETVBUF 1

762 /* Define to 1 if you have the <shadow.h> header file. */
763 #define HAVE_SHADOW_H 1

765 /* Define to 1 if you have the ‘sigaction’ function. */
766 #define HAVE_SIGACTION 1

768 /* Define to 1 if you have the ‘sigvec’ function. */
769 /* #undef HAVE_SIGVEC */

771 /* Define to 1 if the system has the type ‘sig_atomic_t’. */
772 #define HAVE_SIG_ATOMIC_T 1

774 /* Define to 1 if you have the ‘snprintf’ function. */
775 #define HAVE_SNPRINTF 1

777 /* Define to 1 if you have the ‘socketpair’ function. */
778 #define HAVE_SOCKETPAIR 1

780 /* Define to 1 if you have the <stddef.h> header file. */
781 #define HAVE_STDDEF_H 1

783 /* Define to 1 if you have the <stdint.h> header file. */
784 /* #undef HAVE_STDINT_H */

786 /* Define to 1 if you have the <stdlib.h> header file. */



new/usr/src/cmd/ssh/include/config.h 13

787 #define HAVE_STDLIB_H 1

789 /* Define to 1 if you have the ‘strerror’ function. */
790 #define HAVE_STRERROR 1

792 /* Define to 1 if you have the ‘strftime’ function. */
793 #define HAVE_STRFTIME 1

795 /* Define to 1 if you have the <strings.h> header file. */
796 #define HAVE_STRINGS_H 1

798 /* Define to 1 if you have the <string.h> header file. */
799 #define HAVE_STRING_H 1

801 /* Define to 1 if you have the ‘strlcat’ function. */
802 #define HAVE_STRLCAT 1

804 /* Define to 1 if you have the ‘strlcpy’ function. */
805 #define HAVE_STRLCPY 1

807 /* Define to 1 if you have the ‘strmode’ function. */
808 /* #undef HAVE_STRMODE */

810 /* Define to 1 if ‘st_blksize’ is member of ‘struct stat’. */
811 #define HAVE_STRUCT_STAT_ST_BLKSIZE 1

813 /* Define to 1 if you have the ‘sysconf’ function. */
814 #define HAVE_SYSCONF 1

816 /* Define to 1 if you have the <sys/bitypes.h> header file. */
817 /* #undef HAVE_SYS_BITYPES_H */

819 /* Define to 1 if you have the <sys/bsdtty.h> header file. */
820 /* #undef HAVE_SYS_BSDTTY_H */

822 /* Define to 1 if you have the <sys/cdefs.h> header file. */
823 /* #undef HAVE_SYS_CDEFS_H */

826 /* Define to 1 if you have the <sys/mman.h> header file. */
827 #define HAVE_SYS_MMAN_H 1

829 /* Define to 1 if you have the <sys/select.h> header file. */
830 #define HAVE_SYS_SELECT_H 1

832 /* Define to 1 if you have the <sys/stat.h> header file. */
833 #define HAVE_SYS_STAT_H 1

835 /* Define to 1 if you have the <sys/stropts.h> header file. */
836 #define HAVE_SYS_STROPTS_H 1

838 /* Define to 1 if you have the <sys/sysmacros.h> header file. */
839 #define HAVE_SYS_SYSMACROS_H 1

841 /* Define to 1 if you have the <sys/time.h> header file. */
842 #define HAVE_SYS_TIME_H 1

844 /* Define to 1 if you have the <sys/types.h> header file. */
845 #define HAVE_SYS_TYPES_H 1

847 /* Define to 1 if you have the <sys/un.h> header file. */
848 #define HAVE_SYS_UN_H 1

850 /* Define to 1 if you have the ‘tcgetpgrp’ function. */
851 #define HAVE_TCGETPGRP 1

new/usr/src/cmd/ssh/include/config.h 14

853 /* Define to 1 if you have the ‘time’ function. */
854 #define HAVE_TIME 1

856 /* Define to 1 if you have the <time.h> header file. */
857 #define HAVE_TIME_H 1

859 /* Define to 1 if you have the <tmpdir.h> header file. */
860 /* #undef HAVE_TMPDIR_H */

862 /* Define to 1 if you have the ‘truncate’ function. */
863 #define HAVE_TRUNCATE 1

865 /* Define to 1 if you have the <ttyent.h> header file. */
866 /* #undef HAVE_TTYENT_H */

868 /* Define to 1 if you have the <ucred.h> header file. */
869 #define HAVE_UCRED_H 1

871 /* Define to 1 if you have the <unistd.h> header file. */
872 #define HAVE_UNISTD_H 1

874 /* Define to 1 if you have the ‘updwtmp’ function. */
875 #define HAVE_UPDWTMP 1

877 /* Define to 1 if you have the <usersec.h> header file. */
878 /* #undef HAVE_USERSEC_H */

880 /* Define to 1 if you have the <util.h> header file. */
881 /* #undef HAVE_UTIL_H */

883 /* Define to 1 if you have the ‘utimes’ function. */
884 #define HAVE_UTIMES 1

886 /* Define to 1 if you have the <utime.h> header file. */
887 #define HAVE_UTIME_H 1

889 /* Define to 1 if you have the ‘utmpname’ function. */
890 #define HAVE_UTMPNAME 1

892 /* Define to 1 if you have the ‘utmpxname’ function. */
893 #define HAVE_UTMPXNAME 1

895 /* Define to 1 if you have the <utmpx.h> header file. */
896 #define HAVE_UTMPX_H 1

898 /* Define to 1 if you have the <utmp.h> header file. */
899 #define HAVE_UTMP_H 1

901 /* Define to 1 if you have the ‘vasprintf’ function. */
902 #define HAVE_VASPRINTF 1

904 /* Define to 1 if you have the ‘vhangup’ function. */
905 #define HAVE_VHANGUP 1

907 /* Define to 1 if you have the ‘vsnprintf’ function. */
908 #define HAVE_VSNPRINTF 1

910 /* Define to 1 if you have the ‘waitpid’ function. */
911 #define HAVE_WAITPID 1

913 /* Define to 1 if you have the ‘_getpty’ function. */
914 /* #undef HAVE__GETPTY */

916 /* Define to 1 if you have the ‘__b64_ntop’ function. */
917 /* #undef HAVE___B64_NTOP */



new/usr/src/cmd/ssh/include/config.h 15

919 /* Define to the address where bug reports for this package should be sent. */
920 #define PACKAGE_BUGREPORT ""

922 /* Define to the full name of this package. */
923 #define PACKAGE_NAME ""

925 /* Define to the full name and version of this package. */
926 #define PACKAGE_STRING ""

928 /* Define to the one symbol short name of this package. */
929 #define PACKAGE_TARNAME ""

931 /* Define to the version of this package. */
932 #define PACKAGE_VERSION ""

934 /* The size of a ‘char’, as computed by sizeof. */
935 #define SIZEOF_CHAR 1

937 /* The size of a ‘int’, as computed by sizeof. */
938 #define SIZEOF_INT 4

940 /* The size of a ‘long int’, as computed by sizeof. */
941 #define SIZEOF_LONG_INT 4

943 /* The size of a ‘long long int’, as computed by sizeof. */
944 #define SIZEOF_LONG_LONG_INT 8

946 /* The size of a ‘short int’, as computed by sizeof. */
947 #define SIZEOF_SHORT_INT 2

949 /* Define to 1 if you have the ANSI C header files. */
950 #define STDC_HEADERS 1

952 /*
953  * Define to 1 if your processor stores words with the most significant byte
954  * first (like Motorola and SPARC, unlike Intel and VAX).
955  */
956 #define WORDS_BIGENDIAN 1

958 /* Number of bits in a file offset, on hosts where this is settable. */
959 #define _FILE_OFFSET_BITS 64

961 /* Define for large files, on AIX-style hosts. */
962 /* #undef _LARGE_FILES */

964 /*
965  * Define as ‘__inline’ if that’s what the C compiler calls it, or to nothing if
966  * it is not supported.
967  */
968 /* #undef inline */

970 /* type to use in place of socklen_t if not defined */
971 /* #undef socklen_t */

973 /* Define for BSM auditing (Solaris) support */
974 #define HAVE_BSM 1

976 /* Define if compiling in ON */
977 #define SUNW_SSH 1

979 /* ******************* Shouldn’t need to edit below this line ************** */

981 #ifdef __cplusplus
982 }

______unchanged_portion_omitted_



new/usr/src/head/glob.h 1

**********************************************************
    7731 Wed Mar  6 08:38:26 2013
new/usr/src/head/glob.h
1097 glob(3c) needs to support non-POSIX options
3341 The sftp command should use the native glob()
**********************************************************

1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */

23 /*
24  * Copyright (c) 1989, 1993
25  * The Regents of the University of California.  All rights reserved.
26  *
27  * This code is derived from software contributed to Berkeley by
28  * Guido van Rossum.
29  *
30  * Redistribution and use in source and binary forms, with or without
31  * modification, are permitted provided that the following conditions
32  * are met:
33  * 1. Redistributions of source code must retain the above copyright
34  *    notice, this list of conditions and the following disclaimer.
35  * 2. Redistributions in binary form must reproduce the above copyright
36  *    notice, this list of conditions and the following disclaimer in the
37  *    documentation and/or other materials provided with the distribution.
38  * 3. Neither the name of the University nor the names of its contributors
39  *    may be used to endorse or promote products derived from this software
40  *    without specific prior written permission.
41  *
42  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ‘‘AS IS’’ AND
43  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
46  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
47  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
48  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
49  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
50  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
51  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
52  * SUCH DAMAGE.
53  *
54  * @(#)glob.h 8.1 (Berkeley) 6/2/93
55  */

57 /*
58  * Copyright 2003 Sun Microsystems, Inc.  All rights reserved.
59  * Use is subject to license terms.
60  * Copyright (c) 2013 Gary Mills

new/usr/src/head/glob.h 2

61  */

63 /*
64  * Copyright 1985, 1992 by Mortice Kern Systems Inc.  All rights reserved.
65  */

67 #ifndef _GLOB_H
68 #define _GLOB_H

34 #pragma ident "%Z%%M% %I% %E% SMI"

70 #include <sys/feature_tests.h>
71 #include <sys/types.h>
72 #include <sys/stat.h>
73 #include <dirent.h>

75 #ifdef __cplusplus
76 extern "C" {
77 #endif

79 typedef struct glob_t {
80 /* Members required by POSIX: */
81 size_t gl_pathc; /* Total count of paths matched by pattern */
44 size_t gl_pathc; /* Count of paths matched by pattern */
82 char **gl_pathv; /* List of matched pathnames */
83 size_t gl_offs; /* # of slots reserved in gl_pathv */
84 #if defined(__XOPEN_OR_POSIX) && !defined(__EXTENSIONS__)
85 /* The following are internal to the legacy implementation. */
47 /* following are internal to the implementation */
86 char **gl_pathp; /* gl_pathv + gl_offs */
87 int gl_pathn; /* # of elements allocated */
88 #else /* defined(__XOPEN_OR_POSIX) && !defined(__EXTENSIONS__) */
89 /*
90  * Overlaid non-POSIX extensions, from OpenBSD:
91  * These are used internally for legacy callers but
92  * contain returned values for extended callers.
93  */
94 union {
95 char **_gl_pathp; /* gl_pathv + gl_offs */
96 int _gl_matchc; /* Count of paths matching pattern. */
97 } _gl_pama;
98 #define gl_pathp _gl_pama._gl_pathp
99 #define gl_matchc _gl_pama._gl_matchc
100 union {
101 int _gl_pathn; /* # of elements allocated */
102 int _gl_flags; /* Copy of flags parameter to glob. */
103 } _gl_pafl;
104 #define gl_pathn _gl_pafl._gl_pathn
105 #define gl_flags _gl_pafl._gl_flags
106 /* End of legacy glob structure */

108 /* Non-POSIX extensions, from OpenBSD: */
109 struct stat **gl_statv; /* Stat entries corresponding to gl_pathv */
110 /*
111  * Alternate filesystem access methods for glob; replacement
112  * versions of closedir(3), readdir(3), opendir(3), stat(2)
113  * and lstat(2).
114  */
115 void (*gl_closedir)(void *);
116 struct dirent *(*gl_readdir)(void *);
117 void *(*gl_opendir)(const char *);
118 int (*gl_lstat)(const char *, struct stat *);
119 int (*gl_stat)(const char *, struct stat *);
120 #endif /* defined(__XOPEN_OR_POSIX) && !defined(__EXTENSIONS__) */
121 } glob_t;



new/usr/src/head/glob.h 3

123 /*
124  * POSIX "flags" argument to glob function.
53  * "flags" argument to glob function.
125  */
126 #define GLOB_ERR 0x0001 /* Don’t continue on directory error */
127 #define GLOB_MARK 0x0002 /* Mark directories with trailing / */
128 #define GLOB_NOSORT 0x0004 /* Don’t sort pathnames */
129 #define GLOB_NOCHECK 0x0008 /* Return unquoted arg if no match */
130 #define GLOB_DOOFFS 0x0010 /* Ignore gl_offs unless set */
131 #define GLOB_APPEND 0x0020 /* Append to previous glob_t */
132 #define GLOB_NOESCAPE 0x0040 /* Backslashes do not quote M-chars */
133 #define GLOB_POSIX 0x007F /* All POSIX flags */

135 #if !defined(__XOPEN_OR_POSIX) || defined(__EXTENSIONS__)
136 /*
137  * Non-POSIX "flags" argument to glob function, from OpenBSD.
138  */
139 #define GLOB_BRACE 0x0080 /* Expand braces ala csh. */
140 #define GLOB_MAGCHAR 0x0100 /* Pattern had globbing characters. */
141 #define GLOB_NOMAGIC 0x0200 /* GLOB_NOCHECK without magic chars (csh). */
142 #define GLOB_QUOTE 0x0400 /* Quote special chars with \. */
143 #define GLOB_TILDE 0x0800 /* Expand tilde names from the passwd file. */
144 #define GLOB_LIMIT 0x2000 /* Limit pattern match output to ARG_MAX */
145 #define GLOB_KEEPSTAT 0x4000 /* Retain stat data for paths in gl_statv. */
146 #define GLOB_ALTDIRFUNC 0x8000 /* Use alternately specified directory funcs. */
147 #endif /* !defined(__XOPEN_OR_POSIX) || defined(__EXTENSIONS__) */

149 /*
150  * Error returns from "glob"
151  */
152 #define GLOB_NOSYS (-4) /* function not supported (XPG4) */
153 #define GLOB_NOMATCH (-3) /* Pattern does not match */
154 #define GLOB_NOSPACE (-2) /* Not enough memory */
155 #define GLOB_ABORTED (-1) /* GLOB_ERR set or errfunc return!=0 */
156 #define GLOB_ABEND GLOB_ABORTED /* backward compatibility */

158 #if defined(__STDC__)

160 #ifdef _GLOB_LIBC
161 extern int glob(const char *_RESTRICT_KYWD, int, int(*)(const char *, int),
162 glob_t *_RESTRICT_KYWD);
163 extern int _glob_ext(const char *_RESTRICT_KYWD, int,
164     int(*)(const char *, int), glob_t *_RESTRICT_KYWD);
165 extern void globfree(glob_t *);
166 extern void _globfree_ext(glob_t *);
167 #else /* _GLOB_LIBC */
168 #ifdef __PRAGMA_REDEFINE_EXTNAME
169 #pragma redefine_extname glob _glob_ext
170 #pragma redefine_extname globfree _globfree_ext
171 extern int glob(const char *_RESTRICT_KYWD, int, int(*)(const char *, int),
172 glob_t *_RESTRICT_KYWD);
173 extern void globfree(glob_t *);
174 #else /* __PRAGMA_REDEFINE_EXTNAME */
175 extern int _glob_ext(const char *_RESTRICT_KYWD, int,
176     int(*)(const char *, int), glob_t *_RESTRICT_KYWD);
177 extern void _globfree_ext(glob_t *);
178 #define glob _glob_ext
179 #define globfree _globfree_ext
180 #endif /* __PRAGMA_REDEFINE_EXTNAME */
181 #endif /* _GLOB_LIBC */

183 #else /* __STDC__ */

185 #ifdef _GLOB_LIBC
75 #else
186 extern int glob();

new/usr/src/head/glob.h 4

187 extern int _glob_ext();
188 extern void globfree();
189 extern void _globfree_ext();
190 #else /* _GLOB_LIBC */
191 #ifdef __PRAGMA_REDEFINE_EXTNAME
192 #pragma redefine_extname glob _glob_ext
193 #pragma redefine_extname globfree _globfree_ext
194 extern int glob();
195 extern void globfree();
196 #else /* __PRAGMA_REDEFINE_EXTNAME */
197 extern int _glob_ext();
198 extern void _globfree_ext();
199 #define glob _glob_ext
200 #define globfree _globfree_ext
201 #endif /* __PRAGMA_REDEFINE_EXTNAME */
202 #endif /* _GLOB_LIBC */
78 #endif

205 #endif /* __STDC__ */

207 #ifdef __cplusplus
208 }

______unchanged_portion_omitted_



new/usr/src/lib/libc/port/mapfile-vers 1

**********************************************************
   54369 Wed Mar  6 08:38:27 2013
new/usr/src/lib/libc/port/mapfile-vers
1097 glob(3c) needs to support non-POSIX options
3341 The sftp command should use the native glob()
**********************************************************
______unchanged_portion_omitted_

2538 # There should never be more than one SUNWprivate version.
2539 # Don’t add any more.  Add new private symbols to SUNWprivate_1.1

2541 SYMBOL_VERSION SUNWprivate_1.1 {
2542     global:
2543 ___Argv { FLAGS = NODIRECT };
2544 cfree { FLAGS = NODIRECT };
2545 _cswidth;
2546 __ctype_mask;
2547 __environ_lock { FLAGS = NODIRECT };
2548 __inf_read;
2549 __inf_written;
2550 __i_size;
2551 _isnanf { TYPE = FUNCTION; FILTER = libm.so.2 };
2552 __iswrune;
2553 __libc_threaded;
2554 _lib_version { FLAGS = NODIRECT };
2555 _logb { TYPE = FUNCTION; FILTER = libm.so.2 };
2556 _lone { FLAGS = NODYNSORT };
2557 _lten { FLAGS = NODYNSORT };
2558 _lzero { FLAGS = NODYNSORT };
2559 __malloc_lock;
2560 _memcmp;
2561 _memcpy { FLAGS = NODYNSORT };
2562 _memmove;
2563 _memset;
2564 _modff { TYPE = FUNCTION; FILTER = libm.so.2 };
2565 __nan_read;
2566 __nan_written;
2567 __nextwctype;
2568 __nis_debug_bind;
2569 __nis_debug_calls;
2570 __nis_debug_file;
2571 __nis_debug_rpc;
2572 __nis_prefsrv;
2573 __nis_preftype;
2574 __nis_server;
2575 _nss_default_finders;
2576 __progname { FLAGS = NODIRECT };
2577 _smbuf;
2578 _sp;
2579 __strdupa_str { FLAGS = NODIRECT };
2580 __strdupa_len { FLAGS = NODIRECT };
2581 _tdb_bootstrap;
2582 __threaded;
2583 thr_probe_getfunc_addr;
2584 __trans_lower;
2585 __trans_upper;
2586 _uberdata;
2587 __xpg6 { FLAGS = NODIRECT };

2589 $if _ELF32
2590 _dladdr { TYPE = FUNCTION; FILTER = /usr/lib/ld.so.1 };
2591 _dladdr1 { TYPE = FUNCTION; FILTER = /usr/lib/ld.so.1 };
2592 _dlclose { TYPE = FUNCTION; FILTER = /usr/lib/ld.so.1 };
2593 _dldump { TYPE = FUNCTION; FILTER = /usr/lib/ld.so.1 };

new/usr/src/lib/libc/port/mapfile-vers 2

2594 _dlerror { TYPE = FUNCTION; FILTER = /usr/lib/ld.so.1 };
2595 _dlinfo { TYPE = FUNCTION; FILTER = /usr/lib/ld.so.1 };
2596 _dlmopen { TYPE = FUNCTION; FILTER = /usr/lib/ld.so.1 };
2597 _dlopen { TYPE = FUNCTION; FILTER = /usr/lib/ld.so.1 };
2598 _dlsym { TYPE = FUNCTION; FILTER = /usr/lib/ld.so.1 };
2599 _ld_libc { TYPE = FUNCTION; FILTER = /usr/lib/ld.so.1 };
2600 _sys_errlist;
2601 _sys_errs;
2602 _sys_index;
2603 _sys_nerr { FLAGS = NODYNSORT };
2604 _sys_num_err;
2605 $elif sparcv9
2606 _dladdr { TYPE = FUNCTION; FILTER = /usr/lib/sparcv9/ld.so.1 };
2607 _dladdr1 { TYPE = FUNCTION; FILTER = /usr/lib/sparcv9/ld.so.1 };
2608 _dlclose { TYPE = FUNCTION; FILTER = /usr/lib/sparcv9/ld.so.1 };
2609 _dldump { TYPE = FUNCTION; FILTER = /usr/lib/sparcv9/ld.so.1 };
2610 _dlerror { TYPE = FUNCTION; FILTER = /usr/lib/sparcv9/ld.so.1 };
2611 _dlinfo { TYPE = FUNCTION; FILTER = /usr/lib/sparcv9/ld.so.1 };
2612 _dlmopen { TYPE = FUNCTION; FILTER = /usr/lib/sparcv9/ld.so.1 };
2613 _dlopen { TYPE = FUNCTION; FILTER = /usr/lib/sparcv9/ld.so.1 };
2614 _dlsym { TYPE = FUNCTION; FILTER = /usr/lib/sparcv9/ld.so.1 };
2615 _ld_libc { TYPE = FUNCTION; FILTER = /usr/lib/sparcv9/ld.so.1 };
2616 $elif amd64
2617 _dladdr { TYPE = FUNCTION; FILTER = /usr/lib/amd64/ld.so.1 };
2618 _dladdr1 { TYPE = FUNCTION; FILTER = /usr/lib/amd64/ld.so.1 };
2619 _dlamd64getunwind { TYPE = FUNCTION; FILTER = /usr/lib/amd64/ld.so.1 };
2620 _dlclose { TYPE = FUNCTION; FILTER = /usr/lib/amd64/ld.so.1 };
2621 _dldump { TYPE = FUNCTION; FILTER = /usr/lib/amd64/ld.so.1 };
2622 _dlerror { TYPE = FUNCTION; FILTER = /usr/lib/amd64/ld.so.1 };
2623 _dlinfo { TYPE = FUNCTION; FILTER = /usr/lib/amd64/ld.so.1 };
2624 _dlmopen { TYPE = FUNCTION; FILTER = /usr/lib/amd64/ld.so.1 };
2625 _dlopen { TYPE = FUNCTION; FILTER = /usr/lib/amd64/ld.so.1 };
2626 _dlsym { TYPE = FUNCTION; FILTER = /usr/lib/amd64/ld.so.1 };
2627 _ld_libc { TYPE = FUNCTION; FILTER = /usr/lib/amd64/ld.so.1 };
2628 $else
2629 $error unknown platform
2630 $endif

2632 $if _sparc
2633 __lyday_to_month;
2634 __mon_lengths;
2635 __yday_to_month;
2636 $endif
2637 $if i386
2638 _sse_hw;
2639 $endif

2641     protected:
2642 acctctl;
2643 allocids;
2644 _assert_c99;
2645 __assert_c99;
2646 _assfail;
2647 attr_count;
2648 attr_to_data_type;
2649 attr_to_name;
2650 attr_to_option;
2651 attr_to_xattr_view;
2652 _autofssys;
2653 _bufsync;
2654 _cladm;
2655 __class_quadruple;
2656 core_get_default_content;
2657 core_get_default_path;
2658 core_get_global_content;
2659 core_get_global_path;



new/usr/src/lib/libc/port/mapfile-vers 3

2660 core_get_options;
2661 core_get_process_content;
2662 core_get_process_path;
2663 core_set_default_content;
2664 core_set_default_path;
2665 core_set_global_content;
2666 core_set_global_path;
2667 core_set_options;
2668 core_set_process_content;
2669 core_set_process_path;
2670 dbm_close_status;
2671 dbm_do_nextkey;
2672 dbm_setdefwrite;
2673 _D_cplx_div;
2674 _D_cplx_div_ix;
2675 _D_cplx_div_rx;
2676 _D_cplx_mul;
2677 defclose_r;
2678 defcntl;
2679 defcntl_r;
2680 defopen;
2681 defopen_r;
2682 defread;
2683 defread_r;
2684 _delete;
2685 _dgettext;
2686 _doprnt;
2687 _doscan;
2688 _errfp;
2689 _errxfp;
2690 exportfs;
2691 _F_cplx_div;
2692 _F_cplx_div_ix;
2693 _F_cplx_div_rx;
2694 _F_cplx_mul;
2695 __fgetwc_xpg5;
2696 __fgetws_xpg5;
2697 _findbuf;
2698 _findiop;
2699 __fini_daemon_priv;
2700 _finite;
2701 _fork1 { FLAGS = NODYNSORT };
2702 _forkall { FLAGS = NODYNSORT };
2703 _fpclass;
2704 _fpgetmask;
2705 _fpgetround;
2706 _fpgetsticky;
2707 _fprintf;
2708 _fpsetmask;
2709 _fpsetround;
2710 _fpsetsticky;
2711 __fputwc_xpg5;
2712 __fputws_xpg5;
2713 _ftw;
2714 _gcvt;
2715 _getarg;
2716 __getcontext;
2717 _getdents;
2718 _get_exit_frame_monitor;
2719 _getfp;
2720 _getgroupsbymember;
2721 _getlogin_r;
2722 _getsp;
2723 __gettsp;
2724 getvmusage;
2725 __getwchar_xpg5;

new/usr/src/lib/libc/port/mapfile-vers 4

2726 __getwc_xpg5;
2727 _glob_ext;
2728 _globfree_ext;
2729 gtty;
2730 __idmap_flush_kcache;
2731 __idmap_reg;
2732 __idmap_unreg;
2733 __init_daemon_priv;
2734 __init_suid_priv;
2735 _insert;
2736 inst_sync;
2737 _iswctype;
2738 klpd_create;
2739 klpd_getpath;
2740 klpd_getport;
2741 klpd_getucred;
2742 klpd_register;
2743 klpd_register_id;
2744 klpd_unregister;
2745 klpd_unregister_id;
2746 _lgrp_home_fast { FLAGS = NODYNSORT };
2747 _lgrpsys;
2748 _lltostr;
2749 _lock_clear;
2750 _lock_try;
2751 _ltzset;
2752 lwp_self;
2753 makeut;
2754 makeutx;
2755 _mbftowc;
2756 mcfiller;
2757 mntopt;
2758 modctl;
2759 modutx;
2760 msgctl64;
2761 __multi_innetgr;
2762 _mutex_destroy { FLAGS = NODYNSORT };
2763 mutex_held;
2764 _mutex_init { FLAGS = NODYNSORT };
2765 _mutex_unlock { FLAGS = NODYNSORT };
2766 name_to_attr;
2767 nfs_getfh;
2768 nfssvc;
2769 _nfssys;
2770 __nis_get_environment;
2771 _nss_db_state_destr;
2772 nss_default_key2str;
2773 nss_delete;
2774 nss_endent;
2775 nss_getent;
2776 _nss_initf_group;
2777 _nss_initf_netgroup;
2778 _nss_initf_passwd;
2779 _nss_initf_shadow;
2780 nss_packed_arg_init;
2781 nss_packed_context_init;
2782 nss_packed_getkey;
2783 nss_packed_set_status;
2784 nss_search;
2785 nss_setent;
2786 _nss_XbyY_fgets;
2787 __nsw_extended_action_v1;
2788 __nsw_freeconfig_v1;
2789 __nsw_getconfig_v1;
2790 __nthreads;
2791 __openattrdirat;



new/usr/src/lib/libc/port/mapfile-vers 5

2792 option_to_attr;
2793 __priv_bracket;
2794 __priv_relinquish;
2795 pset_assign_forced;
2796 pset_bind_lwp;
2797 _psignal;
2798 _pthread_setcleanupinit;
2799 __putwchar_xpg5;
2800 __putwc_xpg5;
2801 rctlctl;
2802 rctllist;
2803 _realbufend;
2804 _resume;
2805 _resume_ret;
2806 _rpcsys;
2807 _sbrk_grow_aligned;
2808 scrwidth;
2809 semctl64;
2810 _semctl64;
2811 set_setcontext_enforcement;
2812 _setbufend;
2813 __set_errno;
2814 setprojrctl;
2815 _setregid;
2816 _setreuid;
2817 setsigacthandler;
2818 shmctl64;
2819 _shmctl64;
2820 sigflag;
2821 _signal;
2822 _sigoff;
2823 _sigon;
2824 _so_accept;
2825 _so_bind;
2826 _sockconfig;
2827 _so_connect;
2828 _so_getpeername;
2829 _so_getsockname;
2830 _so_getsockopt;
2831 _so_listen;
2832 _so_recv;
2833 _so_recvfrom;
2834 _so_recvmsg;
2835 _so_send;
2836 _so_sendmsg;
2837 _so_sendto;
2838 _so_setsockopt;
2839 _so_shutdown;
2840 _so_socket;
2841 _so_socketpair;
2842 str2group;
2843 str2passwd;
2844 str2spwd;
2845 __strptime_dontzero;
2846 stty;
2847 syscall;
2848 _sysconfig;
2849 __systemcall;
2850 thr_continue_allmutators;
2851 _thr_continue_allmutators;
2852 thr_continue_mutator;
2853 _thr_continue_mutator;
2854 thr_getstate;
2855 _thr_getstate;
2856 thr_mutators_barrier;
2857 _thr_mutators_barrier;

new/usr/src/lib/libc/port/mapfile-vers 6

2858 thr_probe_setup;
2859 _thr_schedctl;
2860 thr_setmutator;
2861 _thr_setmutator;
2862 thr_setstate;
2863 _thr_setstate;
2864 thr_sighndlrinfo;
2865 _thr_sighndlrinfo;
2866 _thr_slot_offset;
2867 thr_suspend_allmutators;
2868 _thr_suspend_allmutators;
2869 thr_suspend_mutator;
2870 _thr_suspend_mutator;
2871 thr_wait_mutator;
2872 _thr_wait_mutator;
2873 __tls_get_addr;
2874 tpool_create;
2875 tpool_dispatch;
2876 tpool_destroy;
2877 tpool_wait;
2878 tpool_suspend;
2879 tpool_suspended;
2880 tpool_resume;
2881 tpool_member;
2882 _ttyname_dev;
2883 _ucred_alloc;
2884 ucred_getamask;
2885 _ucred_getamask;
2886 ucred_getasid;
2887 _ucred_getasid;
2888 ucred_getatid;
2889 _ucred_getatid;
2890 ucred_getauid;
2891 _ucred_getauid;
2892 _ulltostr;
2893 _uncached_getgrgid_r;
2894 _uncached_getgrnam_r;
2895 _uncached_getpwnam_r;
2896 _uncached_getpwuid_r;
2897 __ungetwc_xpg5;
2898 _unordered;
2899 utssys;
2900 _verrfp;
2901 _verrxfp;
2902 _vwarnfp;
2903 _vwarnxfp;
2904 _warnfp;
2905 _warnxfp;
2906 __wcsftime_xpg5;
2907 __wcstok_xpg5;
2908 wdbindf;
2909 wdchkind;
2910 wddelim;
2911 _wrtchk;
2912 _xflsbuf;
2913 _xgetwidth;
2914 zone_add_datalink;
2915 zone_boot;
2916 zone_check_datalink;
2917 zone_create;
2918 zone_destroy;
2919 zone_enter;
2920 zone_getattr;
2921 zone_get_id;
2922 zone_list;
2923 zone_list_datalink;



new/usr/src/lib/libc/port/mapfile-vers 7

2924 zonept;
2925 zone_remove_datalink;
2926 zone_setattr;
2927 zone_shutdown;
2928 zone_version;

2930 $if _ELF32
2931 __divdi3;
2932 _file_set;
2933 _fprintf_c89;
2934 _fscanf_c89;
2935 _fwprintf_c89;
2936 _fwscanf_c89;
2937 _imaxabs_c89;
2938 _imaxdiv_c89;
2939 __moddi3;
2940 _printf_c89;
2941 _scanf_c89;
2942 _snprintf_c89;
2943 _sprintf_c89;
2944 _sscanf_c89;
2945 _strtoimax_c89;
2946 _strtoumax_c89;
2947 _swprintf_c89;
2948 _swscanf_c89;
2949 __udivdi3;
2950 __umoddi3;
2951 _vfprintf_c89;
2952 _vfscanf_c89;
2953 _vfwprintf_c89;
2954 _vfwscanf_c89;
2955 _vprintf_c89;
2956 _vscanf_c89;
2957 _vsnprintf_c89;
2958 _vsprintf_c89;
2959 _vsscanf_c89;
2960 _vswprintf_c89;
2961 _vswscanf_c89;
2962 _vwprintf_c89;
2963 _vwscanf_c89;
2964 _wcstoimax_c89;
2965 _wcstoumax_c89;
2966 _wprintf_c89;
2967 _wscanf_c89;
2968 $endif

2970 $if _sparc
2971 _cerror;
2972 install_utrap;
2973 _install_utrap;
2974 nop;
2975 _Q_cplx_div;
2976 _Q_cplx_div_ix;
2977 _Q_cplx_div_rx;
2978 _Q_cplx_lr_div;
2979 _Q_cplx_lr_div_ix;
2980 _Q_cplx_lr_div_rx;
2981 _Q_cplx_lr_mul;
2982 _Q_cplx_mul;
2983 _QgetRD;
2984 _xregs_clrptr;
2985 $endif

2987 $if sparc32
2988 __ashldi3;
2989 __ashrdi3;

new/usr/src/lib/libc/port/mapfile-vers 8

2990 _cerror64;
2991 __cmpdi2;
2992 __floatdidf;
2993 __floatdisf;
2994 __floatundidf;
2995 __floatundisf;
2996 __lshrdi3;
2997 __muldi3;
2998 __ucmpdi2;
2999 $endif

3001 $if _x86
3002 _D_cplx_lr_div;
3003 _D_cplx_lr_div_ix;
3004 _D_cplx_lr_div_rx;
3005 _F_cplx_lr_div;
3006 _F_cplx_lr_div_ix;
3007 _F_cplx_lr_div_rx;
3008 __fltrounds;
3009 sysi86;
3010 _sysi86;
3011 _X_cplx_div;
3012 _X_cplx_div_ix;
3013 _X_cplx_div_rx;
3014 _X_cplx_lr_div;
3015 _X_cplx_lr_div_ix;
3016 _X_cplx_lr_div_rx;
3017 _X_cplx_mul;
3018 __xgetRD;
3019 __xtol;
3020 __xtoll;
3021 __xtoul;
3022 __xtoull;
3023 $endif

3025 $if i386
3026 __divrem64;
3027 ___tls_get_addr;
3028 __udivrem64;
3029 $endif

3031 # The following functions should not be exported from libc,
3032 # but /lib/libm.so.2, some older versions of the Studio
3033 # compiler/debugger components, and some ancient programs
3034 # found in /usr/dist reference them.  When we no longer
3035 # care about these old and broken binary objects, these
3036 # symbols should be deleted.
3037 _brk { FLAGS = NODYNSORT };
3038 _cond_broadcast { FLAGS = NODYNSORT };
3039 _cond_init { FLAGS = NODYNSORT };
3040 _cond_signal { FLAGS = NODYNSORT };
3041 _cond_wait { FLAGS = NODYNSORT };
3042 _ecvt { FLAGS = NODYNSORT };
3043 _fcvt { FLAGS = NODYNSORT };
3044 _getc_unlocked { FLAGS = NODYNSORT };
3045 _llseek { FLAGS = NODYNSORT };
3046 _pthread_attr_getdetachstate { FLAGS = NODYNSORT };
3047 _pthread_attr_getinheritsched { FLAGS = NODYNSORT };
3048 _pthread_attr_getschedparam { FLAGS = NODYNSORT };
3049 _pthread_attr_getschedpolicy { FLAGS = NODYNSORT };
3050 _pthread_attr_getscope { FLAGS = NODYNSORT };
3051 _pthread_attr_getstackaddr { FLAGS = NODYNSORT };
3052 _pthread_attr_getstacksize { FLAGS = NODYNSORT };
3053 _pthread_attr_init { FLAGS = NODYNSORT };
3054 _pthread_condattr_getpshared { FLAGS = NODYNSORT };
3055 _pthread_condattr_init { FLAGS = NODYNSORT };



new/usr/src/lib/libc/port/mapfile-vers 9

3056 _pthread_cond_init { FLAGS = NODYNSORT };
3057 _pthread_create { FLAGS = NODYNSORT };
3058 _pthread_getschedparam { FLAGS = NODYNSORT };
3059 _pthread_join { FLAGS = NODYNSORT };
3060 _pthread_key_create { FLAGS = NODYNSORT };
3061 _pthread_mutexattr_getprioceiling { FLAGS = NODYNSORT };
3062 _pthread_mutexattr_getprotocol { FLAGS = NODYNSORT };
3063 _pthread_mutexattr_getpshared { FLAGS = NODYNSORT };
3064 _pthread_mutexattr_init { FLAGS = NODYNSORT };
3065 _pthread_mutex_getprioceiling { FLAGS = NODYNSORT };
3066 _pthread_mutex_init { FLAGS = NODYNSORT };
3067 _pthread_sigmask { FLAGS = NODYNSORT };
3068 _rwlock_init { FLAGS = NODYNSORT };
3069 _rw_rdlock { FLAGS = NODYNSORT };
3070 _rw_unlock { FLAGS = NODYNSORT };
3071 _rw_wrlock { FLAGS = NODYNSORT };
3072 _sbrk_unlocked { FLAGS = NODYNSORT };
3073 _select { FLAGS = NODYNSORT };
3074 _sema_init { FLAGS = NODYNSORT };
3075 _sema_post { FLAGS = NODYNSORT };
3076 _sema_trywait { FLAGS = NODYNSORT };
3077 _sema_wait { FLAGS = NODYNSORT };
3078 _sysfs { FLAGS = NODYNSORT };
3079 _thr_create { FLAGS = NODYNSORT };
3080 _thr_exit { FLAGS = NODYNSORT };
3081 _thr_getprio { FLAGS = NODYNSORT };
3082 _thr_getspecific { FLAGS = NODYNSORT };
3083 _thr_join { FLAGS = NODYNSORT };
3084 _thr_keycreate { FLAGS = NODYNSORT };
3085 _thr_kill { FLAGS = NODYNSORT };
3086 _thr_main { FLAGS = NODYNSORT };
3087 _thr_self { FLAGS = NODYNSORT };
3088 _thr_setspecific { FLAGS = NODYNSORT };
3089 _thr_sigsetmask { FLAGS = NODYNSORT };
3090 _thr_stksegment { FLAGS = NODYNSORT };
3091 _ungetc_unlocked { FLAGS = NODYNSORT };

3093     local:
3094 __imax_lldiv { FLAGS = NODYNSORT };
3095 _ti_thr_self { FLAGS = NODYNSORT };
3096 *;

3098 $if lf64
3099 _seekdir64 { FLAGS = NODYNSORT };
3100 _telldir64 { FLAGS = NODYNSORT };
3101 $endif

3103 $if _sparc
3104 __cerror { FLAGS = NODYNSORT };
3105 $endif

3107 $if sparc32
3108 __cerror64 { FLAGS = NODYNSORT };
3109 $endif

3111 $if sparcv9
3112 __cleanup { FLAGS = NODYNSORT };
3113 $endif

3115 $if i386
3116 _syscall6 { FLAGS = NODYNSORT };
3117 __systemcall6 { FLAGS = NODYNSORT };
3118 $endif

3120 $if amd64
3121 ___tls_get_addr { FLAGS = NODYNSORT };

new/usr/src/lib/libc/port/mapfile-vers 10

3122 $endif
3123 };
______unchanged_portion_omitted_



new/usr/src/lib/libc/port/regex/glob.c 1

**********************************************************
   31470 Wed Mar  6 08:38:28 2013
new/usr/src/lib/libc/port/regex/glob.c
1097 glob(3c) needs to support non-POSIX options
3341 The sftp command should use the native glob()
**********************************************************

1 /*
2  * Copyright (c) 2013 Gary Mills
3  */
4 /* $OpenBSD: glob.c,v 1.39 2012/01/20 07:09:42 tedu Exp $ */
5 /*
6  * Copyright (c) 1989, 1993
7  * The Regents of the University of California.  All rights reserved.
2  * CDDL HEADER START
8  *
9  * This code is derived from software contributed to Berkeley by

10  * Guido van Rossum.
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.

10  * See the License for the specific language governing permissions
11  * and limitations under the License.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ‘‘AS IS’’ AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
35  */

37 /*
38  * glob(3) -- a superset of the one defined in POSIX 1003.2.
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */

27 /*
28  * This code is MKS code ported to Solaris originally with minimum
29  * modifications so that upgrades from MKS would readily integrate.

new/usr/src/lib/libc/port/regex/glob.c 2

30  * The MKS basis for this modification was:
39  *
40  * The [!...] convention to negate a range is supported (SysV, Posix, ksh).
32  * $Id: glob.c 1.31 1994/04/07 22:50:43 mark
41  *
42  * Optional extra services, controlled by flags not defined by POSIX:
34  * Additional modifications have been made to this code to make it
35  * 64-bit clean.
36  */

38 /*
39  * glob, globfree -- POSIX.2 compatible file name expansion routines.
43  *
44  * GLOB_QUOTE:
45  * Escaping convention: \ inhibits any special meaning the following
46  * character might have (except \ at end of string is retained).
47  * GLOB_MAGCHAR:
48  * Set in gl_flags if pattern contained a globbing character.
49  * GLOB_NOMAGIC:
50  * Same as GLOB_NOCHECK, but it will only append pattern if it did
51  * not contain any magic characters.  [Used in csh style globbing]
52  * GLOB_ALTDIRFUNC:
53  * Use alternately specified directory access functions.
54  * GLOB_TILDE:
55  * expand ~user/foo to the /home/dir/of/user/foo
56  * GLOB_BRACE:
57  * expand {1,2}{a,b} to 1a 1b 2a 2b
58  * gl_matchc:
59  * Number of matches in the current invocation of glob.
41  * Copyright 1985, 1991 by Mortice Kern Systems Inc.  All rights reserved.
42  *
43  * Written by Eric Gisin.
60  */

46 #pragma ident "%Z%%M% %I% %E% SMI"

62 #pragma weak _glob = glob
63 #pragma weak __glob_ext = _glob_ext
64 #pragma weak _globfree = globfree
65 #pragma weak __globfree_ext = _globfree_ext

67 #include "lint.h"

69 #include <sys/param.h>
70 #include <sys/stat.h>

72 #include <ctype.h>
73 #include <dirent.h>
74 #include <errno.h>
75 #define _GLOB_LIBC
76 #include <glob.h>
77 #undef _GLOB_LIBC
78 #include <limits.h>
79 #include <pwd.h>
80 #include <stdio.h>
53 #include <unistd.h>
54 #include <limits.h>
81 #include <stdlib.h>
82 #include <string.h>
83 #include <unistd.h>
84 #include <wchar.h>
85 #include <wctype.h>
57 #include <dirent.h>
58 #include <sys/stat.h>
59 #include <glob.h>
60 #include <errno.h>



new/usr/src/lib/libc/port/regex/glob.c 3

61 #include <fnmatch.h>

87 #define DOLLAR ’$’
88 #define DOT ’.’
89 #define EOS ’\0’
90 #define LBRACKET ’[’
91 #define NOT ’!’
92 #define QUESTION ’?’
93 #define QUOTE ’\\’
94 #define RANGE ’-’
95 #define RBRACKET ’]’
96 #define SEP ’/’
97 #define STAR ’*’
98 #define TILDE ’~’
99 #define UNDERSCORE ’_’
100 #define LBRACE ’{’
101 #define RBRACE ’}’
102 #define SLASH ’/’
103 #define COMMA ’,’
104 #define COLON ’:’
63 #define GLOB__CHECK 0x80 /* stat generated paths */

106 #define M_QUOTE 0x800000
107 #define M_PROTECT 0x400000
65 #define INITIAL 8 /* initial pathv allocation */
66 #define NULLCPP ((char **)0) /* Null char ** */
67 #define NAME_MAX 1024 /* something large */

109 typedef struct wcat {
110 wchar_t w_wc;
111 uint_t w_at;
112 } wcat_t;
69 static int globit(size_t, const char *, glob_t *, int,
70 int (*)(const char *, int), char **);
71 static int pstrcmp(const void *, const void *);
72 static int append(glob_t *, const char *);

114 #define M_ALL ’*’ /* Plus M_QUOTE */
115 #define M_END ’]’ /* Plus M_QUOTE */
116 #define M_NOT ’!’ /* Plus M_QUOTE */
117 #define M_ONE ’?’ /* Plus M_QUOTE */
118 #define M_RNG ’-’ /* Plus M_QUOTE */
119 #define M_SET ’[’ /* Plus M_QUOTE */
120 #define M_CLASS ’:’ /* Plus M_QUOTE */
121 #define ismeta(c) (((c).w_at&M_QUOTE) != 0)

123 #define GLOB_LIMIT_MALLOC 65536
124 #define GLOB_LIMIT_STAT 2048
125 #define GLOB_LIMIT_READDIR 16384

127 /* Limit of recursion during matching attempts. */
128 #define GLOB_LIMIT_RECUR 64

130 struct glob_lim {
131 size_t glim_malloc;
132 size_t glim_stat;
133 size_t glim_readdir;
134 };

136 struct glob_path_stat {
137 char *gps_path;
138 struct stat *gps_stat;
139 };

141 static int  compare(const void *, const void *);
142 static int  compare_gps(const void *, const void *);

new/usr/src/lib/libc/port/regex/glob.c 4

143 static int  g_Ctoc(const wcat_t *, char *, uint_t);
144 static int  g_lstat(wcat_t *, struct stat *, glob_t *);
145 static DIR *g_opendir(wcat_t *, glob_t *);
146 static wcat_t *g_strchr(const wcat_t *, wchar_t);
147 static int  g_stat(wcat_t *, struct stat *, glob_t *);
148 static int  glob_com(const char *, int, int (*)(const char *, int),
149 glob_t *);
150 static int  glob0(const wcat_t *, glob_t *, struct glob_lim *,
151 int (*)(const char *, int));
152 static int  glob1(wcat_t *, wcat_t *, glob_t *, struct glob_lim *,
153 int (*)(const char *, int));
154 static int  glob2(wcat_t *, wcat_t *, wcat_t *, wcat_t *, wcat_t *,
155 wcat_t *, glob_t *, struct glob_lim *,
156 int (*)(const char *, int));
157 static int  glob3(wcat_t *, wcat_t *, wcat_t *, wcat_t *, wcat_t *,
158 wcat_t *, wcat_t *, glob_t *, struct glob_lim *,
159 int (*)(const char *, int));
160 static int  globextend(const wcat_t *, glob_t *, struct glob_lim *,
161     struct stat *);
162 static
163 const wcat_t *globtilde(const wcat_t *, wcat_t *, size_t, glob_t *);
164 static int  globexp1(const wcat_t *, glob_t *, struct glob_lim *,
165     int (*)(const char *, int));
166 static int  globexp2(const wcat_t *, const wcat_t *, glob_t *,
167     struct glob_lim *, int (*)(const char *, int));
168 static int  match(wcat_t *, wcat_t *, wcat_t *, int);
169 static void  globfree_com(glob_t *);
170 #ifdef DEBUG
171 static void  qprintf(const char *, wcat_t *);
172 #endif

174 /* glob() function with legacy glob structure */
175 int
176 glob(const char *pattern, int flags, int (*errfunc)(const char *, int),
177     glob_t *pglob)
178 {
179 /* Only POSIX flags allowed */
180 if ((flags & ~GLOB_POSIX) != 0)
181 return (GLOB_NOMATCH);

183 return (glob_com(pattern, flags, errfunc, pglob));
184 }

186 /* Extended glob() function, selected by #pragma redefine_extname in glob.h */
187 int
188 _glob_ext(const char *pattern, int flags, int (*errfunc)(const char *, int),
189     glob_t *pglob)
190 {
191 return (glob_com(pattern, flags, errfunc, pglob));
192 }

194 static int
195 glob_com(const char *pattern, int flags, int (*errfunc)(const char *, int),
196     glob_t *pglob)
197 {
198 const char *patnext;
199 int n;
200 size_t patlen;
201 wchar_t c;
202 wcat_t *bufnext, *bufend, patbuf[MAXPATHLEN];
203 struct glob_lim limit = { 0, 0, 0 };

205 if ((patlen = strnlen(pattern, PATH_MAX)) == PATH_MAX)
206 return (GLOB_NOMATCH);

208 patnext = pattern;



new/usr/src/lib/libc/port/regex/glob.c 5

209 if (!(flags & GLOB_APPEND)) {
210 pglob->gl_pathc = 0;
211 pglob->gl_pathv = NULL;
212 if ((flags & GLOB_KEEPSTAT) != 0)
213 pglob->gl_statv = NULL;
214 if (!(flags & GLOB_DOOFFS))
215 pglob->gl_offs = 0;
216 }
217 pglob->gl_flags = flags & ~GLOB_MAGCHAR;
218 pglob->gl_matchc = 0;

220 if (pglob->gl_offs >= INT_MAX || pglob->gl_pathc >= INT_MAX ||
221     pglob->gl_pathc >= INT_MAX - pglob->gl_offs - 1)
222 return (GLOB_NOSPACE);

224 bufnext = patbuf;
225 bufend = bufnext + MAXPATHLEN - 1;
226 patlen += 1;
227 if (flags & GLOB_NOESCAPE) {
228 while (bufnext < bufend) {
229 if ((n = mbtowc(&c, patnext, patlen)) > 0) {
230 patnext += n;
231 patlen -= n;
232 bufnext->w_at = 0;
233 (bufnext++)->w_wc = c;
234 } else if (n == 0) {
235 break;
236 } else {
237 return (GLOB_NOMATCH);
238 }
239 }
240 } else {
241 /* Protect the quoted characters. */
242 while (bufnext < bufend) {
243 if ((n = mbtowc(&c, patnext, patlen)) > 0) {
244 patnext += n;
245 patlen -= n;
246 if (c == QUOTE) {
247 n = mbtowc(&c, patnext, patlen);
248 if (n < 0)
249 return (GLOB_NOMATCH);
250 if (n > 0) {
251 patnext += n;
252 patlen -= n;
253 }
254 if (n == 0)
255 c = QUOTE;
256 bufnext->w_at = M_PROTECT;
257 (bufnext++)->w_wc = c;
258 } else {
259 bufnext->w_at = 0;
260 (bufnext++)->w_wc = c;
261 }
262 } else if (n == 0) {
263 break;
264 } else {
265 return (GLOB_NOMATCH);
266 }
267 }
268 }
269 bufnext->w_at = 0;
270 bufnext->w_wc = EOS;

272 if (flags & GLOB_BRACE)
273 return (globexp1(patbuf, pglob, &limit, errfunc));
274 else

new/usr/src/lib/libc/port/regex/glob.c 6

275 return (glob0(patbuf, pglob, &limit, errfunc));
276 }

278 /*
279  * Expand recursively a glob {} pattern. When there is no more expansion
280  * invoke the standard globbing routine to glob the rest of the magic
281  * characters
75  * Free all space consumed by glob.
282  */
283 static int
284 globexp1(const wcat_t *pattern, glob_t *pglob, struct glob_lim *limitp,
285     int (*errfunc)(const char *, int))
77 void
78 globfree(glob_t *gp)
286 {
287 const wcat_t *ptr = pattern;
80 size_t i;

289 /* Protect a single {}, for find(1), like csh */
290 if (pattern[0].w_wc == LBRACE && pattern[1].w_wc == RBRACE &&
291     pattern[2].w_wc == EOS)
292 return (glob0(pattern, pglob, limitp, errfunc));
82 if (gp->gl_pathv == 0)
83 return;

294 if ((ptr = (const wcat_t *) g_strchr(ptr, LBRACE)) != NULL)
295 return (globexp2(ptr, pattern, pglob, limitp, errfunc));
85 for (i = gp->gl_offs; i < gp->gl_offs + gp->gl_pathc; ++i)
86 free(gp->gl_pathv[i]);
87 free((void *)gp->gl_pathv);

297 return (glob0(pattern, pglob, limitp, errfunc));
89 gp->gl_pathc = 0;
90 gp->gl_pathv = NULLCPP;
298 }

301 /*
302  * Recursive brace globbing helper. Tries to expand a single brace.
303  * If it succeeds then it invokes globexp1 with the new pattern.
304  * If it fails then it tries to glob the rest of the pattern and returns.
94  * Do filename expansion.
305  */
306 static int
307 globexp2(const wcat_t *ptr, const wcat_t *pattern, glob_t *pglob,
308     struct glob_lim *limitp, int (*errfunc)(const char *, int))
96 int
97 glob(const char *pattern, int flags,
98 int (*errfn)(const char *, int), glob_t *gp)
309 {
310 int i, rv;
311 wcat_t   *lm, *ls;
312 const wcat_t *pe, *pm, *pl;
313 wcat_t    patbuf[MAXPATHLEN];
100 int rv;
101 size_t i;
102 size_t ipathc;
103 char *path;

315 /* copy part up to the brace */
316 for (lm = patbuf, pm = pattern; pm != ptr; *lm++ = *pm++)
317 ;
318 lm->w_at = 0;
319 lm->w_wc = EOS;
320 ls = lm;
105 if ((flags & GLOB_DOOFFS) == 0)



new/usr/src/lib/libc/port/regex/glob.c 7

106 gp->gl_offs = 0;

322 /* Find the balanced brace */
323 for (i = 0, pe = ++ptr; pe->w_wc != EOS; pe++)
324 if (pe->w_wc == LBRACKET) {
325 /* Ignore everything between [] */
326 for (pm = pe++; pe->w_wc != RBRACKET &&
327     pe->w_wc != EOS; pe++)
328 ;
329 if (pe->w_wc == EOS) {
330 /*
331  * We could not find a matching RBRACKET.
332  * Ignore and just look for RBRACE
333  */
334 pe = pm;
335 }
336 } else if (pe->w_wc == LBRACE) {
337 i++;
338 } else if (pe->w_wc == RBRACE) {
339 if (i == 0)
340 break;
341 i--;
342 }
108 if (!(flags & GLOB_APPEND)) {
109 gp->gl_pathc = 0;
110 gp->gl_pathn = gp->gl_offs + INITIAL;
111 gp->gl_pathv = (char **)malloc(sizeof (char *) * gp->gl_pathn);

344 /* Non matching braces; just glob the pattern */
345 if (i != 0 || pe->w_wc == EOS)
346 return (glob0(patbuf, pglob, limitp, errfunc));
113 if (gp->gl_pathv == NULLCPP)
114 return (GLOB_NOSPACE);
115 gp->gl_pathp = gp->gl_pathv + gp->gl_offs;

348 for (i = 0, pl = pm = ptr; pm <= pe; pm++) {
349 switch (pm->w_wc) {
350 case LBRACKET:
351 /* Ignore everything between [] */
352 for (pl = pm++; pm->w_wc != RBRACKET && pm->w_wc != EOS;
353     pm++)
354 ;
355 if (pm->w_wc == EOS) {
356 /*
357  * We could not find a matching RBRACKET.
358  * Ignore and just look for RBRACE
359  */
360 pm = pl;
117 for (i = 0; i < gp->gl_offs; ++i)
118 gp->gl_pathv[i] = NULL;
361 }
362 break;

364 case LBRACE:
365 i++;
366 break;
121 if ((path = malloc(strlen(pattern)+1)) == NULL)
122 return (GLOB_NOSPACE);

368 case RBRACE:
369 if (i) {
370 i--;
371 break;
372 }
373 /* FALLTHROUGH */
374 case COMMA:

new/usr/src/lib/libc/port/regex/glob.c 8

375 if (i && pm->w_wc == COMMA)
376 break;
377 else {
378 /* Append the current string */
379 for (lm = ls; (pl < pm); *lm++ = *pl++)
380 ;
124 ipathc = gp->gl_pathc;
125 rv = globit(0, pattern, gp, flags, errfn, &path);

127 if (rv == GLOB_ABORTED) {
382 /*
383  * Append the rest of the pattern after the
384  * closing brace
129  * User’s error function returned non-zero, or GLOB_ERR was
130  * set, and we encountered a directory we couldn’t search.
385  */
386 for (pl = pe + 1;
387     (*lm++ = *pl++).w_wc != EOS; /* */)
388 ;

390 /* Expand the current pattern */
391 rv = globexp1(patbuf, pglob, limitp, errfunc);
392 if (rv && rv != GLOB_NOMATCH)
393 return (rv);

395 /* move after the comma, to the next string */
396 pl = pm + 1;
132 free(path);
133 return (GLOB_ABORTED);
397 }
398 break;

400 default:
401 break;
136 i = gp->gl_pathc - ipathc;
137 if (i >= 1 && !(flags & GLOB_NOSORT)) {
138 qsort((char *)(gp->gl_pathp+ipathc), i, sizeof (char *),
139     pstrcmp);
402 }
403 }
404 return (0);
405 }

409 /*
410  * expand tilde from the passwd file.
411  */
412 static const wcat_t *
413 globtilde(const wcat_t *pattern, wcat_t *patbuf, size_t patbuf_len,
414     glob_t *pglob)
415 {
416 struct passwd *pwd;
417 char *h;
418 const wcat_t *p;
419 wcat_t *b, *eb, *q;
420 int n;
421 size_t lenh;
422 wchar_t c;

424 if (pattern->w_wc != TILDE || !(pglob->gl_flags & GLOB_TILDE))
425 return (pattern);

427 /* Copy up to the end of the string or / */
428 eb = &patbuf[patbuf_len - 1];
429 for (p = pattern + 1, q = patbuf;



new/usr/src/lib/libc/port/regex/glob.c 9

430     q < eb && p->w_wc != EOS && p->w_wc != SLASH; *q++ = *p++)
431 ;

433 q->w_at = 0;
434 q->w_wc = EOS;

436 /* What to do if patbuf is full? */

438 if (patbuf[0].w_wc == EOS) {
439 /*
440  * handle a plain ~ or ~/ by expanding $HOME
441  * first and then trying the password file
442  */
443 if (issetugid() != 0)
444 return (pattern);
445 if ((h = getenv("HOME")) == NULL) {
446 if ((pwd = getpwuid(getuid())) == NULL)
447 return (pattern);
141 if (i == 0) {
142 if (flags & GLOB_NOCHECK)
143 (void) append(gp, pattern);
448 else
449 h = pwd->pw_dir;
145 rv = GLOB_NOMATCH;
450 }
451 } else {
452 /*
453  * Expand a ~user
454  */
455 if ((pwd = getpwnam((char *)patbuf)) == NULL)
456 return (pattern);
457 else
458 h = pwd->pw_dir;
459 }
147 gp->gl_pathp[gp->gl_pathc] = NULL;
148 free(path);

461 /* Copy the home directory */
462 lenh = strlen(h) + 1;
463 for (b = patbuf; b < eb && *h != EOS; b++) {
464 if ((n = mbtowc(&c, h, lenh)) > 0) {
465 h += n;
466 lenh -= n;
467 b->w_at = 0;
468 b->w_wc = c;
469 } else if (n < 0) {
470 return (pattern);
471 } else {
472 break;
473 }
474 }

476 /* Append the rest of the pattern */
477 while (b < eb && (*b++ = *p++).w_wc != EOS)
478 ;
479 b->w_at = 0;
480 b->w_wc = EOS;

482 return (patbuf);
150 return (rv);
483 }

485 static int
486 g_charclass(const wcat_t **patternp, wcat_t **bufnextp)
487 {
488 const wcat_t *pattern = *patternp + 1;

new/usr/src/lib/libc/port/regex/glob.c 10

489 wcat_t *bufnext = *bufnextp;
490 const wcat_t *colon;
491 char cbuf[MB_LEN_MAX + 32];
492 wctype_t cc;
493 size_t len;

495 if ((colon = g_strchr(pattern, COLON)) == NULL ||
496     colon[1].w_wc != RBRACKET)
497 return (1); /* not a character class */

499 len = (size_t)(colon - pattern);
500 if (len + MB_LEN_MAX + 1 > sizeof (cbuf))
501 return (-1); /* invalid character class */
502 {
503 wchar_t w;
504 const wcat_t *s1 = pattern;
505 char *s2 = cbuf;
506 size_t n = len;

508 /* Copy the string. */
509 while (n > 0) {
510 w = (s1++)->w_wc;
511 /* Character class names must be ASCII. */
512 if (iswascii(w)) {
513 n--;
514 *s2++ = w;
515 } else {
516 return (-1); /* invalid character class */
517 }
518 }
519 *s2 = EOS;
520 }
521 if ((cc = wctype(cbuf)) == 0)
522 return (-1); /* invalid character class */
523 bufnext->w_at = M_QUOTE;
524 (bufnext++)->w_wc = M_CLASS;
525 bufnext->w_at = 0;
526 (bufnext++)->w_wc = cc;
527 *bufnextp = bufnext;
528 *patternp += len + 3;

530 return (0);
531 }

533 /*
534  * The main glob() routine: compiles the pattern (optionally processing
535  * quotes), calls glob1() to do the real pattern matching, and finally
536  * sorts the list (unless unsorted operation is requested).  Returns 0
537  * if things went well, nonzero if errors occurred.  It is not an error
538  * to find no matches.
155  * Recursive routine to match glob pattern, and walk directories.
539  */
540 static int
541 glob0(const wcat_t *pattern, glob_t *pglob, struct glob_lim *limitp,
542     int (*errfunc)(const char *, int))
157 int
158 globit(size_t dend, const char *sp, glob_t *gp, int flags,
159 int (*errfn)(const char *, int), char **path)
543 {
544 const wcat_t *qpatnext;
545 int err, oldpathc;
546 wchar_t c;
547 int a;
548 wcat_t *bufnext, patbuf[MAXPATHLEN];
161 size_t n;
162 size_t m;



new/usr/src/lib/libc/port/regex/glob.c 11

163 ssize_t end = 0; /* end of expanded directory */
164 char *pat = (char *)sp; /* pattern component */
165 char *dp = (*path) + dend;
166 int expand = 0; /* path has pattern */
167 char *cp;
168 struct stat64 sb;
169 DIR *dirp;
170 struct dirent64 *d;
171 int err;

550 qpatnext = globtilde(pattern, patbuf, MAXPATHLEN, pglob);
551 oldpathc = pglob->gl_pathc;
552 bufnext = patbuf;

554 /*
555  * We don’t need to check for buffer overflow any more.
556  * The pattern has already been copied to an internal buffer.
557  */
558 while ((a = qpatnext->w_at), (c = (qpatnext++)->w_wc) != EOS) {
559 switch (c) {
560 case LBRACKET:
561 if (a != 0) {
562 bufnext->w_at = a;
563 (bufnext++)->w_wc = c;
564 break;
173 for (;;)
174 switch (*dp++ = *(unsigned char *)sp++) {
175 case ’\0’: /* end of source path */
176 if (expand)
177 goto Expand;
178 else {
179 if (!(flags & GLOB_NOCHECK) ||
180     flags & (GLOB__CHECK|GLOB_MARK))
181 if (stat64(*path, &sb) < 0) {
182 return (0);
565 }
566 a = qpatnext->w_at;
567 c = qpatnext->w_wc;
568 if (a == 0 && c == NOT)
569 ++qpatnext;
570 if (qpatnext->w_wc == EOS ||
571     g_strchr(qpatnext+1, RBRACKET) == NULL) {
572 bufnext->w_at = 0;
573 (bufnext++)->w_wc = LBRACKET;
574 if (a == 0 && c == NOT)
575 --qpatnext;
576 break;
184 if (flags & GLOB_MARK && S_ISDIR(sb.st_mode)) {
185 *dp = ’\0’;
186 *--dp = ’/’;
577 }
578 bufnext->w_at = M_QUOTE;
579 (bufnext++)->w_wc = M_SET;
580 if (a == 0 && c == NOT) {
581 bufnext->w_at = M_QUOTE;
582 (bufnext++)->w_wc = M_NOT;
583 }
584 a = qpatnext->w_at;
585 c = (qpatnext++)->w_wc;
586 do {
587 if (a == 0 && c == LBRACKET &&
588     qpatnext->w_wc == COLON) {
589 do {
590 err = g_charclass(&qpatnext,
591     &bufnext);
592 if (err)

new/usr/src/lib/libc/port/regex/glob.c 12

593 break;
594 a = qpatnext->w_at;
595 c = (qpatnext++)->w_wc;
596 } while (a == 0 && c == LBRACKET &&
597     qpatnext->w_wc == COLON);
598 if (err == -1 &&
599     !(pglob->gl_flags & GLOB_NOCHECK))
600 return (GLOB_NOMATCH);
601 if (a == 0 && c == RBRACKET)
602 break;
603 }
604 bufnext->w_at = a;
605 (bufnext++)->w_wc = c;
606 if (qpatnext->w_at == 0 &&
607     qpatnext->w_wc == RANGE) {
608 a = qpatnext[1].w_at;
609 c = qpatnext[1].w_wc;
610 if (qpatnext[1].w_at != 0 ||
611     qpatnext[1].w_wc != RBRACKET) {
612 bufnext->w_at = M_QUOTE;
613 (bufnext++)->w_wc = M_RNG;
614 bufnext->w_at = a;
615 (bufnext++)->w_wc = c;
616 qpatnext += 2;
617 }
618 }
619 a = qpatnext->w_at;
620 c = (qpatnext++)->w_wc;
621 } while (a != 0 || c != RBRACKET);
622 pglob->gl_flags |= GLOB_MAGCHAR;
623 bufnext->w_at = M_QUOTE;
624 (bufnext++)->w_wc = M_END;
625 break;
626 case QUESTION:
627 if (a != 0) {
628 bufnext->w_at = a;
629 (bufnext++)->w_wc = c;
630 break;
631 }
632 pglob->gl_flags |= GLOB_MAGCHAR;
633 bufnext->w_at = M_QUOTE;
634 (bufnext++)->w_wc = M_ONE;
635 break;
636 case STAR:
637 if (a != 0) {
638 bufnext->w_at = a;
639 (bufnext++)->w_wc = c;
640 break;
641 }
642 pglob->gl_flags |= GLOB_MAGCHAR;
643 /*
644  * collapse adjacent stars to one,
645  * to avoid exponential behavior
646  */
647 if (bufnext == patbuf ||
648     bufnext[-1].w_at != M_QUOTE ||
649     bufnext[-1].w_wc != M_ALL) {
650 bufnext->w_at = M_QUOTE;
651 (bufnext++)->w_wc = M_ALL;
652 }
653 break;
654 default:
655 bufnext->w_at = a;
656 (bufnext++)->w_wc = c;
657 break;
658 }



new/usr/src/lib/libc/port/regex/glob.c 13

659 }
660 bufnext->w_at = 0;
661 bufnext->w_wc = EOS;
662 #ifdef DEBUG
663 qprintf("glob0:glob1:patbuf", patbuf);
664 #endif

666 if ((err = glob1(patbuf, patbuf+MAXPATHLEN-1, pglob, limitp, errfunc))
667     != 0)
668 return (err);

670 /*
671  * If there was no match we are going to append the pattern
672  * if GLOB_NOCHECK was specified or if GLOB_NOMAGIC was specified
673  * and the pattern did not contain any magic characters
674  * GLOB_NOMAGIC is there just for compatibility with csh.
675  */
676 if (pglob->gl_pathc == oldpathc) {
677 if ((pglob->gl_flags & GLOB_NOCHECK) ||
678     ((pglob->gl_flags & GLOB_NOMAGIC) &&
679     !(pglob->gl_flags & GLOB_MAGCHAR)))
680 return (globextend(pattern, pglob, limitp, NULL));
681 else
682 return (GLOB_NOMATCH);
683 }
684 if (!(pglob->gl_flags & GLOB_NOSORT)) {
685 if ((pglob->gl_flags & GLOB_KEEPSTAT)) {
686 /* Keep the paths and stat info synced during sort */
687 struct glob_path_stat *path_stat;
688 int i;
689 int n = pglob->gl_pathc - oldpathc;
690 int o = pglob->gl_offs + oldpathc;

692 if ((path_stat = calloc(n, sizeof (*path_stat))) ==
693     NULL)
188 if (append(gp, *path) < 0) {
694 return (GLOB_NOSPACE);
695 for (i = 0; i < n; i++) {
696 path_stat[i].gps_path = pglob->gl_pathv[o + i];
697 path_stat[i].gps_stat = pglob->gl_statv[o + i];
698 }
699 qsort(path_stat, n, sizeof (*path_stat), compare_gps);
700 for (i = 0; i < n; i++) {
701 pglob->gl_pathv[o + i] = path_stat[i].gps_path;
702 pglob->gl_statv[o + i] = path_stat[i].gps_stat;
703 }
704 free(path_stat);
705 } else {
706 qsort(pglob->gl_pathv + pglob->gl_offs + oldpathc,
707     pglob->gl_pathc - oldpathc, sizeof (char *),
708     compare);
709 }
710 }
711 return (0);
712 }
192 }
193 /*NOTREACHED*/

714 static int
715 compare(const void *p, const void *q)
716 {
717 return (strcmp(*(char **)p, *(char **)q));
718 }
195 case ’*’:
196 case ’?’:
197 case ’[’:

new/usr/src/lib/libc/port/regex/glob.c 14

198 case ’\\’:
199 ++expand;
200 break;

720 static int
721 compare_gps(const void *_p, const void *_q)
722 {
723 const struct glob_path_stat *p = (const struct glob_path_stat *)_p;
724 const struct glob_path_stat *q = (const struct glob_path_stat *)_q;
202 case ’/’:
203 if (expand)
204 goto Expand;
205 end = dp - *path;
206 pat = (char *)sp;
207 break;

726 return (strcmp(p->gps_path, q->gps_path));
727 }

729 static int
730 glob1(wcat_t *pattern, wcat_t *pattern_last, glob_t *pglob,
731     struct glob_lim *limitp, int (*errfunc)(const char *, int))
732 {
733 wcat_t pathbuf[MAXPATHLEN];

735 /* A null pathname is invalid -- POSIX 1003.1 sect. 2.4. */
736 if (pattern->w_wc == EOS)
737 return (0);
738 return (glob2(pathbuf, pathbuf+MAXPATHLEN-1,
739     pathbuf, pathbuf+MAXPATHLEN-1,
740     pattern, pattern_last, pglob, limitp, errfunc));
741 }

743 /*
744  * The functions glob2 and glob3 are mutually recursive; there is one level
745  * of recursion for each segment in the pattern that contains one or more
746  * meta characters.
747  */
748 static int
749 glob2(wcat_t *pathbuf, wcat_t *pathbuf_last, wcat_t *pathend,
750     wcat_t *pathend_last, wcat_t *pattern, wcat_t *pattern_last,
751     glob_t *pglob, struct glob_lim *limitp, int (*errfunc)(const char *, int))
752 {
753 struct stat sb;
754 wcat_t *p, *q;
755 int anymeta;

757 /*
758  * Loop over pattern segments until end of pattern or until
759  * segment with meta character found.
760  */
761 for (anymeta = 0; ; ) {
762 if (pattern->w_wc == EOS) { /* End of pattern? */
763 pathend->w_at = 0;
764 pathend->w_wc = EOS;

766 if ((pglob->gl_flags & GLOB_LIMIT) &&
767     limitp->glim_stat++ >= GLOB_LIMIT_STAT) {
768 errno = 0;
769 pathend->w_at = 0;
770 (pathend++)->w_wc = SEP;
771 pathend->w_at = 0;
772 pathend->w_wc = EOS;
773 return (GLOB_NOSPACE);
209 Expand:
210 /* determine directory and open it */



new/usr/src/lib/libc/port/regex/glob.c 15

211 (*path)[end] = ’\0’;
212 dirp = opendir(**path == ’\0’ ? "." : *path);
213 if (dirp == NULL) {
214 if (errfn != 0 && errfn(*path, errno) != 0 ||
215     flags&GLOB_ERR) {
216 return (GLOB_ABORTED);
774 }
775 if (g_lstat(pathbuf, &sb, pglob))
776 return (0);

778 if (((pglob->gl_flags & GLOB_MARK) &&
779     (pathend[-1].w_at != 0 ||
780     pathend[-1].w_wc != SEP)) &&
781     (S_ISDIR(sb.st_mode) ||
782     (S_ISLNK(sb.st_mode) &&
783     (g_stat(pathbuf, &sb, pglob) == 0) &&
784     S_ISDIR(sb.st_mode)))) {
785 if (pathend+1 > pathend_last)
786 return (GLOB_NOSPACE);
787 pathend->w_at = 0;
788 (pathend++)->w_wc = SEP;
789 pathend->w_at = 0;
790 pathend->w_wc = EOS;
791 }
792 ++pglob->gl_matchc;
793 return (globextend(pathbuf, pglob, limitp, &sb));
794 }

796 /* Find end of next segment, copy tentatively to pathend. */
797 q = pathend;
798 p = pattern;
799 while (p->w_wc != EOS && p->w_wc != SEP) {
800 if (ismeta(*p))
801 anymeta = 1;
802 if (q+1 > pathend_last)
221 /* extract pattern component */
222 n = sp - pat;
223 if ((cp = malloc(n)) == NULL) {
224 (void) closedir(dirp);
803 return (GLOB_NOSPACE);
804 *q++ = *p++;
805 }
227 pat = memcpy(cp, pat, n);
228 pat[n-1] = ’\0’;
229 if (*--sp != ’\0’)
230 flags |= GLOB__CHECK;

807 if (!anymeta) { /* No expansion, do next segment. */
808 pathend = q;
809 pattern = p;
810 while (pattern->w_wc == SEP) {
811 if (pathend+1 > pathend_last)
232 /* expand path to max. expansion */
233 n = dp - *path;
234 *path = realloc(*path,
235     strlen(*path) + NAME_MAX + strlen(sp) + 1);
236 if (*path == NULL) {
237 (void) closedir(dirp);
238 free(pat);
812 return (GLOB_NOSPACE);
813 *pathend++ = *pattern++;
814 }
815 } else  {
816 /* Need expansion, recurse. */
817 return (glob3(pathbuf, pathbuf_last, pathend,
818     pathend_last, pattern, p, pattern_last,

new/usr/src/lib/libc/port/regex/glob.c 16

819     pglob, limitp, errfunc));
820 }
821 }
822 /* NOTREACHED */
823 }
241 dp = (*path) + n;

825 static int
826 glob3(wcat_t *pathbuf, wcat_t *pathbuf_last, wcat_t *pathend,
827     wcat_t *pathend_last, wcat_t *pattern, wcat_t *restpattern,
828     wcat_t *restpattern_last, glob_t *pglob, struct glob_lim *limitp,
829     int (*errfunc)(const char *, int))
830 {
831 struct dirent *dp;
832 DIR *dirp;
833 int err;
834 char buf[MAXPATHLEN];

836 /*
837  * The readdirfunc declaration can’t be prototyped, because it is
838  * assigned, below, to two functions which are prototyped in glob.h
839  * and dirent.h as taking pointers to differently typed opaque
840  * structures.
841  */
842 struct dirent *(*readdirfunc)(void *);

844 if (pathend > pathend_last)
845 return (GLOB_NOSPACE);
846 pathend->w_at = 0;
847 pathend->w_wc = EOS;
848 errno = 0;

850 if ((dirp = g_opendir(pathbuf, pglob)) == NULL) {
851 /* TODO: don’t call for ENOENT or ENOTDIR? */
852 if (errfunc) {
853 if (g_Ctoc(pathbuf, buf, sizeof (buf)))
854 return (GLOB_ABORTED);
855 if (errfunc(buf, errno) ||
856     pglob->gl_flags & GLOB_ERR)
857 return (GLOB_ABORTED);
858 }
859 return (0);
860 }

243 /* read directory and match entries */
862 err = 0;

864 /* Search directory for matching names. */
865 if (pglob->gl_flags & GLOB_ALTDIRFUNC)
866 readdirfunc = pglob->gl_readdir;
867 else
868 readdirfunc = (struct dirent *(*)(void *))readdir;
869 while ((dp = (*readdirfunc)(dirp))) {
870 char *sc;
871 wcat_t *dc;
872 int n;
873 int lensc;
874 wchar_t w;

876 if ((pglob->gl_flags & GLOB_LIMIT) &&
877     limitp->glim_readdir++ >= GLOB_LIMIT_READDIR) {
878 errno = 0;
879 pathend->w_at = 0;
880 (pathend++)->w_wc = SEP;
881 pathend->w_at = 0;
882 pathend->w_wc = EOS;



new/usr/src/lib/libc/port/regex/glob.c 17

883 err = GLOB_NOSPACE;
884 break;
885 }

887 /* Initial DOT must be matched literally. */
888 if (dp->d_name[0] == DOT && pattern->w_wc != DOT)
245 while ((d = readdir64(dirp)) != NULL) {
246 cp = d->d_name;
247 if ((flags&GLOB_NOESCAPE)
248     ? fnmatch(pat, cp, FNM_PERIOD|FNM_NOESCAPE)
249     : fnmatch(pat, cp, FNM_PERIOD))
889 continue;
890 dc = pathend;
891 sc = dp->d_name;
892 lensc = strlen(sc) + 1;
893 while (dc < pathend_last) {
894 if ((n = mbtowc(&w, sc, lensc)) <= 0) {
895 sc += 1;
896 lensc -= 1;
897 dc->w_at = 0;
898 dc->w_wc = EOS;
899 } else {
900 sc += n;
901 lensc -= n;
902 dc->w_at = 0;
903 dc->w_wc = w;
904 }
905 dc++;
906 if (n <= 0)
907 break;
908 }
909 if (dc >= pathend_last) {
910 dc->w_at = 0;
911 dc->w_wc = EOS;
912 err = GLOB_NOSPACE;
913 break;
914 }
915 if (n < 0) {
916 err = GLOB_NOMATCH;
917 break;
918 }

920 if (!match(pathend, pattern, restpattern, GLOB_LIMIT_RECUR)) {
921 pathend->w_at = 0;
922 pathend->w_wc = EOS;
923 continue;
924 }
925 err = glob2(pathbuf, pathbuf_last, --dc, pathend_last,
926     restpattern, restpattern_last, pglob, limitp,
927     errfunc);
928 if (err)
252 n = strlen(cp);
253 (void) memcpy((*path) + end, cp, n);
254 m = dp - *path;
255 err = globit(end+n, sp, gp, flags, errfn, path);
256 dp = (*path) + m;   /* globit can move path */
257 if (err != 0)
929 break;
930 }

932 if (pglob->gl_flags & GLOB_ALTDIRFUNC)
933 (*pglob->gl_closedir)(dirp);
934 else
935 (void) closedir(dirp);
262 free(pat);
936 return (err);

new/usr/src/lib/libc/port/regex/glob.c 18

937 }

940 /*
941  * Extend the gl_pathv member of a glob_t structure to accommodate a new item,
942  * add the new item, and update gl_pathc.
943  *
944  * This assumes the BSD realloc, which only copies the block when its size
945  * crosses a power-of-two boundary; for v7 realloc, this would cause quadratic
946  * behavior.
947  *
948  * Return 0 if new item added, error code if memory couldn’t be allocated.
949  *
950  * Invariant of the glob_t structure:
951  * Either gl_pathc is zero and gl_pathv is NULL; or gl_pathc > 0 and
952  * gl_pathv points to (gl_offs + gl_pathc + 1) items.
953  */
954 static int
955 globextend(const wcat_t *path, glob_t *pglob, struct glob_lim *limitp,
956     struct stat *sb)
957 {
958 char **pathv;
959 ssize_t i;
960 size_t newn, len;
961 char *copy = NULL;
962 const wcat_t *p;
963 struct stat **statv;
964 char junk[MB_LEN_MAX];
965 int n;

967 newn = 2 + pglob->gl_pathc + pglob->gl_offs;
968 if (pglob->gl_offs >= INT_MAX ||
969     pglob->gl_pathc >= INT_MAX ||
970     newn >= INT_MAX ||
971     SIZE_MAX / sizeof (*pathv) <= newn ||
972     SIZE_MAX / sizeof (*statv) <= newn) {
973 nospace:
974 for (i = pglob->gl_offs; i < (ssize_t)(newn - 2); i++) {
975 if (pglob->gl_pathv && pglob->gl_pathv[i])
976 free(pglob->gl_pathv[i]);
977 if ((pglob->gl_flags & GLOB_KEEPSTAT) != 0 &&
978     pglob->gl_statv && pglob->gl_statv[i])
979 free(pglob->gl_statv[i]);
980 }
981 if (pglob->gl_pathv) {
982 free(pglob->gl_pathv);
983 pglob->gl_pathv = NULL;
984 }
985 if ((pglob->gl_flags & GLOB_KEEPSTAT) != 0 &&
986     pglob->gl_statv) {
987 free(pglob->gl_statv);
988 pglob->gl_statv = NULL;
989 }
990 return (GLOB_NOSPACE);
991 }

993 pathv = realloc(pglob->gl_pathv, newn * sizeof (*pathv));
994 if (pathv == NULL)
995 goto nospace;
996 if (pglob->gl_pathv == NULL && pglob->gl_offs > 0) {
997 /* first time around -- clear initial gl_offs items */
998 pathv += pglob->gl_offs;
999 for (i = pglob->gl_offs; --i >= 0; )

1000 *--pathv = NULL;
1001 }
1002 pglob->gl_pathv = pathv;



new/usr/src/lib/libc/port/regex/glob.c 19

1004 if ((pglob->gl_flags & GLOB_KEEPSTAT) != 0) {
1005 statv = realloc(pglob->gl_statv, newn * sizeof (*statv));
1006 if (statv == NULL)
1007 goto nospace;
1008 if (pglob->gl_statv == NULL && pglob->gl_offs > 0) {
1009 /* first time around -- clear initial gl_offs items */
1010 statv += pglob->gl_offs;
1011 for (i = pglob->gl_offs; --i >= 0; )
1012 *--statv = NULL;
1013 }
1014 pglob->gl_statv = statv;
1015 if (sb == NULL)
1016 statv[pglob->gl_offs + pglob->gl_pathc] = NULL;
1017 else {
1018 limitp->glim_malloc += sizeof (**statv);
1019 if ((pglob->gl_flags & GLOB_LIMIT) &&
1020     limitp->glim_malloc >= GLOB_LIMIT_MALLOC) {
1021 errno = 0;
1022 return (GLOB_NOSPACE);
1023 }
1024 if ((statv[pglob->gl_offs + pglob->gl_pathc] =
1025     malloc(sizeof (**statv))) == NULL)
1026 goto copy_error;
1027 (void) memcpy(statv[pglob->gl_offs + pglob->gl_pathc],
1028     sb, sizeof (*sb));
1029 }
1030 statv[pglob->gl_offs + pglob->gl_pathc + 1] = NULL;
1031 }

1033 len = MB_LEN_MAX;
1034 p = path;
1035 while ((n = wctomb(junk, p->w_wc)) > 0) {
1036 len += n;
1037 if ((p++)->w_wc == EOS)
1038 break;
1039 }
1040 if (n < 0)
1041 return (GLOB_NOMATCH);

1043 limitp->glim_malloc += len;
1044 if ((copy = malloc(len)) != NULL) {
1045 if (g_Ctoc(path, copy, len)) {
1046 free(copy);
1047 return (GLOB_NOSPACE);
1048 }
1049 pathv[pglob->gl_offs + pglob->gl_pathc++] = copy;
1050 }
1051 pathv[pglob->gl_offs + pglob->gl_pathc] = NULL;

1053 if ((pglob->gl_flags & GLOB_LIMIT) &&
1054     (newn * sizeof (*pathv)) + limitp->glim_malloc >
1055     GLOB_LIMIT_MALLOC) {
1056 errno = 0;
1057 return (GLOB_NOSPACE);
1058 }
1059 copy_error:
1060 return (copy == NULL ? GLOB_NOSPACE : 0);
265 /* NOTREACHED */
1061 }

1064 /*
1065  * pattern matching function for filenames.  Each occurrence of the *
1066  * pattern causes a recursion level.
269  * Comparison routine for two name arguments, called by qsort.

new/usr/src/lib/libc/port/regex/glob.c 20

1067  */
1068 static int
1069 match(wcat_t *name, wcat_t *pat, wcat_t *patend, int recur)
271 int
272 pstrcmp(const void *npp1, const void *npp2)
1070 {
1071 int ok, negate_range;
1072 wcat_t c, k;

1074 if (recur-- == 0)
1075 return (1);

1077 while (pat < patend) {
1078 c = *pat++;
1079 switch (c.w_wc) {
1080 case M_ALL:
1081 if (c.w_at != M_QUOTE) {
1082 k = *name++;
1083 if (k.w_at != c.w_at || k.w_wc != c.w_wc)
1084 return (0);
1085 break;
1086 }
1087 while (pat < patend && pat->w_at == M_QUOTE &&
1088     pat->w_wc == M_ALL)
1089 pat++; /* eat consecutive ’*’ */
1090 if (pat == patend)
1091 return (1);
1092 do {
1093 if (match(name, pat, patend, recur))
1094 return (1);
1095 } while ((name++)->w_wc != EOS);
1096 return (0);
1097 case M_ONE:
1098 if (c.w_at != M_QUOTE) {
1099 k = *name++;
1100 if (k.w_at != c.w_at || k.w_wc != c.w_wc)
1101 return (0);
1102 break;
1103 }
1104 if ((name++)->w_wc == EOS)
1105 return (0);
1106 break;
1107 case M_SET:
1108 if (c.w_at != M_QUOTE) {
1109 k = *name++;
1110 if (k.w_at != c.w_at || k.w_wc != c.w_wc)
1111 return (0);
1112 break;
1113 }
1114 ok = 0;
1115 if ((k = *name++).w_wc == EOS)
1116 return (0);
1117 if ((negate_range = (pat->w_at == M_QUOTE &&
1118     pat->w_wc == M_NOT)) != 0)
1119 ++pat;
1120 while (((c = *pat++).w_at != M_QUOTE) ||
1121     c.w_wc != M_END) {
1122 if (c.w_at == M_QUOTE && c.w_wc == M_CLASS) {
1123 wcat_t cc;

1125 cc.w_at = pat->w_at;
1126 cc.w_wc = pat->w_wc;
1127 if (iswctype(k.w_wc, cc.w_wc))
1128 ok = 1;
1129 ++pat;
1130 }



new/usr/src/lib/libc/port/regex/glob.c 21

1131 if (pat->w_at == M_QUOTE &&
1132     pat->w_wc == M_RNG) {
1133 if (c.w_wc <= k.w_wc &&
1134     k.w_wc <= pat[1].w_wc)
1135 ok = 1;
1136 pat += 2;
1137 } else if (c.w_wc == k.w_wc)
1138 ok = 1;
1139 }
1140 if (ok == negate_range)
1141 return (0);
1142 break;
1143 default:
1144 k = *name++;
1145 if (k.w_at != c.w_at || k.w_wc != c.w_wc)
1146 return (0);
1147 break;
1148 }
1149 }
1150 return (name->w_wc == EOS);
274 return (strcoll(*(char **)npp1, *(char **)npp2));
1151 }

1153 /* globfree() function with legacy glob structure */
1154 void
1155 globfree(glob_t *pglob)
1156 {
1157 /* Only POSIX flags allowed */
1158 pglob->gl_flags &= GLOB_POSIX;

1160 globfree_com(pglob);
1161 }

1163 /*
1164  * Extended globfree() function, selected by #pragma redefine_extname
1165  * in glob.h
278  * Add a new matched filename to the glob_t structure, increasing the
279  * size of that array, as required.
1166  */
1167 void
1168 _globfree_ext(glob_t *pglob)
281 int
282 append(glob_t *gp, const char *str)
1169 {
1170 globfree_com(pglob);
1171 }
284 char *cp;

1173 /* Free allocated data belonging to a glob_t structure. */
1174 void
1175 globfree_com(glob_t *pglob)
1176 {
1177 int i;
1178 char **pp;
286 if ((cp = malloc(strlen(str)+1)) == NULL)
287 return (GLOB_NOSPACE);
288 gp->gl_pathp[gp->gl_pathc++] = strcpy(cp, str);

1180 if (pglob->gl_pathv != NULL) {
1181 pp = pglob->gl_pathv + pglob->gl_offs;
1182 for (i = pglob->gl_pathc; i--; ++pp)
1183 if (*pp)
1184 free(*pp);
1185 free(pglob->gl_pathv);
1186 pglob->gl_pathv = NULL;
290 if ((gp->gl_pathc + gp->gl_offs) >= gp->gl_pathn) {

new/usr/src/lib/libc/port/regex/glob.c 22

291 gp->gl_pathn *= 2;
292 gp->gl_pathv = (char **)realloc((void *)gp->gl_pathv,
293     gp->gl_pathn * sizeof (char *));
294 if (gp->gl_pathv == NULLCPP)
295 return (GLOB_NOSPACE);
296 gp->gl_pathp = gp->gl_pathv + gp->gl_offs;
1187 }
1188 if ((pglob->gl_flags & GLOB_KEEPSTAT) != 0 &&
1189     pglob->gl_statv != NULL) {
1190 for (i = 0; i < pglob->gl_pathc; i++) {
1191 if (pglob->gl_statv[i] != NULL)
1192 free(pglob->gl_statv[i]);
1193 }
1194 free(pglob->gl_statv);
1195 pglob->gl_statv = NULL;
1196 }
1197 }

1199 static DIR *
1200 g_opendir(wcat_t *str, glob_t *pglob)
1201 {
1202 char buf[MAXPATHLEN];

1204 if (str->w_wc == EOS)
1205 (void) strlcpy(buf, ".", sizeof (buf));
1206 else {
1207 if (g_Ctoc(str, buf, sizeof (buf)))
1208 return (NULL);
1209 }

1211 if (pglob->gl_flags & GLOB_ALTDIRFUNC)
1212 return ((*pglob->gl_opendir)(buf));

1214 return (opendir(buf));
1215 }

1217 static int
1218 g_lstat(wcat_t *fn, struct stat *sb, glob_t *pglob)
1219 {
1220 char buf[MAXPATHLEN];

1222 if (g_Ctoc(fn, buf, sizeof (buf)))
1223 return (-1);
1224 if (pglob->gl_flags & GLOB_ALTDIRFUNC)
1225 return ((*pglob->gl_lstat)(buf, sb));
1226 return (lstat(buf, sb));
1227 }

1229 static int
1230 g_stat(wcat_t *fn, struct stat *sb, glob_t *pglob)
1231 {
1232 char buf[MAXPATHLEN];

1234 if (g_Ctoc(fn, buf, sizeof (buf)))
1235 return (-1);
1236 if (pglob->gl_flags & GLOB_ALTDIRFUNC)
1237 return ((*pglob->gl_stat)(buf, sb));
1238 return (stat(buf, sb));
1239 }

1241 static wcat_t *
1242 g_strchr(const wcat_t *str, wchar_t ch)
1243 {
1244 do {
1245 if (str->w_at == 0 && str->w_wc == ch)
1246 return ((wcat_t *)str);



new/usr/src/lib/libc/port/regex/glob.c 23

1247 } while ((str++)->w_wc != EOS);
1248 return (NULL);
1249 }

1251 static int
1252 g_Ctoc(const wcat_t *str, char *buf, uint_t len)
1253 {
1254 int n;
1255 wchar_t w;

1257 while (len >= MB_LEN_MAX) {
1258 w = (str++)->w_wc;
1259 if ((n = wctomb(buf, w)) > 0) {
1260 len -= n;
1261 buf += n;
1262 }
1263 if (n < 0)
1264 break;
1265 if (w == EOS)
1266 return (0);
1267 }
1268 return (1);
1269 }

1271 #ifdef DEBUG
1272 static void
1273 qprintf(const char *str, wcat_t *s)
1274 {
1275 wcat_t *p;

1277 (void) printf("%s:\n", str);
1278 for (p = s; p->w_wc != EOS; p++)
1279 (void) printf("%wc", p->w_wc);
1280 (void) printf("\n");
1281 for (p = s; p->w_wc != EOS; p++)
1282 (void) printf("%c", p->w_at & M_PROTECT ? ’"’ : ’ ’);
1283 (void) printf("\n");
1284 for (p = s; p->w_wc != EOS; p++)
1285 (void) printf("%c", ismeta(*p) ? ’_’ : ’ ’);
1286 (void) printf("\n");
1287 }
1288 #endif



new/usr/src/man/man3c/glob.3c 1

**********************************************************
   17719 Wed Mar  6 08:38:29 2013
new/usr/src/man/man3c/glob.3c
1097 glob(3c) needs to support non-POSIX options
3341 The sftp command should use the native glob()
**********************************************************

1 ’\" te
2 .\" Copyright (c) 1992, X/Open Company Limited. All Rights Reserved.
3 .\" Portions Copyright (c) 2003, Sun Microsystems, Inc.  All Rights Reserved.
4 .\" Portions Copyright (c) 2013, Gary Mills
2 .\" Copyright (c) 1992, X/Open Company Limited. All Rights Reserved.  Portions C
5 .\" Sun Microsystems, Inc. gratefully acknowledges The Open Group for permission
6 .\" http://www.opengroup.org/bookstore/.
7 .\" The Institute of Electrical and Electronics Engineers and The Open Group, ha
8 .\"
9 .\" $OpenBSD: glob.3,v 1.30 2012/01/20 07:09:42 tedu Exp $

10 .\"
11 .\" Copyright (c) 1989, 1991, 1993, 1994
12 .\" The Regents of the University of California.  All rights reserved.
13 .\"
14 .\" This code is derived from software contributed to Berkeley by
15 .\" Guido van Rossum.
16 .\" Redistribution and use in source and binary forms, with or without
17 .\" modification, are permitted provided that the following conditions
18 .\" are met:
19 .\" 1. Redistributions of source code must retain the above copyright
20 .\"    notice, this list of conditions and the following disclaimer.
21 .\" 2. Redistributions in binary form must reproduce the above copyright
22 .\"    notice, this list of conditions and the following disclaimer in the
23 .\"    documentation and/or other materials provided with the distribution.
24 .\" 3. Neither the name of the University nor the names of its contributors
25 .\"    may be used to endorse or promote products derived from this software
26 .\"    without specific prior written permission.
27 .\"
28 .\" THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ‘‘AS IS’’ AND
29 .\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 .\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 .\" ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 .\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 .\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 .\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 .\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 .\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 .\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 .\" SUCH DAMAGE.
39 .\"
40 .\"  This notice shall appear on any product containing this material.
41 .\" The contents of this file are subject to the terms of the Common Development
42 .\" You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE or http:
43 .\" When distributing Covered Code, include this CDDL HEADER in each file and in
44 .TH GLOB 3C "Nov 1, 2003"
45 .SH NAME
46 glob, globfree \- generate path names matching a pattern
47 .SH SYNOPSIS
48 .LP
49 .nf
50 #include <glob.h>

52 \fBint\fR \fBglob\fR(\fBconst char *restrict\fR \fIpattern\fR, \fBint\fR \fIflag
53      \fBint(*\fR\fIerrfunc\fR)(const char *\fIepath\fR, int \fIeerrno)\fR,
54      \fBglob_t *restrict\fR \fIpglob\fR);
55 .fi

57 .LP
58 .nf
59 \fBvoid\fR \fBglobfree\fR(\fBglob_t *\fR\fIpglob\fR);

new/usr/src/man/man3c/glob.3c 2

60 .fi

62 .SH DESCRIPTION
63 .sp
64 .LP
65 The \fBglob()\fR function is a path name generator.
66 .sp
67 .LP
68 The \fBglobfree()\fR function frees any memory allocated by \fBglob()\fR
69 associated with \fIpglob\fR.
70 .SS "\fIpattern\fR Argument"
71 .sp
72 .LP
73 The argument \fIpattern\fR is a pointer to a path name pattern to be expanded.
74 The \fBglob()\fR function matches all accessible path names against this
75 pattern and develops a list of all path names that match. In order to have
76 access to a path name, \fBglob()\fR requires search permission on every
77 component of a path except the last, and read permission on each directory of
78 any filename component of \fIpattern\fR that contains any of the following
79 special characters:
80 .sp
81 .in +2
82 .nf
83 *        ?        [
84 .fi
85 .in -2

87 .SS "\fIpglob\fR Argument"
88 .sp
89 .LP
90 The structure type \fBglob_t\fR is defined in the header \fB<glob.h>\fR and
91 includes at least the following members:
92 .sp
93 .in +2
94 .nf
95 size_t   gl_pathc;     /* Total count of paths matched by */
61 size_t   gl_pathc;     /* count of paths matched by */
96                        /* pattern */
97 char     **gl_pathv;   /* List of matched path names */
98 size_t   gl_offs;      /* # of slots reserved in gl_pathv */
99 int      gl_matchc;    /* Count of paths matching pattern. */
100 int      gl_flags;     /* Copy of flags parameter to glob. */
63 char     **gl_pathv;   /* pointer to list of matched */
64                        /* path names */
65 size_t   gl_offs;      /* slots to reserve at beginning */
66                        /* of gl_pathv */
101 .fi
102 .in -2

104 .sp
105 .LP
106 The \fBglob()\fR function stores the number of matched path names into
107 \fIpglob\(mi>\fR\fBgl_pathc\fR and a pointer to a list of pointers to path
108 names into \fIpglob\(mi>\fR\fBgl_pathv.\fR The path names are in sort order as
109 defined by the current setting of the  \fBLC_COLLATE\fR category. The first
110 pointer after the last path name is a \fINULL\fR pointer. If the pattern does
111 not match any path names, the returned number of matched paths is set to 0, and
112 the contents of \fIpglob\(mi>\fR\fBgl_pathv\fR are implementation-dependent.
113 .sp
114 .LP
115 It is the caller’s responsibility to create the structure pointed to by
116 \fIpglob\fR. The \fBglob()\fR function allocates other space as needed,
117 including the memory pointed to by \fBgl_pathv\fR. The \fBglobfree()\fR
118 function frees any space associated with \fIpglob\fR from a previous call to
119 \fBglob()\fR.
120 .SS "\fIflags\fR Argument"



new/usr/src/man/man3c/glob.3c 3

121 .sp
122 .LP
123 The \fIflags\fR argument is used to control the behavior of \fBglob()\fR. The
124 value of \fIflags\fR is a bitwise inclusive \fBOR\fR of zero or more of the
125 following constants, which are defined in the header <\fBglob.h\fR>:
126 .sp
127 .ne 2
128 .na
129 \fB\fBGLOB_APPEND\fR\fR
130 .ad
131 .RS 17n
132 Append path names generated to the ones from a previous call to \fBglob()\fR.
133 .RE

135 .sp
136 .ne 2
137 .na
138 \fB\fBGLOB_DOOFFS\fR\fR
139 .ad
140 .RS 17n
141 Make use of \fIpglob\(mi>\fR\fBgl_offs\fR\fI\&.\fR If this flag is set,
142 \fIpglob\(mi>\fR\fBgl_offs\fR is used to specify how many \fINULL\fR pointers
143 to add to the beginning of \fIpglob\(mi>\fR\fBgl_pathv\fR\fI\&.\fR In other
144 words, \fIpglob\(mi>\fR\fBgl_pathv\fR will point to
145 \fIpglob\(mi>\fR\fBgl_offs\fR \fINULL\fR pointers, followed by
146 \fIpglob\(mi>\fR\fBgl_pathc\fR path name pointers, followed by a \fINULL\fR
147 pointer.
148 .RE

150 .sp
151 .ne 2
152 .na
153 \fB\fBGLOB_ERR\fR\fR
154 .ad
155 .RS 17n
156 Causes \fBglob()\fR to return when it encounters a directory that it cannot
157 open or read. Ordinarily, \fBglob()\fR continues to find matches.
158 .RE

160 .sp
161 .ne 2
162 .na
163 \fB\fBGLOB_MARK\fR\fR
164 .ad
165 .RS 17n
166 Each path name that is a directory that matches \fIpattern\fR has a slash
167 appended.
168 .RE

170 .sp
171 .ne 2
172 .na
173 \fB\fBGLOB_NOCHECK\fR\fR
174 .ad
175 .RS 17n
176 If \fIpattern\fR does not match any path name, then \fBglob()\fR returns a list
177 consisting of only \fIpattern\fR, and the number of matched path names is 1.
178 .RE

180 .sp
181 .ne 2
182 .na
183 \fB\fBGLOB_NOESCAPE\fR\fR
184 .ad
185 .RS 17n
186 Disable backslash escaping.

new/usr/src/man/man3c/glob.3c 4

187 .RE

189 .sp
190 .ne 2
191 .na
192 \fB\fBGLOB_NOSORT\fR\fR
193 .ad
194 .RS 17n
195 Ordinarily, \fBglob()\fR sorts the matching path names according to the current
196 setting of the \fBLC_COLLATE\fR category.  When this flag is used the order of
197 path names returned is unspecified.
198 .RE

200 .sp
201 .ne 2
202 .na
203 \fB\fBGLOB_ALTDIRFUNC\fR\fR
204 .ad
205 .RS 17n
206 The following additional fields in the \fIpglob\fR structure
207 have been initialized with alternate functions for
208 \fBglob()\fR to use to open, read, and close directories and
209 to get stat information on names found in those directories:
210 .sp
211 .nf
212 void *(*gl_opendir)(const char *);
213 struct dirent *(*gl_readdir)(void *);
214 void (*gl_closedir)(void *);
215 int (*gl_lstat)(const char *, struct stat *);
216 int (*gl_stat)(const char *, struct stat *);
217 .fi
218 .sp
219 This extension is provided to allow programs such as
220 \fBufsrestore\fR(1M) to provide globbing from directories stored
221 on tape.
222 .RE

224 .sp
225 .ne 2
226 .na
227 \fB\fBGLOB_BRACE\fR\fR
228 .ad
229 .RS 17n
230 Pre-process the pattern string to expand ‘{pat,pat,...}’
231 strings like \fBcsh\fR(1).  The pattern ‘{}’ is left unexpanded
232 for historical reasons.  (\fBcsh\fR(1) does the same thing
233 to ease typing of \fBfind\fR(1) patterns.)
234 .RE

236 .sp
237 .ne 2
238 .na
239 \fB\fBGLOB_MAGCHAR\fR\fR
240 .ad
241 .RS 17n
242 Set by the \fBglob()\fR function if the pattern included globbing
243 characters.  See the description of the usage of
244 the \fBgl_matchc\fR structure member for more details.
245 .RE

247 .sp
248 .ne 2
249 .na
250 \fB\fBGLOB_NOMAGIC\fR\fR
251 .ad
252 .RS 17n



new/usr/src/man/man3c/glob.3c 5

253 Is the same as \fBGLOB_NOCHECK\fR but it only appends the
254 pattern if it does not contain any of the special characters
255 ‘*’, ‘?’, or ‘[’.  \fBGLOB_NOMAGIC\fR is provided to
256 simplify implementing the historic \fBcsh\fR(1) globbing behavior
257 and should probably not be used anywhere else.
258 .RE

260 .sp
261 .ne 2
262 .na
263 \fB\fBGLOB_QUOTE\fR\fR
264 .ad
265 .RS 17n
266 This option has no effect and is included for backwards
267 compatibility with older sources.
268 .RE

270 .sp
271 .ne 2
272 .na
273 \fB\fBGLOB_TILDE\fR\fR
274 .ad
275 .RS 17n
276 Expand patterns that start with ‘~’ to user name home
277 directories.
278 .RE

280 .sp
281 .ne 2
282 .na
283 \fB\fBGLOB_LIMIT\fR\fR
284 .ad
285 .RS 17n
286 Limit the amount of memory used by matches to \fIARG_MAX\fR.
287 This option should be set for programs that can be coerced
288 to a denial of service attack via patterns that
289 expand to a very large number of matches, such as a long
290 string of ‘*/../*/..’.
291 .RE

293 .sp
294 .ne 2
295 .na
296 \fB\fBGLOB_KEEPSTAT\fR\fR
297 .ad
298 .RS 17n
299 Retain a copy of the \fBstat\fR(2) information retrieved for
300 matching paths in the gl_statv array:
301 .sp
302 .nf
303 struct stat **gl_statv;
304 .fi
305 .sp
306 This option may be used to avoid \fBlstat\fR(2) lookups in
307 cases where they are expensive.
308 .RE

310 .sp
311 .LP
312 The \fBGLOB_APPEND\fR flag can be used to append a new set of path names to
313 those found in a previous call to \fBglob()\fR. The following rules apply when
314 two or more calls to \fBglob()\fR are made with the same value of \fIpglob\fR
315 and without intervening calls to \fBglobfree()\fR:
316 .RS +4
317 .TP
318 1.

new/usr/src/man/man3c/glob.3c 6

319 The first such call must not set \fBGLOB_APPEND.\fR All subsequent calls
320 must set it.
321 .RE
322 .RS +4
323 .TP
324 2.
325 All the calls must set \fBGLOB_DOOFFS,\fR or all must not set it.
326 .RE
327 .RS +4
328 .TP
329 3.
330 After the second call, \fIpglob\(mi>\fR\fBgl_pathv\fR points to a list
331 containing the following:
332 .RS +4
333 .TP
334 a.
335 Zero or more \fINULL\fR pointers, as specified by \fBGLOB_DOOFFS\fR and
336 \fIpglob\(mi>\fR\fBgl_offs\fR.
337 .RE
338 .RS +4
339 .TP
340 b.
341 Pointers to the path names that were in the \fIpglob\(mi>\fR\fBgl_pathv\fR
342 list before the call, in the same order as before.
343 .RE
344 .RS +4
345 .TP
346 c.
347 Pointers to the new path names generated by the second call, in the
348 specified order.
349 .RE
350 .RE
351 .RS +4
352 .TP
353 4.
354 The count returned in \fIpglob\(mi>\fR\fBgl_pathc\fR will be the total
355 number of path names from the two calls.
356 .RE
357 .RS +4
358 .TP
359 5.
360 The application can change any of the fields after a call to \fBglob()\fR.
361 If it does, it must reset them to the original value before a subsequent call,
362 using the same \fIpglob\fR value, to \fBglobfree()\fR or \fBglob()\fR with the
363 \fBGLOB_APPEND\fR flag.
364 .RE
365 .SS "\fIerrfunc\fR and \fIepath\fR Arguments"
366 .sp
367 .LP
368 If, during the search, a directory is encountered that cannot be opened or read
369 and \fIerrfunc\fR is not a \fINULL\fR pointer, \fBglob()\fR calls
370 \fB(\fR\fI*errfunc\fR\fB)\fR with two arguments:
371 .RS +4
372 .TP
373 1.
374 The \fIepath\fR argument is a pointer to the path that failed.
375 .RE
376 .RS +4
377 .TP
378 2.
379 The \fIeerrno\fR argument is the value of \fIerrno\fR from the failure, as
380 set by the \fBopendir\fR(3C), \fBreaddir\fR(3C) or \fBstat\fR(2) functions.
381 (Other values may be used to report other errors not explicitly documented for
382 those functions.)
383 .RE



new/usr/src/man/man3c/glob.3c 7

385 .sp
386 .LP
387 If \fB(\fR\fI*errfunc\fR\fB)\fR is called and returns non-zero, or if the
388 \fBGLOB_ERR\fR flag is set in \fIflags\fR, \fBglob()\fR stops the scan and
389 returns \fBGLOB_ABORTED\fR after setting \fIgl_pathc\fR and \fIgl_pathv\fR in
390 \fIpglob\fR to reflect the paths already scanned. If \fBGLOB_ERR\fR is not set
391 and either \fIerrfunc\fR is a \fINULL\fR pointer or
392 \fB(\fR\fI*errfunc\fR\fB)\fR returns 0, the error is ignored.
393 .SH RETURN VALUES
242 The following constants are defined as error return values for \fBglob()\fR:
394 .sp
395 .LP
396 On successful completion, \fBglob()\fR returns zero.
397 In addition the fields of pglob contain the values described below:

399 .sp
400 .ne 2
401 .na
402 \fB\fBgl_pathc\fR\fR
246 \fB\fBGLOB_ABORTED\fR\fR
403 .ad
404 .RS 16n
405 Contains the total number of matched pathnames so far.
406 This includes other matches from previous invocations of
407 \fBglob()\fR if \fBGLOB_APPEND\fR was specified.
249 The scan was stopped because \fBGLOB_ERR\fR was set or
250 \fB(\fR\fI*errfunc\fR\fB)\fR returned non-zero.
408 .RE

410 .sp
411 .ne 2
412 .na
413 \fB\fBgl_matchc\fR\fR
256 \fB\fBGLOB_NOMATCH\fR\fR
414 .ad
415 .RS 16n
416 Contains the number of matched pathnames in the current
417 invocation of \fBglob()\fR.
259 The pattern does not match any existing path name, and \fBGLOB_NOCHECK\fR was
260 not set in flags.
418 .RE

420 .sp
421 .ne 2
422 .na
423 \fB\fBgl_flags\fR\fR
266 \fB\fBGLOG_NOSPACE\fR\fR
424 .ad
425 .RS 16n
426 Contains a copy of the flags parameter with the bit
427 \fBGLOB_MAGCHAR\fR set if pattern contained any of the special
428 characters ‘*’, ‘?’, or ‘[’, cleared if not.
269 An attempt to allocate memory failed.
429 .RE

431 .sp
432 .ne 2
433 .na
434 \fB\fBgl_pathv\fR\fR
435 .ad
436 .RS 16n
437 Contains a pointer to a null-terminated list of matched
438 pathnames.  However, if \fBgl_pathc\fR is zero, the contents of
439 \fBgl_pathv\fR are undefined.
440 .RE

new/usr/src/man/man3c/glob.3c 8

273 .LP
274 If \fB(\fR\fI*errfunc\fR\fB)\fR is called and returns non-zero, or if the
275 \fBGLOB_ERR\fR flag is set in \fIflags\fR, \fBglob()\fR stops the scan and
276 returns \fBGLOB_ABORTED\fR after setting \fIgl_pathc\fR and \fIgl_pathv\fR in
277 \fIpglob\fR to reflect the paths already scanned. If \fBGLOB_ERR\fR is not set
278 and either \fIerrfunc\fR is a \fINULL\fR pointer or
279 \fB(\fR\fI*errfunc\fR\fB)\fR returns 0, the error is ignored.
280 .SH RETURN VALUES
442 .sp
443 .ne 2
444 .na
445 \fB\fBgl_statv\fR\fR
446 .ad
447 .RS 16n
448 If the \fBGLOB_KEEPSTAT\fR flag was set, \fBgl_statv\fR contains a
449 pointer to a null-terminated list of matched \fBstat\fR(2)
450 objects corresponding to the paths in \fBgl_pathc\fR.
451 .RE

453 .sp
454 .LP
455 If \fBglob()\fR terminates due to an error, it sets \fBerrno\fR and
456 returns one of the following non-zero constants. defined in <\fBglob.h\fR>:

283 The following values are returned by \fBglob()\fR:
458 .sp
459 .ne 2
460 .na
461 \fB\fBGLOB_ABORTED\fR\fR
287 \fB\fB0\fR\fR
462 .ad
463 .RS 16n
464 The scan was stopped because \fBGLOB_ERR\fR was set or
465 \fB(\fR\fI*errfunc\fR\fB)\fR returned non-zero.
289 .RS 12n
290 Successful completion. The argument \fIpglob\(mi>\fR\fBgl_pathc\fR returns the
291 number of matched path names and the argument \fIpglob\(mi>\fR\fBgl_pathv\fR
292 contains a pointer to a null-terminated list of matched and sorted path names.
293 However, if \fIpglob\(mi>\fR\fBgl_pathc\fR is 0, the content of
294 \fIpglob\(mi>\fR\fBgl_pathv\fR is undefined.
466 .RE

468 .sp
469 .ne 2
470 .na
471 \fB\fBGLOB_NOMATCH\fR\fR
300 \fB\fBnon-zero\fR\fR
472 .ad
473 .RS 16n
474 The pattern does not match any existing path name, and \fBGLOB_NOCHECK\fR was
475 not set in flags.
302 .RS 12n
303 An error has occurred. Non-zero constants are defined in <\fBglob.h\fR>. The
304 arguments \fIpglob\(mi>\fR\fBgl_pathc\fR and \fIpglob\(mi>\fR\fBgl_pathv\fR are
305 still set as defined above.
476 .RE

478 .sp
479 .ne 2
480 .na
481 \fB\fBGLOB_NOSPACE\fR\fR
482 .ad
483 .RS 16n
484 An attempt to allocate memory failed.
485 .RE



new/usr/src/man/man3c/glob.3c 9

487 .sp
488 .ne 2
489 .na
490 \fB\fBGLOB_NOSYS\fR\fR
491 .ad
492 .RS 16n
493 The requested function is not supported by this version of
494 \fBglob()\fR.
495 .RE

497 .LP
498 The arguments \fIpglob\(mi>\fR\fBgl_pathc\fR and \fIpglob\(mi>\fR\fBgl_pathv\fR 
499 specified above.
500 .sp
501 .LP
502 The \fBglobfree()\fR function returns no value.
503 .SH USAGE
504 .sp
505 .LP
506 This function is not provided for the purpose of enabling utilities to perform
507 path name expansion on their arguments, as this operation is performed by the
508 shell, and utilities are explicitly not expected to redo this. Instead, it is
509 provided for applications that need to do path name expansion on strings
510 obtained from other sources, such as a pattern typed by a user or read from a
511 file.
512 .sp
513 .LP
514 If a utility needs to see if a path name matches a given pattern, it can use
515 \fBfnmatch\fR(3C).
516 .sp
517 .LP
518 Note that \fBgl_pathc\fR and \fBgl_pathv\fR have meaning even if \fBglob()\fR
519 fails. This allows \fBglob()\fR to report partial results in the event of an
520 error. However, if \fBgl_pathc\fR is 0, \fBgl_pathv\fR is unspecified even if
521 \fBglob()\fR did not return an error.
522 .sp
523 .LP
524 The \fBGLOB_NOCHECK\fR option could be used when an application wants to expand
525 a path name if wildcards are specified, but wants to treat the pattern as just
526 a string otherwise.
527 .sp
528 .LP
529 The new path names generated by a subsequent call with \fBGLOB_APPEND\fR are
530 not sorted together with the previous path names. This mirrors the way that the
531 shell handles path name expansion when multiple expansions are done on a
532 command line.
533 .sp
534 .LP
535 Applications that need tilde and parameter expansion should use the
536 \fBwordexp\fR(3C) function.
537 .SH EXAMPLES
538 .LP
539 \fBExample 1 \fRExample of \fBglob_doofs\fR function.
540 .sp
541 .LP
542 One use of the \fBGLOB_DOOFFS\fR flag is by applications that build an argument
543 list for use with the \fBexecv()\fR, \fBexecve()\fR, or \fBexecvp()\fR
544 functions (see \fBexec\fR(2)). Suppose, for example, that an application wants
545 to do the equivalent of:

547 .sp
548 .in +2
549 .nf
550 \fBls\fR \fB-l\fR *.c
551 .fi
552 .in -2

new/usr/src/man/man3c/glob.3c 10

554 .sp
555 .LP
556 but for some reason:

558 .sp
559 .in +2
560 .nf
561 system("ls -l *.c")
562 .fi
563 .in -2

565 .sp
566 .LP
567 is not acceptable. The application could obtain approximately the same result
568 using the sequence:

570 .sp
571 .in +2
572 .nf
573 globbuf.gl_offs = 2;
574 glob ("*.c", GLOB_DOOFFS, NULL, &globbuf);
575 globbuf.gl_pathv[0] = "ls";
576 globbuf.gl_pathv[1] = "-l";
577 execvp ("ls", &globbuf.gl_pathv[0]);
578 .fi
579 .in -2

581 .sp
582 .LP
583 Using the same example:

585 .sp
586 .in +2
587 .nf
588 \fBls\fR \fB-l\fR *.c *.h
589 .fi
590 .in -2

592 .sp
593 .LP
594 could be approximately simulated using \fBGLOB_APPEND\fR as follows:

596 .sp
597 .in +2
598 .nf
599 \fBglobbuf.gl_offs = 2;
600 glob ("*.c", GLOB_DOOFFS, NULL, &globbuf);
601 glob ("*.h", GLOB_DOOFFS|GLOB_APPEND, NULL, &globbuf);
602 \&.\|.\|.\fR
603 .fi
604 .in -2

606 .SH ATTRIBUTES
607 .sp
608 .LP
609 See \fBattributes\fR(5) for descriptions of the following attributes:
610 .sp

612 .sp
613 .TS
614 box;
615 c | c
616 l | l .
617 ATTRIBUTE TYPE ATTRIBUTE VALUE
618 _



new/usr/src/man/man3c/glob.3c 11

619 Interface Stability Standard
620 _
621 MT-Level MT-Safe
622 .TE

624 .SH SEE ALSO
625 .sp
626 .LP
627 \fBexecv\fR(2), \fBstat\fR(2), \fBfnmatch\fR(3C), \fBopendir\fR(3C),
628 \fBreaddir\fR(3C), \fBwordexp\fR(3C), \fBattributes\fR(5), \fBstandards\fR(5)


