1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
  24  * Use is subject to license terms.
  25  *
  26  * Copyright (c) 2010, Intel Corporation.
  27  * All rights reserved.
  28  *
  29  * Copyright 2013 Joyent, Inc.  All rights reserved.
  30  */
  31 
  32 /*
  33  * This file contains the functionality that mimics the boot operations
  34  * on SPARC systems or the old boot.bin/multiboot programs on x86 systems.
  35  * The x86 kernel now does everything on its own.
  36  */
  37 
  38 #include <sys/types.h>
  39 #include <sys/bootconf.h>
  40 #include <sys/bootsvcs.h>
  41 #include <sys/bootinfo.h>
  42 #include <sys/multiboot.h>
  43 #include <sys/bootvfs.h>
  44 #include <sys/bootprops.h>
  45 #include <sys/varargs.h>
  46 #include <sys/param.h>
  47 #include <sys/machparam.h>
  48 #include <sys/machsystm.h>
  49 #include <sys/archsystm.h>
  50 #include <sys/boot_console.h>
  51 #include <sys/cmn_err.h>
  52 #include <sys/systm.h>
  53 #include <sys/promif.h>
  54 #include <sys/archsystm.h>
  55 #include <sys/x86_archext.h>
  56 #include <sys/kobj.h>
  57 #include <sys/privregs.h>
  58 #include <sys/sysmacros.h>
  59 #include <sys/ctype.h>
  60 #include <sys/fastboot.h>
  61 #ifdef __xpv
  62 #include <sys/hypervisor.h>
  63 #include <net/if.h>
  64 #endif
  65 #include <vm/kboot_mmu.h>
  66 #include <vm/hat_pte.h>
  67 #include <sys/kobj.h>
  68 #include <sys/kobj_lex.h>
  69 #include <sys/pci_cfgspace_impl.h>
  70 #include <sys/fastboot_impl.h>
  71 #include <sys/acpi/acconfig.h>
  72 #include <sys/acpi/acpi.h>
  73 
  74 static int have_console = 0;    /* set once primitive console is initialized */
  75 static char *boot_args = "";
  76 
  77 /*
  78  * Debugging macros
  79  */
  80 static uint_t kbm_debug = 0;
  81 #define DBG_MSG(s)      { if (kbm_debug) bop_printf(NULL, "%s", s); }
  82 #define DBG(x)          { if (kbm_debug)                        \
  83         bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x));     \
  84         }
  85 
  86 #define PUT_STRING(s) {                         \
  87         char *cp;                               \
  88         for (cp = (s); *cp; ++cp)               \
  89                 bcons_putchar(*cp);             \
  90         }
  91 
  92 bootops_t bootop;       /* simple bootops we'll pass on to kernel */
  93 struct bsys_mem bm;
  94 
  95 /*
  96  * Boot info from "glue" code in low memory. xbootp is used by:
  97  *      do_bop_phys_alloc(), do_bsys_alloc() and boot_prop_finish().
  98  */
  99 static struct xboot_info *xbootp;
 100 static uintptr_t next_virt;     /* next available virtual address */
 101 static paddr_t next_phys;       /* next available physical address from dboot */
 102 static paddr_t high_phys = -(paddr_t)1; /* last used physical address */
 103 
 104 /*
 105  * buffer for vsnprintf for console I/O
 106  */
 107 #define BUFFERSIZE      512
 108 static char buffer[BUFFERSIZE];
 109 
 110 /*
 111  * stuff to store/report/manipulate boot property settings.
 112  */
 113 typedef struct bootprop {
 114         struct bootprop *bp_next;
 115         char *bp_name;
 116         uint_t bp_vlen;
 117         char *bp_value;
 118 } bootprop_t;
 119 
 120 static bootprop_t *bprops = NULL;
 121 static char *curr_page = NULL;          /* ptr to avail bprop memory */
 122 static int curr_space = 0;              /* amount of memory at curr_page */
 123 
 124 #ifdef __xpv
 125 start_info_t *xen_info;
 126 shared_info_t *HYPERVISOR_shared_info;
 127 #endif
 128 
 129 /*
 130  * some allocator statistics
 131  */
 132 static ulong_t total_bop_alloc_scratch = 0;
 133 static ulong_t total_bop_alloc_kernel = 0;
 134 
 135 static void build_firmware_properties(void);
 136 
 137 static int early_allocation = 1;
 138 
 139 int force_fastreboot = 0;
 140 volatile int fastreboot_onpanic = 0;
 141 int post_fastreboot = 0;
 142 #ifdef  __xpv
 143 volatile int fastreboot_capable = 0;
 144 boolean_t bios_calls_available = B_FALSE;
 145 #else
 146 volatile int fastreboot_capable = 1;
 147 boolean_t bios_calls_available = B_TRUE;
 148 #endif
 149 
 150 /*
 151  * Information saved from current boot for fast reboot.
 152  * If the information size exceeds what we have allocated, fast reboot
 153  * will not be supported.
 154  */
 155 multiboot_info_t saved_mbi;
 156 mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT];
 157 uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE];
 158 char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
 159 int saved_cmdline_len = 0;
 160 size_t saved_file_size[FASTBOOT_MAX_FILES_MAP];
 161 
 162 /*
 163  * Turn off fastreboot_onpanic to avoid panic loop.
 164  */
 165 char fastreboot_onpanic_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
 166 static const char fastreboot_onpanic_args[] = " -B fastreboot_onpanic=0";
 167 
 168 /*
 169  * Pointers to where System Resource Affinity Table (SRAT), System Locality
 170  * Information Table (SLIT) and Maximum System Capability Table (MSCT)
 171  * are mapped into virtual memory
 172  */
 173 ACPI_TABLE_SRAT *srat_ptr = NULL;
 174 ACPI_TABLE_SLIT *slit_ptr = NULL;
 175 ACPI_TABLE_MSCT *msct_ptr = NULL;
 176 
 177 /*
 178  * Arbitrary limit on number of localities we handle; if
 179  * this limit is raised to more than UINT16_MAX, make sure
 180  * process_slit() knows how to handle it.
 181  */
 182 #define SLIT_LOCALITIES_MAX     (4096)
 183 
 184 #define SLIT_NUM_PROPNAME       "acpi-slit-localities"
 185 #define SLIT_PROPNAME           "acpi-slit"
 186 
 187 /*
 188  * Allocate aligned physical memory at boot time. This allocator allocates
 189  * from the highest possible addresses. This avoids exhausting memory that
 190  * would be useful for DMA buffers.
 191  */
 192 paddr_t
 193 do_bop_phys_alloc(uint64_t size, uint64_t align)
 194 {
 195         paddr_t pa = 0;
 196         paddr_t start;
 197         paddr_t end;
 198         struct memlist  *ml = (struct memlist *)xbootp->bi_phys_install;
 199 
 200         /*
 201          * Be careful if high memory usage is limited in startup.c
 202          * Since there are holes in the low part of the physical address
 203          * space we can treat physmem as a pfn (not just a pgcnt) and
 204          * get a conservative upper limit.
 205          */
 206         if (physmem != 0 && high_phys > pfn_to_pa(physmem))
 207                 high_phys = pfn_to_pa(physmem);
 208 
 209         /*
 210          * find the lowest or highest available memory in physinstalled
 211          * On 32 bit avoid physmem above 4Gig if PAE isn't enabled
 212          */
 213 #if defined(__i386)
 214         if (xbootp->bi_use_pae == 0 && high_phys > FOUR_GIG)
 215                 high_phys = FOUR_GIG;
 216 #endif
 217 
 218         /*
 219          * find the highest available memory in physinstalled
 220          */
 221         size = P2ROUNDUP(size, align);
 222         for (; ml; ml = ml->ml_next) {
 223                 start = P2ROUNDUP(ml->ml_address, align);
 224                 end = P2ALIGN(ml->ml_address + ml->ml_size, align);
 225                 if (start < next_phys)
 226                         start = P2ROUNDUP(next_phys, align);
 227                 if (end > high_phys)
 228                         end = P2ALIGN(high_phys, align);
 229 
 230                 if (end <= start)
 231                         continue;
 232                 if (end - start < size)
 233                         continue;
 234 
 235                 /*
 236                  * Early allocations need to use low memory, since
 237                  * physmem might be further limited by bootenv.rc
 238                  */
 239                 if (early_allocation) {
 240                         if (pa == 0 || start < pa)
 241                                 pa = start;
 242                 } else {
 243                         if (end - size > pa)
 244                                 pa = end - size;
 245                 }
 246         }
 247         if (pa != 0) {
 248                 if (early_allocation)
 249                         next_phys = pa + size;
 250                 else
 251                         high_phys = pa;
 252                 return (pa);
 253         }
 254         bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64
 255             ") Out of memory\n", size, align);
 256         /*NOTREACHED*/
 257 }
 258 
 259 uintptr_t
 260 alloc_vaddr(size_t size, paddr_t align)
 261 {
 262         uintptr_t rv;
 263 
 264         next_virt = P2ROUNDUP(next_virt, (uintptr_t)align);
 265         rv = (uintptr_t)next_virt;
 266         next_virt += size;
 267         return (rv);
 268 }
 269 
 270 /*
 271  * Allocate virtual memory. The size is always rounded up to a multiple
 272  * of base pagesize.
 273  */
 274 
 275 /*ARGSUSED*/
 276 static caddr_t
 277 do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
 278 {
 279         paddr_t a = align;      /* same type as pa for masking */
 280         uint_t pgsize;
 281         paddr_t pa;
 282         uintptr_t va;
 283         ssize_t s;              /* the aligned size */
 284         uint_t level;
 285         uint_t is_kernel = (virthint != 0);
 286 
 287         if (a < MMU_PAGESIZE)
 288                 a = MMU_PAGESIZE;
 289         else if (!ISP2(a))
 290                 prom_panic("do_bsys_alloc() incorrect alignment");
 291         size = P2ROUNDUP(size, MMU_PAGESIZE);
 292 
 293         /*
 294          * Use the next aligned virtual address if we weren't given one.
 295          */
 296         if (virthint == NULL) {
 297                 virthint = (caddr_t)alloc_vaddr(size, a);
 298                 total_bop_alloc_scratch += size;
 299         } else {
 300                 total_bop_alloc_kernel += size;
 301         }
 302 
 303         /*
 304          * allocate the physical memory
 305          */
 306         pa = do_bop_phys_alloc(size, a);
 307 
 308         /*
 309          * Add the mappings to the page tables, try large pages first.
 310          */
 311         va = (uintptr_t)virthint;
 312         s = size;
 313         level = 1;
 314         pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG;
 315         if (xbootp->bi_use_largepage && a == pgsize) {
 316                 while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) &&
 317                     s >= pgsize) {
 318                         kbm_map(va, pa, level, is_kernel);
 319                         va += pgsize;
 320                         pa += pgsize;
 321                         s -= pgsize;
 322                 }
 323         }
 324 
 325         /*
 326          * Map remaining pages use small mappings
 327          */
 328         level = 0;
 329         pgsize = MMU_PAGESIZE;
 330         while (s > 0) {
 331                 kbm_map(va, pa, level, is_kernel);
 332                 va += pgsize;
 333                 pa += pgsize;
 334                 s -= pgsize;
 335         }
 336         return (virthint);
 337 }
 338 
 339 /*
 340  * Free virtual memory - we'll just ignore these.
 341  */
 342 /*ARGSUSED*/
 343 static void
 344 do_bsys_free(bootops_t *bop, caddr_t virt, size_t size)
 345 {
 346         bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n",
 347             (void *)virt, size);
 348 }
 349 
 350 /*
 351  * Old interface
 352  */
 353 /*ARGSUSED*/
 354 static caddr_t
 355 do_bsys_ealloc(bootops_t *bop, caddr_t virthint, size_t size,
 356     int align, int flags)
 357 {
 358         prom_panic("unsupported call to BOP_EALLOC()\n");
 359         return (0);
 360 }
 361 
 362 
 363 static void
 364 bsetprop(char *name, int nlen, void *value, int vlen)
 365 {
 366         uint_t size;
 367         uint_t need_size;
 368         bootprop_t *b;
 369 
 370         /*
 371          * align the size to 16 byte boundary
 372          */
 373         size = sizeof (bootprop_t) + nlen + 1 + vlen;
 374         size = (size + 0xf) & ~0xf;
 375         if (size > curr_space) {
 376                 need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK;
 377                 curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE);
 378                 curr_space = need_size;
 379         }
 380 
 381         /*
 382          * use a bootprop_t at curr_page and link into list
 383          */
 384         b = (bootprop_t *)curr_page;
 385         curr_page += sizeof (bootprop_t);
 386         curr_space -=  sizeof (bootprop_t);
 387         b->bp_next = bprops;
 388         bprops = b;
 389 
 390         /*
 391          * follow by name and ending zero byte
 392          */
 393         b->bp_name = curr_page;
 394         bcopy(name, curr_page, nlen);
 395         curr_page += nlen;
 396         *curr_page++ = 0;
 397         curr_space -= nlen + 1;
 398 
 399         /*
 400          * copy in value, but no ending zero byte
 401          */
 402         b->bp_value = curr_page;
 403         b->bp_vlen = vlen;
 404         if (vlen > 0) {
 405                 bcopy(value, curr_page, vlen);
 406                 curr_page += vlen;
 407                 curr_space -= vlen;
 408         }
 409 
 410         /*
 411          * align new values of curr_page, curr_space
 412          */
 413         while (curr_space & 0xf) {
 414                 ++curr_page;
 415                 --curr_space;
 416         }
 417 }
 418 
 419 static void
 420 bsetprops(char *name, char *value)
 421 {
 422         bsetprop(name, strlen(name), value, strlen(value) + 1);
 423 }
 424 
 425 static void
 426 bsetprop64(char *name, uint64_t value)
 427 {
 428         bsetprop(name, strlen(name), (void *)&value, sizeof (value));
 429 }
 430 
 431 static void
 432 bsetpropsi(char *name, int value)
 433 {
 434         char prop_val[32];
 435 
 436         (void) snprintf(prop_val, sizeof (prop_val), "%d", value);
 437         bsetprops(name, prop_val);
 438 }
 439 
 440 /*
 441  * to find the size of the buffer to allocate
 442  */
 443 /*ARGSUSED*/
 444 int
 445 do_bsys_getproplen(bootops_t *bop, const char *name)
 446 {
 447         bootprop_t *b;
 448 
 449         for (b = bprops; b; b = b->bp_next) {
 450                 if (strcmp(name, b->bp_name) != 0)
 451                         continue;
 452                 return (b->bp_vlen);
 453         }
 454         return (-1);
 455 }
 456 
 457 /*
 458  * get the value associated with this name
 459  */
 460 /*ARGSUSED*/
 461 int
 462 do_bsys_getprop(bootops_t *bop, const char *name, void *value)
 463 {
 464         bootprop_t *b;
 465 
 466         for (b = bprops; b; b = b->bp_next) {
 467                 if (strcmp(name, b->bp_name) != 0)
 468                         continue;
 469                 bcopy(b->bp_value, value, b->bp_vlen);
 470                 return (0);
 471         }
 472         return (-1);
 473 }
 474 
 475 /*
 476  * get the name of the next property in succession from the standalone
 477  */
 478 /*ARGSUSED*/
 479 static char *
 480 do_bsys_nextprop(bootops_t *bop, char *name)
 481 {
 482         bootprop_t *b;
 483 
 484         /*
 485          * A null name is a special signal for the 1st boot property
 486          */
 487         if (name == NULL || strlen(name) == 0) {
 488                 if (bprops == NULL)
 489                         return (NULL);
 490                 return (bprops->bp_name);
 491         }
 492 
 493         for (b = bprops; b; b = b->bp_next) {
 494                 if (name != b->bp_name)
 495                         continue;
 496                 b = b->bp_next;
 497                 if (b == NULL)
 498                         return (NULL);
 499                 return (b->bp_name);
 500         }
 501         return (NULL);
 502 }
 503 
 504 /*
 505  * Parse numeric value from a string. Understands decimal, hex, octal, - and ~
 506  */
 507 static int
 508 parse_value(char *p, uint64_t *retval)
 509 {
 510         int adjust = 0;
 511         uint64_t tmp = 0;
 512         int digit;
 513         int radix = 10;
 514 
 515         *retval = 0;
 516         if (*p == '-' || *p == '~')
 517                 adjust = *p++;
 518 
 519         if (*p == '0') {
 520                 ++p;
 521                 if (*p == 0)
 522                         return (0);
 523                 if (*p == 'x' || *p == 'X') {
 524                         radix = 16;
 525                         ++p;
 526                 } else {
 527                         radix = 8;
 528                         ++p;
 529                 }
 530         }
 531         while (*p) {
 532                 if ('0' <= *p && *p <= '9')
 533                         digit = *p - '0';
 534                 else if ('a' <= *p && *p <= 'f')
 535                         digit = 10 + *p - 'a';
 536                 else if ('A' <= *p && *p <= 'F')
 537                         digit = 10 + *p - 'A';
 538                 else
 539                         return (-1);
 540                 if (digit >= radix)
 541                         return (-1);
 542                 tmp = tmp * radix + digit;
 543                 ++p;
 544         }
 545         if (adjust == '-')
 546                 tmp = -tmp;
 547         else if (adjust == '~')
 548                 tmp = ~tmp;
 549         *retval = tmp;
 550         return (0);
 551 }
 552 
 553 static boolean_t
 554 unprintable(char *value, int size)
 555 {
 556         int i;
 557 
 558         if (size <= 0 || value[0] == '\0')
 559                 return (B_TRUE);
 560 
 561         for (i = 0; i < size; i++) {
 562                 if (value[i] == '\0')
 563                         return (i != (size - 1));
 564 
 565                 if (!isprint(value[i]))
 566                         return (B_TRUE);
 567         }
 568         return (B_FALSE);
 569 }
 570 
 571 /*
 572  * Print out information about all boot properties.
 573  * buffer is pointer to pre-allocated space to be used as temporary
 574  * space for property values.
 575  */
 576 static void
 577 boot_prop_display(char *buffer)
 578 {
 579         char *name = "";
 580         int i, len;
 581 
 582         bop_printf(NULL, "\nBoot properties:\n");
 583 
 584         while ((name = do_bsys_nextprop(NULL, name)) != NULL) {
 585                 bop_printf(NULL, "\t0x%p %s = ", (void *)name, name);
 586                 (void) do_bsys_getprop(NULL, name, buffer);
 587                 len = do_bsys_getproplen(NULL, name);
 588                 bop_printf(NULL, "len=%d ", len);
 589                 if (!unprintable(buffer, len)) {
 590                         buffer[len] = 0;
 591                         bop_printf(NULL, "%s\n", buffer);
 592                         continue;
 593                 }
 594                 for (i = 0; i < len; i++) {
 595                         bop_printf(NULL, "%02x", buffer[i] & 0xff);
 596                         if (i < len - 1)
 597                                 bop_printf(NULL, ".");
 598                 }
 599                 bop_printf(NULL, "\n");
 600         }
 601 }
 602 
 603 /*
 604  * 2nd part of building the table of boot properties. This includes:
 605  * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
 606  *
 607  * lines look like one of:
 608  * ^$
 609  * ^# comment till end of line
 610  * setprop name 'value'
 611  * setprop name value
 612  * setprop name "value"
 613  *
 614  * we do single character I/O since this is really just looking at memory
 615  */
 616 void
 617 boot_prop_finish(void)
 618 {
 619         int fd;
 620         char *line;
 621         int c;
 622         int bytes_read;
 623         char *name;
 624         int n_len;
 625         char *value;
 626         int v_len;
 627         char *inputdev; /* these override the command line if serial ports */
 628         char *outputdev;
 629         char *consoledev;
 630         uint64_t lvalue;
 631         int use_xencons = 0;
 632 
 633 #ifdef __xpv
 634         if (!DOMAIN_IS_INITDOMAIN(xen_info))
 635                 use_xencons = 1;
 636 #endif /* __xpv */
 637 
 638         DBG_MSG("Opening /boot/solaris/bootenv.rc\n");
 639         fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0);
 640         DBG(fd);
 641 
 642         line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
 643         while (fd >= 0) {
 644 
 645                 /*
 646                  * get a line
 647                  */
 648                 for (c = 0; ; ++c) {
 649                         bytes_read = BRD_READ(bfs_ops, fd, line + c, 1);
 650                         if (bytes_read == 0) {
 651                                 if (c == 0)
 652                                         goto done;
 653                                 break;
 654                         }
 655                         if (line[c] == '\n')
 656                                 break;
 657                 }
 658                 line[c] = 0;
 659 
 660                 /*
 661                  * ignore comment lines
 662                  */
 663                 c = 0;
 664                 while (ISSPACE(line[c]))
 665                         ++c;
 666                 if (line[c] == '#' || line[c] == 0)
 667                         continue;
 668 
 669                 /*
 670                  * must have "setprop " or "setprop\t"
 671                  */
 672                 if (strncmp(line + c, "setprop ", 8) != 0 &&
 673                     strncmp(line + c, "setprop\t", 8) != 0)
 674                         continue;
 675                 c += 8;
 676                 while (ISSPACE(line[c]))
 677                         ++c;
 678                 if (line[c] == 0)
 679                         continue;
 680 
 681                 /*
 682                  * gather up the property name
 683                  */
 684                 name = line + c;
 685                 n_len = 0;
 686                 while (line[c] && !ISSPACE(line[c]))
 687                         ++n_len, ++c;
 688 
 689                 /*
 690                  * gather up the value, if any
 691                  */
 692                 value = "";
 693                 v_len = 0;
 694                 while (ISSPACE(line[c]))
 695                         ++c;
 696                 if (line[c] != 0) {
 697                         value = line + c;
 698                         while (line[c] && !ISSPACE(line[c]))
 699                                 ++v_len, ++c;
 700                 }
 701 
 702                 if (v_len >= 2 && value[0] == value[v_len - 1] &&
 703                     (value[0] == '\'' || value[0] == '"')) {
 704                         ++value;
 705                         v_len -= 2;
 706                 }
 707                 name[n_len] = 0;
 708                 if (v_len > 0)
 709                         value[v_len] = 0;
 710                 else
 711                         continue;
 712 
 713                 /*
 714                  * ignore "boot-file" property, it's now meaningless
 715                  */
 716                 if (strcmp(name, "boot-file") == 0)
 717                         continue;
 718                 if (strcmp(name, "boot-args") == 0 &&
 719                     strlen(boot_args) > 0)
 720                         continue;
 721 
 722                 /*
 723                  * If a property was explicitly set on the command line
 724                  * it will override a setting in bootenv.rc
 725                  */
 726                 if (do_bsys_getproplen(NULL, name) > 0)
 727                         continue;
 728 
 729                 bsetprop(name, n_len, value, v_len + 1);
 730         }
 731 done:
 732         if (fd >= 0)
 733                 (void) BRD_CLOSE(bfs_ops, fd);
 734 
 735         /*
 736          * Check if we have to limit the boot time allocator
 737          */
 738         if (do_bsys_getproplen(NULL, "physmem") != -1 &&
 739             do_bsys_getprop(NULL, "physmem", line) >= 0 &&
 740             parse_value(line, &lvalue) != -1) {
 741                 if (0 < lvalue && (lvalue < physmem || physmem == 0)) {
 742                         physmem = (pgcnt_t)lvalue;
 743                         DBG(physmem);
 744                 }
 745         }
 746         early_allocation = 0;
 747 
 748         /*
 749          * check to see if we have to override the default value of the console
 750          */
 751         if (!use_xencons) {
 752                 inputdev = line;
 753                 v_len = do_bsys_getproplen(NULL, "input-device");
 754                 if (v_len > 0)
 755                         (void) do_bsys_getprop(NULL, "input-device", inputdev);
 756                 else
 757                         v_len = 0;
 758                 inputdev[v_len] = 0;
 759 
 760                 outputdev = inputdev + v_len + 1;
 761                 v_len = do_bsys_getproplen(NULL, "output-device");
 762                 if (v_len > 0)
 763                         (void) do_bsys_getprop(NULL, "output-device",
 764                             outputdev);
 765                 else
 766                         v_len = 0;
 767                 outputdev[v_len] = 0;
 768 
 769                 consoledev = outputdev + v_len + 1;
 770                 v_len = do_bsys_getproplen(NULL, "console");
 771                 if (v_len > 0) {
 772                         (void) do_bsys_getprop(NULL, "console", consoledev);
 773                         if (post_fastreboot &&
 774                             strcmp(consoledev, "graphics") == 0) {
 775                                 bsetprops("console", "text");
 776                                 v_len = strlen("text");
 777                                 bcopy("text", consoledev, v_len);
 778                         }
 779                 } else {
 780                         v_len = 0;
 781                 }
 782                 consoledev[v_len] = 0;
 783                 bcons_init2(inputdev, outputdev, consoledev);
 784         } else {
 785                 /*
 786                  * Ensure console property exists
 787                  * If not create it as "hypervisor"
 788                  */
 789                 v_len = do_bsys_getproplen(NULL, "console");
 790                 if (v_len < 0)
 791                         bsetprops("console", "hypervisor");
 792                 inputdev = outputdev = consoledev = "hypervisor";
 793                 bcons_init2(inputdev, outputdev, consoledev);
 794         }
 795 
 796         if (strstr((char *)xbootp->bi_cmdline, "prom_debug") || kbm_debug)
 797                 boot_prop_display(line);
 798 }
 799 
 800 /*
 801  * print formatted output
 802  */
 803 /*PRINTFLIKE2*/
 804 /*ARGSUSED*/
 805 void
 806 bop_printf(bootops_t *bop, const char *fmt, ...)
 807 {
 808         va_list ap;
 809 
 810         if (have_console == 0)
 811                 return;
 812 
 813         va_start(ap, fmt);
 814         (void) vsnprintf(buffer, BUFFERSIZE, fmt, ap);
 815         va_end(ap);
 816         PUT_STRING(buffer);
 817 }
 818 
 819 /*
 820  * Another panic() variant; this one can be used even earlier during boot than
 821  * prom_panic().
 822  */
 823 /*PRINTFLIKE1*/
 824 void
 825 bop_panic(const char *fmt, ...)
 826 {
 827         va_list ap;
 828 
 829         va_start(ap, fmt);
 830         bop_printf(NULL, fmt, ap);
 831         va_end(ap);
 832 
 833         bop_printf(NULL, "\nPress any key to reboot.\n");
 834         (void) bcons_getchar();
 835         bop_printf(NULL, "Resetting...\n");
 836         pc_reset();
 837 }
 838 
 839 /*
 840  * Do a real mode interrupt BIOS call
 841  */
 842 typedef struct bios_regs {
 843         unsigned short ax, bx, cx, dx, si, di, bp, es, ds;
 844 } bios_regs_t;
 845 typedef int (*bios_func_t)(int, bios_regs_t *);
 846 
 847 /*ARGSUSED*/
 848 static void
 849 do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp)
 850 {
 851 #if defined(__xpv)
 852         prom_panic("unsupported call to BOP_DOINT()\n");
 853 #else   /* __xpv */
 854         static int firsttime = 1;
 855         bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000;
 856         bios_regs_t br;
 857 
 858         /*
 859          * The first time we do this, we have to copy the pre-packaged
 860          * low memory bios call code image into place.
 861          */
 862         if (firsttime) {
 863                 extern char bios_image[];
 864                 extern uint32_t bios_size;
 865 
 866                 bcopy(bios_image, (void *)bios_func, bios_size);
 867                 firsttime = 0;
 868         }
 869 
 870         br.ax = rp->eax.word.ax;
 871         br.bx = rp->ebx.word.bx;
 872         br.cx = rp->ecx.word.cx;
 873         br.dx = rp->edx.word.dx;
 874         br.bp = rp->ebp.word.bp;
 875         br.si = rp->esi.word.si;
 876         br.di = rp->edi.word.di;
 877         br.ds = rp->ds;
 878         br.es = rp->es;
 879 
 880         DBG_MSG("Doing BIOS call...");
 881         DBG(br.ax);
 882         DBG(br.bx);
 883         DBG(br.dx);
 884         rp->eflags = bios_func(intnum, &br);
 885         DBG_MSG("done\n");
 886 
 887         rp->eax.word.ax = br.ax;
 888         rp->ebx.word.bx = br.bx;
 889         rp->ecx.word.cx = br.cx;
 890         rp->edx.word.dx = br.dx;
 891         rp->ebp.word.bp = br.bp;
 892         rp->esi.word.si = br.si;
 893         rp->edi.word.di = br.di;
 894         rp->ds = br.ds;
 895         rp->es = br.es;
 896 #endif /* __xpv */
 897 }
 898 
 899 static struct boot_syscalls bop_sysp = {
 900         bcons_getchar,
 901         bcons_putchar,
 902         bcons_ischar,
 903 };
 904 
 905 static char *whoami;
 906 
 907 #define BUFLEN  64
 908 
 909 #if defined(__xpv)
 910 
 911 static char namebuf[32];
 912 
 913 static void
 914 xen_parse_props(char *s, char *prop_map[], int n_prop)
 915 {
 916         char **prop_name = prop_map;
 917         char *cp = s, *scp;
 918 
 919         do {
 920                 scp = cp;
 921                 while ((*cp != NULL) && (*cp != ':'))
 922                         cp++;
 923 
 924                 if ((scp != cp) && (*prop_name != NULL)) {
 925                         *cp = NULL;
 926                         bsetprops(*prop_name, scp);
 927                 }
 928 
 929                 cp++;
 930                 prop_name++;
 931                 n_prop--;
 932         } while (n_prop > 0);
 933 }
 934 
 935 #define VBDPATHLEN      64
 936 
 937 /*
 938  * parse the 'xpv-root' property to create properties used by
 939  * ufs_mountroot.
 940  */
 941 static void
 942 xen_vbdroot_props(char *s)
 943 {
 944         char vbdpath[VBDPATHLEN] = "/xpvd/xdf@";
 945         const char lnamefix[] = "/dev/dsk/c0d";
 946         char *pnp;
 947         char *prop_p;
 948         char mi;
 949         short minor;
 950         long addr = 0;
 951 
 952         pnp = vbdpath + strlen(vbdpath);
 953         prop_p = s + strlen(lnamefix);
 954         while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p'))
 955                 addr = addr * 10 + *prop_p++ - '0';
 956         (void) snprintf(pnp, VBDPATHLEN, "%lx", addr);
 957         pnp = vbdpath + strlen(vbdpath);
 958         if (*prop_p == 's')
 959                 mi = 'a';
 960         else if (*prop_p == 'p')
 961                 mi = 'q';
 962         else
 963                 ASSERT(0); /* shouldn't be here */
 964         prop_p++;
 965         ASSERT(*prop_p != '\0');
 966         if (ISDIGIT(*prop_p)) {
 967                 minor = *prop_p - '0';
 968                 prop_p++;
 969                 if (ISDIGIT(*prop_p)) {
 970                         minor = minor * 10 + *prop_p - '0';
 971                 }
 972         } else {
 973                 /* malformed root path, use 0 as default */
 974                 minor = 0;
 975         }
 976         ASSERT(minor < 16); /* at most 16 partitions */
 977         mi += minor;
 978         *pnp++ = ':';
 979         *pnp++ = mi;
 980         *pnp++ = '\0';
 981         bsetprops("fstype", "ufs");
 982         bsetprops("bootpath", vbdpath);
 983 
 984         DBG_MSG("VBD bootpath set to ");
 985         DBG_MSG(vbdpath);
 986         DBG_MSG("\n");
 987 }
 988 
 989 /*
 990  * parse the xpv-nfsroot property to create properties used by
 991  * nfs_mountroot.
 992  */
 993 static void
 994 xen_nfsroot_props(char *s)
 995 {
 996         char *prop_map[] = {
 997                 BP_SERVER_IP,   /* server IP address */
 998                 BP_SERVER_NAME, /* server hostname */
 999                 BP_SERVER_PATH, /* root path */
1000         };
1001         int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
1002 
1003         bsetprop("fstype", 6, "nfs", 4);
1004 
1005         xen_parse_props(s, prop_map, n_prop);
1006 
1007         /*
1008          * If a server name wasn't specified, use a default.
1009          */
1010         if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1)
1011                 bsetprops(BP_SERVER_NAME, "unknown");
1012 }
1013 
1014 /*
1015  * Extract our IP address, etc. from the "xpv-ip" property.
1016  */
1017 static void
1018 xen_ip_props(char *s)
1019 {
1020         char *prop_map[] = {
1021                 BP_HOST_IP,             /* IP address */
1022                 NULL,                   /* NFS server IP address (ignored in */
1023                                         /* favour of xpv-nfsroot) */
1024                 BP_ROUTER_IP,           /* IP gateway */
1025                 BP_SUBNET_MASK,         /* IP subnet mask */
1026                 "xpv-hostname",         /* hostname (ignored) */
1027                 BP_NETWORK_INTERFACE,   /* interface name */
1028                 "xpv-hcp",              /* host configuration protocol */
1029         };
1030         int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
1031         char ifname[IFNAMSIZ];
1032 
1033         xen_parse_props(s, prop_map, n_prop);
1034 
1035         /*
1036          * A Linux dom0 administrator expects all interfaces to be
1037          * called "ethX", which is not the case here.
1038          *
1039          * If the interface name specified is "eth0", presume that
1040          * this is really intended to be "xnf0" (the first domU ->
1041          * dom0 interface for this domain).
1042          */
1043         if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) &&
1044             (strcmp("eth0", ifname) == 0)) {
1045                 bsetprops(BP_NETWORK_INTERFACE, "xnf0");
1046                 bop_printf(NULL,
1047                     "network interface name 'eth0' replaced with 'xnf0'\n");
1048         }
1049 }
1050 
1051 #else   /* __xpv */
1052 
1053 static void
1054 setup_rarp_props(struct sol_netinfo *sip)
1055 {
1056         char buf[BUFLEN];       /* to hold ip/mac addrs */
1057         uint8_t *val;
1058 
1059         val = (uint8_t *)&sip->sn_ciaddr;
1060         (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1061             val[0], val[1], val[2], val[3]);
1062         bsetprops(BP_HOST_IP, buf);
1063 
1064         val = (uint8_t *)&sip->sn_siaddr;
1065         (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1066             val[0], val[1], val[2], val[3]);
1067         bsetprops(BP_SERVER_IP, buf);
1068 
1069         if (sip->sn_giaddr != 0) {
1070                 val = (uint8_t *)&sip->sn_giaddr;
1071                 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1072                     val[0], val[1], val[2], val[3]);
1073                 bsetprops(BP_ROUTER_IP, buf);
1074         }
1075 
1076         if (sip->sn_netmask != 0) {
1077                 val = (uint8_t *)&sip->sn_netmask;
1078                 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1079                     val[0], val[1], val[2], val[3]);
1080                 bsetprops(BP_SUBNET_MASK, buf);
1081         }
1082 
1083         if (sip->sn_mactype != 4 || sip->sn_maclen != 6) {
1084                 bop_printf(NULL, "unsupported mac type %d, mac len %d\n",
1085                     sip->sn_mactype, sip->sn_maclen);
1086         } else {
1087                 val = sip->sn_macaddr;
1088                 (void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x",
1089                     val[0], val[1], val[2], val[3], val[4], val[5]);
1090                 bsetprops(BP_BOOT_MAC, buf);
1091         }
1092 }
1093 
1094 #endif  /* __xpv */
1095 
1096 static void
1097 build_panic_cmdline(const char *cmd, int cmdlen)
1098 {
1099         int proplen;
1100         size_t arglen;
1101 
1102         arglen = sizeof (fastreboot_onpanic_args);
1103         /*
1104          * If we allready have fastreboot-onpanic set to zero,
1105          * don't add them again.
1106          */
1107         if ((proplen = do_bsys_getproplen(NULL, FASTREBOOT_ONPANIC)) > 0 &&
1108             proplen <=  sizeof (fastreboot_onpanic_cmdline)) {
1109                 (void) do_bsys_getprop(NULL, FASTREBOOT_ONPANIC,
1110                     fastreboot_onpanic_cmdline);
1111                 if (FASTREBOOT_ONPANIC_NOTSET(fastreboot_onpanic_cmdline))
1112                         arglen = 1;
1113         }
1114 
1115         /*
1116          * construct fastreboot_onpanic_cmdline
1117          */
1118         if (cmdlen + arglen > sizeof (fastreboot_onpanic_cmdline)) {
1119                 DBG_MSG("Command line too long: clearing "
1120                     FASTREBOOT_ONPANIC "\n");
1121                 fastreboot_onpanic = 0;
1122         } else {
1123                 bcopy(cmd, fastreboot_onpanic_cmdline, cmdlen);
1124                 if (arglen != 1)
1125                         bcopy(fastreboot_onpanic_args,
1126                             fastreboot_onpanic_cmdline + cmdlen, arglen);
1127                 else
1128                         fastreboot_onpanic_cmdline[cmdlen] = 0;
1129         }
1130 }
1131 
1132 
1133 #ifndef __xpv
1134 /*
1135  * Construct boot command line for Fast Reboot
1136  */
1137 static void
1138 build_fastboot_cmdline(struct xboot_info *xbp)
1139 {
1140         saved_cmdline_len =  strlen(xbp->bi_cmdline) + 1;
1141         if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) {
1142                 DBG(saved_cmdline_len);
1143                 DBG_MSG("Command line too long: clearing fastreboot_capable\n");
1144                 fastreboot_capable = 0;
1145         } else {
1146                 bcopy((void *)(xbp->bi_cmdline), (void *)saved_cmdline,
1147                     saved_cmdline_len);
1148                 saved_cmdline[saved_cmdline_len - 1] = '\0';
1149                 build_panic_cmdline(saved_cmdline, saved_cmdline_len - 1);
1150         }
1151 }
1152 
1153 /*
1154  * Save memory layout, disk drive information, unix and boot archive sizes for
1155  * Fast Reboot.
1156  */
1157 static void
1158 save_boot_info(struct xboot_info *xbi)
1159 {
1160         multiboot_info_t *mbi = xbi->bi_mb_info;
1161         struct boot_modules *modp;
1162         int i;
1163 
1164         bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t));
1165         if (mbi->mmap_length > sizeof (saved_mmap)) {
1166                 DBG_MSG("mbi->mmap_length too big: clearing "
1167                     "fastreboot_capable\n");
1168                 fastreboot_capable = 0;
1169         } else {
1170                 bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap,
1171                     mbi->mmap_length);
1172         }
1173 
1174         if ((mbi->flags & MB_INFO_DRIVE_INFO) != 0) {
1175                 if (mbi->drives_length > sizeof (saved_drives)) {
1176                         DBG(mbi->drives_length);
1177                         DBG_MSG("mbi->drives_length too big: clearing "
1178                             "fastreboot_capable\n");
1179                         fastreboot_capable = 0;
1180                 } else {
1181                         bcopy((void *)(uintptr_t)mbi->drives_addr,
1182                             (void *)saved_drives, mbi->drives_length);
1183                 }
1184         } else {
1185                 saved_mbi.drives_length = 0;
1186                 saved_mbi.drives_addr = NULL;
1187         }
1188 
1189         /*
1190          * Current file sizes.  Used by fastboot.c to figure out how much
1191          * memory to reserve for panic reboot.
1192          * Use the module list from the dboot-constructed xboot_info
1193          * instead of the list referenced by the multiboot structure
1194          * because that structure may not be addressable now.
1195          */
1196         saved_file_size[FASTBOOT_NAME_UNIX] = FOUR_MEG - PAGESIZE;
1197         for (i = 0, modp = (struct boot_modules *)(uintptr_t)xbi->bi_modules;
1198             i < xbi->bi_module_cnt; i++, modp++) {
1199                 saved_file_size[FASTBOOT_NAME_BOOTARCHIVE] += modp->bm_size;
1200         }
1201 }
1202 #endif  /* __xpv */
1203 
1204 
1205 /*
1206  * 1st pass at building the table of boot properties. This includes:
1207  * - values set on the command line: -B a=x,b=y,c=z ....
1208  * - known values we just compute (ie. from xbp)
1209  * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
1210  *
1211  * the grub command line looked like:
1212  * kernel boot-file [-B prop=value[,prop=value]...] [boot-args]
1213  *
1214  * whoami is the same as boot-file
1215  */
1216 static void
1217 build_boot_properties(struct xboot_info *xbp)
1218 {
1219         char *name;
1220         int name_len;
1221         char *value;
1222         int value_len;
1223         struct boot_modules *bm, *rdbm;
1224         char *propbuf;
1225         int quoted = 0;
1226         int boot_arg_len;
1227         uint_t i, midx;
1228         char modid[32];
1229 #ifndef __xpv
1230         static int stdout_val = 0;
1231         uchar_t boot_device;
1232         char str[3];
1233         multiboot_info_t *mbi;
1234         int netboot;
1235         struct sol_netinfo *sip;
1236 #endif
1237 
1238         /*
1239          * These have to be done first, so that kobj_mount_root() works
1240          */
1241         DBG_MSG("Building boot properties\n");
1242         propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0);
1243         DBG((uintptr_t)propbuf);
1244         if (xbp->bi_module_cnt > 0) {
1245                 bm = xbp->bi_modules;
1246                 rdbm = NULL;
1247                 for (midx = i = 0; i < xbp->bi_module_cnt; i++) {
1248                         if (bm[i].bm_type == BMT_ROOTFS) {
1249                                 rdbm = &bm[i];
1250                                 continue;
1251                         }
1252                         if (bm[i].bm_type == BMT_HASH || bm[i].bm_name == NULL)
1253                                 continue;
1254 
1255                         (void) snprintf(modid, sizeof (modid),
1256                             "module-name-%u", midx);
1257                         bsetprops(modid, (char *)bm[i].bm_name);
1258                         (void) snprintf(modid, sizeof (modid),
1259                             "module-addr-%u", midx);
1260                         bsetprop64(modid, (uint64_t)(uintptr_t)bm[i].bm_addr);
1261                         (void) snprintf(modid, sizeof (modid),
1262                             "module-size-%u", midx);
1263                         bsetprop64(modid, (uint64_t)bm[i].bm_size);
1264                         ++midx;
1265                 }
1266                 if (rdbm != NULL) {
1267                         bsetprop64("ramdisk_start",
1268                             (uint64_t)(uintptr_t)rdbm->bm_addr);
1269                         bsetprop64("ramdisk_end",
1270                             (uint64_t)(uintptr_t)rdbm->bm_addr + rdbm->bm_size);
1271                 }
1272         }
1273 
1274         /*
1275          * If there are any boot time modules or hashes present, then disable
1276          * fast reboot.
1277          */
1278         if (xbp->bi_module_cnt > 1) {
1279                 fastreboot_disable(FBNS_BOOTMOD);
1280         }
1281 
1282         DBG_MSG("Parsing command line for boot properties\n");
1283         value = xbp->bi_cmdline;
1284 
1285         /*
1286          * allocate memory to collect boot_args into
1287          */
1288         boot_arg_len = strlen(xbp->bi_cmdline) + 1;
1289         boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE);
1290         boot_args[0] = 0;
1291         boot_arg_len = 0;
1292 
1293 #ifdef __xpv
1294         /*
1295          * Xen puts a lot of device information in front of the kernel name
1296          * let's grab them and make them boot properties.  The first
1297          * string w/o an "=" in it will be the boot-file property.
1298          */
1299         (void) strcpy(namebuf, "xpv-");
1300         for (;;) {
1301                 /*
1302                  * get to next property
1303                  */
1304                 while (ISSPACE(*value))
1305                         ++value;
1306                 name = value;
1307                 /*
1308                  * look for an "="
1309                  */
1310                 while (*value && !ISSPACE(*value) && *value != '=') {
1311                         value++;
1312                 }
1313                 if (*value != '=') { /* no "=" in the property */
1314                         value = name;
1315                         break;
1316                 }
1317                 name_len = value - name;
1318                 value_len = 0;
1319                 /*
1320                  * skip over the "="
1321                  */
1322                 value++;
1323                 while (value[value_len] && !ISSPACE(value[value_len])) {
1324                         ++value_len;
1325                 }
1326                 /*
1327                  * build property name with "xpv-" prefix
1328                  */
1329                 if (name_len + 4 > 32) { /* skip if name too long */
1330                         value += value_len;
1331                         continue;
1332                 }
1333                 bcopy(name, &namebuf[4], name_len);
1334                 name_len += 4;
1335                 namebuf[name_len] = 0;
1336                 bcopy(value, propbuf, value_len);
1337                 propbuf[value_len] = 0;
1338                 bsetprops(namebuf, propbuf);
1339 
1340                 /*
1341                  * xpv-root is set to the logical disk name of the xen
1342                  * VBD when booting from a disk-based filesystem.
1343                  */
1344                 if (strcmp(namebuf, "xpv-root") == 0)
1345                         xen_vbdroot_props(propbuf);
1346                 /*
1347                  * While we're here, if we have a "xpv-nfsroot" property
1348                  * then we need to set "fstype" to "nfs" so we mount
1349                  * our root from the nfs server.  Also parse the xpv-nfsroot
1350                  * property to create the properties that nfs_mountroot will
1351                  * need to find the root and mount it.
1352                  */
1353                 if (strcmp(namebuf, "xpv-nfsroot") == 0)
1354                         xen_nfsroot_props(propbuf);
1355 
1356                 if (strcmp(namebuf, "xpv-ip") == 0)
1357                         xen_ip_props(propbuf);
1358                 value += value_len;
1359         }
1360 #endif
1361 
1362         while (ISSPACE(*value))
1363                 ++value;
1364         /*
1365          * value now points at the boot-file
1366          */
1367         value_len = 0;
1368         while (value[value_len] && !ISSPACE(value[value_len]))
1369                 ++value_len;
1370         if (value_len > 0) {
1371                 whoami = propbuf;
1372                 bcopy(value, whoami, value_len);
1373                 whoami[value_len] = 0;
1374                 bsetprops("boot-file", whoami);
1375                 /*
1376                  * strip leading path stuff from whoami, so running from
1377                  * PXE/miniroot makes sense.
1378                  */
1379                 if (strstr(whoami, "/platform/") != NULL)
1380                         whoami = strstr(whoami, "/platform/");
1381                 bsetprops("whoami", whoami);
1382         }
1383 
1384         /*
1385          * Values forcibly set boot properties on the command line via -B.
1386          * Allow use of quotes in values. Other stuff goes on kernel
1387          * command line.
1388          */
1389         name = value + value_len;
1390         while (*name != 0) {
1391                 /*
1392                  * anything not " -B" is copied to the command line
1393                  */
1394                 if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') {
1395                         boot_args[boot_arg_len++] = *name;
1396                         boot_args[boot_arg_len] = 0;
1397                         ++name;
1398                         continue;
1399                 }
1400 
1401                 /*
1402                  * skip the " -B" and following white space
1403                  */
1404                 name += 3;
1405                 while (ISSPACE(*name))
1406                         ++name;
1407                 while (*name && !ISSPACE(*name)) {
1408                         value = strstr(name, "=");
1409                         if (value == NULL)
1410                                 break;
1411                         name_len = value - name;
1412                         ++value;
1413                         value_len = 0;
1414                         quoted = 0;
1415                         for (; ; ++value_len) {
1416                                 if (!value[value_len])
1417                                         break;
1418 
1419                                 /*
1420                                  * is this value quoted?
1421                                  */
1422                                 if (value_len == 0 &&
1423                                     (value[0] == '\'' || value[0] == '"')) {
1424                                         quoted = value[0];
1425                                         ++value_len;
1426                                 }
1427 
1428                                 /*
1429                                  * In the quote accept any character,
1430                                  * but look for ending quote.
1431                                  */
1432                                 if (quoted) {
1433                                         if (value[value_len] == quoted)
1434                                                 quoted = 0;
1435                                         continue;
1436                                 }
1437 
1438                                 /*
1439                                  * a comma or white space ends the value
1440                                  */
1441                                 if (value[value_len] == ',' ||
1442                                     ISSPACE(value[value_len]))
1443                                         break;
1444                         }
1445 
1446                         if (value_len == 0) {
1447                                 bsetprop(name, name_len, "true", 5);
1448                         } else {
1449                                 char *v = value;
1450                                 int l = value_len;
1451                                 if (v[0] == v[l - 1] &&
1452                                     (v[0] == '\'' || v[0] == '"')) {
1453                                         ++v;
1454                                         l -= 2;
1455                                 }
1456                                 bcopy(v, propbuf, l);
1457                                 propbuf[l] = '\0';
1458                                 bsetprop(name, name_len, propbuf,
1459                                     l + 1);
1460                         }
1461                         name = value + value_len;
1462                         while (*name == ',')
1463                                 ++name;
1464                 }
1465         }
1466 
1467         /*
1468          * set boot-args property
1469          * 1275 name is bootargs, so set
1470          * that too
1471          */
1472         bsetprops("boot-args", boot_args);
1473         bsetprops("bootargs", boot_args);
1474 
1475 #ifndef __xpv
1476         /*
1477          * set the BIOS boot device from GRUB
1478          */
1479         netboot = 0;
1480         mbi = xbp->bi_mb_info;
1481 
1482         /*
1483          * Build boot command line for Fast Reboot
1484          */
1485         build_fastboot_cmdline(xbp);
1486 
1487         /*
1488          * Save various boot information for Fast Reboot
1489          */
1490         save_boot_info(xbp);
1491 
1492         if (mbi != NULL && mbi->flags & MB_INFO_BOOTDEV) {
1493                 boot_device = mbi->boot_device >> 24;
1494                 if (boot_device == 0x20)
1495                         netboot++;
1496                 str[0] = (boot_device >> 4) + '0';
1497                 str[1] = (boot_device & 0xf) + '0';
1498                 str[2] = 0;
1499                 bsetprops("bios-boot-device", str);
1500         } else {
1501                 netboot = 1;
1502         }
1503 
1504         /*
1505          * In the netboot case, drives_info is overloaded with the dhcp ack.
1506          * This is not multiboot compliant and requires special pxegrub!
1507          */
1508         if (netboot && mbi->drives_length != 0) {
1509                 sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr;
1510                 if (sip->sn_infotype == SN_TYPE_BOOTP)
1511                         bsetprop("bootp-response", sizeof ("bootp-response"),
1512                             (void *)(uintptr_t)mbi->drives_addr,
1513                             mbi->drives_length);
1514                 else if (sip->sn_infotype == SN_TYPE_RARP)
1515                         setup_rarp_props(sip);
1516         }
1517         bsetprop("stdout", strlen("stdout"),
1518             &stdout_val, sizeof (stdout_val));
1519 #endif /* __xpv */
1520 
1521         /*
1522          * more conjured up values for made up things....
1523          */
1524 #if defined(__xpv)
1525         bsetprops("mfg-name", "i86xpv");
1526         bsetprops("impl-arch-name", "i86xpv");
1527 #else
1528         bsetprops("mfg-name", "i86pc");
1529         bsetprops("impl-arch-name", "i86pc");
1530 #endif
1531 
1532         /*
1533          * Build firmware-provided system properties
1534          */
1535         build_firmware_properties();
1536 
1537         /*
1538          * XXPV
1539          *
1540          * Find out what these are:
1541          * - cpuid_feature_ecx_include
1542          * - cpuid_feature_ecx_exclude
1543          * - cpuid_feature_edx_include
1544          * - cpuid_feature_edx_exclude
1545          *
1546          * Find out what these are in multiboot:
1547          * - netdev-path
1548          * - fstype
1549          */
1550 }
1551 
1552 #ifdef __xpv
1553 /*
1554  * Under the Hypervisor, memory usable for DMA may be scarce. One
1555  * very likely large pool of DMA friendly memory is occupied by
1556  * the boot_archive, as it was loaded by grub into low MFNs.
1557  *
1558  * Here we free up that memory by copying the boot archive to what are
1559  * likely higher MFN pages and then swapping the mfn/pfn mappings.
1560  */
1561 #define PFN_2GIG        0x80000
1562 static void
1563 relocate_boot_archive(struct xboot_info *xbp)
1564 {
1565         mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL);
1566         struct boot_modules *bm = xbp->bi_modules;
1567         uintptr_t va;
1568         pfn_t va_pfn;
1569         mfn_t va_mfn;
1570         caddr_t copy;
1571         pfn_t copy_pfn;
1572         mfn_t copy_mfn;
1573         size_t  len;
1574         int slop;
1575         int total = 0;
1576         int relocated = 0;
1577         int mmu_update_return;
1578         mmu_update_t t[2];
1579         x86pte_t pte;
1580 
1581         /*
1582          * If all MFN's are below 2Gig, don't bother doing this.
1583          */
1584         if (max_mfn < PFN_2GIG)
1585                 return;
1586         if (xbp->bi_module_cnt < 1) {
1587                 DBG_MSG("no boot_archive!");
1588                 return;
1589         }
1590 
1591         DBG_MSG("moving boot_archive to high MFN memory\n");
1592         va = (uintptr_t)bm->bm_addr;
1593         len = bm->bm_size;
1594         slop = va & MMU_PAGEOFFSET;
1595         if (slop) {
1596                 va += MMU_PAGESIZE - slop;
1597                 len -= MMU_PAGESIZE - slop;
1598         }
1599         len = P2ALIGN(len, MMU_PAGESIZE);
1600 
1601         /*
1602          * Go through all boot_archive pages, swapping any low MFN pages
1603          * with memory at next_phys.
1604          */
1605         while (len != 0) {
1606                 ++total;
1607                 va_pfn = mmu_btop(va - ONE_GIG);
1608                 va_mfn = mfn_list[va_pfn];
1609                 if (mfn_list[va_pfn] < PFN_2GIG) {
1610                         copy = kbm_remap_window(next_phys, 1);
1611                         bcopy((void *)va, copy, MMU_PAGESIZE);
1612                         copy_pfn = mmu_btop(next_phys);
1613                         copy_mfn = mfn_list[copy_pfn];
1614 
1615                         pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID;
1616                         if (HYPERVISOR_update_va_mapping(va, pte,
1617                             UVMF_INVLPG | UVMF_LOCAL))
1618                                 bop_panic("relocate_boot_archive():  "
1619                                     "HYPERVISOR_update_va_mapping() failed");
1620 
1621                         mfn_list[va_pfn] = copy_mfn;
1622                         mfn_list[copy_pfn] = va_mfn;
1623 
1624                         t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE;
1625                         t[0].val = va_pfn;
1626                         t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE;
1627                         t[1].val = copy_pfn;
1628                         if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return,
1629                             DOMID_SELF) != 0 || mmu_update_return != 2)
1630                                 bop_panic("relocate_boot_archive():  "
1631                                     "HYPERVISOR_mmu_update() failed");
1632 
1633                         next_phys += MMU_PAGESIZE;
1634                         ++relocated;
1635                 }
1636                 len -= MMU_PAGESIZE;
1637                 va += MMU_PAGESIZE;
1638         }
1639         DBG_MSG("Relocated pages:\n");
1640         DBG(relocated);
1641         DBG_MSG("Out of total pages:\n");
1642         DBG(total);
1643 }
1644 #endif /* __xpv */
1645 
1646 #if !defined(__xpv)
1647 /*
1648  * Install a temporary IDT that lets us catch errors in the boot time code.
1649  * We shouldn't get any faults at all while this is installed, so we'll
1650  * just generate a traceback and exit.
1651  */
1652 #ifdef __amd64
1653 static const int bcode_sel = B64CODE_SEL;
1654 #else
1655 static const int bcode_sel = B32CODE_SEL;
1656 #endif
1657 
1658 /*
1659  * simple description of a stack frame (args are 32 bit only currently)
1660  */
1661 typedef struct bop_frame {
1662         struct bop_frame *old_frame;
1663         pc_t retaddr;
1664         long arg[1];
1665 } bop_frame_t;
1666 
1667 void
1668 bop_traceback(bop_frame_t *frame)
1669 {
1670         pc_t pc;
1671         int cnt;
1672         char *ksym;
1673         ulong_t off;
1674 #if defined(__i386)
1675         int a;
1676 #endif
1677 
1678         bop_printf(NULL, "Stack traceback:\n");
1679         for (cnt = 0; cnt < 30; ++cnt) {     /* up to 30 frames */
1680                 pc = frame->retaddr;
1681                 if (pc == 0)
1682                         break;
1683                 ksym = kobj_getsymname(pc, &off);
1684                 if (ksym)
1685                         bop_printf(NULL, "  %s+%lx", ksym, off);
1686                 else
1687                         bop_printf(NULL, "  0x%lx", pc);
1688 
1689                 frame = frame->old_frame;
1690                 if (frame == 0) {
1691                         bop_printf(NULL, "\n");
1692                         break;
1693                 }
1694 #if defined(__i386)
1695                 for (a = 0; a < 6; ++a) {    /* try for 6 args */
1696                         if ((void *)&frame->arg[a] == (void *)frame->old_frame)
1697                                 break;
1698                         if (a == 0)
1699                                 bop_printf(NULL, "(");
1700                         else
1701                                 bop_printf(NULL, ",");
1702                         bop_printf(NULL, "0x%lx", frame->arg[a]);
1703                 }
1704                 bop_printf(NULL, ")");
1705 #endif
1706                 bop_printf(NULL, "\n");
1707         }
1708 }
1709 
1710 struct trapframe {
1711         ulong_t error_code;     /* optional */
1712         ulong_t inst_ptr;
1713         ulong_t code_seg;
1714         ulong_t flags_reg;
1715 #ifdef __amd64
1716         ulong_t stk_ptr;
1717         ulong_t stk_seg;
1718 #endif
1719 };
1720 
1721 void
1722 bop_trap(ulong_t *tfp)
1723 {
1724         struct trapframe *tf = (struct trapframe *)tfp;
1725         bop_frame_t fakeframe;
1726         static int depth = 0;
1727 
1728         /*
1729          * Check for an infinite loop of traps.
1730          */
1731         if (++depth > 2)
1732                 bop_panic("Nested trap");
1733 
1734         bop_printf(NULL, "Unexpected trap\n");
1735 
1736         /*
1737          * adjust the tf for optional error_code by detecting the code selector
1738          */
1739         if (tf->code_seg != bcode_sel)
1740                 tf = (struct trapframe *)(tfp - 1);
1741         else
1742                 bop_printf(NULL, "error code           0x%lx\n",
1743                     tf->error_code & 0xffffffff);
1744 
1745         bop_printf(NULL, "instruction pointer  0x%lx\n", tf->inst_ptr);
1746         bop_printf(NULL, "code segment         0x%lx\n", tf->code_seg & 0xffff);
1747         bop_printf(NULL, "flags register       0x%lx\n", tf->flags_reg);
1748 #ifdef __amd64
1749         bop_printf(NULL, "return %%rsp          0x%lx\n", tf->stk_ptr);
1750         bop_printf(NULL, "return %%ss           0x%lx\n", tf->stk_seg & 0xffff);
1751 #endif
1752 
1753         /* grab %[er]bp pushed by our code from the stack */
1754         fakeframe.old_frame = (bop_frame_t *)*(tfp - 3);
1755         fakeframe.retaddr = (pc_t)tf->inst_ptr;
1756         bop_printf(NULL, "Attempting stack backtrace:\n");
1757         bop_traceback(&fakeframe);
1758         bop_panic("unexpected trap in early boot");
1759 }
1760 
1761 extern void bop_trap_handler(void);
1762 
1763 static gate_desc_t *bop_idt;
1764 
1765 static desctbr_t bop_idt_info;
1766 
1767 static void
1768 bop_idt_init(void)
1769 {
1770         int t;
1771 
1772         bop_idt = (gate_desc_t *)
1773             do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
1774         bzero(bop_idt, MMU_PAGESIZE);
1775         for (t = 0; t < NIDT; ++t) {
1776                 /*
1777                  * Note that since boot runs without a TSS, the
1778                  * double fault handler cannot use an alternate stack
1779                  * (64-bit) or a task gate (32-bit).
1780                  */
1781                 set_gatesegd(&bop_idt[t], &bop_trap_handler, bcode_sel,
1782                     SDT_SYSIGT, TRP_KPL, 0);
1783         }
1784         bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1;
1785         bop_idt_info.dtr_base = (uintptr_t)bop_idt;
1786         wr_idtr(&bop_idt_info);
1787 }
1788 #endif  /* !defined(__xpv) */
1789 
1790 /*
1791  * This is where we enter the kernel. It dummies up the boot_ops and
1792  * boot_syscalls vectors and jumps off to _kobj_boot()
1793  */
1794 void
1795 _start(struct xboot_info *xbp)
1796 {
1797         bootops_t *bops = &bootop;
1798         extern void _kobj_boot();
1799 
1800         /*
1801          * 1st off - initialize the console for any error messages
1802          */
1803         xbootp = xbp;
1804 #ifdef __xpv
1805         HYPERVISOR_shared_info = (void *)xbp->bi_shared_info;
1806         xen_info = xbp->bi_xen_start_info;
1807 #endif
1808 
1809 #ifndef __xpv
1810         if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) ==
1811             FASTBOOT_MAGIC) {
1812                 post_fastreboot = 1;
1813                 *((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0;
1814         }
1815 #endif
1816 
1817         bcons_init((void *)xbp->bi_cmdline);
1818         have_console = 1;
1819 
1820         /*
1821          * enable debugging
1822          */
1823         if (strstr((char *)xbp->bi_cmdline, "kbm_debug"))
1824                 kbm_debug = 1;
1825 
1826         DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: ");
1827         DBG_MSG((char *)xbp->bi_cmdline);
1828         DBG_MSG("\n\n\n");
1829 
1830         /*
1831          * physavail is no longer used by startup
1832          */
1833         bm.physinstalled = xbp->bi_phys_install;
1834         bm.pcimem = xbp->bi_pcimem;
1835         bm.rsvdmem = xbp->bi_rsvdmem;
1836         bm.physavail = NULL;
1837 
1838         /*
1839          * initialize the boot time allocator
1840          */
1841         next_phys = xbp->bi_next_paddr;
1842         DBG(next_phys);
1843         next_virt = (uintptr_t)xbp->bi_next_vaddr;
1844         DBG(next_virt);
1845         DBG_MSG("Initializing boot time memory management...");
1846 #ifdef __xpv
1847         {
1848                 xen_platform_parameters_t p;
1849 
1850                 /* This call shouldn't fail, dboot already did it once. */
1851                 (void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p);
1852                 mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start);
1853                 DBG(xen_virt_start);
1854         }
1855 #endif
1856         kbm_init(xbp);
1857         DBG_MSG("done\n");
1858 
1859         /*
1860          * Fill in the bootops vector
1861          */
1862         bops->bsys_version = BO_VERSION;
1863         bops->boot_mem = &bm;
1864         bops->bsys_alloc = do_bsys_alloc;
1865         bops->bsys_free = do_bsys_free;
1866         bops->bsys_getproplen = do_bsys_getproplen;
1867         bops->bsys_getprop = do_bsys_getprop;
1868         bops->bsys_nextprop = do_bsys_nextprop;
1869         bops->bsys_printf = bop_printf;
1870         bops->bsys_doint = do_bsys_doint;
1871 
1872         /*
1873          * BOP_EALLOC() is no longer needed
1874          */
1875         bops->bsys_ealloc = do_bsys_ealloc;
1876 
1877 #ifdef __xpv
1878         /*
1879          * On domain 0 we need to free up some physical memory that is
1880          * usable for DMA. Since GRUB loaded the boot_archive, it is
1881          * sitting in low MFN memory. We'll relocated the boot archive
1882          * pages to high PFN memory.
1883          */
1884         if (DOMAIN_IS_INITDOMAIN(xen_info))
1885                 relocate_boot_archive(xbp);
1886 #endif
1887 
1888 #ifndef __xpv
1889         /*
1890          * Install an IDT to catch early pagefaults (shouldn't have any).
1891          * Also needed for kmdb.
1892          */
1893         bop_idt_init();
1894 #endif
1895 
1896         /*
1897          * Start building the boot properties from the command line
1898          */
1899         DBG_MSG("Initializing boot properties:\n");
1900         build_boot_properties(xbp);
1901 
1902         if (strstr((char *)xbp->bi_cmdline, "prom_debug") || kbm_debug) {
1903                 char *value;
1904 
1905                 value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
1906                 boot_prop_display(value);
1907         }
1908 
1909         /*
1910          * jump into krtld...
1911          */
1912         _kobj_boot(&bop_sysp, NULL, bops, NULL);
1913 }
1914 
1915 
1916 /*ARGSUSED*/
1917 static caddr_t
1918 no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
1919 {
1920         panic("Attempt to bsys_alloc() too late\n");
1921         return (NULL);
1922 }
1923 
1924 /*ARGSUSED*/
1925 static void
1926 no_more_free(bootops_t *bop, caddr_t virt, size_t size)
1927 {
1928         panic("Attempt to bsys_free() too late\n");
1929 }
1930 
1931 void
1932 bop_no_more_mem(void)
1933 {
1934         DBG(total_bop_alloc_scratch);
1935         DBG(total_bop_alloc_kernel);
1936         bootops->bsys_alloc = no_more_alloc;
1937         bootops->bsys_free = no_more_free;
1938 }
1939 
1940 
1941 /*
1942  * Set ACPI firmware properties
1943  */
1944 
1945 static caddr_t
1946 vmap_phys(size_t length, paddr_t pa)
1947 {
1948         paddr_t start, end;
1949         caddr_t va;
1950         size_t  len, page;
1951 
1952 #ifdef __xpv
1953         pa = pfn_to_pa(xen_assign_pfn(mmu_btop(pa))) | (pa & MMU_PAGEOFFSET);
1954 #endif
1955         start = P2ALIGN(pa, MMU_PAGESIZE);
1956         end = P2ROUNDUP(pa + length, MMU_PAGESIZE);
1957         len = end - start;
1958         va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE);
1959         for (page = 0; page < len; page += MMU_PAGESIZE)
1960                 kbm_map((uintptr_t)va + page, start + page, 0, 0);
1961         return (va + (pa & MMU_PAGEOFFSET));
1962 }
1963 
1964 static uint8_t
1965 checksum_table(uint8_t *tp, size_t len)
1966 {
1967         uint8_t sum = 0;
1968 
1969         while (len-- > 0)
1970                 sum += *tp++;
1971 
1972         return (sum);
1973 }
1974 
1975 static int
1976 valid_rsdp(ACPI_TABLE_RSDP *rp)
1977 {
1978 
1979         /* validate the V1.x checksum */
1980         if (checksum_table((uint8_t *)rp, ACPI_RSDP_CHECKSUM_LENGTH) != 0)
1981                 return (0);
1982 
1983         /* If pre-ACPI 2.0, this is a valid RSDP */
1984         if (rp->Revision < 2)
1985                 return (1);
1986 
1987         /* validate the V2.x checksum */
1988         if (checksum_table((uint8_t *)rp, ACPI_RSDP_XCHECKSUM_LENGTH) != 0)
1989                 return (0);
1990 
1991         return (1);
1992 }
1993 
1994 /*
1995  * Scan memory range for an RSDP;
1996  * see ACPI 3.0 Spec, 5.2.5.1
1997  */
1998 static ACPI_TABLE_RSDP *
1999 scan_rsdp(paddr_t start, paddr_t end)
2000 {
2001         ssize_t len  = end - start;
2002         caddr_t ptr;
2003 
2004         ptr = vmap_phys(len, start);
2005         while (len > 0) {
2006                 if (strncmp(ptr, ACPI_SIG_RSDP, strlen(ACPI_SIG_RSDP)) == 0 &&
2007                     valid_rsdp((ACPI_TABLE_RSDP *)ptr))
2008                         return ((ACPI_TABLE_RSDP *)ptr);
2009 
2010                 ptr += ACPI_RSDP_SCAN_STEP;
2011                 len -= ACPI_RSDP_SCAN_STEP;
2012         }
2013 
2014         return (NULL);
2015 }
2016 
2017 /*
2018  * Refer to ACPI 3.0 Spec, section 5.2.5.1 to understand this function
2019  */
2020 static ACPI_TABLE_RSDP *
2021 find_rsdp()
2022 {
2023         ACPI_TABLE_RSDP *rsdp;
2024         uint16_t *ebda_seg;
2025         paddr_t  ebda_addr;
2026 
2027         /*
2028          * Get the EBDA segment and scan the first 1K
2029          */
2030         ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t),
2031             ACPI_EBDA_PTR_LOCATION);
2032         ebda_addr = *ebda_seg << 4;
2033         rsdp = scan_rsdp(ebda_addr, ebda_addr + ACPI_EBDA_WINDOW_SIZE);
2034         if (rsdp == NULL)
2035                 /* if EBDA doesn't contain RSDP, look in BIOS memory */
2036                 rsdp = scan_rsdp(ACPI_HI_RSDP_WINDOW_BASE,
2037                     ACPI_HI_RSDP_WINDOW_BASE + ACPI_HI_RSDP_WINDOW_SIZE);
2038         return (rsdp);
2039 }
2040 
2041 static ACPI_TABLE_HEADER *
2042 map_fw_table(paddr_t table_addr)
2043 {
2044         ACPI_TABLE_HEADER *tp;
2045         size_t len = MAX(sizeof (*tp), MMU_PAGESIZE);
2046 
2047         /*
2048          * Map at least a page; if the table is larger than this, remap it
2049          */
2050         tp = (ACPI_TABLE_HEADER *)vmap_phys(len, table_addr);
2051         if (tp->Length > len)
2052                 tp = (ACPI_TABLE_HEADER *)vmap_phys(tp->Length, table_addr);
2053         return (tp);
2054 }
2055 
2056 static ACPI_TABLE_HEADER *
2057 find_fw_table(char *signature)
2058 {
2059         static int revision = 0;
2060         static ACPI_TABLE_XSDT *xsdt;
2061         static int len;
2062         paddr_t xsdt_addr;
2063         ACPI_TABLE_RSDP *rsdp;
2064         ACPI_TABLE_HEADER *tp;
2065         paddr_t table_addr;
2066         int     n;
2067 
2068         if (strlen(signature) != ACPI_NAME_SIZE)
2069                 return (NULL);
2070 
2071         /*
2072          * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help
2073          * understand this code.  If we haven't already found the RSDT/XSDT,
2074          * revision will be 0. Find the RSDP and check the revision
2075          * to find out whether to use the RSDT or XSDT.  If revision is
2076          * 0 or 1, use the RSDT and set internal revision to 1; if it is 2,
2077          * use the XSDT.  If the XSDT address is 0, though, fall back to
2078          * revision 1 and use the RSDT.
2079          */
2080         if (revision == 0) {
2081                 if ((rsdp = find_rsdp()) != NULL) {
2082                         revision = rsdp->Revision;
2083                         /*
2084                          * ACPI 6.0 states that current revision is 2
2085                          * from acpi_table_rsdp definition:
2086                          * Must be (0) for ACPI 1.0 or (2) for ACPI 2.0+
2087                          */
2088                         if (revision > 2)
2089                                 revision = 2;
2090                         switch (revision) {
2091                         case 2:
2092                                 /*
2093                                  * Use the XSDT unless BIOS is buggy and
2094                                  * claims to be rev 2 but has a null XSDT
2095                                  * address
2096                                  */
2097                                 xsdt_addr = rsdp->XsdtPhysicalAddress;
2098                                 if (xsdt_addr != 0)
2099                                         break;
2100                                 /* FALLTHROUGH */
2101                         case 0:
2102                                 /* treat RSDP rev 0 as revision 1 internally */
2103                                 revision = 1;
2104                                 /* FALLTHROUGH */
2105                         case 1:
2106                                 /* use the RSDT for rev 0/1 */
2107                                 xsdt_addr = rsdp->RsdtPhysicalAddress;
2108                                 break;
2109                         default:
2110                                 /* unknown revision */
2111                                 revision = 0;
2112                                 break;
2113                         }
2114                 }
2115                 if (revision == 0)
2116                         return (NULL);
2117 
2118                 /* cache the XSDT info */
2119                 xsdt = (ACPI_TABLE_XSDT *)map_fw_table(xsdt_addr);
2120                 len = (xsdt->Header.Length - sizeof (xsdt->Header)) /
2121                     ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t));
2122         }
2123 
2124         /*
2125          * Scan the table headers looking for a signature match
2126          */
2127         for (n = 0; n < len; n++) {
2128                 ACPI_TABLE_RSDT *rsdt = (ACPI_TABLE_RSDT *)xsdt;
2129                 table_addr = (revision == 1) ? rsdt->TableOffsetEntry[n] :
2130                     xsdt->TableOffsetEntry[n];
2131 
2132                 if (table_addr == 0)
2133                         continue;
2134                 tp = map_fw_table(table_addr);
2135                 if (strncmp(tp->Signature, signature, ACPI_NAME_SIZE) == 0) {
2136                         return (tp);
2137                 }
2138         }
2139         return (NULL);
2140 }
2141 
2142 static void
2143 process_mcfg(ACPI_TABLE_MCFG *tp)
2144 {
2145         ACPI_MCFG_ALLOCATION *cfg_baap;
2146         char *cfg_baa_endp;
2147         int64_t ecfginfo[4];
2148 
2149         cfg_baap = (ACPI_MCFG_ALLOCATION *)((uintptr_t)tp + sizeof (*tp));
2150         cfg_baa_endp = ((char *)tp) + tp->Header.Length;
2151         while ((char *)cfg_baap < cfg_baa_endp) {
2152                 if (cfg_baap->Address != 0 && cfg_baap->PciSegment == 0) {
2153                         ecfginfo[0] = cfg_baap->Address;
2154                         ecfginfo[1] = cfg_baap->PciSegment;
2155                         ecfginfo[2] = cfg_baap->StartBusNumber;
2156                         ecfginfo[3] = cfg_baap->EndBusNumber;
2157                         bsetprop(MCFG_PROPNAME, strlen(MCFG_PROPNAME),
2158                             ecfginfo, sizeof (ecfginfo));
2159                         break;
2160                 }
2161                 cfg_baap++;
2162         }
2163 }
2164 
2165 #ifndef __xpv
2166 static void
2167 process_madt_entries(ACPI_TABLE_MADT *tp, uint32_t *cpu_countp,
2168     uint32_t *cpu_possible_countp, uint32_t *cpu_apicid_array)
2169 {
2170         ACPI_SUBTABLE_HEADER *item, *end;
2171         uint32_t cpu_count = 0;
2172         uint32_t cpu_possible_count = 0;
2173 
2174         /*
2175          * Determine number of CPUs and keep track of "final" APIC ID
2176          * for each CPU by walking through ACPI MADT processor list
2177          */
2178         end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
2179         item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
2180 
2181         while (item < end) {
2182                 switch (item->Type) {
2183                 case ACPI_MADT_TYPE_LOCAL_APIC: {
2184                         ACPI_MADT_LOCAL_APIC *cpu =
2185                             (ACPI_MADT_LOCAL_APIC *) item;
2186 
2187                         if (cpu->LapicFlags & ACPI_MADT_ENABLED) {
2188                                 if (cpu_apicid_array != NULL)
2189                                         cpu_apicid_array[cpu_count] = cpu->Id;
2190                                 cpu_count++;
2191                         }
2192                         cpu_possible_count++;
2193                         break;
2194                 }
2195                 case ACPI_MADT_TYPE_LOCAL_X2APIC: {
2196                         ACPI_MADT_LOCAL_X2APIC *cpu =
2197                             (ACPI_MADT_LOCAL_X2APIC *) item;
2198 
2199                         if (cpu->LapicFlags & ACPI_MADT_ENABLED) {
2200                                 if (cpu_apicid_array != NULL)
2201                                         cpu_apicid_array[cpu_count] =
2202                                             cpu->LocalApicId;
2203                                 cpu_count++;
2204                         }
2205                         cpu_possible_count++;
2206                         break;
2207                 }
2208                 default:
2209                         if (kbm_debug)
2210                                 bop_printf(NULL, "MADT type %d\n", item->Type);
2211                         break;
2212                 }
2213 
2214                 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + item->Length);
2215         }
2216         if (cpu_countp)
2217                 *cpu_countp = cpu_count;
2218         if (cpu_possible_countp)
2219                 *cpu_possible_countp = cpu_possible_count;
2220 }
2221 
2222 static void
2223 process_madt(ACPI_TABLE_MADT *tp)
2224 {
2225         uint32_t cpu_count = 0;
2226         uint32_t cpu_possible_count = 0;
2227         uint32_t *cpu_apicid_array; /* x2APIC ID is 32bit! */
2228 
2229         if (tp != NULL) {
2230                 /* count cpu's */
2231                 process_madt_entries(tp, &cpu_count, &cpu_possible_count, NULL);
2232 
2233                 cpu_apicid_array = (uint32_t *)do_bsys_alloc(NULL, NULL,
2234                     cpu_count * sizeof (*cpu_apicid_array), MMU_PAGESIZE);
2235                 if (cpu_apicid_array == NULL)
2236                         bop_panic("Not enough memory for APIC ID array");
2237 
2238                 /* copy IDs */
2239                 process_madt_entries(tp, NULL, NULL, cpu_apicid_array);
2240 
2241                 /*
2242                  * Make boot property for array of "final" APIC IDs for each
2243                  * CPU
2244                  */
2245                 bsetprop(BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY),
2246                     cpu_apicid_array, cpu_count * sizeof (*cpu_apicid_array));
2247         }
2248 
2249         /*
2250          * Check whether property plat-max-ncpus is already set.
2251          */
2252         if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2253                 /*
2254                  * Set plat-max-ncpus to number of maximum possible CPUs given
2255                  * in MADT if it hasn't been set.
2256                  * There's no formal way to detect max possible CPUs supported
2257                  * by platform according to ACPI spec3.0b. So current CPU
2258                  * hotplug implementation expects that all possible CPUs will
2259                  * have an entry in MADT table and set plat-max-ncpus to number
2260                  * of entries in MADT.
2261                  * With introducing of ACPI4.0, Maximum System Capability Table
2262                  * (MSCT) provides maximum number of CPUs supported by platform.
2263                  * If MSCT is unavailable, fall back to old way.
2264                  */
2265                 if (tp != NULL)
2266                         bsetpropsi(PLAT_MAX_NCPUS_NAME, cpu_possible_count);
2267         }
2268 
2269         /*
2270          * Set boot property boot-max-ncpus to number of CPUs existing at
2271          * boot time. boot-max-ncpus is mainly used for optimization.
2272          */
2273         if (tp != NULL)
2274                 bsetpropsi(BOOT_MAX_NCPUS_NAME, cpu_count);
2275 
2276         /*
2277          * User-set boot-ncpus overrides firmware count
2278          */
2279         if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2280                 return;
2281 
2282         /*
2283          * Set boot property boot-ncpus to number of active CPUs given in MADT
2284          * if it hasn't been set yet.
2285          */
2286         if (tp != NULL)
2287                 bsetpropsi(BOOT_NCPUS_NAME, cpu_count);
2288 }
2289 
2290 static void
2291 process_srat(ACPI_TABLE_SRAT *tp)
2292 {
2293         ACPI_SUBTABLE_HEADER *item, *end;
2294         int i;
2295         int proc_num, mem_num;
2296 #pragma pack(1)
2297         struct {
2298                 uint32_t domain;
2299                 uint32_t apic_id;
2300                 uint32_t sapic_id;
2301         } processor;
2302         struct {
2303                 uint32_t domain;
2304                 uint32_t x2apic_id;
2305         } x2apic;
2306         struct {
2307                 uint32_t domain;
2308                 uint64_t addr;
2309                 uint64_t length;
2310                 uint32_t flags;
2311         } memory;
2312 #pragma pack()
2313         char prop_name[30];
2314         uint64_t maxmem = 0;
2315 
2316         if (tp == NULL)
2317                 return;
2318 
2319         proc_num = mem_num = 0;
2320         end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
2321         item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
2322         while (item < end) {
2323                 switch (item->Type) {
2324                 case ACPI_SRAT_TYPE_CPU_AFFINITY: {
2325                         ACPI_SRAT_CPU_AFFINITY *cpu =
2326                             (ACPI_SRAT_CPU_AFFINITY *) item;
2327 
2328                         if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED))
2329                                 break;
2330                         processor.domain = cpu->ProximityDomainLo;
2331                         for (i = 0; i < 3; i++)
2332                                 processor.domain +=
2333                                     cpu->ProximityDomainHi[i] << ((i + 1) * 8);
2334                         processor.apic_id = cpu->ApicId;
2335                         processor.sapic_id = cpu->LocalSapicEid;
2336                         (void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2337                             proc_num);
2338                         bsetprop(prop_name, strlen(prop_name), &processor,
2339                             sizeof (processor));
2340                         proc_num++;
2341                         break;
2342                 }
2343                 case ACPI_SRAT_TYPE_MEMORY_AFFINITY: {
2344                         ACPI_SRAT_MEM_AFFINITY *mem =
2345                             (ACPI_SRAT_MEM_AFFINITY *)item;
2346 
2347                         if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED))
2348                                 break;
2349                         memory.domain = mem->ProximityDomain;
2350                         memory.addr = mem->BaseAddress;
2351                         memory.length = mem->Length;
2352                         memory.flags = mem->Flags;
2353                         (void) snprintf(prop_name, 30, "acpi-srat-memory-%d",
2354                             mem_num);
2355                         bsetprop(prop_name, strlen(prop_name), &memory,
2356                             sizeof (memory));
2357                         if ((mem->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) &&
2358                             (memory.addr + memory.length > maxmem)) {
2359                                 maxmem = memory.addr + memory.length;
2360                         }
2361                         mem_num++;
2362                         break;
2363                 }
2364                 case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: {
2365                         ACPI_SRAT_X2APIC_CPU_AFFINITY *x2cpu =
2366                             (ACPI_SRAT_X2APIC_CPU_AFFINITY *) item;
2367 
2368                         if (!(x2cpu->Flags & ACPI_SRAT_CPU_ENABLED))
2369                                 break;
2370                         x2apic.domain = x2cpu->ProximityDomain;
2371                         x2apic.x2apic_id = x2cpu->ApicId;
2372                         (void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2373                             proc_num);
2374                         bsetprop(prop_name, strlen(prop_name), &x2apic,
2375                             sizeof (x2apic));
2376                         proc_num++;
2377                         break;
2378                 }
2379                 default:
2380                         if (kbm_debug)
2381                                 bop_printf(NULL, "SRAT type %d\n", item->Type);
2382                         break;
2383                 }
2384 
2385                 item = (ACPI_SUBTABLE_HEADER *)
2386                     (item->Length + (uintptr_t)item);
2387         }
2388 
2389         /*
2390          * The maximum physical address calculated from the SRAT table is more
2391          * accurate than that calculated from the MSCT table.
2392          */
2393         if (maxmem != 0) {
2394                 plat_dr_physmax = btop(maxmem);
2395         }
2396 }
2397 
2398 static void
2399 process_slit(ACPI_TABLE_SLIT *tp)
2400 {
2401 
2402         /*
2403          * Check the number of localities; if it's too huge, we just
2404          * return and locality enumeration code will handle this later,
2405          * if possible.
2406          *
2407          * Note that the size of the table is the square of the
2408          * number of localities; if the number of localities exceeds
2409          * UINT16_MAX, the table size may overflow an int when being
2410          * passed to bsetprop() below.
2411          */
2412         if (tp->LocalityCount >= SLIT_LOCALITIES_MAX)
2413                 return;
2414 
2415         bsetprop(SLIT_NUM_PROPNAME, strlen(SLIT_NUM_PROPNAME),
2416             &tp->LocalityCount, sizeof (tp->LocalityCount));
2417         bsetprop(SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->Entry,
2418             tp->LocalityCount * tp->LocalityCount);
2419 }
2420 
2421 static ACPI_TABLE_MSCT *
2422 process_msct(ACPI_TABLE_MSCT *tp)
2423 {
2424         int last_seen = 0;
2425         int proc_num = 0;
2426         ACPI_MSCT_PROXIMITY *item, *end;
2427         extern uint64_t plat_dr_options;
2428 
2429         ASSERT(tp != NULL);
2430 
2431         end = (ACPI_MSCT_PROXIMITY *)(tp->Header.Length + (uintptr_t)tp);
2432         for (item = (void *)((uintptr_t)tp + tp->ProximityOffset);
2433             item < end;
2434             item = (void *)(item->Length + (uintptr_t)item)) {
2435                 /*
2436                  * Sanity check according to section 5.2.19.1 of ACPI 4.0.
2437                  * Revision     1
2438                  * Length       22
2439                  */
2440                 if (item->Revision != 1 || item->Length != 22) {
2441                         cmn_err(CE_CONT,
2442                             "?boot: unknown proximity domain structure in MSCT "
2443                             "with Revision(%d), Length(%d).\n",
2444                             (int)item->Revision, (int)item->Length);
2445                         return (NULL);
2446                 } else if (item->RangeStart > item->RangeEnd) {
2447                         cmn_err(CE_CONT,
2448                             "?boot: invalid proximity domain structure in MSCT "
2449                             "with RangeStart(%u), RangeEnd(%u).\n",
2450                             item->RangeStart, item->RangeEnd);
2451                         return (NULL);
2452                 } else if (item->RangeStart != last_seen) {
2453                         /*
2454                          * Items must be organized in ascending order of the
2455                          * proximity domain enumerations.
2456                          */
2457                         cmn_err(CE_CONT,
2458                             "?boot: invalid proximity domain structure in MSCT,"
2459                             " items are not orginized in ascending order.\n");
2460                         return (NULL);
2461                 }
2462 
2463                 /*
2464                  * If ProcessorCapacity is 0 then there would be no CPUs in this
2465                  * domain.
2466                  */
2467                 if (item->ProcessorCapacity != 0) {
2468                         proc_num += (item->RangeEnd - item->RangeStart + 1) *
2469                             item->ProcessorCapacity;
2470                 }
2471 
2472                 last_seen = item->RangeEnd - item->RangeStart + 1;
2473                 /*
2474                  * Break out if all proximity domains have been processed.
2475                  * Some BIOSes may have unused items at the end of MSCT table.
2476                  */
2477                 if (last_seen > tp->MaxProximityDomains) {
2478                         break;
2479                 }
2480         }
2481         if (last_seen != tp->MaxProximityDomains + 1) {
2482                 cmn_err(CE_CONT,
2483                     "?boot: invalid proximity domain structure in MSCT, "
2484                     "proximity domain count doesn't match.\n");
2485                 return (NULL);
2486         }
2487 
2488         /*
2489          * Set plat-max-ncpus property if it hasn't been set yet.
2490          */
2491         if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2492                 if (proc_num != 0) {
2493                         bsetpropsi(PLAT_MAX_NCPUS_NAME, proc_num);
2494                 }
2495         }
2496 
2497         /*
2498          * Use Maximum Physical Address from the MSCT table as upper limit for
2499          * memory hot-adding by default. It may be overridden by value from
2500          * the SRAT table or the "plat-dr-physmax" boot option.
2501          */
2502         plat_dr_physmax = btop(tp->MaxAddress + 1);
2503 
2504         /*
2505          * Existence of MSCT implies CPU/memory hotplug-capability for the
2506          * platform.
2507          */
2508         plat_dr_options |= PLAT_DR_FEATURE_CPU;
2509         plat_dr_options |= PLAT_DR_FEATURE_MEMORY;
2510 
2511         return (tp);
2512 }
2513 
2514 /*
2515  * If this system has a PC-compatible BIOS, it will have handlers for
2516  * various well-known BIOS calls.  These calls take the form of INT
2517  * instructions, revectoring to the nominated entry in the real mode
2518  * Interrupt Vector Table (IVT).  If all of the commonly used entries (from
2519  * INT 10h up to INT 1Ah) are zero, we almost certainly don't want to make
2520  * use of BOP_DOINT() later.
2521  *
2522  * The IVT begins at linear address 0 on the 8086.  Though later CPUs
2523  * allowed it to be moved, it seems that most BIOS implementations choose
2524  * not to do so for compatibility reasons.  Our BIOS call trampoline (see
2525  * "idt_info" in "uts/i86pc/ml/bios_call_src.s") also assumes this address.
2526  */
2527 static int
2528 system_has_bios(void)
2529 {
2530         uint32_t all_ivts = 0;
2531 
2532         DBG_MSG("\nBIOS IVT Entries:\n");
2533         for (uint32_t intnum = 0x10; intnum <= 0x1a; intnum++) {
2534                 /*
2535                  * The first software interrupt number (i.e. INT 0h) maps to
2536                  * vector number 32 in the IVT.  Each entry in the IVT is
2537                  * four bytes, describing a 16 bit far call address.
2538                  */
2539                 uintptr_t slot = 4 * (32 + intnum);
2540                 uint32_t ivte = *((uint32_t *)slot);
2541 
2542                 if (ivte != 0) {
2543                         DBG(intnum);
2544                         DBG(ivte);
2545                 }
2546                 all_ivts |= ivte;
2547         }
2548         if (all_ivts == 0) {
2549                 DBG_MSG("System has no BIOS IVT entries\n");
2550         }
2551         DBG_MSG("\n");
2552 
2553         return (all_ivts != 0);
2554 }
2555 
2556 #else /* __xpv */
2557 static void
2558 enumerate_xen_cpus()
2559 {
2560         processorid_t   id, max_id;
2561 
2562         /*
2563          * User-set boot-ncpus overrides enumeration
2564          */
2565         if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2566                 return;
2567 
2568         /*
2569          * Probe every possible virtual CPU id and remember the
2570          * highest id present; the count of CPUs is one greater
2571          * than this.  This tacitly assumes at least cpu 0 is present.
2572          */
2573         max_id = 0;
2574         for (id = 0; id < MAX_VIRT_CPUS; id++)
2575                 if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0)
2576                         max_id = id;
2577 
2578         bsetpropsi(BOOT_NCPUS_NAME, max_id+1);
2579 
2580 }
2581 #endif /* __xpv */
2582 
2583 static void
2584 build_firmware_properties(void)
2585 {
2586         ACPI_TABLE_HEADER *tp = NULL;
2587 
2588 #ifndef __xpv
2589         if (do_bsys_getproplen(NULL, "no-bios") > 0 || !system_has_bios())
2590                 bios_calls_available = B_FALSE;
2591 
2592         if ((tp = find_fw_table(ACPI_SIG_MSCT)) != NULL)
2593                 msct_ptr = process_msct((ACPI_TABLE_MSCT *)tp);
2594         else
2595                 msct_ptr = NULL;
2596 
2597         if ((tp = find_fw_table(ACPI_SIG_MADT)) != NULL)
2598                 process_madt((ACPI_TABLE_MADT *)tp);
2599 
2600         if ((srat_ptr = (ACPI_TABLE_SRAT *)
2601             find_fw_table(ACPI_SIG_SRAT)) != NULL)
2602                 process_srat(srat_ptr);
2603 
2604         if (slit_ptr = (ACPI_TABLE_SLIT *)find_fw_table(ACPI_SIG_SLIT))
2605                 process_slit(slit_ptr);
2606 
2607         tp = find_fw_table(ACPI_SIG_MCFG);
2608 #else /* __xpv */
2609         enumerate_xen_cpus();
2610         if (DOMAIN_IS_INITDOMAIN(xen_info))
2611                 tp = find_fw_table(ACPI_SIG_MCFG);
2612 #endif /* __xpv */
2613         if (tp != NULL)
2614                 process_mcfg((ACPI_TABLE_MCFG *)tp);
2615 }
2616 
2617 /*
2618  * fake up a boot property for deferred early console output
2619  * this is used by both graphical boot and the (developer only)
2620  * USB serial console
2621  */
2622 void *
2623 defcons_init(size_t size)
2624 {
2625         static char *p = NULL;
2626 
2627         p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE);
2628         *p = 0;
2629         bsetprop("deferred-console-buf", strlen("deferred-console-buf") + 1,
2630             &p, sizeof (p));
2631         return (p);
2632 }
2633 
2634 /*ARGSUSED*/
2635 int
2636 boot_compinfo(int fd, struct compinfo *cbp)
2637 {
2638         cbp->iscmp = 0;
2639         cbp->blksize = MAXBSIZE;
2640         return (0);
2641 }
2642 
2643 #define BP_MAX_STRLEN   32
2644 
2645 /*
2646  * Get value for given boot property
2647  */
2648 int
2649 bootprop_getval(const char *prop_name, u_longlong_t *prop_value)
2650 {
2651         int             boot_prop_len;
2652         char            str[BP_MAX_STRLEN];
2653         u_longlong_t    value;
2654 
2655         boot_prop_len = BOP_GETPROPLEN(bootops, prop_name);
2656         if (boot_prop_len < 0 || boot_prop_len > sizeof (str) ||
2657             BOP_GETPROP(bootops, prop_name, str) < 0 ||
2658             kobj_getvalue(str, &value) == -1)
2659                 return (-1);
2660 
2661         if (prop_value)
2662                 *prop_value = value;
2663 
2664         return (0);
2665 }