1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 * 26 * Copyright (c) 2010, Intel Corporation. 27 * All rights reserved. 28 * 29 * Copyright 2013 Joyent, Inc. All rights reserved. 30 */ 31 32 /* 33 * This file contains the functionality that mimics the boot operations 34 * on SPARC systems or the old boot.bin/multiboot programs on x86 systems. 35 * The x86 kernel now does everything on its own. 36 */ 37 38 #include <sys/types.h> 39 #include <sys/bootconf.h> 40 #include <sys/bootsvcs.h> 41 #include <sys/bootinfo.h> 42 #include <sys/multiboot.h> 43 #include <sys/bootvfs.h> 44 #include <sys/bootprops.h> 45 #include <sys/varargs.h> 46 #include <sys/param.h> 47 #include <sys/machparam.h> 48 #include <sys/machsystm.h> 49 #include <sys/archsystm.h> 50 #include <sys/boot_console.h> 51 #include <sys/cmn_err.h> 52 #include <sys/systm.h> 53 #include <sys/promif.h> 54 #include <sys/archsystm.h> 55 #include <sys/x86_archext.h> 56 #include <sys/kobj.h> 57 #include <sys/privregs.h> 58 #include <sys/sysmacros.h> 59 #include <sys/ctype.h> 60 #include <sys/fastboot.h> 61 #ifdef __xpv 62 #include <sys/hypervisor.h> 63 #include <net/if.h> 64 #endif 65 #include <vm/kboot_mmu.h> 66 #include <vm/hat_pte.h> 67 #include <sys/kobj.h> 68 #include <sys/kobj_lex.h> 69 #include <sys/pci_cfgspace_impl.h> 70 #include <sys/fastboot_impl.h> 71 #include <sys/acpi/acconfig.h> 72 #include <sys/acpi/acpi.h> 73 74 static int have_console = 0; /* set once primitive console is initialized */ 75 static char *boot_args = ""; 76 77 /* 78 * Debugging macros 79 */ 80 static uint_t kbm_debug = 0; 81 #define DBG_MSG(s) { if (kbm_debug) bop_printf(NULL, "%s", s); } 82 #define DBG(x) { if (kbm_debug) \ 83 bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x)); \ 84 } 85 86 #define PUT_STRING(s) { \ 87 char *cp; \ 88 for (cp = (s); *cp; ++cp) \ 89 bcons_putchar(*cp); \ 90 } 91 92 bootops_t bootop; /* simple bootops we'll pass on to kernel */ 93 struct bsys_mem bm; 94 95 /* 96 * Boot info from "glue" code in low memory. xbootp is used by: 97 * do_bop_phys_alloc(), do_bsys_alloc() and boot_prop_finish(). 98 */ 99 static struct xboot_info *xbootp; 100 static uintptr_t next_virt; /* next available virtual address */ 101 static paddr_t next_phys; /* next available physical address from dboot */ 102 static paddr_t high_phys = -(paddr_t)1; /* last used physical address */ 103 104 /* 105 * buffer for vsnprintf for console I/O 106 */ 107 #define BUFFERSIZE 512 108 static char buffer[BUFFERSIZE]; 109 110 /* 111 * stuff to store/report/manipulate boot property settings. 112 */ 113 typedef struct bootprop { 114 struct bootprop *bp_next; 115 char *bp_name; 116 uint_t bp_vlen; 117 char *bp_value; 118 } bootprop_t; 119 120 static bootprop_t *bprops = NULL; 121 static char *curr_page = NULL; /* ptr to avail bprop memory */ 122 static int curr_space = 0; /* amount of memory at curr_page */ 123 124 #ifdef __xpv 125 start_info_t *xen_info; 126 shared_info_t *HYPERVISOR_shared_info; 127 #endif 128 129 /* 130 * some allocator statistics 131 */ 132 static ulong_t total_bop_alloc_scratch = 0; 133 static ulong_t total_bop_alloc_kernel = 0; 134 135 static void build_firmware_properties(void); 136 137 static int early_allocation = 1; 138 139 int force_fastreboot = 0; 140 volatile int fastreboot_onpanic = 0; 141 int post_fastreboot = 0; 142 #ifdef __xpv 143 volatile int fastreboot_capable = 0; 144 boolean_t bios_calls_available = B_FALSE; 145 #else 146 volatile int fastreboot_capable = 1; 147 boolean_t bios_calls_available = B_TRUE; 148 #endif 149 150 /* 151 * Information saved from current boot for fast reboot. 152 * If the information size exceeds what we have allocated, fast reboot 153 * will not be supported. 154 */ 155 multiboot_info_t saved_mbi; 156 mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT]; 157 uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE]; 158 char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN]; 159 int saved_cmdline_len = 0; 160 size_t saved_file_size[FASTBOOT_MAX_FILES_MAP]; 161 162 /* 163 * Turn off fastreboot_onpanic to avoid panic loop. 164 */ 165 char fastreboot_onpanic_cmdline[FASTBOOT_SAVED_CMDLINE_LEN]; 166 static const char fastreboot_onpanic_args[] = " -B fastreboot_onpanic=0"; 167 168 /* 169 * Pointers to where System Resource Affinity Table (SRAT), System Locality 170 * Information Table (SLIT) and Maximum System Capability Table (MSCT) 171 * are mapped into virtual memory 172 */ 173 ACPI_TABLE_SRAT *srat_ptr = NULL; 174 ACPI_TABLE_SLIT *slit_ptr = NULL; 175 ACPI_TABLE_MSCT *msct_ptr = NULL; 176 177 /* 178 * Arbitrary limit on number of localities we handle; if 179 * this limit is raised to more than UINT16_MAX, make sure 180 * process_slit() knows how to handle it. 181 */ 182 #define SLIT_LOCALITIES_MAX (4096) 183 184 #define SLIT_NUM_PROPNAME "acpi-slit-localities" 185 #define SLIT_PROPNAME "acpi-slit" 186 187 /* 188 * Allocate aligned physical memory at boot time. This allocator allocates 189 * from the highest possible addresses. This avoids exhausting memory that 190 * would be useful for DMA buffers. 191 */ 192 paddr_t 193 do_bop_phys_alloc(uint64_t size, uint64_t align) 194 { 195 paddr_t pa = 0; 196 paddr_t start; 197 paddr_t end; 198 struct memlist *ml = (struct memlist *)xbootp->bi_phys_install; 199 200 /* 201 * Be careful if high memory usage is limited in startup.c 202 * Since there are holes in the low part of the physical address 203 * space we can treat physmem as a pfn (not just a pgcnt) and 204 * get a conservative upper limit. 205 */ 206 if (physmem != 0 && high_phys > pfn_to_pa(physmem)) 207 high_phys = pfn_to_pa(physmem); 208 209 /* 210 * find the lowest or highest available memory in physinstalled 211 * On 32 bit avoid physmem above 4Gig if PAE isn't enabled 212 */ 213 #if defined(__i386) 214 if (xbootp->bi_use_pae == 0 && high_phys > FOUR_GIG) 215 high_phys = FOUR_GIG; 216 #endif 217 218 /* 219 * find the highest available memory in physinstalled 220 */ 221 size = P2ROUNDUP(size, align); 222 for (; ml; ml = ml->ml_next) { 223 start = P2ROUNDUP(ml->ml_address, align); 224 end = P2ALIGN(ml->ml_address + ml->ml_size, align); 225 if (start < next_phys) 226 start = P2ROUNDUP(next_phys, align); 227 if (end > high_phys) 228 end = P2ALIGN(high_phys, align); 229 230 if (end <= start) 231 continue; 232 if (end - start < size) 233 continue; 234 235 /* 236 * Early allocations need to use low memory, since 237 * physmem might be further limited by bootenv.rc 238 */ 239 if (early_allocation) { 240 if (pa == 0 || start < pa) 241 pa = start; 242 } else { 243 if (end - size > pa) 244 pa = end - size; 245 } 246 } 247 if (pa != 0) { 248 if (early_allocation) 249 next_phys = pa + size; 250 else 251 high_phys = pa; 252 return (pa); 253 } 254 bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64 255 ") Out of memory\n", size, align); 256 /*NOTREACHED*/ 257 } 258 259 uintptr_t 260 alloc_vaddr(size_t size, paddr_t align) 261 { 262 uintptr_t rv; 263 264 next_virt = P2ROUNDUP(next_virt, (uintptr_t)align); 265 rv = (uintptr_t)next_virt; 266 next_virt += size; 267 return (rv); 268 } 269 270 /* 271 * Allocate virtual memory. The size is always rounded up to a multiple 272 * of base pagesize. 273 */ 274 275 /*ARGSUSED*/ 276 static caddr_t 277 do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align) 278 { 279 paddr_t a = align; /* same type as pa for masking */ 280 uint_t pgsize; 281 paddr_t pa; 282 uintptr_t va; 283 ssize_t s; /* the aligned size */ 284 uint_t level; 285 uint_t is_kernel = (virthint != 0); 286 287 if (a < MMU_PAGESIZE) 288 a = MMU_PAGESIZE; 289 else if (!ISP2(a)) 290 prom_panic("do_bsys_alloc() incorrect alignment"); 291 size = P2ROUNDUP(size, MMU_PAGESIZE); 292 293 /* 294 * Use the next aligned virtual address if we weren't given one. 295 */ 296 if (virthint == NULL) { 297 virthint = (caddr_t)alloc_vaddr(size, a); 298 total_bop_alloc_scratch += size; 299 } else { 300 total_bop_alloc_kernel += size; 301 } 302 303 /* 304 * allocate the physical memory 305 */ 306 pa = do_bop_phys_alloc(size, a); 307 308 /* 309 * Add the mappings to the page tables, try large pages first. 310 */ 311 va = (uintptr_t)virthint; 312 s = size; 313 level = 1; 314 pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG; 315 if (xbootp->bi_use_largepage && a == pgsize) { 316 while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) && 317 s >= pgsize) { 318 kbm_map(va, pa, level, is_kernel); 319 va += pgsize; 320 pa += pgsize; 321 s -= pgsize; 322 } 323 } 324 325 /* 326 * Map remaining pages use small mappings 327 */ 328 level = 0; 329 pgsize = MMU_PAGESIZE; 330 while (s > 0) { 331 kbm_map(va, pa, level, is_kernel); 332 va += pgsize; 333 pa += pgsize; 334 s -= pgsize; 335 } 336 return (virthint); 337 } 338 339 /* 340 * Free virtual memory - we'll just ignore these. 341 */ 342 /*ARGSUSED*/ 343 static void 344 do_bsys_free(bootops_t *bop, caddr_t virt, size_t size) 345 { 346 bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n", 347 (void *)virt, size); 348 } 349 350 /* 351 * Old interface 352 */ 353 /*ARGSUSED*/ 354 static caddr_t 355 do_bsys_ealloc(bootops_t *bop, caddr_t virthint, size_t size, 356 int align, int flags) 357 { 358 prom_panic("unsupported call to BOP_EALLOC()\n"); 359 return (0); 360 } 361 362 363 static void 364 bsetprop(char *name, int nlen, void *value, int vlen) 365 { 366 uint_t size; 367 uint_t need_size; 368 bootprop_t *b; 369 370 /* 371 * align the size to 16 byte boundary 372 */ 373 size = sizeof (bootprop_t) + nlen + 1 + vlen; 374 size = (size + 0xf) & ~0xf; 375 if (size > curr_space) { 376 need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK; 377 curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE); 378 curr_space = need_size; 379 } 380 381 /* 382 * use a bootprop_t at curr_page and link into list 383 */ 384 b = (bootprop_t *)curr_page; 385 curr_page += sizeof (bootprop_t); 386 curr_space -= sizeof (bootprop_t); 387 b->bp_next = bprops; 388 bprops = b; 389 390 /* 391 * follow by name and ending zero byte 392 */ 393 b->bp_name = curr_page; 394 bcopy(name, curr_page, nlen); 395 curr_page += nlen; 396 *curr_page++ = 0; 397 curr_space -= nlen + 1; 398 399 /* 400 * copy in value, but no ending zero byte 401 */ 402 b->bp_value = curr_page; 403 b->bp_vlen = vlen; 404 if (vlen > 0) { 405 bcopy(value, curr_page, vlen); 406 curr_page += vlen; 407 curr_space -= vlen; 408 } 409 410 /* 411 * align new values of curr_page, curr_space 412 */ 413 while (curr_space & 0xf) { 414 ++curr_page; 415 --curr_space; 416 } 417 } 418 419 static void 420 bsetprops(char *name, char *value) 421 { 422 bsetprop(name, strlen(name), value, strlen(value) + 1); 423 } 424 425 static void 426 bsetprop64(char *name, uint64_t value) 427 { 428 bsetprop(name, strlen(name), (void *)&value, sizeof (value)); 429 } 430 431 static void 432 bsetpropsi(char *name, int value) 433 { 434 char prop_val[32]; 435 436 (void) snprintf(prop_val, sizeof (prop_val), "%d", value); 437 bsetprops(name, prop_val); 438 } 439 440 /* 441 * to find the size of the buffer to allocate 442 */ 443 /*ARGSUSED*/ 444 int 445 do_bsys_getproplen(bootops_t *bop, const char *name) 446 { 447 bootprop_t *b; 448 449 for (b = bprops; b; b = b->bp_next) { 450 if (strcmp(name, b->bp_name) != 0) 451 continue; 452 return (b->bp_vlen); 453 } 454 return (-1); 455 } 456 457 /* 458 * get the value associated with this name 459 */ 460 /*ARGSUSED*/ 461 int 462 do_bsys_getprop(bootops_t *bop, const char *name, void *value) 463 { 464 bootprop_t *b; 465 466 for (b = bprops; b; b = b->bp_next) { 467 if (strcmp(name, b->bp_name) != 0) 468 continue; 469 bcopy(b->bp_value, value, b->bp_vlen); 470 return (0); 471 } 472 return (-1); 473 } 474 475 /* 476 * get the name of the next property in succession from the standalone 477 */ 478 /*ARGSUSED*/ 479 static char * 480 do_bsys_nextprop(bootops_t *bop, char *name) 481 { 482 bootprop_t *b; 483 484 /* 485 * A null name is a special signal for the 1st boot property 486 */ 487 if (name == NULL || strlen(name) == 0) { 488 if (bprops == NULL) 489 return (NULL); 490 return (bprops->bp_name); 491 } 492 493 for (b = bprops; b; b = b->bp_next) { 494 if (name != b->bp_name) 495 continue; 496 b = b->bp_next; 497 if (b == NULL) 498 return (NULL); 499 return (b->bp_name); 500 } 501 return (NULL); 502 } 503 504 /* 505 * Parse numeric value from a string. Understands decimal, hex, octal, - and ~ 506 */ 507 static int 508 parse_value(char *p, uint64_t *retval) 509 { 510 int adjust = 0; 511 uint64_t tmp = 0; 512 int digit; 513 int radix = 10; 514 515 *retval = 0; 516 if (*p == '-' || *p == '~') 517 adjust = *p++; 518 519 if (*p == '0') { 520 ++p; 521 if (*p == 0) 522 return (0); 523 if (*p == 'x' || *p == 'X') { 524 radix = 16; 525 ++p; 526 } else { 527 radix = 8; 528 ++p; 529 } 530 } 531 while (*p) { 532 if ('0' <= *p && *p <= '9') 533 digit = *p - '0'; 534 else if ('a' <= *p && *p <= 'f') 535 digit = 10 + *p - 'a'; 536 else if ('A' <= *p && *p <= 'F') 537 digit = 10 + *p - 'A'; 538 else 539 return (-1); 540 if (digit >= radix) 541 return (-1); 542 tmp = tmp * radix + digit; 543 ++p; 544 } 545 if (adjust == '-') 546 tmp = -tmp; 547 else if (adjust == '~') 548 tmp = ~tmp; 549 *retval = tmp; 550 return (0); 551 } 552 553 static boolean_t 554 unprintable(char *value, int size) 555 { 556 int i; 557 558 if (size <= 0 || value[0] == '\0') 559 return (B_TRUE); 560 561 for (i = 0; i < size; i++) { 562 if (value[i] == '\0') 563 return (i != (size - 1)); 564 565 if (!isprint(value[i])) 566 return (B_TRUE); 567 } 568 return (B_FALSE); 569 } 570 571 /* 572 * Print out information about all boot properties. 573 * buffer is pointer to pre-allocated space to be used as temporary 574 * space for property values. 575 */ 576 static void 577 boot_prop_display(char *buffer) 578 { 579 char *name = ""; 580 int i, len; 581 582 bop_printf(NULL, "\nBoot properties:\n"); 583 584 while ((name = do_bsys_nextprop(NULL, name)) != NULL) { 585 bop_printf(NULL, "\t0x%p %s = ", (void *)name, name); 586 (void) do_bsys_getprop(NULL, name, buffer); 587 len = do_bsys_getproplen(NULL, name); 588 bop_printf(NULL, "len=%d ", len); 589 if (!unprintable(buffer, len)) { 590 buffer[len] = 0; 591 bop_printf(NULL, "%s\n", buffer); 592 continue; 593 } 594 for (i = 0; i < len; i++) { 595 bop_printf(NULL, "%02x", buffer[i] & 0xff); 596 if (i < len - 1) 597 bop_printf(NULL, "."); 598 } 599 bop_printf(NULL, "\n"); 600 } 601 } 602 603 /* 604 * 2nd part of building the table of boot properties. This includes: 605 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values) 606 * 607 * lines look like one of: 608 * ^$ 609 * ^# comment till end of line 610 * setprop name 'value' 611 * setprop name value 612 * setprop name "value" 613 * 614 * we do single character I/O since this is really just looking at memory 615 */ 616 void 617 boot_prop_finish(void) 618 { 619 int fd; 620 char *line; 621 int c; 622 int bytes_read; 623 char *name; 624 int n_len; 625 char *value; 626 int v_len; 627 char *inputdev; /* these override the command line if serial ports */ 628 char *outputdev; 629 char *consoledev; 630 uint64_t lvalue; 631 int use_xencons = 0; 632 633 #ifdef __xpv 634 if (!DOMAIN_IS_INITDOMAIN(xen_info)) 635 use_xencons = 1; 636 #endif /* __xpv */ 637 638 DBG_MSG("Opening /boot/solaris/bootenv.rc\n"); 639 fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0); 640 DBG(fd); 641 642 line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 643 while (fd >= 0) { 644 645 /* 646 * get a line 647 */ 648 for (c = 0; ; ++c) { 649 bytes_read = BRD_READ(bfs_ops, fd, line + c, 1); 650 if (bytes_read == 0) { 651 if (c == 0) 652 goto done; 653 break; 654 } 655 if (line[c] == '\n') 656 break; 657 } 658 line[c] = 0; 659 660 /* 661 * ignore comment lines 662 */ 663 c = 0; 664 while (ISSPACE(line[c])) 665 ++c; 666 if (line[c] == '#' || line[c] == 0) 667 continue; 668 669 /* 670 * must have "setprop " or "setprop\t" 671 */ 672 if (strncmp(line + c, "setprop ", 8) != 0 && 673 strncmp(line + c, "setprop\t", 8) != 0) 674 continue; 675 c += 8; 676 while (ISSPACE(line[c])) 677 ++c; 678 if (line[c] == 0) 679 continue; 680 681 /* 682 * gather up the property name 683 */ 684 name = line + c; 685 n_len = 0; 686 while (line[c] && !ISSPACE(line[c])) 687 ++n_len, ++c; 688 689 /* 690 * gather up the value, if any 691 */ 692 value = ""; 693 v_len = 0; 694 while (ISSPACE(line[c])) 695 ++c; 696 if (line[c] != 0) { 697 value = line + c; 698 while (line[c] && !ISSPACE(line[c])) 699 ++v_len, ++c; 700 } 701 702 if (v_len >= 2 && value[0] == value[v_len - 1] && 703 (value[0] == '\'' || value[0] == '"')) { 704 ++value; 705 v_len -= 2; 706 } 707 name[n_len] = 0; 708 if (v_len > 0) 709 value[v_len] = 0; 710 else 711 continue; 712 713 /* 714 * ignore "boot-file" property, it's now meaningless 715 */ 716 if (strcmp(name, "boot-file") == 0) 717 continue; 718 if (strcmp(name, "boot-args") == 0 && 719 strlen(boot_args) > 0) 720 continue; 721 722 /* 723 * If a property was explicitly set on the command line 724 * it will override a setting in bootenv.rc 725 */ 726 if (do_bsys_getproplen(NULL, name) > 0) 727 continue; 728 729 bsetprop(name, n_len, value, v_len + 1); 730 } 731 done: 732 if (fd >= 0) 733 (void) BRD_CLOSE(bfs_ops, fd); 734 735 /* 736 * Check if we have to limit the boot time allocator 737 */ 738 if (do_bsys_getproplen(NULL, "physmem") != -1 && 739 do_bsys_getprop(NULL, "physmem", line) >= 0 && 740 parse_value(line, &lvalue) != -1) { 741 if (0 < lvalue && (lvalue < physmem || physmem == 0)) { 742 physmem = (pgcnt_t)lvalue; 743 DBG(physmem); 744 } 745 } 746 early_allocation = 0; 747 748 /* 749 * check to see if we have to override the default value of the console 750 */ 751 if (!use_xencons) { 752 inputdev = line; 753 v_len = do_bsys_getproplen(NULL, "input-device"); 754 if (v_len > 0) 755 (void) do_bsys_getprop(NULL, "input-device", inputdev); 756 else 757 v_len = 0; 758 inputdev[v_len] = 0; 759 760 outputdev = inputdev + v_len + 1; 761 v_len = do_bsys_getproplen(NULL, "output-device"); 762 if (v_len > 0) 763 (void) do_bsys_getprop(NULL, "output-device", 764 outputdev); 765 else 766 v_len = 0; 767 outputdev[v_len] = 0; 768 769 consoledev = outputdev + v_len + 1; 770 v_len = do_bsys_getproplen(NULL, "console"); 771 if (v_len > 0) { 772 (void) do_bsys_getprop(NULL, "console", consoledev); 773 if (post_fastreboot && 774 strcmp(consoledev, "graphics") == 0) { 775 bsetprops("console", "text"); 776 v_len = strlen("text"); 777 bcopy("text", consoledev, v_len); 778 } 779 } else { 780 v_len = 0; 781 } 782 consoledev[v_len] = 0; 783 bcons_init2(inputdev, outputdev, consoledev); 784 } else { 785 /* 786 * Ensure console property exists 787 * If not create it as "hypervisor" 788 */ 789 v_len = do_bsys_getproplen(NULL, "console"); 790 if (v_len < 0) 791 bsetprops("console", "hypervisor"); 792 inputdev = outputdev = consoledev = "hypervisor"; 793 bcons_init2(inputdev, outputdev, consoledev); 794 } 795 796 if (strstr((char *)xbootp->bi_cmdline, "prom_debug") || kbm_debug) 797 boot_prop_display(line); 798 } 799 800 /* 801 * print formatted output 802 */ 803 /*PRINTFLIKE2*/ 804 /*ARGSUSED*/ 805 void 806 bop_printf(bootops_t *bop, const char *fmt, ...) 807 { 808 va_list ap; 809 810 if (have_console == 0) 811 return; 812 813 va_start(ap, fmt); 814 (void) vsnprintf(buffer, BUFFERSIZE, fmt, ap); 815 va_end(ap); 816 PUT_STRING(buffer); 817 } 818 819 /* 820 * Another panic() variant; this one can be used even earlier during boot than 821 * prom_panic(). 822 */ 823 /*PRINTFLIKE1*/ 824 void 825 bop_panic(const char *fmt, ...) 826 { 827 va_list ap; 828 829 va_start(ap, fmt); 830 bop_printf(NULL, fmt, ap); 831 va_end(ap); 832 833 bop_printf(NULL, "\nPress any key to reboot.\n"); 834 (void) bcons_getchar(); 835 bop_printf(NULL, "Resetting...\n"); 836 pc_reset(); 837 } 838 839 /* 840 * Do a real mode interrupt BIOS call 841 */ 842 typedef struct bios_regs { 843 unsigned short ax, bx, cx, dx, si, di, bp, es, ds; 844 } bios_regs_t; 845 typedef int (*bios_func_t)(int, bios_regs_t *); 846 847 /*ARGSUSED*/ 848 static void 849 do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp) 850 { 851 #if defined(__xpv) 852 prom_panic("unsupported call to BOP_DOINT()\n"); 853 #else /* __xpv */ 854 static int firsttime = 1; 855 bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000; 856 bios_regs_t br; 857 858 /* 859 * The first time we do this, we have to copy the pre-packaged 860 * low memory bios call code image into place. 861 */ 862 if (firsttime) { 863 extern char bios_image[]; 864 extern uint32_t bios_size; 865 866 bcopy(bios_image, (void *)bios_func, bios_size); 867 firsttime = 0; 868 } 869 870 br.ax = rp->eax.word.ax; 871 br.bx = rp->ebx.word.bx; 872 br.cx = rp->ecx.word.cx; 873 br.dx = rp->edx.word.dx; 874 br.bp = rp->ebp.word.bp; 875 br.si = rp->esi.word.si; 876 br.di = rp->edi.word.di; 877 br.ds = rp->ds; 878 br.es = rp->es; 879 880 DBG_MSG("Doing BIOS call..."); 881 DBG(br.ax); 882 DBG(br.bx); 883 DBG(br.dx); 884 rp->eflags = bios_func(intnum, &br); 885 DBG_MSG("done\n"); 886 887 rp->eax.word.ax = br.ax; 888 rp->ebx.word.bx = br.bx; 889 rp->ecx.word.cx = br.cx; 890 rp->edx.word.dx = br.dx; 891 rp->ebp.word.bp = br.bp; 892 rp->esi.word.si = br.si; 893 rp->edi.word.di = br.di; 894 rp->ds = br.ds; 895 rp->es = br.es; 896 #endif /* __xpv */ 897 } 898 899 static struct boot_syscalls bop_sysp = { 900 bcons_getchar, 901 bcons_putchar, 902 bcons_ischar, 903 }; 904 905 static char *whoami; 906 907 #define BUFLEN 64 908 909 #if defined(__xpv) 910 911 static char namebuf[32]; 912 913 static void 914 xen_parse_props(char *s, char *prop_map[], int n_prop) 915 { 916 char **prop_name = prop_map; 917 char *cp = s, *scp; 918 919 do { 920 scp = cp; 921 while ((*cp != NULL) && (*cp != ':')) 922 cp++; 923 924 if ((scp != cp) && (*prop_name != NULL)) { 925 *cp = NULL; 926 bsetprops(*prop_name, scp); 927 } 928 929 cp++; 930 prop_name++; 931 n_prop--; 932 } while (n_prop > 0); 933 } 934 935 #define VBDPATHLEN 64 936 937 /* 938 * parse the 'xpv-root' property to create properties used by 939 * ufs_mountroot. 940 */ 941 static void 942 xen_vbdroot_props(char *s) 943 { 944 char vbdpath[VBDPATHLEN] = "/xpvd/xdf@"; 945 const char lnamefix[] = "/dev/dsk/c0d"; 946 char *pnp; 947 char *prop_p; 948 char mi; 949 short minor; 950 long addr = 0; 951 952 pnp = vbdpath + strlen(vbdpath); 953 prop_p = s + strlen(lnamefix); 954 while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p')) 955 addr = addr * 10 + *prop_p++ - '0'; 956 (void) snprintf(pnp, VBDPATHLEN, "%lx", addr); 957 pnp = vbdpath + strlen(vbdpath); 958 if (*prop_p == 's') 959 mi = 'a'; 960 else if (*prop_p == 'p') 961 mi = 'q'; 962 else 963 ASSERT(0); /* shouldn't be here */ 964 prop_p++; 965 ASSERT(*prop_p != '\0'); 966 if (ISDIGIT(*prop_p)) { 967 minor = *prop_p - '0'; 968 prop_p++; 969 if (ISDIGIT(*prop_p)) { 970 minor = minor * 10 + *prop_p - '0'; 971 } 972 } else { 973 /* malformed root path, use 0 as default */ 974 minor = 0; 975 } 976 ASSERT(minor < 16); /* at most 16 partitions */ 977 mi += minor; 978 *pnp++ = ':'; 979 *pnp++ = mi; 980 *pnp++ = '\0'; 981 bsetprops("fstype", "ufs"); 982 bsetprops("bootpath", vbdpath); 983 984 DBG_MSG("VBD bootpath set to "); 985 DBG_MSG(vbdpath); 986 DBG_MSG("\n"); 987 } 988 989 /* 990 * parse the xpv-nfsroot property to create properties used by 991 * nfs_mountroot. 992 */ 993 static void 994 xen_nfsroot_props(char *s) 995 { 996 char *prop_map[] = { 997 BP_SERVER_IP, /* server IP address */ 998 BP_SERVER_NAME, /* server hostname */ 999 BP_SERVER_PATH, /* root path */ 1000 }; 1001 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]); 1002 1003 bsetprop("fstype", 6, "nfs", 4); 1004 1005 xen_parse_props(s, prop_map, n_prop); 1006 1007 /* 1008 * If a server name wasn't specified, use a default. 1009 */ 1010 if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1) 1011 bsetprops(BP_SERVER_NAME, "unknown"); 1012 } 1013 1014 /* 1015 * Extract our IP address, etc. from the "xpv-ip" property. 1016 */ 1017 static void 1018 xen_ip_props(char *s) 1019 { 1020 char *prop_map[] = { 1021 BP_HOST_IP, /* IP address */ 1022 NULL, /* NFS server IP address (ignored in */ 1023 /* favour of xpv-nfsroot) */ 1024 BP_ROUTER_IP, /* IP gateway */ 1025 BP_SUBNET_MASK, /* IP subnet mask */ 1026 "xpv-hostname", /* hostname (ignored) */ 1027 BP_NETWORK_INTERFACE, /* interface name */ 1028 "xpv-hcp", /* host configuration protocol */ 1029 }; 1030 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]); 1031 char ifname[IFNAMSIZ]; 1032 1033 xen_parse_props(s, prop_map, n_prop); 1034 1035 /* 1036 * A Linux dom0 administrator expects all interfaces to be 1037 * called "ethX", which is not the case here. 1038 * 1039 * If the interface name specified is "eth0", presume that 1040 * this is really intended to be "xnf0" (the first domU -> 1041 * dom0 interface for this domain). 1042 */ 1043 if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) && 1044 (strcmp("eth0", ifname) == 0)) { 1045 bsetprops(BP_NETWORK_INTERFACE, "xnf0"); 1046 bop_printf(NULL, 1047 "network interface name 'eth0' replaced with 'xnf0'\n"); 1048 } 1049 } 1050 1051 #else /* __xpv */ 1052 1053 static void 1054 setup_rarp_props(struct sol_netinfo *sip) 1055 { 1056 char buf[BUFLEN]; /* to hold ip/mac addrs */ 1057 uint8_t *val; 1058 1059 val = (uint8_t *)&sip->sn_ciaddr; 1060 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1061 val[0], val[1], val[2], val[3]); 1062 bsetprops(BP_HOST_IP, buf); 1063 1064 val = (uint8_t *)&sip->sn_siaddr; 1065 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1066 val[0], val[1], val[2], val[3]); 1067 bsetprops(BP_SERVER_IP, buf); 1068 1069 if (sip->sn_giaddr != 0) { 1070 val = (uint8_t *)&sip->sn_giaddr; 1071 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1072 val[0], val[1], val[2], val[3]); 1073 bsetprops(BP_ROUTER_IP, buf); 1074 } 1075 1076 if (sip->sn_netmask != 0) { 1077 val = (uint8_t *)&sip->sn_netmask; 1078 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1079 val[0], val[1], val[2], val[3]); 1080 bsetprops(BP_SUBNET_MASK, buf); 1081 } 1082 1083 if (sip->sn_mactype != 4 || sip->sn_maclen != 6) { 1084 bop_printf(NULL, "unsupported mac type %d, mac len %d\n", 1085 sip->sn_mactype, sip->sn_maclen); 1086 } else { 1087 val = sip->sn_macaddr; 1088 (void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x", 1089 val[0], val[1], val[2], val[3], val[4], val[5]); 1090 bsetprops(BP_BOOT_MAC, buf); 1091 } 1092 } 1093 1094 #endif /* __xpv */ 1095 1096 static void 1097 build_panic_cmdline(const char *cmd, int cmdlen) 1098 { 1099 int proplen; 1100 size_t arglen; 1101 1102 arglen = sizeof (fastreboot_onpanic_args); 1103 /* 1104 * If we allready have fastreboot-onpanic set to zero, 1105 * don't add them again. 1106 */ 1107 if ((proplen = do_bsys_getproplen(NULL, FASTREBOOT_ONPANIC)) > 0 && 1108 proplen <= sizeof (fastreboot_onpanic_cmdline)) { 1109 (void) do_bsys_getprop(NULL, FASTREBOOT_ONPANIC, 1110 fastreboot_onpanic_cmdline); 1111 if (FASTREBOOT_ONPANIC_NOTSET(fastreboot_onpanic_cmdline)) 1112 arglen = 1; 1113 } 1114 1115 /* 1116 * construct fastreboot_onpanic_cmdline 1117 */ 1118 if (cmdlen + arglen > sizeof (fastreboot_onpanic_cmdline)) { 1119 DBG_MSG("Command line too long: clearing " 1120 FASTREBOOT_ONPANIC "\n"); 1121 fastreboot_onpanic = 0; 1122 } else { 1123 bcopy(cmd, fastreboot_onpanic_cmdline, cmdlen); 1124 if (arglen != 1) 1125 bcopy(fastreboot_onpanic_args, 1126 fastreboot_onpanic_cmdline + cmdlen, arglen); 1127 else 1128 fastreboot_onpanic_cmdline[cmdlen] = 0; 1129 } 1130 } 1131 1132 1133 #ifndef __xpv 1134 /* 1135 * Construct boot command line for Fast Reboot 1136 */ 1137 static void 1138 build_fastboot_cmdline(struct xboot_info *xbp) 1139 { 1140 saved_cmdline_len = strlen(xbp->bi_cmdline) + 1; 1141 if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) { 1142 DBG(saved_cmdline_len); 1143 DBG_MSG("Command line too long: clearing fastreboot_capable\n"); 1144 fastreboot_capable = 0; 1145 } else { 1146 bcopy((void *)(xbp->bi_cmdline), (void *)saved_cmdline, 1147 saved_cmdline_len); 1148 saved_cmdline[saved_cmdline_len - 1] = '\0'; 1149 build_panic_cmdline(saved_cmdline, saved_cmdline_len - 1); 1150 } 1151 } 1152 1153 /* 1154 * Save memory layout, disk drive information, unix and boot archive sizes for 1155 * Fast Reboot. 1156 */ 1157 static void 1158 save_boot_info(struct xboot_info *xbi) 1159 { 1160 multiboot_info_t *mbi = xbi->bi_mb_info; 1161 struct boot_modules *modp; 1162 int i; 1163 1164 bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t)); 1165 if (mbi->mmap_length > sizeof (saved_mmap)) { 1166 DBG_MSG("mbi->mmap_length too big: clearing " 1167 "fastreboot_capable\n"); 1168 fastreboot_capable = 0; 1169 } else { 1170 bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap, 1171 mbi->mmap_length); 1172 } 1173 1174 if ((mbi->flags & MB_INFO_DRIVE_INFO) != 0) { 1175 if (mbi->drives_length > sizeof (saved_drives)) { 1176 DBG(mbi->drives_length); 1177 DBG_MSG("mbi->drives_length too big: clearing " 1178 "fastreboot_capable\n"); 1179 fastreboot_capable = 0; 1180 } else { 1181 bcopy((void *)(uintptr_t)mbi->drives_addr, 1182 (void *)saved_drives, mbi->drives_length); 1183 } 1184 } else { 1185 saved_mbi.drives_length = 0; 1186 saved_mbi.drives_addr = NULL; 1187 } 1188 1189 /* 1190 * Current file sizes. Used by fastboot.c to figure out how much 1191 * memory to reserve for panic reboot. 1192 * Use the module list from the dboot-constructed xboot_info 1193 * instead of the list referenced by the multiboot structure 1194 * because that structure may not be addressable now. 1195 */ 1196 saved_file_size[FASTBOOT_NAME_UNIX] = FOUR_MEG - PAGESIZE; 1197 for (i = 0, modp = (struct boot_modules *)(uintptr_t)xbi->bi_modules; 1198 i < xbi->bi_module_cnt; i++, modp++) { 1199 saved_file_size[FASTBOOT_NAME_BOOTARCHIVE] += modp->bm_size; 1200 } 1201 } 1202 #endif /* __xpv */ 1203 1204 1205 /* 1206 * 1st pass at building the table of boot properties. This includes: 1207 * - values set on the command line: -B a=x,b=y,c=z .... 1208 * - known values we just compute (ie. from xbp) 1209 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values) 1210 * 1211 * the grub command line looked like: 1212 * kernel boot-file [-B prop=value[,prop=value]...] [boot-args] 1213 * 1214 * whoami is the same as boot-file 1215 */ 1216 static void 1217 build_boot_properties(struct xboot_info *xbp) 1218 { 1219 char *name; 1220 int name_len; 1221 char *value; 1222 int value_len; 1223 struct boot_modules *bm, *rdbm; 1224 char *propbuf; 1225 int quoted = 0; 1226 int boot_arg_len; 1227 uint_t i, midx; 1228 char modid[32]; 1229 #ifndef __xpv 1230 static int stdout_val = 0; 1231 uchar_t boot_device; 1232 char str[3]; 1233 multiboot_info_t *mbi; 1234 int netboot; 1235 struct sol_netinfo *sip; 1236 #endif 1237 1238 /* 1239 * These have to be done first, so that kobj_mount_root() works 1240 */ 1241 DBG_MSG("Building boot properties\n"); 1242 propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0); 1243 DBG((uintptr_t)propbuf); 1244 if (xbp->bi_module_cnt > 0) { 1245 bm = xbp->bi_modules; 1246 rdbm = NULL; 1247 for (midx = i = 0; i < xbp->bi_module_cnt; i++) { 1248 if (bm[i].bm_type == BMT_ROOTFS) { 1249 rdbm = &bm[i]; 1250 continue; 1251 } 1252 if (bm[i].bm_type == BMT_HASH || bm[i].bm_name == NULL) 1253 continue; 1254 1255 (void) snprintf(modid, sizeof (modid), 1256 "module-name-%u", midx); 1257 bsetprops(modid, (char *)bm[i].bm_name); 1258 (void) snprintf(modid, sizeof (modid), 1259 "module-addr-%u", midx); 1260 bsetprop64(modid, (uint64_t)(uintptr_t)bm[i].bm_addr); 1261 (void) snprintf(modid, sizeof (modid), 1262 "module-size-%u", midx); 1263 bsetprop64(modid, (uint64_t)bm[i].bm_size); 1264 ++midx; 1265 } 1266 if (rdbm != NULL) { 1267 bsetprop64("ramdisk_start", 1268 (uint64_t)(uintptr_t)rdbm->bm_addr); 1269 bsetprop64("ramdisk_end", 1270 (uint64_t)(uintptr_t)rdbm->bm_addr + rdbm->bm_size); 1271 } 1272 } 1273 1274 /* 1275 * If there are any boot time modules or hashes present, then disable 1276 * fast reboot. 1277 */ 1278 if (xbp->bi_module_cnt > 1) { 1279 fastreboot_disable(FBNS_BOOTMOD); 1280 } 1281 1282 DBG_MSG("Parsing command line for boot properties\n"); 1283 value = xbp->bi_cmdline; 1284 1285 /* 1286 * allocate memory to collect boot_args into 1287 */ 1288 boot_arg_len = strlen(xbp->bi_cmdline) + 1; 1289 boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE); 1290 boot_args[0] = 0; 1291 boot_arg_len = 0; 1292 1293 #ifdef __xpv 1294 /* 1295 * Xen puts a lot of device information in front of the kernel name 1296 * let's grab them and make them boot properties. The first 1297 * string w/o an "=" in it will be the boot-file property. 1298 */ 1299 (void) strcpy(namebuf, "xpv-"); 1300 for (;;) { 1301 /* 1302 * get to next property 1303 */ 1304 while (ISSPACE(*value)) 1305 ++value; 1306 name = value; 1307 /* 1308 * look for an "=" 1309 */ 1310 while (*value && !ISSPACE(*value) && *value != '=') { 1311 value++; 1312 } 1313 if (*value != '=') { /* no "=" in the property */ 1314 value = name; 1315 break; 1316 } 1317 name_len = value - name; 1318 value_len = 0; 1319 /* 1320 * skip over the "=" 1321 */ 1322 value++; 1323 while (value[value_len] && !ISSPACE(value[value_len])) { 1324 ++value_len; 1325 } 1326 /* 1327 * build property name with "xpv-" prefix 1328 */ 1329 if (name_len + 4 > 32) { /* skip if name too long */ 1330 value += value_len; 1331 continue; 1332 } 1333 bcopy(name, &namebuf[4], name_len); 1334 name_len += 4; 1335 namebuf[name_len] = 0; 1336 bcopy(value, propbuf, value_len); 1337 propbuf[value_len] = 0; 1338 bsetprops(namebuf, propbuf); 1339 1340 /* 1341 * xpv-root is set to the logical disk name of the xen 1342 * VBD when booting from a disk-based filesystem. 1343 */ 1344 if (strcmp(namebuf, "xpv-root") == 0) 1345 xen_vbdroot_props(propbuf); 1346 /* 1347 * While we're here, if we have a "xpv-nfsroot" property 1348 * then we need to set "fstype" to "nfs" so we mount 1349 * our root from the nfs server. Also parse the xpv-nfsroot 1350 * property to create the properties that nfs_mountroot will 1351 * need to find the root and mount it. 1352 */ 1353 if (strcmp(namebuf, "xpv-nfsroot") == 0) 1354 xen_nfsroot_props(propbuf); 1355 1356 if (strcmp(namebuf, "xpv-ip") == 0) 1357 xen_ip_props(propbuf); 1358 value += value_len; 1359 } 1360 #endif 1361 1362 while (ISSPACE(*value)) 1363 ++value; 1364 /* 1365 * value now points at the boot-file 1366 */ 1367 value_len = 0; 1368 while (value[value_len] && !ISSPACE(value[value_len])) 1369 ++value_len; 1370 if (value_len > 0) { 1371 whoami = propbuf; 1372 bcopy(value, whoami, value_len); 1373 whoami[value_len] = 0; 1374 bsetprops("boot-file", whoami); 1375 /* 1376 * strip leading path stuff from whoami, so running from 1377 * PXE/miniroot makes sense. 1378 */ 1379 if (strstr(whoami, "/platform/") != NULL) 1380 whoami = strstr(whoami, "/platform/"); 1381 bsetprops("whoami", whoami); 1382 } 1383 1384 /* 1385 * Values forcibly set boot properties on the command line via -B. 1386 * Allow use of quotes in values. Other stuff goes on kernel 1387 * command line. 1388 */ 1389 name = value + value_len; 1390 while (*name != 0) { 1391 /* 1392 * anything not " -B" is copied to the command line 1393 */ 1394 if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') { 1395 boot_args[boot_arg_len++] = *name; 1396 boot_args[boot_arg_len] = 0; 1397 ++name; 1398 continue; 1399 } 1400 1401 /* 1402 * skip the " -B" and following white space 1403 */ 1404 name += 3; 1405 while (ISSPACE(*name)) 1406 ++name; 1407 while (*name && !ISSPACE(*name)) { 1408 value = strstr(name, "="); 1409 if (value == NULL) 1410 break; 1411 name_len = value - name; 1412 ++value; 1413 value_len = 0; 1414 quoted = 0; 1415 for (; ; ++value_len) { 1416 if (!value[value_len]) 1417 break; 1418 1419 /* 1420 * is this value quoted? 1421 */ 1422 if (value_len == 0 && 1423 (value[0] == '\'' || value[0] == '"')) { 1424 quoted = value[0]; 1425 ++value_len; 1426 } 1427 1428 /* 1429 * In the quote accept any character, 1430 * but look for ending quote. 1431 */ 1432 if (quoted) { 1433 if (value[value_len] == quoted) 1434 quoted = 0; 1435 continue; 1436 } 1437 1438 /* 1439 * a comma or white space ends the value 1440 */ 1441 if (value[value_len] == ',' || 1442 ISSPACE(value[value_len])) 1443 break; 1444 } 1445 1446 if (value_len == 0) { 1447 bsetprop(name, name_len, "true", 5); 1448 } else { 1449 char *v = value; 1450 int l = value_len; 1451 if (v[0] == v[l - 1] && 1452 (v[0] == '\'' || v[0] == '"')) { 1453 ++v; 1454 l -= 2; 1455 } 1456 bcopy(v, propbuf, l); 1457 propbuf[l] = '\0'; 1458 bsetprop(name, name_len, propbuf, 1459 l + 1); 1460 } 1461 name = value + value_len; 1462 while (*name == ',') 1463 ++name; 1464 } 1465 } 1466 1467 /* 1468 * set boot-args property 1469 * 1275 name is bootargs, so set 1470 * that too 1471 */ 1472 bsetprops("boot-args", boot_args); 1473 bsetprops("bootargs", boot_args); 1474 1475 #ifndef __xpv 1476 /* 1477 * set the BIOS boot device from GRUB 1478 */ 1479 netboot = 0; 1480 mbi = xbp->bi_mb_info; 1481 1482 /* 1483 * Build boot command line for Fast Reboot 1484 */ 1485 build_fastboot_cmdline(xbp); 1486 1487 /* 1488 * Save various boot information for Fast Reboot 1489 */ 1490 save_boot_info(xbp); 1491 1492 if (mbi != NULL && mbi->flags & MB_INFO_BOOTDEV) { 1493 boot_device = mbi->boot_device >> 24; 1494 if (boot_device == 0x20) 1495 netboot++; 1496 str[0] = (boot_device >> 4) + '0'; 1497 str[1] = (boot_device & 0xf) + '0'; 1498 str[2] = 0; 1499 bsetprops("bios-boot-device", str); 1500 } else { 1501 netboot = 1; 1502 } 1503 1504 /* 1505 * In the netboot case, drives_info is overloaded with the dhcp ack. 1506 * This is not multiboot compliant and requires special pxegrub! 1507 */ 1508 if (netboot && mbi->drives_length != 0) { 1509 sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr; 1510 if (sip->sn_infotype == SN_TYPE_BOOTP) 1511 bsetprop("bootp-response", sizeof ("bootp-response"), 1512 (void *)(uintptr_t)mbi->drives_addr, 1513 mbi->drives_length); 1514 else if (sip->sn_infotype == SN_TYPE_RARP) 1515 setup_rarp_props(sip); 1516 } 1517 bsetprop("stdout", strlen("stdout"), 1518 &stdout_val, sizeof (stdout_val)); 1519 #endif /* __xpv */ 1520 1521 /* 1522 * more conjured up values for made up things.... 1523 */ 1524 #if defined(__xpv) 1525 bsetprops("mfg-name", "i86xpv"); 1526 bsetprops("impl-arch-name", "i86xpv"); 1527 #else 1528 bsetprops("mfg-name", "i86pc"); 1529 bsetprops("impl-arch-name", "i86pc"); 1530 #endif 1531 1532 /* 1533 * Build firmware-provided system properties 1534 */ 1535 build_firmware_properties(); 1536 1537 /* 1538 * XXPV 1539 * 1540 * Find out what these are: 1541 * - cpuid_feature_ecx_include 1542 * - cpuid_feature_ecx_exclude 1543 * - cpuid_feature_edx_include 1544 * - cpuid_feature_edx_exclude 1545 * 1546 * Find out what these are in multiboot: 1547 * - netdev-path 1548 * - fstype 1549 */ 1550 } 1551 1552 #ifdef __xpv 1553 /* 1554 * Under the Hypervisor, memory usable for DMA may be scarce. One 1555 * very likely large pool of DMA friendly memory is occupied by 1556 * the boot_archive, as it was loaded by grub into low MFNs. 1557 * 1558 * Here we free up that memory by copying the boot archive to what are 1559 * likely higher MFN pages and then swapping the mfn/pfn mappings. 1560 */ 1561 #define PFN_2GIG 0x80000 1562 static void 1563 relocate_boot_archive(struct xboot_info *xbp) 1564 { 1565 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL); 1566 struct boot_modules *bm = xbp->bi_modules; 1567 uintptr_t va; 1568 pfn_t va_pfn; 1569 mfn_t va_mfn; 1570 caddr_t copy; 1571 pfn_t copy_pfn; 1572 mfn_t copy_mfn; 1573 size_t len; 1574 int slop; 1575 int total = 0; 1576 int relocated = 0; 1577 int mmu_update_return; 1578 mmu_update_t t[2]; 1579 x86pte_t pte; 1580 1581 /* 1582 * If all MFN's are below 2Gig, don't bother doing this. 1583 */ 1584 if (max_mfn < PFN_2GIG) 1585 return; 1586 if (xbp->bi_module_cnt < 1) { 1587 DBG_MSG("no boot_archive!"); 1588 return; 1589 } 1590 1591 DBG_MSG("moving boot_archive to high MFN memory\n"); 1592 va = (uintptr_t)bm->bm_addr; 1593 len = bm->bm_size; 1594 slop = va & MMU_PAGEOFFSET; 1595 if (slop) { 1596 va += MMU_PAGESIZE - slop; 1597 len -= MMU_PAGESIZE - slop; 1598 } 1599 len = P2ALIGN(len, MMU_PAGESIZE); 1600 1601 /* 1602 * Go through all boot_archive pages, swapping any low MFN pages 1603 * with memory at next_phys. 1604 */ 1605 while (len != 0) { 1606 ++total; 1607 va_pfn = mmu_btop(va - ONE_GIG); 1608 va_mfn = mfn_list[va_pfn]; 1609 if (mfn_list[va_pfn] < PFN_2GIG) { 1610 copy = kbm_remap_window(next_phys, 1); 1611 bcopy((void *)va, copy, MMU_PAGESIZE); 1612 copy_pfn = mmu_btop(next_phys); 1613 copy_mfn = mfn_list[copy_pfn]; 1614 1615 pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID; 1616 if (HYPERVISOR_update_va_mapping(va, pte, 1617 UVMF_INVLPG | UVMF_LOCAL)) 1618 bop_panic("relocate_boot_archive(): " 1619 "HYPERVISOR_update_va_mapping() failed"); 1620 1621 mfn_list[va_pfn] = copy_mfn; 1622 mfn_list[copy_pfn] = va_mfn; 1623 1624 t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE; 1625 t[0].val = va_pfn; 1626 t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE; 1627 t[1].val = copy_pfn; 1628 if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return, 1629 DOMID_SELF) != 0 || mmu_update_return != 2) 1630 bop_panic("relocate_boot_archive(): " 1631 "HYPERVISOR_mmu_update() failed"); 1632 1633 next_phys += MMU_PAGESIZE; 1634 ++relocated; 1635 } 1636 len -= MMU_PAGESIZE; 1637 va += MMU_PAGESIZE; 1638 } 1639 DBG_MSG("Relocated pages:\n"); 1640 DBG(relocated); 1641 DBG_MSG("Out of total pages:\n"); 1642 DBG(total); 1643 } 1644 #endif /* __xpv */ 1645 1646 #if !defined(__xpv) 1647 /* 1648 * Install a temporary IDT that lets us catch errors in the boot time code. 1649 * We shouldn't get any faults at all while this is installed, so we'll 1650 * just generate a traceback and exit. 1651 */ 1652 #ifdef __amd64 1653 static const int bcode_sel = B64CODE_SEL; 1654 #else 1655 static const int bcode_sel = B32CODE_SEL; 1656 #endif 1657 1658 /* 1659 * simple description of a stack frame (args are 32 bit only currently) 1660 */ 1661 typedef struct bop_frame { 1662 struct bop_frame *old_frame; 1663 pc_t retaddr; 1664 long arg[1]; 1665 } bop_frame_t; 1666 1667 void 1668 bop_traceback(bop_frame_t *frame) 1669 { 1670 pc_t pc; 1671 int cnt; 1672 char *ksym; 1673 ulong_t off; 1674 #if defined(__i386) 1675 int a; 1676 #endif 1677 1678 bop_printf(NULL, "Stack traceback:\n"); 1679 for (cnt = 0; cnt < 30; ++cnt) { /* up to 30 frames */ 1680 pc = frame->retaddr; 1681 if (pc == 0) 1682 break; 1683 ksym = kobj_getsymname(pc, &off); 1684 if (ksym) 1685 bop_printf(NULL, " %s+%lx", ksym, off); 1686 else 1687 bop_printf(NULL, " 0x%lx", pc); 1688 1689 frame = frame->old_frame; 1690 if (frame == 0) { 1691 bop_printf(NULL, "\n"); 1692 break; 1693 } 1694 #if defined(__i386) 1695 for (a = 0; a < 6; ++a) { /* try for 6 args */ 1696 if ((void *)&frame->arg[a] == (void *)frame->old_frame) 1697 break; 1698 if (a == 0) 1699 bop_printf(NULL, "("); 1700 else 1701 bop_printf(NULL, ","); 1702 bop_printf(NULL, "0x%lx", frame->arg[a]); 1703 } 1704 bop_printf(NULL, ")"); 1705 #endif 1706 bop_printf(NULL, "\n"); 1707 } 1708 } 1709 1710 struct trapframe { 1711 ulong_t error_code; /* optional */ 1712 ulong_t inst_ptr; 1713 ulong_t code_seg; 1714 ulong_t flags_reg; 1715 #ifdef __amd64 1716 ulong_t stk_ptr; 1717 ulong_t stk_seg; 1718 #endif 1719 }; 1720 1721 void 1722 bop_trap(ulong_t *tfp) 1723 { 1724 struct trapframe *tf = (struct trapframe *)tfp; 1725 bop_frame_t fakeframe; 1726 static int depth = 0; 1727 1728 /* 1729 * Check for an infinite loop of traps. 1730 */ 1731 if (++depth > 2) 1732 bop_panic("Nested trap"); 1733 1734 bop_printf(NULL, "Unexpected trap\n"); 1735 1736 /* 1737 * adjust the tf for optional error_code by detecting the code selector 1738 */ 1739 if (tf->code_seg != bcode_sel) 1740 tf = (struct trapframe *)(tfp - 1); 1741 else 1742 bop_printf(NULL, "error code 0x%lx\n", 1743 tf->error_code & 0xffffffff); 1744 1745 bop_printf(NULL, "instruction pointer 0x%lx\n", tf->inst_ptr); 1746 bop_printf(NULL, "code segment 0x%lx\n", tf->code_seg & 0xffff); 1747 bop_printf(NULL, "flags register 0x%lx\n", tf->flags_reg); 1748 #ifdef __amd64 1749 bop_printf(NULL, "return %%rsp 0x%lx\n", tf->stk_ptr); 1750 bop_printf(NULL, "return %%ss 0x%lx\n", tf->stk_seg & 0xffff); 1751 #endif 1752 1753 /* grab %[er]bp pushed by our code from the stack */ 1754 fakeframe.old_frame = (bop_frame_t *)*(tfp - 3); 1755 fakeframe.retaddr = (pc_t)tf->inst_ptr; 1756 bop_printf(NULL, "Attempting stack backtrace:\n"); 1757 bop_traceback(&fakeframe); 1758 bop_panic("unexpected trap in early boot"); 1759 } 1760 1761 extern void bop_trap_handler(void); 1762 1763 static gate_desc_t *bop_idt; 1764 1765 static desctbr_t bop_idt_info; 1766 1767 static void 1768 bop_idt_init(void) 1769 { 1770 int t; 1771 1772 bop_idt = (gate_desc_t *) 1773 do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 1774 bzero(bop_idt, MMU_PAGESIZE); 1775 for (t = 0; t < NIDT; ++t) { 1776 /* 1777 * Note that since boot runs without a TSS, the 1778 * double fault handler cannot use an alternate stack 1779 * (64-bit) or a task gate (32-bit). 1780 */ 1781 set_gatesegd(&bop_idt[t], &bop_trap_handler, bcode_sel, 1782 SDT_SYSIGT, TRP_KPL, 0); 1783 } 1784 bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1; 1785 bop_idt_info.dtr_base = (uintptr_t)bop_idt; 1786 wr_idtr(&bop_idt_info); 1787 } 1788 #endif /* !defined(__xpv) */ 1789 1790 /* 1791 * This is where we enter the kernel. It dummies up the boot_ops and 1792 * boot_syscalls vectors and jumps off to _kobj_boot() 1793 */ 1794 void 1795 _start(struct xboot_info *xbp) 1796 { 1797 bootops_t *bops = &bootop; 1798 extern void _kobj_boot(); 1799 1800 /* 1801 * 1st off - initialize the console for any error messages 1802 */ 1803 xbootp = xbp; 1804 #ifdef __xpv 1805 HYPERVISOR_shared_info = (void *)xbp->bi_shared_info; 1806 xen_info = xbp->bi_xen_start_info; 1807 #endif 1808 1809 #ifndef __xpv 1810 if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) == 1811 FASTBOOT_MAGIC) { 1812 post_fastreboot = 1; 1813 *((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0; 1814 } 1815 #endif 1816 1817 bcons_init((void *)xbp->bi_cmdline); 1818 have_console = 1; 1819 1820 /* 1821 * enable debugging 1822 */ 1823 if (strstr((char *)xbp->bi_cmdline, "kbm_debug")) 1824 kbm_debug = 1; 1825 1826 DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: "); 1827 DBG_MSG((char *)xbp->bi_cmdline); 1828 DBG_MSG("\n\n\n"); 1829 1830 /* 1831 * physavail is no longer used by startup 1832 */ 1833 bm.physinstalled = xbp->bi_phys_install; 1834 bm.pcimem = xbp->bi_pcimem; 1835 bm.rsvdmem = xbp->bi_rsvdmem; 1836 bm.physavail = NULL; 1837 1838 /* 1839 * initialize the boot time allocator 1840 */ 1841 next_phys = xbp->bi_next_paddr; 1842 DBG(next_phys); 1843 next_virt = (uintptr_t)xbp->bi_next_vaddr; 1844 DBG(next_virt); 1845 DBG_MSG("Initializing boot time memory management..."); 1846 #ifdef __xpv 1847 { 1848 xen_platform_parameters_t p; 1849 1850 /* This call shouldn't fail, dboot already did it once. */ 1851 (void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p); 1852 mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start); 1853 DBG(xen_virt_start); 1854 } 1855 #endif 1856 kbm_init(xbp); 1857 DBG_MSG("done\n"); 1858 1859 /* 1860 * Fill in the bootops vector 1861 */ 1862 bops->bsys_version = BO_VERSION; 1863 bops->boot_mem = &bm; 1864 bops->bsys_alloc = do_bsys_alloc; 1865 bops->bsys_free = do_bsys_free; 1866 bops->bsys_getproplen = do_bsys_getproplen; 1867 bops->bsys_getprop = do_bsys_getprop; 1868 bops->bsys_nextprop = do_bsys_nextprop; 1869 bops->bsys_printf = bop_printf; 1870 bops->bsys_doint = do_bsys_doint; 1871 1872 /* 1873 * BOP_EALLOC() is no longer needed 1874 */ 1875 bops->bsys_ealloc = do_bsys_ealloc; 1876 1877 #ifdef __xpv 1878 /* 1879 * On domain 0 we need to free up some physical memory that is 1880 * usable for DMA. Since GRUB loaded the boot_archive, it is 1881 * sitting in low MFN memory. We'll relocated the boot archive 1882 * pages to high PFN memory. 1883 */ 1884 if (DOMAIN_IS_INITDOMAIN(xen_info)) 1885 relocate_boot_archive(xbp); 1886 #endif 1887 1888 #ifndef __xpv 1889 /* 1890 * Install an IDT to catch early pagefaults (shouldn't have any). 1891 * Also needed for kmdb. 1892 */ 1893 bop_idt_init(); 1894 #endif 1895 1896 /* 1897 * Start building the boot properties from the command line 1898 */ 1899 DBG_MSG("Initializing boot properties:\n"); 1900 build_boot_properties(xbp); 1901 1902 if (strstr((char *)xbp->bi_cmdline, "prom_debug") || kbm_debug) { 1903 char *value; 1904 1905 value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 1906 boot_prop_display(value); 1907 } 1908 1909 /* 1910 * jump into krtld... 1911 */ 1912 _kobj_boot(&bop_sysp, NULL, bops, NULL); 1913 } 1914 1915 1916 /*ARGSUSED*/ 1917 static caddr_t 1918 no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align) 1919 { 1920 panic("Attempt to bsys_alloc() too late\n"); 1921 return (NULL); 1922 } 1923 1924 /*ARGSUSED*/ 1925 static void 1926 no_more_free(bootops_t *bop, caddr_t virt, size_t size) 1927 { 1928 panic("Attempt to bsys_free() too late\n"); 1929 } 1930 1931 void 1932 bop_no_more_mem(void) 1933 { 1934 DBG(total_bop_alloc_scratch); 1935 DBG(total_bop_alloc_kernel); 1936 bootops->bsys_alloc = no_more_alloc; 1937 bootops->bsys_free = no_more_free; 1938 } 1939 1940 1941 /* 1942 * Set ACPI firmware properties 1943 */ 1944 1945 static caddr_t 1946 vmap_phys(size_t length, paddr_t pa) 1947 { 1948 paddr_t start, end; 1949 caddr_t va; 1950 size_t len, page; 1951 1952 #ifdef __xpv 1953 pa = pfn_to_pa(xen_assign_pfn(mmu_btop(pa))) | (pa & MMU_PAGEOFFSET); 1954 #endif 1955 start = P2ALIGN(pa, MMU_PAGESIZE); 1956 end = P2ROUNDUP(pa + length, MMU_PAGESIZE); 1957 len = end - start; 1958 va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE); 1959 for (page = 0; page < len; page += MMU_PAGESIZE) 1960 kbm_map((uintptr_t)va + page, start + page, 0, 0); 1961 return (va + (pa & MMU_PAGEOFFSET)); 1962 } 1963 1964 static uint8_t 1965 checksum_table(uint8_t *tp, size_t len) 1966 { 1967 uint8_t sum = 0; 1968 1969 while (len-- > 0) 1970 sum += *tp++; 1971 1972 return (sum); 1973 } 1974 1975 static int 1976 valid_rsdp(ACPI_TABLE_RSDP *rp) 1977 { 1978 1979 /* validate the V1.x checksum */ 1980 if (checksum_table((uint8_t *)rp, ACPI_RSDP_CHECKSUM_LENGTH) != 0) 1981 return (0); 1982 1983 /* If pre-ACPI 2.0, this is a valid RSDP */ 1984 if (rp->Revision < 2) 1985 return (1); 1986 1987 /* validate the V2.x checksum */ 1988 if (checksum_table((uint8_t *)rp, ACPI_RSDP_XCHECKSUM_LENGTH) != 0) 1989 return (0); 1990 1991 return (1); 1992 } 1993 1994 /* 1995 * Scan memory range for an RSDP; 1996 * see ACPI 3.0 Spec, 5.2.5.1 1997 */ 1998 static ACPI_TABLE_RSDP * 1999 scan_rsdp(paddr_t start, paddr_t end) 2000 { 2001 ssize_t len = end - start; 2002 caddr_t ptr; 2003 2004 ptr = vmap_phys(len, start); 2005 while (len > 0) { 2006 if (strncmp(ptr, ACPI_SIG_RSDP, strlen(ACPI_SIG_RSDP)) == 0 && 2007 valid_rsdp((ACPI_TABLE_RSDP *)ptr)) 2008 return ((ACPI_TABLE_RSDP *)ptr); 2009 2010 ptr += ACPI_RSDP_SCAN_STEP; 2011 len -= ACPI_RSDP_SCAN_STEP; 2012 } 2013 2014 return (NULL); 2015 } 2016 2017 /* 2018 * Refer to ACPI 3.0 Spec, section 5.2.5.1 to understand this function 2019 */ 2020 static ACPI_TABLE_RSDP * 2021 find_rsdp() 2022 { 2023 ACPI_TABLE_RSDP *rsdp; 2024 uint16_t *ebda_seg; 2025 paddr_t ebda_addr; 2026 2027 /* 2028 * Get the EBDA segment and scan the first 1K 2029 */ 2030 ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t), 2031 ACPI_EBDA_PTR_LOCATION); 2032 ebda_addr = *ebda_seg << 4; 2033 rsdp = scan_rsdp(ebda_addr, ebda_addr + ACPI_EBDA_WINDOW_SIZE); 2034 if (rsdp == NULL) 2035 /* if EBDA doesn't contain RSDP, look in BIOS memory */ 2036 rsdp = scan_rsdp(ACPI_HI_RSDP_WINDOW_BASE, 2037 ACPI_HI_RSDP_WINDOW_BASE + ACPI_HI_RSDP_WINDOW_SIZE); 2038 return (rsdp); 2039 } 2040 2041 static ACPI_TABLE_HEADER * 2042 map_fw_table(paddr_t table_addr) 2043 { 2044 ACPI_TABLE_HEADER *tp; 2045 size_t len = MAX(sizeof (*tp), MMU_PAGESIZE); 2046 2047 /* 2048 * Map at least a page; if the table is larger than this, remap it 2049 */ 2050 tp = (ACPI_TABLE_HEADER *)vmap_phys(len, table_addr); 2051 if (tp->Length > len) 2052 tp = (ACPI_TABLE_HEADER *)vmap_phys(tp->Length, table_addr); 2053 return (tp); 2054 } 2055 2056 static ACPI_TABLE_HEADER * 2057 find_fw_table(char *signature) 2058 { 2059 static int revision = 0; 2060 static ACPI_TABLE_XSDT *xsdt; 2061 static int len; 2062 paddr_t xsdt_addr; 2063 ACPI_TABLE_RSDP *rsdp; 2064 ACPI_TABLE_HEADER *tp; 2065 paddr_t table_addr; 2066 int n; 2067 2068 if (strlen(signature) != ACPI_NAME_SIZE) 2069 return (NULL); 2070 2071 /* 2072 * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help 2073 * understand this code. If we haven't already found the RSDT/XSDT, 2074 * revision will be 0. Find the RSDP and check the revision 2075 * to find out whether to use the RSDT or XSDT. If revision is 2076 * 0 or 1, use the RSDT and set internal revision to 1; if it is 2, 2077 * use the XSDT. If the XSDT address is 0, though, fall back to 2078 * revision 1 and use the RSDT. 2079 */ 2080 if (revision == 0) { 2081 if ((rsdp = find_rsdp()) != NULL) { 2082 revision = rsdp->Revision; 2083 /* 2084 * ACPI 6.0 states that current revision is 2 2085 * from acpi_table_rsdp definition: 2086 * Must be (0) for ACPI 1.0 or (2) for ACPI 2.0+ 2087 */ 2088 if (revision > 2) 2089 revision = 2; 2090 switch (revision) { 2091 case 2: 2092 /* 2093 * Use the XSDT unless BIOS is buggy and 2094 * claims to be rev 2 but has a null XSDT 2095 * address 2096 */ 2097 xsdt_addr = rsdp->XsdtPhysicalAddress; 2098 if (xsdt_addr != 0) 2099 break; 2100 /* FALLTHROUGH */ 2101 case 0: 2102 /* treat RSDP rev 0 as revision 1 internally */ 2103 revision = 1; 2104 /* FALLTHROUGH */ 2105 case 1: 2106 /* use the RSDT for rev 0/1 */ 2107 xsdt_addr = rsdp->RsdtPhysicalAddress; 2108 break; 2109 default: 2110 /* unknown revision */ 2111 revision = 0; 2112 break; 2113 } 2114 } 2115 if (revision == 0) 2116 return (NULL); 2117 2118 /* cache the XSDT info */ 2119 xsdt = (ACPI_TABLE_XSDT *)map_fw_table(xsdt_addr); 2120 len = (xsdt->Header.Length - sizeof (xsdt->Header)) / 2121 ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t)); 2122 } 2123 2124 /* 2125 * Scan the table headers looking for a signature match 2126 */ 2127 for (n = 0; n < len; n++) { 2128 ACPI_TABLE_RSDT *rsdt = (ACPI_TABLE_RSDT *)xsdt; 2129 table_addr = (revision == 1) ? rsdt->TableOffsetEntry[n] : 2130 xsdt->TableOffsetEntry[n]; 2131 2132 if (table_addr == 0) 2133 continue; 2134 tp = map_fw_table(table_addr); 2135 if (strncmp(tp->Signature, signature, ACPI_NAME_SIZE) == 0) { 2136 return (tp); 2137 } 2138 } 2139 return (NULL); 2140 } 2141 2142 static void 2143 process_mcfg(ACPI_TABLE_MCFG *tp) 2144 { 2145 ACPI_MCFG_ALLOCATION *cfg_baap; 2146 char *cfg_baa_endp; 2147 int64_t ecfginfo[4]; 2148 2149 cfg_baap = (ACPI_MCFG_ALLOCATION *)((uintptr_t)tp + sizeof (*tp)); 2150 cfg_baa_endp = ((char *)tp) + tp->Header.Length; 2151 while ((char *)cfg_baap < cfg_baa_endp) { 2152 if (cfg_baap->Address != 0 && cfg_baap->PciSegment == 0) { 2153 ecfginfo[0] = cfg_baap->Address; 2154 ecfginfo[1] = cfg_baap->PciSegment; 2155 ecfginfo[2] = cfg_baap->StartBusNumber; 2156 ecfginfo[3] = cfg_baap->EndBusNumber; 2157 bsetprop(MCFG_PROPNAME, strlen(MCFG_PROPNAME), 2158 ecfginfo, sizeof (ecfginfo)); 2159 break; 2160 } 2161 cfg_baap++; 2162 } 2163 } 2164 2165 #ifndef __xpv 2166 static void 2167 process_madt_entries(ACPI_TABLE_MADT *tp, uint32_t *cpu_countp, 2168 uint32_t *cpu_possible_countp, uint32_t *cpu_apicid_array) 2169 { 2170 ACPI_SUBTABLE_HEADER *item, *end; 2171 uint32_t cpu_count = 0; 2172 uint32_t cpu_possible_count = 0; 2173 2174 /* 2175 * Determine number of CPUs and keep track of "final" APIC ID 2176 * for each CPU by walking through ACPI MADT processor list 2177 */ 2178 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp); 2179 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp)); 2180 2181 while (item < end) { 2182 switch (item->Type) { 2183 case ACPI_MADT_TYPE_LOCAL_APIC: { 2184 ACPI_MADT_LOCAL_APIC *cpu = 2185 (ACPI_MADT_LOCAL_APIC *) item; 2186 2187 if (cpu->LapicFlags & ACPI_MADT_ENABLED) { 2188 if (cpu_apicid_array != NULL) 2189 cpu_apicid_array[cpu_count] = cpu->Id; 2190 cpu_count++; 2191 } 2192 cpu_possible_count++; 2193 break; 2194 } 2195 case ACPI_MADT_TYPE_LOCAL_X2APIC: { 2196 ACPI_MADT_LOCAL_X2APIC *cpu = 2197 (ACPI_MADT_LOCAL_X2APIC *) item; 2198 2199 if (cpu->LapicFlags & ACPI_MADT_ENABLED) { 2200 if (cpu_apicid_array != NULL) 2201 cpu_apicid_array[cpu_count] = 2202 cpu->LocalApicId; 2203 cpu_count++; 2204 } 2205 cpu_possible_count++; 2206 break; 2207 } 2208 default: 2209 if (kbm_debug) 2210 bop_printf(NULL, "MADT type %d\n", item->Type); 2211 break; 2212 } 2213 2214 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + item->Length); 2215 } 2216 if (cpu_countp) 2217 *cpu_countp = cpu_count; 2218 if (cpu_possible_countp) 2219 *cpu_possible_countp = cpu_possible_count; 2220 } 2221 2222 static void 2223 process_madt(ACPI_TABLE_MADT *tp) 2224 { 2225 uint32_t cpu_count = 0; 2226 uint32_t cpu_possible_count = 0; 2227 uint32_t *cpu_apicid_array; /* x2APIC ID is 32bit! */ 2228 2229 if (tp != NULL) { 2230 /* count cpu's */ 2231 process_madt_entries(tp, &cpu_count, &cpu_possible_count, NULL); 2232 2233 cpu_apicid_array = (uint32_t *)do_bsys_alloc(NULL, NULL, 2234 cpu_count * sizeof (*cpu_apicid_array), MMU_PAGESIZE); 2235 if (cpu_apicid_array == NULL) 2236 bop_panic("Not enough memory for APIC ID array"); 2237 2238 /* copy IDs */ 2239 process_madt_entries(tp, NULL, NULL, cpu_apicid_array); 2240 2241 /* 2242 * Make boot property for array of "final" APIC IDs for each 2243 * CPU 2244 */ 2245 bsetprop(BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY), 2246 cpu_apicid_array, cpu_count * sizeof (*cpu_apicid_array)); 2247 } 2248 2249 /* 2250 * Check whether property plat-max-ncpus is already set. 2251 */ 2252 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) { 2253 /* 2254 * Set plat-max-ncpus to number of maximum possible CPUs given 2255 * in MADT if it hasn't been set. 2256 * There's no formal way to detect max possible CPUs supported 2257 * by platform according to ACPI spec3.0b. So current CPU 2258 * hotplug implementation expects that all possible CPUs will 2259 * have an entry in MADT table and set plat-max-ncpus to number 2260 * of entries in MADT. 2261 * With introducing of ACPI4.0, Maximum System Capability Table 2262 * (MSCT) provides maximum number of CPUs supported by platform. 2263 * If MSCT is unavailable, fall back to old way. 2264 */ 2265 if (tp != NULL) 2266 bsetpropsi(PLAT_MAX_NCPUS_NAME, cpu_possible_count); 2267 } 2268 2269 /* 2270 * Set boot property boot-max-ncpus to number of CPUs existing at 2271 * boot time. boot-max-ncpus is mainly used for optimization. 2272 */ 2273 if (tp != NULL) 2274 bsetpropsi(BOOT_MAX_NCPUS_NAME, cpu_count); 2275 2276 /* 2277 * User-set boot-ncpus overrides firmware count 2278 */ 2279 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0) 2280 return; 2281 2282 /* 2283 * Set boot property boot-ncpus to number of active CPUs given in MADT 2284 * if it hasn't been set yet. 2285 */ 2286 if (tp != NULL) 2287 bsetpropsi(BOOT_NCPUS_NAME, cpu_count); 2288 } 2289 2290 static void 2291 process_srat(ACPI_TABLE_SRAT *tp) 2292 { 2293 ACPI_SUBTABLE_HEADER *item, *end; 2294 int i; 2295 int proc_num, mem_num; 2296 #pragma pack(1) 2297 struct { 2298 uint32_t domain; 2299 uint32_t apic_id; 2300 uint32_t sapic_id; 2301 } processor; 2302 struct { 2303 uint32_t domain; 2304 uint32_t x2apic_id; 2305 } x2apic; 2306 struct { 2307 uint32_t domain; 2308 uint64_t addr; 2309 uint64_t length; 2310 uint32_t flags; 2311 } memory; 2312 #pragma pack() 2313 char prop_name[30]; 2314 uint64_t maxmem = 0; 2315 2316 if (tp == NULL) 2317 return; 2318 2319 proc_num = mem_num = 0; 2320 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp); 2321 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp)); 2322 while (item < end) { 2323 switch (item->Type) { 2324 case ACPI_SRAT_TYPE_CPU_AFFINITY: { 2325 ACPI_SRAT_CPU_AFFINITY *cpu = 2326 (ACPI_SRAT_CPU_AFFINITY *) item; 2327 2328 if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED)) 2329 break; 2330 processor.domain = cpu->ProximityDomainLo; 2331 for (i = 0; i < 3; i++) 2332 processor.domain += 2333 cpu->ProximityDomainHi[i] << ((i + 1) * 8); 2334 processor.apic_id = cpu->ApicId; 2335 processor.sapic_id = cpu->LocalSapicEid; 2336 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d", 2337 proc_num); 2338 bsetprop(prop_name, strlen(prop_name), &processor, 2339 sizeof (processor)); 2340 proc_num++; 2341 break; 2342 } 2343 case ACPI_SRAT_TYPE_MEMORY_AFFINITY: { 2344 ACPI_SRAT_MEM_AFFINITY *mem = 2345 (ACPI_SRAT_MEM_AFFINITY *)item; 2346 2347 if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED)) 2348 break; 2349 memory.domain = mem->ProximityDomain; 2350 memory.addr = mem->BaseAddress; 2351 memory.length = mem->Length; 2352 memory.flags = mem->Flags; 2353 (void) snprintf(prop_name, 30, "acpi-srat-memory-%d", 2354 mem_num); 2355 bsetprop(prop_name, strlen(prop_name), &memory, 2356 sizeof (memory)); 2357 if ((mem->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) && 2358 (memory.addr + memory.length > maxmem)) { 2359 maxmem = memory.addr + memory.length; 2360 } 2361 mem_num++; 2362 break; 2363 } 2364 case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: { 2365 ACPI_SRAT_X2APIC_CPU_AFFINITY *x2cpu = 2366 (ACPI_SRAT_X2APIC_CPU_AFFINITY *) item; 2367 2368 if (!(x2cpu->Flags & ACPI_SRAT_CPU_ENABLED)) 2369 break; 2370 x2apic.domain = x2cpu->ProximityDomain; 2371 x2apic.x2apic_id = x2cpu->ApicId; 2372 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d", 2373 proc_num); 2374 bsetprop(prop_name, strlen(prop_name), &x2apic, 2375 sizeof (x2apic)); 2376 proc_num++; 2377 break; 2378 } 2379 default: 2380 if (kbm_debug) 2381 bop_printf(NULL, "SRAT type %d\n", item->Type); 2382 break; 2383 } 2384 2385 item = (ACPI_SUBTABLE_HEADER *) 2386 (item->Length + (uintptr_t)item); 2387 } 2388 2389 /* 2390 * The maximum physical address calculated from the SRAT table is more 2391 * accurate than that calculated from the MSCT table. 2392 */ 2393 if (maxmem != 0) { 2394 plat_dr_physmax = btop(maxmem); 2395 } 2396 } 2397 2398 static void 2399 process_slit(ACPI_TABLE_SLIT *tp) 2400 { 2401 2402 /* 2403 * Check the number of localities; if it's too huge, we just 2404 * return and locality enumeration code will handle this later, 2405 * if possible. 2406 * 2407 * Note that the size of the table is the square of the 2408 * number of localities; if the number of localities exceeds 2409 * UINT16_MAX, the table size may overflow an int when being 2410 * passed to bsetprop() below. 2411 */ 2412 if (tp->LocalityCount >= SLIT_LOCALITIES_MAX) 2413 return; 2414 2415 bsetprop(SLIT_NUM_PROPNAME, strlen(SLIT_NUM_PROPNAME), 2416 &tp->LocalityCount, sizeof (tp->LocalityCount)); 2417 bsetprop(SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->Entry, 2418 tp->LocalityCount * tp->LocalityCount); 2419 } 2420 2421 static ACPI_TABLE_MSCT * 2422 process_msct(ACPI_TABLE_MSCT *tp) 2423 { 2424 int last_seen = 0; 2425 int proc_num = 0; 2426 ACPI_MSCT_PROXIMITY *item, *end; 2427 extern uint64_t plat_dr_options; 2428 2429 ASSERT(tp != NULL); 2430 2431 end = (ACPI_MSCT_PROXIMITY *)(tp->Header.Length + (uintptr_t)tp); 2432 for (item = (void *)((uintptr_t)tp + tp->ProximityOffset); 2433 item < end; 2434 item = (void *)(item->Length + (uintptr_t)item)) { 2435 /* 2436 * Sanity check according to section 5.2.19.1 of ACPI 4.0. 2437 * Revision 1 2438 * Length 22 2439 */ 2440 if (item->Revision != 1 || item->Length != 22) { 2441 cmn_err(CE_CONT, 2442 "?boot: unknown proximity domain structure in MSCT " 2443 "with Revision(%d), Length(%d).\n", 2444 (int)item->Revision, (int)item->Length); 2445 return (NULL); 2446 } else if (item->RangeStart > item->RangeEnd) { 2447 cmn_err(CE_CONT, 2448 "?boot: invalid proximity domain structure in MSCT " 2449 "with RangeStart(%u), RangeEnd(%u).\n", 2450 item->RangeStart, item->RangeEnd); 2451 return (NULL); 2452 } else if (item->RangeStart != last_seen) { 2453 /* 2454 * Items must be organized in ascending order of the 2455 * proximity domain enumerations. 2456 */ 2457 cmn_err(CE_CONT, 2458 "?boot: invalid proximity domain structure in MSCT," 2459 " items are not orginized in ascending order.\n"); 2460 return (NULL); 2461 } 2462 2463 /* 2464 * If ProcessorCapacity is 0 then there would be no CPUs in this 2465 * domain. 2466 */ 2467 if (item->ProcessorCapacity != 0) { 2468 proc_num += (item->RangeEnd - item->RangeStart + 1) * 2469 item->ProcessorCapacity; 2470 } 2471 2472 last_seen = item->RangeEnd - item->RangeStart + 1; 2473 /* 2474 * Break out if all proximity domains have been processed. 2475 * Some BIOSes may have unused items at the end of MSCT table. 2476 */ 2477 if (last_seen > tp->MaxProximityDomains) { 2478 break; 2479 } 2480 } 2481 if (last_seen != tp->MaxProximityDomains + 1) { 2482 cmn_err(CE_CONT, 2483 "?boot: invalid proximity domain structure in MSCT, " 2484 "proximity domain count doesn't match.\n"); 2485 return (NULL); 2486 } 2487 2488 /* 2489 * Set plat-max-ncpus property if it hasn't been set yet. 2490 */ 2491 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) { 2492 if (proc_num != 0) { 2493 bsetpropsi(PLAT_MAX_NCPUS_NAME, proc_num); 2494 } 2495 } 2496 2497 /* 2498 * Use Maximum Physical Address from the MSCT table as upper limit for 2499 * memory hot-adding by default. It may be overridden by value from 2500 * the SRAT table or the "plat-dr-physmax" boot option. 2501 */ 2502 plat_dr_physmax = btop(tp->MaxAddress + 1); 2503 2504 /* 2505 * Existence of MSCT implies CPU/memory hotplug-capability for the 2506 * platform. 2507 */ 2508 plat_dr_options |= PLAT_DR_FEATURE_CPU; 2509 plat_dr_options |= PLAT_DR_FEATURE_MEMORY; 2510 2511 return (tp); 2512 } 2513 2514 /* 2515 * If this system has a PC-compatible BIOS, it will have handlers for 2516 * various well-known BIOS calls. These calls take the form of INT 2517 * instructions, revectoring to the nominated entry in the real mode 2518 * Interrupt Vector Table (IVT). If all of the commonly used entries (from 2519 * INT 10h up to INT 1Ah) are zero, we almost certainly don't want to make 2520 * use of BOP_DOINT() later. 2521 * 2522 * The IVT begins at linear address 0 on the 8086. Though later CPUs 2523 * allowed it to be moved, it seems that most BIOS implementations choose 2524 * not to do so for compatibility reasons. Our BIOS call trampoline (see 2525 * "idt_info" in "uts/i86pc/ml/bios_call_src.s") also assumes this address. 2526 */ 2527 static int 2528 system_has_bios(void) 2529 { 2530 uint32_t all_ivts = 0; 2531 2532 DBG_MSG("\nBIOS IVT Entries:\n"); 2533 for (uint32_t intnum = 0x10; intnum <= 0x1a; intnum++) { 2534 /* 2535 * The first software interrupt number (i.e. INT 0h) maps to 2536 * vector number 32 in the IVT. Each entry in the IVT is 2537 * four bytes, describing a 16 bit far call address. 2538 */ 2539 uintptr_t slot = 4 * (32 + intnum); 2540 uint32_t ivte = *((uint32_t *)slot); 2541 2542 if (ivte != 0) { 2543 DBG(intnum); 2544 DBG(ivte); 2545 } 2546 all_ivts |= ivte; 2547 } 2548 if (all_ivts == 0) { 2549 DBG_MSG("System has no BIOS IVT entries\n"); 2550 } 2551 DBG_MSG("\n"); 2552 2553 return (all_ivts != 0); 2554 } 2555 2556 #else /* __xpv */ 2557 static void 2558 enumerate_xen_cpus() 2559 { 2560 processorid_t id, max_id; 2561 2562 /* 2563 * User-set boot-ncpus overrides enumeration 2564 */ 2565 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0) 2566 return; 2567 2568 /* 2569 * Probe every possible virtual CPU id and remember the 2570 * highest id present; the count of CPUs is one greater 2571 * than this. This tacitly assumes at least cpu 0 is present. 2572 */ 2573 max_id = 0; 2574 for (id = 0; id < MAX_VIRT_CPUS; id++) 2575 if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0) 2576 max_id = id; 2577 2578 bsetpropsi(BOOT_NCPUS_NAME, max_id+1); 2579 2580 } 2581 #endif /* __xpv */ 2582 2583 static void 2584 build_firmware_properties(void) 2585 { 2586 ACPI_TABLE_HEADER *tp = NULL; 2587 2588 #ifndef __xpv 2589 if (do_bsys_getproplen(NULL, "no-bios") > 0 || !system_has_bios()) 2590 bios_calls_available = B_FALSE; 2591 2592 if ((tp = find_fw_table(ACPI_SIG_MSCT)) != NULL) 2593 msct_ptr = process_msct((ACPI_TABLE_MSCT *)tp); 2594 else 2595 msct_ptr = NULL; 2596 2597 if ((tp = find_fw_table(ACPI_SIG_MADT)) != NULL) 2598 process_madt((ACPI_TABLE_MADT *)tp); 2599 2600 if ((srat_ptr = (ACPI_TABLE_SRAT *) 2601 find_fw_table(ACPI_SIG_SRAT)) != NULL) 2602 process_srat(srat_ptr); 2603 2604 if (slit_ptr = (ACPI_TABLE_SLIT *)find_fw_table(ACPI_SIG_SLIT)) 2605 process_slit(slit_ptr); 2606 2607 tp = find_fw_table(ACPI_SIG_MCFG); 2608 #else /* __xpv */ 2609 enumerate_xen_cpus(); 2610 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2611 tp = find_fw_table(ACPI_SIG_MCFG); 2612 #endif /* __xpv */ 2613 if (tp != NULL) 2614 process_mcfg((ACPI_TABLE_MCFG *)tp); 2615 } 2616 2617 /* 2618 * fake up a boot property for deferred early console output 2619 * this is used by both graphical boot and the (developer only) 2620 * USB serial console 2621 */ 2622 void * 2623 defcons_init(size_t size) 2624 { 2625 static char *p = NULL; 2626 2627 p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE); 2628 *p = 0; 2629 bsetprop("deferred-console-buf", strlen("deferred-console-buf") + 1, 2630 &p, sizeof (p)); 2631 return (p); 2632 } 2633 2634 /*ARGSUSED*/ 2635 int 2636 boot_compinfo(int fd, struct compinfo *cbp) 2637 { 2638 cbp->iscmp = 0; 2639 cbp->blksize = MAXBSIZE; 2640 return (0); 2641 } 2642 2643 #define BP_MAX_STRLEN 32 2644 2645 /* 2646 * Get value for given boot property 2647 */ 2648 int 2649 bootprop_getval(const char *prop_name, u_longlong_t *prop_value) 2650 { 2651 int boot_prop_len; 2652 char str[BP_MAX_STRLEN]; 2653 u_longlong_t value; 2654 2655 boot_prop_len = BOP_GETPROPLEN(bootops, prop_name); 2656 if (boot_prop_len < 0 || boot_prop_len > sizeof (str) || 2657 BOP_GETPROP(bootops, prop_name, str) < 0 || 2658 kobj_getvalue(str, &value) == -1) 2659 return (-1); 2660 2661 if (prop_value) 2662 *prop_value = value; 2663 2664 return (0); 2665 }