1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 * 26 * Copyright (c) 2010, Intel Corporation. 27 * All rights reserved. 28 * 29 * Copyright 2013 Joyent, Inc. All rights reserved. 30 */ 31 32 /* 33 * This file contains the functionality that mimics the boot operations 34 * on SPARC systems or the old boot.bin/multiboot programs on x86 systems. 35 * The x86 kernel now does everything on its own. 36 */ 37 38 #include <sys/types.h> 39 #include <sys/bootconf.h> 40 #include <sys/bootsvcs.h> 41 #include <sys/bootinfo.h> 42 #include <sys/multiboot.h> 43 #include <sys/bootvfs.h> 44 #include <sys/bootprops.h> 45 #include <sys/varargs.h> 46 #include <sys/param.h> 47 #include <sys/machparam.h> 48 #include <sys/machsystm.h> 49 #include <sys/archsystm.h> 50 #include <sys/boot_console.h> 51 #include <sys/cmn_err.h> 52 #include <sys/systm.h> 53 #include <sys/promif.h> 54 #include <sys/archsystm.h> 55 #include <sys/x86_archext.h> 56 #include <sys/kobj.h> 57 #include <sys/privregs.h> 58 #include <sys/sysmacros.h> 59 #include <sys/ctype.h> 60 #include <sys/fastboot.h> 61 #ifdef __xpv 62 #include <sys/hypervisor.h> 63 #include <net/if.h> 64 #endif 65 #include <vm/kboot_mmu.h> 66 #include <vm/hat_pte.h> 67 #include <sys/kobj.h> 68 #include <sys/kobj_lex.h> 69 #include <sys/pci_cfgspace_impl.h> 70 #include <sys/fastboot_impl.h> 71 #include <sys/acpi/acconfig.h> 72 #include <sys/acpi/acpi.h> 73 74 static int have_console = 0; /* set once primitive console is initialized */ 75 static char *boot_args = ""; 76 77 /* 78 * Debugging macros 79 */ 80 static uint_t kbm_debug = 0; 81 #define DBG_MSG(s) { if (kbm_debug) bop_printf(NULL, "%s", s); } 82 #define DBG(x) { if (kbm_debug) \ 83 bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x)); \ 84 } 85 86 #define PUT_STRING(s) { \ 87 char *cp; \ 88 for (cp = (s); *cp; ++cp) \ 89 bcons_putchar(*cp); \ 90 } 91 92 bootops_t bootop; /* simple bootops we'll pass on to kernel */ 93 struct bsys_mem bm; 94 95 /* 96 * Boot info from "glue" code in low memory. xbootp is used by: 97 * do_bop_phys_alloc(), do_bsys_alloc() and boot_prop_finish(). 98 */ 99 static struct xboot_info *xbootp; 100 static uintptr_t next_virt; /* next available virtual address */ 101 static paddr_t next_phys; /* next available physical address from dboot */ 102 static paddr_t high_phys = -(paddr_t)1; /* last used physical address */ 103 104 /* 105 * buffer for vsnprintf for console I/O 106 */ 107 #define BUFFERSIZE 512 108 static char buffer[BUFFERSIZE]; 109 110 /* 111 * stuff to store/report/manipulate boot property settings. 112 */ 113 typedef struct bootprop { 114 struct bootprop *bp_next; 115 char *bp_name; 116 uint_t bp_vlen; 117 char *bp_value; 118 } bootprop_t; 119 120 static bootprop_t *bprops = NULL; 121 static char *curr_page = NULL; /* ptr to avail bprop memory */ 122 static int curr_space = 0; /* amount of memory at curr_page */ 123 124 #ifdef __xpv 125 start_info_t *xen_info; 126 shared_info_t *HYPERVISOR_shared_info; 127 #endif 128 129 /* 130 * some allocator statistics 131 */ 132 static ulong_t total_bop_alloc_scratch = 0; 133 static ulong_t total_bop_alloc_kernel = 0; 134 135 static void build_firmware_properties(void); 136 137 static int early_allocation = 1; 138 139 int force_fastreboot = 0; 140 volatile int fastreboot_onpanic = 0; 141 int post_fastreboot = 0; 142 #ifdef __xpv 143 volatile int fastreboot_capable = 0; 144 #else 145 volatile int fastreboot_capable = 1; 146 #endif 147 148 /* 149 * Information saved from current boot for fast reboot. 150 * If the information size exceeds what we have allocated, fast reboot 151 * will not be supported. 152 */ 153 multiboot_info_t saved_mbi; 154 mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT]; 155 uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE]; 156 char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN]; 157 int saved_cmdline_len = 0; 158 size_t saved_file_size[FASTBOOT_MAX_FILES_MAP]; 159 160 /* 161 * Turn off fastreboot_onpanic to avoid panic loop. 162 */ 163 char fastreboot_onpanic_cmdline[FASTBOOT_SAVED_CMDLINE_LEN]; 164 static const char fastreboot_onpanic_args[] = " -B fastreboot_onpanic=0"; 165 166 /* 167 * Pointers to where System Resource Affinity Table (SRAT), System Locality 168 * Information Table (SLIT) and Maximum System Capability Table (MSCT) 169 * are mapped into virtual memory 170 */ 171 ACPI_TABLE_SRAT *srat_ptr = NULL; 172 ACPI_TABLE_SLIT *slit_ptr = NULL; 173 ACPI_TABLE_MSCT *msct_ptr = NULL; 174 175 /* 176 * Arbitrary limit on number of localities we handle; if 177 * this limit is raised to more than UINT16_MAX, make sure 178 * process_slit() knows how to handle it. 179 */ 180 #define SLIT_LOCALITIES_MAX (4096) 181 182 #define SLIT_NUM_PROPNAME "acpi-slit-localities" 183 #define SLIT_PROPNAME "acpi-slit" 184 185 /* 186 * Allocate aligned physical memory at boot time. This allocator allocates 187 * from the highest possible addresses. This avoids exhausting memory that 188 * would be useful for DMA buffers. 189 */ 190 paddr_t 191 do_bop_phys_alloc(uint64_t size, uint64_t align) 192 { 193 paddr_t pa = 0; 194 paddr_t start; 195 paddr_t end; 196 struct memlist *ml = (struct memlist *)xbootp->bi_phys_install; 197 198 /* 199 * Be careful if high memory usage is limited in startup.c 200 * Since there are holes in the low part of the physical address 201 * space we can treat physmem as a pfn (not just a pgcnt) and 202 * get a conservative upper limit. 203 */ 204 if (physmem != 0 && high_phys > pfn_to_pa(physmem)) 205 high_phys = pfn_to_pa(physmem); 206 207 /* 208 * find the lowest or highest available memory in physinstalled 209 * On 32 bit avoid physmem above 4Gig if PAE isn't enabled 210 */ 211 #if defined(__i386) 212 if (xbootp->bi_use_pae == 0 && high_phys > FOUR_GIG) 213 high_phys = FOUR_GIG; 214 #endif 215 216 /* 217 * find the highest available memory in physinstalled 218 */ 219 size = P2ROUNDUP(size, align); 220 for (; ml; ml = ml->ml_next) { 221 start = P2ROUNDUP(ml->ml_address, align); 222 end = P2ALIGN(ml->ml_address + ml->ml_size, align); 223 if (start < next_phys) 224 start = P2ROUNDUP(next_phys, align); 225 if (end > high_phys) 226 end = P2ALIGN(high_phys, align); 227 228 if (end <= start) 229 continue; 230 if (end - start < size) 231 continue; 232 233 /* 234 * Early allocations need to use low memory, since 235 * physmem might be further limited by bootenv.rc 236 */ 237 if (early_allocation) { 238 if (pa == 0 || start < pa) 239 pa = start; 240 } else { 241 if (end - size > pa) 242 pa = end - size; 243 } 244 } 245 if (pa != 0) { 246 if (early_allocation) 247 next_phys = pa + size; 248 else 249 high_phys = pa; 250 return (pa); 251 } 252 bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64 253 ") Out of memory\n", size, align); 254 /*NOTREACHED*/ 255 } 256 257 uintptr_t 258 alloc_vaddr(size_t size, paddr_t align) 259 { 260 uintptr_t rv; 261 262 next_virt = P2ROUNDUP(next_virt, (uintptr_t)align); 263 rv = (uintptr_t)next_virt; 264 next_virt += size; 265 return (rv); 266 } 267 268 /* 269 * Allocate virtual memory. The size is always rounded up to a multiple 270 * of base pagesize. 271 */ 272 273 /*ARGSUSED*/ 274 static caddr_t 275 do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align) 276 { 277 paddr_t a = align; /* same type as pa for masking */ 278 uint_t pgsize; 279 paddr_t pa; 280 uintptr_t va; 281 ssize_t s; /* the aligned size */ 282 uint_t level; 283 uint_t is_kernel = (virthint != 0); 284 285 if (a < MMU_PAGESIZE) 286 a = MMU_PAGESIZE; 287 else if (!ISP2(a)) 288 prom_panic("do_bsys_alloc() incorrect alignment"); 289 size = P2ROUNDUP(size, MMU_PAGESIZE); 290 291 /* 292 * Use the next aligned virtual address if we weren't given one. 293 */ 294 if (virthint == NULL) { 295 virthint = (caddr_t)alloc_vaddr(size, a); 296 total_bop_alloc_scratch += size; 297 } else { 298 total_bop_alloc_kernel += size; 299 } 300 301 /* 302 * allocate the physical memory 303 */ 304 pa = do_bop_phys_alloc(size, a); 305 306 /* 307 * Add the mappings to the page tables, try large pages first. 308 */ 309 va = (uintptr_t)virthint; 310 s = size; 311 level = 1; 312 pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG; 313 if (xbootp->bi_use_largepage && a == pgsize) { 314 while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) && 315 s >= pgsize) { 316 kbm_map(va, pa, level, is_kernel); 317 va += pgsize; 318 pa += pgsize; 319 s -= pgsize; 320 } 321 } 322 323 /* 324 * Map remaining pages use small mappings 325 */ 326 level = 0; 327 pgsize = MMU_PAGESIZE; 328 while (s > 0) { 329 kbm_map(va, pa, level, is_kernel); 330 va += pgsize; 331 pa += pgsize; 332 s -= pgsize; 333 } 334 return (virthint); 335 } 336 337 /* 338 * Free virtual memory - we'll just ignore these. 339 */ 340 /*ARGSUSED*/ 341 static void 342 do_bsys_free(bootops_t *bop, caddr_t virt, size_t size) 343 { 344 bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n", 345 (void *)virt, size); 346 } 347 348 /* 349 * Old interface 350 */ 351 /*ARGSUSED*/ 352 static caddr_t 353 do_bsys_ealloc(bootops_t *bop, caddr_t virthint, size_t size, 354 int align, int flags) 355 { 356 prom_panic("unsupported call to BOP_EALLOC()\n"); 357 return (0); 358 } 359 360 361 static void 362 bsetprop(char *name, int nlen, void *value, int vlen) 363 { 364 uint_t size; 365 uint_t need_size; 366 bootprop_t *b; 367 368 /* 369 * align the size to 16 byte boundary 370 */ 371 size = sizeof (bootprop_t) + nlen + 1 + vlen; 372 size = (size + 0xf) & ~0xf; 373 if (size > curr_space) { 374 need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK; 375 curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE); 376 curr_space = need_size; 377 } 378 379 /* 380 * use a bootprop_t at curr_page and link into list 381 */ 382 b = (bootprop_t *)curr_page; 383 curr_page += sizeof (bootprop_t); 384 curr_space -= sizeof (bootprop_t); 385 b->bp_next = bprops; 386 bprops = b; 387 388 /* 389 * follow by name and ending zero byte 390 */ 391 b->bp_name = curr_page; 392 bcopy(name, curr_page, nlen); 393 curr_page += nlen; 394 *curr_page++ = 0; 395 curr_space -= nlen + 1; 396 397 /* 398 * copy in value, but no ending zero byte 399 */ 400 b->bp_value = curr_page; 401 b->bp_vlen = vlen; 402 if (vlen > 0) { 403 bcopy(value, curr_page, vlen); 404 curr_page += vlen; 405 curr_space -= vlen; 406 } 407 408 /* 409 * align new values of curr_page, curr_space 410 */ 411 while (curr_space & 0xf) { 412 ++curr_page; 413 --curr_space; 414 } 415 } 416 417 static void 418 bsetprops(char *name, char *value) 419 { 420 bsetprop(name, strlen(name), value, strlen(value) + 1); 421 } 422 423 static void 424 bsetprop64(char *name, uint64_t value) 425 { 426 bsetprop(name, strlen(name), (void *)&value, sizeof (value)); 427 } 428 429 static void 430 bsetpropsi(char *name, int value) 431 { 432 char prop_val[32]; 433 434 (void) snprintf(prop_val, sizeof (prop_val), "%d", value); 435 bsetprops(name, prop_val); 436 } 437 438 /* 439 * to find the size of the buffer to allocate 440 */ 441 /*ARGSUSED*/ 442 int 443 do_bsys_getproplen(bootops_t *bop, const char *name) 444 { 445 bootprop_t *b; 446 447 for (b = bprops; b; b = b->bp_next) { 448 if (strcmp(name, b->bp_name) != 0) 449 continue; 450 return (b->bp_vlen); 451 } 452 return (-1); 453 } 454 455 /* 456 * get the value associated with this name 457 */ 458 /*ARGSUSED*/ 459 int 460 do_bsys_getprop(bootops_t *bop, const char *name, void *value) 461 { 462 bootprop_t *b; 463 464 for (b = bprops; b; b = b->bp_next) { 465 if (strcmp(name, b->bp_name) != 0) 466 continue; 467 bcopy(b->bp_value, value, b->bp_vlen); 468 return (0); 469 } 470 return (-1); 471 } 472 473 /* 474 * get the name of the next property in succession from the standalone 475 */ 476 /*ARGSUSED*/ 477 static char * 478 do_bsys_nextprop(bootops_t *bop, char *name) 479 { 480 bootprop_t *b; 481 482 /* 483 * A null name is a special signal for the 1st boot property 484 */ 485 if (name == NULL || strlen(name) == 0) { 486 if (bprops == NULL) 487 return (NULL); 488 return (bprops->bp_name); 489 } 490 491 for (b = bprops; b; b = b->bp_next) { 492 if (name != b->bp_name) 493 continue; 494 b = b->bp_next; 495 if (b == NULL) 496 return (NULL); 497 return (b->bp_name); 498 } 499 return (NULL); 500 } 501 502 /* 503 * Parse numeric value from a string. Understands decimal, hex, octal, - and ~ 504 */ 505 static int 506 parse_value(char *p, uint64_t *retval) 507 { 508 int adjust = 0; 509 uint64_t tmp = 0; 510 int digit; 511 int radix = 10; 512 513 *retval = 0; 514 if (*p == '-' || *p == '~') 515 adjust = *p++; 516 517 if (*p == '0') { 518 ++p; 519 if (*p == 0) 520 return (0); 521 if (*p == 'x' || *p == 'X') { 522 radix = 16; 523 ++p; 524 } else { 525 radix = 8; 526 ++p; 527 } 528 } 529 while (*p) { 530 if ('0' <= *p && *p <= '9') 531 digit = *p - '0'; 532 else if ('a' <= *p && *p <= 'f') 533 digit = 10 + *p - 'a'; 534 else if ('A' <= *p && *p <= 'F') 535 digit = 10 + *p - 'A'; 536 else 537 return (-1); 538 if (digit >= radix) 539 return (-1); 540 tmp = tmp * radix + digit; 541 ++p; 542 } 543 if (adjust == '-') 544 tmp = -tmp; 545 else if (adjust == '~') 546 tmp = ~tmp; 547 *retval = tmp; 548 return (0); 549 } 550 551 static boolean_t 552 unprintable(char *value, int size) 553 { 554 int i; 555 556 if (size <= 0 || value[0] == '\0') 557 return (B_TRUE); 558 559 for (i = 0; i < size; i++) { 560 if (value[i] == '\0') 561 return (i != (size - 1)); 562 563 if (!isprint(value[i])) 564 return (B_TRUE); 565 } 566 return (B_FALSE); 567 } 568 569 /* 570 * Print out information about all boot properties. 571 * buffer is pointer to pre-allocated space to be used as temporary 572 * space for property values. 573 */ 574 static void 575 boot_prop_display(char *buffer) 576 { 577 char *name = ""; 578 int i, len; 579 580 bop_printf(NULL, "\nBoot properties:\n"); 581 582 while ((name = do_bsys_nextprop(NULL, name)) != NULL) { 583 bop_printf(NULL, "\t0x%p %s = ", (void *)name, name); 584 (void) do_bsys_getprop(NULL, name, buffer); 585 len = do_bsys_getproplen(NULL, name); 586 bop_printf(NULL, "len=%d ", len); 587 if (!unprintable(buffer, len)) { 588 buffer[len] = 0; 589 bop_printf(NULL, "%s\n", buffer); 590 continue; 591 } 592 for (i = 0; i < len; i++) { 593 bop_printf(NULL, "%02x", buffer[i] & 0xff); 594 if (i < len - 1) 595 bop_printf(NULL, "."); 596 } 597 bop_printf(NULL, "\n"); 598 } 599 } 600 601 /* 602 * 2nd part of building the table of boot properties. This includes: 603 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values) 604 * 605 * lines look like one of: 606 * ^$ 607 * ^# comment till end of line 608 * setprop name 'value' 609 * setprop name value 610 * setprop name "value" 611 * 612 * we do single character I/O since this is really just looking at memory 613 */ 614 void 615 boot_prop_finish(void) 616 { 617 int fd; 618 char *line; 619 int c; 620 int bytes_read; 621 char *name; 622 int n_len; 623 char *value; 624 int v_len; 625 char *inputdev; /* these override the command line if serial ports */ 626 char *outputdev; 627 char *consoledev; 628 uint64_t lvalue; 629 int use_xencons = 0; 630 631 #ifdef __xpv 632 if (!DOMAIN_IS_INITDOMAIN(xen_info)) 633 use_xencons = 1; 634 #endif /* __xpv */ 635 636 DBG_MSG("Opening /boot/solaris/bootenv.rc\n"); 637 fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0); 638 DBG(fd); 639 640 line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 641 while (fd >= 0) { 642 643 /* 644 * get a line 645 */ 646 for (c = 0; ; ++c) { 647 bytes_read = BRD_READ(bfs_ops, fd, line + c, 1); 648 if (bytes_read == 0) { 649 if (c == 0) 650 goto done; 651 break; 652 } 653 if (line[c] == '\n') 654 break; 655 } 656 line[c] = 0; 657 658 /* 659 * ignore comment lines 660 */ 661 c = 0; 662 while (ISSPACE(line[c])) 663 ++c; 664 if (line[c] == '#' || line[c] == 0) 665 continue; 666 667 /* 668 * must have "setprop " or "setprop\t" 669 */ 670 if (strncmp(line + c, "setprop ", 8) != 0 && 671 strncmp(line + c, "setprop\t", 8) != 0) 672 continue; 673 c += 8; 674 while (ISSPACE(line[c])) 675 ++c; 676 if (line[c] == 0) 677 continue; 678 679 /* 680 * gather up the property name 681 */ 682 name = line + c; 683 n_len = 0; 684 while (line[c] && !ISSPACE(line[c])) 685 ++n_len, ++c; 686 687 /* 688 * gather up the value, if any 689 */ 690 value = ""; 691 v_len = 0; 692 while (ISSPACE(line[c])) 693 ++c; 694 if (line[c] != 0) { 695 value = line + c; 696 while (line[c] && !ISSPACE(line[c])) 697 ++v_len, ++c; 698 } 699 700 if (v_len >= 2 && value[0] == value[v_len - 1] && 701 (value[0] == '\'' || value[0] == '"')) { 702 ++value; 703 v_len -= 2; 704 } 705 name[n_len] = 0; 706 if (v_len > 0) 707 value[v_len] = 0; 708 else 709 continue; 710 711 /* 712 * ignore "boot-file" property, it's now meaningless 713 */ 714 if (strcmp(name, "boot-file") == 0) 715 continue; 716 if (strcmp(name, "boot-args") == 0 && 717 strlen(boot_args) > 0) 718 continue; 719 720 /* 721 * If a property was explicitly set on the command line 722 * it will override a setting in bootenv.rc 723 */ 724 if (do_bsys_getproplen(NULL, name) > 0) 725 continue; 726 727 bsetprop(name, n_len, value, v_len + 1); 728 } 729 done: 730 if (fd >= 0) 731 (void) BRD_CLOSE(bfs_ops, fd); 732 733 /* 734 * Check if we have to limit the boot time allocator 735 */ 736 if (do_bsys_getproplen(NULL, "physmem") != -1 && 737 do_bsys_getprop(NULL, "physmem", line) >= 0 && 738 parse_value(line, &lvalue) != -1) { 739 if (0 < lvalue && (lvalue < physmem || physmem == 0)) { 740 physmem = (pgcnt_t)lvalue; 741 DBG(physmem); 742 } 743 } 744 early_allocation = 0; 745 746 /* 747 * check to see if we have to override the default value of the console 748 */ 749 if (!use_xencons) { 750 inputdev = line; 751 v_len = do_bsys_getproplen(NULL, "input-device"); 752 if (v_len > 0) 753 (void) do_bsys_getprop(NULL, "input-device", inputdev); 754 else 755 v_len = 0; 756 inputdev[v_len] = 0; 757 758 outputdev = inputdev + v_len + 1; 759 v_len = do_bsys_getproplen(NULL, "output-device"); 760 if (v_len > 0) 761 (void) do_bsys_getprop(NULL, "output-device", 762 outputdev); 763 else 764 v_len = 0; 765 outputdev[v_len] = 0; 766 767 consoledev = outputdev + v_len + 1; 768 v_len = do_bsys_getproplen(NULL, "console"); 769 if (v_len > 0) { 770 (void) do_bsys_getprop(NULL, "console", consoledev); 771 if (post_fastreboot && 772 strcmp(consoledev, "graphics") == 0) { 773 bsetprops("console", "text"); 774 v_len = strlen("text"); 775 bcopy("text", consoledev, v_len); 776 } 777 } else { 778 v_len = 0; 779 } 780 consoledev[v_len] = 0; 781 bcons_init2(inputdev, outputdev, consoledev); 782 } else { 783 /* 784 * Ensure console property exists 785 * If not create it as "hypervisor" 786 */ 787 v_len = do_bsys_getproplen(NULL, "console"); 788 if (v_len < 0) 789 bsetprops("console", "hypervisor"); 790 inputdev = outputdev = consoledev = "hypervisor"; 791 bcons_init2(inputdev, outputdev, consoledev); 792 } 793 794 if (strstr((char *)xbootp->bi_cmdline, "prom_debug") || kbm_debug) 795 boot_prop_display(line); 796 } 797 798 /* 799 * print formatted output 800 */ 801 /*PRINTFLIKE2*/ 802 /*ARGSUSED*/ 803 void 804 bop_printf(bootops_t *bop, const char *fmt, ...) 805 { 806 va_list ap; 807 808 if (have_console == 0) 809 return; 810 811 va_start(ap, fmt); 812 (void) vsnprintf(buffer, BUFFERSIZE, fmt, ap); 813 va_end(ap); 814 PUT_STRING(buffer); 815 } 816 817 /* 818 * Another panic() variant; this one can be used even earlier during boot than 819 * prom_panic(). 820 */ 821 /*PRINTFLIKE1*/ 822 void 823 bop_panic(const char *fmt, ...) 824 { 825 va_list ap; 826 827 va_start(ap, fmt); 828 bop_printf(NULL, fmt, ap); 829 va_end(ap); 830 831 bop_printf(NULL, "\nPress any key to reboot.\n"); 832 (void) bcons_getchar(); 833 bop_printf(NULL, "Resetting...\n"); 834 pc_reset(); 835 } 836 837 /* 838 * Do a real mode interrupt BIOS call 839 */ 840 typedef struct bios_regs { 841 unsigned short ax, bx, cx, dx, si, di, bp, es, ds; 842 } bios_regs_t; 843 typedef int (*bios_func_t)(int, bios_regs_t *); 844 845 /*ARGSUSED*/ 846 static void 847 do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp) 848 { 849 #if defined(__xpv) 850 prom_panic("unsupported call to BOP_DOINT()\n"); 851 #else /* __xpv */ 852 static int firsttime = 1; 853 bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000; 854 bios_regs_t br; 855 856 /* 857 * The first time we do this, we have to copy the pre-packaged 858 * low memory bios call code image into place. 859 */ 860 if (firsttime) { 861 extern char bios_image[]; 862 extern uint32_t bios_size; 863 864 bcopy(bios_image, (void *)bios_func, bios_size); 865 firsttime = 0; 866 } 867 868 br.ax = rp->eax.word.ax; 869 br.bx = rp->ebx.word.bx; 870 br.cx = rp->ecx.word.cx; 871 br.dx = rp->edx.word.dx; 872 br.bp = rp->ebp.word.bp; 873 br.si = rp->esi.word.si; 874 br.di = rp->edi.word.di; 875 br.ds = rp->ds; 876 br.es = rp->es; 877 878 DBG_MSG("Doing BIOS call..."); 879 DBG(br.ax); 880 DBG(br.bx); 881 DBG(br.dx); 882 rp->eflags = bios_func(intnum, &br); 883 DBG_MSG("done\n"); 884 885 rp->eax.word.ax = br.ax; 886 rp->ebx.word.bx = br.bx; 887 rp->ecx.word.cx = br.cx; 888 rp->edx.word.dx = br.dx; 889 rp->ebp.word.bp = br.bp; 890 rp->esi.word.si = br.si; 891 rp->edi.word.di = br.di; 892 rp->ds = br.ds; 893 rp->es = br.es; 894 #endif /* __xpv */ 895 } 896 897 static struct boot_syscalls bop_sysp = { 898 bcons_getchar, 899 bcons_putchar, 900 bcons_ischar, 901 }; 902 903 static char *whoami; 904 905 #define BUFLEN 64 906 907 #if defined(__xpv) 908 909 static char namebuf[32]; 910 911 static void 912 xen_parse_props(char *s, char *prop_map[], int n_prop) 913 { 914 char **prop_name = prop_map; 915 char *cp = s, *scp; 916 917 do { 918 scp = cp; 919 while ((*cp != NULL) && (*cp != ':')) 920 cp++; 921 922 if ((scp != cp) && (*prop_name != NULL)) { 923 *cp = NULL; 924 bsetprops(*prop_name, scp); 925 } 926 927 cp++; 928 prop_name++; 929 n_prop--; 930 } while (n_prop > 0); 931 } 932 933 #define VBDPATHLEN 64 934 935 /* 936 * parse the 'xpv-root' property to create properties used by 937 * ufs_mountroot. 938 */ 939 static void 940 xen_vbdroot_props(char *s) 941 { 942 char vbdpath[VBDPATHLEN] = "/xpvd/xdf@"; 943 const char lnamefix[] = "/dev/dsk/c0d"; 944 char *pnp; 945 char *prop_p; 946 char mi; 947 short minor; 948 long addr = 0; 949 950 pnp = vbdpath + strlen(vbdpath); 951 prop_p = s + strlen(lnamefix); 952 while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p')) 953 addr = addr * 10 + *prop_p++ - '0'; 954 (void) snprintf(pnp, VBDPATHLEN, "%lx", addr); 955 pnp = vbdpath + strlen(vbdpath); 956 if (*prop_p == 's') 957 mi = 'a'; 958 else if (*prop_p == 'p') 959 mi = 'q'; 960 else 961 ASSERT(0); /* shouldn't be here */ 962 prop_p++; 963 ASSERT(*prop_p != '\0'); 964 if (ISDIGIT(*prop_p)) { 965 minor = *prop_p - '0'; 966 prop_p++; 967 if (ISDIGIT(*prop_p)) { 968 minor = minor * 10 + *prop_p - '0'; 969 } 970 } else { 971 /* malformed root path, use 0 as default */ 972 minor = 0; 973 } 974 ASSERT(minor < 16); /* at most 16 partitions */ 975 mi += minor; 976 *pnp++ = ':'; 977 *pnp++ = mi; 978 *pnp++ = '\0'; 979 bsetprops("fstype", "ufs"); 980 bsetprops("bootpath", vbdpath); 981 982 DBG_MSG("VBD bootpath set to "); 983 DBG_MSG(vbdpath); 984 DBG_MSG("\n"); 985 } 986 987 /* 988 * parse the xpv-nfsroot property to create properties used by 989 * nfs_mountroot. 990 */ 991 static void 992 xen_nfsroot_props(char *s) 993 { 994 char *prop_map[] = { 995 BP_SERVER_IP, /* server IP address */ 996 BP_SERVER_NAME, /* server hostname */ 997 BP_SERVER_PATH, /* root path */ 998 }; 999 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]); 1000 1001 bsetprop("fstype", 6, "nfs", 4); 1002 1003 xen_parse_props(s, prop_map, n_prop); 1004 1005 /* 1006 * If a server name wasn't specified, use a default. 1007 */ 1008 if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1) 1009 bsetprops(BP_SERVER_NAME, "unknown"); 1010 } 1011 1012 /* 1013 * Extract our IP address, etc. from the "xpv-ip" property. 1014 */ 1015 static void 1016 xen_ip_props(char *s) 1017 { 1018 char *prop_map[] = { 1019 BP_HOST_IP, /* IP address */ 1020 NULL, /* NFS server IP address (ignored in */ 1021 /* favour of xpv-nfsroot) */ 1022 BP_ROUTER_IP, /* IP gateway */ 1023 BP_SUBNET_MASK, /* IP subnet mask */ 1024 "xpv-hostname", /* hostname (ignored) */ 1025 BP_NETWORK_INTERFACE, /* interface name */ 1026 "xpv-hcp", /* host configuration protocol */ 1027 }; 1028 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]); 1029 char ifname[IFNAMSIZ]; 1030 1031 xen_parse_props(s, prop_map, n_prop); 1032 1033 /* 1034 * A Linux dom0 administrator expects all interfaces to be 1035 * called "ethX", which is not the case here. 1036 * 1037 * If the interface name specified is "eth0", presume that 1038 * this is really intended to be "xnf0" (the first domU -> 1039 * dom0 interface for this domain). 1040 */ 1041 if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) && 1042 (strcmp("eth0", ifname) == 0)) { 1043 bsetprops(BP_NETWORK_INTERFACE, "xnf0"); 1044 bop_printf(NULL, 1045 "network interface name 'eth0' replaced with 'xnf0'\n"); 1046 } 1047 } 1048 1049 #else /* __xpv */ 1050 1051 static void 1052 setup_rarp_props(struct sol_netinfo *sip) 1053 { 1054 char buf[BUFLEN]; /* to hold ip/mac addrs */ 1055 uint8_t *val; 1056 1057 val = (uint8_t *)&sip->sn_ciaddr; 1058 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1059 val[0], val[1], val[2], val[3]); 1060 bsetprops(BP_HOST_IP, buf); 1061 1062 val = (uint8_t *)&sip->sn_siaddr; 1063 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1064 val[0], val[1], val[2], val[3]); 1065 bsetprops(BP_SERVER_IP, buf); 1066 1067 if (sip->sn_giaddr != 0) { 1068 val = (uint8_t *)&sip->sn_giaddr; 1069 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1070 val[0], val[1], val[2], val[3]); 1071 bsetprops(BP_ROUTER_IP, buf); 1072 } 1073 1074 if (sip->sn_netmask != 0) { 1075 val = (uint8_t *)&sip->sn_netmask; 1076 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1077 val[0], val[1], val[2], val[3]); 1078 bsetprops(BP_SUBNET_MASK, buf); 1079 } 1080 1081 if (sip->sn_mactype != 4 || sip->sn_maclen != 6) { 1082 bop_printf(NULL, "unsupported mac type %d, mac len %d\n", 1083 sip->sn_mactype, sip->sn_maclen); 1084 } else { 1085 val = sip->sn_macaddr; 1086 (void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x", 1087 val[0], val[1], val[2], val[3], val[4], val[5]); 1088 bsetprops(BP_BOOT_MAC, buf); 1089 } 1090 } 1091 1092 #endif /* __xpv */ 1093 1094 static void 1095 build_panic_cmdline(const char *cmd, int cmdlen) 1096 { 1097 int proplen; 1098 size_t arglen; 1099 1100 arglen = sizeof (fastreboot_onpanic_args); 1101 /* 1102 * If we allready have fastreboot-onpanic set to zero, 1103 * don't add them again. 1104 */ 1105 if ((proplen = do_bsys_getproplen(NULL, FASTREBOOT_ONPANIC)) > 0 && 1106 proplen <= sizeof (fastreboot_onpanic_cmdline)) { 1107 (void) do_bsys_getprop(NULL, FASTREBOOT_ONPANIC, 1108 fastreboot_onpanic_cmdline); 1109 if (FASTREBOOT_ONPANIC_NOTSET(fastreboot_onpanic_cmdline)) 1110 arglen = 1; 1111 } 1112 1113 /* 1114 * construct fastreboot_onpanic_cmdline 1115 */ 1116 if (cmdlen + arglen > sizeof (fastreboot_onpanic_cmdline)) { 1117 DBG_MSG("Command line too long: clearing " 1118 FASTREBOOT_ONPANIC "\n"); 1119 fastreboot_onpanic = 0; 1120 } else { 1121 bcopy(cmd, fastreboot_onpanic_cmdline, cmdlen); 1122 if (arglen != 1) 1123 bcopy(fastreboot_onpanic_args, 1124 fastreboot_onpanic_cmdline + cmdlen, arglen); 1125 else 1126 fastreboot_onpanic_cmdline[cmdlen] = 0; 1127 } 1128 } 1129 1130 1131 #ifndef __xpv 1132 /* 1133 * Construct boot command line for Fast Reboot 1134 */ 1135 static void 1136 build_fastboot_cmdline(struct xboot_info *xbp) 1137 { 1138 saved_cmdline_len = strlen(xbp->bi_cmdline) + 1; 1139 if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) { 1140 DBG(saved_cmdline_len); 1141 DBG_MSG("Command line too long: clearing fastreboot_capable\n"); 1142 fastreboot_capable = 0; 1143 } else { 1144 bcopy((void *)(xbp->bi_cmdline), (void *)saved_cmdline, 1145 saved_cmdline_len); 1146 saved_cmdline[saved_cmdline_len - 1] = '\0'; 1147 build_panic_cmdline(saved_cmdline, saved_cmdline_len - 1); 1148 } 1149 } 1150 1151 /* 1152 * Save memory layout, disk drive information, unix and boot archive sizes for 1153 * Fast Reboot. 1154 */ 1155 static void 1156 save_boot_info(struct xboot_info *xbi) 1157 { 1158 multiboot_info_t *mbi = xbi->bi_mb_info; 1159 struct boot_modules *modp; 1160 int i; 1161 1162 bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t)); 1163 if (mbi->mmap_length > sizeof (saved_mmap)) { 1164 DBG_MSG("mbi->mmap_length too big: clearing " 1165 "fastreboot_capable\n"); 1166 fastreboot_capable = 0; 1167 } else { 1168 bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap, 1169 mbi->mmap_length); 1170 } 1171 1172 if ((mbi->flags & MB_INFO_DRIVE_INFO) != 0) { 1173 if (mbi->drives_length > sizeof (saved_drives)) { 1174 DBG(mbi->drives_length); 1175 DBG_MSG("mbi->drives_length too big: clearing " 1176 "fastreboot_capable\n"); 1177 fastreboot_capable = 0; 1178 } else { 1179 bcopy((void *)(uintptr_t)mbi->drives_addr, 1180 (void *)saved_drives, mbi->drives_length); 1181 } 1182 } else { 1183 saved_mbi.drives_length = 0; 1184 saved_mbi.drives_addr = NULL; 1185 } 1186 1187 /* 1188 * Current file sizes. Used by fastboot.c to figure out how much 1189 * memory to reserve for panic reboot. 1190 * Use the module list from the dboot-constructed xboot_info 1191 * instead of the list referenced by the multiboot structure 1192 * because that structure may not be addressable now. 1193 */ 1194 saved_file_size[FASTBOOT_NAME_UNIX] = FOUR_MEG - PAGESIZE; 1195 for (i = 0, modp = (struct boot_modules *)(uintptr_t)xbi->bi_modules; 1196 i < xbi->bi_module_cnt; i++, modp++) { 1197 saved_file_size[FASTBOOT_NAME_BOOTARCHIVE] += modp->bm_size; 1198 } 1199 } 1200 #endif /* __xpv */ 1201 1202 1203 /* 1204 * 1st pass at building the table of boot properties. This includes: 1205 * - values set on the command line: -B a=x,b=y,c=z .... 1206 * - known values we just compute (ie. from xbp) 1207 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values) 1208 * 1209 * the grub command line looked like: 1210 * kernel boot-file [-B prop=value[,prop=value]...] [boot-args] 1211 * 1212 * whoami is the same as boot-file 1213 */ 1214 static void 1215 build_boot_properties(struct xboot_info *xbp) 1216 { 1217 char *name; 1218 int name_len; 1219 char *value; 1220 int value_len; 1221 struct boot_modules *bm, *rdbm; 1222 char *propbuf; 1223 int quoted = 0; 1224 int boot_arg_len; 1225 uint_t i, midx; 1226 char modid[32]; 1227 #ifndef __xpv 1228 static int stdout_val = 0; 1229 uchar_t boot_device; 1230 char str[3]; 1231 multiboot_info_t *mbi; 1232 int netboot; 1233 struct sol_netinfo *sip; 1234 #endif 1235 1236 /* 1237 * These have to be done first, so that kobj_mount_root() works 1238 */ 1239 DBG_MSG("Building boot properties\n"); 1240 propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0); 1241 DBG((uintptr_t)propbuf); 1242 if (xbp->bi_module_cnt > 0) { 1243 bm = xbp->bi_modules; 1244 rdbm = NULL; 1245 for (midx = i = 0; i < xbp->bi_module_cnt; i++) { 1246 if (bm[i].bm_type == BMT_ROOTFS) { 1247 rdbm = &bm[i]; 1248 continue; 1249 } 1250 if (bm[i].bm_type == BMT_HASH || bm[i].bm_name == NULL) 1251 continue; 1252 1253 (void) snprintf(modid, sizeof (modid), 1254 "module-name-%u", midx); 1255 bsetprops(modid, (char *)bm[i].bm_name); 1256 (void) snprintf(modid, sizeof (modid), 1257 "module-addr-%u", midx); 1258 bsetprop64(modid, (uint64_t)(uintptr_t)bm[i].bm_addr); 1259 (void) snprintf(modid, sizeof (modid), 1260 "module-size-%u", midx); 1261 bsetprop64(modid, (uint64_t)bm[i].bm_size); 1262 ++midx; 1263 } 1264 if (rdbm != NULL) { 1265 bsetprop64("ramdisk_start", 1266 (uint64_t)(uintptr_t)rdbm->bm_addr); 1267 bsetprop64("ramdisk_end", 1268 (uint64_t)(uintptr_t)rdbm->bm_addr + rdbm->bm_size); 1269 } 1270 } 1271 1272 /* 1273 * If there are any boot time modules or hashes present, then disable 1274 * fast reboot. 1275 */ 1276 if (xbp->bi_module_cnt > 1) { 1277 fastreboot_disable(FBNS_BOOTMOD); 1278 } 1279 1280 DBG_MSG("Parsing command line for boot properties\n"); 1281 value = xbp->bi_cmdline; 1282 1283 /* 1284 * allocate memory to collect boot_args into 1285 */ 1286 boot_arg_len = strlen(xbp->bi_cmdline) + 1; 1287 boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE); 1288 boot_args[0] = 0; 1289 boot_arg_len = 0; 1290 1291 #ifdef __xpv 1292 /* 1293 * Xen puts a lot of device information in front of the kernel name 1294 * let's grab them and make them boot properties. The first 1295 * string w/o an "=" in it will be the boot-file property. 1296 */ 1297 (void) strcpy(namebuf, "xpv-"); 1298 for (;;) { 1299 /* 1300 * get to next property 1301 */ 1302 while (ISSPACE(*value)) 1303 ++value; 1304 name = value; 1305 /* 1306 * look for an "=" 1307 */ 1308 while (*value && !ISSPACE(*value) && *value != '=') { 1309 value++; 1310 } 1311 if (*value != '=') { /* no "=" in the property */ 1312 value = name; 1313 break; 1314 } 1315 name_len = value - name; 1316 value_len = 0; 1317 /* 1318 * skip over the "=" 1319 */ 1320 value++; 1321 while (value[value_len] && !ISSPACE(value[value_len])) { 1322 ++value_len; 1323 } 1324 /* 1325 * build property name with "xpv-" prefix 1326 */ 1327 if (name_len + 4 > 32) { /* skip if name too long */ 1328 value += value_len; 1329 continue; 1330 } 1331 bcopy(name, &namebuf[4], name_len); 1332 name_len += 4; 1333 namebuf[name_len] = 0; 1334 bcopy(value, propbuf, value_len); 1335 propbuf[value_len] = 0; 1336 bsetprops(namebuf, propbuf); 1337 1338 /* 1339 * xpv-root is set to the logical disk name of the xen 1340 * VBD when booting from a disk-based filesystem. 1341 */ 1342 if (strcmp(namebuf, "xpv-root") == 0) 1343 xen_vbdroot_props(propbuf); 1344 /* 1345 * While we're here, if we have a "xpv-nfsroot" property 1346 * then we need to set "fstype" to "nfs" so we mount 1347 * our root from the nfs server. Also parse the xpv-nfsroot 1348 * property to create the properties that nfs_mountroot will 1349 * need to find the root and mount it. 1350 */ 1351 if (strcmp(namebuf, "xpv-nfsroot") == 0) 1352 xen_nfsroot_props(propbuf); 1353 1354 if (strcmp(namebuf, "xpv-ip") == 0) 1355 xen_ip_props(propbuf); 1356 value += value_len; 1357 } 1358 #endif 1359 1360 while (ISSPACE(*value)) 1361 ++value; 1362 /* 1363 * value now points at the boot-file 1364 */ 1365 value_len = 0; 1366 while (value[value_len] && !ISSPACE(value[value_len])) 1367 ++value_len; 1368 if (value_len > 0) { 1369 whoami = propbuf; 1370 bcopy(value, whoami, value_len); 1371 whoami[value_len] = 0; 1372 bsetprops("boot-file", whoami); 1373 /* 1374 * strip leading path stuff from whoami, so running from 1375 * PXE/miniroot makes sense. 1376 */ 1377 if (strstr(whoami, "/platform/") != NULL) 1378 whoami = strstr(whoami, "/platform/"); 1379 bsetprops("whoami", whoami); 1380 } 1381 1382 /* 1383 * Values forcibly set boot properties on the command line via -B. 1384 * Allow use of quotes in values. Other stuff goes on kernel 1385 * command line. 1386 */ 1387 name = value + value_len; 1388 while (*name != 0) { 1389 /* 1390 * anything not " -B" is copied to the command line 1391 */ 1392 if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') { 1393 boot_args[boot_arg_len++] = *name; 1394 boot_args[boot_arg_len] = 0; 1395 ++name; 1396 continue; 1397 } 1398 1399 /* 1400 * skip the " -B" and following white space 1401 */ 1402 name += 3; 1403 while (ISSPACE(*name)) 1404 ++name; 1405 while (*name && !ISSPACE(*name)) { 1406 value = strstr(name, "="); 1407 if (value == NULL) 1408 break; 1409 name_len = value - name; 1410 ++value; 1411 value_len = 0; 1412 quoted = 0; 1413 for (; ; ++value_len) { 1414 if (!value[value_len]) 1415 break; 1416 1417 /* 1418 * is this value quoted? 1419 */ 1420 if (value_len == 0 && 1421 (value[0] == '\'' || value[0] == '"')) { 1422 quoted = value[0]; 1423 ++value_len; 1424 } 1425 1426 /* 1427 * In the quote accept any character, 1428 * but look for ending quote. 1429 */ 1430 if (quoted) { 1431 if (value[value_len] == quoted) 1432 quoted = 0; 1433 continue; 1434 } 1435 1436 /* 1437 * a comma or white space ends the value 1438 */ 1439 if (value[value_len] == ',' || 1440 ISSPACE(value[value_len])) 1441 break; 1442 } 1443 1444 if (value_len == 0) { 1445 bsetprop(name, name_len, "true", 5); 1446 } else { 1447 char *v = value; 1448 int l = value_len; 1449 if (v[0] == v[l - 1] && 1450 (v[0] == '\'' || v[0] == '"')) { 1451 ++v; 1452 l -= 2; 1453 } 1454 bcopy(v, propbuf, l); 1455 propbuf[l] = '\0'; 1456 bsetprop(name, name_len, propbuf, 1457 l + 1); 1458 } 1459 name = value + value_len; 1460 while (*name == ',') 1461 ++name; 1462 } 1463 } 1464 1465 /* 1466 * set boot-args property 1467 * 1275 name is bootargs, so set 1468 * that too 1469 */ 1470 bsetprops("boot-args", boot_args); 1471 bsetprops("bootargs", boot_args); 1472 1473 #ifndef __xpv 1474 /* 1475 * set the BIOS boot device from GRUB 1476 */ 1477 netboot = 0; 1478 mbi = xbp->bi_mb_info; 1479 1480 /* 1481 * Build boot command line for Fast Reboot 1482 */ 1483 build_fastboot_cmdline(xbp); 1484 1485 /* 1486 * Save various boot information for Fast Reboot 1487 */ 1488 save_boot_info(xbp); 1489 1490 if (mbi != NULL && mbi->flags & MB_INFO_BOOTDEV) { 1491 boot_device = mbi->boot_device >> 24; 1492 if (boot_device == 0x20) 1493 netboot++; 1494 str[0] = (boot_device >> 4) + '0'; 1495 str[1] = (boot_device & 0xf) + '0'; 1496 str[2] = 0; 1497 bsetprops("bios-boot-device", str); 1498 } else { 1499 netboot = 1; 1500 } 1501 1502 /* 1503 * In the netboot case, drives_info is overloaded with the dhcp ack. 1504 * This is not multiboot compliant and requires special pxegrub! 1505 */ 1506 if (netboot && mbi->drives_length != 0) { 1507 sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr; 1508 if (sip->sn_infotype == SN_TYPE_BOOTP) 1509 bsetprop("bootp-response", sizeof ("bootp-response"), 1510 (void *)(uintptr_t)mbi->drives_addr, 1511 mbi->drives_length); 1512 else if (sip->sn_infotype == SN_TYPE_RARP) 1513 setup_rarp_props(sip); 1514 } 1515 bsetprop("stdout", strlen("stdout"), 1516 &stdout_val, sizeof (stdout_val)); 1517 #endif /* __xpv */ 1518 1519 /* 1520 * more conjured up values for made up things.... 1521 */ 1522 #if defined(__xpv) 1523 bsetprops("mfg-name", "i86xpv"); 1524 bsetprops("impl-arch-name", "i86xpv"); 1525 #else 1526 bsetprops("mfg-name", "i86pc"); 1527 bsetprops("impl-arch-name", "i86pc"); 1528 #endif 1529 1530 /* 1531 * Build firmware-provided system properties 1532 */ 1533 build_firmware_properties(); 1534 1535 /* 1536 * XXPV 1537 * 1538 * Find out what these are: 1539 * - cpuid_feature_ecx_include 1540 * - cpuid_feature_ecx_exclude 1541 * - cpuid_feature_edx_include 1542 * - cpuid_feature_edx_exclude 1543 * 1544 * Find out what these are in multiboot: 1545 * - netdev-path 1546 * - fstype 1547 */ 1548 } 1549 1550 #ifdef __xpv 1551 /* 1552 * Under the Hypervisor, memory usable for DMA may be scarce. One 1553 * very likely large pool of DMA friendly memory is occupied by 1554 * the boot_archive, as it was loaded by grub into low MFNs. 1555 * 1556 * Here we free up that memory by copying the boot archive to what are 1557 * likely higher MFN pages and then swapping the mfn/pfn mappings. 1558 */ 1559 #define PFN_2GIG 0x80000 1560 static void 1561 relocate_boot_archive(struct xboot_info *xbp) 1562 { 1563 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL); 1564 struct boot_modules *bm = xbp->bi_modules; 1565 uintptr_t va; 1566 pfn_t va_pfn; 1567 mfn_t va_mfn; 1568 caddr_t copy; 1569 pfn_t copy_pfn; 1570 mfn_t copy_mfn; 1571 size_t len; 1572 int slop; 1573 int total = 0; 1574 int relocated = 0; 1575 int mmu_update_return; 1576 mmu_update_t t[2]; 1577 x86pte_t pte; 1578 1579 /* 1580 * If all MFN's are below 2Gig, don't bother doing this. 1581 */ 1582 if (max_mfn < PFN_2GIG) 1583 return; 1584 if (xbp->bi_module_cnt < 1) { 1585 DBG_MSG("no boot_archive!"); 1586 return; 1587 } 1588 1589 DBG_MSG("moving boot_archive to high MFN memory\n"); 1590 va = (uintptr_t)bm->bm_addr; 1591 len = bm->bm_size; 1592 slop = va & MMU_PAGEOFFSET; 1593 if (slop) { 1594 va += MMU_PAGESIZE - slop; 1595 len -= MMU_PAGESIZE - slop; 1596 } 1597 len = P2ALIGN(len, MMU_PAGESIZE); 1598 1599 /* 1600 * Go through all boot_archive pages, swapping any low MFN pages 1601 * with memory at next_phys. 1602 */ 1603 while (len != 0) { 1604 ++total; 1605 va_pfn = mmu_btop(va - ONE_GIG); 1606 va_mfn = mfn_list[va_pfn]; 1607 if (mfn_list[va_pfn] < PFN_2GIG) { 1608 copy = kbm_remap_window(next_phys, 1); 1609 bcopy((void *)va, copy, MMU_PAGESIZE); 1610 copy_pfn = mmu_btop(next_phys); 1611 copy_mfn = mfn_list[copy_pfn]; 1612 1613 pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID; 1614 if (HYPERVISOR_update_va_mapping(va, pte, 1615 UVMF_INVLPG | UVMF_LOCAL)) 1616 bop_panic("relocate_boot_archive(): " 1617 "HYPERVISOR_update_va_mapping() failed"); 1618 1619 mfn_list[va_pfn] = copy_mfn; 1620 mfn_list[copy_pfn] = va_mfn; 1621 1622 t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE; 1623 t[0].val = va_pfn; 1624 t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE; 1625 t[1].val = copy_pfn; 1626 if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return, 1627 DOMID_SELF) != 0 || mmu_update_return != 2) 1628 bop_panic("relocate_boot_archive(): " 1629 "HYPERVISOR_mmu_update() failed"); 1630 1631 next_phys += MMU_PAGESIZE; 1632 ++relocated; 1633 } 1634 len -= MMU_PAGESIZE; 1635 va += MMU_PAGESIZE; 1636 } 1637 DBG_MSG("Relocated pages:\n"); 1638 DBG(relocated); 1639 DBG_MSG("Out of total pages:\n"); 1640 DBG(total); 1641 } 1642 #endif /* __xpv */ 1643 1644 #if !defined(__xpv) 1645 /* 1646 * Install a temporary IDT that lets us catch errors in the boot time code. 1647 * We shouldn't get any faults at all while this is installed, so we'll 1648 * just generate a traceback and exit. 1649 */ 1650 #ifdef __amd64 1651 static const int bcode_sel = B64CODE_SEL; 1652 #else 1653 static const int bcode_sel = B32CODE_SEL; 1654 #endif 1655 1656 /* 1657 * simple description of a stack frame (args are 32 bit only currently) 1658 */ 1659 typedef struct bop_frame { 1660 struct bop_frame *old_frame; 1661 pc_t retaddr; 1662 long arg[1]; 1663 } bop_frame_t; 1664 1665 void 1666 bop_traceback(bop_frame_t *frame) 1667 { 1668 pc_t pc; 1669 int cnt; 1670 char *ksym; 1671 ulong_t off; 1672 #if defined(__i386) 1673 int a; 1674 #endif 1675 1676 bop_printf(NULL, "Stack traceback:\n"); 1677 for (cnt = 0; cnt < 30; ++cnt) { /* up to 30 frames */ 1678 pc = frame->retaddr; 1679 if (pc == 0) 1680 break; 1681 ksym = kobj_getsymname(pc, &off); 1682 if (ksym) 1683 bop_printf(NULL, " %s+%lx", ksym, off); 1684 else 1685 bop_printf(NULL, " 0x%lx", pc); 1686 1687 frame = frame->old_frame; 1688 if (frame == 0) { 1689 bop_printf(NULL, "\n"); 1690 break; 1691 } 1692 #if defined(__i386) 1693 for (a = 0; a < 6; ++a) { /* try for 6 args */ 1694 if ((void *)&frame->arg[a] == (void *)frame->old_frame) 1695 break; 1696 if (a == 0) 1697 bop_printf(NULL, "("); 1698 else 1699 bop_printf(NULL, ","); 1700 bop_printf(NULL, "0x%lx", frame->arg[a]); 1701 } 1702 bop_printf(NULL, ")"); 1703 #endif 1704 bop_printf(NULL, "\n"); 1705 } 1706 } 1707 1708 struct trapframe { 1709 ulong_t error_code; /* optional */ 1710 ulong_t inst_ptr; 1711 ulong_t code_seg; 1712 ulong_t flags_reg; 1713 #ifdef __amd64 1714 ulong_t stk_ptr; 1715 ulong_t stk_seg; 1716 #endif 1717 }; 1718 1719 void 1720 bop_trap(ulong_t *tfp) 1721 { 1722 struct trapframe *tf = (struct trapframe *)tfp; 1723 bop_frame_t fakeframe; 1724 static int depth = 0; 1725 1726 /* 1727 * Check for an infinite loop of traps. 1728 */ 1729 if (++depth > 2) 1730 bop_panic("Nested trap"); 1731 1732 bop_printf(NULL, "Unexpected trap\n"); 1733 1734 /* 1735 * adjust the tf for optional error_code by detecting the code selector 1736 */ 1737 if (tf->code_seg != bcode_sel) 1738 tf = (struct trapframe *)(tfp - 1); 1739 else 1740 bop_printf(NULL, "error code 0x%lx\n", 1741 tf->error_code & 0xffffffff); 1742 1743 bop_printf(NULL, "instruction pointer 0x%lx\n", tf->inst_ptr); 1744 bop_printf(NULL, "code segment 0x%lx\n", tf->code_seg & 0xffff); 1745 bop_printf(NULL, "flags register 0x%lx\n", tf->flags_reg); 1746 #ifdef __amd64 1747 bop_printf(NULL, "return %%rsp 0x%lx\n", tf->stk_ptr); 1748 bop_printf(NULL, "return %%ss 0x%lx\n", tf->stk_seg & 0xffff); 1749 #endif 1750 1751 /* grab %[er]bp pushed by our code from the stack */ 1752 fakeframe.old_frame = (bop_frame_t *)*(tfp - 3); 1753 fakeframe.retaddr = (pc_t)tf->inst_ptr; 1754 bop_printf(NULL, "Attempting stack backtrace:\n"); 1755 bop_traceback(&fakeframe); 1756 bop_panic("unexpected trap in early boot"); 1757 } 1758 1759 extern void bop_trap_handler(void); 1760 1761 static gate_desc_t *bop_idt; 1762 1763 static desctbr_t bop_idt_info; 1764 1765 static void 1766 bop_idt_init(void) 1767 { 1768 int t; 1769 1770 bop_idt = (gate_desc_t *) 1771 do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 1772 bzero(bop_idt, MMU_PAGESIZE); 1773 for (t = 0; t < NIDT; ++t) { 1774 /* 1775 * Note that since boot runs without a TSS, the 1776 * double fault handler cannot use an alternate stack 1777 * (64-bit) or a task gate (32-bit). 1778 */ 1779 set_gatesegd(&bop_idt[t], &bop_trap_handler, bcode_sel, 1780 SDT_SYSIGT, TRP_KPL, 0); 1781 } 1782 bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1; 1783 bop_idt_info.dtr_base = (uintptr_t)bop_idt; 1784 wr_idtr(&bop_idt_info); 1785 } 1786 #endif /* !defined(__xpv) */ 1787 1788 /* 1789 * This is where we enter the kernel. It dummies up the boot_ops and 1790 * boot_syscalls vectors and jumps off to _kobj_boot() 1791 */ 1792 void 1793 _start(struct xboot_info *xbp) 1794 { 1795 bootops_t *bops = &bootop; 1796 extern void _kobj_boot(); 1797 1798 /* 1799 * 1st off - initialize the console for any error messages 1800 */ 1801 xbootp = xbp; 1802 #ifdef __xpv 1803 HYPERVISOR_shared_info = (void *)xbp->bi_shared_info; 1804 xen_info = xbp->bi_xen_start_info; 1805 #endif 1806 1807 #ifndef __xpv 1808 if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) == 1809 FASTBOOT_MAGIC) { 1810 post_fastreboot = 1; 1811 *((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0; 1812 } 1813 #endif 1814 1815 bcons_init((void *)xbp->bi_cmdline); 1816 have_console = 1; 1817 1818 /* 1819 * enable debugging 1820 */ 1821 if (strstr((char *)xbp->bi_cmdline, "kbm_debug")) 1822 kbm_debug = 1; 1823 1824 DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: "); 1825 DBG_MSG((char *)xbp->bi_cmdline); 1826 DBG_MSG("\n\n\n"); 1827 1828 /* 1829 * physavail is no longer used by startup 1830 */ 1831 bm.physinstalled = xbp->bi_phys_install; 1832 bm.pcimem = xbp->bi_pcimem; 1833 bm.rsvdmem = xbp->bi_rsvdmem; 1834 bm.physavail = NULL; 1835 1836 /* 1837 * initialize the boot time allocator 1838 */ 1839 next_phys = xbp->bi_next_paddr; 1840 DBG(next_phys); 1841 next_virt = (uintptr_t)xbp->bi_next_vaddr; 1842 DBG(next_virt); 1843 DBG_MSG("Initializing boot time memory management..."); 1844 #ifdef __xpv 1845 { 1846 xen_platform_parameters_t p; 1847 1848 /* This call shouldn't fail, dboot already did it once. */ 1849 (void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p); 1850 mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start); 1851 DBG(xen_virt_start); 1852 } 1853 #endif 1854 kbm_init(xbp); 1855 DBG_MSG("done\n"); 1856 1857 /* 1858 * Fill in the bootops vector 1859 */ 1860 bops->bsys_version = BO_VERSION; 1861 bops->boot_mem = &bm; 1862 bops->bsys_alloc = do_bsys_alloc; 1863 bops->bsys_free = do_bsys_free; 1864 bops->bsys_getproplen = do_bsys_getproplen; 1865 bops->bsys_getprop = do_bsys_getprop; 1866 bops->bsys_nextprop = do_bsys_nextprop; 1867 bops->bsys_printf = bop_printf; 1868 bops->bsys_doint = do_bsys_doint; 1869 1870 /* 1871 * BOP_EALLOC() is no longer needed 1872 */ 1873 bops->bsys_ealloc = do_bsys_ealloc; 1874 1875 #ifdef __xpv 1876 /* 1877 * On domain 0 we need to free up some physical memory that is 1878 * usable for DMA. Since GRUB loaded the boot_archive, it is 1879 * sitting in low MFN memory. We'll relocated the boot archive 1880 * pages to high PFN memory. 1881 */ 1882 if (DOMAIN_IS_INITDOMAIN(xen_info)) 1883 relocate_boot_archive(xbp); 1884 #endif 1885 1886 #ifndef __xpv 1887 /* 1888 * Install an IDT to catch early pagefaults (shouldn't have any). 1889 * Also needed for kmdb. 1890 */ 1891 bop_idt_init(); 1892 #endif 1893 1894 /* 1895 * Start building the boot properties from the command line 1896 */ 1897 DBG_MSG("Initializing boot properties:\n"); 1898 build_boot_properties(xbp); 1899 1900 if (strstr((char *)xbp->bi_cmdline, "prom_debug") || kbm_debug) { 1901 char *value; 1902 1903 value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 1904 boot_prop_display(value); 1905 } 1906 1907 /* 1908 * jump into krtld... 1909 */ 1910 _kobj_boot(&bop_sysp, NULL, bops, NULL); 1911 } 1912 1913 1914 /*ARGSUSED*/ 1915 static caddr_t 1916 no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align) 1917 { 1918 panic("Attempt to bsys_alloc() too late\n"); 1919 return (NULL); 1920 } 1921 1922 /*ARGSUSED*/ 1923 static void 1924 no_more_free(bootops_t *bop, caddr_t virt, size_t size) 1925 { 1926 panic("Attempt to bsys_free() too late\n"); 1927 } 1928 1929 void 1930 bop_no_more_mem(void) 1931 { 1932 DBG(total_bop_alloc_scratch); 1933 DBG(total_bop_alloc_kernel); 1934 bootops->bsys_alloc = no_more_alloc; 1935 bootops->bsys_free = no_more_free; 1936 } 1937 1938 1939 /* 1940 * Set ACPI firmware properties 1941 */ 1942 1943 static caddr_t 1944 vmap_phys(size_t length, paddr_t pa) 1945 { 1946 paddr_t start, end; 1947 caddr_t va; 1948 size_t len, page; 1949 1950 #ifdef __xpv 1951 pa = pfn_to_pa(xen_assign_pfn(mmu_btop(pa))) | (pa & MMU_PAGEOFFSET); 1952 #endif 1953 start = P2ALIGN(pa, MMU_PAGESIZE); 1954 end = P2ROUNDUP(pa + length, MMU_PAGESIZE); 1955 len = end - start; 1956 va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE); 1957 for (page = 0; page < len; page += MMU_PAGESIZE) 1958 kbm_map((uintptr_t)va + page, start + page, 0, 0); 1959 return (va + (pa & MMU_PAGEOFFSET)); 1960 } 1961 1962 static uint8_t 1963 checksum_table(uint8_t *tp, size_t len) 1964 { 1965 uint8_t sum = 0; 1966 1967 while (len-- > 0) 1968 sum += *tp++; 1969 1970 return (sum); 1971 } 1972 1973 static int 1974 valid_rsdp(ACPI_TABLE_RSDP *rp) 1975 { 1976 1977 /* validate the V1.x checksum */ 1978 if (checksum_table((uint8_t *)rp, ACPI_RSDP_CHECKSUM_LENGTH) != 0) 1979 return (0); 1980 1981 /* If pre-ACPI 2.0, this is a valid RSDP */ 1982 if (rp->Revision < 2) 1983 return (1); 1984 1985 /* validate the V2.x checksum */ 1986 if (checksum_table((uint8_t *)rp, ACPI_RSDP_XCHECKSUM_LENGTH) != 0) 1987 return (0); 1988 1989 return (1); 1990 } 1991 1992 /* 1993 * Scan memory range for an RSDP; 1994 * see ACPI 3.0 Spec, 5.2.5.1 1995 */ 1996 static ACPI_TABLE_RSDP * 1997 scan_rsdp(paddr_t start, paddr_t end) 1998 { 1999 ssize_t len = end - start; 2000 caddr_t ptr; 2001 2002 ptr = vmap_phys(len, start); 2003 while (len > 0) { 2004 if (strncmp(ptr, ACPI_SIG_RSDP, strlen(ACPI_SIG_RSDP)) == 0 && 2005 valid_rsdp((ACPI_TABLE_RSDP *)ptr)) 2006 return ((ACPI_TABLE_RSDP *)ptr); 2007 2008 ptr += ACPI_RSDP_SCAN_STEP; 2009 len -= ACPI_RSDP_SCAN_STEP; 2010 } 2011 2012 return (NULL); 2013 } 2014 2015 /* 2016 * Refer to ACPI 3.0 Spec, section 5.2.5.1 to understand this function 2017 */ 2018 static ACPI_TABLE_RSDP * 2019 find_rsdp() 2020 { 2021 ACPI_TABLE_RSDP *rsdp; 2022 uint16_t *ebda_seg; 2023 paddr_t ebda_addr; 2024 2025 /* 2026 * Get the EBDA segment and scan the first 1K 2027 */ 2028 ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t), 2029 ACPI_EBDA_PTR_LOCATION); 2030 ebda_addr = *ebda_seg << 4; 2031 rsdp = scan_rsdp(ebda_addr, ebda_addr + ACPI_EBDA_WINDOW_SIZE); 2032 if (rsdp == NULL) 2033 /* if EBDA doesn't contain RSDP, look in BIOS memory */ 2034 rsdp = scan_rsdp(ACPI_HI_RSDP_WINDOW_BASE, 2035 ACPI_HI_RSDP_WINDOW_BASE + ACPI_HI_RSDP_WINDOW_SIZE); 2036 return (rsdp); 2037 } 2038 2039 static ACPI_TABLE_HEADER * 2040 map_fw_table(paddr_t table_addr) 2041 { 2042 ACPI_TABLE_HEADER *tp; 2043 size_t len = MAX(sizeof (*tp), MMU_PAGESIZE); 2044 2045 /* 2046 * Map at least a page; if the table is larger than this, remap it 2047 */ 2048 tp = (ACPI_TABLE_HEADER *)vmap_phys(len, table_addr); 2049 if (tp->Length > len) 2050 tp = (ACPI_TABLE_HEADER *)vmap_phys(tp->Length, table_addr); 2051 return (tp); 2052 } 2053 2054 static ACPI_TABLE_HEADER * 2055 find_fw_table(char *signature) 2056 { 2057 static int revision = 0; 2058 static ACPI_TABLE_XSDT *xsdt; 2059 static int len; 2060 paddr_t xsdt_addr; 2061 ACPI_TABLE_RSDP *rsdp; 2062 ACPI_TABLE_HEADER *tp; 2063 paddr_t table_addr; 2064 int n; 2065 2066 if (strlen(signature) != ACPI_NAME_SIZE) 2067 return (NULL); 2068 2069 /* 2070 * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help 2071 * understand this code. If we haven't already found the RSDT/XSDT, 2072 * revision will be 0. Find the RSDP and check the revision 2073 * to find out whether to use the RSDT or XSDT. If revision is 2074 * 0 or 1, use the RSDT and set internal revision to 1; if it is 2, 2075 * use the XSDT. If the XSDT address is 0, though, fall back to 2076 * revision 1 and use the RSDT. 2077 */ 2078 if (revision == 0) { 2079 if ((rsdp = find_rsdp()) != NULL) { 2080 revision = rsdp->Revision; 2081 /* 2082 * ACPI 6.0 states that current revision is 2 2083 * from acpi_table_rsdp definition: 2084 * Must be (0) for ACPI 1.0 or (2) for ACPI 2.0+ 2085 */ 2086 if (revision > 2) 2087 revision = 2; 2088 switch (revision) { 2089 case 2: 2090 /* 2091 * Use the XSDT unless BIOS is buggy and 2092 * claims to be rev 2 but has a null XSDT 2093 * address 2094 */ 2095 xsdt_addr = rsdp->XsdtPhysicalAddress; 2096 if (xsdt_addr != 0) 2097 break; 2098 /* FALLTHROUGH */ 2099 case 0: 2100 /* treat RSDP rev 0 as revision 1 internally */ 2101 revision = 1; 2102 /* FALLTHROUGH */ 2103 case 1: 2104 /* use the RSDT for rev 0/1 */ 2105 xsdt_addr = rsdp->RsdtPhysicalAddress; 2106 break; 2107 default: 2108 /* unknown revision */ 2109 revision = 0; 2110 break; 2111 } 2112 } 2113 if (revision == 0) 2114 return (NULL); 2115 2116 /* cache the XSDT info */ 2117 xsdt = (ACPI_TABLE_XSDT *)map_fw_table(xsdt_addr); 2118 len = (xsdt->Header.Length - sizeof (xsdt->Header)) / 2119 ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t)); 2120 } 2121 2122 /* 2123 * Scan the table headers looking for a signature match 2124 */ 2125 for (n = 0; n < len; n++) { 2126 ACPI_TABLE_RSDT *rsdt = (ACPI_TABLE_RSDT *)xsdt; 2127 table_addr = (revision == 1) ? rsdt->TableOffsetEntry[n] : 2128 xsdt->TableOffsetEntry[n]; 2129 2130 if (table_addr == 0) 2131 continue; 2132 tp = map_fw_table(table_addr); 2133 if (strncmp(tp->Signature, signature, ACPI_NAME_SIZE) == 0) { 2134 return (tp); 2135 } 2136 } 2137 return (NULL); 2138 } 2139 2140 static void 2141 process_mcfg(ACPI_TABLE_MCFG *tp) 2142 { 2143 ACPI_MCFG_ALLOCATION *cfg_baap; 2144 char *cfg_baa_endp; 2145 int64_t ecfginfo[4]; 2146 2147 cfg_baap = (ACPI_MCFG_ALLOCATION *)((uintptr_t)tp + sizeof (*tp)); 2148 cfg_baa_endp = ((char *)tp) + tp->Header.Length; 2149 while ((char *)cfg_baap < cfg_baa_endp) { 2150 if (cfg_baap->Address != 0 && cfg_baap->PciSegment == 0) { 2151 ecfginfo[0] = cfg_baap->Address; 2152 ecfginfo[1] = cfg_baap->PciSegment; 2153 ecfginfo[2] = cfg_baap->StartBusNumber; 2154 ecfginfo[3] = cfg_baap->EndBusNumber; 2155 bsetprop(MCFG_PROPNAME, strlen(MCFG_PROPNAME), 2156 ecfginfo, sizeof (ecfginfo)); 2157 break; 2158 } 2159 cfg_baap++; 2160 } 2161 } 2162 2163 #ifndef __xpv 2164 static void 2165 process_madt_entries(ACPI_TABLE_MADT *tp, uint32_t *cpu_countp, 2166 uint32_t *cpu_possible_countp, uint32_t *cpu_apicid_array) 2167 { 2168 ACPI_SUBTABLE_HEADER *item, *end; 2169 uint32_t cpu_count = 0; 2170 uint32_t cpu_possible_count = 0; 2171 2172 /* 2173 * Determine number of CPUs and keep track of "final" APIC ID 2174 * for each CPU by walking through ACPI MADT processor list 2175 */ 2176 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp); 2177 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp)); 2178 2179 while (item < end) { 2180 switch (item->Type) { 2181 case ACPI_MADT_TYPE_LOCAL_APIC: { 2182 ACPI_MADT_LOCAL_APIC *cpu = 2183 (ACPI_MADT_LOCAL_APIC *) item; 2184 2185 if (cpu->LapicFlags & ACPI_MADT_ENABLED) { 2186 if (cpu_apicid_array != NULL) 2187 cpu_apicid_array[cpu_count] = cpu->Id; 2188 cpu_count++; 2189 } 2190 cpu_possible_count++; 2191 break; 2192 } 2193 case ACPI_MADT_TYPE_LOCAL_X2APIC: { 2194 ACPI_MADT_LOCAL_X2APIC *cpu = 2195 (ACPI_MADT_LOCAL_X2APIC *) item; 2196 2197 if (cpu->LapicFlags & ACPI_MADT_ENABLED) { 2198 if (cpu_apicid_array != NULL) 2199 cpu_apicid_array[cpu_count] = 2200 cpu->LocalApicId; 2201 cpu_count++; 2202 } 2203 cpu_possible_count++; 2204 break; 2205 } 2206 default: 2207 if (kbm_debug) 2208 bop_printf(NULL, "MADT type %d\n", item->Type); 2209 break; 2210 } 2211 2212 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + item->Length); 2213 } 2214 if (cpu_countp) 2215 *cpu_countp = cpu_count; 2216 if (cpu_possible_countp) 2217 *cpu_possible_countp = cpu_possible_count; 2218 } 2219 2220 static void 2221 process_madt(ACPI_TABLE_MADT *tp) 2222 { 2223 uint32_t cpu_count = 0; 2224 uint32_t cpu_possible_count = 0; 2225 uint32_t *cpu_apicid_array; /* x2APIC ID is 32bit! */ 2226 2227 if (tp != NULL) { 2228 /* count cpu's */ 2229 process_madt_entries(tp, &cpu_count, &cpu_possible_count, NULL); 2230 2231 cpu_apicid_array = (uint32_t *)do_bsys_alloc(NULL, NULL, 2232 cpu_count * sizeof (*cpu_apicid_array), MMU_PAGESIZE); 2233 if (cpu_apicid_array == NULL) 2234 bop_panic("Not enough memory for APIC ID array"); 2235 2236 /* copy IDs */ 2237 process_madt_entries(tp, NULL, NULL, cpu_apicid_array); 2238 2239 /* 2240 * Make boot property for array of "final" APIC IDs for each 2241 * CPU 2242 */ 2243 bsetprop(BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY), 2244 cpu_apicid_array, cpu_count * sizeof (*cpu_apicid_array)); 2245 } 2246 2247 /* 2248 * Check whether property plat-max-ncpus is already set. 2249 */ 2250 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) { 2251 /* 2252 * Set plat-max-ncpus to number of maximum possible CPUs given 2253 * in MADT if it hasn't been set. 2254 * There's no formal way to detect max possible CPUs supported 2255 * by platform according to ACPI spec3.0b. So current CPU 2256 * hotplug implementation expects that all possible CPUs will 2257 * have an entry in MADT table and set plat-max-ncpus to number 2258 * of entries in MADT. 2259 * With introducing of ACPI4.0, Maximum System Capability Table 2260 * (MSCT) provides maximum number of CPUs supported by platform. 2261 * If MSCT is unavailable, fall back to old way. 2262 */ 2263 if (tp != NULL) 2264 bsetpropsi(PLAT_MAX_NCPUS_NAME, cpu_possible_count); 2265 } 2266 2267 /* 2268 * Set boot property boot-max-ncpus to number of CPUs existing at 2269 * boot time. boot-max-ncpus is mainly used for optimization. 2270 */ 2271 if (tp != NULL) 2272 bsetpropsi(BOOT_MAX_NCPUS_NAME, cpu_count); 2273 2274 /* 2275 * User-set boot-ncpus overrides firmware count 2276 */ 2277 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0) 2278 return; 2279 2280 /* 2281 * Set boot property boot-ncpus to number of active CPUs given in MADT 2282 * if it hasn't been set yet. 2283 */ 2284 if (tp != NULL) 2285 bsetpropsi(BOOT_NCPUS_NAME, cpu_count); 2286 } 2287 2288 static void 2289 process_srat(ACPI_TABLE_SRAT *tp) 2290 { 2291 ACPI_SUBTABLE_HEADER *item, *end; 2292 int i; 2293 int proc_num, mem_num; 2294 #pragma pack(1) 2295 struct { 2296 uint32_t domain; 2297 uint32_t apic_id; 2298 uint32_t sapic_id; 2299 } processor; 2300 struct { 2301 uint32_t domain; 2302 uint32_t x2apic_id; 2303 } x2apic; 2304 struct { 2305 uint32_t domain; 2306 uint64_t addr; 2307 uint64_t length; 2308 uint32_t flags; 2309 } memory; 2310 #pragma pack() 2311 char prop_name[30]; 2312 uint64_t maxmem = 0; 2313 2314 if (tp == NULL) 2315 return; 2316 2317 proc_num = mem_num = 0; 2318 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp); 2319 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp)); 2320 while (item < end) { 2321 switch (item->Type) { 2322 case ACPI_SRAT_TYPE_CPU_AFFINITY: { 2323 ACPI_SRAT_CPU_AFFINITY *cpu = 2324 (ACPI_SRAT_CPU_AFFINITY *) item; 2325 2326 if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED)) 2327 break; 2328 processor.domain = cpu->ProximityDomainLo; 2329 for (i = 0; i < 3; i++) 2330 processor.domain += 2331 cpu->ProximityDomainHi[i] << ((i + 1) * 8); 2332 processor.apic_id = cpu->ApicId; 2333 processor.sapic_id = cpu->LocalSapicEid; 2334 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d", 2335 proc_num); 2336 bsetprop(prop_name, strlen(prop_name), &processor, 2337 sizeof (processor)); 2338 proc_num++; 2339 break; 2340 } 2341 case ACPI_SRAT_TYPE_MEMORY_AFFINITY: { 2342 ACPI_SRAT_MEM_AFFINITY *mem = 2343 (ACPI_SRAT_MEM_AFFINITY *)item; 2344 2345 if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED)) 2346 break; 2347 memory.domain = mem->ProximityDomain; 2348 memory.addr = mem->BaseAddress; 2349 memory.length = mem->Length; 2350 memory.flags = mem->Flags; 2351 (void) snprintf(prop_name, 30, "acpi-srat-memory-%d", 2352 mem_num); 2353 bsetprop(prop_name, strlen(prop_name), &memory, 2354 sizeof (memory)); 2355 if ((mem->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) && 2356 (memory.addr + memory.length > maxmem)) { 2357 maxmem = memory.addr + memory.length; 2358 } 2359 mem_num++; 2360 break; 2361 } 2362 case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: { 2363 ACPI_SRAT_X2APIC_CPU_AFFINITY *x2cpu = 2364 (ACPI_SRAT_X2APIC_CPU_AFFINITY *) item; 2365 2366 if (!(x2cpu->Flags & ACPI_SRAT_CPU_ENABLED)) 2367 break; 2368 x2apic.domain = x2cpu->ProximityDomain; 2369 x2apic.x2apic_id = x2cpu->ApicId; 2370 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d", 2371 proc_num); 2372 bsetprop(prop_name, strlen(prop_name), &x2apic, 2373 sizeof (x2apic)); 2374 proc_num++; 2375 break; 2376 } 2377 default: 2378 if (kbm_debug) 2379 bop_printf(NULL, "SRAT type %d\n", item->Type); 2380 break; 2381 } 2382 2383 item = (ACPI_SUBTABLE_HEADER *) 2384 (item->Length + (uintptr_t)item); 2385 } 2386 2387 /* 2388 * The maximum physical address calculated from the SRAT table is more 2389 * accurate than that calculated from the MSCT table. 2390 */ 2391 if (maxmem != 0) { 2392 plat_dr_physmax = btop(maxmem); 2393 } 2394 } 2395 2396 static void 2397 process_slit(ACPI_TABLE_SLIT *tp) 2398 { 2399 2400 /* 2401 * Check the number of localities; if it's too huge, we just 2402 * return and locality enumeration code will handle this later, 2403 * if possible. 2404 * 2405 * Note that the size of the table is the square of the 2406 * number of localities; if the number of localities exceeds 2407 * UINT16_MAX, the table size may overflow an int when being 2408 * passed to bsetprop() below. 2409 */ 2410 if (tp->LocalityCount >= SLIT_LOCALITIES_MAX) 2411 return; 2412 2413 bsetprop(SLIT_NUM_PROPNAME, strlen(SLIT_NUM_PROPNAME), 2414 &tp->LocalityCount, sizeof (tp->LocalityCount)); 2415 bsetprop(SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->Entry, 2416 tp->LocalityCount * tp->LocalityCount); 2417 } 2418 2419 static ACPI_TABLE_MSCT * 2420 process_msct(ACPI_TABLE_MSCT *tp) 2421 { 2422 int last_seen = 0; 2423 int proc_num = 0; 2424 ACPI_MSCT_PROXIMITY *item, *end; 2425 extern uint64_t plat_dr_options; 2426 2427 ASSERT(tp != NULL); 2428 2429 end = (ACPI_MSCT_PROXIMITY *)(tp->Header.Length + (uintptr_t)tp); 2430 for (item = (void *)((uintptr_t)tp + tp->ProximityOffset); 2431 item < end; 2432 item = (void *)(item->Length + (uintptr_t)item)) { 2433 /* 2434 * Sanity check according to section 5.2.19.1 of ACPI 4.0. 2435 * Revision 1 2436 * Length 22 2437 */ 2438 if (item->Revision != 1 || item->Length != 22) { 2439 cmn_err(CE_CONT, 2440 "?boot: unknown proximity domain structure in MSCT " 2441 "with Revision(%d), Length(%d).\n", 2442 (int)item->Revision, (int)item->Length); 2443 return (NULL); 2444 } else if (item->RangeStart > item->RangeEnd) { 2445 cmn_err(CE_CONT, 2446 "?boot: invalid proximity domain structure in MSCT " 2447 "with RangeStart(%u), RangeEnd(%u).\n", 2448 item->RangeStart, item->RangeEnd); 2449 return (NULL); 2450 } else if (item->RangeStart != last_seen) { 2451 /* 2452 * Items must be organized in ascending order of the 2453 * proximity domain enumerations. 2454 */ 2455 cmn_err(CE_CONT, 2456 "?boot: invalid proximity domain structure in MSCT," 2457 " items are not orginized in ascending order.\n"); 2458 return (NULL); 2459 } 2460 2461 /* 2462 * If ProcessorCapacity is 0 then there would be no CPUs in this 2463 * domain. 2464 */ 2465 if (item->ProcessorCapacity != 0) { 2466 proc_num += (item->RangeEnd - item->RangeStart + 1) * 2467 item->ProcessorCapacity; 2468 } 2469 2470 last_seen = item->RangeEnd - item->RangeStart + 1; 2471 /* 2472 * Break out if all proximity domains have been processed. 2473 * Some BIOSes may have unused items at the end of MSCT table. 2474 */ 2475 if (last_seen > tp->MaxProximityDomains) { 2476 break; 2477 } 2478 } 2479 if (last_seen != tp->MaxProximityDomains + 1) { 2480 cmn_err(CE_CONT, 2481 "?boot: invalid proximity domain structure in MSCT, " 2482 "proximity domain count doesn't match.\n"); 2483 return (NULL); 2484 } 2485 2486 /* 2487 * Set plat-max-ncpus property if it hasn't been set yet. 2488 */ 2489 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) { 2490 if (proc_num != 0) { 2491 bsetpropsi(PLAT_MAX_NCPUS_NAME, proc_num); 2492 } 2493 } 2494 2495 /* 2496 * Use Maximum Physical Address from the MSCT table as upper limit for 2497 * memory hot-adding by default. It may be overridden by value from 2498 * the SRAT table or the "plat-dr-physmax" boot option. 2499 */ 2500 plat_dr_physmax = btop(tp->MaxAddress + 1); 2501 2502 /* 2503 * Existence of MSCT implies CPU/memory hotplug-capability for the 2504 * platform. 2505 */ 2506 plat_dr_options |= PLAT_DR_FEATURE_CPU; 2507 plat_dr_options |= PLAT_DR_FEATURE_MEMORY; 2508 2509 return (tp); 2510 } 2511 2512 #else /* __xpv */ 2513 static void 2514 enumerate_xen_cpus() 2515 { 2516 processorid_t id, max_id; 2517 2518 /* 2519 * User-set boot-ncpus overrides enumeration 2520 */ 2521 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0) 2522 return; 2523 2524 /* 2525 * Probe every possible virtual CPU id and remember the 2526 * highest id present; the count of CPUs is one greater 2527 * than this. This tacitly assumes at least cpu 0 is present. 2528 */ 2529 max_id = 0; 2530 for (id = 0; id < MAX_VIRT_CPUS; id++) 2531 if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0) 2532 max_id = id; 2533 2534 bsetpropsi(BOOT_NCPUS_NAME, max_id+1); 2535 2536 } 2537 #endif /* __xpv */ 2538 2539 static void 2540 build_firmware_properties(void) 2541 { 2542 ACPI_TABLE_HEADER *tp = NULL; 2543 2544 #ifndef __xpv 2545 if ((tp = find_fw_table(ACPI_SIG_MSCT)) != NULL) 2546 msct_ptr = process_msct((ACPI_TABLE_MSCT *)tp); 2547 else 2548 msct_ptr = NULL; 2549 2550 if ((tp = find_fw_table(ACPI_SIG_MADT)) != NULL) 2551 process_madt((ACPI_TABLE_MADT *)tp); 2552 2553 if ((srat_ptr = (ACPI_TABLE_SRAT *) 2554 find_fw_table(ACPI_SIG_SRAT)) != NULL) 2555 process_srat(srat_ptr); 2556 2557 if (slit_ptr = (ACPI_TABLE_SLIT *)find_fw_table(ACPI_SIG_SLIT)) 2558 process_slit(slit_ptr); 2559 2560 tp = find_fw_table(ACPI_SIG_MCFG); 2561 #else /* __xpv */ 2562 enumerate_xen_cpus(); 2563 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2564 tp = find_fw_table(ACPI_SIG_MCFG); 2565 #endif /* __xpv */ 2566 if (tp != NULL) 2567 process_mcfg((ACPI_TABLE_MCFG *)tp); 2568 } 2569 2570 /* 2571 * fake up a boot property for deferred early console output 2572 * this is used by both graphical boot and the (developer only) 2573 * USB serial console 2574 */ 2575 void * 2576 defcons_init(size_t size) 2577 { 2578 static char *p = NULL; 2579 2580 p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE); 2581 *p = 0; 2582 bsetprop("deferred-console-buf", strlen("deferred-console-buf") + 1, 2583 &p, sizeof (p)); 2584 return (p); 2585 } 2586 2587 /*ARGSUSED*/ 2588 int 2589 boot_compinfo(int fd, struct compinfo *cbp) 2590 { 2591 cbp->iscmp = 0; 2592 cbp->blksize = MAXBSIZE; 2593 return (0); 2594 } 2595 2596 #define BP_MAX_STRLEN 32 2597 2598 /* 2599 * Get value for given boot property 2600 */ 2601 int 2602 bootprop_getval(const char *prop_name, u_longlong_t *prop_value) 2603 { 2604 int boot_prop_len; 2605 char str[BP_MAX_STRLEN]; 2606 u_longlong_t value; 2607 2608 boot_prop_len = BOP_GETPROPLEN(bootops, prop_name); 2609 if (boot_prop_len < 0 || boot_prop_len > sizeof (str) || 2610 BOP_GETPROP(bootops, prop_name, str) < 0 || 2611 kobj_getvalue(str, &value) == -1) 2612 return (-1); 2613 2614 if (prop_value) 2615 *prop_value = value; 2616 2617 return (0); 2618 }