
new/usr/src/uts/i86pc/os/biosdisk.c 1

**
 7961 Mon Mar 27 00:11:46 2017
new/usr/src/uts/i86pc/os/biosdisk.c
XXX nobios
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #include <sys/types.h>
27 #include <sys/param.h>
28 #include <sys/controlregs.h>
29 #include <sys/bootconf.h>
30 #include <sys/bootvfs.h>
31 #include <sys/bootregs.h>
32 #include <sys/bootconf.h>
33 #include <sys/conf.h>
34 #include <sys/promif.h>
35 #include <sys/ddi.h>
36 #include <sys/sunddi.h>
37 #include <sys/sunndi.h>
38 #include <sys/biosdisk.h>
39 #include <sys/psw.h>
40 #include <sys/machsystm.h>
41 #if defined(__xpv)
42 #include <sys/hypervisor.h>
43 #endif

45 extern int prom_debug;

47 /* hard code realmode memory address for now */
48 #define BIOS_RES_BUFFER_ADDR 0x7000

50 #define BIOSDEV_NUM 8
51 #define STARTING_DRVNUM 0x80
52 #define FP_OFF(fp) (((uintptr_t)(fp)) & 0xFFFF)
53 #define FP_SEG(fp) ((((uintptr_t)(fp)) >> 16) & 0xFFFF)

55 #ifdef DEBUG
56 int biosdebug = 0;
57 #define dprintf(fmt) \
58 if (biosdebug) \
59 prom_printf fmt
60 #else
61 #define dprintf(fmt)

new/usr/src/uts/i86pc/os/biosdisk.c 2

62 #endif

64 biosdev_data_t biosdev_info[BIOSDEV_NUM]; /* from 0x80 to 0x87 */
65 int dobiosdev = 1;

68 static int bios_check_extension_present(uchar_t);
69 static int get_dev_params(uchar_t);
70 static int read_firstblock(uchar_t drivenum);
71 static int drive_present(uchar_t drivenum);
72 static void reset_disk(uchar_t drivenum);
73 static int is_eltorito(uchar_t drivenum);

75 #if !defined(__xpv)
76 void
77 startup_bios_disk()
78 {
79 uchar_t drivenum;
80 int got_devparams = 0;
81 int got_first_block = 0;
82 uchar_t name[20];
83 dev_info_t *devi;
84 int extensions;

86 if (dobiosdev == 0 || !bios_calls_available) {
87 /*
88 * If BIOS calls have been disabled, or are not supported on
89 * this system, we cannot probe for the startup disk.
90 */
85 if (dobiosdev == 0)
91 return;
92 }

94 for (drivenum = 0x80; drivenum < (0x80 + BIOSDEV_NUM); drivenum++) {

96 if (!drive_present(drivenum))
97 continue;

99 extensions = bios_check_extension_present(drivenum);

101 /*
102 * If we’re booting from an Eltorito CD/DVD image, there’s
103 * no need to get the device parameters or read the first block
104 * because we’ll never install onto this device.
105 */
106 if (extensions && is_eltorito(drivenum))
107 continue;

109 if (extensions && get_dev_params(drivenum))
110 got_devparams = 1;
111 else
112 got_devparams = 0;

114 if ((got_first_block = read_firstblock(drivenum)) == 0) {
115 /* retry */
116 got_first_block = read_firstblock(drivenum);
117 }

119 if (got_devparams || got_first_block) {
120 (void) sprintf((char *)name, "biosdev-0x%x", drivenum);
121 devi = ddi_root_node();
122 (void) e_ddi_prop_update_byte_array(DDI_DEV_T_NONE,
123 devi, (char *)name,
124 (uchar_t *)&biosdev_info[drivenum - 0x80],
125 sizeof (biosdev_data_t));
126 }

new/usr/src/uts/i86pc/os/biosdisk.c 3

127 }
128 }

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/os/fakebop.c 1

**
 63138 Mon Mar 27 00:11:47 2017
new/usr/src/uts/i86pc/os/fakebop.c
XXX nobios
**
______unchanged_portion_omitted_

120 static bootprop_t *bprops = NULL;
121 static char *curr_page = NULL; /* ptr to avail bprop memory */
122 static int curr_space = 0; /* amount of memory at curr_page */

124 #ifdef __xpv
125 start_info_t *xen_info;
126 shared_info_t *HYPERVISOR_shared_info;
127 #endif

129 /*
130 * some allocator statistics
131 */
132 static ulong_t total_bop_alloc_scratch = 0;
133 static ulong_t total_bop_alloc_kernel = 0;

135 static void build_firmware_properties(void);

137 static int early_allocation = 1;

139 int force_fastreboot = 0;
140 volatile int fastreboot_onpanic = 0;
141 int post_fastreboot = 0;
142 #ifdef __xpv
143 volatile int fastreboot_capable = 0;
144 boolean_t bios_calls_available = B_FALSE;
145 #else
146 volatile int fastreboot_capable = 1;
147 boolean_t bios_calls_available = B_TRUE;
148 #endif

150 /*
151 * Information saved from current boot for fast reboot.
152 * If the information size exceeds what we have allocated, fast reboot
153 * will not be supported.
154 */
155 multiboot_info_t saved_mbi;
156 mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT];
157 uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE];
158 char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
159 int saved_cmdline_len = 0;
160 size_t saved_file_size[FASTBOOT_MAX_FILES_MAP];

162 /*
163 * Turn off fastreboot_onpanic to avoid panic loop.
164 */
165 char fastreboot_onpanic_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
166 static const char fastreboot_onpanic_args[] = " -B fastreboot_onpanic=0";

168 /*
169 * Pointers to where System Resource Affinity Table (SRAT), System Locality
170 * Information Table (SLIT) and Maximum System Capability Table (MSCT)
171 * are mapped into virtual memory
172 */
173 ACPI_TABLE_SRAT *srat_ptr = NULL;
174 ACPI_TABLE_SLIT *slit_ptr = NULL;
175 ACPI_TABLE_MSCT *msct_ptr = NULL;

177 /*
178 * Arbitrary limit on number of localities we handle; if

new/usr/src/uts/i86pc/os/fakebop.c 2

179 * this limit is raised to more than UINT16_MAX, make sure
180 * process_slit() knows how to handle it.
181 */
182 #define SLIT_LOCALITIES_MAX (4096)

184 #define SLIT_NUM_PROPNAME "acpi-slit-localities"
185 #define SLIT_PROPNAME "acpi-slit"

187 /*
188 * Allocate aligned physical memory at boot time. This allocator allocates
189 * from the highest possible addresses. This avoids exhausting memory that
190 * would be useful for DMA buffers.
191 */
192 paddr_t
193 do_bop_phys_alloc(uint64_t size, uint64_t align)
194 {
195 paddr_t pa = 0;
196 paddr_t start;
197 paddr_t end;
198 struct memlist *ml = (struct memlist *)xbootp->bi_phys_install;

200 /*
201 * Be careful if high memory usage is limited in startup.c
202 * Since there are holes in the low part of the physical address
203 * space we can treat physmem as a pfn (not just a pgcnt) and
204 * get a conservative upper limit.
205 */
206 if (physmem != 0 && high_phys > pfn_to_pa(physmem))
207 high_phys = pfn_to_pa(physmem);

209 /*
210 * find the lowest or highest available memory in physinstalled
211 * On 32 bit avoid physmem above 4Gig if PAE isn’t enabled
212 */
213 #if defined(__i386)
214 if (xbootp->bi_use_pae == 0 && high_phys > FOUR_GIG)
215 high_phys = FOUR_GIG;
216 #endif

218 /*
219 * find the highest available memory in physinstalled
220 */
221 size = P2ROUNDUP(size, align);
222 for (; ml; ml = ml->ml_next) {
223 start = P2ROUNDUP(ml->ml_address, align);
224 end = P2ALIGN(ml->ml_address + ml->ml_size, align);
225 if (start < next_phys)
226 start = P2ROUNDUP(next_phys, align);
227 if (end > high_phys)
228 end = P2ALIGN(high_phys, align);

230 if (end <= start)
231 continue;
232 if (end - start < size)
233 continue;

235 /*
236 * Early allocations need to use low memory, since
237 * physmem might be further limited by bootenv.rc
238 */
239 if (early_allocation) {
240 if (pa == 0 || start < pa)
241 pa = start;
242 } else {
243 if (end - size > pa)
244 pa = end - size;

new/usr/src/uts/i86pc/os/fakebop.c 3

245 }
246 }
247 if (pa != 0) {
248 if (early_allocation)
249 next_phys = pa + size;
250 else
251 high_phys = pa;
252 return (pa);
253 }
254 bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64
255 ") Out of memory\n", size, align);
256 /*NOTREACHED*/
257 }

______unchanged_portion_omitted_

2514 /*
2515 * If this system has a PC-compatible BIOS, it will have handlers for
2516 * various well-known BIOS calls. These calls take the form of INT
2517 * instructions, revectoring to the nominated entry in the real mode
2518 * Interrupt Vector Table (IVT). If all of the commonly used entries (from
2519 * INT 10h up to INT 1Ah) are zero, we almost certainly don’t want to make
2520 * use of BOP_DOINT() later.
2521 *
2522 * The IVT begins at linear address 0 on the 8086. Though later CPUs
2523 * allowed it to be moved, it seems that most BIOS implementations choose
2524 * not to do so for compatibility reasons. Our BIOS call trampoline (see
2525 * "idt_info" in "uts/i86pc/ml/bios_call_src.s") also assumes this address.
2526 */
2527 static int
2528 system_has_bios(void)
2529 {
2530 uint32_t all_ivts = 0;

2532 DBG_MSG("\nBIOS IVT Entries:\n");
2533 for (uint32_t intnum = 0x10; intnum <= 0x1a; intnum++) {
2534 /*
2535 * The first software interrupt number (i.e. INT 0h) maps to
2536 * vector number 32 in the IVT. Each entry in the IVT is
2537 * four bytes, describing a 16 bit far call address.
2538 */
2539 uintptr_t slot = 4 * (32 + intnum);
2540 uint32_t ivte = *((uint32_t *)slot);

2542 if (ivte != 0) {
2543 DBG(intnum);
2544 DBG(ivte);
2545 }
2546 all_ivts |= ivte;
2547 }
2548 if (all_ivts == 0) {
2549 DBG_MSG("System has no BIOS IVT entries\n");
2550 }
2551 DBG_MSG("\n");

2553 return (all_ivts != 0);
2554 }

2556 #else /* __xpv */
2557 static void
2558 enumerate_xen_cpus()
2559 {
2560 processorid_t id, max_id;

2562 /*
2563 * User-set boot-ncpus overrides enumeration
2564 */

new/usr/src/uts/i86pc/os/fakebop.c 4

2565 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2566 return;

2568 /*
2569 * Probe every possible virtual CPU id and remember the
2570 * highest id present; the count of CPUs is one greater
2571 * than this. This tacitly assumes at least cpu 0 is present.
2572 */
2573 max_id = 0;
2574 for (id = 0; id < MAX_VIRT_CPUS; id++)
2575 if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0)
2576 max_id = id;

2578 bsetpropsi(BOOT_NCPUS_NAME, max_id+1);

2580 }
2581 #endif /* __xpv */

2583 static void
2584 build_firmware_properties(void)
2585 {
2586 ACPI_TABLE_HEADER *tp = NULL;

2588 #ifndef __xpv
2589 if (do_bsys_getproplen(NULL, "no-bios") > 0 || !system_has_bios())
2590 bios_calls_available = B_FALSE;

2592 if ((tp = find_fw_table(ACPI_SIG_MSCT)) != NULL)
2593 msct_ptr = process_msct((ACPI_TABLE_MSCT *)tp);
2594 else
2595 msct_ptr = NULL;

2597 if ((tp = find_fw_table(ACPI_SIG_MADT)) != NULL)
2598 process_madt((ACPI_TABLE_MADT *)tp);

2600 if ((srat_ptr = (ACPI_TABLE_SRAT *)
2601 find_fw_table(ACPI_SIG_SRAT)) != NULL)
2602 process_srat(srat_ptr);

2604 if (slit_ptr = (ACPI_TABLE_SLIT *)find_fw_table(ACPI_SIG_SLIT))
2605 process_slit(slit_ptr);

2607 tp = find_fw_table(ACPI_SIG_MCFG);
2608 #else /* __xpv */
2609 enumerate_xen_cpus();
2610 if (DOMAIN_IS_INITDOMAIN(xen_info))
2611 tp = find_fw_table(ACPI_SIG_MCFG);
2612 #endif /* __xpv */
2613 if (tp != NULL)
2614 process_mcfg((ACPI_TABLE_MCFG *)tp);
2615 }
______unchanged_portion_omitted_

new/usr/src/uts/i86pc/os/mlsetup.c 1

**
 14254 Mon Mar 27 00:11:48 2017
new/usr/src/uts/i86pc/os/mlsetup.c
XXX nobios
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2012 Gary Mills
23 *
24 * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved.
25 * Copyright (c) 2011 by Delphix. All rights reserved.
26 * Copyright 2016 Joyent, Inc.
27 */
28 /*
29 * Copyright (c) 2010, Intel Corporation.
30 * All rights reserved.
31 */

33 #include <sys/types.h>
34 #include <sys/sysmacros.h>
35 #include <sys/disp.h>
36 #include <sys/promif.h>
37 #include <sys/clock.h>
38 #include <sys/cpuvar.h>
39 #include <sys/stack.h>
40 #include <vm/as.h>
41 #include <vm/hat.h>
42 #include <sys/reboot.h>
43 #include <sys/avintr.h>
44 #include <sys/vtrace.h>
45 #include <sys/proc.h>
46 #include <sys/thread.h>
47 #include <sys/cpupart.h>
48 #include <sys/pset.h>
49 #include <sys/copyops.h>
50 #include <sys/pg.h>
51 #include <sys/disp.h>
52 #include <sys/debug.h>
53 #include <sys/sunddi.h>
54 #include <sys/x86_archext.h>
55 #include <sys/privregs.h>
56 #include <sys/machsystm.h>
57 #include <sys/ontrap.h>
58 #include <sys/bootconf.h>
59 #include <sys/boot_console.h>
60 #include <sys/kdi_machimpl.h>
61 #include <sys/archsystm.h>

new/usr/src/uts/i86pc/os/mlsetup.c 2

62 #include <sys/promif.h>
63 #include <sys/pci_cfgspace.h>
64 #include <sys/bootvfs.h>
65 #include <sys/tsc.h>
66 #ifdef __xpv
67 #include <sys/hypervisor.h>
68 #else
69 #include <sys/xpv_support.h>
70 #endif

72 /*
73 * some globals for patching the result of cpuid
74 * to solve problems w/ creative cpu vendors
75 */

77 extern uint32_t cpuid_feature_ecx_include;
78 extern uint32_t cpuid_feature_ecx_exclude;
79 extern uint32_t cpuid_feature_edx_include;
80 extern uint32_t cpuid_feature_edx_exclude;

82 /*
83 * Set console mode
84 */
85 static void
86 set_console_mode(uint8_t val)
87 {
88 struct bop_regs rp = {0};

90 if (!bios_calls_available)
91 return;

93 rp.eax.byte.ah = 0x0;
94 rp.eax.byte.al = val;
95 rp.ebx.word.bx = 0x0;

97 BOP_DOINT(bootops, 0x10, &rp);
98 }

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/os/pci_bios.c 1

**
 5862 Mon Mar 27 00:11:48 2017
new/usr/src/uts/i86pc/os/pci_bios.c
XXX nobios
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved.
23 */

25 #include <sys/types.h>
26 #include <sys/stat.h>
27 #include <sys/sunndi.h>
28 #include <sys/pci.h>
29 #include <sys/pci_impl.h>
30 #include <sys/pci_cfgspace.h>
31 #include <sys/pci_cfgspace_impl.h>
32 #include <sys/memlist.h>
33 #include <sys/bootconf.h>
34 #include <sys/psw.h>
35 #include <sys/machsystm.h>

37 /*
38 * pci irq routing information table
39 */
40 int pci_irq_nroutes;
41 static pci_irq_route_t *pci_irq_routes;

44 static int pci_bios_get_irq_routing(pci_irq_route_t *, int, int *);
45 static void pci_get_irq_routing_table(void);

48 /*
49 * Retrieve information from the bios needed for system
50 * configuration early during startup.
51 */
52 void
53 startup_pci_bios(void)
54 {
55 pci_get_irq_routing_table();
56 }

59 /*
60 * Issue the bios get irq routing information table interrupt
61 *

new/usr/src/uts/i86pc/os/pci_bios.c 2

62 * Despite the name, the information in the table is only
63 * used to derive slot names for some named pci hot-plug slots.
64 *
65 * Returns the number of irq routing table entries returned
66 * by the bios, or 0 and optionally, the number of entries required.
67 */
68 static int
69 pci_bios_get_irq_routing(pci_irq_route_t *routes, int nroutes, int *nneededp)
70 {
71 struct bop_regs regs;
72 uchar_t *hdrp;
73 uchar_t *bufp;
74 int i, n;
75 int rval = 0;

77 if (nneededp)
78 *nneededp = 0;

80 /*
81 * If this system does not support BIOS calls, we can’t use this
82 * mechanism.
83 */
84 if (!bios_calls_available)
85 return (0);

87 /*
88 * Set up irq routing header with the size and address
89 * of some useable low-memory data addresses. Initalize
90 * data area to zero, avoiding memcpy/bzero.
91 */
92 hdrp = (uchar_t *)BIOS_IRQ_ROUTING_HDR;
93 bufp = (uchar_t *)BIOS_IRQ_ROUTING_DATA;

95 n = nroutes * sizeof (pci_irq_route_t);
96 for (i = 0; i < n; i++)
97 bufp[i] = 0;
98 ((pci_irq_route_hdr_t *)hdrp)->pir_size = n;
99 ((pci_irq_route_hdr_t *)hdrp)->pir_addr = (uint32_t)(uintptr_t)bufp;

101 bzero(®s, sizeof (regs));
102 regs.eax.word.ax = (PCI_FUNCTION_ID << 8) | PCI_GET_IRQ_ROUTING;

104 regs.ds = 0xf000;
105 regs.es = FP_SEG((uint_t)(uintptr_t)hdrp);
106 regs.edi.word.di = FP_OFF((uint_t)(uintptr_t)hdrp);

108 BOP_DOINT(bootops, 0x1a, ®s);

110 n = (int)(((pci_irq_route_hdr_t *)hdrp)->pir_size /
111 sizeof (pci_irq_route_t));

113 if ((regs.eflags & PS_C) != 0) {
114 if (nneededp)
115 *nneededp = n;
116 } else {
117 /*
118 * Copy resulting irq routing data from low memory up to
119 * the kernel address space, avoiding memcpy as usual.
120 */
121 if (n <= nroutes) {
122 for (i = 0; i < n * sizeof (pci_irq_route_t); i++)
123 ((uchar_t *)routes)[i] = bufp[i];
124 rval = n;
125 }
126 }
127 return (rval);

new/usr/src/uts/i86pc/os/pci_bios.c 3

128 }
______unchanged_portion_omitted_

new/usr/src/uts/i86pc/os/pci_cfgspace.c 1

**
 8846 Mon Mar 27 00:11:49 2017
new/usr/src/uts/i86pc/os/pci_cfgspace.c
XXX nobios
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 */

26 /*
27 * PCI configuration space access routines
28 */

30 #include <sys/systm.h>
31 #include <sys/psw.h>
32 #include <sys/bootconf.h>
33 #include <sys/reboot.h>
34 #include <sys/pci_impl.h>
35 #include <sys/pci_cfgspace.h>
36 #include <sys/pci_cfgspace_impl.h>
37 #include <sys/pci_cfgacc.h>
38 #include <sys/machsystm.h>
39 #if defined(__xpv)
40 #include <sys/hypervisor.h>
41 #endif

42 #if defined(__xpv)
43 int pci_max_nbus = 0xFE;
44 #endif
44 int pci_bios_cfg_type = PCI_MECHANISM_UNKNOWN;
45 int pci_bios_maxbus;
46 int pci_bios_mech;
47 int pci_bios_vers;

49 /*
50 * These two variables can be used to force a configuration mechanism or
51 * to force which function is used to probe for the presence of the PCI bus.
52 */
53 int PCI_CFG_TYPE = 0;
54 int PCI_PROBE_TYPE = 0;

56 /*
57 * No valid mcfg_mem_base by default, and accessing pci config space
58 * in mem-mapped way is disabled.
59 */

new/usr/src/uts/i86pc/os/pci_cfgspace.c 2

60 uint64_t mcfg_mem_base = 0;
61 uint8_t mcfg_bus_start = 0;
62 uint8_t mcfg_bus_end = 0xff;

64 /*
65 * Maximum offset in config space when not using MMIO
66 */
67 uint_t pci_iocfg_max_offset = 0xff;

69 /*
70 * These function pointers lead to the actual implementation routines
71 * for configuration space access. Normally they lead to either the
72 * pci_mech1_* or pci_mech2_* routines, but they can also lead to
73 * routines that work around chipset bugs.
74 * These functions are accessing pci config space via I/O way.
75 * Pci_cfgacc_get/put functions shoul be used as more common interfaces,
76 * which also provide accessing pci config space via mem-mapped way.
77 */
78 uint8_t (*pci_getb_func)(int bus, int dev, int func, int reg);
79 uint16_t (*pci_getw_func)(int bus, int dev, int func, int reg);
80 uint32_t (*pci_getl_func)(int bus, int dev, int func, int reg);
81 void (*pci_putb_func)(int bus, int dev, int func, int reg, uint8_t val);
82 void (*pci_putw_func)(int bus, int dev, int func, int reg, uint16_t val);
83 void (*pci_putl_func)(int bus, int dev, int func, int reg, uint32_t val);

85 extern void (*pci_cfgacc_acc_p)(pci_cfgacc_req_t *req);

87 /*
88 * Internal routines
89 */
90 static int pci_check(void);

92 #if !defined(__xpv)
93 static int pci_check_bios(void);
94 static int pci_get_cfg_type(void);
95 #endif

97 /* for legacy io-based config space access */
98 kmutex_t pcicfg_mutex;

100 /* for mmio-based config space access */
101 kmutex_t pcicfg_mmio_mutex;

103 /* ..except Orion and Neptune, which have to have their own */
104 kmutex_t pcicfg_chipset_mutex;

106 void
107 pci_cfgspace_init(void)
108 {
109 mutex_init(&pcicfg_mutex, NULL, MUTEX_SPIN,
110 (ddi_iblock_cookie_t)ipltospl(15));
111 mutex_init(&pcicfg_mmio_mutex, NULL, MUTEX_SPIN,
112 (ddi_iblock_cookie_t)ipltospl(DISP_LEVEL));
113 mutex_init(&pcicfg_chipset_mutex, NULL, MUTEX_SPIN,
114 (ddi_iblock_cookie_t)ipltospl(15));
115 if (!pci_check()) {
116 mutex_destroy(&pcicfg_mutex);
117 mutex_destroy(&pcicfg_mmio_mutex);
118 mutex_destroy(&pcicfg_chipset_mutex);
119 }
120 }

______unchanged_portion_omitted_

246 #if !defined(__xpv)

248 static int

new/usr/src/uts/i86pc/os/pci_cfgspace.c 3

249 pci_check_bios(void)
250 {
251 struct bop_regs regs;
252 uint32_t carryflag;
253 uint16_t ax, dx;

255 if (!bios_calls_available) {
256 /*
257 * If this system does not support BIOS calls, we must fall
258 * back to default values and a search of all of the possible
259 * PCI buses.
260 */
261 pci_bios_mech = 1;
262 pci_bios_vers = 0;
263 pci_bios_maxbus = pci_max_nbus;
264 return (PCI_MECHANISM_1);
265 }

267 bzero(®s, sizeof (regs));
268 regs.eax.word.ax = (PCI_FUNCTION_ID << 8) | PCI_BIOS_PRESENT;

270 BOP_DOINT(bootops, 0x1a, ®s);
271 carryflag = regs.eflags & PS_C;
272 ax = regs.eax.word.ax;
273 dx = regs.edx.word.dx;

275 /* the carry flag must not be set */
276 if (carryflag != 0)
277 return (PCI_MECHANISM_NONE);

279 if (dx != (’P’ | ’C’<<8))
280 return (PCI_MECHANISM_NONE);

282 /* ah (the high byte of ax) must be zero */
283 if ((ax & 0xff00) != 0)
284 return (PCI_MECHANISM_NONE);

286 pci_bios_mech = (ax & 0x3);
287 pci_bios_vers = regs.ebx.word.bx;
288 pci_bios_maxbus = (regs.ecx.word.cx & 0xff);

290 switch (pci_bios_mech) {
291 default: /* ?!? */
292 case 0: /* supports neither? */
293 return (PCI_MECHANISM_NONE);

295 case 1:
296 case 3: /* supports both */
297 return (PCI_MECHANISM_1);

299 case 2:
300 return (PCI_MECHANISM_2);
301 }
302 }

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/sys/machsystm.h 1

**
 6588 Mon Mar 27 00:11:49 2017
new/usr/src/uts/i86pc/sys/machsystm.h
XXX nobios
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25 /*
26 * Copyright (c) 2010, Intel Corporation.
27 * All rights reserved.
28 */

30 #ifndef _SYS_MACHSYSTM_H
31 #define _SYS_MACHSYSTM_H

33 /*
34 * Numerous platform-dependent interfaces that don’t seem to belong
35 * in any other header file.
36 *
37 * This file should not be included by code that purports to be
38 * platform-independent.
39 *
39 */

41 #include <sys/machparam.h>
42 #include <sys/varargs.h>
43 #include <sys/thread.h>
44 #include <sys/cpuvar.h>
45 #include <sys/privregs.h>
46 #include <sys/systm.h>
47 #include <sys/traptrace.h>
48 #include <vm/page.h>

50 #ifdef __cplusplus
51 extern "C" {
52 #endif

54 #ifdef _KERNEL

56 typedef enum mach_cpu_add_arg_type {
57 MACH_CPU_ARG_LOCAL_APIC,
58 MACH_CPU_ARG_LOCAL_X2APIC,
59 } mach_cpu_add_arg_type_t;

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/sys/machsystm.h 2

224 /* Maximum physical page number (PFN) for memory DR operations. */
225 extern uint64_t plat_dr_physmax;

227 #ifdef __xpv
228 #include <sys/xen_mmu.h>
229 extern page_t *page_get_high_mfn(mfn_t);
230 #endif

232 extern hrtime_t tsc_gethrtime_tick_delta(void);

234 extern boolean_t bios_calls_available;

236 #endif /* _KERNEL */

238 #ifdef __cplusplus
239 }

______unchanged_portion_omitted_

