1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, Joyent, Inc. All rights reserved. 25 * Copyright (c) 2012 by Delphix. All rights reserved. 26 */ 27 28 /* 29 * DTrace - Dynamic Tracing for Solaris 30 * 31 * This is the implementation of the Solaris Dynamic Tracing framework 32 * (DTrace). The user-visible interface to DTrace is described at length in 33 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 34 * library, the in-kernel DTrace framework, and the DTrace providers are 35 * described in the block comments in the <sys/dtrace.h> header file. The 36 * internal architecture of DTrace is described in the block comments in the 37 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 38 * implementation very much assume mastery of all of these sources; if one has 39 * an unanswered question about the implementation, one should consult them 40 * first. 41 * 42 * The functions here are ordered roughly as follows: 43 * 44 * - Probe context functions 45 * - Probe hashing functions 46 * - Non-probe context utility functions 47 * - Matching functions 48 * - Provider-to-Framework API functions 49 * - Probe management functions 50 * - DIF object functions 51 * - Format functions 52 * - Predicate functions 53 * - ECB functions 54 * - Buffer functions 55 * - Enabling functions 56 * - DOF functions 57 * - Anonymous enabling functions 58 * - Consumer state functions 59 * - Helper functions 60 * - Hook functions 61 * - Driver cookbook functions 62 * 63 * Each group of functions begins with a block comment labelled the "DTrace 64 * [Group] Functions", allowing one to find each block by searching forward 65 * on capital-f functions. 66 */ 67 #include <sys/errno.h> 68 #include <sys/stat.h> 69 #include <sys/modctl.h> 70 #include <sys/conf.h> 71 #include <sys/systm.h> 72 #include <sys/ddi.h> 73 #include <sys/sunddi.h> 74 #include <sys/cpuvar.h> 75 #include <sys/kmem.h> 76 #include <sys/strsubr.h> 77 #include <sys/sysmacros.h> 78 #include <sys/dtrace_impl.h> 79 #include <sys/atomic.h> 80 #include <sys/cmn_err.h> 81 #include <sys/mutex_impl.h> 82 #include <sys/rwlock_impl.h> 83 #include <sys/ctf_api.h> 84 #include <sys/panic.h> 85 #include <sys/priv_impl.h> 86 #include <sys/policy.h> 87 #include <sys/cred_impl.h> 88 #include <sys/procfs_isa.h> 89 #include <sys/taskq.h> 90 #include <sys/mkdev.h> 91 #include <sys/kdi.h> 92 #include <sys/zone.h> 93 #include <sys/socket.h> 94 #include <netinet/in.h> 95 #include "strtolctype.h" 96 97 /* 98 * DTrace Tunable Variables 99 * 100 * The following variables may be tuned by adding a line to /etc/system that 101 * includes both the name of the DTrace module ("dtrace") and the name of the 102 * variable. For example: 103 * 104 * set dtrace:dtrace_destructive_disallow = 1 105 * 106 * In general, the only variables that one should be tuning this way are those 107 * that affect system-wide DTrace behavior, and for which the default behavior 108 * is undesirable. Most of these variables are tunable on a per-consumer 109 * basis using DTrace options, and need not be tuned on a system-wide basis. 110 * When tuning these variables, avoid pathological values; while some attempt 111 * is made to verify the integrity of these variables, they are not considered 112 * part of the supported interface to DTrace, and they are therefore not 113 * checked comprehensively. Further, these variables should not be tuned 114 * dynamically via "mdb -kw" or other means; they should only be tuned via 115 * /etc/system. 116 */ 117 int dtrace_destructive_disallow = 0; 118 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 119 size_t dtrace_difo_maxsize = (256 * 1024); 120 dtrace_optval_t dtrace_dof_maxsize = (8 * 1024 * 1024); 121 size_t dtrace_global_maxsize = (16 * 1024); 122 size_t dtrace_actions_max = (16 * 1024); 123 size_t dtrace_retain_max = 1024; 124 dtrace_optval_t dtrace_helper_actions_max = 1024; 125 dtrace_optval_t dtrace_helper_providers_max = 32; 126 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 127 size_t dtrace_strsize_default = 256; 128 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 129 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 130 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 131 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 132 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 133 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 134 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 135 dtrace_optval_t dtrace_nspec_default = 1; 136 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 137 dtrace_optval_t dtrace_stackframes_default = 20; 138 dtrace_optval_t dtrace_ustackframes_default = 20; 139 dtrace_optval_t dtrace_jstackframes_default = 50; 140 dtrace_optval_t dtrace_jstackstrsize_default = 512; 141 int dtrace_msgdsize_max = 128; 142 hrtime_t dtrace_chill_max = 500 * (NANOSEC / MILLISEC); /* 500 ms */ 143 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 144 int dtrace_devdepth_max = 32; 145 int dtrace_err_verbose; 146 hrtime_t dtrace_deadman_interval = NANOSEC; 147 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 148 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 149 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC; 150 151 /* 152 * DTrace External Variables 153 * 154 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 155 * available to DTrace consumers via the backtick (`) syntax. One of these, 156 * dtrace_zero, is made deliberately so: it is provided as a source of 157 * well-known, zero-filled memory. While this variable is not documented, 158 * it is used by some translators as an implementation detail. 159 */ 160 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 161 162 /* 163 * DTrace Internal Variables 164 */ 165 static dev_info_t *dtrace_devi; /* device info */ 166 static vmem_t *dtrace_arena; /* probe ID arena */ 167 static vmem_t *dtrace_minor; /* minor number arena */ 168 static taskq_t *dtrace_taskq; /* task queue */ 169 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 170 static int dtrace_nprobes; /* number of probes */ 171 static dtrace_provider_t *dtrace_provider; /* provider list */ 172 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 173 static int dtrace_opens; /* number of opens */ 174 static int dtrace_helpers; /* number of helpers */ 175 static int dtrace_getf; /* number of unpriv getf()s */ 176 static void *dtrace_softstate; /* softstate pointer */ 177 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 178 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 179 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 180 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 181 static int dtrace_toxranges; /* number of toxic ranges */ 182 static int dtrace_toxranges_max; /* size of toxic range array */ 183 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 184 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 185 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 186 static kthread_t *dtrace_panicked; /* panicking thread */ 187 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 188 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 189 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 190 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 191 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */ 192 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 193 static int dtrace_dynvar_failclean; /* dynvars failed to clean */ 194 195 /* 196 * DTrace Locking 197 * DTrace is protected by three (relatively coarse-grained) locks: 198 * 199 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 200 * including enabling state, probes, ECBs, consumer state, helper state, 201 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 202 * probe context is lock-free -- synchronization is handled via the 203 * dtrace_sync() cross call mechanism. 204 * 205 * (2) dtrace_provider_lock is required when manipulating provider state, or 206 * when provider state must be held constant. 207 * 208 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 209 * when meta provider state must be held constant. 210 * 211 * The lock ordering between these three locks is dtrace_meta_lock before 212 * dtrace_provider_lock before dtrace_lock. (In particular, there are 213 * several places where dtrace_provider_lock is held by the framework as it 214 * calls into the providers -- which then call back into the framework, 215 * grabbing dtrace_lock.) 216 * 217 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 218 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 219 * role as a coarse-grained lock; it is acquired before both of these locks. 220 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 221 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 222 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 223 * acquired _between_ dtrace_provider_lock and dtrace_lock. 224 */ 225 static kmutex_t dtrace_lock; /* probe state lock */ 226 static kmutex_t dtrace_provider_lock; /* provider state lock */ 227 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 228 229 /* 230 * DTrace Provider Variables 231 * 232 * These are the variables relating to DTrace as a provider (that is, the 233 * provider of the BEGIN, END, and ERROR probes). 234 */ 235 static dtrace_pattr_t dtrace_provider_attr = { 236 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 237 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 238 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 239 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 240 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 241 }; 242 243 static void 244 dtrace_nullop(void) 245 {} 246 247 static int 248 dtrace_enable_nullop(void) 249 { 250 return (0); 251 } 252 253 static dtrace_pops_t dtrace_provider_ops = { 254 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop, 255 (void (*)(void *, struct modctl *))dtrace_nullop, 256 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop, 257 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 258 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 259 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 260 NULL, 261 NULL, 262 NULL, 263 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop 264 }; 265 266 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 267 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 268 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 269 270 /* 271 * DTrace Helper Tracing Variables 272 * 273 * These variables should be set dynamically to enable helper tracing. The 274 * only variables that should be set are dtrace_helptrace_enable (which should 275 * be set to a non-zero value to allocate helper tracing buffers on the next 276 * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a 277 * non-zero value to deallocate helper tracing buffers on the next close of 278 * /dev/dtrace). When (and only when) helper tracing is disabled, the 279 * buffer size may also be set via dtrace_helptrace_bufsize. 280 */ 281 int dtrace_helptrace_enable = 0; 282 int dtrace_helptrace_disable = 0; 283 int dtrace_helptrace_bufsize = 16 * 1024 * 1024; 284 uint32_t dtrace_helptrace_nlocals; 285 static dtrace_helptrace_t *dtrace_helptrace_buffer; 286 static uint32_t dtrace_helptrace_next = 0; 287 static int dtrace_helptrace_wrapped = 0; 288 289 /* 290 * DTrace Error Hashing 291 * 292 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 293 * table. This is very useful for checking coverage of tests that are 294 * expected to induce DIF or DOF processing errors, and may be useful for 295 * debugging problems in the DIF code generator or in DOF generation . The 296 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 297 */ 298 #ifdef DEBUG 299 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 300 static const char *dtrace_errlast; 301 static kthread_t *dtrace_errthread; 302 static kmutex_t dtrace_errlock; 303 #endif 304 305 /* 306 * DTrace Macros and Constants 307 * 308 * These are various macros that are useful in various spots in the 309 * implementation, along with a few random constants that have no meaning 310 * outside of the implementation. There is no real structure to this cpp 311 * mishmash -- but is there ever? 312 */ 313 #define DTRACE_HASHSTR(hash, probe) \ 314 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 315 316 #define DTRACE_HASHNEXT(hash, probe) \ 317 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 318 319 #define DTRACE_HASHPREV(hash, probe) \ 320 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 321 322 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 323 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 324 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 325 326 #define DTRACE_AGGHASHSIZE_SLEW 17 327 328 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 329 330 /* 331 * The key for a thread-local variable consists of the lower 61 bits of the 332 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 333 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 334 * equal to a variable identifier. This is necessary (but not sufficient) to 335 * assure that global associative arrays never collide with thread-local 336 * variables. To guarantee that they cannot collide, we must also define the 337 * order for keying dynamic variables. That order is: 338 * 339 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 340 * 341 * Because the variable-key and the tls-key are in orthogonal spaces, there is 342 * no way for a global variable key signature to match a thread-local key 343 * signature. 344 */ 345 #define DTRACE_TLS_THRKEY(where) { \ 346 uint_t intr = 0; \ 347 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 348 for (; actv; actv >>= 1) \ 349 intr++; \ 350 ASSERT(intr < (1 << 3)); \ 351 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 352 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 353 } 354 355 #define DT_BSWAP_8(x) ((x) & 0xff) 356 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 357 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 358 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 359 360 #define DT_MASK_LO 0x00000000FFFFFFFFULL 361 362 #define DTRACE_STORE(type, tomax, offset, what) \ 363 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); 364 365 #ifndef __i386 366 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 367 if (addr & (size - 1)) { \ 368 *flags |= CPU_DTRACE_BADALIGN; \ 369 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 370 return (0); \ 371 } 372 #else 373 #define DTRACE_ALIGNCHECK(addr, size, flags) 374 #endif 375 376 /* 377 * Test whether a range of memory starting at testaddr of size testsz falls 378 * within the range of memory described by addr, sz. We take care to avoid 379 * problems with overflow and underflow of the unsigned quantities, and 380 * disallow all negative sizes. Ranges of size 0 are allowed. 381 */ 382 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 383 ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \ 384 (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \ 385 (testaddr) + (testsz) >= (testaddr)) 386 387 /* 388 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 389 * alloc_sz on the righthand side of the comparison in order to avoid overflow 390 * or underflow in the comparison with it. This is simpler than the INRANGE 391 * check above, because we know that the dtms_scratch_ptr is valid in the 392 * range. Allocations of size zero are allowed. 393 */ 394 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 395 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 396 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 397 398 #define DTRACE_LOADFUNC(bits) \ 399 /*CSTYLED*/ \ 400 uint##bits##_t \ 401 dtrace_load##bits(uintptr_t addr) \ 402 { \ 403 size_t size = bits / NBBY; \ 404 /*CSTYLED*/ \ 405 uint##bits##_t rval; \ 406 int i; \ 407 volatile uint16_t *flags = (volatile uint16_t *) \ 408 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \ 409 \ 410 DTRACE_ALIGNCHECK(addr, size, flags); \ 411 \ 412 for (i = 0; i < dtrace_toxranges; i++) { \ 413 if (addr >= dtrace_toxrange[i].dtt_limit) \ 414 continue; \ 415 \ 416 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 417 continue; \ 418 \ 419 /* \ 420 * This address falls within a toxic region; return 0. \ 421 */ \ 422 *flags |= CPU_DTRACE_BADADDR; \ 423 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 424 return (0); \ 425 } \ 426 \ 427 *flags |= CPU_DTRACE_NOFAULT; \ 428 /*CSTYLED*/ \ 429 rval = *((volatile uint##bits##_t *)addr); \ 430 *flags &= ~CPU_DTRACE_NOFAULT; \ 431 \ 432 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 433 } 434 435 #ifdef _LP64 436 #define dtrace_loadptr dtrace_load64 437 #else 438 #define dtrace_loadptr dtrace_load32 439 #endif 440 441 #define DTRACE_DYNHASH_FREE 0 442 #define DTRACE_DYNHASH_SINK 1 443 #define DTRACE_DYNHASH_VALID 2 444 445 #define DTRACE_MATCH_FAIL -1 446 #define DTRACE_MATCH_NEXT 0 447 #define DTRACE_MATCH_DONE 1 448 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 449 #define DTRACE_STATE_ALIGN 64 450 451 #define DTRACE_FLAGS2FLT(flags) \ 452 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 453 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 454 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 455 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 456 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 457 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 458 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 459 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 460 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 461 DTRACEFLT_UNKNOWN) 462 463 #define DTRACEACT_ISSTRING(act) \ 464 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 465 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 466 467 static size_t dtrace_strlen(const char *, size_t); 468 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 469 static void dtrace_enabling_provide(dtrace_provider_t *); 470 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 471 static void dtrace_enabling_matchall(void); 472 static void dtrace_enabling_reap(void); 473 static dtrace_state_t *dtrace_anon_grab(void); 474 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 475 dtrace_state_t *, uint64_t, uint64_t); 476 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 477 static void dtrace_buffer_drop(dtrace_buffer_t *); 478 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when); 479 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 480 dtrace_state_t *, dtrace_mstate_t *); 481 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 482 dtrace_optval_t); 483 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 484 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 485 static int dtrace_priv_proc(dtrace_state_t *, dtrace_mstate_t *); 486 static void dtrace_getf_barrier(void); 487 488 /* 489 * DTrace Probe Context Functions 490 * 491 * These functions are called from probe context. Because probe context is 492 * any context in which C may be called, arbitrarily locks may be held, 493 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 494 * As a result, functions called from probe context may only call other DTrace 495 * support functions -- they may not interact at all with the system at large. 496 * (Note that the ASSERT macro is made probe-context safe by redefining it in 497 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 498 * loads are to be performed from probe context, they _must_ be in terms of 499 * the safe dtrace_load*() variants. 500 * 501 * Some functions in this block are not actually called from probe context; 502 * for these functions, there will be a comment above the function reading 503 * "Note: not called from probe context." 504 */ 505 void 506 dtrace_panic(const char *format, ...) 507 { 508 va_list alist; 509 510 va_start(alist, format); 511 dtrace_vpanic(format, alist); 512 va_end(alist); 513 } 514 515 int 516 dtrace_assfail(const char *a, const char *f, int l) 517 { 518 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 519 520 /* 521 * We just need something here that even the most clever compiler 522 * cannot optimize away. 523 */ 524 return (a[(uintptr_t)f]); 525 } 526 527 /* 528 * Atomically increment a specified error counter from probe context. 529 */ 530 static void 531 dtrace_error(uint32_t *counter) 532 { 533 /* 534 * Most counters stored to in probe context are per-CPU counters. 535 * However, there are some error conditions that are sufficiently 536 * arcane that they don't merit per-CPU storage. If these counters 537 * are incremented concurrently on different CPUs, scalability will be 538 * adversely affected -- but we don't expect them to be white-hot in a 539 * correctly constructed enabling... 540 */ 541 uint32_t oval, nval; 542 543 do { 544 oval = *counter; 545 546 if ((nval = oval + 1) == 0) { 547 /* 548 * If the counter would wrap, set it to 1 -- assuring 549 * that the counter is never zero when we have seen 550 * errors. (The counter must be 32-bits because we 551 * aren't guaranteed a 64-bit compare&swap operation.) 552 * To save this code both the infamy of being fingered 553 * by a priggish news story and the indignity of being 554 * the target of a neo-puritan witch trial, we're 555 * carefully avoiding any colorful description of the 556 * likelihood of this condition -- but suffice it to 557 * say that it is only slightly more likely than the 558 * overflow of predicate cache IDs, as discussed in 559 * dtrace_predicate_create(). 560 */ 561 nval = 1; 562 } 563 } while (dtrace_cas32(counter, oval, nval) != oval); 564 } 565 566 /* 567 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 568 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 569 */ 570 DTRACE_LOADFUNC(8) 571 DTRACE_LOADFUNC(16) 572 DTRACE_LOADFUNC(32) 573 DTRACE_LOADFUNC(64) 574 575 static int 576 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 577 { 578 if (dest < mstate->dtms_scratch_base) 579 return (0); 580 581 if (dest + size < dest) 582 return (0); 583 584 if (dest + size > mstate->dtms_scratch_ptr) 585 return (0); 586 587 return (1); 588 } 589 590 static int 591 dtrace_canstore_statvar(uint64_t addr, size_t sz, 592 dtrace_statvar_t **svars, int nsvars) 593 { 594 int i; 595 596 for (i = 0; i < nsvars; i++) { 597 dtrace_statvar_t *svar = svars[i]; 598 599 if (svar == NULL || svar->dtsv_size == 0) 600 continue; 601 602 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size)) 603 return (1); 604 } 605 606 return (0); 607 } 608 609 /* 610 * Check to see if the address is within a memory region to which a store may 611 * be issued. This includes the DTrace scratch areas, and any DTrace variable 612 * region. The caller of dtrace_canstore() is responsible for performing any 613 * alignment checks that are needed before stores are actually executed. 614 */ 615 static int 616 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 617 dtrace_vstate_t *vstate) 618 { 619 /* 620 * First, check to see if the address is in scratch space... 621 */ 622 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 623 mstate->dtms_scratch_size)) 624 return (1); 625 626 /* 627 * Now check to see if it's a dynamic variable. This check will pick 628 * up both thread-local variables and any global dynamically-allocated 629 * variables. 630 */ 631 if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base, 632 vstate->dtvs_dynvars.dtds_size)) { 633 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 634 uintptr_t base = (uintptr_t)dstate->dtds_base + 635 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); 636 uintptr_t chunkoffs; 637 638 /* 639 * Before we assume that we can store here, we need to make 640 * sure that it isn't in our metadata -- storing to our 641 * dynamic variable metadata would corrupt our state. For 642 * the range to not include any dynamic variable metadata, 643 * it must: 644 * 645 * (1) Start above the hash table that is at the base of 646 * the dynamic variable space 647 * 648 * (2) Have a starting chunk offset that is beyond the 649 * dtrace_dynvar_t that is at the base of every chunk 650 * 651 * (3) Not span a chunk boundary 652 * 653 */ 654 if (addr < base) 655 return (0); 656 657 chunkoffs = (addr - base) % dstate->dtds_chunksize; 658 659 if (chunkoffs < sizeof (dtrace_dynvar_t)) 660 return (0); 661 662 if (chunkoffs + sz > dstate->dtds_chunksize) 663 return (0); 664 665 return (1); 666 } 667 668 /* 669 * Finally, check the static local and global variables. These checks 670 * take the longest, so we perform them last. 671 */ 672 if (dtrace_canstore_statvar(addr, sz, 673 vstate->dtvs_locals, vstate->dtvs_nlocals)) 674 return (1); 675 676 if (dtrace_canstore_statvar(addr, sz, 677 vstate->dtvs_globals, vstate->dtvs_nglobals)) 678 return (1); 679 680 return (0); 681 } 682 683 684 /* 685 * Convenience routine to check to see if the address is within a memory 686 * region in which a load may be issued given the user's privilege level; 687 * if not, it sets the appropriate error flags and loads 'addr' into the 688 * illegal value slot. 689 * 690 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 691 * appropriate memory access protection. 692 */ 693 static int 694 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 695 dtrace_vstate_t *vstate) 696 { 697 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 698 file_t *fp; 699 700 /* 701 * If we hold the privilege to read from kernel memory, then 702 * everything is readable. 703 */ 704 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 705 return (1); 706 707 /* 708 * You can obviously read that which you can store. 709 */ 710 if (dtrace_canstore(addr, sz, mstate, vstate)) 711 return (1); 712 713 /* 714 * We're allowed to read from our own string table. 715 */ 716 if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab, 717 mstate->dtms_difo->dtdo_strlen)) 718 return (1); 719 720 if (vstate->dtvs_state != NULL && 721 dtrace_priv_proc(vstate->dtvs_state, mstate)) { 722 proc_t *p; 723 724 /* 725 * When we have privileges to the current process, there are 726 * several context-related kernel structures that are safe to 727 * read, even absent the privilege to read from kernel memory. 728 * These reads are safe because these structures contain only 729 * state that (1) we're permitted to read, (2) is harmless or 730 * (3) contains pointers to additional kernel state that we're 731 * not permitted to read (and as such, do not present an 732 * opportunity for privilege escalation). Finally (and 733 * critically), because of the nature of their relation with 734 * the current thread context, the memory associated with these 735 * structures cannot change over the duration of probe context, 736 * and it is therefore impossible for this memory to be 737 * deallocated and reallocated as something else while it's 738 * being operated upon. 739 */ 740 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) 741 return (1); 742 743 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr, 744 sz, curthread->t_procp, sizeof (proc_t))) { 745 return (1); 746 } 747 748 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz, 749 curthread->t_cred, sizeof (cred_t))) { 750 return (1); 751 } 752 753 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz, 754 &(p->p_pidp->pid_id), sizeof (pid_t))) { 755 return (1); 756 } 757 758 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz, 759 curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) { 760 return (1); 761 } 762 } 763 764 if ((fp = mstate->dtms_getf) != NULL) { 765 uintptr_t psz = sizeof (void *); 766 vnode_t *vp; 767 vnodeops_t *op; 768 769 /* 770 * When getf() returns a file_t, the enabling is implicitly 771 * granted the (transient) right to read the returned file_t 772 * as well as the v_path and v_op->vnop_name of the underlying 773 * vnode. These accesses are allowed after a successful 774 * getf() because the members that they refer to cannot change 775 * once set -- and the barrier logic in the kernel's closef() 776 * path assures that the file_t and its referenced vode_t 777 * cannot themselves be stale (that is, it impossible for 778 * either dtms_getf itself or its f_vnode member to reference 779 * freed memory). 780 */ 781 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) 782 return (1); 783 784 if ((vp = fp->f_vnode) != NULL) { 785 if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) 786 return (1); 787 788 if (vp->v_path != NULL && DTRACE_INRANGE(addr, sz, 789 vp->v_path, strlen(vp->v_path) + 1)) { 790 return (1); 791 } 792 793 if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) 794 return (1); 795 796 if ((op = vp->v_op) != NULL && 797 DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) { 798 return (1); 799 } 800 801 if (op != NULL && op->vnop_name != NULL && 802 DTRACE_INRANGE(addr, sz, op->vnop_name, 803 strlen(op->vnop_name) + 1)) { 804 return (1); 805 } 806 } 807 } 808 809 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 810 *illval = addr; 811 return (0); 812 } 813 814 /* 815 * Convenience routine to check to see if a given string is within a memory 816 * region in which a load may be issued given the user's privilege level; 817 * this exists so that we don't need to issue unnecessary dtrace_strlen() 818 * calls in the event that the user has all privileges. 819 */ 820 static int 821 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 822 dtrace_vstate_t *vstate) 823 { 824 size_t strsz; 825 826 /* 827 * If we hold the privilege to read from kernel memory, then 828 * everything is readable. 829 */ 830 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 831 return (1); 832 833 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz); 834 if (dtrace_canload(addr, strsz, mstate, vstate)) 835 return (1); 836 837 return (0); 838 } 839 840 /* 841 * Convenience routine to check to see if a given variable is within a memory 842 * region in which a load may be issued given the user's privilege level. 843 */ 844 static int 845 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate, 846 dtrace_vstate_t *vstate) 847 { 848 size_t sz, strsize; 849 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 850 851 /* 852 * If we hold the privilege to read from kernel memory, then 853 * everything is readable. 854 */ 855 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 856 return (1); 857 858 if (type->dtdt_kind == DIF_TYPE_STRING) { 859 dtrace_state_t *state = vstate->dtvs_state; 860 861 if (state != NULL) { 862 strsize = state->dts_options[DTRACEOPT_STRSIZE]; 863 } else { 864 /* 865 * In helper context, we have a NULL state; fall back 866 * to using the system-wide default for the string size 867 * in this case. 868 */ 869 strsize = dtrace_strsize_default; 870 } 871 872 sz = dtrace_strlen(src, strsize) + 1; 873 } else { 874 sz = type->dtdt_size; 875 } 876 877 return (dtrace_canload((uintptr_t)src, sz, mstate, vstate)); 878 } 879 880 /* 881 * Convert a string to a signed integer using safe loads. 882 */ 883 static int64_t 884 dtrace_strtoll(char *input, int base, size_t limit) 885 { 886 uintptr_t pos = (uintptr_t)input; 887 int64_t val = 0; 888 int x; 889 boolean_t neg = B_FALSE; 890 char c, cc, ccc; 891 uintptr_t end = pos + limit; 892 893 /* eat whitespace */ 894 while ((c = dtrace_load8(pos)) == ' ' || c == '\t') 895 pos++; 896 897 /* sign? */ 898 if (c == '-' || c == '+') { 899 if (c == '-') 900 neg = B_TRUE; 901 c = dtrace_load8(++pos); 902 } 903 904 /* hex prefix? */ 905 if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' || 906 cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) { 907 pos += 2; /* skip over leading "0x" or "0X" */ 908 c = ccc; 909 } 910 911 /* read in digits */ 912 for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base; 913 c = dtrace_load8(++pos)) 914 val = val * base + x; 915 916 return (neg ? -val : val); 917 } 918 919 /* 920 * Compare two strings using safe loads. 921 */ 922 static int 923 dtrace_strncmp(char *s1, char *s2, size_t limit) 924 { 925 uint8_t c1, c2; 926 volatile uint16_t *flags; 927 928 if (s1 == s2 || limit == 0) 929 return (0); 930 931 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 932 933 do { 934 if (s1 == NULL) { 935 c1 = '\0'; 936 } else { 937 c1 = dtrace_load8((uintptr_t)s1++); 938 } 939 940 if (s2 == NULL) { 941 c2 = '\0'; 942 } else { 943 c2 = dtrace_load8((uintptr_t)s2++); 944 } 945 946 if (c1 != c2) 947 return (c1 - c2); 948 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 949 950 return (0); 951 } 952 953 /* 954 * Compute strlen(s) for a string using safe memory accesses. The additional 955 * len parameter is used to specify a maximum length to ensure completion. 956 */ 957 static size_t 958 dtrace_strlen(const char *s, size_t lim) 959 { 960 uint_t len; 961 962 for (len = 0; len != lim; len++) { 963 if (dtrace_load8((uintptr_t)s++) == '\0') 964 break; 965 } 966 967 return (len); 968 } 969 970 /* 971 * Check if an address falls within a toxic region. 972 */ 973 static int 974 dtrace_istoxic(uintptr_t kaddr, size_t size) 975 { 976 uintptr_t taddr, tsize; 977 int i; 978 979 for (i = 0; i < dtrace_toxranges; i++) { 980 taddr = dtrace_toxrange[i].dtt_base; 981 tsize = dtrace_toxrange[i].dtt_limit - taddr; 982 983 if (kaddr - taddr < tsize) { 984 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 985 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr; 986 return (1); 987 } 988 989 if (taddr - kaddr < size) { 990 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 991 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr; 992 return (1); 993 } 994 } 995 996 return (0); 997 } 998 999 /* 1000 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 1001 * memory specified by the DIF program. The dst is assumed to be safe memory 1002 * that we can store to directly because it is managed by DTrace. As with 1003 * standard bcopy, overlapping copies are handled properly. 1004 */ 1005 static void 1006 dtrace_bcopy(const void *src, void *dst, size_t len) 1007 { 1008 if (len != 0) { 1009 uint8_t *s1 = dst; 1010 const uint8_t *s2 = src; 1011 1012 if (s1 <= s2) { 1013 do { 1014 *s1++ = dtrace_load8((uintptr_t)s2++); 1015 } while (--len != 0); 1016 } else { 1017 s2 += len; 1018 s1 += len; 1019 1020 do { 1021 *--s1 = dtrace_load8((uintptr_t)--s2); 1022 } while (--len != 0); 1023 } 1024 } 1025 } 1026 1027 /* 1028 * Copy src to dst using safe memory accesses, up to either the specified 1029 * length, or the point that a nul byte is encountered. The src is assumed to 1030 * be unsafe memory specified by the DIF program. The dst is assumed to be 1031 * safe memory that we can store to directly because it is managed by DTrace. 1032 * Unlike dtrace_bcopy(), overlapping regions are not handled. 1033 */ 1034 static void 1035 dtrace_strcpy(const void *src, void *dst, size_t len) 1036 { 1037 if (len != 0) { 1038 uint8_t *s1 = dst, c; 1039 const uint8_t *s2 = src; 1040 1041 do { 1042 *s1++ = c = dtrace_load8((uintptr_t)s2++); 1043 } while (--len != 0 && c != '\0'); 1044 } 1045 } 1046 1047 /* 1048 * Copy src to dst, deriving the size and type from the specified (BYREF) 1049 * variable type. The src is assumed to be unsafe memory specified by the DIF 1050 * program. The dst is assumed to be DTrace variable memory that is of the 1051 * specified type; we assume that we can store to directly. 1052 */ 1053 static void 1054 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type) 1055 { 1056 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 1057 1058 if (type->dtdt_kind == DIF_TYPE_STRING) { 1059 dtrace_strcpy(src, dst, type->dtdt_size); 1060 } else { 1061 dtrace_bcopy(src, dst, type->dtdt_size); 1062 } 1063 } 1064 1065 /* 1066 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 1067 * unsafe memory specified by the DIF program. The s2 data is assumed to be 1068 * safe memory that we can access directly because it is managed by DTrace. 1069 */ 1070 static int 1071 dtrace_bcmp(const void *s1, const void *s2, size_t len) 1072 { 1073 volatile uint16_t *flags; 1074 1075 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 1076 1077 if (s1 == s2) 1078 return (0); 1079 1080 if (s1 == NULL || s2 == NULL) 1081 return (1); 1082 1083 if (s1 != s2 && len != 0) { 1084 const uint8_t *ps1 = s1; 1085 const uint8_t *ps2 = s2; 1086 1087 do { 1088 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 1089 return (1); 1090 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 1091 } 1092 return (0); 1093 } 1094 1095 /* 1096 * Zero the specified region using a simple byte-by-byte loop. Note that this 1097 * is for safe DTrace-managed memory only. 1098 */ 1099 static void 1100 dtrace_bzero(void *dst, size_t len) 1101 { 1102 uchar_t *cp; 1103 1104 for (cp = dst; len != 0; len--) 1105 *cp++ = 0; 1106 } 1107 1108 static void 1109 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 1110 { 1111 uint64_t result[2]; 1112 1113 result[0] = addend1[0] + addend2[0]; 1114 result[1] = addend1[1] + addend2[1] + 1115 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 1116 1117 sum[0] = result[0]; 1118 sum[1] = result[1]; 1119 } 1120 1121 /* 1122 * Shift the 128-bit value in a by b. If b is positive, shift left. 1123 * If b is negative, shift right. 1124 */ 1125 static void 1126 dtrace_shift_128(uint64_t *a, int b) 1127 { 1128 uint64_t mask; 1129 1130 if (b == 0) 1131 return; 1132 1133 if (b < 0) { 1134 b = -b; 1135 if (b >= 64) { 1136 a[0] = a[1] >> (b - 64); 1137 a[1] = 0; 1138 } else { 1139 a[0] >>= b; 1140 mask = 1LL << (64 - b); 1141 mask -= 1; 1142 a[0] |= ((a[1] & mask) << (64 - b)); 1143 a[1] >>= b; 1144 } 1145 } else { 1146 if (b >= 64) { 1147 a[1] = a[0] << (b - 64); 1148 a[0] = 0; 1149 } else { 1150 a[1] <<= b; 1151 mask = a[0] >> (64 - b); 1152 a[1] |= mask; 1153 a[0] <<= b; 1154 } 1155 } 1156 } 1157 1158 /* 1159 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 1160 * use native multiplication on those, and then re-combine into the 1161 * resulting 128-bit value. 1162 * 1163 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 1164 * hi1 * hi2 << 64 + 1165 * hi1 * lo2 << 32 + 1166 * hi2 * lo1 << 32 + 1167 * lo1 * lo2 1168 */ 1169 static void 1170 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 1171 { 1172 uint64_t hi1, hi2, lo1, lo2; 1173 uint64_t tmp[2]; 1174 1175 hi1 = factor1 >> 32; 1176 hi2 = factor2 >> 32; 1177 1178 lo1 = factor1 & DT_MASK_LO; 1179 lo2 = factor2 & DT_MASK_LO; 1180 1181 product[0] = lo1 * lo2; 1182 product[1] = hi1 * hi2; 1183 1184 tmp[0] = hi1 * lo2; 1185 tmp[1] = 0; 1186 dtrace_shift_128(tmp, 32); 1187 dtrace_add_128(product, tmp, product); 1188 1189 tmp[0] = hi2 * lo1; 1190 tmp[1] = 0; 1191 dtrace_shift_128(tmp, 32); 1192 dtrace_add_128(product, tmp, product); 1193 } 1194 1195 /* 1196 * This privilege check should be used by actions and subroutines to 1197 * verify that the user credentials of the process that enabled the 1198 * invoking ECB match the target credentials 1199 */ 1200 static int 1201 dtrace_priv_proc_common_user(dtrace_state_t *state) 1202 { 1203 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1204 1205 /* 1206 * We should always have a non-NULL state cred here, since if cred 1207 * is null (anonymous tracing), we fast-path bypass this routine. 1208 */ 1209 ASSERT(s_cr != NULL); 1210 1211 if ((cr = CRED()) != NULL && 1212 s_cr->cr_uid == cr->cr_uid && 1213 s_cr->cr_uid == cr->cr_ruid && 1214 s_cr->cr_uid == cr->cr_suid && 1215 s_cr->cr_gid == cr->cr_gid && 1216 s_cr->cr_gid == cr->cr_rgid && 1217 s_cr->cr_gid == cr->cr_sgid) 1218 return (1); 1219 1220 return (0); 1221 } 1222 1223 /* 1224 * This privilege check should be used by actions and subroutines to 1225 * verify that the zone of the process that enabled the invoking ECB 1226 * matches the target credentials 1227 */ 1228 static int 1229 dtrace_priv_proc_common_zone(dtrace_state_t *state) 1230 { 1231 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1232 1233 /* 1234 * We should always have a non-NULL state cred here, since if cred 1235 * is null (anonymous tracing), we fast-path bypass this routine. 1236 */ 1237 ASSERT(s_cr != NULL); 1238 1239 if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone) 1240 return (1); 1241 1242 return (0); 1243 } 1244 1245 /* 1246 * This privilege check should be used by actions and subroutines to 1247 * verify that the process has not setuid or changed credentials. 1248 */ 1249 static int 1250 dtrace_priv_proc_common_nocd() 1251 { 1252 proc_t *proc; 1253 1254 if ((proc = ttoproc(curthread)) != NULL && 1255 !(proc->p_flag & SNOCD)) 1256 return (1); 1257 1258 return (0); 1259 } 1260 1261 static int 1262 dtrace_priv_proc_destructive(dtrace_state_t *state, dtrace_mstate_t *mstate) 1263 { 1264 int action = state->dts_cred.dcr_action; 1265 1266 if (!(mstate->dtms_access & DTRACE_ACCESS_PROC)) 1267 goto bad; 1268 1269 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 1270 dtrace_priv_proc_common_zone(state) == 0) 1271 goto bad; 1272 1273 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 1274 dtrace_priv_proc_common_user(state) == 0) 1275 goto bad; 1276 1277 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 1278 dtrace_priv_proc_common_nocd() == 0) 1279 goto bad; 1280 1281 return (1); 1282 1283 bad: 1284 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1285 1286 return (0); 1287 } 1288 1289 static int 1290 dtrace_priv_proc_control(dtrace_state_t *state, dtrace_mstate_t *mstate) 1291 { 1292 if (mstate->dtms_access & DTRACE_ACCESS_PROC) { 1293 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1294 return (1); 1295 1296 if (dtrace_priv_proc_common_zone(state) && 1297 dtrace_priv_proc_common_user(state) && 1298 dtrace_priv_proc_common_nocd()) 1299 return (1); 1300 } 1301 1302 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1303 1304 return (0); 1305 } 1306 1307 static int 1308 dtrace_priv_proc(dtrace_state_t *state, dtrace_mstate_t *mstate) 1309 { 1310 if ((mstate->dtms_access & DTRACE_ACCESS_PROC) && 1311 (state->dts_cred.dcr_action & DTRACE_CRA_PROC)) 1312 return (1); 1313 1314 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1315 1316 return (0); 1317 } 1318 1319 static int 1320 dtrace_priv_kernel(dtrace_state_t *state) 1321 { 1322 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1323 return (1); 1324 1325 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1326 1327 return (0); 1328 } 1329 1330 static int 1331 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1332 { 1333 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1334 return (1); 1335 1336 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1337 1338 return (0); 1339 } 1340 1341 /* 1342 * Determine if the dte_cond of the specified ECB allows for processing of 1343 * the current probe to continue. Note that this routine may allow continued 1344 * processing, but with access(es) stripped from the mstate's dtms_access 1345 * field. 1346 */ 1347 static int 1348 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate, 1349 dtrace_ecb_t *ecb) 1350 { 1351 dtrace_probe_t *probe = ecb->dte_probe; 1352 dtrace_provider_t *prov = probe->dtpr_provider; 1353 dtrace_pops_t *pops = &prov->dtpv_pops; 1354 int mode = DTRACE_MODE_NOPRIV_DROP; 1355 1356 ASSERT(ecb->dte_cond); 1357 1358 if (pops->dtps_mode != NULL) { 1359 mode = pops->dtps_mode(prov->dtpv_arg, 1360 probe->dtpr_id, probe->dtpr_arg); 1361 1362 ASSERT(mode & (DTRACE_MODE_USER | DTRACE_MODE_KERNEL)); 1363 ASSERT(mode & (DTRACE_MODE_NOPRIV_RESTRICT | 1364 DTRACE_MODE_NOPRIV_DROP)); 1365 } 1366 1367 /* 1368 * If the dte_cond bits indicate that this consumer is only allowed to 1369 * see user-mode firings of this probe, check that the probe was fired 1370 * while in a user context. If that's not the case, use the policy 1371 * specified by the provider to determine if we drop the probe or 1372 * merely restrict operation. 1373 */ 1374 if (ecb->dte_cond & DTRACE_COND_USERMODE) { 1375 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP); 1376 1377 if (!(mode & DTRACE_MODE_USER)) { 1378 if (mode & DTRACE_MODE_NOPRIV_DROP) 1379 return (0); 1380 1381 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1382 } 1383 } 1384 1385 /* 1386 * This is more subtle than it looks. We have to be absolutely certain 1387 * that CRED() isn't going to change out from under us so it's only 1388 * legit to examine that structure if we're in constrained situations. 1389 * Currently, the only times we'll this check is if a non-super-user 1390 * has enabled the profile or syscall providers -- providers that 1391 * allow visibility of all processes. For the profile case, the check 1392 * above will ensure that we're examining a user context. 1393 */ 1394 if (ecb->dte_cond & DTRACE_COND_OWNER) { 1395 cred_t *cr; 1396 cred_t *s_cr = state->dts_cred.dcr_cred; 1397 proc_t *proc; 1398 1399 ASSERT(s_cr != NULL); 1400 1401 if ((cr = CRED()) == NULL || 1402 s_cr->cr_uid != cr->cr_uid || 1403 s_cr->cr_uid != cr->cr_ruid || 1404 s_cr->cr_uid != cr->cr_suid || 1405 s_cr->cr_gid != cr->cr_gid || 1406 s_cr->cr_gid != cr->cr_rgid || 1407 s_cr->cr_gid != cr->cr_sgid || 1408 (proc = ttoproc(curthread)) == NULL || 1409 (proc->p_flag & SNOCD)) { 1410 if (mode & DTRACE_MODE_NOPRIV_DROP) 1411 return (0); 1412 1413 mstate->dtms_access &= ~DTRACE_ACCESS_PROC; 1414 } 1415 } 1416 1417 /* 1418 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not 1419 * in our zone, check to see if our mode policy is to restrict rather 1420 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC 1421 * and DTRACE_ACCESS_ARGS 1422 */ 1423 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 1424 cred_t *cr; 1425 cred_t *s_cr = state->dts_cred.dcr_cred; 1426 1427 ASSERT(s_cr != NULL); 1428 1429 if ((cr = CRED()) == NULL || 1430 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) { 1431 if (mode & DTRACE_MODE_NOPRIV_DROP) 1432 return (0); 1433 1434 mstate->dtms_access &= 1435 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS); 1436 } 1437 } 1438 1439 /* 1440 * By merits of being in this code path at all, we have limited 1441 * privileges. If the provider has indicated that limited privileges 1442 * are to denote restricted operation, strip off the ability to access 1443 * arguments. 1444 */ 1445 if (mode & DTRACE_MODE_LIMITEDPRIV_RESTRICT) 1446 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1447 1448 return (1); 1449 } 1450 1451 /* 1452 * Note: not called from probe context. This function is called 1453 * asynchronously (and at a regular interval) from outside of probe context to 1454 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1455 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1456 */ 1457 void 1458 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1459 { 1460 dtrace_dynvar_t *dirty; 1461 dtrace_dstate_percpu_t *dcpu; 1462 dtrace_dynvar_t **rinsep; 1463 int i, j, work = 0; 1464 1465 for (i = 0; i < NCPU; i++) { 1466 dcpu = &dstate->dtds_percpu[i]; 1467 rinsep = &dcpu->dtdsc_rinsing; 1468 1469 /* 1470 * If the dirty list is NULL, there is no dirty work to do. 1471 */ 1472 if (dcpu->dtdsc_dirty == NULL) 1473 continue; 1474 1475 if (dcpu->dtdsc_rinsing != NULL) { 1476 /* 1477 * If the rinsing list is non-NULL, then it is because 1478 * this CPU was selected to accept another CPU's 1479 * dirty list -- and since that time, dirty buffers 1480 * have accumulated. This is a highly unlikely 1481 * condition, but we choose to ignore the dirty 1482 * buffers -- they'll be picked up a future cleanse. 1483 */ 1484 continue; 1485 } 1486 1487 if (dcpu->dtdsc_clean != NULL) { 1488 /* 1489 * If the clean list is non-NULL, then we're in a 1490 * situation where a CPU has done deallocations (we 1491 * have a non-NULL dirty list) but no allocations (we 1492 * also have a non-NULL clean list). We can't simply 1493 * move the dirty list into the clean list on this 1494 * CPU, yet we also don't want to allow this condition 1495 * to persist, lest a short clean list prevent a 1496 * massive dirty list from being cleaned (which in 1497 * turn could lead to otherwise avoidable dynamic 1498 * drops). To deal with this, we look for some CPU 1499 * with a NULL clean list, NULL dirty list, and NULL 1500 * rinsing list -- and then we borrow this CPU to 1501 * rinse our dirty list. 1502 */ 1503 for (j = 0; j < NCPU; j++) { 1504 dtrace_dstate_percpu_t *rinser; 1505 1506 rinser = &dstate->dtds_percpu[j]; 1507 1508 if (rinser->dtdsc_rinsing != NULL) 1509 continue; 1510 1511 if (rinser->dtdsc_dirty != NULL) 1512 continue; 1513 1514 if (rinser->dtdsc_clean != NULL) 1515 continue; 1516 1517 rinsep = &rinser->dtdsc_rinsing; 1518 break; 1519 } 1520 1521 if (j == NCPU) { 1522 /* 1523 * We were unable to find another CPU that 1524 * could accept this dirty list -- we are 1525 * therefore unable to clean it now. 1526 */ 1527 dtrace_dynvar_failclean++; 1528 continue; 1529 } 1530 } 1531 1532 work = 1; 1533 1534 /* 1535 * Atomically move the dirty list aside. 1536 */ 1537 do { 1538 dirty = dcpu->dtdsc_dirty; 1539 1540 /* 1541 * Before we zap the dirty list, set the rinsing list. 1542 * (This allows for a potential assertion in 1543 * dtrace_dynvar(): if a free dynamic variable appears 1544 * on a hash chain, either the dirty list or the 1545 * rinsing list for some CPU must be non-NULL.) 1546 */ 1547 *rinsep = dirty; 1548 dtrace_membar_producer(); 1549 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1550 dirty, NULL) != dirty); 1551 } 1552 1553 if (!work) { 1554 /* 1555 * We have no work to do; we can simply return. 1556 */ 1557 return; 1558 } 1559 1560 dtrace_sync(); 1561 1562 for (i = 0; i < NCPU; i++) { 1563 dcpu = &dstate->dtds_percpu[i]; 1564 1565 if (dcpu->dtdsc_rinsing == NULL) 1566 continue; 1567 1568 /* 1569 * We are now guaranteed that no hash chain contains a pointer 1570 * into this dirty list; we can make it clean. 1571 */ 1572 ASSERT(dcpu->dtdsc_clean == NULL); 1573 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1574 dcpu->dtdsc_rinsing = NULL; 1575 } 1576 1577 /* 1578 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1579 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1580 * This prevents a race whereby a CPU incorrectly decides that 1581 * the state should be something other than DTRACE_DSTATE_CLEAN 1582 * after dtrace_dynvar_clean() has completed. 1583 */ 1584 dtrace_sync(); 1585 1586 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1587 } 1588 1589 /* 1590 * Depending on the value of the op parameter, this function looks-up, 1591 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1592 * allocation is requested, this function will return a pointer to a 1593 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1594 * variable can be allocated. If NULL is returned, the appropriate counter 1595 * will be incremented. 1596 */ 1597 dtrace_dynvar_t * 1598 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1599 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1600 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1601 { 1602 uint64_t hashval = DTRACE_DYNHASH_VALID; 1603 dtrace_dynhash_t *hash = dstate->dtds_hash; 1604 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1605 processorid_t me = CPU->cpu_id, cpu = me; 1606 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1607 size_t bucket, ksize; 1608 size_t chunksize = dstate->dtds_chunksize; 1609 uintptr_t kdata, lock, nstate; 1610 uint_t i; 1611 1612 ASSERT(nkeys != 0); 1613 1614 /* 1615 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1616 * algorithm. For the by-value portions, we perform the algorithm in 1617 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1618 * bit, and seems to have only a minute effect on distribution. For 1619 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1620 * over each referenced byte. It's painful to do this, but it's much 1621 * better than pathological hash distribution. The efficacy of the 1622 * hashing algorithm (and a comparison with other algorithms) may be 1623 * found by running the ::dtrace_dynstat MDB dcmd. 1624 */ 1625 for (i = 0; i < nkeys; i++) { 1626 if (key[i].dttk_size == 0) { 1627 uint64_t val = key[i].dttk_value; 1628 1629 hashval += (val >> 48) & 0xffff; 1630 hashval += (hashval << 10); 1631 hashval ^= (hashval >> 6); 1632 1633 hashval += (val >> 32) & 0xffff; 1634 hashval += (hashval << 10); 1635 hashval ^= (hashval >> 6); 1636 1637 hashval += (val >> 16) & 0xffff; 1638 hashval += (hashval << 10); 1639 hashval ^= (hashval >> 6); 1640 1641 hashval += val & 0xffff; 1642 hashval += (hashval << 10); 1643 hashval ^= (hashval >> 6); 1644 } else { 1645 /* 1646 * This is incredibly painful, but it beats the hell 1647 * out of the alternative. 1648 */ 1649 uint64_t j, size = key[i].dttk_size; 1650 uintptr_t base = (uintptr_t)key[i].dttk_value; 1651 1652 if (!dtrace_canload(base, size, mstate, vstate)) 1653 break; 1654 1655 for (j = 0; j < size; j++) { 1656 hashval += dtrace_load8(base + j); 1657 hashval += (hashval << 10); 1658 hashval ^= (hashval >> 6); 1659 } 1660 } 1661 } 1662 1663 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1664 return (NULL); 1665 1666 hashval += (hashval << 3); 1667 hashval ^= (hashval >> 11); 1668 hashval += (hashval << 15); 1669 1670 /* 1671 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1672 * comes out to be one of our two sentinel hash values. If this 1673 * actually happens, we set the hashval to be a value known to be a 1674 * non-sentinel value. 1675 */ 1676 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1677 hashval = DTRACE_DYNHASH_VALID; 1678 1679 /* 1680 * Yes, it's painful to do a divide here. If the cycle count becomes 1681 * important here, tricks can be pulled to reduce it. (However, it's 1682 * critical that hash collisions be kept to an absolute minimum; 1683 * they're much more painful than a divide.) It's better to have a 1684 * solution that generates few collisions and still keeps things 1685 * relatively simple. 1686 */ 1687 bucket = hashval % dstate->dtds_hashsize; 1688 1689 if (op == DTRACE_DYNVAR_DEALLOC) { 1690 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1691 1692 for (;;) { 1693 while ((lock = *lockp) & 1) 1694 continue; 1695 1696 if (dtrace_casptr((void *)lockp, 1697 (void *)lock, (void *)(lock + 1)) == (void *)lock) 1698 break; 1699 } 1700 1701 dtrace_membar_producer(); 1702 } 1703 1704 top: 1705 prev = NULL; 1706 lock = hash[bucket].dtdh_lock; 1707 1708 dtrace_membar_consumer(); 1709 1710 start = hash[bucket].dtdh_chain; 1711 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1712 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1713 op != DTRACE_DYNVAR_DEALLOC)); 1714 1715 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1716 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 1717 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 1718 1719 if (dvar->dtdv_hashval != hashval) { 1720 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 1721 /* 1722 * We've reached the sink, and therefore the 1723 * end of the hash chain; we can kick out of 1724 * the loop knowing that we have seen a valid 1725 * snapshot of state. 1726 */ 1727 ASSERT(dvar->dtdv_next == NULL); 1728 ASSERT(dvar == &dtrace_dynhash_sink); 1729 break; 1730 } 1731 1732 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 1733 /* 1734 * We've gone off the rails: somewhere along 1735 * the line, one of the members of this hash 1736 * chain was deleted. Note that we could also 1737 * detect this by simply letting this loop run 1738 * to completion, as we would eventually hit 1739 * the end of the dirty list. However, we 1740 * want to avoid running the length of the 1741 * dirty list unnecessarily (it might be quite 1742 * long), so we catch this as early as 1743 * possible by detecting the hash marker. In 1744 * this case, we simply set dvar to NULL and 1745 * break; the conditional after the loop will 1746 * send us back to top. 1747 */ 1748 dvar = NULL; 1749 break; 1750 } 1751 1752 goto next; 1753 } 1754 1755 if (dtuple->dtt_nkeys != nkeys) 1756 goto next; 1757 1758 for (i = 0; i < nkeys; i++, dkey++) { 1759 if (dkey->dttk_size != key[i].dttk_size) 1760 goto next; /* size or type mismatch */ 1761 1762 if (dkey->dttk_size != 0) { 1763 if (dtrace_bcmp( 1764 (void *)(uintptr_t)key[i].dttk_value, 1765 (void *)(uintptr_t)dkey->dttk_value, 1766 dkey->dttk_size)) 1767 goto next; 1768 } else { 1769 if (dkey->dttk_value != key[i].dttk_value) 1770 goto next; 1771 } 1772 } 1773 1774 if (op != DTRACE_DYNVAR_DEALLOC) 1775 return (dvar); 1776 1777 ASSERT(dvar->dtdv_next == NULL || 1778 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 1779 1780 if (prev != NULL) { 1781 ASSERT(hash[bucket].dtdh_chain != dvar); 1782 ASSERT(start != dvar); 1783 ASSERT(prev->dtdv_next == dvar); 1784 prev->dtdv_next = dvar->dtdv_next; 1785 } else { 1786 if (dtrace_casptr(&hash[bucket].dtdh_chain, 1787 start, dvar->dtdv_next) != start) { 1788 /* 1789 * We have failed to atomically swing the 1790 * hash table head pointer, presumably because 1791 * of a conflicting allocation on another CPU. 1792 * We need to reread the hash chain and try 1793 * again. 1794 */ 1795 goto top; 1796 } 1797 } 1798 1799 dtrace_membar_producer(); 1800 1801 /* 1802 * Now set the hash value to indicate that it's free. 1803 */ 1804 ASSERT(hash[bucket].dtdh_chain != dvar); 1805 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1806 1807 dtrace_membar_producer(); 1808 1809 /* 1810 * Set the next pointer to point at the dirty list, and 1811 * atomically swing the dirty pointer to the newly freed dvar. 1812 */ 1813 do { 1814 next = dcpu->dtdsc_dirty; 1815 dvar->dtdv_next = next; 1816 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 1817 1818 /* 1819 * Finally, unlock this hash bucket. 1820 */ 1821 ASSERT(hash[bucket].dtdh_lock == lock); 1822 ASSERT(lock & 1); 1823 hash[bucket].dtdh_lock++; 1824 1825 return (NULL); 1826 next: 1827 prev = dvar; 1828 continue; 1829 } 1830 1831 if (dvar == NULL) { 1832 /* 1833 * If dvar is NULL, it is because we went off the rails: 1834 * one of the elements that we traversed in the hash chain 1835 * was deleted while we were traversing it. In this case, 1836 * we assert that we aren't doing a dealloc (deallocs lock 1837 * the hash bucket to prevent themselves from racing with 1838 * one another), and retry the hash chain traversal. 1839 */ 1840 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 1841 goto top; 1842 } 1843 1844 if (op != DTRACE_DYNVAR_ALLOC) { 1845 /* 1846 * If we are not to allocate a new variable, we want to 1847 * return NULL now. Before we return, check that the value 1848 * of the lock word hasn't changed. If it has, we may have 1849 * seen an inconsistent snapshot. 1850 */ 1851 if (op == DTRACE_DYNVAR_NOALLOC) { 1852 if (hash[bucket].dtdh_lock != lock) 1853 goto top; 1854 } else { 1855 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 1856 ASSERT(hash[bucket].dtdh_lock == lock); 1857 ASSERT(lock & 1); 1858 hash[bucket].dtdh_lock++; 1859 } 1860 1861 return (NULL); 1862 } 1863 1864 /* 1865 * We need to allocate a new dynamic variable. The size we need is the 1866 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 1867 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 1868 * the size of any referred-to data (dsize). We then round the final 1869 * size up to the chunksize for allocation. 1870 */ 1871 for (ksize = 0, i = 0; i < nkeys; i++) 1872 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 1873 1874 /* 1875 * This should be pretty much impossible, but could happen if, say, 1876 * strange DIF specified the tuple. Ideally, this should be an 1877 * assertion and not an error condition -- but that requires that the 1878 * chunksize calculation in dtrace_difo_chunksize() be absolutely 1879 * bullet-proof. (That is, it must not be able to be fooled by 1880 * malicious DIF.) Given the lack of backwards branches in DIF, 1881 * solving this would presumably not amount to solving the Halting 1882 * Problem -- but it still seems awfully hard. 1883 */ 1884 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 1885 ksize + dsize > chunksize) { 1886 dcpu->dtdsc_drops++; 1887 return (NULL); 1888 } 1889 1890 nstate = DTRACE_DSTATE_EMPTY; 1891 1892 do { 1893 retry: 1894 free = dcpu->dtdsc_free; 1895 1896 if (free == NULL) { 1897 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 1898 void *rval; 1899 1900 if (clean == NULL) { 1901 /* 1902 * We're out of dynamic variable space on 1903 * this CPU. Unless we have tried all CPUs, 1904 * we'll try to allocate from a different 1905 * CPU. 1906 */ 1907 switch (dstate->dtds_state) { 1908 case DTRACE_DSTATE_CLEAN: { 1909 void *sp = &dstate->dtds_state; 1910 1911 if (++cpu >= NCPU) 1912 cpu = 0; 1913 1914 if (dcpu->dtdsc_dirty != NULL && 1915 nstate == DTRACE_DSTATE_EMPTY) 1916 nstate = DTRACE_DSTATE_DIRTY; 1917 1918 if (dcpu->dtdsc_rinsing != NULL) 1919 nstate = DTRACE_DSTATE_RINSING; 1920 1921 dcpu = &dstate->dtds_percpu[cpu]; 1922 1923 if (cpu != me) 1924 goto retry; 1925 1926 (void) dtrace_cas32(sp, 1927 DTRACE_DSTATE_CLEAN, nstate); 1928 1929 /* 1930 * To increment the correct bean 1931 * counter, take another lap. 1932 */ 1933 goto retry; 1934 } 1935 1936 case DTRACE_DSTATE_DIRTY: 1937 dcpu->dtdsc_dirty_drops++; 1938 break; 1939 1940 case DTRACE_DSTATE_RINSING: 1941 dcpu->dtdsc_rinsing_drops++; 1942 break; 1943 1944 case DTRACE_DSTATE_EMPTY: 1945 dcpu->dtdsc_drops++; 1946 break; 1947 } 1948 1949 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 1950 return (NULL); 1951 } 1952 1953 /* 1954 * The clean list appears to be non-empty. We want to 1955 * move the clean list to the free list; we start by 1956 * moving the clean pointer aside. 1957 */ 1958 if (dtrace_casptr(&dcpu->dtdsc_clean, 1959 clean, NULL) != clean) { 1960 /* 1961 * We are in one of two situations: 1962 * 1963 * (a) The clean list was switched to the 1964 * free list by another CPU. 1965 * 1966 * (b) The clean list was added to by the 1967 * cleansing cyclic. 1968 * 1969 * In either of these situations, we can 1970 * just reattempt the free list allocation. 1971 */ 1972 goto retry; 1973 } 1974 1975 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 1976 1977 /* 1978 * Now we'll move the clean list to our free list. 1979 * It's impossible for this to fail: the only way 1980 * the free list can be updated is through this 1981 * code path, and only one CPU can own the clean list. 1982 * Thus, it would only be possible for this to fail if 1983 * this code were racing with dtrace_dynvar_clean(). 1984 * (That is, if dtrace_dynvar_clean() updated the clean 1985 * list, and we ended up racing to update the free 1986 * list.) This race is prevented by the dtrace_sync() 1987 * in dtrace_dynvar_clean() -- which flushes the 1988 * owners of the clean lists out before resetting 1989 * the clean lists. 1990 */ 1991 dcpu = &dstate->dtds_percpu[me]; 1992 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 1993 ASSERT(rval == NULL); 1994 goto retry; 1995 } 1996 1997 dvar = free; 1998 new_free = dvar->dtdv_next; 1999 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 2000 2001 /* 2002 * We have now allocated a new chunk. We copy the tuple keys into the 2003 * tuple array and copy any referenced key data into the data space 2004 * following the tuple array. As we do this, we relocate dttk_value 2005 * in the final tuple to point to the key data address in the chunk. 2006 */ 2007 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 2008 dvar->dtdv_data = (void *)(kdata + ksize); 2009 dvar->dtdv_tuple.dtt_nkeys = nkeys; 2010 2011 for (i = 0; i < nkeys; i++) { 2012 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 2013 size_t kesize = key[i].dttk_size; 2014 2015 if (kesize != 0) { 2016 dtrace_bcopy( 2017 (const void *)(uintptr_t)key[i].dttk_value, 2018 (void *)kdata, kesize); 2019 dkey->dttk_value = kdata; 2020 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 2021 } else { 2022 dkey->dttk_value = key[i].dttk_value; 2023 } 2024 2025 dkey->dttk_size = kesize; 2026 } 2027 2028 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 2029 dvar->dtdv_hashval = hashval; 2030 dvar->dtdv_next = start; 2031 2032 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 2033 return (dvar); 2034 2035 /* 2036 * The cas has failed. Either another CPU is adding an element to 2037 * this hash chain, or another CPU is deleting an element from this 2038 * hash chain. The simplest way to deal with both of these cases 2039 * (though not necessarily the most efficient) is to free our 2040 * allocated block and tail-call ourselves. Note that the free is 2041 * to the dirty list and _not_ to the free list. This is to prevent 2042 * races with allocators, above. 2043 */ 2044 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 2045 2046 dtrace_membar_producer(); 2047 2048 do { 2049 free = dcpu->dtdsc_dirty; 2050 dvar->dtdv_next = free; 2051 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 2052 2053 return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate)); 2054 } 2055 2056 /*ARGSUSED*/ 2057 static void 2058 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 2059 { 2060 if ((int64_t)nval < (int64_t)*oval) 2061 *oval = nval; 2062 } 2063 2064 /*ARGSUSED*/ 2065 static void 2066 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 2067 { 2068 if ((int64_t)nval > (int64_t)*oval) 2069 *oval = nval; 2070 } 2071 2072 static void 2073 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 2074 { 2075 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 2076 int64_t val = (int64_t)nval; 2077 2078 if (val < 0) { 2079 for (i = 0; i < zero; i++) { 2080 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 2081 quanta[i] += incr; 2082 return; 2083 } 2084 } 2085 } else { 2086 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 2087 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 2088 quanta[i - 1] += incr; 2089 return; 2090 } 2091 } 2092 2093 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 2094 return; 2095 } 2096 2097 ASSERT(0); 2098 } 2099 2100 static void 2101 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 2102 { 2103 uint64_t arg = *lquanta++; 2104 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 2105 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 2106 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 2107 int32_t val = (int32_t)nval, level; 2108 2109 ASSERT(step != 0); 2110 ASSERT(levels != 0); 2111 2112 if (val < base) { 2113 /* 2114 * This is an underflow. 2115 */ 2116 lquanta[0] += incr; 2117 return; 2118 } 2119 2120 level = (val - base) / step; 2121 2122 if (level < levels) { 2123 lquanta[level + 1] += incr; 2124 return; 2125 } 2126 2127 /* 2128 * This is an overflow. 2129 */ 2130 lquanta[levels + 1] += incr; 2131 } 2132 2133 static int 2134 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low, 2135 uint16_t high, uint16_t nsteps, int64_t value) 2136 { 2137 int64_t this = 1, last, next; 2138 int base = 1, order; 2139 2140 ASSERT(factor <= nsteps); 2141 ASSERT(nsteps % factor == 0); 2142 2143 for (order = 0; order < low; order++) 2144 this *= factor; 2145 2146 /* 2147 * If our value is less than our factor taken to the power of the 2148 * low order of magnitude, it goes into the zeroth bucket. 2149 */ 2150 if (value < (last = this)) 2151 return (0); 2152 2153 for (this *= factor; order <= high; order++) { 2154 int nbuckets = this > nsteps ? nsteps : this; 2155 2156 if ((next = this * factor) < this) { 2157 /* 2158 * We should not generally get log/linear quantizations 2159 * with a high magnitude that allows 64-bits to 2160 * overflow, but we nonetheless protect against this 2161 * by explicitly checking for overflow, and clamping 2162 * our value accordingly. 2163 */ 2164 value = this - 1; 2165 } 2166 2167 if (value < this) { 2168 /* 2169 * If our value lies within this order of magnitude, 2170 * determine its position by taking the offset within 2171 * the order of magnitude, dividing by the bucket 2172 * width, and adding to our (accumulated) base. 2173 */ 2174 return (base + (value - last) / (this / nbuckets)); 2175 } 2176 2177 base += nbuckets - (nbuckets / factor); 2178 last = this; 2179 this = next; 2180 } 2181 2182 /* 2183 * Our value is greater than or equal to our factor taken to the 2184 * power of one plus the high magnitude -- return the top bucket. 2185 */ 2186 return (base); 2187 } 2188 2189 static void 2190 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr) 2191 { 2192 uint64_t arg = *llquanta++; 2193 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg); 2194 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg); 2195 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg); 2196 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); 2197 2198 llquanta[dtrace_aggregate_llquantize_bucket(factor, 2199 low, high, nsteps, nval)] += incr; 2200 } 2201 2202 /*ARGSUSED*/ 2203 static void 2204 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 2205 { 2206 data[0]++; 2207 data[1] += nval; 2208 } 2209 2210 /*ARGSUSED*/ 2211 static void 2212 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) 2213 { 2214 int64_t snval = (int64_t)nval; 2215 uint64_t tmp[2]; 2216 2217 data[0]++; 2218 data[1] += nval; 2219 2220 /* 2221 * What we want to say here is: 2222 * 2223 * data[2] += nval * nval; 2224 * 2225 * But given that nval is 64-bit, we could easily overflow, so 2226 * we do this as 128-bit arithmetic. 2227 */ 2228 if (snval < 0) 2229 snval = -snval; 2230 2231 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp); 2232 dtrace_add_128(data + 2, tmp, data + 2); 2233 } 2234 2235 /*ARGSUSED*/ 2236 static void 2237 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 2238 { 2239 *oval = *oval + 1; 2240 } 2241 2242 /*ARGSUSED*/ 2243 static void 2244 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 2245 { 2246 *oval += nval; 2247 } 2248 2249 /* 2250 * Aggregate given the tuple in the principal data buffer, and the aggregating 2251 * action denoted by the specified dtrace_aggregation_t. The aggregation 2252 * buffer is specified as the buf parameter. This routine does not return 2253 * failure; if there is no space in the aggregation buffer, the data will be 2254 * dropped, and a corresponding counter incremented. 2255 */ 2256 static void 2257 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 2258 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 2259 { 2260 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 2261 uint32_t i, ndx, size, fsize; 2262 uint32_t align = sizeof (uint64_t) - 1; 2263 dtrace_aggbuffer_t *agb; 2264 dtrace_aggkey_t *key; 2265 uint32_t hashval = 0, limit, isstr; 2266 caddr_t tomax, data, kdata; 2267 dtrace_actkind_t action; 2268 dtrace_action_t *act; 2269 uintptr_t offs; 2270 2271 if (buf == NULL) 2272 return; 2273 2274 if (!agg->dtag_hasarg) { 2275 /* 2276 * Currently, only quantize() and lquantize() take additional 2277 * arguments, and they have the same semantics: an increment 2278 * value that defaults to 1 when not present. If additional 2279 * aggregating actions take arguments, the setting of the 2280 * default argument value will presumably have to become more 2281 * sophisticated... 2282 */ 2283 arg = 1; 2284 } 2285 2286 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 2287 size = rec->dtrd_offset - agg->dtag_base; 2288 fsize = size + rec->dtrd_size; 2289 2290 ASSERT(dbuf->dtb_tomax != NULL); 2291 data = dbuf->dtb_tomax + offset + agg->dtag_base; 2292 2293 if ((tomax = buf->dtb_tomax) == NULL) { 2294 dtrace_buffer_drop(buf); 2295 return; 2296 } 2297 2298 /* 2299 * The metastructure is always at the bottom of the buffer. 2300 */ 2301 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 2302 sizeof (dtrace_aggbuffer_t)); 2303 2304 if (buf->dtb_offset == 0) { 2305 /* 2306 * We just kludge up approximately 1/8th of the size to be 2307 * buckets. If this guess ends up being routinely 2308 * off-the-mark, we may need to dynamically readjust this 2309 * based on past performance. 2310 */ 2311 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 2312 2313 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 2314 (uintptr_t)tomax || hashsize == 0) { 2315 /* 2316 * We've been given a ludicrously small buffer; 2317 * increment our drop count and leave. 2318 */ 2319 dtrace_buffer_drop(buf); 2320 return; 2321 } 2322 2323 /* 2324 * And now, a pathetic attempt to try to get a an odd (or 2325 * perchance, a prime) hash size for better hash distribution. 2326 */ 2327 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 2328 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 2329 2330 agb->dtagb_hashsize = hashsize; 2331 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 2332 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 2333 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 2334 2335 for (i = 0; i < agb->dtagb_hashsize; i++) 2336 agb->dtagb_hash[i] = NULL; 2337 } 2338 2339 ASSERT(agg->dtag_first != NULL); 2340 ASSERT(agg->dtag_first->dta_intuple); 2341 2342 /* 2343 * Calculate the hash value based on the key. Note that we _don't_ 2344 * include the aggid in the hashing (but we will store it as part of 2345 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 2346 * algorithm: a simple, quick algorithm that has no known funnels, and 2347 * gets good distribution in practice. The efficacy of the hashing 2348 * algorithm (and a comparison with other algorithms) may be found by 2349 * running the ::dtrace_aggstat MDB dcmd. 2350 */ 2351 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2352 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2353 limit = i + act->dta_rec.dtrd_size; 2354 ASSERT(limit <= size); 2355 isstr = DTRACEACT_ISSTRING(act); 2356 2357 for (; i < limit; i++) { 2358 hashval += data[i]; 2359 hashval += (hashval << 10); 2360 hashval ^= (hashval >> 6); 2361 2362 if (isstr && data[i] == '\0') 2363 break; 2364 } 2365 } 2366 2367 hashval += (hashval << 3); 2368 hashval ^= (hashval >> 11); 2369 hashval += (hashval << 15); 2370 2371 /* 2372 * Yes, the divide here is expensive -- but it's generally the least 2373 * of the performance issues given the amount of data that we iterate 2374 * over to compute hash values, compare data, etc. 2375 */ 2376 ndx = hashval % agb->dtagb_hashsize; 2377 2378 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 2379 ASSERT((caddr_t)key >= tomax); 2380 ASSERT((caddr_t)key < tomax + buf->dtb_size); 2381 2382 if (hashval != key->dtak_hashval || key->dtak_size != size) 2383 continue; 2384 2385 kdata = key->dtak_data; 2386 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 2387 2388 for (act = agg->dtag_first; act->dta_intuple; 2389 act = act->dta_next) { 2390 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2391 limit = i + act->dta_rec.dtrd_size; 2392 ASSERT(limit <= size); 2393 isstr = DTRACEACT_ISSTRING(act); 2394 2395 for (; i < limit; i++) { 2396 if (kdata[i] != data[i]) 2397 goto next; 2398 2399 if (isstr && data[i] == '\0') 2400 break; 2401 } 2402 } 2403 2404 if (action != key->dtak_action) { 2405 /* 2406 * We are aggregating on the same value in the same 2407 * aggregation with two different aggregating actions. 2408 * (This should have been picked up in the compiler, 2409 * so we may be dealing with errant or devious DIF.) 2410 * This is an error condition; we indicate as much, 2411 * and return. 2412 */ 2413 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2414 return; 2415 } 2416 2417 /* 2418 * This is a hit: we need to apply the aggregator to 2419 * the value at this key. 2420 */ 2421 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 2422 return; 2423 next: 2424 continue; 2425 } 2426 2427 /* 2428 * We didn't find it. We need to allocate some zero-filled space, 2429 * link it into the hash table appropriately, and apply the aggregator 2430 * to the (zero-filled) value. 2431 */ 2432 offs = buf->dtb_offset; 2433 while (offs & (align - 1)) 2434 offs += sizeof (uint32_t); 2435 2436 /* 2437 * If we don't have enough room to both allocate a new key _and_ 2438 * its associated data, increment the drop count and return. 2439 */ 2440 if ((uintptr_t)tomax + offs + fsize > 2441 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 2442 dtrace_buffer_drop(buf); 2443 return; 2444 } 2445 2446 /*CONSTCOND*/ 2447 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 2448 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 2449 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 2450 2451 key->dtak_data = kdata = tomax + offs; 2452 buf->dtb_offset = offs + fsize; 2453 2454 /* 2455 * Now copy the data across. 2456 */ 2457 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 2458 2459 for (i = sizeof (dtrace_aggid_t); i < size; i++) 2460 kdata[i] = data[i]; 2461 2462 /* 2463 * Because strings are not zeroed out by default, we need to iterate 2464 * looking for actions that store strings, and we need to explicitly 2465 * pad these strings out with zeroes. 2466 */ 2467 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2468 int nul; 2469 2470 if (!DTRACEACT_ISSTRING(act)) 2471 continue; 2472 2473 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2474 limit = i + act->dta_rec.dtrd_size; 2475 ASSERT(limit <= size); 2476 2477 for (nul = 0; i < limit; i++) { 2478 if (nul) { 2479 kdata[i] = '\0'; 2480 continue; 2481 } 2482 2483 if (data[i] != '\0') 2484 continue; 2485 2486 nul = 1; 2487 } 2488 } 2489 2490 for (i = size; i < fsize; i++) 2491 kdata[i] = 0; 2492 2493 key->dtak_hashval = hashval; 2494 key->dtak_size = size; 2495 key->dtak_action = action; 2496 key->dtak_next = agb->dtagb_hash[ndx]; 2497 agb->dtagb_hash[ndx] = key; 2498 2499 /* 2500 * Finally, apply the aggregator. 2501 */ 2502 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 2503 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 2504 } 2505 2506 /* 2507 * Given consumer state, this routine finds a speculation in the INACTIVE 2508 * state and transitions it into the ACTIVE state. If there is no speculation 2509 * in the INACTIVE state, 0 is returned. In this case, no error counter is 2510 * incremented -- it is up to the caller to take appropriate action. 2511 */ 2512 static int 2513 dtrace_speculation(dtrace_state_t *state) 2514 { 2515 int i = 0; 2516 dtrace_speculation_state_t current; 2517 uint32_t *stat = &state->dts_speculations_unavail, count; 2518 2519 while (i < state->dts_nspeculations) { 2520 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2521 2522 current = spec->dtsp_state; 2523 2524 if (current != DTRACESPEC_INACTIVE) { 2525 if (current == DTRACESPEC_COMMITTINGMANY || 2526 current == DTRACESPEC_COMMITTING || 2527 current == DTRACESPEC_DISCARDING) 2528 stat = &state->dts_speculations_busy; 2529 i++; 2530 continue; 2531 } 2532 2533 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2534 current, DTRACESPEC_ACTIVE) == current) 2535 return (i + 1); 2536 } 2537 2538 /* 2539 * We couldn't find a speculation. If we found as much as a single 2540 * busy speculation buffer, we'll attribute this failure as "busy" 2541 * instead of "unavail". 2542 */ 2543 do { 2544 count = *stat; 2545 } while (dtrace_cas32(stat, count, count + 1) != count); 2546 2547 return (0); 2548 } 2549 2550 /* 2551 * This routine commits an active speculation. If the specified speculation 2552 * is not in a valid state to perform a commit(), this routine will silently do 2553 * nothing. The state of the specified speculation is transitioned according 2554 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2555 */ 2556 static void 2557 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2558 dtrace_specid_t which) 2559 { 2560 dtrace_speculation_t *spec; 2561 dtrace_buffer_t *src, *dest; 2562 uintptr_t daddr, saddr, dlimit, slimit; 2563 dtrace_speculation_state_t current, new; 2564 intptr_t offs; 2565 uint64_t timestamp; 2566 2567 if (which == 0) 2568 return; 2569 2570 if (which > state->dts_nspeculations) { 2571 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2572 return; 2573 } 2574 2575 spec = &state->dts_speculations[which - 1]; 2576 src = &spec->dtsp_buffer[cpu]; 2577 dest = &state->dts_buffer[cpu]; 2578 2579 do { 2580 current = spec->dtsp_state; 2581 2582 if (current == DTRACESPEC_COMMITTINGMANY) 2583 break; 2584 2585 switch (current) { 2586 case DTRACESPEC_INACTIVE: 2587 case DTRACESPEC_DISCARDING: 2588 return; 2589 2590 case DTRACESPEC_COMMITTING: 2591 /* 2592 * This is only possible if we are (a) commit()'ing 2593 * without having done a prior speculate() on this CPU 2594 * and (b) racing with another commit() on a different 2595 * CPU. There's nothing to do -- we just assert that 2596 * our offset is 0. 2597 */ 2598 ASSERT(src->dtb_offset == 0); 2599 return; 2600 2601 case DTRACESPEC_ACTIVE: 2602 new = DTRACESPEC_COMMITTING; 2603 break; 2604 2605 case DTRACESPEC_ACTIVEONE: 2606 /* 2607 * This speculation is active on one CPU. If our 2608 * buffer offset is non-zero, we know that the one CPU 2609 * must be us. Otherwise, we are committing on a 2610 * different CPU from the speculate(), and we must 2611 * rely on being asynchronously cleaned. 2612 */ 2613 if (src->dtb_offset != 0) { 2614 new = DTRACESPEC_COMMITTING; 2615 break; 2616 } 2617 /*FALLTHROUGH*/ 2618 2619 case DTRACESPEC_ACTIVEMANY: 2620 new = DTRACESPEC_COMMITTINGMANY; 2621 break; 2622 2623 default: 2624 ASSERT(0); 2625 } 2626 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2627 current, new) != current); 2628 2629 /* 2630 * We have set the state to indicate that we are committing this 2631 * speculation. Now reserve the necessary space in the destination 2632 * buffer. 2633 */ 2634 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2635 sizeof (uint64_t), state, NULL)) < 0) { 2636 dtrace_buffer_drop(dest); 2637 goto out; 2638 } 2639 2640 /* 2641 * We have sufficient space to copy the speculative buffer into the 2642 * primary buffer. First, modify the speculative buffer, filling 2643 * in the timestamp of all entries with the current time. The data 2644 * must have the commit() time rather than the time it was traced, 2645 * so that all entries in the primary buffer are in timestamp order. 2646 */ 2647 timestamp = dtrace_gethrtime(); 2648 saddr = (uintptr_t)src->dtb_tomax; 2649 slimit = saddr + src->dtb_offset; 2650 while (saddr < slimit) { 2651 size_t size; 2652 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr; 2653 2654 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) { 2655 saddr += sizeof (dtrace_epid_t); 2656 continue; 2657 } 2658 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs); 2659 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size; 2660 2661 ASSERT3U(saddr + size, <=, slimit); 2662 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t)); 2663 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX); 2664 2665 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp); 2666 2667 saddr += size; 2668 } 2669 2670 /* 2671 * Copy the buffer across. (Note that this is a 2672 * highly subobtimal bcopy(); in the unlikely event that this becomes 2673 * a serious performance issue, a high-performance DTrace-specific 2674 * bcopy() should obviously be invented.) 2675 */ 2676 daddr = (uintptr_t)dest->dtb_tomax + offs; 2677 dlimit = daddr + src->dtb_offset; 2678 saddr = (uintptr_t)src->dtb_tomax; 2679 2680 /* 2681 * First, the aligned portion. 2682 */ 2683 while (dlimit - daddr >= sizeof (uint64_t)) { 2684 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2685 2686 daddr += sizeof (uint64_t); 2687 saddr += sizeof (uint64_t); 2688 } 2689 2690 /* 2691 * Now any left-over bit... 2692 */ 2693 while (dlimit - daddr) 2694 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 2695 2696 /* 2697 * Finally, commit the reserved space in the destination buffer. 2698 */ 2699 dest->dtb_offset = offs + src->dtb_offset; 2700 2701 out: 2702 /* 2703 * If we're lucky enough to be the only active CPU on this speculation 2704 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2705 */ 2706 if (current == DTRACESPEC_ACTIVE || 2707 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2708 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2709 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2710 2711 ASSERT(rval == DTRACESPEC_COMMITTING); 2712 } 2713 2714 src->dtb_offset = 0; 2715 src->dtb_xamot_drops += src->dtb_drops; 2716 src->dtb_drops = 0; 2717 } 2718 2719 /* 2720 * This routine discards an active speculation. If the specified speculation 2721 * is not in a valid state to perform a discard(), this routine will silently 2722 * do nothing. The state of the specified speculation is transitioned 2723 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 2724 */ 2725 static void 2726 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 2727 dtrace_specid_t which) 2728 { 2729 dtrace_speculation_t *spec; 2730 dtrace_speculation_state_t current, new; 2731 dtrace_buffer_t *buf; 2732 2733 if (which == 0) 2734 return; 2735 2736 if (which > state->dts_nspeculations) { 2737 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2738 return; 2739 } 2740 2741 spec = &state->dts_speculations[which - 1]; 2742 buf = &spec->dtsp_buffer[cpu]; 2743 2744 do { 2745 current = spec->dtsp_state; 2746 2747 switch (current) { 2748 case DTRACESPEC_INACTIVE: 2749 case DTRACESPEC_COMMITTINGMANY: 2750 case DTRACESPEC_COMMITTING: 2751 case DTRACESPEC_DISCARDING: 2752 return; 2753 2754 case DTRACESPEC_ACTIVE: 2755 case DTRACESPEC_ACTIVEMANY: 2756 new = DTRACESPEC_DISCARDING; 2757 break; 2758 2759 case DTRACESPEC_ACTIVEONE: 2760 if (buf->dtb_offset != 0) { 2761 new = DTRACESPEC_INACTIVE; 2762 } else { 2763 new = DTRACESPEC_DISCARDING; 2764 } 2765 break; 2766 2767 default: 2768 ASSERT(0); 2769 } 2770 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2771 current, new) != current); 2772 2773 buf->dtb_offset = 0; 2774 buf->dtb_drops = 0; 2775 } 2776 2777 /* 2778 * Note: not called from probe context. This function is called 2779 * asynchronously from cross call context to clean any speculations that are 2780 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 2781 * transitioned back to the INACTIVE state until all CPUs have cleaned the 2782 * speculation. 2783 */ 2784 static void 2785 dtrace_speculation_clean_here(dtrace_state_t *state) 2786 { 2787 dtrace_icookie_t cookie; 2788 processorid_t cpu = CPU->cpu_id; 2789 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 2790 dtrace_specid_t i; 2791 2792 cookie = dtrace_interrupt_disable(); 2793 2794 if (dest->dtb_tomax == NULL) { 2795 dtrace_interrupt_enable(cookie); 2796 return; 2797 } 2798 2799 for (i = 0; i < state->dts_nspeculations; i++) { 2800 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2801 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 2802 2803 if (src->dtb_tomax == NULL) 2804 continue; 2805 2806 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 2807 src->dtb_offset = 0; 2808 continue; 2809 } 2810 2811 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2812 continue; 2813 2814 if (src->dtb_offset == 0) 2815 continue; 2816 2817 dtrace_speculation_commit(state, cpu, i + 1); 2818 } 2819 2820 dtrace_interrupt_enable(cookie); 2821 } 2822 2823 /* 2824 * Note: not called from probe context. This function is called 2825 * asynchronously (and at a regular interval) to clean any speculations that 2826 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 2827 * is work to be done, it cross calls all CPUs to perform that work; 2828 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 2829 * INACTIVE state until they have been cleaned by all CPUs. 2830 */ 2831 static void 2832 dtrace_speculation_clean(dtrace_state_t *state) 2833 { 2834 int work = 0, rv; 2835 dtrace_specid_t i; 2836 2837 for (i = 0; i < state->dts_nspeculations; i++) { 2838 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2839 2840 ASSERT(!spec->dtsp_cleaning); 2841 2842 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 2843 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2844 continue; 2845 2846 work++; 2847 spec->dtsp_cleaning = 1; 2848 } 2849 2850 if (!work) 2851 return; 2852 2853 dtrace_xcall(DTRACE_CPUALL, 2854 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 2855 2856 /* 2857 * We now know that all CPUs have committed or discarded their 2858 * speculation buffers, as appropriate. We can now set the state 2859 * to inactive. 2860 */ 2861 for (i = 0; i < state->dts_nspeculations; i++) { 2862 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2863 dtrace_speculation_state_t current, new; 2864 2865 if (!spec->dtsp_cleaning) 2866 continue; 2867 2868 current = spec->dtsp_state; 2869 ASSERT(current == DTRACESPEC_DISCARDING || 2870 current == DTRACESPEC_COMMITTINGMANY); 2871 2872 new = DTRACESPEC_INACTIVE; 2873 2874 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new); 2875 ASSERT(rv == current); 2876 spec->dtsp_cleaning = 0; 2877 } 2878 } 2879 2880 /* 2881 * Called as part of a speculate() to get the speculative buffer associated 2882 * with a given speculation. Returns NULL if the specified speculation is not 2883 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 2884 * the active CPU is not the specified CPU -- the speculation will be 2885 * atomically transitioned into the ACTIVEMANY state. 2886 */ 2887 static dtrace_buffer_t * 2888 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 2889 dtrace_specid_t which) 2890 { 2891 dtrace_speculation_t *spec; 2892 dtrace_speculation_state_t current, new; 2893 dtrace_buffer_t *buf; 2894 2895 if (which == 0) 2896 return (NULL); 2897 2898 if (which > state->dts_nspeculations) { 2899 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2900 return (NULL); 2901 } 2902 2903 spec = &state->dts_speculations[which - 1]; 2904 buf = &spec->dtsp_buffer[cpuid]; 2905 2906 do { 2907 current = spec->dtsp_state; 2908 2909 switch (current) { 2910 case DTRACESPEC_INACTIVE: 2911 case DTRACESPEC_COMMITTINGMANY: 2912 case DTRACESPEC_DISCARDING: 2913 return (NULL); 2914 2915 case DTRACESPEC_COMMITTING: 2916 ASSERT(buf->dtb_offset == 0); 2917 return (NULL); 2918 2919 case DTRACESPEC_ACTIVEONE: 2920 /* 2921 * This speculation is currently active on one CPU. 2922 * Check the offset in the buffer; if it's non-zero, 2923 * that CPU must be us (and we leave the state alone). 2924 * If it's zero, assume that we're starting on a new 2925 * CPU -- and change the state to indicate that the 2926 * speculation is active on more than one CPU. 2927 */ 2928 if (buf->dtb_offset != 0) 2929 return (buf); 2930 2931 new = DTRACESPEC_ACTIVEMANY; 2932 break; 2933 2934 case DTRACESPEC_ACTIVEMANY: 2935 return (buf); 2936 2937 case DTRACESPEC_ACTIVE: 2938 new = DTRACESPEC_ACTIVEONE; 2939 break; 2940 2941 default: 2942 ASSERT(0); 2943 } 2944 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2945 current, new) != current); 2946 2947 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 2948 return (buf); 2949 } 2950 2951 /* 2952 * Return a string. In the event that the user lacks the privilege to access 2953 * arbitrary kernel memory, we copy the string out to scratch memory so that we 2954 * don't fail access checking. 2955 * 2956 * dtrace_dif_variable() uses this routine as a helper for various 2957 * builtin values such as 'execname' and 'probefunc.' 2958 */ 2959 uintptr_t 2960 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 2961 dtrace_mstate_t *mstate) 2962 { 2963 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 2964 uintptr_t ret; 2965 size_t strsz; 2966 2967 /* 2968 * The easy case: this probe is allowed to read all of memory, so 2969 * we can just return this as a vanilla pointer. 2970 */ 2971 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 2972 return (addr); 2973 2974 /* 2975 * This is the tougher case: we copy the string in question from 2976 * kernel memory into scratch memory and return it that way: this 2977 * ensures that we won't trip up when access checking tests the 2978 * BYREF return value. 2979 */ 2980 strsz = dtrace_strlen((char *)addr, size) + 1; 2981 2982 if (mstate->dtms_scratch_ptr + strsz > 2983 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 2984 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 2985 return (NULL); 2986 } 2987 2988 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 2989 strsz); 2990 ret = mstate->dtms_scratch_ptr; 2991 mstate->dtms_scratch_ptr += strsz; 2992 return (ret); 2993 } 2994 2995 /* 2996 * This function implements the DIF emulator's variable lookups. The emulator 2997 * passes a reserved variable identifier and optional built-in array index. 2998 */ 2999 static uint64_t 3000 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 3001 uint64_t ndx) 3002 { 3003 /* 3004 * If we're accessing one of the uncached arguments, we'll turn this 3005 * into a reference in the args array. 3006 */ 3007 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 3008 ndx = v - DIF_VAR_ARG0; 3009 v = DIF_VAR_ARGS; 3010 } 3011 3012 switch (v) { 3013 case DIF_VAR_ARGS: 3014 if (!(mstate->dtms_access & DTRACE_ACCESS_ARGS)) { 3015 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= 3016 CPU_DTRACE_KPRIV; 3017 return (0); 3018 } 3019 3020 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 3021 if (ndx >= sizeof (mstate->dtms_arg) / 3022 sizeof (mstate->dtms_arg[0])) { 3023 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3024 dtrace_provider_t *pv; 3025 uint64_t val; 3026 3027 pv = mstate->dtms_probe->dtpr_provider; 3028 if (pv->dtpv_pops.dtps_getargval != NULL) 3029 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 3030 mstate->dtms_probe->dtpr_id, 3031 mstate->dtms_probe->dtpr_arg, ndx, aframes); 3032 else 3033 val = dtrace_getarg(ndx, aframes); 3034 3035 /* 3036 * This is regrettably required to keep the compiler 3037 * from tail-optimizing the call to dtrace_getarg(). 3038 * The condition always evaluates to true, but the 3039 * compiler has no way of figuring that out a priori. 3040 * (None of this would be necessary if the compiler 3041 * could be relied upon to _always_ tail-optimize 3042 * the call to dtrace_getarg() -- but it can't.) 3043 */ 3044 if (mstate->dtms_probe != NULL) 3045 return (val); 3046 3047 ASSERT(0); 3048 } 3049 3050 return (mstate->dtms_arg[ndx]); 3051 3052 case DIF_VAR_UREGS: { 3053 klwp_t *lwp; 3054 3055 if (!dtrace_priv_proc(state, mstate)) 3056 return (0); 3057 3058 if ((lwp = curthread->t_lwp) == NULL) { 3059 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 3060 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL; 3061 return (0); 3062 } 3063 3064 return (dtrace_getreg(lwp->lwp_regs, ndx)); 3065 } 3066 3067 case DIF_VAR_VMREGS: { 3068 uint64_t rval; 3069 3070 if (!dtrace_priv_kernel(state)) 3071 return (0); 3072 3073 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3074 3075 rval = dtrace_getvmreg(ndx, 3076 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags); 3077 3078 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3079 3080 return (rval); 3081 } 3082 3083 case DIF_VAR_CURTHREAD: 3084 if (!dtrace_priv_proc(state, mstate)) 3085 return (0); 3086 return ((uint64_t)(uintptr_t)curthread); 3087 3088 case DIF_VAR_TIMESTAMP: 3089 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 3090 mstate->dtms_timestamp = dtrace_gethrtime(); 3091 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 3092 } 3093 return (mstate->dtms_timestamp); 3094 3095 case DIF_VAR_VTIMESTAMP: 3096 ASSERT(dtrace_vtime_references != 0); 3097 return (curthread->t_dtrace_vtime); 3098 3099 case DIF_VAR_WALLTIMESTAMP: 3100 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 3101 mstate->dtms_walltimestamp = dtrace_gethrestime(); 3102 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 3103 } 3104 return (mstate->dtms_walltimestamp); 3105 3106 case DIF_VAR_IPL: 3107 if (!dtrace_priv_kernel(state)) 3108 return (0); 3109 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 3110 mstate->dtms_ipl = dtrace_getipl(); 3111 mstate->dtms_present |= DTRACE_MSTATE_IPL; 3112 } 3113 return (mstate->dtms_ipl); 3114 3115 case DIF_VAR_EPID: 3116 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 3117 return (mstate->dtms_epid); 3118 3119 case DIF_VAR_ID: 3120 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3121 return (mstate->dtms_probe->dtpr_id); 3122 3123 case DIF_VAR_STACKDEPTH: 3124 if (!dtrace_priv_kernel(state)) 3125 return (0); 3126 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 3127 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3128 3129 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 3130 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 3131 } 3132 return (mstate->dtms_stackdepth); 3133 3134 case DIF_VAR_USTACKDEPTH: 3135 if (!dtrace_priv_proc(state, mstate)) 3136 return (0); 3137 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 3138 /* 3139 * See comment in DIF_VAR_PID. 3140 */ 3141 if (DTRACE_ANCHORED(mstate->dtms_probe) && 3142 CPU_ON_INTR(CPU)) { 3143 mstate->dtms_ustackdepth = 0; 3144 } else { 3145 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3146 mstate->dtms_ustackdepth = 3147 dtrace_getustackdepth(); 3148 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3149 } 3150 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 3151 } 3152 return (mstate->dtms_ustackdepth); 3153 3154 case DIF_VAR_CALLER: 3155 if (!dtrace_priv_kernel(state)) 3156 return (0); 3157 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 3158 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3159 3160 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 3161 /* 3162 * If this is an unanchored probe, we are 3163 * required to go through the slow path: 3164 * dtrace_caller() only guarantees correct 3165 * results for anchored probes. 3166 */ 3167 pc_t caller[2]; 3168 3169 dtrace_getpcstack(caller, 2, aframes, 3170 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 3171 mstate->dtms_caller = caller[1]; 3172 } else if ((mstate->dtms_caller = 3173 dtrace_caller(aframes)) == -1) { 3174 /* 3175 * We have failed to do this the quick way; 3176 * we must resort to the slower approach of 3177 * calling dtrace_getpcstack(). 3178 */ 3179 pc_t caller; 3180 3181 dtrace_getpcstack(&caller, 1, aframes, NULL); 3182 mstate->dtms_caller = caller; 3183 } 3184 3185 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 3186 } 3187 return (mstate->dtms_caller); 3188 3189 case DIF_VAR_UCALLER: 3190 if (!dtrace_priv_proc(state, mstate)) 3191 return (0); 3192 3193 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 3194 uint64_t ustack[3]; 3195 3196 /* 3197 * dtrace_getupcstack() fills in the first uint64_t 3198 * with the current PID. The second uint64_t will 3199 * be the program counter at user-level. The third 3200 * uint64_t will contain the caller, which is what 3201 * we're after. 3202 */ 3203 ustack[2] = NULL; 3204 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3205 dtrace_getupcstack(ustack, 3); 3206 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3207 mstate->dtms_ucaller = ustack[2]; 3208 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 3209 } 3210 3211 return (mstate->dtms_ucaller); 3212 3213 case DIF_VAR_PROBEPROV: 3214 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3215 return (dtrace_dif_varstr( 3216 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 3217 state, mstate)); 3218 3219 case DIF_VAR_PROBEMOD: 3220 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3221 return (dtrace_dif_varstr( 3222 (uintptr_t)mstate->dtms_probe->dtpr_mod, 3223 state, mstate)); 3224 3225 case DIF_VAR_PROBEFUNC: 3226 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3227 return (dtrace_dif_varstr( 3228 (uintptr_t)mstate->dtms_probe->dtpr_func, 3229 state, mstate)); 3230 3231 case DIF_VAR_PROBENAME: 3232 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3233 return (dtrace_dif_varstr( 3234 (uintptr_t)mstate->dtms_probe->dtpr_name, 3235 state, mstate)); 3236 3237 case DIF_VAR_PID: 3238 if (!dtrace_priv_proc(state, mstate)) 3239 return (0); 3240 3241 /* 3242 * Note that we are assuming that an unanchored probe is 3243 * always due to a high-level interrupt. (And we're assuming 3244 * that there is only a single high level interrupt.) 3245 */ 3246 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3247 return (pid0.pid_id); 3248 3249 /* 3250 * It is always safe to dereference one's own t_procp pointer: 3251 * it always points to a valid, allocated proc structure. 3252 * Further, it is always safe to dereference the p_pidp member 3253 * of one's own proc structure. (These are truisms becuase 3254 * threads and processes don't clean up their own state -- 3255 * they leave that task to whomever reaps them.) 3256 */ 3257 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 3258 3259 case DIF_VAR_PPID: 3260 if (!dtrace_priv_proc(state, mstate)) 3261 return (0); 3262 3263 /* 3264 * See comment in DIF_VAR_PID. 3265 */ 3266 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3267 return (pid0.pid_id); 3268 3269 /* 3270 * It is always safe to dereference one's own t_procp pointer: 3271 * it always points to a valid, allocated proc structure. 3272 * (This is true because threads don't clean up their own 3273 * state -- they leave that task to whomever reaps them.) 3274 */ 3275 return ((uint64_t)curthread->t_procp->p_ppid); 3276 3277 case DIF_VAR_TID: 3278 /* 3279 * See comment in DIF_VAR_PID. 3280 */ 3281 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3282 return (0); 3283 3284 return ((uint64_t)curthread->t_tid); 3285 3286 case DIF_VAR_EXECNAME: 3287 if (!dtrace_priv_proc(state, mstate)) 3288 return (0); 3289 3290 /* 3291 * See comment in DIF_VAR_PID. 3292 */ 3293 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3294 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 3295 3296 /* 3297 * It is always safe to dereference one's own t_procp pointer: 3298 * it always points to a valid, allocated proc structure. 3299 * (This is true because threads don't clean up their own 3300 * state -- they leave that task to whomever reaps them.) 3301 */ 3302 return (dtrace_dif_varstr( 3303 (uintptr_t)curthread->t_procp->p_user.u_comm, 3304 state, mstate)); 3305 3306 case DIF_VAR_ZONENAME: 3307 if (!dtrace_priv_proc(state, mstate)) 3308 return (0); 3309 3310 /* 3311 * See comment in DIF_VAR_PID. 3312 */ 3313 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3314 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 3315 3316 /* 3317 * It is always safe to dereference one's own t_procp pointer: 3318 * it always points to a valid, allocated proc structure. 3319 * (This is true because threads don't clean up their own 3320 * state -- they leave that task to whomever reaps them.) 3321 */ 3322 return (dtrace_dif_varstr( 3323 (uintptr_t)curthread->t_procp->p_zone->zone_name, 3324 state, mstate)); 3325 3326 case DIF_VAR_UID: 3327 if (!dtrace_priv_proc(state, mstate)) 3328 return (0); 3329 3330 /* 3331 * See comment in DIF_VAR_PID. 3332 */ 3333 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3334 return ((uint64_t)p0.p_cred->cr_uid); 3335 3336 /* 3337 * It is always safe to dereference one's own t_procp pointer: 3338 * it always points to a valid, allocated proc structure. 3339 * (This is true because threads don't clean up their own 3340 * state -- they leave that task to whomever reaps them.) 3341 * 3342 * Additionally, it is safe to dereference one's own process 3343 * credential, since this is never NULL after process birth. 3344 */ 3345 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 3346 3347 case DIF_VAR_GID: 3348 if (!dtrace_priv_proc(state, mstate)) 3349 return (0); 3350 3351 /* 3352 * See comment in DIF_VAR_PID. 3353 */ 3354 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3355 return ((uint64_t)p0.p_cred->cr_gid); 3356 3357 /* 3358 * It is always safe to dereference one's own t_procp pointer: 3359 * it always points to a valid, allocated proc structure. 3360 * (This is true because threads don't clean up their own 3361 * state -- they leave that task to whomever reaps them.) 3362 * 3363 * Additionally, it is safe to dereference one's own process 3364 * credential, since this is never NULL after process birth. 3365 */ 3366 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 3367 3368 case DIF_VAR_ERRNO: { 3369 klwp_t *lwp; 3370 if (!dtrace_priv_proc(state, mstate)) 3371 return (0); 3372 3373 /* 3374 * See comment in DIF_VAR_PID. 3375 */ 3376 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3377 return (0); 3378 3379 /* 3380 * It is always safe to dereference one's own t_lwp pointer in 3381 * the event that this pointer is non-NULL. (This is true 3382 * because threads and lwps don't clean up their own state -- 3383 * they leave that task to whomever reaps them.) 3384 */ 3385 if ((lwp = curthread->t_lwp) == NULL) 3386 return (0); 3387 3388 return ((uint64_t)lwp->lwp_errno); 3389 } 3390 default: 3391 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 3392 return (0); 3393 } 3394 } 3395 3396 3397 typedef enum json_state { 3398 JSON_REST = 1, 3399 JSON_OBJECT, 3400 JSON_STRING, 3401 JSON_STRING_ESCAPE, 3402 JSON_STRING_ESCAPE_UNICODE, 3403 JSON_COLON, 3404 JSON_COMMA, 3405 JSON_VALUE, 3406 JSON_IDENTIFIER, 3407 JSON_NUMBER, 3408 JSON_NUMBER_FRAC, 3409 JSON_NUMBER_EXP, 3410 JSON_COLLECT_OBJECT 3411 } json_state_t; 3412 3413 /* 3414 * This function possesses just enough knowledge about JSON to extract a single 3415 * value from a JSON string and store it in the scratch buffer. It is able 3416 * to extract nested object values, and members of arrays by index. 3417 * 3418 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to 3419 * be looked up as we descend into the object tree. e.g. 3420 * 3421 * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL 3422 * with nelems = 5. 3423 */ 3424 static char * 3425 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems, 3426 char *dest) 3427 { 3428 json_state_t state = JSON_REST; 3429 uint64_t i; 3430 int64_t array_elem = INT64_MIN; 3431 int64_t array_pos = 0; 3432 uint8_t escape_unicount = 0; 3433 boolean_t string_is_key = B_FALSE; 3434 boolean_t collect_object = B_FALSE; 3435 boolean_t found_key = B_FALSE; 3436 boolean_t in_array = B_FALSE; 3437 uint8_t braces = 0, brackets = 0; 3438 char *elem = elemlist; 3439 char *dd = dest; 3440 uintptr_t cur; 3441 3442 for (cur = json; cur < json + size; cur++) { 3443 char cc = dtrace_load8(cur); 3444 if (cc == '\0' || braces > 250) 3445 return (NULL); 3446 3447 switch (state) { 3448 case JSON_REST: 3449 if (cc == ' ' || cc == '\t' || cc == '\n' || cc == '\r') 3450 break; /* eat whitespace */ 3451 3452 if (cc == '{') { 3453 state = JSON_OBJECT; 3454 break; 3455 } 3456 3457 if (cc == '[') { 3458 in_array = B_TRUE; 3459 array_pos = 0; 3460 array_elem = dtrace_strtoll(elem, 10, size); 3461 found_key = !!(array_elem == 0); 3462 state = JSON_VALUE; 3463 break; 3464 } 3465 3466 /* ERROR: expected object or array */ 3467 return (NULL); 3468 case JSON_OBJECT: 3469 if (cc == ' ' || cc == '\t' || cc == '\n' || cc == '\r') 3470 break; /* eat whitespace */ 3471 3472 if (cc == '"') { 3473 state = JSON_STRING; 3474 string_is_key = B_TRUE; 3475 break; 3476 } 3477 3478 /* ERROR: key not found! */ 3479 return (NULL); 3480 case JSON_STRING: 3481 if (cc == '\\') { 3482 *dd++ = '\\'; 3483 state = JSON_STRING_ESCAPE; 3484 break; 3485 } 3486 3487 if (cc == '"') { 3488 if (collect_object) { 3489 /* 3490 * We don't reset the dest here, as 3491 * the string is part of a larger 3492 * object being collected. 3493 */ 3494 *dd++ = cc; 3495 collect_object = B_FALSE; 3496 state = JSON_COLLECT_OBJECT; 3497 break; 3498 } 3499 *dd = '\0'; 3500 dd = dest; /* reset string buffer */ 3501 if (string_is_key) { 3502 if (dtrace_strncmp(dest, elem, 3503 size) == 0) 3504 found_key = B_TRUE; 3505 } else if (found_key) { 3506 if (nelems > 1) { 3507 /* 3508 * We expected an object, not 3509 * this string. 3510 */ 3511 return (NULL); 3512 } 3513 return (dest); 3514 } 3515 state = string_is_key ? JSON_COLON : 3516 JSON_COMMA; 3517 string_is_key = B_FALSE; 3518 break; 3519 } 3520 3521 *dd++ = cc; 3522 break; 3523 case JSON_STRING_ESCAPE: 3524 *dd++ = cc; 3525 if (cc == 'u') { 3526 escape_unicount = 0; 3527 state = JSON_STRING_ESCAPE_UNICODE; 3528 } else { 3529 state = JSON_STRING; 3530 } 3531 break; 3532 case JSON_STRING_ESCAPE_UNICODE: 3533 if (!isxdigit(cc)) 3534 /* ERROR: unvalid unicode escape */ 3535 return (NULL); 3536 3537 *dd++ = cc; 3538 if (++escape_unicount == 4) 3539 state = JSON_STRING; 3540 break; 3541 case JSON_COLON: 3542 if (cc == ' ' || cc == '\t' || cc == '\n' || cc == '\r') 3543 break; /* eat whitespace */ 3544 3545 if (cc == ':') { 3546 state = JSON_VALUE; 3547 break; 3548 } 3549 3550 /* ERROR: expected colon */ 3551 return (NULL); 3552 case JSON_COMMA: 3553 if (cc == ' ' || cc == '\t' || cc == '\n' || cc == '\r') 3554 break; /* eat whitespace */ 3555 3556 if (cc == ',') { 3557 if (in_array) { 3558 state = JSON_VALUE; 3559 if (++array_pos == array_elem) 3560 found_key = B_TRUE; 3561 } else { 3562 state = JSON_OBJECT; 3563 } 3564 break; 3565 } 3566 3567 /* ERROR: key not found or expected comma */ 3568 return (NULL); 3569 case JSON_IDENTIFIER: 3570 if (cc >= 'a' && cc <= 'z') { 3571 *dd++ = cc; 3572 break; 3573 } 3574 3575 *dd = '\0'; 3576 dd = dest; /* reset string buffer */ 3577 3578 if (dtrace_strncmp(dest, "true", 5) == 0 || 3579 dtrace_strncmp(dest, "false", 6) == 0 || 3580 dtrace_strncmp(dest, "null", 5) == 0) { 3581 if (found_key) { 3582 if (nelems > 1) { 3583 /* 3584 * We expected an object, not 3585 * this identifier. 3586 */ 3587 return (NULL); 3588 } 3589 return (dest); 3590 } else { 3591 cur--; 3592 state = JSON_COMMA; 3593 break; 3594 } 3595 } 3596 3597 /* ERROR: unexpected identifier */ 3598 return (NULL); 3599 case JSON_NUMBER: 3600 if (cc == '.') { 3601 *dd++ = cc; 3602 state = JSON_NUMBER_FRAC; 3603 break; 3604 } 3605 3606 if (cc == 'x' || cc == 'X') 3607 /* ERROR: spec explicitly excludes hex */ 3608 return (NULL); 3609 3610 /* FALLTHRU */ 3611 case JSON_NUMBER_FRAC: 3612 if (cc == 'e' || cc == 'E') { 3613 *dd++ = cc; 3614 state = JSON_NUMBER_EXP; 3615 break; 3616 } 3617 3618 if (cc == '+' || cc == '-') { 3619 /* 3620 * ERROR: expect sign as part of exponent only 3621 */ 3622 return (NULL); 3623 } 3624 /* FALLTHRU */ 3625 case JSON_NUMBER_EXP: 3626 if ((cc >= '0' && cc <= '9') || cc == '+' || 3627 cc == '-') { 3628 *dd++ = cc; 3629 break; 3630 } 3631 3632 *dd = '\0'; 3633 dd = dest; /* reset string buffer */ 3634 if (found_key) { 3635 if (nelems > 1) { 3636 /* 3637 * We expected an object, not this 3638 * number. 3639 */ 3640 return (NULL); 3641 } 3642 return (dest); 3643 } 3644 3645 cur--; 3646 state = JSON_COMMA; 3647 break; 3648 case JSON_VALUE: 3649 if (cc == ' ' || cc == '\t' || cc == '\n' || cc == '\r') 3650 break; /* eat whitespace */ 3651 3652 if (cc == '{' || cc == '[') { 3653 if (nelems > 1 && found_key) { 3654 in_array = !!(cc == '['); 3655 /* 3656 * If our element selector directs us 3657 * to descend into this nested object, 3658 * then move to the next selector 3659 * element in the list and restart the 3660 * state machine. 3661 */ 3662 while (*elem != '\0') 3663 elem++; 3664 elem++; /* skip the inter-element NUL */ 3665 nelems--; 3666 dd = dest; 3667 if (in_array) { 3668 state = JSON_VALUE; 3669 array_pos = 0; 3670 array_elem = dtrace_strtoll( 3671 elem, 10, size); 3672 found_key = !!(array_elem == 0); 3673 } else { 3674 found_key = B_FALSE; 3675 state = JSON_OBJECT; 3676 } 3677 break; 3678 } 3679 3680 /* 3681 * Otherwise, we wish to either skip this 3682 * nested object or return it in full. 3683 */ 3684 if (cc == '[') 3685 brackets = 1; 3686 else 3687 braces = 1; 3688 *dd++ = cc; 3689 state = JSON_COLLECT_OBJECT; 3690 break; 3691 } 3692 3693 if (cc == '"') { 3694 state = JSON_STRING; 3695 break; 3696 } 3697 3698 if (cc >= 'a' && cc <= 'z') { 3699 /* Here we deal with true, false and null */ 3700 *dd++ = cc; 3701 state = JSON_IDENTIFIER; 3702 break; 3703 } 3704 3705 if (cc == '-' || (cc >= '0' && cc <= '9')) { 3706 *dd++ = cc; 3707 state = JSON_NUMBER; 3708 break; 3709 } 3710 3711 /* ERROR: unexpected character */ 3712 return (NULL); 3713 case JSON_COLLECT_OBJECT: 3714 if (cc == '\0') 3715 /* ERROR: unexpected end of input */ 3716 return (NULL); 3717 3718 *dd++ = cc; 3719 if (cc == '"') { 3720 collect_object = B_TRUE; 3721 state = JSON_STRING; 3722 break; 3723 } 3724 3725 if (cc == ']') { 3726 if (brackets-- == 0) { 3727 /* ERROR: unbalanced brackets */ 3728 return (NULL); 3729 } 3730 } else if (cc == '}') { 3731 if (braces-- == 0) { 3732 /* ERROR: unbalanced braces */ 3733 return (NULL); 3734 } 3735 } else if (cc == '{') { 3736 braces++; 3737 } else if (cc == '[') { 3738 brackets++; 3739 } 3740 3741 if (brackets == 0 && braces == 0) { 3742 if (found_key) { 3743 *dd = '\0'; 3744 return (dest); 3745 } 3746 dd = dest; /* reset string buffer */ 3747 state = JSON_COMMA; 3748 } 3749 break; 3750 } 3751 } 3752 return (NULL); 3753 } 3754 3755 /* 3756 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 3757 * Notice that we don't bother validating the proper number of arguments or 3758 * their types in the tuple stack. This isn't needed because all argument 3759 * interpretation is safe because of our load safety -- the worst that can 3760 * happen is that a bogus program can obtain bogus results. 3761 */ 3762 static void 3763 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 3764 dtrace_key_t *tupregs, int nargs, 3765 dtrace_mstate_t *mstate, dtrace_state_t *state) 3766 { 3767 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 3768 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 3769 dtrace_vstate_t *vstate = &state->dts_vstate; 3770 3771 union { 3772 mutex_impl_t mi; 3773 uint64_t mx; 3774 } m; 3775 3776 union { 3777 krwlock_t ri; 3778 uintptr_t rw; 3779 } r; 3780 3781 switch (subr) { 3782 case DIF_SUBR_RAND: 3783 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875; 3784 break; 3785 3786 case DIF_SUBR_MUTEX_OWNED: 3787 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3788 mstate, vstate)) { 3789 regs[rd] = NULL; 3790 break; 3791 } 3792 3793 m.mx = dtrace_load64(tupregs[0].dttk_value); 3794 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 3795 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 3796 else 3797 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 3798 break; 3799 3800 case DIF_SUBR_MUTEX_OWNER: 3801 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3802 mstate, vstate)) { 3803 regs[rd] = NULL; 3804 break; 3805 } 3806 3807 m.mx = dtrace_load64(tupregs[0].dttk_value); 3808 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 3809 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 3810 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 3811 else 3812 regs[rd] = 0; 3813 break; 3814 3815 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 3816 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3817 mstate, vstate)) { 3818 regs[rd] = NULL; 3819 break; 3820 } 3821 3822 m.mx = dtrace_load64(tupregs[0].dttk_value); 3823 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 3824 break; 3825 3826 case DIF_SUBR_MUTEX_TYPE_SPIN: 3827 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3828 mstate, vstate)) { 3829 regs[rd] = NULL; 3830 break; 3831 } 3832 3833 m.mx = dtrace_load64(tupregs[0].dttk_value); 3834 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 3835 break; 3836 3837 case DIF_SUBR_RW_READ_HELD: { 3838 uintptr_t tmp; 3839 3840 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 3841 mstate, vstate)) { 3842 regs[rd] = NULL; 3843 break; 3844 } 3845 3846 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3847 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 3848 break; 3849 } 3850 3851 case DIF_SUBR_RW_WRITE_HELD: 3852 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 3853 mstate, vstate)) { 3854 regs[rd] = NULL; 3855 break; 3856 } 3857 3858 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3859 regs[rd] = _RW_WRITE_HELD(&r.ri); 3860 break; 3861 3862 case DIF_SUBR_RW_ISWRITER: 3863 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 3864 mstate, vstate)) { 3865 regs[rd] = NULL; 3866 break; 3867 } 3868 3869 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3870 regs[rd] = _RW_ISWRITER(&r.ri); 3871 break; 3872 3873 case DIF_SUBR_BCOPY: { 3874 /* 3875 * We need to be sure that the destination is in the scratch 3876 * region -- no other region is allowed. 3877 */ 3878 uintptr_t src = tupregs[0].dttk_value; 3879 uintptr_t dest = tupregs[1].dttk_value; 3880 size_t size = tupregs[2].dttk_value; 3881 3882 if (!dtrace_inscratch(dest, size, mstate)) { 3883 *flags |= CPU_DTRACE_BADADDR; 3884 *illval = regs[rd]; 3885 break; 3886 } 3887 3888 if (!dtrace_canload(src, size, mstate, vstate)) { 3889 regs[rd] = NULL; 3890 break; 3891 } 3892 3893 dtrace_bcopy((void *)src, (void *)dest, size); 3894 break; 3895 } 3896 3897 case DIF_SUBR_ALLOCA: 3898 case DIF_SUBR_COPYIN: { 3899 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 3900 uint64_t size = 3901 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 3902 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 3903 3904 /* 3905 * This action doesn't require any credential checks since 3906 * probes will not activate in user contexts to which the 3907 * enabling user does not have permissions. 3908 */ 3909 3910 /* 3911 * Rounding up the user allocation size could have overflowed 3912 * a large, bogus allocation (like -1ULL) to 0. 3913 */ 3914 if (scratch_size < size || 3915 !DTRACE_INSCRATCH(mstate, scratch_size)) { 3916 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3917 regs[rd] = NULL; 3918 break; 3919 } 3920 3921 if (subr == DIF_SUBR_COPYIN) { 3922 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3923 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 3924 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3925 } 3926 3927 mstate->dtms_scratch_ptr += scratch_size; 3928 regs[rd] = dest; 3929 break; 3930 } 3931 3932 case DIF_SUBR_COPYINTO: { 3933 uint64_t size = tupregs[1].dttk_value; 3934 uintptr_t dest = tupregs[2].dttk_value; 3935 3936 /* 3937 * This action doesn't require any credential checks since 3938 * probes will not activate in user contexts to which the 3939 * enabling user does not have permissions. 3940 */ 3941 if (!dtrace_inscratch(dest, size, mstate)) { 3942 *flags |= CPU_DTRACE_BADADDR; 3943 *illval = regs[rd]; 3944 break; 3945 } 3946 3947 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3948 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 3949 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3950 break; 3951 } 3952 3953 case DIF_SUBR_COPYINSTR: { 3954 uintptr_t dest = mstate->dtms_scratch_ptr; 3955 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3956 3957 if (nargs > 1 && tupregs[1].dttk_value < size) 3958 size = tupregs[1].dttk_value + 1; 3959 3960 /* 3961 * This action doesn't require any credential checks since 3962 * probes will not activate in user contexts to which the 3963 * enabling user does not have permissions. 3964 */ 3965 if (!DTRACE_INSCRATCH(mstate, size)) { 3966 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3967 regs[rd] = NULL; 3968 break; 3969 } 3970 3971 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3972 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 3973 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3974 3975 ((char *)dest)[size - 1] = '\0'; 3976 mstate->dtms_scratch_ptr += size; 3977 regs[rd] = dest; 3978 break; 3979 } 3980 3981 case DIF_SUBR_MSGSIZE: 3982 case DIF_SUBR_MSGDSIZE: { 3983 uintptr_t baddr = tupregs[0].dttk_value, daddr; 3984 uintptr_t wptr, rptr; 3985 size_t count = 0; 3986 int cont = 0; 3987 3988 while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 3989 3990 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 3991 vstate)) { 3992 regs[rd] = NULL; 3993 break; 3994 } 3995 3996 wptr = dtrace_loadptr(baddr + 3997 offsetof(mblk_t, b_wptr)); 3998 3999 rptr = dtrace_loadptr(baddr + 4000 offsetof(mblk_t, b_rptr)); 4001 4002 if (wptr < rptr) { 4003 *flags |= CPU_DTRACE_BADADDR; 4004 *illval = tupregs[0].dttk_value; 4005 break; 4006 } 4007 4008 daddr = dtrace_loadptr(baddr + 4009 offsetof(mblk_t, b_datap)); 4010 4011 baddr = dtrace_loadptr(baddr + 4012 offsetof(mblk_t, b_cont)); 4013 4014 /* 4015 * We want to prevent against denial-of-service here, 4016 * so we're only going to search the list for 4017 * dtrace_msgdsize_max mblks. 4018 */ 4019 if (cont++ > dtrace_msgdsize_max) { 4020 *flags |= CPU_DTRACE_ILLOP; 4021 break; 4022 } 4023 4024 if (subr == DIF_SUBR_MSGDSIZE) { 4025 if (dtrace_load8(daddr + 4026 offsetof(dblk_t, db_type)) != M_DATA) 4027 continue; 4028 } 4029 4030 count += wptr - rptr; 4031 } 4032 4033 if (!(*flags & CPU_DTRACE_FAULT)) 4034 regs[rd] = count; 4035 4036 break; 4037 } 4038 4039 case DIF_SUBR_PROGENYOF: { 4040 pid_t pid = tupregs[0].dttk_value; 4041 proc_t *p; 4042 int rval = 0; 4043 4044 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4045 4046 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 4047 if (p->p_pidp->pid_id == pid) { 4048 rval = 1; 4049 break; 4050 } 4051 } 4052 4053 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4054 4055 regs[rd] = rval; 4056 break; 4057 } 4058 4059 case DIF_SUBR_SPECULATION: 4060 regs[rd] = dtrace_speculation(state); 4061 break; 4062 4063 case DIF_SUBR_COPYOUT: { 4064 uintptr_t kaddr = tupregs[0].dttk_value; 4065 uintptr_t uaddr = tupregs[1].dttk_value; 4066 uint64_t size = tupregs[2].dttk_value; 4067 4068 if (!dtrace_destructive_disallow && 4069 dtrace_priv_proc_control(state, mstate) && 4070 !dtrace_istoxic(kaddr, size)) { 4071 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4072 dtrace_copyout(kaddr, uaddr, size, flags); 4073 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4074 } 4075 break; 4076 } 4077 4078 case DIF_SUBR_COPYOUTSTR: { 4079 uintptr_t kaddr = tupregs[0].dttk_value; 4080 uintptr_t uaddr = tupregs[1].dttk_value; 4081 uint64_t size = tupregs[2].dttk_value; 4082 4083 if (!dtrace_destructive_disallow && 4084 dtrace_priv_proc_control(state, mstate) && 4085 !dtrace_istoxic(kaddr, size)) { 4086 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4087 dtrace_copyoutstr(kaddr, uaddr, size, flags); 4088 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4089 } 4090 break; 4091 } 4092 4093 case DIF_SUBR_STRLEN: { 4094 size_t sz; 4095 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 4096 sz = dtrace_strlen((char *)addr, 4097 state->dts_options[DTRACEOPT_STRSIZE]); 4098 4099 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) { 4100 regs[rd] = NULL; 4101 break; 4102 } 4103 4104 regs[rd] = sz; 4105 4106 break; 4107 } 4108 4109 case DIF_SUBR_STRCHR: 4110 case DIF_SUBR_STRRCHR: { 4111 /* 4112 * We're going to iterate over the string looking for the 4113 * specified character. We will iterate until we have reached 4114 * the string length or we have found the character. If this 4115 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 4116 * of the specified character instead of the first. 4117 */ 4118 uintptr_t saddr = tupregs[0].dttk_value; 4119 uintptr_t addr = tupregs[0].dttk_value; 4120 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE]; 4121 char c, target = (char)tupregs[1].dttk_value; 4122 4123 for (regs[rd] = NULL; addr < limit; addr++) { 4124 if ((c = dtrace_load8(addr)) == target) { 4125 regs[rd] = addr; 4126 4127 if (subr == DIF_SUBR_STRCHR) 4128 break; 4129 } 4130 4131 if (c == '\0') 4132 break; 4133 } 4134 4135 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) { 4136 regs[rd] = NULL; 4137 break; 4138 } 4139 4140 break; 4141 } 4142 4143 case DIF_SUBR_STRSTR: 4144 case DIF_SUBR_INDEX: 4145 case DIF_SUBR_RINDEX: { 4146 /* 4147 * We're going to iterate over the string looking for the 4148 * specified string. We will iterate until we have reached 4149 * the string length or we have found the string. (Yes, this 4150 * is done in the most naive way possible -- but considering 4151 * that the string we're searching for is likely to be 4152 * relatively short, the complexity of Rabin-Karp or similar 4153 * hardly seems merited.) 4154 */ 4155 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 4156 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 4157 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4158 size_t len = dtrace_strlen(addr, size); 4159 size_t sublen = dtrace_strlen(substr, size); 4160 char *limit = addr + len, *orig = addr; 4161 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 4162 int inc = 1; 4163 4164 regs[rd] = notfound; 4165 4166 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 4167 regs[rd] = NULL; 4168 break; 4169 } 4170 4171 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 4172 vstate)) { 4173 regs[rd] = NULL; 4174 break; 4175 } 4176 4177 /* 4178 * strstr() and index()/rindex() have similar semantics if 4179 * both strings are the empty string: strstr() returns a 4180 * pointer to the (empty) string, and index() and rindex() 4181 * both return index 0 (regardless of any position argument). 4182 */ 4183 if (sublen == 0 && len == 0) { 4184 if (subr == DIF_SUBR_STRSTR) 4185 regs[rd] = (uintptr_t)addr; 4186 else 4187 regs[rd] = 0; 4188 break; 4189 } 4190 4191 if (subr != DIF_SUBR_STRSTR) { 4192 if (subr == DIF_SUBR_RINDEX) { 4193 limit = orig - 1; 4194 addr += len; 4195 inc = -1; 4196 } 4197 4198 /* 4199 * Both index() and rindex() take an optional position 4200 * argument that denotes the starting position. 4201 */ 4202 if (nargs == 3) { 4203 int64_t pos = (int64_t)tupregs[2].dttk_value; 4204 4205 /* 4206 * If the position argument to index() is 4207 * negative, Perl implicitly clamps it at 4208 * zero. This semantic is a little surprising 4209 * given the special meaning of negative 4210 * positions to similar Perl functions like 4211 * substr(), but it appears to reflect a 4212 * notion that index() can start from a 4213 * negative index and increment its way up to 4214 * the string. Given this notion, Perl's 4215 * rindex() is at least self-consistent in 4216 * that it implicitly clamps positions greater 4217 * than the string length to be the string 4218 * length. Where Perl completely loses 4219 * coherence, however, is when the specified 4220 * substring is the empty string (""). In 4221 * this case, even if the position is 4222 * negative, rindex() returns 0 -- and even if 4223 * the position is greater than the length, 4224 * index() returns the string length. These 4225 * semantics violate the notion that index() 4226 * should never return a value less than the 4227 * specified position and that rindex() should 4228 * never return a value greater than the 4229 * specified position. (One assumes that 4230 * these semantics are artifacts of Perl's 4231 * implementation and not the results of 4232 * deliberate design -- it beggars belief that 4233 * even Larry Wall could desire such oddness.) 4234 * While in the abstract one would wish for 4235 * consistent position semantics across 4236 * substr(), index() and rindex() -- or at the 4237 * very least self-consistent position 4238 * semantics for index() and rindex() -- we 4239 * instead opt to keep with the extant Perl 4240 * semantics, in all their broken glory. (Do 4241 * we have more desire to maintain Perl's 4242 * semantics than Perl does? Probably.) 4243 */ 4244 if (subr == DIF_SUBR_RINDEX) { 4245 if (pos < 0) { 4246 if (sublen == 0) 4247 regs[rd] = 0; 4248 break; 4249 } 4250 4251 if (pos > len) 4252 pos = len; 4253 } else { 4254 if (pos < 0) 4255 pos = 0; 4256 4257 if (pos >= len) { 4258 if (sublen == 0) 4259 regs[rd] = len; 4260 break; 4261 } 4262 } 4263 4264 addr = orig + pos; 4265 } 4266 } 4267 4268 for (regs[rd] = notfound; addr != limit; addr += inc) { 4269 if (dtrace_strncmp(addr, substr, sublen) == 0) { 4270 if (subr != DIF_SUBR_STRSTR) { 4271 /* 4272 * As D index() and rindex() are 4273 * modeled on Perl (and not on awk), 4274 * we return a zero-based (and not a 4275 * one-based) index. (For you Perl 4276 * weenies: no, we're not going to add 4277 * $[ -- and shouldn't you be at a con 4278 * or something?) 4279 */ 4280 regs[rd] = (uintptr_t)(addr - orig); 4281 break; 4282 } 4283 4284 ASSERT(subr == DIF_SUBR_STRSTR); 4285 regs[rd] = (uintptr_t)addr; 4286 break; 4287 } 4288 } 4289 4290 break; 4291 } 4292 4293 case DIF_SUBR_STRTOK: { 4294 uintptr_t addr = tupregs[0].dttk_value; 4295 uintptr_t tokaddr = tupregs[1].dttk_value; 4296 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4297 uintptr_t limit, toklimit = tokaddr + size; 4298 uint8_t c, tokmap[32]; /* 256 / 8 */ 4299 char *dest = (char *)mstate->dtms_scratch_ptr; 4300 int i; 4301 4302 /* 4303 * Check both the token buffer and (later) the input buffer, 4304 * since both could be non-scratch addresses. 4305 */ 4306 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) { 4307 regs[rd] = NULL; 4308 break; 4309 } 4310 4311 if (!DTRACE_INSCRATCH(mstate, size)) { 4312 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4313 regs[rd] = NULL; 4314 break; 4315 } 4316 4317 if (addr == NULL) { 4318 /* 4319 * If the address specified is NULL, we use our saved 4320 * strtok pointer from the mstate. Note that this 4321 * means that the saved strtok pointer is _only_ 4322 * valid within multiple enablings of the same probe -- 4323 * it behaves like an implicit clause-local variable. 4324 */ 4325 addr = mstate->dtms_strtok; 4326 } else { 4327 /* 4328 * If the user-specified address is non-NULL we must 4329 * access check it. This is the only time we have 4330 * a chance to do so, since this address may reside 4331 * in the string table of this clause-- future calls 4332 * (when we fetch addr from mstate->dtms_strtok) 4333 * would fail this access check. 4334 */ 4335 if (!dtrace_strcanload(addr, size, mstate, vstate)) { 4336 regs[rd] = NULL; 4337 break; 4338 } 4339 } 4340 4341 /* 4342 * First, zero the token map, and then process the token 4343 * string -- setting a bit in the map for every character 4344 * found in the token string. 4345 */ 4346 for (i = 0; i < sizeof (tokmap); i++) 4347 tokmap[i] = 0; 4348 4349 for (; tokaddr < toklimit; tokaddr++) { 4350 if ((c = dtrace_load8(tokaddr)) == '\0') 4351 break; 4352 4353 ASSERT((c >> 3) < sizeof (tokmap)); 4354 tokmap[c >> 3] |= (1 << (c & 0x7)); 4355 } 4356 4357 for (limit = addr + size; addr < limit; addr++) { 4358 /* 4359 * We're looking for a character that is _not_ contained 4360 * in the token string. 4361 */ 4362 if ((c = dtrace_load8(addr)) == '\0') 4363 break; 4364 4365 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 4366 break; 4367 } 4368 4369 if (c == '\0') { 4370 /* 4371 * We reached the end of the string without finding 4372 * any character that was not in the token string. 4373 * We return NULL in this case, and we set the saved 4374 * address to NULL as well. 4375 */ 4376 regs[rd] = NULL; 4377 mstate->dtms_strtok = NULL; 4378 break; 4379 } 4380 4381 /* 4382 * From here on, we're copying into the destination string. 4383 */ 4384 for (i = 0; addr < limit && i < size - 1; addr++) { 4385 if ((c = dtrace_load8(addr)) == '\0') 4386 break; 4387 4388 if (tokmap[c >> 3] & (1 << (c & 0x7))) 4389 break; 4390 4391 ASSERT(i < size); 4392 dest[i++] = c; 4393 } 4394 4395 ASSERT(i < size); 4396 dest[i] = '\0'; 4397 regs[rd] = (uintptr_t)dest; 4398 mstate->dtms_scratch_ptr += size; 4399 mstate->dtms_strtok = addr; 4400 break; 4401 } 4402 4403 case DIF_SUBR_SUBSTR: { 4404 uintptr_t s = tupregs[0].dttk_value; 4405 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4406 char *d = (char *)mstate->dtms_scratch_ptr; 4407 int64_t index = (int64_t)tupregs[1].dttk_value; 4408 int64_t remaining = (int64_t)tupregs[2].dttk_value; 4409 size_t len = dtrace_strlen((char *)s, size); 4410 int64_t i; 4411 4412 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 4413 regs[rd] = NULL; 4414 break; 4415 } 4416 4417 if (!DTRACE_INSCRATCH(mstate, size)) { 4418 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4419 regs[rd] = NULL; 4420 break; 4421 } 4422 4423 if (nargs <= 2) 4424 remaining = (int64_t)size; 4425 4426 if (index < 0) { 4427 index += len; 4428 4429 if (index < 0 && index + remaining > 0) { 4430 remaining += index; 4431 index = 0; 4432 } 4433 } 4434 4435 if (index >= len || index < 0) { 4436 remaining = 0; 4437 } else if (remaining < 0) { 4438 remaining += len - index; 4439 } else if (index + remaining > size) { 4440 remaining = size - index; 4441 } 4442 4443 for (i = 0; i < remaining; i++) { 4444 if ((d[i] = dtrace_load8(s + index + i)) == '\0') 4445 break; 4446 } 4447 4448 d[i] = '\0'; 4449 4450 mstate->dtms_scratch_ptr += size; 4451 regs[rd] = (uintptr_t)d; 4452 break; 4453 } 4454 4455 case DIF_SUBR_JSON: { 4456 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4457 uintptr_t json = tupregs[0].dttk_value; 4458 size_t jsonlen = dtrace_strlen((char *)json, size); 4459 uintptr_t elem = tupregs[1].dttk_value; 4460 size_t elemlen = dtrace_strlen((char *)elem, size); 4461 4462 char *dest = (char *)mstate->dtms_scratch_ptr; 4463 char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1; 4464 char *ee = elemlist; 4465 int nelems = 1; 4466 uintptr_t cur; 4467 4468 if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) || 4469 !dtrace_canload(elem, elemlen + 1, mstate, vstate)) { 4470 regs[rd] = NULL; 4471 break; 4472 } 4473 4474 if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) { 4475 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4476 regs[rd] = NULL; 4477 break; 4478 } 4479 4480 /* 4481 * Read the element selector and split it up into a packed list 4482 * of strings. 4483 */ 4484 for (cur = elem; cur < elem + elemlen; cur++) { 4485 char cc = dtrace_load8(cur); 4486 4487 if (cur == elem && cc == '[') 4488 /* first element selector may be an array */ 4489 continue; 4490 4491 if (cc == ']') 4492 continue; 4493 4494 if (cc == '.' || cc == '[') { 4495 nelems++; 4496 cc = '\0'; 4497 } 4498 4499 *ee++ = cc; 4500 } 4501 *ee++ = '\0'; 4502 4503 if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist, 4504 nelems, dest)) != NULL) 4505 mstate->dtms_scratch_ptr += jsonlen + 1; 4506 break; 4507 } 4508 4509 case DIF_SUBR_TOUPPER: 4510 case DIF_SUBR_TOLOWER: { 4511 uintptr_t s = tupregs[0].dttk_value; 4512 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4513 char *dest = (char *)mstate->dtms_scratch_ptr, c; 4514 size_t len = dtrace_strlen((char *)s, size); 4515 char lower, upper, convert; 4516 int64_t i; 4517 4518 if (subr == DIF_SUBR_TOUPPER) { 4519 lower = 'a'; 4520 upper = 'z'; 4521 convert = 'A'; 4522 } else { 4523 lower = 'A'; 4524 upper = 'Z'; 4525 convert = 'a'; 4526 } 4527 4528 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 4529 regs[rd] = NULL; 4530 break; 4531 } 4532 4533 if (!DTRACE_INSCRATCH(mstate, size)) { 4534 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4535 regs[rd] = NULL; 4536 break; 4537 } 4538 4539 for (i = 0; i < size - 1; i++) { 4540 if ((c = dtrace_load8(s + i)) == '\0') 4541 break; 4542 4543 if (c >= lower && c <= upper) 4544 c = convert + (c - lower); 4545 4546 dest[i] = c; 4547 } 4548 4549 ASSERT(i < size); 4550 dest[i] = '\0'; 4551 regs[rd] = (uintptr_t)dest; 4552 mstate->dtms_scratch_ptr += size; 4553 break; 4554 } 4555 4556 case DIF_SUBR_GETMAJOR: 4557 #ifdef _LP64 4558 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 4559 #else 4560 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 4561 #endif 4562 break; 4563 4564 case DIF_SUBR_GETMINOR: 4565 #ifdef _LP64 4566 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 4567 #else 4568 regs[rd] = tupregs[0].dttk_value & MAXMIN; 4569 #endif 4570 break; 4571 4572 case DIF_SUBR_DDI_PATHNAME: { 4573 /* 4574 * This one is a galactic mess. We are going to roughly 4575 * emulate ddi_pathname(), but it's made more complicated 4576 * by the fact that we (a) want to include the minor name and 4577 * (b) must proceed iteratively instead of recursively. 4578 */ 4579 uintptr_t dest = mstate->dtms_scratch_ptr; 4580 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4581 char *start = (char *)dest, *end = start + size - 1; 4582 uintptr_t daddr = tupregs[0].dttk_value; 4583 int64_t minor = (int64_t)tupregs[1].dttk_value; 4584 char *s; 4585 int i, len, depth = 0; 4586 4587 /* 4588 * Due to all the pointer jumping we do and context we must 4589 * rely upon, we just mandate that the user must have kernel 4590 * read privileges to use this routine. 4591 */ 4592 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 4593 *flags |= CPU_DTRACE_KPRIV; 4594 *illval = daddr; 4595 regs[rd] = NULL; 4596 } 4597 4598 if (!DTRACE_INSCRATCH(mstate, size)) { 4599 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4600 regs[rd] = NULL; 4601 break; 4602 } 4603 4604 *end = '\0'; 4605 4606 /* 4607 * We want to have a name for the minor. In order to do this, 4608 * we need to walk the minor list from the devinfo. We want 4609 * to be sure that we don't infinitely walk a circular list, 4610 * so we check for circularity by sending a scout pointer 4611 * ahead two elements for every element that we iterate over; 4612 * if the list is circular, these will ultimately point to the 4613 * same element. You may recognize this little trick as the 4614 * answer to a stupid interview question -- one that always 4615 * seems to be asked by those who had to have it laboriously 4616 * explained to them, and who can't even concisely describe 4617 * the conditions under which one would be forced to resort to 4618 * this technique. Needless to say, those conditions are 4619 * found here -- and probably only here. Is this the only use 4620 * of this infamous trick in shipping, production code? If it 4621 * isn't, it probably should be... 4622 */ 4623 if (minor != -1) { 4624 uintptr_t maddr = dtrace_loadptr(daddr + 4625 offsetof(struct dev_info, devi_minor)); 4626 4627 uintptr_t next = offsetof(struct ddi_minor_data, next); 4628 uintptr_t name = offsetof(struct ddi_minor_data, 4629 d_minor) + offsetof(struct ddi_minor, name); 4630 uintptr_t dev = offsetof(struct ddi_minor_data, 4631 d_minor) + offsetof(struct ddi_minor, dev); 4632 uintptr_t scout; 4633 4634 if (maddr != NULL) 4635 scout = dtrace_loadptr(maddr + next); 4636 4637 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4638 uint64_t m; 4639 #ifdef _LP64 4640 m = dtrace_load64(maddr + dev) & MAXMIN64; 4641 #else 4642 m = dtrace_load32(maddr + dev) & MAXMIN; 4643 #endif 4644 if (m != minor) { 4645 maddr = dtrace_loadptr(maddr + next); 4646 4647 if (scout == NULL) 4648 continue; 4649 4650 scout = dtrace_loadptr(scout + next); 4651 4652 if (scout == NULL) 4653 continue; 4654 4655 scout = dtrace_loadptr(scout + next); 4656 4657 if (scout == NULL) 4658 continue; 4659 4660 if (scout == maddr) { 4661 *flags |= CPU_DTRACE_ILLOP; 4662 break; 4663 } 4664 4665 continue; 4666 } 4667 4668 /* 4669 * We have the minor data. Now we need to 4670 * copy the minor's name into the end of the 4671 * pathname. 4672 */ 4673 s = (char *)dtrace_loadptr(maddr + name); 4674 len = dtrace_strlen(s, size); 4675 4676 if (*flags & CPU_DTRACE_FAULT) 4677 break; 4678 4679 if (len != 0) { 4680 if ((end -= (len + 1)) < start) 4681 break; 4682 4683 *end = ':'; 4684 } 4685 4686 for (i = 1; i <= len; i++) 4687 end[i] = dtrace_load8((uintptr_t)s++); 4688 break; 4689 } 4690 } 4691 4692 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4693 ddi_node_state_t devi_state; 4694 4695 devi_state = dtrace_load32(daddr + 4696 offsetof(struct dev_info, devi_node_state)); 4697 4698 if (*flags & CPU_DTRACE_FAULT) 4699 break; 4700 4701 if (devi_state >= DS_INITIALIZED) { 4702 s = (char *)dtrace_loadptr(daddr + 4703 offsetof(struct dev_info, devi_addr)); 4704 len = dtrace_strlen(s, size); 4705 4706 if (*flags & CPU_DTRACE_FAULT) 4707 break; 4708 4709 if (len != 0) { 4710 if ((end -= (len + 1)) < start) 4711 break; 4712 4713 *end = '@'; 4714 } 4715 4716 for (i = 1; i <= len; i++) 4717 end[i] = dtrace_load8((uintptr_t)s++); 4718 } 4719 4720 /* 4721 * Now for the node name... 4722 */ 4723 s = (char *)dtrace_loadptr(daddr + 4724 offsetof(struct dev_info, devi_node_name)); 4725 4726 daddr = dtrace_loadptr(daddr + 4727 offsetof(struct dev_info, devi_parent)); 4728 4729 /* 4730 * If our parent is NULL (that is, if we're the root 4731 * node), we're going to use the special path 4732 * "devices". 4733 */ 4734 if (daddr == NULL) 4735 s = "devices"; 4736 4737 len = dtrace_strlen(s, size); 4738 if (*flags & CPU_DTRACE_FAULT) 4739 break; 4740 4741 if ((end -= (len + 1)) < start) 4742 break; 4743 4744 for (i = 1; i <= len; i++) 4745 end[i] = dtrace_load8((uintptr_t)s++); 4746 *end = '/'; 4747 4748 if (depth++ > dtrace_devdepth_max) { 4749 *flags |= CPU_DTRACE_ILLOP; 4750 break; 4751 } 4752 } 4753 4754 if (end < start) 4755 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4756 4757 if (daddr == NULL) { 4758 regs[rd] = (uintptr_t)end; 4759 mstate->dtms_scratch_ptr += size; 4760 } 4761 4762 break; 4763 } 4764 4765 case DIF_SUBR_STRJOIN: { 4766 char *d = (char *)mstate->dtms_scratch_ptr; 4767 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4768 uintptr_t s1 = tupregs[0].dttk_value; 4769 uintptr_t s2 = tupregs[1].dttk_value; 4770 int i = 0; 4771 4772 if (!dtrace_strcanload(s1, size, mstate, vstate) || 4773 !dtrace_strcanload(s2, size, mstate, vstate)) { 4774 regs[rd] = NULL; 4775 break; 4776 } 4777 4778 if (!DTRACE_INSCRATCH(mstate, size)) { 4779 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4780 regs[rd] = NULL; 4781 break; 4782 } 4783 4784 for (;;) { 4785 if (i >= size) { 4786 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4787 regs[rd] = NULL; 4788 break; 4789 } 4790 4791 if ((d[i++] = dtrace_load8(s1++)) == '\0') { 4792 i--; 4793 break; 4794 } 4795 } 4796 4797 for (;;) { 4798 if (i >= size) { 4799 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4800 regs[rd] = NULL; 4801 break; 4802 } 4803 4804 if ((d[i++] = dtrace_load8(s2++)) == '\0') 4805 break; 4806 } 4807 4808 if (i < size) { 4809 mstate->dtms_scratch_ptr += i; 4810 regs[rd] = (uintptr_t)d; 4811 } 4812 4813 break; 4814 } 4815 4816 case DIF_SUBR_STRTOLL: { 4817 uintptr_t s = tupregs[0].dttk_value; 4818 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4819 int base = 10; 4820 4821 if (nargs > 1) { 4822 if ((base = tupregs[1].dttk_value) <= 1 || 4823 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 4824 *flags |= CPU_DTRACE_ILLOP; 4825 break; 4826 } 4827 } 4828 4829 if (!dtrace_strcanload(s, size, mstate, vstate)) { 4830 regs[rd] = INT64_MIN; 4831 break; 4832 } 4833 4834 regs[rd] = dtrace_strtoll((char *)s, base, size); 4835 break; 4836 } 4837 4838 case DIF_SUBR_LLTOSTR: { 4839 int64_t i = (int64_t)tupregs[0].dttk_value; 4840 uint64_t val, digit; 4841 uint64_t size = 65; /* enough room for 2^64 in binary */ 4842 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 4843 int base = 10; 4844 4845 if (nargs > 1) { 4846 if ((base = tupregs[1].dttk_value) <= 1 || 4847 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 4848 *flags |= CPU_DTRACE_ILLOP; 4849 break; 4850 } 4851 } 4852 4853 val = (base == 10 && i < 0) ? i * -1 : i; 4854 4855 if (!DTRACE_INSCRATCH(mstate, size)) { 4856 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4857 regs[rd] = NULL; 4858 break; 4859 } 4860 4861 for (*end-- = '\0'; val; val /= base) { 4862 if ((digit = val % base) <= '9' - '0') { 4863 *end-- = '0' + digit; 4864 } else { 4865 *end-- = 'a' + (digit - ('9' - '0') - 1); 4866 } 4867 } 4868 4869 if (i == 0 && base == 16) 4870 *end-- = '0'; 4871 4872 if (base == 16) 4873 *end-- = 'x'; 4874 4875 if (i == 0 || base == 8 || base == 16) 4876 *end-- = '0'; 4877 4878 if (i < 0 && base == 10) 4879 *end-- = '-'; 4880 4881 regs[rd] = (uintptr_t)end + 1; 4882 mstate->dtms_scratch_ptr += size; 4883 break; 4884 } 4885 4886 case DIF_SUBR_HTONS: 4887 case DIF_SUBR_NTOHS: 4888 #ifdef _BIG_ENDIAN 4889 regs[rd] = (uint16_t)tupregs[0].dttk_value; 4890 #else 4891 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 4892 #endif 4893 break; 4894 4895 4896 case DIF_SUBR_HTONL: 4897 case DIF_SUBR_NTOHL: 4898 #ifdef _BIG_ENDIAN 4899 regs[rd] = (uint32_t)tupregs[0].dttk_value; 4900 #else 4901 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 4902 #endif 4903 break; 4904 4905 4906 case DIF_SUBR_HTONLL: 4907 case DIF_SUBR_NTOHLL: 4908 #ifdef _BIG_ENDIAN 4909 regs[rd] = (uint64_t)tupregs[0].dttk_value; 4910 #else 4911 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 4912 #endif 4913 break; 4914 4915 4916 case DIF_SUBR_DIRNAME: 4917 case DIF_SUBR_BASENAME: { 4918 char *dest = (char *)mstate->dtms_scratch_ptr; 4919 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4920 uintptr_t src = tupregs[0].dttk_value; 4921 int i, j, len = dtrace_strlen((char *)src, size); 4922 int lastbase = -1, firstbase = -1, lastdir = -1; 4923 int start, end; 4924 4925 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 4926 regs[rd] = NULL; 4927 break; 4928 } 4929 4930 if (!DTRACE_INSCRATCH(mstate, size)) { 4931 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4932 regs[rd] = NULL; 4933 break; 4934 } 4935 4936 /* 4937 * The basename and dirname for a zero-length string is 4938 * defined to be "." 4939 */ 4940 if (len == 0) { 4941 len = 1; 4942 src = (uintptr_t)"."; 4943 } 4944 4945 /* 4946 * Start from the back of the string, moving back toward the 4947 * front until we see a character that isn't a slash. That 4948 * character is the last character in the basename. 4949 */ 4950 for (i = len - 1; i >= 0; i--) { 4951 if (dtrace_load8(src + i) != '/') 4952 break; 4953 } 4954 4955 if (i >= 0) 4956 lastbase = i; 4957 4958 /* 4959 * Starting from the last character in the basename, move 4960 * towards the front until we find a slash. The character 4961 * that we processed immediately before that is the first 4962 * character in the basename. 4963 */ 4964 for (; i >= 0; i--) { 4965 if (dtrace_load8(src + i) == '/') 4966 break; 4967 } 4968 4969 if (i >= 0) 4970 firstbase = i + 1; 4971 4972 /* 4973 * Now keep going until we find a non-slash character. That 4974 * character is the last character in the dirname. 4975 */ 4976 for (; i >= 0; i--) { 4977 if (dtrace_load8(src + i) != '/') 4978 break; 4979 } 4980 4981 if (i >= 0) 4982 lastdir = i; 4983 4984 ASSERT(!(lastbase == -1 && firstbase != -1)); 4985 ASSERT(!(firstbase == -1 && lastdir != -1)); 4986 4987 if (lastbase == -1) { 4988 /* 4989 * We didn't find a non-slash character. We know that 4990 * the length is non-zero, so the whole string must be 4991 * slashes. In either the dirname or the basename 4992 * case, we return '/'. 4993 */ 4994 ASSERT(firstbase == -1); 4995 firstbase = lastbase = lastdir = 0; 4996 } 4997 4998 if (firstbase == -1) { 4999 /* 5000 * The entire string consists only of a basename 5001 * component. If we're looking for dirname, we need 5002 * to change our string to be just "."; if we're 5003 * looking for a basename, we'll just set the first 5004 * character of the basename to be 0. 5005 */ 5006 if (subr == DIF_SUBR_DIRNAME) { 5007 ASSERT(lastdir == -1); 5008 src = (uintptr_t)"."; 5009 lastdir = 0; 5010 } else { 5011 firstbase = 0; 5012 } 5013 } 5014 5015 if (subr == DIF_SUBR_DIRNAME) { 5016 if (lastdir == -1) { 5017 /* 5018 * We know that we have a slash in the name -- 5019 * or lastdir would be set to 0, above. And 5020 * because lastdir is -1, we know that this 5021 * slash must be the first character. (That 5022 * is, the full string must be of the form 5023 * "/basename".) In this case, the last 5024 * character of the directory name is 0. 5025 */ 5026 lastdir = 0; 5027 } 5028 5029 start = 0; 5030 end = lastdir; 5031 } else { 5032 ASSERT(subr == DIF_SUBR_BASENAME); 5033 ASSERT(firstbase != -1 && lastbase != -1); 5034 start = firstbase; 5035 end = lastbase; 5036 } 5037 5038 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 5039 dest[j] = dtrace_load8(src + i); 5040 5041 dest[j] = '\0'; 5042 regs[rd] = (uintptr_t)dest; 5043 mstate->dtms_scratch_ptr += size; 5044 break; 5045 } 5046 5047 case DIF_SUBR_GETF: { 5048 uintptr_t fd = tupregs[0].dttk_value; 5049 uf_info_t *finfo = &curthread->t_procp->p_user.u_finfo; 5050 file_t *fp; 5051 5052 if (!dtrace_priv_proc(state, mstate)) { 5053 regs[rd] = NULL; 5054 break; 5055 } 5056 5057 /* 5058 * This is safe because fi_nfiles only increases, and the 5059 * fi_list array is not freed when the array size doubles. 5060 * (See the comment in flist_grow() for details on the 5061 * management of the u_finfo structure.) 5062 */ 5063 fp = fd < finfo->fi_nfiles ? finfo->fi_list[fd].uf_file : NULL; 5064 5065 mstate->dtms_getf = fp; 5066 regs[rd] = (uintptr_t)fp; 5067 break; 5068 } 5069 5070 case DIF_SUBR_CLEANPATH: { 5071 char *dest = (char *)mstate->dtms_scratch_ptr, c; 5072 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5073 uintptr_t src = tupregs[0].dttk_value; 5074 int i = 0, j = 0; 5075 zone_t *z; 5076 5077 if (!dtrace_strcanload(src, size, mstate, vstate)) { 5078 regs[rd] = NULL; 5079 break; 5080 } 5081 5082 if (!DTRACE_INSCRATCH(mstate, size)) { 5083 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5084 regs[rd] = NULL; 5085 break; 5086 } 5087 5088 /* 5089 * Move forward, loading each character. 5090 */ 5091 do { 5092 c = dtrace_load8(src + i++); 5093 next: 5094 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 5095 break; 5096 5097 if (c != '/') { 5098 dest[j++] = c; 5099 continue; 5100 } 5101 5102 c = dtrace_load8(src + i++); 5103 5104 if (c == '/') { 5105 /* 5106 * We have two slashes -- we can just advance 5107 * to the next character. 5108 */ 5109 goto next; 5110 } 5111 5112 if (c != '.') { 5113 /* 5114 * This is not "." and it's not ".." -- we can 5115 * just store the "/" and this character and 5116 * drive on. 5117 */ 5118 dest[j++] = '/'; 5119 dest[j++] = c; 5120 continue; 5121 } 5122 5123 c = dtrace_load8(src + i++); 5124 5125 if (c == '/') { 5126 /* 5127 * This is a "/./" component. We're not going 5128 * to store anything in the destination buffer; 5129 * we're just going to go to the next component. 5130 */ 5131 goto next; 5132 } 5133 5134 if (c != '.') { 5135 /* 5136 * This is not ".." -- we can just store the 5137 * "/." and this character and continue 5138 * processing. 5139 */ 5140 dest[j++] = '/'; 5141 dest[j++] = '.'; 5142 dest[j++] = c; 5143 continue; 5144 } 5145 5146 c = dtrace_load8(src + i++); 5147 5148 if (c != '/' && c != '\0') { 5149 /* 5150 * This is not ".." -- it's "..[mumble]". 5151 * We'll store the "/.." and this character 5152 * and continue processing. 5153 */ 5154 dest[j++] = '/'; 5155 dest[j++] = '.'; 5156 dest[j++] = '.'; 5157 dest[j++] = c; 5158 continue; 5159 } 5160 5161 /* 5162 * This is "/../" or "/..\0". We need to back up 5163 * our destination pointer until we find a "/". 5164 */ 5165 i--; 5166 while (j != 0 && dest[--j] != '/') 5167 continue; 5168 5169 if (c == '\0') 5170 dest[++j] = '/'; 5171 } while (c != '\0'); 5172 5173 dest[j] = '\0'; 5174 5175 if (mstate->dtms_getf != NULL && 5176 !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) && 5177 (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) { 5178 /* 5179 * If we've done a getf() as a part of this ECB and we 5180 * don't have kernel access (and we're not in the global 5181 * zone), check if the path we cleaned up begins with 5182 * the zone's root path, and trim it off if so. Note 5183 * that this is an output cleanliness issue, not a 5184 * security issue: knowing one's zone root path does 5185 * not enable privilege escalation. 5186 */ 5187 if (strstr(dest, z->zone_rootpath) == dest) 5188 dest += strlen(z->zone_rootpath) - 1; 5189 } 5190 5191 regs[rd] = (uintptr_t)dest; 5192 mstate->dtms_scratch_ptr += size; 5193 break; 5194 } 5195 5196 case DIF_SUBR_INET_NTOA: 5197 case DIF_SUBR_INET_NTOA6: 5198 case DIF_SUBR_INET_NTOP: { 5199 size_t size; 5200 int af, argi, i; 5201 char *base, *end; 5202 5203 if (subr == DIF_SUBR_INET_NTOP) { 5204 af = (int)tupregs[0].dttk_value; 5205 argi = 1; 5206 } else { 5207 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 5208 argi = 0; 5209 } 5210 5211 if (af == AF_INET) { 5212 ipaddr_t ip4; 5213 uint8_t *ptr8, val; 5214 5215 /* 5216 * Safely load the IPv4 address. 5217 */ 5218 ip4 = dtrace_load32(tupregs[argi].dttk_value); 5219 5220 /* 5221 * Check an IPv4 string will fit in scratch. 5222 */ 5223 size = INET_ADDRSTRLEN; 5224 if (!DTRACE_INSCRATCH(mstate, size)) { 5225 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5226 regs[rd] = NULL; 5227 break; 5228 } 5229 base = (char *)mstate->dtms_scratch_ptr; 5230 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5231 5232 /* 5233 * Stringify as a dotted decimal quad. 5234 */ 5235 *end-- = '\0'; 5236 ptr8 = (uint8_t *)&ip4; 5237 for (i = 3; i >= 0; i--) { 5238 val = ptr8[i]; 5239 5240 if (val == 0) { 5241 *end-- = '0'; 5242 } else { 5243 for (; val; val /= 10) { 5244 *end-- = '0' + (val % 10); 5245 } 5246 } 5247 5248 if (i > 0) 5249 *end-- = '.'; 5250 } 5251 ASSERT(end + 1 >= base); 5252 5253 } else if (af == AF_INET6) { 5254 struct in6_addr ip6; 5255 int firstzero, tryzero, numzero, v6end; 5256 uint16_t val; 5257 const char digits[] = "0123456789abcdef"; 5258 5259 /* 5260 * Stringify using RFC 1884 convention 2 - 16 bit 5261 * hexadecimal values with a zero-run compression. 5262 * Lower case hexadecimal digits are used. 5263 * eg, fe80::214:4fff:fe0b:76c8. 5264 * The IPv4 embedded form is returned for inet_ntop, 5265 * just the IPv4 string is returned for inet_ntoa6. 5266 */ 5267 5268 /* 5269 * Safely load the IPv6 address. 5270 */ 5271 dtrace_bcopy( 5272 (void *)(uintptr_t)tupregs[argi].dttk_value, 5273 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 5274 5275 /* 5276 * Check an IPv6 string will fit in scratch. 5277 */ 5278 size = INET6_ADDRSTRLEN; 5279 if (!DTRACE_INSCRATCH(mstate, size)) { 5280 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5281 regs[rd] = NULL; 5282 break; 5283 } 5284 base = (char *)mstate->dtms_scratch_ptr; 5285 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5286 *end-- = '\0'; 5287 5288 /* 5289 * Find the longest run of 16 bit zero values 5290 * for the single allowed zero compression - "::". 5291 */ 5292 firstzero = -1; 5293 tryzero = -1; 5294 numzero = 1; 5295 for (i = 0; i < sizeof (struct in6_addr); i++) { 5296 if (ip6._S6_un._S6_u8[i] == 0 && 5297 tryzero == -1 && i % 2 == 0) { 5298 tryzero = i; 5299 continue; 5300 } 5301 5302 if (tryzero != -1 && 5303 (ip6._S6_un._S6_u8[i] != 0 || 5304 i == sizeof (struct in6_addr) - 1)) { 5305 5306 if (i - tryzero <= numzero) { 5307 tryzero = -1; 5308 continue; 5309 } 5310 5311 firstzero = tryzero; 5312 numzero = i - i % 2 - tryzero; 5313 tryzero = -1; 5314 5315 if (ip6._S6_un._S6_u8[i] == 0 && 5316 i == sizeof (struct in6_addr) - 1) 5317 numzero += 2; 5318 } 5319 } 5320 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 5321 5322 /* 5323 * Check for an IPv4 embedded address. 5324 */ 5325 v6end = sizeof (struct in6_addr) - 2; 5326 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 5327 IN6_IS_ADDR_V4COMPAT(&ip6)) { 5328 for (i = sizeof (struct in6_addr) - 1; 5329 i >= DTRACE_V4MAPPED_OFFSET; i--) { 5330 ASSERT(end >= base); 5331 5332 val = ip6._S6_un._S6_u8[i]; 5333 5334 if (val == 0) { 5335 *end-- = '0'; 5336 } else { 5337 for (; val; val /= 10) { 5338 *end-- = '0' + val % 10; 5339 } 5340 } 5341 5342 if (i > DTRACE_V4MAPPED_OFFSET) 5343 *end-- = '.'; 5344 } 5345 5346 if (subr == DIF_SUBR_INET_NTOA6) 5347 goto inetout; 5348 5349 /* 5350 * Set v6end to skip the IPv4 address that 5351 * we have already stringified. 5352 */ 5353 v6end = 10; 5354 } 5355 5356 /* 5357 * Build the IPv6 string by working through the 5358 * address in reverse. 5359 */ 5360 for (i = v6end; i >= 0; i -= 2) { 5361 ASSERT(end >= base); 5362 5363 if (i == firstzero + numzero - 2) { 5364 *end-- = ':'; 5365 *end-- = ':'; 5366 i -= numzero - 2; 5367 continue; 5368 } 5369 5370 if (i < 14 && i != firstzero - 2) 5371 *end-- = ':'; 5372 5373 val = (ip6._S6_un._S6_u8[i] << 8) + 5374 ip6._S6_un._S6_u8[i + 1]; 5375 5376 if (val == 0) { 5377 *end-- = '0'; 5378 } else { 5379 for (; val; val /= 16) { 5380 *end-- = digits[val % 16]; 5381 } 5382 } 5383 } 5384 ASSERT(end + 1 >= base); 5385 5386 } else { 5387 /* 5388 * The user didn't use AH_INET or AH_INET6. 5389 */ 5390 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 5391 regs[rd] = NULL; 5392 break; 5393 } 5394 5395 inetout: regs[rd] = (uintptr_t)end + 1; 5396 mstate->dtms_scratch_ptr += size; 5397 break; 5398 } 5399 5400 } 5401 } 5402 5403 /* 5404 * Emulate the execution of DTrace IR instructions specified by the given 5405 * DIF object. This function is deliberately void of assertions as all of 5406 * the necessary checks are handled by a call to dtrace_difo_validate(). 5407 */ 5408 static uint64_t 5409 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 5410 dtrace_vstate_t *vstate, dtrace_state_t *state) 5411 { 5412 const dif_instr_t *text = difo->dtdo_buf; 5413 const uint_t textlen = difo->dtdo_len; 5414 const char *strtab = difo->dtdo_strtab; 5415 const uint64_t *inttab = difo->dtdo_inttab; 5416 5417 uint64_t rval = 0; 5418 dtrace_statvar_t *svar; 5419 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 5420 dtrace_difv_t *v; 5421 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 5422 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 5423 5424 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 5425 uint64_t regs[DIF_DIR_NREGS]; 5426 uint64_t *tmp; 5427 5428 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 5429 int64_t cc_r; 5430 uint_t pc = 0, id, opc; 5431 uint8_t ttop = 0; 5432 dif_instr_t instr; 5433 uint_t r1, r2, rd; 5434 5435 /* 5436 * We stash the current DIF object into the machine state: we need it 5437 * for subsequent access checking. 5438 */ 5439 mstate->dtms_difo = difo; 5440 5441 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 5442 5443 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 5444 opc = pc; 5445 5446 instr = text[pc++]; 5447 r1 = DIF_INSTR_R1(instr); 5448 r2 = DIF_INSTR_R2(instr); 5449 rd = DIF_INSTR_RD(instr); 5450 5451 switch (DIF_INSTR_OP(instr)) { 5452 case DIF_OP_OR: 5453 regs[rd] = regs[r1] | regs[r2]; 5454 break; 5455 case DIF_OP_XOR: 5456 regs[rd] = regs[r1] ^ regs[r2]; 5457 break; 5458 case DIF_OP_AND: 5459 regs[rd] = regs[r1] & regs[r2]; 5460 break; 5461 case DIF_OP_SLL: 5462 regs[rd] = regs[r1] << regs[r2]; 5463 break; 5464 case DIF_OP_SRL: 5465 regs[rd] = regs[r1] >> regs[r2]; 5466 break; 5467 case DIF_OP_SUB: 5468 regs[rd] = regs[r1] - regs[r2]; 5469 break; 5470 case DIF_OP_ADD: 5471 regs[rd] = regs[r1] + regs[r2]; 5472 break; 5473 case DIF_OP_MUL: 5474 regs[rd] = regs[r1] * regs[r2]; 5475 break; 5476 case DIF_OP_SDIV: 5477 if (regs[r2] == 0) { 5478 regs[rd] = 0; 5479 *flags |= CPU_DTRACE_DIVZERO; 5480 } else { 5481 regs[rd] = (int64_t)regs[r1] / 5482 (int64_t)regs[r2]; 5483 } 5484 break; 5485 5486 case DIF_OP_UDIV: 5487 if (regs[r2] == 0) { 5488 regs[rd] = 0; 5489 *flags |= CPU_DTRACE_DIVZERO; 5490 } else { 5491 regs[rd] = regs[r1] / regs[r2]; 5492 } 5493 break; 5494 5495 case DIF_OP_SREM: 5496 if (regs[r2] == 0) { 5497 regs[rd] = 0; 5498 *flags |= CPU_DTRACE_DIVZERO; 5499 } else { 5500 regs[rd] = (int64_t)regs[r1] % 5501 (int64_t)regs[r2]; 5502 } 5503 break; 5504 5505 case DIF_OP_UREM: 5506 if (regs[r2] == 0) { 5507 regs[rd] = 0; 5508 *flags |= CPU_DTRACE_DIVZERO; 5509 } else { 5510 regs[rd] = regs[r1] % regs[r2]; 5511 } 5512 break; 5513 5514 case DIF_OP_NOT: 5515 regs[rd] = ~regs[r1]; 5516 break; 5517 case DIF_OP_MOV: 5518 regs[rd] = regs[r1]; 5519 break; 5520 case DIF_OP_CMP: 5521 cc_r = regs[r1] - regs[r2]; 5522 cc_n = cc_r < 0; 5523 cc_z = cc_r == 0; 5524 cc_v = 0; 5525 cc_c = regs[r1] < regs[r2]; 5526 break; 5527 case DIF_OP_TST: 5528 cc_n = cc_v = cc_c = 0; 5529 cc_z = regs[r1] == 0; 5530 break; 5531 case DIF_OP_BA: 5532 pc = DIF_INSTR_LABEL(instr); 5533 break; 5534 case DIF_OP_BE: 5535 if (cc_z) 5536 pc = DIF_INSTR_LABEL(instr); 5537 break; 5538 case DIF_OP_BNE: 5539 if (cc_z == 0) 5540 pc = DIF_INSTR_LABEL(instr); 5541 break; 5542 case DIF_OP_BG: 5543 if ((cc_z | (cc_n ^ cc_v)) == 0) 5544 pc = DIF_INSTR_LABEL(instr); 5545 break; 5546 case DIF_OP_BGU: 5547 if ((cc_c | cc_z) == 0) 5548 pc = DIF_INSTR_LABEL(instr); 5549 break; 5550 case DIF_OP_BGE: 5551 if ((cc_n ^ cc_v) == 0) 5552 pc = DIF_INSTR_LABEL(instr); 5553 break; 5554 case DIF_OP_BGEU: 5555 if (cc_c == 0) 5556 pc = DIF_INSTR_LABEL(instr); 5557 break; 5558 case DIF_OP_BL: 5559 if (cc_n ^ cc_v) 5560 pc = DIF_INSTR_LABEL(instr); 5561 break; 5562 case DIF_OP_BLU: 5563 if (cc_c) 5564 pc = DIF_INSTR_LABEL(instr); 5565 break; 5566 case DIF_OP_BLE: 5567 if (cc_z | (cc_n ^ cc_v)) 5568 pc = DIF_INSTR_LABEL(instr); 5569 break; 5570 case DIF_OP_BLEU: 5571 if (cc_c | cc_z) 5572 pc = DIF_INSTR_LABEL(instr); 5573 break; 5574 case DIF_OP_RLDSB: 5575 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 5576 break; 5577 /*FALLTHROUGH*/ 5578 case DIF_OP_LDSB: 5579 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 5580 break; 5581 case DIF_OP_RLDSH: 5582 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 5583 break; 5584 /*FALLTHROUGH*/ 5585 case DIF_OP_LDSH: 5586 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 5587 break; 5588 case DIF_OP_RLDSW: 5589 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 5590 break; 5591 /*FALLTHROUGH*/ 5592 case DIF_OP_LDSW: 5593 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 5594 break; 5595 case DIF_OP_RLDUB: 5596 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 5597 break; 5598 /*FALLTHROUGH*/ 5599 case DIF_OP_LDUB: 5600 regs[rd] = dtrace_load8(regs[r1]); 5601 break; 5602 case DIF_OP_RLDUH: 5603 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 5604 break; 5605 /*FALLTHROUGH*/ 5606 case DIF_OP_LDUH: 5607 regs[rd] = dtrace_load16(regs[r1]); 5608 break; 5609 case DIF_OP_RLDUW: 5610 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 5611 break; 5612 /*FALLTHROUGH*/ 5613 case DIF_OP_LDUW: 5614 regs[rd] = dtrace_load32(regs[r1]); 5615 break; 5616 case DIF_OP_RLDX: 5617 if (!dtrace_canload(regs[r1], 8, mstate, vstate)) 5618 break; 5619 /*FALLTHROUGH*/ 5620 case DIF_OP_LDX: 5621 regs[rd] = dtrace_load64(regs[r1]); 5622 break; 5623 case DIF_OP_ULDSB: 5624 regs[rd] = (int8_t) 5625 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 5626 break; 5627 case DIF_OP_ULDSH: 5628 regs[rd] = (int16_t) 5629 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 5630 break; 5631 case DIF_OP_ULDSW: 5632 regs[rd] = (int32_t) 5633 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 5634 break; 5635 case DIF_OP_ULDUB: 5636 regs[rd] = 5637 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 5638 break; 5639 case DIF_OP_ULDUH: 5640 regs[rd] = 5641 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 5642 break; 5643 case DIF_OP_ULDUW: 5644 regs[rd] = 5645 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 5646 break; 5647 case DIF_OP_ULDX: 5648 regs[rd] = 5649 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 5650 break; 5651 case DIF_OP_RET: 5652 rval = regs[rd]; 5653 pc = textlen; 5654 break; 5655 case DIF_OP_NOP: 5656 break; 5657 case DIF_OP_SETX: 5658 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 5659 break; 5660 case DIF_OP_SETS: 5661 regs[rd] = (uint64_t)(uintptr_t) 5662 (strtab + DIF_INSTR_STRING(instr)); 5663 break; 5664 case DIF_OP_SCMP: { 5665 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 5666 uintptr_t s1 = regs[r1]; 5667 uintptr_t s2 = regs[r2]; 5668 5669 if (s1 != NULL && 5670 !dtrace_strcanload(s1, sz, mstate, vstate)) 5671 break; 5672 if (s2 != NULL && 5673 !dtrace_strcanload(s2, sz, mstate, vstate)) 5674 break; 5675 5676 cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz); 5677 5678 cc_n = cc_r < 0; 5679 cc_z = cc_r == 0; 5680 cc_v = cc_c = 0; 5681 break; 5682 } 5683 case DIF_OP_LDGA: 5684 regs[rd] = dtrace_dif_variable(mstate, state, 5685 r1, regs[r2]); 5686 break; 5687 case DIF_OP_LDGS: 5688 id = DIF_INSTR_VAR(instr); 5689 5690 if (id >= DIF_VAR_OTHER_UBASE) { 5691 uintptr_t a; 5692 5693 id -= DIF_VAR_OTHER_UBASE; 5694 svar = vstate->dtvs_globals[id]; 5695 ASSERT(svar != NULL); 5696 v = &svar->dtsv_var; 5697 5698 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 5699 regs[rd] = svar->dtsv_data; 5700 break; 5701 } 5702 5703 a = (uintptr_t)svar->dtsv_data; 5704 5705 if (*(uint8_t *)a == UINT8_MAX) { 5706 /* 5707 * If the 0th byte is set to UINT8_MAX 5708 * then this is to be treated as a 5709 * reference to a NULL variable. 5710 */ 5711 regs[rd] = NULL; 5712 } else { 5713 regs[rd] = a + sizeof (uint64_t); 5714 } 5715 5716 break; 5717 } 5718 5719 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 5720 break; 5721 5722 case DIF_OP_STGS: 5723 id = DIF_INSTR_VAR(instr); 5724 5725 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5726 id -= DIF_VAR_OTHER_UBASE; 5727 5728 svar = vstate->dtvs_globals[id]; 5729 ASSERT(svar != NULL); 5730 v = &svar->dtsv_var; 5731 5732 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5733 uintptr_t a = (uintptr_t)svar->dtsv_data; 5734 5735 ASSERT(a != NULL); 5736 ASSERT(svar->dtsv_size != 0); 5737 5738 if (regs[rd] == NULL) { 5739 *(uint8_t *)a = UINT8_MAX; 5740 break; 5741 } else { 5742 *(uint8_t *)a = 0; 5743 a += sizeof (uint64_t); 5744 } 5745 if (!dtrace_vcanload( 5746 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 5747 mstate, vstate)) 5748 break; 5749 5750 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5751 (void *)a, &v->dtdv_type); 5752 break; 5753 } 5754 5755 svar->dtsv_data = regs[rd]; 5756 break; 5757 5758 case DIF_OP_LDTA: 5759 /* 5760 * There are no DTrace built-in thread-local arrays at 5761 * present. This opcode is saved for future work. 5762 */ 5763 *flags |= CPU_DTRACE_ILLOP; 5764 regs[rd] = 0; 5765 break; 5766 5767 case DIF_OP_LDLS: 5768 id = DIF_INSTR_VAR(instr); 5769 5770 if (id < DIF_VAR_OTHER_UBASE) { 5771 /* 5772 * For now, this has no meaning. 5773 */ 5774 regs[rd] = 0; 5775 break; 5776 } 5777 5778 id -= DIF_VAR_OTHER_UBASE; 5779 5780 ASSERT(id < vstate->dtvs_nlocals); 5781 ASSERT(vstate->dtvs_locals != NULL); 5782 5783 svar = vstate->dtvs_locals[id]; 5784 ASSERT(svar != NULL); 5785 v = &svar->dtsv_var; 5786 5787 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5788 uintptr_t a = (uintptr_t)svar->dtsv_data; 5789 size_t sz = v->dtdv_type.dtdt_size; 5790 5791 sz += sizeof (uint64_t); 5792 ASSERT(svar->dtsv_size == NCPU * sz); 5793 a += CPU->cpu_id * sz; 5794 5795 if (*(uint8_t *)a == UINT8_MAX) { 5796 /* 5797 * If the 0th byte is set to UINT8_MAX 5798 * then this is to be treated as a 5799 * reference to a NULL variable. 5800 */ 5801 regs[rd] = NULL; 5802 } else { 5803 regs[rd] = a + sizeof (uint64_t); 5804 } 5805 5806 break; 5807 } 5808 5809 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 5810 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 5811 regs[rd] = tmp[CPU->cpu_id]; 5812 break; 5813 5814 case DIF_OP_STLS: 5815 id = DIF_INSTR_VAR(instr); 5816 5817 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5818 id -= DIF_VAR_OTHER_UBASE; 5819 ASSERT(id < vstate->dtvs_nlocals); 5820 5821 ASSERT(vstate->dtvs_locals != NULL); 5822 svar = vstate->dtvs_locals[id]; 5823 ASSERT(svar != NULL); 5824 v = &svar->dtsv_var; 5825 5826 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5827 uintptr_t a = (uintptr_t)svar->dtsv_data; 5828 size_t sz = v->dtdv_type.dtdt_size; 5829 5830 sz += sizeof (uint64_t); 5831 ASSERT(svar->dtsv_size == NCPU * sz); 5832 a += CPU->cpu_id * sz; 5833 5834 if (regs[rd] == NULL) { 5835 *(uint8_t *)a = UINT8_MAX; 5836 break; 5837 } else { 5838 *(uint8_t *)a = 0; 5839 a += sizeof (uint64_t); 5840 } 5841 5842 if (!dtrace_vcanload( 5843 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 5844 mstate, vstate)) 5845 break; 5846 5847 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5848 (void *)a, &v->dtdv_type); 5849 break; 5850 } 5851 5852 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 5853 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 5854 tmp[CPU->cpu_id] = regs[rd]; 5855 break; 5856 5857 case DIF_OP_LDTS: { 5858 dtrace_dynvar_t *dvar; 5859 dtrace_key_t *key; 5860 5861 id = DIF_INSTR_VAR(instr); 5862 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5863 id -= DIF_VAR_OTHER_UBASE; 5864 v = &vstate->dtvs_tlocals[id]; 5865 5866 key = &tupregs[DIF_DTR_NREGS]; 5867 key[0].dttk_value = (uint64_t)id; 5868 key[0].dttk_size = 0; 5869 DTRACE_TLS_THRKEY(key[1].dttk_value); 5870 key[1].dttk_size = 0; 5871 5872 dvar = dtrace_dynvar(dstate, 2, key, 5873 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 5874 mstate, vstate); 5875 5876 if (dvar == NULL) { 5877 regs[rd] = 0; 5878 break; 5879 } 5880 5881 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5882 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 5883 } else { 5884 regs[rd] = *((uint64_t *)dvar->dtdv_data); 5885 } 5886 5887 break; 5888 } 5889 5890 case DIF_OP_STTS: { 5891 dtrace_dynvar_t *dvar; 5892 dtrace_key_t *key; 5893 5894 id = DIF_INSTR_VAR(instr); 5895 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5896 id -= DIF_VAR_OTHER_UBASE; 5897 5898 key = &tupregs[DIF_DTR_NREGS]; 5899 key[0].dttk_value = (uint64_t)id; 5900 key[0].dttk_size = 0; 5901 DTRACE_TLS_THRKEY(key[1].dttk_value); 5902 key[1].dttk_size = 0; 5903 v = &vstate->dtvs_tlocals[id]; 5904 5905 dvar = dtrace_dynvar(dstate, 2, key, 5906 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 5907 v->dtdv_type.dtdt_size : sizeof (uint64_t), 5908 regs[rd] ? DTRACE_DYNVAR_ALLOC : 5909 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 5910 5911 /* 5912 * Given that we're storing to thread-local data, 5913 * we need to flush our predicate cache. 5914 */ 5915 curthread->t_predcache = NULL; 5916 5917 if (dvar == NULL) 5918 break; 5919 5920 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5921 if (!dtrace_vcanload( 5922 (void *)(uintptr_t)regs[rd], 5923 &v->dtdv_type, mstate, vstate)) 5924 break; 5925 5926 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5927 dvar->dtdv_data, &v->dtdv_type); 5928 } else { 5929 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 5930 } 5931 5932 break; 5933 } 5934 5935 case DIF_OP_SRA: 5936 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 5937 break; 5938 5939 case DIF_OP_CALL: 5940 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 5941 regs, tupregs, ttop, mstate, state); 5942 break; 5943 5944 case DIF_OP_PUSHTR: 5945 if (ttop == DIF_DTR_NREGS) { 5946 *flags |= CPU_DTRACE_TUPOFLOW; 5947 break; 5948 } 5949 5950 if (r1 == DIF_TYPE_STRING) { 5951 /* 5952 * If this is a string type and the size is 0, 5953 * we'll use the system-wide default string 5954 * size. Note that we are _not_ looking at 5955 * the value of the DTRACEOPT_STRSIZE option; 5956 * had this been set, we would expect to have 5957 * a non-zero size value in the "pushtr". 5958 */ 5959 tupregs[ttop].dttk_size = 5960 dtrace_strlen((char *)(uintptr_t)regs[rd], 5961 regs[r2] ? regs[r2] : 5962 dtrace_strsize_default) + 1; 5963 } else { 5964 tupregs[ttop].dttk_size = regs[r2]; 5965 } 5966 5967 tupregs[ttop++].dttk_value = regs[rd]; 5968 break; 5969 5970 case DIF_OP_PUSHTV: 5971 if (ttop == DIF_DTR_NREGS) { 5972 *flags |= CPU_DTRACE_TUPOFLOW; 5973 break; 5974 } 5975 5976 tupregs[ttop].dttk_value = regs[rd]; 5977 tupregs[ttop++].dttk_size = 0; 5978 break; 5979 5980 case DIF_OP_POPTS: 5981 if (ttop != 0) 5982 ttop--; 5983 break; 5984 5985 case DIF_OP_FLUSHTS: 5986 ttop = 0; 5987 break; 5988 5989 case DIF_OP_LDGAA: 5990 case DIF_OP_LDTAA: { 5991 dtrace_dynvar_t *dvar; 5992 dtrace_key_t *key = tupregs; 5993 uint_t nkeys = ttop; 5994 5995 id = DIF_INSTR_VAR(instr); 5996 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5997 id -= DIF_VAR_OTHER_UBASE; 5998 5999 key[nkeys].dttk_value = (uint64_t)id; 6000 key[nkeys++].dttk_size = 0; 6001 6002 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 6003 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6004 key[nkeys++].dttk_size = 0; 6005 v = &vstate->dtvs_tlocals[id]; 6006 } else { 6007 v = &vstate->dtvs_globals[id]->dtsv_var; 6008 } 6009 6010 dvar = dtrace_dynvar(dstate, nkeys, key, 6011 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6012 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6013 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 6014 6015 if (dvar == NULL) { 6016 regs[rd] = 0; 6017 break; 6018 } 6019 6020 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6021 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6022 } else { 6023 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6024 } 6025 6026 break; 6027 } 6028 6029 case DIF_OP_STGAA: 6030 case DIF_OP_STTAA: { 6031 dtrace_dynvar_t *dvar; 6032 dtrace_key_t *key = tupregs; 6033 uint_t nkeys = ttop; 6034 6035 id = DIF_INSTR_VAR(instr); 6036 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6037 id -= DIF_VAR_OTHER_UBASE; 6038 6039 key[nkeys].dttk_value = (uint64_t)id; 6040 key[nkeys++].dttk_size = 0; 6041 6042 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 6043 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6044 key[nkeys++].dttk_size = 0; 6045 v = &vstate->dtvs_tlocals[id]; 6046 } else { 6047 v = &vstate->dtvs_globals[id]->dtsv_var; 6048 } 6049 6050 dvar = dtrace_dynvar(dstate, nkeys, key, 6051 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6052 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6053 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6054 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6055 6056 if (dvar == NULL) 6057 break; 6058 6059 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6060 if (!dtrace_vcanload( 6061 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6062 mstate, vstate)) 6063 break; 6064 6065 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6066 dvar->dtdv_data, &v->dtdv_type); 6067 } else { 6068 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6069 } 6070 6071 break; 6072 } 6073 6074 case DIF_OP_ALLOCS: { 6075 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6076 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 6077 6078 /* 6079 * Rounding up the user allocation size could have 6080 * overflowed large, bogus allocations (like -1ULL) to 6081 * 0. 6082 */ 6083 if (size < regs[r1] || 6084 !DTRACE_INSCRATCH(mstate, size)) { 6085 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6086 regs[rd] = NULL; 6087 break; 6088 } 6089 6090 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 6091 mstate->dtms_scratch_ptr += size; 6092 regs[rd] = ptr; 6093 break; 6094 } 6095 6096 case DIF_OP_COPYS: 6097 if (!dtrace_canstore(regs[rd], regs[r2], 6098 mstate, vstate)) { 6099 *flags |= CPU_DTRACE_BADADDR; 6100 *illval = regs[rd]; 6101 break; 6102 } 6103 6104 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 6105 break; 6106 6107 dtrace_bcopy((void *)(uintptr_t)regs[r1], 6108 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 6109 break; 6110 6111 case DIF_OP_STB: 6112 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 6113 *flags |= CPU_DTRACE_BADADDR; 6114 *illval = regs[rd]; 6115 break; 6116 } 6117 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 6118 break; 6119 6120 case DIF_OP_STH: 6121 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 6122 *flags |= CPU_DTRACE_BADADDR; 6123 *illval = regs[rd]; 6124 break; 6125 } 6126 if (regs[rd] & 1) { 6127 *flags |= CPU_DTRACE_BADALIGN; 6128 *illval = regs[rd]; 6129 break; 6130 } 6131 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 6132 break; 6133 6134 case DIF_OP_STW: 6135 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 6136 *flags |= CPU_DTRACE_BADADDR; 6137 *illval = regs[rd]; 6138 break; 6139 } 6140 if (regs[rd] & 3) { 6141 *flags |= CPU_DTRACE_BADALIGN; 6142 *illval = regs[rd]; 6143 break; 6144 } 6145 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 6146 break; 6147 6148 case DIF_OP_STX: 6149 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 6150 *flags |= CPU_DTRACE_BADADDR; 6151 *illval = regs[rd]; 6152 break; 6153 } 6154 if (regs[rd] & 7) { 6155 *flags |= CPU_DTRACE_BADALIGN; 6156 *illval = regs[rd]; 6157 break; 6158 } 6159 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 6160 break; 6161 } 6162 } 6163 6164 if (!(*flags & CPU_DTRACE_FAULT)) 6165 return (rval); 6166 6167 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 6168 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 6169 6170 return (0); 6171 } 6172 6173 static void 6174 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 6175 { 6176 dtrace_probe_t *probe = ecb->dte_probe; 6177 dtrace_provider_t *prov = probe->dtpr_provider; 6178 char c[DTRACE_FULLNAMELEN + 80], *str; 6179 char *msg = "dtrace: breakpoint action at probe "; 6180 char *ecbmsg = " (ecb "; 6181 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); 6182 uintptr_t val = (uintptr_t)ecb; 6183 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 6184 6185 if (dtrace_destructive_disallow) 6186 return; 6187 6188 /* 6189 * It's impossible to be taking action on the NULL probe. 6190 */ 6191 ASSERT(probe != NULL); 6192 6193 /* 6194 * This is a poor man's (destitute man's?) sprintf(): we want to 6195 * print the provider name, module name, function name and name of 6196 * the probe, along with the hex address of the ECB with the breakpoint 6197 * action -- all of which we must place in the character buffer by 6198 * hand. 6199 */ 6200 while (*msg != '\0') 6201 c[i++] = *msg++; 6202 6203 for (str = prov->dtpv_name; *str != '\0'; str++) 6204 c[i++] = *str; 6205 c[i++] = ':'; 6206 6207 for (str = probe->dtpr_mod; *str != '\0'; str++) 6208 c[i++] = *str; 6209 c[i++] = ':'; 6210 6211 for (str = probe->dtpr_func; *str != '\0'; str++) 6212 c[i++] = *str; 6213 c[i++] = ':'; 6214 6215 for (str = probe->dtpr_name; *str != '\0'; str++) 6216 c[i++] = *str; 6217 6218 while (*ecbmsg != '\0') 6219 c[i++] = *ecbmsg++; 6220 6221 while (shift >= 0) { 6222 mask = (uintptr_t)0xf << shift; 6223 6224 if (val >= ((uintptr_t)1 << shift)) 6225 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 6226 shift -= 4; 6227 } 6228 6229 c[i++] = ')'; 6230 c[i] = '\0'; 6231 6232 debug_enter(c); 6233 } 6234 6235 static void 6236 dtrace_action_panic(dtrace_ecb_t *ecb) 6237 { 6238 dtrace_probe_t *probe = ecb->dte_probe; 6239 6240 /* 6241 * It's impossible to be taking action on the NULL probe. 6242 */ 6243 ASSERT(probe != NULL); 6244 6245 if (dtrace_destructive_disallow) 6246 return; 6247 6248 if (dtrace_panicked != NULL) 6249 return; 6250 6251 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 6252 return; 6253 6254 /* 6255 * We won the right to panic. (We want to be sure that only one 6256 * thread calls panic() from dtrace_probe(), and that panic() is 6257 * called exactly once.) 6258 */ 6259 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 6260 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 6261 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 6262 } 6263 6264 static void 6265 dtrace_action_raise(uint64_t sig) 6266 { 6267 if (dtrace_destructive_disallow) 6268 return; 6269 6270 if (sig >= NSIG) { 6271 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 6272 return; 6273 } 6274 6275 /* 6276 * raise() has a queue depth of 1 -- we ignore all subsequent 6277 * invocations of the raise() action. 6278 */ 6279 if (curthread->t_dtrace_sig == 0) 6280 curthread->t_dtrace_sig = (uint8_t)sig; 6281 6282 curthread->t_sig_check = 1; 6283 aston(curthread); 6284 } 6285 6286 static void 6287 dtrace_action_stop(void) 6288 { 6289 if (dtrace_destructive_disallow) 6290 return; 6291 6292 if (!curthread->t_dtrace_stop) { 6293 curthread->t_dtrace_stop = 1; 6294 curthread->t_sig_check = 1; 6295 aston(curthread); 6296 } 6297 } 6298 6299 static void 6300 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 6301 { 6302 hrtime_t now; 6303 volatile uint16_t *flags; 6304 cpu_t *cpu = CPU; 6305 6306 if (dtrace_destructive_disallow) 6307 return; 6308 6309 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags; 6310 6311 now = dtrace_gethrtime(); 6312 6313 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 6314 /* 6315 * We need to advance the mark to the current time. 6316 */ 6317 cpu->cpu_dtrace_chillmark = now; 6318 cpu->cpu_dtrace_chilled = 0; 6319 } 6320 6321 /* 6322 * Now check to see if the requested chill time would take us over 6323 * the maximum amount of time allowed in the chill interval. (Or 6324 * worse, if the calculation itself induces overflow.) 6325 */ 6326 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 6327 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 6328 *flags |= CPU_DTRACE_ILLOP; 6329 return; 6330 } 6331 6332 while (dtrace_gethrtime() - now < val) 6333 continue; 6334 6335 /* 6336 * Normally, we assure that the value of the variable "timestamp" does 6337 * not change within an ECB. The presence of chill() represents an 6338 * exception to this rule, however. 6339 */ 6340 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 6341 cpu->cpu_dtrace_chilled += val; 6342 } 6343 6344 static void 6345 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 6346 uint64_t *buf, uint64_t arg) 6347 { 6348 int nframes = DTRACE_USTACK_NFRAMES(arg); 6349 int strsize = DTRACE_USTACK_STRSIZE(arg); 6350 uint64_t *pcs = &buf[1], *fps; 6351 char *str = (char *)&pcs[nframes]; 6352 int size, offs = 0, i, j; 6353 uintptr_t old = mstate->dtms_scratch_ptr, saved; 6354 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 6355 char *sym; 6356 6357 /* 6358 * Should be taking a faster path if string space has not been 6359 * allocated. 6360 */ 6361 ASSERT(strsize != 0); 6362 6363 /* 6364 * We will first allocate some temporary space for the frame pointers. 6365 */ 6366 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6367 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 6368 (nframes * sizeof (uint64_t)); 6369 6370 if (!DTRACE_INSCRATCH(mstate, size)) { 6371 /* 6372 * Not enough room for our frame pointers -- need to indicate 6373 * that we ran out of scratch space. 6374 */ 6375 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6376 return; 6377 } 6378 6379 mstate->dtms_scratch_ptr += size; 6380 saved = mstate->dtms_scratch_ptr; 6381 6382 /* 6383 * Now get a stack with both program counters and frame pointers. 6384 */ 6385 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6386 dtrace_getufpstack(buf, fps, nframes + 1); 6387 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6388 6389 /* 6390 * If that faulted, we're cooked. 6391 */ 6392 if (*flags & CPU_DTRACE_FAULT) 6393 goto out; 6394 6395 /* 6396 * Now we want to walk up the stack, calling the USTACK helper. For 6397 * each iteration, we restore the scratch pointer. 6398 */ 6399 for (i = 0; i < nframes; i++) { 6400 mstate->dtms_scratch_ptr = saved; 6401 6402 if (offs >= strsize) 6403 break; 6404 6405 sym = (char *)(uintptr_t)dtrace_helper( 6406 DTRACE_HELPER_ACTION_USTACK, 6407 mstate, state, pcs[i], fps[i]); 6408 6409 /* 6410 * If we faulted while running the helper, we're going to 6411 * clear the fault and null out the corresponding string. 6412 */ 6413 if (*flags & CPU_DTRACE_FAULT) { 6414 *flags &= ~CPU_DTRACE_FAULT; 6415 str[offs++] = '\0'; 6416 continue; 6417 } 6418 6419 if (sym == NULL) { 6420 str[offs++] = '\0'; 6421 continue; 6422 } 6423 6424 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6425 6426 /* 6427 * Now copy in the string that the helper returned to us. 6428 */ 6429 for (j = 0; offs + j < strsize; j++) { 6430 if ((str[offs + j] = sym[j]) == '\0') 6431 break; 6432 } 6433 6434 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6435 6436 offs += j + 1; 6437 } 6438 6439 if (offs >= strsize) { 6440 /* 6441 * If we didn't have room for all of the strings, we don't 6442 * abort processing -- this needn't be a fatal error -- but we 6443 * still want to increment a counter (dts_stkstroverflows) to 6444 * allow this condition to be warned about. (If this is from 6445 * a jstack() action, it is easily tuned via jstackstrsize.) 6446 */ 6447 dtrace_error(&state->dts_stkstroverflows); 6448 } 6449 6450 while (offs < strsize) 6451 str[offs++] = '\0'; 6452 6453 out: 6454 mstate->dtms_scratch_ptr = old; 6455 } 6456 6457 /* 6458 * If you're looking for the epicenter of DTrace, you just found it. This 6459 * is the function called by the provider to fire a probe -- from which all 6460 * subsequent probe-context DTrace activity emanates. 6461 */ 6462 void 6463 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 6464 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 6465 { 6466 processorid_t cpuid; 6467 dtrace_icookie_t cookie; 6468 dtrace_probe_t *probe; 6469 dtrace_mstate_t mstate; 6470 dtrace_ecb_t *ecb; 6471 dtrace_action_t *act; 6472 intptr_t offs; 6473 size_t size; 6474 int vtime, onintr; 6475 volatile uint16_t *flags; 6476 hrtime_t now; 6477 6478 /* 6479 * Kick out immediately if this CPU is still being born (in which case 6480 * curthread will be set to -1) or the current thread can't allow 6481 * probes in its current context. 6482 */ 6483 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) 6484 return; 6485 6486 cookie = dtrace_interrupt_disable(); 6487 probe = dtrace_probes[id - 1]; 6488 cpuid = CPU->cpu_id; 6489 onintr = CPU_ON_INTR(CPU); 6490 6491 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 6492 probe->dtpr_predcache == curthread->t_predcache) { 6493 /* 6494 * We have hit in the predicate cache; we know that 6495 * this predicate would evaluate to be false. 6496 */ 6497 dtrace_interrupt_enable(cookie); 6498 return; 6499 } 6500 6501 if (panic_quiesce) { 6502 /* 6503 * We don't trace anything if we're panicking. 6504 */ 6505 dtrace_interrupt_enable(cookie); 6506 return; 6507 } 6508 6509 now = dtrace_gethrtime(); 6510 vtime = dtrace_vtime_references != 0; 6511 6512 if (vtime && curthread->t_dtrace_start) 6513 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 6514 6515 mstate.dtms_difo = NULL; 6516 mstate.dtms_probe = probe; 6517 mstate.dtms_strtok = NULL; 6518 mstate.dtms_arg[0] = arg0; 6519 mstate.dtms_arg[1] = arg1; 6520 mstate.dtms_arg[2] = arg2; 6521 mstate.dtms_arg[3] = arg3; 6522 mstate.dtms_arg[4] = arg4; 6523 6524 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 6525 6526 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 6527 dtrace_predicate_t *pred = ecb->dte_predicate; 6528 dtrace_state_t *state = ecb->dte_state; 6529 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 6530 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 6531 dtrace_vstate_t *vstate = &state->dts_vstate; 6532 dtrace_provider_t *prov = probe->dtpr_provider; 6533 uint64_t tracememsize = 0; 6534 int committed = 0; 6535 caddr_t tomax; 6536 6537 /* 6538 * A little subtlety with the following (seemingly innocuous) 6539 * declaration of the automatic 'val': by looking at the 6540 * code, you might think that it could be declared in the 6541 * action processing loop, below. (That is, it's only used in 6542 * the action processing loop.) However, it must be declared 6543 * out of that scope because in the case of DIF expression 6544 * arguments to aggregating actions, one iteration of the 6545 * action loop will use the last iteration's value. 6546 */ 6547 #ifdef lint 6548 uint64_t val = 0; 6549 #else 6550 uint64_t val; 6551 #endif 6552 6553 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 6554 mstate.dtms_access = DTRACE_ACCESS_ARGS | DTRACE_ACCESS_PROC; 6555 mstate.dtms_getf = NULL; 6556 6557 *flags &= ~CPU_DTRACE_ERROR; 6558 6559 if (prov == dtrace_provider) { 6560 /* 6561 * If dtrace itself is the provider of this probe, 6562 * we're only going to continue processing the ECB if 6563 * arg0 (the dtrace_state_t) is equal to the ECB's 6564 * creating state. (This prevents disjoint consumers 6565 * from seeing one another's metaprobes.) 6566 */ 6567 if (arg0 != (uint64_t)(uintptr_t)state) 6568 continue; 6569 } 6570 6571 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 6572 /* 6573 * We're not currently active. If our provider isn't 6574 * the dtrace pseudo provider, we're not interested. 6575 */ 6576 if (prov != dtrace_provider) 6577 continue; 6578 6579 /* 6580 * Now we must further check if we are in the BEGIN 6581 * probe. If we are, we will only continue processing 6582 * if we're still in WARMUP -- if one BEGIN enabling 6583 * has invoked the exit() action, we don't want to 6584 * evaluate subsequent BEGIN enablings. 6585 */ 6586 if (probe->dtpr_id == dtrace_probeid_begin && 6587 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 6588 ASSERT(state->dts_activity == 6589 DTRACE_ACTIVITY_DRAINING); 6590 continue; 6591 } 6592 } 6593 6594 if (ecb->dte_cond && !dtrace_priv_probe(state, &mstate, ecb)) 6595 continue; 6596 6597 if (now - state->dts_alive > dtrace_deadman_timeout) { 6598 /* 6599 * We seem to be dead. Unless we (a) have kernel 6600 * destructive permissions (b) have explicitly enabled 6601 * destructive actions and (c) destructive actions have 6602 * not been disabled, we're going to transition into 6603 * the KILLED state, from which no further processing 6604 * on this state will be performed. 6605 */ 6606 if (!dtrace_priv_kernel_destructive(state) || 6607 !state->dts_cred.dcr_destructive || 6608 dtrace_destructive_disallow) { 6609 void *activity = &state->dts_activity; 6610 dtrace_activity_t current; 6611 6612 do { 6613 current = state->dts_activity; 6614 } while (dtrace_cas32(activity, current, 6615 DTRACE_ACTIVITY_KILLED) != current); 6616 6617 continue; 6618 } 6619 } 6620 6621 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 6622 ecb->dte_alignment, state, &mstate)) < 0) 6623 continue; 6624 6625 tomax = buf->dtb_tomax; 6626 ASSERT(tomax != NULL); 6627 6628 if (ecb->dte_size != 0) { 6629 dtrace_rechdr_t dtrh; 6630 if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 6631 mstate.dtms_timestamp = dtrace_gethrtime(); 6632 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; 6633 } 6634 ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t)); 6635 dtrh.dtrh_epid = ecb->dte_epid; 6636 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh, 6637 mstate.dtms_timestamp); 6638 *((dtrace_rechdr_t *)(tomax + offs)) = dtrh; 6639 } 6640 6641 mstate.dtms_epid = ecb->dte_epid; 6642 mstate.dtms_present |= DTRACE_MSTATE_EPID; 6643 6644 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 6645 mstate.dtms_access |= DTRACE_ACCESS_KERNEL; 6646 6647 if (pred != NULL) { 6648 dtrace_difo_t *dp = pred->dtp_difo; 6649 int rval; 6650 6651 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 6652 6653 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 6654 dtrace_cacheid_t cid = probe->dtpr_predcache; 6655 6656 if (cid != DTRACE_CACHEIDNONE && !onintr) { 6657 /* 6658 * Update the predicate cache... 6659 */ 6660 ASSERT(cid == pred->dtp_cacheid); 6661 curthread->t_predcache = cid; 6662 } 6663 6664 continue; 6665 } 6666 } 6667 6668 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 6669 act != NULL; act = act->dta_next) { 6670 size_t valoffs; 6671 dtrace_difo_t *dp; 6672 dtrace_recdesc_t *rec = &act->dta_rec; 6673 6674 size = rec->dtrd_size; 6675 valoffs = offs + rec->dtrd_offset; 6676 6677 if (DTRACEACT_ISAGG(act->dta_kind)) { 6678 uint64_t v = 0xbad; 6679 dtrace_aggregation_t *agg; 6680 6681 agg = (dtrace_aggregation_t *)act; 6682 6683 if ((dp = act->dta_difo) != NULL) 6684 v = dtrace_dif_emulate(dp, 6685 &mstate, vstate, state); 6686 6687 if (*flags & CPU_DTRACE_ERROR) 6688 continue; 6689 6690 /* 6691 * Note that we always pass the expression 6692 * value from the previous iteration of the 6693 * action loop. This value will only be used 6694 * if there is an expression argument to the 6695 * aggregating action, denoted by the 6696 * dtag_hasarg field. 6697 */ 6698 dtrace_aggregate(agg, buf, 6699 offs, aggbuf, v, val); 6700 continue; 6701 } 6702 6703 switch (act->dta_kind) { 6704 case DTRACEACT_STOP: 6705 if (dtrace_priv_proc_destructive(state, 6706 &mstate)) 6707 dtrace_action_stop(); 6708 continue; 6709 6710 case DTRACEACT_BREAKPOINT: 6711 if (dtrace_priv_kernel_destructive(state)) 6712 dtrace_action_breakpoint(ecb); 6713 continue; 6714 6715 case DTRACEACT_PANIC: 6716 if (dtrace_priv_kernel_destructive(state)) 6717 dtrace_action_panic(ecb); 6718 continue; 6719 6720 case DTRACEACT_STACK: 6721 if (!dtrace_priv_kernel(state)) 6722 continue; 6723 6724 dtrace_getpcstack((pc_t *)(tomax + valoffs), 6725 size / sizeof (pc_t), probe->dtpr_aframes, 6726 DTRACE_ANCHORED(probe) ? NULL : 6727 (uint32_t *)arg0); 6728 6729 continue; 6730 6731 case DTRACEACT_JSTACK: 6732 case DTRACEACT_USTACK: 6733 if (!dtrace_priv_proc(state, &mstate)) 6734 continue; 6735 6736 /* 6737 * See comment in DIF_VAR_PID. 6738 */ 6739 if (DTRACE_ANCHORED(mstate.dtms_probe) && 6740 CPU_ON_INTR(CPU)) { 6741 int depth = DTRACE_USTACK_NFRAMES( 6742 rec->dtrd_arg) + 1; 6743 6744 dtrace_bzero((void *)(tomax + valoffs), 6745 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 6746 + depth * sizeof (uint64_t)); 6747 6748 continue; 6749 } 6750 6751 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 6752 curproc->p_dtrace_helpers != NULL) { 6753 /* 6754 * This is the slow path -- we have 6755 * allocated string space, and we're 6756 * getting the stack of a process that 6757 * has helpers. Call into a separate 6758 * routine to perform this processing. 6759 */ 6760 dtrace_action_ustack(&mstate, state, 6761 (uint64_t *)(tomax + valoffs), 6762 rec->dtrd_arg); 6763 continue; 6764 } 6765 6766 /* 6767 * Clear the string space, since there's no 6768 * helper to do it for us. 6769 */ 6770 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0) { 6771 int depth = DTRACE_USTACK_NFRAMES( 6772 rec->dtrd_arg); 6773 size_t strsize = DTRACE_USTACK_STRSIZE( 6774 rec->dtrd_arg); 6775 uint64_t *buf = (uint64_t *)(tomax + 6776 valoffs); 6777 void *strspace = &buf[depth + 1]; 6778 6779 dtrace_bzero(strspace, 6780 MIN(depth, strsize)); 6781 } 6782 6783 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6784 dtrace_getupcstack((uint64_t *) 6785 (tomax + valoffs), 6786 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 6787 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6788 continue; 6789 6790 default: 6791 break; 6792 } 6793 6794 dp = act->dta_difo; 6795 ASSERT(dp != NULL); 6796 6797 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 6798 6799 if (*flags & CPU_DTRACE_ERROR) 6800 continue; 6801 6802 switch (act->dta_kind) { 6803 case DTRACEACT_SPECULATE: { 6804 dtrace_rechdr_t *dtrh; 6805 6806 ASSERT(buf == &state->dts_buffer[cpuid]); 6807 buf = dtrace_speculation_buffer(state, 6808 cpuid, val); 6809 6810 if (buf == NULL) { 6811 *flags |= CPU_DTRACE_DROP; 6812 continue; 6813 } 6814 6815 offs = dtrace_buffer_reserve(buf, 6816 ecb->dte_needed, ecb->dte_alignment, 6817 state, NULL); 6818 6819 if (offs < 0) { 6820 *flags |= CPU_DTRACE_DROP; 6821 continue; 6822 } 6823 6824 tomax = buf->dtb_tomax; 6825 ASSERT(tomax != NULL); 6826 6827 if (ecb->dte_size == 0) 6828 continue; 6829 6830 ASSERT3U(ecb->dte_size, >=, 6831 sizeof (dtrace_rechdr_t)); 6832 dtrh = ((void *)(tomax + offs)); 6833 dtrh->dtrh_epid = ecb->dte_epid; 6834 /* 6835 * When the speculation is committed, all of 6836 * the records in the speculative buffer will 6837 * have their timestamps set to the commit 6838 * time. Until then, it is set to a sentinel 6839 * value, for debugability. 6840 */ 6841 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX); 6842 continue; 6843 } 6844 6845 case DTRACEACT_CHILL: 6846 if (dtrace_priv_kernel_destructive(state)) 6847 dtrace_action_chill(&mstate, val); 6848 continue; 6849 6850 case DTRACEACT_RAISE: 6851 if (dtrace_priv_proc_destructive(state, 6852 &mstate)) 6853 dtrace_action_raise(val); 6854 continue; 6855 6856 case DTRACEACT_COMMIT: 6857 ASSERT(!committed); 6858 6859 /* 6860 * We need to commit our buffer state. 6861 */ 6862 if (ecb->dte_size) 6863 buf->dtb_offset = offs + ecb->dte_size; 6864 buf = &state->dts_buffer[cpuid]; 6865 dtrace_speculation_commit(state, cpuid, val); 6866 committed = 1; 6867 continue; 6868 6869 case DTRACEACT_DISCARD: 6870 dtrace_speculation_discard(state, cpuid, val); 6871 continue; 6872 6873 case DTRACEACT_DIFEXPR: 6874 case DTRACEACT_LIBACT: 6875 case DTRACEACT_PRINTF: 6876 case DTRACEACT_PRINTA: 6877 case DTRACEACT_SYSTEM: 6878 case DTRACEACT_FREOPEN: 6879 case DTRACEACT_TRACEMEM: 6880 break; 6881 6882 case DTRACEACT_TRACEMEM_DYNSIZE: 6883 tracememsize = val; 6884 break; 6885 6886 case DTRACEACT_SYM: 6887 case DTRACEACT_MOD: 6888 if (!dtrace_priv_kernel(state)) 6889 continue; 6890 break; 6891 6892 case DTRACEACT_USYM: 6893 case DTRACEACT_UMOD: 6894 case DTRACEACT_UADDR: { 6895 struct pid *pid = curthread->t_procp->p_pidp; 6896 6897 if (!dtrace_priv_proc(state, &mstate)) 6898 continue; 6899 6900 DTRACE_STORE(uint64_t, tomax, 6901 valoffs, (uint64_t)pid->pid_id); 6902 DTRACE_STORE(uint64_t, tomax, 6903 valoffs + sizeof (uint64_t), val); 6904 6905 continue; 6906 } 6907 6908 case DTRACEACT_EXIT: { 6909 /* 6910 * For the exit action, we are going to attempt 6911 * to atomically set our activity to be 6912 * draining. If this fails (either because 6913 * another CPU has beat us to the exit action, 6914 * or because our current activity is something 6915 * other than ACTIVE or WARMUP), we will 6916 * continue. This assures that the exit action 6917 * can be successfully recorded at most once 6918 * when we're in the ACTIVE state. If we're 6919 * encountering the exit() action while in 6920 * COOLDOWN, however, we want to honor the new 6921 * status code. (We know that we're the only 6922 * thread in COOLDOWN, so there is no race.) 6923 */ 6924 void *activity = &state->dts_activity; 6925 dtrace_activity_t current = state->dts_activity; 6926 6927 if (current == DTRACE_ACTIVITY_COOLDOWN) 6928 break; 6929 6930 if (current != DTRACE_ACTIVITY_WARMUP) 6931 current = DTRACE_ACTIVITY_ACTIVE; 6932 6933 if (dtrace_cas32(activity, current, 6934 DTRACE_ACTIVITY_DRAINING) != current) { 6935 *flags |= CPU_DTRACE_DROP; 6936 continue; 6937 } 6938 6939 break; 6940 } 6941 6942 default: 6943 ASSERT(0); 6944 } 6945 6946 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) { 6947 uintptr_t end = valoffs + size; 6948 6949 if (tracememsize != 0 && 6950 valoffs + tracememsize < end) { 6951 end = valoffs + tracememsize; 6952 tracememsize = 0; 6953 } 6954 6955 if (!dtrace_vcanload((void *)(uintptr_t)val, 6956 &dp->dtdo_rtype, &mstate, vstate)) 6957 continue; 6958 6959 /* 6960 * If this is a string, we're going to only 6961 * load until we find the zero byte -- after 6962 * which we'll store zero bytes. 6963 */ 6964 if (dp->dtdo_rtype.dtdt_kind == 6965 DIF_TYPE_STRING) { 6966 char c = '\0' + 1; 6967 int intuple = act->dta_intuple; 6968 size_t s; 6969 6970 for (s = 0; s < size; s++) { 6971 if (c != '\0') 6972 c = dtrace_load8(val++); 6973 6974 DTRACE_STORE(uint8_t, tomax, 6975 valoffs++, c); 6976 6977 if (c == '\0' && intuple) 6978 break; 6979 } 6980 6981 continue; 6982 } 6983 6984 while (valoffs < end) { 6985 DTRACE_STORE(uint8_t, tomax, valoffs++, 6986 dtrace_load8(val++)); 6987 } 6988 6989 continue; 6990 } 6991 6992 switch (size) { 6993 case 0: 6994 break; 6995 6996 case sizeof (uint8_t): 6997 DTRACE_STORE(uint8_t, tomax, valoffs, val); 6998 break; 6999 case sizeof (uint16_t): 7000 DTRACE_STORE(uint16_t, tomax, valoffs, val); 7001 break; 7002 case sizeof (uint32_t): 7003 DTRACE_STORE(uint32_t, tomax, valoffs, val); 7004 break; 7005 case sizeof (uint64_t): 7006 DTRACE_STORE(uint64_t, tomax, valoffs, val); 7007 break; 7008 default: 7009 /* 7010 * Any other size should have been returned by 7011 * reference, not by value. 7012 */ 7013 ASSERT(0); 7014 break; 7015 } 7016 } 7017 7018 if (*flags & CPU_DTRACE_DROP) 7019 continue; 7020 7021 if (*flags & CPU_DTRACE_FAULT) { 7022 int ndx; 7023 dtrace_action_t *err; 7024 7025 buf->dtb_errors++; 7026 7027 if (probe->dtpr_id == dtrace_probeid_error) { 7028 /* 7029 * There's nothing we can do -- we had an 7030 * error on the error probe. We bump an 7031 * error counter to at least indicate that 7032 * this condition happened. 7033 */ 7034 dtrace_error(&state->dts_dblerrors); 7035 continue; 7036 } 7037 7038 if (vtime) { 7039 /* 7040 * Before recursing on dtrace_probe(), we 7041 * need to explicitly clear out our start 7042 * time to prevent it from being accumulated 7043 * into t_dtrace_vtime. 7044 */ 7045 curthread->t_dtrace_start = 0; 7046 } 7047 7048 /* 7049 * Iterate over the actions to figure out which action 7050 * we were processing when we experienced the error. 7051 * Note that act points _past_ the faulting action; if 7052 * act is ecb->dte_action, the fault was in the 7053 * predicate, if it's ecb->dte_action->dta_next it's 7054 * in action #1, and so on. 7055 */ 7056 for (err = ecb->dte_action, ndx = 0; 7057 err != act; err = err->dta_next, ndx++) 7058 continue; 7059 7060 dtrace_probe_error(state, ecb->dte_epid, ndx, 7061 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 7062 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 7063 cpu_core[cpuid].cpuc_dtrace_illval); 7064 7065 continue; 7066 } 7067 7068 if (!committed) 7069 buf->dtb_offset = offs + ecb->dte_size; 7070 } 7071 7072 if (vtime) 7073 curthread->t_dtrace_start = dtrace_gethrtime(); 7074 7075 dtrace_interrupt_enable(cookie); 7076 } 7077 7078 /* 7079 * DTrace Probe Hashing Functions 7080 * 7081 * The functions in this section (and indeed, the functions in remaining 7082 * sections) are not _called_ from probe context. (Any exceptions to this are 7083 * marked with a "Note:".) Rather, they are called from elsewhere in the 7084 * DTrace framework to look-up probes in, add probes to and remove probes from 7085 * the DTrace probe hashes. (Each probe is hashed by each element of the 7086 * probe tuple -- allowing for fast lookups, regardless of what was 7087 * specified.) 7088 */ 7089 static uint_t 7090 dtrace_hash_str(char *p) 7091 { 7092 unsigned int g; 7093 uint_t hval = 0; 7094 7095 while (*p) { 7096 hval = (hval << 4) + *p++; 7097 if ((g = (hval & 0xf0000000)) != 0) 7098 hval ^= g >> 24; 7099 hval &= ~g; 7100 } 7101 return (hval); 7102 } 7103 7104 static dtrace_hash_t * 7105 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) 7106 { 7107 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 7108 7109 hash->dth_stroffs = stroffs; 7110 hash->dth_nextoffs = nextoffs; 7111 hash->dth_prevoffs = prevoffs; 7112 7113 hash->dth_size = 1; 7114 hash->dth_mask = hash->dth_size - 1; 7115 7116 hash->dth_tab = kmem_zalloc(hash->dth_size * 7117 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 7118 7119 return (hash); 7120 } 7121 7122 static void 7123 dtrace_hash_destroy(dtrace_hash_t *hash) 7124 { 7125 #ifdef DEBUG 7126 int i; 7127 7128 for (i = 0; i < hash->dth_size; i++) 7129 ASSERT(hash->dth_tab[i] == NULL); 7130 #endif 7131 7132 kmem_free(hash->dth_tab, 7133 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 7134 kmem_free(hash, sizeof (dtrace_hash_t)); 7135 } 7136 7137 static void 7138 dtrace_hash_resize(dtrace_hash_t *hash) 7139 { 7140 int size = hash->dth_size, i, ndx; 7141 int new_size = hash->dth_size << 1; 7142 int new_mask = new_size - 1; 7143 dtrace_hashbucket_t **new_tab, *bucket, *next; 7144 7145 ASSERT((new_size & new_mask) == 0); 7146 7147 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 7148 7149 for (i = 0; i < size; i++) { 7150 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 7151 dtrace_probe_t *probe = bucket->dthb_chain; 7152 7153 ASSERT(probe != NULL); 7154 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 7155 7156 next = bucket->dthb_next; 7157 bucket->dthb_next = new_tab[ndx]; 7158 new_tab[ndx] = bucket; 7159 } 7160 } 7161 7162 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 7163 hash->dth_tab = new_tab; 7164 hash->dth_size = new_size; 7165 hash->dth_mask = new_mask; 7166 } 7167 7168 static void 7169 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 7170 { 7171 int hashval = DTRACE_HASHSTR(hash, new); 7172 int ndx = hashval & hash->dth_mask; 7173 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7174 dtrace_probe_t **nextp, **prevp; 7175 7176 for (; bucket != NULL; bucket = bucket->dthb_next) { 7177 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 7178 goto add; 7179 } 7180 7181 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 7182 dtrace_hash_resize(hash); 7183 dtrace_hash_add(hash, new); 7184 return; 7185 } 7186 7187 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 7188 bucket->dthb_next = hash->dth_tab[ndx]; 7189 hash->dth_tab[ndx] = bucket; 7190 hash->dth_nbuckets++; 7191 7192 add: 7193 nextp = DTRACE_HASHNEXT(hash, new); 7194 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 7195 *nextp = bucket->dthb_chain; 7196 7197 if (bucket->dthb_chain != NULL) { 7198 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 7199 ASSERT(*prevp == NULL); 7200 *prevp = new; 7201 } 7202 7203 bucket->dthb_chain = new; 7204 bucket->dthb_len++; 7205 } 7206 7207 static dtrace_probe_t * 7208 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 7209 { 7210 int hashval = DTRACE_HASHSTR(hash, template); 7211 int ndx = hashval & hash->dth_mask; 7212 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7213 7214 for (; bucket != NULL; bucket = bucket->dthb_next) { 7215 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 7216 return (bucket->dthb_chain); 7217 } 7218 7219 return (NULL); 7220 } 7221 7222 static int 7223 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 7224 { 7225 int hashval = DTRACE_HASHSTR(hash, template); 7226 int ndx = hashval & hash->dth_mask; 7227 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7228 7229 for (; bucket != NULL; bucket = bucket->dthb_next) { 7230 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 7231 return (bucket->dthb_len); 7232 } 7233 7234 return (NULL); 7235 } 7236 7237 static void 7238 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 7239 { 7240 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 7241 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7242 7243 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 7244 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 7245 7246 /* 7247 * Find the bucket that we're removing this probe from. 7248 */ 7249 for (; bucket != NULL; bucket = bucket->dthb_next) { 7250 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 7251 break; 7252 } 7253 7254 ASSERT(bucket != NULL); 7255 7256 if (*prevp == NULL) { 7257 if (*nextp == NULL) { 7258 /* 7259 * The removed probe was the only probe on this 7260 * bucket; we need to remove the bucket. 7261 */ 7262 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 7263 7264 ASSERT(bucket->dthb_chain == probe); 7265 ASSERT(b != NULL); 7266 7267 if (b == bucket) { 7268 hash->dth_tab[ndx] = bucket->dthb_next; 7269 } else { 7270 while (b->dthb_next != bucket) 7271 b = b->dthb_next; 7272 b->dthb_next = bucket->dthb_next; 7273 } 7274 7275 ASSERT(hash->dth_nbuckets > 0); 7276 hash->dth_nbuckets--; 7277 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 7278 return; 7279 } 7280 7281 bucket->dthb_chain = *nextp; 7282 } else { 7283 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 7284 } 7285 7286 if (*nextp != NULL) 7287 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 7288 } 7289 7290 /* 7291 * DTrace Utility Functions 7292 * 7293 * These are random utility functions that are _not_ called from probe context. 7294 */ 7295 static int 7296 dtrace_badattr(const dtrace_attribute_t *a) 7297 { 7298 return (a->dtat_name > DTRACE_STABILITY_MAX || 7299 a->dtat_data > DTRACE_STABILITY_MAX || 7300 a->dtat_class > DTRACE_CLASS_MAX); 7301 } 7302 7303 /* 7304 * Return a duplicate copy of a string. If the specified string is NULL, 7305 * this function returns a zero-length string. 7306 */ 7307 static char * 7308 dtrace_strdup(const char *str) 7309 { 7310 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 7311 7312 if (str != NULL) 7313 (void) strcpy(new, str); 7314 7315 return (new); 7316 } 7317 7318 #define DTRACE_ISALPHA(c) \ 7319 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 7320 7321 static int 7322 dtrace_badname(const char *s) 7323 { 7324 char c; 7325 7326 if (s == NULL || (c = *s++) == '\0') 7327 return (0); 7328 7329 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 7330 return (1); 7331 7332 while ((c = *s++) != '\0') { 7333 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 7334 c != '-' && c != '_' && c != '.' && c != '`') 7335 return (1); 7336 } 7337 7338 return (0); 7339 } 7340 7341 static void 7342 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 7343 { 7344 uint32_t priv; 7345 7346 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 7347 /* 7348 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 7349 */ 7350 priv = DTRACE_PRIV_ALL; 7351 } else { 7352 *uidp = crgetuid(cr); 7353 *zoneidp = crgetzonedid(cr); 7354 7355 priv = 0; 7356 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 7357 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 7358 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 7359 priv |= DTRACE_PRIV_USER; 7360 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 7361 priv |= DTRACE_PRIV_PROC; 7362 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 7363 priv |= DTRACE_PRIV_OWNER; 7364 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 7365 priv |= DTRACE_PRIV_ZONEOWNER; 7366 } 7367 7368 *privp = priv; 7369 } 7370 7371 #ifdef DTRACE_ERRDEBUG 7372 static void 7373 dtrace_errdebug(const char *str) 7374 { 7375 int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ; 7376 int occupied = 0; 7377 7378 mutex_enter(&dtrace_errlock); 7379 dtrace_errlast = str; 7380 dtrace_errthread = curthread; 7381 7382 while (occupied++ < DTRACE_ERRHASHSZ) { 7383 if (dtrace_errhash[hval].dter_msg == str) { 7384 dtrace_errhash[hval].dter_count++; 7385 goto out; 7386 } 7387 7388 if (dtrace_errhash[hval].dter_msg != NULL) { 7389 hval = (hval + 1) % DTRACE_ERRHASHSZ; 7390 continue; 7391 } 7392 7393 dtrace_errhash[hval].dter_msg = str; 7394 dtrace_errhash[hval].dter_count = 1; 7395 goto out; 7396 } 7397 7398 panic("dtrace: undersized error hash"); 7399 out: 7400 mutex_exit(&dtrace_errlock); 7401 } 7402 #endif 7403 7404 /* 7405 * DTrace Matching Functions 7406 * 7407 * These functions are used to match groups of probes, given some elements of 7408 * a probe tuple, or some globbed expressions for elements of a probe tuple. 7409 */ 7410 static int 7411 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 7412 zoneid_t zoneid) 7413 { 7414 if (priv != DTRACE_PRIV_ALL) { 7415 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 7416 uint32_t match = priv & ppriv; 7417 7418 /* 7419 * No PRIV_DTRACE_* privileges... 7420 */ 7421 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 7422 DTRACE_PRIV_KERNEL)) == 0) 7423 return (0); 7424 7425 /* 7426 * No matching bits, but there were bits to match... 7427 */ 7428 if (match == 0 && ppriv != 0) 7429 return (0); 7430 7431 /* 7432 * Need to have permissions to the process, but don't... 7433 */ 7434 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 7435 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 7436 return (0); 7437 } 7438 7439 /* 7440 * Need to be in the same zone unless we possess the 7441 * privilege to examine all zones. 7442 */ 7443 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 7444 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 7445 return (0); 7446 } 7447 } 7448 7449 return (1); 7450 } 7451 7452 /* 7453 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 7454 * consists of input pattern strings and an ops-vector to evaluate them. 7455 * This function returns >0 for match, 0 for no match, and <0 for error. 7456 */ 7457 static int 7458 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 7459 uint32_t priv, uid_t uid, zoneid_t zoneid) 7460 { 7461 dtrace_provider_t *pvp = prp->dtpr_provider; 7462 int rv; 7463 7464 if (pvp->dtpv_defunct) 7465 return (0); 7466 7467 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 7468 return (rv); 7469 7470 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 7471 return (rv); 7472 7473 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 7474 return (rv); 7475 7476 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 7477 return (rv); 7478 7479 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 7480 return (0); 7481 7482 return (rv); 7483 } 7484 7485 /* 7486 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 7487 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 7488 * libc's version, the kernel version only applies to 8-bit ASCII strings. 7489 * In addition, all of the recursion cases except for '*' matching have been 7490 * unwound. For '*', we still implement recursive evaluation, but a depth 7491 * counter is maintained and matching is aborted if we recurse too deep. 7492 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 7493 */ 7494 static int 7495 dtrace_match_glob(const char *s, const char *p, int depth) 7496 { 7497 const char *olds; 7498 char s1, c; 7499 int gs; 7500 7501 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 7502 return (-1); 7503 7504 if (s == NULL) 7505 s = ""; /* treat NULL as empty string */ 7506 7507 top: 7508 olds = s; 7509 s1 = *s++; 7510 7511 if (p == NULL) 7512 return (0); 7513 7514 if ((c = *p++) == '\0') 7515 return (s1 == '\0'); 7516 7517 switch (c) { 7518 case '[': { 7519 int ok = 0, notflag = 0; 7520 char lc = '\0'; 7521 7522 if (s1 == '\0') 7523 return (0); 7524 7525 if (*p == '!') { 7526 notflag = 1; 7527 p++; 7528 } 7529 7530 if ((c = *p++) == '\0') 7531 return (0); 7532 7533 do { 7534 if (c == '-' && lc != '\0' && *p != ']') { 7535 if ((c = *p++) == '\0') 7536 return (0); 7537 if (c == '\\' && (c = *p++) == '\0') 7538 return (0); 7539 7540 if (notflag) { 7541 if (s1 < lc || s1 > c) 7542 ok++; 7543 else 7544 return (0); 7545 } else if (lc <= s1 && s1 <= c) 7546 ok++; 7547 7548 } else if (c == '\\' && (c = *p++) == '\0') 7549 return (0); 7550 7551 lc = c; /* save left-hand 'c' for next iteration */ 7552 7553 if (notflag) { 7554 if (s1 != c) 7555 ok++; 7556 else 7557 return (0); 7558 } else if (s1 == c) 7559 ok++; 7560 7561 if ((c = *p++) == '\0') 7562 return (0); 7563 7564 } while (c != ']'); 7565 7566 if (ok) 7567 goto top; 7568 7569 return (0); 7570 } 7571 7572 case '\\': 7573 if ((c = *p++) == '\0') 7574 return (0); 7575 /*FALLTHRU*/ 7576 7577 default: 7578 if (c != s1) 7579 return (0); 7580 /*FALLTHRU*/ 7581 7582 case '?': 7583 if (s1 != '\0') 7584 goto top; 7585 return (0); 7586 7587 case '*': 7588 while (*p == '*') 7589 p++; /* consecutive *'s are identical to a single one */ 7590 7591 if (*p == '\0') 7592 return (1); 7593 7594 for (s = olds; *s != '\0'; s++) { 7595 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 7596 return (gs); 7597 } 7598 7599 return (0); 7600 } 7601 } 7602 7603 /*ARGSUSED*/ 7604 static int 7605 dtrace_match_string(const char *s, const char *p, int depth) 7606 { 7607 return (s != NULL && strcmp(s, p) == 0); 7608 } 7609 7610 /*ARGSUSED*/ 7611 static int 7612 dtrace_match_nul(const char *s, const char *p, int depth) 7613 { 7614 return (1); /* always match the empty pattern */ 7615 } 7616 7617 /*ARGSUSED*/ 7618 static int 7619 dtrace_match_nonzero(const char *s, const char *p, int depth) 7620 { 7621 return (s != NULL && s[0] != '\0'); 7622 } 7623 7624 static int 7625 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 7626 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 7627 { 7628 dtrace_probe_t template, *probe; 7629 dtrace_hash_t *hash = NULL; 7630 int len, rc, best = INT_MAX, nmatched = 0; 7631 dtrace_id_t i; 7632 7633 ASSERT(MUTEX_HELD(&dtrace_lock)); 7634 7635 /* 7636 * If the probe ID is specified in the key, just lookup by ID and 7637 * invoke the match callback once if a matching probe is found. 7638 */ 7639 if (pkp->dtpk_id != DTRACE_IDNONE) { 7640 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 7641 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 7642 if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL) 7643 return (DTRACE_MATCH_FAIL); 7644 nmatched++; 7645 } 7646 return (nmatched); 7647 } 7648 7649 template.dtpr_mod = (char *)pkp->dtpk_mod; 7650 template.dtpr_func = (char *)pkp->dtpk_func; 7651 template.dtpr_name = (char *)pkp->dtpk_name; 7652 7653 /* 7654 * We want to find the most distinct of the module name, function 7655 * name, and name. So for each one that is not a glob pattern or 7656 * empty string, we perform a lookup in the corresponding hash and 7657 * use the hash table with the fewest collisions to do our search. 7658 */ 7659 if (pkp->dtpk_mmatch == &dtrace_match_string && 7660 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 7661 best = len; 7662 hash = dtrace_bymod; 7663 } 7664 7665 if (pkp->dtpk_fmatch == &dtrace_match_string && 7666 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 7667 best = len; 7668 hash = dtrace_byfunc; 7669 } 7670 7671 if (pkp->dtpk_nmatch == &dtrace_match_string && 7672 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 7673 best = len; 7674 hash = dtrace_byname; 7675 } 7676 7677 /* 7678 * If we did not select a hash table, iterate over every probe and 7679 * invoke our callback for each one that matches our input probe key. 7680 */ 7681 if (hash == NULL) { 7682 for (i = 0; i < dtrace_nprobes; i++) { 7683 if ((probe = dtrace_probes[i]) == NULL || 7684 dtrace_match_probe(probe, pkp, priv, uid, 7685 zoneid) <= 0) 7686 continue; 7687 7688 nmatched++; 7689 7690 if ((rc = (*matched)(probe, arg)) != 7691 DTRACE_MATCH_NEXT) { 7692 if (rc == DTRACE_MATCH_FAIL) 7693 return (DTRACE_MATCH_FAIL); 7694 break; 7695 } 7696 } 7697 7698 return (nmatched); 7699 } 7700 7701 /* 7702 * If we selected a hash table, iterate over each probe of the same key 7703 * name and invoke the callback for every probe that matches the other 7704 * attributes of our input probe key. 7705 */ 7706 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 7707 probe = *(DTRACE_HASHNEXT(hash, probe))) { 7708 7709 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 7710 continue; 7711 7712 nmatched++; 7713 7714 if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) { 7715 if (rc == DTRACE_MATCH_FAIL) 7716 return (DTRACE_MATCH_FAIL); 7717 break; 7718 } 7719 } 7720 7721 return (nmatched); 7722 } 7723 7724 /* 7725 * Return the function pointer dtrace_probecmp() should use to compare the 7726 * specified pattern with a string. For NULL or empty patterns, we select 7727 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 7728 * For non-empty non-glob strings, we use dtrace_match_string(). 7729 */ 7730 static dtrace_probekey_f * 7731 dtrace_probekey_func(const char *p) 7732 { 7733 char c; 7734 7735 if (p == NULL || *p == '\0') 7736 return (&dtrace_match_nul); 7737 7738 while ((c = *p++) != '\0') { 7739 if (c == '[' || c == '?' || c == '*' || c == '\\') 7740 return (&dtrace_match_glob); 7741 } 7742 7743 return (&dtrace_match_string); 7744 } 7745 7746 /* 7747 * Build a probe comparison key for use with dtrace_match_probe() from the 7748 * given probe description. By convention, a null key only matches anchored 7749 * probes: if each field is the empty string, reset dtpk_fmatch to 7750 * dtrace_match_nonzero(). 7751 */ 7752 static void 7753 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 7754 { 7755 pkp->dtpk_prov = pdp->dtpd_provider; 7756 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 7757 7758 pkp->dtpk_mod = pdp->dtpd_mod; 7759 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 7760 7761 pkp->dtpk_func = pdp->dtpd_func; 7762 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 7763 7764 pkp->dtpk_name = pdp->dtpd_name; 7765 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 7766 7767 pkp->dtpk_id = pdp->dtpd_id; 7768 7769 if (pkp->dtpk_id == DTRACE_IDNONE && 7770 pkp->dtpk_pmatch == &dtrace_match_nul && 7771 pkp->dtpk_mmatch == &dtrace_match_nul && 7772 pkp->dtpk_fmatch == &dtrace_match_nul && 7773 pkp->dtpk_nmatch == &dtrace_match_nul) 7774 pkp->dtpk_fmatch = &dtrace_match_nonzero; 7775 } 7776 7777 /* 7778 * DTrace Provider-to-Framework API Functions 7779 * 7780 * These functions implement much of the Provider-to-Framework API, as 7781 * described in <sys/dtrace.h>. The parts of the API not in this section are 7782 * the functions in the API for probe management (found below), and 7783 * dtrace_probe() itself (found above). 7784 */ 7785 7786 /* 7787 * Register the calling provider with the DTrace framework. This should 7788 * generally be called by DTrace providers in their attach(9E) entry point. 7789 */ 7790 int 7791 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 7792 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 7793 { 7794 dtrace_provider_t *provider; 7795 7796 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 7797 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7798 "arguments", name ? name : "<NULL>"); 7799 return (EINVAL); 7800 } 7801 7802 if (name[0] == '\0' || dtrace_badname(name)) { 7803 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7804 "provider name", name); 7805 return (EINVAL); 7806 } 7807 7808 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 7809 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 7810 pops->dtps_destroy == NULL || 7811 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 7812 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7813 "provider ops", name); 7814 return (EINVAL); 7815 } 7816 7817 if (dtrace_badattr(&pap->dtpa_provider) || 7818 dtrace_badattr(&pap->dtpa_mod) || 7819 dtrace_badattr(&pap->dtpa_func) || 7820 dtrace_badattr(&pap->dtpa_name) || 7821 dtrace_badattr(&pap->dtpa_args)) { 7822 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7823 "provider attributes", name); 7824 return (EINVAL); 7825 } 7826 7827 if (priv & ~DTRACE_PRIV_ALL) { 7828 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7829 "privilege attributes", name); 7830 return (EINVAL); 7831 } 7832 7833 if ((priv & DTRACE_PRIV_KERNEL) && 7834 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 7835 pops->dtps_mode == NULL) { 7836 cmn_err(CE_WARN, "failed to register provider '%s': need " 7837 "dtps_mode() op for given privilege attributes", name); 7838 return (EINVAL); 7839 } 7840 7841 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 7842 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 7843 (void) strcpy(provider->dtpv_name, name); 7844 7845 provider->dtpv_attr = *pap; 7846 provider->dtpv_priv.dtpp_flags = priv; 7847 if (cr != NULL) { 7848 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 7849 provider->dtpv_priv.dtpp_zoneid = crgetzonedid(cr); 7850 } 7851 provider->dtpv_pops = *pops; 7852 7853 if (pops->dtps_provide == NULL) { 7854 ASSERT(pops->dtps_provide_module != NULL); 7855 provider->dtpv_pops.dtps_provide = 7856 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop; 7857 } 7858 7859 if (pops->dtps_provide_module == NULL) { 7860 ASSERT(pops->dtps_provide != NULL); 7861 provider->dtpv_pops.dtps_provide_module = 7862 (void (*)(void *, struct modctl *))dtrace_nullop; 7863 } 7864 7865 if (pops->dtps_suspend == NULL) { 7866 ASSERT(pops->dtps_resume == NULL); 7867 provider->dtpv_pops.dtps_suspend = 7868 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 7869 provider->dtpv_pops.dtps_resume = 7870 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 7871 } 7872 7873 provider->dtpv_arg = arg; 7874 *idp = (dtrace_provider_id_t)provider; 7875 7876 if (pops == &dtrace_provider_ops) { 7877 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 7878 ASSERT(MUTEX_HELD(&dtrace_lock)); 7879 ASSERT(dtrace_anon.dta_enabling == NULL); 7880 7881 /* 7882 * We make sure that the DTrace provider is at the head of 7883 * the provider chain. 7884 */ 7885 provider->dtpv_next = dtrace_provider; 7886 dtrace_provider = provider; 7887 return (0); 7888 } 7889 7890 mutex_enter(&dtrace_provider_lock); 7891 mutex_enter(&dtrace_lock); 7892 7893 /* 7894 * If there is at least one provider registered, we'll add this 7895 * provider after the first provider. 7896 */ 7897 if (dtrace_provider != NULL) { 7898 provider->dtpv_next = dtrace_provider->dtpv_next; 7899 dtrace_provider->dtpv_next = provider; 7900 } else { 7901 dtrace_provider = provider; 7902 } 7903 7904 if (dtrace_retained != NULL) { 7905 dtrace_enabling_provide(provider); 7906 7907 /* 7908 * Now we need to call dtrace_enabling_matchall() -- which 7909 * will acquire cpu_lock and dtrace_lock. We therefore need 7910 * to drop all of our locks before calling into it... 7911 */ 7912 mutex_exit(&dtrace_lock); 7913 mutex_exit(&dtrace_provider_lock); 7914 dtrace_enabling_matchall(); 7915 7916 return (0); 7917 } 7918 7919 mutex_exit(&dtrace_lock); 7920 mutex_exit(&dtrace_provider_lock); 7921 7922 return (0); 7923 } 7924 7925 /* 7926 * Unregister the specified provider from the DTrace framework. This should 7927 * generally be called by DTrace providers in their detach(9E) entry point. 7928 */ 7929 int 7930 dtrace_unregister(dtrace_provider_id_t id) 7931 { 7932 dtrace_provider_t *old = (dtrace_provider_t *)id; 7933 dtrace_provider_t *prev = NULL; 7934 int i, self = 0, noreap = 0; 7935 dtrace_probe_t *probe, *first = NULL; 7936 7937 if (old->dtpv_pops.dtps_enable == 7938 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) { 7939 /* 7940 * If DTrace itself is the provider, we're called with locks 7941 * already held. 7942 */ 7943 ASSERT(old == dtrace_provider); 7944 ASSERT(dtrace_devi != NULL); 7945 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 7946 ASSERT(MUTEX_HELD(&dtrace_lock)); 7947 self = 1; 7948 7949 if (dtrace_provider->dtpv_next != NULL) { 7950 /* 7951 * There's another provider here; return failure. 7952 */ 7953 return (EBUSY); 7954 } 7955 } else { 7956 mutex_enter(&dtrace_provider_lock); 7957 mutex_enter(&mod_lock); 7958 mutex_enter(&dtrace_lock); 7959 } 7960 7961 /* 7962 * If anyone has /dev/dtrace open, or if there are anonymous enabled 7963 * probes, we refuse to let providers slither away, unless this 7964 * provider has already been explicitly invalidated. 7965 */ 7966 if (!old->dtpv_defunct && 7967 (dtrace_opens || (dtrace_anon.dta_state != NULL && 7968 dtrace_anon.dta_state->dts_necbs > 0))) { 7969 if (!self) { 7970 mutex_exit(&dtrace_lock); 7971 mutex_exit(&mod_lock); 7972 mutex_exit(&dtrace_provider_lock); 7973 } 7974 return (EBUSY); 7975 } 7976 7977 /* 7978 * Attempt to destroy the probes associated with this provider. 7979 */ 7980 for (i = 0; i < dtrace_nprobes; i++) { 7981 if ((probe = dtrace_probes[i]) == NULL) 7982 continue; 7983 7984 if (probe->dtpr_provider != old) 7985 continue; 7986 7987 if (probe->dtpr_ecb == NULL) 7988 continue; 7989 7990 /* 7991 * If we are trying to unregister a defunct provider, and the 7992 * provider was made defunct within the interval dictated by 7993 * dtrace_unregister_defunct_reap, we'll (asynchronously) 7994 * attempt to reap our enablings. To denote that the provider 7995 * should reattempt to unregister itself at some point in the 7996 * future, we will return a differentiable error code (EAGAIN 7997 * instead of EBUSY) in this case. 7998 */ 7999 if (dtrace_gethrtime() - old->dtpv_defunct > 8000 dtrace_unregister_defunct_reap) 8001 noreap = 1; 8002 8003 if (!self) { 8004 mutex_exit(&dtrace_lock); 8005 mutex_exit(&mod_lock); 8006 mutex_exit(&dtrace_provider_lock); 8007 } 8008 8009 if (noreap) 8010 return (EBUSY); 8011 8012 (void) taskq_dispatch(dtrace_taskq, 8013 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP); 8014 8015 return (EAGAIN); 8016 } 8017 8018 /* 8019 * All of the probes for this provider are disabled; we can safely 8020 * remove all of them from their hash chains and from the probe array. 8021 */ 8022 for (i = 0; i < dtrace_nprobes; i++) { 8023 if ((probe = dtrace_probes[i]) == NULL) 8024 continue; 8025 8026 if (probe->dtpr_provider != old) 8027 continue; 8028 8029 dtrace_probes[i] = NULL; 8030 8031 dtrace_hash_remove(dtrace_bymod, probe); 8032 dtrace_hash_remove(dtrace_byfunc, probe); 8033 dtrace_hash_remove(dtrace_byname, probe); 8034 8035 if (first == NULL) { 8036 first = probe; 8037 probe->dtpr_nextmod = NULL; 8038 } else { 8039 probe->dtpr_nextmod = first; 8040 first = probe; 8041 } 8042 } 8043 8044 /* 8045 * The provider's probes have been removed from the hash chains and 8046 * from the probe array. Now issue a dtrace_sync() to be sure that 8047 * everyone has cleared out from any probe array processing. 8048 */ 8049 dtrace_sync(); 8050 8051 for (probe = first; probe != NULL; probe = first) { 8052 first = probe->dtpr_nextmod; 8053 8054 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 8055 probe->dtpr_arg); 8056 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 8057 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 8058 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 8059 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 8060 kmem_free(probe, sizeof (dtrace_probe_t)); 8061 } 8062 8063 if ((prev = dtrace_provider) == old) { 8064 ASSERT(self || dtrace_devi == NULL); 8065 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 8066 dtrace_provider = old->dtpv_next; 8067 } else { 8068 while (prev != NULL && prev->dtpv_next != old) 8069 prev = prev->dtpv_next; 8070 8071 if (prev == NULL) { 8072 panic("attempt to unregister non-existent " 8073 "dtrace provider %p\n", (void *)id); 8074 } 8075 8076 prev->dtpv_next = old->dtpv_next; 8077 } 8078 8079 if (!self) { 8080 mutex_exit(&dtrace_lock); 8081 mutex_exit(&mod_lock); 8082 mutex_exit(&dtrace_provider_lock); 8083 } 8084 8085 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 8086 kmem_free(old, sizeof (dtrace_provider_t)); 8087 8088 return (0); 8089 } 8090 8091 /* 8092 * Invalidate the specified provider. All subsequent probe lookups for the 8093 * specified provider will fail, but its probes will not be removed. 8094 */ 8095 void 8096 dtrace_invalidate(dtrace_provider_id_t id) 8097 { 8098 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 8099 8100 ASSERT(pvp->dtpv_pops.dtps_enable != 8101 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); 8102 8103 mutex_enter(&dtrace_provider_lock); 8104 mutex_enter(&dtrace_lock); 8105 8106 pvp->dtpv_defunct = dtrace_gethrtime(); 8107 8108 mutex_exit(&dtrace_lock); 8109 mutex_exit(&dtrace_provider_lock); 8110 } 8111 8112 /* 8113 * Indicate whether or not DTrace has attached. 8114 */ 8115 int 8116 dtrace_attached(void) 8117 { 8118 /* 8119 * dtrace_provider will be non-NULL iff the DTrace driver has 8120 * attached. (It's non-NULL because DTrace is always itself a 8121 * provider.) 8122 */ 8123 return (dtrace_provider != NULL); 8124 } 8125 8126 /* 8127 * Remove all the unenabled probes for the given provider. This function is 8128 * not unlike dtrace_unregister(), except that it doesn't remove the provider 8129 * -- just as many of its associated probes as it can. 8130 */ 8131 int 8132 dtrace_condense(dtrace_provider_id_t id) 8133 { 8134 dtrace_provider_t *prov = (dtrace_provider_t *)id; 8135 int i; 8136 dtrace_probe_t *probe; 8137 8138 /* 8139 * Make sure this isn't the dtrace provider itself. 8140 */ 8141 ASSERT(prov->dtpv_pops.dtps_enable != 8142 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); 8143 8144 mutex_enter(&dtrace_provider_lock); 8145 mutex_enter(&dtrace_lock); 8146 8147 /* 8148 * Attempt to destroy the probes associated with this provider. 8149 */ 8150 for (i = 0; i < dtrace_nprobes; i++) { 8151 if ((probe = dtrace_probes[i]) == NULL) 8152 continue; 8153 8154 if (probe->dtpr_provider != prov) 8155 continue; 8156 8157 if (probe->dtpr_ecb != NULL) 8158 continue; 8159 8160 dtrace_probes[i] = NULL; 8161 8162 dtrace_hash_remove(dtrace_bymod, probe); 8163 dtrace_hash_remove(dtrace_byfunc, probe); 8164 dtrace_hash_remove(dtrace_byname, probe); 8165 8166 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 8167 probe->dtpr_arg); 8168 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 8169 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 8170 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 8171 kmem_free(probe, sizeof (dtrace_probe_t)); 8172 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 8173 } 8174 8175 mutex_exit(&dtrace_lock); 8176 mutex_exit(&dtrace_provider_lock); 8177 8178 return (0); 8179 } 8180 8181 /* 8182 * DTrace Probe Management Functions 8183 * 8184 * The functions in this section perform the DTrace probe management, 8185 * including functions to create probes, look-up probes, and call into the 8186 * providers to request that probes be provided. Some of these functions are 8187 * in the Provider-to-Framework API; these functions can be identified by the 8188 * fact that they are not declared "static". 8189 */ 8190 8191 /* 8192 * Create a probe with the specified module name, function name, and name. 8193 */ 8194 dtrace_id_t 8195 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 8196 const char *func, const char *name, int aframes, void *arg) 8197 { 8198 dtrace_probe_t *probe, **probes; 8199 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 8200 dtrace_id_t id; 8201 8202 if (provider == dtrace_provider) { 8203 ASSERT(MUTEX_HELD(&dtrace_lock)); 8204 } else { 8205 mutex_enter(&dtrace_lock); 8206 } 8207 8208 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 8209 VM_BESTFIT | VM_SLEEP); 8210 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 8211 8212 probe->dtpr_id = id; 8213 probe->dtpr_gen = dtrace_probegen++; 8214 probe->dtpr_mod = dtrace_strdup(mod); 8215 probe->dtpr_func = dtrace_strdup(func); 8216 probe->dtpr_name = dtrace_strdup(name); 8217 probe->dtpr_arg = arg; 8218 probe->dtpr_aframes = aframes; 8219 probe->dtpr_provider = provider; 8220 8221 dtrace_hash_add(dtrace_bymod, probe); 8222 dtrace_hash_add(dtrace_byfunc, probe); 8223 dtrace_hash_add(dtrace_byname, probe); 8224 8225 if (id - 1 >= dtrace_nprobes) { 8226 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 8227 size_t nsize = osize << 1; 8228 8229 if (nsize == 0) { 8230 ASSERT(osize == 0); 8231 ASSERT(dtrace_probes == NULL); 8232 nsize = sizeof (dtrace_probe_t *); 8233 } 8234 8235 probes = kmem_zalloc(nsize, KM_SLEEP); 8236 8237 if (dtrace_probes == NULL) { 8238 ASSERT(osize == 0); 8239 dtrace_probes = probes; 8240 dtrace_nprobes = 1; 8241 } else { 8242 dtrace_probe_t **oprobes = dtrace_probes; 8243 8244 bcopy(oprobes, probes, osize); 8245 dtrace_membar_producer(); 8246 dtrace_probes = probes; 8247 8248 dtrace_sync(); 8249 8250 /* 8251 * All CPUs are now seeing the new probes array; we can 8252 * safely free the old array. 8253 */ 8254 kmem_free(oprobes, osize); 8255 dtrace_nprobes <<= 1; 8256 } 8257 8258 ASSERT(id - 1 < dtrace_nprobes); 8259 } 8260 8261 ASSERT(dtrace_probes[id - 1] == NULL); 8262 dtrace_probes[id - 1] = probe; 8263 8264 if (provider != dtrace_provider) 8265 mutex_exit(&dtrace_lock); 8266 8267 return (id); 8268 } 8269 8270 static dtrace_probe_t * 8271 dtrace_probe_lookup_id(dtrace_id_t id) 8272 { 8273 ASSERT(MUTEX_HELD(&dtrace_lock)); 8274 8275 if (id == 0 || id > dtrace_nprobes) 8276 return (NULL); 8277 8278 return (dtrace_probes[id - 1]); 8279 } 8280 8281 static int 8282 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 8283 { 8284 *((dtrace_id_t *)arg) = probe->dtpr_id; 8285 8286 return (DTRACE_MATCH_DONE); 8287 } 8288 8289 /* 8290 * Look up a probe based on provider and one or more of module name, function 8291 * name and probe name. 8292 */ 8293 dtrace_id_t 8294 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod, 8295 const char *func, const char *name) 8296 { 8297 dtrace_probekey_t pkey; 8298 dtrace_id_t id; 8299 int match; 8300 8301 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 8302 pkey.dtpk_pmatch = &dtrace_match_string; 8303 pkey.dtpk_mod = mod; 8304 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 8305 pkey.dtpk_func = func; 8306 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 8307 pkey.dtpk_name = name; 8308 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 8309 pkey.dtpk_id = DTRACE_IDNONE; 8310 8311 mutex_enter(&dtrace_lock); 8312 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 8313 dtrace_probe_lookup_match, &id); 8314 mutex_exit(&dtrace_lock); 8315 8316 ASSERT(match == 1 || match == 0); 8317 return (match ? id : 0); 8318 } 8319 8320 /* 8321 * Returns the probe argument associated with the specified probe. 8322 */ 8323 void * 8324 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 8325 { 8326 dtrace_probe_t *probe; 8327 void *rval = NULL; 8328 8329 mutex_enter(&dtrace_lock); 8330 8331 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 8332 probe->dtpr_provider == (dtrace_provider_t *)id) 8333 rval = probe->dtpr_arg; 8334 8335 mutex_exit(&dtrace_lock); 8336 8337 return (rval); 8338 } 8339 8340 /* 8341 * Copy a probe into a probe description. 8342 */ 8343 static void 8344 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 8345 { 8346 bzero(pdp, sizeof (dtrace_probedesc_t)); 8347 pdp->dtpd_id = prp->dtpr_id; 8348 8349 (void) strncpy(pdp->dtpd_provider, 8350 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 8351 8352 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 8353 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 8354 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 8355 } 8356 8357 /* 8358 * Called to indicate that a probe -- or probes -- should be provided by a 8359 * specfied provider. If the specified description is NULL, the provider will 8360 * be told to provide all of its probes. (This is done whenever a new 8361 * consumer comes along, or whenever a retained enabling is to be matched.) If 8362 * the specified description is non-NULL, the provider is given the 8363 * opportunity to dynamically provide the specified probe, allowing providers 8364 * to support the creation of probes on-the-fly. (So-called _autocreated_ 8365 * probes.) If the provider is NULL, the operations will be applied to all 8366 * providers; if the provider is non-NULL the operations will only be applied 8367 * to the specified provider. The dtrace_provider_lock must be held, and the 8368 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 8369 * will need to grab the dtrace_lock when it reenters the framework through 8370 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 8371 */ 8372 static void 8373 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 8374 { 8375 struct modctl *ctl; 8376 int all = 0; 8377 8378 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8379 8380 if (prv == NULL) { 8381 all = 1; 8382 prv = dtrace_provider; 8383 } 8384 8385 do { 8386 /* 8387 * First, call the blanket provide operation. 8388 */ 8389 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 8390 8391 /* 8392 * Now call the per-module provide operation. We will grab 8393 * mod_lock to prevent the list from being modified. Note 8394 * that this also prevents the mod_busy bits from changing. 8395 * (mod_busy can only be changed with mod_lock held.) 8396 */ 8397 mutex_enter(&mod_lock); 8398 8399 ctl = &modules; 8400 do { 8401 if (ctl->mod_busy || ctl->mod_mp == NULL) 8402 continue; 8403 8404 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 8405 8406 } while ((ctl = ctl->mod_next) != &modules); 8407 8408 mutex_exit(&mod_lock); 8409 } while (all && (prv = prv->dtpv_next) != NULL); 8410 } 8411 8412 /* 8413 * Iterate over each probe, and call the Framework-to-Provider API function 8414 * denoted by offs. 8415 */ 8416 static void 8417 dtrace_probe_foreach(uintptr_t offs) 8418 { 8419 dtrace_provider_t *prov; 8420 void (*func)(void *, dtrace_id_t, void *); 8421 dtrace_probe_t *probe; 8422 dtrace_icookie_t cookie; 8423 int i; 8424 8425 /* 8426 * We disable interrupts to walk through the probe array. This is 8427 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 8428 * won't see stale data. 8429 */ 8430 cookie = dtrace_interrupt_disable(); 8431 8432 for (i = 0; i < dtrace_nprobes; i++) { 8433 if ((probe = dtrace_probes[i]) == NULL) 8434 continue; 8435 8436 if (probe->dtpr_ecb == NULL) { 8437 /* 8438 * This probe isn't enabled -- don't call the function. 8439 */ 8440 continue; 8441 } 8442 8443 prov = probe->dtpr_provider; 8444 func = *((void(**)(void *, dtrace_id_t, void *)) 8445 ((uintptr_t)&prov->dtpv_pops + offs)); 8446 8447 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 8448 } 8449 8450 dtrace_interrupt_enable(cookie); 8451 } 8452 8453 static int 8454 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 8455 { 8456 dtrace_probekey_t pkey; 8457 uint32_t priv; 8458 uid_t uid; 8459 zoneid_t zoneid; 8460 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 8461 8462 ASSERT(MUTEX_HELD(&dtrace_lock)); 8463 dtrace_ecb_create_cache = NULL; 8464 8465 if (desc == NULL) { 8466 /* 8467 * If we're passed a NULL description, we're being asked to 8468 * create an ECB with a NULL probe. 8469 */ 8470 (void) dtrace_ecb_create_enable(NULL, enab); 8471 return (0); 8472 } 8473 8474 dtrace_probekey(desc, &pkey); 8475 dtrace_cred2priv(state->dts_cred.dcr_cred, &priv, &uid, &zoneid); 8476 8477 if ((priv & DTRACE_PRIV_ZONEOWNER) && 8478 state->dts_options[DTRACEOPT_ZONE] != DTRACEOPT_UNSET) { 8479 /* 8480 * If we have the privilege of instrumenting all zones but we 8481 * have been told to instrument but one, we will spoof this up 8482 * depriving ourselves of DTRACE_PRIV_ZONEOWNER for purposes 8483 * of dtrace_match(). (Note that DTRACEOPT_ZONE is not for 8484 * security but rather for performance: it allows the global 8485 * zone to instrument USDT probes in a local zone without 8486 * requiring all zones to be instrumented.) 8487 */ 8488 priv &= ~DTRACE_PRIV_ZONEOWNER; 8489 zoneid = state->dts_options[DTRACEOPT_ZONE]; 8490 } 8491 8492 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 8493 enab)); 8494 } 8495 8496 /* 8497 * DTrace Helper Provider Functions 8498 */ 8499 static void 8500 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 8501 { 8502 attr->dtat_name = DOF_ATTR_NAME(dofattr); 8503 attr->dtat_data = DOF_ATTR_DATA(dofattr); 8504 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 8505 } 8506 8507 static void 8508 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 8509 const dof_provider_t *dofprov, char *strtab) 8510 { 8511 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 8512 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 8513 dofprov->dofpv_provattr); 8514 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 8515 dofprov->dofpv_modattr); 8516 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 8517 dofprov->dofpv_funcattr); 8518 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 8519 dofprov->dofpv_nameattr); 8520 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 8521 dofprov->dofpv_argsattr); 8522 } 8523 8524 static void 8525 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 8526 { 8527 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8528 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8529 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 8530 dof_provider_t *provider; 8531 dof_probe_t *probe; 8532 uint32_t *off, *enoff; 8533 uint8_t *arg; 8534 char *strtab; 8535 uint_t i, nprobes; 8536 dtrace_helper_provdesc_t dhpv; 8537 dtrace_helper_probedesc_t dhpb; 8538 dtrace_meta_t *meta = dtrace_meta_pid; 8539 dtrace_mops_t *mops = &meta->dtm_mops; 8540 void *parg; 8541 8542 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 8543 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8544 provider->dofpv_strtab * dof->dofh_secsize); 8545 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8546 provider->dofpv_probes * dof->dofh_secsize); 8547 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8548 provider->dofpv_prargs * dof->dofh_secsize); 8549 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8550 provider->dofpv_proffs * dof->dofh_secsize); 8551 8552 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 8553 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 8554 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 8555 enoff = NULL; 8556 8557 /* 8558 * See dtrace_helper_provider_validate(). 8559 */ 8560 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 8561 provider->dofpv_prenoffs != DOF_SECT_NONE) { 8562 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8563 provider->dofpv_prenoffs * dof->dofh_secsize); 8564 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 8565 } 8566 8567 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 8568 8569 /* 8570 * Create the provider. 8571 */ 8572 dtrace_dofprov2hprov(&dhpv, provider, strtab); 8573 8574 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 8575 return; 8576 8577 meta->dtm_count++; 8578 8579 /* 8580 * Create the probes. 8581 */ 8582 for (i = 0; i < nprobes; i++) { 8583 probe = (dof_probe_t *)(uintptr_t)(daddr + 8584 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 8585 8586 dhpb.dthpb_mod = dhp->dofhp_mod; 8587 dhpb.dthpb_func = strtab + probe->dofpr_func; 8588 dhpb.dthpb_name = strtab + probe->dofpr_name; 8589 dhpb.dthpb_base = probe->dofpr_addr; 8590 dhpb.dthpb_offs = off + probe->dofpr_offidx; 8591 dhpb.dthpb_noffs = probe->dofpr_noffs; 8592 if (enoff != NULL) { 8593 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 8594 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 8595 } else { 8596 dhpb.dthpb_enoffs = NULL; 8597 dhpb.dthpb_nenoffs = 0; 8598 } 8599 dhpb.dthpb_args = arg + probe->dofpr_argidx; 8600 dhpb.dthpb_nargc = probe->dofpr_nargc; 8601 dhpb.dthpb_xargc = probe->dofpr_xargc; 8602 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 8603 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 8604 8605 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 8606 } 8607 } 8608 8609 static void 8610 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 8611 { 8612 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8613 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8614 int i; 8615 8616 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 8617 8618 for (i = 0; i < dof->dofh_secnum; i++) { 8619 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 8620 dof->dofh_secoff + i * dof->dofh_secsize); 8621 8622 if (sec->dofs_type != DOF_SECT_PROVIDER) 8623 continue; 8624 8625 dtrace_helper_provide_one(dhp, sec, pid); 8626 } 8627 8628 /* 8629 * We may have just created probes, so we must now rematch against 8630 * any retained enablings. Note that this call will acquire both 8631 * cpu_lock and dtrace_lock; the fact that we are holding 8632 * dtrace_meta_lock now is what defines the ordering with respect to 8633 * these three locks. 8634 */ 8635 dtrace_enabling_matchall(); 8636 } 8637 8638 static void 8639 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 8640 { 8641 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8642 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8643 dof_sec_t *str_sec; 8644 dof_provider_t *provider; 8645 char *strtab; 8646 dtrace_helper_provdesc_t dhpv; 8647 dtrace_meta_t *meta = dtrace_meta_pid; 8648 dtrace_mops_t *mops = &meta->dtm_mops; 8649 8650 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 8651 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8652 provider->dofpv_strtab * dof->dofh_secsize); 8653 8654 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 8655 8656 /* 8657 * Create the provider. 8658 */ 8659 dtrace_dofprov2hprov(&dhpv, provider, strtab); 8660 8661 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 8662 8663 meta->dtm_count--; 8664 } 8665 8666 static void 8667 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 8668 { 8669 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8670 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8671 int i; 8672 8673 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 8674 8675 for (i = 0; i < dof->dofh_secnum; i++) { 8676 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 8677 dof->dofh_secoff + i * dof->dofh_secsize); 8678 8679 if (sec->dofs_type != DOF_SECT_PROVIDER) 8680 continue; 8681 8682 dtrace_helper_provider_remove_one(dhp, sec, pid); 8683 } 8684 } 8685 8686 /* 8687 * DTrace Meta Provider-to-Framework API Functions 8688 * 8689 * These functions implement the Meta Provider-to-Framework API, as described 8690 * in <sys/dtrace.h>. 8691 */ 8692 int 8693 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 8694 dtrace_meta_provider_id_t *idp) 8695 { 8696 dtrace_meta_t *meta; 8697 dtrace_helpers_t *help, *next; 8698 int i; 8699 8700 *idp = DTRACE_METAPROVNONE; 8701 8702 /* 8703 * We strictly don't need the name, but we hold onto it for 8704 * debuggability. All hail error queues! 8705 */ 8706 if (name == NULL) { 8707 cmn_err(CE_WARN, "failed to register meta-provider: " 8708 "invalid name"); 8709 return (EINVAL); 8710 } 8711 8712 if (mops == NULL || 8713 mops->dtms_create_probe == NULL || 8714 mops->dtms_provide_pid == NULL || 8715 mops->dtms_remove_pid == NULL) { 8716 cmn_err(CE_WARN, "failed to register meta-register %s: " 8717 "invalid ops", name); 8718 return (EINVAL); 8719 } 8720 8721 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 8722 meta->dtm_mops = *mops; 8723 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 8724 (void) strcpy(meta->dtm_name, name); 8725 meta->dtm_arg = arg; 8726 8727 mutex_enter(&dtrace_meta_lock); 8728 mutex_enter(&dtrace_lock); 8729 8730 if (dtrace_meta_pid != NULL) { 8731 mutex_exit(&dtrace_lock); 8732 mutex_exit(&dtrace_meta_lock); 8733 cmn_err(CE_WARN, "failed to register meta-register %s: " 8734 "user-land meta-provider exists", name); 8735 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 8736 kmem_free(meta, sizeof (dtrace_meta_t)); 8737 return (EINVAL); 8738 } 8739 8740 dtrace_meta_pid = meta; 8741 *idp = (dtrace_meta_provider_id_t)meta; 8742 8743 /* 8744 * If there are providers and probes ready to go, pass them 8745 * off to the new meta provider now. 8746 */ 8747 8748 help = dtrace_deferred_pid; 8749 dtrace_deferred_pid = NULL; 8750 8751 mutex_exit(&dtrace_lock); 8752 8753 while (help != NULL) { 8754 for (i = 0; i < help->dthps_nprovs; i++) { 8755 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 8756 help->dthps_pid); 8757 } 8758 8759 next = help->dthps_next; 8760 help->dthps_next = NULL; 8761 help->dthps_prev = NULL; 8762 help->dthps_deferred = 0; 8763 help = next; 8764 } 8765 8766 mutex_exit(&dtrace_meta_lock); 8767 8768 return (0); 8769 } 8770 8771 int 8772 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 8773 { 8774 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 8775 8776 mutex_enter(&dtrace_meta_lock); 8777 mutex_enter(&dtrace_lock); 8778 8779 if (old == dtrace_meta_pid) { 8780 pp = &dtrace_meta_pid; 8781 } else { 8782 panic("attempt to unregister non-existent " 8783 "dtrace meta-provider %p\n", (void *)old); 8784 } 8785 8786 if (old->dtm_count != 0) { 8787 mutex_exit(&dtrace_lock); 8788 mutex_exit(&dtrace_meta_lock); 8789 return (EBUSY); 8790 } 8791 8792 *pp = NULL; 8793 8794 mutex_exit(&dtrace_lock); 8795 mutex_exit(&dtrace_meta_lock); 8796 8797 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 8798 kmem_free(old, sizeof (dtrace_meta_t)); 8799 8800 return (0); 8801 } 8802 8803 8804 /* 8805 * DTrace DIF Object Functions 8806 */ 8807 static int 8808 dtrace_difo_err(uint_t pc, const char *format, ...) 8809 { 8810 if (dtrace_err_verbose) { 8811 va_list alist; 8812 8813 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 8814 va_start(alist, format); 8815 (void) vuprintf(format, alist); 8816 va_end(alist); 8817 } 8818 8819 #ifdef DTRACE_ERRDEBUG 8820 dtrace_errdebug(format); 8821 #endif 8822 return (1); 8823 } 8824 8825 /* 8826 * Validate a DTrace DIF object by checking the IR instructions. The following 8827 * rules are currently enforced by dtrace_difo_validate(): 8828 * 8829 * 1. Each instruction must have a valid opcode 8830 * 2. Each register, string, variable, or subroutine reference must be valid 8831 * 3. No instruction can modify register %r0 (must be zero) 8832 * 4. All instruction reserved bits must be set to zero 8833 * 5. The last instruction must be a "ret" instruction 8834 * 6. All branch targets must reference a valid instruction _after_ the branch 8835 */ 8836 static int 8837 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 8838 cred_t *cr) 8839 { 8840 int err = 0, i; 8841 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 8842 int kcheckload; 8843 uint_t pc; 8844 8845 kcheckload = cr == NULL || 8846 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 8847 8848 dp->dtdo_destructive = 0; 8849 8850 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 8851 dif_instr_t instr = dp->dtdo_buf[pc]; 8852 8853 uint_t r1 = DIF_INSTR_R1(instr); 8854 uint_t r2 = DIF_INSTR_R2(instr); 8855 uint_t rd = DIF_INSTR_RD(instr); 8856 uint_t rs = DIF_INSTR_RS(instr); 8857 uint_t label = DIF_INSTR_LABEL(instr); 8858 uint_t v = DIF_INSTR_VAR(instr); 8859 uint_t subr = DIF_INSTR_SUBR(instr); 8860 uint_t type = DIF_INSTR_TYPE(instr); 8861 uint_t op = DIF_INSTR_OP(instr); 8862 8863 switch (op) { 8864 case DIF_OP_OR: 8865 case DIF_OP_XOR: 8866 case DIF_OP_AND: 8867 case DIF_OP_SLL: 8868 case DIF_OP_SRL: 8869 case DIF_OP_SRA: 8870 case DIF_OP_SUB: 8871 case DIF_OP_ADD: 8872 case DIF_OP_MUL: 8873 case DIF_OP_SDIV: 8874 case DIF_OP_UDIV: 8875 case DIF_OP_SREM: 8876 case DIF_OP_UREM: 8877 case DIF_OP_COPYS: 8878 if (r1 >= nregs) 8879 err += efunc(pc, "invalid register %u\n", r1); 8880 if (r2 >= nregs) 8881 err += efunc(pc, "invalid register %u\n", r2); 8882 if (rd >= nregs) 8883 err += efunc(pc, "invalid register %u\n", rd); 8884 if (rd == 0) 8885 err += efunc(pc, "cannot write to %r0\n"); 8886 break; 8887 case DIF_OP_NOT: 8888 case DIF_OP_MOV: 8889 case DIF_OP_ALLOCS: 8890 if (r1 >= nregs) 8891 err += efunc(pc, "invalid register %u\n", r1); 8892 if (r2 != 0) 8893 err += efunc(pc, "non-zero reserved bits\n"); 8894 if (rd >= nregs) 8895 err += efunc(pc, "invalid register %u\n", rd); 8896 if (rd == 0) 8897 err += efunc(pc, "cannot write to %r0\n"); 8898 break; 8899 case DIF_OP_LDSB: 8900 case DIF_OP_LDSH: 8901 case DIF_OP_LDSW: 8902 case DIF_OP_LDUB: 8903 case DIF_OP_LDUH: 8904 case DIF_OP_LDUW: 8905 case DIF_OP_LDX: 8906 if (r1 >= nregs) 8907 err += efunc(pc, "invalid register %u\n", r1); 8908 if (r2 != 0) 8909 err += efunc(pc, "non-zero reserved bits\n"); 8910 if (rd >= nregs) 8911 err += efunc(pc, "invalid register %u\n", rd); 8912 if (rd == 0) 8913 err += efunc(pc, "cannot write to %r0\n"); 8914 if (kcheckload) 8915 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 8916 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 8917 break; 8918 case DIF_OP_RLDSB: 8919 case DIF_OP_RLDSH: 8920 case DIF_OP_RLDSW: 8921 case DIF_OP_RLDUB: 8922 case DIF_OP_RLDUH: 8923 case DIF_OP_RLDUW: 8924 case DIF_OP_RLDX: 8925 if (r1 >= nregs) 8926 err += efunc(pc, "invalid register %u\n", r1); 8927 if (r2 != 0) 8928 err += efunc(pc, "non-zero reserved bits\n"); 8929 if (rd >= nregs) 8930 err += efunc(pc, "invalid register %u\n", rd); 8931 if (rd == 0) 8932 err += efunc(pc, "cannot write to %r0\n"); 8933 break; 8934 case DIF_OP_ULDSB: 8935 case DIF_OP_ULDSH: 8936 case DIF_OP_ULDSW: 8937 case DIF_OP_ULDUB: 8938 case DIF_OP_ULDUH: 8939 case DIF_OP_ULDUW: 8940 case DIF_OP_ULDX: 8941 if (r1 >= nregs) 8942 err += efunc(pc, "invalid register %u\n", r1); 8943 if (r2 != 0) 8944 err += efunc(pc, "non-zero reserved bits\n"); 8945 if (rd >= nregs) 8946 err += efunc(pc, "invalid register %u\n", rd); 8947 if (rd == 0) 8948 err += efunc(pc, "cannot write to %r0\n"); 8949 break; 8950 case DIF_OP_STB: 8951 case DIF_OP_STH: 8952 case DIF_OP_STW: 8953 case DIF_OP_STX: 8954 if (r1 >= nregs) 8955 err += efunc(pc, "invalid register %u\n", r1); 8956 if (r2 != 0) 8957 err += efunc(pc, "non-zero reserved bits\n"); 8958 if (rd >= nregs) 8959 err += efunc(pc, "invalid register %u\n", rd); 8960 if (rd == 0) 8961 err += efunc(pc, "cannot write to 0 address\n"); 8962 break; 8963 case DIF_OP_CMP: 8964 case DIF_OP_SCMP: 8965 if (r1 >= nregs) 8966 err += efunc(pc, "invalid register %u\n", r1); 8967 if (r2 >= nregs) 8968 err += efunc(pc, "invalid register %u\n", r2); 8969 if (rd != 0) 8970 err += efunc(pc, "non-zero reserved bits\n"); 8971 break; 8972 case DIF_OP_TST: 8973 if (r1 >= nregs) 8974 err += efunc(pc, "invalid register %u\n", r1); 8975 if (r2 != 0 || rd != 0) 8976 err += efunc(pc, "non-zero reserved bits\n"); 8977 break; 8978 case DIF_OP_BA: 8979 case DIF_OP_BE: 8980 case DIF_OP_BNE: 8981 case DIF_OP_BG: 8982 case DIF_OP_BGU: 8983 case DIF_OP_BGE: 8984 case DIF_OP_BGEU: 8985 case DIF_OP_BL: 8986 case DIF_OP_BLU: 8987 case DIF_OP_BLE: 8988 case DIF_OP_BLEU: 8989 if (label >= dp->dtdo_len) { 8990 err += efunc(pc, "invalid branch target %u\n", 8991 label); 8992 } 8993 if (label <= pc) { 8994 err += efunc(pc, "backward branch to %u\n", 8995 label); 8996 } 8997 break; 8998 case DIF_OP_RET: 8999 if (r1 != 0 || r2 != 0) 9000 err += efunc(pc, "non-zero reserved bits\n"); 9001 if (rd >= nregs) 9002 err += efunc(pc, "invalid register %u\n", rd); 9003 break; 9004 case DIF_OP_NOP: 9005 case DIF_OP_POPTS: 9006 case DIF_OP_FLUSHTS: 9007 if (r1 != 0 || r2 != 0 || rd != 0) 9008 err += efunc(pc, "non-zero reserved bits\n"); 9009 break; 9010 case DIF_OP_SETX: 9011 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 9012 err += efunc(pc, "invalid integer ref %u\n", 9013 DIF_INSTR_INTEGER(instr)); 9014 } 9015 if (rd >= nregs) 9016 err += efunc(pc, "invalid register %u\n", rd); 9017 if (rd == 0) 9018 err += efunc(pc, "cannot write to %r0\n"); 9019 break; 9020 case DIF_OP_SETS: 9021 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 9022 err += efunc(pc, "invalid string ref %u\n", 9023 DIF_INSTR_STRING(instr)); 9024 } 9025 if (rd >= nregs) 9026 err += efunc(pc, "invalid register %u\n", rd); 9027 if (rd == 0) 9028 err += efunc(pc, "cannot write to %r0\n"); 9029 break; 9030 case DIF_OP_LDGA: 9031 case DIF_OP_LDTA: 9032 if (r1 > DIF_VAR_ARRAY_MAX) 9033 err += efunc(pc, "invalid array %u\n", r1); 9034 if (r2 >= nregs) 9035 err += efunc(pc, "invalid register %u\n", r2); 9036 if (rd >= nregs) 9037 err += efunc(pc, "invalid register %u\n", rd); 9038 if (rd == 0) 9039 err += efunc(pc, "cannot write to %r0\n"); 9040 break; 9041 case DIF_OP_LDGS: 9042 case DIF_OP_LDTS: 9043 case DIF_OP_LDLS: 9044 case DIF_OP_LDGAA: 9045 case DIF_OP_LDTAA: 9046 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 9047 err += efunc(pc, "invalid variable %u\n", v); 9048 if (rd >= nregs) 9049 err += efunc(pc, "invalid register %u\n", rd); 9050 if (rd == 0) 9051 err += efunc(pc, "cannot write to %r0\n"); 9052 break; 9053 case DIF_OP_STGS: 9054 case DIF_OP_STTS: 9055 case DIF_OP_STLS: 9056 case DIF_OP_STGAA: 9057 case DIF_OP_STTAA: 9058 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 9059 err += efunc(pc, "invalid variable %u\n", v); 9060 if (rs >= nregs) 9061 err += efunc(pc, "invalid register %u\n", rd); 9062 break; 9063 case DIF_OP_CALL: 9064 if (subr > DIF_SUBR_MAX) 9065 err += efunc(pc, "invalid subr %u\n", subr); 9066 if (rd >= nregs) 9067 err += efunc(pc, "invalid register %u\n", rd); 9068 if (rd == 0) 9069 err += efunc(pc, "cannot write to %r0\n"); 9070 9071 if (subr == DIF_SUBR_COPYOUT || 9072 subr == DIF_SUBR_COPYOUTSTR) { 9073 dp->dtdo_destructive = 1; 9074 } 9075 9076 if (subr == DIF_SUBR_GETF) { 9077 /* 9078 * If we have a getf() we need to record that 9079 * in our state. Note that our state can be 9080 * NULL if this is a helper -- but in that 9081 * case, the call to getf() is itself illegal, 9082 * and will be caught (slightly later) when 9083 * the helper is validated. 9084 */ 9085 if (vstate->dtvs_state != NULL) 9086 vstate->dtvs_state->dts_getf++; 9087 } 9088 9089 break; 9090 case DIF_OP_PUSHTR: 9091 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 9092 err += efunc(pc, "invalid ref type %u\n", type); 9093 if (r2 >= nregs) 9094 err += efunc(pc, "invalid register %u\n", r2); 9095 if (rs >= nregs) 9096 err += efunc(pc, "invalid register %u\n", rs); 9097 break; 9098 case DIF_OP_PUSHTV: 9099 if (type != DIF_TYPE_CTF) 9100 err += efunc(pc, "invalid val type %u\n", type); 9101 if (r2 >= nregs) 9102 err += efunc(pc, "invalid register %u\n", r2); 9103 if (rs >= nregs) 9104 err += efunc(pc, "invalid register %u\n", rs); 9105 break; 9106 default: 9107 err += efunc(pc, "invalid opcode %u\n", 9108 DIF_INSTR_OP(instr)); 9109 } 9110 } 9111 9112 if (dp->dtdo_len != 0 && 9113 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 9114 err += efunc(dp->dtdo_len - 1, 9115 "expected 'ret' as last DIF instruction\n"); 9116 } 9117 9118 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) { 9119 /* 9120 * If we're not returning by reference, the size must be either 9121 * 0 or the size of one of the base types. 9122 */ 9123 switch (dp->dtdo_rtype.dtdt_size) { 9124 case 0: 9125 case sizeof (uint8_t): 9126 case sizeof (uint16_t): 9127 case sizeof (uint32_t): 9128 case sizeof (uint64_t): 9129 break; 9130 9131 default: 9132 err += efunc(dp->dtdo_len - 1, "bad return size\n"); 9133 } 9134 } 9135 9136 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 9137 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 9138 dtrace_diftype_t *vt, *et; 9139 uint_t id, ndx; 9140 9141 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 9142 v->dtdv_scope != DIFV_SCOPE_THREAD && 9143 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 9144 err += efunc(i, "unrecognized variable scope %d\n", 9145 v->dtdv_scope); 9146 break; 9147 } 9148 9149 if (v->dtdv_kind != DIFV_KIND_ARRAY && 9150 v->dtdv_kind != DIFV_KIND_SCALAR) { 9151 err += efunc(i, "unrecognized variable type %d\n", 9152 v->dtdv_kind); 9153 break; 9154 } 9155 9156 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 9157 err += efunc(i, "%d exceeds variable id limit\n", id); 9158 break; 9159 } 9160 9161 if (id < DIF_VAR_OTHER_UBASE) 9162 continue; 9163 9164 /* 9165 * For user-defined variables, we need to check that this 9166 * definition is identical to any previous definition that we 9167 * encountered. 9168 */ 9169 ndx = id - DIF_VAR_OTHER_UBASE; 9170 9171 switch (v->dtdv_scope) { 9172 case DIFV_SCOPE_GLOBAL: 9173 if (ndx < vstate->dtvs_nglobals) { 9174 dtrace_statvar_t *svar; 9175 9176 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 9177 existing = &svar->dtsv_var; 9178 } 9179 9180 break; 9181 9182 case DIFV_SCOPE_THREAD: 9183 if (ndx < vstate->dtvs_ntlocals) 9184 existing = &vstate->dtvs_tlocals[ndx]; 9185 break; 9186 9187 case DIFV_SCOPE_LOCAL: 9188 if (ndx < vstate->dtvs_nlocals) { 9189 dtrace_statvar_t *svar; 9190 9191 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 9192 existing = &svar->dtsv_var; 9193 } 9194 9195 break; 9196 } 9197 9198 vt = &v->dtdv_type; 9199 9200 if (vt->dtdt_flags & DIF_TF_BYREF) { 9201 if (vt->dtdt_size == 0) { 9202 err += efunc(i, "zero-sized variable\n"); 9203 break; 9204 } 9205 9206 if (v->dtdv_scope == DIFV_SCOPE_GLOBAL && 9207 vt->dtdt_size > dtrace_global_maxsize) { 9208 err += efunc(i, "oversized by-ref global\n"); 9209 break; 9210 } 9211 } 9212 9213 if (existing == NULL || existing->dtdv_id == 0) 9214 continue; 9215 9216 ASSERT(existing->dtdv_id == v->dtdv_id); 9217 ASSERT(existing->dtdv_scope == v->dtdv_scope); 9218 9219 if (existing->dtdv_kind != v->dtdv_kind) 9220 err += efunc(i, "%d changed variable kind\n", id); 9221 9222 et = &existing->dtdv_type; 9223 9224 if (vt->dtdt_flags != et->dtdt_flags) { 9225 err += efunc(i, "%d changed variable type flags\n", id); 9226 break; 9227 } 9228 9229 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 9230 err += efunc(i, "%d changed variable type size\n", id); 9231 break; 9232 } 9233 } 9234 9235 return (err); 9236 } 9237 9238 /* 9239 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 9240 * are much more constrained than normal DIFOs. Specifically, they may 9241 * not: 9242 * 9243 * 1. Make calls to subroutines other than copyin(), copyinstr() or 9244 * miscellaneous string routines 9245 * 2. Access DTrace variables other than the args[] array, and the 9246 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 9247 * 3. Have thread-local variables. 9248 * 4. Have dynamic variables. 9249 */ 9250 static int 9251 dtrace_difo_validate_helper(dtrace_difo_t *dp) 9252 { 9253 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 9254 int err = 0; 9255 uint_t pc; 9256 9257 for (pc = 0; pc < dp->dtdo_len; pc++) { 9258 dif_instr_t instr = dp->dtdo_buf[pc]; 9259 9260 uint_t v = DIF_INSTR_VAR(instr); 9261 uint_t subr = DIF_INSTR_SUBR(instr); 9262 uint_t op = DIF_INSTR_OP(instr); 9263 9264 switch (op) { 9265 case DIF_OP_OR: 9266 case DIF_OP_XOR: 9267 case DIF_OP_AND: 9268 case DIF_OP_SLL: 9269 case DIF_OP_SRL: 9270 case DIF_OP_SRA: 9271 case DIF_OP_SUB: 9272 case DIF_OP_ADD: 9273 case DIF_OP_MUL: 9274 case DIF_OP_SDIV: 9275 case DIF_OP_UDIV: 9276 case DIF_OP_SREM: 9277 case DIF_OP_UREM: 9278 case DIF_OP_COPYS: 9279 case DIF_OP_NOT: 9280 case DIF_OP_MOV: 9281 case DIF_OP_RLDSB: 9282 case DIF_OP_RLDSH: 9283 case DIF_OP_RLDSW: 9284 case DIF_OP_RLDUB: 9285 case DIF_OP_RLDUH: 9286 case DIF_OP_RLDUW: 9287 case DIF_OP_RLDX: 9288 case DIF_OP_ULDSB: 9289 case DIF_OP_ULDSH: 9290 case DIF_OP_ULDSW: 9291 case DIF_OP_ULDUB: 9292 case DIF_OP_ULDUH: 9293 case DIF_OP_ULDUW: 9294 case DIF_OP_ULDX: 9295 case DIF_OP_STB: 9296 case DIF_OP_STH: 9297 case DIF_OP_STW: 9298 case DIF_OP_STX: 9299 case DIF_OP_ALLOCS: 9300 case DIF_OP_CMP: 9301 case DIF_OP_SCMP: 9302 case DIF_OP_TST: 9303 case DIF_OP_BA: 9304 case DIF_OP_BE: 9305 case DIF_OP_BNE: 9306 case DIF_OP_BG: 9307 case DIF_OP_BGU: 9308 case DIF_OP_BGE: 9309 case DIF_OP_BGEU: 9310 case DIF_OP_BL: 9311 case DIF_OP_BLU: 9312 case DIF_OP_BLE: 9313 case DIF_OP_BLEU: 9314 case DIF_OP_RET: 9315 case DIF_OP_NOP: 9316 case DIF_OP_POPTS: 9317 case DIF_OP_FLUSHTS: 9318 case DIF_OP_SETX: 9319 case DIF_OP_SETS: 9320 case DIF_OP_LDGA: 9321 case DIF_OP_LDLS: 9322 case DIF_OP_STGS: 9323 case DIF_OP_STLS: 9324 case DIF_OP_PUSHTR: 9325 case DIF_OP_PUSHTV: 9326 break; 9327 9328 case DIF_OP_LDGS: 9329 if (v >= DIF_VAR_OTHER_UBASE) 9330 break; 9331 9332 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 9333 break; 9334 9335 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 9336 v == DIF_VAR_PPID || v == DIF_VAR_TID || 9337 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 9338 v == DIF_VAR_UID || v == DIF_VAR_GID) 9339 break; 9340 9341 err += efunc(pc, "illegal variable %u\n", v); 9342 break; 9343 9344 case DIF_OP_LDTA: 9345 case DIF_OP_LDTS: 9346 case DIF_OP_LDGAA: 9347 case DIF_OP_LDTAA: 9348 err += efunc(pc, "illegal dynamic variable load\n"); 9349 break; 9350 9351 case DIF_OP_STTS: 9352 case DIF_OP_STGAA: 9353 case DIF_OP_STTAA: 9354 err += efunc(pc, "illegal dynamic variable store\n"); 9355 break; 9356 9357 case DIF_OP_CALL: 9358 if (subr == DIF_SUBR_ALLOCA || 9359 subr == DIF_SUBR_BCOPY || 9360 subr == DIF_SUBR_COPYIN || 9361 subr == DIF_SUBR_COPYINTO || 9362 subr == DIF_SUBR_COPYINSTR || 9363 subr == DIF_SUBR_INDEX || 9364 subr == DIF_SUBR_INET_NTOA || 9365 subr == DIF_SUBR_INET_NTOA6 || 9366 subr == DIF_SUBR_INET_NTOP || 9367 subr == DIF_SUBR_LLTOSTR || 9368 subr == DIF_SUBR_STRTOLL || 9369 subr == DIF_SUBR_RINDEX || 9370 subr == DIF_SUBR_STRCHR || 9371 subr == DIF_SUBR_STRJOIN || 9372 subr == DIF_SUBR_STRRCHR || 9373 subr == DIF_SUBR_STRSTR || 9374 subr == DIF_SUBR_HTONS || 9375 subr == DIF_SUBR_HTONL || 9376 subr == DIF_SUBR_HTONLL || 9377 subr == DIF_SUBR_NTOHS || 9378 subr == DIF_SUBR_NTOHL || 9379 subr == DIF_SUBR_NTOHLL) 9380 break; 9381 9382 err += efunc(pc, "invalid subr %u\n", subr); 9383 break; 9384 9385 default: 9386 err += efunc(pc, "invalid opcode %u\n", 9387 DIF_INSTR_OP(instr)); 9388 } 9389 } 9390 9391 return (err); 9392 } 9393 9394 /* 9395 * Returns 1 if the expression in the DIF object can be cached on a per-thread 9396 * basis; 0 if not. 9397 */ 9398 static int 9399 dtrace_difo_cacheable(dtrace_difo_t *dp) 9400 { 9401 int i; 9402 9403 if (dp == NULL) 9404 return (0); 9405 9406 for (i = 0; i < dp->dtdo_varlen; i++) { 9407 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9408 9409 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 9410 continue; 9411 9412 switch (v->dtdv_id) { 9413 case DIF_VAR_CURTHREAD: 9414 case DIF_VAR_PID: 9415 case DIF_VAR_TID: 9416 case DIF_VAR_EXECNAME: 9417 case DIF_VAR_ZONENAME: 9418 break; 9419 9420 default: 9421 return (0); 9422 } 9423 } 9424 9425 /* 9426 * This DIF object may be cacheable. Now we need to look for any 9427 * array loading instructions, any memory loading instructions, or 9428 * any stores to thread-local variables. 9429 */ 9430 for (i = 0; i < dp->dtdo_len; i++) { 9431 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 9432 9433 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 9434 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 9435 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 9436 op == DIF_OP_LDGA || op == DIF_OP_STTS) 9437 return (0); 9438 } 9439 9440 return (1); 9441 } 9442 9443 static void 9444 dtrace_difo_hold(dtrace_difo_t *dp) 9445 { 9446 int i; 9447 9448 ASSERT(MUTEX_HELD(&dtrace_lock)); 9449 9450 dp->dtdo_refcnt++; 9451 ASSERT(dp->dtdo_refcnt != 0); 9452 9453 /* 9454 * We need to check this DIF object for references to the variable 9455 * DIF_VAR_VTIMESTAMP. 9456 */ 9457 for (i = 0; i < dp->dtdo_varlen; i++) { 9458 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9459 9460 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 9461 continue; 9462 9463 if (dtrace_vtime_references++ == 0) 9464 dtrace_vtime_enable(); 9465 } 9466 } 9467 9468 /* 9469 * This routine calculates the dynamic variable chunksize for a given DIF 9470 * object. The calculation is not fool-proof, and can probably be tricked by 9471 * malicious DIF -- but it works for all compiler-generated DIF. Because this 9472 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 9473 * if a dynamic variable size exceeds the chunksize. 9474 */ 9475 static void 9476 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9477 { 9478 uint64_t sval; 9479 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 9480 const dif_instr_t *text = dp->dtdo_buf; 9481 uint_t pc, srd = 0; 9482 uint_t ttop = 0; 9483 size_t size, ksize; 9484 uint_t id, i; 9485 9486 for (pc = 0; pc < dp->dtdo_len; pc++) { 9487 dif_instr_t instr = text[pc]; 9488 uint_t op = DIF_INSTR_OP(instr); 9489 uint_t rd = DIF_INSTR_RD(instr); 9490 uint_t r1 = DIF_INSTR_R1(instr); 9491 uint_t nkeys = 0; 9492 uchar_t scope; 9493 9494 dtrace_key_t *key = tupregs; 9495 9496 switch (op) { 9497 case DIF_OP_SETX: 9498 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 9499 srd = rd; 9500 continue; 9501 9502 case DIF_OP_STTS: 9503 key = &tupregs[DIF_DTR_NREGS]; 9504 key[0].dttk_size = 0; 9505 key[1].dttk_size = 0; 9506 nkeys = 2; 9507 scope = DIFV_SCOPE_THREAD; 9508 break; 9509 9510 case DIF_OP_STGAA: 9511 case DIF_OP_STTAA: 9512 nkeys = ttop; 9513 9514 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 9515 key[nkeys++].dttk_size = 0; 9516 9517 key[nkeys++].dttk_size = 0; 9518 9519 if (op == DIF_OP_STTAA) { 9520 scope = DIFV_SCOPE_THREAD; 9521 } else { 9522 scope = DIFV_SCOPE_GLOBAL; 9523 } 9524 9525 break; 9526 9527 case DIF_OP_PUSHTR: 9528 if (ttop == DIF_DTR_NREGS) 9529 return; 9530 9531 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 9532 /* 9533 * If the register for the size of the "pushtr" 9534 * is %r0 (or the value is 0) and the type is 9535 * a string, we'll use the system-wide default 9536 * string size. 9537 */ 9538 tupregs[ttop++].dttk_size = 9539 dtrace_strsize_default; 9540 } else { 9541 if (srd == 0) 9542 return; 9543 9544 tupregs[ttop++].dttk_size = sval; 9545 } 9546 9547 break; 9548 9549 case DIF_OP_PUSHTV: 9550 if (ttop == DIF_DTR_NREGS) 9551 return; 9552 9553 tupregs[ttop++].dttk_size = 0; 9554 break; 9555 9556 case DIF_OP_FLUSHTS: 9557 ttop = 0; 9558 break; 9559 9560 case DIF_OP_POPTS: 9561 if (ttop != 0) 9562 ttop--; 9563 break; 9564 } 9565 9566 sval = 0; 9567 srd = 0; 9568 9569 if (nkeys == 0) 9570 continue; 9571 9572 /* 9573 * We have a dynamic variable allocation; calculate its size. 9574 */ 9575 for (ksize = 0, i = 0; i < nkeys; i++) 9576 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 9577 9578 size = sizeof (dtrace_dynvar_t); 9579 size += sizeof (dtrace_key_t) * (nkeys - 1); 9580 size += ksize; 9581 9582 /* 9583 * Now we need to determine the size of the stored data. 9584 */ 9585 id = DIF_INSTR_VAR(instr); 9586 9587 for (i = 0; i < dp->dtdo_varlen; i++) { 9588 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9589 9590 if (v->dtdv_id == id && v->dtdv_scope == scope) { 9591 size += v->dtdv_type.dtdt_size; 9592 break; 9593 } 9594 } 9595 9596 if (i == dp->dtdo_varlen) 9597 return; 9598 9599 /* 9600 * We have the size. If this is larger than the chunk size 9601 * for our dynamic variable state, reset the chunk size. 9602 */ 9603 size = P2ROUNDUP(size, sizeof (uint64_t)); 9604 9605 if (size > vstate->dtvs_dynvars.dtds_chunksize) 9606 vstate->dtvs_dynvars.dtds_chunksize = size; 9607 } 9608 } 9609 9610 static void 9611 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9612 { 9613 int i, oldsvars, osz, nsz, otlocals, ntlocals; 9614 uint_t id; 9615 9616 ASSERT(MUTEX_HELD(&dtrace_lock)); 9617 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 9618 9619 for (i = 0; i < dp->dtdo_varlen; i++) { 9620 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9621 dtrace_statvar_t *svar, ***svarp; 9622 size_t dsize = 0; 9623 uint8_t scope = v->dtdv_scope; 9624 int *np; 9625 9626 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 9627 continue; 9628 9629 id -= DIF_VAR_OTHER_UBASE; 9630 9631 switch (scope) { 9632 case DIFV_SCOPE_THREAD: 9633 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 9634 dtrace_difv_t *tlocals; 9635 9636 if ((ntlocals = (otlocals << 1)) == 0) 9637 ntlocals = 1; 9638 9639 osz = otlocals * sizeof (dtrace_difv_t); 9640 nsz = ntlocals * sizeof (dtrace_difv_t); 9641 9642 tlocals = kmem_zalloc(nsz, KM_SLEEP); 9643 9644 if (osz != 0) { 9645 bcopy(vstate->dtvs_tlocals, 9646 tlocals, osz); 9647 kmem_free(vstate->dtvs_tlocals, osz); 9648 } 9649 9650 vstate->dtvs_tlocals = tlocals; 9651 vstate->dtvs_ntlocals = ntlocals; 9652 } 9653 9654 vstate->dtvs_tlocals[id] = *v; 9655 continue; 9656 9657 case DIFV_SCOPE_LOCAL: 9658 np = &vstate->dtvs_nlocals; 9659 svarp = &vstate->dtvs_locals; 9660 9661 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 9662 dsize = NCPU * (v->dtdv_type.dtdt_size + 9663 sizeof (uint64_t)); 9664 else 9665 dsize = NCPU * sizeof (uint64_t); 9666 9667 break; 9668 9669 case DIFV_SCOPE_GLOBAL: 9670 np = &vstate->dtvs_nglobals; 9671 svarp = &vstate->dtvs_globals; 9672 9673 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 9674 dsize = v->dtdv_type.dtdt_size + 9675 sizeof (uint64_t); 9676 9677 break; 9678 9679 default: 9680 ASSERT(0); 9681 } 9682 9683 while (id >= (oldsvars = *np)) { 9684 dtrace_statvar_t **statics; 9685 int newsvars, oldsize, newsize; 9686 9687 if ((newsvars = (oldsvars << 1)) == 0) 9688 newsvars = 1; 9689 9690 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 9691 newsize = newsvars * sizeof (dtrace_statvar_t *); 9692 9693 statics = kmem_zalloc(newsize, KM_SLEEP); 9694 9695 if (oldsize != 0) { 9696 bcopy(*svarp, statics, oldsize); 9697 kmem_free(*svarp, oldsize); 9698 } 9699 9700 *svarp = statics; 9701 *np = newsvars; 9702 } 9703 9704 if ((svar = (*svarp)[id]) == NULL) { 9705 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 9706 svar->dtsv_var = *v; 9707 9708 if ((svar->dtsv_size = dsize) != 0) { 9709 svar->dtsv_data = (uint64_t)(uintptr_t) 9710 kmem_zalloc(dsize, KM_SLEEP); 9711 } 9712 9713 (*svarp)[id] = svar; 9714 } 9715 9716 svar->dtsv_refcnt++; 9717 } 9718 9719 dtrace_difo_chunksize(dp, vstate); 9720 dtrace_difo_hold(dp); 9721 } 9722 9723 static dtrace_difo_t * 9724 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9725 { 9726 dtrace_difo_t *new; 9727 size_t sz; 9728 9729 ASSERT(dp->dtdo_buf != NULL); 9730 ASSERT(dp->dtdo_refcnt != 0); 9731 9732 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 9733 9734 ASSERT(dp->dtdo_buf != NULL); 9735 sz = dp->dtdo_len * sizeof (dif_instr_t); 9736 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 9737 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 9738 new->dtdo_len = dp->dtdo_len; 9739 9740 if (dp->dtdo_strtab != NULL) { 9741 ASSERT(dp->dtdo_strlen != 0); 9742 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 9743 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 9744 new->dtdo_strlen = dp->dtdo_strlen; 9745 } 9746 9747 if (dp->dtdo_inttab != NULL) { 9748 ASSERT(dp->dtdo_intlen != 0); 9749 sz = dp->dtdo_intlen * sizeof (uint64_t); 9750 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 9751 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 9752 new->dtdo_intlen = dp->dtdo_intlen; 9753 } 9754 9755 if (dp->dtdo_vartab != NULL) { 9756 ASSERT(dp->dtdo_varlen != 0); 9757 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 9758 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 9759 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 9760 new->dtdo_varlen = dp->dtdo_varlen; 9761 } 9762 9763 dtrace_difo_init(new, vstate); 9764 return (new); 9765 } 9766 9767 static void 9768 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9769 { 9770 int i; 9771 9772 ASSERT(dp->dtdo_refcnt == 0); 9773 9774 for (i = 0; i < dp->dtdo_varlen; i++) { 9775 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9776 dtrace_statvar_t *svar, **svarp; 9777 uint_t id; 9778 uint8_t scope = v->dtdv_scope; 9779 int *np; 9780 9781 switch (scope) { 9782 case DIFV_SCOPE_THREAD: 9783 continue; 9784 9785 case DIFV_SCOPE_LOCAL: 9786 np = &vstate->dtvs_nlocals; 9787 svarp = vstate->dtvs_locals; 9788 break; 9789 9790 case DIFV_SCOPE_GLOBAL: 9791 np = &vstate->dtvs_nglobals; 9792 svarp = vstate->dtvs_globals; 9793 break; 9794 9795 default: 9796 ASSERT(0); 9797 } 9798 9799 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 9800 continue; 9801 9802 id -= DIF_VAR_OTHER_UBASE; 9803 ASSERT(id < *np); 9804 9805 svar = svarp[id]; 9806 ASSERT(svar != NULL); 9807 ASSERT(svar->dtsv_refcnt > 0); 9808 9809 if (--svar->dtsv_refcnt > 0) 9810 continue; 9811 9812 if (svar->dtsv_size != 0) { 9813 ASSERT(svar->dtsv_data != NULL); 9814 kmem_free((void *)(uintptr_t)svar->dtsv_data, 9815 svar->dtsv_size); 9816 } 9817 9818 kmem_free(svar, sizeof (dtrace_statvar_t)); 9819 svarp[id] = NULL; 9820 } 9821 9822 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 9823 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 9824 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 9825 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 9826 9827 kmem_free(dp, sizeof (dtrace_difo_t)); 9828 } 9829 9830 static void 9831 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9832 { 9833 int i; 9834 9835 ASSERT(MUTEX_HELD(&dtrace_lock)); 9836 ASSERT(dp->dtdo_refcnt != 0); 9837 9838 for (i = 0; i < dp->dtdo_varlen; i++) { 9839 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9840 9841 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 9842 continue; 9843 9844 ASSERT(dtrace_vtime_references > 0); 9845 if (--dtrace_vtime_references == 0) 9846 dtrace_vtime_disable(); 9847 } 9848 9849 if (--dp->dtdo_refcnt == 0) 9850 dtrace_difo_destroy(dp, vstate); 9851 } 9852 9853 /* 9854 * DTrace Format Functions 9855 */ 9856 static uint16_t 9857 dtrace_format_add(dtrace_state_t *state, char *str) 9858 { 9859 char *fmt, **new; 9860 uint16_t ndx, len = strlen(str) + 1; 9861 9862 fmt = kmem_zalloc(len, KM_SLEEP); 9863 bcopy(str, fmt, len); 9864 9865 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 9866 if (state->dts_formats[ndx] == NULL) { 9867 state->dts_formats[ndx] = fmt; 9868 return (ndx + 1); 9869 } 9870 } 9871 9872 if (state->dts_nformats == USHRT_MAX) { 9873 /* 9874 * This is only likely if a denial-of-service attack is being 9875 * attempted. As such, it's okay to fail silently here. 9876 */ 9877 kmem_free(fmt, len); 9878 return (0); 9879 } 9880 9881 /* 9882 * For simplicity, we always resize the formats array to be exactly the 9883 * number of formats. 9884 */ 9885 ndx = state->dts_nformats++; 9886 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 9887 9888 if (state->dts_formats != NULL) { 9889 ASSERT(ndx != 0); 9890 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 9891 kmem_free(state->dts_formats, ndx * sizeof (char *)); 9892 } 9893 9894 state->dts_formats = new; 9895 state->dts_formats[ndx] = fmt; 9896 9897 return (ndx + 1); 9898 } 9899 9900 static void 9901 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 9902 { 9903 char *fmt; 9904 9905 ASSERT(state->dts_formats != NULL); 9906 ASSERT(format <= state->dts_nformats); 9907 ASSERT(state->dts_formats[format - 1] != NULL); 9908 9909 fmt = state->dts_formats[format - 1]; 9910 kmem_free(fmt, strlen(fmt) + 1); 9911 state->dts_formats[format - 1] = NULL; 9912 } 9913 9914 static void 9915 dtrace_format_destroy(dtrace_state_t *state) 9916 { 9917 int i; 9918 9919 if (state->dts_nformats == 0) { 9920 ASSERT(state->dts_formats == NULL); 9921 return; 9922 } 9923 9924 ASSERT(state->dts_formats != NULL); 9925 9926 for (i = 0; i < state->dts_nformats; i++) { 9927 char *fmt = state->dts_formats[i]; 9928 9929 if (fmt == NULL) 9930 continue; 9931 9932 kmem_free(fmt, strlen(fmt) + 1); 9933 } 9934 9935 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 9936 state->dts_nformats = 0; 9937 state->dts_formats = NULL; 9938 } 9939 9940 /* 9941 * DTrace Predicate Functions 9942 */ 9943 static dtrace_predicate_t * 9944 dtrace_predicate_create(dtrace_difo_t *dp) 9945 { 9946 dtrace_predicate_t *pred; 9947 9948 ASSERT(MUTEX_HELD(&dtrace_lock)); 9949 ASSERT(dp->dtdo_refcnt != 0); 9950 9951 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 9952 pred->dtp_difo = dp; 9953 pred->dtp_refcnt = 1; 9954 9955 if (!dtrace_difo_cacheable(dp)) 9956 return (pred); 9957 9958 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 9959 /* 9960 * This is only theoretically possible -- we have had 2^32 9961 * cacheable predicates on this machine. We cannot allow any 9962 * more predicates to become cacheable: as unlikely as it is, 9963 * there may be a thread caching a (now stale) predicate cache 9964 * ID. (N.B.: the temptation is being successfully resisted to 9965 * have this cmn_err() "Holy shit -- we executed this code!") 9966 */ 9967 return (pred); 9968 } 9969 9970 pred->dtp_cacheid = dtrace_predcache_id++; 9971 9972 return (pred); 9973 } 9974 9975 static void 9976 dtrace_predicate_hold(dtrace_predicate_t *pred) 9977 { 9978 ASSERT(MUTEX_HELD(&dtrace_lock)); 9979 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 9980 ASSERT(pred->dtp_refcnt > 0); 9981 9982 pred->dtp_refcnt++; 9983 } 9984 9985 static void 9986 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 9987 { 9988 dtrace_difo_t *dp = pred->dtp_difo; 9989 9990 ASSERT(MUTEX_HELD(&dtrace_lock)); 9991 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 9992 ASSERT(pred->dtp_refcnt > 0); 9993 9994 if (--pred->dtp_refcnt == 0) { 9995 dtrace_difo_release(pred->dtp_difo, vstate); 9996 kmem_free(pred, sizeof (dtrace_predicate_t)); 9997 } 9998 } 9999 10000 /* 10001 * DTrace Action Description Functions 10002 */ 10003 static dtrace_actdesc_t * 10004 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 10005 uint64_t uarg, uint64_t arg) 10006 { 10007 dtrace_actdesc_t *act; 10008 10009 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 10010 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 10011 10012 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 10013 act->dtad_kind = kind; 10014 act->dtad_ntuple = ntuple; 10015 act->dtad_uarg = uarg; 10016 act->dtad_arg = arg; 10017 act->dtad_refcnt = 1; 10018 10019 return (act); 10020 } 10021 10022 static void 10023 dtrace_actdesc_hold(dtrace_actdesc_t *act) 10024 { 10025 ASSERT(act->dtad_refcnt >= 1); 10026 act->dtad_refcnt++; 10027 } 10028 10029 static void 10030 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 10031 { 10032 dtrace_actkind_t kind = act->dtad_kind; 10033 dtrace_difo_t *dp; 10034 10035 ASSERT(act->dtad_refcnt >= 1); 10036 10037 if (--act->dtad_refcnt != 0) 10038 return; 10039 10040 if ((dp = act->dtad_difo) != NULL) 10041 dtrace_difo_release(dp, vstate); 10042 10043 if (DTRACEACT_ISPRINTFLIKE(kind)) { 10044 char *str = (char *)(uintptr_t)act->dtad_arg; 10045 10046 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 10047 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 10048 10049 if (str != NULL) 10050 kmem_free(str, strlen(str) + 1); 10051 } 10052 10053 kmem_free(act, sizeof (dtrace_actdesc_t)); 10054 } 10055 10056 /* 10057 * DTrace ECB Functions 10058 */ 10059 static dtrace_ecb_t * 10060 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 10061 { 10062 dtrace_ecb_t *ecb; 10063 dtrace_epid_t epid; 10064 10065 ASSERT(MUTEX_HELD(&dtrace_lock)); 10066 10067 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 10068 ecb->dte_predicate = NULL; 10069 ecb->dte_probe = probe; 10070 10071 /* 10072 * The default size is the size of the default action: recording 10073 * the header. 10074 */ 10075 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t); 10076 ecb->dte_alignment = sizeof (dtrace_epid_t); 10077 10078 epid = state->dts_epid++; 10079 10080 if (epid - 1 >= state->dts_necbs) { 10081 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 10082 int necbs = state->dts_necbs << 1; 10083 10084 ASSERT(epid == state->dts_necbs + 1); 10085 10086 if (necbs == 0) { 10087 ASSERT(oecbs == NULL); 10088 necbs = 1; 10089 } 10090 10091 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 10092 10093 if (oecbs != NULL) 10094 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 10095 10096 dtrace_membar_producer(); 10097 state->dts_ecbs = ecbs; 10098 10099 if (oecbs != NULL) { 10100 /* 10101 * If this state is active, we must dtrace_sync() 10102 * before we can free the old dts_ecbs array: we're 10103 * coming in hot, and there may be active ring 10104 * buffer processing (which indexes into the dts_ecbs 10105 * array) on another CPU. 10106 */ 10107 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 10108 dtrace_sync(); 10109 10110 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 10111 } 10112 10113 dtrace_membar_producer(); 10114 state->dts_necbs = necbs; 10115 } 10116 10117 ecb->dte_state = state; 10118 10119 ASSERT(state->dts_ecbs[epid - 1] == NULL); 10120 dtrace_membar_producer(); 10121 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 10122 10123 return (ecb); 10124 } 10125 10126 static int 10127 dtrace_ecb_enable(dtrace_ecb_t *ecb) 10128 { 10129 dtrace_probe_t *probe = ecb->dte_probe; 10130 10131 ASSERT(MUTEX_HELD(&cpu_lock)); 10132 ASSERT(MUTEX_HELD(&dtrace_lock)); 10133 ASSERT(ecb->dte_next == NULL); 10134 10135 if (probe == NULL) { 10136 /* 10137 * This is the NULL probe -- there's nothing to do. 10138 */ 10139 return (0); 10140 } 10141 10142 if (probe->dtpr_ecb == NULL) { 10143 dtrace_provider_t *prov = probe->dtpr_provider; 10144 10145 /* 10146 * We're the first ECB on this probe. 10147 */ 10148 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 10149 10150 if (ecb->dte_predicate != NULL) 10151 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 10152 10153 return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 10154 probe->dtpr_id, probe->dtpr_arg)); 10155 } else { 10156 /* 10157 * This probe is already active. Swing the last pointer to 10158 * point to the new ECB, and issue a dtrace_sync() to assure 10159 * that all CPUs have seen the change. 10160 */ 10161 ASSERT(probe->dtpr_ecb_last != NULL); 10162 probe->dtpr_ecb_last->dte_next = ecb; 10163 probe->dtpr_ecb_last = ecb; 10164 probe->dtpr_predcache = 0; 10165 10166 dtrace_sync(); 10167 return (0); 10168 } 10169 } 10170 10171 static void 10172 dtrace_ecb_resize(dtrace_ecb_t *ecb) 10173 { 10174 dtrace_action_t *act; 10175 uint32_t curneeded = UINT32_MAX; 10176 uint32_t aggbase = UINT32_MAX; 10177 10178 /* 10179 * If we record anything, we always record the dtrace_rechdr_t. (And 10180 * we always record it first.) 10181 */ 10182 ecb->dte_size = sizeof (dtrace_rechdr_t); 10183 ecb->dte_alignment = sizeof (dtrace_epid_t); 10184 10185 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 10186 dtrace_recdesc_t *rec = &act->dta_rec; 10187 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1); 10188 10189 ecb->dte_alignment = MAX(ecb->dte_alignment, 10190 rec->dtrd_alignment); 10191 10192 if (DTRACEACT_ISAGG(act->dta_kind)) { 10193 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 10194 10195 ASSERT(rec->dtrd_size != 0); 10196 ASSERT(agg->dtag_first != NULL); 10197 ASSERT(act->dta_prev->dta_intuple); 10198 ASSERT(aggbase != UINT32_MAX); 10199 ASSERT(curneeded != UINT32_MAX); 10200 10201 agg->dtag_base = aggbase; 10202 10203 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 10204 rec->dtrd_offset = curneeded; 10205 curneeded += rec->dtrd_size; 10206 ecb->dte_needed = MAX(ecb->dte_needed, curneeded); 10207 10208 aggbase = UINT32_MAX; 10209 curneeded = UINT32_MAX; 10210 } else if (act->dta_intuple) { 10211 if (curneeded == UINT32_MAX) { 10212 /* 10213 * This is the first record in a tuple. Align 10214 * curneeded to be at offset 4 in an 8-byte 10215 * aligned block. 10216 */ 10217 ASSERT(act->dta_prev == NULL || 10218 !act->dta_prev->dta_intuple); 10219 ASSERT3U(aggbase, ==, UINT32_MAX); 10220 curneeded = P2PHASEUP(ecb->dte_size, 10221 sizeof (uint64_t), sizeof (dtrace_aggid_t)); 10222 10223 aggbase = curneeded - sizeof (dtrace_aggid_t); 10224 ASSERT(IS_P2ALIGNED(aggbase, 10225 sizeof (uint64_t))); 10226 } 10227 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 10228 rec->dtrd_offset = curneeded; 10229 curneeded += rec->dtrd_size; 10230 } else { 10231 /* tuples must be followed by an aggregation */ 10232 ASSERT(act->dta_prev == NULL || 10233 !act->dta_prev->dta_intuple); 10234 10235 ecb->dte_size = P2ROUNDUP(ecb->dte_size, 10236 rec->dtrd_alignment); 10237 rec->dtrd_offset = ecb->dte_size; 10238 ecb->dte_size += rec->dtrd_size; 10239 ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size); 10240 } 10241 } 10242 10243 if ((act = ecb->dte_action) != NULL && 10244 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 10245 ecb->dte_size == sizeof (dtrace_rechdr_t)) { 10246 /* 10247 * If the size is still sizeof (dtrace_rechdr_t), then all 10248 * actions store no data; set the size to 0. 10249 */ 10250 ecb->dte_size = 0; 10251 } 10252 10253 ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t)); 10254 ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t))); 10255 ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed, 10256 ecb->dte_needed); 10257 } 10258 10259 static dtrace_action_t * 10260 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 10261 { 10262 dtrace_aggregation_t *agg; 10263 size_t size = sizeof (uint64_t); 10264 int ntuple = desc->dtad_ntuple; 10265 dtrace_action_t *act; 10266 dtrace_recdesc_t *frec; 10267 dtrace_aggid_t aggid; 10268 dtrace_state_t *state = ecb->dte_state; 10269 10270 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 10271 agg->dtag_ecb = ecb; 10272 10273 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 10274 10275 switch (desc->dtad_kind) { 10276 case DTRACEAGG_MIN: 10277 agg->dtag_initial = INT64_MAX; 10278 agg->dtag_aggregate = dtrace_aggregate_min; 10279 break; 10280 10281 case DTRACEAGG_MAX: 10282 agg->dtag_initial = INT64_MIN; 10283 agg->dtag_aggregate = dtrace_aggregate_max; 10284 break; 10285 10286 case DTRACEAGG_COUNT: 10287 agg->dtag_aggregate = dtrace_aggregate_count; 10288 break; 10289 10290 case DTRACEAGG_QUANTIZE: 10291 agg->dtag_aggregate = dtrace_aggregate_quantize; 10292 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 10293 sizeof (uint64_t); 10294 break; 10295 10296 case DTRACEAGG_LQUANTIZE: { 10297 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 10298 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 10299 10300 agg->dtag_initial = desc->dtad_arg; 10301 agg->dtag_aggregate = dtrace_aggregate_lquantize; 10302 10303 if (step == 0 || levels == 0) 10304 goto err; 10305 10306 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 10307 break; 10308 } 10309 10310 case DTRACEAGG_LLQUANTIZE: { 10311 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg); 10312 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg); 10313 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg); 10314 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg); 10315 int64_t v; 10316 10317 agg->dtag_initial = desc->dtad_arg; 10318 agg->dtag_aggregate = dtrace_aggregate_llquantize; 10319 10320 if (factor < 2 || low >= high || nsteps < factor) 10321 goto err; 10322 10323 /* 10324 * Now check that the number of steps evenly divides a power 10325 * of the factor. (This assures both integer bucket size and 10326 * linearity within each magnitude.) 10327 */ 10328 for (v = factor; v < nsteps; v *= factor) 10329 continue; 10330 10331 if ((v % nsteps) || (nsteps % factor)) 10332 goto err; 10333 10334 size = (dtrace_aggregate_llquantize_bucket(factor, 10335 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t); 10336 break; 10337 } 10338 10339 case DTRACEAGG_AVG: 10340 agg->dtag_aggregate = dtrace_aggregate_avg; 10341 size = sizeof (uint64_t) * 2; 10342 break; 10343 10344 case DTRACEAGG_STDDEV: 10345 agg->dtag_aggregate = dtrace_aggregate_stddev; 10346 size = sizeof (uint64_t) * 4; 10347 break; 10348 10349 case DTRACEAGG_SUM: 10350 agg->dtag_aggregate = dtrace_aggregate_sum; 10351 break; 10352 10353 default: 10354 goto err; 10355 } 10356 10357 agg->dtag_action.dta_rec.dtrd_size = size; 10358 10359 if (ntuple == 0) 10360 goto err; 10361 10362 /* 10363 * We must make sure that we have enough actions for the n-tuple. 10364 */ 10365 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 10366 if (DTRACEACT_ISAGG(act->dta_kind)) 10367 break; 10368 10369 if (--ntuple == 0) { 10370 /* 10371 * This is the action with which our n-tuple begins. 10372 */ 10373 agg->dtag_first = act; 10374 goto success; 10375 } 10376 } 10377 10378 /* 10379 * This n-tuple is short by ntuple elements. Return failure. 10380 */ 10381 ASSERT(ntuple != 0); 10382 err: 10383 kmem_free(agg, sizeof (dtrace_aggregation_t)); 10384 return (NULL); 10385 10386 success: 10387 /* 10388 * If the last action in the tuple has a size of zero, it's actually 10389 * an expression argument for the aggregating action. 10390 */ 10391 ASSERT(ecb->dte_action_last != NULL); 10392 act = ecb->dte_action_last; 10393 10394 if (act->dta_kind == DTRACEACT_DIFEXPR) { 10395 ASSERT(act->dta_difo != NULL); 10396 10397 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 10398 agg->dtag_hasarg = 1; 10399 } 10400 10401 /* 10402 * We need to allocate an id for this aggregation. 10403 */ 10404 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 10405 VM_BESTFIT | VM_SLEEP); 10406 10407 if (aggid - 1 >= state->dts_naggregations) { 10408 dtrace_aggregation_t **oaggs = state->dts_aggregations; 10409 dtrace_aggregation_t **aggs; 10410 int naggs = state->dts_naggregations << 1; 10411 int onaggs = state->dts_naggregations; 10412 10413 ASSERT(aggid == state->dts_naggregations + 1); 10414 10415 if (naggs == 0) { 10416 ASSERT(oaggs == NULL); 10417 naggs = 1; 10418 } 10419 10420 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 10421 10422 if (oaggs != NULL) { 10423 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 10424 kmem_free(oaggs, onaggs * sizeof (*aggs)); 10425 } 10426 10427 state->dts_aggregations = aggs; 10428 state->dts_naggregations = naggs; 10429 } 10430 10431 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 10432 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 10433 10434 frec = &agg->dtag_first->dta_rec; 10435 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 10436 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 10437 10438 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 10439 ASSERT(!act->dta_intuple); 10440 act->dta_intuple = 1; 10441 } 10442 10443 return (&agg->dtag_action); 10444 } 10445 10446 static void 10447 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 10448 { 10449 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 10450 dtrace_state_t *state = ecb->dte_state; 10451 dtrace_aggid_t aggid = agg->dtag_id; 10452 10453 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 10454 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 10455 10456 ASSERT(state->dts_aggregations[aggid - 1] == agg); 10457 state->dts_aggregations[aggid - 1] = NULL; 10458 10459 kmem_free(agg, sizeof (dtrace_aggregation_t)); 10460 } 10461 10462 static int 10463 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 10464 { 10465 dtrace_action_t *action, *last; 10466 dtrace_difo_t *dp = desc->dtad_difo; 10467 uint32_t size = 0, align = sizeof (uint8_t), mask; 10468 uint16_t format = 0; 10469 dtrace_recdesc_t *rec; 10470 dtrace_state_t *state = ecb->dte_state; 10471 dtrace_optval_t *opt = state->dts_options, nframes, strsize; 10472 uint64_t arg = desc->dtad_arg; 10473 10474 ASSERT(MUTEX_HELD(&dtrace_lock)); 10475 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 10476 10477 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 10478 /* 10479 * If this is an aggregating action, there must be neither 10480 * a speculate nor a commit on the action chain. 10481 */ 10482 dtrace_action_t *act; 10483 10484 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 10485 if (act->dta_kind == DTRACEACT_COMMIT) 10486 return (EINVAL); 10487 10488 if (act->dta_kind == DTRACEACT_SPECULATE) 10489 return (EINVAL); 10490 } 10491 10492 action = dtrace_ecb_aggregation_create(ecb, desc); 10493 10494 if (action == NULL) 10495 return (EINVAL); 10496 } else { 10497 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 10498 (desc->dtad_kind == DTRACEACT_DIFEXPR && 10499 dp != NULL && dp->dtdo_destructive)) { 10500 state->dts_destructive = 1; 10501 } 10502 10503 switch (desc->dtad_kind) { 10504 case DTRACEACT_PRINTF: 10505 case DTRACEACT_PRINTA: 10506 case DTRACEACT_SYSTEM: 10507 case DTRACEACT_FREOPEN: 10508 case DTRACEACT_DIFEXPR: 10509 /* 10510 * We know that our arg is a string -- turn it into a 10511 * format. 10512 */ 10513 if (arg == NULL) { 10514 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA || 10515 desc->dtad_kind == DTRACEACT_DIFEXPR); 10516 format = 0; 10517 } else { 10518 ASSERT(arg != NULL); 10519 ASSERT(arg > KERNELBASE); 10520 format = dtrace_format_add(state, 10521 (char *)(uintptr_t)arg); 10522 } 10523 10524 /*FALLTHROUGH*/ 10525 case DTRACEACT_LIBACT: 10526 case DTRACEACT_TRACEMEM: 10527 case DTRACEACT_TRACEMEM_DYNSIZE: 10528 if (dp == NULL) 10529 return (EINVAL); 10530 10531 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 10532 break; 10533 10534 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 10535 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 10536 return (EINVAL); 10537 10538 size = opt[DTRACEOPT_STRSIZE]; 10539 } 10540 10541 break; 10542 10543 case DTRACEACT_STACK: 10544 if ((nframes = arg) == 0) { 10545 nframes = opt[DTRACEOPT_STACKFRAMES]; 10546 ASSERT(nframes > 0); 10547 arg = nframes; 10548 } 10549 10550 size = nframes * sizeof (pc_t); 10551 break; 10552 10553 case DTRACEACT_JSTACK: 10554 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 10555 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 10556 10557 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 10558 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 10559 10560 arg = DTRACE_USTACK_ARG(nframes, strsize); 10561 10562 /*FALLTHROUGH*/ 10563 case DTRACEACT_USTACK: 10564 if (desc->dtad_kind != DTRACEACT_JSTACK && 10565 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 10566 strsize = DTRACE_USTACK_STRSIZE(arg); 10567 nframes = opt[DTRACEOPT_USTACKFRAMES]; 10568 ASSERT(nframes > 0); 10569 arg = DTRACE_USTACK_ARG(nframes, strsize); 10570 } 10571 10572 /* 10573 * Save a slot for the pid. 10574 */ 10575 size = (nframes + 1) * sizeof (uint64_t); 10576 size += DTRACE_USTACK_STRSIZE(arg); 10577 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 10578 10579 break; 10580 10581 case DTRACEACT_SYM: 10582 case DTRACEACT_MOD: 10583 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 10584 sizeof (uint64_t)) || 10585 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 10586 return (EINVAL); 10587 break; 10588 10589 case DTRACEACT_USYM: 10590 case DTRACEACT_UMOD: 10591 case DTRACEACT_UADDR: 10592 if (dp == NULL || 10593 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 10594 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 10595 return (EINVAL); 10596 10597 /* 10598 * We have a slot for the pid, plus a slot for the 10599 * argument. To keep things simple (aligned with 10600 * bitness-neutral sizing), we store each as a 64-bit 10601 * quantity. 10602 */ 10603 size = 2 * sizeof (uint64_t); 10604 break; 10605 10606 case DTRACEACT_STOP: 10607 case DTRACEACT_BREAKPOINT: 10608 case DTRACEACT_PANIC: 10609 break; 10610 10611 case DTRACEACT_CHILL: 10612 case DTRACEACT_DISCARD: 10613 case DTRACEACT_RAISE: 10614 if (dp == NULL) 10615 return (EINVAL); 10616 break; 10617 10618 case DTRACEACT_EXIT: 10619 if (dp == NULL || 10620 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 10621 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 10622 return (EINVAL); 10623 break; 10624 10625 case DTRACEACT_SPECULATE: 10626 if (ecb->dte_size > sizeof (dtrace_rechdr_t)) 10627 return (EINVAL); 10628 10629 if (dp == NULL) 10630 return (EINVAL); 10631 10632 state->dts_speculates = 1; 10633 break; 10634 10635 case DTRACEACT_COMMIT: { 10636 dtrace_action_t *act = ecb->dte_action; 10637 10638 for (; act != NULL; act = act->dta_next) { 10639 if (act->dta_kind == DTRACEACT_COMMIT) 10640 return (EINVAL); 10641 } 10642 10643 if (dp == NULL) 10644 return (EINVAL); 10645 break; 10646 } 10647 10648 default: 10649 return (EINVAL); 10650 } 10651 10652 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 10653 /* 10654 * If this is a data-storing action or a speculate, 10655 * we must be sure that there isn't a commit on the 10656 * action chain. 10657 */ 10658 dtrace_action_t *act = ecb->dte_action; 10659 10660 for (; act != NULL; act = act->dta_next) { 10661 if (act->dta_kind == DTRACEACT_COMMIT) 10662 return (EINVAL); 10663 } 10664 } 10665 10666 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 10667 action->dta_rec.dtrd_size = size; 10668 } 10669 10670 action->dta_refcnt = 1; 10671 rec = &action->dta_rec; 10672 size = rec->dtrd_size; 10673 10674 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 10675 if (!(size & mask)) { 10676 align = mask + 1; 10677 break; 10678 } 10679 } 10680 10681 action->dta_kind = desc->dtad_kind; 10682 10683 if ((action->dta_difo = dp) != NULL) 10684 dtrace_difo_hold(dp); 10685 10686 rec->dtrd_action = action->dta_kind; 10687 rec->dtrd_arg = arg; 10688 rec->dtrd_uarg = desc->dtad_uarg; 10689 rec->dtrd_alignment = (uint16_t)align; 10690 rec->dtrd_format = format; 10691 10692 if ((last = ecb->dte_action_last) != NULL) { 10693 ASSERT(ecb->dte_action != NULL); 10694 action->dta_prev = last; 10695 last->dta_next = action; 10696 } else { 10697 ASSERT(ecb->dte_action == NULL); 10698 ecb->dte_action = action; 10699 } 10700 10701 ecb->dte_action_last = action; 10702 10703 return (0); 10704 } 10705 10706 static void 10707 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 10708 { 10709 dtrace_action_t *act = ecb->dte_action, *next; 10710 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 10711 dtrace_difo_t *dp; 10712 uint16_t format; 10713 10714 if (act != NULL && act->dta_refcnt > 1) { 10715 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 10716 act->dta_refcnt--; 10717 } else { 10718 for (; act != NULL; act = next) { 10719 next = act->dta_next; 10720 ASSERT(next != NULL || act == ecb->dte_action_last); 10721 ASSERT(act->dta_refcnt == 1); 10722 10723 if ((format = act->dta_rec.dtrd_format) != 0) 10724 dtrace_format_remove(ecb->dte_state, format); 10725 10726 if ((dp = act->dta_difo) != NULL) 10727 dtrace_difo_release(dp, vstate); 10728 10729 if (DTRACEACT_ISAGG(act->dta_kind)) { 10730 dtrace_ecb_aggregation_destroy(ecb, act); 10731 } else { 10732 kmem_free(act, sizeof (dtrace_action_t)); 10733 } 10734 } 10735 } 10736 10737 ecb->dte_action = NULL; 10738 ecb->dte_action_last = NULL; 10739 ecb->dte_size = 0; 10740 } 10741 10742 static void 10743 dtrace_ecb_disable(dtrace_ecb_t *ecb) 10744 { 10745 /* 10746 * We disable the ECB by removing it from its probe. 10747 */ 10748 dtrace_ecb_t *pecb, *prev = NULL; 10749 dtrace_probe_t *probe = ecb->dte_probe; 10750 10751 ASSERT(MUTEX_HELD(&dtrace_lock)); 10752 10753 if (probe == NULL) { 10754 /* 10755 * This is the NULL probe; there is nothing to disable. 10756 */ 10757 return; 10758 } 10759 10760 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 10761 if (pecb == ecb) 10762 break; 10763 prev = pecb; 10764 } 10765 10766 ASSERT(pecb != NULL); 10767 10768 if (prev == NULL) { 10769 probe->dtpr_ecb = ecb->dte_next; 10770 } else { 10771 prev->dte_next = ecb->dte_next; 10772 } 10773 10774 if (ecb == probe->dtpr_ecb_last) { 10775 ASSERT(ecb->dte_next == NULL); 10776 probe->dtpr_ecb_last = prev; 10777 } 10778 10779 /* 10780 * The ECB has been disconnected from the probe; now sync to assure 10781 * that all CPUs have seen the change before returning. 10782 */ 10783 dtrace_sync(); 10784 10785 if (probe->dtpr_ecb == NULL) { 10786 /* 10787 * That was the last ECB on the probe; clear the predicate 10788 * cache ID for the probe, disable it and sync one more time 10789 * to assure that we'll never hit it again. 10790 */ 10791 dtrace_provider_t *prov = probe->dtpr_provider; 10792 10793 ASSERT(ecb->dte_next == NULL); 10794 ASSERT(probe->dtpr_ecb_last == NULL); 10795 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 10796 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 10797 probe->dtpr_id, probe->dtpr_arg); 10798 dtrace_sync(); 10799 } else { 10800 /* 10801 * There is at least one ECB remaining on the probe. If there 10802 * is _exactly_ one, set the probe's predicate cache ID to be 10803 * the predicate cache ID of the remaining ECB. 10804 */ 10805 ASSERT(probe->dtpr_ecb_last != NULL); 10806 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 10807 10808 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 10809 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 10810 10811 ASSERT(probe->dtpr_ecb->dte_next == NULL); 10812 10813 if (p != NULL) 10814 probe->dtpr_predcache = p->dtp_cacheid; 10815 } 10816 10817 ecb->dte_next = NULL; 10818 } 10819 } 10820 10821 static void 10822 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 10823 { 10824 dtrace_state_t *state = ecb->dte_state; 10825 dtrace_vstate_t *vstate = &state->dts_vstate; 10826 dtrace_predicate_t *pred; 10827 dtrace_epid_t epid = ecb->dte_epid; 10828 10829 ASSERT(MUTEX_HELD(&dtrace_lock)); 10830 ASSERT(ecb->dte_next == NULL); 10831 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 10832 10833 if ((pred = ecb->dte_predicate) != NULL) 10834 dtrace_predicate_release(pred, vstate); 10835 10836 dtrace_ecb_action_remove(ecb); 10837 10838 ASSERT(state->dts_ecbs[epid - 1] == ecb); 10839 state->dts_ecbs[epid - 1] = NULL; 10840 10841 kmem_free(ecb, sizeof (dtrace_ecb_t)); 10842 } 10843 10844 static dtrace_ecb_t * 10845 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 10846 dtrace_enabling_t *enab) 10847 { 10848 dtrace_ecb_t *ecb; 10849 dtrace_predicate_t *pred; 10850 dtrace_actdesc_t *act; 10851 dtrace_provider_t *prov; 10852 dtrace_ecbdesc_t *desc = enab->dten_current; 10853 10854 ASSERT(MUTEX_HELD(&dtrace_lock)); 10855 ASSERT(state != NULL); 10856 10857 ecb = dtrace_ecb_add(state, probe); 10858 ecb->dte_uarg = desc->dted_uarg; 10859 10860 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 10861 dtrace_predicate_hold(pred); 10862 ecb->dte_predicate = pred; 10863 } 10864 10865 if (probe != NULL) { 10866 /* 10867 * If the provider shows more leg than the consumer is old 10868 * enough to see, we need to enable the appropriate implicit 10869 * predicate bits to prevent the ecb from activating at 10870 * revealing times. 10871 * 10872 * Providers specifying DTRACE_PRIV_USER at register time 10873 * are stating that they need the /proc-style privilege 10874 * model to be enforced, and this is what DTRACE_COND_OWNER 10875 * and DTRACE_COND_ZONEOWNER will then do at probe time. 10876 */ 10877 prov = probe->dtpr_provider; 10878 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 10879 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 10880 ecb->dte_cond |= DTRACE_COND_OWNER; 10881 10882 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 10883 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 10884 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 10885 10886 /* 10887 * If the provider shows us kernel innards and the user 10888 * is lacking sufficient privilege, enable the 10889 * DTRACE_COND_USERMODE implicit predicate. 10890 */ 10891 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 10892 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 10893 ecb->dte_cond |= DTRACE_COND_USERMODE; 10894 } 10895 10896 if (dtrace_ecb_create_cache != NULL) { 10897 /* 10898 * If we have a cached ecb, we'll use its action list instead 10899 * of creating our own (saving both time and space). 10900 */ 10901 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 10902 dtrace_action_t *act = cached->dte_action; 10903 10904 if (act != NULL) { 10905 ASSERT(act->dta_refcnt > 0); 10906 act->dta_refcnt++; 10907 ecb->dte_action = act; 10908 ecb->dte_action_last = cached->dte_action_last; 10909 ecb->dte_needed = cached->dte_needed; 10910 ecb->dte_size = cached->dte_size; 10911 ecb->dte_alignment = cached->dte_alignment; 10912 } 10913 10914 return (ecb); 10915 } 10916 10917 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 10918 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 10919 dtrace_ecb_destroy(ecb); 10920 return (NULL); 10921 } 10922 } 10923 10924 dtrace_ecb_resize(ecb); 10925 10926 return (dtrace_ecb_create_cache = ecb); 10927 } 10928 10929 static int 10930 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 10931 { 10932 dtrace_ecb_t *ecb; 10933 dtrace_enabling_t *enab = arg; 10934 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 10935 10936 ASSERT(state != NULL); 10937 10938 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 10939 /* 10940 * This probe was created in a generation for which this 10941 * enabling has previously created ECBs; we don't want to 10942 * enable it again, so just kick out. 10943 */ 10944 return (DTRACE_MATCH_NEXT); 10945 } 10946 10947 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 10948 return (DTRACE_MATCH_DONE); 10949 10950 if (dtrace_ecb_enable(ecb) < 0) 10951 return (DTRACE_MATCH_FAIL); 10952 10953 return (DTRACE_MATCH_NEXT); 10954 } 10955 10956 static dtrace_ecb_t * 10957 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 10958 { 10959 dtrace_ecb_t *ecb; 10960 10961 ASSERT(MUTEX_HELD(&dtrace_lock)); 10962 10963 if (id == 0 || id > state->dts_necbs) 10964 return (NULL); 10965 10966 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 10967 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 10968 10969 return (state->dts_ecbs[id - 1]); 10970 } 10971 10972 static dtrace_aggregation_t * 10973 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 10974 { 10975 dtrace_aggregation_t *agg; 10976 10977 ASSERT(MUTEX_HELD(&dtrace_lock)); 10978 10979 if (id == 0 || id > state->dts_naggregations) 10980 return (NULL); 10981 10982 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 10983 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 10984 agg->dtag_id == id); 10985 10986 return (state->dts_aggregations[id - 1]); 10987 } 10988 10989 /* 10990 * DTrace Buffer Functions 10991 * 10992 * The following functions manipulate DTrace buffers. Most of these functions 10993 * are called in the context of establishing or processing consumer state; 10994 * exceptions are explicitly noted. 10995 */ 10996 10997 /* 10998 * Note: called from cross call context. This function switches the two 10999 * buffers on a given CPU. The atomicity of this operation is assured by 11000 * disabling interrupts while the actual switch takes place; the disabling of 11001 * interrupts serializes the execution with any execution of dtrace_probe() on 11002 * the same CPU. 11003 */ 11004 static void 11005 dtrace_buffer_switch(dtrace_buffer_t *buf) 11006 { 11007 caddr_t tomax = buf->dtb_tomax; 11008 caddr_t xamot = buf->dtb_xamot; 11009 dtrace_icookie_t cookie; 11010 hrtime_t now; 11011 11012 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 11013 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 11014 11015 cookie = dtrace_interrupt_disable(); 11016 now = dtrace_gethrtime(); 11017 buf->dtb_tomax = xamot; 11018 buf->dtb_xamot = tomax; 11019 buf->dtb_xamot_drops = buf->dtb_drops; 11020 buf->dtb_xamot_offset = buf->dtb_offset; 11021 buf->dtb_xamot_errors = buf->dtb_errors; 11022 buf->dtb_xamot_flags = buf->dtb_flags; 11023 buf->dtb_offset = 0; 11024 buf->dtb_drops = 0; 11025 buf->dtb_errors = 0; 11026 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 11027 buf->dtb_interval = now - buf->dtb_switched; 11028 buf->dtb_switched = now; 11029 dtrace_interrupt_enable(cookie); 11030 } 11031 11032 /* 11033 * Note: called from cross call context. This function activates a buffer 11034 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 11035 * is guaranteed by the disabling of interrupts. 11036 */ 11037 static void 11038 dtrace_buffer_activate(dtrace_state_t *state) 11039 { 11040 dtrace_buffer_t *buf; 11041 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 11042 11043 buf = &state->dts_buffer[CPU->cpu_id]; 11044 11045 if (buf->dtb_tomax != NULL) { 11046 /* 11047 * We might like to assert that the buffer is marked inactive, 11048 * but this isn't necessarily true: the buffer for the CPU 11049 * that processes the BEGIN probe has its buffer activated 11050 * manually. In this case, we take the (harmless) action 11051 * re-clearing the bit INACTIVE bit. 11052 */ 11053 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 11054 } 11055 11056 dtrace_interrupt_enable(cookie); 11057 } 11058 11059 static int 11060 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 11061 processorid_t cpu, int *factor) 11062 { 11063 cpu_t *cp; 11064 dtrace_buffer_t *buf; 11065 int allocated = 0, desired = 0; 11066 11067 ASSERT(MUTEX_HELD(&cpu_lock)); 11068 ASSERT(MUTEX_HELD(&dtrace_lock)); 11069 11070 *factor = 1; 11071 11072 if (size > dtrace_nonroot_maxsize && 11073 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 11074 return (EFBIG); 11075 11076 cp = cpu_list; 11077 11078 do { 11079 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 11080 continue; 11081 11082 buf = &bufs[cp->cpu_id]; 11083 11084 /* 11085 * If there is already a buffer allocated for this CPU, it 11086 * is only possible that this is a DR event. In this case, 11087 * the buffer size must match our specified size. 11088 */ 11089 if (buf->dtb_tomax != NULL) { 11090 ASSERT(buf->dtb_size == size); 11091 continue; 11092 } 11093 11094 ASSERT(buf->dtb_xamot == NULL); 11095 11096 if ((buf->dtb_tomax = kmem_zalloc(size, 11097 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 11098 goto err; 11099 11100 buf->dtb_size = size; 11101 buf->dtb_flags = flags; 11102 buf->dtb_offset = 0; 11103 buf->dtb_drops = 0; 11104 11105 if (flags & DTRACEBUF_NOSWITCH) 11106 continue; 11107 11108 if ((buf->dtb_xamot = kmem_zalloc(size, 11109 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 11110 goto err; 11111 } while ((cp = cp->cpu_next) != cpu_list); 11112 11113 return (0); 11114 11115 err: 11116 cp = cpu_list; 11117 11118 do { 11119 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 11120 continue; 11121 11122 buf = &bufs[cp->cpu_id]; 11123 desired += 2; 11124 11125 if (buf->dtb_xamot != NULL) { 11126 ASSERT(buf->dtb_tomax != NULL); 11127 ASSERT(buf->dtb_size == size); 11128 kmem_free(buf->dtb_xamot, size); 11129 allocated++; 11130 } 11131 11132 if (buf->dtb_tomax != NULL) { 11133 ASSERT(buf->dtb_size == size); 11134 kmem_free(buf->dtb_tomax, size); 11135 allocated++; 11136 } 11137 11138 buf->dtb_tomax = NULL; 11139 buf->dtb_xamot = NULL; 11140 buf->dtb_size = 0; 11141 } while ((cp = cp->cpu_next) != cpu_list); 11142 11143 *factor = desired / (allocated > 0 ? allocated : 1); 11144 11145 return (ENOMEM); 11146 } 11147 11148 /* 11149 * Note: called from probe context. This function just increments the drop 11150 * count on a buffer. It has been made a function to allow for the 11151 * possibility of understanding the source of mysterious drop counts. (A 11152 * problem for which one may be particularly disappointed that DTrace cannot 11153 * be used to understand DTrace.) 11154 */ 11155 static void 11156 dtrace_buffer_drop(dtrace_buffer_t *buf) 11157 { 11158 buf->dtb_drops++; 11159 } 11160 11161 /* 11162 * Note: called from probe context. This function is called to reserve space 11163 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 11164 * mstate. Returns the new offset in the buffer, or a negative value if an 11165 * error has occurred. 11166 */ 11167 static intptr_t 11168 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 11169 dtrace_state_t *state, dtrace_mstate_t *mstate) 11170 { 11171 intptr_t offs = buf->dtb_offset, soffs; 11172 intptr_t woffs; 11173 caddr_t tomax; 11174 size_t total; 11175 11176 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 11177 return (-1); 11178 11179 if ((tomax = buf->dtb_tomax) == NULL) { 11180 dtrace_buffer_drop(buf); 11181 return (-1); 11182 } 11183 11184 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 11185 while (offs & (align - 1)) { 11186 /* 11187 * Assert that our alignment is off by a number which 11188 * is itself sizeof (uint32_t) aligned. 11189 */ 11190 ASSERT(!((align - (offs & (align - 1))) & 11191 (sizeof (uint32_t) - 1))); 11192 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 11193 offs += sizeof (uint32_t); 11194 } 11195 11196 if ((soffs = offs + needed) > buf->dtb_size) { 11197 dtrace_buffer_drop(buf); 11198 return (-1); 11199 } 11200 11201 if (mstate == NULL) 11202 return (offs); 11203 11204 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 11205 mstate->dtms_scratch_size = buf->dtb_size - soffs; 11206 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 11207 11208 return (offs); 11209 } 11210 11211 if (buf->dtb_flags & DTRACEBUF_FILL) { 11212 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 11213 (buf->dtb_flags & DTRACEBUF_FULL)) 11214 return (-1); 11215 goto out; 11216 } 11217 11218 total = needed + (offs & (align - 1)); 11219 11220 /* 11221 * For a ring buffer, life is quite a bit more complicated. Before 11222 * we can store any padding, we need to adjust our wrapping offset. 11223 * (If we've never before wrapped or we're not about to, no adjustment 11224 * is required.) 11225 */ 11226 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 11227 offs + total > buf->dtb_size) { 11228 woffs = buf->dtb_xamot_offset; 11229 11230 if (offs + total > buf->dtb_size) { 11231 /* 11232 * We can't fit in the end of the buffer. First, a 11233 * sanity check that we can fit in the buffer at all. 11234 */ 11235 if (total > buf->dtb_size) { 11236 dtrace_buffer_drop(buf); 11237 return (-1); 11238 } 11239 11240 /* 11241 * We're going to be storing at the top of the buffer, 11242 * so now we need to deal with the wrapped offset. We 11243 * only reset our wrapped offset to 0 if it is 11244 * currently greater than the current offset. If it 11245 * is less than the current offset, it is because a 11246 * previous allocation induced a wrap -- but the 11247 * allocation didn't subsequently take the space due 11248 * to an error or false predicate evaluation. In this 11249 * case, we'll just leave the wrapped offset alone: if 11250 * the wrapped offset hasn't been advanced far enough 11251 * for this allocation, it will be adjusted in the 11252 * lower loop. 11253 */ 11254 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 11255 if (woffs >= offs) 11256 woffs = 0; 11257 } else { 11258 woffs = 0; 11259 } 11260 11261 /* 11262 * Now we know that we're going to be storing to the 11263 * top of the buffer and that there is room for us 11264 * there. We need to clear the buffer from the current 11265 * offset to the end (there may be old gunk there). 11266 */ 11267 while (offs < buf->dtb_size) 11268 tomax[offs++] = 0; 11269 11270 /* 11271 * We need to set our offset to zero. And because we 11272 * are wrapping, we need to set the bit indicating as 11273 * much. We can also adjust our needed space back 11274 * down to the space required by the ECB -- we know 11275 * that the top of the buffer is aligned. 11276 */ 11277 offs = 0; 11278 total = needed; 11279 buf->dtb_flags |= DTRACEBUF_WRAPPED; 11280 } else { 11281 /* 11282 * There is room for us in the buffer, so we simply 11283 * need to check the wrapped offset. 11284 */ 11285 if (woffs < offs) { 11286 /* 11287 * The wrapped offset is less than the offset. 11288 * This can happen if we allocated buffer space 11289 * that induced a wrap, but then we didn't 11290 * subsequently take the space due to an error 11291 * or false predicate evaluation. This is 11292 * okay; we know that _this_ allocation isn't 11293 * going to induce a wrap. We still can't 11294 * reset the wrapped offset to be zero, 11295 * however: the space may have been trashed in 11296 * the previous failed probe attempt. But at 11297 * least the wrapped offset doesn't need to 11298 * be adjusted at all... 11299 */ 11300 goto out; 11301 } 11302 } 11303 11304 while (offs + total > woffs) { 11305 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 11306 size_t size; 11307 11308 if (epid == DTRACE_EPIDNONE) { 11309 size = sizeof (uint32_t); 11310 } else { 11311 ASSERT3U(epid, <=, state->dts_necbs); 11312 ASSERT(state->dts_ecbs[epid - 1] != NULL); 11313 11314 size = state->dts_ecbs[epid - 1]->dte_size; 11315 } 11316 11317 ASSERT(woffs + size <= buf->dtb_size); 11318 ASSERT(size != 0); 11319 11320 if (woffs + size == buf->dtb_size) { 11321 /* 11322 * We've reached the end of the buffer; we want 11323 * to set the wrapped offset to 0 and break 11324 * out. However, if the offs is 0, then we're 11325 * in a strange edge-condition: the amount of 11326 * space that we want to reserve plus the size 11327 * of the record that we're overwriting is 11328 * greater than the size of the buffer. This 11329 * is problematic because if we reserve the 11330 * space but subsequently don't consume it (due 11331 * to a failed predicate or error) the wrapped 11332 * offset will be 0 -- yet the EPID at offset 0 11333 * will not be committed. This situation is 11334 * relatively easy to deal with: if we're in 11335 * this case, the buffer is indistinguishable 11336 * from one that hasn't wrapped; we need only 11337 * finish the job by clearing the wrapped bit, 11338 * explicitly setting the offset to be 0, and 11339 * zero'ing out the old data in the buffer. 11340 */ 11341 if (offs == 0) { 11342 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 11343 buf->dtb_offset = 0; 11344 woffs = total; 11345 11346 while (woffs < buf->dtb_size) 11347 tomax[woffs++] = 0; 11348 } 11349 11350 woffs = 0; 11351 break; 11352 } 11353 11354 woffs += size; 11355 } 11356 11357 /* 11358 * We have a wrapped offset. It may be that the wrapped offset 11359 * has become zero -- that's okay. 11360 */ 11361 buf->dtb_xamot_offset = woffs; 11362 } 11363 11364 out: 11365 /* 11366 * Now we can plow the buffer with any necessary padding. 11367 */ 11368 while (offs & (align - 1)) { 11369 /* 11370 * Assert that our alignment is off by a number which 11371 * is itself sizeof (uint32_t) aligned. 11372 */ 11373 ASSERT(!((align - (offs & (align - 1))) & 11374 (sizeof (uint32_t) - 1))); 11375 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 11376 offs += sizeof (uint32_t); 11377 } 11378 11379 if (buf->dtb_flags & DTRACEBUF_FILL) { 11380 if (offs + needed > buf->dtb_size - state->dts_reserve) { 11381 buf->dtb_flags |= DTRACEBUF_FULL; 11382 return (-1); 11383 } 11384 } 11385 11386 if (mstate == NULL) 11387 return (offs); 11388 11389 /* 11390 * For ring buffers and fill buffers, the scratch space is always 11391 * the inactive buffer. 11392 */ 11393 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 11394 mstate->dtms_scratch_size = buf->dtb_size; 11395 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 11396 11397 return (offs); 11398 } 11399 11400 static void 11401 dtrace_buffer_polish(dtrace_buffer_t *buf) 11402 { 11403 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 11404 ASSERT(MUTEX_HELD(&dtrace_lock)); 11405 11406 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 11407 return; 11408 11409 /* 11410 * We need to polish the ring buffer. There are three cases: 11411 * 11412 * - The first (and presumably most common) is that there is no gap 11413 * between the buffer offset and the wrapped offset. In this case, 11414 * there is nothing in the buffer that isn't valid data; we can 11415 * mark the buffer as polished and return. 11416 * 11417 * - The second (less common than the first but still more common 11418 * than the third) is that there is a gap between the buffer offset 11419 * and the wrapped offset, and the wrapped offset is larger than the 11420 * buffer offset. This can happen because of an alignment issue, or 11421 * can happen because of a call to dtrace_buffer_reserve() that 11422 * didn't subsequently consume the buffer space. In this case, 11423 * we need to zero the data from the buffer offset to the wrapped 11424 * offset. 11425 * 11426 * - The third (and least common) is that there is a gap between the 11427 * buffer offset and the wrapped offset, but the wrapped offset is 11428 * _less_ than the buffer offset. This can only happen because a 11429 * call to dtrace_buffer_reserve() induced a wrap, but the space 11430 * was not subsequently consumed. In this case, we need to zero the 11431 * space from the offset to the end of the buffer _and_ from the 11432 * top of the buffer to the wrapped offset. 11433 */ 11434 if (buf->dtb_offset < buf->dtb_xamot_offset) { 11435 bzero(buf->dtb_tomax + buf->dtb_offset, 11436 buf->dtb_xamot_offset - buf->dtb_offset); 11437 } 11438 11439 if (buf->dtb_offset > buf->dtb_xamot_offset) { 11440 bzero(buf->dtb_tomax + buf->dtb_offset, 11441 buf->dtb_size - buf->dtb_offset); 11442 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 11443 } 11444 } 11445 11446 /* 11447 * This routine determines if data generated at the specified time has likely 11448 * been entirely consumed at user-level. This routine is called to determine 11449 * if an ECB on a defunct probe (but for an active enabling) can be safely 11450 * disabled and destroyed. 11451 */ 11452 static int 11453 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when) 11454 { 11455 int i; 11456 11457 for (i = 0; i < NCPU; i++) { 11458 dtrace_buffer_t *buf = &bufs[i]; 11459 11460 if (buf->dtb_size == 0) 11461 continue; 11462 11463 if (buf->dtb_flags & DTRACEBUF_RING) 11464 return (0); 11465 11466 if (!buf->dtb_switched && buf->dtb_offset != 0) 11467 return (0); 11468 11469 if (buf->dtb_switched - buf->dtb_interval < when) 11470 return (0); 11471 } 11472 11473 return (1); 11474 } 11475 11476 static void 11477 dtrace_buffer_free(dtrace_buffer_t *bufs) 11478 { 11479 int i; 11480 11481 for (i = 0; i < NCPU; i++) { 11482 dtrace_buffer_t *buf = &bufs[i]; 11483 11484 if (buf->dtb_tomax == NULL) { 11485 ASSERT(buf->dtb_xamot == NULL); 11486 ASSERT(buf->dtb_size == 0); 11487 continue; 11488 } 11489 11490 if (buf->dtb_xamot != NULL) { 11491 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 11492 kmem_free(buf->dtb_xamot, buf->dtb_size); 11493 } 11494 11495 kmem_free(buf->dtb_tomax, buf->dtb_size); 11496 buf->dtb_size = 0; 11497 buf->dtb_tomax = NULL; 11498 buf->dtb_xamot = NULL; 11499 } 11500 } 11501 11502 /* 11503 * DTrace Enabling Functions 11504 */ 11505 static dtrace_enabling_t * 11506 dtrace_enabling_create(dtrace_vstate_t *vstate) 11507 { 11508 dtrace_enabling_t *enab; 11509 11510 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 11511 enab->dten_vstate = vstate; 11512 11513 return (enab); 11514 } 11515 11516 static void 11517 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 11518 { 11519 dtrace_ecbdesc_t **ndesc; 11520 size_t osize, nsize; 11521 11522 /* 11523 * We can't add to enablings after we've enabled them, or after we've 11524 * retained them. 11525 */ 11526 ASSERT(enab->dten_probegen == 0); 11527 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 11528 11529 if (enab->dten_ndesc < enab->dten_maxdesc) { 11530 enab->dten_desc[enab->dten_ndesc++] = ecb; 11531 return; 11532 } 11533 11534 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 11535 11536 if (enab->dten_maxdesc == 0) { 11537 enab->dten_maxdesc = 1; 11538 } else { 11539 enab->dten_maxdesc <<= 1; 11540 } 11541 11542 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 11543 11544 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 11545 ndesc = kmem_zalloc(nsize, KM_SLEEP); 11546 bcopy(enab->dten_desc, ndesc, osize); 11547 kmem_free(enab->dten_desc, osize); 11548 11549 enab->dten_desc = ndesc; 11550 enab->dten_desc[enab->dten_ndesc++] = ecb; 11551 } 11552 11553 static void 11554 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 11555 dtrace_probedesc_t *pd) 11556 { 11557 dtrace_ecbdesc_t *new; 11558 dtrace_predicate_t *pred; 11559 dtrace_actdesc_t *act; 11560 11561 /* 11562 * We're going to create a new ECB description that matches the 11563 * specified ECB in every way, but has the specified probe description. 11564 */ 11565 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 11566 11567 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 11568 dtrace_predicate_hold(pred); 11569 11570 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 11571 dtrace_actdesc_hold(act); 11572 11573 new->dted_action = ecb->dted_action; 11574 new->dted_pred = ecb->dted_pred; 11575 new->dted_probe = *pd; 11576 new->dted_uarg = ecb->dted_uarg; 11577 11578 dtrace_enabling_add(enab, new); 11579 } 11580 11581 static void 11582 dtrace_enabling_dump(dtrace_enabling_t *enab) 11583 { 11584 int i; 11585 11586 for (i = 0; i < enab->dten_ndesc; i++) { 11587 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 11588 11589 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 11590 desc->dtpd_provider, desc->dtpd_mod, 11591 desc->dtpd_func, desc->dtpd_name); 11592 } 11593 } 11594 11595 static void 11596 dtrace_enabling_destroy(dtrace_enabling_t *enab) 11597 { 11598 int i; 11599 dtrace_ecbdesc_t *ep; 11600 dtrace_vstate_t *vstate = enab->dten_vstate; 11601 11602 ASSERT(MUTEX_HELD(&dtrace_lock)); 11603 11604 for (i = 0; i < enab->dten_ndesc; i++) { 11605 dtrace_actdesc_t *act, *next; 11606 dtrace_predicate_t *pred; 11607 11608 ep = enab->dten_desc[i]; 11609 11610 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 11611 dtrace_predicate_release(pred, vstate); 11612 11613 for (act = ep->dted_action; act != NULL; act = next) { 11614 next = act->dtad_next; 11615 dtrace_actdesc_release(act, vstate); 11616 } 11617 11618 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 11619 } 11620 11621 kmem_free(enab->dten_desc, 11622 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 11623 11624 /* 11625 * If this was a retained enabling, decrement the dts_nretained count 11626 * and take it off of the dtrace_retained list. 11627 */ 11628 if (enab->dten_prev != NULL || enab->dten_next != NULL || 11629 dtrace_retained == enab) { 11630 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11631 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 11632 enab->dten_vstate->dtvs_state->dts_nretained--; 11633 dtrace_retained_gen++; 11634 } 11635 11636 if (enab->dten_prev == NULL) { 11637 if (dtrace_retained == enab) { 11638 dtrace_retained = enab->dten_next; 11639 11640 if (dtrace_retained != NULL) 11641 dtrace_retained->dten_prev = NULL; 11642 } 11643 } else { 11644 ASSERT(enab != dtrace_retained); 11645 ASSERT(dtrace_retained != NULL); 11646 enab->dten_prev->dten_next = enab->dten_next; 11647 } 11648 11649 if (enab->dten_next != NULL) { 11650 ASSERT(dtrace_retained != NULL); 11651 enab->dten_next->dten_prev = enab->dten_prev; 11652 } 11653 11654 kmem_free(enab, sizeof (dtrace_enabling_t)); 11655 } 11656 11657 static int 11658 dtrace_enabling_retain(dtrace_enabling_t *enab) 11659 { 11660 dtrace_state_t *state; 11661 11662 ASSERT(MUTEX_HELD(&dtrace_lock)); 11663 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 11664 ASSERT(enab->dten_vstate != NULL); 11665 11666 state = enab->dten_vstate->dtvs_state; 11667 ASSERT(state != NULL); 11668 11669 /* 11670 * We only allow each state to retain dtrace_retain_max enablings. 11671 */ 11672 if (state->dts_nretained >= dtrace_retain_max) 11673 return (ENOSPC); 11674 11675 state->dts_nretained++; 11676 dtrace_retained_gen++; 11677 11678 if (dtrace_retained == NULL) { 11679 dtrace_retained = enab; 11680 return (0); 11681 } 11682 11683 enab->dten_next = dtrace_retained; 11684 dtrace_retained->dten_prev = enab; 11685 dtrace_retained = enab; 11686 11687 return (0); 11688 } 11689 11690 static int 11691 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 11692 dtrace_probedesc_t *create) 11693 { 11694 dtrace_enabling_t *new, *enab; 11695 int found = 0, err = ENOENT; 11696 11697 ASSERT(MUTEX_HELD(&dtrace_lock)); 11698 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 11699 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 11700 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 11701 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 11702 11703 new = dtrace_enabling_create(&state->dts_vstate); 11704 11705 /* 11706 * Iterate over all retained enablings, looking for enablings that 11707 * match the specified state. 11708 */ 11709 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 11710 int i; 11711 11712 /* 11713 * dtvs_state can only be NULL for helper enablings -- and 11714 * helper enablings can't be retained. 11715 */ 11716 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11717 11718 if (enab->dten_vstate->dtvs_state != state) 11719 continue; 11720 11721 /* 11722 * Now iterate over each probe description; we're looking for 11723 * an exact match to the specified probe description. 11724 */ 11725 for (i = 0; i < enab->dten_ndesc; i++) { 11726 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 11727 dtrace_probedesc_t *pd = &ep->dted_probe; 11728 11729 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 11730 continue; 11731 11732 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 11733 continue; 11734 11735 if (strcmp(pd->dtpd_func, match->dtpd_func)) 11736 continue; 11737 11738 if (strcmp(pd->dtpd_name, match->dtpd_name)) 11739 continue; 11740 11741 /* 11742 * We have a winning probe! Add it to our growing 11743 * enabling. 11744 */ 11745 found = 1; 11746 dtrace_enabling_addlike(new, ep, create); 11747 } 11748 } 11749 11750 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 11751 dtrace_enabling_destroy(new); 11752 return (err); 11753 } 11754 11755 return (0); 11756 } 11757 11758 static void 11759 dtrace_enabling_retract(dtrace_state_t *state) 11760 { 11761 dtrace_enabling_t *enab, *next; 11762 11763 ASSERT(MUTEX_HELD(&dtrace_lock)); 11764 11765 /* 11766 * Iterate over all retained enablings, destroy the enablings retained 11767 * for the specified state. 11768 */ 11769 for (enab = dtrace_retained; enab != NULL; enab = next) { 11770 next = enab->dten_next; 11771 11772 /* 11773 * dtvs_state can only be NULL for helper enablings -- and 11774 * helper enablings can't be retained. 11775 */ 11776 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11777 11778 if (enab->dten_vstate->dtvs_state == state) { 11779 ASSERT(state->dts_nretained > 0); 11780 dtrace_enabling_destroy(enab); 11781 } 11782 } 11783 11784 ASSERT(state->dts_nretained == 0); 11785 } 11786 11787 static int 11788 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 11789 { 11790 int i = 0; 11791 int total_matched = 0, matched = 0; 11792 11793 ASSERT(MUTEX_HELD(&cpu_lock)); 11794 ASSERT(MUTEX_HELD(&dtrace_lock)); 11795 11796 for (i = 0; i < enab->dten_ndesc; i++) { 11797 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 11798 11799 enab->dten_current = ep; 11800 enab->dten_error = 0; 11801 11802 /* 11803 * If a provider failed to enable a probe then get out and 11804 * let the consumer know we failed. 11805 */ 11806 if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0) 11807 return (EBUSY); 11808 11809 total_matched += matched; 11810 11811 if (enab->dten_error != 0) { 11812 /* 11813 * If we get an error half-way through enabling the 11814 * probes, we kick out -- perhaps with some number of 11815 * them enabled. Leaving enabled probes enabled may 11816 * be slightly confusing for user-level, but we expect 11817 * that no one will attempt to actually drive on in 11818 * the face of such errors. If this is an anonymous 11819 * enabling (indicated with a NULL nmatched pointer), 11820 * we cmn_err() a message. We aren't expecting to 11821 * get such an error -- such as it can exist at all, 11822 * it would be a result of corrupted DOF in the driver 11823 * properties. 11824 */ 11825 if (nmatched == NULL) { 11826 cmn_err(CE_WARN, "dtrace_enabling_match() " 11827 "error on %p: %d", (void *)ep, 11828 enab->dten_error); 11829 } 11830 11831 return (enab->dten_error); 11832 } 11833 } 11834 11835 enab->dten_probegen = dtrace_probegen; 11836 if (nmatched != NULL) 11837 *nmatched = total_matched; 11838 11839 return (0); 11840 } 11841 11842 static void 11843 dtrace_enabling_matchall(void) 11844 { 11845 dtrace_enabling_t *enab; 11846 11847 mutex_enter(&cpu_lock); 11848 mutex_enter(&dtrace_lock); 11849 11850 /* 11851 * Iterate over all retained enablings to see if any probes match 11852 * against them. We only perform this operation on enablings for which 11853 * we have sufficient permissions by virtue of being in the global zone 11854 * or in the same zone as the DTrace client. Because we can be called 11855 * after dtrace_detach() has been called, we cannot assert that there 11856 * are retained enablings. We can safely load from dtrace_retained, 11857 * however: the taskq_destroy() at the end of dtrace_detach() will 11858 * block pending our completion. 11859 */ 11860 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 11861 dtrace_cred_t *dcr = &enab->dten_vstate->dtvs_state->dts_cred; 11862 cred_t *cr = dcr->dcr_cred; 11863 zoneid_t zone = cr != NULL ? crgetzoneid(cr) : 0; 11864 11865 if ((dcr->dcr_visible & DTRACE_CRV_ALLZONE) || (cr != NULL && 11866 (zone == GLOBAL_ZONEID || getzoneid() == zone))) 11867 (void) dtrace_enabling_match(enab, NULL); 11868 } 11869 11870 mutex_exit(&dtrace_lock); 11871 mutex_exit(&cpu_lock); 11872 } 11873 11874 /* 11875 * If an enabling is to be enabled without having matched probes (that is, if 11876 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 11877 * enabling must be _primed_ by creating an ECB for every ECB description. 11878 * This must be done to assure that we know the number of speculations, the 11879 * number of aggregations, the minimum buffer size needed, etc. before we 11880 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 11881 * enabling any probes, we create ECBs for every ECB decription, but with a 11882 * NULL probe -- which is exactly what this function does. 11883 */ 11884 static void 11885 dtrace_enabling_prime(dtrace_state_t *state) 11886 { 11887 dtrace_enabling_t *enab; 11888 int i; 11889 11890 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 11891 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11892 11893 if (enab->dten_vstate->dtvs_state != state) 11894 continue; 11895 11896 /* 11897 * We don't want to prime an enabling more than once, lest 11898 * we allow a malicious user to induce resource exhaustion. 11899 * (The ECBs that result from priming an enabling aren't 11900 * leaked -- but they also aren't deallocated until the 11901 * consumer state is destroyed.) 11902 */ 11903 if (enab->dten_primed) 11904 continue; 11905 11906 for (i = 0; i < enab->dten_ndesc; i++) { 11907 enab->dten_current = enab->dten_desc[i]; 11908 (void) dtrace_probe_enable(NULL, enab); 11909 } 11910 11911 enab->dten_primed = 1; 11912 } 11913 } 11914 11915 /* 11916 * Called to indicate that probes should be provided due to retained 11917 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 11918 * must take an initial lap through the enabling calling the dtps_provide() 11919 * entry point explicitly to allow for autocreated probes. 11920 */ 11921 static void 11922 dtrace_enabling_provide(dtrace_provider_t *prv) 11923 { 11924 int i, all = 0; 11925 dtrace_probedesc_t desc; 11926 dtrace_genid_t gen; 11927 11928 ASSERT(MUTEX_HELD(&dtrace_lock)); 11929 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 11930 11931 if (prv == NULL) { 11932 all = 1; 11933 prv = dtrace_provider; 11934 } 11935 11936 do { 11937 dtrace_enabling_t *enab; 11938 void *parg = prv->dtpv_arg; 11939 11940 retry: 11941 gen = dtrace_retained_gen; 11942 for (enab = dtrace_retained; enab != NULL; 11943 enab = enab->dten_next) { 11944 for (i = 0; i < enab->dten_ndesc; i++) { 11945 desc = enab->dten_desc[i]->dted_probe; 11946 mutex_exit(&dtrace_lock); 11947 prv->dtpv_pops.dtps_provide(parg, &desc); 11948 mutex_enter(&dtrace_lock); 11949 /* 11950 * Process the retained enablings again if 11951 * they have changed while we weren't holding 11952 * dtrace_lock. 11953 */ 11954 if (gen != dtrace_retained_gen) 11955 goto retry; 11956 } 11957 } 11958 } while (all && (prv = prv->dtpv_next) != NULL); 11959 11960 mutex_exit(&dtrace_lock); 11961 dtrace_probe_provide(NULL, all ? NULL : prv); 11962 mutex_enter(&dtrace_lock); 11963 } 11964 11965 /* 11966 * Called to reap ECBs that are attached to probes from defunct providers. 11967 */ 11968 static void 11969 dtrace_enabling_reap(void) 11970 { 11971 dtrace_provider_t *prov; 11972 dtrace_probe_t *probe; 11973 dtrace_ecb_t *ecb; 11974 hrtime_t when; 11975 int i; 11976 11977 mutex_enter(&cpu_lock); 11978 mutex_enter(&dtrace_lock); 11979 11980 for (i = 0; i < dtrace_nprobes; i++) { 11981 if ((probe = dtrace_probes[i]) == NULL) 11982 continue; 11983 11984 if (probe->dtpr_ecb == NULL) 11985 continue; 11986 11987 prov = probe->dtpr_provider; 11988 11989 if ((when = prov->dtpv_defunct) == 0) 11990 continue; 11991 11992 /* 11993 * We have ECBs on a defunct provider: we want to reap these 11994 * ECBs to allow the provider to unregister. The destruction 11995 * of these ECBs must be done carefully: if we destroy the ECB 11996 * and the consumer later wishes to consume an EPID that 11997 * corresponds to the destroyed ECB (and if the EPID metadata 11998 * has not been previously consumed), the consumer will abort 11999 * processing on the unknown EPID. To reduce (but not, sadly, 12000 * eliminate) the possibility of this, we will only destroy an 12001 * ECB for a defunct provider if, for the state that 12002 * corresponds to the ECB: 12003 * 12004 * (a) There is no speculative tracing (which can effectively 12005 * cache an EPID for an arbitrary amount of time). 12006 * 12007 * (b) The principal buffers have been switched twice since the 12008 * provider became defunct. 12009 * 12010 * (c) The aggregation buffers are of zero size or have been 12011 * switched twice since the provider became defunct. 12012 * 12013 * We use dts_speculates to determine (a) and call a function 12014 * (dtrace_buffer_consumed()) to determine (b) and (c). Note 12015 * that as soon as we've been unable to destroy one of the ECBs 12016 * associated with the probe, we quit trying -- reaping is only 12017 * fruitful in as much as we can destroy all ECBs associated 12018 * with the defunct provider's probes. 12019 */ 12020 while ((ecb = probe->dtpr_ecb) != NULL) { 12021 dtrace_state_t *state = ecb->dte_state; 12022 dtrace_buffer_t *buf = state->dts_buffer; 12023 dtrace_buffer_t *aggbuf = state->dts_aggbuffer; 12024 12025 if (state->dts_speculates) 12026 break; 12027 12028 if (!dtrace_buffer_consumed(buf, when)) 12029 break; 12030 12031 if (!dtrace_buffer_consumed(aggbuf, when)) 12032 break; 12033 12034 dtrace_ecb_disable(ecb); 12035 ASSERT(probe->dtpr_ecb != ecb); 12036 dtrace_ecb_destroy(ecb); 12037 } 12038 } 12039 12040 mutex_exit(&dtrace_lock); 12041 mutex_exit(&cpu_lock); 12042 } 12043 12044 /* 12045 * DTrace DOF Functions 12046 */ 12047 /*ARGSUSED*/ 12048 static void 12049 dtrace_dof_error(dof_hdr_t *dof, const char *str) 12050 { 12051 if (dtrace_err_verbose) 12052 cmn_err(CE_WARN, "failed to process DOF: %s", str); 12053 12054 #ifdef DTRACE_ERRDEBUG 12055 dtrace_errdebug(str); 12056 #endif 12057 } 12058 12059 /* 12060 * Create DOF out of a currently enabled state. Right now, we only create 12061 * DOF containing the run-time options -- but this could be expanded to create 12062 * complete DOF representing the enabled state. 12063 */ 12064 static dof_hdr_t * 12065 dtrace_dof_create(dtrace_state_t *state) 12066 { 12067 dof_hdr_t *dof; 12068 dof_sec_t *sec; 12069 dof_optdesc_t *opt; 12070 int i, len = sizeof (dof_hdr_t) + 12071 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 12072 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 12073 12074 ASSERT(MUTEX_HELD(&dtrace_lock)); 12075 12076 dof = kmem_zalloc(len, KM_SLEEP); 12077 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 12078 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 12079 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 12080 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 12081 12082 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 12083 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 12084 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 12085 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 12086 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 12087 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 12088 12089 dof->dofh_flags = 0; 12090 dof->dofh_hdrsize = sizeof (dof_hdr_t); 12091 dof->dofh_secsize = sizeof (dof_sec_t); 12092 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 12093 dof->dofh_secoff = sizeof (dof_hdr_t); 12094 dof->dofh_loadsz = len; 12095 dof->dofh_filesz = len; 12096 dof->dofh_pad = 0; 12097 12098 /* 12099 * Fill in the option section header... 12100 */ 12101 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 12102 sec->dofs_type = DOF_SECT_OPTDESC; 12103 sec->dofs_align = sizeof (uint64_t); 12104 sec->dofs_flags = DOF_SECF_LOAD; 12105 sec->dofs_entsize = sizeof (dof_optdesc_t); 12106 12107 opt = (dof_optdesc_t *)((uintptr_t)sec + 12108 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 12109 12110 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 12111 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 12112 12113 for (i = 0; i < DTRACEOPT_MAX; i++) { 12114 opt[i].dofo_option = i; 12115 opt[i].dofo_strtab = DOF_SECIDX_NONE; 12116 opt[i].dofo_value = state->dts_options[i]; 12117 } 12118 12119 return (dof); 12120 } 12121 12122 static dof_hdr_t * 12123 dtrace_dof_copyin(uintptr_t uarg, int *errp) 12124 { 12125 dof_hdr_t hdr, *dof; 12126 12127 ASSERT(!MUTEX_HELD(&dtrace_lock)); 12128 12129 /* 12130 * First, we're going to copyin() the sizeof (dof_hdr_t). 12131 */ 12132 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 12133 dtrace_dof_error(NULL, "failed to copyin DOF header"); 12134 *errp = EFAULT; 12135 return (NULL); 12136 } 12137 12138 /* 12139 * Now we'll allocate the entire DOF and copy it in -- provided 12140 * that the length isn't outrageous. 12141 */ 12142 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 12143 dtrace_dof_error(&hdr, "load size exceeds maximum"); 12144 *errp = E2BIG; 12145 return (NULL); 12146 } 12147 12148 if (hdr.dofh_loadsz < sizeof (hdr)) { 12149 dtrace_dof_error(&hdr, "invalid load size"); 12150 *errp = EINVAL; 12151 return (NULL); 12152 } 12153 12154 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 12155 12156 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 || 12157 dof->dofh_loadsz != hdr.dofh_loadsz) { 12158 kmem_free(dof, hdr.dofh_loadsz); 12159 *errp = EFAULT; 12160 return (NULL); 12161 } 12162 12163 return (dof); 12164 } 12165 12166 static dof_hdr_t * 12167 dtrace_dof_property(const char *name) 12168 { 12169 uchar_t *buf; 12170 uint64_t loadsz; 12171 unsigned int len, i; 12172 dof_hdr_t *dof; 12173 12174 /* 12175 * Unfortunately, array of values in .conf files are always (and 12176 * only) interpreted to be integer arrays. We must read our DOF 12177 * as an integer array, and then squeeze it into a byte array. 12178 */ 12179 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 12180 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 12181 return (NULL); 12182 12183 for (i = 0; i < len; i++) 12184 buf[i] = (uchar_t)(((int *)buf)[i]); 12185 12186 if (len < sizeof (dof_hdr_t)) { 12187 ddi_prop_free(buf); 12188 dtrace_dof_error(NULL, "truncated header"); 12189 return (NULL); 12190 } 12191 12192 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 12193 ddi_prop_free(buf); 12194 dtrace_dof_error(NULL, "truncated DOF"); 12195 return (NULL); 12196 } 12197 12198 if (loadsz >= dtrace_dof_maxsize) { 12199 ddi_prop_free(buf); 12200 dtrace_dof_error(NULL, "oversized DOF"); 12201 return (NULL); 12202 } 12203 12204 dof = kmem_alloc(loadsz, KM_SLEEP); 12205 bcopy(buf, dof, loadsz); 12206 ddi_prop_free(buf); 12207 12208 return (dof); 12209 } 12210 12211 static void 12212 dtrace_dof_destroy(dof_hdr_t *dof) 12213 { 12214 kmem_free(dof, dof->dofh_loadsz); 12215 } 12216 12217 /* 12218 * Return the dof_sec_t pointer corresponding to a given section index. If the 12219 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 12220 * a type other than DOF_SECT_NONE is specified, the header is checked against 12221 * this type and NULL is returned if the types do not match. 12222 */ 12223 static dof_sec_t * 12224 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 12225 { 12226 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 12227 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 12228 12229 if (i >= dof->dofh_secnum) { 12230 dtrace_dof_error(dof, "referenced section index is invalid"); 12231 return (NULL); 12232 } 12233 12234 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 12235 dtrace_dof_error(dof, "referenced section is not loadable"); 12236 return (NULL); 12237 } 12238 12239 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 12240 dtrace_dof_error(dof, "referenced section is the wrong type"); 12241 return (NULL); 12242 } 12243 12244 return (sec); 12245 } 12246 12247 static dtrace_probedesc_t * 12248 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 12249 { 12250 dof_probedesc_t *probe; 12251 dof_sec_t *strtab; 12252 uintptr_t daddr = (uintptr_t)dof; 12253 uintptr_t str; 12254 size_t size; 12255 12256 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 12257 dtrace_dof_error(dof, "invalid probe section"); 12258 return (NULL); 12259 } 12260 12261 if (sec->dofs_align != sizeof (dof_secidx_t)) { 12262 dtrace_dof_error(dof, "bad alignment in probe description"); 12263 return (NULL); 12264 } 12265 12266 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 12267 dtrace_dof_error(dof, "truncated probe description"); 12268 return (NULL); 12269 } 12270 12271 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 12272 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 12273 12274 if (strtab == NULL) 12275 return (NULL); 12276 12277 str = daddr + strtab->dofs_offset; 12278 size = strtab->dofs_size; 12279 12280 if (probe->dofp_provider >= strtab->dofs_size) { 12281 dtrace_dof_error(dof, "corrupt probe provider"); 12282 return (NULL); 12283 } 12284 12285 (void) strncpy(desc->dtpd_provider, 12286 (char *)(str + probe->dofp_provider), 12287 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 12288 12289 if (probe->dofp_mod >= strtab->dofs_size) { 12290 dtrace_dof_error(dof, "corrupt probe module"); 12291 return (NULL); 12292 } 12293 12294 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 12295 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 12296 12297 if (probe->dofp_func >= strtab->dofs_size) { 12298 dtrace_dof_error(dof, "corrupt probe function"); 12299 return (NULL); 12300 } 12301 12302 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 12303 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 12304 12305 if (probe->dofp_name >= strtab->dofs_size) { 12306 dtrace_dof_error(dof, "corrupt probe name"); 12307 return (NULL); 12308 } 12309 12310 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 12311 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 12312 12313 return (desc); 12314 } 12315 12316 static dtrace_difo_t * 12317 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12318 cred_t *cr) 12319 { 12320 dtrace_difo_t *dp; 12321 size_t ttl = 0; 12322 dof_difohdr_t *dofd; 12323 uintptr_t daddr = (uintptr_t)dof; 12324 size_t max = dtrace_difo_maxsize; 12325 int i, l, n; 12326 12327 static const struct { 12328 int section; 12329 int bufoffs; 12330 int lenoffs; 12331 int entsize; 12332 int align; 12333 const char *msg; 12334 } difo[] = { 12335 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 12336 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 12337 sizeof (dif_instr_t), "multiple DIF sections" }, 12338 12339 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 12340 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 12341 sizeof (uint64_t), "multiple integer tables" }, 12342 12343 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 12344 offsetof(dtrace_difo_t, dtdo_strlen), 0, 12345 sizeof (char), "multiple string tables" }, 12346 12347 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 12348 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 12349 sizeof (uint_t), "multiple variable tables" }, 12350 12351 { DOF_SECT_NONE, 0, 0, 0, NULL } 12352 }; 12353 12354 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 12355 dtrace_dof_error(dof, "invalid DIFO header section"); 12356 return (NULL); 12357 } 12358 12359 if (sec->dofs_align != sizeof (dof_secidx_t)) { 12360 dtrace_dof_error(dof, "bad alignment in DIFO header"); 12361 return (NULL); 12362 } 12363 12364 if (sec->dofs_size < sizeof (dof_difohdr_t) || 12365 sec->dofs_size % sizeof (dof_secidx_t)) { 12366 dtrace_dof_error(dof, "bad size in DIFO header"); 12367 return (NULL); 12368 } 12369 12370 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 12371 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 12372 12373 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 12374 dp->dtdo_rtype = dofd->dofd_rtype; 12375 12376 for (l = 0; l < n; l++) { 12377 dof_sec_t *subsec; 12378 void **bufp; 12379 uint32_t *lenp; 12380 12381 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 12382 dofd->dofd_links[l])) == NULL) 12383 goto err; /* invalid section link */ 12384 12385 if (ttl + subsec->dofs_size > max) { 12386 dtrace_dof_error(dof, "exceeds maximum size"); 12387 goto err; 12388 } 12389 12390 ttl += subsec->dofs_size; 12391 12392 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 12393 if (subsec->dofs_type != difo[i].section) 12394 continue; 12395 12396 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 12397 dtrace_dof_error(dof, "section not loaded"); 12398 goto err; 12399 } 12400 12401 if (subsec->dofs_align != difo[i].align) { 12402 dtrace_dof_error(dof, "bad alignment"); 12403 goto err; 12404 } 12405 12406 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 12407 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 12408 12409 if (*bufp != NULL) { 12410 dtrace_dof_error(dof, difo[i].msg); 12411 goto err; 12412 } 12413 12414 if (difo[i].entsize != subsec->dofs_entsize) { 12415 dtrace_dof_error(dof, "entry size mismatch"); 12416 goto err; 12417 } 12418 12419 if (subsec->dofs_entsize != 0 && 12420 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 12421 dtrace_dof_error(dof, "corrupt entry size"); 12422 goto err; 12423 } 12424 12425 *lenp = subsec->dofs_size; 12426 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 12427 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 12428 *bufp, subsec->dofs_size); 12429 12430 if (subsec->dofs_entsize != 0) 12431 *lenp /= subsec->dofs_entsize; 12432 12433 break; 12434 } 12435 12436 /* 12437 * If we encounter a loadable DIFO sub-section that is not 12438 * known to us, assume this is a broken program and fail. 12439 */ 12440 if (difo[i].section == DOF_SECT_NONE && 12441 (subsec->dofs_flags & DOF_SECF_LOAD)) { 12442 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 12443 goto err; 12444 } 12445 } 12446 12447 if (dp->dtdo_buf == NULL) { 12448 /* 12449 * We can't have a DIF object without DIF text. 12450 */ 12451 dtrace_dof_error(dof, "missing DIF text"); 12452 goto err; 12453 } 12454 12455 /* 12456 * Before we validate the DIF object, run through the variable table 12457 * looking for the strings -- if any of their size are under, we'll set 12458 * their size to be the system-wide default string size. Note that 12459 * this should _not_ happen if the "strsize" option has been set -- 12460 * in this case, the compiler should have set the size to reflect the 12461 * setting of the option. 12462 */ 12463 for (i = 0; i < dp->dtdo_varlen; i++) { 12464 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 12465 dtrace_diftype_t *t = &v->dtdv_type; 12466 12467 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 12468 continue; 12469 12470 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 12471 t->dtdt_size = dtrace_strsize_default; 12472 } 12473 12474 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 12475 goto err; 12476 12477 dtrace_difo_init(dp, vstate); 12478 return (dp); 12479 12480 err: 12481 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 12482 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 12483 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 12484 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 12485 12486 kmem_free(dp, sizeof (dtrace_difo_t)); 12487 return (NULL); 12488 } 12489 12490 static dtrace_predicate_t * 12491 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12492 cred_t *cr) 12493 { 12494 dtrace_difo_t *dp; 12495 12496 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 12497 return (NULL); 12498 12499 return (dtrace_predicate_create(dp)); 12500 } 12501 12502 static dtrace_actdesc_t * 12503 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12504 cred_t *cr) 12505 { 12506 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 12507 dof_actdesc_t *desc; 12508 dof_sec_t *difosec; 12509 size_t offs; 12510 uintptr_t daddr = (uintptr_t)dof; 12511 uint64_t arg; 12512 dtrace_actkind_t kind; 12513 12514 if (sec->dofs_type != DOF_SECT_ACTDESC) { 12515 dtrace_dof_error(dof, "invalid action section"); 12516 return (NULL); 12517 } 12518 12519 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 12520 dtrace_dof_error(dof, "truncated action description"); 12521 return (NULL); 12522 } 12523 12524 if (sec->dofs_align != sizeof (uint64_t)) { 12525 dtrace_dof_error(dof, "bad alignment in action description"); 12526 return (NULL); 12527 } 12528 12529 if (sec->dofs_size < sec->dofs_entsize) { 12530 dtrace_dof_error(dof, "section entry size exceeds total size"); 12531 return (NULL); 12532 } 12533 12534 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 12535 dtrace_dof_error(dof, "bad entry size in action description"); 12536 return (NULL); 12537 } 12538 12539 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 12540 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 12541 return (NULL); 12542 } 12543 12544 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 12545 desc = (dof_actdesc_t *)(daddr + 12546 (uintptr_t)sec->dofs_offset + offs); 12547 kind = (dtrace_actkind_t)desc->dofa_kind; 12548 12549 if ((DTRACEACT_ISPRINTFLIKE(kind) && 12550 (kind != DTRACEACT_PRINTA || 12551 desc->dofa_strtab != DOF_SECIDX_NONE)) || 12552 (kind == DTRACEACT_DIFEXPR && 12553 desc->dofa_strtab != DOF_SECIDX_NONE)) { 12554 dof_sec_t *strtab; 12555 char *str, *fmt; 12556 uint64_t i; 12557 12558 /* 12559 * The argument to these actions is an index into the 12560 * DOF string table. For printf()-like actions, this 12561 * is the format string. For print(), this is the 12562 * CTF type of the expression result. 12563 */ 12564 if ((strtab = dtrace_dof_sect(dof, 12565 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 12566 goto err; 12567 12568 str = (char *)((uintptr_t)dof + 12569 (uintptr_t)strtab->dofs_offset); 12570 12571 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 12572 if (str[i] == '\0') 12573 break; 12574 } 12575 12576 if (i >= strtab->dofs_size) { 12577 dtrace_dof_error(dof, "bogus format string"); 12578 goto err; 12579 } 12580 12581 if (i == desc->dofa_arg) { 12582 dtrace_dof_error(dof, "empty format string"); 12583 goto err; 12584 } 12585 12586 i -= desc->dofa_arg; 12587 fmt = kmem_alloc(i + 1, KM_SLEEP); 12588 bcopy(&str[desc->dofa_arg], fmt, i + 1); 12589 arg = (uint64_t)(uintptr_t)fmt; 12590 } else { 12591 if (kind == DTRACEACT_PRINTA) { 12592 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 12593 arg = 0; 12594 } else { 12595 arg = desc->dofa_arg; 12596 } 12597 } 12598 12599 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 12600 desc->dofa_uarg, arg); 12601 12602 if (last != NULL) { 12603 last->dtad_next = act; 12604 } else { 12605 first = act; 12606 } 12607 12608 last = act; 12609 12610 if (desc->dofa_difo == DOF_SECIDX_NONE) 12611 continue; 12612 12613 if ((difosec = dtrace_dof_sect(dof, 12614 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 12615 goto err; 12616 12617 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 12618 12619 if (act->dtad_difo == NULL) 12620 goto err; 12621 } 12622 12623 ASSERT(first != NULL); 12624 return (first); 12625 12626 err: 12627 for (act = first; act != NULL; act = next) { 12628 next = act->dtad_next; 12629 dtrace_actdesc_release(act, vstate); 12630 } 12631 12632 return (NULL); 12633 } 12634 12635 static dtrace_ecbdesc_t * 12636 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12637 cred_t *cr) 12638 { 12639 dtrace_ecbdesc_t *ep; 12640 dof_ecbdesc_t *ecb; 12641 dtrace_probedesc_t *desc; 12642 dtrace_predicate_t *pred = NULL; 12643 12644 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 12645 dtrace_dof_error(dof, "truncated ECB description"); 12646 return (NULL); 12647 } 12648 12649 if (sec->dofs_align != sizeof (uint64_t)) { 12650 dtrace_dof_error(dof, "bad alignment in ECB description"); 12651 return (NULL); 12652 } 12653 12654 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 12655 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 12656 12657 if (sec == NULL) 12658 return (NULL); 12659 12660 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 12661 ep->dted_uarg = ecb->dofe_uarg; 12662 desc = &ep->dted_probe; 12663 12664 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 12665 goto err; 12666 12667 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 12668 if ((sec = dtrace_dof_sect(dof, 12669 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 12670 goto err; 12671 12672 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 12673 goto err; 12674 12675 ep->dted_pred.dtpdd_predicate = pred; 12676 } 12677 12678 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 12679 if ((sec = dtrace_dof_sect(dof, 12680 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 12681 goto err; 12682 12683 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 12684 12685 if (ep->dted_action == NULL) 12686 goto err; 12687 } 12688 12689 return (ep); 12690 12691 err: 12692 if (pred != NULL) 12693 dtrace_predicate_release(pred, vstate); 12694 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 12695 return (NULL); 12696 } 12697 12698 /* 12699 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 12700 * specified DOF. At present, this amounts to simply adding 'ubase' to the 12701 * site of any user SETX relocations to account for load object base address. 12702 * In the future, if we need other relocations, this function can be extended. 12703 */ 12704 static int 12705 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase) 12706 { 12707 uintptr_t daddr = (uintptr_t)dof; 12708 dof_relohdr_t *dofr = 12709 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 12710 dof_sec_t *ss, *rs, *ts; 12711 dof_relodesc_t *r; 12712 uint_t i, n; 12713 12714 if (sec->dofs_size < sizeof (dof_relohdr_t) || 12715 sec->dofs_align != sizeof (dof_secidx_t)) { 12716 dtrace_dof_error(dof, "invalid relocation header"); 12717 return (-1); 12718 } 12719 12720 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 12721 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 12722 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 12723 12724 if (ss == NULL || rs == NULL || ts == NULL) 12725 return (-1); /* dtrace_dof_error() has been called already */ 12726 12727 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 12728 rs->dofs_align != sizeof (uint64_t)) { 12729 dtrace_dof_error(dof, "invalid relocation section"); 12730 return (-1); 12731 } 12732 12733 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 12734 n = rs->dofs_size / rs->dofs_entsize; 12735 12736 for (i = 0; i < n; i++) { 12737 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 12738 12739 switch (r->dofr_type) { 12740 case DOF_RELO_NONE: 12741 break; 12742 case DOF_RELO_SETX: 12743 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 12744 sizeof (uint64_t) > ts->dofs_size) { 12745 dtrace_dof_error(dof, "bad relocation offset"); 12746 return (-1); 12747 } 12748 12749 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 12750 dtrace_dof_error(dof, "misaligned setx relo"); 12751 return (-1); 12752 } 12753 12754 *(uint64_t *)taddr += ubase; 12755 break; 12756 default: 12757 dtrace_dof_error(dof, "invalid relocation type"); 12758 return (-1); 12759 } 12760 12761 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 12762 } 12763 12764 return (0); 12765 } 12766 12767 /* 12768 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 12769 * header: it should be at the front of a memory region that is at least 12770 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 12771 * size. It need not be validated in any other way. 12772 */ 12773 static int 12774 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 12775 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes) 12776 { 12777 uint64_t len = dof->dofh_loadsz, seclen; 12778 uintptr_t daddr = (uintptr_t)dof; 12779 dtrace_ecbdesc_t *ep; 12780 dtrace_enabling_t *enab; 12781 uint_t i; 12782 12783 ASSERT(MUTEX_HELD(&dtrace_lock)); 12784 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 12785 12786 /* 12787 * Check the DOF header identification bytes. In addition to checking 12788 * valid settings, we also verify that unused bits/bytes are zeroed so 12789 * we can use them later without fear of regressing existing binaries. 12790 */ 12791 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 12792 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 12793 dtrace_dof_error(dof, "DOF magic string mismatch"); 12794 return (-1); 12795 } 12796 12797 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 12798 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 12799 dtrace_dof_error(dof, "DOF has invalid data model"); 12800 return (-1); 12801 } 12802 12803 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 12804 dtrace_dof_error(dof, "DOF encoding mismatch"); 12805 return (-1); 12806 } 12807 12808 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 12809 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 12810 dtrace_dof_error(dof, "DOF version mismatch"); 12811 return (-1); 12812 } 12813 12814 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 12815 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 12816 return (-1); 12817 } 12818 12819 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 12820 dtrace_dof_error(dof, "DOF uses too many integer registers"); 12821 return (-1); 12822 } 12823 12824 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 12825 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 12826 return (-1); 12827 } 12828 12829 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 12830 if (dof->dofh_ident[i] != 0) { 12831 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 12832 return (-1); 12833 } 12834 } 12835 12836 if (dof->dofh_flags & ~DOF_FL_VALID) { 12837 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 12838 return (-1); 12839 } 12840 12841 if (dof->dofh_secsize == 0) { 12842 dtrace_dof_error(dof, "zero section header size"); 12843 return (-1); 12844 } 12845 12846 /* 12847 * Check that the section headers don't exceed the amount of DOF 12848 * data. Note that we cast the section size and number of sections 12849 * to uint64_t's to prevent possible overflow in the multiplication. 12850 */ 12851 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 12852 12853 if (dof->dofh_secoff > len || seclen > len || 12854 dof->dofh_secoff + seclen > len) { 12855 dtrace_dof_error(dof, "truncated section headers"); 12856 return (-1); 12857 } 12858 12859 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 12860 dtrace_dof_error(dof, "misaligned section headers"); 12861 return (-1); 12862 } 12863 12864 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 12865 dtrace_dof_error(dof, "misaligned section size"); 12866 return (-1); 12867 } 12868 12869 /* 12870 * Take an initial pass through the section headers to be sure that 12871 * the headers don't have stray offsets. If the 'noprobes' flag is 12872 * set, do not permit sections relating to providers, probes, or args. 12873 */ 12874 for (i = 0; i < dof->dofh_secnum; i++) { 12875 dof_sec_t *sec = (dof_sec_t *)(daddr + 12876 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 12877 12878 if (noprobes) { 12879 switch (sec->dofs_type) { 12880 case DOF_SECT_PROVIDER: 12881 case DOF_SECT_PROBES: 12882 case DOF_SECT_PRARGS: 12883 case DOF_SECT_PROFFS: 12884 dtrace_dof_error(dof, "illegal sections " 12885 "for enabling"); 12886 return (-1); 12887 } 12888 } 12889 12890 if (DOF_SEC_ISLOADABLE(sec->dofs_type) && 12891 !(sec->dofs_flags & DOF_SECF_LOAD)) { 12892 dtrace_dof_error(dof, "loadable section with load " 12893 "flag unset"); 12894 return (-1); 12895 } 12896 12897 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 12898 continue; /* just ignore non-loadable sections */ 12899 12900 if (sec->dofs_align & (sec->dofs_align - 1)) { 12901 dtrace_dof_error(dof, "bad section alignment"); 12902 return (-1); 12903 } 12904 12905 if (sec->dofs_offset & (sec->dofs_align - 1)) { 12906 dtrace_dof_error(dof, "misaligned section"); 12907 return (-1); 12908 } 12909 12910 if (sec->dofs_offset > len || sec->dofs_size > len || 12911 sec->dofs_offset + sec->dofs_size > len) { 12912 dtrace_dof_error(dof, "corrupt section header"); 12913 return (-1); 12914 } 12915 12916 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 12917 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 12918 dtrace_dof_error(dof, "non-terminating string table"); 12919 return (-1); 12920 } 12921 } 12922 12923 /* 12924 * Take a second pass through the sections and locate and perform any 12925 * relocations that are present. We do this after the first pass to 12926 * be sure that all sections have had their headers validated. 12927 */ 12928 for (i = 0; i < dof->dofh_secnum; i++) { 12929 dof_sec_t *sec = (dof_sec_t *)(daddr + 12930 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 12931 12932 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 12933 continue; /* skip sections that are not loadable */ 12934 12935 switch (sec->dofs_type) { 12936 case DOF_SECT_URELHDR: 12937 if (dtrace_dof_relocate(dof, sec, ubase) != 0) 12938 return (-1); 12939 break; 12940 } 12941 } 12942 12943 if ((enab = *enabp) == NULL) 12944 enab = *enabp = dtrace_enabling_create(vstate); 12945 12946 for (i = 0; i < dof->dofh_secnum; i++) { 12947 dof_sec_t *sec = (dof_sec_t *)(daddr + 12948 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 12949 12950 if (sec->dofs_type != DOF_SECT_ECBDESC) 12951 continue; 12952 12953 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 12954 dtrace_enabling_destroy(enab); 12955 *enabp = NULL; 12956 return (-1); 12957 } 12958 12959 dtrace_enabling_add(enab, ep); 12960 } 12961 12962 return (0); 12963 } 12964 12965 /* 12966 * Process DOF for any options. This routine assumes that the DOF has been 12967 * at least processed by dtrace_dof_slurp(). 12968 */ 12969 static int 12970 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 12971 { 12972 int i, rval; 12973 uint32_t entsize; 12974 size_t offs; 12975 dof_optdesc_t *desc; 12976 12977 for (i = 0; i < dof->dofh_secnum; i++) { 12978 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 12979 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 12980 12981 if (sec->dofs_type != DOF_SECT_OPTDESC) 12982 continue; 12983 12984 if (sec->dofs_align != sizeof (uint64_t)) { 12985 dtrace_dof_error(dof, "bad alignment in " 12986 "option description"); 12987 return (EINVAL); 12988 } 12989 12990 if ((entsize = sec->dofs_entsize) == 0) { 12991 dtrace_dof_error(dof, "zeroed option entry size"); 12992 return (EINVAL); 12993 } 12994 12995 if (entsize < sizeof (dof_optdesc_t)) { 12996 dtrace_dof_error(dof, "bad option entry size"); 12997 return (EINVAL); 12998 } 12999 13000 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 13001 desc = (dof_optdesc_t *)((uintptr_t)dof + 13002 (uintptr_t)sec->dofs_offset + offs); 13003 13004 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 13005 dtrace_dof_error(dof, "non-zero option string"); 13006 return (EINVAL); 13007 } 13008 13009 if (desc->dofo_value == DTRACEOPT_UNSET) { 13010 dtrace_dof_error(dof, "unset option"); 13011 return (EINVAL); 13012 } 13013 13014 if ((rval = dtrace_state_option(state, 13015 desc->dofo_option, desc->dofo_value)) != 0) { 13016 dtrace_dof_error(dof, "rejected option"); 13017 return (rval); 13018 } 13019 } 13020 } 13021 13022 return (0); 13023 } 13024 13025 /* 13026 * DTrace Consumer State Functions 13027 */ 13028 int 13029 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 13030 { 13031 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 13032 void *base; 13033 uintptr_t limit; 13034 dtrace_dynvar_t *dvar, *next, *start; 13035 int i; 13036 13037 ASSERT(MUTEX_HELD(&dtrace_lock)); 13038 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 13039 13040 bzero(dstate, sizeof (dtrace_dstate_t)); 13041 13042 if ((dstate->dtds_chunksize = chunksize) == 0) 13043 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 13044 13045 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 13046 size = min; 13047 13048 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL) 13049 return (ENOMEM); 13050 13051 dstate->dtds_size = size; 13052 dstate->dtds_base = base; 13053 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 13054 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); 13055 13056 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 13057 13058 if (hashsize != 1 && (hashsize & 1)) 13059 hashsize--; 13060 13061 dstate->dtds_hashsize = hashsize; 13062 dstate->dtds_hash = dstate->dtds_base; 13063 13064 /* 13065 * Set all of our hash buckets to point to the single sink, and (if 13066 * it hasn't already been set), set the sink's hash value to be the 13067 * sink sentinel value. The sink is needed for dynamic variable 13068 * lookups to know that they have iterated over an entire, valid hash 13069 * chain. 13070 */ 13071 for (i = 0; i < hashsize; i++) 13072 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 13073 13074 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 13075 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 13076 13077 /* 13078 * Determine number of active CPUs. Divide free list evenly among 13079 * active CPUs. 13080 */ 13081 start = (dtrace_dynvar_t *) 13082 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 13083 limit = (uintptr_t)base + size; 13084 13085 maxper = (limit - (uintptr_t)start) / NCPU; 13086 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 13087 13088 for (i = 0; i < NCPU; i++) { 13089 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 13090 13091 /* 13092 * If we don't even have enough chunks to make it once through 13093 * NCPUs, we're just going to allocate everything to the first 13094 * CPU. And if we're on the last CPU, we're going to allocate 13095 * whatever is left over. In either case, we set the limit to 13096 * be the limit of the dynamic variable space. 13097 */ 13098 if (maxper == 0 || i == NCPU - 1) { 13099 limit = (uintptr_t)base + size; 13100 start = NULL; 13101 } else { 13102 limit = (uintptr_t)start + maxper; 13103 start = (dtrace_dynvar_t *)limit; 13104 } 13105 13106 ASSERT(limit <= (uintptr_t)base + size); 13107 13108 for (;;) { 13109 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 13110 dstate->dtds_chunksize); 13111 13112 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 13113 break; 13114 13115 dvar->dtdv_next = next; 13116 dvar = next; 13117 } 13118 13119 if (maxper == 0) 13120 break; 13121 } 13122 13123 return (0); 13124 } 13125 13126 void 13127 dtrace_dstate_fini(dtrace_dstate_t *dstate) 13128 { 13129 ASSERT(MUTEX_HELD(&cpu_lock)); 13130 13131 if (dstate->dtds_base == NULL) 13132 return; 13133 13134 kmem_free(dstate->dtds_base, dstate->dtds_size); 13135 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 13136 } 13137 13138 static void 13139 dtrace_vstate_fini(dtrace_vstate_t *vstate) 13140 { 13141 /* 13142 * Logical XOR, where are you? 13143 */ 13144 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 13145 13146 if (vstate->dtvs_nglobals > 0) { 13147 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 13148 sizeof (dtrace_statvar_t *)); 13149 } 13150 13151 if (vstate->dtvs_ntlocals > 0) { 13152 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 13153 sizeof (dtrace_difv_t)); 13154 } 13155 13156 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 13157 13158 if (vstate->dtvs_nlocals > 0) { 13159 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 13160 sizeof (dtrace_statvar_t *)); 13161 } 13162 } 13163 13164 static void 13165 dtrace_state_clean(dtrace_state_t *state) 13166 { 13167 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 13168 return; 13169 13170 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 13171 dtrace_speculation_clean(state); 13172 } 13173 13174 static void 13175 dtrace_state_deadman(dtrace_state_t *state) 13176 { 13177 hrtime_t now; 13178 13179 dtrace_sync(); 13180 13181 now = dtrace_gethrtime(); 13182 13183 if (state != dtrace_anon.dta_state && 13184 now - state->dts_laststatus >= dtrace_deadman_user) 13185 return; 13186 13187 /* 13188 * We must be sure that dts_alive never appears to be less than the 13189 * value upon entry to dtrace_state_deadman(), and because we lack a 13190 * dtrace_cas64(), we cannot store to it atomically. We thus instead 13191 * store INT64_MAX to it, followed by a memory barrier, followed by 13192 * the new value. This assures that dts_alive never appears to be 13193 * less than its true value, regardless of the order in which the 13194 * stores to the underlying storage are issued. 13195 */ 13196 state->dts_alive = INT64_MAX; 13197 dtrace_membar_producer(); 13198 state->dts_alive = now; 13199 } 13200 13201 dtrace_state_t * 13202 dtrace_state_create(dev_t *devp, cred_t *cr) 13203 { 13204 minor_t minor; 13205 major_t major; 13206 char c[30]; 13207 dtrace_state_t *state; 13208 dtrace_optval_t *opt; 13209 int bufsize = NCPU * sizeof (dtrace_buffer_t), i; 13210 13211 ASSERT(MUTEX_HELD(&dtrace_lock)); 13212 ASSERT(MUTEX_HELD(&cpu_lock)); 13213 13214 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 13215 VM_BESTFIT | VM_SLEEP); 13216 13217 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 13218 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 13219 return (NULL); 13220 } 13221 13222 state = ddi_get_soft_state(dtrace_softstate, minor); 13223 state->dts_epid = DTRACE_EPIDNONE + 1; 13224 13225 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor); 13226 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 13227 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 13228 13229 if (devp != NULL) { 13230 major = getemajor(*devp); 13231 } else { 13232 major = ddi_driver_major(dtrace_devi); 13233 } 13234 13235 state->dts_dev = makedevice(major, minor); 13236 13237 if (devp != NULL) 13238 *devp = state->dts_dev; 13239 13240 /* 13241 * We allocate NCPU buffers. On the one hand, this can be quite 13242 * a bit of memory per instance (nearly 36K on a Starcat). On the 13243 * other hand, it saves an additional memory reference in the probe 13244 * path. 13245 */ 13246 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 13247 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 13248 state->dts_cleaner = CYCLIC_NONE; 13249 state->dts_deadman = CYCLIC_NONE; 13250 state->dts_vstate.dtvs_state = state; 13251 13252 for (i = 0; i < DTRACEOPT_MAX; i++) 13253 state->dts_options[i] = DTRACEOPT_UNSET; 13254 13255 /* 13256 * Set the default options. 13257 */ 13258 opt = state->dts_options; 13259 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 13260 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 13261 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 13262 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 13263 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 13264 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 13265 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 13266 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 13267 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 13268 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 13269 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 13270 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 13271 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 13272 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 13273 13274 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 13275 13276 /* 13277 * Depending on the user credentials, we set flag bits which alter probe 13278 * visibility or the amount of destructiveness allowed. In the case of 13279 * actual anonymous tracing, or the possession of all privileges, all of 13280 * the normal checks are bypassed. 13281 */ 13282 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 13283 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 13284 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 13285 } else { 13286 /* 13287 * Set up the credentials for this instantiation. We take a 13288 * hold on the credential to prevent it from disappearing on 13289 * us; this in turn prevents the zone_t referenced by this 13290 * credential from disappearing. This means that we can 13291 * examine the credential and the zone from probe context. 13292 */ 13293 crhold(cr); 13294 state->dts_cred.dcr_cred = cr; 13295 13296 /* 13297 * CRA_PROC means "we have *some* privilege for dtrace" and 13298 * unlocks the use of variables like pid, zonename, etc. 13299 */ 13300 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 13301 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 13302 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 13303 } 13304 13305 /* 13306 * dtrace_user allows use of syscall and profile providers. 13307 * If the user also has proc_owner and/or proc_zone, we 13308 * extend the scope to include additional visibility and 13309 * destructive power. 13310 */ 13311 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 13312 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 13313 state->dts_cred.dcr_visible |= 13314 DTRACE_CRV_ALLPROC; 13315 13316 state->dts_cred.dcr_action |= 13317 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13318 } 13319 13320 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 13321 state->dts_cred.dcr_visible |= 13322 DTRACE_CRV_ALLZONE; 13323 13324 state->dts_cred.dcr_action |= 13325 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13326 } 13327 13328 /* 13329 * If we have all privs in whatever zone this is, 13330 * we can do destructive things to processes which 13331 * have altered credentials. 13332 */ 13333 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 13334 cr->cr_zone->zone_privset)) { 13335 state->dts_cred.dcr_action |= 13336 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 13337 } 13338 } 13339 13340 /* 13341 * Holding the dtrace_kernel privilege also implies that 13342 * the user has the dtrace_user privilege from a visibility 13343 * perspective. But without further privileges, some 13344 * destructive actions are not available. 13345 */ 13346 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 13347 /* 13348 * Make all probes in all zones visible. However, 13349 * this doesn't mean that all actions become available 13350 * to all zones. 13351 */ 13352 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 13353 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 13354 13355 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 13356 DTRACE_CRA_PROC; 13357 /* 13358 * Holding proc_owner means that destructive actions 13359 * for *this* zone are allowed. 13360 */ 13361 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 13362 state->dts_cred.dcr_action |= 13363 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13364 13365 /* 13366 * Holding proc_zone means that destructive actions 13367 * for this user/group ID in all zones is allowed. 13368 */ 13369 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 13370 state->dts_cred.dcr_action |= 13371 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13372 13373 /* 13374 * If we have all privs in whatever zone this is, 13375 * we can do destructive things to processes which 13376 * have altered credentials. 13377 */ 13378 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 13379 cr->cr_zone->zone_privset)) { 13380 state->dts_cred.dcr_action |= 13381 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 13382 } 13383 } 13384 13385 /* 13386 * Holding the dtrace_proc privilege gives control over fasttrap 13387 * and pid providers. We need to grant wider destructive 13388 * privileges in the event that the user has proc_owner and/or 13389 * proc_zone. 13390 */ 13391 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 13392 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 13393 state->dts_cred.dcr_action |= 13394 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13395 13396 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 13397 state->dts_cred.dcr_action |= 13398 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13399 } 13400 } 13401 13402 return (state); 13403 } 13404 13405 static int 13406 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 13407 { 13408 dtrace_optval_t *opt = state->dts_options, size; 13409 processorid_t cpu; 13410 int flags = 0, rval, factor, divisor = 1; 13411 13412 ASSERT(MUTEX_HELD(&dtrace_lock)); 13413 ASSERT(MUTEX_HELD(&cpu_lock)); 13414 ASSERT(which < DTRACEOPT_MAX); 13415 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 13416 (state == dtrace_anon.dta_state && 13417 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 13418 13419 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 13420 return (0); 13421 13422 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 13423 cpu = opt[DTRACEOPT_CPU]; 13424 13425 if (which == DTRACEOPT_SPECSIZE) 13426 flags |= DTRACEBUF_NOSWITCH; 13427 13428 if (which == DTRACEOPT_BUFSIZE) { 13429 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 13430 flags |= DTRACEBUF_RING; 13431 13432 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 13433 flags |= DTRACEBUF_FILL; 13434 13435 if (state != dtrace_anon.dta_state || 13436 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 13437 flags |= DTRACEBUF_INACTIVE; 13438 } 13439 13440 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) { 13441 /* 13442 * The size must be 8-byte aligned. If the size is not 8-byte 13443 * aligned, drop it down by the difference. 13444 */ 13445 if (size & (sizeof (uint64_t) - 1)) 13446 size -= size & (sizeof (uint64_t) - 1); 13447 13448 if (size < state->dts_reserve) { 13449 /* 13450 * Buffers always must be large enough to accommodate 13451 * their prereserved space. We return E2BIG instead 13452 * of ENOMEM in this case to allow for user-level 13453 * software to differentiate the cases. 13454 */ 13455 return (E2BIG); 13456 } 13457 13458 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor); 13459 13460 if (rval != ENOMEM) { 13461 opt[which] = size; 13462 return (rval); 13463 } 13464 13465 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 13466 return (rval); 13467 13468 for (divisor = 2; divisor < factor; divisor <<= 1) 13469 continue; 13470 } 13471 13472 return (ENOMEM); 13473 } 13474 13475 static int 13476 dtrace_state_buffers(dtrace_state_t *state) 13477 { 13478 dtrace_speculation_t *spec = state->dts_speculations; 13479 int rval, i; 13480 13481 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 13482 DTRACEOPT_BUFSIZE)) != 0) 13483 return (rval); 13484 13485 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 13486 DTRACEOPT_AGGSIZE)) != 0) 13487 return (rval); 13488 13489 for (i = 0; i < state->dts_nspeculations; i++) { 13490 if ((rval = dtrace_state_buffer(state, 13491 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 13492 return (rval); 13493 } 13494 13495 return (0); 13496 } 13497 13498 static void 13499 dtrace_state_prereserve(dtrace_state_t *state) 13500 { 13501 dtrace_ecb_t *ecb; 13502 dtrace_probe_t *probe; 13503 13504 state->dts_reserve = 0; 13505 13506 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 13507 return; 13508 13509 /* 13510 * If our buffer policy is a "fill" buffer policy, we need to set the 13511 * prereserved space to be the space required by the END probes. 13512 */ 13513 probe = dtrace_probes[dtrace_probeid_end - 1]; 13514 ASSERT(probe != NULL); 13515 13516 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 13517 if (ecb->dte_state != state) 13518 continue; 13519 13520 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 13521 } 13522 } 13523 13524 static int 13525 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 13526 { 13527 dtrace_optval_t *opt = state->dts_options, sz, nspec; 13528 dtrace_speculation_t *spec; 13529 dtrace_buffer_t *buf; 13530 cyc_handler_t hdlr; 13531 cyc_time_t when; 13532 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t); 13533 dtrace_icookie_t cookie; 13534 13535 mutex_enter(&cpu_lock); 13536 mutex_enter(&dtrace_lock); 13537 13538 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 13539 rval = EBUSY; 13540 goto out; 13541 } 13542 13543 /* 13544 * Before we can perform any checks, we must prime all of the 13545 * retained enablings that correspond to this state. 13546 */ 13547 dtrace_enabling_prime(state); 13548 13549 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 13550 rval = EACCES; 13551 goto out; 13552 } 13553 13554 dtrace_state_prereserve(state); 13555 13556 /* 13557 * Now we want to do is try to allocate our speculations. 13558 * We do not automatically resize the number of speculations; if 13559 * this fails, we will fail the operation. 13560 */ 13561 nspec = opt[DTRACEOPT_NSPEC]; 13562 ASSERT(nspec != DTRACEOPT_UNSET); 13563 13564 if (nspec > INT_MAX) { 13565 rval = ENOMEM; 13566 goto out; 13567 } 13568 13569 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), 13570 KM_NOSLEEP | KM_NORMALPRI); 13571 13572 if (spec == NULL) { 13573 rval = ENOMEM; 13574 goto out; 13575 } 13576 13577 state->dts_speculations = spec; 13578 state->dts_nspeculations = (int)nspec; 13579 13580 for (i = 0; i < nspec; i++) { 13581 if ((buf = kmem_zalloc(bufsize, 13582 KM_NOSLEEP | KM_NORMALPRI)) == NULL) { 13583 rval = ENOMEM; 13584 goto err; 13585 } 13586 13587 spec[i].dtsp_buffer = buf; 13588 } 13589 13590 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 13591 if (dtrace_anon.dta_state == NULL) { 13592 rval = ENOENT; 13593 goto out; 13594 } 13595 13596 if (state->dts_necbs != 0) { 13597 rval = EALREADY; 13598 goto out; 13599 } 13600 13601 state->dts_anon = dtrace_anon_grab(); 13602 ASSERT(state->dts_anon != NULL); 13603 state = state->dts_anon; 13604 13605 /* 13606 * We want "grabanon" to be set in the grabbed state, so we'll 13607 * copy that option value from the grabbing state into the 13608 * grabbed state. 13609 */ 13610 state->dts_options[DTRACEOPT_GRABANON] = 13611 opt[DTRACEOPT_GRABANON]; 13612 13613 *cpu = dtrace_anon.dta_beganon; 13614 13615 /* 13616 * If the anonymous state is active (as it almost certainly 13617 * is if the anonymous enabling ultimately matched anything), 13618 * we don't allow any further option processing -- but we 13619 * don't return failure. 13620 */ 13621 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 13622 goto out; 13623 } 13624 13625 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 13626 opt[DTRACEOPT_AGGSIZE] != 0) { 13627 if (state->dts_aggregations == NULL) { 13628 /* 13629 * We're not going to create an aggregation buffer 13630 * because we don't have any ECBs that contain 13631 * aggregations -- set this option to 0. 13632 */ 13633 opt[DTRACEOPT_AGGSIZE] = 0; 13634 } else { 13635 /* 13636 * If we have an aggregation buffer, we must also have 13637 * a buffer to use as scratch. 13638 */ 13639 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 13640 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 13641 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 13642 } 13643 } 13644 } 13645 13646 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 13647 opt[DTRACEOPT_SPECSIZE] != 0) { 13648 if (!state->dts_speculates) { 13649 /* 13650 * We're not going to create speculation buffers 13651 * because we don't have any ECBs that actually 13652 * speculate -- set the speculation size to 0. 13653 */ 13654 opt[DTRACEOPT_SPECSIZE] = 0; 13655 } 13656 } 13657 13658 /* 13659 * The bare minimum size for any buffer that we're actually going to 13660 * do anything to is sizeof (uint64_t). 13661 */ 13662 sz = sizeof (uint64_t); 13663 13664 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 13665 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 13666 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 13667 /* 13668 * A buffer size has been explicitly set to 0 (or to a size 13669 * that will be adjusted to 0) and we need the space -- we 13670 * need to return failure. We return ENOSPC to differentiate 13671 * it from failing to allocate a buffer due to failure to meet 13672 * the reserve (for which we return E2BIG). 13673 */ 13674 rval = ENOSPC; 13675 goto out; 13676 } 13677 13678 if ((rval = dtrace_state_buffers(state)) != 0) 13679 goto err; 13680 13681 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 13682 sz = dtrace_dstate_defsize; 13683 13684 do { 13685 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 13686 13687 if (rval == 0) 13688 break; 13689 13690 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 13691 goto err; 13692 } while (sz >>= 1); 13693 13694 opt[DTRACEOPT_DYNVARSIZE] = sz; 13695 13696 if (rval != 0) 13697 goto err; 13698 13699 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 13700 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 13701 13702 if (opt[DTRACEOPT_CLEANRATE] == 0) 13703 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 13704 13705 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 13706 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 13707 13708 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 13709 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 13710 13711 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 13712 hdlr.cyh_arg = state; 13713 hdlr.cyh_level = CY_LOW_LEVEL; 13714 13715 when.cyt_when = 0; 13716 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 13717 13718 state->dts_cleaner = cyclic_add(&hdlr, &when); 13719 13720 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 13721 hdlr.cyh_arg = state; 13722 hdlr.cyh_level = CY_LOW_LEVEL; 13723 13724 when.cyt_when = 0; 13725 when.cyt_interval = dtrace_deadman_interval; 13726 13727 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 13728 state->dts_deadman = cyclic_add(&hdlr, &when); 13729 13730 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 13731 13732 if (state->dts_getf != 0 && 13733 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 13734 /* 13735 * We don't have kernel privs but we have at least one call 13736 * to getf(); we need to bump our zone's count, and (if 13737 * this is the first enabling to have an unprivileged call 13738 * to getf()) we need to hook into closef(). 13739 */ 13740 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++; 13741 13742 if (dtrace_getf++ == 0) { 13743 ASSERT(dtrace_closef == NULL); 13744 dtrace_closef = dtrace_getf_barrier; 13745 } 13746 } 13747 13748 /* 13749 * Now it's time to actually fire the BEGIN probe. We need to disable 13750 * interrupts here both to record the CPU on which we fired the BEGIN 13751 * probe (the data from this CPU will be processed first at user 13752 * level) and to manually activate the buffer for this CPU. 13753 */ 13754 cookie = dtrace_interrupt_disable(); 13755 *cpu = CPU->cpu_id; 13756 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 13757 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 13758 13759 dtrace_probe(dtrace_probeid_begin, 13760 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 13761 dtrace_interrupt_enable(cookie); 13762 /* 13763 * We may have had an exit action from a BEGIN probe; only change our 13764 * state to ACTIVE if we're still in WARMUP. 13765 */ 13766 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 13767 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 13768 13769 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 13770 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 13771 13772 /* 13773 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 13774 * want each CPU to transition its principal buffer out of the 13775 * INACTIVE state. Doing this assures that no CPU will suddenly begin 13776 * processing an ECB halfway down a probe's ECB chain; all CPUs will 13777 * atomically transition from processing none of a state's ECBs to 13778 * processing all of them. 13779 */ 13780 dtrace_xcall(DTRACE_CPUALL, 13781 (dtrace_xcall_t)dtrace_buffer_activate, state); 13782 goto out; 13783 13784 err: 13785 dtrace_buffer_free(state->dts_buffer); 13786 dtrace_buffer_free(state->dts_aggbuffer); 13787 13788 if ((nspec = state->dts_nspeculations) == 0) { 13789 ASSERT(state->dts_speculations == NULL); 13790 goto out; 13791 } 13792 13793 spec = state->dts_speculations; 13794 ASSERT(spec != NULL); 13795 13796 for (i = 0; i < state->dts_nspeculations; i++) { 13797 if ((buf = spec[i].dtsp_buffer) == NULL) 13798 break; 13799 13800 dtrace_buffer_free(buf); 13801 kmem_free(buf, bufsize); 13802 } 13803 13804 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 13805 state->dts_nspeculations = 0; 13806 state->dts_speculations = NULL; 13807 13808 out: 13809 mutex_exit(&dtrace_lock); 13810 mutex_exit(&cpu_lock); 13811 13812 return (rval); 13813 } 13814 13815 static int 13816 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 13817 { 13818 dtrace_icookie_t cookie; 13819 13820 ASSERT(MUTEX_HELD(&dtrace_lock)); 13821 13822 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 13823 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 13824 return (EINVAL); 13825 13826 /* 13827 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 13828 * to be sure that every CPU has seen it. See below for the details 13829 * on why this is done. 13830 */ 13831 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 13832 dtrace_sync(); 13833 13834 /* 13835 * By this point, it is impossible for any CPU to be still processing 13836 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 13837 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 13838 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 13839 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 13840 * iff we're in the END probe. 13841 */ 13842 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 13843 dtrace_sync(); 13844 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 13845 13846 /* 13847 * Finally, we can release the reserve and call the END probe. We 13848 * disable interrupts across calling the END probe to allow us to 13849 * return the CPU on which we actually called the END probe. This 13850 * allows user-land to be sure that this CPU's principal buffer is 13851 * processed last. 13852 */ 13853 state->dts_reserve = 0; 13854 13855 cookie = dtrace_interrupt_disable(); 13856 *cpu = CPU->cpu_id; 13857 dtrace_probe(dtrace_probeid_end, 13858 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 13859 dtrace_interrupt_enable(cookie); 13860 13861 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 13862 dtrace_sync(); 13863 13864 if (state->dts_getf != 0 && 13865 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 13866 /* 13867 * We don't have kernel privs but we have at least one call 13868 * to getf(); we need to lower our zone's count, and (if 13869 * this is the last enabling to have an unprivileged call 13870 * to getf()) we need to clear the closef() hook. 13871 */ 13872 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0); 13873 ASSERT(dtrace_closef == dtrace_getf_barrier); 13874 ASSERT(dtrace_getf > 0); 13875 13876 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--; 13877 13878 if (--dtrace_getf == 0) 13879 dtrace_closef = NULL; 13880 } 13881 13882 return (0); 13883 } 13884 13885 static int 13886 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 13887 dtrace_optval_t val) 13888 { 13889 ASSERT(MUTEX_HELD(&dtrace_lock)); 13890 13891 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 13892 return (EBUSY); 13893 13894 if (option >= DTRACEOPT_MAX) 13895 return (EINVAL); 13896 13897 if (option != DTRACEOPT_CPU && val < 0) 13898 return (EINVAL); 13899 13900 switch (option) { 13901 case DTRACEOPT_DESTRUCTIVE: 13902 if (dtrace_destructive_disallow) 13903 return (EACCES); 13904 13905 state->dts_cred.dcr_destructive = 1; 13906 break; 13907 13908 case DTRACEOPT_BUFSIZE: 13909 case DTRACEOPT_DYNVARSIZE: 13910 case DTRACEOPT_AGGSIZE: 13911 case DTRACEOPT_SPECSIZE: 13912 case DTRACEOPT_STRSIZE: 13913 if (val < 0) 13914 return (EINVAL); 13915 13916 if (val >= LONG_MAX) { 13917 /* 13918 * If this is an otherwise negative value, set it to 13919 * the highest multiple of 128m less than LONG_MAX. 13920 * Technically, we're adjusting the size without 13921 * regard to the buffer resizing policy, but in fact, 13922 * this has no effect -- if we set the buffer size to 13923 * ~LONG_MAX and the buffer policy is ultimately set to 13924 * be "manual", the buffer allocation is guaranteed to 13925 * fail, if only because the allocation requires two 13926 * buffers. (We set the the size to the highest 13927 * multiple of 128m because it ensures that the size 13928 * will remain a multiple of a megabyte when 13929 * repeatedly halved -- all the way down to 15m.) 13930 */ 13931 val = LONG_MAX - (1 << 27) + 1; 13932 } 13933 } 13934 13935 state->dts_options[option] = val; 13936 13937 return (0); 13938 } 13939 13940 static void 13941 dtrace_state_destroy(dtrace_state_t *state) 13942 { 13943 dtrace_ecb_t *ecb; 13944 dtrace_vstate_t *vstate = &state->dts_vstate; 13945 minor_t minor = getminor(state->dts_dev); 13946 int i, bufsize = NCPU * sizeof (dtrace_buffer_t); 13947 dtrace_speculation_t *spec = state->dts_speculations; 13948 int nspec = state->dts_nspeculations; 13949 uint32_t match; 13950 13951 ASSERT(MUTEX_HELD(&dtrace_lock)); 13952 ASSERT(MUTEX_HELD(&cpu_lock)); 13953 13954 /* 13955 * First, retract any retained enablings for this state. 13956 */ 13957 dtrace_enabling_retract(state); 13958 ASSERT(state->dts_nretained == 0); 13959 13960 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 13961 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 13962 /* 13963 * We have managed to come into dtrace_state_destroy() on a 13964 * hot enabling -- almost certainly because of a disorderly 13965 * shutdown of a consumer. (That is, a consumer that is 13966 * exiting without having called dtrace_stop().) In this case, 13967 * we're going to set our activity to be KILLED, and then 13968 * issue a sync to be sure that everyone is out of probe 13969 * context before we start blowing away ECBs. 13970 */ 13971 state->dts_activity = DTRACE_ACTIVITY_KILLED; 13972 dtrace_sync(); 13973 } 13974 13975 /* 13976 * Release the credential hold we took in dtrace_state_create(). 13977 */ 13978 if (state->dts_cred.dcr_cred != NULL) 13979 crfree(state->dts_cred.dcr_cred); 13980 13981 /* 13982 * Now we can safely disable and destroy any enabled probes. Because 13983 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 13984 * (especially if they're all enabled), we take two passes through the 13985 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 13986 * in the second we disable whatever is left over. 13987 */ 13988 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 13989 for (i = 0; i < state->dts_necbs; i++) { 13990 if ((ecb = state->dts_ecbs[i]) == NULL) 13991 continue; 13992 13993 if (match && ecb->dte_probe != NULL) { 13994 dtrace_probe_t *probe = ecb->dte_probe; 13995 dtrace_provider_t *prov = probe->dtpr_provider; 13996 13997 if (!(prov->dtpv_priv.dtpp_flags & match)) 13998 continue; 13999 } 14000 14001 dtrace_ecb_disable(ecb); 14002 dtrace_ecb_destroy(ecb); 14003 } 14004 14005 if (!match) 14006 break; 14007 } 14008 14009 /* 14010 * Before we free the buffers, perform one more sync to assure that 14011 * every CPU is out of probe context. 14012 */ 14013 dtrace_sync(); 14014 14015 dtrace_buffer_free(state->dts_buffer); 14016 dtrace_buffer_free(state->dts_aggbuffer); 14017 14018 for (i = 0; i < nspec; i++) 14019 dtrace_buffer_free(spec[i].dtsp_buffer); 14020 14021 if (state->dts_cleaner != CYCLIC_NONE) 14022 cyclic_remove(state->dts_cleaner); 14023 14024 if (state->dts_deadman != CYCLIC_NONE) 14025 cyclic_remove(state->dts_deadman); 14026 14027 dtrace_dstate_fini(&vstate->dtvs_dynvars); 14028 dtrace_vstate_fini(vstate); 14029 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 14030 14031 if (state->dts_aggregations != NULL) { 14032 #ifdef DEBUG 14033 for (i = 0; i < state->dts_naggregations; i++) 14034 ASSERT(state->dts_aggregations[i] == NULL); 14035 #endif 14036 ASSERT(state->dts_naggregations > 0); 14037 kmem_free(state->dts_aggregations, 14038 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 14039 } 14040 14041 kmem_free(state->dts_buffer, bufsize); 14042 kmem_free(state->dts_aggbuffer, bufsize); 14043 14044 for (i = 0; i < nspec; i++) 14045 kmem_free(spec[i].dtsp_buffer, bufsize); 14046 14047 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 14048 14049 dtrace_format_destroy(state); 14050 14051 vmem_destroy(state->dts_aggid_arena); 14052 ddi_soft_state_free(dtrace_softstate, minor); 14053 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 14054 } 14055 14056 /* 14057 * DTrace Anonymous Enabling Functions 14058 */ 14059 static dtrace_state_t * 14060 dtrace_anon_grab(void) 14061 { 14062 dtrace_state_t *state; 14063 14064 ASSERT(MUTEX_HELD(&dtrace_lock)); 14065 14066 if ((state = dtrace_anon.dta_state) == NULL) { 14067 ASSERT(dtrace_anon.dta_enabling == NULL); 14068 return (NULL); 14069 } 14070 14071 ASSERT(dtrace_anon.dta_enabling != NULL); 14072 ASSERT(dtrace_retained != NULL); 14073 14074 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 14075 dtrace_anon.dta_enabling = NULL; 14076 dtrace_anon.dta_state = NULL; 14077 14078 return (state); 14079 } 14080 14081 static void 14082 dtrace_anon_property(void) 14083 { 14084 int i, rv; 14085 dtrace_state_t *state; 14086 dof_hdr_t *dof; 14087 char c[32]; /* enough for "dof-data-" + digits */ 14088 14089 ASSERT(MUTEX_HELD(&dtrace_lock)); 14090 ASSERT(MUTEX_HELD(&cpu_lock)); 14091 14092 for (i = 0; ; i++) { 14093 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 14094 14095 dtrace_err_verbose = 1; 14096 14097 if ((dof = dtrace_dof_property(c)) == NULL) { 14098 dtrace_err_verbose = 0; 14099 break; 14100 } 14101 14102 /* 14103 * We want to create anonymous state, so we need to transition 14104 * the kernel debugger to indicate that DTrace is active. If 14105 * this fails (e.g. because the debugger has modified text in 14106 * some way), we won't continue with the processing. 14107 */ 14108 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 14109 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 14110 "enabling ignored."); 14111 dtrace_dof_destroy(dof); 14112 break; 14113 } 14114 14115 /* 14116 * If we haven't allocated an anonymous state, we'll do so now. 14117 */ 14118 if ((state = dtrace_anon.dta_state) == NULL) { 14119 state = dtrace_state_create(NULL, NULL); 14120 dtrace_anon.dta_state = state; 14121 14122 if (state == NULL) { 14123 /* 14124 * This basically shouldn't happen: the only 14125 * failure mode from dtrace_state_create() is a 14126 * failure of ddi_soft_state_zalloc() that 14127 * itself should never happen. Still, the 14128 * interface allows for a failure mode, and 14129 * we want to fail as gracefully as possible: 14130 * we'll emit an error message and cease 14131 * processing anonymous state in this case. 14132 */ 14133 cmn_err(CE_WARN, "failed to create " 14134 "anonymous state"); 14135 dtrace_dof_destroy(dof); 14136 break; 14137 } 14138 } 14139 14140 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 14141 &dtrace_anon.dta_enabling, 0, B_TRUE); 14142 14143 if (rv == 0) 14144 rv = dtrace_dof_options(dof, state); 14145 14146 dtrace_err_verbose = 0; 14147 dtrace_dof_destroy(dof); 14148 14149 if (rv != 0) { 14150 /* 14151 * This is malformed DOF; chuck any anonymous state 14152 * that we created. 14153 */ 14154 ASSERT(dtrace_anon.dta_enabling == NULL); 14155 dtrace_state_destroy(state); 14156 dtrace_anon.dta_state = NULL; 14157 break; 14158 } 14159 14160 ASSERT(dtrace_anon.dta_enabling != NULL); 14161 } 14162 14163 if (dtrace_anon.dta_enabling != NULL) { 14164 int rval; 14165 14166 /* 14167 * dtrace_enabling_retain() can only fail because we are 14168 * trying to retain more enablings than are allowed -- but 14169 * we only have one anonymous enabling, and we are guaranteed 14170 * to be allowed at least one retained enabling; we assert 14171 * that dtrace_enabling_retain() returns success. 14172 */ 14173 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 14174 ASSERT(rval == 0); 14175 14176 dtrace_enabling_dump(dtrace_anon.dta_enabling); 14177 } 14178 } 14179 14180 /* 14181 * DTrace Helper Functions 14182 */ 14183 static void 14184 dtrace_helper_trace(dtrace_helper_action_t *helper, 14185 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 14186 { 14187 uint32_t size, next, nnext, i; 14188 dtrace_helptrace_t *ent, *buffer; 14189 uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 14190 14191 if ((buffer = dtrace_helptrace_buffer) == NULL) 14192 return; 14193 14194 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 14195 14196 /* 14197 * What would a tracing framework be without its own tracing 14198 * framework? (Well, a hell of a lot simpler, for starters...) 14199 */ 14200 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 14201 sizeof (uint64_t) - sizeof (uint64_t); 14202 14203 /* 14204 * Iterate until we can allocate a slot in the trace buffer. 14205 */ 14206 do { 14207 next = dtrace_helptrace_next; 14208 14209 if (next + size < dtrace_helptrace_bufsize) { 14210 nnext = next + size; 14211 } else { 14212 nnext = size; 14213 } 14214 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 14215 14216 /* 14217 * We have our slot; fill it in. 14218 */ 14219 if (nnext == size) { 14220 dtrace_helptrace_wrapped++; 14221 next = 0; 14222 } 14223 14224 ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next); 14225 ent->dtht_helper = helper; 14226 ent->dtht_where = where; 14227 ent->dtht_nlocals = vstate->dtvs_nlocals; 14228 14229 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 14230 mstate->dtms_fltoffs : -1; 14231 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 14232 ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 14233 14234 for (i = 0; i < vstate->dtvs_nlocals; i++) { 14235 dtrace_statvar_t *svar; 14236 14237 if ((svar = vstate->dtvs_locals[i]) == NULL) 14238 continue; 14239 14240 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); 14241 ent->dtht_locals[i] = 14242 ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id]; 14243 } 14244 } 14245 14246 static uint64_t 14247 dtrace_helper(int which, dtrace_mstate_t *mstate, 14248 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 14249 { 14250 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 14251 uint64_t sarg0 = mstate->dtms_arg[0]; 14252 uint64_t sarg1 = mstate->dtms_arg[1]; 14253 uint64_t rval; 14254 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 14255 dtrace_helper_action_t *helper; 14256 dtrace_vstate_t *vstate; 14257 dtrace_difo_t *pred; 14258 int i, trace = dtrace_helptrace_buffer != NULL; 14259 14260 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 14261 14262 if (helpers == NULL) 14263 return (0); 14264 14265 if ((helper = helpers->dthps_actions[which]) == NULL) 14266 return (0); 14267 14268 vstate = &helpers->dthps_vstate; 14269 mstate->dtms_arg[0] = arg0; 14270 mstate->dtms_arg[1] = arg1; 14271 14272 /* 14273 * Now iterate over each helper. If its predicate evaluates to 'true', 14274 * we'll call the corresponding actions. Note that the below calls 14275 * to dtrace_dif_emulate() may set faults in machine state. This is 14276 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 14277 * the stored DIF offset with its own (which is the desired behavior). 14278 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 14279 * from machine state; this is okay, too. 14280 */ 14281 for (; helper != NULL; helper = helper->dtha_next) { 14282 if ((pred = helper->dtha_predicate) != NULL) { 14283 if (trace) 14284 dtrace_helper_trace(helper, mstate, vstate, 0); 14285 14286 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 14287 goto next; 14288 14289 if (*flags & CPU_DTRACE_FAULT) 14290 goto err; 14291 } 14292 14293 for (i = 0; i < helper->dtha_nactions; i++) { 14294 if (trace) 14295 dtrace_helper_trace(helper, 14296 mstate, vstate, i + 1); 14297 14298 rval = dtrace_dif_emulate(helper->dtha_actions[i], 14299 mstate, vstate, state); 14300 14301 if (*flags & CPU_DTRACE_FAULT) 14302 goto err; 14303 } 14304 14305 next: 14306 if (trace) 14307 dtrace_helper_trace(helper, mstate, vstate, 14308 DTRACE_HELPTRACE_NEXT); 14309 } 14310 14311 if (trace) 14312 dtrace_helper_trace(helper, mstate, vstate, 14313 DTRACE_HELPTRACE_DONE); 14314 14315 /* 14316 * Restore the arg0 that we saved upon entry. 14317 */ 14318 mstate->dtms_arg[0] = sarg0; 14319 mstate->dtms_arg[1] = sarg1; 14320 14321 return (rval); 14322 14323 err: 14324 if (trace) 14325 dtrace_helper_trace(helper, mstate, vstate, 14326 DTRACE_HELPTRACE_ERR); 14327 14328 /* 14329 * Restore the arg0 that we saved upon entry. 14330 */ 14331 mstate->dtms_arg[0] = sarg0; 14332 mstate->dtms_arg[1] = sarg1; 14333 14334 return (NULL); 14335 } 14336 14337 static void 14338 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 14339 dtrace_vstate_t *vstate) 14340 { 14341 int i; 14342 14343 if (helper->dtha_predicate != NULL) 14344 dtrace_difo_release(helper->dtha_predicate, vstate); 14345 14346 for (i = 0; i < helper->dtha_nactions; i++) { 14347 ASSERT(helper->dtha_actions[i] != NULL); 14348 dtrace_difo_release(helper->dtha_actions[i], vstate); 14349 } 14350 14351 kmem_free(helper->dtha_actions, 14352 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 14353 kmem_free(helper, sizeof (dtrace_helper_action_t)); 14354 } 14355 14356 static int 14357 dtrace_helper_destroygen(int gen) 14358 { 14359 proc_t *p = curproc; 14360 dtrace_helpers_t *help = p->p_dtrace_helpers; 14361 dtrace_vstate_t *vstate; 14362 int i; 14363 14364 ASSERT(MUTEX_HELD(&dtrace_lock)); 14365 14366 if (help == NULL || gen > help->dthps_generation) 14367 return (EINVAL); 14368 14369 vstate = &help->dthps_vstate; 14370 14371 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 14372 dtrace_helper_action_t *last = NULL, *h, *next; 14373 14374 for (h = help->dthps_actions[i]; h != NULL; h = next) { 14375 next = h->dtha_next; 14376 14377 if (h->dtha_generation == gen) { 14378 if (last != NULL) { 14379 last->dtha_next = next; 14380 } else { 14381 help->dthps_actions[i] = next; 14382 } 14383 14384 dtrace_helper_action_destroy(h, vstate); 14385 } else { 14386 last = h; 14387 } 14388 } 14389 } 14390 14391 /* 14392 * Interate until we've cleared out all helper providers with the 14393 * given generation number. 14394 */ 14395 for (;;) { 14396 dtrace_helper_provider_t *prov; 14397 14398 /* 14399 * Look for a helper provider with the right generation. We 14400 * have to start back at the beginning of the list each time 14401 * because we drop dtrace_lock. It's unlikely that we'll make 14402 * more than two passes. 14403 */ 14404 for (i = 0; i < help->dthps_nprovs; i++) { 14405 prov = help->dthps_provs[i]; 14406 14407 if (prov->dthp_generation == gen) 14408 break; 14409 } 14410 14411 /* 14412 * If there were no matches, we're done. 14413 */ 14414 if (i == help->dthps_nprovs) 14415 break; 14416 14417 /* 14418 * Move the last helper provider into this slot. 14419 */ 14420 help->dthps_nprovs--; 14421 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 14422 help->dthps_provs[help->dthps_nprovs] = NULL; 14423 14424 mutex_exit(&dtrace_lock); 14425 14426 /* 14427 * If we have a meta provider, remove this helper provider. 14428 */ 14429 mutex_enter(&dtrace_meta_lock); 14430 if (dtrace_meta_pid != NULL) { 14431 ASSERT(dtrace_deferred_pid == NULL); 14432 dtrace_helper_provider_remove(&prov->dthp_prov, 14433 p->p_pid); 14434 } 14435 mutex_exit(&dtrace_meta_lock); 14436 14437 dtrace_helper_provider_destroy(prov); 14438 14439 mutex_enter(&dtrace_lock); 14440 } 14441 14442 return (0); 14443 } 14444 14445 static int 14446 dtrace_helper_validate(dtrace_helper_action_t *helper) 14447 { 14448 int err = 0, i; 14449 dtrace_difo_t *dp; 14450 14451 if ((dp = helper->dtha_predicate) != NULL) 14452 err += dtrace_difo_validate_helper(dp); 14453 14454 for (i = 0; i < helper->dtha_nactions; i++) 14455 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 14456 14457 return (err == 0); 14458 } 14459 14460 static int 14461 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep) 14462 { 14463 dtrace_helpers_t *help; 14464 dtrace_helper_action_t *helper, *last; 14465 dtrace_actdesc_t *act; 14466 dtrace_vstate_t *vstate; 14467 dtrace_predicate_t *pred; 14468 int count = 0, nactions = 0, i; 14469 14470 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 14471 return (EINVAL); 14472 14473 help = curproc->p_dtrace_helpers; 14474 last = help->dthps_actions[which]; 14475 vstate = &help->dthps_vstate; 14476 14477 for (count = 0; last != NULL; last = last->dtha_next) { 14478 count++; 14479 if (last->dtha_next == NULL) 14480 break; 14481 } 14482 14483 /* 14484 * If we already have dtrace_helper_actions_max helper actions for this 14485 * helper action type, we'll refuse to add a new one. 14486 */ 14487 if (count >= dtrace_helper_actions_max) 14488 return (ENOSPC); 14489 14490 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 14491 helper->dtha_generation = help->dthps_generation; 14492 14493 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 14494 ASSERT(pred->dtp_difo != NULL); 14495 dtrace_difo_hold(pred->dtp_difo); 14496 helper->dtha_predicate = pred->dtp_difo; 14497 } 14498 14499 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 14500 if (act->dtad_kind != DTRACEACT_DIFEXPR) 14501 goto err; 14502 14503 if (act->dtad_difo == NULL) 14504 goto err; 14505 14506 nactions++; 14507 } 14508 14509 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 14510 (helper->dtha_nactions = nactions), KM_SLEEP); 14511 14512 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 14513 dtrace_difo_hold(act->dtad_difo); 14514 helper->dtha_actions[i++] = act->dtad_difo; 14515 } 14516 14517 if (!dtrace_helper_validate(helper)) 14518 goto err; 14519 14520 if (last == NULL) { 14521 help->dthps_actions[which] = helper; 14522 } else { 14523 last->dtha_next = helper; 14524 } 14525 14526 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 14527 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 14528 dtrace_helptrace_next = 0; 14529 } 14530 14531 return (0); 14532 err: 14533 dtrace_helper_action_destroy(helper, vstate); 14534 return (EINVAL); 14535 } 14536 14537 static void 14538 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 14539 dof_helper_t *dofhp) 14540 { 14541 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 14542 14543 mutex_enter(&dtrace_meta_lock); 14544 mutex_enter(&dtrace_lock); 14545 14546 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 14547 /* 14548 * If the dtrace module is loaded but not attached, or if 14549 * there aren't isn't a meta provider registered to deal with 14550 * these provider descriptions, we need to postpone creating 14551 * the actual providers until later. 14552 */ 14553 14554 if (help->dthps_next == NULL && help->dthps_prev == NULL && 14555 dtrace_deferred_pid != help) { 14556 help->dthps_deferred = 1; 14557 help->dthps_pid = p->p_pid; 14558 help->dthps_next = dtrace_deferred_pid; 14559 help->dthps_prev = NULL; 14560 if (dtrace_deferred_pid != NULL) 14561 dtrace_deferred_pid->dthps_prev = help; 14562 dtrace_deferred_pid = help; 14563 } 14564 14565 mutex_exit(&dtrace_lock); 14566 14567 } else if (dofhp != NULL) { 14568 /* 14569 * If the dtrace module is loaded and we have a particular 14570 * helper provider description, pass that off to the 14571 * meta provider. 14572 */ 14573 14574 mutex_exit(&dtrace_lock); 14575 14576 dtrace_helper_provide(dofhp, p->p_pid); 14577 14578 } else { 14579 /* 14580 * Otherwise, just pass all the helper provider descriptions 14581 * off to the meta provider. 14582 */ 14583 14584 int i; 14585 mutex_exit(&dtrace_lock); 14586 14587 for (i = 0; i < help->dthps_nprovs; i++) { 14588 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 14589 p->p_pid); 14590 } 14591 } 14592 14593 mutex_exit(&dtrace_meta_lock); 14594 } 14595 14596 static int 14597 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen) 14598 { 14599 dtrace_helpers_t *help; 14600 dtrace_helper_provider_t *hprov, **tmp_provs; 14601 uint_t tmp_maxprovs, i; 14602 14603 ASSERT(MUTEX_HELD(&dtrace_lock)); 14604 14605 help = curproc->p_dtrace_helpers; 14606 ASSERT(help != NULL); 14607 14608 /* 14609 * If we already have dtrace_helper_providers_max helper providers, 14610 * we're refuse to add a new one. 14611 */ 14612 if (help->dthps_nprovs >= dtrace_helper_providers_max) 14613 return (ENOSPC); 14614 14615 /* 14616 * Check to make sure this isn't a duplicate. 14617 */ 14618 for (i = 0; i < help->dthps_nprovs; i++) { 14619 if (dofhp->dofhp_addr == 14620 help->dthps_provs[i]->dthp_prov.dofhp_addr) 14621 return (EALREADY); 14622 } 14623 14624 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 14625 hprov->dthp_prov = *dofhp; 14626 hprov->dthp_ref = 1; 14627 hprov->dthp_generation = gen; 14628 14629 /* 14630 * Allocate a bigger table for helper providers if it's already full. 14631 */ 14632 if (help->dthps_maxprovs == help->dthps_nprovs) { 14633 tmp_maxprovs = help->dthps_maxprovs; 14634 tmp_provs = help->dthps_provs; 14635 14636 if (help->dthps_maxprovs == 0) 14637 help->dthps_maxprovs = 2; 14638 else 14639 help->dthps_maxprovs *= 2; 14640 if (help->dthps_maxprovs > dtrace_helper_providers_max) 14641 help->dthps_maxprovs = dtrace_helper_providers_max; 14642 14643 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 14644 14645 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 14646 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 14647 14648 if (tmp_provs != NULL) { 14649 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 14650 sizeof (dtrace_helper_provider_t *)); 14651 kmem_free(tmp_provs, tmp_maxprovs * 14652 sizeof (dtrace_helper_provider_t *)); 14653 } 14654 } 14655 14656 help->dthps_provs[help->dthps_nprovs] = hprov; 14657 help->dthps_nprovs++; 14658 14659 return (0); 14660 } 14661 14662 static void 14663 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 14664 { 14665 mutex_enter(&dtrace_lock); 14666 14667 if (--hprov->dthp_ref == 0) { 14668 dof_hdr_t *dof; 14669 mutex_exit(&dtrace_lock); 14670 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 14671 dtrace_dof_destroy(dof); 14672 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 14673 } else { 14674 mutex_exit(&dtrace_lock); 14675 } 14676 } 14677 14678 static int 14679 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 14680 { 14681 uintptr_t daddr = (uintptr_t)dof; 14682 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 14683 dof_provider_t *provider; 14684 dof_probe_t *probe; 14685 uint8_t *arg; 14686 char *strtab, *typestr; 14687 dof_stridx_t typeidx; 14688 size_t typesz; 14689 uint_t nprobes, j, k; 14690 14691 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 14692 14693 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 14694 dtrace_dof_error(dof, "misaligned section offset"); 14695 return (-1); 14696 } 14697 14698 /* 14699 * The section needs to be large enough to contain the DOF provider 14700 * structure appropriate for the given version. 14701 */ 14702 if (sec->dofs_size < 14703 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 14704 offsetof(dof_provider_t, dofpv_prenoffs) : 14705 sizeof (dof_provider_t))) { 14706 dtrace_dof_error(dof, "provider section too small"); 14707 return (-1); 14708 } 14709 14710 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 14711 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 14712 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 14713 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 14714 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 14715 14716 if (str_sec == NULL || prb_sec == NULL || 14717 arg_sec == NULL || off_sec == NULL) 14718 return (-1); 14719 14720 enoff_sec = NULL; 14721 14722 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 14723 provider->dofpv_prenoffs != DOF_SECT_NONE && 14724 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 14725 provider->dofpv_prenoffs)) == NULL) 14726 return (-1); 14727 14728 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 14729 14730 if (provider->dofpv_name >= str_sec->dofs_size || 14731 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 14732 dtrace_dof_error(dof, "invalid provider name"); 14733 return (-1); 14734 } 14735 14736 if (prb_sec->dofs_entsize == 0 || 14737 prb_sec->dofs_entsize > prb_sec->dofs_size) { 14738 dtrace_dof_error(dof, "invalid entry size"); 14739 return (-1); 14740 } 14741 14742 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 14743 dtrace_dof_error(dof, "misaligned entry size"); 14744 return (-1); 14745 } 14746 14747 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 14748 dtrace_dof_error(dof, "invalid entry size"); 14749 return (-1); 14750 } 14751 14752 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 14753 dtrace_dof_error(dof, "misaligned section offset"); 14754 return (-1); 14755 } 14756 14757 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 14758 dtrace_dof_error(dof, "invalid entry size"); 14759 return (-1); 14760 } 14761 14762 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 14763 14764 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 14765 14766 /* 14767 * Take a pass through the probes to check for errors. 14768 */ 14769 for (j = 0; j < nprobes; j++) { 14770 probe = (dof_probe_t *)(uintptr_t)(daddr + 14771 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 14772 14773 if (probe->dofpr_func >= str_sec->dofs_size) { 14774 dtrace_dof_error(dof, "invalid function name"); 14775 return (-1); 14776 } 14777 14778 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 14779 dtrace_dof_error(dof, "function name too long"); 14780 return (-1); 14781 } 14782 14783 if (probe->dofpr_name >= str_sec->dofs_size || 14784 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 14785 dtrace_dof_error(dof, "invalid probe name"); 14786 return (-1); 14787 } 14788 14789 /* 14790 * The offset count must not wrap the index, and the offsets 14791 * must also not overflow the section's data. 14792 */ 14793 if (probe->dofpr_offidx + probe->dofpr_noffs < 14794 probe->dofpr_offidx || 14795 (probe->dofpr_offidx + probe->dofpr_noffs) * 14796 off_sec->dofs_entsize > off_sec->dofs_size) { 14797 dtrace_dof_error(dof, "invalid probe offset"); 14798 return (-1); 14799 } 14800 14801 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 14802 /* 14803 * If there's no is-enabled offset section, make sure 14804 * there aren't any is-enabled offsets. Otherwise 14805 * perform the same checks as for probe offsets 14806 * (immediately above). 14807 */ 14808 if (enoff_sec == NULL) { 14809 if (probe->dofpr_enoffidx != 0 || 14810 probe->dofpr_nenoffs != 0) { 14811 dtrace_dof_error(dof, "is-enabled " 14812 "offsets with null section"); 14813 return (-1); 14814 } 14815 } else if (probe->dofpr_enoffidx + 14816 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 14817 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 14818 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 14819 dtrace_dof_error(dof, "invalid is-enabled " 14820 "offset"); 14821 return (-1); 14822 } 14823 14824 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 14825 dtrace_dof_error(dof, "zero probe and " 14826 "is-enabled offsets"); 14827 return (-1); 14828 } 14829 } else if (probe->dofpr_noffs == 0) { 14830 dtrace_dof_error(dof, "zero probe offsets"); 14831 return (-1); 14832 } 14833 14834 if (probe->dofpr_argidx + probe->dofpr_xargc < 14835 probe->dofpr_argidx || 14836 (probe->dofpr_argidx + probe->dofpr_xargc) * 14837 arg_sec->dofs_entsize > arg_sec->dofs_size) { 14838 dtrace_dof_error(dof, "invalid args"); 14839 return (-1); 14840 } 14841 14842 typeidx = probe->dofpr_nargv; 14843 typestr = strtab + probe->dofpr_nargv; 14844 for (k = 0; k < probe->dofpr_nargc; k++) { 14845 if (typeidx >= str_sec->dofs_size) { 14846 dtrace_dof_error(dof, "bad " 14847 "native argument type"); 14848 return (-1); 14849 } 14850 14851 typesz = strlen(typestr) + 1; 14852 if (typesz > DTRACE_ARGTYPELEN) { 14853 dtrace_dof_error(dof, "native " 14854 "argument type too long"); 14855 return (-1); 14856 } 14857 typeidx += typesz; 14858 typestr += typesz; 14859 } 14860 14861 typeidx = probe->dofpr_xargv; 14862 typestr = strtab + probe->dofpr_xargv; 14863 for (k = 0; k < probe->dofpr_xargc; k++) { 14864 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 14865 dtrace_dof_error(dof, "bad " 14866 "native argument index"); 14867 return (-1); 14868 } 14869 14870 if (typeidx >= str_sec->dofs_size) { 14871 dtrace_dof_error(dof, "bad " 14872 "translated argument type"); 14873 return (-1); 14874 } 14875 14876 typesz = strlen(typestr) + 1; 14877 if (typesz > DTRACE_ARGTYPELEN) { 14878 dtrace_dof_error(dof, "translated argument " 14879 "type too long"); 14880 return (-1); 14881 } 14882 14883 typeidx += typesz; 14884 typestr += typesz; 14885 } 14886 } 14887 14888 return (0); 14889 } 14890 14891 static int 14892 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp) 14893 { 14894 dtrace_helpers_t *help; 14895 dtrace_vstate_t *vstate; 14896 dtrace_enabling_t *enab = NULL; 14897 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 14898 uintptr_t daddr = (uintptr_t)dof; 14899 14900 ASSERT(MUTEX_HELD(&dtrace_lock)); 14901 14902 if ((help = curproc->p_dtrace_helpers) == NULL) 14903 help = dtrace_helpers_create(curproc); 14904 14905 vstate = &help->dthps_vstate; 14906 14907 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, 14908 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) { 14909 dtrace_dof_destroy(dof); 14910 return (rv); 14911 } 14912 14913 /* 14914 * Look for helper providers and validate their descriptions. 14915 */ 14916 if (dhp != NULL) { 14917 for (i = 0; i < dof->dofh_secnum; i++) { 14918 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 14919 dof->dofh_secoff + i * dof->dofh_secsize); 14920 14921 if (sec->dofs_type != DOF_SECT_PROVIDER) 14922 continue; 14923 14924 if (dtrace_helper_provider_validate(dof, sec) != 0) { 14925 dtrace_enabling_destroy(enab); 14926 dtrace_dof_destroy(dof); 14927 return (-1); 14928 } 14929 14930 nprovs++; 14931 } 14932 } 14933 14934 /* 14935 * Now we need to walk through the ECB descriptions in the enabling. 14936 */ 14937 for (i = 0; i < enab->dten_ndesc; i++) { 14938 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 14939 dtrace_probedesc_t *desc = &ep->dted_probe; 14940 14941 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 14942 continue; 14943 14944 if (strcmp(desc->dtpd_mod, "helper") != 0) 14945 continue; 14946 14947 if (strcmp(desc->dtpd_func, "ustack") != 0) 14948 continue; 14949 14950 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 14951 ep)) != 0) { 14952 /* 14953 * Adding this helper action failed -- we are now going 14954 * to rip out the entire generation and return failure. 14955 */ 14956 (void) dtrace_helper_destroygen(help->dthps_generation); 14957 dtrace_enabling_destroy(enab); 14958 dtrace_dof_destroy(dof); 14959 return (-1); 14960 } 14961 14962 nhelpers++; 14963 } 14964 14965 if (nhelpers < enab->dten_ndesc) 14966 dtrace_dof_error(dof, "unmatched helpers"); 14967 14968 gen = help->dthps_generation++; 14969 dtrace_enabling_destroy(enab); 14970 14971 if (dhp != NULL && nprovs > 0) { 14972 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 14973 if (dtrace_helper_provider_add(dhp, gen) == 0) { 14974 mutex_exit(&dtrace_lock); 14975 dtrace_helper_provider_register(curproc, help, dhp); 14976 mutex_enter(&dtrace_lock); 14977 14978 destroy = 0; 14979 } 14980 } 14981 14982 if (destroy) 14983 dtrace_dof_destroy(dof); 14984 14985 return (gen); 14986 } 14987 14988 static dtrace_helpers_t * 14989 dtrace_helpers_create(proc_t *p) 14990 { 14991 dtrace_helpers_t *help; 14992 14993 ASSERT(MUTEX_HELD(&dtrace_lock)); 14994 ASSERT(p->p_dtrace_helpers == NULL); 14995 14996 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 14997 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 14998 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 14999 15000 p->p_dtrace_helpers = help; 15001 dtrace_helpers++; 15002 15003 return (help); 15004 } 15005 15006 static void 15007 dtrace_helpers_destroy(void) 15008 { 15009 dtrace_helpers_t *help; 15010 dtrace_vstate_t *vstate; 15011 proc_t *p = curproc; 15012 int i; 15013 15014 mutex_enter(&dtrace_lock); 15015 15016 ASSERT(p->p_dtrace_helpers != NULL); 15017 ASSERT(dtrace_helpers > 0); 15018 15019 help = p->p_dtrace_helpers; 15020 vstate = &help->dthps_vstate; 15021 15022 /* 15023 * We're now going to lose the help from this process. 15024 */ 15025 p->p_dtrace_helpers = NULL; 15026 dtrace_sync(); 15027 15028 /* 15029 * Destory the helper actions. 15030 */ 15031 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 15032 dtrace_helper_action_t *h, *next; 15033 15034 for (h = help->dthps_actions[i]; h != NULL; h = next) { 15035 next = h->dtha_next; 15036 dtrace_helper_action_destroy(h, vstate); 15037 h = next; 15038 } 15039 } 15040 15041 mutex_exit(&dtrace_lock); 15042 15043 /* 15044 * Destroy the helper providers. 15045 */ 15046 if (help->dthps_maxprovs > 0) { 15047 mutex_enter(&dtrace_meta_lock); 15048 if (dtrace_meta_pid != NULL) { 15049 ASSERT(dtrace_deferred_pid == NULL); 15050 15051 for (i = 0; i < help->dthps_nprovs; i++) { 15052 dtrace_helper_provider_remove( 15053 &help->dthps_provs[i]->dthp_prov, p->p_pid); 15054 } 15055 } else { 15056 mutex_enter(&dtrace_lock); 15057 ASSERT(help->dthps_deferred == 0 || 15058 help->dthps_next != NULL || 15059 help->dthps_prev != NULL || 15060 help == dtrace_deferred_pid); 15061 15062 /* 15063 * Remove the helper from the deferred list. 15064 */ 15065 if (help->dthps_next != NULL) 15066 help->dthps_next->dthps_prev = help->dthps_prev; 15067 if (help->dthps_prev != NULL) 15068 help->dthps_prev->dthps_next = help->dthps_next; 15069 if (dtrace_deferred_pid == help) { 15070 dtrace_deferred_pid = help->dthps_next; 15071 ASSERT(help->dthps_prev == NULL); 15072 } 15073 15074 mutex_exit(&dtrace_lock); 15075 } 15076 15077 mutex_exit(&dtrace_meta_lock); 15078 15079 for (i = 0; i < help->dthps_nprovs; i++) { 15080 dtrace_helper_provider_destroy(help->dthps_provs[i]); 15081 } 15082 15083 kmem_free(help->dthps_provs, help->dthps_maxprovs * 15084 sizeof (dtrace_helper_provider_t *)); 15085 } 15086 15087 mutex_enter(&dtrace_lock); 15088 15089 dtrace_vstate_fini(&help->dthps_vstate); 15090 kmem_free(help->dthps_actions, 15091 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 15092 kmem_free(help, sizeof (dtrace_helpers_t)); 15093 15094 --dtrace_helpers; 15095 mutex_exit(&dtrace_lock); 15096 } 15097 15098 static void 15099 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 15100 { 15101 dtrace_helpers_t *help, *newhelp; 15102 dtrace_helper_action_t *helper, *new, *last; 15103 dtrace_difo_t *dp; 15104 dtrace_vstate_t *vstate; 15105 int i, j, sz, hasprovs = 0; 15106 15107 mutex_enter(&dtrace_lock); 15108 ASSERT(from->p_dtrace_helpers != NULL); 15109 ASSERT(dtrace_helpers > 0); 15110 15111 help = from->p_dtrace_helpers; 15112 newhelp = dtrace_helpers_create(to); 15113 ASSERT(to->p_dtrace_helpers != NULL); 15114 15115 newhelp->dthps_generation = help->dthps_generation; 15116 vstate = &newhelp->dthps_vstate; 15117 15118 /* 15119 * Duplicate the helper actions. 15120 */ 15121 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 15122 if ((helper = help->dthps_actions[i]) == NULL) 15123 continue; 15124 15125 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 15126 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 15127 KM_SLEEP); 15128 new->dtha_generation = helper->dtha_generation; 15129 15130 if ((dp = helper->dtha_predicate) != NULL) { 15131 dp = dtrace_difo_duplicate(dp, vstate); 15132 new->dtha_predicate = dp; 15133 } 15134 15135 new->dtha_nactions = helper->dtha_nactions; 15136 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 15137 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 15138 15139 for (j = 0; j < new->dtha_nactions; j++) { 15140 dtrace_difo_t *dp = helper->dtha_actions[j]; 15141 15142 ASSERT(dp != NULL); 15143 dp = dtrace_difo_duplicate(dp, vstate); 15144 new->dtha_actions[j] = dp; 15145 } 15146 15147 if (last != NULL) { 15148 last->dtha_next = new; 15149 } else { 15150 newhelp->dthps_actions[i] = new; 15151 } 15152 15153 last = new; 15154 } 15155 } 15156 15157 /* 15158 * Duplicate the helper providers and register them with the 15159 * DTrace framework. 15160 */ 15161 if (help->dthps_nprovs > 0) { 15162 newhelp->dthps_nprovs = help->dthps_nprovs; 15163 newhelp->dthps_maxprovs = help->dthps_nprovs; 15164 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 15165 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 15166 for (i = 0; i < newhelp->dthps_nprovs; i++) { 15167 newhelp->dthps_provs[i] = help->dthps_provs[i]; 15168 newhelp->dthps_provs[i]->dthp_ref++; 15169 } 15170 15171 hasprovs = 1; 15172 } 15173 15174 mutex_exit(&dtrace_lock); 15175 15176 if (hasprovs) 15177 dtrace_helper_provider_register(to, newhelp, NULL); 15178 } 15179 15180 /* 15181 * DTrace Hook Functions 15182 */ 15183 static void 15184 dtrace_module_loaded(struct modctl *ctl) 15185 { 15186 dtrace_provider_t *prv; 15187 15188 mutex_enter(&dtrace_provider_lock); 15189 mutex_enter(&mod_lock); 15190 15191 ASSERT(ctl->mod_busy); 15192 15193 /* 15194 * We're going to call each providers per-module provide operation 15195 * specifying only this module. 15196 */ 15197 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 15198 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 15199 15200 mutex_exit(&mod_lock); 15201 mutex_exit(&dtrace_provider_lock); 15202 15203 /* 15204 * If we have any retained enablings, we need to match against them. 15205 * Enabling probes requires that cpu_lock be held, and we cannot hold 15206 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 15207 * module. (In particular, this happens when loading scheduling 15208 * classes.) So if we have any retained enablings, we need to dispatch 15209 * our task queue to do the match for us. 15210 */ 15211 mutex_enter(&dtrace_lock); 15212 15213 if (dtrace_retained == NULL) { 15214 mutex_exit(&dtrace_lock); 15215 return; 15216 } 15217 15218 (void) taskq_dispatch(dtrace_taskq, 15219 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 15220 15221 mutex_exit(&dtrace_lock); 15222 15223 /* 15224 * And now, for a little heuristic sleaze: in general, we want to 15225 * match modules as soon as they load. However, we cannot guarantee 15226 * this, because it would lead us to the lock ordering violation 15227 * outlined above. The common case, of course, is that cpu_lock is 15228 * _not_ held -- so we delay here for a clock tick, hoping that that's 15229 * long enough for the task queue to do its work. If it's not, it's 15230 * not a serious problem -- it just means that the module that we 15231 * just loaded may not be immediately instrumentable. 15232 */ 15233 delay(1); 15234 } 15235 15236 static void 15237 dtrace_module_unloaded(struct modctl *ctl) 15238 { 15239 dtrace_probe_t template, *probe, *first, *next; 15240 dtrace_provider_t *prov; 15241 15242 template.dtpr_mod = ctl->mod_modname; 15243 15244 mutex_enter(&dtrace_provider_lock); 15245 mutex_enter(&mod_lock); 15246 mutex_enter(&dtrace_lock); 15247 15248 if (dtrace_bymod == NULL) { 15249 /* 15250 * The DTrace module is loaded (obviously) but not attached; 15251 * we don't have any work to do. 15252 */ 15253 mutex_exit(&dtrace_provider_lock); 15254 mutex_exit(&mod_lock); 15255 mutex_exit(&dtrace_lock); 15256 return; 15257 } 15258 15259 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 15260 probe != NULL; probe = probe->dtpr_nextmod) { 15261 if (probe->dtpr_ecb != NULL) { 15262 mutex_exit(&dtrace_provider_lock); 15263 mutex_exit(&mod_lock); 15264 mutex_exit(&dtrace_lock); 15265 15266 /* 15267 * This shouldn't _actually_ be possible -- we're 15268 * unloading a module that has an enabled probe in it. 15269 * (It's normally up to the provider to make sure that 15270 * this can't happen.) However, because dtps_enable() 15271 * doesn't have a failure mode, there can be an 15272 * enable/unload race. Upshot: we don't want to 15273 * assert, but we're not going to disable the 15274 * probe, either. 15275 */ 15276 if (dtrace_err_verbose) { 15277 cmn_err(CE_WARN, "unloaded module '%s' had " 15278 "enabled probes", ctl->mod_modname); 15279 } 15280 15281 return; 15282 } 15283 } 15284 15285 probe = first; 15286 15287 for (first = NULL; probe != NULL; probe = next) { 15288 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 15289 15290 dtrace_probes[probe->dtpr_id - 1] = NULL; 15291 15292 next = probe->dtpr_nextmod; 15293 dtrace_hash_remove(dtrace_bymod, probe); 15294 dtrace_hash_remove(dtrace_byfunc, probe); 15295 dtrace_hash_remove(dtrace_byname, probe); 15296 15297 if (first == NULL) { 15298 first = probe; 15299 probe->dtpr_nextmod = NULL; 15300 } else { 15301 probe->dtpr_nextmod = first; 15302 first = probe; 15303 } 15304 } 15305 15306 /* 15307 * We've removed all of the module's probes from the hash chains and 15308 * from the probe array. Now issue a dtrace_sync() to be sure that 15309 * everyone has cleared out from any probe array processing. 15310 */ 15311 dtrace_sync(); 15312 15313 for (probe = first; probe != NULL; probe = first) { 15314 first = probe->dtpr_nextmod; 15315 prov = probe->dtpr_provider; 15316 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 15317 probe->dtpr_arg); 15318 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 15319 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 15320 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 15321 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 15322 kmem_free(probe, sizeof (dtrace_probe_t)); 15323 } 15324 15325 mutex_exit(&dtrace_lock); 15326 mutex_exit(&mod_lock); 15327 mutex_exit(&dtrace_provider_lock); 15328 } 15329 15330 void 15331 dtrace_suspend(void) 15332 { 15333 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 15334 } 15335 15336 void 15337 dtrace_resume(void) 15338 { 15339 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 15340 } 15341 15342 static int 15343 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 15344 { 15345 ASSERT(MUTEX_HELD(&cpu_lock)); 15346 mutex_enter(&dtrace_lock); 15347 15348 switch (what) { 15349 case CPU_CONFIG: { 15350 dtrace_state_t *state; 15351 dtrace_optval_t *opt, rs, c; 15352 15353 /* 15354 * For now, we only allocate a new buffer for anonymous state. 15355 */ 15356 if ((state = dtrace_anon.dta_state) == NULL) 15357 break; 15358 15359 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 15360 break; 15361 15362 opt = state->dts_options; 15363 c = opt[DTRACEOPT_CPU]; 15364 15365 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 15366 break; 15367 15368 /* 15369 * Regardless of what the actual policy is, we're going to 15370 * temporarily set our resize policy to be manual. We're 15371 * also going to temporarily set our CPU option to denote 15372 * the newly configured CPU. 15373 */ 15374 rs = opt[DTRACEOPT_BUFRESIZE]; 15375 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 15376 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 15377 15378 (void) dtrace_state_buffers(state); 15379 15380 opt[DTRACEOPT_BUFRESIZE] = rs; 15381 opt[DTRACEOPT_CPU] = c; 15382 15383 break; 15384 } 15385 15386 case CPU_UNCONFIG: 15387 /* 15388 * We don't free the buffer in the CPU_UNCONFIG case. (The 15389 * buffer will be freed when the consumer exits.) 15390 */ 15391 break; 15392 15393 default: 15394 break; 15395 } 15396 15397 mutex_exit(&dtrace_lock); 15398 return (0); 15399 } 15400 15401 static void 15402 dtrace_cpu_setup_initial(processorid_t cpu) 15403 { 15404 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 15405 } 15406 15407 static void 15408 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 15409 { 15410 if (dtrace_toxranges >= dtrace_toxranges_max) { 15411 int osize, nsize; 15412 dtrace_toxrange_t *range; 15413 15414 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 15415 15416 if (osize == 0) { 15417 ASSERT(dtrace_toxrange == NULL); 15418 ASSERT(dtrace_toxranges_max == 0); 15419 dtrace_toxranges_max = 1; 15420 } else { 15421 dtrace_toxranges_max <<= 1; 15422 } 15423 15424 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 15425 range = kmem_zalloc(nsize, KM_SLEEP); 15426 15427 if (dtrace_toxrange != NULL) { 15428 ASSERT(osize != 0); 15429 bcopy(dtrace_toxrange, range, osize); 15430 kmem_free(dtrace_toxrange, osize); 15431 } 15432 15433 dtrace_toxrange = range; 15434 } 15435 15436 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL); 15437 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL); 15438 15439 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 15440 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 15441 dtrace_toxranges++; 15442 } 15443 15444 static void 15445 dtrace_getf_barrier() 15446 { 15447 /* 15448 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings 15449 * that contain calls to getf(), this routine will be called on every 15450 * closef() before either the underlying vnode is released or the 15451 * file_t itself is freed. By the time we are here, it is essential 15452 * that the file_t can no longer be accessed from a call to getf() 15453 * in probe context -- that assures that a dtrace_sync() can be used 15454 * to clear out any enablings referring to the old structures. 15455 */ 15456 if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 || 15457 kcred->cr_zone->zone_dtrace_getf != 0) 15458 dtrace_sync(); 15459 } 15460 15461 /* 15462 * DTrace Driver Cookbook Functions 15463 */ 15464 /*ARGSUSED*/ 15465 static int 15466 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 15467 { 15468 dtrace_provider_id_t id; 15469 dtrace_state_t *state = NULL; 15470 dtrace_enabling_t *enab; 15471 15472 mutex_enter(&cpu_lock); 15473 mutex_enter(&dtrace_provider_lock); 15474 mutex_enter(&dtrace_lock); 15475 15476 if (ddi_soft_state_init(&dtrace_softstate, 15477 sizeof (dtrace_state_t), 0) != 0) { 15478 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 15479 mutex_exit(&cpu_lock); 15480 mutex_exit(&dtrace_provider_lock); 15481 mutex_exit(&dtrace_lock); 15482 return (DDI_FAILURE); 15483 } 15484 15485 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 15486 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 15487 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 15488 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 15489 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 15490 ddi_remove_minor_node(devi, NULL); 15491 ddi_soft_state_fini(&dtrace_softstate); 15492 mutex_exit(&cpu_lock); 15493 mutex_exit(&dtrace_provider_lock); 15494 mutex_exit(&dtrace_lock); 15495 return (DDI_FAILURE); 15496 } 15497 15498 ddi_report_dev(devi); 15499 dtrace_devi = devi; 15500 15501 dtrace_modload = dtrace_module_loaded; 15502 dtrace_modunload = dtrace_module_unloaded; 15503 dtrace_cpu_init = dtrace_cpu_setup_initial; 15504 dtrace_helpers_cleanup = dtrace_helpers_destroy; 15505 dtrace_helpers_fork = dtrace_helpers_duplicate; 15506 dtrace_cpustart_init = dtrace_suspend; 15507 dtrace_cpustart_fini = dtrace_resume; 15508 dtrace_debugger_init = dtrace_suspend; 15509 dtrace_debugger_fini = dtrace_resume; 15510 15511 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 15512 15513 ASSERT(MUTEX_HELD(&cpu_lock)); 15514 15515 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 15516 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 15517 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 15518 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 15519 VM_SLEEP | VMC_IDENTIFIER); 15520 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 15521 1, INT_MAX, 0); 15522 15523 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 15524 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 15525 NULL, NULL, NULL, NULL, NULL, 0); 15526 15527 ASSERT(MUTEX_HELD(&cpu_lock)); 15528 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 15529 offsetof(dtrace_probe_t, dtpr_nextmod), 15530 offsetof(dtrace_probe_t, dtpr_prevmod)); 15531 15532 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 15533 offsetof(dtrace_probe_t, dtpr_nextfunc), 15534 offsetof(dtrace_probe_t, dtpr_prevfunc)); 15535 15536 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 15537 offsetof(dtrace_probe_t, dtpr_nextname), 15538 offsetof(dtrace_probe_t, dtpr_prevname)); 15539 15540 if (dtrace_retain_max < 1) { 15541 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; " 15542 "setting to 1", dtrace_retain_max); 15543 dtrace_retain_max = 1; 15544 } 15545 15546 /* 15547 * Now discover our toxic ranges. 15548 */ 15549 dtrace_toxic_ranges(dtrace_toxrange_add); 15550 15551 /* 15552 * Before we register ourselves as a provider to our own framework, 15553 * we would like to assert that dtrace_provider is NULL -- but that's 15554 * not true if we were loaded as a dependency of a DTrace provider. 15555 * Once we've registered, we can assert that dtrace_provider is our 15556 * pseudo provider. 15557 */ 15558 (void) dtrace_register("dtrace", &dtrace_provider_attr, 15559 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 15560 15561 ASSERT(dtrace_provider != NULL); 15562 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 15563 15564 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 15565 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 15566 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 15567 dtrace_provider, NULL, NULL, "END", 0, NULL); 15568 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 15569 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 15570 15571 dtrace_anon_property(); 15572 mutex_exit(&cpu_lock); 15573 15574 /* 15575 * If there are already providers, we must ask them to provide their 15576 * probes, and then match any anonymous enabling against them. Note 15577 * that there should be no other retained enablings at this time: 15578 * the only retained enablings at this time should be the anonymous 15579 * enabling. 15580 */ 15581 if (dtrace_anon.dta_enabling != NULL) { 15582 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 15583 15584 dtrace_enabling_provide(NULL); 15585 state = dtrace_anon.dta_state; 15586 15587 /* 15588 * We couldn't hold cpu_lock across the above call to 15589 * dtrace_enabling_provide(), but we must hold it to actually 15590 * enable the probes. We have to drop all of our locks, pick 15591 * up cpu_lock, and regain our locks before matching the 15592 * retained anonymous enabling. 15593 */ 15594 mutex_exit(&dtrace_lock); 15595 mutex_exit(&dtrace_provider_lock); 15596 15597 mutex_enter(&cpu_lock); 15598 mutex_enter(&dtrace_provider_lock); 15599 mutex_enter(&dtrace_lock); 15600 15601 if ((enab = dtrace_anon.dta_enabling) != NULL) 15602 (void) dtrace_enabling_match(enab, NULL); 15603 15604 mutex_exit(&cpu_lock); 15605 } 15606 15607 mutex_exit(&dtrace_lock); 15608 mutex_exit(&dtrace_provider_lock); 15609 15610 if (state != NULL) { 15611 /* 15612 * If we created any anonymous state, set it going now. 15613 */ 15614 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 15615 } 15616 15617 return (DDI_SUCCESS); 15618 } 15619 15620 /*ARGSUSED*/ 15621 static int 15622 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 15623 { 15624 dtrace_state_t *state; 15625 uint32_t priv; 15626 uid_t uid; 15627 zoneid_t zoneid; 15628 15629 if (getminor(*devp) == DTRACEMNRN_HELPER) 15630 return (0); 15631 15632 /* 15633 * If this wasn't an open with the "helper" minor, then it must be 15634 * the "dtrace" minor. 15635 */ 15636 if (getminor(*devp) != DTRACEMNRN_DTRACE) 15637 return (ENXIO); 15638 15639 /* 15640 * If no DTRACE_PRIV_* bits are set in the credential, then the 15641 * caller lacks sufficient permission to do anything with DTrace. 15642 */ 15643 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 15644 if (priv == DTRACE_PRIV_NONE) 15645 return (EACCES); 15646 15647 /* 15648 * Ask all providers to provide all their probes. 15649 */ 15650 mutex_enter(&dtrace_provider_lock); 15651 dtrace_probe_provide(NULL, NULL); 15652 mutex_exit(&dtrace_provider_lock); 15653 15654 mutex_enter(&cpu_lock); 15655 mutex_enter(&dtrace_lock); 15656 dtrace_opens++; 15657 dtrace_membar_producer(); 15658 15659 /* 15660 * If the kernel debugger is active (that is, if the kernel debugger 15661 * modified text in some way), we won't allow the open. 15662 */ 15663 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 15664 dtrace_opens--; 15665 mutex_exit(&cpu_lock); 15666 mutex_exit(&dtrace_lock); 15667 return (EBUSY); 15668 } 15669 15670 if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) { 15671 /* 15672 * If DTrace helper tracing is enabled, we need to allocate the 15673 * trace buffer and initialize the values. 15674 */ 15675 dtrace_helptrace_buffer = 15676 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 15677 dtrace_helptrace_next = 0; 15678 dtrace_helptrace_wrapped = 0; 15679 dtrace_helptrace_enable = 0; 15680 } 15681 15682 state = dtrace_state_create(devp, cred_p); 15683 mutex_exit(&cpu_lock); 15684 15685 if (state == NULL) { 15686 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 15687 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 15688 mutex_exit(&dtrace_lock); 15689 return (EAGAIN); 15690 } 15691 15692 mutex_exit(&dtrace_lock); 15693 15694 return (0); 15695 } 15696 15697 /*ARGSUSED*/ 15698 static int 15699 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 15700 { 15701 minor_t minor = getminor(dev); 15702 dtrace_state_t *state; 15703 dtrace_helptrace_t *buf = NULL; 15704 15705 if (minor == DTRACEMNRN_HELPER) 15706 return (0); 15707 15708 state = ddi_get_soft_state(dtrace_softstate, minor); 15709 15710 mutex_enter(&cpu_lock); 15711 mutex_enter(&dtrace_lock); 15712 15713 if (state->dts_anon) { 15714 /* 15715 * There is anonymous state. Destroy that first. 15716 */ 15717 ASSERT(dtrace_anon.dta_state == NULL); 15718 dtrace_state_destroy(state->dts_anon); 15719 } 15720 15721 if (dtrace_helptrace_disable) { 15722 /* 15723 * If we have been told to disable helper tracing, set the 15724 * buffer to NULL before calling into dtrace_state_destroy(); 15725 * we take advantage of its dtrace_sync() to know that no 15726 * CPU is in probe context with enabled helper tracing 15727 * after it returns. 15728 */ 15729 buf = dtrace_helptrace_buffer; 15730 dtrace_helptrace_buffer = NULL; 15731 } 15732 15733 dtrace_state_destroy(state); 15734 ASSERT(dtrace_opens > 0); 15735 15736 /* 15737 * Only relinquish control of the kernel debugger interface when there 15738 * are no consumers and no anonymous enablings. 15739 */ 15740 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 15741 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 15742 15743 if (buf != NULL) { 15744 kmem_free(buf, dtrace_helptrace_bufsize); 15745 dtrace_helptrace_disable = 0; 15746 } 15747 15748 mutex_exit(&dtrace_lock); 15749 mutex_exit(&cpu_lock); 15750 15751 return (0); 15752 } 15753 15754 /*ARGSUSED*/ 15755 static int 15756 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 15757 { 15758 int rval; 15759 dof_helper_t help, *dhp = NULL; 15760 15761 switch (cmd) { 15762 case DTRACEHIOC_ADDDOF: 15763 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 15764 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 15765 return (EFAULT); 15766 } 15767 15768 dhp = &help; 15769 arg = (intptr_t)help.dofhp_dof; 15770 /*FALLTHROUGH*/ 15771 15772 case DTRACEHIOC_ADD: { 15773 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 15774 15775 if (dof == NULL) 15776 return (rval); 15777 15778 mutex_enter(&dtrace_lock); 15779 15780 /* 15781 * dtrace_helper_slurp() takes responsibility for the dof -- 15782 * it may free it now or it may save it and free it later. 15783 */ 15784 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 15785 *rv = rval; 15786 rval = 0; 15787 } else { 15788 rval = EINVAL; 15789 } 15790 15791 mutex_exit(&dtrace_lock); 15792 return (rval); 15793 } 15794 15795 case DTRACEHIOC_REMOVE: { 15796 mutex_enter(&dtrace_lock); 15797 rval = dtrace_helper_destroygen(arg); 15798 mutex_exit(&dtrace_lock); 15799 15800 return (rval); 15801 } 15802 15803 default: 15804 break; 15805 } 15806 15807 return (ENOTTY); 15808 } 15809 15810 /*ARGSUSED*/ 15811 static int 15812 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 15813 { 15814 minor_t minor = getminor(dev); 15815 dtrace_state_t *state; 15816 int rval; 15817 15818 if (minor == DTRACEMNRN_HELPER) 15819 return (dtrace_ioctl_helper(cmd, arg, rv)); 15820 15821 state = ddi_get_soft_state(dtrace_softstate, minor); 15822 15823 if (state->dts_anon) { 15824 ASSERT(dtrace_anon.dta_state == NULL); 15825 state = state->dts_anon; 15826 } 15827 15828 switch (cmd) { 15829 case DTRACEIOC_PROVIDER: { 15830 dtrace_providerdesc_t pvd; 15831 dtrace_provider_t *pvp; 15832 15833 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 15834 return (EFAULT); 15835 15836 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 15837 mutex_enter(&dtrace_provider_lock); 15838 15839 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 15840 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 15841 break; 15842 } 15843 15844 mutex_exit(&dtrace_provider_lock); 15845 15846 if (pvp == NULL) 15847 return (ESRCH); 15848 15849 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 15850 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 15851 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 15852 return (EFAULT); 15853 15854 return (0); 15855 } 15856 15857 case DTRACEIOC_EPROBE: { 15858 dtrace_eprobedesc_t epdesc; 15859 dtrace_ecb_t *ecb; 15860 dtrace_action_t *act; 15861 void *buf; 15862 size_t size; 15863 uintptr_t dest; 15864 int nrecs; 15865 15866 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 15867 return (EFAULT); 15868 15869 mutex_enter(&dtrace_lock); 15870 15871 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 15872 mutex_exit(&dtrace_lock); 15873 return (EINVAL); 15874 } 15875 15876 if (ecb->dte_probe == NULL) { 15877 mutex_exit(&dtrace_lock); 15878 return (EINVAL); 15879 } 15880 15881 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 15882 epdesc.dtepd_uarg = ecb->dte_uarg; 15883 epdesc.dtepd_size = ecb->dte_size; 15884 15885 nrecs = epdesc.dtepd_nrecs; 15886 epdesc.dtepd_nrecs = 0; 15887 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 15888 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 15889 continue; 15890 15891 epdesc.dtepd_nrecs++; 15892 } 15893 15894 /* 15895 * Now that we have the size, we need to allocate a temporary 15896 * buffer in which to store the complete description. We need 15897 * the temporary buffer to be able to drop dtrace_lock() 15898 * across the copyout(), below. 15899 */ 15900 size = sizeof (dtrace_eprobedesc_t) + 15901 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 15902 15903 buf = kmem_alloc(size, KM_SLEEP); 15904 dest = (uintptr_t)buf; 15905 15906 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 15907 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 15908 15909 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 15910 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 15911 continue; 15912 15913 if (nrecs-- == 0) 15914 break; 15915 15916 bcopy(&act->dta_rec, (void *)dest, 15917 sizeof (dtrace_recdesc_t)); 15918 dest += sizeof (dtrace_recdesc_t); 15919 } 15920 15921 mutex_exit(&dtrace_lock); 15922 15923 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 15924 kmem_free(buf, size); 15925 return (EFAULT); 15926 } 15927 15928 kmem_free(buf, size); 15929 return (0); 15930 } 15931 15932 case DTRACEIOC_AGGDESC: { 15933 dtrace_aggdesc_t aggdesc; 15934 dtrace_action_t *act; 15935 dtrace_aggregation_t *agg; 15936 int nrecs; 15937 uint32_t offs; 15938 dtrace_recdesc_t *lrec; 15939 void *buf; 15940 size_t size; 15941 uintptr_t dest; 15942 15943 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 15944 return (EFAULT); 15945 15946 mutex_enter(&dtrace_lock); 15947 15948 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 15949 mutex_exit(&dtrace_lock); 15950 return (EINVAL); 15951 } 15952 15953 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 15954 15955 nrecs = aggdesc.dtagd_nrecs; 15956 aggdesc.dtagd_nrecs = 0; 15957 15958 offs = agg->dtag_base; 15959 lrec = &agg->dtag_action.dta_rec; 15960 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 15961 15962 for (act = agg->dtag_first; ; act = act->dta_next) { 15963 ASSERT(act->dta_intuple || 15964 DTRACEACT_ISAGG(act->dta_kind)); 15965 15966 /* 15967 * If this action has a record size of zero, it 15968 * denotes an argument to the aggregating action. 15969 * Because the presence of this record doesn't (or 15970 * shouldn't) affect the way the data is interpreted, 15971 * we don't copy it out to save user-level the 15972 * confusion of dealing with a zero-length record. 15973 */ 15974 if (act->dta_rec.dtrd_size == 0) { 15975 ASSERT(agg->dtag_hasarg); 15976 continue; 15977 } 15978 15979 aggdesc.dtagd_nrecs++; 15980 15981 if (act == &agg->dtag_action) 15982 break; 15983 } 15984 15985 /* 15986 * Now that we have the size, we need to allocate a temporary 15987 * buffer in which to store the complete description. We need 15988 * the temporary buffer to be able to drop dtrace_lock() 15989 * across the copyout(), below. 15990 */ 15991 size = sizeof (dtrace_aggdesc_t) + 15992 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 15993 15994 buf = kmem_alloc(size, KM_SLEEP); 15995 dest = (uintptr_t)buf; 15996 15997 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 15998 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 15999 16000 for (act = agg->dtag_first; ; act = act->dta_next) { 16001 dtrace_recdesc_t rec = act->dta_rec; 16002 16003 /* 16004 * See the comment in the above loop for why we pass 16005 * over zero-length records. 16006 */ 16007 if (rec.dtrd_size == 0) { 16008 ASSERT(agg->dtag_hasarg); 16009 continue; 16010 } 16011 16012 if (nrecs-- == 0) 16013 break; 16014 16015 rec.dtrd_offset -= offs; 16016 bcopy(&rec, (void *)dest, sizeof (rec)); 16017 dest += sizeof (dtrace_recdesc_t); 16018 16019 if (act == &agg->dtag_action) 16020 break; 16021 } 16022 16023 mutex_exit(&dtrace_lock); 16024 16025 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 16026 kmem_free(buf, size); 16027 return (EFAULT); 16028 } 16029 16030 kmem_free(buf, size); 16031 return (0); 16032 } 16033 16034 case DTRACEIOC_ENABLE: { 16035 dof_hdr_t *dof; 16036 dtrace_enabling_t *enab = NULL; 16037 dtrace_vstate_t *vstate; 16038 int err = 0; 16039 16040 *rv = 0; 16041 16042 /* 16043 * If a NULL argument has been passed, we take this as our 16044 * cue to reevaluate our enablings. 16045 */ 16046 if (arg == NULL) { 16047 dtrace_enabling_matchall(); 16048 16049 return (0); 16050 } 16051 16052 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 16053 return (rval); 16054 16055 mutex_enter(&cpu_lock); 16056 mutex_enter(&dtrace_lock); 16057 vstate = &state->dts_vstate; 16058 16059 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 16060 mutex_exit(&dtrace_lock); 16061 mutex_exit(&cpu_lock); 16062 dtrace_dof_destroy(dof); 16063 return (EBUSY); 16064 } 16065 16066 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 16067 mutex_exit(&dtrace_lock); 16068 mutex_exit(&cpu_lock); 16069 dtrace_dof_destroy(dof); 16070 return (EINVAL); 16071 } 16072 16073 if ((rval = dtrace_dof_options(dof, state)) != 0) { 16074 dtrace_enabling_destroy(enab); 16075 mutex_exit(&dtrace_lock); 16076 mutex_exit(&cpu_lock); 16077 dtrace_dof_destroy(dof); 16078 return (rval); 16079 } 16080 16081 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 16082 err = dtrace_enabling_retain(enab); 16083 } else { 16084 dtrace_enabling_destroy(enab); 16085 } 16086 16087 mutex_exit(&cpu_lock); 16088 mutex_exit(&dtrace_lock); 16089 dtrace_dof_destroy(dof); 16090 16091 return (err); 16092 } 16093 16094 case DTRACEIOC_REPLICATE: { 16095 dtrace_repldesc_t desc; 16096 dtrace_probedesc_t *match = &desc.dtrpd_match; 16097 dtrace_probedesc_t *create = &desc.dtrpd_create; 16098 int err; 16099 16100 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16101 return (EFAULT); 16102 16103 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16104 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16105 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16106 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16107 16108 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16109 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16110 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16111 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16112 16113 mutex_enter(&dtrace_lock); 16114 err = dtrace_enabling_replicate(state, match, create); 16115 mutex_exit(&dtrace_lock); 16116 16117 return (err); 16118 } 16119 16120 case DTRACEIOC_PROBEMATCH: 16121 case DTRACEIOC_PROBES: { 16122 dtrace_probe_t *probe = NULL; 16123 dtrace_probedesc_t desc; 16124 dtrace_probekey_t pkey; 16125 dtrace_id_t i; 16126 int m = 0; 16127 uint32_t priv; 16128 uid_t uid; 16129 zoneid_t zoneid; 16130 16131 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16132 return (EFAULT); 16133 16134 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16135 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16136 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16137 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16138 16139 /* 16140 * Before we attempt to match this probe, we want to give 16141 * all providers the opportunity to provide it. 16142 */ 16143 if (desc.dtpd_id == DTRACE_IDNONE) { 16144 mutex_enter(&dtrace_provider_lock); 16145 dtrace_probe_provide(&desc, NULL); 16146 mutex_exit(&dtrace_provider_lock); 16147 desc.dtpd_id++; 16148 } 16149 16150 if (cmd == DTRACEIOC_PROBEMATCH) { 16151 dtrace_probekey(&desc, &pkey); 16152 pkey.dtpk_id = DTRACE_IDNONE; 16153 } 16154 16155 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 16156 16157 mutex_enter(&dtrace_lock); 16158 16159 if (cmd == DTRACEIOC_PROBEMATCH) { 16160 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 16161 if ((probe = dtrace_probes[i - 1]) != NULL && 16162 (m = dtrace_match_probe(probe, &pkey, 16163 priv, uid, zoneid)) != 0) 16164 break; 16165 } 16166 16167 if (m < 0) { 16168 mutex_exit(&dtrace_lock); 16169 return (EINVAL); 16170 } 16171 16172 } else { 16173 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 16174 if ((probe = dtrace_probes[i - 1]) != NULL && 16175 dtrace_match_priv(probe, priv, uid, zoneid)) 16176 break; 16177 } 16178 } 16179 16180 if (probe == NULL) { 16181 mutex_exit(&dtrace_lock); 16182 return (ESRCH); 16183 } 16184 16185 dtrace_probe_description(probe, &desc); 16186 mutex_exit(&dtrace_lock); 16187 16188 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16189 return (EFAULT); 16190 16191 return (0); 16192 } 16193 16194 case DTRACEIOC_PROBEARG: { 16195 dtrace_argdesc_t desc; 16196 dtrace_probe_t *probe; 16197 dtrace_provider_t *prov; 16198 16199 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16200 return (EFAULT); 16201 16202 if (desc.dtargd_id == DTRACE_IDNONE) 16203 return (EINVAL); 16204 16205 if (desc.dtargd_ndx == DTRACE_ARGNONE) 16206 return (EINVAL); 16207 16208 mutex_enter(&dtrace_provider_lock); 16209 mutex_enter(&mod_lock); 16210 mutex_enter(&dtrace_lock); 16211 16212 if (desc.dtargd_id > dtrace_nprobes) { 16213 mutex_exit(&dtrace_lock); 16214 mutex_exit(&mod_lock); 16215 mutex_exit(&dtrace_provider_lock); 16216 return (EINVAL); 16217 } 16218 16219 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 16220 mutex_exit(&dtrace_lock); 16221 mutex_exit(&mod_lock); 16222 mutex_exit(&dtrace_provider_lock); 16223 return (EINVAL); 16224 } 16225 16226 mutex_exit(&dtrace_lock); 16227 16228 prov = probe->dtpr_provider; 16229 16230 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 16231 /* 16232 * There isn't any typed information for this probe. 16233 * Set the argument number to DTRACE_ARGNONE. 16234 */ 16235 desc.dtargd_ndx = DTRACE_ARGNONE; 16236 } else { 16237 desc.dtargd_native[0] = '\0'; 16238 desc.dtargd_xlate[0] = '\0'; 16239 desc.dtargd_mapping = desc.dtargd_ndx; 16240 16241 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 16242 probe->dtpr_id, probe->dtpr_arg, &desc); 16243 } 16244 16245 mutex_exit(&mod_lock); 16246 mutex_exit(&dtrace_provider_lock); 16247 16248 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16249 return (EFAULT); 16250 16251 return (0); 16252 } 16253 16254 case DTRACEIOC_GO: { 16255 processorid_t cpuid; 16256 rval = dtrace_state_go(state, &cpuid); 16257 16258 if (rval != 0) 16259 return (rval); 16260 16261 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 16262 return (EFAULT); 16263 16264 return (0); 16265 } 16266 16267 case DTRACEIOC_STOP: { 16268 processorid_t cpuid; 16269 16270 mutex_enter(&dtrace_lock); 16271 rval = dtrace_state_stop(state, &cpuid); 16272 mutex_exit(&dtrace_lock); 16273 16274 if (rval != 0) 16275 return (rval); 16276 16277 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 16278 return (EFAULT); 16279 16280 return (0); 16281 } 16282 16283 case DTRACEIOC_DOFGET: { 16284 dof_hdr_t hdr, *dof; 16285 uint64_t len; 16286 16287 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 16288 return (EFAULT); 16289 16290 mutex_enter(&dtrace_lock); 16291 dof = dtrace_dof_create(state); 16292 mutex_exit(&dtrace_lock); 16293 16294 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 16295 rval = copyout(dof, (void *)arg, len); 16296 dtrace_dof_destroy(dof); 16297 16298 return (rval == 0 ? 0 : EFAULT); 16299 } 16300 16301 case DTRACEIOC_AGGSNAP: 16302 case DTRACEIOC_BUFSNAP: { 16303 dtrace_bufdesc_t desc; 16304 caddr_t cached; 16305 dtrace_buffer_t *buf; 16306 16307 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16308 return (EFAULT); 16309 16310 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 16311 return (EINVAL); 16312 16313 mutex_enter(&dtrace_lock); 16314 16315 if (cmd == DTRACEIOC_BUFSNAP) { 16316 buf = &state->dts_buffer[desc.dtbd_cpu]; 16317 } else { 16318 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 16319 } 16320 16321 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 16322 size_t sz = buf->dtb_offset; 16323 16324 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 16325 mutex_exit(&dtrace_lock); 16326 return (EBUSY); 16327 } 16328 16329 /* 16330 * If this buffer has already been consumed, we're 16331 * going to indicate that there's nothing left here 16332 * to consume. 16333 */ 16334 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 16335 mutex_exit(&dtrace_lock); 16336 16337 desc.dtbd_size = 0; 16338 desc.dtbd_drops = 0; 16339 desc.dtbd_errors = 0; 16340 desc.dtbd_oldest = 0; 16341 sz = sizeof (desc); 16342 16343 if (copyout(&desc, (void *)arg, sz) != 0) 16344 return (EFAULT); 16345 16346 return (0); 16347 } 16348 16349 /* 16350 * If this is a ring buffer that has wrapped, we want 16351 * to copy the whole thing out. 16352 */ 16353 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 16354 dtrace_buffer_polish(buf); 16355 sz = buf->dtb_size; 16356 } 16357 16358 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 16359 mutex_exit(&dtrace_lock); 16360 return (EFAULT); 16361 } 16362 16363 desc.dtbd_size = sz; 16364 desc.dtbd_drops = buf->dtb_drops; 16365 desc.dtbd_errors = buf->dtb_errors; 16366 desc.dtbd_oldest = buf->dtb_xamot_offset; 16367 desc.dtbd_timestamp = dtrace_gethrtime(); 16368 16369 mutex_exit(&dtrace_lock); 16370 16371 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16372 return (EFAULT); 16373 16374 buf->dtb_flags |= DTRACEBUF_CONSUMED; 16375 16376 return (0); 16377 } 16378 16379 if (buf->dtb_tomax == NULL) { 16380 ASSERT(buf->dtb_xamot == NULL); 16381 mutex_exit(&dtrace_lock); 16382 return (ENOENT); 16383 } 16384 16385 cached = buf->dtb_tomax; 16386 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 16387 16388 dtrace_xcall(desc.dtbd_cpu, 16389 (dtrace_xcall_t)dtrace_buffer_switch, buf); 16390 16391 state->dts_errors += buf->dtb_xamot_errors; 16392 16393 /* 16394 * If the buffers did not actually switch, then the cross call 16395 * did not take place -- presumably because the given CPU is 16396 * not in the ready set. If this is the case, we'll return 16397 * ENOENT. 16398 */ 16399 if (buf->dtb_tomax == cached) { 16400 ASSERT(buf->dtb_xamot != cached); 16401 mutex_exit(&dtrace_lock); 16402 return (ENOENT); 16403 } 16404 16405 ASSERT(cached == buf->dtb_xamot); 16406 16407 /* 16408 * We have our snapshot; now copy it out. 16409 */ 16410 if (copyout(buf->dtb_xamot, desc.dtbd_data, 16411 buf->dtb_xamot_offset) != 0) { 16412 mutex_exit(&dtrace_lock); 16413 return (EFAULT); 16414 } 16415 16416 desc.dtbd_size = buf->dtb_xamot_offset; 16417 desc.dtbd_drops = buf->dtb_xamot_drops; 16418 desc.dtbd_errors = buf->dtb_xamot_errors; 16419 desc.dtbd_oldest = 0; 16420 desc.dtbd_timestamp = buf->dtb_switched; 16421 16422 mutex_exit(&dtrace_lock); 16423 16424 /* 16425 * Finally, copy out the buffer description. 16426 */ 16427 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16428 return (EFAULT); 16429 16430 return (0); 16431 } 16432 16433 case DTRACEIOC_CONF: { 16434 dtrace_conf_t conf; 16435 16436 bzero(&conf, sizeof (conf)); 16437 conf.dtc_difversion = DIF_VERSION; 16438 conf.dtc_difintregs = DIF_DIR_NREGS; 16439 conf.dtc_diftupregs = DIF_DTR_NREGS; 16440 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 16441 16442 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 16443 return (EFAULT); 16444 16445 return (0); 16446 } 16447 16448 case DTRACEIOC_STATUS: { 16449 dtrace_status_t stat; 16450 dtrace_dstate_t *dstate; 16451 int i, j; 16452 uint64_t nerrs; 16453 16454 /* 16455 * See the comment in dtrace_state_deadman() for the reason 16456 * for setting dts_laststatus to INT64_MAX before setting 16457 * it to the correct value. 16458 */ 16459 state->dts_laststatus = INT64_MAX; 16460 dtrace_membar_producer(); 16461 state->dts_laststatus = dtrace_gethrtime(); 16462 16463 bzero(&stat, sizeof (stat)); 16464 16465 mutex_enter(&dtrace_lock); 16466 16467 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 16468 mutex_exit(&dtrace_lock); 16469 return (ENOENT); 16470 } 16471 16472 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 16473 stat.dtst_exiting = 1; 16474 16475 nerrs = state->dts_errors; 16476 dstate = &state->dts_vstate.dtvs_dynvars; 16477 16478 for (i = 0; i < NCPU; i++) { 16479 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 16480 16481 stat.dtst_dyndrops += dcpu->dtdsc_drops; 16482 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 16483 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 16484 16485 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 16486 stat.dtst_filled++; 16487 16488 nerrs += state->dts_buffer[i].dtb_errors; 16489 16490 for (j = 0; j < state->dts_nspeculations; j++) { 16491 dtrace_speculation_t *spec; 16492 dtrace_buffer_t *buf; 16493 16494 spec = &state->dts_speculations[j]; 16495 buf = &spec->dtsp_buffer[i]; 16496 stat.dtst_specdrops += buf->dtb_xamot_drops; 16497 } 16498 } 16499 16500 stat.dtst_specdrops_busy = state->dts_speculations_busy; 16501 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 16502 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 16503 stat.dtst_dblerrors = state->dts_dblerrors; 16504 stat.dtst_killed = 16505 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 16506 stat.dtst_errors = nerrs; 16507 16508 mutex_exit(&dtrace_lock); 16509 16510 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 16511 return (EFAULT); 16512 16513 return (0); 16514 } 16515 16516 case DTRACEIOC_FORMAT: { 16517 dtrace_fmtdesc_t fmt; 16518 char *str; 16519 int len; 16520 16521 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 16522 return (EFAULT); 16523 16524 mutex_enter(&dtrace_lock); 16525 16526 if (fmt.dtfd_format == 0 || 16527 fmt.dtfd_format > state->dts_nformats) { 16528 mutex_exit(&dtrace_lock); 16529 return (EINVAL); 16530 } 16531 16532 /* 16533 * Format strings are allocated contiguously and they are 16534 * never freed; if a format index is less than the number 16535 * of formats, we can assert that the format map is non-NULL 16536 * and that the format for the specified index is non-NULL. 16537 */ 16538 ASSERT(state->dts_formats != NULL); 16539 str = state->dts_formats[fmt.dtfd_format - 1]; 16540 ASSERT(str != NULL); 16541 16542 len = strlen(str) + 1; 16543 16544 if (len > fmt.dtfd_length) { 16545 fmt.dtfd_length = len; 16546 16547 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 16548 mutex_exit(&dtrace_lock); 16549 return (EINVAL); 16550 } 16551 } else { 16552 if (copyout(str, fmt.dtfd_string, len) != 0) { 16553 mutex_exit(&dtrace_lock); 16554 return (EINVAL); 16555 } 16556 } 16557 16558 mutex_exit(&dtrace_lock); 16559 return (0); 16560 } 16561 16562 default: 16563 break; 16564 } 16565 16566 return (ENOTTY); 16567 } 16568 16569 /*ARGSUSED*/ 16570 static int 16571 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 16572 { 16573 dtrace_state_t *state; 16574 16575 switch (cmd) { 16576 case DDI_DETACH: 16577 break; 16578 16579 case DDI_SUSPEND: 16580 return (DDI_SUCCESS); 16581 16582 default: 16583 return (DDI_FAILURE); 16584 } 16585 16586 mutex_enter(&cpu_lock); 16587 mutex_enter(&dtrace_provider_lock); 16588 mutex_enter(&dtrace_lock); 16589 16590 ASSERT(dtrace_opens == 0); 16591 16592 if (dtrace_helpers > 0) { 16593 mutex_exit(&dtrace_provider_lock); 16594 mutex_exit(&dtrace_lock); 16595 mutex_exit(&cpu_lock); 16596 return (DDI_FAILURE); 16597 } 16598 16599 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 16600 mutex_exit(&dtrace_provider_lock); 16601 mutex_exit(&dtrace_lock); 16602 mutex_exit(&cpu_lock); 16603 return (DDI_FAILURE); 16604 } 16605 16606 dtrace_provider = NULL; 16607 16608 if ((state = dtrace_anon_grab()) != NULL) { 16609 /* 16610 * If there were ECBs on this state, the provider should 16611 * have not been allowed to detach; assert that there is 16612 * none. 16613 */ 16614 ASSERT(state->dts_necbs == 0); 16615 dtrace_state_destroy(state); 16616 16617 /* 16618 * If we're being detached with anonymous state, we need to 16619 * indicate to the kernel debugger that DTrace is now inactive. 16620 */ 16621 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 16622 } 16623 16624 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 16625 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 16626 dtrace_cpu_init = NULL; 16627 dtrace_helpers_cleanup = NULL; 16628 dtrace_helpers_fork = NULL; 16629 dtrace_cpustart_init = NULL; 16630 dtrace_cpustart_fini = NULL; 16631 dtrace_debugger_init = NULL; 16632 dtrace_debugger_fini = NULL; 16633 dtrace_modload = NULL; 16634 dtrace_modunload = NULL; 16635 16636 ASSERT(dtrace_getf == 0); 16637 ASSERT(dtrace_closef == NULL); 16638 16639 mutex_exit(&cpu_lock); 16640 16641 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 16642 dtrace_probes = NULL; 16643 dtrace_nprobes = 0; 16644 16645 dtrace_hash_destroy(dtrace_bymod); 16646 dtrace_hash_destroy(dtrace_byfunc); 16647 dtrace_hash_destroy(dtrace_byname); 16648 dtrace_bymod = NULL; 16649 dtrace_byfunc = NULL; 16650 dtrace_byname = NULL; 16651 16652 kmem_cache_destroy(dtrace_state_cache); 16653 vmem_destroy(dtrace_minor); 16654 vmem_destroy(dtrace_arena); 16655 16656 if (dtrace_toxrange != NULL) { 16657 kmem_free(dtrace_toxrange, 16658 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 16659 dtrace_toxrange = NULL; 16660 dtrace_toxranges = 0; 16661 dtrace_toxranges_max = 0; 16662 } 16663 16664 ddi_remove_minor_node(dtrace_devi, NULL); 16665 dtrace_devi = NULL; 16666 16667 ddi_soft_state_fini(&dtrace_softstate); 16668 16669 ASSERT(dtrace_vtime_references == 0); 16670 ASSERT(dtrace_opens == 0); 16671 ASSERT(dtrace_retained == NULL); 16672 16673 mutex_exit(&dtrace_lock); 16674 mutex_exit(&dtrace_provider_lock); 16675 16676 /* 16677 * We don't destroy the task queue until after we have dropped our 16678 * locks (taskq_destroy() may block on running tasks). To prevent 16679 * attempting to do work after we have effectively detached but before 16680 * the task queue has been destroyed, all tasks dispatched via the 16681 * task queue must check that DTrace is still attached before 16682 * performing any operation. 16683 */ 16684 taskq_destroy(dtrace_taskq); 16685 dtrace_taskq = NULL; 16686 16687 return (DDI_SUCCESS); 16688 } 16689 16690 /*ARGSUSED*/ 16691 static int 16692 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 16693 { 16694 int error; 16695 16696 switch (infocmd) { 16697 case DDI_INFO_DEVT2DEVINFO: 16698 *result = (void *)dtrace_devi; 16699 error = DDI_SUCCESS; 16700 break; 16701 case DDI_INFO_DEVT2INSTANCE: 16702 *result = (void *)0; 16703 error = DDI_SUCCESS; 16704 break; 16705 default: 16706 error = DDI_FAILURE; 16707 } 16708 return (error); 16709 } 16710 16711 static struct cb_ops dtrace_cb_ops = { 16712 dtrace_open, /* open */ 16713 dtrace_close, /* close */ 16714 nulldev, /* strategy */ 16715 nulldev, /* print */ 16716 nodev, /* dump */ 16717 nodev, /* read */ 16718 nodev, /* write */ 16719 dtrace_ioctl, /* ioctl */ 16720 nodev, /* devmap */ 16721 nodev, /* mmap */ 16722 nodev, /* segmap */ 16723 nochpoll, /* poll */ 16724 ddi_prop_op, /* cb_prop_op */ 16725 0, /* streamtab */ 16726 D_NEW | D_MP /* Driver compatibility flag */ 16727 }; 16728 16729 static struct dev_ops dtrace_ops = { 16730 DEVO_REV, /* devo_rev */ 16731 0, /* refcnt */ 16732 dtrace_info, /* get_dev_info */ 16733 nulldev, /* identify */ 16734 nulldev, /* probe */ 16735 dtrace_attach, /* attach */ 16736 dtrace_detach, /* detach */ 16737 nodev, /* reset */ 16738 &dtrace_cb_ops, /* driver operations */ 16739 NULL, /* bus operations */ 16740 nodev, /* dev power */ 16741 ddi_quiesce_not_needed, /* quiesce */ 16742 }; 16743 16744 static struct modldrv modldrv = { 16745 &mod_driverops, /* module type (this is a pseudo driver) */ 16746 "Dynamic Tracing", /* name of module */ 16747 &dtrace_ops, /* driver ops */ 16748 }; 16749 16750 static struct modlinkage modlinkage = { 16751 MODREV_1, 16752 (void *)&modldrv, 16753 NULL 16754 }; 16755 16756 int 16757 _init(void) 16758 { 16759 return (mod_install(&modlinkage)); 16760 } 16761 16762 int 16763 _info(struct modinfo *modinfop) 16764 { 16765 return (mod_info(&modlinkage, modinfop)); 16766 } 16767 16768 int 16769 _fini(void) 16770 { 16771 return (mod_remove(&modlinkage)); 16772 }