1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, Joyent, Inc. All rights reserved. 25 * Copyright (c) 2012 by Delphix. All rights reserved. 26 */ 27 28 /* 29 * DTrace - Dynamic Tracing for Solaris 30 * 31 * This is the implementation of the Solaris Dynamic Tracing framework 32 * (DTrace). The user-visible interface to DTrace is described at length in 33 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 34 * library, the in-kernel DTrace framework, and the DTrace providers are 35 * described in the block comments in the <sys/dtrace.h> header file. The 36 * internal architecture of DTrace is described in the block comments in the 37 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 38 * implementation very much assume mastery of all of these sources; if one has 39 * an unanswered question about the implementation, one should consult them 40 * first. 41 * 42 * The functions here are ordered roughly as follows: 43 * 44 * - Probe context functions 45 * - Probe hashing functions 46 * - Non-probe context utility functions 47 * - Matching functions 48 * - Provider-to-Framework API functions 49 * - Probe management functions 50 * - DIF object functions 51 * - Format functions 52 * - Predicate functions 53 * - ECB functions 54 * - Buffer functions 55 * - Enabling functions 56 * - DOF functions 57 * - Anonymous enabling functions 58 * - Consumer state functions 59 * - Helper functions 60 * - Hook functions 61 * - Driver cookbook functions 62 * 63 * Each group of functions begins with a block comment labelled the "DTrace 64 * [Group] Functions", allowing one to find each block by searching forward 65 * on capital-f functions. 66 */ 67 #include <sys/errno.h> 68 #include <sys/stat.h> 69 #include <sys/modctl.h> 70 #include <sys/conf.h> 71 #include <sys/systm.h> 72 #include <sys/ddi.h> 73 #include <sys/sunddi.h> 74 #include <sys/cpuvar.h> 75 #include <sys/kmem.h> 76 #include <sys/strsubr.h> 77 #include <sys/sysmacros.h> 78 #include <sys/dtrace_impl.h> 79 #include <sys/atomic.h> 80 #include <sys/cmn_err.h> 81 #include <sys/mutex_impl.h> 82 #include <sys/rwlock_impl.h> 83 #include <sys/ctf_api.h> 84 #include <sys/panic.h> 85 #include <sys/priv_impl.h> 86 #include <sys/policy.h> 87 #include <sys/cred_impl.h> 88 #include <sys/procfs_isa.h> 89 #include <sys/taskq.h> 90 #include <sys/mkdev.h> 91 #include <sys/kdi.h> 92 #include <sys/zone.h> 93 #include <sys/socket.h> 94 #include <netinet/in.h> 95 #include "strtolctype.h" 96 97 /* 98 * DTrace Tunable Variables 99 * 100 * The following variables may be tuned by adding a line to /etc/system that 101 * includes both the name of the DTrace module ("dtrace") and the name of the 102 * variable. For example: 103 * 104 * set dtrace:dtrace_destructive_disallow = 1 105 * 106 * In general, the only variables that one should be tuning this way are those 107 * that affect system-wide DTrace behavior, and for which the default behavior 108 * is undesirable. Most of these variables are tunable on a per-consumer 109 * basis using DTrace options, and need not be tuned on a system-wide basis. 110 * When tuning these variables, avoid pathological values; while some attempt 111 * is made to verify the integrity of these variables, they are not considered 112 * part of the supported interface to DTrace, and they are therefore not 113 * checked comprehensively. Further, these variables should not be tuned 114 * dynamically via "mdb -kw" or other means; they should only be tuned via 115 * /etc/system. 116 */ 117 int dtrace_destructive_disallow = 0; 118 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 119 size_t dtrace_difo_maxsize = (256 * 1024); 120 dtrace_optval_t dtrace_dof_maxsize = (8 * 1024 * 1024); 121 size_t dtrace_global_maxsize = (16 * 1024); 122 size_t dtrace_actions_max = (16 * 1024); 123 size_t dtrace_retain_max = 1024; 124 dtrace_optval_t dtrace_helper_actions_max = 1024; 125 dtrace_optval_t dtrace_helper_providers_max = 32; 126 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 127 size_t dtrace_strsize_default = 256; 128 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 129 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 130 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 131 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 132 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 133 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 134 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 135 dtrace_optval_t dtrace_nspec_default = 1; 136 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 137 dtrace_optval_t dtrace_stackframes_default = 20; 138 dtrace_optval_t dtrace_ustackframes_default = 20; 139 dtrace_optval_t dtrace_jstackframes_default = 50; 140 dtrace_optval_t dtrace_jstackstrsize_default = 512; 141 int dtrace_msgdsize_max = 128; 142 hrtime_t dtrace_chill_max = 500 * (NANOSEC / MILLISEC); /* 500 ms */ 143 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 144 int dtrace_devdepth_max = 32; 145 int dtrace_err_verbose; 146 hrtime_t dtrace_deadman_interval = NANOSEC; 147 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 148 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 149 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC; 150 151 /* 152 * DTrace External Variables 153 * 154 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 155 * available to DTrace consumers via the backtick (`) syntax. One of these, 156 * dtrace_zero, is made deliberately so: it is provided as a source of 157 * well-known, zero-filled memory. While this variable is not documented, 158 * it is used by some translators as an implementation detail. 159 */ 160 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 161 162 /* 163 * DTrace Internal Variables 164 */ 165 static dev_info_t *dtrace_devi; /* device info */ 166 static vmem_t *dtrace_arena; /* probe ID arena */ 167 static vmem_t *dtrace_minor; /* minor number arena */ 168 static taskq_t *dtrace_taskq; /* task queue */ 169 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 170 static int dtrace_nprobes; /* number of probes */ 171 static dtrace_provider_t *dtrace_provider; /* provider list */ 172 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 173 static int dtrace_opens; /* number of opens */ 174 static int dtrace_helpers; /* number of helpers */ 175 static int dtrace_getf; /* number of unpriv getf()s */ 176 static void *dtrace_softstate; /* softstate pointer */ 177 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 178 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 179 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 180 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 181 static int dtrace_toxranges; /* number of toxic ranges */ 182 static int dtrace_toxranges_max; /* size of toxic range array */ 183 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 184 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 185 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 186 static kthread_t *dtrace_panicked; /* panicking thread */ 187 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 188 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 189 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 190 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 191 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */ 192 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 193 static int dtrace_dynvar_failclean; /* dynvars failed to clean */ 194 195 /* 196 * DTrace Locking 197 * DTrace is protected by three (relatively coarse-grained) locks: 198 * 199 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 200 * including enabling state, probes, ECBs, consumer state, helper state, 201 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 202 * probe context is lock-free -- synchronization is handled via the 203 * dtrace_sync() cross call mechanism. 204 * 205 * (2) dtrace_provider_lock is required when manipulating provider state, or 206 * when provider state must be held constant. 207 * 208 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 209 * when meta provider state must be held constant. 210 * 211 * The lock ordering between these three locks is dtrace_meta_lock before 212 * dtrace_provider_lock before dtrace_lock. (In particular, there are 213 * several places where dtrace_provider_lock is held by the framework as it 214 * calls into the providers -- which then call back into the framework, 215 * grabbing dtrace_lock.) 216 * 217 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 218 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 219 * role as a coarse-grained lock; it is acquired before both of these locks. 220 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 221 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 222 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 223 * acquired _between_ dtrace_provider_lock and dtrace_lock. 224 */ 225 static kmutex_t dtrace_lock; /* probe state lock */ 226 static kmutex_t dtrace_provider_lock; /* provider state lock */ 227 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 228 229 /* 230 * DTrace Provider Variables 231 * 232 * These are the variables relating to DTrace as a provider (that is, the 233 * provider of the BEGIN, END, and ERROR probes). 234 */ 235 static dtrace_pattr_t dtrace_provider_attr = { 236 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 237 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 238 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 239 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 240 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 241 }; 242 243 static void 244 dtrace_nullop(void) 245 {} 246 247 static int 248 dtrace_enable_nullop(void) 249 { 250 return (0); 251 } 252 253 static dtrace_pops_t dtrace_provider_ops = { 254 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop, 255 (void (*)(void *, struct modctl *))dtrace_nullop, 256 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop, 257 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 258 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 259 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 260 NULL, 261 NULL, 262 NULL, 263 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop 264 }; 265 266 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 267 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 268 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 269 270 /* 271 * DTrace Helper Tracing Variables 272 * 273 * These variables should be set dynamically to enable helper tracing. The 274 * only variables that should be set are dtrace_helptrace_enable (which should 275 * be set to a non-zero value to allocate helper tracing buffers on the next 276 * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a 277 * non-zero value to deallocate helper tracing buffers on the next close of 278 * /dev/dtrace). When (and only when) helper tracing is disabled, the 279 * buffer size may also be set via dtrace_helptrace_bufsize. 280 */ 281 int dtrace_helptrace_enable = 0; 282 int dtrace_helptrace_disable = 0; 283 int dtrace_helptrace_bufsize = 16 * 1024 * 1024; 284 uint32_t dtrace_helptrace_nlocals; 285 static dtrace_helptrace_t *dtrace_helptrace_buffer; 286 static uint32_t dtrace_helptrace_next = 0; 287 static int dtrace_helptrace_wrapped = 0; 288 289 /* 290 * DTrace Error Hashing 291 * 292 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 293 * table. This is very useful for checking coverage of tests that are 294 * expected to induce DIF or DOF processing errors, and may be useful for 295 * debugging problems in the DIF code generator or in DOF generation . The 296 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 297 */ 298 #ifdef DEBUG 299 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 300 static const char *dtrace_errlast; 301 static kthread_t *dtrace_errthread; 302 static kmutex_t dtrace_errlock; 303 #endif 304 305 /* 306 * DTrace Macros and Constants 307 * 308 * These are various macros that are useful in various spots in the 309 * implementation, along with a few random constants that have no meaning 310 * outside of the implementation. There is no real structure to this cpp 311 * mishmash -- but is there ever? 312 */ 313 #define DTRACE_HASHSTR(hash, probe) \ 314 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 315 316 #define DTRACE_HASHNEXT(hash, probe) \ 317 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 318 319 #define DTRACE_HASHPREV(hash, probe) \ 320 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 321 322 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 323 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 324 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 325 326 #define DTRACE_AGGHASHSIZE_SLEW 17 327 328 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 329 330 /* 331 * The key for a thread-local variable consists of the lower 61 bits of the 332 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 333 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 334 * equal to a variable identifier. This is necessary (but not sufficient) to 335 * assure that global associative arrays never collide with thread-local 336 * variables. To guarantee that they cannot collide, we must also define the 337 * order for keying dynamic variables. That order is: 338 * 339 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 340 * 341 * Because the variable-key and the tls-key are in orthogonal spaces, there is 342 * no way for a global variable key signature to match a thread-local key 343 * signature. 344 */ 345 #define DTRACE_TLS_THRKEY(where) { \ 346 uint_t intr = 0; \ 347 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 348 for (; actv; actv >>= 1) \ 349 intr++; \ 350 ASSERT(intr < (1 << 3)); \ 351 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 352 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 353 } 354 355 #define DT_BSWAP_8(x) ((x) & 0xff) 356 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 357 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 358 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 359 360 #define DT_MASK_LO 0x00000000FFFFFFFFULL 361 362 #define DTRACE_STORE(type, tomax, offset, what) \ 363 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); 364 365 #ifndef __i386 366 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 367 if (addr & (size - 1)) { \ 368 *flags |= CPU_DTRACE_BADALIGN; \ 369 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 370 return (0); \ 371 } 372 #else 373 #define DTRACE_ALIGNCHECK(addr, size, flags) 374 #endif 375 376 /* 377 * Test whether a range of memory starting at testaddr of size testsz falls 378 * within the range of memory described by addr, sz. We take care to avoid 379 * problems with overflow and underflow of the unsigned quantities, and 380 * disallow all negative sizes. Ranges of size 0 are allowed. 381 */ 382 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 383 ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \ 384 (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \ 385 (testaddr) + (testsz) >= (testaddr)) 386 387 /* 388 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 389 * alloc_sz on the righthand side of the comparison in order to avoid overflow 390 * or underflow in the comparison with it. This is simpler than the INRANGE 391 * check above, because we know that the dtms_scratch_ptr is valid in the 392 * range. Allocations of size zero are allowed. 393 */ 394 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 395 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 396 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 397 398 #define DTRACE_LOADFUNC(bits) \ 399 /*CSTYLED*/ \ 400 uint##bits##_t \ 401 dtrace_load##bits(uintptr_t addr) \ 402 { \ 403 size_t size = bits / NBBY; \ 404 /*CSTYLED*/ \ 405 uint##bits##_t rval; \ 406 int i; \ 407 volatile uint16_t *flags = (volatile uint16_t *) \ 408 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \ 409 \ 410 DTRACE_ALIGNCHECK(addr, size, flags); \ 411 \ 412 for (i = 0; i < dtrace_toxranges; i++) { \ 413 if (addr >= dtrace_toxrange[i].dtt_limit) \ 414 continue; \ 415 \ 416 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 417 continue; \ 418 \ 419 /* \ 420 * This address falls within a toxic region; return 0. \ 421 */ \ 422 *flags |= CPU_DTRACE_BADADDR; \ 423 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 424 return (0); \ 425 } \ 426 \ 427 *flags |= CPU_DTRACE_NOFAULT; \ 428 /*CSTYLED*/ \ 429 rval = *((volatile uint##bits##_t *)addr); \ 430 *flags &= ~CPU_DTRACE_NOFAULT; \ 431 \ 432 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 433 } 434 435 #ifdef _LP64 436 #define dtrace_loadptr dtrace_load64 437 #else 438 #define dtrace_loadptr dtrace_load32 439 #endif 440 441 #define DTRACE_DYNHASH_FREE 0 442 #define DTRACE_DYNHASH_SINK 1 443 #define DTRACE_DYNHASH_VALID 2 444 445 #define DTRACE_MATCH_FAIL -1 446 #define DTRACE_MATCH_NEXT 0 447 #define DTRACE_MATCH_DONE 1 448 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 449 #define DTRACE_STATE_ALIGN 64 450 451 #define DTRACE_FLAGS2FLT(flags) \ 452 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 453 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 454 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 455 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 456 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 457 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 458 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 459 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 460 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 461 DTRACEFLT_UNKNOWN) 462 463 #define DTRACEACT_ISSTRING(act) \ 464 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 465 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 466 467 static size_t dtrace_strlen(const char *, size_t); 468 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 469 static void dtrace_enabling_provide(dtrace_provider_t *); 470 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 471 static void dtrace_enabling_matchall(void); 472 static void dtrace_enabling_reap(void); 473 static dtrace_state_t *dtrace_anon_grab(void); 474 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 475 dtrace_state_t *, uint64_t, uint64_t); 476 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 477 static void dtrace_buffer_drop(dtrace_buffer_t *); 478 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when); 479 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 480 dtrace_state_t *, dtrace_mstate_t *); 481 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 482 dtrace_optval_t); 483 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 484 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 485 static int dtrace_priv_proc(dtrace_state_t *, dtrace_mstate_t *); 486 static void dtrace_getf_barrier(void); 487 488 /* 489 * DTrace Probe Context Functions 490 * 491 * These functions are called from probe context. Because probe context is 492 * any context in which C may be called, arbitrarily locks may be held, 493 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 494 * As a result, functions called from probe context may only call other DTrace 495 * support functions -- they may not interact at all with the system at large. 496 * (Note that the ASSERT macro is made probe-context safe by redefining it in 497 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 498 * loads are to be performed from probe context, they _must_ be in terms of 499 * the safe dtrace_load*() variants. 500 * 501 * Some functions in this block are not actually called from probe context; 502 * for these functions, there will be a comment above the function reading 503 * "Note: not called from probe context." 504 */ 505 void 506 dtrace_panic(const char *format, ...) 507 { 508 va_list alist; 509 510 va_start(alist, format); 511 dtrace_vpanic(format, alist); 512 va_end(alist); 513 } 514 515 int 516 dtrace_assfail(const char *a, const char *f, int l) 517 { 518 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 519 520 /* 521 * We just need something here that even the most clever compiler 522 * cannot optimize away. 523 */ 524 return (a[(uintptr_t)f]); 525 } 526 527 /* 528 * Atomically increment a specified error counter from probe context. 529 */ 530 static void 531 dtrace_error(uint32_t *counter) 532 { 533 /* 534 * Most counters stored to in probe context are per-CPU counters. 535 * However, there are some error conditions that are sufficiently 536 * arcane that they don't merit per-CPU storage. If these counters 537 * are incremented concurrently on different CPUs, scalability will be 538 * adversely affected -- but we don't expect them to be white-hot in a 539 * correctly constructed enabling... 540 */ 541 uint32_t oval, nval; 542 543 do { 544 oval = *counter; 545 546 if ((nval = oval + 1) == 0) { 547 /* 548 * If the counter would wrap, set it to 1 -- assuring 549 * that the counter is never zero when we have seen 550 * errors. (The counter must be 32-bits because we 551 * aren't guaranteed a 64-bit compare&swap operation.) 552 * To save this code both the infamy of being fingered 553 * by a priggish news story and the indignity of being 554 * the target of a neo-puritan witch trial, we're 555 * carefully avoiding any colorful description of the 556 * likelihood of this condition -- but suffice it to 557 * say that it is only slightly more likely than the 558 * overflow of predicate cache IDs, as discussed in 559 * dtrace_predicate_create(). 560 */ 561 nval = 1; 562 } 563 } while (dtrace_cas32(counter, oval, nval) != oval); 564 } 565 566 /* 567 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 568 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 569 */ 570 DTRACE_LOADFUNC(8) 571 DTRACE_LOADFUNC(16) 572 DTRACE_LOADFUNC(32) 573 DTRACE_LOADFUNC(64) 574 575 static int 576 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 577 { 578 if (dest < mstate->dtms_scratch_base) 579 return (0); 580 581 if (dest + size < dest) 582 return (0); 583 584 if (dest + size > mstate->dtms_scratch_ptr) 585 return (0); 586 587 return (1); 588 } 589 590 static int 591 dtrace_canstore_statvar(uint64_t addr, size_t sz, 592 dtrace_statvar_t **svars, int nsvars) 593 { 594 int i; 595 596 for (i = 0; i < nsvars; i++) { 597 dtrace_statvar_t *svar = svars[i]; 598 599 if (svar == NULL || svar->dtsv_size == 0) 600 continue; 601 602 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size)) 603 return (1); 604 } 605 606 return (0); 607 } 608 609 /* 610 * Check to see if the address is within a memory region to which a store may 611 * be issued. This includes the DTrace scratch areas, and any DTrace variable 612 * region. The caller of dtrace_canstore() is responsible for performing any 613 * alignment checks that are needed before stores are actually executed. 614 */ 615 static int 616 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 617 dtrace_vstate_t *vstate) 618 { 619 /* 620 * First, check to see if the address is in scratch space... 621 */ 622 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 623 mstate->dtms_scratch_size)) 624 return (1); 625 626 /* 627 * Now check to see if it's a dynamic variable. This check will pick 628 * up both thread-local variables and any global dynamically-allocated 629 * variables. 630 */ 631 if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base, 632 vstate->dtvs_dynvars.dtds_size)) { 633 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 634 uintptr_t base = (uintptr_t)dstate->dtds_base + 635 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); 636 uintptr_t chunkoffs; 637 638 /* 639 * Before we assume that we can store here, we need to make 640 * sure that it isn't in our metadata -- storing to our 641 * dynamic variable metadata would corrupt our state. For 642 * the range to not include any dynamic variable metadata, 643 * it must: 644 * 645 * (1) Start above the hash table that is at the base of 646 * the dynamic variable space 647 * 648 * (2) Have a starting chunk offset that is beyond the 649 * dtrace_dynvar_t that is at the base of every chunk 650 * 651 * (3) Not span a chunk boundary 652 * 653 */ 654 if (addr < base) 655 return (0); 656 657 chunkoffs = (addr - base) % dstate->dtds_chunksize; 658 659 if (chunkoffs < sizeof (dtrace_dynvar_t)) 660 return (0); 661 662 if (chunkoffs + sz > dstate->dtds_chunksize) 663 return (0); 664 665 return (1); 666 } 667 668 /* 669 * Finally, check the static local and global variables. These checks 670 * take the longest, so we perform them last. 671 */ 672 if (dtrace_canstore_statvar(addr, sz, 673 vstate->dtvs_locals, vstate->dtvs_nlocals)) 674 return (1); 675 676 if (dtrace_canstore_statvar(addr, sz, 677 vstate->dtvs_globals, vstate->dtvs_nglobals)) 678 return (1); 679 680 return (0); 681 } 682 683 684 /* 685 * Convenience routine to check to see if the address is within a memory 686 * region in which a load may be issued given the user's privilege level; 687 * if not, it sets the appropriate error flags and loads 'addr' into the 688 * illegal value slot. 689 * 690 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 691 * appropriate memory access protection. 692 */ 693 static int 694 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 695 dtrace_vstate_t *vstate) 696 { 697 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 698 file_t *fp; 699 700 /* 701 * If we hold the privilege to read from kernel memory, then 702 * everything is readable. 703 */ 704 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 705 return (1); 706 707 /* 708 * You can obviously read that which you can store. 709 */ 710 if (dtrace_canstore(addr, sz, mstate, vstate)) 711 return (1); 712 713 /* 714 * We're allowed to read from our own string table. 715 */ 716 if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab, 717 mstate->dtms_difo->dtdo_strlen)) 718 return (1); 719 720 if (vstate->dtvs_state != NULL && 721 dtrace_priv_proc(vstate->dtvs_state, mstate)) { 722 proc_t *p; 723 724 /* 725 * When we have privileges to the current process, there are 726 * several context-related kernel structures that are safe to 727 * read, even absent the privilege to read from kernel memory. 728 * These reads are safe because these structures contain only 729 * state that (1) we're permitted to read, (2) is harmless or 730 * (3) contains pointers to additional kernel state that we're 731 * not permitted to read (and as such, do not present an 732 * opportunity for privilege escalation). Finally (and 733 * critically), because of the nature of their relation with 734 * the current thread context, the memory associated with these 735 * structures cannot change over the duration of probe context, 736 * and it is therefore impossible for this memory to be 737 * deallocated and reallocated as something else while it's 738 * being operated upon. 739 */ 740 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) 741 return (1); 742 743 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr, 744 sz, curthread->t_procp, sizeof (proc_t))) { 745 return (1); 746 } 747 748 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz, 749 curthread->t_cred, sizeof (cred_t))) { 750 return (1); 751 } 752 753 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz, 754 &(p->p_pidp->pid_id), sizeof (pid_t))) { 755 return (1); 756 } 757 758 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz, 759 curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) { 760 return (1); 761 } 762 } 763 764 if ((fp = mstate->dtms_getf) != NULL) { 765 uintptr_t psz = sizeof (void *); 766 vnode_t *vp; 767 vnodeops_t *op; 768 769 /* 770 * When getf() returns a file_t, the enabling is implicitly 771 * granted the (transient) right to read the returned file_t 772 * as well as the v_path and v_op->vnop_name of the underlying 773 * vnode. These accesses are allowed after a successful 774 * getf() because the members that they refer to cannot change 775 * once set -- and the barrier logic in the kernel's closef() 776 * path assures that the file_t and its referenced vode_t 777 * cannot themselves be stale (that is, it impossible for 778 * either dtms_getf itself or its f_vnode member to reference 779 * freed memory). 780 */ 781 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) 782 return (1); 783 784 if ((vp = fp->f_vnode) != NULL) { 785 if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) 786 return (1); 787 788 if (vp->v_path != NULL && DTRACE_INRANGE(addr, sz, 789 vp->v_path, strlen(vp->v_path) + 1)) { 790 return (1); 791 } 792 793 if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) 794 return (1); 795 796 if ((op = vp->v_op) != NULL && 797 DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) { 798 return (1); 799 } 800 801 if (op != NULL && op->vnop_name != NULL && 802 DTRACE_INRANGE(addr, sz, op->vnop_name, 803 strlen(op->vnop_name) + 1)) { 804 return (1); 805 } 806 } 807 } 808 809 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 810 *illval = addr; 811 return (0); 812 } 813 814 /* 815 * Convenience routine to check to see if a given string is within a memory 816 * region in which a load may be issued given the user's privilege level; 817 * this exists so that we don't need to issue unnecessary dtrace_strlen() 818 * calls in the event that the user has all privileges. 819 */ 820 static int 821 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 822 dtrace_vstate_t *vstate) 823 { 824 size_t strsz; 825 826 /* 827 * If we hold the privilege to read from kernel memory, then 828 * everything is readable. 829 */ 830 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 831 return (1); 832 833 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz); 834 if (dtrace_canload(addr, strsz, mstate, vstate)) 835 return (1); 836 837 return (0); 838 } 839 840 /* 841 * Convenience routine to check to see if a given variable is within a memory 842 * region in which a load may be issued given the user's privilege level. 843 */ 844 static int 845 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate, 846 dtrace_vstate_t *vstate) 847 { 848 size_t sz, strsize; 849 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 850 851 /* 852 * If we hold the privilege to read from kernel memory, then 853 * everything is readable. 854 */ 855 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 856 return (1); 857 858 if (type->dtdt_kind == DIF_TYPE_STRING) { 859 dtrace_state_t *state = vstate->dtvs_state; 860 861 if (state != NULL) { 862 strsize = state->dts_options[DTRACEOPT_STRSIZE]; 863 } else { 864 /* 865 * In helper context, we have a NULL state; fall back 866 * to using the system-wide default for the string size 867 * in this case. 868 */ 869 strsize = dtrace_strsize_default; 870 } 871 872 sz = dtrace_strlen(src, strsize) + 1; 873 } else { 874 sz = type->dtdt_size; 875 } 876 877 return (dtrace_canload((uintptr_t)src, sz, mstate, vstate)); 878 } 879 880 /* 881 * Convert a string to a signed integer using safe loads. 882 * 883 * NOTE: This function uses various macros from strtolctype.h to manipulate 884 * digit values, etc -- these have all been checked to ensure they make 885 * no additional function calls. 886 */ 887 static int64_t 888 dtrace_strtoll(char *input, int base, size_t limit) 889 { 890 uintptr_t pos = (uintptr_t)input; 891 int64_t val = 0; 892 int x; 893 boolean_t neg = B_FALSE; 894 char c, cc, ccc; 895 uintptr_t end = pos + limit; 896 897 /* 898 * Consume any whitespace preceding digits. 899 */ 900 while ((c = dtrace_load8(pos)) == ' ' || c == '\t') 901 pos++; 902 903 /* 904 * Handle an explicit sign if one is present. 905 */ 906 if (c == '-' || c == '+') { 907 if (c == '-') 908 neg = B_TRUE; 909 c = dtrace_load8(++pos); 910 } 911 912 /* 913 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it 914 * if present. 915 */ 916 if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' || 917 cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) { 918 pos += 2; 919 c = ccc; 920 } 921 922 /* 923 * Read in contiguous digits until the first non-digit character. 924 */ 925 for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base; 926 c = dtrace_load8(++pos)) 927 val = val * base + x; 928 929 return (neg ? -val : val); 930 } 931 932 /* 933 * Compare two strings using safe loads. 934 */ 935 static int 936 dtrace_strncmp(char *s1, char *s2, size_t limit) 937 { 938 uint8_t c1, c2; 939 volatile uint16_t *flags; 940 941 if (s1 == s2 || limit == 0) 942 return (0); 943 944 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 945 946 do { 947 if (s1 == NULL) { 948 c1 = '\0'; 949 } else { 950 c1 = dtrace_load8((uintptr_t)s1++); 951 } 952 953 if (s2 == NULL) { 954 c2 = '\0'; 955 } else { 956 c2 = dtrace_load8((uintptr_t)s2++); 957 } 958 959 if (c1 != c2) 960 return (c1 - c2); 961 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 962 963 return (0); 964 } 965 966 /* 967 * Compute strlen(s) for a string using safe memory accesses. The additional 968 * len parameter is used to specify a maximum length to ensure completion. 969 */ 970 static size_t 971 dtrace_strlen(const char *s, size_t lim) 972 { 973 uint_t len; 974 975 for (len = 0; len != lim; len++) { 976 if (dtrace_load8((uintptr_t)s++) == '\0') 977 break; 978 } 979 980 return (len); 981 } 982 983 /* 984 * Check if an address falls within a toxic region. 985 */ 986 static int 987 dtrace_istoxic(uintptr_t kaddr, size_t size) 988 { 989 uintptr_t taddr, tsize; 990 int i; 991 992 for (i = 0; i < dtrace_toxranges; i++) { 993 taddr = dtrace_toxrange[i].dtt_base; 994 tsize = dtrace_toxrange[i].dtt_limit - taddr; 995 996 if (kaddr - taddr < tsize) { 997 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 998 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr; 999 return (1); 1000 } 1001 1002 if (taddr - kaddr < size) { 1003 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1004 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr; 1005 return (1); 1006 } 1007 } 1008 1009 return (0); 1010 } 1011 1012 /* 1013 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 1014 * memory specified by the DIF program. The dst is assumed to be safe memory 1015 * that we can store to directly because it is managed by DTrace. As with 1016 * standard bcopy, overlapping copies are handled properly. 1017 */ 1018 static void 1019 dtrace_bcopy(const void *src, void *dst, size_t len) 1020 { 1021 if (len != 0) { 1022 uint8_t *s1 = dst; 1023 const uint8_t *s2 = src; 1024 1025 if (s1 <= s2) { 1026 do { 1027 *s1++ = dtrace_load8((uintptr_t)s2++); 1028 } while (--len != 0); 1029 } else { 1030 s2 += len; 1031 s1 += len; 1032 1033 do { 1034 *--s1 = dtrace_load8((uintptr_t)--s2); 1035 } while (--len != 0); 1036 } 1037 } 1038 } 1039 1040 /* 1041 * Copy src to dst using safe memory accesses, up to either the specified 1042 * length, or the point that a nul byte is encountered. The src is assumed to 1043 * be unsafe memory specified by the DIF program. The dst is assumed to be 1044 * safe memory that we can store to directly because it is managed by DTrace. 1045 * Unlike dtrace_bcopy(), overlapping regions are not handled. 1046 */ 1047 static void 1048 dtrace_strcpy(const void *src, void *dst, size_t len) 1049 { 1050 if (len != 0) { 1051 uint8_t *s1 = dst, c; 1052 const uint8_t *s2 = src; 1053 1054 do { 1055 *s1++ = c = dtrace_load8((uintptr_t)s2++); 1056 } while (--len != 0 && c != '\0'); 1057 } 1058 } 1059 1060 /* 1061 * Copy src to dst, deriving the size and type from the specified (BYREF) 1062 * variable type. The src is assumed to be unsafe memory specified by the DIF 1063 * program. The dst is assumed to be DTrace variable memory that is of the 1064 * specified type; we assume that we can store to directly. 1065 */ 1066 static void 1067 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type) 1068 { 1069 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 1070 1071 if (type->dtdt_kind == DIF_TYPE_STRING) { 1072 dtrace_strcpy(src, dst, type->dtdt_size); 1073 } else { 1074 dtrace_bcopy(src, dst, type->dtdt_size); 1075 } 1076 } 1077 1078 /* 1079 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 1080 * unsafe memory specified by the DIF program. The s2 data is assumed to be 1081 * safe memory that we can access directly because it is managed by DTrace. 1082 */ 1083 static int 1084 dtrace_bcmp(const void *s1, const void *s2, size_t len) 1085 { 1086 volatile uint16_t *flags; 1087 1088 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 1089 1090 if (s1 == s2) 1091 return (0); 1092 1093 if (s1 == NULL || s2 == NULL) 1094 return (1); 1095 1096 if (s1 != s2 && len != 0) { 1097 const uint8_t *ps1 = s1; 1098 const uint8_t *ps2 = s2; 1099 1100 do { 1101 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 1102 return (1); 1103 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 1104 } 1105 return (0); 1106 } 1107 1108 /* 1109 * Zero the specified region using a simple byte-by-byte loop. Note that this 1110 * is for safe DTrace-managed memory only. 1111 */ 1112 static void 1113 dtrace_bzero(void *dst, size_t len) 1114 { 1115 uchar_t *cp; 1116 1117 for (cp = dst; len != 0; len--) 1118 *cp++ = 0; 1119 } 1120 1121 static void 1122 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 1123 { 1124 uint64_t result[2]; 1125 1126 result[0] = addend1[0] + addend2[0]; 1127 result[1] = addend1[1] + addend2[1] + 1128 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 1129 1130 sum[0] = result[0]; 1131 sum[1] = result[1]; 1132 } 1133 1134 /* 1135 * Shift the 128-bit value in a by b. If b is positive, shift left. 1136 * If b is negative, shift right. 1137 */ 1138 static void 1139 dtrace_shift_128(uint64_t *a, int b) 1140 { 1141 uint64_t mask; 1142 1143 if (b == 0) 1144 return; 1145 1146 if (b < 0) { 1147 b = -b; 1148 if (b >= 64) { 1149 a[0] = a[1] >> (b - 64); 1150 a[1] = 0; 1151 } else { 1152 a[0] >>= b; 1153 mask = 1LL << (64 - b); 1154 mask -= 1; 1155 a[0] |= ((a[1] & mask) << (64 - b)); 1156 a[1] >>= b; 1157 } 1158 } else { 1159 if (b >= 64) { 1160 a[1] = a[0] << (b - 64); 1161 a[0] = 0; 1162 } else { 1163 a[1] <<= b; 1164 mask = a[0] >> (64 - b); 1165 a[1] |= mask; 1166 a[0] <<= b; 1167 } 1168 } 1169 } 1170 1171 /* 1172 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 1173 * use native multiplication on those, and then re-combine into the 1174 * resulting 128-bit value. 1175 * 1176 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 1177 * hi1 * hi2 << 64 + 1178 * hi1 * lo2 << 32 + 1179 * hi2 * lo1 << 32 + 1180 * lo1 * lo2 1181 */ 1182 static void 1183 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 1184 { 1185 uint64_t hi1, hi2, lo1, lo2; 1186 uint64_t tmp[2]; 1187 1188 hi1 = factor1 >> 32; 1189 hi2 = factor2 >> 32; 1190 1191 lo1 = factor1 & DT_MASK_LO; 1192 lo2 = factor2 & DT_MASK_LO; 1193 1194 product[0] = lo1 * lo2; 1195 product[1] = hi1 * hi2; 1196 1197 tmp[0] = hi1 * lo2; 1198 tmp[1] = 0; 1199 dtrace_shift_128(tmp, 32); 1200 dtrace_add_128(product, tmp, product); 1201 1202 tmp[0] = hi2 * lo1; 1203 tmp[1] = 0; 1204 dtrace_shift_128(tmp, 32); 1205 dtrace_add_128(product, tmp, product); 1206 } 1207 1208 /* 1209 * This privilege check should be used by actions and subroutines to 1210 * verify that the user credentials of the process that enabled the 1211 * invoking ECB match the target credentials 1212 */ 1213 static int 1214 dtrace_priv_proc_common_user(dtrace_state_t *state) 1215 { 1216 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1217 1218 /* 1219 * We should always have a non-NULL state cred here, since if cred 1220 * is null (anonymous tracing), we fast-path bypass this routine. 1221 */ 1222 ASSERT(s_cr != NULL); 1223 1224 if ((cr = CRED()) != NULL && 1225 s_cr->cr_uid == cr->cr_uid && 1226 s_cr->cr_uid == cr->cr_ruid && 1227 s_cr->cr_uid == cr->cr_suid && 1228 s_cr->cr_gid == cr->cr_gid && 1229 s_cr->cr_gid == cr->cr_rgid && 1230 s_cr->cr_gid == cr->cr_sgid) 1231 return (1); 1232 1233 return (0); 1234 } 1235 1236 /* 1237 * This privilege check should be used by actions and subroutines to 1238 * verify that the zone of the process that enabled the invoking ECB 1239 * matches the target credentials 1240 */ 1241 static int 1242 dtrace_priv_proc_common_zone(dtrace_state_t *state) 1243 { 1244 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1245 1246 /* 1247 * We should always have a non-NULL state cred here, since if cred 1248 * is null (anonymous tracing), we fast-path bypass this routine. 1249 */ 1250 ASSERT(s_cr != NULL); 1251 1252 if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone) 1253 return (1); 1254 1255 return (0); 1256 } 1257 1258 /* 1259 * This privilege check should be used by actions and subroutines to 1260 * verify that the process has not setuid or changed credentials. 1261 */ 1262 static int 1263 dtrace_priv_proc_common_nocd() 1264 { 1265 proc_t *proc; 1266 1267 if ((proc = ttoproc(curthread)) != NULL && 1268 !(proc->p_flag & SNOCD)) 1269 return (1); 1270 1271 return (0); 1272 } 1273 1274 static int 1275 dtrace_priv_proc_destructive(dtrace_state_t *state, dtrace_mstate_t *mstate) 1276 { 1277 int action = state->dts_cred.dcr_action; 1278 1279 if (!(mstate->dtms_access & DTRACE_ACCESS_PROC)) 1280 goto bad; 1281 1282 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 1283 dtrace_priv_proc_common_zone(state) == 0) 1284 goto bad; 1285 1286 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 1287 dtrace_priv_proc_common_user(state) == 0) 1288 goto bad; 1289 1290 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 1291 dtrace_priv_proc_common_nocd() == 0) 1292 goto bad; 1293 1294 return (1); 1295 1296 bad: 1297 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1298 1299 return (0); 1300 } 1301 1302 static int 1303 dtrace_priv_proc_control(dtrace_state_t *state, dtrace_mstate_t *mstate) 1304 { 1305 if (mstate->dtms_access & DTRACE_ACCESS_PROC) { 1306 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1307 return (1); 1308 1309 if (dtrace_priv_proc_common_zone(state) && 1310 dtrace_priv_proc_common_user(state) && 1311 dtrace_priv_proc_common_nocd()) 1312 return (1); 1313 } 1314 1315 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1316 1317 return (0); 1318 } 1319 1320 static int 1321 dtrace_priv_proc(dtrace_state_t *state, dtrace_mstate_t *mstate) 1322 { 1323 if ((mstate->dtms_access & DTRACE_ACCESS_PROC) && 1324 (state->dts_cred.dcr_action & DTRACE_CRA_PROC)) 1325 return (1); 1326 1327 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1328 1329 return (0); 1330 } 1331 1332 static int 1333 dtrace_priv_kernel(dtrace_state_t *state) 1334 { 1335 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1336 return (1); 1337 1338 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1339 1340 return (0); 1341 } 1342 1343 static int 1344 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1345 { 1346 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1347 return (1); 1348 1349 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1350 1351 return (0); 1352 } 1353 1354 /* 1355 * Determine if the dte_cond of the specified ECB allows for processing of 1356 * the current probe to continue. Note that this routine may allow continued 1357 * processing, but with access(es) stripped from the mstate's dtms_access 1358 * field. 1359 */ 1360 static int 1361 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate, 1362 dtrace_ecb_t *ecb) 1363 { 1364 dtrace_probe_t *probe = ecb->dte_probe; 1365 dtrace_provider_t *prov = probe->dtpr_provider; 1366 dtrace_pops_t *pops = &prov->dtpv_pops; 1367 int mode = DTRACE_MODE_NOPRIV_DROP; 1368 1369 ASSERT(ecb->dte_cond); 1370 1371 if (pops->dtps_mode != NULL) { 1372 mode = pops->dtps_mode(prov->dtpv_arg, 1373 probe->dtpr_id, probe->dtpr_arg); 1374 1375 ASSERT(mode & (DTRACE_MODE_USER | DTRACE_MODE_KERNEL)); 1376 ASSERT(mode & (DTRACE_MODE_NOPRIV_RESTRICT | 1377 DTRACE_MODE_NOPRIV_DROP)); 1378 } 1379 1380 /* 1381 * If the dte_cond bits indicate that this consumer is only allowed to 1382 * see user-mode firings of this probe, check that the probe was fired 1383 * while in a user context. If that's not the case, use the policy 1384 * specified by the provider to determine if we drop the probe or 1385 * merely restrict operation. 1386 */ 1387 if (ecb->dte_cond & DTRACE_COND_USERMODE) { 1388 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP); 1389 1390 if (!(mode & DTRACE_MODE_USER)) { 1391 if (mode & DTRACE_MODE_NOPRIV_DROP) 1392 return (0); 1393 1394 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1395 } 1396 } 1397 1398 /* 1399 * This is more subtle than it looks. We have to be absolutely certain 1400 * that CRED() isn't going to change out from under us so it's only 1401 * legit to examine that structure if we're in constrained situations. 1402 * Currently, the only times we'll this check is if a non-super-user 1403 * has enabled the profile or syscall providers -- providers that 1404 * allow visibility of all processes. For the profile case, the check 1405 * above will ensure that we're examining a user context. 1406 */ 1407 if (ecb->dte_cond & DTRACE_COND_OWNER) { 1408 cred_t *cr; 1409 cred_t *s_cr = state->dts_cred.dcr_cred; 1410 proc_t *proc; 1411 1412 ASSERT(s_cr != NULL); 1413 1414 if ((cr = CRED()) == NULL || 1415 s_cr->cr_uid != cr->cr_uid || 1416 s_cr->cr_uid != cr->cr_ruid || 1417 s_cr->cr_uid != cr->cr_suid || 1418 s_cr->cr_gid != cr->cr_gid || 1419 s_cr->cr_gid != cr->cr_rgid || 1420 s_cr->cr_gid != cr->cr_sgid || 1421 (proc = ttoproc(curthread)) == NULL || 1422 (proc->p_flag & SNOCD)) { 1423 if (mode & DTRACE_MODE_NOPRIV_DROP) 1424 return (0); 1425 1426 mstate->dtms_access &= ~DTRACE_ACCESS_PROC; 1427 } 1428 } 1429 1430 /* 1431 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not 1432 * in our zone, check to see if our mode policy is to restrict rather 1433 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC 1434 * and DTRACE_ACCESS_ARGS 1435 */ 1436 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 1437 cred_t *cr; 1438 cred_t *s_cr = state->dts_cred.dcr_cred; 1439 1440 ASSERT(s_cr != NULL); 1441 1442 if ((cr = CRED()) == NULL || 1443 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) { 1444 if (mode & DTRACE_MODE_NOPRIV_DROP) 1445 return (0); 1446 1447 mstate->dtms_access &= 1448 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS); 1449 } 1450 } 1451 1452 /* 1453 * By merits of being in this code path at all, we have limited 1454 * privileges. If the provider has indicated that limited privileges 1455 * are to denote restricted operation, strip off the ability to access 1456 * arguments. 1457 */ 1458 if (mode & DTRACE_MODE_LIMITEDPRIV_RESTRICT) 1459 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1460 1461 return (1); 1462 } 1463 1464 /* 1465 * Note: not called from probe context. This function is called 1466 * asynchronously (and at a regular interval) from outside of probe context to 1467 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1468 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1469 */ 1470 void 1471 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1472 { 1473 dtrace_dynvar_t *dirty; 1474 dtrace_dstate_percpu_t *dcpu; 1475 dtrace_dynvar_t **rinsep; 1476 int i, j, work = 0; 1477 1478 for (i = 0; i < NCPU; i++) { 1479 dcpu = &dstate->dtds_percpu[i]; 1480 rinsep = &dcpu->dtdsc_rinsing; 1481 1482 /* 1483 * If the dirty list is NULL, there is no dirty work to do. 1484 */ 1485 if (dcpu->dtdsc_dirty == NULL) 1486 continue; 1487 1488 if (dcpu->dtdsc_rinsing != NULL) { 1489 /* 1490 * If the rinsing list is non-NULL, then it is because 1491 * this CPU was selected to accept another CPU's 1492 * dirty list -- and since that time, dirty buffers 1493 * have accumulated. This is a highly unlikely 1494 * condition, but we choose to ignore the dirty 1495 * buffers -- they'll be picked up a future cleanse. 1496 */ 1497 continue; 1498 } 1499 1500 if (dcpu->dtdsc_clean != NULL) { 1501 /* 1502 * If the clean list is non-NULL, then we're in a 1503 * situation where a CPU has done deallocations (we 1504 * have a non-NULL dirty list) but no allocations (we 1505 * also have a non-NULL clean list). We can't simply 1506 * move the dirty list into the clean list on this 1507 * CPU, yet we also don't want to allow this condition 1508 * to persist, lest a short clean list prevent a 1509 * massive dirty list from being cleaned (which in 1510 * turn could lead to otherwise avoidable dynamic 1511 * drops). To deal with this, we look for some CPU 1512 * with a NULL clean list, NULL dirty list, and NULL 1513 * rinsing list -- and then we borrow this CPU to 1514 * rinse our dirty list. 1515 */ 1516 for (j = 0; j < NCPU; j++) { 1517 dtrace_dstate_percpu_t *rinser; 1518 1519 rinser = &dstate->dtds_percpu[j]; 1520 1521 if (rinser->dtdsc_rinsing != NULL) 1522 continue; 1523 1524 if (rinser->dtdsc_dirty != NULL) 1525 continue; 1526 1527 if (rinser->dtdsc_clean != NULL) 1528 continue; 1529 1530 rinsep = &rinser->dtdsc_rinsing; 1531 break; 1532 } 1533 1534 if (j == NCPU) { 1535 /* 1536 * We were unable to find another CPU that 1537 * could accept this dirty list -- we are 1538 * therefore unable to clean it now. 1539 */ 1540 dtrace_dynvar_failclean++; 1541 continue; 1542 } 1543 } 1544 1545 work = 1; 1546 1547 /* 1548 * Atomically move the dirty list aside. 1549 */ 1550 do { 1551 dirty = dcpu->dtdsc_dirty; 1552 1553 /* 1554 * Before we zap the dirty list, set the rinsing list. 1555 * (This allows for a potential assertion in 1556 * dtrace_dynvar(): if a free dynamic variable appears 1557 * on a hash chain, either the dirty list or the 1558 * rinsing list for some CPU must be non-NULL.) 1559 */ 1560 *rinsep = dirty; 1561 dtrace_membar_producer(); 1562 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1563 dirty, NULL) != dirty); 1564 } 1565 1566 if (!work) { 1567 /* 1568 * We have no work to do; we can simply return. 1569 */ 1570 return; 1571 } 1572 1573 dtrace_sync(); 1574 1575 for (i = 0; i < NCPU; i++) { 1576 dcpu = &dstate->dtds_percpu[i]; 1577 1578 if (dcpu->dtdsc_rinsing == NULL) 1579 continue; 1580 1581 /* 1582 * We are now guaranteed that no hash chain contains a pointer 1583 * into this dirty list; we can make it clean. 1584 */ 1585 ASSERT(dcpu->dtdsc_clean == NULL); 1586 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1587 dcpu->dtdsc_rinsing = NULL; 1588 } 1589 1590 /* 1591 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1592 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1593 * This prevents a race whereby a CPU incorrectly decides that 1594 * the state should be something other than DTRACE_DSTATE_CLEAN 1595 * after dtrace_dynvar_clean() has completed. 1596 */ 1597 dtrace_sync(); 1598 1599 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1600 } 1601 1602 /* 1603 * Depending on the value of the op parameter, this function looks-up, 1604 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1605 * allocation is requested, this function will return a pointer to a 1606 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1607 * variable can be allocated. If NULL is returned, the appropriate counter 1608 * will be incremented. 1609 */ 1610 dtrace_dynvar_t * 1611 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1612 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1613 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1614 { 1615 uint64_t hashval = DTRACE_DYNHASH_VALID; 1616 dtrace_dynhash_t *hash = dstate->dtds_hash; 1617 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1618 processorid_t me = CPU->cpu_id, cpu = me; 1619 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1620 size_t bucket, ksize; 1621 size_t chunksize = dstate->dtds_chunksize; 1622 uintptr_t kdata, lock, nstate; 1623 uint_t i; 1624 1625 ASSERT(nkeys != 0); 1626 1627 /* 1628 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1629 * algorithm. For the by-value portions, we perform the algorithm in 1630 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1631 * bit, and seems to have only a minute effect on distribution. For 1632 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1633 * over each referenced byte. It's painful to do this, but it's much 1634 * better than pathological hash distribution. The efficacy of the 1635 * hashing algorithm (and a comparison with other algorithms) may be 1636 * found by running the ::dtrace_dynstat MDB dcmd. 1637 */ 1638 for (i = 0; i < nkeys; i++) { 1639 if (key[i].dttk_size == 0) { 1640 uint64_t val = key[i].dttk_value; 1641 1642 hashval += (val >> 48) & 0xffff; 1643 hashval += (hashval << 10); 1644 hashval ^= (hashval >> 6); 1645 1646 hashval += (val >> 32) & 0xffff; 1647 hashval += (hashval << 10); 1648 hashval ^= (hashval >> 6); 1649 1650 hashval += (val >> 16) & 0xffff; 1651 hashval += (hashval << 10); 1652 hashval ^= (hashval >> 6); 1653 1654 hashval += val & 0xffff; 1655 hashval += (hashval << 10); 1656 hashval ^= (hashval >> 6); 1657 } else { 1658 /* 1659 * This is incredibly painful, but it beats the hell 1660 * out of the alternative. 1661 */ 1662 uint64_t j, size = key[i].dttk_size; 1663 uintptr_t base = (uintptr_t)key[i].dttk_value; 1664 1665 if (!dtrace_canload(base, size, mstate, vstate)) 1666 break; 1667 1668 for (j = 0; j < size; j++) { 1669 hashval += dtrace_load8(base + j); 1670 hashval += (hashval << 10); 1671 hashval ^= (hashval >> 6); 1672 } 1673 } 1674 } 1675 1676 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1677 return (NULL); 1678 1679 hashval += (hashval << 3); 1680 hashval ^= (hashval >> 11); 1681 hashval += (hashval << 15); 1682 1683 /* 1684 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1685 * comes out to be one of our two sentinel hash values. If this 1686 * actually happens, we set the hashval to be a value known to be a 1687 * non-sentinel value. 1688 */ 1689 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1690 hashval = DTRACE_DYNHASH_VALID; 1691 1692 /* 1693 * Yes, it's painful to do a divide here. If the cycle count becomes 1694 * important here, tricks can be pulled to reduce it. (However, it's 1695 * critical that hash collisions be kept to an absolute minimum; 1696 * they're much more painful than a divide.) It's better to have a 1697 * solution that generates few collisions and still keeps things 1698 * relatively simple. 1699 */ 1700 bucket = hashval % dstate->dtds_hashsize; 1701 1702 if (op == DTRACE_DYNVAR_DEALLOC) { 1703 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1704 1705 for (;;) { 1706 while ((lock = *lockp) & 1) 1707 continue; 1708 1709 if (dtrace_casptr((void *)lockp, 1710 (void *)lock, (void *)(lock + 1)) == (void *)lock) 1711 break; 1712 } 1713 1714 dtrace_membar_producer(); 1715 } 1716 1717 top: 1718 prev = NULL; 1719 lock = hash[bucket].dtdh_lock; 1720 1721 dtrace_membar_consumer(); 1722 1723 start = hash[bucket].dtdh_chain; 1724 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1725 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1726 op != DTRACE_DYNVAR_DEALLOC)); 1727 1728 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1729 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 1730 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 1731 1732 if (dvar->dtdv_hashval != hashval) { 1733 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 1734 /* 1735 * We've reached the sink, and therefore the 1736 * end of the hash chain; we can kick out of 1737 * the loop knowing that we have seen a valid 1738 * snapshot of state. 1739 */ 1740 ASSERT(dvar->dtdv_next == NULL); 1741 ASSERT(dvar == &dtrace_dynhash_sink); 1742 break; 1743 } 1744 1745 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 1746 /* 1747 * We've gone off the rails: somewhere along 1748 * the line, one of the members of this hash 1749 * chain was deleted. Note that we could also 1750 * detect this by simply letting this loop run 1751 * to completion, as we would eventually hit 1752 * the end of the dirty list. However, we 1753 * want to avoid running the length of the 1754 * dirty list unnecessarily (it might be quite 1755 * long), so we catch this as early as 1756 * possible by detecting the hash marker. In 1757 * this case, we simply set dvar to NULL and 1758 * break; the conditional after the loop will 1759 * send us back to top. 1760 */ 1761 dvar = NULL; 1762 break; 1763 } 1764 1765 goto next; 1766 } 1767 1768 if (dtuple->dtt_nkeys != nkeys) 1769 goto next; 1770 1771 for (i = 0; i < nkeys; i++, dkey++) { 1772 if (dkey->dttk_size != key[i].dttk_size) 1773 goto next; /* size or type mismatch */ 1774 1775 if (dkey->dttk_size != 0) { 1776 if (dtrace_bcmp( 1777 (void *)(uintptr_t)key[i].dttk_value, 1778 (void *)(uintptr_t)dkey->dttk_value, 1779 dkey->dttk_size)) 1780 goto next; 1781 } else { 1782 if (dkey->dttk_value != key[i].dttk_value) 1783 goto next; 1784 } 1785 } 1786 1787 if (op != DTRACE_DYNVAR_DEALLOC) 1788 return (dvar); 1789 1790 ASSERT(dvar->dtdv_next == NULL || 1791 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 1792 1793 if (prev != NULL) { 1794 ASSERT(hash[bucket].dtdh_chain != dvar); 1795 ASSERT(start != dvar); 1796 ASSERT(prev->dtdv_next == dvar); 1797 prev->dtdv_next = dvar->dtdv_next; 1798 } else { 1799 if (dtrace_casptr(&hash[bucket].dtdh_chain, 1800 start, dvar->dtdv_next) != start) { 1801 /* 1802 * We have failed to atomically swing the 1803 * hash table head pointer, presumably because 1804 * of a conflicting allocation on another CPU. 1805 * We need to reread the hash chain and try 1806 * again. 1807 */ 1808 goto top; 1809 } 1810 } 1811 1812 dtrace_membar_producer(); 1813 1814 /* 1815 * Now set the hash value to indicate that it's free. 1816 */ 1817 ASSERT(hash[bucket].dtdh_chain != dvar); 1818 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1819 1820 dtrace_membar_producer(); 1821 1822 /* 1823 * Set the next pointer to point at the dirty list, and 1824 * atomically swing the dirty pointer to the newly freed dvar. 1825 */ 1826 do { 1827 next = dcpu->dtdsc_dirty; 1828 dvar->dtdv_next = next; 1829 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 1830 1831 /* 1832 * Finally, unlock this hash bucket. 1833 */ 1834 ASSERT(hash[bucket].dtdh_lock == lock); 1835 ASSERT(lock & 1); 1836 hash[bucket].dtdh_lock++; 1837 1838 return (NULL); 1839 next: 1840 prev = dvar; 1841 continue; 1842 } 1843 1844 if (dvar == NULL) { 1845 /* 1846 * If dvar is NULL, it is because we went off the rails: 1847 * one of the elements that we traversed in the hash chain 1848 * was deleted while we were traversing it. In this case, 1849 * we assert that we aren't doing a dealloc (deallocs lock 1850 * the hash bucket to prevent themselves from racing with 1851 * one another), and retry the hash chain traversal. 1852 */ 1853 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 1854 goto top; 1855 } 1856 1857 if (op != DTRACE_DYNVAR_ALLOC) { 1858 /* 1859 * If we are not to allocate a new variable, we want to 1860 * return NULL now. Before we return, check that the value 1861 * of the lock word hasn't changed. If it has, we may have 1862 * seen an inconsistent snapshot. 1863 */ 1864 if (op == DTRACE_DYNVAR_NOALLOC) { 1865 if (hash[bucket].dtdh_lock != lock) 1866 goto top; 1867 } else { 1868 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 1869 ASSERT(hash[bucket].dtdh_lock == lock); 1870 ASSERT(lock & 1); 1871 hash[bucket].dtdh_lock++; 1872 } 1873 1874 return (NULL); 1875 } 1876 1877 /* 1878 * We need to allocate a new dynamic variable. The size we need is the 1879 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 1880 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 1881 * the size of any referred-to data (dsize). We then round the final 1882 * size up to the chunksize for allocation. 1883 */ 1884 for (ksize = 0, i = 0; i < nkeys; i++) 1885 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 1886 1887 /* 1888 * This should be pretty much impossible, but could happen if, say, 1889 * strange DIF specified the tuple. Ideally, this should be an 1890 * assertion and not an error condition -- but that requires that the 1891 * chunksize calculation in dtrace_difo_chunksize() be absolutely 1892 * bullet-proof. (That is, it must not be able to be fooled by 1893 * malicious DIF.) Given the lack of backwards branches in DIF, 1894 * solving this would presumably not amount to solving the Halting 1895 * Problem -- but it still seems awfully hard. 1896 */ 1897 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 1898 ksize + dsize > chunksize) { 1899 dcpu->dtdsc_drops++; 1900 return (NULL); 1901 } 1902 1903 nstate = DTRACE_DSTATE_EMPTY; 1904 1905 do { 1906 retry: 1907 free = dcpu->dtdsc_free; 1908 1909 if (free == NULL) { 1910 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 1911 void *rval; 1912 1913 if (clean == NULL) { 1914 /* 1915 * We're out of dynamic variable space on 1916 * this CPU. Unless we have tried all CPUs, 1917 * we'll try to allocate from a different 1918 * CPU. 1919 */ 1920 switch (dstate->dtds_state) { 1921 case DTRACE_DSTATE_CLEAN: { 1922 void *sp = &dstate->dtds_state; 1923 1924 if (++cpu >= NCPU) 1925 cpu = 0; 1926 1927 if (dcpu->dtdsc_dirty != NULL && 1928 nstate == DTRACE_DSTATE_EMPTY) 1929 nstate = DTRACE_DSTATE_DIRTY; 1930 1931 if (dcpu->dtdsc_rinsing != NULL) 1932 nstate = DTRACE_DSTATE_RINSING; 1933 1934 dcpu = &dstate->dtds_percpu[cpu]; 1935 1936 if (cpu != me) 1937 goto retry; 1938 1939 (void) dtrace_cas32(sp, 1940 DTRACE_DSTATE_CLEAN, nstate); 1941 1942 /* 1943 * To increment the correct bean 1944 * counter, take another lap. 1945 */ 1946 goto retry; 1947 } 1948 1949 case DTRACE_DSTATE_DIRTY: 1950 dcpu->dtdsc_dirty_drops++; 1951 break; 1952 1953 case DTRACE_DSTATE_RINSING: 1954 dcpu->dtdsc_rinsing_drops++; 1955 break; 1956 1957 case DTRACE_DSTATE_EMPTY: 1958 dcpu->dtdsc_drops++; 1959 break; 1960 } 1961 1962 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 1963 return (NULL); 1964 } 1965 1966 /* 1967 * The clean list appears to be non-empty. We want to 1968 * move the clean list to the free list; we start by 1969 * moving the clean pointer aside. 1970 */ 1971 if (dtrace_casptr(&dcpu->dtdsc_clean, 1972 clean, NULL) != clean) { 1973 /* 1974 * We are in one of two situations: 1975 * 1976 * (a) The clean list was switched to the 1977 * free list by another CPU. 1978 * 1979 * (b) The clean list was added to by the 1980 * cleansing cyclic. 1981 * 1982 * In either of these situations, we can 1983 * just reattempt the free list allocation. 1984 */ 1985 goto retry; 1986 } 1987 1988 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 1989 1990 /* 1991 * Now we'll move the clean list to our free list. 1992 * It's impossible for this to fail: the only way 1993 * the free list can be updated is through this 1994 * code path, and only one CPU can own the clean list. 1995 * Thus, it would only be possible for this to fail if 1996 * this code were racing with dtrace_dynvar_clean(). 1997 * (That is, if dtrace_dynvar_clean() updated the clean 1998 * list, and we ended up racing to update the free 1999 * list.) This race is prevented by the dtrace_sync() 2000 * in dtrace_dynvar_clean() -- which flushes the 2001 * owners of the clean lists out before resetting 2002 * the clean lists. 2003 */ 2004 dcpu = &dstate->dtds_percpu[me]; 2005 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 2006 ASSERT(rval == NULL); 2007 goto retry; 2008 } 2009 2010 dvar = free; 2011 new_free = dvar->dtdv_next; 2012 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 2013 2014 /* 2015 * We have now allocated a new chunk. We copy the tuple keys into the 2016 * tuple array and copy any referenced key data into the data space 2017 * following the tuple array. As we do this, we relocate dttk_value 2018 * in the final tuple to point to the key data address in the chunk. 2019 */ 2020 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 2021 dvar->dtdv_data = (void *)(kdata + ksize); 2022 dvar->dtdv_tuple.dtt_nkeys = nkeys; 2023 2024 for (i = 0; i < nkeys; i++) { 2025 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 2026 size_t kesize = key[i].dttk_size; 2027 2028 if (kesize != 0) { 2029 dtrace_bcopy( 2030 (const void *)(uintptr_t)key[i].dttk_value, 2031 (void *)kdata, kesize); 2032 dkey->dttk_value = kdata; 2033 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 2034 } else { 2035 dkey->dttk_value = key[i].dttk_value; 2036 } 2037 2038 dkey->dttk_size = kesize; 2039 } 2040 2041 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 2042 dvar->dtdv_hashval = hashval; 2043 dvar->dtdv_next = start; 2044 2045 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 2046 return (dvar); 2047 2048 /* 2049 * The cas has failed. Either another CPU is adding an element to 2050 * this hash chain, or another CPU is deleting an element from this 2051 * hash chain. The simplest way to deal with both of these cases 2052 * (though not necessarily the most efficient) is to free our 2053 * allocated block and tail-call ourselves. Note that the free is 2054 * to the dirty list and _not_ to the free list. This is to prevent 2055 * races with allocators, above. 2056 */ 2057 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 2058 2059 dtrace_membar_producer(); 2060 2061 do { 2062 free = dcpu->dtdsc_dirty; 2063 dvar->dtdv_next = free; 2064 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 2065 2066 return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate)); 2067 } 2068 2069 /*ARGSUSED*/ 2070 static void 2071 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 2072 { 2073 if ((int64_t)nval < (int64_t)*oval) 2074 *oval = nval; 2075 } 2076 2077 /*ARGSUSED*/ 2078 static void 2079 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 2080 { 2081 if ((int64_t)nval > (int64_t)*oval) 2082 *oval = nval; 2083 } 2084 2085 static void 2086 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 2087 { 2088 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 2089 int64_t val = (int64_t)nval; 2090 2091 if (val < 0) { 2092 for (i = 0; i < zero; i++) { 2093 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 2094 quanta[i] += incr; 2095 return; 2096 } 2097 } 2098 } else { 2099 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 2100 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 2101 quanta[i - 1] += incr; 2102 return; 2103 } 2104 } 2105 2106 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 2107 return; 2108 } 2109 2110 ASSERT(0); 2111 } 2112 2113 static void 2114 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 2115 { 2116 uint64_t arg = *lquanta++; 2117 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 2118 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 2119 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 2120 int32_t val = (int32_t)nval, level; 2121 2122 ASSERT(step != 0); 2123 ASSERT(levels != 0); 2124 2125 if (val < base) { 2126 /* 2127 * This is an underflow. 2128 */ 2129 lquanta[0] += incr; 2130 return; 2131 } 2132 2133 level = (val - base) / step; 2134 2135 if (level < levels) { 2136 lquanta[level + 1] += incr; 2137 return; 2138 } 2139 2140 /* 2141 * This is an overflow. 2142 */ 2143 lquanta[levels + 1] += incr; 2144 } 2145 2146 static int 2147 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low, 2148 uint16_t high, uint16_t nsteps, int64_t value) 2149 { 2150 int64_t this = 1, last, next; 2151 int base = 1, order; 2152 2153 ASSERT(factor <= nsteps); 2154 ASSERT(nsteps % factor == 0); 2155 2156 for (order = 0; order < low; order++) 2157 this *= factor; 2158 2159 /* 2160 * If our value is less than our factor taken to the power of the 2161 * low order of magnitude, it goes into the zeroth bucket. 2162 */ 2163 if (value < (last = this)) 2164 return (0); 2165 2166 for (this *= factor; order <= high; order++) { 2167 int nbuckets = this > nsteps ? nsteps : this; 2168 2169 if ((next = this * factor) < this) { 2170 /* 2171 * We should not generally get log/linear quantizations 2172 * with a high magnitude that allows 64-bits to 2173 * overflow, but we nonetheless protect against this 2174 * by explicitly checking for overflow, and clamping 2175 * our value accordingly. 2176 */ 2177 value = this - 1; 2178 } 2179 2180 if (value < this) { 2181 /* 2182 * If our value lies within this order of magnitude, 2183 * determine its position by taking the offset within 2184 * the order of magnitude, dividing by the bucket 2185 * width, and adding to our (accumulated) base. 2186 */ 2187 return (base + (value - last) / (this / nbuckets)); 2188 } 2189 2190 base += nbuckets - (nbuckets / factor); 2191 last = this; 2192 this = next; 2193 } 2194 2195 /* 2196 * Our value is greater than or equal to our factor taken to the 2197 * power of one plus the high magnitude -- return the top bucket. 2198 */ 2199 return (base); 2200 } 2201 2202 static void 2203 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr) 2204 { 2205 uint64_t arg = *llquanta++; 2206 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg); 2207 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg); 2208 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg); 2209 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); 2210 2211 llquanta[dtrace_aggregate_llquantize_bucket(factor, 2212 low, high, nsteps, nval)] += incr; 2213 } 2214 2215 /*ARGSUSED*/ 2216 static void 2217 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 2218 { 2219 data[0]++; 2220 data[1] += nval; 2221 } 2222 2223 /*ARGSUSED*/ 2224 static void 2225 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) 2226 { 2227 int64_t snval = (int64_t)nval; 2228 uint64_t tmp[2]; 2229 2230 data[0]++; 2231 data[1] += nval; 2232 2233 /* 2234 * What we want to say here is: 2235 * 2236 * data[2] += nval * nval; 2237 * 2238 * But given that nval is 64-bit, we could easily overflow, so 2239 * we do this as 128-bit arithmetic. 2240 */ 2241 if (snval < 0) 2242 snval = -snval; 2243 2244 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp); 2245 dtrace_add_128(data + 2, tmp, data + 2); 2246 } 2247 2248 /*ARGSUSED*/ 2249 static void 2250 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 2251 { 2252 *oval = *oval + 1; 2253 } 2254 2255 /*ARGSUSED*/ 2256 static void 2257 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 2258 { 2259 *oval += nval; 2260 } 2261 2262 /* 2263 * Aggregate given the tuple in the principal data buffer, and the aggregating 2264 * action denoted by the specified dtrace_aggregation_t. The aggregation 2265 * buffer is specified as the buf parameter. This routine does not return 2266 * failure; if there is no space in the aggregation buffer, the data will be 2267 * dropped, and a corresponding counter incremented. 2268 */ 2269 static void 2270 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 2271 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 2272 { 2273 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 2274 uint32_t i, ndx, size, fsize; 2275 uint32_t align = sizeof (uint64_t) - 1; 2276 dtrace_aggbuffer_t *agb; 2277 dtrace_aggkey_t *key; 2278 uint32_t hashval = 0, limit, isstr; 2279 caddr_t tomax, data, kdata; 2280 dtrace_actkind_t action; 2281 dtrace_action_t *act; 2282 uintptr_t offs; 2283 2284 if (buf == NULL) 2285 return; 2286 2287 if (!agg->dtag_hasarg) { 2288 /* 2289 * Currently, only quantize() and lquantize() take additional 2290 * arguments, and they have the same semantics: an increment 2291 * value that defaults to 1 when not present. If additional 2292 * aggregating actions take arguments, the setting of the 2293 * default argument value will presumably have to become more 2294 * sophisticated... 2295 */ 2296 arg = 1; 2297 } 2298 2299 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 2300 size = rec->dtrd_offset - agg->dtag_base; 2301 fsize = size + rec->dtrd_size; 2302 2303 ASSERT(dbuf->dtb_tomax != NULL); 2304 data = dbuf->dtb_tomax + offset + agg->dtag_base; 2305 2306 if ((tomax = buf->dtb_tomax) == NULL) { 2307 dtrace_buffer_drop(buf); 2308 return; 2309 } 2310 2311 /* 2312 * The metastructure is always at the bottom of the buffer. 2313 */ 2314 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 2315 sizeof (dtrace_aggbuffer_t)); 2316 2317 if (buf->dtb_offset == 0) { 2318 /* 2319 * We just kludge up approximately 1/8th of the size to be 2320 * buckets. If this guess ends up being routinely 2321 * off-the-mark, we may need to dynamically readjust this 2322 * based on past performance. 2323 */ 2324 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 2325 2326 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 2327 (uintptr_t)tomax || hashsize == 0) { 2328 /* 2329 * We've been given a ludicrously small buffer; 2330 * increment our drop count and leave. 2331 */ 2332 dtrace_buffer_drop(buf); 2333 return; 2334 } 2335 2336 /* 2337 * And now, a pathetic attempt to try to get a an odd (or 2338 * perchance, a prime) hash size for better hash distribution. 2339 */ 2340 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 2341 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 2342 2343 agb->dtagb_hashsize = hashsize; 2344 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 2345 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 2346 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 2347 2348 for (i = 0; i < agb->dtagb_hashsize; i++) 2349 agb->dtagb_hash[i] = NULL; 2350 } 2351 2352 ASSERT(agg->dtag_first != NULL); 2353 ASSERT(agg->dtag_first->dta_intuple); 2354 2355 /* 2356 * Calculate the hash value based on the key. Note that we _don't_ 2357 * include the aggid in the hashing (but we will store it as part of 2358 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 2359 * algorithm: a simple, quick algorithm that has no known funnels, and 2360 * gets good distribution in practice. The efficacy of the hashing 2361 * algorithm (and a comparison with other algorithms) may be found by 2362 * running the ::dtrace_aggstat MDB dcmd. 2363 */ 2364 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2365 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2366 limit = i + act->dta_rec.dtrd_size; 2367 ASSERT(limit <= size); 2368 isstr = DTRACEACT_ISSTRING(act); 2369 2370 for (; i < limit; i++) { 2371 hashval += data[i]; 2372 hashval += (hashval << 10); 2373 hashval ^= (hashval >> 6); 2374 2375 if (isstr && data[i] == '\0') 2376 break; 2377 } 2378 } 2379 2380 hashval += (hashval << 3); 2381 hashval ^= (hashval >> 11); 2382 hashval += (hashval << 15); 2383 2384 /* 2385 * Yes, the divide here is expensive -- but it's generally the least 2386 * of the performance issues given the amount of data that we iterate 2387 * over to compute hash values, compare data, etc. 2388 */ 2389 ndx = hashval % agb->dtagb_hashsize; 2390 2391 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 2392 ASSERT((caddr_t)key >= tomax); 2393 ASSERT((caddr_t)key < tomax + buf->dtb_size); 2394 2395 if (hashval != key->dtak_hashval || key->dtak_size != size) 2396 continue; 2397 2398 kdata = key->dtak_data; 2399 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 2400 2401 for (act = agg->dtag_first; act->dta_intuple; 2402 act = act->dta_next) { 2403 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2404 limit = i + act->dta_rec.dtrd_size; 2405 ASSERT(limit <= size); 2406 isstr = DTRACEACT_ISSTRING(act); 2407 2408 for (; i < limit; i++) { 2409 if (kdata[i] != data[i]) 2410 goto next; 2411 2412 if (isstr && data[i] == '\0') 2413 break; 2414 } 2415 } 2416 2417 if (action != key->dtak_action) { 2418 /* 2419 * We are aggregating on the same value in the same 2420 * aggregation with two different aggregating actions. 2421 * (This should have been picked up in the compiler, 2422 * so we may be dealing with errant or devious DIF.) 2423 * This is an error condition; we indicate as much, 2424 * and return. 2425 */ 2426 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2427 return; 2428 } 2429 2430 /* 2431 * This is a hit: we need to apply the aggregator to 2432 * the value at this key. 2433 */ 2434 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 2435 return; 2436 next: 2437 continue; 2438 } 2439 2440 /* 2441 * We didn't find it. We need to allocate some zero-filled space, 2442 * link it into the hash table appropriately, and apply the aggregator 2443 * to the (zero-filled) value. 2444 */ 2445 offs = buf->dtb_offset; 2446 while (offs & (align - 1)) 2447 offs += sizeof (uint32_t); 2448 2449 /* 2450 * If we don't have enough room to both allocate a new key _and_ 2451 * its associated data, increment the drop count and return. 2452 */ 2453 if ((uintptr_t)tomax + offs + fsize > 2454 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 2455 dtrace_buffer_drop(buf); 2456 return; 2457 } 2458 2459 /*CONSTCOND*/ 2460 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 2461 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 2462 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 2463 2464 key->dtak_data = kdata = tomax + offs; 2465 buf->dtb_offset = offs + fsize; 2466 2467 /* 2468 * Now copy the data across. 2469 */ 2470 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 2471 2472 for (i = sizeof (dtrace_aggid_t); i < size; i++) 2473 kdata[i] = data[i]; 2474 2475 /* 2476 * Because strings are not zeroed out by default, we need to iterate 2477 * looking for actions that store strings, and we need to explicitly 2478 * pad these strings out with zeroes. 2479 */ 2480 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2481 int nul; 2482 2483 if (!DTRACEACT_ISSTRING(act)) 2484 continue; 2485 2486 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2487 limit = i + act->dta_rec.dtrd_size; 2488 ASSERT(limit <= size); 2489 2490 for (nul = 0; i < limit; i++) { 2491 if (nul) { 2492 kdata[i] = '\0'; 2493 continue; 2494 } 2495 2496 if (data[i] != '\0') 2497 continue; 2498 2499 nul = 1; 2500 } 2501 } 2502 2503 for (i = size; i < fsize; i++) 2504 kdata[i] = 0; 2505 2506 key->dtak_hashval = hashval; 2507 key->dtak_size = size; 2508 key->dtak_action = action; 2509 key->dtak_next = agb->dtagb_hash[ndx]; 2510 agb->dtagb_hash[ndx] = key; 2511 2512 /* 2513 * Finally, apply the aggregator. 2514 */ 2515 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 2516 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 2517 } 2518 2519 /* 2520 * Given consumer state, this routine finds a speculation in the INACTIVE 2521 * state and transitions it into the ACTIVE state. If there is no speculation 2522 * in the INACTIVE state, 0 is returned. In this case, no error counter is 2523 * incremented -- it is up to the caller to take appropriate action. 2524 */ 2525 static int 2526 dtrace_speculation(dtrace_state_t *state) 2527 { 2528 int i = 0; 2529 dtrace_speculation_state_t current; 2530 uint32_t *stat = &state->dts_speculations_unavail, count; 2531 2532 while (i < state->dts_nspeculations) { 2533 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2534 2535 current = spec->dtsp_state; 2536 2537 if (current != DTRACESPEC_INACTIVE) { 2538 if (current == DTRACESPEC_COMMITTINGMANY || 2539 current == DTRACESPEC_COMMITTING || 2540 current == DTRACESPEC_DISCARDING) 2541 stat = &state->dts_speculations_busy; 2542 i++; 2543 continue; 2544 } 2545 2546 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2547 current, DTRACESPEC_ACTIVE) == current) 2548 return (i + 1); 2549 } 2550 2551 /* 2552 * We couldn't find a speculation. If we found as much as a single 2553 * busy speculation buffer, we'll attribute this failure as "busy" 2554 * instead of "unavail". 2555 */ 2556 do { 2557 count = *stat; 2558 } while (dtrace_cas32(stat, count, count + 1) != count); 2559 2560 return (0); 2561 } 2562 2563 /* 2564 * This routine commits an active speculation. If the specified speculation 2565 * is not in a valid state to perform a commit(), this routine will silently do 2566 * nothing. The state of the specified speculation is transitioned according 2567 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2568 */ 2569 static void 2570 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2571 dtrace_specid_t which) 2572 { 2573 dtrace_speculation_t *spec; 2574 dtrace_buffer_t *src, *dest; 2575 uintptr_t daddr, saddr, dlimit, slimit; 2576 dtrace_speculation_state_t current, new; 2577 intptr_t offs; 2578 uint64_t timestamp; 2579 2580 if (which == 0) 2581 return; 2582 2583 if (which > state->dts_nspeculations) { 2584 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2585 return; 2586 } 2587 2588 spec = &state->dts_speculations[which - 1]; 2589 src = &spec->dtsp_buffer[cpu]; 2590 dest = &state->dts_buffer[cpu]; 2591 2592 do { 2593 current = spec->dtsp_state; 2594 2595 if (current == DTRACESPEC_COMMITTINGMANY) 2596 break; 2597 2598 switch (current) { 2599 case DTRACESPEC_INACTIVE: 2600 case DTRACESPEC_DISCARDING: 2601 return; 2602 2603 case DTRACESPEC_COMMITTING: 2604 /* 2605 * This is only possible if we are (a) commit()'ing 2606 * without having done a prior speculate() on this CPU 2607 * and (b) racing with another commit() on a different 2608 * CPU. There's nothing to do -- we just assert that 2609 * our offset is 0. 2610 */ 2611 ASSERT(src->dtb_offset == 0); 2612 return; 2613 2614 case DTRACESPEC_ACTIVE: 2615 new = DTRACESPEC_COMMITTING; 2616 break; 2617 2618 case DTRACESPEC_ACTIVEONE: 2619 /* 2620 * This speculation is active on one CPU. If our 2621 * buffer offset is non-zero, we know that the one CPU 2622 * must be us. Otherwise, we are committing on a 2623 * different CPU from the speculate(), and we must 2624 * rely on being asynchronously cleaned. 2625 */ 2626 if (src->dtb_offset != 0) { 2627 new = DTRACESPEC_COMMITTING; 2628 break; 2629 } 2630 /*FALLTHROUGH*/ 2631 2632 case DTRACESPEC_ACTIVEMANY: 2633 new = DTRACESPEC_COMMITTINGMANY; 2634 break; 2635 2636 default: 2637 ASSERT(0); 2638 } 2639 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2640 current, new) != current); 2641 2642 /* 2643 * We have set the state to indicate that we are committing this 2644 * speculation. Now reserve the necessary space in the destination 2645 * buffer. 2646 */ 2647 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2648 sizeof (uint64_t), state, NULL)) < 0) { 2649 dtrace_buffer_drop(dest); 2650 goto out; 2651 } 2652 2653 /* 2654 * We have sufficient space to copy the speculative buffer into the 2655 * primary buffer. First, modify the speculative buffer, filling 2656 * in the timestamp of all entries with the current time. The data 2657 * must have the commit() time rather than the time it was traced, 2658 * so that all entries in the primary buffer are in timestamp order. 2659 */ 2660 timestamp = dtrace_gethrtime(); 2661 saddr = (uintptr_t)src->dtb_tomax; 2662 slimit = saddr + src->dtb_offset; 2663 while (saddr < slimit) { 2664 size_t size; 2665 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr; 2666 2667 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) { 2668 saddr += sizeof (dtrace_epid_t); 2669 continue; 2670 } 2671 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs); 2672 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size; 2673 2674 ASSERT3U(saddr + size, <=, slimit); 2675 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t)); 2676 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX); 2677 2678 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp); 2679 2680 saddr += size; 2681 } 2682 2683 /* 2684 * Copy the buffer across. (Note that this is a 2685 * highly subobtimal bcopy(); in the unlikely event that this becomes 2686 * a serious performance issue, a high-performance DTrace-specific 2687 * bcopy() should obviously be invented.) 2688 */ 2689 daddr = (uintptr_t)dest->dtb_tomax + offs; 2690 dlimit = daddr + src->dtb_offset; 2691 saddr = (uintptr_t)src->dtb_tomax; 2692 2693 /* 2694 * First, the aligned portion. 2695 */ 2696 while (dlimit - daddr >= sizeof (uint64_t)) { 2697 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2698 2699 daddr += sizeof (uint64_t); 2700 saddr += sizeof (uint64_t); 2701 } 2702 2703 /* 2704 * Now any left-over bit... 2705 */ 2706 while (dlimit - daddr) 2707 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 2708 2709 /* 2710 * Finally, commit the reserved space in the destination buffer. 2711 */ 2712 dest->dtb_offset = offs + src->dtb_offset; 2713 2714 out: 2715 /* 2716 * If we're lucky enough to be the only active CPU on this speculation 2717 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2718 */ 2719 if (current == DTRACESPEC_ACTIVE || 2720 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2721 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2722 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2723 2724 ASSERT(rval == DTRACESPEC_COMMITTING); 2725 } 2726 2727 src->dtb_offset = 0; 2728 src->dtb_xamot_drops += src->dtb_drops; 2729 src->dtb_drops = 0; 2730 } 2731 2732 /* 2733 * This routine discards an active speculation. If the specified speculation 2734 * is not in a valid state to perform a discard(), this routine will silently 2735 * do nothing. The state of the specified speculation is transitioned 2736 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 2737 */ 2738 static void 2739 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 2740 dtrace_specid_t which) 2741 { 2742 dtrace_speculation_t *spec; 2743 dtrace_speculation_state_t current, new; 2744 dtrace_buffer_t *buf; 2745 2746 if (which == 0) 2747 return; 2748 2749 if (which > state->dts_nspeculations) { 2750 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2751 return; 2752 } 2753 2754 spec = &state->dts_speculations[which - 1]; 2755 buf = &spec->dtsp_buffer[cpu]; 2756 2757 do { 2758 current = spec->dtsp_state; 2759 2760 switch (current) { 2761 case DTRACESPEC_INACTIVE: 2762 case DTRACESPEC_COMMITTINGMANY: 2763 case DTRACESPEC_COMMITTING: 2764 case DTRACESPEC_DISCARDING: 2765 return; 2766 2767 case DTRACESPEC_ACTIVE: 2768 case DTRACESPEC_ACTIVEMANY: 2769 new = DTRACESPEC_DISCARDING; 2770 break; 2771 2772 case DTRACESPEC_ACTIVEONE: 2773 if (buf->dtb_offset != 0) { 2774 new = DTRACESPEC_INACTIVE; 2775 } else { 2776 new = DTRACESPEC_DISCARDING; 2777 } 2778 break; 2779 2780 default: 2781 ASSERT(0); 2782 } 2783 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2784 current, new) != current); 2785 2786 buf->dtb_offset = 0; 2787 buf->dtb_drops = 0; 2788 } 2789 2790 /* 2791 * Note: not called from probe context. This function is called 2792 * asynchronously from cross call context to clean any speculations that are 2793 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 2794 * transitioned back to the INACTIVE state until all CPUs have cleaned the 2795 * speculation. 2796 */ 2797 static void 2798 dtrace_speculation_clean_here(dtrace_state_t *state) 2799 { 2800 dtrace_icookie_t cookie; 2801 processorid_t cpu = CPU->cpu_id; 2802 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 2803 dtrace_specid_t i; 2804 2805 cookie = dtrace_interrupt_disable(); 2806 2807 if (dest->dtb_tomax == NULL) { 2808 dtrace_interrupt_enable(cookie); 2809 return; 2810 } 2811 2812 for (i = 0; i < state->dts_nspeculations; i++) { 2813 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2814 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 2815 2816 if (src->dtb_tomax == NULL) 2817 continue; 2818 2819 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 2820 src->dtb_offset = 0; 2821 continue; 2822 } 2823 2824 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2825 continue; 2826 2827 if (src->dtb_offset == 0) 2828 continue; 2829 2830 dtrace_speculation_commit(state, cpu, i + 1); 2831 } 2832 2833 dtrace_interrupt_enable(cookie); 2834 } 2835 2836 /* 2837 * Note: not called from probe context. This function is called 2838 * asynchronously (and at a regular interval) to clean any speculations that 2839 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 2840 * is work to be done, it cross calls all CPUs to perform that work; 2841 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 2842 * INACTIVE state until they have been cleaned by all CPUs. 2843 */ 2844 static void 2845 dtrace_speculation_clean(dtrace_state_t *state) 2846 { 2847 int work = 0, rv; 2848 dtrace_specid_t i; 2849 2850 for (i = 0; i < state->dts_nspeculations; i++) { 2851 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2852 2853 ASSERT(!spec->dtsp_cleaning); 2854 2855 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 2856 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2857 continue; 2858 2859 work++; 2860 spec->dtsp_cleaning = 1; 2861 } 2862 2863 if (!work) 2864 return; 2865 2866 dtrace_xcall(DTRACE_CPUALL, 2867 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 2868 2869 /* 2870 * We now know that all CPUs have committed or discarded their 2871 * speculation buffers, as appropriate. We can now set the state 2872 * to inactive. 2873 */ 2874 for (i = 0; i < state->dts_nspeculations; i++) { 2875 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2876 dtrace_speculation_state_t current, new; 2877 2878 if (!spec->dtsp_cleaning) 2879 continue; 2880 2881 current = spec->dtsp_state; 2882 ASSERT(current == DTRACESPEC_DISCARDING || 2883 current == DTRACESPEC_COMMITTINGMANY); 2884 2885 new = DTRACESPEC_INACTIVE; 2886 2887 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new); 2888 ASSERT(rv == current); 2889 spec->dtsp_cleaning = 0; 2890 } 2891 } 2892 2893 /* 2894 * Called as part of a speculate() to get the speculative buffer associated 2895 * with a given speculation. Returns NULL if the specified speculation is not 2896 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 2897 * the active CPU is not the specified CPU -- the speculation will be 2898 * atomically transitioned into the ACTIVEMANY state. 2899 */ 2900 static dtrace_buffer_t * 2901 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 2902 dtrace_specid_t which) 2903 { 2904 dtrace_speculation_t *spec; 2905 dtrace_speculation_state_t current, new; 2906 dtrace_buffer_t *buf; 2907 2908 if (which == 0) 2909 return (NULL); 2910 2911 if (which > state->dts_nspeculations) { 2912 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2913 return (NULL); 2914 } 2915 2916 spec = &state->dts_speculations[which - 1]; 2917 buf = &spec->dtsp_buffer[cpuid]; 2918 2919 do { 2920 current = spec->dtsp_state; 2921 2922 switch (current) { 2923 case DTRACESPEC_INACTIVE: 2924 case DTRACESPEC_COMMITTINGMANY: 2925 case DTRACESPEC_DISCARDING: 2926 return (NULL); 2927 2928 case DTRACESPEC_COMMITTING: 2929 ASSERT(buf->dtb_offset == 0); 2930 return (NULL); 2931 2932 case DTRACESPEC_ACTIVEONE: 2933 /* 2934 * This speculation is currently active on one CPU. 2935 * Check the offset in the buffer; if it's non-zero, 2936 * that CPU must be us (and we leave the state alone). 2937 * If it's zero, assume that we're starting on a new 2938 * CPU -- and change the state to indicate that the 2939 * speculation is active on more than one CPU. 2940 */ 2941 if (buf->dtb_offset != 0) 2942 return (buf); 2943 2944 new = DTRACESPEC_ACTIVEMANY; 2945 break; 2946 2947 case DTRACESPEC_ACTIVEMANY: 2948 return (buf); 2949 2950 case DTRACESPEC_ACTIVE: 2951 new = DTRACESPEC_ACTIVEONE; 2952 break; 2953 2954 default: 2955 ASSERT(0); 2956 } 2957 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2958 current, new) != current); 2959 2960 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 2961 return (buf); 2962 } 2963 2964 /* 2965 * Return a string. In the event that the user lacks the privilege to access 2966 * arbitrary kernel memory, we copy the string out to scratch memory so that we 2967 * don't fail access checking. 2968 * 2969 * dtrace_dif_variable() uses this routine as a helper for various 2970 * builtin values such as 'execname' and 'probefunc.' 2971 */ 2972 uintptr_t 2973 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 2974 dtrace_mstate_t *mstate) 2975 { 2976 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 2977 uintptr_t ret; 2978 size_t strsz; 2979 2980 /* 2981 * The easy case: this probe is allowed to read all of memory, so 2982 * we can just return this as a vanilla pointer. 2983 */ 2984 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 2985 return (addr); 2986 2987 /* 2988 * This is the tougher case: we copy the string in question from 2989 * kernel memory into scratch memory and return it that way: this 2990 * ensures that we won't trip up when access checking tests the 2991 * BYREF return value. 2992 */ 2993 strsz = dtrace_strlen((char *)addr, size) + 1; 2994 2995 if (mstate->dtms_scratch_ptr + strsz > 2996 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 2997 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 2998 return (NULL); 2999 } 3000 3001 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 3002 strsz); 3003 ret = mstate->dtms_scratch_ptr; 3004 mstate->dtms_scratch_ptr += strsz; 3005 return (ret); 3006 } 3007 3008 /* 3009 * This function implements the DIF emulator's variable lookups. The emulator 3010 * passes a reserved variable identifier and optional built-in array index. 3011 */ 3012 static uint64_t 3013 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 3014 uint64_t ndx) 3015 { 3016 /* 3017 * If we're accessing one of the uncached arguments, we'll turn this 3018 * into a reference in the args array. 3019 */ 3020 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 3021 ndx = v - DIF_VAR_ARG0; 3022 v = DIF_VAR_ARGS; 3023 } 3024 3025 switch (v) { 3026 case DIF_VAR_ARGS: 3027 if (!(mstate->dtms_access & DTRACE_ACCESS_ARGS)) { 3028 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= 3029 CPU_DTRACE_KPRIV; 3030 return (0); 3031 } 3032 3033 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 3034 if (ndx >= sizeof (mstate->dtms_arg) / 3035 sizeof (mstate->dtms_arg[0])) { 3036 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3037 dtrace_provider_t *pv; 3038 uint64_t val; 3039 3040 pv = mstate->dtms_probe->dtpr_provider; 3041 if (pv->dtpv_pops.dtps_getargval != NULL) 3042 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 3043 mstate->dtms_probe->dtpr_id, 3044 mstate->dtms_probe->dtpr_arg, ndx, aframes); 3045 else 3046 val = dtrace_getarg(ndx, aframes); 3047 3048 /* 3049 * This is regrettably required to keep the compiler 3050 * from tail-optimizing the call to dtrace_getarg(). 3051 * The condition always evaluates to true, but the 3052 * compiler has no way of figuring that out a priori. 3053 * (None of this would be necessary if the compiler 3054 * could be relied upon to _always_ tail-optimize 3055 * the call to dtrace_getarg() -- but it can't.) 3056 */ 3057 if (mstate->dtms_probe != NULL) 3058 return (val); 3059 3060 ASSERT(0); 3061 } 3062 3063 return (mstate->dtms_arg[ndx]); 3064 3065 case DIF_VAR_UREGS: { 3066 klwp_t *lwp; 3067 3068 if (!dtrace_priv_proc(state, mstate)) 3069 return (0); 3070 3071 if ((lwp = curthread->t_lwp) == NULL) { 3072 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 3073 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL; 3074 return (0); 3075 } 3076 3077 return (dtrace_getreg(lwp->lwp_regs, ndx)); 3078 } 3079 3080 case DIF_VAR_VMREGS: { 3081 uint64_t rval; 3082 3083 if (!dtrace_priv_kernel(state)) 3084 return (0); 3085 3086 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3087 3088 rval = dtrace_getvmreg(ndx, 3089 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags); 3090 3091 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3092 3093 return (rval); 3094 } 3095 3096 case DIF_VAR_CURTHREAD: 3097 if (!dtrace_priv_proc(state, mstate)) 3098 return (0); 3099 return ((uint64_t)(uintptr_t)curthread); 3100 3101 case DIF_VAR_TIMESTAMP: 3102 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 3103 mstate->dtms_timestamp = dtrace_gethrtime(); 3104 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 3105 } 3106 return (mstate->dtms_timestamp); 3107 3108 case DIF_VAR_VTIMESTAMP: 3109 ASSERT(dtrace_vtime_references != 0); 3110 return (curthread->t_dtrace_vtime); 3111 3112 case DIF_VAR_WALLTIMESTAMP: 3113 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 3114 mstate->dtms_walltimestamp = dtrace_gethrestime(); 3115 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 3116 } 3117 return (mstate->dtms_walltimestamp); 3118 3119 case DIF_VAR_IPL: 3120 if (!dtrace_priv_kernel(state)) 3121 return (0); 3122 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 3123 mstate->dtms_ipl = dtrace_getipl(); 3124 mstate->dtms_present |= DTRACE_MSTATE_IPL; 3125 } 3126 return (mstate->dtms_ipl); 3127 3128 case DIF_VAR_EPID: 3129 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 3130 return (mstate->dtms_epid); 3131 3132 case DIF_VAR_ID: 3133 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3134 return (mstate->dtms_probe->dtpr_id); 3135 3136 case DIF_VAR_STACKDEPTH: 3137 if (!dtrace_priv_kernel(state)) 3138 return (0); 3139 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 3140 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3141 3142 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 3143 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 3144 } 3145 return (mstate->dtms_stackdepth); 3146 3147 case DIF_VAR_USTACKDEPTH: 3148 if (!dtrace_priv_proc(state, mstate)) 3149 return (0); 3150 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 3151 /* 3152 * See comment in DIF_VAR_PID. 3153 */ 3154 if (DTRACE_ANCHORED(mstate->dtms_probe) && 3155 CPU_ON_INTR(CPU)) { 3156 mstate->dtms_ustackdepth = 0; 3157 } else { 3158 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3159 mstate->dtms_ustackdepth = 3160 dtrace_getustackdepth(); 3161 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3162 } 3163 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 3164 } 3165 return (mstate->dtms_ustackdepth); 3166 3167 case DIF_VAR_CALLER: 3168 if (!dtrace_priv_kernel(state)) 3169 return (0); 3170 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 3171 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3172 3173 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 3174 /* 3175 * If this is an unanchored probe, we are 3176 * required to go through the slow path: 3177 * dtrace_caller() only guarantees correct 3178 * results for anchored probes. 3179 */ 3180 pc_t caller[2]; 3181 3182 dtrace_getpcstack(caller, 2, aframes, 3183 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 3184 mstate->dtms_caller = caller[1]; 3185 } else if ((mstate->dtms_caller = 3186 dtrace_caller(aframes)) == -1) { 3187 /* 3188 * We have failed to do this the quick way; 3189 * we must resort to the slower approach of 3190 * calling dtrace_getpcstack(). 3191 */ 3192 pc_t caller; 3193 3194 dtrace_getpcstack(&caller, 1, aframes, NULL); 3195 mstate->dtms_caller = caller; 3196 } 3197 3198 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 3199 } 3200 return (mstate->dtms_caller); 3201 3202 case DIF_VAR_UCALLER: 3203 if (!dtrace_priv_proc(state, mstate)) 3204 return (0); 3205 3206 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 3207 uint64_t ustack[3]; 3208 3209 /* 3210 * dtrace_getupcstack() fills in the first uint64_t 3211 * with the current PID. The second uint64_t will 3212 * be the program counter at user-level. The third 3213 * uint64_t will contain the caller, which is what 3214 * we're after. 3215 */ 3216 ustack[2] = NULL; 3217 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3218 dtrace_getupcstack(ustack, 3); 3219 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3220 mstate->dtms_ucaller = ustack[2]; 3221 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 3222 } 3223 3224 return (mstate->dtms_ucaller); 3225 3226 case DIF_VAR_PROBEPROV: 3227 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3228 return (dtrace_dif_varstr( 3229 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 3230 state, mstate)); 3231 3232 case DIF_VAR_PROBEMOD: 3233 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3234 return (dtrace_dif_varstr( 3235 (uintptr_t)mstate->dtms_probe->dtpr_mod, 3236 state, mstate)); 3237 3238 case DIF_VAR_PROBEFUNC: 3239 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3240 return (dtrace_dif_varstr( 3241 (uintptr_t)mstate->dtms_probe->dtpr_func, 3242 state, mstate)); 3243 3244 case DIF_VAR_PROBENAME: 3245 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3246 return (dtrace_dif_varstr( 3247 (uintptr_t)mstate->dtms_probe->dtpr_name, 3248 state, mstate)); 3249 3250 case DIF_VAR_PID: 3251 if (!dtrace_priv_proc(state, mstate)) 3252 return (0); 3253 3254 /* 3255 * Note that we are assuming that an unanchored probe is 3256 * always due to a high-level interrupt. (And we're assuming 3257 * that there is only a single high level interrupt.) 3258 */ 3259 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3260 return (pid0.pid_id); 3261 3262 /* 3263 * It is always safe to dereference one's own t_procp pointer: 3264 * it always points to a valid, allocated proc structure. 3265 * Further, it is always safe to dereference the p_pidp member 3266 * of one's own proc structure. (These are truisms becuase 3267 * threads and processes don't clean up their own state -- 3268 * they leave that task to whomever reaps them.) 3269 */ 3270 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 3271 3272 case DIF_VAR_PPID: 3273 if (!dtrace_priv_proc(state, mstate)) 3274 return (0); 3275 3276 /* 3277 * See comment in DIF_VAR_PID. 3278 */ 3279 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3280 return (pid0.pid_id); 3281 3282 /* 3283 * It is always safe to dereference one's own t_procp pointer: 3284 * it always points to a valid, allocated proc structure. 3285 * (This is true because threads don't clean up their own 3286 * state -- they leave that task to whomever reaps them.) 3287 */ 3288 return ((uint64_t)curthread->t_procp->p_ppid); 3289 3290 case DIF_VAR_TID: 3291 /* 3292 * See comment in DIF_VAR_PID. 3293 */ 3294 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3295 return (0); 3296 3297 return ((uint64_t)curthread->t_tid); 3298 3299 case DIF_VAR_EXECNAME: 3300 if (!dtrace_priv_proc(state, mstate)) 3301 return (0); 3302 3303 /* 3304 * See comment in DIF_VAR_PID. 3305 */ 3306 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3307 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 3308 3309 /* 3310 * It is always safe to dereference one's own t_procp pointer: 3311 * it always points to a valid, allocated proc structure. 3312 * (This is true because threads don't clean up their own 3313 * state -- they leave that task to whomever reaps them.) 3314 */ 3315 return (dtrace_dif_varstr( 3316 (uintptr_t)curthread->t_procp->p_user.u_comm, 3317 state, mstate)); 3318 3319 case DIF_VAR_ZONENAME: 3320 if (!dtrace_priv_proc(state, mstate)) 3321 return (0); 3322 3323 /* 3324 * See comment in DIF_VAR_PID. 3325 */ 3326 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3327 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 3328 3329 /* 3330 * It is always safe to dereference one's own t_procp pointer: 3331 * it always points to a valid, allocated proc structure. 3332 * (This is true because threads don't clean up their own 3333 * state -- they leave that task to whomever reaps them.) 3334 */ 3335 return (dtrace_dif_varstr( 3336 (uintptr_t)curthread->t_procp->p_zone->zone_name, 3337 state, mstate)); 3338 3339 case DIF_VAR_UID: 3340 if (!dtrace_priv_proc(state, mstate)) 3341 return (0); 3342 3343 /* 3344 * See comment in DIF_VAR_PID. 3345 */ 3346 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3347 return ((uint64_t)p0.p_cred->cr_uid); 3348 3349 /* 3350 * It is always safe to dereference one's own t_procp pointer: 3351 * it always points to a valid, allocated proc structure. 3352 * (This is true because threads don't clean up their own 3353 * state -- they leave that task to whomever reaps them.) 3354 * 3355 * Additionally, it is safe to dereference one's own process 3356 * credential, since this is never NULL after process birth. 3357 */ 3358 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 3359 3360 case DIF_VAR_GID: 3361 if (!dtrace_priv_proc(state, mstate)) 3362 return (0); 3363 3364 /* 3365 * See comment in DIF_VAR_PID. 3366 */ 3367 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3368 return ((uint64_t)p0.p_cred->cr_gid); 3369 3370 /* 3371 * It is always safe to dereference one's own t_procp pointer: 3372 * it always points to a valid, allocated proc structure. 3373 * (This is true because threads don't clean up their own 3374 * state -- they leave that task to whomever reaps them.) 3375 * 3376 * Additionally, it is safe to dereference one's own process 3377 * credential, since this is never NULL after process birth. 3378 */ 3379 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 3380 3381 case DIF_VAR_ERRNO: { 3382 klwp_t *lwp; 3383 if (!dtrace_priv_proc(state, mstate)) 3384 return (0); 3385 3386 /* 3387 * See comment in DIF_VAR_PID. 3388 */ 3389 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3390 return (0); 3391 3392 /* 3393 * It is always safe to dereference one's own t_lwp pointer in 3394 * the event that this pointer is non-NULL. (This is true 3395 * because threads and lwps don't clean up their own state -- 3396 * they leave that task to whomever reaps them.) 3397 */ 3398 if ((lwp = curthread->t_lwp) == NULL) 3399 return (0); 3400 3401 return ((uint64_t)lwp->lwp_errno); 3402 } 3403 default: 3404 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 3405 return (0); 3406 } 3407 } 3408 3409 3410 typedef enum dtrace_json_state { 3411 DTRACE_JSON_REST = 1, 3412 DTRACE_JSON_OBJECT, 3413 DTRACE_JSON_STRING, 3414 DTRACE_JSON_STRING_ESCAPE, 3415 DTRACE_JSON_STRING_ESCAPE_UNICODE, 3416 DTRACE_JSON_COLON, 3417 DTRACE_JSON_COMMA, 3418 DTRACE_JSON_VALUE, 3419 DTRACE_JSON_IDENTIFIER, 3420 DTRACE_JSON_NUMBER, 3421 DTRACE_JSON_NUMBER_FRAC, 3422 DTRACE_JSON_NUMBER_EXP, 3423 DTRACE_JSON_COLLECT_OBJECT 3424 } dtrace_json_state_t; 3425 3426 /* 3427 * This function possesses just enough knowledge about JSON to extract a single 3428 * value from a JSON string and store it in the scratch buffer. It is able 3429 * to extract nested object values, and members of arrays by index. 3430 * 3431 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to 3432 * be looked up as we descend into the object tree. e.g. 3433 * 3434 * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL 3435 * with nelems = 5. 3436 * 3437 * The run time of this function must be bounded above by strsize to limit the 3438 * amount of work done in probe context. As such, it is implemented as a 3439 * simple state machine, reading one character at a time using safe loads 3440 * until we find the requested element, hit a parsing error or run off the 3441 * end of the object or string. 3442 * 3443 * As there is no way for a subroutine to return an error without interrupting 3444 * clause execution, we simply return NULL in the event of a missing key or any 3445 * other error condition. Each NULL return in this function is commented with 3446 * the error condition it represents -- parsing or otherwise. 3447 * 3448 * The set of states for the state machine closely matches the JSON 3449 * specification (http://json.org/). Briefly: 3450 * 3451 * DTRACE_JSON_REST: 3452 * Skip whitespace until we find either a top-level Object, moving 3453 * to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE. 3454 * 3455 * DTRACE_JSON_OBJECT: 3456 * Locate the next key String in an Object. Sets a flag to denote 3457 * the next String as a key string and moves to DTRACE_JSON_STRING. 3458 * 3459 * DTRACE_JSON_COLON: 3460 * Skip whitespace until we find the colon that separates key Strings 3461 * from their values. Once found, move to DTRACE_JSON_VALUE. 3462 * 3463 * DTRACE_JSON_VALUE: 3464 * Detects the type of the next value (String, Number, Identifier, Object 3465 * or Array) and routes to the states that process that type. Here we also 3466 * deal with the element selector list if we are requested to traverse down 3467 * into the object tree. 3468 * 3469 * DTRACE_JSON_COMMA: 3470 * Skip whitespace until we find the comma that separates key-value pairs 3471 * in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays 3472 * (similarly DTRACE_JSON_VALUE). All following literal value processing 3473 * states return to this state at the end of their value, unless otherwise 3474 * noted. 3475 * 3476 * DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP: 3477 * Processes a Number literal from the JSON, including any exponent 3478 * component that may be present. Numbers are returned as strings, which 3479 * may be passed to strtoll() if an integer is required. 3480 * 3481 * DTRACE_JSON_IDENTIFIER: 3482 * Processes a "true", "false" or "null" literal in the JSON. 3483 * 3484 * DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE, 3485 * DTRACE_JSON_STRING_ESCAPE_UNICODE: 3486 * Processes a String literal from the JSON, whether the String denotes 3487 * a key, a value or part of a larger Object. Handles all escape sequences 3488 * present in the specification, including four-digit unicode characters, 3489 * but merely includes the escape sequence without converting it to the 3490 * actual escaped character. If the String is flagged as a key, we 3491 * move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA. 3492 * 3493 * DTRACE_JSON_COLLECT_OBJECT: 3494 * This state collects an entire Object (or Array), correctly handling 3495 * embedded strings. If the full element selector list matches this nested 3496 * object, we return the Object in full as a string. If not, we use this 3497 * state to skip to the next value at this level and continue processing. 3498 * 3499 * NOTE: This function uses various macros from strtolctype.h to manipulate 3500 * digit values, etc -- these have all been checked to ensure they make 3501 * no additional function calls. 3502 */ 3503 static char * 3504 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems, 3505 char *dest) 3506 { 3507 dtrace_json_state_t state = DTRACE_JSON_REST; 3508 int64_t array_elem = INT64_MIN; 3509 int64_t array_pos = 0; 3510 uint8_t escape_unicount = 0; 3511 boolean_t string_is_key = B_FALSE; 3512 boolean_t collect_object = B_FALSE; 3513 boolean_t found_key = B_FALSE; 3514 boolean_t in_array = B_FALSE; 3515 uint32_t braces = 0, brackets = 0; 3516 char *elem = elemlist; 3517 char *dd = dest; 3518 uintptr_t cur; 3519 3520 for (cur = json; cur < json + size; cur++) { 3521 char cc = dtrace_load8(cur); 3522 if (cc == '\0') 3523 return (NULL); 3524 3525 switch (state) { 3526 case DTRACE_JSON_REST: 3527 if (isspace(cc)) 3528 break; 3529 3530 if (cc == '{') { 3531 state = DTRACE_JSON_OBJECT; 3532 break; 3533 } 3534 3535 if (cc == '[') { 3536 in_array = B_TRUE; 3537 array_pos = 0; 3538 array_elem = dtrace_strtoll(elem, 10, size); 3539 found_key = array_elem == 0 ? B_TRUE : B_FALSE; 3540 state = DTRACE_JSON_VALUE; 3541 break; 3542 } 3543 3544 /* 3545 * ERROR: expected to find a top-level object or array. 3546 */ 3547 return (NULL); 3548 case DTRACE_JSON_OBJECT: 3549 if (isspace(cc)) 3550 break; 3551 3552 if (cc == '"') { 3553 state = DTRACE_JSON_STRING; 3554 string_is_key = B_TRUE; 3555 break; 3556 } 3557 3558 /* 3559 * ERROR: either the object did not start with a key 3560 * string, or we've run off the end of the object 3561 * without finding the requested key. 3562 */ 3563 return (NULL); 3564 case DTRACE_JSON_STRING: 3565 if (cc == '\\') { 3566 *dd++ = '\\'; 3567 state = DTRACE_JSON_STRING_ESCAPE; 3568 break; 3569 } 3570 3571 if (cc == '"') { 3572 if (collect_object) { 3573 /* 3574 * We don't reset the dest here, as 3575 * the string is part of a larger 3576 * object being collected. 3577 */ 3578 *dd++ = cc; 3579 collect_object = B_FALSE; 3580 state = DTRACE_JSON_COLLECT_OBJECT; 3581 break; 3582 } 3583 *dd = '\0'; 3584 dd = dest; /* reset string buffer */ 3585 if (string_is_key) { 3586 if (dtrace_strncmp(dest, elem, 3587 size) == 0) 3588 found_key = B_TRUE; 3589 } else if (found_key) { 3590 if (nelems > 1) { 3591 /* 3592 * We expected an object, not 3593 * this string. 3594 */ 3595 return (NULL); 3596 } 3597 return (dest); 3598 } 3599 state = string_is_key ? DTRACE_JSON_COLON : 3600 DTRACE_JSON_COMMA; 3601 string_is_key = B_FALSE; 3602 break; 3603 } 3604 3605 *dd++ = cc; 3606 break; 3607 case DTRACE_JSON_STRING_ESCAPE: 3608 *dd++ = cc; 3609 if (cc == 'u') { 3610 escape_unicount = 0; 3611 state = DTRACE_JSON_STRING_ESCAPE_UNICODE; 3612 } else { 3613 state = DTRACE_JSON_STRING; 3614 } 3615 break; 3616 case DTRACE_JSON_STRING_ESCAPE_UNICODE: 3617 if (!isxdigit(cc)) { 3618 /* 3619 * ERROR: invalid unicode escape, expected 3620 * four valid hexidecimal digits. 3621 */ 3622 return (NULL); 3623 } 3624 3625 *dd++ = cc; 3626 if (++escape_unicount == 4) 3627 state = DTRACE_JSON_STRING; 3628 break; 3629 case DTRACE_JSON_COLON: 3630 if (isspace(cc)) 3631 break; 3632 3633 if (cc == ':') { 3634 state = DTRACE_JSON_VALUE; 3635 break; 3636 } 3637 3638 /* 3639 * ERROR: expected a colon. 3640 */ 3641 return (NULL); 3642 case DTRACE_JSON_COMMA: 3643 if (isspace(cc)) 3644 break; 3645 3646 if (cc == ',') { 3647 if (in_array) { 3648 state = DTRACE_JSON_VALUE; 3649 if (++array_pos == array_elem) 3650 found_key = B_TRUE; 3651 } else { 3652 state = DTRACE_JSON_OBJECT; 3653 } 3654 break; 3655 } 3656 3657 /* 3658 * ERROR: either we hit an unexpected character, or 3659 * we reached the end of the object or array without 3660 * finding the requested key. 3661 */ 3662 return (NULL); 3663 case DTRACE_JSON_IDENTIFIER: 3664 if (islower(cc)) { 3665 *dd++ = cc; 3666 break; 3667 } 3668 3669 *dd = '\0'; 3670 dd = dest; /* reset string buffer */ 3671 3672 if (dtrace_strncmp(dest, "true", 5) == 0 || 3673 dtrace_strncmp(dest, "false", 6) == 0 || 3674 dtrace_strncmp(dest, "null", 5) == 0) { 3675 if (found_key) { 3676 if (nelems > 1) { 3677 /* 3678 * ERROR: We expected an object, 3679 * not this identifier. 3680 */ 3681 return (NULL); 3682 } 3683 return (dest); 3684 } else { 3685 cur--; 3686 state = DTRACE_JSON_COMMA; 3687 break; 3688 } 3689 } 3690 3691 /* 3692 * ERROR: we did not recognise the identifier as one 3693 * of those in the JSON specification. 3694 */ 3695 return (NULL); 3696 case DTRACE_JSON_NUMBER: 3697 if (cc == '.') { 3698 *dd++ = cc; 3699 state = DTRACE_JSON_NUMBER_FRAC; 3700 break; 3701 } 3702 3703 if (cc == 'x' || cc == 'X') { 3704 /* 3705 * ERROR: specification explicitly excludes 3706 * hexidecimal or octal numbers. 3707 */ 3708 return (NULL); 3709 } 3710 3711 /* FALLTHRU */ 3712 case DTRACE_JSON_NUMBER_FRAC: 3713 if (cc == 'e' || cc == 'E') { 3714 *dd++ = cc; 3715 state = DTRACE_JSON_NUMBER_EXP; 3716 break; 3717 } 3718 3719 if (cc == '+' || cc == '-') { 3720 /* 3721 * ERROR: expect sign as part of exponent only. 3722 */ 3723 return (NULL); 3724 } 3725 /* FALLTHRU */ 3726 case DTRACE_JSON_NUMBER_EXP: 3727 if (isdigit(cc) || cc == '+' || cc == '-') { 3728 *dd++ = cc; 3729 break; 3730 } 3731 3732 *dd = '\0'; 3733 dd = dest; /* reset string buffer */ 3734 if (found_key) { 3735 if (nelems > 1) { 3736 /* 3737 * ERROR: We expected an object, not 3738 * this number. 3739 */ 3740 return (NULL); 3741 } 3742 return (dest); 3743 } 3744 3745 cur--; 3746 state = DTRACE_JSON_COMMA; 3747 break; 3748 case DTRACE_JSON_VALUE: 3749 if (isspace(cc)) 3750 break; 3751 3752 if (cc == '{' || cc == '[') { 3753 if (nelems > 1 && found_key) { 3754 in_array = cc == '[' ? B_TRUE : B_FALSE; 3755 /* 3756 * If our element selector directs us 3757 * to descend into this nested object, 3758 * then move to the next selector 3759 * element in the list and restart the 3760 * state machine. 3761 */ 3762 while (*elem != '\0') 3763 elem++; 3764 elem++; /* skip the inter-element NUL */ 3765 nelems--; 3766 dd = dest; 3767 if (in_array) { 3768 state = DTRACE_JSON_VALUE; 3769 array_pos = 0; 3770 array_elem = dtrace_strtoll( 3771 elem, 10, size); 3772 found_key = array_elem == 0 ? 3773 B_TRUE : B_FALSE; 3774 } else { 3775 found_key = B_FALSE; 3776 state = DTRACE_JSON_OBJECT; 3777 } 3778 break; 3779 } 3780 3781 /* 3782 * Otherwise, we wish to either skip this 3783 * nested object or return it in full. 3784 */ 3785 if (cc == '[') 3786 brackets = 1; 3787 else 3788 braces = 1; 3789 *dd++ = cc; 3790 state = DTRACE_JSON_COLLECT_OBJECT; 3791 break; 3792 } 3793 3794 if (cc == '"') { 3795 state = DTRACE_JSON_STRING; 3796 break; 3797 } 3798 3799 if (islower(cc)) { 3800 /* 3801 * Here we deal with true, false and null. 3802 */ 3803 *dd++ = cc; 3804 state = DTRACE_JSON_IDENTIFIER; 3805 break; 3806 } 3807 3808 if (cc == '-' || isdigit(cc)) { 3809 *dd++ = cc; 3810 state = DTRACE_JSON_NUMBER; 3811 break; 3812 } 3813 3814 /* 3815 * ERROR: unexpected character at start of value. 3816 */ 3817 return (NULL); 3818 case DTRACE_JSON_COLLECT_OBJECT: 3819 if (cc == '\0') 3820 /* 3821 * ERROR: unexpected end of input. 3822 */ 3823 return (NULL); 3824 3825 *dd++ = cc; 3826 if (cc == '"') { 3827 collect_object = B_TRUE; 3828 state = DTRACE_JSON_STRING; 3829 break; 3830 } 3831 3832 if (cc == ']') { 3833 if (brackets-- == 0) { 3834 /* 3835 * ERROR: unbalanced brackets. 3836 */ 3837 return (NULL); 3838 } 3839 } else if (cc == '}') { 3840 if (braces-- == 0) { 3841 /* 3842 * ERROR: unbalanced braces. 3843 */ 3844 return (NULL); 3845 } 3846 } else if (cc == '{') { 3847 braces++; 3848 } else if (cc == '[') { 3849 brackets++; 3850 } 3851 3852 if (brackets == 0 && braces == 0) { 3853 if (found_key) { 3854 *dd = '\0'; 3855 return (dest); 3856 } 3857 dd = dest; /* reset string buffer */ 3858 state = DTRACE_JSON_COMMA; 3859 } 3860 break; 3861 } 3862 } 3863 return (NULL); 3864 } 3865 3866 /* 3867 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 3868 * Notice that we don't bother validating the proper number of arguments or 3869 * their types in the tuple stack. This isn't needed because all argument 3870 * interpretation is safe because of our load safety -- the worst that can 3871 * happen is that a bogus program can obtain bogus results. 3872 */ 3873 static void 3874 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 3875 dtrace_key_t *tupregs, int nargs, 3876 dtrace_mstate_t *mstate, dtrace_state_t *state) 3877 { 3878 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 3879 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 3880 dtrace_vstate_t *vstate = &state->dts_vstate; 3881 3882 union { 3883 mutex_impl_t mi; 3884 uint64_t mx; 3885 } m; 3886 3887 union { 3888 krwlock_t ri; 3889 uintptr_t rw; 3890 } r; 3891 3892 switch (subr) { 3893 case DIF_SUBR_RAND: 3894 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875; 3895 break; 3896 3897 case DIF_SUBR_MUTEX_OWNED: 3898 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3899 mstate, vstate)) { 3900 regs[rd] = NULL; 3901 break; 3902 } 3903 3904 m.mx = dtrace_load64(tupregs[0].dttk_value); 3905 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 3906 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 3907 else 3908 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 3909 break; 3910 3911 case DIF_SUBR_MUTEX_OWNER: 3912 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3913 mstate, vstate)) { 3914 regs[rd] = NULL; 3915 break; 3916 } 3917 3918 m.mx = dtrace_load64(tupregs[0].dttk_value); 3919 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 3920 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 3921 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 3922 else 3923 regs[rd] = 0; 3924 break; 3925 3926 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 3927 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3928 mstate, vstate)) { 3929 regs[rd] = NULL; 3930 break; 3931 } 3932 3933 m.mx = dtrace_load64(tupregs[0].dttk_value); 3934 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 3935 break; 3936 3937 case DIF_SUBR_MUTEX_TYPE_SPIN: 3938 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3939 mstate, vstate)) { 3940 regs[rd] = NULL; 3941 break; 3942 } 3943 3944 m.mx = dtrace_load64(tupregs[0].dttk_value); 3945 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 3946 break; 3947 3948 case DIF_SUBR_RW_READ_HELD: { 3949 uintptr_t tmp; 3950 3951 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 3952 mstate, vstate)) { 3953 regs[rd] = NULL; 3954 break; 3955 } 3956 3957 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3958 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 3959 break; 3960 } 3961 3962 case DIF_SUBR_RW_WRITE_HELD: 3963 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 3964 mstate, vstate)) { 3965 regs[rd] = NULL; 3966 break; 3967 } 3968 3969 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3970 regs[rd] = _RW_WRITE_HELD(&r.ri); 3971 break; 3972 3973 case DIF_SUBR_RW_ISWRITER: 3974 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 3975 mstate, vstate)) { 3976 regs[rd] = NULL; 3977 break; 3978 } 3979 3980 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3981 regs[rd] = _RW_ISWRITER(&r.ri); 3982 break; 3983 3984 case DIF_SUBR_BCOPY: { 3985 /* 3986 * We need to be sure that the destination is in the scratch 3987 * region -- no other region is allowed. 3988 */ 3989 uintptr_t src = tupregs[0].dttk_value; 3990 uintptr_t dest = tupregs[1].dttk_value; 3991 size_t size = tupregs[2].dttk_value; 3992 3993 if (!dtrace_inscratch(dest, size, mstate)) { 3994 *flags |= CPU_DTRACE_BADADDR; 3995 *illval = regs[rd]; 3996 break; 3997 } 3998 3999 if (!dtrace_canload(src, size, mstate, vstate)) { 4000 regs[rd] = NULL; 4001 break; 4002 } 4003 4004 dtrace_bcopy((void *)src, (void *)dest, size); 4005 break; 4006 } 4007 4008 case DIF_SUBR_ALLOCA: 4009 case DIF_SUBR_COPYIN: { 4010 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 4011 uint64_t size = 4012 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 4013 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 4014 4015 /* 4016 * This action doesn't require any credential checks since 4017 * probes will not activate in user contexts to which the 4018 * enabling user does not have permissions. 4019 */ 4020 4021 /* 4022 * Rounding up the user allocation size could have overflowed 4023 * a large, bogus allocation (like -1ULL) to 0. 4024 */ 4025 if (scratch_size < size || 4026 !DTRACE_INSCRATCH(mstate, scratch_size)) { 4027 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4028 regs[rd] = NULL; 4029 break; 4030 } 4031 4032 if (subr == DIF_SUBR_COPYIN) { 4033 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4034 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4035 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4036 } 4037 4038 mstate->dtms_scratch_ptr += scratch_size; 4039 regs[rd] = dest; 4040 break; 4041 } 4042 4043 case DIF_SUBR_COPYINTO: { 4044 uint64_t size = tupregs[1].dttk_value; 4045 uintptr_t dest = tupregs[2].dttk_value; 4046 4047 /* 4048 * This action doesn't require any credential checks since 4049 * probes will not activate in user contexts to which the 4050 * enabling user does not have permissions. 4051 */ 4052 if (!dtrace_inscratch(dest, size, mstate)) { 4053 *flags |= CPU_DTRACE_BADADDR; 4054 *illval = regs[rd]; 4055 break; 4056 } 4057 4058 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4059 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4060 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4061 break; 4062 } 4063 4064 case DIF_SUBR_COPYINSTR: { 4065 uintptr_t dest = mstate->dtms_scratch_ptr; 4066 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4067 4068 if (nargs > 1 && tupregs[1].dttk_value < size) 4069 size = tupregs[1].dttk_value + 1; 4070 4071 /* 4072 * This action doesn't require any credential checks since 4073 * probes will not activate in user contexts to which the 4074 * enabling user does not have permissions. 4075 */ 4076 if (!DTRACE_INSCRATCH(mstate, size)) { 4077 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4078 regs[rd] = NULL; 4079 break; 4080 } 4081 4082 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4083 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 4084 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4085 4086 ((char *)dest)[size - 1] = '\0'; 4087 mstate->dtms_scratch_ptr += size; 4088 regs[rd] = dest; 4089 break; 4090 } 4091 4092 case DIF_SUBR_MSGSIZE: 4093 case DIF_SUBR_MSGDSIZE: { 4094 uintptr_t baddr = tupregs[0].dttk_value, daddr; 4095 uintptr_t wptr, rptr; 4096 size_t count = 0; 4097 int cont = 0; 4098 4099 while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4100 4101 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 4102 vstate)) { 4103 regs[rd] = NULL; 4104 break; 4105 } 4106 4107 wptr = dtrace_loadptr(baddr + 4108 offsetof(mblk_t, b_wptr)); 4109 4110 rptr = dtrace_loadptr(baddr + 4111 offsetof(mblk_t, b_rptr)); 4112 4113 if (wptr < rptr) { 4114 *flags |= CPU_DTRACE_BADADDR; 4115 *illval = tupregs[0].dttk_value; 4116 break; 4117 } 4118 4119 daddr = dtrace_loadptr(baddr + 4120 offsetof(mblk_t, b_datap)); 4121 4122 baddr = dtrace_loadptr(baddr + 4123 offsetof(mblk_t, b_cont)); 4124 4125 /* 4126 * We want to prevent against denial-of-service here, 4127 * so we're only going to search the list for 4128 * dtrace_msgdsize_max mblks. 4129 */ 4130 if (cont++ > dtrace_msgdsize_max) { 4131 *flags |= CPU_DTRACE_ILLOP; 4132 break; 4133 } 4134 4135 if (subr == DIF_SUBR_MSGDSIZE) { 4136 if (dtrace_load8(daddr + 4137 offsetof(dblk_t, db_type)) != M_DATA) 4138 continue; 4139 } 4140 4141 count += wptr - rptr; 4142 } 4143 4144 if (!(*flags & CPU_DTRACE_FAULT)) 4145 regs[rd] = count; 4146 4147 break; 4148 } 4149 4150 case DIF_SUBR_PROGENYOF: { 4151 pid_t pid = tupregs[0].dttk_value; 4152 proc_t *p; 4153 int rval = 0; 4154 4155 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4156 4157 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 4158 if (p->p_pidp->pid_id == pid) { 4159 rval = 1; 4160 break; 4161 } 4162 } 4163 4164 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4165 4166 regs[rd] = rval; 4167 break; 4168 } 4169 4170 case DIF_SUBR_SPECULATION: 4171 regs[rd] = dtrace_speculation(state); 4172 break; 4173 4174 case DIF_SUBR_COPYOUT: { 4175 uintptr_t kaddr = tupregs[0].dttk_value; 4176 uintptr_t uaddr = tupregs[1].dttk_value; 4177 uint64_t size = tupregs[2].dttk_value; 4178 4179 if (!dtrace_destructive_disallow && 4180 dtrace_priv_proc_control(state, mstate) && 4181 !dtrace_istoxic(kaddr, size)) { 4182 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4183 dtrace_copyout(kaddr, uaddr, size, flags); 4184 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4185 } 4186 break; 4187 } 4188 4189 case DIF_SUBR_COPYOUTSTR: { 4190 uintptr_t kaddr = tupregs[0].dttk_value; 4191 uintptr_t uaddr = tupregs[1].dttk_value; 4192 uint64_t size = tupregs[2].dttk_value; 4193 4194 if (!dtrace_destructive_disallow && 4195 dtrace_priv_proc_control(state, mstate) && 4196 !dtrace_istoxic(kaddr, size)) { 4197 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4198 dtrace_copyoutstr(kaddr, uaddr, size, flags); 4199 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4200 } 4201 break; 4202 } 4203 4204 case DIF_SUBR_STRLEN: { 4205 size_t sz; 4206 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 4207 sz = dtrace_strlen((char *)addr, 4208 state->dts_options[DTRACEOPT_STRSIZE]); 4209 4210 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) { 4211 regs[rd] = NULL; 4212 break; 4213 } 4214 4215 regs[rd] = sz; 4216 4217 break; 4218 } 4219 4220 case DIF_SUBR_STRCHR: 4221 case DIF_SUBR_STRRCHR: { 4222 /* 4223 * We're going to iterate over the string looking for the 4224 * specified character. We will iterate until we have reached 4225 * the string length or we have found the character. If this 4226 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 4227 * of the specified character instead of the first. 4228 */ 4229 uintptr_t saddr = tupregs[0].dttk_value; 4230 uintptr_t addr = tupregs[0].dttk_value; 4231 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE]; 4232 char c, target = (char)tupregs[1].dttk_value; 4233 4234 for (regs[rd] = NULL; addr < limit; addr++) { 4235 if ((c = dtrace_load8(addr)) == target) { 4236 regs[rd] = addr; 4237 4238 if (subr == DIF_SUBR_STRCHR) 4239 break; 4240 } 4241 4242 if (c == '\0') 4243 break; 4244 } 4245 4246 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) { 4247 regs[rd] = NULL; 4248 break; 4249 } 4250 4251 break; 4252 } 4253 4254 case DIF_SUBR_STRSTR: 4255 case DIF_SUBR_INDEX: 4256 case DIF_SUBR_RINDEX: { 4257 /* 4258 * We're going to iterate over the string looking for the 4259 * specified string. We will iterate until we have reached 4260 * the string length or we have found the string. (Yes, this 4261 * is done in the most naive way possible -- but considering 4262 * that the string we're searching for is likely to be 4263 * relatively short, the complexity of Rabin-Karp or similar 4264 * hardly seems merited.) 4265 */ 4266 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 4267 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 4268 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4269 size_t len = dtrace_strlen(addr, size); 4270 size_t sublen = dtrace_strlen(substr, size); 4271 char *limit = addr + len, *orig = addr; 4272 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 4273 int inc = 1; 4274 4275 regs[rd] = notfound; 4276 4277 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 4278 regs[rd] = NULL; 4279 break; 4280 } 4281 4282 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 4283 vstate)) { 4284 regs[rd] = NULL; 4285 break; 4286 } 4287 4288 /* 4289 * strstr() and index()/rindex() have similar semantics if 4290 * both strings are the empty string: strstr() returns a 4291 * pointer to the (empty) string, and index() and rindex() 4292 * both return index 0 (regardless of any position argument). 4293 */ 4294 if (sublen == 0 && len == 0) { 4295 if (subr == DIF_SUBR_STRSTR) 4296 regs[rd] = (uintptr_t)addr; 4297 else 4298 regs[rd] = 0; 4299 break; 4300 } 4301 4302 if (subr != DIF_SUBR_STRSTR) { 4303 if (subr == DIF_SUBR_RINDEX) { 4304 limit = orig - 1; 4305 addr += len; 4306 inc = -1; 4307 } 4308 4309 /* 4310 * Both index() and rindex() take an optional position 4311 * argument that denotes the starting position. 4312 */ 4313 if (nargs == 3) { 4314 int64_t pos = (int64_t)tupregs[2].dttk_value; 4315 4316 /* 4317 * If the position argument to index() is 4318 * negative, Perl implicitly clamps it at 4319 * zero. This semantic is a little surprising 4320 * given the special meaning of negative 4321 * positions to similar Perl functions like 4322 * substr(), but it appears to reflect a 4323 * notion that index() can start from a 4324 * negative index and increment its way up to 4325 * the string. Given this notion, Perl's 4326 * rindex() is at least self-consistent in 4327 * that it implicitly clamps positions greater 4328 * than the string length to be the string 4329 * length. Where Perl completely loses 4330 * coherence, however, is when the specified 4331 * substring is the empty string (""). In 4332 * this case, even if the position is 4333 * negative, rindex() returns 0 -- and even if 4334 * the position is greater than the length, 4335 * index() returns the string length. These 4336 * semantics violate the notion that index() 4337 * should never return a value less than the 4338 * specified position and that rindex() should 4339 * never return a value greater than the 4340 * specified position. (One assumes that 4341 * these semantics are artifacts of Perl's 4342 * implementation and not the results of 4343 * deliberate design -- it beggars belief that 4344 * even Larry Wall could desire such oddness.) 4345 * While in the abstract one would wish for 4346 * consistent position semantics across 4347 * substr(), index() and rindex() -- or at the 4348 * very least self-consistent position 4349 * semantics for index() and rindex() -- we 4350 * instead opt to keep with the extant Perl 4351 * semantics, in all their broken glory. (Do 4352 * we have more desire to maintain Perl's 4353 * semantics than Perl does? Probably.) 4354 */ 4355 if (subr == DIF_SUBR_RINDEX) { 4356 if (pos < 0) { 4357 if (sublen == 0) 4358 regs[rd] = 0; 4359 break; 4360 } 4361 4362 if (pos > len) 4363 pos = len; 4364 } else { 4365 if (pos < 0) 4366 pos = 0; 4367 4368 if (pos >= len) { 4369 if (sublen == 0) 4370 regs[rd] = len; 4371 break; 4372 } 4373 } 4374 4375 addr = orig + pos; 4376 } 4377 } 4378 4379 for (regs[rd] = notfound; addr != limit; addr += inc) { 4380 if (dtrace_strncmp(addr, substr, sublen) == 0) { 4381 if (subr != DIF_SUBR_STRSTR) { 4382 /* 4383 * As D index() and rindex() are 4384 * modeled on Perl (and not on awk), 4385 * we return a zero-based (and not a 4386 * one-based) index. (For you Perl 4387 * weenies: no, we're not going to add 4388 * $[ -- and shouldn't you be at a con 4389 * or something?) 4390 */ 4391 regs[rd] = (uintptr_t)(addr - orig); 4392 break; 4393 } 4394 4395 ASSERT(subr == DIF_SUBR_STRSTR); 4396 regs[rd] = (uintptr_t)addr; 4397 break; 4398 } 4399 } 4400 4401 break; 4402 } 4403 4404 case DIF_SUBR_STRTOK: { 4405 uintptr_t addr = tupregs[0].dttk_value; 4406 uintptr_t tokaddr = tupregs[1].dttk_value; 4407 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4408 uintptr_t limit, toklimit = tokaddr + size; 4409 uint8_t c, tokmap[32]; /* 256 / 8 */ 4410 char *dest = (char *)mstate->dtms_scratch_ptr; 4411 int i; 4412 4413 /* 4414 * Check both the token buffer and (later) the input buffer, 4415 * since both could be non-scratch addresses. 4416 */ 4417 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) { 4418 regs[rd] = NULL; 4419 break; 4420 } 4421 4422 if (!DTRACE_INSCRATCH(mstate, size)) { 4423 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4424 regs[rd] = NULL; 4425 break; 4426 } 4427 4428 if (addr == NULL) { 4429 /* 4430 * If the address specified is NULL, we use our saved 4431 * strtok pointer from the mstate. Note that this 4432 * means that the saved strtok pointer is _only_ 4433 * valid within multiple enablings of the same probe -- 4434 * it behaves like an implicit clause-local variable. 4435 */ 4436 addr = mstate->dtms_strtok; 4437 } else { 4438 /* 4439 * If the user-specified address is non-NULL we must 4440 * access check it. This is the only time we have 4441 * a chance to do so, since this address may reside 4442 * in the string table of this clause-- future calls 4443 * (when we fetch addr from mstate->dtms_strtok) 4444 * would fail this access check. 4445 */ 4446 if (!dtrace_strcanload(addr, size, mstate, vstate)) { 4447 regs[rd] = NULL; 4448 break; 4449 } 4450 } 4451 4452 /* 4453 * First, zero the token map, and then process the token 4454 * string -- setting a bit in the map for every character 4455 * found in the token string. 4456 */ 4457 for (i = 0; i < sizeof (tokmap); i++) 4458 tokmap[i] = 0; 4459 4460 for (; tokaddr < toklimit; tokaddr++) { 4461 if ((c = dtrace_load8(tokaddr)) == '\0') 4462 break; 4463 4464 ASSERT((c >> 3) < sizeof (tokmap)); 4465 tokmap[c >> 3] |= (1 << (c & 0x7)); 4466 } 4467 4468 for (limit = addr + size; addr < limit; addr++) { 4469 /* 4470 * We're looking for a character that is _not_ contained 4471 * in the token string. 4472 */ 4473 if ((c = dtrace_load8(addr)) == '\0') 4474 break; 4475 4476 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 4477 break; 4478 } 4479 4480 if (c == '\0') { 4481 /* 4482 * We reached the end of the string without finding 4483 * any character that was not in the token string. 4484 * We return NULL in this case, and we set the saved 4485 * address to NULL as well. 4486 */ 4487 regs[rd] = NULL; 4488 mstate->dtms_strtok = NULL; 4489 break; 4490 } 4491 4492 /* 4493 * From here on, we're copying into the destination string. 4494 */ 4495 for (i = 0; addr < limit && i < size - 1; addr++) { 4496 if ((c = dtrace_load8(addr)) == '\0') 4497 break; 4498 4499 if (tokmap[c >> 3] & (1 << (c & 0x7))) 4500 break; 4501 4502 ASSERT(i < size); 4503 dest[i++] = c; 4504 } 4505 4506 ASSERT(i < size); 4507 dest[i] = '\0'; 4508 regs[rd] = (uintptr_t)dest; 4509 mstate->dtms_scratch_ptr += size; 4510 mstate->dtms_strtok = addr; 4511 break; 4512 } 4513 4514 case DIF_SUBR_SUBSTR: { 4515 uintptr_t s = tupregs[0].dttk_value; 4516 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4517 char *d = (char *)mstate->dtms_scratch_ptr; 4518 int64_t index = (int64_t)tupregs[1].dttk_value; 4519 int64_t remaining = (int64_t)tupregs[2].dttk_value; 4520 size_t len = dtrace_strlen((char *)s, size); 4521 int64_t i; 4522 4523 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 4524 regs[rd] = NULL; 4525 break; 4526 } 4527 4528 if (!DTRACE_INSCRATCH(mstate, size)) { 4529 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4530 regs[rd] = NULL; 4531 break; 4532 } 4533 4534 if (nargs <= 2) 4535 remaining = (int64_t)size; 4536 4537 if (index < 0) { 4538 index += len; 4539 4540 if (index < 0 && index + remaining > 0) { 4541 remaining += index; 4542 index = 0; 4543 } 4544 } 4545 4546 if (index >= len || index < 0) { 4547 remaining = 0; 4548 } else if (remaining < 0) { 4549 remaining += len - index; 4550 } else if (index + remaining > size) { 4551 remaining = size - index; 4552 } 4553 4554 for (i = 0; i < remaining; i++) { 4555 if ((d[i] = dtrace_load8(s + index + i)) == '\0') 4556 break; 4557 } 4558 4559 d[i] = '\0'; 4560 4561 mstate->dtms_scratch_ptr += size; 4562 regs[rd] = (uintptr_t)d; 4563 break; 4564 } 4565 4566 case DIF_SUBR_JSON: { 4567 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4568 uintptr_t json = tupregs[0].dttk_value; 4569 size_t jsonlen = dtrace_strlen((char *)json, size); 4570 uintptr_t elem = tupregs[1].dttk_value; 4571 size_t elemlen = dtrace_strlen((char *)elem, size); 4572 4573 char *dest = (char *)mstate->dtms_scratch_ptr; 4574 char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1; 4575 char *ee = elemlist; 4576 int nelems = 1; 4577 uintptr_t cur; 4578 4579 if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) || 4580 !dtrace_canload(elem, elemlen + 1, mstate, vstate)) { 4581 regs[rd] = NULL; 4582 break; 4583 } 4584 4585 if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) { 4586 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4587 regs[rd] = NULL; 4588 break; 4589 } 4590 4591 /* 4592 * Read the element selector and split it up into a packed list 4593 * of strings. 4594 */ 4595 for (cur = elem; cur < elem + elemlen; cur++) { 4596 char cc = dtrace_load8(cur); 4597 4598 if (cur == elem && cc == '[') { 4599 /* 4600 * If the first element selector key is 4601 * actually an array index then ignore the 4602 * bracket. 4603 */ 4604 continue; 4605 } 4606 4607 if (cc == ']') 4608 continue; 4609 4610 if (cc == '.' || cc == '[') { 4611 nelems++; 4612 cc = '\0'; 4613 } 4614 4615 *ee++ = cc; 4616 } 4617 *ee++ = '\0'; 4618 4619 if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist, 4620 nelems, dest)) != NULL) 4621 mstate->dtms_scratch_ptr += jsonlen + 1; 4622 break; 4623 } 4624 4625 case DIF_SUBR_TOUPPER: 4626 case DIF_SUBR_TOLOWER: { 4627 uintptr_t s = tupregs[0].dttk_value; 4628 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4629 char *dest = (char *)mstate->dtms_scratch_ptr, c; 4630 size_t len = dtrace_strlen((char *)s, size); 4631 char lower, upper, convert; 4632 int64_t i; 4633 4634 if (subr == DIF_SUBR_TOUPPER) { 4635 lower = 'a'; 4636 upper = 'z'; 4637 convert = 'A'; 4638 } else { 4639 lower = 'A'; 4640 upper = 'Z'; 4641 convert = 'a'; 4642 } 4643 4644 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 4645 regs[rd] = NULL; 4646 break; 4647 } 4648 4649 if (!DTRACE_INSCRATCH(mstate, size)) { 4650 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4651 regs[rd] = NULL; 4652 break; 4653 } 4654 4655 for (i = 0; i < size - 1; i++) { 4656 if ((c = dtrace_load8(s + i)) == '\0') 4657 break; 4658 4659 if (c >= lower && c <= upper) 4660 c = convert + (c - lower); 4661 4662 dest[i] = c; 4663 } 4664 4665 ASSERT(i < size); 4666 dest[i] = '\0'; 4667 regs[rd] = (uintptr_t)dest; 4668 mstate->dtms_scratch_ptr += size; 4669 break; 4670 } 4671 4672 case DIF_SUBR_GETMAJOR: 4673 #ifdef _LP64 4674 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 4675 #else 4676 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 4677 #endif 4678 break; 4679 4680 case DIF_SUBR_GETMINOR: 4681 #ifdef _LP64 4682 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 4683 #else 4684 regs[rd] = tupregs[0].dttk_value & MAXMIN; 4685 #endif 4686 break; 4687 4688 case DIF_SUBR_DDI_PATHNAME: { 4689 /* 4690 * This one is a galactic mess. We are going to roughly 4691 * emulate ddi_pathname(), but it's made more complicated 4692 * by the fact that we (a) want to include the minor name and 4693 * (b) must proceed iteratively instead of recursively. 4694 */ 4695 uintptr_t dest = mstate->dtms_scratch_ptr; 4696 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4697 char *start = (char *)dest, *end = start + size - 1; 4698 uintptr_t daddr = tupregs[0].dttk_value; 4699 int64_t minor = (int64_t)tupregs[1].dttk_value; 4700 char *s; 4701 int i, len, depth = 0; 4702 4703 /* 4704 * Due to all the pointer jumping we do and context we must 4705 * rely upon, we just mandate that the user must have kernel 4706 * read privileges to use this routine. 4707 */ 4708 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 4709 *flags |= CPU_DTRACE_KPRIV; 4710 *illval = daddr; 4711 regs[rd] = NULL; 4712 } 4713 4714 if (!DTRACE_INSCRATCH(mstate, size)) { 4715 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4716 regs[rd] = NULL; 4717 break; 4718 } 4719 4720 *end = '\0'; 4721 4722 /* 4723 * We want to have a name for the minor. In order to do this, 4724 * we need to walk the minor list from the devinfo. We want 4725 * to be sure that we don't infinitely walk a circular list, 4726 * so we check for circularity by sending a scout pointer 4727 * ahead two elements for every element that we iterate over; 4728 * if the list is circular, these will ultimately point to the 4729 * same element. You may recognize this little trick as the 4730 * answer to a stupid interview question -- one that always 4731 * seems to be asked by those who had to have it laboriously 4732 * explained to them, and who can't even concisely describe 4733 * the conditions under which one would be forced to resort to 4734 * this technique. Needless to say, those conditions are 4735 * found here -- and probably only here. Is this the only use 4736 * of this infamous trick in shipping, production code? If it 4737 * isn't, it probably should be... 4738 */ 4739 if (minor != -1) { 4740 uintptr_t maddr = dtrace_loadptr(daddr + 4741 offsetof(struct dev_info, devi_minor)); 4742 4743 uintptr_t next = offsetof(struct ddi_minor_data, next); 4744 uintptr_t name = offsetof(struct ddi_minor_data, 4745 d_minor) + offsetof(struct ddi_minor, name); 4746 uintptr_t dev = offsetof(struct ddi_minor_data, 4747 d_minor) + offsetof(struct ddi_minor, dev); 4748 uintptr_t scout; 4749 4750 if (maddr != NULL) 4751 scout = dtrace_loadptr(maddr + next); 4752 4753 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4754 uint64_t m; 4755 #ifdef _LP64 4756 m = dtrace_load64(maddr + dev) & MAXMIN64; 4757 #else 4758 m = dtrace_load32(maddr + dev) & MAXMIN; 4759 #endif 4760 if (m != minor) { 4761 maddr = dtrace_loadptr(maddr + next); 4762 4763 if (scout == NULL) 4764 continue; 4765 4766 scout = dtrace_loadptr(scout + next); 4767 4768 if (scout == NULL) 4769 continue; 4770 4771 scout = dtrace_loadptr(scout + next); 4772 4773 if (scout == NULL) 4774 continue; 4775 4776 if (scout == maddr) { 4777 *flags |= CPU_DTRACE_ILLOP; 4778 break; 4779 } 4780 4781 continue; 4782 } 4783 4784 /* 4785 * We have the minor data. Now we need to 4786 * copy the minor's name into the end of the 4787 * pathname. 4788 */ 4789 s = (char *)dtrace_loadptr(maddr + name); 4790 len = dtrace_strlen(s, size); 4791 4792 if (*flags & CPU_DTRACE_FAULT) 4793 break; 4794 4795 if (len != 0) { 4796 if ((end -= (len + 1)) < start) 4797 break; 4798 4799 *end = ':'; 4800 } 4801 4802 for (i = 1; i <= len; i++) 4803 end[i] = dtrace_load8((uintptr_t)s++); 4804 break; 4805 } 4806 } 4807 4808 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4809 ddi_node_state_t devi_state; 4810 4811 devi_state = dtrace_load32(daddr + 4812 offsetof(struct dev_info, devi_node_state)); 4813 4814 if (*flags & CPU_DTRACE_FAULT) 4815 break; 4816 4817 if (devi_state >= DS_INITIALIZED) { 4818 s = (char *)dtrace_loadptr(daddr + 4819 offsetof(struct dev_info, devi_addr)); 4820 len = dtrace_strlen(s, size); 4821 4822 if (*flags & CPU_DTRACE_FAULT) 4823 break; 4824 4825 if (len != 0) { 4826 if ((end -= (len + 1)) < start) 4827 break; 4828 4829 *end = '@'; 4830 } 4831 4832 for (i = 1; i <= len; i++) 4833 end[i] = dtrace_load8((uintptr_t)s++); 4834 } 4835 4836 /* 4837 * Now for the node name... 4838 */ 4839 s = (char *)dtrace_loadptr(daddr + 4840 offsetof(struct dev_info, devi_node_name)); 4841 4842 daddr = dtrace_loadptr(daddr + 4843 offsetof(struct dev_info, devi_parent)); 4844 4845 /* 4846 * If our parent is NULL (that is, if we're the root 4847 * node), we're going to use the special path 4848 * "devices". 4849 */ 4850 if (daddr == NULL) 4851 s = "devices"; 4852 4853 len = dtrace_strlen(s, size); 4854 if (*flags & CPU_DTRACE_FAULT) 4855 break; 4856 4857 if ((end -= (len + 1)) < start) 4858 break; 4859 4860 for (i = 1; i <= len; i++) 4861 end[i] = dtrace_load8((uintptr_t)s++); 4862 *end = '/'; 4863 4864 if (depth++ > dtrace_devdepth_max) { 4865 *flags |= CPU_DTRACE_ILLOP; 4866 break; 4867 } 4868 } 4869 4870 if (end < start) 4871 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4872 4873 if (daddr == NULL) { 4874 regs[rd] = (uintptr_t)end; 4875 mstate->dtms_scratch_ptr += size; 4876 } 4877 4878 break; 4879 } 4880 4881 case DIF_SUBR_STRJOIN: { 4882 char *d = (char *)mstate->dtms_scratch_ptr; 4883 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4884 uintptr_t s1 = tupregs[0].dttk_value; 4885 uintptr_t s2 = tupregs[1].dttk_value; 4886 int i = 0; 4887 4888 if (!dtrace_strcanload(s1, size, mstate, vstate) || 4889 !dtrace_strcanload(s2, size, mstate, vstate)) { 4890 regs[rd] = NULL; 4891 break; 4892 } 4893 4894 if (!DTRACE_INSCRATCH(mstate, size)) { 4895 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4896 regs[rd] = NULL; 4897 break; 4898 } 4899 4900 for (;;) { 4901 if (i >= size) { 4902 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4903 regs[rd] = NULL; 4904 break; 4905 } 4906 4907 if ((d[i++] = dtrace_load8(s1++)) == '\0') { 4908 i--; 4909 break; 4910 } 4911 } 4912 4913 for (;;) { 4914 if (i >= size) { 4915 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4916 regs[rd] = NULL; 4917 break; 4918 } 4919 4920 if ((d[i++] = dtrace_load8(s2++)) == '\0') 4921 break; 4922 } 4923 4924 if (i < size) { 4925 mstate->dtms_scratch_ptr += i; 4926 regs[rd] = (uintptr_t)d; 4927 } 4928 4929 break; 4930 } 4931 4932 case DIF_SUBR_STRTOLL: { 4933 uintptr_t s = tupregs[0].dttk_value; 4934 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4935 int base = 10; 4936 4937 if (nargs > 1) { 4938 if ((base = tupregs[1].dttk_value) <= 1 || 4939 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 4940 *flags |= CPU_DTRACE_ILLOP; 4941 break; 4942 } 4943 } 4944 4945 if (!dtrace_strcanload(s, size, mstate, vstate)) { 4946 regs[rd] = INT64_MIN; 4947 break; 4948 } 4949 4950 regs[rd] = dtrace_strtoll((char *)s, base, size); 4951 break; 4952 } 4953 4954 case DIF_SUBR_LLTOSTR: { 4955 int64_t i = (int64_t)tupregs[0].dttk_value; 4956 uint64_t val, digit; 4957 uint64_t size = 65; /* enough room for 2^64 in binary */ 4958 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 4959 int base = 10; 4960 4961 if (nargs > 1) { 4962 if ((base = tupregs[1].dttk_value) <= 1 || 4963 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 4964 *flags |= CPU_DTRACE_ILLOP; 4965 break; 4966 } 4967 } 4968 4969 val = (base == 10 && i < 0) ? i * -1 : i; 4970 4971 if (!DTRACE_INSCRATCH(mstate, size)) { 4972 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4973 regs[rd] = NULL; 4974 break; 4975 } 4976 4977 for (*end-- = '\0'; val; val /= base) { 4978 if ((digit = val % base) <= '9' - '0') { 4979 *end-- = '0' + digit; 4980 } else { 4981 *end-- = 'a' + (digit - ('9' - '0') - 1); 4982 } 4983 } 4984 4985 if (i == 0 && base == 16) 4986 *end-- = '0'; 4987 4988 if (base == 16) 4989 *end-- = 'x'; 4990 4991 if (i == 0 || base == 8 || base == 16) 4992 *end-- = '0'; 4993 4994 if (i < 0 && base == 10) 4995 *end-- = '-'; 4996 4997 regs[rd] = (uintptr_t)end + 1; 4998 mstate->dtms_scratch_ptr += size; 4999 break; 5000 } 5001 5002 case DIF_SUBR_HTONS: 5003 case DIF_SUBR_NTOHS: 5004 #ifdef _BIG_ENDIAN 5005 regs[rd] = (uint16_t)tupregs[0].dttk_value; 5006 #else 5007 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 5008 #endif 5009 break; 5010 5011 5012 case DIF_SUBR_HTONL: 5013 case DIF_SUBR_NTOHL: 5014 #ifdef _BIG_ENDIAN 5015 regs[rd] = (uint32_t)tupregs[0].dttk_value; 5016 #else 5017 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 5018 #endif 5019 break; 5020 5021 5022 case DIF_SUBR_HTONLL: 5023 case DIF_SUBR_NTOHLL: 5024 #ifdef _BIG_ENDIAN 5025 regs[rd] = (uint64_t)tupregs[0].dttk_value; 5026 #else 5027 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 5028 #endif 5029 break; 5030 5031 5032 case DIF_SUBR_DIRNAME: 5033 case DIF_SUBR_BASENAME: { 5034 char *dest = (char *)mstate->dtms_scratch_ptr; 5035 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5036 uintptr_t src = tupregs[0].dttk_value; 5037 int i, j, len = dtrace_strlen((char *)src, size); 5038 int lastbase = -1, firstbase = -1, lastdir = -1; 5039 int start, end; 5040 5041 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 5042 regs[rd] = NULL; 5043 break; 5044 } 5045 5046 if (!DTRACE_INSCRATCH(mstate, size)) { 5047 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5048 regs[rd] = NULL; 5049 break; 5050 } 5051 5052 /* 5053 * The basename and dirname for a zero-length string is 5054 * defined to be "." 5055 */ 5056 if (len == 0) { 5057 len = 1; 5058 src = (uintptr_t)"."; 5059 } 5060 5061 /* 5062 * Start from the back of the string, moving back toward the 5063 * front until we see a character that isn't a slash. That 5064 * character is the last character in the basename. 5065 */ 5066 for (i = len - 1; i >= 0; i--) { 5067 if (dtrace_load8(src + i) != '/') 5068 break; 5069 } 5070 5071 if (i >= 0) 5072 lastbase = i; 5073 5074 /* 5075 * Starting from the last character in the basename, move 5076 * towards the front until we find a slash. The character 5077 * that we processed immediately before that is the first 5078 * character in the basename. 5079 */ 5080 for (; i >= 0; i--) { 5081 if (dtrace_load8(src + i) == '/') 5082 break; 5083 } 5084 5085 if (i >= 0) 5086 firstbase = i + 1; 5087 5088 /* 5089 * Now keep going until we find a non-slash character. That 5090 * character is the last character in the dirname. 5091 */ 5092 for (; i >= 0; i--) { 5093 if (dtrace_load8(src + i) != '/') 5094 break; 5095 } 5096 5097 if (i >= 0) 5098 lastdir = i; 5099 5100 ASSERT(!(lastbase == -1 && firstbase != -1)); 5101 ASSERT(!(firstbase == -1 && lastdir != -1)); 5102 5103 if (lastbase == -1) { 5104 /* 5105 * We didn't find a non-slash character. We know that 5106 * the length is non-zero, so the whole string must be 5107 * slashes. In either the dirname or the basename 5108 * case, we return '/'. 5109 */ 5110 ASSERT(firstbase == -1); 5111 firstbase = lastbase = lastdir = 0; 5112 } 5113 5114 if (firstbase == -1) { 5115 /* 5116 * The entire string consists only of a basename 5117 * component. If we're looking for dirname, we need 5118 * to change our string to be just "."; if we're 5119 * looking for a basename, we'll just set the first 5120 * character of the basename to be 0. 5121 */ 5122 if (subr == DIF_SUBR_DIRNAME) { 5123 ASSERT(lastdir == -1); 5124 src = (uintptr_t)"."; 5125 lastdir = 0; 5126 } else { 5127 firstbase = 0; 5128 } 5129 } 5130 5131 if (subr == DIF_SUBR_DIRNAME) { 5132 if (lastdir == -1) { 5133 /* 5134 * We know that we have a slash in the name -- 5135 * or lastdir would be set to 0, above. And 5136 * because lastdir is -1, we know that this 5137 * slash must be the first character. (That 5138 * is, the full string must be of the form 5139 * "/basename".) In this case, the last 5140 * character of the directory name is 0. 5141 */ 5142 lastdir = 0; 5143 } 5144 5145 start = 0; 5146 end = lastdir; 5147 } else { 5148 ASSERT(subr == DIF_SUBR_BASENAME); 5149 ASSERT(firstbase != -1 && lastbase != -1); 5150 start = firstbase; 5151 end = lastbase; 5152 } 5153 5154 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 5155 dest[j] = dtrace_load8(src + i); 5156 5157 dest[j] = '\0'; 5158 regs[rd] = (uintptr_t)dest; 5159 mstate->dtms_scratch_ptr += size; 5160 break; 5161 } 5162 5163 case DIF_SUBR_GETF: { 5164 uintptr_t fd = tupregs[0].dttk_value; 5165 uf_info_t *finfo = &curthread->t_procp->p_user.u_finfo; 5166 file_t *fp; 5167 5168 if (!dtrace_priv_proc(state, mstate)) { 5169 regs[rd] = NULL; 5170 break; 5171 } 5172 5173 /* 5174 * This is safe because fi_nfiles only increases, and the 5175 * fi_list array is not freed when the array size doubles. 5176 * (See the comment in flist_grow() for details on the 5177 * management of the u_finfo structure.) 5178 */ 5179 fp = fd < finfo->fi_nfiles ? finfo->fi_list[fd].uf_file : NULL; 5180 5181 mstate->dtms_getf = fp; 5182 regs[rd] = (uintptr_t)fp; 5183 break; 5184 } 5185 5186 case DIF_SUBR_CLEANPATH: { 5187 char *dest = (char *)mstate->dtms_scratch_ptr, c; 5188 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5189 uintptr_t src = tupregs[0].dttk_value; 5190 int i = 0, j = 0; 5191 zone_t *z; 5192 5193 if (!dtrace_strcanload(src, size, mstate, vstate)) { 5194 regs[rd] = NULL; 5195 break; 5196 } 5197 5198 if (!DTRACE_INSCRATCH(mstate, size)) { 5199 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5200 regs[rd] = NULL; 5201 break; 5202 } 5203 5204 /* 5205 * Move forward, loading each character. 5206 */ 5207 do { 5208 c = dtrace_load8(src + i++); 5209 next: 5210 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 5211 break; 5212 5213 if (c != '/') { 5214 dest[j++] = c; 5215 continue; 5216 } 5217 5218 c = dtrace_load8(src + i++); 5219 5220 if (c == '/') { 5221 /* 5222 * We have two slashes -- we can just advance 5223 * to the next character. 5224 */ 5225 goto next; 5226 } 5227 5228 if (c != '.') { 5229 /* 5230 * This is not "." and it's not ".." -- we can 5231 * just store the "/" and this character and 5232 * drive on. 5233 */ 5234 dest[j++] = '/'; 5235 dest[j++] = c; 5236 continue; 5237 } 5238 5239 c = dtrace_load8(src + i++); 5240 5241 if (c == '/') { 5242 /* 5243 * This is a "/./" component. We're not going 5244 * to store anything in the destination buffer; 5245 * we're just going to go to the next component. 5246 */ 5247 goto next; 5248 } 5249 5250 if (c != '.') { 5251 /* 5252 * This is not ".." -- we can just store the 5253 * "/." and this character and continue 5254 * processing. 5255 */ 5256 dest[j++] = '/'; 5257 dest[j++] = '.'; 5258 dest[j++] = c; 5259 continue; 5260 } 5261 5262 c = dtrace_load8(src + i++); 5263 5264 if (c != '/' && c != '\0') { 5265 /* 5266 * This is not ".." -- it's "..[mumble]". 5267 * We'll store the "/.." and this character 5268 * and continue processing. 5269 */ 5270 dest[j++] = '/'; 5271 dest[j++] = '.'; 5272 dest[j++] = '.'; 5273 dest[j++] = c; 5274 continue; 5275 } 5276 5277 /* 5278 * This is "/../" or "/..\0". We need to back up 5279 * our destination pointer until we find a "/". 5280 */ 5281 i--; 5282 while (j != 0 && dest[--j] != '/') 5283 continue; 5284 5285 if (c == '\0') 5286 dest[++j] = '/'; 5287 } while (c != '\0'); 5288 5289 dest[j] = '\0'; 5290 5291 if (mstate->dtms_getf != NULL && 5292 !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) && 5293 (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) { 5294 /* 5295 * If we've done a getf() as a part of this ECB and we 5296 * don't have kernel access (and we're not in the global 5297 * zone), check if the path we cleaned up begins with 5298 * the zone's root path, and trim it off if so. Note 5299 * that this is an output cleanliness issue, not a 5300 * security issue: knowing one's zone root path does 5301 * not enable privilege escalation. 5302 */ 5303 if (strstr(dest, z->zone_rootpath) == dest) 5304 dest += strlen(z->zone_rootpath) - 1; 5305 } 5306 5307 regs[rd] = (uintptr_t)dest; 5308 mstate->dtms_scratch_ptr += size; 5309 break; 5310 } 5311 5312 case DIF_SUBR_INET_NTOA: 5313 case DIF_SUBR_INET_NTOA6: 5314 case DIF_SUBR_INET_NTOP: { 5315 size_t size; 5316 int af, argi, i; 5317 char *base, *end; 5318 5319 if (subr == DIF_SUBR_INET_NTOP) { 5320 af = (int)tupregs[0].dttk_value; 5321 argi = 1; 5322 } else { 5323 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 5324 argi = 0; 5325 } 5326 5327 if (af == AF_INET) { 5328 ipaddr_t ip4; 5329 uint8_t *ptr8, val; 5330 5331 /* 5332 * Safely load the IPv4 address. 5333 */ 5334 ip4 = dtrace_load32(tupregs[argi].dttk_value); 5335 5336 /* 5337 * Check an IPv4 string will fit in scratch. 5338 */ 5339 size = INET_ADDRSTRLEN; 5340 if (!DTRACE_INSCRATCH(mstate, size)) { 5341 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5342 regs[rd] = NULL; 5343 break; 5344 } 5345 base = (char *)mstate->dtms_scratch_ptr; 5346 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5347 5348 /* 5349 * Stringify as a dotted decimal quad. 5350 */ 5351 *end-- = '\0'; 5352 ptr8 = (uint8_t *)&ip4; 5353 for (i = 3; i >= 0; i--) { 5354 val = ptr8[i]; 5355 5356 if (val == 0) { 5357 *end-- = '0'; 5358 } else { 5359 for (; val; val /= 10) { 5360 *end-- = '0' + (val % 10); 5361 } 5362 } 5363 5364 if (i > 0) 5365 *end-- = '.'; 5366 } 5367 ASSERT(end + 1 >= base); 5368 5369 } else if (af == AF_INET6) { 5370 struct in6_addr ip6; 5371 int firstzero, tryzero, numzero, v6end; 5372 uint16_t val; 5373 const char digits[] = "0123456789abcdef"; 5374 5375 /* 5376 * Stringify using RFC 1884 convention 2 - 16 bit 5377 * hexadecimal values with a zero-run compression. 5378 * Lower case hexadecimal digits are used. 5379 * eg, fe80::214:4fff:fe0b:76c8. 5380 * The IPv4 embedded form is returned for inet_ntop, 5381 * just the IPv4 string is returned for inet_ntoa6. 5382 */ 5383 5384 /* 5385 * Safely load the IPv6 address. 5386 */ 5387 dtrace_bcopy( 5388 (void *)(uintptr_t)tupregs[argi].dttk_value, 5389 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 5390 5391 /* 5392 * Check an IPv6 string will fit in scratch. 5393 */ 5394 size = INET6_ADDRSTRLEN; 5395 if (!DTRACE_INSCRATCH(mstate, size)) { 5396 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5397 regs[rd] = NULL; 5398 break; 5399 } 5400 base = (char *)mstate->dtms_scratch_ptr; 5401 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5402 *end-- = '\0'; 5403 5404 /* 5405 * Find the longest run of 16 bit zero values 5406 * for the single allowed zero compression - "::". 5407 */ 5408 firstzero = -1; 5409 tryzero = -1; 5410 numzero = 1; 5411 for (i = 0; i < sizeof (struct in6_addr); i++) { 5412 if (ip6._S6_un._S6_u8[i] == 0 && 5413 tryzero == -1 && i % 2 == 0) { 5414 tryzero = i; 5415 continue; 5416 } 5417 5418 if (tryzero != -1 && 5419 (ip6._S6_un._S6_u8[i] != 0 || 5420 i == sizeof (struct in6_addr) - 1)) { 5421 5422 if (i - tryzero <= numzero) { 5423 tryzero = -1; 5424 continue; 5425 } 5426 5427 firstzero = tryzero; 5428 numzero = i - i % 2 - tryzero; 5429 tryzero = -1; 5430 5431 if (ip6._S6_un._S6_u8[i] == 0 && 5432 i == sizeof (struct in6_addr) - 1) 5433 numzero += 2; 5434 } 5435 } 5436 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 5437 5438 /* 5439 * Check for an IPv4 embedded address. 5440 */ 5441 v6end = sizeof (struct in6_addr) - 2; 5442 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 5443 IN6_IS_ADDR_V4COMPAT(&ip6)) { 5444 for (i = sizeof (struct in6_addr) - 1; 5445 i >= DTRACE_V4MAPPED_OFFSET; i--) { 5446 ASSERT(end >= base); 5447 5448 val = ip6._S6_un._S6_u8[i]; 5449 5450 if (val == 0) { 5451 *end-- = '0'; 5452 } else { 5453 for (; val; val /= 10) { 5454 *end-- = '0' + val % 10; 5455 } 5456 } 5457 5458 if (i > DTRACE_V4MAPPED_OFFSET) 5459 *end-- = '.'; 5460 } 5461 5462 if (subr == DIF_SUBR_INET_NTOA6) 5463 goto inetout; 5464 5465 /* 5466 * Set v6end to skip the IPv4 address that 5467 * we have already stringified. 5468 */ 5469 v6end = 10; 5470 } 5471 5472 /* 5473 * Build the IPv6 string by working through the 5474 * address in reverse. 5475 */ 5476 for (i = v6end; i >= 0; i -= 2) { 5477 ASSERT(end >= base); 5478 5479 if (i == firstzero + numzero - 2) { 5480 *end-- = ':'; 5481 *end-- = ':'; 5482 i -= numzero - 2; 5483 continue; 5484 } 5485 5486 if (i < 14 && i != firstzero - 2) 5487 *end-- = ':'; 5488 5489 val = (ip6._S6_un._S6_u8[i] << 8) + 5490 ip6._S6_un._S6_u8[i + 1]; 5491 5492 if (val == 0) { 5493 *end-- = '0'; 5494 } else { 5495 for (; val; val /= 16) { 5496 *end-- = digits[val % 16]; 5497 } 5498 } 5499 } 5500 ASSERT(end + 1 >= base); 5501 5502 } else { 5503 /* 5504 * The user didn't use AH_INET or AH_INET6. 5505 */ 5506 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 5507 regs[rd] = NULL; 5508 break; 5509 } 5510 5511 inetout: regs[rd] = (uintptr_t)end + 1; 5512 mstate->dtms_scratch_ptr += size; 5513 break; 5514 } 5515 5516 } 5517 } 5518 5519 /* 5520 * Emulate the execution of DTrace IR instructions specified by the given 5521 * DIF object. This function is deliberately void of assertions as all of 5522 * the necessary checks are handled by a call to dtrace_difo_validate(). 5523 */ 5524 static uint64_t 5525 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 5526 dtrace_vstate_t *vstate, dtrace_state_t *state) 5527 { 5528 const dif_instr_t *text = difo->dtdo_buf; 5529 const uint_t textlen = difo->dtdo_len; 5530 const char *strtab = difo->dtdo_strtab; 5531 const uint64_t *inttab = difo->dtdo_inttab; 5532 5533 uint64_t rval = 0; 5534 dtrace_statvar_t *svar; 5535 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 5536 dtrace_difv_t *v; 5537 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 5538 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 5539 5540 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 5541 uint64_t regs[DIF_DIR_NREGS]; 5542 uint64_t *tmp; 5543 5544 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 5545 int64_t cc_r; 5546 uint_t pc = 0, id, opc; 5547 uint8_t ttop = 0; 5548 dif_instr_t instr; 5549 uint_t r1, r2, rd; 5550 5551 /* 5552 * We stash the current DIF object into the machine state: we need it 5553 * for subsequent access checking. 5554 */ 5555 mstate->dtms_difo = difo; 5556 5557 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 5558 5559 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 5560 opc = pc; 5561 5562 instr = text[pc++]; 5563 r1 = DIF_INSTR_R1(instr); 5564 r2 = DIF_INSTR_R2(instr); 5565 rd = DIF_INSTR_RD(instr); 5566 5567 switch (DIF_INSTR_OP(instr)) { 5568 case DIF_OP_OR: 5569 regs[rd] = regs[r1] | regs[r2]; 5570 break; 5571 case DIF_OP_XOR: 5572 regs[rd] = regs[r1] ^ regs[r2]; 5573 break; 5574 case DIF_OP_AND: 5575 regs[rd] = regs[r1] & regs[r2]; 5576 break; 5577 case DIF_OP_SLL: 5578 regs[rd] = regs[r1] << regs[r2]; 5579 break; 5580 case DIF_OP_SRL: 5581 regs[rd] = regs[r1] >> regs[r2]; 5582 break; 5583 case DIF_OP_SUB: 5584 regs[rd] = regs[r1] - regs[r2]; 5585 break; 5586 case DIF_OP_ADD: 5587 regs[rd] = regs[r1] + regs[r2]; 5588 break; 5589 case DIF_OP_MUL: 5590 regs[rd] = regs[r1] * regs[r2]; 5591 break; 5592 case DIF_OP_SDIV: 5593 if (regs[r2] == 0) { 5594 regs[rd] = 0; 5595 *flags |= CPU_DTRACE_DIVZERO; 5596 } else { 5597 regs[rd] = (int64_t)regs[r1] / 5598 (int64_t)regs[r2]; 5599 } 5600 break; 5601 5602 case DIF_OP_UDIV: 5603 if (regs[r2] == 0) { 5604 regs[rd] = 0; 5605 *flags |= CPU_DTRACE_DIVZERO; 5606 } else { 5607 regs[rd] = regs[r1] / regs[r2]; 5608 } 5609 break; 5610 5611 case DIF_OP_SREM: 5612 if (regs[r2] == 0) { 5613 regs[rd] = 0; 5614 *flags |= CPU_DTRACE_DIVZERO; 5615 } else { 5616 regs[rd] = (int64_t)regs[r1] % 5617 (int64_t)regs[r2]; 5618 } 5619 break; 5620 5621 case DIF_OP_UREM: 5622 if (regs[r2] == 0) { 5623 regs[rd] = 0; 5624 *flags |= CPU_DTRACE_DIVZERO; 5625 } else { 5626 regs[rd] = regs[r1] % regs[r2]; 5627 } 5628 break; 5629 5630 case DIF_OP_NOT: 5631 regs[rd] = ~regs[r1]; 5632 break; 5633 case DIF_OP_MOV: 5634 regs[rd] = regs[r1]; 5635 break; 5636 case DIF_OP_CMP: 5637 cc_r = regs[r1] - regs[r2]; 5638 cc_n = cc_r < 0; 5639 cc_z = cc_r == 0; 5640 cc_v = 0; 5641 cc_c = regs[r1] < regs[r2]; 5642 break; 5643 case DIF_OP_TST: 5644 cc_n = cc_v = cc_c = 0; 5645 cc_z = regs[r1] == 0; 5646 break; 5647 case DIF_OP_BA: 5648 pc = DIF_INSTR_LABEL(instr); 5649 break; 5650 case DIF_OP_BE: 5651 if (cc_z) 5652 pc = DIF_INSTR_LABEL(instr); 5653 break; 5654 case DIF_OP_BNE: 5655 if (cc_z == 0) 5656 pc = DIF_INSTR_LABEL(instr); 5657 break; 5658 case DIF_OP_BG: 5659 if ((cc_z | (cc_n ^ cc_v)) == 0) 5660 pc = DIF_INSTR_LABEL(instr); 5661 break; 5662 case DIF_OP_BGU: 5663 if ((cc_c | cc_z) == 0) 5664 pc = DIF_INSTR_LABEL(instr); 5665 break; 5666 case DIF_OP_BGE: 5667 if ((cc_n ^ cc_v) == 0) 5668 pc = DIF_INSTR_LABEL(instr); 5669 break; 5670 case DIF_OP_BGEU: 5671 if (cc_c == 0) 5672 pc = DIF_INSTR_LABEL(instr); 5673 break; 5674 case DIF_OP_BL: 5675 if (cc_n ^ cc_v) 5676 pc = DIF_INSTR_LABEL(instr); 5677 break; 5678 case DIF_OP_BLU: 5679 if (cc_c) 5680 pc = DIF_INSTR_LABEL(instr); 5681 break; 5682 case DIF_OP_BLE: 5683 if (cc_z | (cc_n ^ cc_v)) 5684 pc = DIF_INSTR_LABEL(instr); 5685 break; 5686 case DIF_OP_BLEU: 5687 if (cc_c | cc_z) 5688 pc = DIF_INSTR_LABEL(instr); 5689 break; 5690 case DIF_OP_RLDSB: 5691 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 5692 break; 5693 /*FALLTHROUGH*/ 5694 case DIF_OP_LDSB: 5695 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 5696 break; 5697 case DIF_OP_RLDSH: 5698 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 5699 break; 5700 /*FALLTHROUGH*/ 5701 case DIF_OP_LDSH: 5702 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 5703 break; 5704 case DIF_OP_RLDSW: 5705 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 5706 break; 5707 /*FALLTHROUGH*/ 5708 case DIF_OP_LDSW: 5709 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 5710 break; 5711 case DIF_OP_RLDUB: 5712 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 5713 break; 5714 /*FALLTHROUGH*/ 5715 case DIF_OP_LDUB: 5716 regs[rd] = dtrace_load8(regs[r1]); 5717 break; 5718 case DIF_OP_RLDUH: 5719 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 5720 break; 5721 /*FALLTHROUGH*/ 5722 case DIF_OP_LDUH: 5723 regs[rd] = dtrace_load16(regs[r1]); 5724 break; 5725 case DIF_OP_RLDUW: 5726 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 5727 break; 5728 /*FALLTHROUGH*/ 5729 case DIF_OP_LDUW: 5730 regs[rd] = dtrace_load32(regs[r1]); 5731 break; 5732 case DIF_OP_RLDX: 5733 if (!dtrace_canload(regs[r1], 8, mstate, vstate)) 5734 break; 5735 /*FALLTHROUGH*/ 5736 case DIF_OP_LDX: 5737 regs[rd] = dtrace_load64(regs[r1]); 5738 break; 5739 case DIF_OP_ULDSB: 5740 regs[rd] = (int8_t) 5741 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 5742 break; 5743 case DIF_OP_ULDSH: 5744 regs[rd] = (int16_t) 5745 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 5746 break; 5747 case DIF_OP_ULDSW: 5748 regs[rd] = (int32_t) 5749 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 5750 break; 5751 case DIF_OP_ULDUB: 5752 regs[rd] = 5753 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 5754 break; 5755 case DIF_OP_ULDUH: 5756 regs[rd] = 5757 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 5758 break; 5759 case DIF_OP_ULDUW: 5760 regs[rd] = 5761 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 5762 break; 5763 case DIF_OP_ULDX: 5764 regs[rd] = 5765 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 5766 break; 5767 case DIF_OP_RET: 5768 rval = regs[rd]; 5769 pc = textlen; 5770 break; 5771 case DIF_OP_NOP: 5772 break; 5773 case DIF_OP_SETX: 5774 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 5775 break; 5776 case DIF_OP_SETS: 5777 regs[rd] = (uint64_t)(uintptr_t) 5778 (strtab + DIF_INSTR_STRING(instr)); 5779 break; 5780 case DIF_OP_SCMP: { 5781 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 5782 uintptr_t s1 = regs[r1]; 5783 uintptr_t s2 = regs[r2]; 5784 5785 if (s1 != NULL && 5786 !dtrace_strcanload(s1, sz, mstate, vstate)) 5787 break; 5788 if (s2 != NULL && 5789 !dtrace_strcanload(s2, sz, mstate, vstate)) 5790 break; 5791 5792 cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz); 5793 5794 cc_n = cc_r < 0; 5795 cc_z = cc_r == 0; 5796 cc_v = cc_c = 0; 5797 break; 5798 } 5799 case DIF_OP_LDGA: 5800 regs[rd] = dtrace_dif_variable(mstate, state, 5801 r1, regs[r2]); 5802 break; 5803 case DIF_OP_LDGS: 5804 id = DIF_INSTR_VAR(instr); 5805 5806 if (id >= DIF_VAR_OTHER_UBASE) { 5807 uintptr_t a; 5808 5809 id -= DIF_VAR_OTHER_UBASE; 5810 svar = vstate->dtvs_globals[id]; 5811 ASSERT(svar != NULL); 5812 v = &svar->dtsv_var; 5813 5814 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 5815 regs[rd] = svar->dtsv_data; 5816 break; 5817 } 5818 5819 a = (uintptr_t)svar->dtsv_data; 5820 5821 if (*(uint8_t *)a == UINT8_MAX) { 5822 /* 5823 * If the 0th byte is set to UINT8_MAX 5824 * then this is to be treated as a 5825 * reference to a NULL variable. 5826 */ 5827 regs[rd] = NULL; 5828 } else { 5829 regs[rd] = a + sizeof (uint64_t); 5830 } 5831 5832 break; 5833 } 5834 5835 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 5836 break; 5837 5838 case DIF_OP_STGS: 5839 id = DIF_INSTR_VAR(instr); 5840 5841 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5842 id -= DIF_VAR_OTHER_UBASE; 5843 5844 svar = vstate->dtvs_globals[id]; 5845 ASSERT(svar != NULL); 5846 v = &svar->dtsv_var; 5847 5848 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5849 uintptr_t a = (uintptr_t)svar->dtsv_data; 5850 5851 ASSERT(a != NULL); 5852 ASSERT(svar->dtsv_size != 0); 5853 5854 if (regs[rd] == NULL) { 5855 *(uint8_t *)a = UINT8_MAX; 5856 break; 5857 } else { 5858 *(uint8_t *)a = 0; 5859 a += sizeof (uint64_t); 5860 } 5861 if (!dtrace_vcanload( 5862 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 5863 mstate, vstate)) 5864 break; 5865 5866 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5867 (void *)a, &v->dtdv_type); 5868 break; 5869 } 5870 5871 svar->dtsv_data = regs[rd]; 5872 break; 5873 5874 case DIF_OP_LDTA: 5875 /* 5876 * There are no DTrace built-in thread-local arrays at 5877 * present. This opcode is saved for future work. 5878 */ 5879 *flags |= CPU_DTRACE_ILLOP; 5880 regs[rd] = 0; 5881 break; 5882 5883 case DIF_OP_LDLS: 5884 id = DIF_INSTR_VAR(instr); 5885 5886 if (id < DIF_VAR_OTHER_UBASE) { 5887 /* 5888 * For now, this has no meaning. 5889 */ 5890 regs[rd] = 0; 5891 break; 5892 } 5893 5894 id -= DIF_VAR_OTHER_UBASE; 5895 5896 ASSERT(id < vstate->dtvs_nlocals); 5897 ASSERT(vstate->dtvs_locals != NULL); 5898 5899 svar = vstate->dtvs_locals[id]; 5900 ASSERT(svar != NULL); 5901 v = &svar->dtsv_var; 5902 5903 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5904 uintptr_t a = (uintptr_t)svar->dtsv_data; 5905 size_t sz = v->dtdv_type.dtdt_size; 5906 5907 sz += sizeof (uint64_t); 5908 ASSERT(svar->dtsv_size == NCPU * sz); 5909 a += CPU->cpu_id * sz; 5910 5911 if (*(uint8_t *)a == UINT8_MAX) { 5912 /* 5913 * If the 0th byte is set to UINT8_MAX 5914 * then this is to be treated as a 5915 * reference to a NULL variable. 5916 */ 5917 regs[rd] = NULL; 5918 } else { 5919 regs[rd] = a + sizeof (uint64_t); 5920 } 5921 5922 break; 5923 } 5924 5925 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 5926 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 5927 regs[rd] = tmp[CPU->cpu_id]; 5928 break; 5929 5930 case DIF_OP_STLS: 5931 id = DIF_INSTR_VAR(instr); 5932 5933 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5934 id -= DIF_VAR_OTHER_UBASE; 5935 ASSERT(id < vstate->dtvs_nlocals); 5936 5937 ASSERT(vstate->dtvs_locals != NULL); 5938 svar = vstate->dtvs_locals[id]; 5939 ASSERT(svar != NULL); 5940 v = &svar->dtsv_var; 5941 5942 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5943 uintptr_t a = (uintptr_t)svar->dtsv_data; 5944 size_t sz = v->dtdv_type.dtdt_size; 5945 5946 sz += sizeof (uint64_t); 5947 ASSERT(svar->dtsv_size == NCPU * sz); 5948 a += CPU->cpu_id * sz; 5949 5950 if (regs[rd] == NULL) { 5951 *(uint8_t *)a = UINT8_MAX; 5952 break; 5953 } else { 5954 *(uint8_t *)a = 0; 5955 a += sizeof (uint64_t); 5956 } 5957 5958 if (!dtrace_vcanload( 5959 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 5960 mstate, vstate)) 5961 break; 5962 5963 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5964 (void *)a, &v->dtdv_type); 5965 break; 5966 } 5967 5968 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 5969 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 5970 tmp[CPU->cpu_id] = regs[rd]; 5971 break; 5972 5973 case DIF_OP_LDTS: { 5974 dtrace_dynvar_t *dvar; 5975 dtrace_key_t *key; 5976 5977 id = DIF_INSTR_VAR(instr); 5978 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5979 id -= DIF_VAR_OTHER_UBASE; 5980 v = &vstate->dtvs_tlocals[id]; 5981 5982 key = &tupregs[DIF_DTR_NREGS]; 5983 key[0].dttk_value = (uint64_t)id; 5984 key[0].dttk_size = 0; 5985 DTRACE_TLS_THRKEY(key[1].dttk_value); 5986 key[1].dttk_size = 0; 5987 5988 dvar = dtrace_dynvar(dstate, 2, key, 5989 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 5990 mstate, vstate); 5991 5992 if (dvar == NULL) { 5993 regs[rd] = 0; 5994 break; 5995 } 5996 5997 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5998 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 5999 } else { 6000 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6001 } 6002 6003 break; 6004 } 6005 6006 case DIF_OP_STTS: { 6007 dtrace_dynvar_t *dvar; 6008 dtrace_key_t *key; 6009 6010 id = DIF_INSTR_VAR(instr); 6011 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6012 id -= DIF_VAR_OTHER_UBASE; 6013 6014 key = &tupregs[DIF_DTR_NREGS]; 6015 key[0].dttk_value = (uint64_t)id; 6016 key[0].dttk_size = 0; 6017 DTRACE_TLS_THRKEY(key[1].dttk_value); 6018 key[1].dttk_size = 0; 6019 v = &vstate->dtvs_tlocals[id]; 6020 6021 dvar = dtrace_dynvar(dstate, 2, key, 6022 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6023 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6024 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6025 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6026 6027 /* 6028 * Given that we're storing to thread-local data, 6029 * we need to flush our predicate cache. 6030 */ 6031 curthread->t_predcache = NULL; 6032 6033 if (dvar == NULL) 6034 break; 6035 6036 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6037 if (!dtrace_vcanload( 6038 (void *)(uintptr_t)regs[rd], 6039 &v->dtdv_type, mstate, vstate)) 6040 break; 6041 6042 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6043 dvar->dtdv_data, &v->dtdv_type); 6044 } else { 6045 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6046 } 6047 6048 break; 6049 } 6050 6051 case DIF_OP_SRA: 6052 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 6053 break; 6054 6055 case DIF_OP_CALL: 6056 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 6057 regs, tupregs, ttop, mstate, state); 6058 break; 6059 6060 case DIF_OP_PUSHTR: 6061 if (ttop == DIF_DTR_NREGS) { 6062 *flags |= CPU_DTRACE_TUPOFLOW; 6063 break; 6064 } 6065 6066 if (r1 == DIF_TYPE_STRING) { 6067 /* 6068 * If this is a string type and the size is 0, 6069 * we'll use the system-wide default string 6070 * size. Note that we are _not_ looking at 6071 * the value of the DTRACEOPT_STRSIZE option; 6072 * had this been set, we would expect to have 6073 * a non-zero size value in the "pushtr". 6074 */ 6075 tupregs[ttop].dttk_size = 6076 dtrace_strlen((char *)(uintptr_t)regs[rd], 6077 regs[r2] ? regs[r2] : 6078 dtrace_strsize_default) + 1; 6079 } else { 6080 tupregs[ttop].dttk_size = regs[r2]; 6081 } 6082 6083 tupregs[ttop++].dttk_value = regs[rd]; 6084 break; 6085 6086 case DIF_OP_PUSHTV: 6087 if (ttop == DIF_DTR_NREGS) { 6088 *flags |= CPU_DTRACE_TUPOFLOW; 6089 break; 6090 } 6091 6092 tupregs[ttop].dttk_value = regs[rd]; 6093 tupregs[ttop++].dttk_size = 0; 6094 break; 6095 6096 case DIF_OP_POPTS: 6097 if (ttop != 0) 6098 ttop--; 6099 break; 6100 6101 case DIF_OP_FLUSHTS: 6102 ttop = 0; 6103 break; 6104 6105 case DIF_OP_LDGAA: 6106 case DIF_OP_LDTAA: { 6107 dtrace_dynvar_t *dvar; 6108 dtrace_key_t *key = tupregs; 6109 uint_t nkeys = ttop; 6110 6111 id = DIF_INSTR_VAR(instr); 6112 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6113 id -= DIF_VAR_OTHER_UBASE; 6114 6115 key[nkeys].dttk_value = (uint64_t)id; 6116 key[nkeys++].dttk_size = 0; 6117 6118 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 6119 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6120 key[nkeys++].dttk_size = 0; 6121 v = &vstate->dtvs_tlocals[id]; 6122 } else { 6123 v = &vstate->dtvs_globals[id]->dtsv_var; 6124 } 6125 6126 dvar = dtrace_dynvar(dstate, nkeys, key, 6127 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6128 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6129 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 6130 6131 if (dvar == NULL) { 6132 regs[rd] = 0; 6133 break; 6134 } 6135 6136 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6137 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6138 } else { 6139 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6140 } 6141 6142 break; 6143 } 6144 6145 case DIF_OP_STGAA: 6146 case DIF_OP_STTAA: { 6147 dtrace_dynvar_t *dvar; 6148 dtrace_key_t *key = tupregs; 6149 uint_t nkeys = ttop; 6150 6151 id = DIF_INSTR_VAR(instr); 6152 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6153 id -= DIF_VAR_OTHER_UBASE; 6154 6155 key[nkeys].dttk_value = (uint64_t)id; 6156 key[nkeys++].dttk_size = 0; 6157 6158 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 6159 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6160 key[nkeys++].dttk_size = 0; 6161 v = &vstate->dtvs_tlocals[id]; 6162 } else { 6163 v = &vstate->dtvs_globals[id]->dtsv_var; 6164 } 6165 6166 dvar = dtrace_dynvar(dstate, nkeys, key, 6167 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6168 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6169 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6170 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6171 6172 if (dvar == NULL) 6173 break; 6174 6175 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6176 if (!dtrace_vcanload( 6177 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6178 mstate, vstate)) 6179 break; 6180 6181 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6182 dvar->dtdv_data, &v->dtdv_type); 6183 } else { 6184 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6185 } 6186 6187 break; 6188 } 6189 6190 case DIF_OP_ALLOCS: { 6191 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6192 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 6193 6194 /* 6195 * Rounding up the user allocation size could have 6196 * overflowed large, bogus allocations (like -1ULL) to 6197 * 0. 6198 */ 6199 if (size < regs[r1] || 6200 !DTRACE_INSCRATCH(mstate, size)) { 6201 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6202 regs[rd] = NULL; 6203 break; 6204 } 6205 6206 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 6207 mstate->dtms_scratch_ptr += size; 6208 regs[rd] = ptr; 6209 break; 6210 } 6211 6212 case DIF_OP_COPYS: 6213 if (!dtrace_canstore(regs[rd], regs[r2], 6214 mstate, vstate)) { 6215 *flags |= CPU_DTRACE_BADADDR; 6216 *illval = regs[rd]; 6217 break; 6218 } 6219 6220 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 6221 break; 6222 6223 dtrace_bcopy((void *)(uintptr_t)regs[r1], 6224 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 6225 break; 6226 6227 case DIF_OP_STB: 6228 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 6229 *flags |= CPU_DTRACE_BADADDR; 6230 *illval = regs[rd]; 6231 break; 6232 } 6233 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 6234 break; 6235 6236 case DIF_OP_STH: 6237 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 6238 *flags |= CPU_DTRACE_BADADDR; 6239 *illval = regs[rd]; 6240 break; 6241 } 6242 if (regs[rd] & 1) { 6243 *flags |= CPU_DTRACE_BADALIGN; 6244 *illval = regs[rd]; 6245 break; 6246 } 6247 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 6248 break; 6249 6250 case DIF_OP_STW: 6251 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 6252 *flags |= CPU_DTRACE_BADADDR; 6253 *illval = regs[rd]; 6254 break; 6255 } 6256 if (regs[rd] & 3) { 6257 *flags |= CPU_DTRACE_BADALIGN; 6258 *illval = regs[rd]; 6259 break; 6260 } 6261 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 6262 break; 6263 6264 case DIF_OP_STX: 6265 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 6266 *flags |= CPU_DTRACE_BADADDR; 6267 *illval = regs[rd]; 6268 break; 6269 } 6270 if (regs[rd] & 7) { 6271 *flags |= CPU_DTRACE_BADALIGN; 6272 *illval = regs[rd]; 6273 break; 6274 } 6275 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 6276 break; 6277 } 6278 } 6279 6280 if (!(*flags & CPU_DTRACE_FAULT)) 6281 return (rval); 6282 6283 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 6284 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 6285 6286 return (0); 6287 } 6288 6289 static void 6290 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 6291 { 6292 dtrace_probe_t *probe = ecb->dte_probe; 6293 dtrace_provider_t *prov = probe->dtpr_provider; 6294 char c[DTRACE_FULLNAMELEN + 80], *str; 6295 char *msg = "dtrace: breakpoint action at probe "; 6296 char *ecbmsg = " (ecb "; 6297 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); 6298 uintptr_t val = (uintptr_t)ecb; 6299 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 6300 6301 if (dtrace_destructive_disallow) 6302 return; 6303 6304 /* 6305 * It's impossible to be taking action on the NULL probe. 6306 */ 6307 ASSERT(probe != NULL); 6308 6309 /* 6310 * This is a poor man's (destitute man's?) sprintf(): we want to 6311 * print the provider name, module name, function name and name of 6312 * the probe, along with the hex address of the ECB with the breakpoint 6313 * action -- all of which we must place in the character buffer by 6314 * hand. 6315 */ 6316 while (*msg != '\0') 6317 c[i++] = *msg++; 6318 6319 for (str = prov->dtpv_name; *str != '\0'; str++) 6320 c[i++] = *str; 6321 c[i++] = ':'; 6322 6323 for (str = probe->dtpr_mod; *str != '\0'; str++) 6324 c[i++] = *str; 6325 c[i++] = ':'; 6326 6327 for (str = probe->dtpr_func; *str != '\0'; str++) 6328 c[i++] = *str; 6329 c[i++] = ':'; 6330 6331 for (str = probe->dtpr_name; *str != '\0'; str++) 6332 c[i++] = *str; 6333 6334 while (*ecbmsg != '\0') 6335 c[i++] = *ecbmsg++; 6336 6337 while (shift >= 0) { 6338 mask = (uintptr_t)0xf << shift; 6339 6340 if (val >= ((uintptr_t)1 << shift)) 6341 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 6342 shift -= 4; 6343 } 6344 6345 c[i++] = ')'; 6346 c[i] = '\0'; 6347 6348 debug_enter(c); 6349 } 6350 6351 static void 6352 dtrace_action_panic(dtrace_ecb_t *ecb) 6353 { 6354 dtrace_probe_t *probe = ecb->dte_probe; 6355 6356 /* 6357 * It's impossible to be taking action on the NULL probe. 6358 */ 6359 ASSERT(probe != NULL); 6360 6361 if (dtrace_destructive_disallow) 6362 return; 6363 6364 if (dtrace_panicked != NULL) 6365 return; 6366 6367 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 6368 return; 6369 6370 /* 6371 * We won the right to panic. (We want to be sure that only one 6372 * thread calls panic() from dtrace_probe(), and that panic() is 6373 * called exactly once.) 6374 */ 6375 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 6376 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 6377 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 6378 } 6379 6380 static void 6381 dtrace_action_raise(uint64_t sig) 6382 { 6383 if (dtrace_destructive_disallow) 6384 return; 6385 6386 if (sig >= NSIG) { 6387 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 6388 return; 6389 } 6390 6391 /* 6392 * raise() has a queue depth of 1 -- we ignore all subsequent 6393 * invocations of the raise() action. 6394 */ 6395 if (curthread->t_dtrace_sig == 0) 6396 curthread->t_dtrace_sig = (uint8_t)sig; 6397 6398 curthread->t_sig_check = 1; 6399 aston(curthread); 6400 } 6401 6402 static void 6403 dtrace_action_stop(void) 6404 { 6405 if (dtrace_destructive_disallow) 6406 return; 6407 6408 if (!curthread->t_dtrace_stop) { 6409 curthread->t_dtrace_stop = 1; 6410 curthread->t_sig_check = 1; 6411 aston(curthread); 6412 } 6413 } 6414 6415 static void 6416 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 6417 { 6418 hrtime_t now; 6419 volatile uint16_t *flags; 6420 cpu_t *cpu = CPU; 6421 6422 if (dtrace_destructive_disallow) 6423 return; 6424 6425 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags; 6426 6427 now = dtrace_gethrtime(); 6428 6429 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 6430 /* 6431 * We need to advance the mark to the current time. 6432 */ 6433 cpu->cpu_dtrace_chillmark = now; 6434 cpu->cpu_dtrace_chilled = 0; 6435 } 6436 6437 /* 6438 * Now check to see if the requested chill time would take us over 6439 * the maximum amount of time allowed in the chill interval. (Or 6440 * worse, if the calculation itself induces overflow.) 6441 */ 6442 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 6443 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 6444 *flags |= CPU_DTRACE_ILLOP; 6445 return; 6446 } 6447 6448 while (dtrace_gethrtime() - now < val) 6449 continue; 6450 6451 /* 6452 * Normally, we assure that the value of the variable "timestamp" does 6453 * not change within an ECB. The presence of chill() represents an 6454 * exception to this rule, however. 6455 */ 6456 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 6457 cpu->cpu_dtrace_chilled += val; 6458 } 6459 6460 static void 6461 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 6462 uint64_t *buf, uint64_t arg) 6463 { 6464 int nframes = DTRACE_USTACK_NFRAMES(arg); 6465 int strsize = DTRACE_USTACK_STRSIZE(arg); 6466 uint64_t *pcs = &buf[1], *fps; 6467 char *str = (char *)&pcs[nframes]; 6468 int size, offs = 0, i, j; 6469 uintptr_t old = mstate->dtms_scratch_ptr, saved; 6470 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 6471 char *sym; 6472 6473 /* 6474 * Should be taking a faster path if string space has not been 6475 * allocated. 6476 */ 6477 ASSERT(strsize != 0); 6478 6479 /* 6480 * We will first allocate some temporary space for the frame pointers. 6481 */ 6482 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6483 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 6484 (nframes * sizeof (uint64_t)); 6485 6486 if (!DTRACE_INSCRATCH(mstate, size)) { 6487 /* 6488 * Not enough room for our frame pointers -- need to indicate 6489 * that we ran out of scratch space. 6490 */ 6491 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6492 return; 6493 } 6494 6495 mstate->dtms_scratch_ptr += size; 6496 saved = mstate->dtms_scratch_ptr; 6497 6498 /* 6499 * Now get a stack with both program counters and frame pointers. 6500 */ 6501 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6502 dtrace_getufpstack(buf, fps, nframes + 1); 6503 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6504 6505 /* 6506 * If that faulted, we're cooked. 6507 */ 6508 if (*flags & CPU_DTRACE_FAULT) 6509 goto out; 6510 6511 /* 6512 * Now we want to walk up the stack, calling the USTACK helper. For 6513 * each iteration, we restore the scratch pointer. 6514 */ 6515 for (i = 0; i < nframes; i++) { 6516 mstate->dtms_scratch_ptr = saved; 6517 6518 if (offs >= strsize) 6519 break; 6520 6521 sym = (char *)(uintptr_t)dtrace_helper( 6522 DTRACE_HELPER_ACTION_USTACK, 6523 mstate, state, pcs[i], fps[i]); 6524 6525 /* 6526 * If we faulted while running the helper, we're going to 6527 * clear the fault and null out the corresponding string. 6528 */ 6529 if (*flags & CPU_DTRACE_FAULT) { 6530 *flags &= ~CPU_DTRACE_FAULT; 6531 str[offs++] = '\0'; 6532 continue; 6533 } 6534 6535 if (sym == NULL) { 6536 str[offs++] = '\0'; 6537 continue; 6538 } 6539 6540 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6541 6542 /* 6543 * Now copy in the string that the helper returned to us. 6544 */ 6545 for (j = 0; offs + j < strsize; j++) { 6546 if ((str[offs + j] = sym[j]) == '\0') 6547 break; 6548 } 6549 6550 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6551 6552 offs += j + 1; 6553 } 6554 6555 if (offs >= strsize) { 6556 /* 6557 * If we didn't have room for all of the strings, we don't 6558 * abort processing -- this needn't be a fatal error -- but we 6559 * still want to increment a counter (dts_stkstroverflows) to 6560 * allow this condition to be warned about. (If this is from 6561 * a jstack() action, it is easily tuned via jstackstrsize.) 6562 */ 6563 dtrace_error(&state->dts_stkstroverflows); 6564 } 6565 6566 while (offs < strsize) 6567 str[offs++] = '\0'; 6568 6569 out: 6570 mstate->dtms_scratch_ptr = old; 6571 } 6572 6573 /* 6574 * If you're looking for the epicenter of DTrace, you just found it. This 6575 * is the function called by the provider to fire a probe -- from which all 6576 * subsequent probe-context DTrace activity emanates. 6577 */ 6578 void 6579 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 6580 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 6581 { 6582 processorid_t cpuid; 6583 dtrace_icookie_t cookie; 6584 dtrace_probe_t *probe; 6585 dtrace_mstate_t mstate; 6586 dtrace_ecb_t *ecb; 6587 dtrace_action_t *act; 6588 intptr_t offs; 6589 size_t size; 6590 int vtime, onintr; 6591 volatile uint16_t *flags; 6592 hrtime_t now; 6593 6594 /* 6595 * Kick out immediately if this CPU is still being born (in which case 6596 * curthread will be set to -1) or the current thread can't allow 6597 * probes in its current context. 6598 */ 6599 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) 6600 return; 6601 6602 cookie = dtrace_interrupt_disable(); 6603 probe = dtrace_probes[id - 1]; 6604 cpuid = CPU->cpu_id; 6605 onintr = CPU_ON_INTR(CPU); 6606 6607 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 6608 probe->dtpr_predcache == curthread->t_predcache) { 6609 /* 6610 * We have hit in the predicate cache; we know that 6611 * this predicate would evaluate to be false. 6612 */ 6613 dtrace_interrupt_enable(cookie); 6614 return; 6615 } 6616 6617 if (panic_quiesce) { 6618 /* 6619 * We don't trace anything if we're panicking. 6620 */ 6621 dtrace_interrupt_enable(cookie); 6622 return; 6623 } 6624 6625 now = dtrace_gethrtime(); 6626 vtime = dtrace_vtime_references != 0; 6627 6628 if (vtime && curthread->t_dtrace_start) 6629 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 6630 6631 mstate.dtms_difo = NULL; 6632 mstate.dtms_probe = probe; 6633 mstate.dtms_strtok = NULL; 6634 mstate.dtms_arg[0] = arg0; 6635 mstate.dtms_arg[1] = arg1; 6636 mstate.dtms_arg[2] = arg2; 6637 mstate.dtms_arg[3] = arg3; 6638 mstate.dtms_arg[4] = arg4; 6639 6640 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 6641 6642 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 6643 dtrace_predicate_t *pred = ecb->dte_predicate; 6644 dtrace_state_t *state = ecb->dte_state; 6645 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 6646 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 6647 dtrace_vstate_t *vstate = &state->dts_vstate; 6648 dtrace_provider_t *prov = probe->dtpr_provider; 6649 uint64_t tracememsize = 0; 6650 int committed = 0; 6651 caddr_t tomax; 6652 6653 /* 6654 * A little subtlety with the following (seemingly innocuous) 6655 * declaration of the automatic 'val': by looking at the 6656 * code, you might think that it could be declared in the 6657 * action processing loop, below. (That is, it's only used in 6658 * the action processing loop.) However, it must be declared 6659 * out of that scope because in the case of DIF expression 6660 * arguments to aggregating actions, one iteration of the 6661 * action loop will use the last iteration's value. 6662 */ 6663 #ifdef lint 6664 uint64_t val = 0; 6665 #else 6666 uint64_t val; 6667 #endif 6668 6669 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 6670 mstate.dtms_access = DTRACE_ACCESS_ARGS | DTRACE_ACCESS_PROC; 6671 mstate.dtms_getf = NULL; 6672 6673 *flags &= ~CPU_DTRACE_ERROR; 6674 6675 if (prov == dtrace_provider) { 6676 /* 6677 * If dtrace itself is the provider of this probe, 6678 * we're only going to continue processing the ECB if 6679 * arg0 (the dtrace_state_t) is equal to the ECB's 6680 * creating state. (This prevents disjoint consumers 6681 * from seeing one another's metaprobes.) 6682 */ 6683 if (arg0 != (uint64_t)(uintptr_t)state) 6684 continue; 6685 } 6686 6687 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 6688 /* 6689 * We're not currently active. If our provider isn't 6690 * the dtrace pseudo provider, we're not interested. 6691 */ 6692 if (prov != dtrace_provider) 6693 continue; 6694 6695 /* 6696 * Now we must further check if we are in the BEGIN 6697 * probe. If we are, we will only continue processing 6698 * if we're still in WARMUP -- if one BEGIN enabling 6699 * has invoked the exit() action, we don't want to 6700 * evaluate subsequent BEGIN enablings. 6701 */ 6702 if (probe->dtpr_id == dtrace_probeid_begin && 6703 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 6704 ASSERT(state->dts_activity == 6705 DTRACE_ACTIVITY_DRAINING); 6706 continue; 6707 } 6708 } 6709 6710 if (ecb->dte_cond && !dtrace_priv_probe(state, &mstate, ecb)) 6711 continue; 6712 6713 if (now - state->dts_alive > dtrace_deadman_timeout) { 6714 /* 6715 * We seem to be dead. Unless we (a) have kernel 6716 * destructive permissions (b) have explicitly enabled 6717 * destructive actions and (c) destructive actions have 6718 * not been disabled, we're going to transition into 6719 * the KILLED state, from which no further processing 6720 * on this state will be performed. 6721 */ 6722 if (!dtrace_priv_kernel_destructive(state) || 6723 !state->dts_cred.dcr_destructive || 6724 dtrace_destructive_disallow) { 6725 void *activity = &state->dts_activity; 6726 dtrace_activity_t current; 6727 6728 do { 6729 current = state->dts_activity; 6730 } while (dtrace_cas32(activity, current, 6731 DTRACE_ACTIVITY_KILLED) != current); 6732 6733 continue; 6734 } 6735 } 6736 6737 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 6738 ecb->dte_alignment, state, &mstate)) < 0) 6739 continue; 6740 6741 tomax = buf->dtb_tomax; 6742 ASSERT(tomax != NULL); 6743 6744 if (ecb->dte_size != 0) { 6745 dtrace_rechdr_t dtrh; 6746 if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 6747 mstate.dtms_timestamp = dtrace_gethrtime(); 6748 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; 6749 } 6750 ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t)); 6751 dtrh.dtrh_epid = ecb->dte_epid; 6752 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh, 6753 mstate.dtms_timestamp); 6754 *((dtrace_rechdr_t *)(tomax + offs)) = dtrh; 6755 } 6756 6757 mstate.dtms_epid = ecb->dte_epid; 6758 mstate.dtms_present |= DTRACE_MSTATE_EPID; 6759 6760 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 6761 mstate.dtms_access |= DTRACE_ACCESS_KERNEL; 6762 6763 if (pred != NULL) { 6764 dtrace_difo_t *dp = pred->dtp_difo; 6765 int rval; 6766 6767 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 6768 6769 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 6770 dtrace_cacheid_t cid = probe->dtpr_predcache; 6771 6772 if (cid != DTRACE_CACHEIDNONE && !onintr) { 6773 /* 6774 * Update the predicate cache... 6775 */ 6776 ASSERT(cid == pred->dtp_cacheid); 6777 curthread->t_predcache = cid; 6778 } 6779 6780 continue; 6781 } 6782 } 6783 6784 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 6785 act != NULL; act = act->dta_next) { 6786 size_t valoffs; 6787 dtrace_difo_t *dp; 6788 dtrace_recdesc_t *rec = &act->dta_rec; 6789 6790 size = rec->dtrd_size; 6791 valoffs = offs + rec->dtrd_offset; 6792 6793 if (DTRACEACT_ISAGG(act->dta_kind)) { 6794 uint64_t v = 0xbad; 6795 dtrace_aggregation_t *agg; 6796 6797 agg = (dtrace_aggregation_t *)act; 6798 6799 if ((dp = act->dta_difo) != NULL) 6800 v = dtrace_dif_emulate(dp, 6801 &mstate, vstate, state); 6802 6803 if (*flags & CPU_DTRACE_ERROR) 6804 continue; 6805 6806 /* 6807 * Note that we always pass the expression 6808 * value from the previous iteration of the 6809 * action loop. This value will only be used 6810 * if there is an expression argument to the 6811 * aggregating action, denoted by the 6812 * dtag_hasarg field. 6813 */ 6814 dtrace_aggregate(agg, buf, 6815 offs, aggbuf, v, val); 6816 continue; 6817 } 6818 6819 switch (act->dta_kind) { 6820 case DTRACEACT_STOP: 6821 if (dtrace_priv_proc_destructive(state, 6822 &mstate)) 6823 dtrace_action_stop(); 6824 continue; 6825 6826 case DTRACEACT_BREAKPOINT: 6827 if (dtrace_priv_kernel_destructive(state)) 6828 dtrace_action_breakpoint(ecb); 6829 continue; 6830 6831 case DTRACEACT_PANIC: 6832 if (dtrace_priv_kernel_destructive(state)) 6833 dtrace_action_panic(ecb); 6834 continue; 6835 6836 case DTRACEACT_STACK: 6837 if (!dtrace_priv_kernel(state)) 6838 continue; 6839 6840 dtrace_getpcstack((pc_t *)(tomax + valoffs), 6841 size / sizeof (pc_t), probe->dtpr_aframes, 6842 DTRACE_ANCHORED(probe) ? NULL : 6843 (uint32_t *)arg0); 6844 6845 continue; 6846 6847 case DTRACEACT_JSTACK: 6848 case DTRACEACT_USTACK: 6849 if (!dtrace_priv_proc(state, &mstate)) 6850 continue; 6851 6852 /* 6853 * See comment in DIF_VAR_PID. 6854 */ 6855 if (DTRACE_ANCHORED(mstate.dtms_probe) && 6856 CPU_ON_INTR(CPU)) { 6857 int depth = DTRACE_USTACK_NFRAMES( 6858 rec->dtrd_arg) + 1; 6859 6860 dtrace_bzero((void *)(tomax + valoffs), 6861 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 6862 + depth * sizeof (uint64_t)); 6863 6864 continue; 6865 } 6866 6867 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 6868 curproc->p_dtrace_helpers != NULL) { 6869 /* 6870 * This is the slow path -- we have 6871 * allocated string space, and we're 6872 * getting the stack of a process that 6873 * has helpers. Call into a separate 6874 * routine to perform this processing. 6875 */ 6876 dtrace_action_ustack(&mstate, state, 6877 (uint64_t *)(tomax + valoffs), 6878 rec->dtrd_arg); 6879 continue; 6880 } 6881 6882 /* 6883 * Clear the string space, since there's no 6884 * helper to do it for us. 6885 */ 6886 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0) { 6887 int depth = DTRACE_USTACK_NFRAMES( 6888 rec->dtrd_arg); 6889 size_t strsize = DTRACE_USTACK_STRSIZE( 6890 rec->dtrd_arg); 6891 uint64_t *buf = (uint64_t *)(tomax + 6892 valoffs); 6893 void *strspace = &buf[depth + 1]; 6894 6895 dtrace_bzero(strspace, 6896 MIN(depth, strsize)); 6897 } 6898 6899 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6900 dtrace_getupcstack((uint64_t *) 6901 (tomax + valoffs), 6902 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 6903 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6904 continue; 6905 6906 default: 6907 break; 6908 } 6909 6910 dp = act->dta_difo; 6911 ASSERT(dp != NULL); 6912 6913 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 6914 6915 if (*flags & CPU_DTRACE_ERROR) 6916 continue; 6917 6918 switch (act->dta_kind) { 6919 case DTRACEACT_SPECULATE: { 6920 dtrace_rechdr_t *dtrh; 6921 6922 ASSERT(buf == &state->dts_buffer[cpuid]); 6923 buf = dtrace_speculation_buffer(state, 6924 cpuid, val); 6925 6926 if (buf == NULL) { 6927 *flags |= CPU_DTRACE_DROP; 6928 continue; 6929 } 6930 6931 offs = dtrace_buffer_reserve(buf, 6932 ecb->dte_needed, ecb->dte_alignment, 6933 state, NULL); 6934 6935 if (offs < 0) { 6936 *flags |= CPU_DTRACE_DROP; 6937 continue; 6938 } 6939 6940 tomax = buf->dtb_tomax; 6941 ASSERT(tomax != NULL); 6942 6943 if (ecb->dte_size == 0) 6944 continue; 6945 6946 ASSERT3U(ecb->dte_size, >=, 6947 sizeof (dtrace_rechdr_t)); 6948 dtrh = ((void *)(tomax + offs)); 6949 dtrh->dtrh_epid = ecb->dte_epid; 6950 /* 6951 * When the speculation is committed, all of 6952 * the records in the speculative buffer will 6953 * have their timestamps set to the commit 6954 * time. Until then, it is set to a sentinel 6955 * value, for debugability. 6956 */ 6957 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX); 6958 continue; 6959 } 6960 6961 case DTRACEACT_CHILL: 6962 if (dtrace_priv_kernel_destructive(state)) 6963 dtrace_action_chill(&mstate, val); 6964 continue; 6965 6966 case DTRACEACT_RAISE: 6967 if (dtrace_priv_proc_destructive(state, 6968 &mstate)) 6969 dtrace_action_raise(val); 6970 continue; 6971 6972 case DTRACEACT_COMMIT: 6973 ASSERT(!committed); 6974 6975 /* 6976 * We need to commit our buffer state. 6977 */ 6978 if (ecb->dte_size) 6979 buf->dtb_offset = offs + ecb->dte_size; 6980 buf = &state->dts_buffer[cpuid]; 6981 dtrace_speculation_commit(state, cpuid, val); 6982 committed = 1; 6983 continue; 6984 6985 case DTRACEACT_DISCARD: 6986 dtrace_speculation_discard(state, cpuid, val); 6987 continue; 6988 6989 case DTRACEACT_DIFEXPR: 6990 case DTRACEACT_LIBACT: 6991 case DTRACEACT_PRINTF: 6992 case DTRACEACT_PRINTA: 6993 case DTRACEACT_SYSTEM: 6994 case DTRACEACT_FREOPEN: 6995 case DTRACEACT_TRACEMEM: 6996 break; 6997 6998 case DTRACEACT_TRACEMEM_DYNSIZE: 6999 tracememsize = val; 7000 break; 7001 7002 case DTRACEACT_SYM: 7003 case DTRACEACT_MOD: 7004 if (!dtrace_priv_kernel(state)) 7005 continue; 7006 break; 7007 7008 case DTRACEACT_USYM: 7009 case DTRACEACT_UMOD: 7010 case DTRACEACT_UADDR: { 7011 struct pid *pid = curthread->t_procp->p_pidp; 7012 7013 if (!dtrace_priv_proc(state, &mstate)) 7014 continue; 7015 7016 DTRACE_STORE(uint64_t, tomax, 7017 valoffs, (uint64_t)pid->pid_id); 7018 DTRACE_STORE(uint64_t, tomax, 7019 valoffs + sizeof (uint64_t), val); 7020 7021 continue; 7022 } 7023 7024 case DTRACEACT_EXIT: { 7025 /* 7026 * For the exit action, we are going to attempt 7027 * to atomically set our activity to be 7028 * draining. If this fails (either because 7029 * another CPU has beat us to the exit action, 7030 * or because our current activity is something 7031 * other than ACTIVE or WARMUP), we will 7032 * continue. This assures that the exit action 7033 * can be successfully recorded at most once 7034 * when we're in the ACTIVE state. If we're 7035 * encountering the exit() action while in 7036 * COOLDOWN, however, we want to honor the new 7037 * status code. (We know that we're the only 7038 * thread in COOLDOWN, so there is no race.) 7039 */ 7040 void *activity = &state->dts_activity; 7041 dtrace_activity_t current = state->dts_activity; 7042 7043 if (current == DTRACE_ACTIVITY_COOLDOWN) 7044 break; 7045 7046 if (current != DTRACE_ACTIVITY_WARMUP) 7047 current = DTRACE_ACTIVITY_ACTIVE; 7048 7049 if (dtrace_cas32(activity, current, 7050 DTRACE_ACTIVITY_DRAINING) != current) { 7051 *flags |= CPU_DTRACE_DROP; 7052 continue; 7053 } 7054 7055 break; 7056 } 7057 7058 default: 7059 ASSERT(0); 7060 } 7061 7062 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) { 7063 uintptr_t end = valoffs + size; 7064 7065 if (tracememsize != 0 && 7066 valoffs + tracememsize < end) { 7067 end = valoffs + tracememsize; 7068 tracememsize = 0; 7069 } 7070 7071 if (!dtrace_vcanload((void *)(uintptr_t)val, 7072 &dp->dtdo_rtype, &mstate, vstate)) 7073 continue; 7074 7075 /* 7076 * If this is a string, we're going to only 7077 * load until we find the zero byte -- after 7078 * which we'll store zero bytes. 7079 */ 7080 if (dp->dtdo_rtype.dtdt_kind == 7081 DIF_TYPE_STRING) { 7082 char c = '\0' + 1; 7083 int intuple = act->dta_intuple; 7084 size_t s; 7085 7086 for (s = 0; s < size; s++) { 7087 if (c != '\0') 7088 c = dtrace_load8(val++); 7089 7090 DTRACE_STORE(uint8_t, tomax, 7091 valoffs++, c); 7092 7093 if (c == '\0' && intuple) 7094 break; 7095 } 7096 7097 continue; 7098 } 7099 7100 while (valoffs < end) { 7101 DTRACE_STORE(uint8_t, tomax, valoffs++, 7102 dtrace_load8(val++)); 7103 } 7104 7105 continue; 7106 } 7107 7108 switch (size) { 7109 case 0: 7110 break; 7111 7112 case sizeof (uint8_t): 7113 DTRACE_STORE(uint8_t, tomax, valoffs, val); 7114 break; 7115 case sizeof (uint16_t): 7116 DTRACE_STORE(uint16_t, tomax, valoffs, val); 7117 break; 7118 case sizeof (uint32_t): 7119 DTRACE_STORE(uint32_t, tomax, valoffs, val); 7120 break; 7121 case sizeof (uint64_t): 7122 DTRACE_STORE(uint64_t, tomax, valoffs, val); 7123 break; 7124 default: 7125 /* 7126 * Any other size should have been returned by 7127 * reference, not by value. 7128 */ 7129 ASSERT(0); 7130 break; 7131 } 7132 } 7133 7134 if (*flags & CPU_DTRACE_DROP) 7135 continue; 7136 7137 if (*flags & CPU_DTRACE_FAULT) { 7138 int ndx; 7139 dtrace_action_t *err; 7140 7141 buf->dtb_errors++; 7142 7143 if (probe->dtpr_id == dtrace_probeid_error) { 7144 /* 7145 * There's nothing we can do -- we had an 7146 * error on the error probe. We bump an 7147 * error counter to at least indicate that 7148 * this condition happened. 7149 */ 7150 dtrace_error(&state->dts_dblerrors); 7151 continue; 7152 } 7153 7154 if (vtime) { 7155 /* 7156 * Before recursing on dtrace_probe(), we 7157 * need to explicitly clear out our start 7158 * time to prevent it from being accumulated 7159 * into t_dtrace_vtime. 7160 */ 7161 curthread->t_dtrace_start = 0; 7162 } 7163 7164 /* 7165 * Iterate over the actions to figure out which action 7166 * we were processing when we experienced the error. 7167 * Note that act points _past_ the faulting action; if 7168 * act is ecb->dte_action, the fault was in the 7169 * predicate, if it's ecb->dte_action->dta_next it's 7170 * in action #1, and so on. 7171 */ 7172 for (err = ecb->dte_action, ndx = 0; 7173 err != act; err = err->dta_next, ndx++) 7174 continue; 7175 7176 dtrace_probe_error(state, ecb->dte_epid, ndx, 7177 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 7178 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 7179 cpu_core[cpuid].cpuc_dtrace_illval); 7180 7181 continue; 7182 } 7183 7184 if (!committed) 7185 buf->dtb_offset = offs + ecb->dte_size; 7186 } 7187 7188 if (vtime) 7189 curthread->t_dtrace_start = dtrace_gethrtime(); 7190 7191 dtrace_interrupt_enable(cookie); 7192 } 7193 7194 /* 7195 * DTrace Probe Hashing Functions 7196 * 7197 * The functions in this section (and indeed, the functions in remaining 7198 * sections) are not _called_ from probe context. (Any exceptions to this are 7199 * marked with a "Note:".) Rather, they are called from elsewhere in the 7200 * DTrace framework to look-up probes in, add probes to and remove probes from 7201 * the DTrace probe hashes. (Each probe is hashed by each element of the 7202 * probe tuple -- allowing for fast lookups, regardless of what was 7203 * specified.) 7204 */ 7205 static uint_t 7206 dtrace_hash_str(char *p) 7207 { 7208 unsigned int g; 7209 uint_t hval = 0; 7210 7211 while (*p) { 7212 hval = (hval << 4) + *p++; 7213 if ((g = (hval & 0xf0000000)) != 0) 7214 hval ^= g >> 24; 7215 hval &= ~g; 7216 } 7217 return (hval); 7218 } 7219 7220 static dtrace_hash_t * 7221 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) 7222 { 7223 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 7224 7225 hash->dth_stroffs = stroffs; 7226 hash->dth_nextoffs = nextoffs; 7227 hash->dth_prevoffs = prevoffs; 7228 7229 hash->dth_size = 1; 7230 hash->dth_mask = hash->dth_size - 1; 7231 7232 hash->dth_tab = kmem_zalloc(hash->dth_size * 7233 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 7234 7235 return (hash); 7236 } 7237 7238 static void 7239 dtrace_hash_destroy(dtrace_hash_t *hash) 7240 { 7241 #ifdef DEBUG 7242 int i; 7243 7244 for (i = 0; i < hash->dth_size; i++) 7245 ASSERT(hash->dth_tab[i] == NULL); 7246 #endif 7247 7248 kmem_free(hash->dth_tab, 7249 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 7250 kmem_free(hash, sizeof (dtrace_hash_t)); 7251 } 7252 7253 static void 7254 dtrace_hash_resize(dtrace_hash_t *hash) 7255 { 7256 int size = hash->dth_size, i, ndx; 7257 int new_size = hash->dth_size << 1; 7258 int new_mask = new_size - 1; 7259 dtrace_hashbucket_t **new_tab, *bucket, *next; 7260 7261 ASSERT((new_size & new_mask) == 0); 7262 7263 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 7264 7265 for (i = 0; i < size; i++) { 7266 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 7267 dtrace_probe_t *probe = bucket->dthb_chain; 7268 7269 ASSERT(probe != NULL); 7270 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 7271 7272 next = bucket->dthb_next; 7273 bucket->dthb_next = new_tab[ndx]; 7274 new_tab[ndx] = bucket; 7275 } 7276 } 7277 7278 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 7279 hash->dth_tab = new_tab; 7280 hash->dth_size = new_size; 7281 hash->dth_mask = new_mask; 7282 } 7283 7284 static void 7285 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 7286 { 7287 int hashval = DTRACE_HASHSTR(hash, new); 7288 int ndx = hashval & hash->dth_mask; 7289 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7290 dtrace_probe_t **nextp, **prevp; 7291 7292 for (; bucket != NULL; bucket = bucket->dthb_next) { 7293 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 7294 goto add; 7295 } 7296 7297 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 7298 dtrace_hash_resize(hash); 7299 dtrace_hash_add(hash, new); 7300 return; 7301 } 7302 7303 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 7304 bucket->dthb_next = hash->dth_tab[ndx]; 7305 hash->dth_tab[ndx] = bucket; 7306 hash->dth_nbuckets++; 7307 7308 add: 7309 nextp = DTRACE_HASHNEXT(hash, new); 7310 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 7311 *nextp = bucket->dthb_chain; 7312 7313 if (bucket->dthb_chain != NULL) { 7314 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 7315 ASSERT(*prevp == NULL); 7316 *prevp = new; 7317 } 7318 7319 bucket->dthb_chain = new; 7320 bucket->dthb_len++; 7321 } 7322 7323 static dtrace_probe_t * 7324 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 7325 { 7326 int hashval = DTRACE_HASHSTR(hash, template); 7327 int ndx = hashval & hash->dth_mask; 7328 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7329 7330 for (; bucket != NULL; bucket = bucket->dthb_next) { 7331 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 7332 return (bucket->dthb_chain); 7333 } 7334 7335 return (NULL); 7336 } 7337 7338 static int 7339 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 7340 { 7341 int hashval = DTRACE_HASHSTR(hash, template); 7342 int ndx = hashval & hash->dth_mask; 7343 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7344 7345 for (; bucket != NULL; bucket = bucket->dthb_next) { 7346 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 7347 return (bucket->dthb_len); 7348 } 7349 7350 return (NULL); 7351 } 7352 7353 static void 7354 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 7355 { 7356 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 7357 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7358 7359 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 7360 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 7361 7362 /* 7363 * Find the bucket that we're removing this probe from. 7364 */ 7365 for (; bucket != NULL; bucket = bucket->dthb_next) { 7366 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 7367 break; 7368 } 7369 7370 ASSERT(bucket != NULL); 7371 7372 if (*prevp == NULL) { 7373 if (*nextp == NULL) { 7374 /* 7375 * The removed probe was the only probe on this 7376 * bucket; we need to remove the bucket. 7377 */ 7378 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 7379 7380 ASSERT(bucket->dthb_chain == probe); 7381 ASSERT(b != NULL); 7382 7383 if (b == bucket) { 7384 hash->dth_tab[ndx] = bucket->dthb_next; 7385 } else { 7386 while (b->dthb_next != bucket) 7387 b = b->dthb_next; 7388 b->dthb_next = bucket->dthb_next; 7389 } 7390 7391 ASSERT(hash->dth_nbuckets > 0); 7392 hash->dth_nbuckets--; 7393 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 7394 return; 7395 } 7396 7397 bucket->dthb_chain = *nextp; 7398 } else { 7399 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 7400 } 7401 7402 if (*nextp != NULL) 7403 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 7404 } 7405 7406 /* 7407 * DTrace Utility Functions 7408 * 7409 * These are random utility functions that are _not_ called from probe context. 7410 */ 7411 static int 7412 dtrace_badattr(const dtrace_attribute_t *a) 7413 { 7414 return (a->dtat_name > DTRACE_STABILITY_MAX || 7415 a->dtat_data > DTRACE_STABILITY_MAX || 7416 a->dtat_class > DTRACE_CLASS_MAX); 7417 } 7418 7419 /* 7420 * Return a duplicate copy of a string. If the specified string is NULL, 7421 * this function returns a zero-length string. 7422 */ 7423 static char * 7424 dtrace_strdup(const char *str) 7425 { 7426 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 7427 7428 if (str != NULL) 7429 (void) strcpy(new, str); 7430 7431 return (new); 7432 } 7433 7434 #define DTRACE_ISALPHA(c) \ 7435 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 7436 7437 static int 7438 dtrace_badname(const char *s) 7439 { 7440 char c; 7441 7442 if (s == NULL || (c = *s++) == '\0') 7443 return (0); 7444 7445 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 7446 return (1); 7447 7448 while ((c = *s++) != '\0') { 7449 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 7450 c != '-' && c != '_' && c != '.' && c != '`') 7451 return (1); 7452 } 7453 7454 return (0); 7455 } 7456 7457 static void 7458 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 7459 { 7460 uint32_t priv; 7461 7462 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 7463 /* 7464 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 7465 */ 7466 priv = DTRACE_PRIV_ALL; 7467 } else { 7468 *uidp = crgetuid(cr); 7469 *zoneidp = crgetzonedid(cr); 7470 7471 priv = 0; 7472 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 7473 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 7474 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 7475 priv |= DTRACE_PRIV_USER; 7476 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 7477 priv |= DTRACE_PRIV_PROC; 7478 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 7479 priv |= DTRACE_PRIV_OWNER; 7480 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 7481 priv |= DTRACE_PRIV_ZONEOWNER; 7482 } 7483 7484 *privp = priv; 7485 } 7486 7487 #ifdef DTRACE_ERRDEBUG 7488 static void 7489 dtrace_errdebug(const char *str) 7490 { 7491 int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ; 7492 int occupied = 0; 7493 7494 mutex_enter(&dtrace_errlock); 7495 dtrace_errlast = str; 7496 dtrace_errthread = curthread; 7497 7498 while (occupied++ < DTRACE_ERRHASHSZ) { 7499 if (dtrace_errhash[hval].dter_msg == str) { 7500 dtrace_errhash[hval].dter_count++; 7501 goto out; 7502 } 7503 7504 if (dtrace_errhash[hval].dter_msg != NULL) { 7505 hval = (hval + 1) % DTRACE_ERRHASHSZ; 7506 continue; 7507 } 7508 7509 dtrace_errhash[hval].dter_msg = str; 7510 dtrace_errhash[hval].dter_count = 1; 7511 goto out; 7512 } 7513 7514 panic("dtrace: undersized error hash"); 7515 out: 7516 mutex_exit(&dtrace_errlock); 7517 } 7518 #endif 7519 7520 /* 7521 * DTrace Matching Functions 7522 * 7523 * These functions are used to match groups of probes, given some elements of 7524 * a probe tuple, or some globbed expressions for elements of a probe tuple. 7525 */ 7526 static int 7527 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 7528 zoneid_t zoneid) 7529 { 7530 if (priv != DTRACE_PRIV_ALL) { 7531 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 7532 uint32_t match = priv & ppriv; 7533 7534 /* 7535 * No PRIV_DTRACE_* privileges... 7536 */ 7537 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 7538 DTRACE_PRIV_KERNEL)) == 0) 7539 return (0); 7540 7541 /* 7542 * No matching bits, but there were bits to match... 7543 */ 7544 if (match == 0 && ppriv != 0) 7545 return (0); 7546 7547 /* 7548 * Need to have permissions to the process, but don't... 7549 */ 7550 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 7551 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 7552 return (0); 7553 } 7554 7555 /* 7556 * Need to be in the same zone unless we possess the 7557 * privilege to examine all zones. 7558 */ 7559 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 7560 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 7561 return (0); 7562 } 7563 } 7564 7565 return (1); 7566 } 7567 7568 /* 7569 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 7570 * consists of input pattern strings and an ops-vector to evaluate them. 7571 * This function returns >0 for match, 0 for no match, and <0 for error. 7572 */ 7573 static int 7574 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 7575 uint32_t priv, uid_t uid, zoneid_t zoneid) 7576 { 7577 dtrace_provider_t *pvp = prp->dtpr_provider; 7578 int rv; 7579 7580 if (pvp->dtpv_defunct) 7581 return (0); 7582 7583 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 7584 return (rv); 7585 7586 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 7587 return (rv); 7588 7589 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 7590 return (rv); 7591 7592 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 7593 return (rv); 7594 7595 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 7596 return (0); 7597 7598 return (rv); 7599 } 7600 7601 /* 7602 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 7603 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 7604 * libc's version, the kernel version only applies to 8-bit ASCII strings. 7605 * In addition, all of the recursion cases except for '*' matching have been 7606 * unwound. For '*', we still implement recursive evaluation, but a depth 7607 * counter is maintained and matching is aborted if we recurse too deep. 7608 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 7609 */ 7610 static int 7611 dtrace_match_glob(const char *s, const char *p, int depth) 7612 { 7613 const char *olds; 7614 char s1, c; 7615 int gs; 7616 7617 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 7618 return (-1); 7619 7620 if (s == NULL) 7621 s = ""; /* treat NULL as empty string */ 7622 7623 top: 7624 olds = s; 7625 s1 = *s++; 7626 7627 if (p == NULL) 7628 return (0); 7629 7630 if ((c = *p++) == '\0') 7631 return (s1 == '\0'); 7632 7633 switch (c) { 7634 case '[': { 7635 int ok = 0, notflag = 0; 7636 char lc = '\0'; 7637 7638 if (s1 == '\0') 7639 return (0); 7640 7641 if (*p == '!') { 7642 notflag = 1; 7643 p++; 7644 } 7645 7646 if ((c = *p++) == '\0') 7647 return (0); 7648 7649 do { 7650 if (c == '-' && lc != '\0' && *p != ']') { 7651 if ((c = *p++) == '\0') 7652 return (0); 7653 if (c == '\\' && (c = *p++) == '\0') 7654 return (0); 7655 7656 if (notflag) { 7657 if (s1 < lc || s1 > c) 7658 ok++; 7659 else 7660 return (0); 7661 } else if (lc <= s1 && s1 <= c) 7662 ok++; 7663 7664 } else if (c == '\\' && (c = *p++) == '\0') 7665 return (0); 7666 7667 lc = c; /* save left-hand 'c' for next iteration */ 7668 7669 if (notflag) { 7670 if (s1 != c) 7671 ok++; 7672 else 7673 return (0); 7674 } else if (s1 == c) 7675 ok++; 7676 7677 if ((c = *p++) == '\0') 7678 return (0); 7679 7680 } while (c != ']'); 7681 7682 if (ok) 7683 goto top; 7684 7685 return (0); 7686 } 7687 7688 case '\\': 7689 if ((c = *p++) == '\0') 7690 return (0); 7691 /*FALLTHRU*/ 7692 7693 default: 7694 if (c != s1) 7695 return (0); 7696 /*FALLTHRU*/ 7697 7698 case '?': 7699 if (s1 != '\0') 7700 goto top; 7701 return (0); 7702 7703 case '*': 7704 while (*p == '*') 7705 p++; /* consecutive *'s are identical to a single one */ 7706 7707 if (*p == '\0') 7708 return (1); 7709 7710 for (s = olds; *s != '\0'; s++) { 7711 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 7712 return (gs); 7713 } 7714 7715 return (0); 7716 } 7717 } 7718 7719 /*ARGSUSED*/ 7720 static int 7721 dtrace_match_string(const char *s, const char *p, int depth) 7722 { 7723 return (s != NULL && strcmp(s, p) == 0); 7724 } 7725 7726 /*ARGSUSED*/ 7727 static int 7728 dtrace_match_nul(const char *s, const char *p, int depth) 7729 { 7730 return (1); /* always match the empty pattern */ 7731 } 7732 7733 /*ARGSUSED*/ 7734 static int 7735 dtrace_match_nonzero(const char *s, const char *p, int depth) 7736 { 7737 return (s != NULL && s[0] != '\0'); 7738 } 7739 7740 static int 7741 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 7742 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 7743 { 7744 dtrace_probe_t template, *probe; 7745 dtrace_hash_t *hash = NULL; 7746 int len, rc, best = INT_MAX, nmatched = 0; 7747 dtrace_id_t i; 7748 7749 ASSERT(MUTEX_HELD(&dtrace_lock)); 7750 7751 /* 7752 * If the probe ID is specified in the key, just lookup by ID and 7753 * invoke the match callback once if a matching probe is found. 7754 */ 7755 if (pkp->dtpk_id != DTRACE_IDNONE) { 7756 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 7757 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 7758 if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL) 7759 return (DTRACE_MATCH_FAIL); 7760 nmatched++; 7761 } 7762 return (nmatched); 7763 } 7764 7765 template.dtpr_mod = (char *)pkp->dtpk_mod; 7766 template.dtpr_func = (char *)pkp->dtpk_func; 7767 template.dtpr_name = (char *)pkp->dtpk_name; 7768 7769 /* 7770 * We want to find the most distinct of the module name, function 7771 * name, and name. So for each one that is not a glob pattern or 7772 * empty string, we perform a lookup in the corresponding hash and 7773 * use the hash table with the fewest collisions to do our search. 7774 */ 7775 if (pkp->dtpk_mmatch == &dtrace_match_string && 7776 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 7777 best = len; 7778 hash = dtrace_bymod; 7779 } 7780 7781 if (pkp->dtpk_fmatch == &dtrace_match_string && 7782 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 7783 best = len; 7784 hash = dtrace_byfunc; 7785 } 7786 7787 if (pkp->dtpk_nmatch == &dtrace_match_string && 7788 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 7789 best = len; 7790 hash = dtrace_byname; 7791 } 7792 7793 /* 7794 * If we did not select a hash table, iterate over every probe and 7795 * invoke our callback for each one that matches our input probe key. 7796 */ 7797 if (hash == NULL) { 7798 for (i = 0; i < dtrace_nprobes; i++) { 7799 if ((probe = dtrace_probes[i]) == NULL || 7800 dtrace_match_probe(probe, pkp, priv, uid, 7801 zoneid) <= 0) 7802 continue; 7803 7804 nmatched++; 7805 7806 if ((rc = (*matched)(probe, arg)) != 7807 DTRACE_MATCH_NEXT) { 7808 if (rc == DTRACE_MATCH_FAIL) 7809 return (DTRACE_MATCH_FAIL); 7810 break; 7811 } 7812 } 7813 7814 return (nmatched); 7815 } 7816 7817 /* 7818 * If we selected a hash table, iterate over each probe of the same key 7819 * name and invoke the callback for every probe that matches the other 7820 * attributes of our input probe key. 7821 */ 7822 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 7823 probe = *(DTRACE_HASHNEXT(hash, probe))) { 7824 7825 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 7826 continue; 7827 7828 nmatched++; 7829 7830 if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) { 7831 if (rc == DTRACE_MATCH_FAIL) 7832 return (DTRACE_MATCH_FAIL); 7833 break; 7834 } 7835 } 7836 7837 return (nmatched); 7838 } 7839 7840 /* 7841 * Return the function pointer dtrace_probecmp() should use to compare the 7842 * specified pattern with a string. For NULL or empty patterns, we select 7843 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 7844 * For non-empty non-glob strings, we use dtrace_match_string(). 7845 */ 7846 static dtrace_probekey_f * 7847 dtrace_probekey_func(const char *p) 7848 { 7849 char c; 7850 7851 if (p == NULL || *p == '\0') 7852 return (&dtrace_match_nul); 7853 7854 while ((c = *p++) != '\0') { 7855 if (c == '[' || c == '?' || c == '*' || c == '\\') 7856 return (&dtrace_match_glob); 7857 } 7858 7859 return (&dtrace_match_string); 7860 } 7861 7862 /* 7863 * Build a probe comparison key for use with dtrace_match_probe() from the 7864 * given probe description. By convention, a null key only matches anchored 7865 * probes: if each field is the empty string, reset dtpk_fmatch to 7866 * dtrace_match_nonzero(). 7867 */ 7868 static void 7869 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 7870 { 7871 pkp->dtpk_prov = pdp->dtpd_provider; 7872 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 7873 7874 pkp->dtpk_mod = pdp->dtpd_mod; 7875 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 7876 7877 pkp->dtpk_func = pdp->dtpd_func; 7878 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 7879 7880 pkp->dtpk_name = pdp->dtpd_name; 7881 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 7882 7883 pkp->dtpk_id = pdp->dtpd_id; 7884 7885 if (pkp->dtpk_id == DTRACE_IDNONE && 7886 pkp->dtpk_pmatch == &dtrace_match_nul && 7887 pkp->dtpk_mmatch == &dtrace_match_nul && 7888 pkp->dtpk_fmatch == &dtrace_match_nul && 7889 pkp->dtpk_nmatch == &dtrace_match_nul) 7890 pkp->dtpk_fmatch = &dtrace_match_nonzero; 7891 } 7892 7893 /* 7894 * DTrace Provider-to-Framework API Functions 7895 * 7896 * These functions implement much of the Provider-to-Framework API, as 7897 * described in <sys/dtrace.h>. The parts of the API not in this section are 7898 * the functions in the API for probe management (found below), and 7899 * dtrace_probe() itself (found above). 7900 */ 7901 7902 /* 7903 * Register the calling provider with the DTrace framework. This should 7904 * generally be called by DTrace providers in their attach(9E) entry point. 7905 */ 7906 int 7907 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 7908 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 7909 { 7910 dtrace_provider_t *provider; 7911 7912 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 7913 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7914 "arguments", name ? name : "<NULL>"); 7915 return (EINVAL); 7916 } 7917 7918 if (name[0] == '\0' || dtrace_badname(name)) { 7919 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7920 "provider name", name); 7921 return (EINVAL); 7922 } 7923 7924 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 7925 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 7926 pops->dtps_destroy == NULL || 7927 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 7928 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7929 "provider ops", name); 7930 return (EINVAL); 7931 } 7932 7933 if (dtrace_badattr(&pap->dtpa_provider) || 7934 dtrace_badattr(&pap->dtpa_mod) || 7935 dtrace_badattr(&pap->dtpa_func) || 7936 dtrace_badattr(&pap->dtpa_name) || 7937 dtrace_badattr(&pap->dtpa_args)) { 7938 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7939 "provider attributes", name); 7940 return (EINVAL); 7941 } 7942 7943 if (priv & ~DTRACE_PRIV_ALL) { 7944 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7945 "privilege attributes", name); 7946 return (EINVAL); 7947 } 7948 7949 if ((priv & DTRACE_PRIV_KERNEL) && 7950 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 7951 pops->dtps_mode == NULL) { 7952 cmn_err(CE_WARN, "failed to register provider '%s': need " 7953 "dtps_mode() op for given privilege attributes", name); 7954 return (EINVAL); 7955 } 7956 7957 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 7958 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 7959 (void) strcpy(provider->dtpv_name, name); 7960 7961 provider->dtpv_attr = *pap; 7962 provider->dtpv_priv.dtpp_flags = priv; 7963 if (cr != NULL) { 7964 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 7965 provider->dtpv_priv.dtpp_zoneid = crgetzonedid(cr); 7966 } 7967 provider->dtpv_pops = *pops; 7968 7969 if (pops->dtps_provide == NULL) { 7970 ASSERT(pops->dtps_provide_module != NULL); 7971 provider->dtpv_pops.dtps_provide = 7972 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop; 7973 } 7974 7975 if (pops->dtps_provide_module == NULL) { 7976 ASSERT(pops->dtps_provide != NULL); 7977 provider->dtpv_pops.dtps_provide_module = 7978 (void (*)(void *, struct modctl *))dtrace_nullop; 7979 } 7980 7981 if (pops->dtps_suspend == NULL) { 7982 ASSERT(pops->dtps_resume == NULL); 7983 provider->dtpv_pops.dtps_suspend = 7984 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 7985 provider->dtpv_pops.dtps_resume = 7986 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 7987 } 7988 7989 provider->dtpv_arg = arg; 7990 *idp = (dtrace_provider_id_t)provider; 7991 7992 if (pops == &dtrace_provider_ops) { 7993 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 7994 ASSERT(MUTEX_HELD(&dtrace_lock)); 7995 ASSERT(dtrace_anon.dta_enabling == NULL); 7996 7997 /* 7998 * We make sure that the DTrace provider is at the head of 7999 * the provider chain. 8000 */ 8001 provider->dtpv_next = dtrace_provider; 8002 dtrace_provider = provider; 8003 return (0); 8004 } 8005 8006 mutex_enter(&dtrace_provider_lock); 8007 mutex_enter(&dtrace_lock); 8008 8009 /* 8010 * If there is at least one provider registered, we'll add this 8011 * provider after the first provider. 8012 */ 8013 if (dtrace_provider != NULL) { 8014 provider->dtpv_next = dtrace_provider->dtpv_next; 8015 dtrace_provider->dtpv_next = provider; 8016 } else { 8017 dtrace_provider = provider; 8018 } 8019 8020 if (dtrace_retained != NULL) { 8021 dtrace_enabling_provide(provider); 8022 8023 /* 8024 * Now we need to call dtrace_enabling_matchall() -- which 8025 * will acquire cpu_lock and dtrace_lock. We therefore need 8026 * to drop all of our locks before calling into it... 8027 */ 8028 mutex_exit(&dtrace_lock); 8029 mutex_exit(&dtrace_provider_lock); 8030 dtrace_enabling_matchall(); 8031 8032 return (0); 8033 } 8034 8035 mutex_exit(&dtrace_lock); 8036 mutex_exit(&dtrace_provider_lock); 8037 8038 return (0); 8039 } 8040 8041 /* 8042 * Unregister the specified provider from the DTrace framework. This should 8043 * generally be called by DTrace providers in their detach(9E) entry point. 8044 */ 8045 int 8046 dtrace_unregister(dtrace_provider_id_t id) 8047 { 8048 dtrace_provider_t *old = (dtrace_provider_t *)id; 8049 dtrace_provider_t *prev = NULL; 8050 int i, self = 0, noreap = 0; 8051 dtrace_probe_t *probe, *first = NULL; 8052 8053 if (old->dtpv_pops.dtps_enable == 8054 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) { 8055 /* 8056 * If DTrace itself is the provider, we're called with locks 8057 * already held. 8058 */ 8059 ASSERT(old == dtrace_provider); 8060 ASSERT(dtrace_devi != NULL); 8061 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8062 ASSERT(MUTEX_HELD(&dtrace_lock)); 8063 self = 1; 8064 8065 if (dtrace_provider->dtpv_next != NULL) { 8066 /* 8067 * There's another provider here; return failure. 8068 */ 8069 return (EBUSY); 8070 } 8071 } else { 8072 mutex_enter(&dtrace_provider_lock); 8073 mutex_enter(&mod_lock); 8074 mutex_enter(&dtrace_lock); 8075 } 8076 8077 /* 8078 * If anyone has /dev/dtrace open, or if there are anonymous enabled 8079 * probes, we refuse to let providers slither away, unless this 8080 * provider has already been explicitly invalidated. 8081 */ 8082 if (!old->dtpv_defunct && 8083 (dtrace_opens || (dtrace_anon.dta_state != NULL && 8084 dtrace_anon.dta_state->dts_necbs > 0))) { 8085 if (!self) { 8086 mutex_exit(&dtrace_lock); 8087 mutex_exit(&mod_lock); 8088 mutex_exit(&dtrace_provider_lock); 8089 } 8090 return (EBUSY); 8091 } 8092 8093 /* 8094 * Attempt to destroy the probes associated with this provider. 8095 */ 8096 for (i = 0; i < dtrace_nprobes; i++) { 8097 if ((probe = dtrace_probes[i]) == NULL) 8098 continue; 8099 8100 if (probe->dtpr_provider != old) 8101 continue; 8102 8103 if (probe->dtpr_ecb == NULL) 8104 continue; 8105 8106 /* 8107 * If we are trying to unregister a defunct provider, and the 8108 * provider was made defunct within the interval dictated by 8109 * dtrace_unregister_defunct_reap, we'll (asynchronously) 8110 * attempt to reap our enablings. To denote that the provider 8111 * should reattempt to unregister itself at some point in the 8112 * future, we will return a differentiable error code (EAGAIN 8113 * instead of EBUSY) in this case. 8114 */ 8115 if (dtrace_gethrtime() - old->dtpv_defunct > 8116 dtrace_unregister_defunct_reap) 8117 noreap = 1; 8118 8119 if (!self) { 8120 mutex_exit(&dtrace_lock); 8121 mutex_exit(&mod_lock); 8122 mutex_exit(&dtrace_provider_lock); 8123 } 8124 8125 if (noreap) 8126 return (EBUSY); 8127 8128 (void) taskq_dispatch(dtrace_taskq, 8129 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP); 8130 8131 return (EAGAIN); 8132 } 8133 8134 /* 8135 * All of the probes for this provider are disabled; we can safely 8136 * remove all of them from their hash chains and from the probe array. 8137 */ 8138 for (i = 0; i < dtrace_nprobes; i++) { 8139 if ((probe = dtrace_probes[i]) == NULL) 8140 continue; 8141 8142 if (probe->dtpr_provider != old) 8143 continue; 8144 8145 dtrace_probes[i] = NULL; 8146 8147 dtrace_hash_remove(dtrace_bymod, probe); 8148 dtrace_hash_remove(dtrace_byfunc, probe); 8149 dtrace_hash_remove(dtrace_byname, probe); 8150 8151 if (first == NULL) { 8152 first = probe; 8153 probe->dtpr_nextmod = NULL; 8154 } else { 8155 probe->dtpr_nextmod = first; 8156 first = probe; 8157 } 8158 } 8159 8160 /* 8161 * The provider's probes have been removed from the hash chains and 8162 * from the probe array. Now issue a dtrace_sync() to be sure that 8163 * everyone has cleared out from any probe array processing. 8164 */ 8165 dtrace_sync(); 8166 8167 for (probe = first; probe != NULL; probe = first) { 8168 first = probe->dtpr_nextmod; 8169 8170 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 8171 probe->dtpr_arg); 8172 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 8173 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 8174 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 8175 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 8176 kmem_free(probe, sizeof (dtrace_probe_t)); 8177 } 8178 8179 if ((prev = dtrace_provider) == old) { 8180 ASSERT(self || dtrace_devi == NULL); 8181 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 8182 dtrace_provider = old->dtpv_next; 8183 } else { 8184 while (prev != NULL && prev->dtpv_next != old) 8185 prev = prev->dtpv_next; 8186 8187 if (prev == NULL) { 8188 panic("attempt to unregister non-existent " 8189 "dtrace provider %p\n", (void *)id); 8190 } 8191 8192 prev->dtpv_next = old->dtpv_next; 8193 } 8194 8195 if (!self) { 8196 mutex_exit(&dtrace_lock); 8197 mutex_exit(&mod_lock); 8198 mutex_exit(&dtrace_provider_lock); 8199 } 8200 8201 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 8202 kmem_free(old, sizeof (dtrace_provider_t)); 8203 8204 return (0); 8205 } 8206 8207 /* 8208 * Invalidate the specified provider. All subsequent probe lookups for the 8209 * specified provider will fail, but its probes will not be removed. 8210 */ 8211 void 8212 dtrace_invalidate(dtrace_provider_id_t id) 8213 { 8214 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 8215 8216 ASSERT(pvp->dtpv_pops.dtps_enable != 8217 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); 8218 8219 mutex_enter(&dtrace_provider_lock); 8220 mutex_enter(&dtrace_lock); 8221 8222 pvp->dtpv_defunct = dtrace_gethrtime(); 8223 8224 mutex_exit(&dtrace_lock); 8225 mutex_exit(&dtrace_provider_lock); 8226 } 8227 8228 /* 8229 * Indicate whether or not DTrace has attached. 8230 */ 8231 int 8232 dtrace_attached(void) 8233 { 8234 /* 8235 * dtrace_provider will be non-NULL iff the DTrace driver has 8236 * attached. (It's non-NULL because DTrace is always itself a 8237 * provider.) 8238 */ 8239 return (dtrace_provider != NULL); 8240 } 8241 8242 /* 8243 * Remove all the unenabled probes for the given provider. This function is 8244 * not unlike dtrace_unregister(), except that it doesn't remove the provider 8245 * -- just as many of its associated probes as it can. 8246 */ 8247 int 8248 dtrace_condense(dtrace_provider_id_t id) 8249 { 8250 dtrace_provider_t *prov = (dtrace_provider_t *)id; 8251 int i; 8252 dtrace_probe_t *probe; 8253 8254 /* 8255 * Make sure this isn't the dtrace provider itself. 8256 */ 8257 ASSERT(prov->dtpv_pops.dtps_enable != 8258 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); 8259 8260 mutex_enter(&dtrace_provider_lock); 8261 mutex_enter(&dtrace_lock); 8262 8263 /* 8264 * Attempt to destroy the probes associated with this provider. 8265 */ 8266 for (i = 0; i < dtrace_nprobes; i++) { 8267 if ((probe = dtrace_probes[i]) == NULL) 8268 continue; 8269 8270 if (probe->dtpr_provider != prov) 8271 continue; 8272 8273 if (probe->dtpr_ecb != NULL) 8274 continue; 8275 8276 dtrace_probes[i] = NULL; 8277 8278 dtrace_hash_remove(dtrace_bymod, probe); 8279 dtrace_hash_remove(dtrace_byfunc, probe); 8280 dtrace_hash_remove(dtrace_byname, probe); 8281 8282 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 8283 probe->dtpr_arg); 8284 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 8285 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 8286 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 8287 kmem_free(probe, sizeof (dtrace_probe_t)); 8288 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 8289 } 8290 8291 mutex_exit(&dtrace_lock); 8292 mutex_exit(&dtrace_provider_lock); 8293 8294 return (0); 8295 } 8296 8297 /* 8298 * DTrace Probe Management Functions 8299 * 8300 * The functions in this section perform the DTrace probe management, 8301 * including functions to create probes, look-up probes, and call into the 8302 * providers to request that probes be provided. Some of these functions are 8303 * in the Provider-to-Framework API; these functions can be identified by the 8304 * fact that they are not declared "static". 8305 */ 8306 8307 /* 8308 * Create a probe with the specified module name, function name, and name. 8309 */ 8310 dtrace_id_t 8311 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 8312 const char *func, const char *name, int aframes, void *arg) 8313 { 8314 dtrace_probe_t *probe, **probes; 8315 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 8316 dtrace_id_t id; 8317 8318 if (provider == dtrace_provider) { 8319 ASSERT(MUTEX_HELD(&dtrace_lock)); 8320 } else { 8321 mutex_enter(&dtrace_lock); 8322 } 8323 8324 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 8325 VM_BESTFIT | VM_SLEEP); 8326 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 8327 8328 probe->dtpr_id = id; 8329 probe->dtpr_gen = dtrace_probegen++; 8330 probe->dtpr_mod = dtrace_strdup(mod); 8331 probe->dtpr_func = dtrace_strdup(func); 8332 probe->dtpr_name = dtrace_strdup(name); 8333 probe->dtpr_arg = arg; 8334 probe->dtpr_aframes = aframes; 8335 probe->dtpr_provider = provider; 8336 8337 dtrace_hash_add(dtrace_bymod, probe); 8338 dtrace_hash_add(dtrace_byfunc, probe); 8339 dtrace_hash_add(dtrace_byname, probe); 8340 8341 if (id - 1 >= dtrace_nprobes) { 8342 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 8343 size_t nsize = osize << 1; 8344 8345 if (nsize == 0) { 8346 ASSERT(osize == 0); 8347 ASSERT(dtrace_probes == NULL); 8348 nsize = sizeof (dtrace_probe_t *); 8349 } 8350 8351 probes = kmem_zalloc(nsize, KM_SLEEP); 8352 8353 if (dtrace_probes == NULL) { 8354 ASSERT(osize == 0); 8355 dtrace_probes = probes; 8356 dtrace_nprobes = 1; 8357 } else { 8358 dtrace_probe_t **oprobes = dtrace_probes; 8359 8360 bcopy(oprobes, probes, osize); 8361 dtrace_membar_producer(); 8362 dtrace_probes = probes; 8363 8364 dtrace_sync(); 8365 8366 /* 8367 * All CPUs are now seeing the new probes array; we can 8368 * safely free the old array. 8369 */ 8370 kmem_free(oprobes, osize); 8371 dtrace_nprobes <<= 1; 8372 } 8373 8374 ASSERT(id - 1 < dtrace_nprobes); 8375 } 8376 8377 ASSERT(dtrace_probes[id - 1] == NULL); 8378 dtrace_probes[id - 1] = probe; 8379 8380 if (provider != dtrace_provider) 8381 mutex_exit(&dtrace_lock); 8382 8383 return (id); 8384 } 8385 8386 static dtrace_probe_t * 8387 dtrace_probe_lookup_id(dtrace_id_t id) 8388 { 8389 ASSERT(MUTEX_HELD(&dtrace_lock)); 8390 8391 if (id == 0 || id > dtrace_nprobes) 8392 return (NULL); 8393 8394 return (dtrace_probes[id - 1]); 8395 } 8396 8397 static int 8398 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 8399 { 8400 *((dtrace_id_t *)arg) = probe->dtpr_id; 8401 8402 return (DTRACE_MATCH_DONE); 8403 } 8404 8405 /* 8406 * Look up a probe based on provider and one or more of module name, function 8407 * name and probe name. 8408 */ 8409 dtrace_id_t 8410 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod, 8411 const char *func, const char *name) 8412 { 8413 dtrace_probekey_t pkey; 8414 dtrace_id_t id; 8415 int match; 8416 8417 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 8418 pkey.dtpk_pmatch = &dtrace_match_string; 8419 pkey.dtpk_mod = mod; 8420 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 8421 pkey.dtpk_func = func; 8422 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 8423 pkey.dtpk_name = name; 8424 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 8425 pkey.dtpk_id = DTRACE_IDNONE; 8426 8427 mutex_enter(&dtrace_lock); 8428 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 8429 dtrace_probe_lookup_match, &id); 8430 mutex_exit(&dtrace_lock); 8431 8432 ASSERT(match == 1 || match == 0); 8433 return (match ? id : 0); 8434 } 8435 8436 /* 8437 * Returns the probe argument associated with the specified probe. 8438 */ 8439 void * 8440 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 8441 { 8442 dtrace_probe_t *probe; 8443 void *rval = NULL; 8444 8445 mutex_enter(&dtrace_lock); 8446 8447 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 8448 probe->dtpr_provider == (dtrace_provider_t *)id) 8449 rval = probe->dtpr_arg; 8450 8451 mutex_exit(&dtrace_lock); 8452 8453 return (rval); 8454 } 8455 8456 /* 8457 * Copy a probe into a probe description. 8458 */ 8459 static void 8460 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 8461 { 8462 bzero(pdp, sizeof (dtrace_probedesc_t)); 8463 pdp->dtpd_id = prp->dtpr_id; 8464 8465 (void) strncpy(pdp->dtpd_provider, 8466 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 8467 8468 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 8469 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 8470 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 8471 } 8472 8473 /* 8474 * Called to indicate that a probe -- or probes -- should be provided by a 8475 * specfied provider. If the specified description is NULL, the provider will 8476 * be told to provide all of its probes. (This is done whenever a new 8477 * consumer comes along, or whenever a retained enabling is to be matched.) If 8478 * the specified description is non-NULL, the provider is given the 8479 * opportunity to dynamically provide the specified probe, allowing providers 8480 * to support the creation of probes on-the-fly. (So-called _autocreated_ 8481 * probes.) If the provider is NULL, the operations will be applied to all 8482 * providers; if the provider is non-NULL the operations will only be applied 8483 * to the specified provider. The dtrace_provider_lock must be held, and the 8484 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 8485 * will need to grab the dtrace_lock when it reenters the framework through 8486 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 8487 */ 8488 static void 8489 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 8490 { 8491 struct modctl *ctl; 8492 int all = 0; 8493 8494 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8495 8496 if (prv == NULL) { 8497 all = 1; 8498 prv = dtrace_provider; 8499 } 8500 8501 do { 8502 /* 8503 * First, call the blanket provide operation. 8504 */ 8505 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 8506 8507 /* 8508 * Now call the per-module provide operation. We will grab 8509 * mod_lock to prevent the list from being modified. Note 8510 * that this also prevents the mod_busy bits from changing. 8511 * (mod_busy can only be changed with mod_lock held.) 8512 */ 8513 mutex_enter(&mod_lock); 8514 8515 ctl = &modules; 8516 do { 8517 if (ctl->mod_busy || ctl->mod_mp == NULL) 8518 continue; 8519 8520 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 8521 8522 } while ((ctl = ctl->mod_next) != &modules); 8523 8524 mutex_exit(&mod_lock); 8525 } while (all && (prv = prv->dtpv_next) != NULL); 8526 } 8527 8528 /* 8529 * Iterate over each probe, and call the Framework-to-Provider API function 8530 * denoted by offs. 8531 */ 8532 static void 8533 dtrace_probe_foreach(uintptr_t offs) 8534 { 8535 dtrace_provider_t *prov; 8536 void (*func)(void *, dtrace_id_t, void *); 8537 dtrace_probe_t *probe; 8538 dtrace_icookie_t cookie; 8539 int i; 8540 8541 /* 8542 * We disable interrupts to walk through the probe array. This is 8543 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 8544 * won't see stale data. 8545 */ 8546 cookie = dtrace_interrupt_disable(); 8547 8548 for (i = 0; i < dtrace_nprobes; i++) { 8549 if ((probe = dtrace_probes[i]) == NULL) 8550 continue; 8551 8552 if (probe->dtpr_ecb == NULL) { 8553 /* 8554 * This probe isn't enabled -- don't call the function. 8555 */ 8556 continue; 8557 } 8558 8559 prov = probe->dtpr_provider; 8560 func = *((void(**)(void *, dtrace_id_t, void *)) 8561 ((uintptr_t)&prov->dtpv_pops + offs)); 8562 8563 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 8564 } 8565 8566 dtrace_interrupt_enable(cookie); 8567 } 8568 8569 static int 8570 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 8571 { 8572 dtrace_probekey_t pkey; 8573 uint32_t priv; 8574 uid_t uid; 8575 zoneid_t zoneid; 8576 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 8577 8578 ASSERT(MUTEX_HELD(&dtrace_lock)); 8579 dtrace_ecb_create_cache = NULL; 8580 8581 if (desc == NULL) { 8582 /* 8583 * If we're passed a NULL description, we're being asked to 8584 * create an ECB with a NULL probe. 8585 */ 8586 (void) dtrace_ecb_create_enable(NULL, enab); 8587 return (0); 8588 } 8589 8590 dtrace_probekey(desc, &pkey); 8591 dtrace_cred2priv(state->dts_cred.dcr_cred, &priv, &uid, &zoneid); 8592 8593 if ((priv & DTRACE_PRIV_ZONEOWNER) && 8594 state->dts_options[DTRACEOPT_ZONE] != DTRACEOPT_UNSET) { 8595 /* 8596 * If we have the privilege of instrumenting all zones but we 8597 * have been told to instrument but one, we will spoof this up 8598 * depriving ourselves of DTRACE_PRIV_ZONEOWNER for purposes 8599 * of dtrace_match(). (Note that DTRACEOPT_ZONE is not for 8600 * security but rather for performance: it allows the global 8601 * zone to instrument USDT probes in a local zone without 8602 * requiring all zones to be instrumented.) 8603 */ 8604 priv &= ~DTRACE_PRIV_ZONEOWNER; 8605 zoneid = state->dts_options[DTRACEOPT_ZONE]; 8606 } 8607 8608 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 8609 enab)); 8610 } 8611 8612 /* 8613 * DTrace Helper Provider Functions 8614 */ 8615 static void 8616 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 8617 { 8618 attr->dtat_name = DOF_ATTR_NAME(dofattr); 8619 attr->dtat_data = DOF_ATTR_DATA(dofattr); 8620 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 8621 } 8622 8623 static void 8624 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 8625 const dof_provider_t *dofprov, char *strtab) 8626 { 8627 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 8628 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 8629 dofprov->dofpv_provattr); 8630 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 8631 dofprov->dofpv_modattr); 8632 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 8633 dofprov->dofpv_funcattr); 8634 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 8635 dofprov->dofpv_nameattr); 8636 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 8637 dofprov->dofpv_argsattr); 8638 } 8639 8640 static void 8641 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 8642 { 8643 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8644 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8645 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 8646 dof_provider_t *provider; 8647 dof_probe_t *probe; 8648 uint32_t *off, *enoff; 8649 uint8_t *arg; 8650 char *strtab; 8651 uint_t i, nprobes; 8652 dtrace_helper_provdesc_t dhpv; 8653 dtrace_helper_probedesc_t dhpb; 8654 dtrace_meta_t *meta = dtrace_meta_pid; 8655 dtrace_mops_t *mops = &meta->dtm_mops; 8656 void *parg; 8657 8658 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 8659 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8660 provider->dofpv_strtab * dof->dofh_secsize); 8661 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8662 provider->dofpv_probes * dof->dofh_secsize); 8663 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8664 provider->dofpv_prargs * dof->dofh_secsize); 8665 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8666 provider->dofpv_proffs * dof->dofh_secsize); 8667 8668 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 8669 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 8670 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 8671 enoff = NULL; 8672 8673 /* 8674 * See dtrace_helper_provider_validate(). 8675 */ 8676 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 8677 provider->dofpv_prenoffs != DOF_SECT_NONE) { 8678 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8679 provider->dofpv_prenoffs * dof->dofh_secsize); 8680 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 8681 } 8682 8683 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 8684 8685 /* 8686 * Create the provider. 8687 */ 8688 dtrace_dofprov2hprov(&dhpv, provider, strtab); 8689 8690 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 8691 return; 8692 8693 meta->dtm_count++; 8694 8695 /* 8696 * Create the probes. 8697 */ 8698 for (i = 0; i < nprobes; i++) { 8699 probe = (dof_probe_t *)(uintptr_t)(daddr + 8700 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 8701 8702 dhpb.dthpb_mod = dhp->dofhp_mod; 8703 dhpb.dthpb_func = strtab + probe->dofpr_func; 8704 dhpb.dthpb_name = strtab + probe->dofpr_name; 8705 dhpb.dthpb_base = probe->dofpr_addr; 8706 dhpb.dthpb_offs = off + probe->dofpr_offidx; 8707 dhpb.dthpb_noffs = probe->dofpr_noffs; 8708 if (enoff != NULL) { 8709 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 8710 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 8711 } else { 8712 dhpb.dthpb_enoffs = NULL; 8713 dhpb.dthpb_nenoffs = 0; 8714 } 8715 dhpb.dthpb_args = arg + probe->dofpr_argidx; 8716 dhpb.dthpb_nargc = probe->dofpr_nargc; 8717 dhpb.dthpb_xargc = probe->dofpr_xargc; 8718 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 8719 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 8720 8721 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 8722 } 8723 } 8724 8725 static void 8726 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 8727 { 8728 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8729 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8730 int i; 8731 8732 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 8733 8734 for (i = 0; i < dof->dofh_secnum; i++) { 8735 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 8736 dof->dofh_secoff + i * dof->dofh_secsize); 8737 8738 if (sec->dofs_type != DOF_SECT_PROVIDER) 8739 continue; 8740 8741 dtrace_helper_provide_one(dhp, sec, pid); 8742 } 8743 8744 /* 8745 * We may have just created probes, so we must now rematch against 8746 * any retained enablings. Note that this call will acquire both 8747 * cpu_lock and dtrace_lock; the fact that we are holding 8748 * dtrace_meta_lock now is what defines the ordering with respect to 8749 * these three locks. 8750 */ 8751 dtrace_enabling_matchall(); 8752 } 8753 8754 static void 8755 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 8756 { 8757 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8758 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8759 dof_sec_t *str_sec; 8760 dof_provider_t *provider; 8761 char *strtab; 8762 dtrace_helper_provdesc_t dhpv; 8763 dtrace_meta_t *meta = dtrace_meta_pid; 8764 dtrace_mops_t *mops = &meta->dtm_mops; 8765 8766 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 8767 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8768 provider->dofpv_strtab * dof->dofh_secsize); 8769 8770 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 8771 8772 /* 8773 * Create the provider. 8774 */ 8775 dtrace_dofprov2hprov(&dhpv, provider, strtab); 8776 8777 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 8778 8779 meta->dtm_count--; 8780 } 8781 8782 static void 8783 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 8784 { 8785 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8786 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8787 int i; 8788 8789 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 8790 8791 for (i = 0; i < dof->dofh_secnum; i++) { 8792 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 8793 dof->dofh_secoff + i * dof->dofh_secsize); 8794 8795 if (sec->dofs_type != DOF_SECT_PROVIDER) 8796 continue; 8797 8798 dtrace_helper_provider_remove_one(dhp, sec, pid); 8799 } 8800 } 8801 8802 /* 8803 * DTrace Meta Provider-to-Framework API Functions 8804 * 8805 * These functions implement the Meta Provider-to-Framework API, as described 8806 * in <sys/dtrace.h>. 8807 */ 8808 int 8809 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 8810 dtrace_meta_provider_id_t *idp) 8811 { 8812 dtrace_meta_t *meta; 8813 dtrace_helpers_t *help, *next; 8814 int i; 8815 8816 *idp = DTRACE_METAPROVNONE; 8817 8818 /* 8819 * We strictly don't need the name, but we hold onto it for 8820 * debuggability. All hail error queues! 8821 */ 8822 if (name == NULL) { 8823 cmn_err(CE_WARN, "failed to register meta-provider: " 8824 "invalid name"); 8825 return (EINVAL); 8826 } 8827 8828 if (mops == NULL || 8829 mops->dtms_create_probe == NULL || 8830 mops->dtms_provide_pid == NULL || 8831 mops->dtms_remove_pid == NULL) { 8832 cmn_err(CE_WARN, "failed to register meta-register %s: " 8833 "invalid ops", name); 8834 return (EINVAL); 8835 } 8836 8837 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 8838 meta->dtm_mops = *mops; 8839 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 8840 (void) strcpy(meta->dtm_name, name); 8841 meta->dtm_arg = arg; 8842 8843 mutex_enter(&dtrace_meta_lock); 8844 mutex_enter(&dtrace_lock); 8845 8846 if (dtrace_meta_pid != NULL) { 8847 mutex_exit(&dtrace_lock); 8848 mutex_exit(&dtrace_meta_lock); 8849 cmn_err(CE_WARN, "failed to register meta-register %s: " 8850 "user-land meta-provider exists", name); 8851 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 8852 kmem_free(meta, sizeof (dtrace_meta_t)); 8853 return (EINVAL); 8854 } 8855 8856 dtrace_meta_pid = meta; 8857 *idp = (dtrace_meta_provider_id_t)meta; 8858 8859 /* 8860 * If there are providers and probes ready to go, pass them 8861 * off to the new meta provider now. 8862 */ 8863 8864 help = dtrace_deferred_pid; 8865 dtrace_deferred_pid = NULL; 8866 8867 mutex_exit(&dtrace_lock); 8868 8869 while (help != NULL) { 8870 for (i = 0; i < help->dthps_nprovs; i++) { 8871 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 8872 help->dthps_pid); 8873 } 8874 8875 next = help->dthps_next; 8876 help->dthps_next = NULL; 8877 help->dthps_prev = NULL; 8878 help->dthps_deferred = 0; 8879 help = next; 8880 } 8881 8882 mutex_exit(&dtrace_meta_lock); 8883 8884 return (0); 8885 } 8886 8887 int 8888 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 8889 { 8890 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 8891 8892 mutex_enter(&dtrace_meta_lock); 8893 mutex_enter(&dtrace_lock); 8894 8895 if (old == dtrace_meta_pid) { 8896 pp = &dtrace_meta_pid; 8897 } else { 8898 panic("attempt to unregister non-existent " 8899 "dtrace meta-provider %p\n", (void *)old); 8900 } 8901 8902 if (old->dtm_count != 0) { 8903 mutex_exit(&dtrace_lock); 8904 mutex_exit(&dtrace_meta_lock); 8905 return (EBUSY); 8906 } 8907 8908 *pp = NULL; 8909 8910 mutex_exit(&dtrace_lock); 8911 mutex_exit(&dtrace_meta_lock); 8912 8913 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 8914 kmem_free(old, sizeof (dtrace_meta_t)); 8915 8916 return (0); 8917 } 8918 8919 8920 /* 8921 * DTrace DIF Object Functions 8922 */ 8923 static int 8924 dtrace_difo_err(uint_t pc, const char *format, ...) 8925 { 8926 if (dtrace_err_verbose) { 8927 va_list alist; 8928 8929 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 8930 va_start(alist, format); 8931 (void) vuprintf(format, alist); 8932 va_end(alist); 8933 } 8934 8935 #ifdef DTRACE_ERRDEBUG 8936 dtrace_errdebug(format); 8937 #endif 8938 return (1); 8939 } 8940 8941 /* 8942 * Validate a DTrace DIF object by checking the IR instructions. The following 8943 * rules are currently enforced by dtrace_difo_validate(): 8944 * 8945 * 1. Each instruction must have a valid opcode 8946 * 2. Each register, string, variable, or subroutine reference must be valid 8947 * 3. No instruction can modify register %r0 (must be zero) 8948 * 4. All instruction reserved bits must be set to zero 8949 * 5. The last instruction must be a "ret" instruction 8950 * 6. All branch targets must reference a valid instruction _after_ the branch 8951 */ 8952 static int 8953 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 8954 cred_t *cr) 8955 { 8956 int err = 0, i; 8957 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 8958 int kcheckload; 8959 uint_t pc; 8960 8961 kcheckload = cr == NULL || 8962 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 8963 8964 dp->dtdo_destructive = 0; 8965 8966 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 8967 dif_instr_t instr = dp->dtdo_buf[pc]; 8968 8969 uint_t r1 = DIF_INSTR_R1(instr); 8970 uint_t r2 = DIF_INSTR_R2(instr); 8971 uint_t rd = DIF_INSTR_RD(instr); 8972 uint_t rs = DIF_INSTR_RS(instr); 8973 uint_t label = DIF_INSTR_LABEL(instr); 8974 uint_t v = DIF_INSTR_VAR(instr); 8975 uint_t subr = DIF_INSTR_SUBR(instr); 8976 uint_t type = DIF_INSTR_TYPE(instr); 8977 uint_t op = DIF_INSTR_OP(instr); 8978 8979 switch (op) { 8980 case DIF_OP_OR: 8981 case DIF_OP_XOR: 8982 case DIF_OP_AND: 8983 case DIF_OP_SLL: 8984 case DIF_OP_SRL: 8985 case DIF_OP_SRA: 8986 case DIF_OP_SUB: 8987 case DIF_OP_ADD: 8988 case DIF_OP_MUL: 8989 case DIF_OP_SDIV: 8990 case DIF_OP_UDIV: 8991 case DIF_OP_SREM: 8992 case DIF_OP_UREM: 8993 case DIF_OP_COPYS: 8994 if (r1 >= nregs) 8995 err += efunc(pc, "invalid register %u\n", r1); 8996 if (r2 >= nregs) 8997 err += efunc(pc, "invalid register %u\n", r2); 8998 if (rd >= nregs) 8999 err += efunc(pc, "invalid register %u\n", rd); 9000 if (rd == 0) 9001 err += efunc(pc, "cannot write to %r0\n"); 9002 break; 9003 case DIF_OP_NOT: 9004 case DIF_OP_MOV: 9005 case DIF_OP_ALLOCS: 9006 if (r1 >= nregs) 9007 err += efunc(pc, "invalid register %u\n", r1); 9008 if (r2 != 0) 9009 err += efunc(pc, "non-zero reserved bits\n"); 9010 if (rd >= nregs) 9011 err += efunc(pc, "invalid register %u\n", rd); 9012 if (rd == 0) 9013 err += efunc(pc, "cannot write to %r0\n"); 9014 break; 9015 case DIF_OP_LDSB: 9016 case DIF_OP_LDSH: 9017 case DIF_OP_LDSW: 9018 case DIF_OP_LDUB: 9019 case DIF_OP_LDUH: 9020 case DIF_OP_LDUW: 9021 case DIF_OP_LDX: 9022 if (r1 >= nregs) 9023 err += efunc(pc, "invalid register %u\n", r1); 9024 if (r2 != 0) 9025 err += efunc(pc, "non-zero reserved bits\n"); 9026 if (rd >= nregs) 9027 err += efunc(pc, "invalid register %u\n", rd); 9028 if (rd == 0) 9029 err += efunc(pc, "cannot write to %r0\n"); 9030 if (kcheckload) 9031 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 9032 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 9033 break; 9034 case DIF_OP_RLDSB: 9035 case DIF_OP_RLDSH: 9036 case DIF_OP_RLDSW: 9037 case DIF_OP_RLDUB: 9038 case DIF_OP_RLDUH: 9039 case DIF_OP_RLDUW: 9040 case DIF_OP_RLDX: 9041 if (r1 >= nregs) 9042 err += efunc(pc, "invalid register %u\n", r1); 9043 if (r2 != 0) 9044 err += efunc(pc, "non-zero reserved bits\n"); 9045 if (rd >= nregs) 9046 err += efunc(pc, "invalid register %u\n", rd); 9047 if (rd == 0) 9048 err += efunc(pc, "cannot write to %r0\n"); 9049 break; 9050 case DIF_OP_ULDSB: 9051 case DIF_OP_ULDSH: 9052 case DIF_OP_ULDSW: 9053 case DIF_OP_ULDUB: 9054 case DIF_OP_ULDUH: 9055 case DIF_OP_ULDUW: 9056 case DIF_OP_ULDX: 9057 if (r1 >= nregs) 9058 err += efunc(pc, "invalid register %u\n", r1); 9059 if (r2 != 0) 9060 err += efunc(pc, "non-zero reserved bits\n"); 9061 if (rd >= nregs) 9062 err += efunc(pc, "invalid register %u\n", rd); 9063 if (rd == 0) 9064 err += efunc(pc, "cannot write to %r0\n"); 9065 break; 9066 case DIF_OP_STB: 9067 case DIF_OP_STH: 9068 case DIF_OP_STW: 9069 case DIF_OP_STX: 9070 if (r1 >= nregs) 9071 err += efunc(pc, "invalid register %u\n", r1); 9072 if (r2 != 0) 9073 err += efunc(pc, "non-zero reserved bits\n"); 9074 if (rd >= nregs) 9075 err += efunc(pc, "invalid register %u\n", rd); 9076 if (rd == 0) 9077 err += efunc(pc, "cannot write to 0 address\n"); 9078 break; 9079 case DIF_OP_CMP: 9080 case DIF_OP_SCMP: 9081 if (r1 >= nregs) 9082 err += efunc(pc, "invalid register %u\n", r1); 9083 if (r2 >= nregs) 9084 err += efunc(pc, "invalid register %u\n", r2); 9085 if (rd != 0) 9086 err += efunc(pc, "non-zero reserved bits\n"); 9087 break; 9088 case DIF_OP_TST: 9089 if (r1 >= nregs) 9090 err += efunc(pc, "invalid register %u\n", r1); 9091 if (r2 != 0 || rd != 0) 9092 err += efunc(pc, "non-zero reserved bits\n"); 9093 break; 9094 case DIF_OP_BA: 9095 case DIF_OP_BE: 9096 case DIF_OP_BNE: 9097 case DIF_OP_BG: 9098 case DIF_OP_BGU: 9099 case DIF_OP_BGE: 9100 case DIF_OP_BGEU: 9101 case DIF_OP_BL: 9102 case DIF_OP_BLU: 9103 case DIF_OP_BLE: 9104 case DIF_OP_BLEU: 9105 if (label >= dp->dtdo_len) { 9106 err += efunc(pc, "invalid branch target %u\n", 9107 label); 9108 } 9109 if (label <= pc) { 9110 err += efunc(pc, "backward branch to %u\n", 9111 label); 9112 } 9113 break; 9114 case DIF_OP_RET: 9115 if (r1 != 0 || r2 != 0) 9116 err += efunc(pc, "non-zero reserved bits\n"); 9117 if (rd >= nregs) 9118 err += efunc(pc, "invalid register %u\n", rd); 9119 break; 9120 case DIF_OP_NOP: 9121 case DIF_OP_POPTS: 9122 case DIF_OP_FLUSHTS: 9123 if (r1 != 0 || r2 != 0 || rd != 0) 9124 err += efunc(pc, "non-zero reserved bits\n"); 9125 break; 9126 case DIF_OP_SETX: 9127 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 9128 err += efunc(pc, "invalid integer ref %u\n", 9129 DIF_INSTR_INTEGER(instr)); 9130 } 9131 if (rd >= nregs) 9132 err += efunc(pc, "invalid register %u\n", rd); 9133 if (rd == 0) 9134 err += efunc(pc, "cannot write to %r0\n"); 9135 break; 9136 case DIF_OP_SETS: 9137 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 9138 err += efunc(pc, "invalid string ref %u\n", 9139 DIF_INSTR_STRING(instr)); 9140 } 9141 if (rd >= nregs) 9142 err += efunc(pc, "invalid register %u\n", rd); 9143 if (rd == 0) 9144 err += efunc(pc, "cannot write to %r0\n"); 9145 break; 9146 case DIF_OP_LDGA: 9147 case DIF_OP_LDTA: 9148 if (r1 > DIF_VAR_ARRAY_MAX) 9149 err += efunc(pc, "invalid array %u\n", r1); 9150 if (r2 >= nregs) 9151 err += efunc(pc, "invalid register %u\n", r2); 9152 if (rd >= nregs) 9153 err += efunc(pc, "invalid register %u\n", rd); 9154 if (rd == 0) 9155 err += efunc(pc, "cannot write to %r0\n"); 9156 break; 9157 case DIF_OP_LDGS: 9158 case DIF_OP_LDTS: 9159 case DIF_OP_LDLS: 9160 case DIF_OP_LDGAA: 9161 case DIF_OP_LDTAA: 9162 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 9163 err += efunc(pc, "invalid variable %u\n", v); 9164 if (rd >= nregs) 9165 err += efunc(pc, "invalid register %u\n", rd); 9166 if (rd == 0) 9167 err += efunc(pc, "cannot write to %r0\n"); 9168 break; 9169 case DIF_OP_STGS: 9170 case DIF_OP_STTS: 9171 case DIF_OP_STLS: 9172 case DIF_OP_STGAA: 9173 case DIF_OP_STTAA: 9174 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 9175 err += efunc(pc, "invalid variable %u\n", v); 9176 if (rs >= nregs) 9177 err += efunc(pc, "invalid register %u\n", rd); 9178 break; 9179 case DIF_OP_CALL: 9180 if (subr > DIF_SUBR_MAX) 9181 err += efunc(pc, "invalid subr %u\n", subr); 9182 if (rd >= nregs) 9183 err += efunc(pc, "invalid register %u\n", rd); 9184 if (rd == 0) 9185 err += efunc(pc, "cannot write to %r0\n"); 9186 9187 if (subr == DIF_SUBR_COPYOUT || 9188 subr == DIF_SUBR_COPYOUTSTR) { 9189 dp->dtdo_destructive = 1; 9190 } 9191 9192 if (subr == DIF_SUBR_GETF) { 9193 /* 9194 * If we have a getf() we need to record that 9195 * in our state. Note that our state can be 9196 * NULL if this is a helper -- but in that 9197 * case, the call to getf() is itself illegal, 9198 * and will be caught (slightly later) when 9199 * the helper is validated. 9200 */ 9201 if (vstate->dtvs_state != NULL) 9202 vstate->dtvs_state->dts_getf++; 9203 } 9204 9205 break; 9206 case DIF_OP_PUSHTR: 9207 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 9208 err += efunc(pc, "invalid ref type %u\n", type); 9209 if (r2 >= nregs) 9210 err += efunc(pc, "invalid register %u\n", r2); 9211 if (rs >= nregs) 9212 err += efunc(pc, "invalid register %u\n", rs); 9213 break; 9214 case DIF_OP_PUSHTV: 9215 if (type != DIF_TYPE_CTF) 9216 err += efunc(pc, "invalid val type %u\n", type); 9217 if (r2 >= nregs) 9218 err += efunc(pc, "invalid register %u\n", r2); 9219 if (rs >= nregs) 9220 err += efunc(pc, "invalid register %u\n", rs); 9221 break; 9222 default: 9223 err += efunc(pc, "invalid opcode %u\n", 9224 DIF_INSTR_OP(instr)); 9225 } 9226 } 9227 9228 if (dp->dtdo_len != 0 && 9229 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 9230 err += efunc(dp->dtdo_len - 1, 9231 "expected 'ret' as last DIF instruction\n"); 9232 } 9233 9234 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) { 9235 /* 9236 * If we're not returning by reference, the size must be either 9237 * 0 or the size of one of the base types. 9238 */ 9239 switch (dp->dtdo_rtype.dtdt_size) { 9240 case 0: 9241 case sizeof (uint8_t): 9242 case sizeof (uint16_t): 9243 case sizeof (uint32_t): 9244 case sizeof (uint64_t): 9245 break; 9246 9247 default: 9248 err += efunc(dp->dtdo_len - 1, "bad return size\n"); 9249 } 9250 } 9251 9252 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 9253 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 9254 dtrace_diftype_t *vt, *et; 9255 uint_t id, ndx; 9256 9257 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 9258 v->dtdv_scope != DIFV_SCOPE_THREAD && 9259 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 9260 err += efunc(i, "unrecognized variable scope %d\n", 9261 v->dtdv_scope); 9262 break; 9263 } 9264 9265 if (v->dtdv_kind != DIFV_KIND_ARRAY && 9266 v->dtdv_kind != DIFV_KIND_SCALAR) { 9267 err += efunc(i, "unrecognized variable type %d\n", 9268 v->dtdv_kind); 9269 break; 9270 } 9271 9272 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 9273 err += efunc(i, "%d exceeds variable id limit\n", id); 9274 break; 9275 } 9276 9277 if (id < DIF_VAR_OTHER_UBASE) 9278 continue; 9279 9280 /* 9281 * For user-defined variables, we need to check that this 9282 * definition is identical to any previous definition that we 9283 * encountered. 9284 */ 9285 ndx = id - DIF_VAR_OTHER_UBASE; 9286 9287 switch (v->dtdv_scope) { 9288 case DIFV_SCOPE_GLOBAL: 9289 if (ndx < vstate->dtvs_nglobals) { 9290 dtrace_statvar_t *svar; 9291 9292 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 9293 existing = &svar->dtsv_var; 9294 } 9295 9296 break; 9297 9298 case DIFV_SCOPE_THREAD: 9299 if (ndx < vstate->dtvs_ntlocals) 9300 existing = &vstate->dtvs_tlocals[ndx]; 9301 break; 9302 9303 case DIFV_SCOPE_LOCAL: 9304 if (ndx < vstate->dtvs_nlocals) { 9305 dtrace_statvar_t *svar; 9306 9307 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 9308 existing = &svar->dtsv_var; 9309 } 9310 9311 break; 9312 } 9313 9314 vt = &v->dtdv_type; 9315 9316 if (vt->dtdt_flags & DIF_TF_BYREF) { 9317 if (vt->dtdt_size == 0) { 9318 err += efunc(i, "zero-sized variable\n"); 9319 break; 9320 } 9321 9322 if (v->dtdv_scope == DIFV_SCOPE_GLOBAL && 9323 vt->dtdt_size > dtrace_global_maxsize) { 9324 err += efunc(i, "oversized by-ref global\n"); 9325 break; 9326 } 9327 } 9328 9329 if (existing == NULL || existing->dtdv_id == 0) 9330 continue; 9331 9332 ASSERT(existing->dtdv_id == v->dtdv_id); 9333 ASSERT(existing->dtdv_scope == v->dtdv_scope); 9334 9335 if (existing->dtdv_kind != v->dtdv_kind) 9336 err += efunc(i, "%d changed variable kind\n", id); 9337 9338 et = &existing->dtdv_type; 9339 9340 if (vt->dtdt_flags != et->dtdt_flags) { 9341 err += efunc(i, "%d changed variable type flags\n", id); 9342 break; 9343 } 9344 9345 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 9346 err += efunc(i, "%d changed variable type size\n", id); 9347 break; 9348 } 9349 } 9350 9351 return (err); 9352 } 9353 9354 /* 9355 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 9356 * are much more constrained than normal DIFOs. Specifically, they may 9357 * not: 9358 * 9359 * 1. Make calls to subroutines other than copyin(), copyinstr() or 9360 * miscellaneous string routines 9361 * 2. Access DTrace variables other than the args[] array, and the 9362 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 9363 * 3. Have thread-local variables. 9364 * 4. Have dynamic variables. 9365 */ 9366 static int 9367 dtrace_difo_validate_helper(dtrace_difo_t *dp) 9368 { 9369 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 9370 int err = 0; 9371 uint_t pc; 9372 9373 for (pc = 0; pc < dp->dtdo_len; pc++) { 9374 dif_instr_t instr = dp->dtdo_buf[pc]; 9375 9376 uint_t v = DIF_INSTR_VAR(instr); 9377 uint_t subr = DIF_INSTR_SUBR(instr); 9378 uint_t op = DIF_INSTR_OP(instr); 9379 9380 switch (op) { 9381 case DIF_OP_OR: 9382 case DIF_OP_XOR: 9383 case DIF_OP_AND: 9384 case DIF_OP_SLL: 9385 case DIF_OP_SRL: 9386 case DIF_OP_SRA: 9387 case DIF_OP_SUB: 9388 case DIF_OP_ADD: 9389 case DIF_OP_MUL: 9390 case DIF_OP_SDIV: 9391 case DIF_OP_UDIV: 9392 case DIF_OP_SREM: 9393 case DIF_OP_UREM: 9394 case DIF_OP_COPYS: 9395 case DIF_OP_NOT: 9396 case DIF_OP_MOV: 9397 case DIF_OP_RLDSB: 9398 case DIF_OP_RLDSH: 9399 case DIF_OP_RLDSW: 9400 case DIF_OP_RLDUB: 9401 case DIF_OP_RLDUH: 9402 case DIF_OP_RLDUW: 9403 case DIF_OP_RLDX: 9404 case DIF_OP_ULDSB: 9405 case DIF_OP_ULDSH: 9406 case DIF_OP_ULDSW: 9407 case DIF_OP_ULDUB: 9408 case DIF_OP_ULDUH: 9409 case DIF_OP_ULDUW: 9410 case DIF_OP_ULDX: 9411 case DIF_OP_STB: 9412 case DIF_OP_STH: 9413 case DIF_OP_STW: 9414 case DIF_OP_STX: 9415 case DIF_OP_ALLOCS: 9416 case DIF_OP_CMP: 9417 case DIF_OP_SCMP: 9418 case DIF_OP_TST: 9419 case DIF_OP_BA: 9420 case DIF_OP_BE: 9421 case DIF_OP_BNE: 9422 case DIF_OP_BG: 9423 case DIF_OP_BGU: 9424 case DIF_OP_BGE: 9425 case DIF_OP_BGEU: 9426 case DIF_OP_BL: 9427 case DIF_OP_BLU: 9428 case DIF_OP_BLE: 9429 case DIF_OP_BLEU: 9430 case DIF_OP_RET: 9431 case DIF_OP_NOP: 9432 case DIF_OP_POPTS: 9433 case DIF_OP_FLUSHTS: 9434 case DIF_OP_SETX: 9435 case DIF_OP_SETS: 9436 case DIF_OP_LDGA: 9437 case DIF_OP_LDLS: 9438 case DIF_OP_STGS: 9439 case DIF_OP_STLS: 9440 case DIF_OP_PUSHTR: 9441 case DIF_OP_PUSHTV: 9442 break; 9443 9444 case DIF_OP_LDGS: 9445 if (v >= DIF_VAR_OTHER_UBASE) 9446 break; 9447 9448 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 9449 break; 9450 9451 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 9452 v == DIF_VAR_PPID || v == DIF_VAR_TID || 9453 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 9454 v == DIF_VAR_UID || v == DIF_VAR_GID) 9455 break; 9456 9457 err += efunc(pc, "illegal variable %u\n", v); 9458 break; 9459 9460 case DIF_OP_LDTA: 9461 case DIF_OP_LDTS: 9462 case DIF_OP_LDGAA: 9463 case DIF_OP_LDTAA: 9464 err += efunc(pc, "illegal dynamic variable load\n"); 9465 break; 9466 9467 case DIF_OP_STTS: 9468 case DIF_OP_STGAA: 9469 case DIF_OP_STTAA: 9470 err += efunc(pc, "illegal dynamic variable store\n"); 9471 break; 9472 9473 case DIF_OP_CALL: 9474 if (subr == DIF_SUBR_ALLOCA || 9475 subr == DIF_SUBR_BCOPY || 9476 subr == DIF_SUBR_COPYIN || 9477 subr == DIF_SUBR_COPYINTO || 9478 subr == DIF_SUBR_COPYINSTR || 9479 subr == DIF_SUBR_INDEX || 9480 subr == DIF_SUBR_INET_NTOA || 9481 subr == DIF_SUBR_INET_NTOA6 || 9482 subr == DIF_SUBR_INET_NTOP || 9483 subr == DIF_SUBR_JSON || 9484 subr == DIF_SUBR_LLTOSTR || 9485 subr == DIF_SUBR_STRTOLL || 9486 subr == DIF_SUBR_RINDEX || 9487 subr == DIF_SUBR_STRCHR || 9488 subr == DIF_SUBR_STRJOIN || 9489 subr == DIF_SUBR_STRRCHR || 9490 subr == DIF_SUBR_STRSTR || 9491 subr == DIF_SUBR_HTONS || 9492 subr == DIF_SUBR_HTONL || 9493 subr == DIF_SUBR_HTONLL || 9494 subr == DIF_SUBR_NTOHS || 9495 subr == DIF_SUBR_NTOHL || 9496 subr == DIF_SUBR_NTOHLL) 9497 break; 9498 9499 err += efunc(pc, "invalid subr %u\n", subr); 9500 break; 9501 9502 default: 9503 err += efunc(pc, "invalid opcode %u\n", 9504 DIF_INSTR_OP(instr)); 9505 } 9506 } 9507 9508 return (err); 9509 } 9510 9511 /* 9512 * Returns 1 if the expression in the DIF object can be cached on a per-thread 9513 * basis; 0 if not. 9514 */ 9515 static int 9516 dtrace_difo_cacheable(dtrace_difo_t *dp) 9517 { 9518 int i; 9519 9520 if (dp == NULL) 9521 return (0); 9522 9523 for (i = 0; i < dp->dtdo_varlen; i++) { 9524 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9525 9526 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 9527 continue; 9528 9529 switch (v->dtdv_id) { 9530 case DIF_VAR_CURTHREAD: 9531 case DIF_VAR_PID: 9532 case DIF_VAR_TID: 9533 case DIF_VAR_EXECNAME: 9534 case DIF_VAR_ZONENAME: 9535 break; 9536 9537 default: 9538 return (0); 9539 } 9540 } 9541 9542 /* 9543 * This DIF object may be cacheable. Now we need to look for any 9544 * array loading instructions, any memory loading instructions, or 9545 * any stores to thread-local variables. 9546 */ 9547 for (i = 0; i < dp->dtdo_len; i++) { 9548 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 9549 9550 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 9551 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 9552 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 9553 op == DIF_OP_LDGA || op == DIF_OP_STTS) 9554 return (0); 9555 } 9556 9557 return (1); 9558 } 9559 9560 static void 9561 dtrace_difo_hold(dtrace_difo_t *dp) 9562 { 9563 int i; 9564 9565 ASSERT(MUTEX_HELD(&dtrace_lock)); 9566 9567 dp->dtdo_refcnt++; 9568 ASSERT(dp->dtdo_refcnt != 0); 9569 9570 /* 9571 * We need to check this DIF object for references to the variable 9572 * DIF_VAR_VTIMESTAMP. 9573 */ 9574 for (i = 0; i < dp->dtdo_varlen; i++) { 9575 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9576 9577 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 9578 continue; 9579 9580 if (dtrace_vtime_references++ == 0) 9581 dtrace_vtime_enable(); 9582 } 9583 } 9584 9585 /* 9586 * This routine calculates the dynamic variable chunksize for a given DIF 9587 * object. The calculation is not fool-proof, and can probably be tricked by 9588 * malicious DIF -- but it works for all compiler-generated DIF. Because this 9589 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 9590 * if a dynamic variable size exceeds the chunksize. 9591 */ 9592 static void 9593 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9594 { 9595 uint64_t sval; 9596 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 9597 const dif_instr_t *text = dp->dtdo_buf; 9598 uint_t pc, srd = 0; 9599 uint_t ttop = 0; 9600 size_t size, ksize; 9601 uint_t id, i; 9602 9603 for (pc = 0; pc < dp->dtdo_len; pc++) { 9604 dif_instr_t instr = text[pc]; 9605 uint_t op = DIF_INSTR_OP(instr); 9606 uint_t rd = DIF_INSTR_RD(instr); 9607 uint_t r1 = DIF_INSTR_R1(instr); 9608 uint_t nkeys = 0; 9609 uchar_t scope; 9610 9611 dtrace_key_t *key = tupregs; 9612 9613 switch (op) { 9614 case DIF_OP_SETX: 9615 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 9616 srd = rd; 9617 continue; 9618 9619 case DIF_OP_STTS: 9620 key = &tupregs[DIF_DTR_NREGS]; 9621 key[0].dttk_size = 0; 9622 key[1].dttk_size = 0; 9623 nkeys = 2; 9624 scope = DIFV_SCOPE_THREAD; 9625 break; 9626 9627 case DIF_OP_STGAA: 9628 case DIF_OP_STTAA: 9629 nkeys = ttop; 9630 9631 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 9632 key[nkeys++].dttk_size = 0; 9633 9634 key[nkeys++].dttk_size = 0; 9635 9636 if (op == DIF_OP_STTAA) { 9637 scope = DIFV_SCOPE_THREAD; 9638 } else { 9639 scope = DIFV_SCOPE_GLOBAL; 9640 } 9641 9642 break; 9643 9644 case DIF_OP_PUSHTR: 9645 if (ttop == DIF_DTR_NREGS) 9646 return; 9647 9648 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 9649 /* 9650 * If the register for the size of the "pushtr" 9651 * is %r0 (or the value is 0) and the type is 9652 * a string, we'll use the system-wide default 9653 * string size. 9654 */ 9655 tupregs[ttop++].dttk_size = 9656 dtrace_strsize_default; 9657 } else { 9658 if (srd == 0) 9659 return; 9660 9661 tupregs[ttop++].dttk_size = sval; 9662 } 9663 9664 break; 9665 9666 case DIF_OP_PUSHTV: 9667 if (ttop == DIF_DTR_NREGS) 9668 return; 9669 9670 tupregs[ttop++].dttk_size = 0; 9671 break; 9672 9673 case DIF_OP_FLUSHTS: 9674 ttop = 0; 9675 break; 9676 9677 case DIF_OP_POPTS: 9678 if (ttop != 0) 9679 ttop--; 9680 break; 9681 } 9682 9683 sval = 0; 9684 srd = 0; 9685 9686 if (nkeys == 0) 9687 continue; 9688 9689 /* 9690 * We have a dynamic variable allocation; calculate its size. 9691 */ 9692 for (ksize = 0, i = 0; i < nkeys; i++) 9693 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 9694 9695 size = sizeof (dtrace_dynvar_t); 9696 size += sizeof (dtrace_key_t) * (nkeys - 1); 9697 size += ksize; 9698 9699 /* 9700 * Now we need to determine the size of the stored data. 9701 */ 9702 id = DIF_INSTR_VAR(instr); 9703 9704 for (i = 0; i < dp->dtdo_varlen; i++) { 9705 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9706 9707 if (v->dtdv_id == id && v->dtdv_scope == scope) { 9708 size += v->dtdv_type.dtdt_size; 9709 break; 9710 } 9711 } 9712 9713 if (i == dp->dtdo_varlen) 9714 return; 9715 9716 /* 9717 * We have the size. If this is larger than the chunk size 9718 * for our dynamic variable state, reset the chunk size. 9719 */ 9720 size = P2ROUNDUP(size, sizeof (uint64_t)); 9721 9722 if (size > vstate->dtvs_dynvars.dtds_chunksize) 9723 vstate->dtvs_dynvars.dtds_chunksize = size; 9724 } 9725 } 9726 9727 static void 9728 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9729 { 9730 int i, oldsvars, osz, nsz, otlocals, ntlocals; 9731 uint_t id; 9732 9733 ASSERT(MUTEX_HELD(&dtrace_lock)); 9734 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 9735 9736 for (i = 0; i < dp->dtdo_varlen; i++) { 9737 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9738 dtrace_statvar_t *svar, ***svarp; 9739 size_t dsize = 0; 9740 uint8_t scope = v->dtdv_scope; 9741 int *np; 9742 9743 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 9744 continue; 9745 9746 id -= DIF_VAR_OTHER_UBASE; 9747 9748 switch (scope) { 9749 case DIFV_SCOPE_THREAD: 9750 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 9751 dtrace_difv_t *tlocals; 9752 9753 if ((ntlocals = (otlocals << 1)) == 0) 9754 ntlocals = 1; 9755 9756 osz = otlocals * sizeof (dtrace_difv_t); 9757 nsz = ntlocals * sizeof (dtrace_difv_t); 9758 9759 tlocals = kmem_zalloc(nsz, KM_SLEEP); 9760 9761 if (osz != 0) { 9762 bcopy(vstate->dtvs_tlocals, 9763 tlocals, osz); 9764 kmem_free(vstate->dtvs_tlocals, osz); 9765 } 9766 9767 vstate->dtvs_tlocals = tlocals; 9768 vstate->dtvs_ntlocals = ntlocals; 9769 } 9770 9771 vstate->dtvs_tlocals[id] = *v; 9772 continue; 9773 9774 case DIFV_SCOPE_LOCAL: 9775 np = &vstate->dtvs_nlocals; 9776 svarp = &vstate->dtvs_locals; 9777 9778 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 9779 dsize = NCPU * (v->dtdv_type.dtdt_size + 9780 sizeof (uint64_t)); 9781 else 9782 dsize = NCPU * sizeof (uint64_t); 9783 9784 break; 9785 9786 case DIFV_SCOPE_GLOBAL: 9787 np = &vstate->dtvs_nglobals; 9788 svarp = &vstate->dtvs_globals; 9789 9790 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 9791 dsize = v->dtdv_type.dtdt_size + 9792 sizeof (uint64_t); 9793 9794 break; 9795 9796 default: 9797 ASSERT(0); 9798 } 9799 9800 while (id >= (oldsvars = *np)) { 9801 dtrace_statvar_t **statics; 9802 int newsvars, oldsize, newsize; 9803 9804 if ((newsvars = (oldsvars << 1)) == 0) 9805 newsvars = 1; 9806 9807 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 9808 newsize = newsvars * sizeof (dtrace_statvar_t *); 9809 9810 statics = kmem_zalloc(newsize, KM_SLEEP); 9811 9812 if (oldsize != 0) { 9813 bcopy(*svarp, statics, oldsize); 9814 kmem_free(*svarp, oldsize); 9815 } 9816 9817 *svarp = statics; 9818 *np = newsvars; 9819 } 9820 9821 if ((svar = (*svarp)[id]) == NULL) { 9822 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 9823 svar->dtsv_var = *v; 9824 9825 if ((svar->dtsv_size = dsize) != 0) { 9826 svar->dtsv_data = (uint64_t)(uintptr_t) 9827 kmem_zalloc(dsize, KM_SLEEP); 9828 } 9829 9830 (*svarp)[id] = svar; 9831 } 9832 9833 svar->dtsv_refcnt++; 9834 } 9835 9836 dtrace_difo_chunksize(dp, vstate); 9837 dtrace_difo_hold(dp); 9838 } 9839 9840 static dtrace_difo_t * 9841 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9842 { 9843 dtrace_difo_t *new; 9844 size_t sz; 9845 9846 ASSERT(dp->dtdo_buf != NULL); 9847 ASSERT(dp->dtdo_refcnt != 0); 9848 9849 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 9850 9851 ASSERT(dp->dtdo_buf != NULL); 9852 sz = dp->dtdo_len * sizeof (dif_instr_t); 9853 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 9854 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 9855 new->dtdo_len = dp->dtdo_len; 9856 9857 if (dp->dtdo_strtab != NULL) { 9858 ASSERT(dp->dtdo_strlen != 0); 9859 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 9860 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 9861 new->dtdo_strlen = dp->dtdo_strlen; 9862 } 9863 9864 if (dp->dtdo_inttab != NULL) { 9865 ASSERT(dp->dtdo_intlen != 0); 9866 sz = dp->dtdo_intlen * sizeof (uint64_t); 9867 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 9868 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 9869 new->dtdo_intlen = dp->dtdo_intlen; 9870 } 9871 9872 if (dp->dtdo_vartab != NULL) { 9873 ASSERT(dp->dtdo_varlen != 0); 9874 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 9875 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 9876 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 9877 new->dtdo_varlen = dp->dtdo_varlen; 9878 } 9879 9880 dtrace_difo_init(new, vstate); 9881 return (new); 9882 } 9883 9884 static void 9885 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9886 { 9887 int i; 9888 9889 ASSERT(dp->dtdo_refcnt == 0); 9890 9891 for (i = 0; i < dp->dtdo_varlen; i++) { 9892 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9893 dtrace_statvar_t *svar, **svarp; 9894 uint_t id; 9895 uint8_t scope = v->dtdv_scope; 9896 int *np; 9897 9898 switch (scope) { 9899 case DIFV_SCOPE_THREAD: 9900 continue; 9901 9902 case DIFV_SCOPE_LOCAL: 9903 np = &vstate->dtvs_nlocals; 9904 svarp = vstate->dtvs_locals; 9905 break; 9906 9907 case DIFV_SCOPE_GLOBAL: 9908 np = &vstate->dtvs_nglobals; 9909 svarp = vstate->dtvs_globals; 9910 break; 9911 9912 default: 9913 ASSERT(0); 9914 } 9915 9916 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 9917 continue; 9918 9919 id -= DIF_VAR_OTHER_UBASE; 9920 ASSERT(id < *np); 9921 9922 svar = svarp[id]; 9923 ASSERT(svar != NULL); 9924 ASSERT(svar->dtsv_refcnt > 0); 9925 9926 if (--svar->dtsv_refcnt > 0) 9927 continue; 9928 9929 if (svar->dtsv_size != 0) { 9930 ASSERT(svar->dtsv_data != NULL); 9931 kmem_free((void *)(uintptr_t)svar->dtsv_data, 9932 svar->dtsv_size); 9933 } 9934 9935 kmem_free(svar, sizeof (dtrace_statvar_t)); 9936 svarp[id] = NULL; 9937 } 9938 9939 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 9940 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 9941 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 9942 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 9943 9944 kmem_free(dp, sizeof (dtrace_difo_t)); 9945 } 9946 9947 static void 9948 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9949 { 9950 int i; 9951 9952 ASSERT(MUTEX_HELD(&dtrace_lock)); 9953 ASSERT(dp->dtdo_refcnt != 0); 9954 9955 for (i = 0; i < dp->dtdo_varlen; i++) { 9956 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9957 9958 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 9959 continue; 9960 9961 ASSERT(dtrace_vtime_references > 0); 9962 if (--dtrace_vtime_references == 0) 9963 dtrace_vtime_disable(); 9964 } 9965 9966 if (--dp->dtdo_refcnt == 0) 9967 dtrace_difo_destroy(dp, vstate); 9968 } 9969 9970 /* 9971 * DTrace Format Functions 9972 */ 9973 static uint16_t 9974 dtrace_format_add(dtrace_state_t *state, char *str) 9975 { 9976 char *fmt, **new; 9977 uint16_t ndx, len = strlen(str) + 1; 9978 9979 fmt = kmem_zalloc(len, KM_SLEEP); 9980 bcopy(str, fmt, len); 9981 9982 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 9983 if (state->dts_formats[ndx] == NULL) { 9984 state->dts_formats[ndx] = fmt; 9985 return (ndx + 1); 9986 } 9987 } 9988 9989 if (state->dts_nformats == USHRT_MAX) { 9990 /* 9991 * This is only likely if a denial-of-service attack is being 9992 * attempted. As such, it's okay to fail silently here. 9993 */ 9994 kmem_free(fmt, len); 9995 return (0); 9996 } 9997 9998 /* 9999 * For simplicity, we always resize the formats array to be exactly the 10000 * number of formats. 10001 */ 10002 ndx = state->dts_nformats++; 10003 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 10004 10005 if (state->dts_formats != NULL) { 10006 ASSERT(ndx != 0); 10007 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 10008 kmem_free(state->dts_formats, ndx * sizeof (char *)); 10009 } 10010 10011 state->dts_formats = new; 10012 state->dts_formats[ndx] = fmt; 10013 10014 return (ndx + 1); 10015 } 10016 10017 static void 10018 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 10019 { 10020 char *fmt; 10021 10022 ASSERT(state->dts_formats != NULL); 10023 ASSERT(format <= state->dts_nformats); 10024 ASSERT(state->dts_formats[format - 1] != NULL); 10025 10026 fmt = state->dts_formats[format - 1]; 10027 kmem_free(fmt, strlen(fmt) + 1); 10028 state->dts_formats[format - 1] = NULL; 10029 } 10030 10031 static void 10032 dtrace_format_destroy(dtrace_state_t *state) 10033 { 10034 int i; 10035 10036 if (state->dts_nformats == 0) { 10037 ASSERT(state->dts_formats == NULL); 10038 return; 10039 } 10040 10041 ASSERT(state->dts_formats != NULL); 10042 10043 for (i = 0; i < state->dts_nformats; i++) { 10044 char *fmt = state->dts_formats[i]; 10045 10046 if (fmt == NULL) 10047 continue; 10048 10049 kmem_free(fmt, strlen(fmt) + 1); 10050 } 10051 10052 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 10053 state->dts_nformats = 0; 10054 state->dts_formats = NULL; 10055 } 10056 10057 /* 10058 * DTrace Predicate Functions 10059 */ 10060 static dtrace_predicate_t * 10061 dtrace_predicate_create(dtrace_difo_t *dp) 10062 { 10063 dtrace_predicate_t *pred; 10064 10065 ASSERT(MUTEX_HELD(&dtrace_lock)); 10066 ASSERT(dp->dtdo_refcnt != 0); 10067 10068 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 10069 pred->dtp_difo = dp; 10070 pred->dtp_refcnt = 1; 10071 10072 if (!dtrace_difo_cacheable(dp)) 10073 return (pred); 10074 10075 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 10076 /* 10077 * This is only theoretically possible -- we have had 2^32 10078 * cacheable predicates on this machine. We cannot allow any 10079 * more predicates to become cacheable: as unlikely as it is, 10080 * there may be a thread caching a (now stale) predicate cache 10081 * ID. (N.B.: the temptation is being successfully resisted to 10082 * have this cmn_err() "Holy shit -- we executed this code!") 10083 */ 10084 return (pred); 10085 } 10086 10087 pred->dtp_cacheid = dtrace_predcache_id++; 10088 10089 return (pred); 10090 } 10091 10092 static void 10093 dtrace_predicate_hold(dtrace_predicate_t *pred) 10094 { 10095 ASSERT(MUTEX_HELD(&dtrace_lock)); 10096 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 10097 ASSERT(pred->dtp_refcnt > 0); 10098 10099 pred->dtp_refcnt++; 10100 } 10101 10102 static void 10103 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 10104 { 10105 dtrace_difo_t *dp = pred->dtp_difo; 10106 10107 ASSERT(MUTEX_HELD(&dtrace_lock)); 10108 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 10109 ASSERT(pred->dtp_refcnt > 0); 10110 10111 if (--pred->dtp_refcnt == 0) { 10112 dtrace_difo_release(pred->dtp_difo, vstate); 10113 kmem_free(pred, sizeof (dtrace_predicate_t)); 10114 } 10115 } 10116 10117 /* 10118 * DTrace Action Description Functions 10119 */ 10120 static dtrace_actdesc_t * 10121 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 10122 uint64_t uarg, uint64_t arg) 10123 { 10124 dtrace_actdesc_t *act; 10125 10126 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 10127 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 10128 10129 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 10130 act->dtad_kind = kind; 10131 act->dtad_ntuple = ntuple; 10132 act->dtad_uarg = uarg; 10133 act->dtad_arg = arg; 10134 act->dtad_refcnt = 1; 10135 10136 return (act); 10137 } 10138 10139 static void 10140 dtrace_actdesc_hold(dtrace_actdesc_t *act) 10141 { 10142 ASSERT(act->dtad_refcnt >= 1); 10143 act->dtad_refcnt++; 10144 } 10145 10146 static void 10147 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 10148 { 10149 dtrace_actkind_t kind = act->dtad_kind; 10150 dtrace_difo_t *dp; 10151 10152 ASSERT(act->dtad_refcnt >= 1); 10153 10154 if (--act->dtad_refcnt != 0) 10155 return; 10156 10157 if ((dp = act->dtad_difo) != NULL) 10158 dtrace_difo_release(dp, vstate); 10159 10160 if (DTRACEACT_ISPRINTFLIKE(kind)) { 10161 char *str = (char *)(uintptr_t)act->dtad_arg; 10162 10163 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 10164 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 10165 10166 if (str != NULL) 10167 kmem_free(str, strlen(str) + 1); 10168 } 10169 10170 kmem_free(act, sizeof (dtrace_actdesc_t)); 10171 } 10172 10173 /* 10174 * DTrace ECB Functions 10175 */ 10176 static dtrace_ecb_t * 10177 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 10178 { 10179 dtrace_ecb_t *ecb; 10180 dtrace_epid_t epid; 10181 10182 ASSERT(MUTEX_HELD(&dtrace_lock)); 10183 10184 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 10185 ecb->dte_predicate = NULL; 10186 ecb->dte_probe = probe; 10187 10188 /* 10189 * The default size is the size of the default action: recording 10190 * the header. 10191 */ 10192 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t); 10193 ecb->dte_alignment = sizeof (dtrace_epid_t); 10194 10195 epid = state->dts_epid++; 10196 10197 if (epid - 1 >= state->dts_necbs) { 10198 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 10199 int necbs = state->dts_necbs << 1; 10200 10201 ASSERT(epid == state->dts_necbs + 1); 10202 10203 if (necbs == 0) { 10204 ASSERT(oecbs == NULL); 10205 necbs = 1; 10206 } 10207 10208 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 10209 10210 if (oecbs != NULL) 10211 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 10212 10213 dtrace_membar_producer(); 10214 state->dts_ecbs = ecbs; 10215 10216 if (oecbs != NULL) { 10217 /* 10218 * If this state is active, we must dtrace_sync() 10219 * before we can free the old dts_ecbs array: we're 10220 * coming in hot, and there may be active ring 10221 * buffer processing (which indexes into the dts_ecbs 10222 * array) on another CPU. 10223 */ 10224 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 10225 dtrace_sync(); 10226 10227 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 10228 } 10229 10230 dtrace_membar_producer(); 10231 state->dts_necbs = necbs; 10232 } 10233 10234 ecb->dte_state = state; 10235 10236 ASSERT(state->dts_ecbs[epid - 1] == NULL); 10237 dtrace_membar_producer(); 10238 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 10239 10240 return (ecb); 10241 } 10242 10243 static int 10244 dtrace_ecb_enable(dtrace_ecb_t *ecb) 10245 { 10246 dtrace_probe_t *probe = ecb->dte_probe; 10247 10248 ASSERT(MUTEX_HELD(&cpu_lock)); 10249 ASSERT(MUTEX_HELD(&dtrace_lock)); 10250 ASSERT(ecb->dte_next == NULL); 10251 10252 if (probe == NULL) { 10253 /* 10254 * This is the NULL probe -- there's nothing to do. 10255 */ 10256 return (0); 10257 } 10258 10259 if (probe->dtpr_ecb == NULL) { 10260 dtrace_provider_t *prov = probe->dtpr_provider; 10261 10262 /* 10263 * We're the first ECB on this probe. 10264 */ 10265 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 10266 10267 if (ecb->dte_predicate != NULL) 10268 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 10269 10270 return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 10271 probe->dtpr_id, probe->dtpr_arg)); 10272 } else { 10273 /* 10274 * This probe is already active. Swing the last pointer to 10275 * point to the new ECB, and issue a dtrace_sync() to assure 10276 * that all CPUs have seen the change. 10277 */ 10278 ASSERT(probe->dtpr_ecb_last != NULL); 10279 probe->dtpr_ecb_last->dte_next = ecb; 10280 probe->dtpr_ecb_last = ecb; 10281 probe->dtpr_predcache = 0; 10282 10283 dtrace_sync(); 10284 return (0); 10285 } 10286 } 10287 10288 static void 10289 dtrace_ecb_resize(dtrace_ecb_t *ecb) 10290 { 10291 dtrace_action_t *act; 10292 uint32_t curneeded = UINT32_MAX; 10293 uint32_t aggbase = UINT32_MAX; 10294 10295 /* 10296 * If we record anything, we always record the dtrace_rechdr_t. (And 10297 * we always record it first.) 10298 */ 10299 ecb->dte_size = sizeof (dtrace_rechdr_t); 10300 ecb->dte_alignment = sizeof (dtrace_epid_t); 10301 10302 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 10303 dtrace_recdesc_t *rec = &act->dta_rec; 10304 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1); 10305 10306 ecb->dte_alignment = MAX(ecb->dte_alignment, 10307 rec->dtrd_alignment); 10308 10309 if (DTRACEACT_ISAGG(act->dta_kind)) { 10310 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 10311 10312 ASSERT(rec->dtrd_size != 0); 10313 ASSERT(agg->dtag_first != NULL); 10314 ASSERT(act->dta_prev->dta_intuple); 10315 ASSERT(aggbase != UINT32_MAX); 10316 ASSERT(curneeded != UINT32_MAX); 10317 10318 agg->dtag_base = aggbase; 10319 10320 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 10321 rec->dtrd_offset = curneeded; 10322 curneeded += rec->dtrd_size; 10323 ecb->dte_needed = MAX(ecb->dte_needed, curneeded); 10324 10325 aggbase = UINT32_MAX; 10326 curneeded = UINT32_MAX; 10327 } else if (act->dta_intuple) { 10328 if (curneeded == UINT32_MAX) { 10329 /* 10330 * This is the first record in a tuple. Align 10331 * curneeded to be at offset 4 in an 8-byte 10332 * aligned block. 10333 */ 10334 ASSERT(act->dta_prev == NULL || 10335 !act->dta_prev->dta_intuple); 10336 ASSERT3U(aggbase, ==, UINT32_MAX); 10337 curneeded = P2PHASEUP(ecb->dte_size, 10338 sizeof (uint64_t), sizeof (dtrace_aggid_t)); 10339 10340 aggbase = curneeded - sizeof (dtrace_aggid_t); 10341 ASSERT(IS_P2ALIGNED(aggbase, 10342 sizeof (uint64_t))); 10343 } 10344 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 10345 rec->dtrd_offset = curneeded; 10346 curneeded += rec->dtrd_size; 10347 } else { 10348 /* tuples must be followed by an aggregation */ 10349 ASSERT(act->dta_prev == NULL || 10350 !act->dta_prev->dta_intuple); 10351 10352 ecb->dte_size = P2ROUNDUP(ecb->dte_size, 10353 rec->dtrd_alignment); 10354 rec->dtrd_offset = ecb->dte_size; 10355 ecb->dte_size += rec->dtrd_size; 10356 ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size); 10357 } 10358 } 10359 10360 if ((act = ecb->dte_action) != NULL && 10361 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 10362 ecb->dte_size == sizeof (dtrace_rechdr_t)) { 10363 /* 10364 * If the size is still sizeof (dtrace_rechdr_t), then all 10365 * actions store no data; set the size to 0. 10366 */ 10367 ecb->dte_size = 0; 10368 } 10369 10370 ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t)); 10371 ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t))); 10372 ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed, 10373 ecb->dte_needed); 10374 } 10375 10376 static dtrace_action_t * 10377 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 10378 { 10379 dtrace_aggregation_t *agg; 10380 size_t size = sizeof (uint64_t); 10381 int ntuple = desc->dtad_ntuple; 10382 dtrace_action_t *act; 10383 dtrace_recdesc_t *frec; 10384 dtrace_aggid_t aggid; 10385 dtrace_state_t *state = ecb->dte_state; 10386 10387 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 10388 agg->dtag_ecb = ecb; 10389 10390 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 10391 10392 switch (desc->dtad_kind) { 10393 case DTRACEAGG_MIN: 10394 agg->dtag_initial = INT64_MAX; 10395 agg->dtag_aggregate = dtrace_aggregate_min; 10396 break; 10397 10398 case DTRACEAGG_MAX: 10399 agg->dtag_initial = INT64_MIN; 10400 agg->dtag_aggregate = dtrace_aggregate_max; 10401 break; 10402 10403 case DTRACEAGG_COUNT: 10404 agg->dtag_aggregate = dtrace_aggregate_count; 10405 break; 10406 10407 case DTRACEAGG_QUANTIZE: 10408 agg->dtag_aggregate = dtrace_aggregate_quantize; 10409 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 10410 sizeof (uint64_t); 10411 break; 10412 10413 case DTRACEAGG_LQUANTIZE: { 10414 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 10415 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 10416 10417 agg->dtag_initial = desc->dtad_arg; 10418 agg->dtag_aggregate = dtrace_aggregate_lquantize; 10419 10420 if (step == 0 || levels == 0) 10421 goto err; 10422 10423 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 10424 break; 10425 } 10426 10427 case DTRACEAGG_LLQUANTIZE: { 10428 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg); 10429 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg); 10430 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg); 10431 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg); 10432 int64_t v; 10433 10434 agg->dtag_initial = desc->dtad_arg; 10435 agg->dtag_aggregate = dtrace_aggregate_llquantize; 10436 10437 if (factor < 2 || low >= high || nsteps < factor) 10438 goto err; 10439 10440 /* 10441 * Now check that the number of steps evenly divides a power 10442 * of the factor. (This assures both integer bucket size and 10443 * linearity within each magnitude.) 10444 */ 10445 for (v = factor; v < nsteps; v *= factor) 10446 continue; 10447 10448 if ((v % nsteps) || (nsteps % factor)) 10449 goto err; 10450 10451 size = (dtrace_aggregate_llquantize_bucket(factor, 10452 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t); 10453 break; 10454 } 10455 10456 case DTRACEAGG_AVG: 10457 agg->dtag_aggregate = dtrace_aggregate_avg; 10458 size = sizeof (uint64_t) * 2; 10459 break; 10460 10461 case DTRACEAGG_STDDEV: 10462 agg->dtag_aggregate = dtrace_aggregate_stddev; 10463 size = sizeof (uint64_t) * 4; 10464 break; 10465 10466 case DTRACEAGG_SUM: 10467 agg->dtag_aggregate = dtrace_aggregate_sum; 10468 break; 10469 10470 default: 10471 goto err; 10472 } 10473 10474 agg->dtag_action.dta_rec.dtrd_size = size; 10475 10476 if (ntuple == 0) 10477 goto err; 10478 10479 /* 10480 * We must make sure that we have enough actions for the n-tuple. 10481 */ 10482 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 10483 if (DTRACEACT_ISAGG(act->dta_kind)) 10484 break; 10485 10486 if (--ntuple == 0) { 10487 /* 10488 * This is the action with which our n-tuple begins. 10489 */ 10490 agg->dtag_first = act; 10491 goto success; 10492 } 10493 } 10494 10495 /* 10496 * This n-tuple is short by ntuple elements. Return failure. 10497 */ 10498 ASSERT(ntuple != 0); 10499 err: 10500 kmem_free(agg, sizeof (dtrace_aggregation_t)); 10501 return (NULL); 10502 10503 success: 10504 /* 10505 * If the last action in the tuple has a size of zero, it's actually 10506 * an expression argument for the aggregating action. 10507 */ 10508 ASSERT(ecb->dte_action_last != NULL); 10509 act = ecb->dte_action_last; 10510 10511 if (act->dta_kind == DTRACEACT_DIFEXPR) { 10512 ASSERT(act->dta_difo != NULL); 10513 10514 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 10515 agg->dtag_hasarg = 1; 10516 } 10517 10518 /* 10519 * We need to allocate an id for this aggregation. 10520 */ 10521 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 10522 VM_BESTFIT | VM_SLEEP); 10523 10524 if (aggid - 1 >= state->dts_naggregations) { 10525 dtrace_aggregation_t **oaggs = state->dts_aggregations; 10526 dtrace_aggregation_t **aggs; 10527 int naggs = state->dts_naggregations << 1; 10528 int onaggs = state->dts_naggregations; 10529 10530 ASSERT(aggid == state->dts_naggregations + 1); 10531 10532 if (naggs == 0) { 10533 ASSERT(oaggs == NULL); 10534 naggs = 1; 10535 } 10536 10537 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 10538 10539 if (oaggs != NULL) { 10540 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 10541 kmem_free(oaggs, onaggs * sizeof (*aggs)); 10542 } 10543 10544 state->dts_aggregations = aggs; 10545 state->dts_naggregations = naggs; 10546 } 10547 10548 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 10549 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 10550 10551 frec = &agg->dtag_first->dta_rec; 10552 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 10553 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 10554 10555 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 10556 ASSERT(!act->dta_intuple); 10557 act->dta_intuple = 1; 10558 } 10559 10560 return (&agg->dtag_action); 10561 } 10562 10563 static void 10564 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 10565 { 10566 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 10567 dtrace_state_t *state = ecb->dte_state; 10568 dtrace_aggid_t aggid = agg->dtag_id; 10569 10570 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 10571 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 10572 10573 ASSERT(state->dts_aggregations[aggid - 1] == agg); 10574 state->dts_aggregations[aggid - 1] = NULL; 10575 10576 kmem_free(agg, sizeof (dtrace_aggregation_t)); 10577 } 10578 10579 static int 10580 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 10581 { 10582 dtrace_action_t *action, *last; 10583 dtrace_difo_t *dp = desc->dtad_difo; 10584 uint32_t size = 0, align = sizeof (uint8_t), mask; 10585 uint16_t format = 0; 10586 dtrace_recdesc_t *rec; 10587 dtrace_state_t *state = ecb->dte_state; 10588 dtrace_optval_t *opt = state->dts_options, nframes, strsize; 10589 uint64_t arg = desc->dtad_arg; 10590 10591 ASSERT(MUTEX_HELD(&dtrace_lock)); 10592 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 10593 10594 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 10595 /* 10596 * If this is an aggregating action, there must be neither 10597 * a speculate nor a commit on the action chain. 10598 */ 10599 dtrace_action_t *act; 10600 10601 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 10602 if (act->dta_kind == DTRACEACT_COMMIT) 10603 return (EINVAL); 10604 10605 if (act->dta_kind == DTRACEACT_SPECULATE) 10606 return (EINVAL); 10607 } 10608 10609 action = dtrace_ecb_aggregation_create(ecb, desc); 10610 10611 if (action == NULL) 10612 return (EINVAL); 10613 } else { 10614 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 10615 (desc->dtad_kind == DTRACEACT_DIFEXPR && 10616 dp != NULL && dp->dtdo_destructive)) { 10617 state->dts_destructive = 1; 10618 } 10619 10620 switch (desc->dtad_kind) { 10621 case DTRACEACT_PRINTF: 10622 case DTRACEACT_PRINTA: 10623 case DTRACEACT_SYSTEM: 10624 case DTRACEACT_FREOPEN: 10625 case DTRACEACT_DIFEXPR: 10626 /* 10627 * We know that our arg is a string -- turn it into a 10628 * format. 10629 */ 10630 if (arg == NULL) { 10631 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA || 10632 desc->dtad_kind == DTRACEACT_DIFEXPR); 10633 format = 0; 10634 } else { 10635 ASSERT(arg != NULL); 10636 ASSERT(arg > KERNELBASE); 10637 format = dtrace_format_add(state, 10638 (char *)(uintptr_t)arg); 10639 } 10640 10641 /*FALLTHROUGH*/ 10642 case DTRACEACT_LIBACT: 10643 case DTRACEACT_TRACEMEM: 10644 case DTRACEACT_TRACEMEM_DYNSIZE: 10645 if (dp == NULL) 10646 return (EINVAL); 10647 10648 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 10649 break; 10650 10651 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 10652 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 10653 return (EINVAL); 10654 10655 size = opt[DTRACEOPT_STRSIZE]; 10656 } 10657 10658 break; 10659 10660 case DTRACEACT_STACK: 10661 if ((nframes = arg) == 0) { 10662 nframes = opt[DTRACEOPT_STACKFRAMES]; 10663 ASSERT(nframes > 0); 10664 arg = nframes; 10665 } 10666 10667 size = nframes * sizeof (pc_t); 10668 break; 10669 10670 case DTRACEACT_JSTACK: 10671 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 10672 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 10673 10674 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 10675 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 10676 10677 arg = DTRACE_USTACK_ARG(nframes, strsize); 10678 10679 /*FALLTHROUGH*/ 10680 case DTRACEACT_USTACK: 10681 if (desc->dtad_kind != DTRACEACT_JSTACK && 10682 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 10683 strsize = DTRACE_USTACK_STRSIZE(arg); 10684 nframes = opt[DTRACEOPT_USTACKFRAMES]; 10685 ASSERT(nframes > 0); 10686 arg = DTRACE_USTACK_ARG(nframes, strsize); 10687 } 10688 10689 /* 10690 * Save a slot for the pid. 10691 */ 10692 size = (nframes + 1) * sizeof (uint64_t); 10693 size += DTRACE_USTACK_STRSIZE(arg); 10694 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 10695 10696 break; 10697 10698 case DTRACEACT_SYM: 10699 case DTRACEACT_MOD: 10700 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 10701 sizeof (uint64_t)) || 10702 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 10703 return (EINVAL); 10704 break; 10705 10706 case DTRACEACT_USYM: 10707 case DTRACEACT_UMOD: 10708 case DTRACEACT_UADDR: 10709 if (dp == NULL || 10710 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 10711 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 10712 return (EINVAL); 10713 10714 /* 10715 * We have a slot for the pid, plus a slot for the 10716 * argument. To keep things simple (aligned with 10717 * bitness-neutral sizing), we store each as a 64-bit 10718 * quantity. 10719 */ 10720 size = 2 * sizeof (uint64_t); 10721 break; 10722 10723 case DTRACEACT_STOP: 10724 case DTRACEACT_BREAKPOINT: 10725 case DTRACEACT_PANIC: 10726 break; 10727 10728 case DTRACEACT_CHILL: 10729 case DTRACEACT_DISCARD: 10730 case DTRACEACT_RAISE: 10731 if (dp == NULL) 10732 return (EINVAL); 10733 break; 10734 10735 case DTRACEACT_EXIT: 10736 if (dp == NULL || 10737 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 10738 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 10739 return (EINVAL); 10740 break; 10741 10742 case DTRACEACT_SPECULATE: 10743 if (ecb->dte_size > sizeof (dtrace_rechdr_t)) 10744 return (EINVAL); 10745 10746 if (dp == NULL) 10747 return (EINVAL); 10748 10749 state->dts_speculates = 1; 10750 break; 10751 10752 case DTRACEACT_COMMIT: { 10753 dtrace_action_t *act = ecb->dte_action; 10754 10755 for (; act != NULL; act = act->dta_next) { 10756 if (act->dta_kind == DTRACEACT_COMMIT) 10757 return (EINVAL); 10758 } 10759 10760 if (dp == NULL) 10761 return (EINVAL); 10762 break; 10763 } 10764 10765 default: 10766 return (EINVAL); 10767 } 10768 10769 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 10770 /* 10771 * If this is a data-storing action or a speculate, 10772 * we must be sure that there isn't a commit on the 10773 * action chain. 10774 */ 10775 dtrace_action_t *act = ecb->dte_action; 10776 10777 for (; act != NULL; act = act->dta_next) { 10778 if (act->dta_kind == DTRACEACT_COMMIT) 10779 return (EINVAL); 10780 } 10781 } 10782 10783 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 10784 action->dta_rec.dtrd_size = size; 10785 } 10786 10787 action->dta_refcnt = 1; 10788 rec = &action->dta_rec; 10789 size = rec->dtrd_size; 10790 10791 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 10792 if (!(size & mask)) { 10793 align = mask + 1; 10794 break; 10795 } 10796 } 10797 10798 action->dta_kind = desc->dtad_kind; 10799 10800 if ((action->dta_difo = dp) != NULL) 10801 dtrace_difo_hold(dp); 10802 10803 rec->dtrd_action = action->dta_kind; 10804 rec->dtrd_arg = arg; 10805 rec->dtrd_uarg = desc->dtad_uarg; 10806 rec->dtrd_alignment = (uint16_t)align; 10807 rec->dtrd_format = format; 10808 10809 if ((last = ecb->dte_action_last) != NULL) { 10810 ASSERT(ecb->dte_action != NULL); 10811 action->dta_prev = last; 10812 last->dta_next = action; 10813 } else { 10814 ASSERT(ecb->dte_action == NULL); 10815 ecb->dte_action = action; 10816 } 10817 10818 ecb->dte_action_last = action; 10819 10820 return (0); 10821 } 10822 10823 static void 10824 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 10825 { 10826 dtrace_action_t *act = ecb->dte_action, *next; 10827 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 10828 dtrace_difo_t *dp; 10829 uint16_t format; 10830 10831 if (act != NULL && act->dta_refcnt > 1) { 10832 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 10833 act->dta_refcnt--; 10834 } else { 10835 for (; act != NULL; act = next) { 10836 next = act->dta_next; 10837 ASSERT(next != NULL || act == ecb->dte_action_last); 10838 ASSERT(act->dta_refcnt == 1); 10839 10840 if ((format = act->dta_rec.dtrd_format) != 0) 10841 dtrace_format_remove(ecb->dte_state, format); 10842 10843 if ((dp = act->dta_difo) != NULL) 10844 dtrace_difo_release(dp, vstate); 10845 10846 if (DTRACEACT_ISAGG(act->dta_kind)) { 10847 dtrace_ecb_aggregation_destroy(ecb, act); 10848 } else { 10849 kmem_free(act, sizeof (dtrace_action_t)); 10850 } 10851 } 10852 } 10853 10854 ecb->dte_action = NULL; 10855 ecb->dte_action_last = NULL; 10856 ecb->dte_size = 0; 10857 } 10858 10859 static void 10860 dtrace_ecb_disable(dtrace_ecb_t *ecb) 10861 { 10862 /* 10863 * We disable the ECB by removing it from its probe. 10864 */ 10865 dtrace_ecb_t *pecb, *prev = NULL; 10866 dtrace_probe_t *probe = ecb->dte_probe; 10867 10868 ASSERT(MUTEX_HELD(&dtrace_lock)); 10869 10870 if (probe == NULL) { 10871 /* 10872 * This is the NULL probe; there is nothing to disable. 10873 */ 10874 return; 10875 } 10876 10877 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 10878 if (pecb == ecb) 10879 break; 10880 prev = pecb; 10881 } 10882 10883 ASSERT(pecb != NULL); 10884 10885 if (prev == NULL) { 10886 probe->dtpr_ecb = ecb->dte_next; 10887 } else { 10888 prev->dte_next = ecb->dte_next; 10889 } 10890 10891 if (ecb == probe->dtpr_ecb_last) { 10892 ASSERT(ecb->dte_next == NULL); 10893 probe->dtpr_ecb_last = prev; 10894 } 10895 10896 /* 10897 * The ECB has been disconnected from the probe; now sync to assure 10898 * that all CPUs have seen the change before returning. 10899 */ 10900 dtrace_sync(); 10901 10902 if (probe->dtpr_ecb == NULL) { 10903 /* 10904 * That was the last ECB on the probe; clear the predicate 10905 * cache ID for the probe, disable it and sync one more time 10906 * to assure that we'll never hit it again. 10907 */ 10908 dtrace_provider_t *prov = probe->dtpr_provider; 10909 10910 ASSERT(ecb->dte_next == NULL); 10911 ASSERT(probe->dtpr_ecb_last == NULL); 10912 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 10913 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 10914 probe->dtpr_id, probe->dtpr_arg); 10915 dtrace_sync(); 10916 } else { 10917 /* 10918 * There is at least one ECB remaining on the probe. If there 10919 * is _exactly_ one, set the probe's predicate cache ID to be 10920 * the predicate cache ID of the remaining ECB. 10921 */ 10922 ASSERT(probe->dtpr_ecb_last != NULL); 10923 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 10924 10925 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 10926 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 10927 10928 ASSERT(probe->dtpr_ecb->dte_next == NULL); 10929 10930 if (p != NULL) 10931 probe->dtpr_predcache = p->dtp_cacheid; 10932 } 10933 10934 ecb->dte_next = NULL; 10935 } 10936 } 10937 10938 static void 10939 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 10940 { 10941 dtrace_state_t *state = ecb->dte_state; 10942 dtrace_vstate_t *vstate = &state->dts_vstate; 10943 dtrace_predicate_t *pred; 10944 dtrace_epid_t epid = ecb->dte_epid; 10945 10946 ASSERT(MUTEX_HELD(&dtrace_lock)); 10947 ASSERT(ecb->dte_next == NULL); 10948 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 10949 10950 if ((pred = ecb->dte_predicate) != NULL) 10951 dtrace_predicate_release(pred, vstate); 10952 10953 dtrace_ecb_action_remove(ecb); 10954 10955 ASSERT(state->dts_ecbs[epid - 1] == ecb); 10956 state->dts_ecbs[epid - 1] = NULL; 10957 10958 kmem_free(ecb, sizeof (dtrace_ecb_t)); 10959 } 10960 10961 static dtrace_ecb_t * 10962 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 10963 dtrace_enabling_t *enab) 10964 { 10965 dtrace_ecb_t *ecb; 10966 dtrace_predicate_t *pred; 10967 dtrace_actdesc_t *act; 10968 dtrace_provider_t *prov; 10969 dtrace_ecbdesc_t *desc = enab->dten_current; 10970 10971 ASSERT(MUTEX_HELD(&dtrace_lock)); 10972 ASSERT(state != NULL); 10973 10974 ecb = dtrace_ecb_add(state, probe); 10975 ecb->dte_uarg = desc->dted_uarg; 10976 10977 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 10978 dtrace_predicate_hold(pred); 10979 ecb->dte_predicate = pred; 10980 } 10981 10982 if (probe != NULL) { 10983 /* 10984 * If the provider shows more leg than the consumer is old 10985 * enough to see, we need to enable the appropriate implicit 10986 * predicate bits to prevent the ecb from activating at 10987 * revealing times. 10988 * 10989 * Providers specifying DTRACE_PRIV_USER at register time 10990 * are stating that they need the /proc-style privilege 10991 * model to be enforced, and this is what DTRACE_COND_OWNER 10992 * and DTRACE_COND_ZONEOWNER will then do at probe time. 10993 */ 10994 prov = probe->dtpr_provider; 10995 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 10996 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 10997 ecb->dte_cond |= DTRACE_COND_OWNER; 10998 10999 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 11000 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11001 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 11002 11003 /* 11004 * If the provider shows us kernel innards and the user 11005 * is lacking sufficient privilege, enable the 11006 * DTRACE_COND_USERMODE implicit predicate. 11007 */ 11008 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 11009 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 11010 ecb->dte_cond |= DTRACE_COND_USERMODE; 11011 } 11012 11013 if (dtrace_ecb_create_cache != NULL) { 11014 /* 11015 * If we have a cached ecb, we'll use its action list instead 11016 * of creating our own (saving both time and space). 11017 */ 11018 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 11019 dtrace_action_t *act = cached->dte_action; 11020 11021 if (act != NULL) { 11022 ASSERT(act->dta_refcnt > 0); 11023 act->dta_refcnt++; 11024 ecb->dte_action = act; 11025 ecb->dte_action_last = cached->dte_action_last; 11026 ecb->dte_needed = cached->dte_needed; 11027 ecb->dte_size = cached->dte_size; 11028 ecb->dte_alignment = cached->dte_alignment; 11029 } 11030 11031 return (ecb); 11032 } 11033 11034 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 11035 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 11036 dtrace_ecb_destroy(ecb); 11037 return (NULL); 11038 } 11039 } 11040 11041 dtrace_ecb_resize(ecb); 11042 11043 return (dtrace_ecb_create_cache = ecb); 11044 } 11045 11046 static int 11047 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 11048 { 11049 dtrace_ecb_t *ecb; 11050 dtrace_enabling_t *enab = arg; 11051 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 11052 11053 ASSERT(state != NULL); 11054 11055 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 11056 /* 11057 * This probe was created in a generation for which this 11058 * enabling has previously created ECBs; we don't want to 11059 * enable it again, so just kick out. 11060 */ 11061 return (DTRACE_MATCH_NEXT); 11062 } 11063 11064 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 11065 return (DTRACE_MATCH_DONE); 11066 11067 if (dtrace_ecb_enable(ecb) < 0) 11068 return (DTRACE_MATCH_FAIL); 11069 11070 return (DTRACE_MATCH_NEXT); 11071 } 11072 11073 static dtrace_ecb_t * 11074 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 11075 { 11076 dtrace_ecb_t *ecb; 11077 11078 ASSERT(MUTEX_HELD(&dtrace_lock)); 11079 11080 if (id == 0 || id > state->dts_necbs) 11081 return (NULL); 11082 11083 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 11084 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 11085 11086 return (state->dts_ecbs[id - 1]); 11087 } 11088 11089 static dtrace_aggregation_t * 11090 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 11091 { 11092 dtrace_aggregation_t *agg; 11093 11094 ASSERT(MUTEX_HELD(&dtrace_lock)); 11095 11096 if (id == 0 || id > state->dts_naggregations) 11097 return (NULL); 11098 11099 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 11100 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 11101 agg->dtag_id == id); 11102 11103 return (state->dts_aggregations[id - 1]); 11104 } 11105 11106 /* 11107 * DTrace Buffer Functions 11108 * 11109 * The following functions manipulate DTrace buffers. Most of these functions 11110 * are called in the context of establishing or processing consumer state; 11111 * exceptions are explicitly noted. 11112 */ 11113 11114 /* 11115 * Note: called from cross call context. This function switches the two 11116 * buffers on a given CPU. The atomicity of this operation is assured by 11117 * disabling interrupts while the actual switch takes place; the disabling of 11118 * interrupts serializes the execution with any execution of dtrace_probe() on 11119 * the same CPU. 11120 */ 11121 static void 11122 dtrace_buffer_switch(dtrace_buffer_t *buf) 11123 { 11124 caddr_t tomax = buf->dtb_tomax; 11125 caddr_t xamot = buf->dtb_xamot; 11126 dtrace_icookie_t cookie; 11127 hrtime_t now; 11128 11129 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 11130 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 11131 11132 cookie = dtrace_interrupt_disable(); 11133 now = dtrace_gethrtime(); 11134 buf->dtb_tomax = xamot; 11135 buf->dtb_xamot = tomax; 11136 buf->dtb_xamot_drops = buf->dtb_drops; 11137 buf->dtb_xamot_offset = buf->dtb_offset; 11138 buf->dtb_xamot_errors = buf->dtb_errors; 11139 buf->dtb_xamot_flags = buf->dtb_flags; 11140 buf->dtb_offset = 0; 11141 buf->dtb_drops = 0; 11142 buf->dtb_errors = 0; 11143 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 11144 buf->dtb_interval = now - buf->dtb_switched; 11145 buf->dtb_switched = now; 11146 dtrace_interrupt_enable(cookie); 11147 } 11148 11149 /* 11150 * Note: called from cross call context. This function activates a buffer 11151 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 11152 * is guaranteed by the disabling of interrupts. 11153 */ 11154 static void 11155 dtrace_buffer_activate(dtrace_state_t *state) 11156 { 11157 dtrace_buffer_t *buf; 11158 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 11159 11160 buf = &state->dts_buffer[CPU->cpu_id]; 11161 11162 if (buf->dtb_tomax != NULL) { 11163 /* 11164 * We might like to assert that the buffer is marked inactive, 11165 * but this isn't necessarily true: the buffer for the CPU 11166 * that processes the BEGIN probe has its buffer activated 11167 * manually. In this case, we take the (harmless) action 11168 * re-clearing the bit INACTIVE bit. 11169 */ 11170 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 11171 } 11172 11173 dtrace_interrupt_enable(cookie); 11174 } 11175 11176 static int 11177 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 11178 processorid_t cpu, int *factor) 11179 { 11180 cpu_t *cp; 11181 dtrace_buffer_t *buf; 11182 int allocated = 0, desired = 0; 11183 11184 ASSERT(MUTEX_HELD(&cpu_lock)); 11185 ASSERT(MUTEX_HELD(&dtrace_lock)); 11186 11187 *factor = 1; 11188 11189 if (size > dtrace_nonroot_maxsize && 11190 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 11191 return (EFBIG); 11192 11193 cp = cpu_list; 11194 11195 do { 11196 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 11197 continue; 11198 11199 buf = &bufs[cp->cpu_id]; 11200 11201 /* 11202 * If there is already a buffer allocated for this CPU, it 11203 * is only possible that this is a DR event. In this case, 11204 * the buffer size must match our specified size. 11205 */ 11206 if (buf->dtb_tomax != NULL) { 11207 ASSERT(buf->dtb_size == size); 11208 continue; 11209 } 11210 11211 ASSERT(buf->dtb_xamot == NULL); 11212 11213 if ((buf->dtb_tomax = kmem_zalloc(size, 11214 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 11215 goto err; 11216 11217 buf->dtb_size = size; 11218 buf->dtb_flags = flags; 11219 buf->dtb_offset = 0; 11220 buf->dtb_drops = 0; 11221 11222 if (flags & DTRACEBUF_NOSWITCH) 11223 continue; 11224 11225 if ((buf->dtb_xamot = kmem_zalloc(size, 11226 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 11227 goto err; 11228 } while ((cp = cp->cpu_next) != cpu_list); 11229 11230 return (0); 11231 11232 err: 11233 cp = cpu_list; 11234 11235 do { 11236 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 11237 continue; 11238 11239 buf = &bufs[cp->cpu_id]; 11240 desired += 2; 11241 11242 if (buf->dtb_xamot != NULL) { 11243 ASSERT(buf->dtb_tomax != NULL); 11244 ASSERT(buf->dtb_size == size); 11245 kmem_free(buf->dtb_xamot, size); 11246 allocated++; 11247 } 11248 11249 if (buf->dtb_tomax != NULL) { 11250 ASSERT(buf->dtb_size == size); 11251 kmem_free(buf->dtb_tomax, size); 11252 allocated++; 11253 } 11254 11255 buf->dtb_tomax = NULL; 11256 buf->dtb_xamot = NULL; 11257 buf->dtb_size = 0; 11258 } while ((cp = cp->cpu_next) != cpu_list); 11259 11260 *factor = desired / (allocated > 0 ? allocated : 1); 11261 11262 return (ENOMEM); 11263 } 11264 11265 /* 11266 * Note: called from probe context. This function just increments the drop 11267 * count on a buffer. It has been made a function to allow for the 11268 * possibility of understanding the source of mysterious drop counts. (A 11269 * problem for which one may be particularly disappointed that DTrace cannot 11270 * be used to understand DTrace.) 11271 */ 11272 static void 11273 dtrace_buffer_drop(dtrace_buffer_t *buf) 11274 { 11275 buf->dtb_drops++; 11276 } 11277 11278 /* 11279 * Note: called from probe context. This function is called to reserve space 11280 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 11281 * mstate. Returns the new offset in the buffer, or a negative value if an 11282 * error has occurred. 11283 */ 11284 static intptr_t 11285 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 11286 dtrace_state_t *state, dtrace_mstate_t *mstate) 11287 { 11288 intptr_t offs = buf->dtb_offset, soffs; 11289 intptr_t woffs; 11290 caddr_t tomax; 11291 size_t total; 11292 11293 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 11294 return (-1); 11295 11296 if ((tomax = buf->dtb_tomax) == NULL) { 11297 dtrace_buffer_drop(buf); 11298 return (-1); 11299 } 11300 11301 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 11302 while (offs & (align - 1)) { 11303 /* 11304 * Assert that our alignment is off by a number which 11305 * is itself sizeof (uint32_t) aligned. 11306 */ 11307 ASSERT(!((align - (offs & (align - 1))) & 11308 (sizeof (uint32_t) - 1))); 11309 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 11310 offs += sizeof (uint32_t); 11311 } 11312 11313 if ((soffs = offs + needed) > buf->dtb_size) { 11314 dtrace_buffer_drop(buf); 11315 return (-1); 11316 } 11317 11318 if (mstate == NULL) 11319 return (offs); 11320 11321 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 11322 mstate->dtms_scratch_size = buf->dtb_size - soffs; 11323 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 11324 11325 return (offs); 11326 } 11327 11328 if (buf->dtb_flags & DTRACEBUF_FILL) { 11329 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 11330 (buf->dtb_flags & DTRACEBUF_FULL)) 11331 return (-1); 11332 goto out; 11333 } 11334 11335 total = needed + (offs & (align - 1)); 11336 11337 /* 11338 * For a ring buffer, life is quite a bit more complicated. Before 11339 * we can store any padding, we need to adjust our wrapping offset. 11340 * (If we've never before wrapped or we're not about to, no adjustment 11341 * is required.) 11342 */ 11343 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 11344 offs + total > buf->dtb_size) { 11345 woffs = buf->dtb_xamot_offset; 11346 11347 if (offs + total > buf->dtb_size) { 11348 /* 11349 * We can't fit in the end of the buffer. First, a 11350 * sanity check that we can fit in the buffer at all. 11351 */ 11352 if (total > buf->dtb_size) { 11353 dtrace_buffer_drop(buf); 11354 return (-1); 11355 } 11356 11357 /* 11358 * We're going to be storing at the top of the buffer, 11359 * so now we need to deal with the wrapped offset. We 11360 * only reset our wrapped offset to 0 if it is 11361 * currently greater than the current offset. If it 11362 * is less than the current offset, it is because a 11363 * previous allocation induced a wrap -- but the 11364 * allocation didn't subsequently take the space due 11365 * to an error or false predicate evaluation. In this 11366 * case, we'll just leave the wrapped offset alone: if 11367 * the wrapped offset hasn't been advanced far enough 11368 * for this allocation, it will be adjusted in the 11369 * lower loop. 11370 */ 11371 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 11372 if (woffs >= offs) 11373 woffs = 0; 11374 } else { 11375 woffs = 0; 11376 } 11377 11378 /* 11379 * Now we know that we're going to be storing to the 11380 * top of the buffer and that there is room for us 11381 * there. We need to clear the buffer from the current 11382 * offset to the end (there may be old gunk there). 11383 */ 11384 while (offs < buf->dtb_size) 11385 tomax[offs++] = 0; 11386 11387 /* 11388 * We need to set our offset to zero. And because we 11389 * are wrapping, we need to set the bit indicating as 11390 * much. We can also adjust our needed space back 11391 * down to the space required by the ECB -- we know 11392 * that the top of the buffer is aligned. 11393 */ 11394 offs = 0; 11395 total = needed; 11396 buf->dtb_flags |= DTRACEBUF_WRAPPED; 11397 } else { 11398 /* 11399 * There is room for us in the buffer, so we simply 11400 * need to check the wrapped offset. 11401 */ 11402 if (woffs < offs) { 11403 /* 11404 * The wrapped offset is less than the offset. 11405 * This can happen if we allocated buffer space 11406 * that induced a wrap, but then we didn't 11407 * subsequently take the space due to an error 11408 * or false predicate evaluation. This is 11409 * okay; we know that _this_ allocation isn't 11410 * going to induce a wrap. We still can't 11411 * reset the wrapped offset to be zero, 11412 * however: the space may have been trashed in 11413 * the previous failed probe attempt. But at 11414 * least the wrapped offset doesn't need to 11415 * be adjusted at all... 11416 */ 11417 goto out; 11418 } 11419 } 11420 11421 while (offs + total > woffs) { 11422 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 11423 size_t size; 11424 11425 if (epid == DTRACE_EPIDNONE) { 11426 size = sizeof (uint32_t); 11427 } else { 11428 ASSERT3U(epid, <=, state->dts_necbs); 11429 ASSERT(state->dts_ecbs[epid - 1] != NULL); 11430 11431 size = state->dts_ecbs[epid - 1]->dte_size; 11432 } 11433 11434 ASSERT(woffs + size <= buf->dtb_size); 11435 ASSERT(size != 0); 11436 11437 if (woffs + size == buf->dtb_size) { 11438 /* 11439 * We've reached the end of the buffer; we want 11440 * to set the wrapped offset to 0 and break 11441 * out. However, if the offs is 0, then we're 11442 * in a strange edge-condition: the amount of 11443 * space that we want to reserve plus the size 11444 * of the record that we're overwriting is 11445 * greater than the size of the buffer. This 11446 * is problematic because if we reserve the 11447 * space but subsequently don't consume it (due 11448 * to a failed predicate or error) the wrapped 11449 * offset will be 0 -- yet the EPID at offset 0 11450 * will not be committed. This situation is 11451 * relatively easy to deal with: if we're in 11452 * this case, the buffer is indistinguishable 11453 * from one that hasn't wrapped; we need only 11454 * finish the job by clearing the wrapped bit, 11455 * explicitly setting the offset to be 0, and 11456 * zero'ing out the old data in the buffer. 11457 */ 11458 if (offs == 0) { 11459 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 11460 buf->dtb_offset = 0; 11461 woffs = total; 11462 11463 while (woffs < buf->dtb_size) 11464 tomax[woffs++] = 0; 11465 } 11466 11467 woffs = 0; 11468 break; 11469 } 11470 11471 woffs += size; 11472 } 11473 11474 /* 11475 * We have a wrapped offset. It may be that the wrapped offset 11476 * has become zero -- that's okay. 11477 */ 11478 buf->dtb_xamot_offset = woffs; 11479 } 11480 11481 out: 11482 /* 11483 * Now we can plow the buffer with any necessary padding. 11484 */ 11485 while (offs & (align - 1)) { 11486 /* 11487 * Assert that our alignment is off by a number which 11488 * is itself sizeof (uint32_t) aligned. 11489 */ 11490 ASSERT(!((align - (offs & (align - 1))) & 11491 (sizeof (uint32_t) - 1))); 11492 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 11493 offs += sizeof (uint32_t); 11494 } 11495 11496 if (buf->dtb_flags & DTRACEBUF_FILL) { 11497 if (offs + needed > buf->dtb_size - state->dts_reserve) { 11498 buf->dtb_flags |= DTRACEBUF_FULL; 11499 return (-1); 11500 } 11501 } 11502 11503 if (mstate == NULL) 11504 return (offs); 11505 11506 /* 11507 * For ring buffers and fill buffers, the scratch space is always 11508 * the inactive buffer. 11509 */ 11510 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 11511 mstate->dtms_scratch_size = buf->dtb_size; 11512 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 11513 11514 return (offs); 11515 } 11516 11517 static void 11518 dtrace_buffer_polish(dtrace_buffer_t *buf) 11519 { 11520 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 11521 ASSERT(MUTEX_HELD(&dtrace_lock)); 11522 11523 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 11524 return; 11525 11526 /* 11527 * We need to polish the ring buffer. There are three cases: 11528 * 11529 * - The first (and presumably most common) is that there is no gap 11530 * between the buffer offset and the wrapped offset. In this case, 11531 * there is nothing in the buffer that isn't valid data; we can 11532 * mark the buffer as polished and return. 11533 * 11534 * - The second (less common than the first but still more common 11535 * than the third) is that there is a gap between the buffer offset 11536 * and the wrapped offset, and the wrapped offset is larger than the 11537 * buffer offset. This can happen because of an alignment issue, or 11538 * can happen because of a call to dtrace_buffer_reserve() that 11539 * didn't subsequently consume the buffer space. In this case, 11540 * we need to zero the data from the buffer offset to the wrapped 11541 * offset. 11542 * 11543 * - The third (and least common) is that there is a gap between the 11544 * buffer offset and the wrapped offset, but the wrapped offset is 11545 * _less_ than the buffer offset. This can only happen because a 11546 * call to dtrace_buffer_reserve() induced a wrap, but the space 11547 * was not subsequently consumed. In this case, we need to zero the 11548 * space from the offset to the end of the buffer _and_ from the 11549 * top of the buffer to the wrapped offset. 11550 */ 11551 if (buf->dtb_offset < buf->dtb_xamot_offset) { 11552 bzero(buf->dtb_tomax + buf->dtb_offset, 11553 buf->dtb_xamot_offset - buf->dtb_offset); 11554 } 11555 11556 if (buf->dtb_offset > buf->dtb_xamot_offset) { 11557 bzero(buf->dtb_tomax + buf->dtb_offset, 11558 buf->dtb_size - buf->dtb_offset); 11559 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 11560 } 11561 } 11562 11563 /* 11564 * This routine determines if data generated at the specified time has likely 11565 * been entirely consumed at user-level. This routine is called to determine 11566 * if an ECB on a defunct probe (but for an active enabling) can be safely 11567 * disabled and destroyed. 11568 */ 11569 static int 11570 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when) 11571 { 11572 int i; 11573 11574 for (i = 0; i < NCPU; i++) { 11575 dtrace_buffer_t *buf = &bufs[i]; 11576 11577 if (buf->dtb_size == 0) 11578 continue; 11579 11580 if (buf->dtb_flags & DTRACEBUF_RING) 11581 return (0); 11582 11583 if (!buf->dtb_switched && buf->dtb_offset != 0) 11584 return (0); 11585 11586 if (buf->dtb_switched - buf->dtb_interval < when) 11587 return (0); 11588 } 11589 11590 return (1); 11591 } 11592 11593 static void 11594 dtrace_buffer_free(dtrace_buffer_t *bufs) 11595 { 11596 int i; 11597 11598 for (i = 0; i < NCPU; i++) { 11599 dtrace_buffer_t *buf = &bufs[i]; 11600 11601 if (buf->dtb_tomax == NULL) { 11602 ASSERT(buf->dtb_xamot == NULL); 11603 ASSERT(buf->dtb_size == 0); 11604 continue; 11605 } 11606 11607 if (buf->dtb_xamot != NULL) { 11608 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 11609 kmem_free(buf->dtb_xamot, buf->dtb_size); 11610 } 11611 11612 kmem_free(buf->dtb_tomax, buf->dtb_size); 11613 buf->dtb_size = 0; 11614 buf->dtb_tomax = NULL; 11615 buf->dtb_xamot = NULL; 11616 } 11617 } 11618 11619 /* 11620 * DTrace Enabling Functions 11621 */ 11622 static dtrace_enabling_t * 11623 dtrace_enabling_create(dtrace_vstate_t *vstate) 11624 { 11625 dtrace_enabling_t *enab; 11626 11627 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 11628 enab->dten_vstate = vstate; 11629 11630 return (enab); 11631 } 11632 11633 static void 11634 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 11635 { 11636 dtrace_ecbdesc_t **ndesc; 11637 size_t osize, nsize; 11638 11639 /* 11640 * We can't add to enablings after we've enabled them, or after we've 11641 * retained them. 11642 */ 11643 ASSERT(enab->dten_probegen == 0); 11644 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 11645 11646 if (enab->dten_ndesc < enab->dten_maxdesc) { 11647 enab->dten_desc[enab->dten_ndesc++] = ecb; 11648 return; 11649 } 11650 11651 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 11652 11653 if (enab->dten_maxdesc == 0) { 11654 enab->dten_maxdesc = 1; 11655 } else { 11656 enab->dten_maxdesc <<= 1; 11657 } 11658 11659 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 11660 11661 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 11662 ndesc = kmem_zalloc(nsize, KM_SLEEP); 11663 bcopy(enab->dten_desc, ndesc, osize); 11664 kmem_free(enab->dten_desc, osize); 11665 11666 enab->dten_desc = ndesc; 11667 enab->dten_desc[enab->dten_ndesc++] = ecb; 11668 } 11669 11670 static void 11671 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 11672 dtrace_probedesc_t *pd) 11673 { 11674 dtrace_ecbdesc_t *new; 11675 dtrace_predicate_t *pred; 11676 dtrace_actdesc_t *act; 11677 11678 /* 11679 * We're going to create a new ECB description that matches the 11680 * specified ECB in every way, but has the specified probe description. 11681 */ 11682 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 11683 11684 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 11685 dtrace_predicate_hold(pred); 11686 11687 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 11688 dtrace_actdesc_hold(act); 11689 11690 new->dted_action = ecb->dted_action; 11691 new->dted_pred = ecb->dted_pred; 11692 new->dted_probe = *pd; 11693 new->dted_uarg = ecb->dted_uarg; 11694 11695 dtrace_enabling_add(enab, new); 11696 } 11697 11698 static void 11699 dtrace_enabling_dump(dtrace_enabling_t *enab) 11700 { 11701 int i; 11702 11703 for (i = 0; i < enab->dten_ndesc; i++) { 11704 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 11705 11706 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 11707 desc->dtpd_provider, desc->dtpd_mod, 11708 desc->dtpd_func, desc->dtpd_name); 11709 } 11710 } 11711 11712 static void 11713 dtrace_enabling_destroy(dtrace_enabling_t *enab) 11714 { 11715 int i; 11716 dtrace_ecbdesc_t *ep; 11717 dtrace_vstate_t *vstate = enab->dten_vstate; 11718 11719 ASSERT(MUTEX_HELD(&dtrace_lock)); 11720 11721 for (i = 0; i < enab->dten_ndesc; i++) { 11722 dtrace_actdesc_t *act, *next; 11723 dtrace_predicate_t *pred; 11724 11725 ep = enab->dten_desc[i]; 11726 11727 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 11728 dtrace_predicate_release(pred, vstate); 11729 11730 for (act = ep->dted_action; act != NULL; act = next) { 11731 next = act->dtad_next; 11732 dtrace_actdesc_release(act, vstate); 11733 } 11734 11735 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 11736 } 11737 11738 kmem_free(enab->dten_desc, 11739 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 11740 11741 /* 11742 * If this was a retained enabling, decrement the dts_nretained count 11743 * and take it off of the dtrace_retained list. 11744 */ 11745 if (enab->dten_prev != NULL || enab->dten_next != NULL || 11746 dtrace_retained == enab) { 11747 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11748 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 11749 enab->dten_vstate->dtvs_state->dts_nretained--; 11750 dtrace_retained_gen++; 11751 } 11752 11753 if (enab->dten_prev == NULL) { 11754 if (dtrace_retained == enab) { 11755 dtrace_retained = enab->dten_next; 11756 11757 if (dtrace_retained != NULL) 11758 dtrace_retained->dten_prev = NULL; 11759 } 11760 } else { 11761 ASSERT(enab != dtrace_retained); 11762 ASSERT(dtrace_retained != NULL); 11763 enab->dten_prev->dten_next = enab->dten_next; 11764 } 11765 11766 if (enab->dten_next != NULL) { 11767 ASSERT(dtrace_retained != NULL); 11768 enab->dten_next->dten_prev = enab->dten_prev; 11769 } 11770 11771 kmem_free(enab, sizeof (dtrace_enabling_t)); 11772 } 11773 11774 static int 11775 dtrace_enabling_retain(dtrace_enabling_t *enab) 11776 { 11777 dtrace_state_t *state; 11778 11779 ASSERT(MUTEX_HELD(&dtrace_lock)); 11780 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 11781 ASSERT(enab->dten_vstate != NULL); 11782 11783 state = enab->dten_vstate->dtvs_state; 11784 ASSERT(state != NULL); 11785 11786 /* 11787 * We only allow each state to retain dtrace_retain_max enablings. 11788 */ 11789 if (state->dts_nretained >= dtrace_retain_max) 11790 return (ENOSPC); 11791 11792 state->dts_nretained++; 11793 dtrace_retained_gen++; 11794 11795 if (dtrace_retained == NULL) { 11796 dtrace_retained = enab; 11797 return (0); 11798 } 11799 11800 enab->dten_next = dtrace_retained; 11801 dtrace_retained->dten_prev = enab; 11802 dtrace_retained = enab; 11803 11804 return (0); 11805 } 11806 11807 static int 11808 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 11809 dtrace_probedesc_t *create) 11810 { 11811 dtrace_enabling_t *new, *enab; 11812 int found = 0, err = ENOENT; 11813 11814 ASSERT(MUTEX_HELD(&dtrace_lock)); 11815 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 11816 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 11817 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 11818 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 11819 11820 new = dtrace_enabling_create(&state->dts_vstate); 11821 11822 /* 11823 * Iterate over all retained enablings, looking for enablings that 11824 * match the specified state. 11825 */ 11826 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 11827 int i; 11828 11829 /* 11830 * dtvs_state can only be NULL for helper enablings -- and 11831 * helper enablings can't be retained. 11832 */ 11833 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11834 11835 if (enab->dten_vstate->dtvs_state != state) 11836 continue; 11837 11838 /* 11839 * Now iterate over each probe description; we're looking for 11840 * an exact match to the specified probe description. 11841 */ 11842 for (i = 0; i < enab->dten_ndesc; i++) { 11843 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 11844 dtrace_probedesc_t *pd = &ep->dted_probe; 11845 11846 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 11847 continue; 11848 11849 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 11850 continue; 11851 11852 if (strcmp(pd->dtpd_func, match->dtpd_func)) 11853 continue; 11854 11855 if (strcmp(pd->dtpd_name, match->dtpd_name)) 11856 continue; 11857 11858 /* 11859 * We have a winning probe! Add it to our growing 11860 * enabling. 11861 */ 11862 found = 1; 11863 dtrace_enabling_addlike(new, ep, create); 11864 } 11865 } 11866 11867 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 11868 dtrace_enabling_destroy(new); 11869 return (err); 11870 } 11871 11872 return (0); 11873 } 11874 11875 static void 11876 dtrace_enabling_retract(dtrace_state_t *state) 11877 { 11878 dtrace_enabling_t *enab, *next; 11879 11880 ASSERT(MUTEX_HELD(&dtrace_lock)); 11881 11882 /* 11883 * Iterate over all retained enablings, destroy the enablings retained 11884 * for the specified state. 11885 */ 11886 for (enab = dtrace_retained; enab != NULL; enab = next) { 11887 next = enab->dten_next; 11888 11889 /* 11890 * dtvs_state can only be NULL for helper enablings -- and 11891 * helper enablings can't be retained. 11892 */ 11893 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11894 11895 if (enab->dten_vstate->dtvs_state == state) { 11896 ASSERT(state->dts_nretained > 0); 11897 dtrace_enabling_destroy(enab); 11898 } 11899 } 11900 11901 ASSERT(state->dts_nretained == 0); 11902 } 11903 11904 static int 11905 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 11906 { 11907 int i = 0; 11908 int total_matched = 0, matched = 0; 11909 11910 ASSERT(MUTEX_HELD(&cpu_lock)); 11911 ASSERT(MUTEX_HELD(&dtrace_lock)); 11912 11913 for (i = 0; i < enab->dten_ndesc; i++) { 11914 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 11915 11916 enab->dten_current = ep; 11917 enab->dten_error = 0; 11918 11919 /* 11920 * If a provider failed to enable a probe then get out and 11921 * let the consumer know we failed. 11922 */ 11923 if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0) 11924 return (EBUSY); 11925 11926 total_matched += matched; 11927 11928 if (enab->dten_error != 0) { 11929 /* 11930 * If we get an error half-way through enabling the 11931 * probes, we kick out -- perhaps with some number of 11932 * them enabled. Leaving enabled probes enabled may 11933 * be slightly confusing for user-level, but we expect 11934 * that no one will attempt to actually drive on in 11935 * the face of such errors. If this is an anonymous 11936 * enabling (indicated with a NULL nmatched pointer), 11937 * we cmn_err() a message. We aren't expecting to 11938 * get such an error -- such as it can exist at all, 11939 * it would be a result of corrupted DOF in the driver 11940 * properties. 11941 */ 11942 if (nmatched == NULL) { 11943 cmn_err(CE_WARN, "dtrace_enabling_match() " 11944 "error on %p: %d", (void *)ep, 11945 enab->dten_error); 11946 } 11947 11948 return (enab->dten_error); 11949 } 11950 } 11951 11952 enab->dten_probegen = dtrace_probegen; 11953 if (nmatched != NULL) 11954 *nmatched = total_matched; 11955 11956 return (0); 11957 } 11958 11959 static void 11960 dtrace_enabling_matchall(void) 11961 { 11962 dtrace_enabling_t *enab; 11963 11964 mutex_enter(&cpu_lock); 11965 mutex_enter(&dtrace_lock); 11966 11967 /* 11968 * Iterate over all retained enablings to see if any probes match 11969 * against them. We only perform this operation on enablings for which 11970 * we have sufficient permissions by virtue of being in the global zone 11971 * or in the same zone as the DTrace client. Because we can be called 11972 * after dtrace_detach() has been called, we cannot assert that there 11973 * are retained enablings. We can safely load from dtrace_retained, 11974 * however: the taskq_destroy() at the end of dtrace_detach() will 11975 * block pending our completion. 11976 */ 11977 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 11978 dtrace_cred_t *dcr = &enab->dten_vstate->dtvs_state->dts_cred; 11979 cred_t *cr = dcr->dcr_cred; 11980 zoneid_t zone = cr != NULL ? crgetzoneid(cr) : 0; 11981 11982 if ((dcr->dcr_visible & DTRACE_CRV_ALLZONE) || (cr != NULL && 11983 (zone == GLOBAL_ZONEID || getzoneid() == zone))) 11984 (void) dtrace_enabling_match(enab, NULL); 11985 } 11986 11987 mutex_exit(&dtrace_lock); 11988 mutex_exit(&cpu_lock); 11989 } 11990 11991 /* 11992 * If an enabling is to be enabled without having matched probes (that is, if 11993 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 11994 * enabling must be _primed_ by creating an ECB for every ECB description. 11995 * This must be done to assure that we know the number of speculations, the 11996 * number of aggregations, the minimum buffer size needed, etc. before we 11997 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 11998 * enabling any probes, we create ECBs for every ECB decription, but with a 11999 * NULL probe -- which is exactly what this function does. 12000 */ 12001 static void 12002 dtrace_enabling_prime(dtrace_state_t *state) 12003 { 12004 dtrace_enabling_t *enab; 12005 int i; 12006 12007 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12008 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12009 12010 if (enab->dten_vstate->dtvs_state != state) 12011 continue; 12012 12013 /* 12014 * We don't want to prime an enabling more than once, lest 12015 * we allow a malicious user to induce resource exhaustion. 12016 * (The ECBs that result from priming an enabling aren't 12017 * leaked -- but they also aren't deallocated until the 12018 * consumer state is destroyed.) 12019 */ 12020 if (enab->dten_primed) 12021 continue; 12022 12023 for (i = 0; i < enab->dten_ndesc; i++) { 12024 enab->dten_current = enab->dten_desc[i]; 12025 (void) dtrace_probe_enable(NULL, enab); 12026 } 12027 12028 enab->dten_primed = 1; 12029 } 12030 } 12031 12032 /* 12033 * Called to indicate that probes should be provided due to retained 12034 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 12035 * must take an initial lap through the enabling calling the dtps_provide() 12036 * entry point explicitly to allow for autocreated probes. 12037 */ 12038 static void 12039 dtrace_enabling_provide(dtrace_provider_t *prv) 12040 { 12041 int i, all = 0; 12042 dtrace_probedesc_t desc; 12043 dtrace_genid_t gen; 12044 12045 ASSERT(MUTEX_HELD(&dtrace_lock)); 12046 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 12047 12048 if (prv == NULL) { 12049 all = 1; 12050 prv = dtrace_provider; 12051 } 12052 12053 do { 12054 dtrace_enabling_t *enab; 12055 void *parg = prv->dtpv_arg; 12056 12057 retry: 12058 gen = dtrace_retained_gen; 12059 for (enab = dtrace_retained; enab != NULL; 12060 enab = enab->dten_next) { 12061 for (i = 0; i < enab->dten_ndesc; i++) { 12062 desc = enab->dten_desc[i]->dted_probe; 12063 mutex_exit(&dtrace_lock); 12064 prv->dtpv_pops.dtps_provide(parg, &desc); 12065 mutex_enter(&dtrace_lock); 12066 /* 12067 * Process the retained enablings again if 12068 * they have changed while we weren't holding 12069 * dtrace_lock. 12070 */ 12071 if (gen != dtrace_retained_gen) 12072 goto retry; 12073 } 12074 } 12075 } while (all && (prv = prv->dtpv_next) != NULL); 12076 12077 mutex_exit(&dtrace_lock); 12078 dtrace_probe_provide(NULL, all ? NULL : prv); 12079 mutex_enter(&dtrace_lock); 12080 } 12081 12082 /* 12083 * Called to reap ECBs that are attached to probes from defunct providers. 12084 */ 12085 static void 12086 dtrace_enabling_reap(void) 12087 { 12088 dtrace_provider_t *prov; 12089 dtrace_probe_t *probe; 12090 dtrace_ecb_t *ecb; 12091 hrtime_t when; 12092 int i; 12093 12094 mutex_enter(&cpu_lock); 12095 mutex_enter(&dtrace_lock); 12096 12097 for (i = 0; i < dtrace_nprobes; i++) { 12098 if ((probe = dtrace_probes[i]) == NULL) 12099 continue; 12100 12101 if (probe->dtpr_ecb == NULL) 12102 continue; 12103 12104 prov = probe->dtpr_provider; 12105 12106 if ((when = prov->dtpv_defunct) == 0) 12107 continue; 12108 12109 /* 12110 * We have ECBs on a defunct provider: we want to reap these 12111 * ECBs to allow the provider to unregister. The destruction 12112 * of these ECBs must be done carefully: if we destroy the ECB 12113 * and the consumer later wishes to consume an EPID that 12114 * corresponds to the destroyed ECB (and if the EPID metadata 12115 * has not been previously consumed), the consumer will abort 12116 * processing on the unknown EPID. To reduce (but not, sadly, 12117 * eliminate) the possibility of this, we will only destroy an 12118 * ECB for a defunct provider if, for the state that 12119 * corresponds to the ECB: 12120 * 12121 * (a) There is no speculative tracing (which can effectively 12122 * cache an EPID for an arbitrary amount of time). 12123 * 12124 * (b) The principal buffers have been switched twice since the 12125 * provider became defunct. 12126 * 12127 * (c) The aggregation buffers are of zero size or have been 12128 * switched twice since the provider became defunct. 12129 * 12130 * We use dts_speculates to determine (a) and call a function 12131 * (dtrace_buffer_consumed()) to determine (b) and (c). Note 12132 * that as soon as we've been unable to destroy one of the ECBs 12133 * associated with the probe, we quit trying -- reaping is only 12134 * fruitful in as much as we can destroy all ECBs associated 12135 * with the defunct provider's probes. 12136 */ 12137 while ((ecb = probe->dtpr_ecb) != NULL) { 12138 dtrace_state_t *state = ecb->dte_state; 12139 dtrace_buffer_t *buf = state->dts_buffer; 12140 dtrace_buffer_t *aggbuf = state->dts_aggbuffer; 12141 12142 if (state->dts_speculates) 12143 break; 12144 12145 if (!dtrace_buffer_consumed(buf, when)) 12146 break; 12147 12148 if (!dtrace_buffer_consumed(aggbuf, when)) 12149 break; 12150 12151 dtrace_ecb_disable(ecb); 12152 ASSERT(probe->dtpr_ecb != ecb); 12153 dtrace_ecb_destroy(ecb); 12154 } 12155 } 12156 12157 mutex_exit(&dtrace_lock); 12158 mutex_exit(&cpu_lock); 12159 } 12160 12161 /* 12162 * DTrace DOF Functions 12163 */ 12164 /*ARGSUSED*/ 12165 static void 12166 dtrace_dof_error(dof_hdr_t *dof, const char *str) 12167 { 12168 if (dtrace_err_verbose) 12169 cmn_err(CE_WARN, "failed to process DOF: %s", str); 12170 12171 #ifdef DTRACE_ERRDEBUG 12172 dtrace_errdebug(str); 12173 #endif 12174 } 12175 12176 /* 12177 * Create DOF out of a currently enabled state. Right now, we only create 12178 * DOF containing the run-time options -- but this could be expanded to create 12179 * complete DOF representing the enabled state. 12180 */ 12181 static dof_hdr_t * 12182 dtrace_dof_create(dtrace_state_t *state) 12183 { 12184 dof_hdr_t *dof; 12185 dof_sec_t *sec; 12186 dof_optdesc_t *opt; 12187 int i, len = sizeof (dof_hdr_t) + 12188 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 12189 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 12190 12191 ASSERT(MUTEX_HELD(&dtrace_lock)); 12192 12193 dof = kmem_zalloc(len, KM_SLEEP); 12194 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 12195 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 12196 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 12197 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 12198 12199 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 12200 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 12201 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 12202 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 12203 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 12204 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 12205 12206 dof->dofh_flags = 0; 12207 dof->dofh_hdrsize = sizeof (dof_hdr_t); 12208 dof->dofh_secsize = sizeof (dof_sec_t); 12209 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 12210 dof->dofh_secoff = sizeof (dof_hdr_t); 12211 dof->dofh_loadsz = len; 12212 dof->dofh_filesz = len; 12213 dof->dofh_pad = 0; 12214 12215 /* 12216 * Fill in the option section header... 12217 */ 12218 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 12219 sec->dofs_type = DOF_SECT_OPTDESC; 12220 sec->dofs_align = sizeof (uint64_t); 12221 sec->dofs_flags = DOF_SECF_LOAD; 12222 sec->dofs_entsize = sizeof (dof_optdesc_t); 12223 12224 opt = (dof_optdesc_t *)((uintptr_t)sec + 12225 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 12226 12227 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 12228 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 12229 12230 for (i = 0; i < DTRACEOPT_MAX; i++) { 12231 opt[i].dofo_option = i; 12232 opt[i].dofo_strtab = DOF_SECIDX_NONE; 12233 opt[i].dofo_value = state->dts_options[i]; 12234 } 12235 12236 return (dof); 12237 } 12238 12239 static dof_hdr_t * 12240 dtrace_dof_copyin(uintptr_t uarg, int *errp) 12241 { 12242 dof_hdr_t hdr, *dof; 12243 12244 ASSERT(!MUTEX_HELD(&dtrace_lock)); 12245 12246 /* 12247 * First, we're going to copyin() the sizeof (dof_hdr_t). 12248 */ 12249 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 12250 dtrace_dof_error(NULL, "failed to copyin DOF header"); 12251 *errp = EFAULT; 12252 return (NULL); 12253 } 12254 12255 /* 12256 * Now we'll allocate the entire DOF and copy it in -- provided 12257 * that the length isn't outrageous. 12258 */ 12259 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 12260 dtrace_dof_error(&hdr, "load size exceeds maximum"); 12261 *errp = E2BIG; 12262 return (NULL); 12263 } 12264 12265 if (hdr.dofh_loadsz < sizeof (hdr)) { 12266 dtrace_dof_error(&hdr, "invalid load size"); 12267 *errp = EINVAL; 12268 return (NULL); 12269 } 12270 12271 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 12272 12273 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 || 12274 dof->dofh_loadsz != hdr.dofh_loadsz) { 12275 kmem_free(dof, hdr.dofh_loadsz); 12276 *errp = EFAULT; 12277 return (NULL); 12278 } 12279 12280 return (dof); 12281 } 12282 12283 static dof_hdr_t * 12284 dtrace_dof_property(const char *name) 12285 { 12286 uchar_t *buf; 12287 uint64_t loadsz; 12288 unsigned int len, i; 12289 dof_hdr_t *dof; 12290 12291 /* 12292 * Unfortunately, array of values in .conf files are always (and 12293 * only) interpreted to be integer arrays. We must read our DOF 12294 * as an integer array, and then squeeze it into a byte array. 12295 */ 12296 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 12297 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 12298 return (NULL); 12299 12300 for (i = 0; i < len; i++) 12301 buf[i] = (uchar_t)(((int *)buf)[i]); 12302 12303 if (len < sizeof (dof_hdr_t)) { 12304 ddi_prop_free(buf); 12305 dtrace_dof_error(NULL, "truncated header"); 12306 return (NULL); 12307 } 12308 12309 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 12310 ddi_prop_free(buf); 12311 dtrace_dof_error(NULL, "truncated DOF"); 12312 return (NULL); 12313 } 12314 12315 if (loadsz >= dtrace_dof_maxsize) { 12316 ddi_prop_free(buf); 12317 dtrace_dof_error(NULL, "oversized DOF"); 12318 return (NULL); 12319 } 12320 12321 dof = kmem_alloc(loadsz, KM_SLEEP); 12322 bcopy(buf, dof, loadsz); 12323 ddi_prop_free(buf); 12324 12325 return (dof); 12326 } 12327 12328 static void 12329 dtrace_dof_destroy(dof_hdr_t *dof) 12330 { 12331 kmem_free(dof, dof->dofh_loadsz); 12332 } 12333 12334 /* 12335 * Return the dof_sec_t pointer corresponding to a given section index. If the 12336 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 12337 * a type other than DOF_SECT_NONE is specified, the header is checked against 12338 * this type and NULL is returned if the types do not match. 12339 */ 12340 static dof_sec_t * 12341 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 12342 { 12343 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 12344 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 12345 12346 if (i >= dof->dofh_secnum) { 12347 dtrace_dof_error(dof, "referenced section index is invalid"); 12348 return (NULL); 12349 } 12350 12351 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 12352 dtrace_dof_error(dof, "referenced section is not loadable"); 12353 return (NULL); 12354 } 12355 12356 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 12357 dtrace_dof_error(dof, "referenced section is the wrong type"); 12358 return (NULL); 12359 } 12360 12361 return (sec); 12362 } 12363 12364 static dtrace_probedesc_t * 12365 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 12366 { 12367 dof_probedesc_t *probe; 12368 dof_sec_t *strtab; 12369 uintptr_t daddr = (uintptr_t)dof; 12370 uintptr_t str; 12371 size_t size; 12372 12373 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 12374 dtrace_dof_error(dof, "invalid probe section"); 12375 return (NULL); 12376 } 12377 12378 if (sec->dofs_align != sizeof (dof_secidx_t)) { 12379 dtrace_dof_error(dof, "bad alignment in probe description"); 12380 return (NULL); 12381 } 12382 12383 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 12384 dtrace_dof_error(dof, "truncated probe description"); 12385 return (NULL); 12386 } 12387 12388 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 12389 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 12390 12391 if (strtab == NULL) 12392 return (NULL); 12393 12394 str = daddr + strtab->dofs_offset; 12395 size = strtab->dofs_size; 12396 12397 if (probe->dofp_provider >= strtab->dofs_size) { 12398 dtrace_dof_error(dof, "corrupt probe provider"); 12399 return (NULL); 12400 } 12401 12402 (void) strncpy(desc->dtpd_provider, 12403 (char *)(str + probe->dofp_provider), 12404 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 12405 12406 if (probe->dofp_mod >= strtab->dofs_size) { 12407 dtrace_dof_error(dof, "corrupt probe module"); 12408 return (NULL); 12409 } 12410 12411 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 12412 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 12413 12414 if (probe->dofp_func >= strtab->dofs_size) { 12415 dtrace_dof_error(dof, "corrupt probe function"); 12416 return (NULL); 12417 } 12418 12419 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 12420 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 12421 12422 if (probe->dofp_name >= strtab->dofs_size) { 12423 dtrace_dof_error(dof, "corrupt probe name"); 12424 return (NULL); 12425 } 12426 12427 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 12428 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 12429 12430 return (desc); 12431 } 12432 12433 static dtrace_difo_t * 12434 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12435 cred_t *cr) 12436 { 12437 dtrace_difo_t *dp; 12438 size_t ttl = 0; 12439 dof_difohdr_t *dofd; 12440 uintptr_t daddr = (uintptr_t)dof; 12441 size_t max = dtrace_difo_maxsize; 12442 int i, l, n; 12443 12444 static const struct { 12445 int section; 12446 int bufoffs; 12447 int lenoffs; 12448 int entsize; 12449 int align; 12450 const char *msg; 12451 } difo[] = { 12452 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 12453 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 12454 sizeof (dif_instr_t), "multiple DIF sections" }, 12455 12456 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 12457 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 12458 sizeof (uint64_t), "multiple integer tables" }, 12459 12460 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 12461 offsetof(dtrace_difo_t, dtdo_strlen), 0, 12462 sizeof (char), "multiple string tables" }, 12463 12464 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 12465 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 12466 sizeof (uint_t), "multiple variable tables" }, 12467 12468 { DOF_SECT_NONE, 0, 0, 0, NULL } 12469 }; 12470 12471 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 12472 dtrace_dof_error(dof, "invalid DIFO header section"); 12473 return (NULL); 12474 } 12475 12476 if (sec->dofs_align != sizeof (dof_secidx_t)) { 12477 dtrace_dof_error(dof, "bad alignment in DIFO header"); 12478 return (NULL); 12479 } 12480 12481 if (sec->dofs_size < sizeof (dof_difohdr_t) || 12482 sec->dofs_size % sizeof (dof_secidx_t)) { 12483 dtrace_dof_error(dof, "bad size in DIFO header"); 12484 return (NULL); 12485 } 12486 12487 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 12488 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 12489 12490 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 12491 dp->dtdo_rtype = dofd->dofd_rtype; 12492 12493 for (l = 0; l < n; l++) { 12494 dof_sec_t *subsec; 12495 void **bufp; 12496 uint32_t *lenp; 12497 12498 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 12499 dofd->dofd_links[l])) == NULL) 12500 goto err; /* invalid section link */ 12501 12502 if (ttl + subsec->dofs_size > max) { 12503 dtrace_dof_error(dof, "exceeds maximum size"); 12504 goto err; 12505 } 12506 12507 ttl += subsec->dofs_size; 12508 12509 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 12510 if (subsec->dofs_type != difo[i].section) 12511 continue; 12512 12513 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 12514 dtrace_dof_error(dof, "section not loaded"); 12515 goto err; 12516 } 12517 12518 if (subsec->dofs_align != difo[i].align) { 12519 dtrace_dof_error(dof, "bad alignment"); 12520 goto err; 12521 } 12522 12523 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 12524 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 12525 12526 if (*bufp != NULL) { 12527 dtrace_dof_error(dof, difo[i].msg); 12528 goto err; 12529 } 12530 12531 if (difo[i].entsize != subsec->dofs_entsize) { 12532 dtrace_dof_error(dof, "entry size mismatch"); 12533 goto err; 12534 } 12535 12536 if (subsec->dofs_entsize != 0 && 12537 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 12538 dtrace_dof_error(dof, "corrupt entry size"); 12539 goto err; 12540 } 12541 12542 *lenp = subsec->dofs_size; 12543 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 12544 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 12545 *bufp, subsec->dofs_size); 12546 12547 if (subsec->dofs_entsize != 0) 12548 *lenp /= subsec->dofs_entsize; 12549 12550 break; 12551 } 12552 12553 /* 12554 * If we encounter a loadable DIFO sub-section that is not 12555 * known to us, assume this is a broken program and fail. 12556 */ 12557 if (difo[i].section == DOF_SECT_NONE && 12558 (subsec->dofs_flags & DOF_SECF_LOAD)) { 12559 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 12560 goto err; 12561 } 12562 } 12563 12564 if (dp->dtdo_buf == NULL) { 12565 /* 12566 * We can't have a DIF object without DIF text. 12567 */ 12568 dtrace_dof_error(dof, "missing DIF text"); 12569 goto err; 12570 } 12571 12572 /* 12573 * Before we validate the DIF object, run through the variable table 12574 * looking for the strings -- if any of their size are under, we'll set 12575 * their size to be the system-wide default string size. Note that 12576 * this should _not_ happen if the "strsize" option has been set -- 12577 * in this case, the compiler should have set the size to reflect the 12578 * setting of the option. 12579 */ 12580 for (i = 0; i < dp->dtdo_varlen; i++) { 12581 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 12582 dtrace_diftype_t *t = &v->dtdv_type; 12583 12584 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 12585 continue; 12586 12587 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 12588 t->dtdt_size = dtrace_strsize_default; 12589 } 12590 12591 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 12592 goto err; 12593 12594 dtrace_difo_init(dp, vstate); 12595 return (dp); 12596 12597 err: 12598 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 12599 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 12600 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 12601 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 12602 12603 kmem_free(dp, sizeof (dtrace_difo_t)); 12604 return (NULL); 12605 } 12606 12607 static dtrace_predicate_t * 12608 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12609 cred_t *cr) 12610 { 12611 dtrace_difo_t *dp; 12612 12613 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 12614 return (NULL); 12615 12616 return (dtrace_predicate_create(dp)); 12617 } 12618 12619 static dtrace_actdesc_t * 12620 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12621 cred_t *cr) 12622 { 12623 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 12624 dof_actdesc_t *desc; 12625 dof_sec_t *difosec; 12626 size_t offs; 12627 uintptr_t daddr = (uintptr_t)dof; 12628 uint64_t arg; 12629 dtrace_actkind_t kind; 12630 12631 if (sec->dofs_type != DOF_SECT_ACTDESC) { 12632 dtrace_dof_error(dof, "invalid action section"); 12633 return (NULL); 12634 } 12635 12636 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 12637 dtrace_dof_error(dof, "truncated action description"); 12638 return (NULL); 12639 } 12640 12641 if (sec->dofs_align != sizeof (uint64_t)) { 12642 dtrace_dof_error(dof, "bad alignment in action description"); 12643 return (NULL); 12644 } 12645 12646 if (sec->dofs_size < sec->dofs_entsize) { 12647 dtrace_dof_error(dof, "section entry size exceeds total size"); 12648 return (NULL); 12649 } 12650 12651 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 12652 dtrace_dof_error(dof, "bad entry size in action description"); 12653 return (NULL); 12654 } 12655 12656 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 12657 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 12658 return (NULL); 12659 } 12660 12661 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 12662 desc = (dof_actdesc_t *)(daddr + 12663 (uintptr_t)sec->dofs_offset + offs); 12664 kind = (dtrace_actkind_t)desc->dofa_kind; 12665 12666 if ((DTRACEACT_ISPRINTFLIKE(kind) && 12667 (kind != DTRACEACT_PRINTA || 12668 desc->dofa_strtab != DOF_SECIDX_NONE)) || 12669 (kind == DTRACEACT_DIFEXPR && 12670 desc->dofa_strtab != DOF_SECIDX_NONE)) { 12671 dof_sec_t *strtab; 12672 char *str, *fmt; 12673 uint64_t i; 12674 12675 /* 12676 * The argument to these actions is an index into the 12677 * DOF string table. For printf()-like actions, this 12678 * is the format string. For print(), this is the 12679 * CTF type of the expression result. 12680 */ 12681 if ((strtab = dtrace_dof_sect(dof, 12682 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 12683 goto err; 12684 12685 str = (char *)((uintptr_t)dof + 12686 (uintptr_t)strtab->dofs_offset); 12687 12688 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 12689 if (str[i] == '\0') 12690 break; 12691 } 12692 12693 if (i >= strtab->dofs_size) { 12694 dtrace_dof_error(dof, "bogus format string"); 12695 goto err; 12696 } 12697 12698 if (i == desc->dofa_arg) { 12699 dtrace_dof_error(dof, "empty format string"); 12700 goto err; 12701 } 12702 12703 i -= desc->dofa_arg; 12704 fmt = kmem_alloc(i + 1, KM_SLEEP); 12705 bcopy(&str[desc->dofa_arg], fmt, i + 1); 12706 arg = (uint64_t)(uintptr_t)fmt; 12707 } else { 12708 if (kind == DTRACEACT_PRINTA) { 12709 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 12710 arg = 0; 12711 } else { 12712 arg = desc->dofa_arg; 12713 } 12714 } 12715 12716 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 12717 desc->dofa_uarg, arg); 12718 12719 if (last != NULL) { 12720 last->dtad_next = act; 12721 } else { 12722 first = act; 12723 } 12724 12725 last = act; 12726 12727 if (desc->dofa_difo == DOF_SECIDX_NONE) 12728 continue; 12729 12730 if ((difosec = dtrace_dof_sect(dof, 12731 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 12732 goto err; 12733 12734 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 12735 12736 if (act->dtad_difo == NULL) 12737 goto err; 12738 } 12739 12740 ASSERT(first != NULL); 12741 return (first); 12742 12743 err: 12744 for (act = first; act != NULL; act = next) { 12745 next = act->dtad_next; 12746 dtrace_actdesc_release(act, vstate); 12747 } 12748 12749 return (NULL); 12750 } 12751 12752 static dtrace_ecbdesc_t * 12753 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12754 cred_t *cr) 12755 { 12756 dtrace_ecbdesc_t *ep; 12757 dof_ecbdesc_t *ecb; 12758 dtrace_probedesc_t *desc; 12759 dtrace_predicate_t *pred = NULL; 12760 12761 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 12762 dtrace_dof_error(dof, "truncated ECB description"); 12763 return (NULL); 12764 } 12765 12766 if (sec->dofs_align != sizeof (uint64_t)) { 12767 dtrace_dof_error(dof, "bad alignment in ECB description"); 12768 return (NULL); 12769 } 12770 12771 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 12772 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 12773 12774 if (sec == NULL) 12775 return (NULL); 12776 12777 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 12778 ep->dted_uarg = ecb->dofe_uarg; 12779 desc = &ep->dted_probe; 12780 12781 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 12782 goto err; 12783 12784 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 12785 if ((sec = dtrace_dof_sect(dof, 12786 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 12787 goto err; 12788 12789 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 12790 goto err; 12791 12792 ep->dted_pred.dtpdd_predicate = pred; 12793 } 12794 12795 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 12796 if ((sec = dtrace_dof_sect(dof, 12797 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 12798 goto err; 12799 12800 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 12801 12802 if (ep->dted_action == NULL) 12803 goto err; 12804 } 12805 12806 return (ep); 12807 12808 err: 12809 if (pred != NULL) 12810 dtrace_predicate_release(pred, vstate); 12811 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 12812 return (NULL); 12813 } 12814 12815 /* 12816 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 12817 * specified DOF. At present, this amounts to simply adding 'ubase' to the 12818 * site of any user SETX relocations to account for load object base address. 12819 * In the future, if we need other relocations, this function can be extended. 12820 */ 12821 static int 12822 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase) 12823 { 12824 uintptr_t daddr = (uintptr_t)dof; 12825 dof_relohdr_t *dofr = 12826 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 12827 dof_sec_t *ss, *rs, *ts; 12828 dof_relodesc_t *r; 12829 uint_t i, n; 12830 12831 if (sec->dofs_size < sizeof (dof_relohdr_t) || 12832 sec->dofs_align != sizeof (dof_secidx_t)) { 12833 dtrace_dof_error(dof, "invalid relocation header"); 12834 return (-1); 12835 } 12836 12837 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 12838 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 12839 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 12840 12841 if (ss == NULL || rs == NULL || ts == NULL) 12842 return (-1); /* dtrace_dof_error() has been called already */ 12843 12844 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 12845 rs->dofs_align != sizeof (uint64_t)) { 12846 dtrace_dof_error(dof, "invalid relocation section"); 12847 return (-1); 12848 } 12849 12850 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 12851 n = rs->dofs_size / rs->dofs_entsize; 12852 12853 for (i = 0; i < n; i++) { 12854 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 12855 12856 switch (r->dofr_type) { 12857 case DOF_RELO_NONE: 12858 break; 12859 case DOF_RELO_SETX: 12860 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 12861 sizeof (uint64_t) > ts->dofs_size) { 12862 dtrace_dof_error(dof, "bad relocation offset"); 12863 return (-1); 12864 } 12865 12866 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 12867 dtrace_dof_error(dof, "misaligned setx relo"); 12868 return (-1); 12869 } 12870 12871 *(uint64_t *)taddr += ubase; 12872 break; 12873 default: 12874 dtrace_dof_error(dof, "invalid relocation type"); 12875 return (-1); 12876 } 12877 12878 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 12879 } 12880 12881 return (0); 12882 } 12883 12884 /* 12885 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 12886 * header: it should be at the front of a memory region that is at least 12887 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 12888 * size. It need not be validated in any other way. 12889 */ 12890 static int 12891 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 12892 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes) 12893 { 12894 uint64_t len = dof->dofh_loadsz, seclen; 12895 uintptr_t daddr = (uintptr_t)dof; 12896 dtrace_ecbdesc_t *ep; 12897 dtrace_enabling_t *enab; 12898 uint_t i; 12899 12900 ASSERT(MUTEX_HELD(&dtrace_lock)); 12901 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 12902 12903 /* 12904 * Check the DOF header identification bytes. In addition to checking 12905 * valid settings, we also verify that unused bits/bytes are zeroed so 12906 * we can use them later without fear of regressing existing binaries. 12907 */ 12908 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 12909 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 12910 dtrace_dof_error(dof, "DOF magic string mismatch"); 12911 return (-1); 12912 } 12913 12914 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 12915 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 12916 dtrace_dof_error(dof, "DOF has invalid data model"); 12917 return (-1); 12918 } 12919 12920 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 12921 dtrace_dof_error(dof, "DOF encoding mismatch"); 12922 return (-1); 12923 } 12924 12925 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 12926 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 12927 dtrace_dof_error(dof, "DOF version mismatch"); 12928 return (-1); 12929 } 12930 12931 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 12932 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 12933 return (-1); 12934 } 12935 12936 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 12937 dtrace_dof_error(dof, "DOF uses too many integer registers"); 12938 return (-1); 12939 } 12940 12941 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 12942 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 12943 return (-1); 12944 } 12945 12946 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 12947 if (dof->dofh_ident[i] != 0) { 12948 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 12949 return (-1); 12950 } 12951 } 12952 12953 if (dof->dofh_flags & ~DOF_FL_VALID) { 12954 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 12955 return (-1); 12956 } 12957 12958 if (dof->dofh_secsize == 0) { 12959 dtrace_dof_error(dof, "zero section header size"); 12960 return (-1); 12961 } 12962 12963 /* 12964 * Check that the section headers don't exceed the amount of DOF 12965 * data. Note that we cast the section size and number of sections 12966 * to uint64_t's to prevent possible overflow in the multiplication. 12967 */ 12968 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 12969 12970 if (dof->dofh_secoff > len || seclen > len || 12971 dof->dofh_secoff + seclen > len) { 12972 dtrace_dof_error(dof, "truncated section headers"); 12973 return (-1); 12974 } 12975 12976 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 12977 dtrace_dof_error(dof, "misaligned section headers"); 12978 return (-1); 12979 } 12980 12981 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 12982 dtrace_dof_error(dof, "misaligned section size"); 12983 return (-1); 12984 } 12985 12986 /* 12987 * Take an initial pass through the section headers to be sure that 12988 * the headers don't have stray offsets. If the 'noprobes' flag is 12989 * set, do not permit sections relating to providers, probes, or args. 12990 */ 12991 for (i = 0; i < dof->dofh_secnum; i++) { 12992 dof_sec_t *sec = (dof_sec_t *)(daddr + 12993 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 12994 12995 if (noprobes) { 12996 switch (sec->dofs_type) { 12997 case DOF_SECT_PROVIDER: 12998 case DOF_SECT_PROBES: 12999 case DOF_SECT_PRARGS: 13000 case DOF_SECT_PROFFS: 13001 dtrace_dof_error(dof, "illegal sections " 13002 "for enabling"); 13003 return (-1); 13004 } 13005 } 13006 13007 if (DOF_SEC_ISLOADABLE(sec->dofs_type) && 13008 !(sec->dofs_flags & DOF_SECF_LOAD)) { 13009 dtrace_dof_error(dof, "loadable section with load " 13010 "flag unset"); 13011 return (-1); 13012 } 13013 13014 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 13015 continue; /* just ignore non-loadable sections */ 13016 13017 if (sec->dofs_align & (sec->dofs_align - 1)) { 13018 dtrace_dof_error(dof, "bad section alignment"); 13019 return (-1); 13020 } 13021 13022 if (sec->dofs_offset & (sec->dofs_align - 1)) { 13023 dtrace_dof_error(dof, "misaligned section"); 13024 return (-1); 13025 } 13026 13027 if (sec->dofs_offset > len || sec->dofs_size > len || 13028 sec->dofs_offset + sec->dofs_size > len) { 13029 dtrace_dof_error(dof, "corrupt section header"); 13030 return (-1); 13031 } 13032 13033 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 13034 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 13035 dtrace_dof_error(dof, "non-terminating string table"); 13036 return (-1); 13037 } 13038 } 13039 13040 /* 13041 * Take a second pass through the sections and locate and perform any 13042 * relocations that are present. We do this after the first pass to 13043 * be sure that all sections have had their headers validated. 13044 */ 13045 for (i = 0; i < dof->dofh_secnum; i++) { 13046 dof_sec_t *sec = (dof_sec_t *)(daddr + 13047 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13048 13049 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 13050 continue; /* skip sections that are not loadable */ 13051 13052 switch (sec->dofs_type) { 13053 case DOF_SECT_URELHDR: 13054 if (dtrace_dof_relocate(dof, sec, ubase) != 0) 13055 return (-1); 13056 break; 13057 } 13058 } 13059 13060 if ((enab = *enabp) == NULL) 13061 enab = *enabp = dtrace_enabling_create(vstate); 13062 13063 for (i = 0; i < dof->dofh_secnum; i++) { 13064 dof_sec_t *sec = (dof_sec_t *)(daddr + 13065 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13066 13067 if (sec->dofs_type != DOF_SECT_ECBDESC) 13068 continue; 13069 13070 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 13071 dtrace_enabling_destroy(enab); 13072 *enabp = NULL; 13073 return (-1); 13074 } 13075 13076 dtrace_enabling_add(enab, ep); 13077 } 13078 13079 return (0); 13080 } 13081 13082 /* 13083 * Process DOF for any options. This routine assumes that the DOF has been 13084 * at least processed by dtrace_dof_slurp(). 13085 */ 13086 static int 13087 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 13088 { 13089 int i, rval; 13090 uint32_t entsize; 13091 size_t offs; 13092 dof_optdesc_t *desc; 13093 13094 for (i = 0; i < dof->dofh_secnum; i++) { 13095 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 13096 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13097 13098 if (sec->dofs_type != DOF_SECT_OPTDESC) 13099 continue; 13100 13101 if (sec->dofs_align != sizeof (uint64_t)) { 13102 dtrace_dof_error(dof, "bad alignment in " 13103 "option description"); 13104 return (EINVAL); 13105 } 13106 13107 if ((entsize = sec->dofs_entsize) == 0) { 13108 dtrace_dof_error(dof, "zeroed option entry size"); 13109 return (EINVAL); 13110 } 13111 13112 if (entsize < sizeof (dof_optdesc_t)) { 13113 dtrace_dof_error(dof, "bad option entry size"); 13114 return (EINVAL); 13115 } 13116 13117 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 13118 desc = (dof_optdesc_t *)((uintptr_t)dof + 13119 (uintptr_t)sec->dofs_offset + offs); 13120 13121 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 13122 dtrace_dof_error(dof, "non-zero option string"); 13123 return (EINVAL); 13124 } 13125 13126 if (desc->dofo_value == DTRACEOPT_UNSET) { 13127 dtrace_dof_error(dof, "unset option"); 13128 return (EINVAL); 13129 } 13130 13131 if ((rval = dtrace_state_option(state, 13132 desc->dofo_option, desc->dofo_value)) != 0) { 13133 dtrace_dof_error(dof, "rejected option"); 13134 return (rval); 13135 } 13136 } 13137 } 13138 13139 return (0); 13140 } 13141 13142 /* 13143 * DTrace Consumer State Functions 13144 */ 13145 int 13146 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 13147 { 13148 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 13149 void *base; 13150 uintptr_t limit; 13151 dtrace_dynvar_t *dvar, *next, *start; 13152 int i; 13153 13154 ASSERT(MUTEX_HELD(&dtrace_lock)); 13155 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 13156 13157 bzero(dstate, sizeof (dtrace_dstate_t)); 13158 13159 if ((dstate->dtds_chunksize = chunksize) == 0) 13160 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 13161 13162 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 13163 size = min; 13164 13165 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL) 13166 return (ENOMEM); 13167 13168 dstate->dtds_size = size; 13169 dstate->dtds_base = base; 13170 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 13171 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); 13172 13173 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 13174 13175 if (hashsize != 1 && (hashsize & 1)) 13176 hashsize--; 13177 13178 dstate->dtds_hashsize = hashsize; 13179 dstate->dtds_hash = dstate->dtds_base; 13180 13181 /* 13182 * Set all of our hash buckets to point to the single sink, and (if 13183 * it hasn't already been set), set the sink's hash value to be the 13184 * sink sentinel value. The sink is needed for dynamic variable 13185 * lookups to know that they have iterated over an entire, valid hash 13186 * chain. 13187 */ 13188 for (i = 0; i < hashsize; i++) 13189 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 13190 13191 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 13192 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 13193 13194 /* 13195 * Determine number of active CPUs. Divide free list evenly among 13196 * active CPUs. 13197 */ 13198 start = (dtrace_dynvar_t *) 13199 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 13200 limit = (uintptr_t)base + size; 13201 13202 maxper = (limit - (uintptr_t)start) / NCPU; 13203 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 13204 13205 for (i = 0; i < NCPU; i++) { 13206 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 13207 13208 /* 13209 * If we don't even have enough chunks to make it once through 13210 * NCPUs, we're just going to allocate everything to the first 13211 * CPU. And if we're on the last CPU, we're going to allocate 13212 * whatever is left over. In either case, we set the limit to 13213 * be the limit of the dynamic variable space. 13214 */ 13215 if (maxper == 0 || i == NCPU - 1) { 13216 limit = (uintptr_t)base + size; 13217 start = NULL; 13218 } else { 13219 limit = (uintptr_t)start + maxper; 13220 start = (dtrace_dynvar_t *)limit; 13221 } 13222 13223 ASSERT(limit <= (uintptr_t)base + size); 13224 13225 for (;;) { 13226 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 13227 dstate->dtds_chunksize); 13228 13229 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 13230 break; 13231 13232 dvar->dtdv_next = next; 13233 dvar = next; 13234 } 13235 13236 if (maxper == 0) 13237 break; 13238 } 13239 13240 return (0); 13241 } 13242 13243 void 13244 dtrace_dstate_fini(dtrace_dstate_t *dstate) 13245 { 13246 ASSERT(MUTEX_HELD(&cpu_lock)); 13247 13248 if (dstate->dtds_base == NULL) 13249 return; 13250 13251 kmem_free(dstate->dtds_base, dstate->dtds_size); 13252 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 13253 } 13254 13255 static void 13256 dtrace_vstate_fini(dtrace_vstate_t *vstate) 13257 { 13258 /* 13259 * Logical XOR, where are you? 13260 */ 13261 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 13262 13263 if (vstate->dtvs_nglobals > 0) { 13264 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 13265 sizeof (dtrace_statvar_t *)); 13266 } 13267 13268 if (vstate->dtvs_ntlocals > 0) { 13269 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 13270 sizeof (dtrace_difv_t)); 13271 } 13272 13273 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 13274 13275 if (vstate->dtvs_nlocals > 0) { 13276 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 13277 sizeof (dtrace_statvar_t *)); 13278 } 13279 } 13280 13281 static void 13282 dtrace_state_clean(dtrace_state_t *state) 13283 { 13284 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 13285 return; 13286 13287 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 13288 dtrace_speculation_clean(state); 13289 } 13290 13291 static void 13292 dtrace_state_deadman(dtrace_state_t *state) 13293 { 13294 hrtime_t now; 13295 13296 dtrace_sync(); 13297 13298 now = dtrace_gethrtime(); 13299 13300 if (state != dtrace_anon.dta_state && 13301 now - state->dts_laststatus >= dtrace_deadman_user) 13302 return; 13303 13304 /* 13305 * We must be sure that dts_alive never appears to be less than the 13306 * value upon entry to dtrace_state_deadman(), and because we lack a 13307 * dtrace_cas64(), we cannot store to it atomically. We thus instead 13308 * store INT64_MAX to it, followed by a memory barrier, followed by 13309 * the new value. This assures that dts_alive never appears to be 13310 * less than its true value, regardless of the order in which the 13311 * stores to the underlying storage are issued. 13312 */ 13313 state->dts_alive = INT64_MAX; 13314 dtrace_membar_producer(); 13315 state->dts_alive = now; 13316 } 13317 13318 dtrace_state_t * 13319 dtrace_state_create(dev_t *devp, cred_t *cr) 13320 { 13321 minor_t minor; 13322 major_t major; 13323 char c[30]; 13324 dtrace_state_t *state; 13325 dtrace_optval_t *opt; 13326 int bufsize = NCPU * sizeof (dtrace_buffer_t), i; 13327 13328 ASSERT(MUTEX_HELD(&dtrace_lock)); 13329 ASSERT(MUTEX_HELD(&cpu_lock)); 13330 13331 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 13332 VM_BESTFIT | VM_SLEEP); 13333 13334 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 13335 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 13336 return (NULL); 13337 } 13338 13339 state = ddi_get_soft_state(dtrace_softstate, minor); 13340 state->dts_epid = DTRACE_EPIDNONE + 1; 13341 13342 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor); 13343 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 13344 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 13345 13346 if (devp != NULL) { 13347 major = getemajor(*devp); 13348 } else { 13349 major = ddi_driver_major(dtrace_devi); 13350 } 13351 13352 state->dts_dev = makedevice(major, minor); 13353 13354 if (devp != NULL) 13355 *devp = state->dts_dev; 13356 13357 /* 13358 * We allocate NCPU buffers. On the one hand, this can be quite 13359 * a bit of memory per instance (nearly 36K on a Starcat). On the 13360 * other hand, it saves an additional memory reference in the probe 13361 * path. 13362 */ 13363 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 13364 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 13365 state->dts_cleaner = CYCLIC_NONE; 13366 state->dts_deadman = CYCLIC_NONE; 13367 state->dts_vstate.dtvs_state = state; 13368 13369 for (i = 0; i < DTRACEOPT_MAX; i++) 13370 state->dts_options[i] = DTRACEOPT_UNSET; 13371 13372 /* 13373 * Set the default options. 13374 */ 13375 opt = state->dts_options; 13376 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 13377 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 13378 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 13379 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 13380 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 13381 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 13382 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 13383 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 13384 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 13385 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 13386 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 13387 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 13388 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 13389 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 13390 13391 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 13392 13393 /* 13394 * Depending on the user credentials, we set flag bits which alter probe 13395 * visibility or the amount of destructiveness allowed. In the case of 13396 * actual anonymous tracing, or the possession of all privileges, all of 13397 * the normal checks are bypassed. 13398 */ 13399 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 13400 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 13401 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 13402 } else { 13403 /* 13404 * Set up the credentials for this instantiation. We take a 13405 * hold on the credential to prevent it from disappearing on 13406 * us; this in turn prevents the zone_t referenced by this 13407 * credential from disappearing. This means that we can 13408 * examine the credential and the zone from probe context. 13409 */ 13410 crhold(cr); 13411 state->dts_cred.dcr_cred = cr; 13412 13413 /* 13414 * CRA_PROC means "we have *some* privilege for dtrace" and 13415 * unlocks the use of variables like pid, zonename, etc. 13416 */ 13417 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 13418 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 13419 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 13420 } 13421 13422 /* 13423 * dtrace_user allows use of syscall and profile providers. 13424 * If the user also has proc_owner and/or proc_zone, we 13425 * extend the scope to include additional visibility and 13426 * destructive power. 13427 */ 13428 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 13429 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 13430 state->dts_cred.dcr_visible |= 13431 DTRACE_CRV_ALLPROC; 13432 13433 state->dts_cred.dcr_action |= 13434 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13435 } 13436 13437 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 13438 state->dts_cred.dcr_visible |= 13439 DTRACE_CRV_ALLZONE; 13440 13441 state->dts_cred.dcr_action |= 13442 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13443 } 13444 13445 /* 13446 * If we have all privs in whatever zone this is, 13447 * we can do destructive things to processes which 13448 * have altered credentials. 13449 */ 13450 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 13451 cr->cr_zone->zone_privset)) { 13452 state->dts_cred.dcr_action |= 13453 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 13454 } 13455 } 13456 13457 /* 13458 * Holding the dtrace_kernel privilege also implies that 13459 * the user has the dtrace_user privilege from a visibility 13460 * perspective. But without further privileges, some 13461 * destructive actions are not available. 13462 */ 13463 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 13464 /* 13465 * Make all probes in all zones visible. However, 13466 * this doesn't mean that all actions become available 13467 * to all zones. 13468 */ 13469 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 13470 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 13471 13472 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 13473 DTRACE_CRA_PROC; 13474 /* 13475 * Holding proc_owner means that destructive actions 13476 * for *this* zone are allowed. 13477 */ 13478 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 13479 state->dts_cred.dcr_action |= 13480 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13481 13482 /* 13483 * Holding proc_zone means that destructive actions 13484 * for this user/group ID in all zones is allowed. 13485 */ 13486 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 13487 state->dts_cred.dcr_action |= 13488 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13489 13490 /* 13491 * If we have all privs in whatever zone this is, 13492 * we can do destructive things to processes which 13493 * have altered credentials. 13494 */ 13495 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 13496 cr->cr_zone->zone_privset)) { 13497 state->dts_cred.dcr_action |= 13498 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 13499 } 13500 } 13501 13502 /* 13503 * Holding the dtrace_proc privilege gives control over fasttrap 13504 * and pid providers. We need to grant wider destructive 13505 * privileges in the event that the user has proc_owner and/or 13506 * proc_zone. 13507 */ 13508 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 13509 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 13510 state->dts_cred.dcr_action |= 13511 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13512 13513 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 13514 state->dts_cred.dcr_action |= 13515 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13516 } 13517 } 13518 13519 return (state); 13520 } 13521 13522 static int 13523 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 13524 { 13525 dtrace_optval_t *opt = state->dts_options, size; 13526 processorid_t cpu; 13527 int flags = 0, rval, factor, divisor = 1; 13528 13529 ASSERT(MUTEX_HELD(&dtrace_lock)); 13530 ASSERT(MUTEX_HELD(&cpu_lock)); 13531 ASSERT(which < DTRACEOPT_MAX); 13532 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 13533 (state == dtrace_anon.dta_state && 13534 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 13535 13536 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 13537 return (0); 13538 13539 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 13540 cpu = opt[DTRACEOPT_CPU]; 13541 13542 if (which == DTRACEOPT_SPECSIZE) 13543 flags |= DTRACEBUF_NOSWITCH; 13544 13545 if (which == DTRACEOPT_BUFSIZE) { 13546 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 13547 flags |= DTRACEBUF_RING; 13548 13549 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 13550 flags |= DTRACEBUF_FILL; 13551 13552 if (state != dtrace_anon.dta_state || 13553 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 13554 flags |= DTRACEBUF_INACTIVE; 13555 } 13556 13557 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) { 13558 /* 13559 * The size must be 8-byte aligned. If the size is not 8-byte 13560 * aligned, drop it down by the difference. 13561 */ 13562 if (size & (sizeof (uint64_t) - 1)) 13563 size -= size & (sizeof (uint64_t) - 1); 13564 13565 if (size < state->dts_reserve) { 13566 /* 13567 * Buffers always must be large enough to accommodate 13568 * their prereserved space. We return E2BIG instead 13569 * of ENOMEM in this case to allow for user-level 13570 * software to differentiate the cases. 13571 */ 13572 return (E2BIG); 13573 } 13574 13575 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor); 13576 13577 if (rval != ENOMEM) { 13578 opt[which] = size; 13579 return (rval); 13580 } 13581 13582 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 13583 return (rval); 13584 13585 for (divisor = 2; divisor < factor; divisor <<= 1) 13586 continue; 13587 } 13588 13589 return (ENOMEM); 13590 } 13591 13592 static int 13593 dtrace_state_buffers(dtrace_state_t *state) 13594 { 13595 dtrace_speculation_t *spec = state->dts_speculations; 13596 int rval, i; 13597 13598 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 13599 DTRACEOPT_BUFSIZE)) != 0) 13600 return (rval); 13601 13602 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 13603 DTRACEOPT_AGGSIZE)) != 0) 13604 return (rval); 13605 13606 for (i = 0; i < state->dts_nspeculations; i++) { 13607 if ((rval = dtrace_state_buffer(state, 13608 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 13609 return (rval); 13610 } 13611 13612 return (0); 13613 } 13614 13615 static void 13616 dtrace_state_prereserve(dtrace_state_t *state) 13617 { 13618 dtrace_ecb_t *ecb; 13619 dtrace_probe_t *probe; 13620 13621 state->dts_reserve = 0; 13622 13623 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 13624 return; 13625 13626 /* 13627 * If our buffer policy is a "fill" buffer policy, we need to set the 13628 * prereserved space to be the space required by the END probes. 13629 */ 13630 probe = dtrace_probes[dtrace_probeid_end - 1]; 13631 ASSERT(probe != NULL); 13632 13633 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 13634 if (ecb->dte_state != state) 13635 continue; 13636 13637 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 13638 } 13639 } 13640 13641 static int 13642 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 13643 { 13644 dtrace_optval_t *opt = state->dts_options, sz, nspec; 13645 dtrace_speculation_t *spec; 13646 dtrace_buffer_t *buf; 13647 cyc_handler_t hdlr; 13648 cyc_time_t when; 13649 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t); 13650 dtrace_icookie_t cookie; 13651 13652 mutex_enter(&cpu_lock); 13653 mutex_enter(&dtrace_lock); 13654 13655 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 13656 rval = EBUSY; 13657 goto out; 13658 } 13659 13660 /* 13661 * Before we can perform any checks, we must prime all of the 13662 * retained enablings that correspond to this state. 13663 */ 13664 dtrace_enabling_prime(state); 13665 13666 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 13667 rval = EACCES; 13668 goto out; 13669 } 13670 13671 dtrace_state_prereserve(state); 13672 13673 /* 13674 * Now we want to do is try to allocate our speculations. 13675 * We do not automatically resize the number of speculations; if 13676 * this fails, we will fail the operation. 13677 */ 13678 nspec = opt[DTRACEOPT_NSPEC]; 13679 ASSERT(nspec != DTRACEOPT_UNSET); 13680 13681 if (nspec > INT_MAX) { 13682 rval = ENOMEM; 13683 goto out; 13684 } 13685 13686 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), 13687 KM_NOSLEEP | KM_NORMALPRI); 13688 13689 if (spec == NULL) { 13690 rval = ENOMEM; 13691 goto out; 13692 } 13693 13694 state->dts_speculations = spec; 13695 state->dts_nspeculations = (int)nspec; 13696 13697 for (i = 0; i < nspec; i++) { 13698 if ((buf = kmem_zalloc(bufsize, 13699 KM_NOSLEEP | KM_NORMALPRI)) == NULL) { 13700 rval = ENOMEM; 13701 goto err; 13702 } 13703 13704 spec[i].dtsp_buffer = buf; 13705 } 13706 13707 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 13708 if (dtrace_anon.dta_state == NULL) { 13709 rval = ENOENT; 13710 goto out; 13711 } 13712 13713 if (state->dts_necbs != 0) { 13714 rval = EALREADY; 13715 goto out; 13716 } 13717 13718 state->dts_anon = dtrace_anon_grab(); 13719 ASSERT(state->dts_anon != NULL); 13720 state = state->dts_anon; 13721 13722 /* 13723 * We want "grabanon" to be set in the grabbed state, so we'll 13724 * copy that option value from the grabbing state into the 13725 * grabbed state. 13726 */ 13727 state->dts_options[DTRACEOPT_GRABANON] = 13728 opt[DTRACEOPT_GRABANON]; 13729 13730 *cpu = dtrace_anon.dta_beganon; 13731 13732 /* 13733 * If the anonymous state is active (as it almost certainly 13734 * is if the anonymous enabling ultimately matched anything), 13735 * we don't allow any further option processing -- but we 13736 * don't return failure. 13737 */ 13738 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 13739 goto out; 13740 } 13741 13742 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 13743 opt[DTRACEOPT_AGGSIZE] != 0) { 13744 if (state->dts_aggregations == NULL) { 13745 /* 13746 * We're not going to create an aggregation buffer 13747 * because we don't have any ECBs that contain 13748 * aggregations -- set this option to 0. 13749 */ 13750 opt[DTRACEOPT_AGGSIZE] = 0; 13751 } else { 13752 /* 13753 * If we have an aggregation buffer, we must also have 13754 * a buffer to use as scratch. 13755 */ 13756 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 13757 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 13758 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 13759 } 13760 } 13761 } 13762 13763 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 13764 opt[DTRACEOPT_SPECSIZE] != 0) { 13765 if (!state->dts_speculates) { 13766 /* 13767 * We're not going to create speculation buffers 13768 * because we don't have any ECBs that actually 13769 * speculate -- set the speculation size to 0. 13770 */ 13771 opt[DTRACEOPT_SPECSIZE] = 0; 13772 } 13773 } 13774 13775 /* 13776 * The bare minimum size for any buffer that we're actually going to 13777 * do anything to is sizeof (uint64_t). 13778 */ 13779 sz = sizeof (uint64_t); 13780 13781 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 13782 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 13783 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 13784 /* 13785 * A buffer size has been explicitly set to 0 (or to a size 13786 * that will be adjusted to 0) and we need the space -- we 13787 * need to return failure. We return ENOSPC to differentiate 13788 * it from failing to allocate a buffer due to failure to meet 13789 * the reserve (for which we return E2BIG). 13790 */ 13791 rval = ENOSPC; 13792 goto out; 13793 } 13794 13795 if ((rval = dtrace_state_buffers(state)) != 0) 13796 goto err; 13797 13798 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 13799 sz = dtrace_dstate_defsize; 13800 13801 do { 13802 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 13803 13804 if (rval == 0) 13805 break; 13806 13807 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 13808 goto err; 13809 } while (sz >>= 1); 13810 13811 opt[DTRACEOPT_DYNVARSIZE] = sz; 13812 13813 if (rval != 0) 13814 goto err; 13815 13816 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 13817 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 13818 13819 if (opt[DTRACEOPT_CLEANRATE] == 0) 13820 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 13821 13822 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 13823 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 13824 13825 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 13826 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 13827 13828 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 13829 hdlr.cyh_arg = state; 13830 hdlr.cyh_level = CY_LOW_LEVEL; 13831 13832 when.cyt_when = 0; 13833 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 13834 13835 state->dts_cleaner = cyclic_add(&hdlr, &when); 13836 13837 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 13838 hdlr.cyh_arg = state; 13839 hdlr.cyh_level = CY_LOW_LEVEL; 13840 13841 when.cyt_when = 0; 13842 when.cyt_interval = dtrace_deadman_interval; 13843 13844 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 13845 state->dts_deadman = cyclic_add(&hdlr, &when); 13846 13847 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 13848 13849 if (state->dts_getf != 0 && 13850 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 13851 /* 13852 * We don't have kernel privs but we have at least one call 13853 * to getf(); we need to bump our zone's count, and (if 13854 * this is the first enabling to have an unprivileged call 13855 * to getf()) we need to hook into closef(). 13856 */ 13857 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++; 13858 13859 if (dtrace_getf++ == 0) { 13860 ASSERT(dtrace_closef == NULL); 13861 dtrace_closef = dtrace_getf_barrier; 13862 } 13863 } 13864 13865 /* 13866 * Now it's time to actually fire the BEGIN probe. We need to disable 13867 * interrupts here both to record the CPU on which we fired the BEGIN 13868 * probe (the data from this CPU will be processed first at user 13869 * level) and to manually activate the buffer for this CPU. 13870 */ 13871 cookie = dtrace_interrupt_disable(); 13872 *cpu = CPU->cpu_id; 13873 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 13874 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 13875 13876 dtrace_probe(dtrace_probeid_begin, 13877 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 13878 dtrace_interrupt_enable(cookie); 13879 /* 13880 * We may have had an exit action from a BEGIN probe; only change our 13881 * state to ACTIVE if we're still in WARMUP. 13882 */ 13883 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 13884 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 13885 13886 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 13887 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 13888 13889 /* 13890 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 13891 * want each CPU to transition its principal buffer out of the 13892 * INACTIVE state. Doing this assures that no CPU will suddenly begin 13893 * processing an ECB halfway down a probe's ECB chain; all CPUs will 13894 * atomically transition from processing none of a state's ECBs to 13895 * processing all of them. 13896 */ 13897 dtrace_xcall(DTRACE_CPUALL, 13898 (dtrace_xcall_t)dtrace_buffer_activate, state); 13899 goto out; 13900 13901 err: 13902 dtrace_buffer_free(state->dts_buffer); 13903 dtrace_buffer_free(state->dts_aggbuffer); 13904 13905 if ((nspec = state->dts_nspeculations) == 0) { 13906 ASSERT(state->dts_speculations == NULL); 13907 goto out; 13908 } 13909 13910 spec = state->dts_speculations; 13911 ASSERT(spec != NULL); 13912 13913 for (i = 0; i < state->dts_nspeculations; i++) { 13914 if ((buf = spec[i].dtsp_buffer) == NULL) 13915 break; 13916 13917 dtrace_buffer_free(buf); 13918 kmem_free(buf, bufsize); 13919 } 13920 13921 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 13922 state->dts_nspeculations = 0; 13923 state->dts_speculations = NULL; 13924 13925 out: 13926 mutex_exit(&dtrace_lock); 13927 mutex_exit(&cpu_lock); 13928 13929 return (rval); 13930 } 13931 13932 static int 13933 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 13934 { 13935 dtrace_icookie_t cookie; 13936 13937 ASSERT(MUTEX_HELD(&dtrace_lock)); 13938 13939 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 13940 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 13941 return (EINVAL); 13942 13943 /* 13944 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 13945 * to be sure that every CPU has seen it. See below for the details 13946 * on why this is done. 13947 */ 13948 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 13949 dtrace_sync(); 13950 13951 /* 13952 * By this point, it is impossible for any CPU to be still processing 13953 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 13954 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 13955 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 13956 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 13957 * iff we're in the END probe. 13958 */ 13959 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 13960 dtrace_sync(); 13961 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 13962 13963 /* 13964 * Finally, we can release the reserve and call the END probe. We 13965 * disable interrupts across calling the END probe to allow us to 13966 * return the CPU on which we actually called the END probe. This 13967 * allows user-land to be sure that this CPU's principal buffer is 13968 * processed last. 13969 */ 13970 state->dts_reserve = 0; 13971 13972 cookie = dtrace_interrupt_disable(); 13973 *cpu = CPU->cpu_id; 13974 dtrace_probe(dtrace_probeid_end, 13975 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 13976 dtrace_interrupt_enable(cookie); 13977 13978 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 13979 dtrace_sync(); 13980 13981 if (state->dts_getf != 0 && 13982 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 13983 /* 13984 * We don't have kernel privs but we have at least one call 13985 * to getf(); we need to lower our zone's count, and (if 13986 * this is the last enabling to have an unprivileged call 13987 * to getf()) we need to clear the closef() hook. 13988 */ 13989 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0); 13990 ASSERT(dtrace_closef == dtrace_getf_barrier); 13991 ASSERT(dtrace_getf > 0); 13992 13993 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--; 13994 13995 if (--dtrace_getf == 0) 13996 dtrace_closef = NULL; 13997 } 13998 13999 return (0); 14000 } 14001 14002 static int 14003 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 14004 dtrace_optval_t val) 14005 { 14006 ASSERT(MUTEX_HELD(&dtrace_lock)); 14007 14008 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 14009 return (EBUSY); 14010 14011 if (option >= DTRACEOPT_MAX) 14012 return (EINVAL); 14013 14014 if (option != DTRACEOPT_CPU && val < 0) 14015 return (EINVAL); 14016 14017 switch (option) { 14018 case DTRACEOPT_DESTRUCTIVE: 14019 if (dtrace_destructive_disallow) 14020 return (EACCES); 14021 14022 state->dts_cred.dcr_destructive = 1; 14023 break; 14024 14025 case DTRACEOPT_BUFSIZE: 14026 case DTRACEOPT_DYNVARSIZE: 14027 case DTRACEOPT_AGGSIZE: 14028 case DTRACEOPT_SPECSIZE: 14029 case DTRACEOPT_STRSIZE: 14030 if (val < 0) 14031 return (EINVAL); 14032 14033 if (val >= LONG_MAX) { 14034 /* 14035 * If this is an otherwise negative value, set it to 14036 * the highest multiple of 128m less than LONG_MAX. 14037 * Technically, we're adjusting the size without 14038 * regard to the buffer resizing policy, but in fact, 14039 * this has no effect -- if we set the buffer size to 14040 * ~LONG_MAX and the buffer policy is ultimately set to 14041 * be "manual", the buffer allocation is guaranteed to 14042 * fail, if only because the allocation requires two 14043 * buffers. (We set the the size to the highest 14044 * multiple of 128m because it ensures that the size 14045 * will remain a multiple of a megabyte when 14046 * repeatedly halved -- all the way down to 15m.) 14047 */ 14048 val = LONG_MAX - (1 << 27) + 1; 14049 } 14050 } 14051 14052 state->dts_options[option] = val; 14053 14054 return (0); 14055 } 14056 14057 static void 14058 dtrace_state_destroy(dtrace_state_t *state) 14059 { 14060 dtrace_ecb_t *ecb; 14061 dtrace_vstate_t *vstate = &state->dts_vstate; 14062 minor_t minor = getminor(state->dts_dev); 14063 int i, bufsize = NCPU * sizeof (dtrace_buffer_t); 14064 dtrace_speculation_t *spec = state->dts_speculations; 14065 int nspec = state->dts_nspeculations; 14066 uint32_t match; 14067 14068 ASSERT(MUTEX_HELD(&dtrace_lock)); 14069 ASSERT(MUTEX_HELD(&cpu_lock)); 14070 14071 /* 14072 * First, retract any retained enablings for this state. 14073 */ 14074 dtrace_enabling_retract(state); 14075 ASSERT(state->dts_nretained == 0); 14076 14077 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 14078 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 14079 /* 14080 * We have managed to come into dtrace_state_destroy() on a 14081 * hot enabling -- almost certainly because of a disorderly 14082 * shutdown of a consumer. (That is, a consumer that is 14083 * exiting without having called dtrace_stop().) In this case, 14084 * we're going to set our activity to be KILLED, and then 14085 * issue a sync to be sure that everyone is out of probe 14086 * context before we start blowing away ECBs. 14087 */ 14088 state->dts_activity = DTRACE_ACTIVITY_KILLED; 14089 dtrace_sync(); 14090 } 14091 14092 /* 14093 * Release the credential hold we took in dtrace_state_create(). 14094 */ 14095 if (state->dts_cred.dcr_cred != NULL) 14096 crfree(state->dts_cred.dcr_cred); 14097 14098 /* 14099 * Now we can safely disable and destroy any enabled probes. Because 14100 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 14101 * (especially if they're all enabled), we take two passes through the 14102 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 14103 * in the second we disable whatever is left over. 14104 */ 14105 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 14106 for (i = 0; i < state->dts_necbs; i++) { 14107 if ((ecb = state->dts_ecbs[i]) == NULL) 14108 continue; 14109 14110 if (match && ecb->dte_probe != NULL) { 14111 dtrace_probe_t *probe = ecb->dte_probe; 14112 dtrace_provider_t *prov = probe->dtpr_provider; 14113 14114 if (!(prov->dtpv_priv.dtpp_flags & match)) 14115 continue; 14116 } 14117 14118 dtrace_ecb_disable(ecb); 14119 dtrace_ecb_destroy(ecb); 14120 } 14121 14122 if (!match) 14123 break; 14124 } 14125 14126 /* 14127 * Before we free the buffers, perform one more sync to assure that 14128 * every CPU is out of probe context. 14129 */ 14130 dtrace_sync(); 14131 14132 dtrace_buffer_free(state->dts_buffer); 14133 dtrace_buffer_free(state->dts_aggbuffer); 14134 14135 for (i = 0; i < nspec; i++) 14136 dtrace_buffer_free(spec[i].dtsp_buffer); 14137 14138 if (state->dts_cleaner != CYCLIC_NONE) 14139 cyclic_remove(state->dts_cleaner); 14140 14141 if (state->dts_deadman != CYCLIC_NONE) 14142 cyclic_remove(state->dts_deadman); 14143 14144 dtrace_dstate_fini(&vstate->dtvs_dynvars); 14145 dtrace_vstate_fini(vstate); 14146 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 14147 14148 if (state->dts_aggregations != NULL) { 14149 #ifdef DEBUG 14150 for (i = 0; i < state->dts_naggregations; i++) 14151 ASSERT(state->dts_aggregations[i] == NULL); 14152 #endif 14153 ASSERT(state->dts_naggregations > 0); 14154 kmem_free(state->dts_aggregations, 14155 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 14156 } 14157 14158 kmem_free(state->dts_buffer, bufsize); 14159 kmem_free(state->dts_aggbuffer, bufsize); 14160 14161 for (i = 0; i < nspec; i++) 14162 kmem_free(spec[i].dtsp_buffer, bufsize); 14163 14164 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 14165 14166 dtrace_format_destroy(state); 14167 14168 vmem_destroy(state->dts_aggid_arena); 14169 ddi_soft_state_free(dtrace_softstate, minor); 14170 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 14171 } 14172 14173 /* 14174 * DTrace Anonymous Enabling Functions 14175 */ 14176 static dtrace_state_t * 14177 dtrace_anon_grab(void) 14178 { 14179 dtrace_state_t *state; 14180 14181 ASSERT(MUTEX_HELD(&dtrace_lock)); 14182 14183 if ((state = dtrace_anon.dta_state) == NULL) { 14184 ASSERT(dtrace_anon.dta_enabling == NULL); 14185 return (NULL); 14186 } 14187 14188 ASSERT(dtrace_anon.dta_enabling != NULL); 14189 ASSERT(dtrace_retained != NULL); 14190 14191 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 14192 dtrace_anon.dta_enabling = NULL; 14193 dtrace_anon.dta_state = NULL; 14194 14195 return (state); 14196 } 14197 14198 static void 14199 dtrace_anon_property(void) 14200 { 14201 int i, rv; 14202 dtrace_state_t *state; 14203 dof_hdr_t *dof; 14204 char c[32]; /* enough for "dof-data-" + digits */ 14205 14206 ASSERT(MUTEX_HELD(&dtrace_lock)); 14207 ASSERT(MUTEX_HELD(&cpu_lock)); 14208 14209 for (i = 0; ; i++) { 14210 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 14211 14212 dtrace_err_verbose = 1; 14213 14214 if ((dof = dtrace_dof_property(c)) == NULL) { 14215 dtrace_err_verbose = 0; 14216 break; 14217 } 14218 14219 /* 14220 * We want to create anonymous state, so we need to transition 14221 * the kernel debugger to indicate that DTrace is active. If 14222 * this fails (e.g. because the debugger has modified text in 14223 * some way), we won't continue with the processing. 14224 */ 14225 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 14226 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 14227 "enabling ignored."); 14228 dtrace_dof_destroy(dof); 14229 break; 14230 } 14231 14232 /* 14233 * If we haven't allocated an anonymous state, we'll do so now. 14234 */ 14235 if ((state = dtrace_anon.dta_state) == NULL) { 14236 state = dtrace_state_create(NULL, NULL); 14237 dtrace_anon.dta_state = state; 14238 14239 if (state == NULL) { 14240 /* 14241 * This basically shouldn't happen: the only 14242 * failure mode from dtrace_state_create() is a 14243 * failure of ddi_soft_state_zalloc() that 14244 * itself should never happen. Still, the 14245 * interface allows for a failure mode, and 14246 * we want to fail as gracefully as possible: 14247 * we'll emit an error message and cease 14248 * processing anonymous state in this case. 14249 */ 14250 cmn_err(CE_WARN, "failed to create " 14251 "anonymous state"); 14252 dtrace_dof_destroy(dof); 14253 break; 14254 } 14255 } 14256 14257 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 14258 &dtrace_anon.dta_enabling, 0, B_TRUE); 14259 14260 if (rv == 0) 14261 rv = dtrace_dof_options(dof, state); 14262 14263 dtrace_err_verbose = 0; 14264 dtrace_dof_destroy(dof); 14265 14266 if (rv != 0) { 14267 /* 14268 * This is malformed DOF; chuck any anonymous state 14269 * that we created. 14270 */ 14271 ASSERT(dtrace_anon.dta_enabling == NULL); 14272 dtrace_state_destroy(state); 14273 dtrace_anon.dta_state = NULL; 14274 break; 14275 } 14276 14277 ASSERT(dtrace_anon.dta_enabling != NULL); 14278 } 14279 14280 if (dtrace_anon.dta_enabling != NULL) { 14281 int rval; 14282 14283 /* 14284 * dtrace_enabling_retain() can only fail because we are 14285 * trying to retain more enablings than are allowed -- but 14286 * we only have one anonymous enabling, and we are guaranteed 14287 * to be allowed at least one retained enabling; we assert 14288 * that dtrace_enabling_retain() returns success. 14289 */ 14290 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 14291 ASSERT(rval == 0); 14292 14293 dtrace_enabling_dump(dtrace_anon.dta_enabling); 14294 } 14295 } 14296 14297 /* 14298 * DTrace Helper Functions 14299 */ 14300 static void 14301 dtrace_helper_trace(dtrace_helper_action_t *helper, 14302 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 14303 { 14304 uint32_t size, next, nnext, i; 14305 dtrace_helptrace_t *ent, *buffer; 14306 uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 14307 14308 if ((buffer = dtrace_helptrace_buffer) == NULL) 14309 return; 14310 14311 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 14312 14313 /* 14314 * What would a tracing framework be without its own tracing 14315 * framework? (Well, a hell of a lot simpler, for starters...) 14316 */ 14317 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 14318 sizeof (uint64_t) - sizeof (uint64_t); 14319 14320 /* 14321 * Iterate until we can allocate a slot in the trace buffer. 14322 */ 14323 do { 14324 next = dtrace_helptrace_next; 14325 14326 if (next + size < dtrace_helptrace_bufsize) { 14327 nnext = next + size; 14328 } else { 14329 nnext = size; 14330 } 14331 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 14332 14333 /* 14334 * We have our slot; fill it in. 14335 */ 14336 if (nnext == size) { 14337 dtrace_helptrace_wrapped++; 14338 next = 0; 14339 } 14340 14341 ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next); 14342 ent->dtht_helper = helper; 14343 ent->dtht_where = where; 14344 ent->dtht_nlocals = vstate->dtvs_nlocals; 14345 14346 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 14347 mstate->dtms_fltoffs : -1; 14348 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 14349 ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 14350 14351 for (i = 0; i < vstate->dtvs_nlocals; i++) { 14352 dtrace_statvar_t *svar; 14353 14354 if ((svar = vstate->dtvs_locals[i]) == NULL) 14355 continue; 14356 14357 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); 14358 ent->dtht_locals[i] = 14359 ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id]; 14360 } 14361 } 14362 14363 static uint64_t 14364 dtrace_helper(int which, dtrace_mstate_t *mstate, 14365 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 14366 { 14367 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 14368 uint64_t sarg0 = mstate->dtms_arg[0]; 14369 uint64_t sarg1 = mstate->dtms_arg[1]; 14370 uint64_t rval; 14371 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 14372 dtrace_helper_action_t *helper; 14373 dtrace_vstate_t *vstate; 14374 dtrace_difo_t *pred; 14375 int i, trace = dtrace_helptrace_buffer != NULL; 14376 14377 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 14378 14379 if (helpers == NULL) 14380 return (0); 14381 14382 if ((helper = helpers->dthps_actions[which]) == NULL) 14383 return (0); 14384 14385 vstate = &helpers->dthps_vstate; 14386 mstate->dtms_arg[0] = arg0; 14387 mstate->dtms_arg[1] = arg1; 14388 14389 /* 14390 * Now iterate over each helper. If its predicate evaluates to 'true', 14391 * we'll call the corresponding actions. Note that the below calls 14392 * to dtrace_dif_emulate() may set faults in machine state. This is 14393 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 14394 * the stored DIF offset with its own (which is the desired behavior). 14395 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 14396 * from machine state; this is okay, too. 14397 */ 14398 for (; helper != NULL; helper = helper->dtha_next) { 14399 if ((pred = helper->dtha_predicate) != NULL) { 14400 if (trace) 14401 dtrace_helper_trace(helper, mstate, vstate, 0); 14402 14403 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 14404 goto next; 14405 14406 if (*flags & CPU_DTRACE_FAULT) 14407 goto err; 14408 } 14409 14410 for (i = 0; i < helper->dtha_nactions; i++) { 14411 if (trace) 14412 dtrace_helper_trace(helper, 14413 mstate, vstate, i + 1); 14414 14415 rval = dtrace_dif_emulate(helper->dtha_actions[i], 14416 mstate, vstate, state); 14417 14418 if (*flags & CPU_DTRACE_FAULT) 14419 goto err; 14420 } 14421 14422 next: 14423 if (trace) 14424 dtrace_helper_trace(helper, mstate, vstate, 14425 DTRACE_HELPTRACE_NEXT); 14426 } 14427 14428 if (trace) 14429 dtrace_helper_trace(helper, mstate, vstate, 14430 DTRACE_HELPTRACE_DONE); 14431 14432 /* 14433 * Restore the arg0 that we saved upon entry. 14434 */ 14435 mstate->dtms_arg[0] = sarg0; 14436 mstate->dtms_arg[1] = sarg1; 14437 14438 return (rval); 14439 14440 err: 14441 if (trace) 14442 dtrace_helper_trace(helper, mstate, vstate, 14443 DTRACE_HELPTRACE_ERR); 14444 14445 /* 14446 * Restore the arg0 that we saved upon entry. 14447 */ 14448 mstate->dtms_arg[0] = sarg0; 14449 mstate->dtms_arg[1] = sarg1; 14450 14451 return (NULL); 14452 } 14453 14454 static void 14455 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 14456 dtrace_vstate_t *vstate) 14457 { 14458 int i; 14459 14460 if (helper->dtha_predicate != NULL) 14461 dtrace_difo_release(helper->dtha_predicate, vstate); 14462 14463 for (i = 0; i < helper->dtha_nactions; i++) { 14464 ASSERT(helper->dtha_actions[i] != NULL); 14465 dtrace_difo_release(helper->dtha_actions[i], vstate); 14466 } 14467 14468 kmem_free(helper->dtha_actions, 14469 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 14470 kmem_free(helper, sizeof (dtrace_helper_action_t)); 14471 } 14472 14473 static int 14474 dtrace_helper_destroygen(int gen) 14475 { 14476 proc_t *p = curproc; 14477 dtrace_helpers_t *help = p->p_dtrace_helpers; 14478 dtrace_vstate_t *vstate; 14479 int i; 14480 14481 ASSERT(MUTEX_HELD(&dtrace_lock)); 14482 14483 if (help == NULL || gen > help->dthps_generation) 14484 return (EINVAL); 14485 14486 vstate = &help->dthps_vstate; 14487 14488 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 14489 dtrace_helper_action_t *last = NULL, *h, *next; 14490 14491 for (h = help->dthps_actions[i]; h != NULL; h = next) { 14492 next = h->dtha_next; 14493 14494 if (h->dtha_generation == gen) { 14495 if (last != NULL) { 14496 last->dtha_next = next; 14497 } else { 14498 help->dthps_actions[i] = next; 14499 } 14500 14501 dtrace_helper_action_destroy(h, vstate); 14502 } else { 14503 last = h; 14504 } 14505 } 14506 } 14507 14508 /* 14509 * Interate until we've cleared out all helper providers with the 14510 * given generation number. 14511 */ 14512 for (;;) { 14513 dtrace_helper_provider_t *prov; 14514 14515 /* 14516 * Look for a helper provider with the right generation. We 14517 * have to start back at the beginning of the list each time 14518 * because we drop dtrace_lock. It's unlikely that we'll make 14519 * more than two passes. 14520 */ 14521 for (i = 0; i < help->dthps_nprovs; i++) { 14522 prov = help->dthps_provs[i]; 14523 14524 if (prov->dthp_generation == gen) 14525 break; 14526 } 14527 14528 /* 14529 * If there were no matches, we're done. 14530 */ 14531 if (i == help->dthps_nprovs) 14532 break; 14533 14534 /* 14535 * Move the last helper provider into this slot. 14536 */ 14537 help->dthps_nprovs--; 14538 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 14539 help->dthps_provs[help->dthps_nprovs] = NULL; 14540 14541 mutex_exit(&dtrace_lock); 14542 14543 /* 14544 * If we have a meta provider, remove this helper provider. 14545 */ 14546 mutex_enter(&dtrace_meta_lock); 14547 if (dtrace_meta_pid != NULL) { 14548 ASSERT(dtrace_deferred_pid == NULL); 14549 dtrace_helper_provider_remove(&prov->dthp_prov, 14550 p->p_pid); 14551 } 14552 mutex_exit(&dtrace_meta_lock); 14553 14554 dtrace_helper_provider_destroy(prov); 14555 14556 mutex_enter(&dtrace_lock); 14557 } 14558 14559 return (0); 14560 } 14561 14562 static int 14563 dtrace_helper_validate(dtrace_helper_action_t *helper) 14564 { 14565 int err = 0, i; 14566 dtrace_difo_t *dp; 14567 14568 if ((dp = helper->dtha_predicate) != NULL) 14569 err += dtrace_difo_validate_helper(dp); 14570 14571 for (i = 0; i < helper->dtha_nactions; i++) 14572 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 14573 14574 return (err == 0); 14575 } 14576 14577 static int 14578 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep) 14579 { 14580 dtrace_helpers_t *help; 14581 dtrace_helper_action_t *helper, *last; 14582 dtrace_actdesc_t *act; 14583 dtrace_vstate_t *vstate; 14584 dtrace_predicate_t *pred; 14585 int count = 0, nactions = 0, i; 14586 14587 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 14588 return (EINVAL); 14589 14590 help = curproc->p_dtrace_helpers; 14591 last = help->dthps_actions[which]; 14592 vstate = &help->dthps_vstate; 14593 14594 for (count = 0; last != NULL; last = last->dtha_next) { 14595 count++; 14596 if (last->dtha_next == NULL) 14597 break; 14598 } 14599 14600 /* 14601 * If we already have dtrace_helper_actions_max helper actions for this 14602 * helper action type, we'll refuse to add a new one. 14603 */ 14604 if (count >= dtrace_helper_actions_max) 14605 return (ENOSPC); 14606 14607 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 14608 helper->dtha_generation = help->dthps_generation; 14609 14610 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 14611 ASSERT(pred->dtp_difo != NULL); 14612 dtrace_difo_hold(pred->dtp_difo); 14613 helper->dtha_predicate = pred->dtp_difo; 14614 } 14615 14616 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 14617 if (act->dtad_kind != DTRACEACT_DIFEXPR) 14618 goto err; 14619 14620 if (act->dtad_difo == NULL) 14621 goto err; 14622 14623 nactions++; 14624 } 14625 14626 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 14627 (helper->dtha_nactions = nactions), KM_SLEEP); 14628 14629 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 14630 dtrace_difo_hold(act->dtad_difo); 14631 helper->dtha_actions[i++] = act->dtad_difo; 14632 } 14633 14634 if (!dtrace_helper_validate(helper)) 14635 goto err; 14636 14637 if (last == NULL) { 14638 help->dthps_actions[which] = helper; 14639 } else { 14640 last->dtha_next = helper; 14641 } 14642 14643 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 14644 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 14645 dtrace_helptrace_next = 0; 14646 } 14647 14648 return (0); 14649 err: 14650 dtrace_helper_action_destroy(helper, vstate); 14651 return (EINVAL); 14652 } 14653 14654 static void 14655 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 14656 dof_helper_t *dofhp) 14657 { 14658 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 14659 14660 mutex_enter(&dtrace_meta_lock); 14661 mutex_enter(&dtrace_lock); 14662 14663 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 14664 /* 14665 * If the dtrace module is loaded but not attached, or if 14666 * there aren't isn't a meta provider registered to deal with 14667 * these provider descriptions, we need to postpone creating 14668 * the actual providers until later. 14669 */ 14670 14671 if (help->dthps_next == NULL && help->dthps_prev == NULL && 14672 dtrace_deferred_pid != help) { 14673 help->dthps_deferred = 1; 14674 help->dthps_pid = p->p_pid; 14675 help->dthps_next = dtrace_deferred_pid; 14676 help->dthps_prev = NULL; 14677 if (dtrace_deferred_pid != NULL) 14678 dtrace_deferred_pid->dthps_prev = help; 14679 dtrace_deferred_pid = help; 14680 } 14681 14682 mutex_exit(&dtrace_lock); 14683 14684 } else if (dofhp != NULL) { 14685 /* 14686 * If the dtrace module is loaded and we have a particular 14687 * helper provider description, pass that off to the 14688 * meta provider. 14689 */ 14690 14691 mutex_exit(&dtrace_lock); 14692 14693 dtrace_helper_provide(dofhp, p->p_pid); 14694 14695 } else { 14696 /* 14697 * Otherwise, just pass all the helper provider descriptions 14698 * off to the meta provider. 14699 */ 14700 14701 int i; 14702 mutex_exit(&dtrace_lock); 14703 14704 for (i = 0; i < help->dthps_nprovs; i++) { 14705 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 14706 p->p_pid); 14707 } 14708 } 14709 14710 mutex_exit(&dtrace_meta_lock); 14711 } 14712 14713 static int 14714 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen) 14715 { 14716 dtrace_helpers_t *help; 14717 dtrace_helper_provider_t *hprov, **tmp_provs; 14718 uint_t tmp_maxprovs, i; 14719 14720 ASSERT(MUTEX_HELD(&dtrace_lock)); 14721 14722 help = curproc->p_dtrace_helpers; 14723 ASSERT(help != NULL); 14724 14725 /* 14726 * If we already have dtrace_helper_providers_max helper providers, 14727 * we're refuse to add a new one. 14728 */ 14729 if (help->dthps_nprovs >= dtrace_helper_providers_max) 14730 return (ENOSPC); 14731 14732 /* 14733 * Check to make sure this isn't a duplicate. 14734 */ 14735 for (i = 0; i < help->dthps_nprovs; i++) { 14736 if (dofhp->dofhp_addr == 14737 help->dthps_provs[i]->dthp_prov.dofhp_addr) 14738 return (EALREADY); 14739 } 14740 14741 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 14742 hprov->dthp_prov = *dofhp; 14743 hprov->dthp_ref = 1; 14744 hprov->dthp_generation = gen; 14745 14746 /* 14747 * Allocate a bigger table for helper providers if it's already full. 14748 */ 14749 if (help->dthps_maxprovs == help->dthps_nprovs) { 14750 tmp_maxprovs = help->dthps_maxprovs; 14751 tmp_provs = help->dthps_provs; 14752 14753 if (help->dthps_maxprovs == 0) 14754 help->dthps_maxprovs = 2; 14755 else 14756 help->dthps_maxprovs *= 2; 14757 if (help->dthps_maxprovs > dtrace_helper_providers_max) 14758 help->dthps_maxprovs = dtrace_helper_providers_max; 14759 14760 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 14761 14762 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 14763 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 14764 14765 if (tmp_provs != NULL) { 14766 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 14767 sizeof (dtrace_helper_provider_t *)); 14768 kmem_free(tmp_provs, tmp_maxprovs * 14769 sizeof (dtrace_helper_provider_t *)); 14770 } 14771 } 14772 14773 help->dthps_provs[help->dthps_nprovs] = hprov; 14774 help->dthps_nprovs++; 14775 14776 return (0); 14777 } 14778 14779 static void 14780 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 14781 { 14782 mutex_enter(&dtrace_lock); 14783 14784 if (--hprov->dthp_ref == 0) { 14785 dof_hdr_t *dof; 14786 mutex_exit(&dtrace_lock); 14787 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 14788 dtrace_dof_destroy(dof); 14789 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 14790 } else { 14791 mutex_exit(&dtrace_lock); 14792 } 14793 } 14794 14795 static int 14796 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 14797 { 14798 uintptr_t daddr = (uintptr_t)dof; 14799 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 14800 dof_provider_t *provider; 14801 dof_probe_t *probe; 14802 uint8_t *arg; 14803 char *strtab, *typestr; 14804 dof_stridx_t typeidx; 14805 size_t typesz; 14806 uint_t nprobes, j, k; 14807 14808 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 14809 14810 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 14811 dtrace_dof_error(dof, "misaligned section offset"); 14812 return (-1); 14813 } 14814 14815 /* 14816 * The section needs to be large enough to contain the DOF provider 14817 * structure appropriate for the given version. 14818 */ 14819 if (sec->dofs_size < 14820 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 14821 offsetof(dof_provider_t, dofpv_prenoffs) : 14822 sizeof (dof_provider_t))) { 14823 dtrace_dof_error(dof, "provider section too small"); 14824 return (-1); 14825 } 14826 14827 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 14828 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 14829 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 14830 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 14831 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 14832 14833 if (str_sec == NULL || prb_sec == NULL || 14834 arg_sec == NULL || off_sec == NULL) 14835 return (-1); 14836 14837 enoff_sec = NULL; 14838 14839 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 14840 provider->dofpv_prenoffs != DOF_SECT_NONE && 14841 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 14842 provider->dofpv_prenoffs)) == NULL) 14843 return (-1); 14844 14845 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 14846 14847 if (provider->dofpv_name >= str_sec->dofs_size || 14848 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 14849 dtrace_dof_error(dof, "invalid provider name"); 14850 return (-1); 14851 } 14852 14853 if (prb_sec->dofs_entsize == 0 || 14854 prb_sec->dofs_entsize > prb_sec->dofs_size) { 14855 dtrace_dof_error(dof, "invalid entry size"); 14856 return (-1); 14857 } 14858 14859 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 14860 dtrace_dof_error(dof, "misaligned entry size"); 14861 return (-1); 14862 } 14863 14864 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 14865 dtrace_dof_error(dof, "invalid entry size"); 14866 return (-1); 14867 } 14868 14869 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 14870 dtrace_dof_error(dof, "misaligned section offset"); 14871 return (-1); 14872 } 14873 14874 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 14875 dtrace_dof_error(dof, "invalid entry size"); 14876 return (-1); 14877 } 14878 14879 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 14880 14881 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 14882 14883 /* 14884 * Take a pass through the probes to check for errors. 14885 */ 14886 for (j = 0; j < nprobes; j++) { 14887 probe = (dof_probe_t *)(uintptr_t)(daddr + 14888 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 14889 14890 if (probe->dofpr_func >= str_sec->dofs_size) { 14891 dtrace_dof_error(dof, "invalid function name"); 14892 return (-1); 14893 } 14894 14895 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 14896 dtrace_dof_error(dof, "function name too long"); 14897 return (-1); 14898 } 14899 14900 if (probe->dofpr_name >= str_sec->dofs_size || 14901 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 14902 dtrace_dof_error(dof, "invalid probe name"); 14903 return (-1); 14904 } 14905 14906 /* 14907 * The offset count must not wrap the index, and the offsets 14908 * must also not overflow the section's data. 14909 */ 14910 if (probe->dofpr_offidx + probe->dofpr_noffs < 14911 probe->dofpr_offidx || 14912 (probe->dofpr_offidx + probe->dofpr_noffs) * 14913 off_sec->dofs_entsize > off_sec->dofs_size) { 14914 dtrace_dof_error(dof, "invalid probe offset"); 14915 return (-1); 14916 } 14917 14918 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 14919 /* 14920 * If there's no is-enabled offset section, make sure 14921 * there aren't any is-enabled offsets. Otherwise 14922 * perform the same checks as for probe offsets 14923 * (immediately above). 14924 */ 14925 if (enoff_sec == NULL) { 14926 if (probe->dofpr_enoffidx != 0 || 14927 probe->dofpr_nenoffs != 0) { 14928 dtrace_dof_error(dof, "is-enabled " 14929 "offsets with null section"); 14930 return (-1); 14931 } 14932 } else if (probe->dofpr_enoffidx + 14933 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 14934 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 14935 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 14936 dtrace_dof_error(dof, "invalid is-enabled " 14937 "offset"); 14938 return (-1); 14939 } 14940 14941 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 14942 dtrace_dof_error(dof, "zero probe and " 14943 "is-enabled offsets"); 14944 return (-1); 14945 } 14946 } else if (probe->dofpr_noffs == 0) { 14947 dtrace_dof_error(dof, "zero probe offsets"); 14948 return (-1); 14949 } 14950 14951 if (probe->dofpr_argidx + probe->dofpr_xargc < 14952 probe->dofpr_argidx || 14953 (probe->dofpr_argidx + probe->dofpr_xargc) * 14954 arg_sec->dofs_entsize > arg_sec->dofs_size) { 14955 dtrace_dof_error(dof, "invalid args"); 14956 return (-1); 14957 } 14958 14959 typeidx = probe->dofpr_nargv; 14960 typestr = strtab + probe->dofpr_nargv; 14961 for (k = 0; k < probe->dofpr_nargc; k++) { 14962 if (typeidx >= str_sec->dofs_size) { 14963 dtrace_dof_error(dof, "bad " 14964 "native argument type"); 14965 return (-1); 14966 } 14967 14968 typesz = strlen(typestr) + 1; 14969 if (typesz > DTRACE_ARGTYPELEN) { 14970 dtrace_dof_error(dof, "native " 14971 "argument type too long"); 14972 return (-1); 14973 } 14974 typeidx += typesz; 14975 typestr += typesz; 14976 } 14977 14978 typeidx = probe->dofpr_xargv; 14979 typestr = strtab + probe->dofpr_xargv; 14980 for (k = 0; k < probe->dofpr_xargc; k++) { 14981 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 14982 dtrace_dof_error(dof, "bad " 14983 "native argument index"); 14984 return (-1); 14985 } 14986 14987 if (typeidx >= str_sec->dofs_size) { 14988 dtrace_dof_error(dof, "bad " 14989 "translated argument type"); 14990 return (-1); 14991 } 14992 14993 typesz = strlen(typestr) + 1; 14994 if (typesz > DTRACE_ARGTYPELEN) { 14995 dtrace_dof_error(dof, "translated argument " 14996 "type too long"); 14997 return (-1); 14998 } 14999 15000 typeidx += typesz; 15001 typestr += typesz; 15002 } 15003 } 15004 15005 return (0); 15006 } 15007 15008 static int 15009 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp) 15010 { 15011 dtrace_helpers_t *help; 15012 dtrace_vstate_t *vstate; 15013 dtrace_enabling_t *enab = NULL; 15014 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 15015 uintptr_t daddr = (uintptr_t)dof; 15016 15017 ASSERT(MUTEX_HELD(&dtrace_lock)); 15018 15019 if ((help = curproc->p_dtrace_helpers) == NULL) 15020 help = dtrace_helpers_create(curproc); 15021 15022 vstate = &help->dthps_vstate; 15023 15024 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, 15025 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) { 15026 dtrace_dof_destroy(dof); 15027 return (rv); 15028 } 15029 15030 /* 15031 * Look for helper providers and validate their descriptions. 15032 */ 15033 if (dhp != NULL) { 15034 for (i = 0; i < dof->dofh_secnum; i++) { 15035 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 15036 dof->dofh_secoff + i * dof->dofh_secsize); 15037 15038 if (sec->dofs_type != DOF_SECT_PROVIDER) 15039 continue; 15040 15041 if (dtrace_helper_provider_validate(dof, sec) != 0) { 15042 dtrace_enabling_destroy(enab); 15043 dtrace_dof_destroy(dof); 15044 return (-1); 15045 } 15046 15047 nprovs++; 15048 } 15049 } 15050 15051 /* 15052 * Now we need to walk through the ECB descriptions in the enabling. 15053 */ 15054 for (i = 0; i < enab->dten_ndesc; i++) { 15055 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 15056 dtrace_probedesc_t *desc = &ep->dted_probe; 15057 15058 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 15059 continue; 15060 15061 if (strcmp(desc->dtpd_mod, "helper") != 0) 15062 continue; 15063 15064 if (strcmp(desc->dtpd_func, "ustack") != 0) 15065 continue; 15066 15067 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 15068 ep)) != 0) { 15069 /* 15070 * Adding this helper action failed -- we are now going 15071 * to rip out the entire generation and return failure. 15072 */ 15073 (void) dtrace_helper_destroygen(help->dthps_generation); 15074 dtrace_enabling_destroy(enab); 15075 dtrace_dof_destroy(dof); 15076 return (-1); 15077 } 15078 15079 nhelpers++; 15080 } 15081 15082 if (nhelpers < enab->dten_ndesc) 15083 dtrace_dof_error(dof, "unmatched helpers"); 15084 15085 gen = help->dthps_generation++; 15086 dtrace_enabling_destroy(enab); 15087 15088 if (dhp != NULL && nprovs > 0) { 15089 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 15090 if (dtrace_helper_provider_add(dhp, gen) == 0) { 15091 mutex_exit(&dtrace_lock); 15092 dtrace_helper_provider_register(curproc, help, dhp); 15093 mutex_enter(&dtrace_lock); 15094 15095 destroy = 0; 15096 } 15097 } 15098 15099 if (destroy) 15100 dtrace_dof_destroy(dof); 15101 15102 return (gen); 15103 } 15104 15105 static dtrace_helpers_t * 15106 dtrace_helpers_create(proc_t *p) 15107 { 15108 dtrace_helpers_t *help; 15109 15110 ASSERT(MUTEX_HELD(&dtrace_lock)); 15111 ASSERT(p->p_dtrace_helpers == NULL); 15112 15113 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 15114 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 15115 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 15116 15117 p->p_dtrace_helpers = help; 15118 dtrace_helpers++; 15119 15120 return (help); 15121 } 15122 15123 static void 15124 dtrace_helpers_destroy(void) 15125 { 15126 dtrace_helpers_t *help; 15127 dtrace_vstate_t *vstate; 15128 proc_t *p = curproc; 15129 int i; 15130 15131 mutex_enter(&dtrace_lock); 15132 15133 ASSERT(p->p_dtrace_helpers != NULL); 15134 ASSERT(dtrace_helpers > 0); 15135 15136 help = p->p_dtrace_helpers; 15137 vstate = &help->dthps_vstate; 15138 15139 /* 15140 * We're now going to lose the help from this process. 15141 */ 15142 p->p_dtrace_helpers = NULL; 15143 dtrace_sync(); 15144 15145 /* 15146 * Destory the helper actions. 15147 */ 15148 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 15149 dtrace_helper_action_t *h, *next; 15150 15151 for (h = help->dthps_actions[i]; h != NULL; h = next) { 15152 next = h->dtha_next; 15153 dtrace_helper_action_destroy(h, vstate); 15154 h = next; 15155 } 15156 } 15157 15158 mutex_exit(&dtrace_lock); 15159 15160 /* 15161 * Destroy the helper providers. 15162 */ 15163 if (help->dthps_maxprovs > 0) { 15164 mutex_enter(&dtrace_meta_lock); 15165 if (dtrace_meta_pid != NULL) { 15166 ASSERT(dtrace_deferred_pid == NULL); 15167 15168 for (i = 0; i < help->dthps_nprovs; i++) { 15169 dtrace_helper_provider_remove( 15170 &help->dthps_provs[i]->dthp_prov, p->p_pid); 15171 } 15172 } else { 15173 mutex_enter(&dtrace_lock); 15174 ASSERT(help->dthps_deferred == 0 || 15175 help->dthps_next != NULL || 15176 help->dthps_prev != NULL || 15177 help == dtrace_deferred_pid); 15178 15179 /* 15180 * Remove the helper from the deferred list. 15181 */ 15182 if (help->dthps_next != NULL) 15183 help->dthps_next->dthps_prev = help->dthps_prev; 15184 if (help->dthps_prev != NULL) 15185 help->dthps_prev->dthps_next = help->dthps_next; 15186 if (dtrace_deferred_pid == help) { 15187 dtrace_deferred_pid = help->dthps_next; 15188 ASSERT(help->dthps_prev == NULL); 15189 } 15190 15191 mutex_exit(&dtrace_lock); 15192 } 15193 15194 mutex_exit(&dtrace_meta_lock); 15195 15196 for (i = 0; i < help->dthps_nprovs; i++) { 15197 dtrace_helper_provider_destroy(help->dthps_provs[i]); 15198 } 15199 15200 kmem_free(help->dthps_provs, help->dthps_maxprovs * 15201 sizeof (dtrace_helper_provider_t *)); 15202 } 15203 15204 mutex_enter(&dtrace_lock); 15205 15206 dtrace_vstate_fini(&help->dthps_vstate); 15207 kmem_free(help->dthps_actions, 15208 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 15209 kmem_free(help, sizeof (dtrace_helpers_t)); 15210 15211 --dtrace_helpers; 15212 mutex_exit(&dtrace_lock); 15213 } 15214 15215 static void 15216 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 15217 { 15218 dtrace_helpers_t *help, *newhelp; 15219 dtrace_helper_action_t *helper, *new, *last; 15220 dtrace_difo_t *dp; 15221 dtrace_vstate_t *vstate; 15222 int i, j, sz, hasprovs = 0; 15223 15224 mutex_enter(&dtrace_lock); 15225 ASSERT(from->p_dtrace_helpers != NULL); 15226 ASSERT(dtrace_helpers > 0); 15227 15228 help = from->p_dtrace_helpers; 15229 newhelp = dtrace_helpers_create(to); 15230 ASSERT(to->p_dtrace_helpers != NULL); 15231 15232 newhelp->dthps_generation = help->dthps_generation; 15233 vstate = &newhelp->dthps_vstate; 15234 15235 /* 15236 * Duplicate the helper actions. 15237 */ 15238 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 15239 if ((helper = help->dthps_actions[i]) == NULL) 15240 continue; 15241 15242 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 15243 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 15244 KM_SLEEP); 15245 new->dtha_generation = helper->dtha_generation; 15246 15247 if ((dp = helper->dtha_predicate) != NULL) { 15248 dp = dtrace_difo_duplicate(dp, vstate); 15249 new->dtha_predicate = dp; 15250 } 15251 15252 new->dtha_nactions = helper->dtha_nactions; 15253 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 15254 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 15255 15256 for (j = 0; j < new->dtha_nactions; j++) { 15257 dtrace_difo_t *dp = helper->dtha_actions[j]; 15258 15259 ASSERT(dp != NULL); 15260 dp = dtrace_difo_duplicate(dp, vstate); 15261 new->dtha_actions[j] = dp; 15262 } 15263 15264 if (last != NULL) { 15265 last->dtha_next = new; 15266 } else { 15267 newhelp->dthps_actions[i] = new; 15268 } 15269 15270 last = new; 15271 } 15272 } 15273 15274 /* 15275 * Duplicate the helper providers and register them with the 15276 * DTrace framework. 15277 */ 15278 if (help->dthps_nprovs > 0) { 15279 newhelp->dthps_nprovs = help->dthps_nprovs; 15280 newhelp->dthps_maxprovs = help->dthps_nprovs; 15281 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 15282 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 15283 for (i = 0; i < newhelp->dthps_nprovs; i++) { 15284 newhelp->dthps_provs[i] = help->dthps_provs[i]; 15285 newhelp->dthps_provs[i]->dthp_ref++; 15286 } 15287 15288 hasprovs = 1; 15289 } 15290 15291 mutex_exit(&dtrace_lock); 15292 15293 if (hasprovs) 15294 dtrace_helper_provider_register(to, newhelp, NULL); 15295 } 15296 15297 /* 15298 * DTrace Hook Functions 15299 */ 15300 static void 15301 dtrace_module_loaded(struct modctl *ctl) 15302 { 15303 dtrace_provider_t *prv; 15304 15305 mutex_enter(&dtrace_provider_lock); 15306 mutex_enter(&mod_lock); 15307 15308 ASSERT(ctl->mod_busy); 15309 15310 /* 15311 * We're going to call each providers per-module provide operation 15312 * specifying only this module. 15313 */ 15314 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 15315 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 15316 15317 mutex_exit(&mod_lock); 15318 mutex_exit(&dtrace_provider_lock); 15319 15320 /* 15321 * If we have any retained enablings, we need to match against them. 15322 * Enabling probes requires that cpu_lock be held, and we cannot hold 15323 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 15324 * module. (In particular, this happens when loading scheduling 15325 * classes.) So if we have any retained enablings, we need to dispatch 15326 * our task queue to do the match for us. 15327 */ 15328 mutex_enter(&dtrace_lock); 15329 15330 if (dtrace_retained == NULL) { 15331 mutex_exit(&dtrace_lock); 15332 return; 15333 } 15334 15335 (void) taskq_dispatch(dtrace_taskq, 15336 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 15337 15338 mutex_exit(&dtrace_lock); 15339 15340 /* 15341 * And now, for a little heuristic sleaze: in general, we want to 15342 * match modules as soon as they load. However, we cannot guarantee 15343 * this, because it would lead us to the lock ordering violation 15344 * outlined above. The common case, of course, is that cpu_lock is 15345 * _not_ held -- so we delay here for a clock tick, hoping that that's 15346 * long enough for the task queue to do its work. If it's not, it's 15347 * not a serious problem -- it just means that the module that we 15348 * just loaded may not be immediately instrumentable. 15349 */ 15350 delay(1); 15351 } 15352 15353 static void 15354 dtrace_module_unloaded(struct modctl *ctl) 15355 { 15356 dtrace_probe_t template, *probe, *first, *next; 15357 dtrace_provider_t *prov; 15358 15359 template.dtpr_mod = ctl->mod_modname; 15360 15361 mutex_enter(&dtrace_provider_lock); 15362 mutex_enter(&mod_lock); 15363 mutex_enter(&dtrace_lock); 15364 15365 if (dtrace_bymod == NULL) { 15366 /* 15367 * The DTrace module is loaded (obviously) but not attached; 15368 * we don't have any work to do. 15369 */ 15370 mutex_exit(&dtrace_provider_lock); 15371 mutex_exit(&mod_lock); 15372 mutex_exit(&dtrace_lock); 15373 return; 15374 } 15375 15376 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 15377 probe != NULL; probe = probe->dtpr_nextmod) { 15378 if (probe->dtpr_ecb != NULL) { 15379 mutex_exit(&dtrace_provider_lock); 15380 mutex_exit(&mod_lock); 15381 mutex_exit(&dtrace_lock); 15382 15383 /* 15384 * This shouldn't _actually_ be possible -- we're 15385 * unloading a module that has an enabled probe in it. 15386 * (It's normally up to the provider to make sure that 15387 * this can't happen.) However, because dtps_enable() 15388 * doesn't have a failure mode, there can be an 15389 * enable/unload race. Upshot: we don't want to 15390 * assert, but we're not going to disable the 15391 * probe, either. 15392 */ 15393 if (dtrace_err_verbose) { 15394 cmn_err(CE_WARN, "unloaded module '%s' had " 15395 "enabled probes", ctl->mod_modname); 15396 } 15397 15398 return; 15399 } 15400 } 15401 15402 probe = first; 15403 15404 for (first = NULL; probe != NULL; probe = next) { 15405 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 15406 15407 dtrace_probes[probe->dtpr_id - 1] = NULL; 15408 15409 next = probe->dtpr_nextmod; 15410 dtrace_hash_remove(dtrace_bymod, probe); 15411 dtrace_hash_remove(dtrace_byfunc, probe); 15412 dtrace_hash_remove(dtrace_byname, probe); 15413 15414 if (first == NULL) { 15415 first = probe; 15416 probe->dtpr_nextmod = NULL; 15417 } else { 15418 probe->dtpr_nextmod = first; 15419 first = probe; 15420 } 15421 } 15422 15423 /* 15424 * We've removed all of the module's probes from the hash chains and 15425 * from the probe array. Now issue a dtrace_sync() to be sure that 15426 * everyone has cleared out from any probe array processing. 15427 */ 15428 dtrace_sync(); 15429 15430 for (probe = first; probe != NULL; probe = first) { 15431 first = probe->dtpr_nextmod; 15432 prov = probe->dtpr_provider; 15433 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 15434 probe->dtpr_arg); 15435 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 15436 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 15437 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 15438 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 15439 kmem_free(probe, sizeof (dtrace_probe_t)); 15440 } 15441 15442 mutex_exit(&dtrace_lock); 15443 mutex_exit(&mod_lock); 15444 mutex_exit(&dtrace_provider_lock); 15445 } 15446 15447 void 15448 dtrace_suspend(void) 15449 { 15450 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 15451 } 15452 15453 void 15454 dtrace_resume(void) 15455 { 15456 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 15457 } 15458 15459 static int 15460 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 15461 { 15462 ASSERT(MUTEX_HELD(&cpu_lock)); 15463 mutex_enter(&dtrace_lock); 15464 15465 switch (what) { 15466 case CPU_CONFIG: { 15467 dtrace_state_t *state; 15468 dtrace_optval_t *opt, rs, c; 15469 15470 /* 15471 * For now, we only allocate a new buffer for anonymous state. 15472 */ 15473 if ((state = dtrace_anon.dta_state) == NULL) 15474 break; 15475 15476 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 15477 break; 15478 15479 opt = state->dts_options; 15480 c = opt[DTRACEOPT_CPU]; 15481 15482 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 15483 break; 15484 15485 /* 15486 * Regardless of what the actual policy is, we're going to 15487 * temporarily set our resize policy to be manual. We're 15488 * also going to temporarily set our CPU option to denote 15489 * the newly configured CPU. 15490 */ 15491 rs = opt[DTRACEOPT_BUFRESIZE]; 15492 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 15493 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 15494 15495 (void) dtrace_state_buffers(state); 15496 15497 opt[DTRACEOPT_BUFRESIZE] = rs; 15498 opt[DTRACEOPT_CPU] = c; 15499 15500 break; 15501 } 15502 15503 case CPU_UNCONFIG: 15504 /* 15505 * We don't free the buffer in the CPU_UNCONFIG case. (The 15506 * buffer will be freed when the consumer exits.) 15507 */ 15508 break; 15509 15510 default: 15511 break; 15512 } 15513 15514 mutex_exit(&dtrace_lock); 15515 return (0); 15516 } 15517 15518 static void 15519 dtrace_cpu_setup_initial(processorid_t cpu) 15520 { 15521 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 15522 } 15523 15524 static void 15525 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 15526 { 15527 if (dtrace_toxranges >= dtrace_toxranges_max) { 15528 int osize, nsize; 15529 dtrace_toxrange_t *range; 15530 15531 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 15532 15533 if (osize == 0) { 15534 ASSERT(dtrace_toxrange == NULL); 15535 ASSERT(dtrace_toxranges_max == 0); 15536 dtrace_toxranges_max = 1; 15537 } else { 15538 dtrace_toxranges_max <<= 1; 15539 } 15540 15541 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 15542 range = kmem_zalloc(nsize, KM_SLEEP); 15543 15544 if (dtrace_toxrange != NULL) { 15545 ASSERT(osize != 0); 15546 bcopy(dtrace_toxrange, range, osize); 15547 kmem_free(dtrace_toxrange, osize); 15548 } 15549 15550 dtrace_toxrange = range; 15551 } 15552 15553 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL); 15554 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL); 15555 15556 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 15557 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 15558 dtrace_toxranges++; 15559 } 15560 15561 static void 15562 dtrace_getf_barrier() 15563 { 15564 /* 15565 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings 15566 * that contain calls to getf(), this routine will be called on every 15567 * closef() before either the underlying vnode is released or the 15568 * file_t itself is freed. By the time we are here, it is essential 15569 * that the file_t can no longer be accessed from a call to getf() 15570 * in probe context -- that assures that a dtrace_sync() can be used 15571 * to clear out any enablings referring to the old structures. 15572 */ 15573 if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 || 15574 kcred->cr_zone->zone_dtrace_getf != 0) 15575 dtrace_sync(); 15576 } 15577 15578 /* 15579 * DTrace Driver Cookbook Functions 15580 */ 15581 /*ARGSUSED*/ 15582 static int 15583 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 15584 { 15585 dtrace_provider_id_t id; 15586 dtrace_state_t *state = NULL; 15587 dtrace_enabling_t *enab; 15588 15589 mutex_enter(&cpu_lock); 15590 mutex_enter(&dtrace_provider_lock); 15591 mutex_enter(&dtrace_lock); 15592 15593 if (ddi_soft_state_init(&dtrace_softstate, 15594 sizeof (dtrace_state_t), 0) != 0) { 15595 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 15596 mutex_exit(&cpu_lock); 15597 mutex_exit(&dtrace_provider_lock); 15598 mutex_exit(&dtrace_lock); 15599 return (DDI_FAILURE); 15600 } 15601 15602 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 15603 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 15604 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 15605 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 15606 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 15607 ddi_remove_minor_node(devi, NULL); 15608 ddi_soft_state_fini(&dtrace_softstate); 15609 mutex_exit(&cpu_lock); 15610 mutex_exit(&dtrace_provider_lock); 15611 mutex_exit(&dtrace_lock); 15612 return (DDI_FAILURE); 15613 } 15614 15615 ddi_report_dev(devi); 15616 dtrace_devi = devi; 15617 15618 dtrace_modload = dtrace_module_loaded; 15619 dtrace_modunload = dtrace_module_unloaded; 15620 dtrace_cpu_init = dtrace_cpu_setup_initial; 15621 dtrace_helpers_cleanup = dtrace_helpers_destroy; 15622 dtrace_helpers_fork = dtrace_helpers_duplicate; 15623 dtrace_cpustart_init = dtrace_suspend; 15624 dtrace_cpustart_fini = dtrace_resume; 15625 dtrace_debugger_init = dtrace_suspend; 15626 dtrace_debugger_fini = dtrace_resume; 15627 15628 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 15629 15630 ASSERT(MUTEX_HELD(&cpu_lock)); 15631 15632 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 15633 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 15634 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 15635 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 15636 VM_SLEEP | VMC_IDENTIFIER); 15637 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 15638 1, INT_MAX, 0); 15639 15640 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 15641 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 15642 NULL, NULL, NULL, NULL, NULL, 0); 15643 15644 ASSERT(MUTEX_HELD(&cpu_lock)); 15645 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 15646 offsetof(dtrace_probe_t, dtpr_nextmod), 15647 offsetof(dtrace_probe_t, dtpr_prevmod)); 15648 15649 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 15650 offsetof(dtrace_probe_t, dtpr_nextfunc), 15651 offsetof(dtrace_probe_t, dtpr_prevfunc)); 15652 15653 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 15654 offsetof(dtrace_probe_t, dtpr_nextname), 15655 offsetof(dtrace_probe_t, dtpr_prevname)); 15656 15657 if (dtrace_retain_max < 1) { 15658 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; " 15659 "setting to 1", dtrace_retain_max); 15660 dtrace_retain_max = 1; 15661 } 15662 15663 /* 15664 * Now discover our toxic ranges. 15665 */ 15666 dtrace_toxic_ranges(dtrace_toxrange_add); 15667 15668 /* 15669 * Before we register ourselves as a provider to our own framework, 15670 * we would like to assert that dtrace_provider is NULL -- but that's 15671 * not true if we were loaded as a dependency of a DTrace provider. 15672 * Once we've registered, we can assert that dtrace_provider is our 15673 * pseudo provider. 15674 */ 15675 (void) dtrace_register("dtrace", &dtrace_provider_attr, 15676 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 15677 15678 ASSERT(dtrace_provider != NULL); 15679 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 15680 15681 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 15682 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 15683 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 15684 dtrace_provider, NULL, NULL, "END", 0, NULL); 15685 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 15686 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 15687 15688 dtrace_anon_property(); 15689 mutex_exit(&cpu_lock); 15690 15691 /* 15692 * If there are already providers, we must ask them to provide their 15693 * probes, and then match any anonymous enabling against them. Note 15694 * that there should be no other retained enablings at this time: 15695 * the only retained enablings at this time should be the anonymous 15696 * enabling. 15697 */ 15698 if (dtrace_anon.dta_enabling != NULL) { 15699 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 15700 15701 dtrace_enabling_provide(NULL); 15702 state = dtrace_anon.dta_state; 15703 15704 /* 15705 * We couldn't hold cpu_lock across the above call to 15706 * dtrace_enabling_provide(), but we must hold it to actually 15707 * enable the probes. We have to drop all of our locks, pick 15708 * up cpu_lock, and regain our locks before matching the 15709 * retained anonymous enabling. 15710 */ 15711 mutex_exit(&dtrace_lock); 15712 mutex_exit(&dtrace_provider_lock); 15713 15714 mutex_enter(&cpu_lock); 15715 mutex_enter(&dtrace_provider_lock); 15716 mutex_enter(&dtrace_lock); 15717 15718 if ((enab = dtrace_anon.dta_enabling) != NULL) 15719 (void) dtrace_enabling_match(enab, NULL); 15720 15721 mutex_exit(&cpu_lock); 15722 } 15723 15724 mutex_exit(&dtrace_lock); 15725 mutex_exit(&dtrace_provider_lock); 15726 15727 if (state != NULL) { 15728 /* 15729 * If we created any anonymous state, set it going now. 15730 */ 15731 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 15732 } 15733 15734 return (DDI_SUCCESS); 15735 } 15736 15737 /*ARGSUSED*/ 15738 static int 15739 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 15740 { 15741 dtrace_state_t *state; 15742 uint32_t priv; 15743 uid_t uid; 15744 zoneid_t zoneid; 15745 15746 if (getminor(*devp) == DTRACEMNRN_HELPER) 15747 return (0); 15748 15749 /* 15750 * If this wasn't an open with the "helper" minor, then it must be 15751 * the "dtrace" minor. 15752 */ 15753 if (getminor(*devp) != DTRACEMNRN_DTRACE) 15754 return (ENXIO); 15755 15756 /* 15757 * If no DTRACE_PRIV_* bits are set in the credential, then the 15758 * caller lacks sufficient permission to do anything with DTrace. 15759 */ 15760 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 15761 if (priv == DTRACE_PRIV_NONE) 15762 return (EACCES); 15763 15764 /* 15765 * Ask all providers to provide all their probes. 15766 */ 15767 mutex_enter(&dtrace_provider_lock); 15768 dtrace_probe_provide(NULL, NULL); 15769 mutex_exit(&dtrace_provider_lock); 15770 15771 mutex_enter(&cpu_lock); 15772 mutex_enter(&dtrace_lock); 15773 dtrace_opens++; 15774 dtrace_membar_producer(); 15775 15776 /* 15777 * If the kernel debugger is active (that is, if the kernel debugger 15778 * modified text in some way), we won't allow the open. 15779 */ 15780 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 15781 dtrace_opens--; 15782 mutex_exit(&cpu_lock); 15783 mutex_exit(&dtrace_lock); 15784 return (EBUSY); 15785 } 15786 15787 if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) { 15788 /* 15789 * If DTrace helper tracing is enabled, we need to allocate the 15790 * trace buffer and initialize the values. 15791 */ 15792 dtrace_helptrace_buffer = 15793 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 15794 dtrace_helptrace_next = 0; 15795 dtrace_helptrace_wrapped = 0; 15796 dtrace_helptrace_enable = 0; 15797 } 15798 15799 state = dtrace_state_create(devp, cred_p); 15800 mutex_exit(&cpu_lock); 15801 15802 if (state == NULL) { 15803 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 15804 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 15805 mutex_exit(&dtrace_lock); 15806 return (EAGAIN); 15807 } 15808 15809 mutex_exit(&dtrace_lock); 15810 15811 return (0); 15812 } 15813 15814 /*ARGSUSED*/ 15815 static int 15816 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 15817 { 15818 minor_t minor = getminor(dev); 15819 dtrace_state_t *state; 15820 dtrace_helptrace_t *buf = NULL; 15821 15822 if (minor == DTRACEMNRN_HELPER) 15823 return (0); 15824 15825 state = ddi_get_soft_state(dtrace_softstate, minor); 15826 15827 mutex_enter(&cpu_lock); 15828 mutex_enter(&dtrace_lock); 15829 15830 if (state->dts_anon) { 15831 /* 15832 * There is anonymous state. Destroy that first. 15833 */ 15834 ASSERT(dtrace_anon.dta_state == NULL); 15835 dtrace_state_destroy(state->dts_anon); 15836 } 15837 15838 if (dtrace_helptrace_disable) { 15839 /* 15840 * If we have been told to disable helper tracing, set the 15841 * buffer to NULL before calling into dtrace_state_destroy(); 15842 * we take advantage of its dtrace_sync() to know that no 15843 * CPU is in probe context with enabled helper tracing 15844 * after it returns. 15845 */ 15846 buf = dtrace_helptrace_buffer; 15847 dtrace_helptrace_buffer = NULL; 15848 } 15849 15850 dtrace_state_destroy(state); 15851 ASSERT(dtrace_opens > 0); 15852 15853 /* 15854 * Only relinquish control of the kernel debugger interface when there 15855 * are no consumers and no anonymous enablings. 15856 */ 15857 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 15858 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 15859 15860 if (buf != NULL) { 15861 kmem_free(buf, dtrace_helptrace_bufsize); 15862 dtrace_helptrace_disable = 0; 15863 } 15864 15865 mutex_exit(&dtrace_lock); 15866 mutex_exit(&cpu_lock); 15867 15868 return (0); 15869 } 15870 15871 /*ARGSUSED*/ 15872 static int 15873 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 15874 { 15875 int rval; 15876 dof_helper_t help, *dhp = NULL; 15877 15878 switch (cmd) { 15879 case DTRACEHIOC_ADDDOF: 15880 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 15881 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 15882 return (EFAULT); 15883 } 15884 15885 dhp = &help; 15886 arg = (intptr_t)help.dofhp_dof; 15887 /*FALLTHROUGH*/ 15888 15889 case DTRACEHIOC_ADD: { 15890 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 15891 15892 if (dof == NULL) 15893 return (rval); 15894 15895 mutex_enter(&dtrace_lock); 15896 15897 /* 15898 * dtrace_helper_slurp() takes responsibility for the dof -- 15899 * it may free it now or it may save it and free it later. 15900 */ 15901 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 15902 *rv = rval; 15903 rval = 0; 15904 } else { 15905 rval = EINVAL; 15906 } 15907 15908 mutex_exit(&dtrace_lock); 15909 return (rval); 15910 } 15911 15912 case DTRACEHIOC_REMOVE: { 15913 mutex_enter(&dtrace_lock); 15914 rval = dtrace_helper_destroygen(arg); 15915 mutex_exit(&dtrace_lock); 15916 15917 return (rval); 15918 } 15919 15920 default: 15921 break; 15922 } 15923 15924 return (ENOTTY); 15925 } 15926 15927 /*ARGSUSED*/ 15928 static int 15929 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 15930 { 15931 minor_t minor = getminor(dev); 15932 dtrace_state_t *state; 15933 int rval; 15934 15935 if (minor == DTRACEMNRN_HELPER) 15936 return (dtrace_ioctl_helper(cmd, arg, rv)); 15937 15938 state = ddi_get_soft_state(dtrace_softstate, minor); 15939 15940 if (state->dts_anon) { 15941 ASSERT(dtrace_anon.dta_state == NULL); 15942 state = state->dts_anon; 15943 } 15944 15945 switch (cmd) { 15946 case DTRACEIOC_PROVIDER: { 15947 dtrace_providerdesc_t pvd; 15948 dtrace_provider_t *pvp; 15949 15950 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 15951 return (EFAULT); 15952 15953 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 15954 mutex_enter(&dtrace_provider_lock); 15955 15956 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 15957 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 15958 break; 15959 } 15960 15961 mutex_exit(&dtrace_provider_lock); 15962 15963 if (pvp == NULL) 15964 return (ESRCH); 15965 15966 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 15967 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 15968 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 15969 return (EFAULT); 15970 15971 return (0); 15972 } 15973 15974 case DTRACEIOC_EPROBE: { 15975 dtrace_eprobedesc_t epdesc; 15976 dtrace_ecb_t *ecb; 15977 dtrace_action_t *act; 15978 void *buf; 15979 size_t size; 15980 uintptr_t dest; 15981 int nrecs; 15982 15983 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 15984 return (EFAULT); 15985 15986 mutex_enter(&dtrace_lock); 15987 15988 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 15989 mutex_exit(&dtrace_lock); 15990 return (EINVAL); 15991 } 15992 15993 if (ecb->dte_probe == NULL) { 15994 mutex_exit(&dtrace_lock); 15995 return (EINVAL); 15996 } 15997 15998 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 15999 epdesc.dtepd_uarg = ecb->dte_uarg; 16000 epdesc.dtepd_size = ecb->dte_size; 16001 16002 nrecs = epdesc.dtepd_nrecs; 16003 epdesc.dtepd_nrecs = 0; 16004 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 16005 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 16006 continue; 16007 16008 epdesc.dtepd_nrecs++; 16009 } 16010 16011 /* 16012 * Now that we have the size, we need to allocate a temporary 16013 * buffer in which to store the complete description. We need 16014 * the temporary buffer to be able to drop dtrace_lock() 16015 * across the copyout(), below. 16016 */ 16017 size = sizeof (dtrace_eprobedesc_t) + 16018 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 16019 16020 buf = kmem_alloc(size, KM_SLEEP); 16021 dest = (uintptr_t)buf; 16022 16023 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 16024 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 16025 16026 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 16027 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 16028 continue; 16029 16030 if (nrecs-- == 0) 16031 break; 16032 16033 bcopy(&act->dta_rec, (void *)dest, 16034 sizeof (dtrace_recdesc_t)); 16035 dest += sizeof (dtrace_recdesc_t); 16036 } 16037 16038 mutex_exit(&dtrace_lock); 16039 16040 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 16041 kmem_free(buf, size); 16042 return (EFAULT); 16043 } 16044 16045 kmem_free(buf, size); 16046 return (0); 16047 } 16048 16049 case DTRACEIOC_AGGDESC: { 16050 dtrace_aggdesc_t aggdesc; 16051 dtrace_action_t *act; 16052 dtrace_aggregation_t *agg; 16053 int nrecs; 16054 uint32_t offs; 16055 dtrace_recdesc_t *lrec; 16056 void *buf; 16057 size_t size; 16058 uintptr_t dest; 16059 16060 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 16061 return (EFAULT); 16062 16063 mutex_enter(&dtrace_lock); 16064 16065 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 16066 mutex_exit(&dtrace_lock); 16067 return (EINVAL); 16068 } 16069 16070 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 16071 16072 nrecs = aggdesc.dtagd_nrecs; 16073 aggdesc.dtagd_nrecs = 0; 16074 16075 offs = agg->dtag_base; 16076 lrec = &agg->dtag_action.dta_rec; 16077 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 16078 16079 for (act = agg->dtag_first; ; act = act->dta_next) { 16080 ASSERT(act->dta_intuple || 16081 DTRACEACT_ISAGG(act->dta_kind)); 16082 16083 /* 16084 * If this action has a record size of zero, it 16085 * denotes an argument to the aggregating action. 16086 * Because the presence of this record doesn't (or 16087 * shouldn't) affect the way the data is interpreted, 16088 * we don't copy it out to save user-level the 16089 * confusion of dealing with a zero-length record. 16090 */ 16091 if (act->dta_rec.dtrd_size == 0) { 16092 ASSERT(agg->dtag_hasarg); 16093 continue; 16094 } 16095 16096 aggdesc.dtagd_nrecs++; 16097 16098 if (act == &agg->dtag_action) 16099 break; 16100 } 16101 16102 /* 16103 * Now that we have the size, we need to allocate a temporary 16104 * buffer in which to store the complete description. We need 16105 * the temporary buffer to be able to drop dtrace_lock() 16106 * across the copyout(), below. 16107 */ 16108 size = sizeof (dtrace_aggdesc_t) + 16109 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 16110 16111 buf = kmem_alloc(size, KM_SLEEP); 16112 dest = (uintptr_t)buf; 16113 16114 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 16115 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 16116 16117 for (act = agg->dtag_first; ; act = act->dta_next) { 16118 dtrace_recdesc_t rec = act->dta_rec; 16119 16120 /* 16121 * See the comment in the above loop for why we pass 16122 * over zero-length records. 16123 */ 16124 if (rec.dtrd_size == 0) { 16125 ASSERT(agg->dtag_hasarg); 16126 continue; 16127 } 16128 16129 if (nrecs-- == 0) 16130 break; 16131 16132 rec.dtrd_offset -= offs; 16133 bcopy(&rec, (void *)dest, sizeof (rec)); 16134 dest += sizeof (dtrace_recdesc_t); 16135 16136 if (act == &agg->dtag_action) 16137 break; 16138 } 16139 16140 mutex_exit(&dtrace_lock); 16141 16142 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 16143 kmem_free(buf, size); 16144 return (EFAULT); 16145 } 16146 16147 kmem_free(buf, size); 16148 return (0); 16149 } 16150 16151 case DTRACEIOC_ENABLE: { 16152 dof_hdr_t *dof; 16153 dtrace_enabling_t *enab = NULL; 16154 dtrace_vstate_t *vstate; 16155 int err = 0; 16156 16157 *rv = 0; 16158 16159 /* 16160 * If a NULL argument has been passed, we take this as our 16161 * cue to reevaluate our enablings. 16162 */ 16163 if (arg == NULL) { 16164 dtrace_enabling_matchall(); 16165 16166 return (0); 16167 } 16168 16169 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 16170 return (rval); 16171 16172 mutex_enter(&cpu_lock); 16173 mutex_enter(&dtrace_lock); 16174 vstate = &state->dts_vstate; 16175 16176 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 16177 mutex_exit(&dtrace_lock); 16178 mutex_exit(&cpu_lock); 16179 dtrace_dof_destroy(dof); 16180 return (EBUSY); 16181 } 16182 16183 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 16184 mutex_exit(&dtrace_lock); 16185 mutex_exit(&cpu_lock); 16186 dtrace_dof_destroy(dof); 16187 return (EINVAL); 16188 } 16189 16190 if ((rval = dtrace_dof_options(dof, state)) != 0) { 16191 dtrace_enabling_destroy(enab); 16192 mutex_exit(&dtrace_lock); 16193 mutex_exit(&cpu_lock); 16194 dtrace_dof_destroy(dof); 16195 return (rval); 16196 } 16197 16198 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 16199 err = dtrace_enabling_retain(enab); 16200 } else { 16201 dtrace_enabling_destroy(enab); 16202 } 16203 16204 mutex_exit(&cpu_lock); 16205 mutex_exit(&dtrace_lock); 16206 dtrace_dof_destroy(dof); 16207 16208 return (err); 16209 } 16210 16211 case DTRACEIOC_REPLICATE: { 16212 dtrace_repldesc_t desc; 16213 dtrace_probedesc_t *match = &desc.dtrpd_match; 16214 dtrace_probedesc_t *create = &desc.dtrpd_create; 16215 int err; 16216 16217 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16218 return (EFAULT); 16219 16220 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16221 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16222 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16223 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16224 16225 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16226 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16227 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16228 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16229 16230 mutex_enter(&dtrace_lock); 16231 err = dtrace_enabling_replicate(state, match, create); 16232 mutex_exit(&dtrace_lock); 16233 16234 return (err); 16235 } 16236 16237 case DTRACEIOC_PROBEMATCH: 16238 case DTRACEIOC_PROBES: { 16239 dtrace_probe_t *probe = NULL; 16240 dtrace_probedesc_t desc; 16241 dtrace_probekey_t pkey; 16242 dtrace_id_t i; 16243 int m = 0; 16244 uint32_t priv; 16245 uid_t uid; 16246 zoneid_t zoneid; 16247 16248 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16249 return (EFAULT); 16250 16251 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16252 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16253 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16254 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16255 16256 /* 16257 * Before we attempt to match this probe, we want to give 16258 * all providers the opportunity to provide it. 16259 */ 16260 if (desc.dtpd_id == DTRACE_IDNONE) { 16261 mutex_enter(&dtrace_provider_lock); 16262 dtrace_probe_provide(&desc, NULL); 16263 mutex_exit(&dtrace_provider_lock); 16264 desc.dtpd_id++; 16265 } 16266 16267 if (cmd == DTRACEIOC_PROBEMATCH) { 16268 dtrace_probekey(&desc, &pkey); 16269 pkey.dtpk_id = DTRACE_IDNONE; 16270 } 16271 16272 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 16273 16274 mutex_enter(&dtrace_lock); 16275 16276 if (cmd == DTRACEIOC_PROBEMATCH) { 16277 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 16278 if ((probe = dtrace_probes[i - 1]) != NULL && 16279 (m = dtrace_match_probe(probe, &pkey, 16280 priv, uid, zoneid)) != 0) 16281 break; 16282 } 16283 16284 if (m < 0) { 16285 mutex_exit(&dtrace_lock); 16286 return (EINVAL); 16287 } 16288 16289 } else { 16290 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 16291 if ((probe = dtrace_probes[i - 1]) != NULL && 16292 dtrace_match_priv(probe, priv, uid, zoneid)) 16293 break; 16294 } 16295 } 16296 16297 if (probe == NULL) { 16298 mutex_exit(&dtrace_lock); 16299 return (ESRCH); 16300 } 16301 16302 dtrace_probe_description(probe, &desc); 16303 mutex_exit(&dtrace_lock); 16304 16305 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16306 return (EFAULT); 16307 16308 return (0); 16309 } 16310 16311 case DTRACEIOC_PROBEARG: { 16312 dtrace_argdesc_t desc; 16313 dtrace_probe_t *probe; 16314 dtrace_provider_t *prov; 16315 16316 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16317 return (EFAULT); 16318 16319 if (desc.dtargd_id == DTRACE_IDNONE) 16320 return (EINVAL); 16321 16322 if (desc.dtargd_ndx == DTRACE_ARGNONE) 16323 return (EINVAL); 16324 16325 mutex_enter(&dtrace_provider_lock); 16326 mutex_enter(&mod_lock); 16327 mutex_enter(&dtrace_lock); 16328 16329 if (desc.dtargd_id > dtrace_nprobes) { 16330 mutex_exit(&dtrace_lock); 16331 mutex_exit(&mod_lock); 16332 mutex_exit(&dtrace_provider_lock); 16333 return (EINVAL); 16334 } 16335 16336 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 16337 mutex_exit(&dtrace_lock); 16338 mutex_exit(&mod_lock); 16339 mutex_exit(&dtrace_provider_lock); 16340 return (EINVAL); 16341 } 16342 16343 mutex_exit(&dtrace_lock); 16344 16345 prov = probe->dtpr_provider; 16346 16347 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 16348 /* 16349 * There isn't any typed information for this probe. 16350 * Set the argument number to DTRACE_ARGNONE. 16351 */ 16352 desc.dtargd_ndx = DTRACE_ARGNONE; 16353 } else { 16354 desc.dtargd_native[0] = '\0'; 16355 desc.dtargd_xlate[0] = '\0'; 16356 desc.dtargd_mapping = desc.dtargd_ndx; 16357 16358 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 16359 probe->dtpr_id, probe->dtpr_arg, &desc); 16360 } 16361 16362 mutex_exit(&mod_lock); 16363 mutex_exit(&dtrace_provider_lock); 16364 16365 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16366 return (EFAULT); 16367 16368 return (0); 16369 } 16370 16371 case DTRACEIOC_GO: { 16372 processorid_t cpuid; 16373 rval = dtrace_state_go(state, &cpuid); 16374 16375 if (rval != 0) 16376 return (rval); 16377 16378 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 16379 return (EFAULT); 16380 16381 return (0); 16382 } 16383 16384 case DTRACEIOC_STOP: { 16385 processorid_t cpuid; 16386 16387 mutex_enter(&dtrace_lock); 16388 rval = dtrace_state_stop(state, &cpuid); 16389 mutex_exit(&dtrace_lock); 16390 16391 if (rval != 0) 16392 return (rval); 16393 16394 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 16395 return (EFAULT); 16396 16397 return (0); 16398 } 16399 16400 case DTRACEIOC_DOFGET: { 16401 dof_hdr_t hdr, *dof; 16402 uint64_t len; 16403 16404 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 16405 return (EFAULT); 16406 16407 mutex_enter(&dtrace_lock); 16408 dof = dtrace_dof_create(state); 16409 mutex_exit(&dtrace_lock); 16410 16411 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 16412 rval = copyout(dof, (void *)arg, len); 16413 dtrace_dof_destroy(dof); 16414 16415 return (rval == 0 ? 0 : EFAULT); 16416 } 16417 16418 case DTRACEIOC_AGGSNAP: 16419 case DTRACEIOC_BUFSNAP: { 16420 dtrace_bufdesc_t desc; 16421 caddr_t cached; 16422 dtrace_buffer_t *buf; 16423 16424 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16425 return (EFAULT); 16426 16427 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 16428 return (EINVAL); 16429 16430 mutex_enter(&dtrace_lock); 16431 16432 if (cmd == DTRACEIOC_BUFSNAP) { 16433 buf = &state->dts_buffer[desc.dtbd_cpu]; 16434 } else { 16435 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 16436 } 16437 16438 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 16439 size_t sz = buf->dtb_offset; 16440 16441 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 16442 mutex_exit(&dtrace_lock); 16443 return (EBUSY); 16444 } 16445 16446 /* 16447 * If this buffer has already been consumed, we're 16448 * going to indicate that there's nothing left here 16449 * to consume. 16450 */ 16451 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 16452 mutex_exit(&dtrace_lock); 16453 16454 desc.dtbd_size = 0; 16455 desc.dtbd_drops = 0; 16456 desc.dtbd_errors = 0; 16457 desc.dtbd_oldest = 0; 16458 sz = sizeof (desc); 16459 16460 if (copyout(&desc, (void *)arg, sz) != 0) 16461 return (EFAULT); 16462 16463 return (0); 16464 } 16465 16466 /* 16467 * If this is a ring buffer that has wrapped, we want 16468 * to copy the whole thing out. 16469 */ 16470 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 16471 dtrace_buffer_polish(buf); 16472 sz = buf->dtb_size; 16473 } 16474 16475 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 16476 mutex_exit(&dtrace_lock); 16477 return (EFAULT); 16478 } 16479 16480 desc.dtbd_size = sz; 16481 desc.dtbd_drops = buf->dtb_drops; 16482 desc.dtbd_errors = buf->dtb_errors; 16483 desc.dtbd_oldest = buf->dtb_xamot_offset; 16484 desc.dtbd_timestamp = dtrace_gethrtime(); 16485 16486 mutex_exit(&dtrace_lock); 16487 16488 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16489 return (EFAULT); 16490 16491 buf->dtb_flags |= DTRACEBUF_CONSUMED; 16492 16493 return (0); 16494 } 16495 16496 if (buf->dtb_tomax == NULL) { 16497 ASSERT(buf->dtb_xamot == NULL); 16498 mutex_exit(&dtrace_lock); 16499 return (ENOENT); 16500 } 16501 16502 cached = buf->dtb_tomax; 16503 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 16504 16505 dtrace_xcall(desc.dtbd_cpu, 16506 (dtrace_xcall_t)dtrace_buffer_switch, buf); 16507 16508 state->dts_errors += buf->dtb_xamot_errors; 16509 16510 /* 16511 * If the buffers did not actually switch, then the cross call 16512 * did not take place -- presumably because the given CPU is 16513 * not in the ready set. If this is the case, we'll return 16514 * ENOENT. 16515 */ 16516 if (buf->dtb_tomax == cached) { 16517 ASSERT(buf->dtb_xamot != cached); 16518 mutex_exit(&dtrace_lock); 16519 return (ENOENT); 16520 } 16521 16522 ASSERT(cached == buf->dtb_xamot); 16523 16524 /* 16525 * We have our snapshot; now copy it out. 16526 */ 16527 if (copyout(buf->dtb_xamot, desc.dtbd_data, 16528 buf->dtb_xamot_offset) != 0) { 16529 mutex_exit(&dtrace_lock); 16530 return (EFAULT); 16531 } 16532 16533 desc.dtbd_size = buf->dtb_xamot_offset; 16534 desc.dtbd_drops = buf->dtb_xamot_drops; 16535 desc.dtbd_errors = buf->dtb_xamot_errors; 16536 desc.dtbd_oldest = 0; 16537 desc.dtbd_timestamp = buf->dtb_switched; 16538 16539 mutex_exit(&dtrace_lock); 16540 16541 /* 16542 * Finally, copy out the buffer description. 16543 */ 16544 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16545 return (EFAULT); 16546 16547 return (0); 16548 } 16549 16550 case DTRACEIOC_CONF: { 16551 dtrace_conf_t conf; 16552 16553 bzero(&conf, sizeof (conf)); 16554 conf.dtc_difversion = DIF_VERSION; 16555 conf.dtc_difintregs = DIF_DIR_NREGS; 16556 conf.dtc_diftupregs = DIF_DTR_NREGS; 16557 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 16558 16559 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 16560 return (EFAULT); 16561 16562 return (0); 16563 } 16564 16565 case DTRACEIOC_STATUS: { 16566 dtrace_status_t stat; 16567 dtrace_dstate_t *dstate; 16568 int i, j; 16569 uint64_t nerrs; 16570 16571 /* 16572 * See the comment in dtrace_state_deadman() for the reason 16573 * for setting dts_laststatus to INT64_MAX before setting 16574 * it to the correct value. 16575 */ 16576 state->dts_laststatus = INT64_MAX; 16577 dtrace_membar_producer(); 16578 state->dts_laststatus = dtrace_gethrtime(); 16579 16580 bzero(&stat, sizeof (stat)); 16581 16582 mutex_enter(&dtrace_lock); 16583 16584 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 16585 mutex_exit(&dtrace_lock); 16586 return (ENOENT); 16587 } 16588 16589 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 16590 stat.dtst_exiting = 1; 16591 16592 nerrs = state->dts_errors; 16593 dstate = &state->dts_vstate.dtvs_dynvars; 16594 16595 for (i = 0; i < NCPU; i++) { 16596 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 16597 16598 stat.dtst_dyndrops += dcpu->dtdsc_drops; 16599 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 16600 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 16601 16602 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 16603 stat.dtst_filled++; 16604 16605 nerrs += state->dts_buffer[i].dtb_errors; 16606 16607 for (j = 0; j < state->dts_nspeculations; j++) { 16608 dtrace_speculation_t *spec; 16609 dtrace_buffer_t *buf; 16610 16611 spec = &state->dts_speculations[j]; 16612 buf = &spec->dtsp_buffer[i]; 16613 stat.dtst_specdrops += buf->dtb_xamot_drops; 16614 } 16615 } 16616 16617 stat.dtst_specdrops_busy = state->dts_speculations_busy; 16618 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 16619 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 16620 stat.dtst_dblerrors = state->dts_dblerrors; 16621 stat.dtst_killed = 16622 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 16623 stat.dtst_errors = nerrs; 16624 16625 mutex_exit(&dtrace_lock); 16626 16627 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 16628 return (EFAULT); 16629 16630 return (0); 16631 } 16632 16633 case DTRACEIOC_FORMAT: { 16634 dtrace_fmtdesc_t fmt; 16635 char *str; 16636 int len; 16637 16638 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 16639 return (EFAULT); 16640 16641 mutex_enter(&dtrace_lock); 16642 16643 if (fmt.dtfd_format == 0 || 16644 fmt.dtfd_format > state->dts_nformats) { 16645 mutex_exit(&dtrace_lock); 16646 return (EINVAL); 16647 } 16648 16649 /* 16650 * Format strings are allocated contiguously and they are 16651 * never freed; if a format index is less than the number 16652 * of formats, we can assert that the format map is non-NULL 16653 * and that the format for the specified index is non-NULL. 16654 */ 16655 ASSERT(state->dts_formats != NULL); 16656 str = state->dts_formats[fmt.dtfd_format - 1]; 16657 ASSERT(str != NULL); 16658 16659 len = strlen(str) + 1; 16660 16661 if (len > fmt.dtfd_length) { 16662 fmt.dtfd_length = len; 16663 16664 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 16665 mutex_exit(&dtrace_lock); 16666 return (EINVAL); 16667 } 16668 } else { 16669 if (copyout(str, fmt.dtfd_string, len) != 0) { 16670 mutex_exit(&dtrace_lock); 16671 return (EINVAL); 16672 } 16673 } 16674 16675 mutex_exit(&dtrace_lock); 16676 return (0); 16677 } 16678 16679 default: 16680 break; 16681 } 16682 16683 return (ENOTTY); 16684 } 16685 16686 /*ARGSUSED*/ 16687 static int 16688 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 16689 { 16690 dtrace_state_t *state; 16691 16692 switch (cmd) { 16693 case DDI_DETACH: 16694 break; 16695 16696 case DDI_SUSPEND: 16697 return (DDI_SUCCESS); 16698 16699 default: 16700 return (DDI_FAILURE); 16701 } 16702 16703 mutex_enter(&cpu_lock); 16704 mutex_enter(&dtrace_provider_lock); 16705 mutex_enter(&dtrace_lock); 16706 16707 ASSERT(dtrace_opens == 0); 16708 16709 if (dtrace_helpers > 0) { 16710 mutex_exit(&dtrace_provider_lock); 16711 mutex_exit(&dtrace_lock); 16712 mutex_exit(&cpu_lock); 16713 return (DDI_FAILURE); 16714 } 16715 16716 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 16717 mutex_exit(&dtrace_provider_lock); 16718 mutex_exit(&dtrace_lock); 16719 mutex_exit(&cpu_lock); 16720 return (DDI_FAILURE); 16721 } 16722 16723 dtrace_provider = NULL; 16724 16725 if ((state = dtrace_anon_grab()) != NULL) { 16726 /* 16727 * If there were ECBs on this state, the provider should 16728 * have not been allowed to detach; assert that there is 16729 * none. 16730 */ 16731 ASSERT(state->dts_necbs == 0); 16732 dtrace_state_destroy(state); 16733 16734 /* 16735 * If we're being detached with anonymous state, we need to 16736 * indicate to the kernel debugger that DTrace is now inactive. 16737 */ 16738 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 16739 } 16740 16741 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 16742 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 16743 dtrace_cpu_init = NULL; 16744 dtrace_helpers_cleanup = NULL; 16745 dtrace_helpers_fork = NULL; 16746 dtrace_cpustart_init = NULL; 16747 dtrace_cpustart_fini = NULL; 16748 dtrace_debugger_init = NULL; 16749 dtrace_debugger_fini = NULL; 16750 dtrace_modload = NULL; 16751 dtrace_modunload = NULL; 16752 16753 ASSERT(dtrace_getf == 0); 16754 ASSERT(dtrace_closef == NULL); 16755 16756 mutex_exit(&cpu_lock); 16757 16758 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 16759 dtrace_probes = NULL; 16760 dtrace_nprobes = 0; 16761 16762 dtrace_hash_destroy(dtrace_bymod); 16763 dtrace_hash_destroy(dtrace_byfunc); 16764 dtrace_hash_destroy(dtrace_byname); 16765 dtrace_bymod = NULL; 16766 dtrace_byfunc = NULL; 16767 dtrace_byname = NULL; 16768 16769 kmem_cache_destroy(dtrace_state_cache); 16770 vmem_destroy(dtrace_minor); 16771 vmem_destroy(dtrace_arena); 16772 16773 if (dtrace_toxrange != NULL) { 16774 kmem_free(dtrace_toxrange, 16775 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 16776 dtrace_toxrange = NULL; 16777 dtrace_toxranges = 0; 16778 dtrace_toxranges_max = 0; 16779 } 16780 16781 ddi_remove_minor_node(dtrace_devi, NULL); 16782 dtrace_devi = NULL; 16783 16784 ddi_soft_state_fini(&dtrace_softstate); 16785 16786 ASSERT(dtrace_vtime_references == 0); 16787 ASSERT(dtrace_opens == 0); 16788 ASSERT(dtrace_retained == NULL); 16789 16790 mutex_exit(&dtrace_lock); 16791 mutex_exit(&dtrace_provider_lock); 16792 16793 /* 16794 * We don't destroy the task queue until after we have dropped our 16795 * locks (taskq_destroy() may block on running tasks). To prevent 16796 * attempting to do work after we have effectively detached but before 16797 * the task queue has been destroyed, all tasks dispatched via the 16798 * task queue must check that DTrace is still attached before 16799 * performing any operation. 16800 */ 16801 taskq_destroy(dtrace_taskq); 16802 dtrace_taskq = NULL; 16803 16804 return (DDI_SUCCESS); 16805 } 16806 16807 /*ARGSUSED*/ 16808 static int 16809 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 16810 { 16811 int error; 16812 16813 switch (infocmd) { 16814 case DDI_INFO_DEVT2DEVINFO: 16815 *result = (void *)dtrace_devi; 16816 error = DDI_SUCCESS; 16817 break; 16818 case DDI_INFO_DEVT2INSTANCE: 16819 *result = (void *)0; 16820 error = DDI_SUCCESS; 16821 break; 16822 default: 16823 error = DDI_FAILURE; 16824 } 16825 return (error); 16826 } 16827 16828 static struct cb_ops dtrace_cb_ops = { 16829 dtrace_open, /* open */ 16830 dtrace_close, /* close */ 16831 nulldev, /* strategy */ 16832 nulldev, /* print */ 16833 nodev, /* dump */ 16834 nodev, /* read */ 16835 nodev, /* write */ 16836 dtrace_ioctl, /* ioctl */ 16837 nodev, /* devmap */ 16838 nodev, /* mmap */ 16839 nodev, /* segmap */ 16840 nochpoll, /* poll */ 16841 ddi_prop_op, /* cb_prop_op */ 16842 0, /* streamtab */ 16843 D_NEW | D_MP /* Driver compatibility flag */ 16844 }; 16845 16846 static struct dev_ops dtrace_ops = { 16847 DEVO_REV, /* devo_rev */ 16848 0, /* refcnt */ 16849 dtrace_info, /* get_dev_info */ 16850 nulldev, /* identify */ 16851 nulldev, /* probe */ 16852 dtrace_attach, /* attach */ 16853 dtrace_detach, /* detach */ 16854 nodev, /* reset */ 16855 &dtrace_cb_ops, /* driver operations */ 16856 NULL, /* bus operations */ 16857 nodev, /* dev power */ 16858 ddi_quiesce_not_needed, /* quiesce */ 16859 }; 16860 16861 static struct modldrv modldrv = { 16862 &mod_driverops, /* module type (this is a pseudo driver) */ 16863 "Dynamic Tracing", /* name of module */ 16864 &dtrace_ops, /* driver ops */ 16865 }; 16866 16867 static struct modlinkage modlinkage = { 16868 MODREV_1, 16869 (void *)&modldrv, 16870 NULL 16871 }; 16872 16873 int 16874 _init(void) 16875 { 16876 return (mod_install(&modlinkage)); 16877 } 16878 16879 int 16880 _info(struct modinfo *modinfop) 16881 { 16882 return (mod_info(&modlinkage, modinfop)); 16883 } 16884 16885 int 16886 _fini(void) 16887 { 16888 return (mod_remove(&modlinkage)); 16889 }