1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright (c) 2012, Joyent, Inc. All rights reserved.
  25  * Copyright (c) 2012 by Delphix. All rights reserved.
  26  */
  27 
  28 /*
  29  * DTrace - Dynamic Tracing for Solaris
  30  *
  31  * This is the implementation of the Solaris Dynamic Tracing framework
  32  * (DTrace).  The user-visible interface to DTrace is described at length in
  33  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
  34  * library, the in-kernel DTrace framework, and the DTrace providers are
  35  * described in the block comments in the <sys/dtrace.h> header file.  The
  36  * internal architecture of DTrace is described in the block comments in the
  37  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
  38  * implementation very much assume mastery of all of these sources; if one has
  39  * an unanswered question about the implementation, one should consult them
  40  * first.
  41  *
  42  * The functions here are ordered roughly as follows:
  43  *
  44  *   - Probe context functions
  45  *   - Probe hashing functions
  46  *   - Non-probe context utility functions
  47  *   - Matching functions
  48  *   - Provider-to-Framework API functions
  49  *   - Probe management functions
  50  *   - DIF object functions
  51  *   - Format functions
  52  *   - Predicate functions
  53  *   - ECB functions
  54  *   - Buffer functions
  55  *   - Enabling functions
  56  *   - DOF functions
  57  *   - Anonymous enabling functions
  58  *   - Consumer state functions
  59  *   - Helper functions
  60  *   - Hook functions
  61  *   - Driver cookbook functions
  62  *
  63  * Each group of functions begins with a block comment labelled the "DTrace
  64  * [Group] Functions", allowing one to find each block by searching forward
  65  * on capital-f functions.
  66  */
  67 #include <sys/errno.h>
  68 #include <sys/stat.h>
  69 #include <sys/modctl.h>
  70 #include <sys/conf.h>
  71 #include <sys/systm.h>
  72 #include <sys/ddi.h>
  73 #include <sys/sunddi.h>
  74 #include <sys/cpuvar.h>
  75 #include <sys/kmem.h>
  76 #include <sys/strsubr.h>
  77 #include <sys/sysmacros.h>
  78 #include <sys/dtrace_impl.h>
  79 #include <sys/atomic.h>
  80 #include <sys/cmn_err.h>
  81 #include <sys/mutex_impl.h>
  82 #include <sys/rwlock_impl.h>
  83 #include <sys/ctf_api.h>
  84 #include <sys/panic.h>
  85 #include <sys/priv_impl.h>
  86 #include <sys/policy.h>
  87 #include <sys/cred_impl.h>
  88 #include <sys/procfs_isa.h>
  89 #include <sys/taskq.h>
  90 #include <sys/mkdev.h>
  91 #include <sys/kdi.h>
  92 #include <sys/zone.h>
  93 #include <sys/socket.h>
  94 #include <netinet/in.h>
  95 
  96 /*
  97  * DTrace Tunable Variables
  98  *
  99  * The following variables may be tuned by adding a line to /etc/system that
 100  * includes both the name of the DTrace module ("dtrace") and the name of the
 101  * variable.  For example:
 102  *
 103  *   set dtrace:dtrace_destructive_disallow = 1
 104  *
 105  * In general, the only variables that one should be tuning this way are those
 106  * that affect system-wide DTrace behavior, and for which the default behavior
 107  * is undesirable.  Most of these variables are tunable on a per-consumer
 108  * basis using DTrace options, and need not be tuned on a system-wide basis.
 109  * When tuning these variables, avoid pathological values; while some attempt
 110  * is made to verify the integrity of these variables, they are not considered
 111  * part of the supported interface to DTrace, and they are therefore not
 112  * checked comprehensively.  Further, these variables should not be tuned
 113  * dynamically via "mdb -kw" or other means; they should only be tuned via
 114  * /etc/system.
 115  */
 116 int             dtrace_destructive_disallow = 0;
 117 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024);
 118 size_t          dtrace_difo_maxsize = (256 * 1024);
 119 dtrace_optval_t dtrace_dof_maxsize = (8 * 1024 * 1024);
 120 size_t          dtrace_global_maxsize = (16 * 1024);
 121 size_t          dtrace_actions_max = (16 * 1024);
 122 size_t          dtrace_retain_max = 1024;
 123 dtrace_optval_t dtrace_helper_actions_max = 1024;
 124 dtrace_optval_t dtrace_helper_providers_max = 32;
 125 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024);
 126 size_t          dtrace_strsize_default = 256;
 127 dtrace_optval_t dtrace_cleanrate_default = 9900990;             /* 101 hz */
 128 dtrace_optval_t dtrace_cleanrate_min = 200000;                  /* 5000 hz */
 129 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;  /* 1/minute */
 130 dtrace_optval_t dtrace_aggrate_default = NANOSEC;               /* 1 hz */
 131 dtrace_optval_t dtrace_statusrate_default = NANOSEC;            /* 1 hz */
 132 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;  /* 6/minute */
 133 dtrace_optval_t dtrace_switchrate_default = NANOSEC;            /* 1 hz */
 134 dtrace_optval_t dtrace_nspec_default = 1;
 135 dtrace_optval_t dtrace_specsize_default = 32 * 1024;
 136 dtrace_optval_t dtrace_stackframes_default = 20;
 137 dtrace_optval_t dtrace_ustackframes_default = 20;
 138 dtrace_optval_t dtrace_jstackframes_default = 50;
 139 dtrace_optval_t dtrace_jstackstrsize_default = 512;
 140 int             dtrace_msgdsize_max = 128;
 141 hrtime_t        dtrace_chill_max = 500 * (NANOSEC / MILLISEC);  /* 500 ms */
 142 hrtime_t        dtrace_chill_interval = NANOSEC;                /* 1000 ms */
 143 int             dtrace_devdepth_max = 32;
 144 int             dtrace_err_verbose;
 145 hrtime_t        dtrace_deadman_interval = NANOSEC;
 146 hrtime_t        dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
 147 hrtime_t        dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
 148 hrtime_t        dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
 149 
 150 /*
 151  * DTrace External Variables
 152  *
 153  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
 154  * available to DTrace consumers via the backtick (`) syntax.  One of these,
 155  * dtrace_zero, is made deliberately so:  it is provided as a source of
 156  * well-known, zero-filled memory.  While this variable is not documented,
 157  * it is used by some translators as an implementation detail.
 158  */
 159 const char      dtrace_zero[256] = { 0 };       /* zero-filled memory */
 160 
 161 /*
 162  * DTrace Internal Variables
 163  */
 164 static dev_info_t       *dtrace_devi;           /* device info */
 165 static vmem_t           *dtrace_arena;          /* probe ID arena */
 166 static vmem_t           *dtrace_minor;          /* minor number arena */
 167 static taskq_t          *dtrace_taskq;          /* task queue */
 168 static dtrace_probe_t   **dtrace_probes;        /* array of all probes */
 169 static int              dtrace_nprobes;         /* number of probes */
 170 static dtrace_provider_t *dtrace_provider;      /* provider list */
 171 static dtrace_meta_t    *dtrace_meta_pid;       /* user-land meta provider */
 172 static int              dtrace_opens;           /* number of opens */
 173 static int              dtrace_helpers;         /* number of helpers */
 174 static int              dtrace_getf;            /* number of unpriv getf()s */
 175 static void             *dtrace_softstate;      /* softstate pointer */
 176 static dtrace_hash_t    *dtrace_bymod;          /* probes hashed by module */
 177 static dtrace_hash_t    *dtrace_byfunc;         /* probes hashed by function */
 178 static dtrace_hash_t    *dtrace_byname;         /* probes hashed by name */
 179 static dtrace_toxrange_t *dtrace_toxrange;      /* toxic range array */
 180 static int              dtrace_toxranges;       /* number of toxic ranges */
 181 static int              dtrace_toxranges_max;   /* size of toxic range array */
 182 static dtrace_anon_t    dtrace_anon;            /* anonymous enabling */
 183 static kmem_cache_t     *dtrace_state_cache;    /* cache for dynamic state */
 184 static uint64_t         dtrace_vtime_references; /* number of vtimestamp refs */
 185 static kthread_t        *dtrace_panicked;       /* panicking thread */
 186 static dtrace_ecb_t     *dtrace_ecb_create_cache; /* cached created ECB */
 187 static dtrace_genid_t   dtrace_probegen;        /* current probe generation */
 188 static dtrace_helpers_t *dtrace_deferred_pid;   /* deferred helper list */
 189 static dtrace_enabling_t *dtrace_retained;      /* list of retained enablings */
 190 static dtrace_genid_t   dtrace_retained_gen;    /* current retained enab gen */
 191 static dtrace_dynvar_t  dtrace_dynhash_sink;    /* end of dynamic hash chains */
 192 static int              dtrace_dynvar_failclean; /* dynvars failed to clean */
 193 
 194 /*
 195  * DTrace Locking
 196  * DTrace is protected by three (relatively coarse-grained) locks:
 197  *
 198  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
 199  *     including enabling state, probes, ECBs, consumer state, helper state,
 200  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
 201  *     probe context is lock-free -- synchronization is handled via the
 202  *     dtrace_sync() cross call mechanism.
 203  *
 204  * (2) dtrace_provider_lock is required when manipulating provider state, or
 205  *     when provider state must be held constant.
 206  *
 207  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
 208  *     when meta provider state must be held constant.
 209  *
 210  * The lock ordering between these three locks is dtrace_meta_lock before
 211  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
 212  * several places where dtrace_provider_lock is held by the framework as it
 213  * calls into the providers -- which then call back into the framework,
 214  * grabbing dtrace_lock.)
 215  *
 216  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
 217  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
 218  * role as a coarse-grained lock; it is acquired before both of these locks.
 219  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
 220  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
 221  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
 222  * acquired _between_ dtrace_provider_lock and dtrace_lock.
 223  */
 224 static kmutex_t         dtrace_lock;            /* probe state lock */
 225 static kmutex_t         dtrace_provider_lock;   /* provider state lock */
 226 static kmutex_t         dtrace_meta_lock;       /* meta-provider state lock */
 227 
 228 /*
 229  * DTrace Provider Variables
 230  *
 231  * These are the variables relating to DTrace as a provider (that is, the
 232  * provider of the BEGIN, END, and ERROR probes).
 233  */
 234 static dtrace_pattr_t   dtrace_provider_attr = {
 235 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
 236 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
 237 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
 238 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
 239 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
 240 };
 241 
 242 static void
 243 dtrace_nullop(void)
 244 {}
 245 
 246 static int
 247 dtrace_enable_nullop(void)
 248 {
 249         return (0);
 250 }
 251 
 252 static dtrace_pops_t    dtrace_provider_ops = {
 253         (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop,
 254         (void (*)(void *, struct modctl *))dtrace_nullop,
 255         (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop,
 256         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
 257         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
 258         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
 259         NULL,
 260         NULL,
 261         NULL,
 262         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop
 263 };
 264 
 265 static dtrace_id_t      dtrace_probeid_begin;   /* special BEGIN probe */
 266 static dtrace_id_t      dtrace_probeid_end;     /* special END probe */
 267 dtrace_id_t             dtrace_probeid_error;   /* special ERROR probe */
 268 
 269 /*
 270  * DTrace Helper Tracing Variables
 271  *
 272  * These variables should be set dynamically to enable helper tracing.  The
 273  * only variables that should be set are dtrace_helptrace_enable (which should
 274  * be set to a non-zero value to allocate helper tracing buffers on the next
 275  * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a
 276  * non-zero value to deallocate helper tracing buffers on the next close of
 277  * /dev/dtrace).  When (and only when) helper tracing is disabled, the
 278  * buffer size may also be set via dtrace_helptrace_bufsize.
 279  */
 280 int                     dtrace_helptrace_enable = 0;
 281 int                     dtrace_helptrace_disable = 0;
 282 int                     dtrace_helptrace_bufsize = 16 * 1024 * 1024;
 283 uint32_t                dtrace_helptrace_nlocals;
 284 static dtrace_helptrace_t *dtrace_helptrace_buffer;
 285 static uint32_t         dtrace_helptrace_next = 0;
 286 static int              dtrace_helptrace_wrapped = 0;
 287 
 288 /*
 289  * DTrace Error Hashing
 290  *
 291  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
 292  * table.  This is very useful for checking coverage of tests that are
 293  * expected to induce DIF or DOF processing errors, and may be useful for
 294  * debugging problems in the DIF code generator or in DOF generation .  The
 295  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
 296  */
 297 #ifdef DEBUG
 298 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ];
 299 static const char *dtrace_errlast;
 300 static kthread_t *dtrace_errthread;
 301 static kmutex_t dtrace_errlock;
 302 #endif
 303 
 304 /*
 305  * DTrace Macros and Constants
 306  *
 307  * These are various macros that are useful in various spots in the
 308  * implementation, along with a few random constants that have no meaning
 309  * outside of the implementation.  There is no real structure to this cpp
 310  * mishmash -- but is there ever?
 311  */
 312 #define DTRACE_HASHSTR(hash, probe)     \
 313         dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
 314 
 315 #define DTRACE_HASHNEXT(hash, probe)    \
 316         (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
 317 
 318 #define DTRACE_HASHPREV(hash, probe)    \
 319         (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
 320 
 321 #define DTRACE_HASHEQ(hash, lhs, rhs)   \
 322         (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
 323             *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
 324 
 325 #define DTRACE_AGGHASHSIZE_SLEW         17
 326 
 327 #define DTRACE_V4MAPPED_OFFSET          (sizeof (uint32_t) * 3)
 328 
 329 /*
 330  * The key for a thread-local variable consists of the lower 61 bits of the
 331  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
 332  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
 333  * equal to a variable identifier.  This is necessary (but not sufficient) to
 334  * assure that global associative arrays never collide with thread-local
 335  * variables.  To guarantee that they cannot collide, we must also define the
 336  * order for keying dynamic variables.  That order is:
 337  *
 338  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
 339  *
 340  * Because the variable-key and the tls-key are in orthogonal spaces, there is
 341  * no way for a global variable key signature to match a thread-local key
 342  * signature.
 343  */
 344 #define DTRACE_TLS_THRKEY(where) { \
 345         uint_t intr = 0; \
 346         uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
 347         for (; actv; actv >>= 1) \
 348                 intr++; \
 349         ASSERT(intr < (1 << 3)); \
 350         (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
 351             (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
 352 }
 353 
 354 #define DT_BSWAP_8(x)   ((x) & 0xff)
 355 #define DT_BSWAP_16(x)  ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
 356 #define DT_BSWAP_32(x)  ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
 357 #define DT_BSWAP_64(x)  ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
 358 
 359 #define DT_MASK_LO 0x00000000FFFFFFFFULL
 360 
 361 #define DTRACE_STORE(type, tomax, offset, what) \
 362         *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
 363 
 364 #ifndef __i386
 365 #define DTRACE_ALIGNCHECK(addr, size, flags)                            \
 366         if (addr & (size - 1)) {                                    \
 367                 *flags |= CPU_DTRACE_BADALIGN;                          \
 368                 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;     \
 369                 return (0);                                             \
 370         }
 371 #else
 372 #define DTRACE_ALIGNCHECK(addr, size, flags)
 373 #endif
 374 
 375 /*
 376  * Test whether a range of memory starting at testaddr of size testsz falls
 377  * within the range of memory described by addr, sz.  We take care to avoid
 378  * problems with overflow and underflow of the unsigned quantities, and
 379  * disallow all negative sizes.  Ranges of size 0 are allowed.
 380  */
 381 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
 382         ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \
 383         (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \
 384         (testaddr) + (testsz) >= (testaddr))
 385 
 386 /*
 387  * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
 388  * alloc_sz on the righthand side of the comparison in order to avoid overflow
 389  * or underflow in the comparison with it.  This is simpler than the INRANGE
 390  * check above, because we know that the dtms_scratch_ptr is valid in the
 391  * range.  Allocations of size zero are allowed.
 392  */
 393 #define DTRACE_INSCRATCH(mstate, alloc_sz) \
 394         ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
 395         (mstate)->dtms_scratch_ptr >= (alloc_sz))
 396 
 397 #define DTRACE_LOADFUNC(bits)                                           \
 398 /*CSTYLED*/                                                             \
 399 uint##bits##_t                                                          \
 400 dtrace_load##bits(uintptr_t addr)                                       \
 401 {                                                                       \
 402         size_t size = bits / NBBY;                                      \
 403         /*CSTYLED*/                                                     \
 404         uint##bits##_t rval;                                            \
 405         int i;                                                          \
 406         volatile uint16_t *flags = (volatile uint16_t *)                \
 407             &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;                    \
 408                                                                         \
 409         DTRACE_ALIGNCHECK(addr, size, flags);                           \
 410                                                                         \
 411         for (i = 0; i < dtrace_toxranges; i++) {                     \
 412                 if (addr >= dtrace_toxrange[i].dtt_limit)            \
 413                         continue;                                       \
 414                                                                         \
 415                 if (addr + size <= dtrace_toxrange[i].dtt_base)              \
 416                         continue;                                       \
 417                                                                         \
 418                 /*                                                      \
 419                  * This address falls within a toxic region; return 0.  \
 420                  */                                                     \
 421                 *flags |= CPU_DTRACE_BADADDR;                           \
 422                 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;     \
 423                 return (0);                                             \
 424         }                                                               \
 425                                                                         \
 426         *flags |= CPU_DTRACE_NOFAULT;                                   \
 427         /*CSTYLED*/                                                     \
 428         rval = *((volatile uint##bits##_t *)addr);                      \
 429         *flags &= ~CPU_DTRACE_NOFAULT;                                      \
 430                                                                         \
 431         return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);           \
 432 }
 433 
 434 #ifdef _LP64
 435 #define dtrace_loadptr  dtrace_load64
 436 #else
 437 #define dtrace_loadptr  dtrace_load32
 438 #endif
 439 
 440 #define DTRACE_DYNHASH_FREE     0
 441 #define DTRACE_DYNHASH_SINK     1
 442 #define DTRACE_DYNHASH_VALID    2
 443 
 444 #define DTRACE_MATCH_FAIL       -1
 445 #define DTRACE_MATCH_NEXT       0
 446 #define DTRACE_MATCH_DONE       1
 447 #define DTRACE_ANCHORED(probe)  ((probe)->dtpr_func[0] != '\0')
 448 #define DTRACE_STATE_ALIGN      64
 449 
 450 #define DTRACE_FLAGS2FLT(flags)                                         \
 451         (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :               \
 452         ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :            \
 453         ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :                \
 454         ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :            \
 455         ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :            \
 456         ((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :             \
 457         ((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :             \
 458         ((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :   \
 459         ((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :             \
 460         DTRACEFLT_UNKNOWN)
 461 
 462 #define DTRACEACT_ISSTRING(act)                                         \
 463         ((act)->dta_kind == DTRACEACT_DIFEXPR &&                     \
 464         (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
 465 
 466 static size_t dtrace_strlen(const char *, size_t);
 467 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
 468 static void dtrace_enabling_provide(dtrace_provider_t *);
 469 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
 470 static void dtrace_enabling_matchall(void);
 471 static void dtrace_enabling_reap(void);
 472 static dtrace_state_t *dtrace_anon_grab(void);
 473 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
 474     dtrace_state_t *, uint64_t, uint64_t);
 475 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
 476 static void dtrace_buffer_drop(dtrace_buffer_t *);
 477 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
 478 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
 479     dtrace_state_t *, dtrace_mstate_t *);
 480 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
 481     dtrace_optval_t);
 482 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
 483 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
 484 static int dtrace_priv_proc(dtrace_state_t *, dtrace_mstate_t *);
 485 static void dtrace_getf_barrier(void);
 486 
 487 /*
 488  * DTrace Probe Context Functions
 489  *
 490  * These functions are called from probe context.  Because probe context is
 491  * any context in which C may be called, arbitrarily locks may be held,
 492  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
 493  * As a result, functions called from probe context may only call other DTrace
 494  * support functions -- they may not interact at all with the system at large.
 495  * (Note that the ASSERT macro is made probe-context safe by redefining it in
 496  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
 497  * loads are to be performed from probe context, they _must_ be in terms of
 498  * the safe dtrace_load*() variants.
 499  *
 500  * Some functions in this block are not actually called from probe context;
 501  * for these functions, there will be a comment above the function reading
 502  * "Note:  not called from probe context."
 503  */
 504 void
 505 dtrace_panic(const char *format, ...)
 506 {
 507         va_list alist;
 508 
 509         va_start(alist, format);
 510         dtrace_vpanic(format, alist);
 511         va_end(alist);
 512 }
 513 
 514 int
 515 dtrace_assfail(const char *a, const char *f, int l)
 516 {
 517         dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
 518 
 519         /*
 520          * We just need something here that even the most clever compiler
 521          * cannot optimize away.
 522          */
 523         return (a[(uintptr_t)f]);
 524 }
 525 
 526 /*
 527  * Atomically increment a specified error counter from probe context.
 528  */
 529 static void
 530 dtrace_error(uint32_t *counter)
 531 {
 532         /*
 533          * Most counters stored to in probe context are per-CPU counters.
 534          * However, there are some error conditions that are sufficiently
 535          * arcane that they don't merit per-CPU storage.  If these counters
 536          * are incremented concurrently on different CPUs, scalability will be
 537          * adversely affected -- but we don't expect them to be white-hot in a
 538          * correctly constructed enabling...
 539          */
 540         uint32_t oval, nval;
 541 
 542         do {
 543                 oval = *counter;
 544 
 545                 if ((nval = oval + 1) == 0) {
 546                         /*
 547                          * If the counter would wrap, set it to 1 -- assuring
 548                          * that the counter is never zero when we have seen
 549                          * errors.  (The counter must be 32-bits because we
 550                          * aren't guaranteed a 64-bit compare&swap operation.)
 551                          * To save this code both the infamy of being fingered
 552                          * by a priggish news story and the indignity of being
 553                          * the target of a neo-puritan witch trial, we're
 554                          * carefully avoiding any colorful description of the
 555                          * likelihood of this condition -- but suffice it to
 556                          * say that it is only slightly more likely than the
 557                          * overflow of predicate cache IDs, as discussed in
 558                          * dtrace_predicate_create().
 559                          */
 560                         nval = 1;
 561                 }
 562         } while (dtrace_cas32(counter, oval, nval) != oval);
 563 }
 564 
 565 /*
 566  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
 567  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
 568  */
 569 DTRACE_LOADFUNC(8)
 570 DTRACE_LOADFUNC(16)
 571 DTRACE_LOADFUNC(32)
 572 DTRACE_LOADFUNC(64)
 573 
 574 static int
 575 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
 576 {
 577         if (dest < mstate->dtms_scratch_base)
 578                 return (0);
 579 
 580         if (dest + size < dest)
 581                 return (0);
 582 
 583         if (dest + size > mstate->dtms_scratch_ptr)
 584                 return (0);
 585 
 586         return (1);
 587 }
 588 
 589 static int
 590 dtrace_canstore_statvar(uint64_t addr, size_t sz,
 591     dtrace_statvar_t **svars, int nsvars)
 592 {
 593         int i;
 594 
 595         for (i = 0; i < nsvars; i++) {
 596                 dtrace_statvar_t *svar = svars[i];
 597 
 598                 if (svar == NULL || svar->dtsv_size == 0)
 599                         continue;
 600 
 601                 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
 602                         return (1);
 603         }
 604 
 605         return (0);
 606 }
 607 
 608 /*
 609  * Check to see if the address is within a memory region to which a store may
 610  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
 611  * region.  The caller of dtrace_canstore() is responsible for performing any
 612  * alignment checks that are needed before stores are actually executed.
 613  */
 614 static int
 615 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
 616     dtrace_vstate_t *vstate)
 617 {
 618         /*
 619          * First, check to see if the address is in scratch space...
 620          */
 621         if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
 622             mstate->dtms_scratch_size))
 623                 return (1);
 624 
 625         /*
 626          * Now check to see if it's a dynamic variable.  This check will pick
 627          * up both thread-local variables and any global dynamically-allocated
 628          * variables.
 629          */
 630         if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base,
 631             vstate->dtvs_dynvars.dtds_size)) {
 632                 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
 633                 uintptr_t base = (uintptr_t)dstate->dtds_base +
 634                     (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
 635                 uintptr_t chunkoffs;
 636 
 637                 /*
 638                  * Before we assume that we can store here, we need to make
 639                  * sure that it isn't in our metadata -- storing to our
 640                  * dynamic variable metadata would corrupt our state.  For
 641                  * the range to not include any dynamic variable metadata,
 642                  * it must:
 643                  *
 644                  *      (1) Start above the hash table that is at the base of
 645                  *      the dynamic variable space
 646                  *
 647                  *      (2) Have a starting chunk offset that is beyond the
 648                  *      dtrace_dynvar_t that is at the base of every chunk
 649                  *
 650                  *      (3) Not span a chunk boundary
 651                  *
 652                  */
 653                 if (addr < base)
 654                         return (0);
 655 
 656                 chunkoffs = (addr - base) % dstate->dtds_chunksize;
 657 
 658                 if (chunkoffs < sizeof (dtrace_dynvar_t))
 659                         return (0);
 660 
 661                 if (chunkoffs + sz > dstate->dtds_chunksize)
 662                         return (0);
 663 
 664                 return (1);
 665         }
 666 
 667         /*
 668          * Finally, check the static local and global variables.  These checks
 669          * take the longest, so we perform them last.
 670          */
 671         if (dtrace_canstore_statvar(addr, sz,
 672             vstate->dtvs_locals, vstate->dtvs_nlocals))
 673                 return (1);
 674 
 675         if (dtrace_canstore_statvar(addr, sz,
 676             vstate->dtvs_globals, vstate->dtvs_nglobals))
 677                 return (1);
 678 
 679         return (0);
 680 }
 681 
 682 
 683 /*
 684  * Convenience routine to check to see if the address is within a memory
 685  * region in which a load may be issued given the user's privilege level;
 686  * if not, it sets the appropriate error flags and loads 'addr' into the
 687  * illegal value slot.
 688  *
 689  * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
 690  * appropriate memory access protection.
 691  */
 692 static int
 693 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
 694     dtrace_vstate_t *vstate)
 695 {
 696         volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
 697         file_t *fp;
 698 
 699         /*
 700          * If we hold the privilege to read from kernel memory, then
 701          * everything is readable.
 702          */
 703         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
 704                 return (1);
 705 
 706         /*
 707          * You can obviously read that which you can store.
 708          */
 709         if (dtrace_canstore(addr, sz, mstate, vstate))
 710                 return (1);
 711 
 712         /*
 713          * We're allowed to read from our own string table.
 714          */
 715         if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab,
 716             mstate->dtms_difo->dtdo_strlen))
 717                 return (1);
 718 
 719         if (vstate->dtvs_state != NULL &&
 720             dtrace_priv_proc(vstate->dtvs_state, mstate)) {
 721                 proc_t *p;
 722 
 723                 /*
 724                  * When we have privileges to the current process, there are
 725                  * several context-related kernel structures that are safe to
 726                  * read, even absent the privilege to read from kernel memory.
 727                  * These reads are safe because these structures contain only
 728                  * state that (1) we're permitted to read, (2) is harmless or
 729                  * (3) contains pointers to additional kernel state that we're
 730                  * not permitted to read (and as such, do not present an
 731                  * opportunity for privilege escalation).  Finally (and
 732                  * critically), because of the nature of their relation with
 733                  * the current thread context, the memory associated with these
 734                  * structures cannot change over the duration of probe context,
 735                  * and it is therefore impossible for this memory to be
 736                  * deallocated and reallocated as something else while it's
 737                  * being operated upon.
 738                  */
 739                 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t)))
 740                         return (1);
 741 
 742                 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr,
 743                     sz, curthread->t_procp, sizeof (proc_t))) {
 744                         return (1);
 745                 }
 746 
 747                 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz,
 748                     curthread->t_cred, sizeof (cred_t))) {
 749                         return (1);
 750                 }
 751 
 752                 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz,
 753                     &(p->p_pidp->pid_id), sizeof (pid_t))) {
 754                         return (1);
 755                 }
 756 
 757                 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz,
 758                     curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) {
 759                         return (1);
 760                 }
 761         }
 762 
 763         if ((fp = mstate->dtms_getf) != NULL) {
 764                 uintptr_t psz = sizeof (void *);
 765                 vnode_t *vp;
 766                 vnodeops_t *op;
 767 
 768                 /*
 769                  * When getf() returns a file_t, the enabling is implicitly
 770                  * granted the (transient) right to read the returned file_t
 771                  * as well as the v_path and v_op->vnop_name of the underlying
 772                  * vnode.  These accesses are allowed after a successful
 773                  * getf() because the members that they refer to cannot change
 774                  * once set -- and the barrier logic in the kernel's closef()
 775                  * path assures that the file_t and its referenced vode_t
 776                  * cannot themselves be stale (that is, it impossible for
 777                  * either dtms_getf itself or its f_vnode member to reference
 778                  * freed memory).
 779                  */
 780                 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t)))
 781                         return (1);
 782 
 783                 if ((vp = fp->f_vnode) != NULL) {
 784                         if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz))
 785                                 return (1);
 786 
 787                         if (vp->v_path != NULL && DTRACE_INRANGE(addr, sz,
 788                             vp->v_path, strlen(vp->v_path) + 1)) {
 789                                 return (1);
 790                         }
 791 
 792                         if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz))
 793                                 return (1);
 794 
 795                         if ((op = vp->v_op) != NULL &&
 796                             DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) {
 797                                 return (1);
 798                         }
 799 
 800                         if (op != NULL && op->vnop_name != NULL &&
 801                             DTRACE_INRANGE(addr, sz, op->vnop_name,
 802                             strlen(op->vnop_name) + 1)) {
 803                                 return (1);
 804                         }
 805                 }
 806         }
 807 
 808         DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
 809         *illval = addr;
 810         return (0);
 811 }
 812 
 813 /*
 814  * Convenience routine to check to see if a given string is within a memory
 815  * region in which a load may be issued given the user's privilege level;
 816  * this exists so that we don't need to issue unnecessary dtrace_strlen()
 817  * calls in the event that the user has all privileges.
 818  */
 819 static int
 820 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
 821     dtrace_vstate_t *vstate)
 822 {
 823         size_t strsz;
 824 
 825         /*
 826          * If we hold the privilege to read from kernel memory, then
 827          * everything is readable.
 828          */
 829         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
 830                 return (1);
 831 
 832         strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
 833         if (dtrace_canload(addr, strsz, mstate, vstate))
 834                 return (1);
 835 
 836         return (0);
 837 }
 838 
 839 /*
 840  * Convenience routine to check to see if a given variable is within a memory
 841  * region in which a load may be issued given the user's privilege level.
 842  */
 843 static int
 844 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
 845     dtrace_vstate_t *vstate)
 846 {
 847         size_t sz, strsize;
 848         ASSERT(type->dtdt_flags & DIF_TF_BYREF);
 849 
 850         /*
 851          * If we hold the privilege to read from kernel memory, then
 852          * everything is readable.
 853          */
 854         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
 855                 return (1);
 856 
 857         if (type->dtdt_kind == DIF_TYPE_STRING) {
 858                 dtrace_state_t *state = vstate->dtvs_state;
 859 
 860                 if (state != NULL) {
 861                         strsize = state->dts_options[DTRACEOPT_STRSIZE];
 862                 } else {
 863                         /*
 864                          * In helper context, we have a NULL state; fall back
 865                          * to using the system-wide default for the string size
 866                          * in this case.
 867                          */
 868                         strsize = dtrace_strsize_default;
 869                 }
 870 
 871                 sz = dtrace_strlen(src, strsize) + 1;
 872         } else {
 873                 sz = type->dtdt_size;
 874         }
 875 
 876         return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
 877 }
 878 
 879 /*
 880  * Compare two strings using safe loads.
 881  */
 882 static int
 883 dtrace_strncmp(char *s1, char *s2, size_t limit)
 884 {
 885         uint8_t c1, c2;
 886         volatile uint16_t *flags;
 887 
 888         if (s1 == s2 || limit == 0)
 889                 return (0);
 890 
 891         flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
 892 
 893         do {
 894                 if (s1 == NULL) {
 895                         c1 = '\0';
 896                 } else {
 897                         c1 = dtrace_load8((uintptr_t)s1++);
 898                 }
 899 
 900                 if (s2 == NULL) {
 901                         c2 = '\0';
 902                 } else {
 903                         c2 = dtrace_load8((uintptr_t)s2++);
 904                 }
 905 
 906                 if (c1 != c2)
 907                         return (c1 - c2);
 908         } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
 909 
 910         return (0);
 911 }
 912 
 913 /*
 914  * Compute strlen(s) for a string using safe memory accesses.  The additional
 915  * len parameter is used to specify a maximum length to ensure completion.
 916  */
 917 static size_t
 918 dtrace_strlen(const char *s, size_t lim)
 919 {
 920         uint_t len;
 921 
 922         for (len = 0; len != lim; len++) {
 923                 if (dtrace_load8((uintptr_t)s++) == '\0')
 924                         break;
 925         }
 926 
 927         return (len);
 928 }
 929 
 930 /*
 931  * Check if an address falls within a toxic region.
 932  */
 933 static int
 934 dtrace_istoxic(uintptr_t kaddr, size_t size)
 935 {
 936         uintptr_t taddr, tsize;
 937         int i;
 938 
 939         for (i = 0; i < dtrace_toxranges; i++) {
 940                 taddr = dtrace_toxrange[i].dtt_base;
 941                 tsize = dtrace_toxrange[i].dtt_limit - taddr;
 942 
 943                 if (kaddr - taddr < tsize) {
 944                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
 945                         cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr;
 946                         return (1);
 947                 }
 948 
 949                 if (taddr - kaddr < size) {
 950                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
 951                         cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr;
 952                         return (1);
 953                 }
 954         }
 955 
 956         return (0);
 957 }
 958 
 959 /*
 960  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
 961  * memory specified by the DIF program.  The dst is assumed to be safe memory
 962  * that we can store to directly because it is managed by DTrace.  As with
 963  * standard bcopy, overlapping copies are handled properly.
 964  */
 965 static void
 966 dtrace_bcopy(const void *src, void *dst, size_t len)
 967 {
 968         if (len != 0) {
 969                 uint8_t *s1 = dst;
 970                 const uint8_t *s2 = src;
 971 
 972                 if (s1 <= s2) {
 973                         do {
 974                                 *s1++ = dtrace_load8((uintptr_t)s2++);
 975                         } while (--len != 0);
 976                 } else {
 977                         s2 += len;
 978                         s1 += len;
 979 
 980                         do {
 981                                 *--s1 = dtrace_load8((uintptr_t)--s2);
 982                         } while (--len != 0);
 983                 }
 984         }
 985 }
 986 
 987 /*
 988  * Copy src to dst using safe memory accesses, up to either the specified
 989  * length, or the point that a nul byte is encountered.  The src is assumed to
 990  * be unsafe memory specified by the DIF program.  The dst is assumed to be
 991  * safe memory that we can store to directly because it is managed by DTrace.
 992  * Unlike dtrace_bcopy(), overlapping regions are not handled.
 993  */
 994 static void
 995 dtrace_strcpy(const void *src, void *dst, size_t len)
 996 {
 997         if (len != 0) {
 998                 uint8_t *s1 = dst, c;
 999                 const uint8_t *s2 = src;
1000 
1001                 do {
1002                         *s1++ = c = dtrace_load8((uintptr_t)s2++);
1003                 } while (--len != 0 && c != '\0');
1004         }
1005 }
1006 
1007 /*
1008  * Copy src to dst, deriving the size and type from the specified (BYREF)
1009  * variable type.  The src is assumed to be unsafe memory specified by the DIF
1010  * program.  The dst is assumed to be DTrace variable memory that is of the
1011  * specified type; we assume that we can store to directly.
1012  */
1013 static void
1014 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
1015 {
1016         ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1017 
1018         if (type->dtdt_kind == DIF_TYPE_STRING) {
1019                 dtrace_strcpy(src, dst, type->dtdt_size);
1020         } else {
1021                 dtrace_bcopy(src, dst, type->dtdt_size);
1022         }
1023 }
1024 
1025 /*
1026  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1027  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1028  * safe memory that we can access directly because it is managed by DTrace.
1029  */
1030 static int
1031 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1032 {
1033         volatile uint16_t *flags;
1034 
1035         flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
1036 
1037         if (s1 == s2)
1038                 return (0);
1039 
1040         if (s1 == NULL || s2 == NULL)
1041                 return (1);
1042 
1043         if (s1 != s2 && len != 0) {
1044                 const uint8_t *ps1 = s1;
1045                 const uint8_t *ps2 = s2;
1046 
1047                 do {
1048                         if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1049                                 return (1);
1050                 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1051         }
1052         return (0);
1053 }
1054 
1055 /*
1056  * Zero the specified region using a simple byte-by-byte loop.  Note that this
1057  * is for safe DTrace-managed memory only.
1058  */
1059 static void
1060 dtrace_bzero(void *dst, size_t len)
1061 {
1062         uchar_t *cp;
1063 
1064         for (cp = dst; len != 0; len--)
1065                 *cp++ = 0;
1066 }
1067 
1068 static void
1069 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1070 {
1071         uint64_t result[2];
1072 
1073         result[0] = addend1[0] + addend2[0];
1074         result[1] = addend1[1] + addend2[1] +
1075             (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1076 
1077         sum[0] = result[0];
1078         sum[1] = result[1];
1079 }
1080 
1081 /*
1082  * Shift the 128-bit value in a by b. If b is positive, shift left.
1083  * If b is negative, shift right.
1084  */
1085 static void
1086 dtrace_shift_128(uint64_t *a, int b)
1087 {
1088         uint64_t mask;
1089 
1090         if (b == 0)
1091                 return;
1092 
1093         if (b < 0) {
1094                 b = -b;
1095                 if (b >= 64) {
1096                         a[0] = a[1] >> (b - 64);
1097                         a[1] = 0;
1098                 } else {
1099                         a[0] >>= b;
1100                         mask = 1LL << (64 - b);
1101                         mask -= 1;
1102                         a[0] |= ((a[1] & mask) << (64 - b));
1103                         a[1] >>= b;
1104                 }
1105         } else {
1106                 if (b >= 64) {
1107                         a[1] = a[0] << (b - 64);
1108                         a[0] = 0;
1109                 } else {
1110                         a[1] <<= b;
1111                         mask = a[0] >> (64 - b);
1112                         a[1] |= mask;
1113                         a[0] <<= b;
1114                 }
1115         }
1116 }
1117 
1118 /*
1119  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1120  * use native multiplication on those, and then re-combine into the
1121  * resulting 128-bit value.
1122  *
1123  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1124  *     hi1 * hi2 << 64 +
1125  *     hi1 * lo2 << 32 +
1126  *     hi2 * lo1 << 32 +
1127  *     lo1 * lo2
1128  */
1129 static void
1130 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1131 {
1132         uint64_t hi1, hi2, lo1, lo2;
1133         uint64_t tmp[2];
1134 
1135         hi1 = factor1 >> 32;
1136         hi2 = factor2 >> 32;
1137 
1138         lo1 = factor1 & DT_MASK_LO;
1139         lo2 = factor2 & DT_MASK_LO;
1140 
1141         product[0] = lo1 * lo2;
1142         product[1] = hi1 * hi2;
1143 
1144         tmp[0] = hi1 * lo2;
1145         tmp[1] = 0;
1146         dtrace_shift_128(tmp, 32);
1147         dtrace_add_128(product, tmp, product);
1148 
1149         tmp[0] = hi2 * lo1;
1150         tmp[1] = 0;
1151         dtrace_shift_128(tmp, 32);
1152         dtrace_add_128(product, tmp, product);
1153 }
1154 
1155 /*
1156  * This privilege check should be used by actions and subroutines to
1157  * verify that the user credentials of the process that enabled the
1158  * invoking ECB match the target credentials
1159  */
1160 static int
1161 dtrace_priv_proc_common_user(dtrace_state_t *state)
1162 {
1163         cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1164 
1165         /*
1166          * We should always have a non-NULL state cred here, since if cred
1167          * is null (anonymous tracing), we fast-path bypass this routine.
1168          */
1169         ASSERT(s_cr != NULL);
1170 
1171         if ((cr = CRED()) != NULL &&
1172             s_cr->cr_uid == cr->cr_uid &&
1173             s_cr->cr_uid == cr->cr_ruid &&
1174             s_cr->cr_uid == cr->cr_suid &&
1175             s_cr->cr_gid == cr->cr_gid &&
1176             s_cr->cr_gid == cr->cr_rgid &&
1177             s_cr->cr_gid == cr->cr_sgid)
1178                 return (1);
1179 
1180         return (0);
1181 }
1182 
1183 /*
1184  * This privilege check should be used by actions and subroutines to
1185  * verify that the zone of the process that enabled the invoking ECB
1186  * matches the target credentials
1187  */
1188 static int
1189 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1190 {
1191         cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1192 
1193         /*
1194          * We should always have a non-NULL state cred here, since if cred
1195          * is null (anonymous tracing), we fast-path bypass this routine.
1196          */
1197         ASSERT(s_cr != NULL);
1198 
1199         if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone)
1200                 return (1);
1201 
1202         return (0);
1203 }
1204 
1205 /*
1206  * This privilege check should be used by actions and subroutines to
1207  * verify that the process has not setuid or changed credentials.
1208  */
1209 static int
1210 dtrace_priv_proc_common_nocd()
1211 {
1212         proc_t *proc;
1213 
1214         if ((proc = ttoproc(curthread)) != NULL &&
1215             !(proc->p_flag & SNOCD))
1216                 return (1);
1217 
1218         return (0);
1219 }
1220 
1221 static int
1222 dtrace_priv_proc_destructive(dtrace_state_t *state, dtrace_mstate_t *mstate)
1223 {
1224         int action = state->dts_cred.dcr_action;
1225 
1226         if (!(mstate->dtms_access & DTRACE_ACCESS_PROC))
1227                 goto bad;
1228 
1229         if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1230             dtrace_priv_proc_common_zone(state) == 0)
1231                 goto bad;
1232 
1233         if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1234             dtrace_priv_proc_common_user(state) == 0)
1235                 goto bad;
1236 
1237         if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1238             dtrace_priv_proc_common_nocd() == 0)
1239                 goto bad;
1240 
1241         return (1);
1242 
1243 bad:
1244         cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1245 
1246         return (0);
1247 }
1248 
1249 static int
1250 dtrace_priv_proc_control(dtrace_state_t *state, dtrace_mstate_t *mstate)
1251 {
1252         if (mstate->dtms_access & DTRACE_ACCESS_PROC) {
1253                 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1254                         return (1);
1255 
1256                 if (dtrace_priv_proc_common_zone(state) &&
1257                     dtrace_priv_proc_common_user(state) &&
1258                     dtrace_priv_proc_common_nocd())
1259                         return (1);
1260         }
1261 
1262         cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1263 
1264         return (0);
1265 }
1266 
1267 static int
1268 dtrace_priv_proc(dtrace_state_t *state, dtrace_mstate_t *mstate)
1269 {
1270         if ((mstate->dtms_access & DTRACE_ACCESS_PROC) &&
1271             (state->dts_cred.dcr_action & DTRACE_CRA_PROC))
1272                 return (1);
1273 
1274         cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1275 
1276         return (0);
1277 }
1278 
1279 static int
1280 dtrace_priv_kernel(dtrace_state_t *state)
1281 {
1282         if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1283                 return (1);
1284 
1285         cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1286 
1287         return (0);
1288 }
1289 
1290 static int
1291 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1292 {
1293         if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1294                 return (1);
1295 
1296         cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1297 
1298         return (0);
1299 }
1300 
1301 /*
1302  * Determine if the dte_cond of the specified ECB allows for processing of
1303  * the current probe to continue.  Note that this routine may allow continued
1304  * processing, but with access(es) stripped from the mstate's dtms_access
1305  * field.
1306  */
1307 static int
1308 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate,
1309     dtrace_ecb_t *ecb)
1310 {
1311         dtrace_probe_t *probe = ecb->dte_probe;
1312         dtrace_provider_t *prov = probe->dtpr_provider;
1313         dtrace_pops_t *pops = &prov->dtpv_pops;
1314         int mode = DTRACE_MODE_NOPRIV_DROP;
1315 
1316         ASSERT(ecb->dte_cond);
1317 
1318         if (pops->dtps_mode != NULL) {
1319                 mode = pops->dtps_mode(prov->dtpv_arg,
1320                     probe->dtpr_id, probe->dtpr_arg);
1321 
1322                 ASSERT(mode & (DTRACE_MODE_USER | DTRACE_MODE_KERNEL));
1323                 ASSERT(mode & (DTRACE_MODE_NOPRIV_RESTRICT |
1324                     DTRACE_MODE_NOPRIV_DROP));
1325         }
1326 
1327         /*
1328          * If the dte_cond bits indicate that this consumer is only allowed to
1329          * see user-mode firings of this probe, check that the probe was fired
1330          * while in a user context.  If that's not the case, use the policy
1331          * specified by the provider to determine if we drop the probe or
1332          * merely restrict operation.
1333          */
1334         if (ecb->dte_cond & DTRACE_COND_USERMODE) {
1335                 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP);
1336 
1337                 if (!(mode & DTRACE_MODE_USER)) {
1338                         if (mode & DTRACE_MODE_NOPRIV_DROP)
1339                                 return (0);
1340 
1341                         mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1342                 }
1343         }
1344 
1345         /*
1346          * This is more subtle than it looks. We have to be absolutely certain
1347          * that CRED() isn't going to change out from under us so it's only
1348          * legit to examine that structure if we're in constrained situations.
1349          * Currently, the only times we'll this check is if a non-super-user
1350          * has enabled the profile or syscall providers -- providers that
1351          * allow visibility of all processes. For the profile case, the check
1352          * above will ensure that we're examining a user context.
1353          */
1354         if (ecb->dte_cond & DTRACE_COND_OWNER) {
1355                 cred_t *cr;
1356                 cred_t *s_cr = state->dts_cred.dcr_cred;
1357                 proc_t *proc;
1358 
1359                 ASSERT(s_cr != NULL);
1360 
1361                 if ((cr = CRED()) == NULL ||
1362                     s_cr->cr_uid != cr->cr_uid ||
1363                     s_cr->cr_uid != cr->cr_ruid ||
1364                     s_cr->cr_uid != cr->cr_suid ||
1365                     s_cr->cr_gid != cr->cr_gid ||
1366                     s_cr->cr_gid != cr->cr_rgid ||
1367                     s_cr->cr_gid != cr->cr_sgid ||
1368                     (proc = ttoproc(curthread)) == NULL ||
1369                     (proc->p_flag & SNOCD)) {
1370                         if (mode & DTRACE_MODE_NOPRIV_DROP)
1371                                 return (0);
1372 
1373                         mstate->dtms_access &= ~DTRACE_ACCESS_PROC;
1374                 }
1375         }
1376 
1377         /*
1378          * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not
1379          * in our zone, check to see if our mode policy is to restrict rather
1380          * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC
1381          * and DTRACE_ACCESS_ARGS
1382          */
1383         if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
1384                 cred_t *cr;
1385                 cred_t *s_cr = state->dts_cred.dcr_cred;
1386 
1387                 ASSERT(s_cr != NULL);
1388 
1389                 if ((cr = CRED()) == NULL ||
1390                     s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) {
1391                         if (mode & DTRACE_MODE_NOPRIV_DROP)
1392                                 return (0);
1393 
1394                         mstate->dtms_access &=
1395                             ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS);
1396                 }
1397         }
1398 
1399         /*
1400          * By merits of being in this code path at all, we have limited
1401          * privileges.  If the provider has indicated that limited privileges
1402          * are to denote restricted operation, strip off the ability to access
1403          * arguments.
1404          */
1405         if (mode & DTRACE_MODE_LIMITEDPRIV_RESTRICT)
1406                 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1407 
1408         return (1);
1409 }
1410 
1411 /*
1412  * Note:  not called from probe context.  This function is called
1413  * asynchronously (and at a regular interval) from outside of probe context to
1414  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1415  * cleaning is explained in detail in <sys/dtrace_impl.h>.
1416  */
1417 void
1418 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1419 {
1420         dtrace_dynvar_t *dirty;
1421         dtrace_dstate_percpu_t *dcpu;
1422         dtrace_dynvar_t **rinsep;
1423         int i, j, work = 0;
1424 
1425         for (i = 0; i < NCPU; i++) {
1426                 dcpu = &dstate->dtds_percpu[i];
1427                 rinsep = &dcpu->dtdsc_rinsing;
1428 
1429                 /*
1430                  * If the dirty list is NULL, there is no dirty work to do.
1431                  */
1432                 if (dcpu->dtdsc_dirty == NULL)
1433                         continue;
1434 
1435                 if (dcpu->dtdsc_rinsing != NULL) {
1436                         /*
1437                          * If the rinsing list is non-NULL, then it is because
1438                          * this CPU was selected to accept another CPU's
1439                          * dirty list -- and since that time, dirty buffers
1440                          * have accumulated.  This is a highly unlikely
1441                          * condition, but we choose to ignore the dirty
1442                          * buffers -- they'll be picked up a future cleanse.
1443                          */
1444                         continue;
1445                 }
1446 
1447                 if (dcpu->dtdsc_clean != NULL) {
1448                         /*
1449                          * If the clean list is non-NULL, then we're in a
1450                          * situation where a CPU has done deallocations (we
1451                          * have a non-NULL dirty list) but no allocations (we
1452                          * also have a non-NULL clean list).  We can't simply
1453                          * move the dirty list into the clean list on this
1454                          * CPU, yet we also don't want to allow this condition
1455                          * to persist, lest a short clean list prevent a
1456                          * massive dirty list from being cleaned (which in
1457                          * turn could lead to otherwise avoidable dynamic
1458                          * drops).  To deal with this, we look for some CPU
1459                          * with a NULL clean list, NULL dirty list, and NULL
1460                          * rinsing list -- and then we borrow this CPU to
1461                          * rinse our dirty list.
1462                          */
1463                         for (j = 0; j < NCPU; j++) {
1464                                 dtrace_dstate_percpu_t *rinser;
1465 
1466                                 rinser = &dstate->dtds_percpu[j];
1467 
1468                                 if (rinser->dtdsc_rinsing != NULL)
1469                                         continue;
1470 
1471                                 if (rinser->dtdsc_dirty != NULL)
1472                                         continue;
1473 
1474                                 if (rinser->dtdsc_clean != NULL)
1475                                         continue;
1476 
1477                                 rinsep = &rinser->dtdsc_rinsing;
1478                                 break;
1479                         }
1480 
1481                         if (j == NCPU) {
1482                                 /*
1483                                  * We were unable to find another CPU that
1484                                  * could accept this dirty list -- we are
1485                                  * therefore unable to clean it now.
1486                                  */
1487                                 dtrace_dynvar_failclean++;
1488                                 continue;
1489                         }
1490                 }
1491 
1492                 work = 1;
1493 
1494                 /*
1495                  * Atomically move the dirty list aside.
1496                  */
1497                 do {
1498                         dirty = dcpu->dtdsc_dirty;
1499 
1500                         /*
1501                          * Before we zap the dirty list, set the rinsing list.
1502                          * (This allows for a potential assertion in
1503                          * dtrace_dynvar():  if a free dynamic variable appears
1504                          * on a hash chain, either the dirty list or the
1505                          * rinsing list for some CPU must be non-NULL.)
1506                          */
1507                         *rinsep = dirty;
1508                         dtrace_membar_producer();
1509                 } while (dtrace_casptr(&dcpu->dtdsc_dirty,
1510                     dirty, NULL) != dirty);
1511         }
1512 
1513         if (!work) {
1514                 /*
1515                  * We have no work to do; we can simply return.
1516                  */
1517                 return;
1518         }
1519 
1520         dtrace_sync();
1521 
1522         for (i = 0; i < NCPU; i++) {
1523                 dcpu = &dstate->dtds_percpu[i];
1524 
1525                 if (dcpu->dtdsc_rinsing == NULL)
1526                         continue;
1527 
1528                 /*
1529                  * We are now guaranteed that no hash chain contains a pointer
1530                  * into this dirty list; we can make it clean.
1531                  */
1532                 ASSERT(dcpu->dtdsc_clean == NULL);
1533                 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1534                 dcpu->dtdsc_rinsing = NULL;
1535         }
1536 
1537         /*
1538          * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1539          * sure that all CPUs have seen all of the dtdsc_clean pointers.
1540          * This prevents a race whereby a CPU incorrectly decides that
1541          * the state should be something other than DTRACE_DSTATE_CLEAN
1542          * after dtrace_dynvar_clean() has completed.
1543          */
1544         dtrace_sync();
1545 
1546         dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1547 }
1548 
1549 /*
1550  * Depending on the value of the op parameter, this function looks-up,
1551  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1552  * allocation is requested, this function will return a pointer to a
1553  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1554  * variable can be allocated.  If NULL is returned, the appropriate counter
1555  * will be incremented.
1556  */
1557 dtrace_dynvar_t *
1558 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1559     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1560     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1561 {
1562         uint64_t hashval = DTRACE_DYNHASH_VALID;
1563         dtrace_dynhash_t *hash = dstate->dtds_hash;
1564         dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1565         processorid_t me = CPU->cpu_id, cpu = me;
1566         dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1567         size_t bucket, ksize;
1568         size_t chunksize = dstate->dtds_chunksize;
1569         uintptr_t kdata, lock, nstate;
1570         uint_t i;
1571 
1572         ASSERT(nkeys != 0);
1573 
1574         /*
1575          * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1576          * algorithm.  For the by-value portions, we perform the algorithm in
1577          * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1578          * bit, and seems to have only a minute effect on distribution.  For
1579          * the by-reference data, we perform "One-at-a-time" iterating (safely)
1580          * over each referenced byte.  It's painful to do this, but it's much
1581          * better than pathological hash distribution.  The efficacy of the
1582          * hashing algorithm (and a comparison with other algorithms) may be
1583          * found by running the ::dtrace_dynstat MDB dcmd.
1584          */
1585         for (i = 0; i < nkeys; i++) {
1586                 if (key[i].dttk_size == 0) {
1587                         uint64_t val = key[i].dttk_value;
1588 
1589                         hashval += (val >> 48) & 0xffff;
1590                         hashval += (hashval << 10);
1591                         hashval ^= (hashval >> 6);
1592 
1593                         hashval += (val >> 32) & 0xffff;
1594                         hashval += (hashval << 10);
1595                         hashval ^= (hashval >> 6);
1596 
1597                         hashval += (val >> 16) & 0xffff;
1598                         hashval += (hashval << 10);
1599                         hashval ^= (hashval >> 6);
1600 
1601                         hashval += val & 0xffff;
1602                         hashval += (hashval << 10);
1603                         hashval ^= (hashval >> 6);
1604                 } else {
1605                         /*
1606                          * This is incredibly painful, but it beats the hell
1607                          * out of the alternative.
1608                          */
1609                         uint64_t j, size = key[i].dttk_size;
1610                         uintptr_t base = (uintptr_t)key[i].dttk_value;
1611 
1612                         if (!dtrace_canload(base, size, mstate, vstate))
1613                                 break;
1614 
1615                         for (j = 0; j < size; j++) {
1616                                 hashval += dtrace_load8(base + j);
1617                                 hashval += (hashval << 10);
1618                                 hashval ^= (hashval >> 6);
1619                         }
1620                 }
1621         }
1622 
1623         if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1624                 return (NULL);
1625 
1626         hashval += (hashval << 3);
1627         hashval ^= (hashval >> 11);
1628         hashval += (hashval << 15);
1629 
1630         /*
1631          * There is a remote chance (ideally, 1 in 2^31) that our hashval
1632          * comes out to be one of our two sentinel hash values.  If this
1633          * actually happens, we set the hashval to be a value known to be a
1634          * non-sentinel value.
1635          */
1636         if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1637                 hashval = DTRACE_DYNHASH_VALID;
1638 
1639         /*
1640          * Yes, it's painful to do a divide here.  If the cycle count becomes
1641          * important here, tricks can be pulled to reduce it.  (However, it's
1642          * critical that hash collisions be kept to an absolute minimum;
1643          * they're much more painful than a divide.)  It's better to have a
1644          * solution that generates few collisions and still keeps things
1645          * relatively simple.
1646          */
1647         bucket = hashval % dstate->dtds_hashsize;
1648 
1649         if (op == DTRACE_DYNVAR_DEALLOC) {
1650                 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1651 
1652                 for (;;) {
1653                         while ((lock = *lockp) & 1)
1654                                 continue;
1655 
1656                         if (dtrace_casptr((void *)lockp,
1657                             (void *)lock, (void *)(lock + 1)) == (void *)lock)
1658                                 break;
1659                 }
1660 
1661                 dtrace_membar_producer();
1662         }
1663 
1664 top:
1665         prev = NULL;
1666         lock = hash[bucket].dtdh_lock;
1667 
1668         dtrace_membar_consumer();
1669 
1670         start = hash[bucket].dtdh_chain;
1671         ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1672             start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1673             op != DTRACE_DYNVAR_DEALLOC));
1674 
1675         for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1676                 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1677                 dtrace_key_t *dkey = &dtuple->dtt_key[0];
1678 
1679                 if (dvar->dtdv_hashval != hashval) {
1680                         if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1681                                 /*
1682                                  * We've reached the sink, and therefore the
1683                                  * end of the hash chain; we can kick out of
1684                                  * the loop knowing that we have seen a valid
1685                                  * snapshot of state.
1686                                  */
1687                                 ASSERT(dvar->dtdv_next == NULL);
1688                                 ASSERT(dvar == &dtrace_dynhash_sink);
1689                                 break;
1690                         }
1691 
1692                         if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1693                                 /*
1694                                  * We've gone off the rails:  somewhere along
1695                                  * the line, one of the members of this hash
1696                                  * chain was deleted.  Note that we could also
1697                                  * detect this by simply letting this loop run
1698                                  * to completion, as we would eventually hit
1699                                  * the end of the dirty list.  However, we
1700                                  * want to avoid running the length of the
1701                                  * dirty list unnecessarily (it might be quite
1702                                  * long), so we catch this as early as
1703                                  * possible by detecting the hash marker.  In
1704                                  * this case, we simply set dvar to NULL and
1705                                  * break; the conditional after the loop will
1706                                  * send us back to top.
1707                                  */
1708                                 dvar = NULL;
1709                                 break;
1710                         }
1711 
1712                         goto next;
1713                 }
1714 
1715                 if (dtuple->dtt_nkeys != nkeys)
1716                         goto next;
1717 
1718                 for (i = 0; i < nkeys; i++, dkey++) {
1719                         if (dkey->dttk_size != key[i].dttk_size)
1720                                 goto next; /* size or type mismatch */
1721 
1722                         if (dkey->dttk_size != 0) {
1723                                 if (dtrace_bcmp(
1724                                     (void *)(uintptr_t)key[i].dttk_value,
1725                                     (void *)(uintptr_t)dkey->dttk_value,
1726                                     dkey->dttk_size))
1727                                         goto next;
1728                         } else {
1729                                 if (dkey->dttk_value != key[i].dttk_value)
1730                                         goto next;
1731                         }
1732                 }
1733 
1734                 if (op != DTRACE_DYNVAR_DEALLOC)
1735                         return (dvar);
1736 
1737                 ASSERT(dvar->dtdv_next == NULL ||
1738                     dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1739 
1740                 if (prev != NULL) {
1741                         ASSERT(hash[bucket].dtdh_chain != dvar);
1742                         ASSERT(start != dvar);
1743                         ASSERT(prev->dtdv_next == dvar);
1744                         prev->dtdv_next = dvar->dtdv_next;
1745                 } else {
1746                         if (dtrace_casptr(&hash[bucket].dtdh_chain,
1747                             start, dvar->dtdv_next) != start) {
1748                                 /*
1749                                  * We have failed to atomically swing the
1750                                  * hash table head pointer, presumably because
1751                                  * of a conflicting allocation on another CPU.
1752                                  * We need to reread the hash chain and try
1753                                  * again.
1754                                  */
1755                                 goto top;
1756                         }
1757                 }
1758 
1759                 dtrace_membar_producer();
1760 
1761                 /*
1762                  * Now set the hash value to indicate that it's free.
1763                  */
1764                 ASSERT(hash[bucket].dtdh_chain != dvar);
1765                 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1766 
1767                 dtrace_membar_producer();
1768 
1769                 /*
1770                  * Set the next pointer to point at the dirty list, and
1771                  * atomically swing the dirty pointer to the newly freed dvar.
1772                  */
1773                 do {
1774                         next = dcpu->dtdsc_dirty;
1775                         dvar->dtdv_next = next;
1776                 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1777 
1778                 /*
1779                  * Finally, unlock this hash bucket.
1780                  */
1781                 ASSERT(hash[bucket].dtdh_lock == lock);
1782                 ASSERT(lock & 1);
1783                 hash[bucket].dtdh_lock++;
1784 
1785                 return (NULL);
1786 next:
1787                 prev = dvar;
1788                 continue;
1789         }
1790 
1791         if (dvar == NULL) {
1792                 /*
1793                  * If dvar is NULL, it is because we went off the rails:
1794                  * one of the elements that we traversed in the hash chain
1795                  * was deleted while we were traversing it.  In this case,
1796                  * we assert that we aren't doing a dealloc (deallocs lock
1797                  * the hash bucket to prevent themselves from racing with
1798                  * one another), and retry the hash chain traversal.
1799                  */
1800                 ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1801                 goto top;
1802         }
1803 
1804         if (op != DTRACE_DYNVAR_ALLOC) {
1805                 /*
1806                  * If we are not to allocate a new variable, we want to
1807                  * return NULL now.  Before we return, check that the value
1808                  * of the lock word hasn't changed.  If it has, we may have
1809                  * seen an inconsistent snapshot.
1810                  */
1811                 if (op == DTRACE_DYNVAR_NOALLOC) {
1812                         if (hash[bucket].dtdh_lock != lock)
1813                                 goto top;
1814                 } else {
1815                         ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1816                         ASSERT(hash[bucket].dtdh_lock == lock);
1817                         ASSERT(lock & 1);
1818                         hash[bucket].dtdh_lock++;
1819                 }
1820 
1821                 return (NULL);
1822         }
1823 
1824         /*
1825          * We need to allocate a new dynamic variable.  The size we need is the
1826          * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1827          * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1828          * the size of any referred-to data (dsize).  We then round the final
1829          * size up to the chunksize for allocation.
1830          */
1831         for (ksize = 0, i = 0; i < nkeys; i++)
1832                 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1833 
1834         /*
1835          * This should be pretty much impossible, but could happen if, say,
1836          * strange DIF specified the tuple.  Ideally, this should be an
1837          * assertion and not an error condition -- but that requires that the
1838          * chunksize calculation in dtrace_difo_chunksize() be absolutely
1839          * bullet-proof.  (That is, it must not be able to be fooled by
1840          * malicious DIF.)  Given the lack of backwards branches in DIF,
1841          * solving this would presumably not amount to solving the Halting
1842          * Problem -- but it still seems awfully hard.
1843          */
1844         if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1845             ksize + dsize > chunksize) {
1846                 dcpu->dtdsc_drops++;
1847                 return (NULL);
1848         }
1849 
1850         nstate = DTRACE_DSTATE_EMPTY;
1851 
1852         do {
1853 retry:
1854                 free = dcpu->dtdsc_free;
1855 
1856                 if (free == NULL) {
1857                         dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1858                         void *rval;
1859 
1860                         if (clean == NULL) {
1861                                 /*
1862                                  * We're out of dynamic variable space on
1863                                  * this CPU.  Unless we have tried all CPUs,
1864                                  * we'll try to allocate from a different
1865                                  * CPU.
1866                                  */
1867                                 switch (dstate->dtds_state) {
1868                                 case DTRACE_DSTATE_CLEAN: {
1869                                         void *sp = &dstate->dtds_state;
1870 
1871                                         if (++cpu >= NCPU)
1872                                                 cpu = 0;
1873 
1874                                         if (dcpu->dtdsc_dirty != NULL &&
1875                                             nstate == DTRACE_DSTATE_EMPTY)
1876                                                 nstate = DTRACE_DSTATE_DIRTY;
1877 
1878                                         if (dcpu->dtdsc_rinsing != NULL)
1879                                                 nstate = DTRACE_DSTATE_RINSING;
1880 
1881                                         dcpu = &dstate->dtds_percpu[cpu];
1882 
1883                                         if (cpu != me)
1884                                                 goto retry;
1885 
1886                                         (void) dtrace_cas32(sp,
1887                                             DTRACE_DSTATE_CLEAN, nstate);
1888 
1889                                         /*
1890                                          * To increment the correct bean
1891                                          * counter, take another lap.
1892                                          */
1893                                         goto retry;
1894                                 }
1895 
1896                                 case DTRACE_DSTATE_DIRTY:
1897                                         dcpu->dtdsc_dirty_drops++;
1898                                         break;
1899 
1900                                 case DTRACE_DSTATE_RINSING:
1901                                         dcpu->dtdsc_rinsing_drops++;
1902                                         break;
1903 
1904                                 case DTRACE_DSTATE_EMPTY:
1905                                         dcpu->dtdsc_drops++;
1906                                         break;
1907                                 }
1908 
1909                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1910                                 return (NULL);
1911                         }
1912 
1913                         /*
1914                          * The clean list appears to be non-empty.  We want to
1915                          * move the clean list to the free list; we start by
1916                          * moving the clean pointer aside.
1917                          */
1918                         if (dtrace_casptr(&dcpu->dtdsc_clean,
1919                             clean, NULL) != clean) {
1920                                 /*
1921                                  * We are in one of two situations:
1922                                  *
1923                                  *  (a) The clean list was switched to the
1924                                  *      free list by another CPU.
1925                                  *
1926                                  *  (b) The clean list was added to by the
1927                                  *      cleansing cyclic.
1928                                  *
1929                                  * In either of these situations, we can
1930                                  * just reattempt the free list allocation.
1931                                  */
1932                                 goto retry;
1933                         }
1934 
1935                         ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1936 
1937                         /*
1938                          * Now we'll move the clean list to our free list.
1939                          * It's impossible for this to fail:  the only way
1940                          * the free list can be updated is through this
1941                          * code path, and only one CPU can own the clean list.
1942                          * Thus, it would only be possible for this to fail if
1943                          * this code were racing with dtrace_dynvar_clean().
1944                          * (That is, if dtrace_dynvar_clean() updated the clean
1945                          * list, and we ended up racing to update the free
1946                          * list.)  This race is prevented by the dtrace_sync()
1947                          * in dtrace_dynvar_clean() -- which flushes the
1948                          * owners of the clean lists out before resetting
1949                          * the clean lists.
1950                          */
1951                         dcpu = &dstate->dtds_percpu[me];
1952                         rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1953                         ASSERT(rval == NULL);
1954                         goto retry;
1955                 }
1956 
1957                 dvar = free;
1958                 new_free = dvar->dtdv_next;
1959         } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1960 
1961         /*
1962          * We have now allocated a new chunk.  We copy the tuple keys into the
1963          * tuple array and copy any referenced key data into the data space
1964          * following the tuple array.  As we do this, we relocate dttk_value
1965          * in the final tuple to point to the key data address in the chunk.
1966          */
1967         kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1968         dvar->dtdv_data = (void *)(kdata + ksize);
1969         dvar->dtdv_tuple.dtt_nkeys = nkeys;
1970 
1971         for (i = 0; i < nkeys; i++) {
1972                 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1973                 size_t kesize = key[i].dttk_size;
1974 
1975                 if (kesize != 0) {
1976                         dtrace_bcopy(
1977                             (const void *)(uintptr_t)key[i].dttk_value,
1978                             (void *)kdata, kesize);
1979                         dkey->dttk_value = kdata;
1980                         kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1981                 } else {
1982                         dkey->dttk_value = key[i].dttk_value;
1983                 }
1984 
1985                 dkey->dttk_size = kesize;
1986         }
1987 
1988         ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1989         dvar->dtdv_hashval = hashval;
1990         dvar->dtdv_next = start;
1991 
1992         if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1993                 return (dvar);
1994 
1995         /*
1996          * The cas has failed.  Either another CPU is adding an element to
1997          * this hash chain, or another CPU is deleting an element from this
1998          * hash chain.  The simplest way to deal with both of these cases
1999          * (though not necessarily the most efficient) is to free our
2000          * allocated block and tail-call ourselves.  Note that the free is
2001          * to the dirty list and _not_ to the free list.  This is to prevent
2002          * races with allocators, above.
2003          */
2004         dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2005 
2006         dtrace_membar_producer();
2007 
2008         do {
2009                 free = dcpu->dtdsc_dirty;
2010                 dvar->dtdv_next = free;
2011         } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
2012 
2013         return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
2014 }
2015 
2016 /*ARGSUSED*/
2017 static void
2018 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
2019 {
2020         if ((int64_t)nval < (int64_t)*oval)
2021                 *oval = nval;
2022 }
2023 
2024 /*ARGSUSED*/
2025 static void
2026 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
2027 {
2028         if ((int64_t)nval > (int64_t)*oval)
2029                 *oval = nval;
2030 }
2031 
2032 static void
2033 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
2034 {
2035         int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
2036         int64_t val = (int64_t)nval;
2037 
2038         if (val < 0) {
2039                 for (i = 0; i < zero; i++) {
2040                         if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
2041                                 quanta[i] += incr;
2042                                 return;
2043                         }
2044                 }
2045         } else {
2046                 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
2047                         if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
2048                                 quanta[i - 1] += incr;
2049                                 return;
2050                         }
2051                 }
2052 
2053                 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
2054                 return;
2055         }
2056 
2057         ASSERT(0);
2058 }
2059 
2060 static void
2061 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
2062 {
2063         uint64_t arg = *lquanta++;
2064         int32_t base = DTRACE_LQUANTIZE_BASE(arg);
2065         uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
2066         uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
2067         int32_t val = (int32_t)nval, level;
2068 
2069         ASSERT(step != 0);
2070         ASSERT(levels != 0);
2071 
2072         if (val < base) {
2073                 /*
2074                  * This is an underflow.
2075                  */
2076                 lquanta[0] += incr;
2077                 return;
2078         }
2079 
2080         level = (val - base) / step;
2081 
2082         if (level < levels) {
2083                 lquanta[level + 1] += incr;
2084                 return;
2085         }
2086 
2087         /*
2088          * This is an overflow.
2089          */
2090         lquanta[levels + 1] += incr;
2091 }
2092 
2093 static int
2094 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
2095     uint16_t high, uint16_t nsteps, int64_t value)
2096 {
2097         int64_t this = 1, last, next;
2098         int base = 1, order;
2099 
2100         ASSERT(factor <= nsteps);
2101         ASSERT(nsteps % factor == 0);
2102 
2103         for (order = 0; order < low; order++)
2104                 this *= factor;
2105 
2106         /*
2107          * If our value is less than our factor taken to the power of the
2108          * low order of magnitude, it goes into the zeroth bucket.
2109          */
2110         if (value < (last = this))
2111                 return (0);
2112 
2113         for (this *= factor; order <= high; order++) {
2114                 int nbuckets = this > nsteps ? nsteps : this;
2115 
2116                 if ((next = this * factor) < this) {
2117                         /*
2118                          * We should not generally get log/linear quantizations
2119                          * with a high magnitude that allows 64-bits to
2120                          * overflow, but we nonetheless protect against this
2121                          * by explicitly checking for overflow, and clamping
2122                          * our value accordingly.
2123                          */
2124                         value = this - 1;
2125                 }
2126 
2127                 if (value < this) {
2128                         /*
2129                          * If our value lies within this order of magnitude,
2130                          * determine its position by taking the offset within
2131                          * the order of magnitude, dividing by the bucket
2132                          * width, and adding to our (accumulated) base.
2133                          */
2134                         return (base + (value - last) / (this / nbuckets));
2135                 }
2136 
2137                 base += nbuckets - (nbuckets / factor);
2138                 last = this;
2139                 this = next;
2140         }
2141 
2142         /*
2143          * Our value is greater than or equal to our factor taken to the
2144          * power of one plus the high magnitude -- return the top bucket.
2145          */
2146         return (base);
2147 }
2148 
2149 static void
2150 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
2151 {
2152         uint64_t arg = *llquanta++;
2153         uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
2154         uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
2155         uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
2156         uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
2157 
2158         llquanta[dtrace_aggregate_llquantize_bucket(factor,
2159             low, high, nsteps, nval)] += incr;
2160 }
2161 
2162 /*ARGSUSED*/
2163 static void
2164 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
2165 {
2166         data[0]++;
2167         data[1] += nval;
2168 }
2169 
2170 /*ARGSUSED*/
2171 static void
2172 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2173 {
2174         int64_t snval = (int64_t)nval;
2175         uint64_t tmp[2];
2176 
2177         data[0]++;
2178         data[1] += nval;
2179 
2180         /*
2181          * What we want to say here is:
2182          *
2183          * data[2] += nval * nval;
2184          *
2185          * But given that nval is 64-bit, we could easily overflow, so
2186          * we do this as 128-bit arithmetic.
2187          */
2188         if (snval < 0)
2189                 snval = -snval;
2190 
2191         dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2192         dtrace_add_128(data + 2, tmp, data + 2);
2193 }
2194 
2195 /*ARGSUSED*/
2196 static void
2197 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2198 {
2199         *oval = *oval + 1;
2200 }
2201 
2202 /*ARGSUSED*/
2203 static void
2204 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2205 {
2206         *oval += nval;
2207 }
2208 
2209 /*
2210  * Aggregate given the tuple in the principal data buffer, and the aggregating
2211  * action denoted by the specified dtrace_aggregation_t.  The aggregation
2212  * buffer is specified as the buf parameter.  This routine does not return
2213  * failure; if there is no space in the aggregation buffer, the data will be
2214  * dropped, and a corresponding counter incremented.
2215  */
2216 static void
2217 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2218     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2219 {
2220         dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2221         uint32_t i, ndx, size, fsize;
2222         uint32_t align = sizeof (uint64_t) - 1;
2223         dtrace_aggbuffer_t *agb;
2224         dtrace_aggkey_t *key;
2225         uint32_t hashval = 0, limit, isstr;
2226         caddr_t tomax, data, kdata;
2227         dtrace_actkind_t action;
2228         dtrace_action_t *act;
2229         uintptr_t offs;
2230 
2231         if (buf == NULL)
2232                 return;
2233 
2234         if (!agg->dtag_hasarg) {
2235                 /*
2236                  * Currently, only quantize() and lquantize() take additional
2237                  * arguments, and they have the same semantics:  an increment
2238                  * value that defaults to 1 when not present.  If additional
2239                  * aggregating actions take arguments, the setting of the
2240                  * default argument value will presumably have to become more
2241                  * sophisticated...
2242                  */
2243                 arg = 1;
2244         }
2245 
2246         action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2247         size = rec->dtrd_offset - agg->dtag_base;
2248         fsize = size + rec->dtrd_size;
2249 
2250         ASSERT(dbuf->dtb_tomax != NULL);
2251         data = dbuf->dtb_tomax + offset + agg->dtag_base;
2252 
2253         if ((tomax = buf->dtb_tomax) == NULL) {
2254                 dtrace_buffer_drop(buf);
2255                 return;
2256         }
2257 
2258         /*
2259          * The metastructure is always at the bottom of the buffer.
2260          */
2261         agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2262             sizeof (dtrace_aggbuffer_t));
2263 
2264         if (buf->dtb_offset == 0) {
2265                 /*
2266                  * We just kludge up approximately 1/8th of the size to be
2267                  * buckets.  If this guess ends up being routinely
2268                  * off-the-mark, we may need to dynamically readjust this
2269                  * based on past performance.
2270                  */
2271                 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2272 
2273                 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2274                     (uintptr_t)tomax || hashsize == 0) {
2275                         /*
2276                          * We've been given a ludicrously small buffer;
2277                          * increment our drop count and leave.
2278                          */
2279                         dtrace_buffer_drop(buf);
2280                         return;
2281                 }
2282 
2283                 /*
2284                  * And now, a pathetic attempt to try to get a an odd (or
2285                  * perchance, a prime) hash size for better hash distribution.
2286                  */
2287                 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2288                         hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2289 
2290                 agb->dtagb_hashsize = hashsize;
2291                 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2292                     agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2293                 agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2294 
2295                 for (i = 0; i < agb->dtagb_hashsize; i++)
2296                         agb->dtagb_hash[i] = NULL;
2297         }
2298 
2299         ASSERT(agg->dtag_first != NULL);
2300         ASSERT(agg->dtag_first->dta_intuple);
2301 
2302         /*
2303          * Calculate the hash value based on the key.  Note that we _don't_
2304          * include the aggid in the hashing (but we will store it as part of
2305          * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2306          * algorithm: a simple, quick algorithm that has no known funnels, and
2307          * gets good distribution in practice.  The efficacy of the hashing
2308          * algorithm (and a comparison with other algorithms) may be found by
2309          * running the ::dtrace_aggstat MDB dcmd.
2310          */
2311         for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2312                 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2313                 limit = i + act->dta_rec.dtrd_size;
2314                 ASSERT(limit <= size);
2315                 isstr = DTRACEACT_ISSTRING(act);
2316 
2317                 for (; i < limit; i++) {
2318                         hashval += data[i];
2319                         hashval += (hashval << 10);
2320                         hashval ^= (hashval >> 6);
2321 
2322                         if (isstr && data[i] == '\0')
2323                                 break;
2324                 }
2325         }
2326 
2327         hashval += (hashval << 3);
2328         hashval ^= (hashval >> 11);
2329         hashval += (hashval << 15);
2330 
2331         /*
2332          * Yes, the divide here is expensive -- but it's generally the least
2333          * of the performance issues given the amount of data that we iterate
2334          * over to compute hash values, compare data, etc.
2335          */
2336         ndx = hashval % agb->dtagb_hashsize;
2337 
2338         for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2339                 ASSERT((caddr_t)key >= tomax);
2340                 ASSERT((caddr_t)key < tomax + buf->dtb_size);
2341 
2342                 if (hashval != key->dtak_hashval || key->dtak_size != size)
2343                         continue;
2344 
2345                 kdata = key->dtak_data;
2346                 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2347 
2348                 for (act = agg->dtag_first; act->dta_intuple;
2349                     act = act->dta_next) {
2350                         i = act->dta_rec.dtrd_offset - agg->dtag_base;
2351                         limit = i + act->dta_rec.dtrd_size;
2352                         ASSERT(limit <= size);
2353                         isstr = DTRACEACT_ISSTRING(act);
2354 
2355                         for (; i < limit; i++) {
2356                                 if (kdata[i] != data[i])
2357                                         goto next;
2358 
2359                                 if (isstr && data[i] == '\0')
2360                                         break;
2361                         }
2362                 }
2363 
2364                 if (action != key->dtak_action) {
2365                         /*
2366                          * We are aggregating on the same value in the same
2367                          * aggregation with two different aggregating actions.
2368                          * (This should have been picked up in the compiler,
2369                          * so we may be dealing with errant or devious DIF.)
2370                          * This is an error condition; we indicate as much,
2371                          * and return.
2372                          */
2373                         DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2374                         return;
2375                 }
2376 
2377                 /*
2378                  * This is a hit:  we need to apply the aggregator to
2379                  * the value at this key.
2380                  */
2381                 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2382                 return;
2383 next:
2384                 continue;
2385         }
2386 
2387         /*
2388          * We didn't find it.  We need to allocate some zero-filled space,
2389          * link it into the hash table appropriately, and apply the aggregator
2390          * to the (zero-filled) value.
2391          */
2392         offs = buf->dtb_offset;
2393         while (offs & (align - 1))
2394                 offs += sizeof (uint32_t);
2395 
2396         /*
2397          * If we don't have enough room to both allocate a new key _and_
2398          * its associated data, increment the drop count and return.
2399          */
2400         if ((uintptr_t)tomax + offs + fsize >
2401             agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2402                 dtrace_buffer_drop(buf);
2403                 return;
2404         }
2405 
2406         /*CONSTCOND*/
2407         ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2408         key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2409         agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2410 
2411         key->dtak_data = kdata = tomax + offs;
2412         buf->dtb_offset = offs + fsize;
2413 
2414         /*
2415          * Now copy the data across.
2416          */
2417         *((dtrace_aggid_t *)kdata) = agg->dtag_id;
2418 
2419         for (i = sizeof (dtrace_aggid_t); i < size; i++)
2420                 kdata[i] = data[i];
2421 
2422         /*
2423          * Because strings are not zeroed out by default, we need to iterate
2424          * looking for actions that store strings, and we need to explicitly
2425          * pad these strings out with zeroes.
2426          */
2427         for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2428                 int nul;
2429 
2430                 if (!DTRACEACT_ISSTRING(act))
2431                         continue;
2432 
2433                 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2434                 limit = i + act->dta_rec.dtrd_size;
2435                 ASSERT(limit <= size);
2436 
2437                 for (nul = 0; i < limit; i++) {
2438                         if (nul) {
2439                                 kdata[i] = '\0';
2440                                 continue;
2441                         }
2442 
2443                         if (data[i] != '\0')
2444                                 continue;
2445 
2446                         nul = 1;
2447                 }
2448         }
2449 
2450         for (i = size; i < fsize; i++)
2451                 kdata[i] = 0;
2452 
2453         key->dtak_hashval = hashval;
2454         key->dtak_size = size;
2455         key->dtak_action = action;
2456         key->dtak_next = agb->dtagb_hash[ndx];
2457         agb->dtagb_hash[ndx] = key;
2458 
2459         /*
2460          * Finally, apply the aggregator.
2461          */
2462         *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2463         agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2464 }
2465 
2466 /*
2467  * Given consumer state, this routine finds a speculation in the INACTIVE
2468  * state and transitions it into the ACTIVE state.  If there is no speculation
2469  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2470  * incremented -- it is up to the caller to take appropriate action.
2471  */
2472 static int
2473 dtrace_speculation(dtrace_state_t *state)
2474 {
2475         int i = 0;
2476         dtrace_speculation_state_t current;
2477         uint32_t *stat = &state->dts_speculations_unavail, count;
2478 
2479         while (i < state->dts_nspeculations) {
2480                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2481 
2482                 current = spec->dtsp_state;
2483 
2484                 if (current != DTRACESPEC_INACTIVE) {
2485                         if (current == DTRACESPEC_COMMITTINGMANY ||
2486                             current == DTRACESPEC_COMMITTING ||
2487                             current == DTRACESPEC_DISCARDING)
2488                                 stat = &state->dts_speculations_busy;
2489                         i++;
2490                         continue;
2491                 }
2492 
2493                 if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2494                     current, DTRACESPEC_ACTIVE) == current)
2495                         return (i + 1);
2496         }
2497 
2498         /*
2499          * We couldn't find a speculation.  If we found as much as a single
2500          * busy speculation buffer, we'll attribute this failure as "busy"
2501          * instead of "unavail".
2502          */
2503         do {
2504                 count = *stat;
2505         } while (dtrace_cas32(stat, count, count + 1) != count);
2506 
2507         return (0);
2508 }
2509 
2510 /*
2511  * This routine commits an active speculation.  If the specified speculation
2512  * is not in a valid state to perform a commit(), this routine will silently do
2513  * nothing.  The state of the specified speculation is transitioned according
2514  * to the state transition diagram outlined in <sys/dtrace_impl.h>
2515  */
2516 static void
2517 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2518     dtrace_specid_t which)
2519 {
2520         dtrace_speculation_t *spec;
2521         dtrace_buffer_t *src, *dest;
2522         uintptr_t daddr, saddr, dlimit, slimit;
2523         dtrace_speculation_state_t current, new;
2524         intptr_t offs;
2525         uint64_t timestamp;
2526 
2527         if (which == 0)
2528                 return;
2529 
2530         if (which > state->dts_nspeculations) {
2531                 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2532                 return;
2533         }
2534 
2535         spec = &state->dts_speculations[which - 1];
2536         src = &spec->dtsp_buffer[cpu];
2537         dest = &state->dts_buffer[cpu];
2538 
2539         do {
2540                 current = spec->dtsp_state;
2541 
2542                 if (current == DTRACESPEC_COMMITTINGMANY)
2543                         break;
2544 
2545                 switch (current) {
2546                 case DTRACESPEC_INACTIVE:
2547                 case DTRACESPEC_DISCARDING:
2548                         return;
2549 
2550                 case DTRACESPEC_COMMITTING:
2551                         /*
2552                          * This is only possible if we are (a) commit()'ing
2553                          * without having done a prior speculate() on this CPU
2554                          * and (b) racing with another commit() on a different
2555                          * CPU.  There's nothing to do -- we just assert that
2556                          * our offset is 0.
2557                          */
2558                         ASSERT(src->dtb_offset == 0);
2559                         return;
2560 
2561                 case DTRACESPEC_ACTIVE:
2562                         new = DTRACESPEC_COMMITTING;
2563                         break;
2564 
2565                 case DTRACESPEC_ACTIVEONE:
2566                         /*
2567                          * This speculation is active on one CPU.  If our
2568                          * buffer offset is non-zero, we know that the one CPU
2569                          * must be us.  Otherwise, we are committing on a
2570                          * different CPU from the speculate(), and we must
2571                          * rely on being asynchronously cleaned.
2572                          */
2573                         if (src->dtb_offset != 0) {
2574                                 new = DTRACESPEC_COMMITTING;
2575                                 break;
2576                         }
2577                         /*FALLTHROUGH*/
2578 
2579                 case DTRACESPEC_ACTIVEMANY:
2580                         new = DTRACESPEC_COMMITTINGMANY;
2581                         break;
2582 
2583                 default:
2584                         ASSERT(0);
2585                 }
2586         } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2587             current, new) != current);
2588 
2589         /*
2590          * We have set the state to indicate that we are committing this
2591          * speculation.  Now reserve the necessary space in the destination
2592          * buffer.
2593          */
2594         if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2595             sizeof (uint64_t), state, NULL)) < 0) {
2596                 dtrace_buffer_drop(dest);
2597                 goto out;
2598         }
2599 
2600         /*
2601          * We have sufficient space to copy the speculative buffer into the
2602          * primary buffer.  First, modify the speculative buffer, filling
2603          * in the timestamp of all entries with the current time.  The data
2604          * must have the commit() time rather than the time it was traced,
2605          * so that all entries in the primary buffer are in timestamp order.
2606          */
2607         timestamp = dtrace_gethrtime();
2608         saddr = (uintptr_t)src->dtb_tomax;
2609         slimit = saddr + src->dtb_offset;
2610         while (saddr < slimit) {
2611                 size_t size;
2612                 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2613 
2614                 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2615                         saddr += sizeof (dtrace_epid_t);
2616                         continue;
2617                 }
2618                 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2619                 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2620 
2621                 ASSERT3U(saddr + size, <=, slimit);
2622                 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2623                 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
2624 
2625                 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2626 
2627                 saddr += size;
2628         }
2629 
2630         /*
2631          * Copy the buffer across.  (Note that this is a
2632          * highly subobtimal bcopy(); in the unlikely event that this becomes
2633          * a serious performance issue, a high-performance DTrace-specific
2634          * bcopy() should obviously be invented.)
2635          */
2636         daddr = (uintptr_t)dest->dtb_tomax + offs;
2637         dlimit = daddr + src->dtb_offset;
2638         saddr = (uintptr_t)src->dtb_tomax;
2639 
2640         /*
2641          * First, the aligned portion.
2642          */
2643         while (dlimit - daddr >= sizeof (uint64_t)) {
2644                 *((uint64_t *)daddr) = *((uint64_t *)saddr);
2645 
2646                 daddr += sizeof (uint64_t);
2647                 saddr += sizeof (uint64_t);
2648         }
2649 
2650         /*
2651          * Now any left-over bit...
2652          */
2653         while (dlimit - daddr)
2654                 *((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2655 
2656         /*
2657          * Finally, commit the reserved space in the destination buffer.
2658          */
2659         dest->dtb_offset = offs + src->dtb_offset;
2660 
2661 out:
2662         /*
2663          * If we're lucky enough to be the only active CPU on this speculation
2664          * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2665          */
2666         if (current == DTRACESPEC_ACTIVE ||
2667             (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2668                 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2669                     DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2670 
2671                 ASSERT(rval == DTRACESPEC_COMMITTING);
2672         }
2673 
2674         src->dtb_offset = 0;
2675         src->dtb_xamot_drops += src->dtb_drops;
2676         src->dtb_drops = 0;
2677 }
2678 
2679 /*
2680  * This routine discards an active speculation.  If the specified speculation
2681  * is not in a valid state to perform a discard(), this routine will silently
2682  * do nothing.  The state of the specified speculation is transitioned
2683  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2684  */
2685 static void
2686 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2687     dtrace_specid_t which)
2688 {
2689         dtrace_speculation_t *spec;
2690         dtrace_speculation_state_t current, new;
2691         dtrace_buffer_t *buf;
2692 
2693         if (which == 0)
2694                 return;
2695 
2696         if (which > state->dts_nspeculations) {
2697                 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2698                 return;
2699         }
2700 
2701         spec = &state->dts_speculations[which - 1];
2702         buf = &spec->dtsp_buffer[cpu];
2703 
2704         do {
2705                 current = spec->dtsp_state;
2706 
2707                 switch (current) {
2708                 case DTRACESPEC_INACTIVE:
2709                 case DTRACESPEC_COMMITTINGMANY:
2710                 case DTRACESPEC_COMMITTING:
2711                 case DTRACESPEC_DISCARDING:
2712                         return;
2713 
2714                 case DTRACESPEC_ACTIVE:
2715                 case DTRACESPEC_ACTIVEMANY:
2716                         new = DTRACESPEC_DISCARDING;
2717                         break;
2718 
2719                 case DTRACESPEC_ACTIVEONE:
2720                         if (buf->dtb_offset != 0) {
2721                                 new = DTRACESPEC_INACTIVE;
2722                         } else {
2723                                 new = DTRACESPEC_DISCARDING;
2724                         }
2725                         break;
2726 
2727                 default:
2728                         ASSERT(0);
2729                 }
2730         } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2731             current, new) != current);
2732 
2733         buf->dtb_offset = 0;
2734         buf->dtb_drops = 0;
2735 }
2736 
2737 /*
2738  * Note:  not called from probe context.  This function is called
2739  * asynchronously from cross call context to clean any speculations that are
2740  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2741  * transitioned back to the INACTIVE state until all CPUs have cleaned the
2742  * speculation.
2743  */
2744 static void
2745 dtrace_speculation_clean_here(dtrace_state_t *state)
2746 {
2747         dtrace_icookie_t cookie;
2748         processorid_t cpu = CPU->cpu_id;
2749         dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2750         dtrace_specid_t i;
2751 
2752         cookie = dtrace_interrupt_disable();
2753 
2754         if (dest->dtb_tomax == NULL) {
2755                 dtrace_interrupt_enable(cookie);
2756                 return;
2757         }
2758 
2759         for (i = 0; i < state->dts_nspeculations; i++) {
2760                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2761                 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2762 
2763                 if (src->dtb_tomax == NULL)
2764                         continue;
2765 
2766                 if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2767                         src->dtb_offset = 0;
2768                         continue;
2769                 }
2770 
2771                 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2772                         continue;
2773 
2774                 if (src->dtb_offset == 0)
2775                         continue;
2776 
2777                 dtrace_speculation_commit(state, cpu, i + 1);
2778         }
2779 
2780         dtrace_interrupt_enable(cookie);
2781 }
2782 
2783 /*
2784  * Note:  not called from probe context.  This function is called
2785  * asynchronously (and at a regular interval) to clean any speculations that
2786  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2787  * is work to be done, it cross calls all CPUs to perform that work;
2788  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2789  * INACTIVE state until they have been cleaned by all CPUs.
2790  */
2791 static void
2792 dtrace_speculation_clean(dtrace_state_t *state)
2793 {
2794         int work = 0, rv;
2795         dtrace_specid_t i;
2796 
2797         for (i = 0; i < state->dts_nspeculations; i++) {
2798                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2799 
2800                 ASSERT(!spec->dtsp_cleaning);
2801 
2802                 if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2803                     spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2804                         continue;
2805 
2806                 work++;
2807                 spec->dtsp_cleaning = 1;
2808         }
2809 
2810         if (!work)
2811                 return;
2812 
2813         dtrace_xcall(DTRACE_CPUALL,
2814             (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2815 
2816         /*
2817          * We now know that all CPUs have committed or discarded their
2818          * speculation buffers, as appropriate.  We can now set the state
2819          * to inactive.
2820          */
2821         for (i = 0; i < state->dts_nspeculations; i++) {
2822                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2823                 dtrace_speculation_state_t current, new;
2824 
2825                 if (!spec->dtsp_cleaning)
2826                         continue;
2827 
2828                 current = spec->dtsp_state;
2829                 ASSERT(current == DTRACESPEC_DISCARDING ||
2830                     current == DTRACESPEC_COMMITTINGMANY);
2831 
2832                 new = DTRACESPEC_INACTIVE;
2833 
2834                 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2835                 ASSERT(rv == current);
2836                 spec->dtsp_cleaning = 0;
2837         }
2838 }
2839 
2840 /*
2841  * Called as part of a speculate() to get the speculative buffer associated
2842  * with a given speculation.  Returns NULL if the specified speculation is not
2843  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2844  * the active CPU is not the specified CPU -- the speculation will be
2845  * atomically transitioned into the ACTIVEMANY state.
2846  */
2847 static dtrace_buffer_t *
2848 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2849     dtrace_specid_t which)
2850 {
2851         dtrace_speculation_t *spec;
2852         dtrace_speculation_state_t current, new;
2853         dtrace_buffer_t *buf;
2854 
2855         if (which == 0)
2856                 return (NULL);
2857 
2858         if (which > state->dts_nspeculations) {
2859                 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2860                 return (NULL);
2861         }
2862 
2863         spec = &state->dts_speculations[which - 1];
2864         buf = &spec->dtsp_buffer[cpuid];
2865 
2866         do {
2867                 current = spec->dtsp_state;
2868 
2869                 switch (current) {
2870                 case DTRACESPEC_INACTIVE:
2871                 case DTRACESPEC_COMMITTINGMANY:
2872                 case DTRACESPEC_DISCARDING:
2873                         return (NULL);
2874 
2875                 case DTRACESPEC_COMMITTING:
2876                         ASSERT(buf->dtb_offset == 0);
2877                         return (NULL);
2878 
2879                 case DTRACESPEC_ACTIVEONE:
2880                         /*
2881                          * This speculation is currently active on one CPU.
2882                          * Check the offset in the buffer; if it's non-zero,
2883                          * that CPU must be us (and we leave the state alone).
2884                          * If it's zero, assume that we're starting on a new
2885                          * CPU -- and change the state to indicate that the
2886                          * speculation is active on more than one CPU.
2887                          */
2888                         if (buf->dtb_offset != 0)
2889                                 return (buf);
2890 
2891                         new = DTRACESPEC_ACTIVEMANY;
2892                         break;
2893 
2894                 case DTRACESPEC_ACTIVEMANY:
2895                         return (buf);
2896 
2897                 case DTRACESPEC_ACTIVE:
2898                         new = DTRACESPEC_ACTIVEONE;
2899                         break;
2900 
2901                 default:
2902                         ASSERT(0);
2903                 }
2904         } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2905             current, new) != current);
2906 
2907         ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2908         return (buf);
2909 }
2910 
2911 /*
2912  * Return a string.  In the event that the user lacks the privilege to access
2913  * arbitrary kernel memory, we copy the string out to scratch memory so that we
2914  * don't fail access checking.
2915  *
2916  * dtrace_dif_variable() uses this routine as a helper for various
2917  * builtin values such as 'execname' and 'probefunc.'
2918  */
2919 uintptr_t
2920 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2921     dtrace_mstate_t *mstate)
2922 {
2923         uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2924         uintptr_t ret;
2925         size_t strsz;
2926 
2927         /*
2928          * The easy case: this probe is allowed to read all of memory, so
2929          * we can just return this as a vanilla pointer.
2930          */
2931         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2932                 return (addr);
2933 
2934         /*
2935          * This is the tougher case: we copy the string in question from
2936          * kernel memory into scratch memory and return it that way: this
2937          * ensures that we won't trip up when access checking tests the
2938          * BYREF return value.
2939          */
2940         strsz = dtrace_strlen((char *)addr, size) + 1;
2941 
2942         if (mstate->dtms_scratch_ptr + strsz >
2943             mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2944                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2945                 return (NULL);
2946         }
2947 
2948         dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2949             strsz);
2950         ret = mstate->dtms_scratch_ptr;
2951         mstate->dtms_scratch_ptr += strsz;
2952         return (ret);
2953 }
2954 
2955 /*
2956  * This function implements the DIF emulator's variable lookups.  The emulator
2957  * passes a reserved variable identifier and optional built-in array index.
2958  */
2959 static uint64_t
2960 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2961     uint64_t ndx)
2962 {
2963         /*
2964          * If we're accessing one of the uncached arguments, we'll turn this
2965          * into a reference in the args array.
2966          */
2967         if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2968                 ndx = v - DIF_VAR_ARG0;
2969                 v = DIF_VAR_ARGS;
2970         }
2971 
2972         switch (v) {
2973         case DIF_VAR_ARGS:
2974                 if (!(mstate->dtms_access & DTRACE_ACCESS_ARGS)) {
2975                         cpu_core[CPU->cpu_id].cpuc_dtrace_flags |=
2976                             CPU_DTRACE_KPRIV;
2977                         return (0);
2978                 }
2979 
2980                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2981                 if (ndx >= sizeof (mstate->dtms_arg) /
2982                     sizeof (mstate->dtms_arg[0])) {
2983                         int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2984                         dtrace_provider_t *pv;
2985                         uint64_t val;
2986 
2987                         pv = mstate->dtms_probe->dtpr_provider;
2988                         if (pv->dtpv_pops.dtps_getargval != NULL)
2989                                 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2990                                     mstate->dtms_probe->dtpr_id,
2991                                     mstate->dtms_probe->dtpr_arg, ndx, aframes);
2992                         else
2993                                 val = dtrace_getarg(ndx, aframes);
2994 
2995                         /*
2996                          * This is regrettably required to keep the compiler
2997                          * from tail-optimizing the call to dtrace_getarg().
2998                          * The condition always evaluates to true, but the
2999                          * compiler has no way of figuring that out a priori.
3000                          * (None of this would be necessary if the compiler
3001                          * could be relied upon to _always_ tail-optimize
3002                          * the call to dtrace_getarg() -- but it can't.)
3003                          */
3004                         if (mstate->dtms_probe != NULL)
3005                                 return (val);
3006 
3007                         ASSERT(0);
3008                 }
3009 
3010                 return (mstate->dtms_arg[ndx]);
3011 
3012         case DIF_VAR_UREGS: {
3013                 klwp_t *lwp;
3014 
3015                 if (!dtrace_priv_proc(state, mstate))
3016                         return (0);
3017 
3018                 if ((lwp = curthread->t_lwp) == NULL) {
3019                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3020                         cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL;
3021                         return (0);
3022                 }
3023 
3024                 return (dtrace_getreg(lwp->lwp_regs, ndx));
3025         }
3026 
3027         case DIF_VAR_VMREGS: {
3028                 uint64_t rval;
3029 
3030                 if (!dtrace_priv_kernel(state))
3031                         return (0);
3032 
3033                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3034 
3035                 rval = dtrace_getvmreg(ndx,
3036                     &cpu_core[CPU->cpu_id].cpuc_dtrace_flags);
3037 
3038                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3039 
3040                 return (rval);
3041         }
3042 
3043         case DIF_VAR_CURTHREAD:
3044                 if (!dtrace_priv_proc(state, mstate))
3045                         return (0);
3046                 return ((uint64_t)(uintptr_t)curthread);
3047 
3048         case DIF_VAR_TIMESTAMP:
3049                 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
3050                         mstate->dtms_timestamp = dtrace_gethrtime();
3051                         mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
3052                 }
3053                 return (mstate->dtms_timestamp);
3054 
3055         case DIF_VAR_VTIMESTAMP:
3056                 ASSERT(dtrace_vtime_references != 0);
3057                 return (curthread->t_dtrace_vtime);
3058 
3059         case DIF_VAR_WALLTIMESTAMP:
3060                 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
3061                         mstate->dtms_walltimestamp = dtrace_gethrestime();
3062                         mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
3063                 }
3064                 return (mstate->dtms_walltimestamp);
3065 
3066         case DIF_VAR_IPL:
3067                 if (!dtrace_priv_kernel(state))
3068                         return (0);
3069                 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
3070                         mstate->dtms_ipl = dtrace_getipl();
3071                         mstate->dtms_present |= DTRACE_MSTATE_IPL;
3072                 }
3073                 return (mstate->dtms_ipl);
3074 
3075         case DIF_VAR_EPID:
3076                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
3077                 return (mstate->dtms_epid);
3078 
3079         case DIF_VAR_ID:
3080                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3081                 return (mstate->dtms_probe->dtpr_id);
3082 
3083         case DIF_VAR_STACKDEPTH:
3084                 if (!dtrace_priv_kernel(state))
3085                         return (0);
3086                 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
3087                         int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3088 
3089                         mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
3090                         mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
3091                 }
3092                 return (mstate->dtms_stackdepth);
3093 
3094         case DIF_VAR_USTACKDEPTH:
3095                 if (!dtrace_priv_proc(state, mstate))
3096                         return (0);
3097                 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
3098                         /*
3099                          * See comment in DIF_VAR_PID.
3100                          */
3101                         if (DTRACE_ANCHORED(mstate->dtms_probe) &&
3102                             CPU_ON_INTR(CPU)) {
3103                                 mstate->dtms_ustackdepth = 0;
3104                         } else {
3105                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3106                                 mstate->dtms_ustackdepth =
3107                                     dtrace_getustackdepth();
3108                                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3109                         }
3110                         mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
3111                 }
3112                 return (mstate->dtms_ustackdepth);
3113 
3114         case DIF_VAR_CALLER:
3115                 if (!dtrace_priv_kernel(state))
3116                         return (0);
3117                 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
3118                         int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3119 
3120                         if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
3121                                 /*
3122                                  * If this is an unanchored probe, we are
3123                                  * required to go through the slow path:
3124                                  * dtrace_caller() only guarantees correct
3125                                  * results for anchored probes.
3126                                  */
3127                                 pc_t caller[2];
3128 
3129                                 dtrace_getpcstack(caller, 2, aframes,
3130                                     (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
3131                                 mstate->dtms_caller = caller[1];
3132                         } else if ((mstate->dtms_caller =
3133                             dtrace_caller(aframes)) == -1) {
3134                                 /*
3135                                  * We have failed to do this the quick way;
3136                                  * we must resort to the slower approach of
3137                                  * calling dtrace_getpcstack().
3138                                  */
3139                                 pc_t caller;
3140 
3141                                 dtrace_getpcstack(&caller, 1, aframes, NULL);
3142                                 mstate->dtms_caller = caller;
3143                         }
3144 
3145                         mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3146                 }
3147                 return (mstate->dtms_caller);
3148 
3149         case DIF_VAR_UCALLER:
3150                 if (!dtrace_priv_proc(state, mstate))
3151                         return (0);
3152 
3153                 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3154                         uint64_t ustack[3];
3155 
3156                         /*
3157                          * dtrace_getupcstack() fills in the first uint64_t
3158                          * with the current PID.  The second uint64_t will
3159                          * be the program counter at user-level.  The third
3160                          * uint64_t will contain the caller, which is what
3161                          * we're after.
3162                          */
3163                         ustack[2] = NULL;
3164                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3165                         dtrace_getupcstack(ustack, 3);
3166                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3167                         mstate->dtms_ucaller = ustack[2];
3168                         mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3169                 }
3170 
3171                 return (mstate->dtms_ucaller);
3172 
3173         case DIF_VAR_PROBEPROV:
3174                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3175                 return (dtrace_dif_varstr(
3176                     (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3177                     state, mstate));
3178 
3179         case DIF_VAR_PROBEMOD:
3180                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3181                 return (dtrace_dif_varstr(
3182                     (uintptr_t)mstate->dtms_probe->dtpr_mod,
3183                     state, mstate));
3184 
3185         case DIF_VAR_PROBEFUNC:
3186                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3187                 return (dtrace_dif_varstr(
3188                     (uintptr_t)mstate->dtms_probe->dtpr_func,
3189                     state, mstate));
3190 
3191         case DIF_VAR_PROBENAME:
3192                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3193                 return (dtrace_dif_varstr(
3194                     (uintptr_t)mstate->dtms_probe->dtpr_name,
3195                     state, mstate));
3196 
3197         case DIF_VAR_PID:
3198                 if (!dtrace_priv_proc(state, mstate))
3199                         return (0);
3200 
3201                 /*
3202                  * Note that we are assuming that an unanchored probe is
3203                  * always due to a high-level interrupt.  (And we're assuming
3204                  * that there is only a single high level interrupt.)
3205                  */
3206                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3207                         return (pid0.pid_id);
3208 
3209                 /*
3210                  * It is always safe to dereference one's own t_procp pointer:
3211                  * it always points to a valid, allocated proc structure.
3212                  * Further, it is always safe to dereference the p_pidp member
3213                  * of one's own proc structure.  (These are truisms becuase
3214                  * threads and processes don't clean up their own state --
3215                  * they leave that task to whomever reaps them.)
3216                  */
3217                 return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3218 
3219         case DIF_VAR_PPID:
3220                 if (!dtrace_priv_proc(state, mstate))
3221                         return (0);
3222 
3223                 /*
3224                  * See comment in DIF_VAR_PID.
3225                  */
3226                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3227                         return (pid0.pid_id);
3228 
3229                 /*
3230                  * It is always safe to dereference one's own t_procp pointer:
3231                  * it always points to a valid, allocated proc structure.
3232                  * (This is true because threads don't clean up their own
3233                  * state -- they leave that task to whomever reaps them.)
3234                  */
3235                 return ((uint64_t)curthread->t_procp->p_ppid);
3236 
3237         case DIF_VAR_TID:
3238                 /*
3239                  * See comment in DIF_VAR_PID.
3240                  */
3241                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3242                         return (0);
3243 
3244                 return ((uint64_t)curthread->t_tid);
3245 
3246         case DIF_VAR_EXECNAME:
3247                 if (!dtrace_priv_proc(state, mstate))
3248                         return (0);
3249 
3250                 /*
3251                  * See comment in DIF_VAR_PID.
3252                  */
3253                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3254                         return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3255 
3256                 /*
3257                  * It is always safe to dereference one's own t_procp pointer:
3258                  * it always points to a valid, allocated proc structure.
3259                  * (This is true because threads don't clean up their own
3260                  * state -- they leave that task to whomever reaps them.)
3261                  */
3262                 return (dtrace_dif_varstr(
3263                     (uintptr_t)curthread->t_procp->p_user.u_comm,
3264                     state, mstate));
3265 
3266         case DIF_VAR_ZONENAME:
3267                 if (!dtrace_priv_proc(state, mstate))
3268                         return (0);
3269 
3270                 /*
3271                  * See comment in DIF_VAR_PID.
3272                  */
3273                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3274                         return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3275 
3276                 /*
3277                  * It is always safe to dereference one's own t_procp pointer:
3278                  * it always points to a valid, allocated proc structure.
3279                  * (This is true because threads don't clean up their own
3280                  * state -- they leave that task to whomever reaps them.)
3281                  */
3282                 return (dtrace_dif_varstr(
3283                     (uintptr_t)curthread->t_procp->p_zone->zone_name,
3284                     state, mstate));
3285 
3286         case DIF_VAR_UID:
3287                 if (!dtrace_priv_proc(state, mstate))
3288                         return (0);
3289 
3290                 /*
3291                  * See comment in DIF_VAR_PID.
3292                  */
3293                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3294                         return ((uint64_t)p0.p_cred->cr_uid);
3295 
3296                 /*
3297                  * It is always safe to dereference one's own t_procp pointer:
3298                  * it always points to a valid, allocated proc structure.
3299                  * (This is true because threads don't clean up their own
3300                  * state -- they leave that task to whomever reaps them.)
3301                  *
3302                  * Additionally, it is safe to dereference one's own process
3303                  * credential, since this is never NULL after process birth.
3304                  */
3305                 return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3306 
3307         case DIF_VAR_GID:
3308                 if (!dtrace_priv_proc(state, mstate))
3309                         return (0);
3310 
3311                 /*
3312                  * See comment in DIF_VAR_PID.
3313                  */
3314                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3315                         return ((uint64_t)p0.p_cred->cr_gid);
3316 
3317                 /*
3318                  * It is always safe to dereference one's own t_procp pointer:
3319                  * it always points to a valid, allocated proc structure.
3320                  * (This is true because threads don't clean up their own
3321                  * state -- they leave that task to whomever reaps them.)
3322                  *
3323                  * Additionally, it is safe to dereference one's own process
3324                  * credential, since this is never NULL after process birth.
3325                  */
3326                 return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3327 
3328         case DIF_VAR_ERRNO: {
3329                 klwp_t *lwp;
3330                 if (!dtrace_priv_proc(state, mstate))
3331                         return (0);
3332 
3333                 /*
3334                  * See comment in DIF_VAR_PID.
3335                  */
3336                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3337                         return (0);
3338 
3339                 /*
3340                  * It is always safe to dereference one's own t_lwp pointer in
3341                  * the event that this pointer is non-NULL.  (This is true
3342                  * because threads and lwps don't clean up their own state --
3343                  * they leave that task to whomever reaps them.)
3344                  */
3345                 if ((lwp = curthread->t_lwp) == NULL)
3346                         return (0);
3347 
3348                 return ((uint64_t)lwp->lwp_errno);
3349         }
3350         default:
3351                 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3352                 return (0);
3353         }
3354 }
3355 
3356 /*
3357  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3358  * Notice that we don't bother validating the proper number of arguments or
3359  * their types in the tuple stack.  This isn't needed because all argument
3360  * interpretation is safe because of our load safety -- the worst that can
3361  * happen is that a bogus program can obtain bogus results.
3362  */
3363 static void
3364 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3365     dtrace_key_t *tupregs, int nargs,
3366     dtrace_mstate_t *mstate, dtrace_state_t *state)
3367 {
3368         volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
3369         volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
3370         dtrace_vstate_t *vstate = &state->dts_vstate;
3371 
3372         union {
3373                 mutex_impl_t mi;
3374                 uint64_t mx;
3375         } m;
3376 
3377         union {
3378                 krwlock_t ri;
3379                 uintptr_t rw;
3380         } r;
3381 
3382         switch (subr) {
3383         case DIF_SUBR_RAND:
3384                 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3385                 break;
3386 
3387         case DIF_SUBR_MUTEX_OWNED:
3388                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3389                     mstate, vstate)) {
3390                         regs[rd] = NULL;
3391                         break;
3392                 }
3393 
3394                 m.mx = dtrace_load64(tupregs[0].dttk_value);
3395                 if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3396                         regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3397                 else
3398                         regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3399                 break;
3400 
3401         case DIF_SUBR_MUTEX_OWNER:
3402                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3403                     mstate, vstate)) {
3404                         regs[rd] = NULL;
3405                         break;
3406                 }
3407 
3408                 m.mx = dtrace_load64(tupregs[0].dttk_value);
3409                 if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3410                     MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3411                         regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3412                 else
3413                         regs[rd] = 0;
3414                 break;
3415 
3416         case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3417                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3418                     mstate, vstate)) {
3419                         regs[rd] = NULL;
3420                         break;
3421                 }
3422 
3423                 m.mx = dtrace_load64(tupregs[0].dttk_value);
3424                 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3425                 break;
3426 
3427         case DIF_SUBR_MUTEX_TYPE_SPIN:
3428                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3429                     mstate, vstate)) {
3430                         regs[rd] = NULL;
3431                         break;
3432                 }
3433 
3434                 m.mx = dtrace_load64(tupregs[0].dttk_value);
3435                 regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3436                 break;
3437 
3438         case DIF_SUBR_RW_READ_HELD: {
3439                 uintptr_t tmp;
3440 
3441                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3442                     mstate, vstate)) {
3443                         regs[rd] = NULL;
3444                         break;
3445                 }
3446 
3447                 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3448                 regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3449                 break;
3450         }
3451 
3452         case DIF_SUBR_RW_WRITE_HELD:
3453                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3454                     mstate, vstate)) {
3455                         regs[rd] = NULL;
3456                         break;
3457                 }
3458 
3459                 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3460                 regs[rd] = _RW_WRITE_HELD(&r.ri);
3461                 break;
3462 
3463         case DIF_SUBR_RW_ISWRITER:
3464                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3465                     mstate, vstate)) {
3466                         regs[rd] = NULL;
3467                         break;
3468                 }
3469 
3470                 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3471                 regs[rd] = _RW_ISWRITER(&r.ri);
3472                 break;
3473 
3474         case DIF_SUBR_BCOPY: {
3475                 /*
3476                  * We need to be sure that the destination is in the scratch
3477                  * region -- no other region is allowed.
3478                  */
3479                 uintptr_t src = tupregs[0].dttk_value;
3480                 uintptr_t dest = tupregs[1].dttk_value;
3481                 size_t size = tupregs[2].dttk_value;
3482 
3483                 if (!dtrace_inscratch(dest, size, mstate)) {
3484                         *flags |= CPU_DTRACE_BADADDR;
3485                         *illval = regs[rd];
3486                         break;
3487                 }
3488 
3489                 if (!dtrace_canload(src, size, mstate, vstate)) {
3490                         regs[rd] = NULL;
3491                         break;
3492                 }
3493 
3494                 dtrace_bcopy((void *)src, (void *)dest, size);
3495                 break;
3496         }
3497 
3498         case DIF_SUBR_ALLOCA:
3499         case DIF_SUBR_COPYIN: {
3500                 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3501                 uint64_t size =
3502                     tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3503                 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
3504 
3505                 /*
3506                  * This action doesn't require any credential checks since
3507                  * probes will not activate in user contexts to which the
3508                  * enabling user does not have permissions.
3509                  */
3510 
3511                 /*
3512                  * Rounding up the user allocation size could have overflowed
3513                  * a large, bogus allocation (like -1ULL) to 0.
3514                  */
3515                 if (scratch_size < size ||
3516                     !DTRACE_INSCRATCH(mstate, scratch_size)) {
3517                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3518                         regs[rd] = NULL;
3519                         break;
3520                 }
3521 
3522                 if (subr == DIF_SUBR_COPYIN) {
3523                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3524                         dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3525                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3526                 }
3527 
3528                 mstate->dtms_scratch_ptr += scratch_size;
3529                 regs[rd] = dest;
3530                 break;
3531         }
3532 
3533         case DIF_SUBR_COPYINTO: {
3534                 uint64_t size = tupregs[1].dttk_value;
3535                 uintptr_t dest = tupregs[2].dttk_value;
3536 
3537                 /*
3538                  * This action doesn't require any credential checks since
3539                  * probes will not activate in user contexts to which the
3540                  * enabling user does not have permissions.
3541                  */
3542                 if (!dtrace_inscratch(dest, size, mstate)) {
3543                         *flags |= CPU_DTRACE_BADADDR;
3544                         *illval = regs[rd];
3545                         break;
3546                 }
3547 
3548                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3549                 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3550                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3551                 break;
3552         }
3553 
3554         case DIF_SUBR_COPYINSTR: {
3555                 uintptr_t dest = mstate->dtms_scratch_ptr;
3556                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3557 
3558                 if (nargs > 1 && tupregs[1].dttk_value < size)
3559                         size = tupregs[1].dttk_value + 1;
3560 
3561                 /*
3562                  * This action doesn't require any credential checks since
3563                  * probes will not activate in user contexts to which the
3564                  * enabling user does not have permissions.
3565                  */
3566                 if (!DTRACE_INSCRATCH(mstate, size)) {
3567                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3568                         regs[rd] = NULL;
3569                         break;
3570                 }
3571 
3572                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3573                 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
3574                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3575 
3576                 ((char *)dest)[size - 1] = '\0';
3577                 mstate->dtms_scratch_ptr += size;
3578                 regs[rd] = dest;
3579                 break;
3580         }
3581 
3582         case DIF_SUBR_MSGSIZE:
3583         case DIF_SUBR_MSGDSIZE: {
3584                 uintptr_t baddr = tupregs[0].dttk_value, daddr;
3585                 uintptr_t wptr, rptr;
3586                 size_t count = 0;
3587                 int cont = 0;
3588 
3589                 while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
3590 
3591                         if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
3592                             vstate)) {
3593                                 regs[rd] = NULL;
3594                                 break;
3595                         }
3596 
3597                         wptr = dtrace_loadptr(baddr +
3598                             offsetof(mblk_t, b_wptr));
3599 
3600                         rptr = dtrace_loadptr(baddr +
3601                             offsetof(mblk_t, b_rptr));
3602 
3603                         if (wptr < rptr) {
3604                                 *flags |= CPU_DTRACE_BADADDR;
3605                                 *illval = tupregs[0].dttk_value;
3606                                 break;
3607                         }
3608 
3609                         daddr = dtrace_loadptr(baddr +
3610                             offsetof(mblk_t, b_datap));
3611 
3612                         baddr = dtrace_loadptr(baddr +
3613                             offsetof(mblk_t, b_cont));
3614 
3615                         /*
3616                          * We want to prevent against denial-of-service here,
3617                          * so we're only going to search the list for
3618                          * dtrace_msgdsize_max mblks.
3619                          */
3620                         if (cont++ > dtrace_msgdsize_max) {
3621                                 *flags |= CPU_DTRACE_ILLOP;
3622                                 break;
3623                         }
3624 
3625                         if (subr == DIF_SUBR_MSGDSIZE) {
3626                                 if (dtrace_load8(daddr +
3627                                     offsetof(dblk_t, db_type)) != M_DATA)
3628                                         continue;
3629                         }
3630 
3631                         count += wptr - rptr;
3632                 }
3633 
3634                 if (!(*flags & CPU_DTRACE_FAULT))
3635                         regs[rd] = count;
3636 
3637                 break;
3638         }
3639 
3640         case DIF_SUBR_PROGENYOF: {
3641                 pid_t pid = tupregs[0].dttk_value;
3642                 proc_t *p;
3643                 int rval = 0;
3644 
3645                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3646 
3647                 for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
3648                         if (p->p_pidp->pid_id == pid) {
3649                                 rval = 1;
3650                                 break;
3651                         }
3652                 }
3653 
3654                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3655 
3656                 regs[rd] = rval;
3657                 break;
3658         }
3659 
3660         case DIF_SUBR_SPECULATION:
3661                 regs[rd] = dtrace_speculation(state);
3662                 break;
3663 
3664         case DIF_SUBR_COPYOUT: {
3665                 uintptr_t kaddr = tupregs[0].dttk_value;
3666                 uintptr_t uaddr = tupregs[1].dttk_value;
3667                 uint64_t size = tupregs[2].dttk_value;
3668 
3669                 if (!dtrace_destructive_disallow &&
3670                     dtrace_priv_proc_control(state, mstate) &&
3671                     !dtrace_istoxic(kaddr, size)) {
3672                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3673                         dtrace_copyout(kaddr, uaddr, size, flags);
3674                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3675                 }
3676                 break;
3677         }
3678 
3679         case DIF_SUBR_COPYOUTSTR: {
3680                 uintptr_t kaddr = tupregs[0].dttk_value;
3681                 uintptr_t uaddr = tupregs[1].dttk_value;
3682                 uint64_t size = tupregs[2].dttk_value;
3683 
3684                 if (!dtrace_destructive_disallow &&
3685                     dtrace_priv_proc_control(state, mstate) &&
3686                     !dtrace_istoxic(kaddr, size)) {
3687                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3688                         dtrace_copyoutstr(kaddr, uaddr, size, flags);
3689                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3690                 }
3691                 break;
3692         }
3693 
3694         case DIF_SUBR_STRLEN: {
3695                 size_t sz;
3696                 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3697                 sz = dtrace_strlen((char *)addr,
3698                     state->dts_options[DTRACEOPT_STRSIZE]);
3699 
3700                 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3701                         regs[rd] = NULL;
3702                         break;
3703                 }
3704 
3705                 regs[rd] = sz;
3706 
3707                 break;
3708         }
3709 
3710         case DIF_SUBR_STRCHR:
3711         case DIF_SUBR_STRRCHR: {
3712                 /*
3713                  * We're going to iterate over the string looking for the
3714                  * specified character.  We will iterate until we have reached
3715                  * the string length or we have found the character.  If this
3716                  * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3717                  * of the specified character instead of the first.
3718                  */
3719                 uintptr_t saddr = tupregs[0].dttk_value;
3720                 uintptr_t addr = tupregs[0].dttk_value;
3721                 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3722                 char c, target = (char)tupregs[1].dttk_value;
3723 
3724                 for (regs[rd] = NULL; addr < limit; addr++) {
3725                         if ((c = dtrace_load8(addr)) == target) {
3726                                 regs[rd] = addr;
3727 
3728                                 if (subr == DIF_SUBR_STRCHR)
3729                                         break;
3730                         }
3731 
3732                         if (c == '\0')
3733                                 break;
3734                 }
3735 
3736                 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3737                         regs[rd] = NULL;
3738                         break;
3739                 }
3740 
3741                 break;
3742         }
3743 
3744         case DIF_SUBR_STRSTR:
3745         case DIF_SUBR_INDEX:
3746         case DIF_SUBR_RINDEX: {
3747                 /*
3748                  * We're going to iterate over the string looking for the
3749                  * specified string.  We will iterate until we have reached
3750                  * the string length or we have found the string.  (Yes, this
3751                  * is done in the most naive way possible -- but considering
3752                  * that the string we're searching for is likely to be
3753                  * relatively short, the complexity of Rabin-Karp or similar
3754                  * hardly seems merited.)
3755                  */
3756                 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3757                 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3758                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3759                 size_t len = dtrace_strlen(addr, size);
3760                 size_t sublen = dtrace_strlen(substr, size);
3761                 char *limit = addr + len, *orig = addr;
3762                 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3763                 int inc = 1;
3764 
3765                 regs[rd] = notfound;
3766 
3767                 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3768                         regs[rd] = NULL;
3769                         break;
3770                 }
3771 
3772                 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3773                     vstate)) {
3774                         regs[rd] = NULL;
3775                         break;
3776                 }
3777 
3778                 /*
3779                  * strstr() and index()/rindex() have similar semantics if
3780                  * both strings are the empty string: strstr() returns a
3781                  * pointer to the (empty) string, and index() and rindex()
3782                  * both return index 0 (regardless of any position argument).
3783                  */
3784                 if (sublen == 0 && len == 0) {
3785                         if (subr == DIF_SUBR_STRSTR)
3786                                 regs[rd] = (uintptr_t)addr;
3787                         else
3788                                 regs[rd] = 0;
3789                         break;
3790                 }
3791 
3792                 if (subr != DIF_SUBR_STRSTR) {
3793                         if (subr == DIF_SUBR_RINDEX) {
3794                                 limit = orig - 1;
3795                                 addr += len;
3796                                 inc = -1;
3797                         }
3798 
3799                         /*
3800                          * Both index() and rindex() take an optional position
3801                          * argument that denotes the starting position.
3802                          */
3803                         if (nargs == 3) {
3804                                 int64_t pos = (int64_t)tupregs[2].dttk_value;
3805 
3806                                 /*
3807                                  * If the position argument to index() is
3808                                  * negative, Perl implicitly clamps it at
3809                                  * zero.  This semantic is a little surprising
3810                                  * given the special meaning of negative
3811                                  * positions to similar Perl functions like
3812                                  * substr(), but it appears to reflect a
3813                                  * notion that index() can start from a
3814                                  * negative index and increment its way up to
3815                                  * the string.  Given this notion, Perl's
3816                                  * rindex() is at least self-consistent in
3817                                  * that it implicitly clamps positions greater
3818                                  * than the string length to be the string
3819                                  * length.  Where Perl completely loses
3820                                  * coherence, however, is when the specified
3821                                  * substring is the empty string ("").  In
3822                                  * this case, even if the position is
3823                                  * negative, rindex() returns 0 -- and even if
3824                                  * the position is greater than the length,
3825                                  * index() returns the string length.  These
3826                                  * semantics violate the notion that index()
3827                                  * should never return a value less than the
3828                                  * specified position and that rindex() should
3829                                  * never return a value greater than the
3830                                  * specified position.  (One assumes that
3831                                  * these semantics are artifacts of Perl's
3832                                  * implementation and not the results of
3833                                  * deliberate design -- it beggars belief that
3834                                  * even Larry Wall could desire such oddness.)
3835                                  * While in the abstract one would wish for
3836                                  * consistent position semantics across
3837                                  * substr(), index() and rindex() -- or at the
3838                                  * very least self-consistent position
3839                                  * semantics for index() and rindex() -- we
3840                                  * instead opt to keep with the extant Perl
3841                                  * semantics, in all their broken glory.  (Do
3842                                  * we have more desire to maintain Perl's
3843                                  * semantics than Perl does?  Probably.)
3844                                  */
3845                                 if (subr == DIF_SUBR_RINDEX) {
3846                                         if (pos < 0) {
3847                                                 if (sublen == 0)
3848                                                         regs[rd] = 0;
3849                                                 break;
3850                                         }
3851 
3852                                         if (pos > len)
3853                                                 pos = len;
3854                                 } else {
3855                                         if (pos < 0)
3856                                                 pos = 0;
3857 
3858                                         if (pos >= len) {
3859                                                 if (sublen == 0)
3860                                                         regs[rd] = len;
3861                                                 break;
3862                                         }
3863                                 }
3864 
3865                                 addr = orig + pos;
3866                         }
3867                 }
3868 
3869                 for (regs[rd] = notfound; addr != limit; addr += inc) {
3870                         if (dtrace_strncmp(addr, substr, sublen) == 0) {
3871                                 if (subr != DIF_SUBR_STRSTR) {
3872                                         /*
3873                                          * As D index() and rindex() are
3874                                          * modeled on Perl (and not on awk),
3875                                          * we return a zero-based (and not a
3876                                          * one-based) index.  (For you Perl
3877                                          * weenies: no, we're not going to add
3878                                          * $[ -- and shouldn't you be at a con
3879                                          * or something?)
3880                                          */
3881                                         regs[rd] = (uintptr_t)(addr - orig);
3882                                         break;
3883                                 }
3884 
3885                                 ASSERT(subr == DIF_SUBR_STRSTR);
3886                                 regs[rd] = (uintptr_t)addr;
3887                                 break;
3888                         }
3889                 }
3890 
3891                 break;
3892         }
3893 
3894         case DIF_SUBR_STRTOK: {
3895                 uintptr_t addr = tupregs[0].dttk_value;
3896                 uintptr_t tokaddr = tupregs[1].dttk_value;
3897                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3898                 uintptr_t limit, toklimit = tokaddr + size;
3899                 uint8_t c, tokmap[32];   /* 256 / 8 */
3900                 char *dest = (char *)mstate->dtms_scratch_ptr;
3901                 int i;
3902 
3903                 /*
3904                  * Check both the token buffer and (later) the input buffer,
3905                  * since both could be non-scratch addresses.
3906                  */
3907                 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3908                         regs[rd] = NULL;
3909                         break;
3910                 }
3911 
3912                 if (!DTRACE_INSCRATCH(mstate, size)) {
3913                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3914                         regs[rd] = NULL;
3915                         break;
3916                 }
3917 
3918                 if (addr == NULL) {
3919                         /*
3920                          * If the address specified is NULL, we use our saved
3921                          * strtok pointer from the mstate.  Note that this
3922                          * means that the saved strtok pointer is _only_
3923                          * valid within multiple enablings of the same probe --
3924                          * it behaves like an implicit clause-local variable.
3925                          */
3926                         addr = mstate->dtms_strtok;
3927                 } else {
3928                         /*
3929                          * If the user-specified address is non-NULL we must
3930                          * access check it.  This is the only time we have
3931                          * a chance to do so, since this address may reside
3932                          * in the string table of this clause-- future calls
3933                          * (when we fetch addr from mstate->dtms_strtok)
3934                          * would fail this access check.
3935                          */
3936                         if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3937                                 regs[rd] = NULL;
3938                                 break;
3939                         }
3940                 }
3941 
3942                 /*
3943                  * First, zero the token map, and then process the token
3944                  * string -- setting a bit in the map for every character
3945                  * found in the token string.
3946                  */
3947                 for (i = 0; i < sizeof (tokmap); i++)
3948                         tokmap[i] = 0;
3949 
3950                 for (; tokaddr < toklimit; tokaddr++) {
3951                         if ((c = dtrace_load8(tokaddr)) == '\0')
3952                                 break;
3953 
3954                         ASSERT((c >> 3) < sizeof (tokmap));
3955                         tokmap[c >> 3] |= (1 << (c & 0x7));
3956                 }
3957 
3958                 for (limit = addr + size; addr < limit; addr++) {
3959                         /*
3960                          * We're looking for a character that is _not_ contained
3961                          * in the token string.
3962                          */
3963                         if ((c = dtrace_load8(addr)) == '\0')
3964                                 break;
3965 
3966                         if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3967                                 break;
3968                 }
3969 
3970                 if (c == '\0') {
3971                         /*
3972                          * We reached the end of the string without finding
3973                          * any character that was not in the token string.
3974                          * We return NULL in this case, and we set the saved
3975                          * address to NULL as well.
3976                          */
3977                         regs[rd] = NULL;
3978                         mstate->dtms_strtok = NULL;
3979                         break;
3980                 }
3981 
3982                 /*
3983                  * From here on, we're copying into the destination string.
3984                  */
3985                 for (i = 0; addr < limit && i < size - 1; addr++) {
3986                         if ((c = dtrace_load8(addr)) == '\0')
3987                                 break;
3988 
3989                         if (tokmap[c >> 3] & (1 << (c & 0x7)))
3990                                 break;
3991 
3992                         ASSERT(i < size);
3993                         dest[i++] = c;
3994                 }
3995 
3996                 ASSERT(i < size);
3997                 dest[i] = '\0';
3998                 regs[rd] = (uintptr_t)dest;
3999                 mstate->dtms_scratch_ptr += size;
4000                 mstate->dtms_strtok = addr;
4001                 break;
4002         }
4003 
4004         case DIF_SUBR_SUBSTR: {
4005                 uintptr_t s = tupregs[0].dttk_value;
4006                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4007                 char *d = (char *)mstate->dtms_scratch_ptr;
4008                 int64_t index = (int64_t)tupregs[1].dttk_value;
4009                 int64_t remaining = (int64_t)tupregs[2].dttk_value;
4010                 size_t len = dtrace_strlen((char *)s, size);
4011                 int64_t i;
4012 
4013                 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4014                         regs[rd] = NULL;
4015                         break;
4016                 }
4017 
4018                 if (!DTRACE_INSCRATCH(mstate, size)) {
4019                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4020                         regs[rd] = NULL;
4021                         break;
4022                 }
4023 
4024                 if (nargs <= 2)
4025                         remaining = (int64_t)size;
4026 
4027                 if (index < 0) {
4028                         index += len;
4029 
4030                         if (index < 0 && index + remaining > 0) {
4031                                 remaining += index;
4032                                 index = 0;
4033                         }
4034                 }
4035 
4036                 if (index >= len || index < 0) {
4037                         remaining = 0;
4038                 } else if (remaining < 0) {
4039                         remaining += len - index;
4040                 } else if (index + remaining > size) {
4041                         remaining = size - index;
4042                 }
4043 
4044                 for (i = 0; i < remaining; i++) {
4045                         if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4046                                 break;
4047                 }
4048 
4049                 d[i] = '\0';
4050 
4051                 mstate->dtms_scratch_ptr += size;
4052                 regs[rd] = (uintptr_t)d;
4053                 break;
4054         }
4055 
4056         case DIF_SUBR_TOUPPER:
4057         case DIF_SUBR_TOLOWER: {
4058                 uintptr_t s = tupregs[0].dttk_value;
4059                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4060                 char *dest = (char *)mstate->dtms_scratch_ptr, c;
4061                 size_t len = dtrace_strlen((char *)s, size);
4062                 char lower, upper, convert;
4063                 int64_t i;
4064 
4065                 if (subr == DIF_SUBR_TOUPPER) {
4066                         lower = 'a';
4067                         upper = 'z';
4068                         convert = 'A';
4069                 } else {
4070                         lower = 'A';
4071                         upper = 'Z';
4072                         convert = 'a';
4073                 }
4074 
4075                 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4076                         regs[rd] = NULL;
4077                         break;
4078                 }
4079 
4080                 if (!DTRACE_INSCRATCH(mstate, size)) {
4081                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4082                         regs[rd] = NULL;
4083                         break;
4084                 }
4085 
4086                 for (i = 0; i < size - 1; i++) {
4087                         if ((c = dtrace_load8(s + i)) == '\0')
4088                                 break;
4089 
4090                         if (c >= lower && c <= upper)
4091                                 c = convert + (c - lower);
4092 
4093                         dest[i] = c;
4094                 }
4095 
4096                 ASSERT(i < size);
4097                 dest[i] = '\0';
4098                 regs[rd] = (uintptr_t)dest;
4099                 mstate->dtms_scratch_ptr += size;
4100                 break;
4101         }
4102 
4103 case DIF_SUBR_GETMAJOR:
4104 #ifdef _LP64
4105                 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4106 #else
4107                 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4108 #endif
4109                 break;
4110 
4111         case DIF_SUBR_GETMINOR:
4112 #ifdef _LP64
4113                 regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4114 #else
4115                 regs[rd] = tupregs[0].dttk_value & MAXMIN;
4116 #endif
4117                 break;
4118 
4119         case DIF_SUBR_DDI_PATHNAME: {
4120                 /*
4121                  * This one is a galactic mess.  We are going to roughly
4122                  * emulate ddi_pathname(), but it's made more complicated
4123                  * by the fact that we (a) want to include the minor name and
4124                  * (b) must proceed iteratively instead of recursively.
4125                  */
4126                 uintptr_t dest = mstate->dtms_scratch_ptr;
4127                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4128                 char *start = (char *)dest, *end = start + size - 1;
4129                 uintptr_t daddr = tupregs[0].dttk_value;
4130                 int64_t minor = (int64_t)tupregs[1].dttk_value;
4131                 char *s;
4132                 int i, len, depth = 0;
4133 
4134                 /*
4135                  * Due to all the pointer jumping we do and context we must
4136                  * rely upon, we just mandate that the user must have kernel
4137                  * read privileges to use this routine.
4138                  */
4139                 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
4140                         *flags |= CPU_DTRACE_KPRIV;
4141                         *illval = daddr;
4142                         regs[rd] = NULL;
4143                 }
4144 
4145                 if (!DTRACE_INSCRATCH(mstate, size)) {
4146                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4147                         regs[rd] = NULL;
4148                         break;
4149                 }
4150 
4151                 *end = '\0';
4152 
4153                 /*
4154                  * We want to have a name for the minor.  In order to do this,
4155                  * we need to walk the minor list from the devinfo.  We want
4156                  * to be sure that we don't infinitely walk a circular list,
4157                  * so we check for circularity by sending a scout pointer
4158                  * ahead two elements for every element that we iterate over;
4159                  * if the list is circular, these will ultimately point to the
4160                  * same element.  You may recognize this little trick as the
4161                  * answer to a stupid interview question -- one that always
4162                  * seems to be asked by those who had to have it laboriously
4163                  * explained to them, and who can't even concisely describe
4164                  * the conditions under which one would be forced to resort to
4165                  * this technique.  Needless to say, those conditions are
4166                  * found here -- and probably only here.  Is this the only use
4167                  * of this infamous trick in shipping, production code?  If it
4168                  * isn't, it probably should be...
4169                  */
4170                 if (minor != -1) {
4171                         uintptr_t maddr = dtrace_loadptr(daddr +
4172                             offsetof(struct dev_info, devi_minor));
4173 
4174                         uintptr_t next = offsetof(struct ddi_minor_data, next);
4175                         uintptr_t name = offsetof(struct ddi_minor_data,
4176                             d_minor) + offsetof(struct ddi_minor, name);
4177                         uintptr_t dev = offsetof(struct ddi_minor_data,
4178                             d_minor) + offsetof(struct ddi_minor, dev);
4179                         uintptr_t scout;
4180 
4181                         if (maddr != NULL)
4182                                 scout = dtrace_loadptr(maddr + next);
4183 
4184                         while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4185                                 uint64_t m;
4186 #ifdef _LP64
4187                                 m = dtrace_load64(maddr + dev) & MAXMIN64;
4188 #else
4189                                 m = dtrace_load32(maddr + dev) & MAXMIN;
4190 #endif
4191                                 if (m != minor) {
4192                                         maddr = dtrace_loadptr(maddr + next);
4193 
4194                                         if (scout == NULL)
4195                                                 continue;
4196 
4197                                         scout = dtrace_loadptr(scout + next);
4198 
4199                                         if (scout == NULL)
4200                                                 continue;
4201 
4202                                         scout = dtrace_loadptr(scout + next);
4203 
4204                                         if (scout == NULL)
4205                                                 continue;
4206 
4207                                         if (scout == maddr) {
4208                                                 *flags |= CPU_DTRACE_ILLOP;
4209                                                 break;
4210                                         }
4211 
4212                                         continue;
4213                                 }
4214 
4215                                 /*
4216                                  * We have the minor data.  Now we need to
4217                                  * copy the minor's name into the end of the
4218                                  * pathname.
4219                                  */
4220                                 s = (char *)dtrace_loadptr(maddr + name);
4221                                 len = dtrace_strlen(s, size);
4222 
4223                                 if (*flags & CPU_DTRACE_FAULT)
4224                                         break;
4225 
4226                                 if (len != 0) {
4227                                         if ((end -= (len + 1)) < start)
4228                                                 break;
4229 
4230                                         *end = ':';
4231                                 }
4232 
4233                                 for (i = 1; i <= len; i++)
4234                                         end[i] = dtrace_load8((uintptr_t)s++);
4235                                 break;
4236                         }
4237                 }
4238 
4239                 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4240                         ddi_node_state_t devi_state;
4241 
4242                         devi_state = dtrace_load32(daddr +
4243                             offsetof(struct dev_info, devi_node_state));
4244 
4245                         if (*flags & CPU_DTRACE_FAULT)
4246                                 break;
4247 
4248                         if (devi_state >= DS_INITIALIZED) {
4249                                 s = (char *)dtrace_loadptr(daddr +
4250                                     offsetof(struct dev_info, devi_addr));
4251                                 len = dtrace_strlen(s, size);
4252 
4253                                 if (*flags & CPU_DTRACE_FAULT)
4254                                         break;
4255 
4256                                 if (len != 0) {
4257                                         if ((end -= (len + 1)) < start)
4258                                                 break;
4259 
4260                                         *end = '@';
4261                                 }
4262 
4263                                 for (i = 1; i <= len; i++)
4264                                         end[i] = dtrace_load8((uintptr_t)s++);
4265                         }
4266 
4267                         /*
4268                          * Now for the node name...
4269                          */
4270                         s = (char *)dtrace_loadptr(daddr +
4271                             offsetof(struct dev_info, devi_node_name));
4272 
4273                         daddr = dtrace_loadptr(daddr +
4274                             offsetof(struct dev_info, devi_parent));
4275 
4276                         /*
4277                          * If our parent is NULL (that is, if we're the root
4278                          * node), we're going to use the special path
4279                          * "devices".
4280                          */
4281                         if (daddr == NULL)
4282                                 s = "devices";
4283 
4284                         len = dtrace_strlen(s, size);
4285                         if (*flags & CPU_DTRACE_FAULT)
4286                                 break;
4287 
4288                         if ((end -= (len + 1)) < start)
4289                                 break;
4290 
4291                         for (i = 1; i <= len; i++)
4292                                 end[i] = dtrace_load8((uintptr_t)s++);
4293                         *end = '/';
4294 
4295                         if (depth++ > dtrace_devdepth_max) {
4296                                 *flags |= CPU_DTRACE_ILLOP;
4297                                 break;
4298                         }
4299                 }
4300 
4301                 if (end < start)
4302                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4303 
4304                 if (daddr == NULL) {
4305                         regs[rd] = (uintptr_t)end;
4306                         mstate->dtms_scratch_ptr += size;
4307                 }
4308 
4309                 break;
4310         }
4311 
4312         case DIF_SUBR_STRJOIN: {
4313                 char *d = (char *)mstate->dtms_scratch_ptr;
4314                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4315                 uintptr_t s1 = tupregs[0].dttk_value;
4316                 uintptr_t s2 = tupregs[1].dttk_value;
4317                 int i = 0;
4318 
4319                 if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4320                     !dtrace_strcanload(s2, size, mstate, vstate)) {
4321                         regs[rd] = NULL;
4322                         break;
4323                 }
4324 
4325                 if (!DTRACE_INSCRATCH(mstate, size)) {
4326                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4327                         regs[rd] = NULL;
4328                         break;
4329                 }
4330 
4331                 for (;;) {
4332                         if (i >= size) {
4333                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4334                                 regs[rd] = NULL;
4335                                 break;
4336                         }
4337 
4338                         if ((d[i++] = dtrace_load8(s1++)) == '\0') {
4339                                 i--;
4340                                 break;
4341                         }
4342                 }
4343 
4344                 for (;;) {
4345                         if (i >= size) {
4346                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4347                                 regs[rd] = NULL;
4348                                 break;
4349                         }
4350 
4351                         if ((d[i++] = dtrace_load8(s2++)) == '\0')
4352                                 break;
4353                 }
4354 
4355                 if (i < size) {
4356                         mstate->dtms_scratch_ptr += i;
4357                         regs[rd] = (uintptr_t)d;
4358                 }
4359 
4360                 break;
4361         }
4362 
4363         case DIF_SUBR_LLTOSTR: {
4364                 int64_t i = (int64_t)tupregs[0].dttk_value;
4365                 uint64_t val, digit;
4366                 uint64_t size = 65;     /* enough room for 2^64 in binary */
4367                 char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4368                 int base = 10;
4369 
4370                 if (nargs > 1) {
4371                         if ((base = tupregs[1].dttk_value) <= 1 ||
4372                             base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
4373                                 *flags |= CPU_DTRACE_ILLOP;
4374                                 break;
4375                         }
4376                 }
4377 
4378                 val = (base == 10 && i < 0) ? i * -1 : i;
4379 
4380                 if (!DTRACE_INSCRATCH(mstate, size)) {
4381                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4382                         regs[rd] = NULL;
4383                         break;
4384                 }
4385 
4386                 for (*end-- = '\0'; val; val /= base) {
4387                         if ((digit = val % base) <= '9' - '0') {
4388                                 *end-- = '0' + digit;
4389                         } else {
4390                                 *end-- = 'a' + (digit - ('9' - '0') - 1);
4391                         }
4392                 }
4393 
4394                 if (i == 0 && base == 16)
4395                         *end-- = '0';
4396 
4397                 if (base == 16)
4398                         *end-- = 'x';
4399 
4400                 if (i == 0 || base == 8 || base == 16)
4401                         *end-- = '0';
4402 
4403                 if (i < 0 && base == 10)
4404                         *end-- = '-';
4405 
4406                 regs[rd] = (uintptr_t)end + 1;
4407                 mstate->dtms_scratch_ptr += size;
4408                 break;
4409         }
4410 
4411         case DIF_SUBR_HTONS:
4412         case DIF_SUBR_NTOHS:
4413 #ifdef _BIG_ENDIAN
4414                 regs[rd] = (uint16_t)tupregs[0].dttk_value;
4415 #else
4416                 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4417 #endif
4418                 break;
4419 
4420 
4421         case DIF_SUBR_HTONL:
4422         case DIF_SUBR_NTOHL:
4423 #ifdef _BIG_ENDIAN
4424                 regs[rd] = (uint32_t)tupregs[0].dttk_value;
4425 #else
4426                 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
4427 #endif
4428                 break;
4429 
4430 
4431         case DIF_SUBR_HTONLL:
4432         case DIF_SUBR_NTOHLL:
4433 #ifdef _BIG_ENDIAN
4434                 regs[rd] = (uint64_t)tupregs[0].dttk_value;
4435 #else
4436                 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
4437 #endif
4438                 break;
4439 
4440 
4441         case DIF_SUBR_DIRNAME:
4442         case DIF_SUBR_BASENAME: {
4443                 char *dest = (char *)mstate->dtms_scratch_ptr;
4444                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4445                 uintptr_t src = tupregs[0].dttk_value;
4446                 int i, j, len = dtrace_strlen((char *)src, size);
4447                 int lastbase = -1, firstbase = -1, lastdir = -1;
4448                 int start, end;
4449 
4450                 if (!dtrace_canload(src, len + 1, mstate, vstate)) {
4451                         regs[rd] = NULL;
4452                         break;
4453                 }
4454 
4455                 if (!DTRACE_INSCRATCH(mstate, size)) {
4456                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4457                         regs[rd] = NULL;
4458                         break;
4459                 }
4460 
4461                 /*
4462                  * The basename and dirname for a zero-length string is
4463                  * defined to be "."
4464                  */
4465                 if (len == 0) {
4466                         len = 1;
4467                         src = (uintptr_t)".";
4468                 }
4469 
4470                 /*
4471                  * Start from the back of the string, moving back toward the
4472                  * front until we see a character that isn't a slash.  That
4473                  * character is the last character in the basename.
4474                  */
4475                 for (i = len - 1; i >= 0; i--) {
4476                         if (dtrace_load8(src + i) != '/')
4477                                 break;
4478                 }
4479 
4480                 if (i >= 0)
4481                         lastbase = i;
4482 
4483                 /*
4484                  * Starting from the last character in the basename, move
4485                  * towards the front until we find a slash.  The character
4486                  * that we processed immediately before that is the first
4487                  * character in the basename.
4488                  */
4489                 for (; i >= 0; i--) {
4490                         if (dtrace_load8(src + i) == '/')
4491                                 break;
4492                 }
4493 
4494                 if (i >= 0)
4495                         firstbase = i + 1;
4496 
4497                 /*
4498                  * Now keep going until we find a non-slash character.  That
4499                  * character is the last character in the dirname.
4500                  */
4501                 for (; i >= 0; i--) {
4502                         if (dtrace_load8(src + i) != '/')
4503                                 break;
4504                 }
4505 
4506                 if (i >= 0)
4507                         lastdir = i;
4508 
4509                 ASSERT(!(lastbase == -1 && firstbase != -1));
4510                 ASSERT(!(firstbase == -1 && lastdir != -1));
4511 
4512                 if (lastbase == -1) {
4513                         /*
4514                          * We didn't find a non-slash character.  We know that
4515                          * the length is non-zero, so the whole string must be
4516                          * slashes.  In either the dirname or the basename
4517                          * case, we return '/'.
4518                          */
4519                         ASSERT(firstbase == -1);
4520                         firstbase = lastbase = lastdir = 0;
4521                 }
4522 
4523                 if (firstbase == -1) {
4524                         /*
4525                          * The entire string consists only of a basename
4526                          * component.  If we're looking for dirname, we need
4527                          * to change our string to be just "."; if we're
4528                          * looking for a basename, we'll just set the first
4529                          * character of the basename to be 0.
4530                          */
4531                         if (subr == DIF_SUBR_DIRNAME) {
4532                                 ASSERT(lastdir == -1);
4533                                 src = (uintptr_t)".";
4534                                 lastdir = 0;
4535                         } else {
4536                                 firstbase = 0;
4537                         }
4538                 }
4539 
4540                 if (subr == DIF_SUBR_DIRNAME) {
4541                         if (lastdir == -1) {
4542                                 /*
4543                                  * We know that we have a slash in the name --
4544                                  * or lastdir would be set to 0, above.  And
4545                                  * because lastdir is -1, we know that this
4546                                  * slash must be the first character.  (That
4547                                  * is, the full string must be of the form
4548                                  * "/basename".)  In this case, the last
4549                                  * character of the directory name is 0.
4550                                  */
4551                                 lastdir = 0;
4552                         }
4553 
4554                         start = 0;
4555                         end = lastdir;
4556                 } else {
4557                         ASSERT(subr == DIF_SUBR_BASENAME);
4558                         ASSERT(firstbase != -1 && lastbase != -1);
4559                         start = firstbase;
4560                         end = lastbase;
4561                 }
4562 
4563                 for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
4564                         dest[j] = dtrace_load8(src + i);
4565 
4566                 dest[j] = '\0';
4567                 regs[rd] = (uintptr_t)dest;
4568                 mstate->dtms_scratch_ptr += size;
4569                 break;
4570         }
4571 
4572         case DIF_SUBR_GETF: {
4573                 uintptr_t fd = tupregs[0].dttk_value;
4574                 uf_info_t *finfo = &curthread->t_procp->p_user.u_finfo;
4575                 file_t *fp;
4576 
4577                 if (!dtrace_priv_proc(state, mstate)) {
4578                         regs[rd] = NULL;
4579                         break;
4580                 }
4581 
4582                 /*
4583                  * This is safe because fi_nfiles only increases, and the
4584                  * fi_list array is not freed when the array size doubles.
4585                  * (See the comment in flist_grow() for details on the
4586                  * management of the u_finfo structure.)
4587                  */
4588                 fp = fd < finfo->fi_nfiles ? finfo->fi_list[fd].uf_file : NULL;
4589 
4590                 mstate->dtms_getf = fp;
4591                 regs[rd] = (uintptr_t)fp;
4592                 break;
4593         }
4594 
4595         case DIF_SUBR_CLEANPATH: {
4596                 char *dest = (char *)mstate->dtms_scratch_ptr, c;
4597                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4598                 uintptr_t src = tupregs[0].dttk_value;
4599                 int i = 0, j = 0;
4600                 zone_t *z;
4601 
4602                 if (!dtrace_strcanload(src, size, mstate, vstate)) {
4603                         regs[rd] = NULL;
4604                         break;
4605                 }
4606 
4607                 if (!DTRACE_INSCRATCH(mstate, size)) {
4608                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4609                         regs[rd] = NULL;
4610                         break;
4611                 }
4612 
4613                 /*
4614                  * Move forward, loading each character.
4615                  */
4616                 do {
4617                         c = dtrace_load8(src + i++);
4618 next:
4619                         if (j + 5 >= size)   /* 5 = strlen("/..c\0") */
4620                                 break;
4621 
4622                         if (c != '/') {
4623                                 dest[j++] = c;
4624                                 continue;
4625                         }
4626 
4627                         c = dtrace_load8(src + i++);
4628 
4629                         if (c == '/') {
4630                                 /*
4631                                  * We have two slashes -- we can just advance
4632                                  * to the next character.
4633                                  */
4634                                 goto next;
4635                         }
4636 
4637                         if (c != '.') {
4638                                 /*
4639                                  * This is not "." and it's not ".." -- we can
4640                                  * just store the "/" and this character and
4641                                  * drive on.
4642                                  */
4643                                 dest[j++] = '/';
4644                                 dest[j++] = c;
4645                                 continue;
4646                         }
4647 
4648                         c = dtrace_load8(src + i++);
4649 
4650                         if (c == '/') {
4651                                 /*
4652                                  * This is a "/./" component.  We're not going
4653                                  * to store anything in the destination buffer;
4654                                  * we're just going to go to the next component.
4655                                  */
4656                                 goto next;
4657                         }
4658 
4659                         if (c != '.') {
4660                                 /*
4661                                  * This is not ".." -- we can just store the
4662                                  * "/." and this character and continue
4663                                  * processing.
4664                                  */
4665                                 dest[j++] = '/';
4666                                 dest[j++] = '.';
4667                                 dest[j++] = c;
4668                                 continue;
4669                         }
4670 
4671                         c = dtrace_load8(src + i++);
4672 
4673                         if (c != '/' && c != '\0') {
4674                                 /*
4675                                  * This is not ".." -- it's "..[mumble]".
4676                                  * We'll store the "/.." and this character
4677                                  * and continue processing.
4678                                  */
4679                                 dest[j++] = '/';
4680                                 dest[j++] = '.';
4681                                 dest[j++] = '.';
4682                                 dest[j++] = c;
4683                                 continue;
4684                         }
4685 
4686                         /*
4687                          * This is "/../" or "/..\0".  We need to back up
4688                          * our destination pointer until we find a "/".
4689                          */
4690                         i--;
4691                         while (j != 0 && dest[--j] != '/')
4692                                 continue;
4693 
4694                         if (c == '\0')
4695                                 dest[++j] = '/';
4696                 } while (c != '\0');
4697 
4698                 dest[j] = '\0';
4699 
4700                 if (mstate->dtms_getf != NULL &&
4701                     !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) &&
4702                     (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) {
4703                         /*
4704                          * If we've done a getf() as a part of this ECB and we
4705                          * don't have kernel access (and we're not in the global
4706                          * zone), check if the path we cleaned up begins with
4707                          * the zone's root path, and trim it off if so.  Note
4708                          * that this is an output cleanliness issue, not a
4709                          * security issue: knowing one's zone root path does
4710                          * not enable privilege escalation.
4711                          */
4712                         if (strstr(dest, z->zone_rootpath) == dest)
4713                                 dest += strlen(z->zone_rootpath) - 1;
4714                 }
4715 
4716                 regs[rd] = (uintptr_t)dest;
4717                 mstate->dtms_scratch_ptr += size;
4718                 break;
4719         }
4720 
4721         case DIF_SUBR_INET_NTOA:
4722         case DIF_SUBR_INET_NTOA6:
4723         case DIF_SUBR_INET_NTOP: {
4724                 size_t size;
4725                 int af, argi, i;
4726                 char *base, *end;
4727 
4728                 if (subr == DIF_SUBR_INET_NTOP) {
4729                         af = (int)tupregs[0].dttk_value;
4730                         argi = 1;
4731                 } else {
4732                         af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
4733                         argi = 0;
4734                 }
4735 
4736                 if (af == AF_INET) {
4737                         ipaddr_t ip4;
4738                         uint8_t *ptr8, val;
4739 
4740                         /*
4741                          * Safely load the IPv4 address.
4742                          */
4743                         ip4 = dtrace_load32(tupregs[argi].dttk_value);
4744 
4745                         /*
4746                          * Check an IPv4 string will fit in scratch.
4747                          */
4748                         size = INET_ADDRSTRLEN;
4749                         if (!DTRACE_INSCRATCH(mstate, size)) {
4750                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4751                                 regs[rd] = NULL;
4752                                 break;
4753                         }
4754                         base = (char *)mstate->dtms_scratch_ptr;
4755                         end = (char *)mstate->dtms_scratch_ptr + size - 1;
4756 
4757                         /*
4758                          * Stringify as a dotted decimal quad.
4759                          */
4760                         *end-- = '\0';
4761                         ptr8 = (uint8_t *)&ip4;
4762                         for (i = 3; i >= 0; i--) {
4763                                 val = ptr8[i];
4764 
4765                                 if (val == 0) {
4766                                         *end-- = '0';
4767                                 } else {
4768                                         for (; val; val /= 10) {
4769                                                 *end-- = '0' + (val % 10);
4770                                         }
4771                                 }
4772 
4773                                 if (i > 0)
4774                                         *end-- = '.';
4775                         }
4776                         ASSERT(end + 1 >= base);
4777 
4778                 } else if (af == AF_INET6) {
4779                         struct in6_addr ip6;
4780                         int firstzero, tryzero, numzero, v6end;
4781                         uint16_t val;
4782                         const char digits[] = "0123456789abcdef";
4783 
4784                         /*
4785                          * Stringify using RFC 1884 convention 2 - 16 bit
4786                          * hexadecimal values with a zero-run compression.
4787                          * Lower case hexadecimal digits are used.
4788                          *      eg, fe80::214:4fff:fe0b:76c8.
4789                          * The IPv4 embedded form is returned for inet_ntop,
4790                          * just the IPv4 string is returned for inet_ntoa6.
4791                          */
4792 
4793                         /*
4794                          * Safely load the IPv6 address.
4795                          */
4796                         dtrace_bcopy(
4797                             (void *)(uintptr_t)tupregs[argi].dttk_value,
4798                             (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
4799 
4800                         /*
4801                          * Check an IPv6 string will fit in scratch.
4802                          */
4803                         size = INET6_ADDRSTRLEN;
4804                         if (!DTRACE_INSCRATCH(mstate, size)) {
4805                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4806                                 regs[rd] = NULL;
4807                                 break;
4808                         }
4809                         base = (char *)mstate->dtms_scratch_ptr;
4810                         end = (char *)mstate->dtms_scratch_ptr + size - 1;
4811                         *end-- = '\0';
4812 
4813                         /*
4814                          * Find the longest run of 16 bit zero values
4815                          * for the single allowed zero compression - "::".
4816                          */
4817                         firstzero = -1;
4818                         tryzero = -1;
4819                         numzero = 1;
4820                         for (i = 0; i < sizeof (struct in6_addr); i++) {
4821                                 if (ip6._S6_un._S6_u8[i] == 0 &&
4822                                     tryzero == -1 && i % 2 == 0) {
4823                                         tryzero = i;
4824                                         continue;
4825                                 }
4826 
4827                                 if (tryzero != -1 &&
4828                                     (ip6._S6_un._S6_u8[i] != 0 ||
4829                                     i == sizeof (struct in6_addr) - 1)) {
4830 
4831                                         if (i - tryzero <= numzero) {
4832                                                 tryzero = -1;
4833                                                 continue;
4834                                         }
4835 
4836                                         firstzero = tryzero;
4837                                         numzero = i - i % 2 - tryzero;
4838                                         tryzero = -1;
4839 
4840                                         if (ip6._S6_un._S6_u8[i] == 0 &&
4841                                             i == sizeof (struct in6_addr) - 1)
4842                                                 numzero += 2;
4843                                 }
4844                         }
4845                         ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
4846 
4847                         /*
4848                          * Check for an IPv4 embedded address.
4849                          */
4850                         v6end = sizeof (struct in6_addr) - 2;
4851                         if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
4852                             IN6_IS_ADDR_V4COMPAT(&ip6)) {
4853                                 for (i = sizeof (struct in6_addr) - 1;
4854                                     i >= DTRACE_V4MAPPED_OFFSET; i--) {
4855                                         ASSERT(end >= base);
4856 
4857                                         val = ip6._S6_un._S6_u8[i];
4858 
4859                                         if (val == 0) {
4860                                                 *end-- = '0';
4861                                         } else {
4862                                                 for (; val; val /= 10) {
4863                                                         *end-- = '0' + val % 10;
4864                                                 }
4865                                         }
4866 
4867                                         if (i > DTRACE_V4MAPPED_OFFSET)
4868                                                 *end-- = '.';
4869                                 }
4870 
4871                                 if (subr == DIF_SUBR_INET_NTOA6)
4872                                         goto inetout;
4873 
4874                                 /*
4875                                  * Set v6end to skip the IPv4 address that
4876                                  * we have already stringified.
4877                                  */
4878                                 v6end = 10;
4879                         }
4880 
4881                         /*
4882                          * Build the IPv6 string by working through the
4883                          * address in reverse.
4884                          */
4885                         for (i = v6end; i >= 0; i -= 2) {
4886                                 ASSERT(end >= base);
4887 
4888                                 if (i == firstzero + numzero - 2) {
4889                                         *end-- = ':';
4890                                         *end-- = ':';
4891                                         i -= numzero - 2;
4892                                         continue;
4893                                 }
4894 
4895                                 if (i < 14 && i != firstzero - 2)
4896                                         *end-- = ':';
4897 
4898                                 val = (ip6._S6_un._S6_u8[i] << 8) +
4899                                     ip6._S6_un._S6_u8[i + 1];
4900 
4901                                 if (val == 0) {
4902                                         *end-- = '0';
4903                                 } else {
4904                                         for (; val; val /= 16) {
4905                                                 *end-- = digits[val % 16];
4906                                         }
4907                                 }
4908                         }
4909                         ASSERT(end + 1 >= base);
4910 
4911                 } else {
4912                         /*
4913                          * The user didn't use AH_INET or AH_INET6.
4914                          */
4915                         DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4916                         regs[rd] = NULL;
4917                         break;
4918                 }
4919 
4920 inetout:        regs[rd] = (uintptr_t)end + 1;
4921                 mstate->dtms_scratch_ptr += size;
4922                 break;
4923         }
4924 
4925         }
4926 }
4927 
4928 /*
4929  * Emulate the execution of DTrace IR instructions specified by the given
4930  * DIF object.  This function is deliberately void of assertions as all of
4931  * the necessary checks are handled by a call to dtrace_difo_validate().
4932  */
4933 static uint64_t
4934 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4935     dtrace_vstate_t *vstate, dtrace_state_t *state)
4936 {
4937         const dif_instr_t *text = difo->dtdo_buf;
4938         const uint_t textlen = difo->dtdo_len;
4939         const char *strtab = difo->dtdo_strtab;
4940         const uint64_t *inttab = difo->dtdo_inttab;
4941 
4942         uint64_t rval = 0;
4943         dtrace_statvar_t *svar;
4944         dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
4945         dtrace_difv_t *v;
4946         volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
4947         volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
4948 
4949         dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
4950         uint64_t regs[DIF_DIR_NREGS];
4951         uint64_t *tmp;
4952 
4953         uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
4954         int64_t cc_r;
4955         uint_t pc = 0, id, opc;
4956         uint8_t ttop = 0;
4957         dif_instr_t instr;
4958         uint_t r1, r2, rd;
4959 
4960         /*
4961          * We stash the current DIF object into the machine state: we need it
4962          * for subsequent access checking.
4963          */
4964         mstate->dtms_difo = difo;
4965 
4966         regs[DIF_REG_R0] = 0;           /* %r0 is fixed at zero */
4967 
4968         while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
4969                 opc = pc;
4970 
4971                 instr = text[pc++];
4972                 r1 = DIF_INSTR_R1(instr);
4973                 r2 = DIF_INSTR_R2(instr);
4974                 rd = DIF_INSTR_RD(instr);
4975 
4976                 switch (DIF_INSTR_OP(instr)) {
4977                 case DIF_OP_OR:
4978                         regs[rd] = regs[r1] | regs[r2];
4979                         break;
4980                 case DIF_OP_XOR:
4981                         regs[rd] = regs[r1] ^ regs[r2];
4982                         break;
4983                 case DIF_OP_AND:
4984                         regs[rd] = regs[r1] & regs[r2];
4985                         break;
4986                 case DIF_OP_SLL:
4987                         regs[rd] = regs[r1] << regs[r2];
4988                         break;
4989                 case DIF_OP_SRL:
4990                         regs[rd] = regs[r1] >> regs[r2];
4991                         break;
4992                 case DIF_OP_SUB:
4993                         regs[rd] = regs[r1] - regs[r2];
4994                         break;
4995                 case DIF_OP_ADD:
4996                         regs[rd] = regs[r1] + regs[r2];
4997                         break;
4998                 case DIF_OP_MUL:
4999                         regs[rd] = regs[r1] * regs[r2];
5000                         break;
5001                 case DIF_OP_SDIV:
5002                         if (regs[r2] == 0) {
5003                                 regs[rd] = 0;
5004                                 *flags |= CPU_DTRACE_DIVZERO;
5005                         } else {
5006                                 regs[rd] = (int64_t)regs[r1] /
5007                                     (int64_t)regs[r2];
5008                         }
5009                         break;
5010 
5011                 case DIF_OP_UDIV:
5012                         if (regs[r2] == 0) {
5013                                 regs[rd] = 0;
5014                                 *flags |= CPU_DTRACE_DIVZERO;
5015                         } else {
5016                                 regs[rd] = regs[r1] / regs[r2];
5017                         }
5018                         break;
5019 
5020                 case DIF_OP_SREM:
5021                         if (regs[r2] == 0) {
5022                                 regs[rd] = 0;
5023                                 *flags |= CPU_DTRACE_DIVZERO;
5024                         } else {
5025                                 regs[rd] = (int64_t)regs[r1] %
5026                                     (int64_t)regs[r2];
5027                         }
5028                         break;
5029 
5030                 case DIF_OP_UREM:
5031                         if (regs[r2] == 0) {
5032                                 regs[rd] = 0;
5033                                 *flags |= CPU_DTRACE_DIVZERO;
5034                         } else {
5035                                 regs[rd] = regs[r1] % regs[r2];
5036                         }
5037                         break;
5038 
5039                 case DIF_OP_NOT:
5040                         regs[rd] = ~regs[r1];
5041                         break;
5042                 case DIF_OP_MOV:
5043                         regs[rd] = regs[r1];
5044                         break;
5045                 case DIF_OP_CMP:
5046                         cc_r = regs[r1] - regs[r2];
5047                         cc_n = cc_r < 0;
5048                         cc_z = cc_r == 0;
5049                         cc_v = 0;
5050                         cc_c = regs[r1] < regs[r2];
5051                         break;
5052                 case DIF_OP_TST:
5053                         cc_n = cc_v = cc_c = 0;
5054                         cc_z = regs[r1] == 0;
5055                         break;
5056                 case DIF_OP_BA:
5057                         pc = DIF_INSTR_LABEL(instr);
5058                         break;
5059                 case DIF_OP_BE:
5060                         if (cc_z)
5061                                 pc = DIF_INSTR_LABEL(instr);
5062                         break;
5063                 case DIF_OP_BNE:
5064                         if (cc_z == 0)
5065                                 pc = DIF_INSTR_LABEL(instr);
5066                         break;
5067                 case DIF_OP_BG:
5068                         if ((cc_z | (cc_n ^ cc_v)) == 0)
5069                                 pc = DIF_INSTR_LABEL(instr);
5070                         break;
5071                 case DIF_OP_BGU:
5072                         if ((cc_c | cc_z) == 0)
5073                                 pc = DIF_INSTR_LABEL(instr);
5074                         break;
5075                 case DIF_OP_BGE:
5076                         if ((cc_n ^ cc_v) == 0)
5077                                 pc = DIF_INSTR_LABEL(instr);
5078                         break;
5079                 case DIF_OP_BGEU:
5080                         if (cc_c == 0)
5081                                 pc = DIF_INSTR_LABEL(instr);
5082                         break;
5083                 case DIF_OP_BL:
5084                         if (cc_n ^ cc_v)
5085                                 pc = DIF_INSTR_LABEL(instr);
5086                         break;
5087                 case DIF_OP_BLU:
5088                         if (cc_c)
5089                                 pc = DIF_INSTR_LABEL(instr);
5090                         break;
5091                 case DIF_OP_BLE:
5092                         if (cc_z | (cc_n ^ cc_v))
5093                                 pc = DIF_INSTR_LABEL(instr);
5094                         break;
5095                 case DIF_OP_BLEU:
5096                         if (cc_c | cc_z)
5097                                 pc = DIF_INSTR_LABEL(instr);
5098                         break;
5099                 case DIF_OP_RLDSB:
5100                         if (!dtrace_canload(regs[r1], 1, mstate, vstate))
5101                                 break;
5102                         /*FALLTHROUGH*/
5103                 case DIF_OP_LDSB:
5104                         regs[rd] = (int8_t)dtrace_load8(regs[r1]);
5105                         break;
5106                 case DIF_OP_RLDSH:
5107                         if (!dtrace_canload(regs[r1], 2, mstate, vstate))
5108                                 break;
5109                         /*FALLTHROUGH*/
5110                 case DIF_OP_LDSH:
5111                         regs[rd] = (int16_t)dtrace_load16(regs[r1]);
5112                         break;
5113                 case DIF_OP_RLDSW:
5114                         if (!dtrace_canload(regs[r1], 4, mstate, vstate))
5115                                 break;
5116                         /*FALLTHROUGH*/
5117                 case DIF_OP_LDSW:
5118                         regs[rd] = (int32_t)dtrace_load32(regs[r1]);
5119                         break;
5120                 case DIF_OP_RLDUB:
5121                         if (!dtrace_canload(regs[r1], 1, mstate, vstate))
5122                                 break;
5123                         /*FALLTHROUGH*/
5124                 case DIF_OP_LDUB:
5125                         regs[rd] = dtrace_load8(regs[r1]);
5126                         break;
5127                 case DIF_OP_RLDUH:
5128                         if (!dtrace_canload(regs[r1], 2, mstate, vstate))
5129                                 break;
5130                         /*FALLTHROUGH*/
5131                 case DIF_OP_LDUH:
5132                         regs[rd] = dtrace_load16(regs[r1]);
5133                         break;
5134                 case DIF_OP_RLDUW:
5135                         if (!dtrace_canload(regs[r1], 4, mstate, vstate))
5136                                 break;
5137                         /*FALLTHROUGH*/
5138                 case DIF_OP_LDUW:
5139                         regs[rd] = dtrace_load32(regs[r1]);
5140                         break;
5141                 case DIF_OP_RLDX:
5142                         if (!dtrace_canload(regs[r1], 8, mstate, vstate))
5143                                 break;
5144                         /*FALLTHROUGH*/
5145                 case DIF_OP_LDX:
5146                         regs[rd] = dtrace_load64(regs[r1]);
5147                         break;
5148                 case DIF_OP_ULDSB:
5149                         regs[rd] = (int8_t)
5150                             dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5151                         break;
5152                 case DIF_OP_ULDSH:
5153                         regs[rd] = (int16_t)
5154                             dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5155                         break;
5156                 case DIF_OP_ULDSW:
5157                         regs[rd] = (int32_t)
5158                             dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5159                         break;
5160                 case DIF_OP_ULDUB:
5161                         regs[rd] =
5162                             dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5163                         break;
5164                 case DIF_OP_ULDUH:
5165                         regs[rd] =
5166                             dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5167                         break;
5168                 case DIF_OP_ULDUW:
5169                         regs[rd] =
5170                             dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5171                         break;
5172                 case DIF_OP_ULDX:
5173                         regs[rd] =
5174                             dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5175                         break;
5176                 case DIF_OP_RET:
5177                         rval = regs[rd];
5178                         pc = textlen;
5179                         break;
5180                 case DIF_OP_NOP:
5181                         break;
5182                 case DIF_OP_SETX:
5183                         regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5184                         break;
5185                 case DIF_OP_SETS:
5186                         regs[rd] = (uint64_t)(uintptr_t)
5187                             (strtab + DIF_INSTR_STRING(instr));
5188                         break;
5189                 case DIF_OP_SCMP: {
5190                         size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5191                         uintptr_t s1 = regs[r1];
5192                         uintptr_t s2 = regs[r2];
5193 
5194                         if (s1 != NULL &&
5195                             !dtrace_strcanload(s1, sz, mstate, vstate))
5196                                 break;
5197                         if (s2 != NULL &&
5198                             !dtrace_strcanload(s2, sz, mstate, vstate))
5199                                 break;
5200 
5201                         cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
5202 
5203                         cc_n = cc_r < 0;
5204                         cc_z = cc_r == 0;
5205                         cc_v = cc_c = 0;
5206                         break;
5207                 }
5208                 case DIF_OP_LDGA:
5209                         regs[rd] = dtrace_dif_variable(mstate, state,
5210                             r1, regs[r2]);
5211                         break;
5212                 case DIF_OP_LDGS:
5213                         id = DIF_INSTR_VAR(instr);
5214 
5215                         if (id >= DIF_VAR_OTHER_UBASE) {
5216                                 uintptr_t a;
5217 
5218                                 id -= DIF_VAR_OTHER_UBASE;
5219                                 svar = vstate->dtvs_globals[id];
5220                                 ASSERT(svar != NULL);
5221                                 v = &svar->dtsv_var;
5222 
5223                                 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5224                                         regs[rd] = svar->dtsv_data;
5225                                         break;
5226                                 }
5227 
5228                                 a = (uintptr_t)svar->dtsv_data;
5229 
5230                                 if (*(uint8_t *)a == UINT8_MAX) {
5231                                         /*
5232                                          * If the 0th byte is set to UINT8_MAX
5233                                          * then this is to be treated as a
5234                                          * reference to a NULL variable.
5235                                          */
5236                                         regs[rd] = NULL;
5237                                 } else {
5238                                         regs[rd] = a + sizeof (uint64_t);
5239                                 }
5240 
5241                                 break;
5242                         }
5243 
5244                         regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5245                         break;
5246 
5247                 case DIF_OP_STGS:
5248                         id = DIF_INSTR_VAR(instr);
5249 
5250                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5251                         id -= DIF_VAR_OTHER_UBASE;
5252 
5253                         svar = vstate->dtvs_globals[id];
5254                         ASSERT(svar != NULL);
5255                         v = &svar->dtsv_var;
5256 
5257                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5258                                 uintptr_t a = (uintptr_t)svar->dtsv_data;
5259 
5260                                 ASSERT(a != NULL);
5261                                 ASSERT(svar->dtsv_size != 0);
5262 
5263                                 if (regs[rd] == NULL) {
5264                                         *(uint8_t *)a = UINT8_MAX;
5265                                         break;
5266                                 } else {
5267                                         *(uint8_t *)a = 0;
5268                                         a += sizeof (uint64_t);
5269                                 }
5270                                 if (!dtrace_vcanload(
5271                                     (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5272                                     mstate, vstate))
5273                                         break;
5274 
5275                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5276                                     (void *)a, &v->dtdv_type);
5277                                 break;
5278                         }
5279 
5280                         svar->dtsv_data = regs[rd];
5281                         break;
5282 
5283                 case DIF_OP_LDTA:
5284                         /*
5285                          * There are no DTrace built-in thread-local arrays at
5286                          * present.  This opcode is saved for future work.
5287                          */
5288                         *flags |= CPU_DTRACE_ILLOP;
5289                         regs[rd] = 0;
5290                         break;
5291 
5292                 case DIF_OP_LDLS:
5293                         id = DIF_INSTR_VAR(instr);
5294 
5295                         if (id < DIF_VAR_OTHER_UBASE) {
5296                                 /*
5297                                  * For now, this has no meaning.
5298                                  */
5299                                 regs[rd] = 0;
5300                                 break;
5301                         }
5302 
5303                         id -= DIF_VAR_OTHER_UBASE;
5304 
5305                         ASSERT(id < vstate->dtvs_nlocals);
5306                         ASSERT(vstate->dtvs_locals != NULL);
5307 
5308                         svar = vstate->dtvs_locals[id];
5309                         ASSERT(svar != NULL);
5310                         v = &svar->dtsv_var;
5311 
5312                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5313                                 uintptr_t a = (uintptr_t)svar->dtsv_data;
5314                                 size_t sz = v->dtdv_type.dtdt_size;
5315 
5316                                 sz += sizeof (uint64_t);
5317                                 ASSERT(svar->dtsv_size == NCPU * sz);
5318                                 a += CPU->cpu_id * sz;
5319 
5320                                 if (*(uint8_t *)a == UINT8_MAX) {
5321                                         /*
5322                                          * If the 0th byte is set to UINT8_MAX
5323                                          * then this is to be treated as a
5324                                          * reference to a NULL variable.
5325                                          */
5326                                         regs[rd] = NULL;
5327                                 } else {
5328                                         regs[rd] = a + sizeof (uint64_t);
5329                                 }
5330 
5331                                 break;
5332                         }
5333 
5334                         ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5335                         tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5336                         regs[rd] = tmp[CPU->cpu_id];
5337                         break;
5338 
5339                 case DIF_OP_STLS:
5340                         id = DIF_INSTR_VAR(instr);
5341 
5342                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5343                         id -= DIF_VAR_OTHER_UBASE;
5344                         ASSERT(id < vstate->dtvs_nlocals);
5345 
5346                         ASSERT(vstate->dtvs_locals != NULL);
5347                         svar = vstate->dtvs_locals[id];
5348                         ASSERT(svar != NULL);
5349                         v = &svar->dtsv_var;
5350 
5351                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5352                                 uintptr_t a = (uintptr_t)svar->dtsv_data;
5353                                 size_t sz = v->dtdv_type.dtdt_size;
5354 
5355                                 sz += sizeof (uint64_t);
5356                                 ASSERT(svar->dtsv_size == NCPU * sz);
5357                                 a += CPU->cpu_id * sz;
5358 
5359                                 if (regs[rd] == NULL) {
5360                                         *(uint8_t *)a = UINT8_MAX;
5361                                         break;
5362                                 } else {
5363                                         *(uint8_t *)a = 0;
5364                                         a += sizeof (uint64_t);
5365                                 }
5366 
5367                                 if (!dtrace_vcanload(
5368                                     (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5369                                     mstate, vstate))
5370                                         break;
5371 
5372                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5373                                     (void *)a, &v->dtdv_type);
5374                                 break;
5375                         }
5376 
5377                         ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5378                         tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5379                         tmp[CPU->cpu_id] = regs[rd];
5380                         break;
5381 
5382                 case DIF_OP_LDTS: {
5383                         dtrace_dynvar_t *dvar;
5384                         dtrace_key_t *key;
5385 
5386                         id = DIF_INSTR_VAR(instr);
5387                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5388                         id -= DIF_VAR_OTHER_UBASE;
5389                         v = &vstate->dtvs_tlocals[id];
5390 
5391                         key = &tupregs[DIF_DTR_NREGS];
5392                         key[0].dttk_value = (uint64_t)id;
5393                         key[0].dttk_size = 0;
5394                         DTRACE_TLS_THRKEY(key[1].dttk_value);
5395                         key[1].dttk_size = 0;
5396 
5397                         dvar = dtrace_dynvar(dstate, 2, key,
5398                             sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
5399                             mstate, vstate);
5400 
5401                         if (dvar == NULL) {
5402                                 regs[rd] = 0;
5403                                 break;
5404                         }
5405 
5406                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5407                                 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5408                         } else {
5409                                 regs[rd] = *((uint64_t *)dvar->dtdv_data);
5410                         }
5411 
5412                         break;
5413                 }
5414 
5415                 case DIF_OP_STTS: {
5416                         dtrace_dynvar_t *dvar;
5417                         dtrace_key_t *key;
5418 
5419                         id = DIF_INSTR_VAR(instr);
5420                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5421                         id -= DIF_VAR_OTHER_UBASE;
5422 
5423                         key = &tupregs[DIF_DTR_NREGS];
5424                         key[0].dttk_value = (uint64_t)id;
5425                         key[0].dttk_size = 0;
5426                         DTRACE_TLS_THRKEY(key[1].dttk_value);
5427                         key[1].dttk_size = 0;
5428                         v = &vstate->dtvs_tlocals[id];
5429 
5430                         dvar = dtrace_dynvar(dstate, 2, key,
5431                             v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5432                             v->dtdv_type.dtdt_size : sizeof (uint64_t),
5433                             regs[rd] ? DTRACE_DYNVAR_ALLOC :
5434                             DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5435 
5436                         /*
5437                          * Given that we're storing to thread-local data,
5438                          * we need to flush our predicate cache.
5439                          */
5440                         curthread->t_predcache = NULL;
5441 
5442                         if (dvar == NULL)
5443                                 break;
5444 
5445                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5446                                 if (!dtrace_vcanload(
5447                                     (void *)(uintptr_t)regs[rd],
5448                                     &v->dtdv_type, mstate, vstate))
5449                                         break;
5450 
5451                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5452                                     dvar->dtdv_data, &v->dtdv_type);
5453                         } else {
5454                                 *((uint64_t *)dvar->dtdv_data) = regs[rd];
5455                         }
5456 
5457                         break;
5458                 }
5459 
5460                 case DIF_OP_SRA:
5461                         regs[rd] = (int64_t)regs[r1] >> regs[r2];
5462                         break;
5463 
5464                 case DIF_OP_CALL:
5465                         dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
5466                             regs, tupregs, ttop, mstate, state);
5467                         break;
5468 
5469                 case DIF_OP_PUSHTR:
5470                         if (ttop == DIF_DTR_NREGS) {
5471                                 *flags |= CPU_DTRACE_TUPOFLOW;
5472                                 break;
5473                         }
5474 
5475                         if (r1 == DIF_TYPE_STRING) {
5476                                 /*
5477                                  * If this is a string type and the size is 0,
5478                                  * we'll use the system-wide default string
5479                                  * size.  Note that we are _not_ looking at
5480                                  * the value of the DTRACEOPT_STRSIZE option;
5481                                  * had this been set, we would expect to have
5482                                  * a non-zero size value in the "pushtr".
5483                                  */
5484                                 tupregs[ttop].dttk_size =
5485                                     dtrace_strlen((char *)(uintptr_t)regs[rd],
5486                                     regs[r2] ? regs[r2] :
5487                                     dtrace_strsize_default) + 1;
5488                         } else {
5489                                 tupregs[ttop].dttk_size = regs[r2];
5490                         }
5491 
5492                         tupregs[ttop++].dttk_value = regs[rd];
5493                         break;
5494 
5495                 case DIF_OP_PUSHTV:
5496                         if (ttop == DIF_DTR_NREGS) {
5497                                 *flags |= CPU_DTRACE_TUPOFLOW;
5498                                 break;
5499                         }
5500 
5501                         tupregs[ttop].dttk_value = regs[rd];
5502                         tupregs[ttop++].dttk_size = 0;
5503                         break;
5504 
5505                 case DIF_OP_POPTS:
5506                         if (ttop != 0)
5507                                 ttop--;
5508                         break;
5509 
5510                 case DIF_OP_FLUSHTS:
5511                         ttop = 0;
5512                         break;
5513 
5514                 case DIF_OP_LDGAA:
5515                 case DIF_OP_LDTAA: {
5516                         dtrace_dynvar_t *dvar;
5517                         dtrace_key_t *key = tupregs;
5518                         uint_t nkeys = ttop;
5519 
5520                         id = DIF_INSTR_VAR(instr);
5521                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5522                         id -= DIF_VAR_OTHER_UBASE;
5523 
5524                         key[nkeys].dttk_value = (uint64_t)id;
5525                         key[nkeys++].dttk_size = 0;
5526 
5527                         if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
5528                                 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5529                                 key[nkeys++].dttk_size = 0;
5530                                 v = &vstate->dtvs_tlocals[id];
5531                         } else {
5532                                 v = &vstate->dtvs_globals[id]->dtsv_var;
5533                         }
5534 
5535                         dvar = dtrace_dynvar(dstate, nkeys, key,
5536                             v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5537                             v->dtdv_type.dtdt_size : sizeof (uint64_t),
5538                             DTRACE_DYNVAR_NOALLOC, mstate, vstate);
5539 
5540                         if (dvar == NULL) {
5541                                 regs[rd] = 0;
5542                                 break;
5543                         }
5544 
5545                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5546                                 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5547                         } else {
5548                                 regs[rd] = *((uint64_t *)dvar->dtdv_data);
5549                         }
5550 
5551                         break;
5552                 }
5553 
5554                 case DIF_OP_STGAA:
5555                 case DIF_OP_STTAA: {
5556                         dtrace_dynvar_t *dvar;
5557                         dtrace_key_t *key = tupregs;
5558                         uint_t nkeys = ttop;
5559 
5560                         id = DIF_INSTR_VAR(instr);
5561                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5562                         id -= DIF_VAR_OTHER_UBASE;
5563 
5564                         key[nkeys].dttk_value = (uint64_t)id;
5565                         key[nkeys++].dttk_size = 0;
5566 
5567                         if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
5568                                 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5569                                 key[nkeys++].dttk_size = 0;
5570                                 v = &vstate->dtvs_tlocals[id];
5571                         } else {
5572                                 v = &vstate->dtvs_globals[id]->dtsv_var;
5573                         }
5574 
5575                         dvar = dtrace_dynvar(dstate, nkeys, key,
5576                             v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5577                             v->dtdv_type.dtdt_size : sizeof (uint64_t),
5578                             regs[rd] ? DTRACE_DYNVAR_ALLOC :
5579                             DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5580 
5581                         if (dvar == NULL)
5582                                 break;
5583 
5584                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5585                                 if (!dtrace_vcanload(
5586                                     (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5587                                     mstate, vstate))
5588                                         break;
5589 
5590                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5591                                     dvar->dtdv_data, &v->dtdv_type);
5592                         } else {
5593                                 *((uint64_t *)dvar->dtdv_data) = regs[rd];
5594                         }
5595 
5596                         break;
5597                 }
5598 
5599                 case DIF_OP_ALLOCS: {
5600                         uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5601                         size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
5602 
5603                         /*
5604                          * Rounding up the user allocation size could have
5605                          * overflowed large, bogus allocations (like -1ULL) to
5606                          * 0.
5607                          */
5608                         if (size < regs[r1] ||
5609                             !DTRACE_INSCRATCH(mstate, size)) {
5610                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5611                                 regs[rd] = NULL;
5612                                 break;
5613                         }
5614 
5615                         dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
5616                         mstate->dtms_scratch_ptr += size;
5617                         regs[rd] = ptr;
5618                         break;
5619                 }
5620 
5621                 case DIF_OP_COPYS:
5622                         if (!dtrace_canstore(regs[rd], regs[r2],
5623                             mstate, vstate)) {
5624                                 *flags |= CPU_DTRACE_BADADDR;
5625                                 *illval = regs[rd];
5626                                 break;
5627                         }
5628 
5629                         if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
5630                                 break;
5631 
5632                         dtrace_bcopy((void *)(uintptr_t)regs[r1],
5633                             (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
5634                         break;
5635 
5636                 case DIF_OP_STB:
5637                         if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
5638                                 *flags |= CPU_DTRACE_BADADDR;
5639                                 *illval = regs[rd];
5640                                 break;
5641                         }
5642                         *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
5643                         break;
5644 
5645                 case DIF_OP_STH:
5646                         if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
5647                                 *flags |= CPU_DTRACE_BADADDR;
5648                                 *illval = regs[rd];
5649                                 break;
5650                         }
5651                         if (regs[rd] & 1) {
5652                                 *flags |= CPU_DTRACE_BADALIGN;
5653                                 *illval = regs[rd];
5654                                 break;
5655                         }
5656                         *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
5657                         break;
5658 
5659                 case DIF_OP_STW:
5660                         if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
5661                                 *flags |= CPU_DTRACE_BADADDR;
5662                                 *illval = regs[rd];
5663                                 break;
5664                         }
5665                         if (regs[rd] & 3) {
5666                                 *flags |= CPU_DTRACE_BADALIGN;
5667                                 *illval = regs[rd];
5668                                 break;
5669                         }
5670                         *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
5671                         break;
5672 
5673                 case DIF_OP_STX:
5674                         if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
5675                                 *flags |= CPU_DTRACE_BADADDR;
5676                                 *illval = regs[rd];
5677                                 break;
5678                         }
5679                         if (regs[rd] & 7) {
5680                                 *flags |= CPU_DTRACE_BADALIGN;
5681                                 *illval = regs[rd];
5682                                 break;
5683                         }
5684                         *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
5685                         break;
5686                 }
5687         }
5688 
5689         if (!(*flags & CPU_DTRACE_FAULT))
5690                 return (rval);
5691 
5692         mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
5693         mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
5694 
5695         return (0);
5696 }
5697 
5698 static void
5699 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
5700 {
5701         dtrace_probe_t *probe = ecb->dte_probe;
5702         dtrace_provider_t *prov = probe->dtpr_provider;
5703         char c[DTRACE_FULLNAMELEN + 80], *str;
5704         char *msg = "dtrace: breakpoint action at probe ";
5705         char *ecbmsg = " (ecb ";
5706         uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
5707         uintptr_t val = (uintptr_t)ecb;
5708         int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
5709 
5710         if (dtrace_destructive_disallow)
5711                 return;
5712 
5713         /*
5714          * It's impossible to be taking action on the NULL probe.
5715          */
5716         ASSERT(probe != NULL);
5717 
5718         /*
5719          * This is a poor man's (destitute man's?) sprintf():  we want to
5720          * print the provider name, module name, function name and name of
5721          * the probe, along with the hex address of the ECB with the breakpoint
5722          * action -- all of which we must place in the character buffer by
5723          * hand.
5724          */
5725         while (*msg != '\0')
5726                 c[i++] = *msg++;
5727 
5728         for (str = prov->dtpv_name; *str != '\0'; str++)
5729                 c[i++] = *str;
5730         c[i++] = ':';
5731 
5732         for (str = probe->dtpr_mod; *str != '\0'; str++)
5733                 c[i++] = *str;
5734         c[i++] = ':';
5735 
5736         for (str = probe->dtpr_func; *str != '\0'; str++)
5737                 c[i++] = *str;
5738         c[i++] = ':';
5739 
5740         for (str = probe->dtpr_name; *str != '\0'; str++)
5741                 c[i++] = *str;
5742 
5743         while (*ecbmsg != '\0')
5744                 c[i++] = *ecbmsg++;
5745 
5746         while (shift >= 0) {
5747                 mask = (uintptr_t)0xf << shift;
5748 
5749                 if (val >= ((uintptr_t)1 << shift))
5750                         c[i++] = "0123456789abcdef"[(val & mask) >> shift];
5751                 shift -= 4;
5752         }
5753 
5754         c[i++] = ')';
5755         c[i] = '\0';
5756 
5757         debug_enter(c);
5758 }
5759 
5760 static void
5761 dtrace_action_panic(dtrace_ecb_t *ecb)
5762 {
5763         dtrace_probe_t *probe = ecb->dte_probe;
5764 
5765         /*
5766          * It's impossible to be taking action on the NULL probe.
5767          */
5768         ASSERT(probe != NULL);
5769 
5770         if (dtrace_destructive_disallow)
5771                 return;
5772 
5773         if (dtrace_panicked != NULL)
5774                 return;
5775 
5776         if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
5777                 return;
5778 
5779         /*
5780          * We won the right to panic.  (We want to be sure that only one
5781          * thread calls panic() from dtrace_probe(), and that panic() is
5782          * called exactly once.)
5783          */
5784         dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5785             probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
5786             probe->dtpr_func, probe->dtpr_name, (void *)ecb);
5787 }
5788 
5789 static void
5790 dtrace_action_raise(uint64_t sig)
5791 {
5792         if (dtrace_destructive_disallow)
5793                 return;
5794 
5795         if (sig >= NSIG) {
5796                 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5797                 return;
5798         }
5799 
5800         /*
5801          * raise() has a queue depth of 1 -- we ignore all subsequent
5802          * invocations of the raise() action.
5803          */
5804         if (curthread->t_dtrace_sig == 0)
5805                 curthread->t_dtrace_sig = (uint8_t)sig;
5806 
5807         curthread->t_sig_check = 1;
5808         aston(curthread);
5809 }
5810 
5811 static void
5812 dtrace_action_stop(void)
5813 {
5814         if (dtrace_destructive_disallow)
5815                 return;
5816 
5817         if (!curthread->t_dtrace_stop) {
5818                 curthread->t_dtrace_stop = 1;
5819                 curthread->t_sig_check = 1;
5820                 aston(curthread);
5821         }
5822 }
5823 
5824 static void
5825 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
5826 {
5827         hrtime_t now;
5828         volatile uint16_t *flags;
5829         cpu_t *cpu = CPU;
5830 
5831         if (dtrace_destructive_disallow)
5832                 return;
5833 
5834         flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
5835 
5836         now = dtrace_gethrtime();
5837 
5838         if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
5839                 /*
5840                  * We need to advance the mark to the current time.
5841                  */
5842                 cpu->cpu_dtrace_chillmark = now;
5843                 cpu->cpu_dtrace_chilled = 0;
5844         }
5845 
5846         /*
5847          * Now check to see if the requested chill time would take us over
5848          * the maximum amount of time allowed in the chill interval.  (Or
5849          * worse, if the calculation itself induces overflow.)
5850          */
5851         if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
5852             cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
5853                 *flags |= CPU_DTRACE_ILLOP;
5854                 return;
5855         }
5856 
5857         while (dtrace_gethrtime() - now < val)
5858                 continue;
5859 
5860         /*
5861          * Normally, we assure that the value of the variable "timestamp" does
5862          * not change within an ECB.  The presence of chill() represents an
5863          * exception to this rule, however.
5864          */
5865         mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
5866         cpu->cpu_dtrace_chilled += val;
5867 }
5868 
5869 static void
5870 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
5871     uint64_t *buf, uint64_t arg)
5872 {
5873         int nframes = DTRACE_USTACK_NFRAMES(arg);
5874         int strsize = DTRACE_USTACK_STRSIZE(arg);
5875         uint64_t *pcs = &buf[1], *fps;
5876         char *str = (char *)&pcs[nframes];
5877         int size, offs = 0, i, j;
5878         uintptr_t old = mstate->dtms_scratch_ptr, saved;
5879         uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
5880         char *sym;
5881 
5882         /*
5883          * Should be taking a faster path if string space has not been
5884          * allocated.
5885          */
5886         ASSERT(strsize != 0);
5887 
5888         /*
5889          * We will first allocate some temporary space for the frame pointers.
5890          */
5891         fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5892         size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5893             (nframes * sizeof (uint64_t));
5894 
5895         if (!DTRACE_INSCRATCH(mstate, size)) {
5896                 /*
5897                  * Not enough room for our frame pointers -- need to indicate
5898                  * that we ran out of scratch space.
5899                  */
5900                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5901                 return;
5902         }
5903 
5904         mstate->dtms_scratch_ptr += size;
5905         saved = mstate->dtms_scratch_ptr;
5906 
5907         /*
5908          * Now get a stack with both program counters and frame pointers.
5909          */
5910         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5911         dtrace_getufpstack(buf, fps, nframes + 1);
5912         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5913 
5914         /*
5915          * If that faulted, we're cooked.
5916          */
5917         if (*flags & CPU_DTRACE_FAULT)
5918                 goto out;
5919 
5920         /*
5921          * Now we want to walk up the stack, calling the USTACK helper.  For
5922          * each iteration, we restore the scratch pointer.
5923          */
5924         for (i = 0; i < nframes; i++) {
5925                 mstate->dtms_scratch_ptr = saved;
5926 
5927                 if (offs >= strsize)
5928                         break;
5929 
5930                 sym = (char *)(uintptr_t)dtrace_helper(
5931                     DTRACE_HELPER_ACTION_USTACK,
5932                     mstate, state, pcs[i], fps[i]);
5933 
5934                 /*
5935                  * If we faulted while running the helper, we're going to
5936                  * clear the fault and null out the corresponding string.
5937                  */
5938                 if (*flags & CPU_DTRACE_FAULT) {
5939                         *flags &= ~CPU_DTRACE_FAULT;
5940                         str[offs++] = '\0';
5941                         continue;
5942                 }
5943 
5944                 if (sym == NULL) {
5945                         str[offs++] = '\0';
5946                         continue;
5947                 }
5948 
5949                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5950 
5951                 /*
5952                  * Now copy in the string that the helper returned to us.
5953                  */
5954                 for (j = 0; offs + j < strsize; j++) {
5955                         if ((str[offs + j] = sym[j]) == '\0')
5956                                 break;
5957                 }
5958 
5959                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5960 
5961                 offs += j + 1;
5962         }
5963 
5964         if (offs >= strsize) {
5965                 /*
5966                  * If we didn't have room for all of the strings, we don't
5967                  * abort processing -- this needn't be a fatal error -- but we
5968                  * still want to increment a counter (dts_stkstroverflows) to
5969                  * allow this condition to be warned about.  (If this is from
5970                  * a jstack() action, it is easily tuned via jstackstrsize.)
5971                  */
5972                 dtrace_error(&state->dts_stkstroverflows);
5973         }
5974 
5975         while (offs < strsize)
5976                 str[offs++] = '\0';
5977 
5978 out:
5979         mstate->dtms_scratch_ptr = old;
5980 }
5981 
5982 /*
5983  * If you're looking for the epicenter of DTrace, you just found it.  This
5984  * is the function called by the provider to fire a probe -- from which all
5985  * subsequent probe-context DTrace activity emanates.
5986  */
5987 void
5988 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
5989     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
5990 {
5991         processorid_t cpuid;
5992         dtrace_icookie_t cookie;
5993         dtrace_probe_t *probe;
5994         dtrace_mstate_t mstate;
5995         dtrace_ecb_t *ecb;
5996         dtrace_action_t *act;
5997         intptr_t offs;
5998         size_t size;
5999         int vtime, onintr;
6000         volatile uint16_t *flags;
6001         hrtime_t now;
6002 
6003         /*
6004          * Kick out immediately if this CPU is still being born (in which case
6005          * curthread will be set to -1) or the current thread can't allow
6006          * probes in its current context.
6007          */
6008         if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
6009                 return;
6010 
6011         cookie = dtrace_interrupt_disable();
6012         probe = dtrace_probes[id - 1];
6013         cpuid = CPU->cpu_id;
6014         onintr = CPU_ON_INTR(CPU);
6015 
6016         if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
6017             probe->dtpr_predcache == curthread->t_predcache) {
6018                 /*
6019                  * We have hit in the predicate cache; we know that
6020                  * this predicate would evaluate to be false.
6021                  */
6022                 dtrace_interrupt_enable(cookie);
6023                 return;
6024         }
6025 
6026         if (panic_quiesce) {
6027                 /*
6028                  * We don't trace anything if we're panicking.
6029                  */
6030                 dtrace_interrupt_enable(cookie);
6031                 return;
6032         }
6033 
6034         now = dtrace_gethrtime();
6035         vtime = dtrace_vtime_references != 0;
6036 
6037         if (vtime && curthread->t_dtrace_start)
6038                 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
6039 
6040         mstate.dtms_difo = NULL;
6041         mstate.dtms_probe = probe;
6042         mstate.dtms_strtok = NULL;
6043         mstate.dtms_arg[0] = arg0;
6044         mstate.dtms_arg[1] = arg1;
6045         mstate.dtms_arg[2] = arg2;
6046         mstate.dtms_arg[3] = arg3;
6047         mstate.dtms_arg[4] = arg4;
6048 
6049         flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
6050 
6051         for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
6052                 dtrace_predicate_t *pred = ecb->dte_predicate;
6053                 dtrace_state_t *state = ecb->dte_state;
6054                 dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
6055                 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
6056                 dtrace_vstate_t *vstate = &state->dts_vstate;
6057                 dtrace_provider_t *prov = probe->dtpr_provider;
6058                 uint64_t tracememsize = 0;
6059                 int committed = 0;
6060                 caddr_t tomax;
6061 
6062                 /*
6063                  * A little subtlety with the following (seemingly innocuous)
6064                  * declaration of the automatic 'val':  by looking at the
6065                  * code, you might think that it could be declared in the
6066                  * action processing loop, below.  (That is, it's only used in
6067                  * the action processing loop.)  However, it must be declared
6068                  * out of that scope because in the case of DIF expression
6069                  * arguments to aggregating actions, one iteration of the
6070                  * action loop will use the last iteration's value.
6071                  */
6072 #ifdef lint
6073                 uint64_t val = 0;
6074 #else
6075                 uint64_t val;
6076 #endif
6077 
6078                 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
6079                 mstate.dtms_access = DTRACE_ACCESS_ARGS | DTRACE_ACCESS_PROC;
6080                 mstate.dtms_getf = NULL;
6081 
6082                 *flags &= ~CPU_DTRACE_ERROR;
6083 
6084                 if (prov == dtrace_provider) {
6085                         /*
6086                          * If dtrace itself is the provider of this probe,
6087                          * we're only going to continue processing the ECB if
6088                          * arg0 (the dtrace_state_t) is equal to the ECB's
6089                          * creating state.  (This prevents disjoint consumers
6090                          * from seeing one another's metaprobes.)
6091                          */
6092                         if (arg0 != (uint64_t)(uintptr_t)state)
6093                                 continue;
6094                 }
6095 
6096                 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
6097                         /*
6098                          * We're not currently active.  If our provider isn't
6099                          * the dtrace pseudo provider, we're not interested.
6100                          */
6101                         if (prov != dtrace_provider)
6102                                 continue;
6103 
6104                         /*
6105                          * Now we must further check if we are in the BEGIN
6106                          * probe.  If we are, we will only continue processing
6107                          * if we're still in WARMUP -- if one BEGIN enabling
6108                          * has invoked the exit() action, we don't want to
6109                          * evaluate subsequent BEGIN enablings.
6110                          */
6111                         if (probe->dtpr_id == dtrace_probeid_begin &&
6112                             state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
6113                                 ASSERT(state->dts_activity ==
6114                                     DTRACE_ACTIVITY_DRAINING);
6115                                 continue;
6116                         }
6117                 }
6118 
6119                 if (ecb->dte_cond && !dtrace_priv_probe(state, &mstate, ecb))
6120                         continue;
6121 
6122                 if (now - state->dts_alive > dtrace_deadman_timeout) {
6123                         /*
6124                          * We seem to be dead.  Unless we (a) have kernel
6125                          * destructive permissions (b) have explicitly enabled
6126                          * destructive actions and (c) destructive actions have
6127                          * not been disabled, we're going to transition into
6128                          * the KILLED state, from which no further processing
6129                          * on this state will be performed.
6130                          */
6131                         if (!dtrace_priv_kernel_destructive(state) ||
6132                             !state->dts_cred.dcr_destructive ||
6133                             dtrace_destructive_disallow) {
6134                                 void *activity = &state->dts_activity;
6135                                 dtrace_activity_t current;
6136 
6137                                 do {
6138                                         current = state->dts_activity;
6139                                 } while (dtrace_cas32(activity, current,
6140                                     DTRACE_ACTIVITY_KILLED) != current);
6141 
6142                                 continue;
6143                         }
6144                 }
6145 
6146                 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
6147                     ecb->dte_alignment, state, &mstate)) < 0)
6148                         continue;
6149 
6150                 tomax = buf->dtb_tomax;
6151                 ASSERT(tomax != NULL);
6152 
6153                 if (ecb->dte_size != 0) {
6154                         dtrace_rechdr_t dtrh;
6155                         if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
6156                                 mstate.dtms_timestamp = dtrace_gethrtime();
6157                                 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
6158                         }
6159                         ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
6160                         dtrh.dtrh_epid = ecb->dte_epid;
6161                         DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
6162                             mstate.dtms_timestamp);
6163                         *((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
6164                 }
6165 
6166                 mstate.dtms_epid = ecb->dte_epid;
6167                 mstate.dtms_present |= DTRACE_MSTATE_EPID;
6168 
6169                 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
6170                         mstate.dtms_access |= DTRACE_ACCESS_KERNEL;
6171 
6172                 if (pred != NULL) {
6173                         dtrace_difo_t *dp = pred->dtp_difo;
6174                         int rval;
6175 
6176                         rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
6177 
6178                         if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
6179                                 dtrace_cacheid_t cid = probe->dtpr_predcache;
6180 
6181                                 if (cid != DTRACE_CACHEIDNONE && !onintr) {
6182                                         /*
6183                                          * Update the predicate cache...
6184                                          */
6185                                         ASSERT(cid == pred->dtp_cacheid);
6186                                         curthread->t_predcache = cid;
6187                                 }
6188 
6189                                 continue;
6190                         }
6191                 }
6192 
6193                 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6194                     act != NULL; act = act->dta_next) {
6195                         size_t valoffs;
6196                         dtrace_difo_t *dp;
6197                         dtrace_recdesc_t *rec = &act->dta_rec;
6198 
6199                         size = rec->dtrd_size;
6200                         valoffs = offs + rec->dtrd_offset;
6201 
6202                         if (DTRACEACT_ISAGG(act->dta_kind)) {
6203                                 uint64_t v = 0xbad;
6204                                 dtrace_aggregation_t *agg;
6205 
6206                                 agg = (dtrace_aggregation_t *)act;
6207 
6208                                 if ((dp = act->dta_difo) != NULL)
6209                                         v = dtrace_dif_emulate(dp,
6210                                             &mstate, vstate, state);
6211 
6212                                 if (*flags & CPU_DTRACE_ERROR)
6213                                         continue;
6214 
6215                                 /*
6216                                  * Note that we always pass the expression
6217                                  * value from the previous iteration of the
6218                                  * action loop.  This value will only be used
6219                                  * if there is an expression argument to the
6220                                  * aggregating action, denoted by the
6221                                  * dtag_hasarg field.
6222                                  */
6223                                 dtrace_aggregate(agg, buf,
6224                                     offs, aggbuf, v, val);
6225                                 continue;
6226                         }
6227 
6228                         switch (act->dta_kind) {
6229                         case DTRACEACT_STOP:
6230                                 if (dtrace_priv_proc_destructive(state,
6231                                     &mstate))
6232                                         dtrace_action_stop();
6233                                 continue;
6234 
6235                         case DTRACEACT_BREAKPOINT:
6236                                 if (dtrace_priv_kernel_destructive(state))
6237                                         dtrace_action_breakpoint(ecb);
6238                                 continue;
6239 
6240                         case DTRACEACT_PANIC:
6241                                 if (dtrace_priv_kernel_destructive(state))
6242                                         dtrace_action_panic(ecb);
6243                                 continue;
6244 
6245                         case DTRACEACT_STACK:
6246                                 if (!dtrace_priv_kernel(state))
6247                                         continue;
6248 
6249                                 dtrace_getpcstack((pc_t *)(tomax + valoffs),
6250                                     size / sizeof (pc_t), probe->dtpr_aframes,
6251                                     DTRACE_ANCHORED(probe) ? NULL :
6252                                     (uint32_t *)arg0);
6253 
6254                                 continue;
6255 
6256                         case DTRACEACT_JSTACK:
6257                         case DTRACEACT_USTACK:
6258                                 if (!dtrace_priv_proc(state, &mstate))
6259                                         continue;
6260 
6261                                 /*
6262                                  * See comment in DIF_VAR_PID.
6263                                  */
6264                                 if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6265                                     CPU_ON_INTR(CPU)) {
6266                                         int depth = DTRACE_USTACK_NFRAMES(
6267                                             rec->dtrd_arg) + 1;
6268 
6269                                         dtrace_bzero((void *)(tomax + valoffs),
6270                                             DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6271                                             + depth * sizeof (uint64_t));
6272 
6273                                         continue;
6274                                 }
6275 
6276                                 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6277                                     curproc->p_dtrace_helpers != NULL) {
6278                                         /*
6279                                          * This is the slow path -- we have
6280                                          * allocated string space, and we're
6281                                          * getting the stack of a process that
6282                                          * has helpers.  Call into a separate
6283                                          * routine to perform this processing.
6284                                          */
6285                                         dtrace_action_ustack(&mstate, state,
6286                                             (uint64_t *)(tomax + valoffs),
6287                                             rec->dtrd_arg);
6288                                         continue;
6289                                 }
6290 
6291                                 /*
6292                                  * Clear the string space, since there's no
6293                                  * helper to do it for us.
6294                                  */
6295                                 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0) {
6296                                         int depth = DTRACE_USTACK_NFRAMES(
6297                                             rec->dtrd_arg);
6298                                         size_t strsize = DTRACE_USTACK_STRSIZE(
6299                                             rec->dtrd_arg);
6300                                         uint64_t *buf = (uint64_t *)(tomax +
6301                                             valoffs);
6302                                         void *strspace = &buf[depth + 1];
6303 
6304                                         dtrace_bzero(strspace,
6305                                             MIN(depth, strsize));
6306                                 }
6307 
6308                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6309                                 dtrace_getupcstack((uint64_t *)
6310                                     (tomax + valoffs),
6311                                     DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6312                                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6313                                 continue;
6314 
6315                         default:
6316                                 break;
6317                         }
6318 
6319                         dp = act->dta_difo;
6320                         ASSERT(dp != NULL);
6321 
6322                         val = dtrace_dif_emulate(dp, &mstate, vstate, state);
6323 
6324                         if (*flags & CPU_DTRACE_ERROR)
6325                                 continue;
6326 
6327                         switch (act->dta_kind) {
6328                         case DTRACEACT_SPECULATE: {
6329                                 dtrace_rechdr_t *dtrh;
6330 
6331                                 ASSERT(buf == &state->dts_buffer[cpuid]);
6332                                 buf = dtrace_speculation_buffer(state,
6333                                     cpuid, val);
6334 
6335                                 if (buf == NULL) {
6336                                         *flags |= CPU_DTRACE_DROP;
6337                                         continue;
6338                                 }
6339 
6340                                 offs = dtrace_buffer_reserve(buf,
6341                                     ecb->dte_needed, ecb->dte_alignment,
6342                                     state, NULL);
6343 
6344                                 if (offs < 0) {
6345                                         *flags |= CPU_DTRACE_DROP;
6346                                         continue;
6347                                 }
6348 
6349                                 tomax = buf->dtb_tomax;
6350                                 ASSERT(tomax != NULL);
6351 
6352                                 if (ecb->dte_size == 0)
6353                                         continue;
6354 
6355                                 ASSERT3U(ecb->dte_size, >=,
6356                                     sizeof (dtrace_rechdr_t));
6357                                 dtrh = ((void *)(tomax + offs));
6358                                 dtrh->dtrh_epid = ecb->dte_epid;
6359                                 /*
6360                                  * When the speculation is committed, all of
6361                                  * the records in the speculative buffer will
6362                                  * have their timestamps set to the commit
6363                                  * time.  Until then, it is set to a sentinel
6364                                  * value, for debugability.
6365                                  */
6366                                 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
6367                                 continue;
6368                         }
6369 
6370                         case DTRACEACT_CHILL:
6371                                 if (dtrace_priv_kernel_destructive(state))
6372                                         dtrace_action_chill(&mstate, val);
6373                                 continue;
6374 
6375                         case DTRACEACT_RAISE:
6376                                 if (dtrace_priv_proc_destructive(state,
6377                                     &mstate))
6378                                         dtrace_action_raise(val);
6379                                 continue;
6380 
6381                         case DTRACEACT_COMMIT:
6382                                 ASSERT(!committed);
6383 
6384                                 /*
6385                                  * We need to commit our buffer state.
6386                                  */
6387                                 if (ecb->dte_size)
6388                                         buf->dtb_offset = offs + ecb->dte_size;
6389                                 buf = &state->dts_buffer[cpuid];
6390                                 dtrace_speculation_commit(state, cpuid, val);
6391                                 committed = 1;
6392                                 continue;
6393 
6394                         case DTRACEACT_DISCARD:
6395                                 dtrace_speculation_discard(state, cpuid, val);
6396                                 continue;
6397 
6398                         case DTRACEACT_DIFEXPR:
6399                         case DTRACEACT_LIBACT:
6400                         case DTRACEACT_PRINTF:
6401                         case DTRACEACT_PRINTA:
6402                         case DTRACEACT_SYSTEM:
6403                         case DTRACEACT_FREOPEN:
6404                         case DTRACEACT_TRACEMEM:
6405                                 break;
6406 
6407                         case DTRACEACT_TRACEMEM_DYNSIZE:
6408                                 tracememsize = val;
6409                                 break;
6410 
6411                         case DTRACEACT_SYM:
6412                         case DTRACEACT_MOD:
6413                                 if (!dtrace_priv_kernel(state))
6414                                         continue;
6415                                 break;
6416 
6417                         case DTRACEACT_USYM:
6418                         case DTRACEACT_UMOD:
6419                         case DTRACEACT_UADDR: {
6420                                 struct pid *pid = curthread->t_procp->p_pidp;
6421 
6422                                 if (!dtrace_priv_proc(state, &mstate))
6423                                         continue;
6424 
6425                                 DTRACE_STORE(uint64_t, tomax,
6426                                     valoffs, (uint64_t)pid->pid_id);
6427                                 DTRACE_STORE(uint64_t, tomax,
6428                                     valoffs + sizeof (uint64_t), val);
6429 
6430                                 continue;
6431                         }
6432 
6433                         case DTRACEACT_EXIT: {
6434                                 /*
6435                                  * For the exit action, we are going to attempt
6436                                  * to atomically set our activity to be
6437                                  * draining.  If this fails (either because
6438                                  * another CPU has beat us to the exit action,
6439                                  * or because our current activity is something
6440                                  * other than ACTIVE or WARMUP), we will
6441                                  * continue.  This assures that the exit action
6442                                  * can be successfully recorded at most once
6443                                  * when we're in the ACTIVE state.  If we're
6444                                  * encountering the exit() action while in
6445                                  * COOLDOWN, however, we want to honor the new
6446                                  * status code.  (We know that we're the only
6447                                  * thread in COOLDOWN, so there is no race.)
6448                                  */
6449                                 void *activity = &state->dts_activity;
6450                                 dtrace_activity_t current = state->dts_activity;
6451 
6452                                 if (current == DTRACE_ACTIVITY_COOLDOWN)
6453                                         break;
6454 
6455                                 if (current != DTRACE_ACTIVITY_WARMUP)
6456                                         current = DTRACE_ACTIVITY_ACTIVE;
6457 
6458                                 if (dtrace_cas32(activity, current,
6459                                     DTRACE_ACTIVITY_DRAINING) != current) {
6460                                         *flags |= CPU_DTRACE_DROP;
6461                                         continue;
6462                                 }
6463 
6464                                 break;
6465                         }
6466 
6467                         default:
6468                                 ASSERT(0);
6469                         }
6470 
6471                         if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
6472                                 uintptr_t end = valoffs + size;
6473 
6474                                 if (tracememsize != 0 &&
6475                                     valoffs + tracememsize < end) {
6476                                         end = valoffs + tracememsize;
6477                                         tracememsize = 0;
6478                                 }
6479 
6480                                 if (!dtrace_vcanload((void *)(uintptr_t)val,
6481                                     &dp->dtdo_rtype, &mstate, vstate))
6482                                         continue;
6483 
6484                                 /*
6485                                  * If this is a string, we're going to only
6486                                  * load until we find the zero byte -- after
6487                                  * which we'll store zero bytes.
6488                                  */
6489                                 if (dp->dtdo_rtype.dtdt_kind ==
6490                                     DIF_TYPE_STRING) {
6491                                         char c = '\0' + 1;
6492                                         int intuple = act->dta_intuple;
6493                                         size_t s;
6494 
6495                                         for (s = 0; s < size; s++) {
6496                                                 if (c != '\0')
6497                                                         c = dtrace_load8(val++);
6498 
6499                                                 DTRACE_STORE(uint8_t, tomax,
6500                                                     valoffs++, c);
6501 
6502                                                 if (c == '\0' && intuple)
6503                                                         break;
6504                                         }
6505 
6506                                         continue;
6507                                 }
6508 
6509                                 while (valoffs < end) {
6510                                         DTRACE_STORE(uint8_t, tomax, valoffs++,
6511                                             dtrace_load8(val++));
6512                                 }
6513 
6514                                 continue;
6515                         }
6516 
6517                         switch (size) {
6518                         case 0:
6519                                 break;
6520 
6521                         case sizeof (uint8_t):
6522                                 DTRACE_STORE(uint8_t, tomax, valoffs, val);
6523                                 break;
6524                         case sizeof (uint16_t):
6525                                 DTRACE_STORE(uint16_t, tomax, valoffs, val);
6526                                 break;
6527                         case sizeof (uint32_t):
6528                                 DTRACE_STORE(uint32_t, tomax, valoffs, val);
6529                                 break;
6530                         case sizeof (uint64_t):
6531                                 DTRACE_STORE(uint64_t, tomax, valoffs, val);
6532                                 break;
6533                         default:
6534                                 /*
6535                                  * Any other size should have been returned by
6536                                  * reference, not by value.
6537                                  */
6538                                 ASSERT(0);
6539                                 break;
6540                         }
6541                 }
6542 
6543                 if (*flags & CPU_DTRACE_DROP)
6544                         continue;
6545 
6546                 if (*flags & CPU_DTRACE_FAULT) {
6547                         int ndx;
6548                         dtrace_action_t *err;
6549 
6550                         buf->dtb_errors++;
6551 
6552                         if (probe->dtpr_id == dtrace_probeid_error) {
6553                                 /*
6554                                  * There's nothing we can do -- we had an
6555                                  * error on the error probe.  We bump an
6556                                  * error counter to at least indicate that
6557                                  * this condition happened.
6558                                  */
6559                                 dtrace_error(&state->dts_dblerrors);
6560                                 continue;
6561                         }
6562 
6563                         if (vtime) {
6564                                 /*
6565                                  * Before recursing on dtrace_probe(), we
6566                                  * need to explicitly clear out our start
6567                                  * time to prevent it from being accumulated
6568                                  * into t_dtrace_vtime.
6569                                  */
6570                                 curthread->t_dtrace_start = 0;
6571                         }
6572 
6573                         /*
6574                          * Iterate over the actions to figure out which action
6575                          * we were processing when we experienced the error.
6576                          * Note that act points _past_ the faulting action; if
6577                          * act is ecb->dte_action, the fault was in the
6578                          * predicate, if it's ecb->dte_action->dta_next it's
6579                          * in action #1, and so on.
6580                          */
6581                         for (err = ecb->dte_action, ndx = 0;
6582                             err != act; err = err->dta_next, ndx++)
6583                                 continue;
6584 
6585                         dtrace_probe_error(state, ecb->dte_epid, ndx,
6586                             (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
6587                             mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
6588                             cpu_core[cpuid].cpuc_dtrace_illval);
6589 
6590                         continue;
6591                 }
6592 
6593                 if (!committed)
6594                         buf->dtb_offset = offs + ecb->dte_size;
6595         }
6596 
6597         if (vtime)
6598                 curthread->t_dtrace_start = dtrace_gethrtime();
6599 
6600         dtrace_interrupt_enable(cookie);
6601 }
6602 
6603 /*
6604  * DTrace Probe Hashing Functions
6605  *
6606  * The functions in this section (and indeed, the functions in remaining
6607  * sections) are not _called_ from probe context.  (Any exceptions to this are
6608  * marked with a "Note:".)  Rather, they are called from elsewhere in the
6609  * DTrace framework to look-up probes in, add probes to and remove probes from
6610  * the DTrace probe hashes.  (Each probe is hashed by each element of the
6611  * probe tuple -- allowing for fast lookups, regardless of what was
6612  * specified.)
6613  */
6614 static uint_t
6615 dtrace_hash_str(char *p)
6616 {
6617         unsigned int g;
6618         uint_t hval = 0;
6619 
6620         while (*p) {
6621                 hval = (hval << 4) + *p++;
6622                 if ((g = (hval & 0xf0000000)) != 0)
6623                         hval ^= g >> 24;
6624                 hval &= ~g;
6625         }
6626         return (hval);
6627 }
6628 
6629 static dtrace_hash_t *
6630 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
6631 {
6632         dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
6633 
6634         hash->dth_stroffs = stroffs;
6635         hash->dth_nextoffs = nextoffs;
6636         hash->dth_prevoffs = prevoffs;
6637 
6638         hash->dth_size = 1;
6639         hash->dth_mask = hash->dth_size - 1;
6640 
6641         hash->dth_tab = kmem_zalloc(hash->dth_size *
6642             sizeof (dtrace_hashbucket_t *), KM_SLEEP);
6643 
6644         return (hash);
6645 }
6646 
6647 static void
6648 dtrace_hash_destroy(dtrace_hash_t *hash)
6649 {
6650 #ifdef DEBUG
6651         int i;
6652 
6653         for (i = 0; i < hash->dth_size; i++)
6654                 ASSERT(hash->dth_tab[i] == NULL);
6655 #endif
6656 
6657         kmem_free(hash->dth_tab,
6658             hash->dth_size * sizeof (dtrace_hashbucket_t *));
6659         kmem_free(hash, sizeof (dtrace_hash_t));
6660 }
6661 
6662 static void
6663 dtrace_hash_resize(dtrace_hash_t *hash)
6664 {
6665         int size = hash->dth_size, i, ndx;
6666         int new_size = hash->dth_size << 1;
6667         int new_mask = new_size - 1;
6668         dtrace_hashbucket_t **new_tab, *bucket, *next;
6669 
6670         ASSERT((new_size & new_mask) == 0);
6671 
6672         new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
6673 
6674         for (i = 0; i < size; i++) {
6675                 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
6676                         dtrace_probe_t *probe = bucket->dthb_chain;
6677 
6678                         ASSERT(probe != NULL);
6679                         ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
6680 
6681                         next = bucket->dthb_next;
6682                         bucket->dthb_next = new_tab[ndx];
6683                         new_tab[ndx] = bucket;
6684                 }
6685         }
6686 
6687         kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
6688         hash->dth_tab = new_tab;
6689         hash->dth_size = new_size;
6690         hash->dth_mask = new_mask;
6691 }
6692 
6693 static void
6694 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
6695 {
6696         int hashval = DTRACE_HASHSTR(hash, new);
6697         int ndx = hashval & hash->dth_mask;
6698         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6699         dtrace_probe_t **nextp, **prevp;
6700 
6701         for (; bucket != NULL; bucket = bucket->dthb_next) {
6702                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
6703                         goto add;
6704         }
6705 
6706         if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
6707                 dtrace_hash_resize(hash);
6708                 dtrace_hash_add(hash, new);
6709                 return;
6710         }
6711 
6712         bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
6713         bucket->dthb_next = hash->dth_tab[ndx];
6714         hash->dth_tab[ndx] = bucket;
6715         hash->dth_nbuckets++;
6716 
6717 add:
6718         nextp = DTRACE_HASHNEXT(hash, new);
6719         ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
6720         *nextp = bucket->dthb_chain;
6721 
6722         if (bucket->dthb_chain != NULL) {
6723                 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
6724                 ASSERT(*prevp == NULL);
6725                 *prevp = new;
6726         }
6727 
6728         bucket->dthb_chain = new;
6729         bucket->dthb_len++;
6730 }
6731 
6732 static dtrace_probe_t *
6733 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
6734 {
6735         int hashval = DTRACE_HASHSTR(hash, template);
6736         int ndx = hashval & hash->dth_mask;
6737         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6738 
6739         for (; bucket != NULL; bucket = bucket->dthb_next) {
6740                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6741                         return (bucket->dthb_chain);
6742         }
6743 
6744         return (NULL);
6745 }
6746 
6747 static int
6748 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
6749 {
6750         int hashval = DTRACE_HASHSTR(hash, template);
6751         int ndx = hashval & hash->dth_mask;
6752         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6753 
6754         for (; bucket != NULL; bucket = bucket->dthb_next) {
6755                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6756                         return (bucket->dthb_len);
6757         }
6758 
6759         return (NULL);
6760 }
6761 
6762 static void
6763 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
6764 {
6765         int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
6766         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6767 
6768         dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
6769         dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
6770 
6771         /*
6772          * Find the bucket that we're removing this probe from.
6773          */
6774         for (; bucket != NULL; bucket = bucket->dthb_next) {
6775                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
6776                         break;
6777         }
6778 
6779         ASSERT(bucket != NULL);
6780 
6781         if (*prevp == NULL) {
6782                 if (*nextp == NULL) {
6783                         /*
6784                          * The removed probe was the only probe on this
6785                          * bucket; we need to remove the bucket.
6786                          */
6787                         dtrace_hashbucket_t *b = hash->dth_tab[ndx];
6788 
6789                         ASSERT(bucket->dthb_chain == probe);
6790                         ASSERT(b != NULL);
6791 
6792                         if (b == bucket) {
6793                                 hash->dth_tab[ndx] = bucket->dthb_next;
6794                         } else {
6795                                 while (b->dthb_next != bucket)
6796                                         b = b->dthb_next;
6797                                 b->dthb_next = bucket->dthb_next;
6798                         }
6799 
6800                         ASSERT(hash->dth_nbuckets > 0);
6801                         hash->dth_nbuckets--;
6802                         kmem_free(bucket, sizeof (dtrace_hashbucket_t));
6803                         return;
6804                 }
6805 
6806                 bucket->dthb_chain = *nextp;
6807         } else {
6808                 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
6809         }
6810 
6811         if (*nextp != NULL)
6812                 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
6813 }
6814 
6815 /*
6816  * DTrace Utility Functions
6817  *
6818  * These are random utility functions that are _not_ called from probe context.
6819  */
6820 static int
6821 dtrace_badattr(const dtrace_attribute_t *a)
6822 {
6823         return (a->dtat_name > DTRACE_STABILITY_MAX ||
6824             a->dtat_data > DTRACE_STABILITY_MAX ||
6825             a->dtat_class > DTRACE_CLASS_MAX);
6826 }
6827 
6828 /*
6829  * Return a duplicate copy of a string.  If the specified string is NULL,
6830  * this function returns a zero-length string.
6831  */
6832 static char *
6833 dtrace_strdup(const char *str)
6834 {
6835         char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
6836 
6837         if (str != NULL)
6838                 (void) strcpy(new, str);
6839 
6840         return (new);
6841 }
6842 
6843 #define DTRACE_ISALPHA(c)       \
6844         (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
6845 
6846 static int
6847 dtrace_badname(const char *s)
6848 {
6849         char c;
6850 
6851         if (s == NULL || (c = *s++) == '\0')
6852                 return (0);
6853 
6854         if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
6855                 return (1);
6856 
6857         while ((c = *s++) != '\0') {
6858                 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
6859                     c != '-' && c != '_' && c != '.' && c != '`')
6860                         return (1);
6861         }
6862 
6863         return (0);
6864 }
6865 
6866 static void
6867 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
6868 {
6869         uint32_t priv;
6870 
6871         if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
6872                 /*
6873                  * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
6874                  */
6875                 priv = DTRACE_PRIV_ALL;
6876         } else {
6877                 *uidp = crgetuid(cr);
6878                 *zoneidp = crgetzonedid(cr);
6879 
6880                 priv = 0;
6881                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
6882                         priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
6883                 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
6884                         priv |= DTRACE_PRIV_USER;
6885                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
6886                         priv |= DTRACE_PRIV_PROC;
6887                 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
6888                         priv |= DTRACE_PRIV_OWNER;
6889                 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
6890                         priv |= DTRACE_PRIV_ZONEOWNER;
6891         }
6892 
6893         *privp = priv;
6894 }
6895 
6896 #ifdef DTRACE_ERRDEBUG
6897 static void
6898 dtrace_errdebug(const char *str)
6899 {
6900         int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ;
6901         int occupied = 0;
6902 
6903         mutex_enter(&dtrace_errlock);
6904         dtrace_errlast = str;
6905         dtrace_errthread = curthread;
6906 
6907         while (occupied++ < DTRACE_ERRHASHSZ) {
6908                 if (dtrace_errhash[hval].dter_msg == str) {
6909                         dtrace_errhash[hval].dter_count++;
6910                         goto out;
6911                 }
6912 
6913                 if (dtrace_errhash[hval].dter_msg != NULL) {
6914                         hval = (hval + 1) % DTRACE_ERRHASHSZ;
6915                         continue;
6916                 }
6917 
6918                 dtrace_errhash[hval].dter_msg = str;
6919                 dtrace_errhash[hval].dter_count = 1;
6920                 goto out;
6921         }
6922 
6923         panic("dtrace: undersized error hash");
6924 out:
6925         mutex_exit(&dtrace_errlock);
6926 }
6927 #endif
6928 
6929 /*
6930  * DTrace Matching Functions
6931  *
6932  * These functions are used to match groups of probes, given some elements of
6933  * a probe tuple, or some globbed expressions for elements of a probe tuple.
6934  */
6935 static int
6936 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
6937     zoneid_t zoneid)
6938 {
6939         if (priv != DTRACE_PRIV_ALL) {
6940                 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
6941                 uint32_t match = priv & ppriv;
6942 
6943                 /*
6944                  * No PRIV_DTRACE_* privileges...
6945                  */
6946                 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
6947                     DTRACE_PRIV_KERNEL)) == 0)
6948                         return (0);
6949 
6950                 /*
6951                  * No matching bits, but there were bits to match...
6952                  */
6953                 if (match == 0 && ppriv != 0)
6954                         return (0);
6955 
6956                 /*
6957                  * Need to have permissions to the process, but don't...
6958                  */
6959                 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
6960                     uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
6961                         return (0);
6962                 }
6963 
6964                 /*
6965                  * Need to be in the same zone unless we possess the
6966                  * privilege to examine all zones.
6967                  */
6968                 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
6969                     zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
6970                         return (0);
6971                 }
6972         }
6973 
6974         return (1);
6975 }
6976 
6977 /*
6978  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
6979  * consists of input pattern strings and an ops-vector to evaluate them.
6980  * This function returns >0 for match, 0 for no match, and <0 for error.
6981  */
6982 static int
6983 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
6984     uint32_t priv, uid_t uid, zoneid_t zoneid)
6985 {
6986         dtrace_provider_t *pvp = prp->dtpr_provider;
6987         int rv;
6988 
6989         if (pvp->dtpv_defunct)
6990                 return (0);
6991 
6992         if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
6993                 return (rv);
6994 
6995         if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
6996                 return (rv);
6997 
6998         if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
6999                 return (rv);
7000 
7001         if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
7002                 return (rv);
7003 
7004         if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
7005                 return (0);
7006 
7007         return (rv);
7008 }
7009 
7010 /*
7011  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7012  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
7013  * libc's version, the kernel version only applies to 8-bit ASCII strings.
7014  * In addition, all of the recursion cases except for '*' matching have been
7015  * unwound.  For '*', we still implement recursive evaluation, but a depth
7016  * counter is maintained and matching is aborted if we recurse too deep.
7017  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7018  */
7019 static int
7020 dtrace_match_glob(const char *s, const char *p, int depth)
7021 {
7022         const char *olds;
7023         char s1, c;
7024         int gs;
7025 
7026         if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7027                 return (-1);
7028 
7029         if (s == NULL)
7030                 s = ""; /* treat NULL as empty string */
7031 
7032 top:
7033         olds = s;
7034         s1 = *s++;
7035 
7036         if (p == NULL)
7037                 return (0);
7038 
7039         if ((c = *p++) == '\0')
7040                 return (s1 == '\0');
7041 
7042         switch (c) {
7043         case '[': {
7044                 int ok = 0, notflag = 0;
7045                 char lc = '\0';
7046 
7047                 if (s1 == '\0')
7048                         return (0);
7049 
7050                 if (*p == '!') {
7051                         notflag = 1;
7052                         p++;
7053                 }
7054 
7055                 if ((c = *p++) == '\0')
7056                         return (0);
7057 
7058                 do {
7059                         if (c == '-' && lc != '\0' && *p != ']') {
7060                                 if ((c = *p++) == '\0')
7061                                         return (0);
7062                                 if (c == '\\' && (c = *p++) == '\0')
7063                                         return (0);
7064 
7065                                 if (notflag) {
7066                                         if (s1 < lc || s1 > c)
7067                                                 ok++;
7068                                         else
7069                                                 return (0);
7070                                 } else if (lc <= s1 && s1 <= c)
7071                                         ok++;
7072 
7073                         } else if (c == '\\' && (c = *p++) == '\0')
7074                                 return (0);
7075 
7076                         lc = c; /* save left-hand 'c' for next iteration */
7077 
7078                         if (notflag) {
7079                                 if (s1 != c)
7080                                         ok++;
7081                                 else
7082                                         return (0);
7083                         } else if (s1 == c)
7084                                 ok++;
7085 
7086                         if ((c = *p++) == '\0')
7087                                 return (0);
7088 
7089                 } while (c != ']');
7090 
7091                 if (ok)
7092                         goto top;
7093 
7094                 return (0);
7095         }
7096 
7097         case '\\':
7098                 if ((c = *p++) == '\0')
7099                         return (0);
7100                 /*FALLTHRU*/
7101 
7102         default:
7103                 if (c != s1)
7104                         return (0);
7105                 /*FALLTHRU*/
7106 
7107         case '?':
7108                 if (s1 != '\0')
7109                         goto top;
7110                 return (0);
7111 
7112         case '*':
7113                 while (*p == '*')
7114                         p++; /* consecutive *'s are identical to a single one */
7115 
7116                 if (*p == '\0')
7117                         return (1);
7118 
7119                 for (s = olds; *s != '\0'; s++) {
7120                         if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7121                                 return (gs);
7122                 }
7123 
7124                 return (0);
7125         }
7126 }
7127 
7128 /*ARGSUSED*/
7129 static int
7130 dtrace_match_string(const char *s, const char *p, int depth)
7131 {
7132         return (s != NULL && strcmp(s, p) == 0);
7133 }
7134 
7135 /*ARGSUSED*/
7136 static int
7137 dtrace_match_nul(const char *s, const char *p, int depth)
7138 {
7139         return (1); /* always match the empty pattern */
7140 }
7141 
7142 /*ARGSUSED*/
7143 static int
7144 dtrace_match_nonzero(const char *s, const char *p, int depth)
7145 {
7146         return (s != NULL && s[0] != '\0');
7147 }
7148 
7149 static int
7150 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7151     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7152 {
7153         dtrace_probe_t template, *probe;
7154         dtrace_hash_t *hash = NULL;
7155         int len, rc, best = INT_MAX, nmatched = 0;
7156         dtrace_id_t i;
7157 
7158         ASSERT(MUTEX_HELD(&dtrace_lock));
7159 
7160         /*
7161          * If the probe ID is specified in the key, just lookup by ID and
7162          * invoke the match callback once if a matching probe is found.
7163          */
7164         if (pkp->dtpk_id != DTRACE_IDNONE) {
7165                 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
7166                     dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
7167                         if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL)
7168                                 return (DTRACE_MATCH_FAIL);
7169                         nmatched++;
7170                 }
7171                 return (nmatched);
7172         }
7173 
7174         template.dtpr_mod = (char *)pkp->dtpk_mod;
7175         template.dtpr_func = (char *)pkp->dtpk_func;
7176         template.dtpr_name = (char *)pkp->dtpk_name;
7177 
7178         /*
7179          * We want to find the most distinct of the module name, function
7180          * name, and name.  So for each one that is not a glob pattern or
7181          * empty string, we perform a lookup in the corresponding hash and
7182          * use the hash table with the fewest collisions to do our search.
7183          */
7184         if (pkp->dtpk_mmatch == &dtrace_match_string &&
7185             (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
7186                 best = len;
7187                 hash = dtrace_bymod;
7188         }
7189 
7190         if (pkp->dtpk_fmatch == &dtrace_match_string &&
7191             (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
7192                 best = len;
7193                 hash = dtrace_byfunc;
7194         }
7195 
7196         if (pkp->dtpk_nmatch == &dtrace_match_string &&
7197             (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
7198                 best = len;
7199                 hash = dtrace_byname;
7200         }
7201 
7202         /*
7203          * If we did not select a hash table, iterate over every probe and
7204          * invoke our callback for each one that matches our input probe key.
7205          */
7206         if (hash == NULL) {
7207                 for (i = 0; i < dtrace_nprobes; i++) {
7208                         if ((probe = dtrace_probes[i]) == NULL ||
7209                             dtrace_match_probe(probe, pkp, priv, uid,
7210                             zoneid) <= 0)
7211                                 continue;
7212 
7213                         nmatched++;
7214 
7215                         if ((rc = (*matched)(probe, arg)) !=
7216                             DTRACE_MATCH_NEXT) {
7217                                 if (rc == DTRACE_MATCH_FAIL)
7218                                         return (DTRACE_MATCH_FAIL);
7219                                 break;
7220                         }
7221                 }
7222 
7223                 return (nmatched);
7224         }
7225 
7226         /*
7227          * If we selected a hash table, iterate over each probe of the same key
7228          * name and invoke the callback for every probe that matches the other
7229          * attributes of our input probe key.
7230          */
7231         for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
7232             probe = *(DTRACE_HASHNEXT(hash, probe))) {
7233 
7234                 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
7235                         continue;
7236 
7237                 nmatched++;
7238 
7239                 if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) {
7240                         if (rc == DTRACE_MATCH_FAIL)
7241                                 return (DTRACE_MATCH_FAIL);
7242                         break;
7243                 }
7244         }
7245 
7246         return (nmatched);
7247 }
7248 
7249 /*
7250  * Return the function pointer dtrace_probecmp() should use to compare the
7251  * specified pattern with a string.  For NULL or empty patterns, we select
7252  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
7253  * For non-empty non-glob strings, we use dtrace_match_string().
7254  */
7255 static dtrace_probekey_f *
7256 dtrace_probekey_func(const char *p)
7257 {
7258         char c;
7259 
7260         if (p == NULL || *p == '\0')
7261                 return (&dtrace_match_nul);
7262 
7263         while ((c = *p++) != '\0') {
7264                 if (c == '[' || c == '?' || c == '*' || c == '\\')
7265                         return (&dtrace_match_glob);
7266         }
7267 
7268         return (&dtrace_match_string);
7269 }
7270 
7271 /*
7272  * Build a probe comparison key for use with dtrace_match_probe() from the
7273  * given probe description.  By convention, a null key only matches anchored
7274  * probes: if each field is the empty string, reset dtpk_fmatch to
7275  * dtrace_match_nonzero().
7276  */
7277 static void
7278 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7279 {
7280         pkp->dtpk_prov = pdp->dtpd_provider;
7281         pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
7282 
7283         pkp->dtpk_mod = pdp->dtpd_mod;
7284         pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
7285 
7286         pkp->dtpk_func = pdp->dtpd_func;
7287         pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
7288 
7289         pkp->dtpk_name = pdp->dtpd_name;
7290         pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
7291 
7292         pkp->dtpk_id = pdp->dtpd_id;
7293 
7294         if (pkp->dtpk_id == DTRACE_IDNONE &&
7295             pkp->dtpk_pmatch == &dtrace_match_nul &&
7296             pkp->dtpk_mmatch == &dtrace_match_nul &&
7297             pkp->dtpk_fmatch == &dtrace_match_nul &&
7298             pkp->dtpk_nmatch == &dtrace_match_nul)
7299                 pkp->dtpk_fmatch = &dtrace_match_nonzero;
7300 }
7301 
7302 /*
7303  * DTrace Provider-to-Framework API Functions
7304  *
7305  * These functions implement much of the Provider-to-Framework API, as
7306  * described in <sys/dtrace.h>.  The parts of the API not in this section are
7307  * the functions in the API for probe management (found below), and
7308  * dtrace_probe() itself (found above).
7309  */
7310 
7311 /*
7312  * Register the calling provider with the DTrace framework.  This should
7313  * generally be called by DTrace providers in their attach(9E) entry point.
7314  */
7315 int
7316 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
7317     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7318 {
7319         dtrace_provider_t *provider;
7320 
7321         if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7322                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7323                     "arguments", name ? name : "<NULL>");
7324                 return (EINVAL);
7325         }
7326 
7327         if (name[0] == '\0' || dtrace_badname(name)) {
7328                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7329                     "provider name", name);
7330                 return (EINVAL);
7331         }
7332 
7333         if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
7334             pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
7335             pops->dtps_destroy == NULL ||
7336             ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
7337                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7338                     "provider ops", name);
7339                 return (EINVAL);
7340         }
7341 
7342         if (dtrace_badattr(&pap->dtpa_provider) ||
7343             dtrace_badattr(&pap->dtpa_mod) ||
7344             dtrace_badattr(&pap->dtpa_func) ||
7345             dtrace_badattr(&pap->dtpa_name) ||
7346             dtrace_badattr(&pap->dtpa_args)) {
7347                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7348                     "provider attributes", name);
7349                 return (EINVAL);
7350         }
7351 
7352         if (priv & ~DTRACE_PRIV_ALL) {
7353                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7354                     "privilege attributes", name);
7355                 return (EINVAL);
7356         }
7357 
7358         if ((priv & DTRACE_PRIV_KERNEL) &&
7359             (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7360             pops->dtps_mode == NULL) {
7361                 cmn_err(CE_WARN, "failed to register provider '%s': need "
7362                     "dtps_mode() op for given privilege attributes", name);
7363                 return (EINVAL);
7364         }
7365 
7366         provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7367         provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7368         (void) strcpy(provider->dtpv_name, name);
7369 
7370         provider->dtpv_attr = *pap;
7371         provider->dtpv_priv.dtpp_flags = priv;
7372         if (cr != NULL) {
7373                 provider->dtpv_priv.dtpp_uid = crgetuid(cr);
7374                 provider->dtpv_priv.dtpp_zoneid = crgetzonedid(cr);
7375         }
7376         provider->dtpv_pops = *pops;
7377 
7378         if (pops->dtps_provide == NULL) {
7379                 ASSERT(pops->dtps_provide_module != NULL);
7380                 provider->dtpv_pops.dtps_provide =
7381                     (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop;
7382         }
7383 
7384         if (pops->dtps_provide_module == NULL) {
7385                 ASSERT(pops->dtps_provide != NULL);
7386                 provider->dtpv_pops.dtps_provide_module =
7387                     (void (*)(void *, struct modctl *))dtrace_nullop;
7388         }
7389 
7390         if (pops->dtps_suspend == NULL) {
7391                 ASSERT(pops->dtps_resume == NULL);
7392                 provider->dtpv_pops.dtps_suspend =
7393                     (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7394                 provider->dtpv_pops.dtps_resume =
7395                     (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7396         }
7397 
7398         provider->dtpv_arg = arg;
7399         *idp = (dtrace_provider_id_t)provider;
7400 
7401         if (pops == &dtrace_provider_ops) {
7402                 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7403                 ASSERT(MUTEX_HELD(&dtrace_lock));
7404                 ASSERT(dtrace_anon.dta_enabling == NULL);
7405 
7406                 /*
7407                  * We make sure that the DTrace provider is at the head of
7408                  * the provider chain.
7409                  */
7410                 provider->dtpv_next = dtrace_provider;
7411                 dtrace_provider = provider;
7412                 return (0);
7413         }
7414 
7415         mutex_enter(&dtrace_provider_lock);
7416         mutex_enter(&dtrace_lock);
7417 
7418         /*
7419          * If there is at least one provider registered, we'll add this
7420          * provider after the first provider.
7421          */
7422         if (dtrace_provider != NULL) {
7423                 provider->dtpv_next = dtrace_provider->dtpv_next;
7424                 dtrace_provider->dtpv_next = provider;
7425         } else {
7426                 dtrace_provider = provider;
7427         }
7428 
7429         if (dtrace_retained != NULL) {
7430                 dtrace_enabling_provide(provider);
7431 
7432                 /*
7433                  * Now we need to call dtrace_enabling_matchall() -- which
7434                  * will acquire cpu_lock and dtrace_lock.  We therefore need
7435                  * to drop all of our locks before calling into it...
7436                  */
7437                 mutex_exit(&dtrace_lock);
7438                 mutex_exit(&dtrace_provider_lock);
7439                 dtrace_enabling_matchall();
7440 
7441                 return (0);
7442         }
7443 
7444         mutex_exit(&dtrace_lock);
7445         mutex_exit(&dtrace_provider_lock);
7446 
7447         return (0);
7448 }
7449 
7450 /*
7451  * Unregister the specified provider from the DTrace framework.  This should
7452  * generally be called by DTrace providers in their detach(9E) entry point.
7453  */
7454 int
7455 dtrace_unregister(dtrace_provider_id_t id)
7456 {
7457         dtrace_provider_t *old = (dtrace_provider_t *)id;
7458         dtrace_provider_t *prev = NULL;
7459         int i, self = 0, noreap = 0;
7460         dtrace_probe_t *probe, *first = NULL;
7461 
7462         if (old->dtpv_pops.dtps_enable ==
7463             (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) {
7464                 /*
7465                  * If DTrace itself is the provider, we're called with locks
7466                  * already held.
7467                  */
7468                 ASSERT(old == dtrace_provider);
7469                 ASSERT(dtrace_devi != NULL);
7470                 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7471                 ASSERT(MUTEX_HELD(&dtrace_lock));
7472                 self = 1;
7473 
7474                 if (dtrace_provider->dtpv_next != NULL) {
7475                         /*
7476                          * There's another provider here; return failure.
7477                          */
7478                         return (EBUSY);
7479                 }
7480         } else {
7481                 mutex_enter(&dtrace_provider_lock);
7482                 mutex_enter(&mod_lock);
7483                 mutex_enter(&dtrace_lock);
7484         }
7485 
7486         /*
7487          * If anyone has /dev/dtrace open, or if there are anonymous enabled
7488          * probes, we refuse to let providers slither away, unless this
7489          * provider has already been explicitly invalidated.
7490          */
7491         if (!old->dtpv_defunct &&
7492             (dtrace_opens || (dtrace_anon.dta_state != NULL &&
7493             dtrace_anon.dta_state->dts_necbs > 0))) {
7494                 if (!self) {
7495                         mutex_exit(&dtrace_lock);
7496                         mutex_exit(&mod_lock);
7497                         mutex_exit(&dtrace_provider_lock);
7498                 }
7499                 return (EBUSY);
7500         }
7501 
7502         /*
7503          * Attempt to destroy the probes associated with this provider.
7504          */
7505         for (i = 0; i < dtrace_nprobes; i++) {
7506                 if ((probe = dtrace_probes[i]) == NULL)
7507                         continue;
7508 
7509                 if (probe->dtpr_provider != old)
7510                         continue;
7511 
7512                 if (probe->dtpr_ecb == NULL)
7513                         continue;
7514 
7515                 /*
7516                  * If we are trying to unregister a defunct provider, and the
7517                  * provider was made defunct within the interval dictated by
7518                  * dtrace_unregister_defunct_reap, we'll (asynchronously)
7519                  * attempt to reap our enablings.  To denote that the provider
7520                  * should reattempt to unregister itself at some point in the
7521                  * future, we will return a differentiable error code (EAGAIN
7522                  * instead of EBUSY) in this case.
7523                  */
7524                 if (dtrace_gethrtime() - old->dtpv_defunct >
7525                     dtrace_unregister_defunct_reap)
7526                         noreap = 1;
7527 
7528                 if (!self) {
7529                         mutex_exit(&dtrace_lock);
7530                         mutex_exit(&mod_lock);
7531                         mutex_exit(&dtrace_provider_lock);
7532                 }
7533 
7534                 if (noreap)
7535                         return (EBUSY);
7536 
7537                 (void) taskq_dispatch(dtrace_taskq,
7538                     (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
7539 
7540                 return (EAGAIN);
7541         }
7542 
7543         /*
7544          * All of the probes for this provider are disabled; we can safely
7545          * remove all of them from their hash chains and from the probe array.
7546          */
7547         for (i = 0; i < dtrace_nprobes; i++) {
7548                 if ((probe = dtrace_probes[i]) == NULL)
7549                         continue;
7550 
7551                 if (probe->dtpr_provider != old)
7552                         continue;
7553 
7554                 dtrace_probes[i] = NULL;
7555 
7556                 dtrace_hash_remove(dtrace_bymod, probe);
7557                 dtrace_hash_remove(dtrace_byfunc, probe);
7558                 dtrace_hash_remove(dtrace_byname, probe);
7559 
7560                 if (first == NULL) {
7561                         first = probe;
7562                         probe->dtpr_nextmod = NULL;
7563                 } else {
7564                         probe->dtpr_nextmod = first;
7565                         first = probe;
7566                 }
7567         }
7568 
7569         /*
7570          * The provider's probes have been removed from the hash chains and
7571          * from the probe array.  Now issue a dtrace_sync() to be sure that
7572          * everyone has cleared out from any probe array processing.
7573          */
7574         dtrace_sync();
7575 
7576         for (probe = first; probe != NULL; probe = first) {
7577                 first = probe->dtpr_nextmod;
7578 
7579                 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
7580                     probe->dtpr_arg);
7581                 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7582                 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7583                 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7584                 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
7585                 kmem_free(probe, sizeof (dtrace_probe_t));
7586         }
7587 
7588         if ((prev = dtrace_provider) == old) {
7589                 ASSERT(self || dtrace_devi == NULL);
7590                 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
7591                 dtrace_provider = old->dtpv_next;
7592         } else {
7593                 while (prev != NULL && prev->dtpv_next != old)
7594                         prev = prev->dtpv_next;
7595 
7596                 if (prev == NULL) {
7597                         panic("attempt to unregister non-existent "
7598                             "dtrace provider %p\n", (void *)id);
7599                 }
7600 
7601                 prev->dtpv_next = old->dtpv_next;
7602         }
7603 
7604         if (!self) {
7605                 mutex_exit(&dtrace_lock);
7606                 mutex_exit(&mod_lock);
7607                 mutex_exit(&dtrace_provider_lock);
7608         }
7609 
7610         kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
7611         kmem_free(old, sizeof (dtrace_provider_t));
7612 
7613         return (0);
7614 }
7615 
7616 /*
7617  * Invalidate the specified provider.  All subsequent probe lookups for the
7618  * specified provider will fail, but its probes will not be removed.
7619  */
7620 void
7621 dtrace_invalidate(dtrace_provider_id_t id)
7622 {
7623         dtrace_provider_t *pvp = (dtrace_provider_t *)id;
7624 
7625         ASSERT(pvp->dtpv_pops.dtps_enable !=
7626             (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
7627 
7628         mutex_enter(&dtrace_provider_lock);
7629         mutex_enter(&dtrace_lock);
7630 
7631         pvp->dtpv_defunct = dtrace_gethrtime();
7632 
7633         mutex_exit(&dtrace_lock);
7634         mutex_exit(&dtrace_provider_lock);
7635 }
7636 
7637 /*
7638  * Indicate whether or not DTrace has attached.
7639  */
7640 int
7641 dtrace_attached(void)
7642 {
7643         /*
7644          * dtrace_provider will be non-NULL iff the DTrace driver has
7645          * attached.  (It's non-NULL because DTrace is always itself a
7646          * provider.)
7647          */
7648         return (dtrace_provider != NULL);
7649 }
7650 
7651 /*
7652  * Remove all the unenabled probes for the given provider.  This function is
7653  * not unlike dtrace_unregister(), except that it doesn't remove the provider
7654  * -- just as many of its associated probes as it can.
7655  */
7656 int
7657 dtrace_condense(dtrace_provider_id_t id)
7658 {
7659         dtrace_provider_t *prov = (dtrace_provider_t *)id;
7660         int i;
7661         dtrace_probe_t *probe;
7662 
7663         /*
7664          * Make sure this isn't the dtrace provider itself.
7665          */
7666         ASSERT(prov->dtpv_pops.dtps_enable !=
7667             (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
7668 
7669         mutex_enter(&dtrace_provider_lock);
7670         mutex_enter(&dtrace_lock);
7671 
7672         /*
7673          * Attempt to destroy the probes associated with this provider.
7674          */
7675         for (i = 0; i < dtrace_nprobes; i++) {
7676                 if ((probe = dtrace_probes[i]) == NULL)
7677                         continue;
7678 
7679                 if (probe->dtpr_provider != prov)
7680                         continue;
7681 
7682                 if (probe->dtpr_ecb != NULL)
7683                         continue;
7684 
7685                 dtrace_probes[i] = NULL;
7686 
7687                 dtrace_hash_remove(dtrace_bymod, probe);
7688                 dtrace_hash_remove(dtrace_byfunc, probe);
7689                 dtrace_hash_remove(dtrace_byname, probe);
7690 
7691                 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
7692                     probe->dtpr_arg);
7693                 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7694                 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7695                 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7696                 kmem_free(probe, sizeof (dtrace_probe_t));
7697                 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
7698         }
7699 
7700         mutex_exit(&dtrace_lock);
7701         mutex_exit(&dtrace_provider_lock);
7702 
7703         return (0);
7704 }
7705 
7706 /*
7707  * DTrace Probe Management Functions
7708  *
7709  * The functions in this section perform the DTrace probe management,
7710  * including functions to create probes, look-up probes, and call into the
7711  * providers to request that probes be provided.  Some of these functions are
7712  * in the Provider-to-Framework API; these functions can be identified by the
7713  * fact that they are not declared "static".
7714  */
7715 
7716 /*
7717  * Create a probe with the specified module name, function name, and name.
7718  */
7719 dtrace_id_t
7720 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
7721     const char *func, const char *name, int aframes, void *arg)
7722 {
7723         dtrace_probe_t *probe, **probes;
7724         dtrace_provider_t *provider = (dtrace_provider_t *)prov;
7725         dtrace_id_t id;
7726 
7727         if (provider == dtrace_provider) {
7728                 ASSERT(MUTEX_HELD(&dtrace_lock));
7729         } else {
7730                 mutex_enter(&dtrace_lock);
7731         }
7732 
7733         id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
7734             VM_BESTFIT | VM_SLEEP);
7735         probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
7736 
7737         probe->dtpr_id = id;
7738         probe->dtpr_gen = dtrace_probegen++;
7739         probe->dtpr_mod = dtrace_strdup(mod);
7740         probe->dtpr_func = dtrace_strdup(func);
7741         probe->dtpr_name = dtrace_strdup(name);
7742         probe->dtpr_arg = arg;
7743         probe->dtpr_aframes = aframes;
7744         probe->dtpr_provider = provider;
7745 
7746         dtrace_hash_add(dtrace_bymod, probe);
7747         dtrace_hash_add(dtrace_byfunc, probe);
7748         dtrace_hash_add(dtrace_byname, probe);
7749 
7750         if (id - 1 >= dtrace_nprobes) {
7751                 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
7752                 size_t nsize = osize << 1;
7753 
7754                 if (nsize == 0) {
7755                         ASSERT(osize == 0);
7756                         ASSERT(dtrace_probes == NULL);
7757                         nsize = sizeof (dtrace_probe_t *);
7758                 }
7759 
7760                 probes = kmem_zalloc(nsize, KM_SLEEP);
7761 
7762                 if (dtrace_probes == NULL) {
7763                         ASSERT(osize == 0);
7764                         dtrace_probes = probes;
7765                         dtrace_nprobes = 1;
7766                 } else {
7767                         dtrace_probe_t **oprobes = dtrace_probes;
7768 
7769                         bcopy(oprobes, probes, osize);
7770                         dtrace_membar_producer();
7771                         dtrace_probes = probes;
7772 
7773                         dtrace_sync();
7774 
7775                         /*
7776                          * All CPUs are now seeing the new probes array; we can
7777                          * safely free the old array.
7778                          */
7779                         kmem_free(oprobes, osize);
7780                         dtrace_nprobes <<= 1;
7781                 }
7782 
7783                 ASSERT(id - 1 < dtrace_nprobes);
7784         }
7785 
7786         ASSERT(dtrace_probes[id - 1] == NULL);
7787         dtrace_probes[id - 1] = probe;
7788 
7789         if (provider != dtrace_provider)
7790                 mutex_exit(&dtrace_lock);
7791 
7792         return (id);
7793 }
7794 
7795 static dtrace_probe_t *
7796 dtrace_probe_lookup_id(dtrace_id_t id)
7797 {
7798         ASSERT(MUTEX_HELD(&dtrace_lock));
7799 
7800         if (id == 0 || id > dtrace_nprobes)
7801                 return (NULL);
7802 
7803         return (dtrace_probes[id - 1]);
7804 }
7805 
7806 static int
7807 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
7808 {
7809         *((dtrace_id_t *)arg) = probe->dtpr_id;
7810 
7811         return (DTRACE_MATCH_DONE);
7812 }
7813 
7814 /*
7815  * Look up a probe based on provider and one or more of module name, function
7816  * name and probe name.
7817  */
7818 dtrace_id_t
7819 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod,
7820     const char *func, const char *name)
7821 {
7822         dtrace_probekey_t pkey;
7823         dtrace_id_t id;
7824         int match;
7825 
7826         pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
7827         pkey.dtpk_pmatch = &dtrace_match_string;
7828         pkey.dtpk_mod = mod;
7829         pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
7830         pkey.dtpk_func = func;
7831         pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
7832         pkey.dtpk_name = name;
7833         pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
7834         pkey.dtpk_id = DTRACE_IDNONE;
7835 
7836         mutex_enter(&dtrace_lock);
7837         match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
7838             dtrace_probe_lookup_match, &id);
7839         mutex_exit(&dtrace_lock);
7840 
7841         ASSERT(match == 1 || match == 0);
7842         return (match ? id : 0);
7843 }
7844 
7845 /*
7846  * Returns the probe argument associated with the specified probe.
7847  */
7848 void *
7849 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
7850 {
7851         dtrace_probe_t *probe;
7852         void *rval = NULL;
7853 
7854         mutex_enter(&dtrace_lock);
7855 
7856         if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
7857             probe->dtpr_provider == (dtrace_provider_t *)id)
7858                 rval = probe->dtpr_arg;
7859 
7860         mutex_exit(&dtrace_lock);
7861 
7862         return (rval);
7863 }
7864 
7865 /*
7866  * Copy a probe into a probe description.
7867  */
7868 static void
7869 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
7870 {
7871         bzero(pdp, sizeof (dtrace_probedesc_t));
7872         pdp->dtpd_id = prp->dtpr_id;
7873 
7874         (void) strncpy(pdp->dtpd_provider,
7875             prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
7876 
7877         (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
7878         (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
7879         (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
7880 }
7881 
7882 /*
7883  * Called to indicate that a probe -- or probes -- should be provided by a
7884  * specfied provider.  If the specified description is NULL, the provider will
7885  * be told to provide all of its probes.  (This is done whenever a new
7886  * consumer comes along, or whenever a retained enabling is to be matched.) If
7887  * the specified description is non-NULL, the provider is given the
7888  * opportunity to dynamically provide the specified probe, allowing providers
7889  * to support the creation of probes on-the-fly.  (So-called _autocreated_
7890  * probes.)  If the provider is NULL, the operations will be applied to all
7891  * providers; if the provider is non-NULL the operations will only be applied
7892  * to the specified provider.  The dtrace_provider_lock must be held, and the
7893  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
7894  * will need to grab the dtrace_lock when it reenters the framework through
7895  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
7896  */
7897 static void
7898 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
7899 {
7900         struct modctl *ctl;
7901         int all = 0;
7902 
7903         ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7904 
7905         if (prv == NULL) {
7906                 all = 1;
7907                 prv = dtrace_provider;
7908         }
7909 
7910         do {
7911                 /*
7912                  * First, call the blanket provide operation.
7913                  */
7914                 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
7915 
7916                 /*
7917                  * Now call the per-module provide operation.  We will grab
7918                  * mod_lock to prevent the list from being modified.  Note
7919                  * that this also prevents the mod_busy bits from changing.
7920                  * (mod_busy can only be changed with mod_lock held.)
7921                  */
7922                 mutex_enter(&mod_lock);
7923 
7924                 ctl = &modules;
7925                 do {
7926                         if (ctl->mod_busy || ctl->mod_mp == NULL)
7927                                 continue;
7928 
7929                         prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
7930 
7931                 } while ((ctl = ctl->mod_next) != &modules);
7932 
7933                 mutex_exit(&mod_lock);
7934         } while (all && (prv = prv->dtpv_next) != NULL);
7935 }
7936 
7937 /*
7938  * Iterate over each probe, and call the Framework-to-Provider API function
7939  * denoted by offs.
7940  */
7941 static void
7942 dtrace_probe_foreach(uintptr_t offs)
7943 {
7944         dtrace_provider_t *prov;
7945         void (*func)(void *, dtrace_id_t, void *);
7946         dtrace_probe_t *probe;
7947         dtrace_icookie_t cookie;
7948         int i;
7949 
7950         /*
7951          * We disable interrupts to walk through the probe array.  This is
7952          * safe -- the dtrace_sync() in dtrace_unregister() assures that we
7953          * won't see stale data.
7954          */
7955         cookie = dtrace_interrupt_disable();
7956 
7957         for (i = 0; i < dtrace_nprobes; i++) {
7958                 if ((probe = dtrace_probes[i]) == NULL)
7959                         continue;
7960 
7961                 if (probe->dtpr_ecb == NULL) {
7962                         /*
7963                          * This probe isn't enabled -- don't call the function.
7964                          */
7965                         continue;
7966                 }
7967 
7968                 prov = probe->dtpr_provider;
7969                 func = *((void(**)(void *, dtrace_id_t, void *))
7970                     ((uintptr_t)&prov->dtpv_pops + offs));
7971 
7972                 func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
7973         }
7974 
7975         dtrace_interrupt_enable(cookie);
7976 }
7977 
7978 static int
7979 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
7980 {
7981         dtrace_probekey_t pkey;
7982         uint32_t priv;
7983         uid_t uid;
7984         zoneid_t zoneid;
7985         dtrace_state_t *state = enab->dten_vstate->dtvs_state;
7986 
7987         ASSERT(MUTEX_HELD(&dtrace_lock));
7988         dtrace_ecb_create_cache = NULL;
7989 
7990         if (desc == NULL) {
7991                 /*
7992                  * If we're passed a NULL description, we're being asked to
7993                  * create an ECB with a NULL probe.
7994                  */
7995                 (void) dtrace_ecb_create_enable(NULL, enab);
7996                 return (0);
7997         }
7998 
7999         dtrace_probekey(desc, &pkey);
8000         dtrace_cred2priv(state->dts_cred.dcr_cred, &priv, &uid, &zoneid);
8001 
8002         if ((priv & DTRACE_PRIV_ZONEOWNER) &&
8003             state->dts_options[DTRACEOPT_ZONE] != DTRACEOPT_UNSET) {
8004                 /*
8005                  * If we have the privilege of instrumenting all zones but we
8006                  * have been told to instrument but one, we will spoof this up
8007                  * depriving ourselves of DTRACE_PRIV_ZONEOWNER for purposes
8008                  * of dtrace_match().  (Note that DTRACEOPT_ZONE is not for
8009                  * security but rather for performance: it allows the global
8010                  * zone to instrument USDT probes in a local zone without
8011                  * requiring all zones to be instrumented.)
8012                  */
8013                 priv &= ~DTRACE_PRIV_ZONEOWNER;
8014                 zoneid = state->dts_options[DTRACEOPT_ZONE];
8015         }
8016 
8017         return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
8018             enab));
8019 }
8020 
8021 /*
8022  * DTrace Helper Provider Functions
8023  */
8024 static void
8025 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
8026 {
8027         attr->dtat_name = DOF_ATTR_NAME(dofattr);
8028         attr->dtat_data = DOF_ATTR_DATA(dofattr);
8029         attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8030 }
8031 
8032 static void
8033 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8034     const dof_provider_t *dofprov, char *strtab)
8035 {
8036         hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8037         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8038             dofprov->dofpv_provattr);
8039         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8040             dofprov->dofpv_modattr);
8041         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8042             dofprov->dofpv_funcattr);
8043         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8044             dofprov->dofpv_nameattr);
8045         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8046             dofprov->dofpv_argsattr);
8047 }
8048 
8049 static void
8050 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8051 {
8052         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8053         dof_hdr_t *dof = (dof_hdr_t *)daddr;
8054         dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8055         dof_provider_t *provider;
8056         dof_probe_t *probe;
8057         uint32_t *off, *enoff;
8058         uint8_t *arg;
8059         char *strtab;
8060         uint_t i, nprobes;
8061         dtrace_helper_provdesc_t dhpv;
8062         dtrace_helper_probedesc_t dhpb;
8063         dtrace_meta_t *meta = dtrace_meta_pid;
8064         dtrace_mops_t *mops = &meta->dtm_mops;
8065         void *parg;
8066 
8067         provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8068         str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8069             provider->dofpv_strtab * dof->dofh_secsize);
8070         prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8071             provider->dofpv_probes * dof->dofh_secsize);
8072         arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8073             provider->dofpv_prargs * dof->dofh_secsize);
8074         off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8075             provider->dofpv_proffs * dof->dofh_secsize);
8076 
8077         strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8078         off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8079         arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8080         enoff = NULL;
8081 
8082         /*
8083          * See dtrace_helper_provider_validate().
8084          */
8085         if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8086             provider->dofpv_prenoffs != DOF_SECT_NONE) {
8087                 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8088                     provider->dofpv_prenoffs * dof->dofh_secsize);
8089                 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8090         }
8091 
8092         nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8093 
8094         /*
8095          * Create the provider.
8096          */
8097         dtrace_dofprov2hprov(&dhpv, provider, strtab);
8098 
8099         if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8100                 return;
8101 
8102         meta->dtm_count++;
8103 
8104         /*
8105          * Create the probes.
8106          */
8107         for (i = 0; i < nprobes; i++) {
8108                 probe = (dof_probe_t *)(uintptr_t)(daddr +
8109                     prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8110 
8111                 dhpb.dthpb_mod = dhp->dofhp_mod;
8112                 dhpb.dthpb_func = strtab + probe->dofpr_func;
8113                 dhpb.dthpb_name = strtab + probe->dofpr_name;
8114                 dhpb.dthpb_base = probe->dofpr_addr;
8115                 dhpb.dthpb_offs = off + probe->dofpr_offidx;
8116                 dhpb.dthpb_noffs = probe->dofpr_noffs;
8117                 if (enoff != NULL) {
8118                         dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8119                         dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8120                 } else {
8121                         dhpb.dthpb_enoffs = NULL;
8122                         dhpb.dthpb_nenoffs = 0;
8123                 }
8124                 dhpb.dthpb_args = arg + probe->dofpr_argidx;
8125                 dhpb.dthpb_nargc = probe->dofpr_nargc;
8126                 dhpb.dthpb_xargc = probe->dofpr_xargc;
8127                 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8128                 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
8129 
8130                 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8131         }
8132 }
8133 
8134 static void
8135 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8136 {
8137         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8138         dof_hdr_t *dof = (dof_hdr_t *)daddr;
8139         int i;
8140 
8141         ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8142 
8143         for (i = 0; i < dof->dofh_secnum; i++) {
8144                 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8145                     dof->dofh_secoff + i * dof->dofh_secsize);
8146 
8147                 if (sec->dofs_type != DOF_SECT_PROVIDER)
8148                         continue;
8149 
8150                 dtrace_helper_provide_one(dhp, sec, pid);
8151         }
8152 
8153         /*
8154          * We may have just created probes, so we must now rematch against
8155          * any retained enablings.  Note that this call will acquire both
8156          * cpu_lock and dtrace_lock; the fact that we are holding
8157          * dtrace_meta_lock now is what defines the ordering with respect to
8158          * these three locks.
8159          */
8160         dtrace_enabling_matchall();
8161 }
8162 
8163 static void
8164 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8165 {
8166         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8167         dof_hdr_t *dof = (dof_hdr_t *)daddr;
8168         dof_sec_t *str_sec;
8169         dof_provider_t *provider;
8170         char *strtab;
8171         dtrace_helper_provdesc_t dhpv;
8172         dtrace_meta_t *meta = dtrace_meta_pid;
8173         dtrace_mops_t *mops = &meta->dtm_mops;
8174 
8175         provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8176         str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8177             provider->dofpv_strtab * dof->dofh_secsize);
8178 
8179         strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8180 
8181         /*
8182          * Create the provider.
8183          */
8184         dtrace_dofprov2hprov(&dhpv, provider, strtab);
8185 
8186         mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
8187 
8188         meta->dtm_count--;
8189 }
8190 
8191 static void
8192 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
8193 {
8194         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8195         dof_hdr_t *dof = (dof_hdr_t *)daddr;
8196         int i;
8197 
8198         ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8199 
8200         for (i = 0; i < dof->dofh_secnum; i++) {
8201                 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8202                     dof->dofh_secoff + i * dof->dofh_secsize);
8203 
8204                 if (sec->dofs_type != DOF_SECT_PROVIDER)
8205                         continue;
8206 
8207                 dtrace_helper_provider_remove_one(dhp, sec, pid);
8208         }
8209 }
8210 
8211 /*
8212  * DTrace Meta Provider-to-Framework API Functions
8213  *
8214  * These functions implement the Meta Provider-to-Framework API, as described
8215  * in <sys/dtrace.h>.
8216  */
8217 int
8218 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
8219     dtrace_meta_provider_id_t *idp)
8220 {
8221         dtrace_meta_t *meta;
8222         dtrace_helpers_t *help, *next;
8223         int i;
8224 
8225         *idp = DTRACE_METAPROVNONE;
8226 
8227         /*
8228          * We strictly don't need the name, but we hold onto it for
8229          * debuggability. All hail error queues!
8230          */
8231         if (name == NULL) {
8232                 cmn_err(CE_WARN, "failed to register meta-provider: "
8233                     "invalid name");
8234                 return (EINVAL);
8235         }
8236 
8237         if (mops == NULL ||
8238             mops->dtms_create_probe == NULL ||
8239             mops->dtms_provide_pid == NULL ||
8240             mops->dtms_remove_pid == NULL) {
8241                 cmn_err(CE_WARN, "failed to register meta-register %s: "
8242                     "invalid ops", name);
8243                 return (EINVAL);
8244         }
8245 
8246         meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
8247         meta->dtm_mops = *mops;
8248         meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8249         (void) strcpy(meta->dtm_name, name);
8250         meta->dtm_arg = arg;
8251 
8252         mutex_enter(&dtrace_meta_lock);
8253         mutex_enter(&dtrace_lock);
8254 
8255         if (dtrace_meta_pid != NULL) {
8256                 mutex_exit(&dtrace_lock);
8257                 mutex_exit(&dtrace_meta_lock);
8258                 cmn_err(CE_WARN, "failed to register meta-register %s: "
8259                     "user-land meta-provider exists", name);
8260                 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
8261                 kmem_free(meta, sizeof (dtrace_meta_t));
8262                 return (EINVAL);
8263         }
8264 
8265         dtrace_meta_pid = meta;
8266         *idp = (dtrace_meta_provider_id_t)meta;
8267 
8268         /*
8269          * If there are providers and probes ready to go, pass them
8270          * off to the new meta provider now.
8271          */
8272 
8273         help = dtrace_deferred_pid;
8274         dtrace_deferred_pid = NULL;
8275 
8276         mutex_exit(&dtrace_lock);
8277 
8278         while (help != NULL) {
8279                 for (i = 0; i < help->dthps_nprovs; i++) {
8280                         dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
8281                             help->dthps_pid);
8282                 }
8283 
8284                 next = help->dthps_next;
8285                 help->dthps_next = NULL;
8286                 help->dthps_prev = NULL;
8287                 help->dthps_deferred = 0;
8288                 help = next;
8289         }
8290 
8291         mutex_exit(&dtrace_meta_lock);
8292 
8293         return (0);
8294 }
8295 
8296 int
8297 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
8298 {
8299         dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
8300 
8301         mutex_enter(&dtrace_meta_lock);
8302         mutex_enter(&dtrace_lock);
8303 
8304         if (old == dtrace_meta_pid) {
8305                 pp = &dtrace_meta_pid;
8306         } else {
8307                 panic("attempt to unregister non-existent "
8308                     "dtrace meta-provider %p\n", (void *)old);
8309         }
8310 
8311         if (old->dtm_count != 0) {
8312                 mutex_exit(&dtrace_lock);
8313                 mutex_exit(&dtrace_meta_lock);
8314                 return (EBUSY);
8315         }
8316 
8317         *pp = NULL;
8318 
8319         mutex_exit(&dtrace_lock);
8320         mutex_exit(&dtrace_meta_lock);
8321 
8322         kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8323         kmem_free(old, sizeof (dtrace_meta_t));
8324 
8325         return (0);
8326 }
8327 
8328 
8329 /*
8330  * DTrace DIF Object Functions
8331  */
8332 static int
8333 dtrace_difo_err(uint_t pc, const char *format, ...)
8334 {
8335         if (dtrace_err_verbose) {
8336                 va_list alist;
8337 
8338                 (void) uprintf("dtrace DIF object error: [%u]: ", pc);
8339                 va_start(alist, format);
8340                 (void) vuprintf(format, alist);
8341                 va_end(alist);
8342         }
8343 
8344 #ifdef DTRACE_ERRDEBUG
8345         dtrace_errdebug(format);
8346 #endif
8347         return (1);
8348 }
8349 
8350 /*
8351  * Validate a DTrace DIF object by checking the IR instructions.  The following
8352  * rules are currently enforced by dtrace_difo_validate():
8353  *
8354  * 1. Each instruction must have a valid opcode
8355  * 2. Each register, string, variable, or subroutine reference must be valid
8356  * 3. No instruction can modify register %r0 (must be zero)
8357  * 4. All instruction reserved bits must be set to zero
8358  * 5. The last instruction must be a "ret" instruction
8359  * 6. All branch targets must reference a valid instruction _after_ the branch
8360  */
8361 static int
8362 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8363     cred_t *cr)
8364 {
8365         int err = 0, i;
8366         int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8367         int kcheckload;
8368         uint_t pc;
8369 
8370         kcheckload = cr == NULL ||
8371             (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
8372 
8373         dp->dtdo_destructive = 0;
8374 
8375         for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8376                 dif_instr_t instr = dp->dtdo_buf[pc];
8377 
8378                 uint_t r1 = DIF_INSTR_R1(instr);
8379                 uint_t r2 = DIF_INSTR_R2(instr);
8380                 uint_t rd = DIF_INSTR_RD(instr);
8381                 uint_t rs = DIF_INSTR_RS(instr);
8382                 uint_t label = DIF_INSTR_LABEL(instr);
8383                 uint_t v = DIF_INSTR_VAR(instr);
8384                 uint_t subr = DIF_INSTR_SUBR(instr);
8385                 uint_t type = DIF_INSTR_TYPE(instr);
8386                 uint_t op = DIF_INSTR_OP(instr);
8387 
8388                 switch (op) {
8389                 case DIF_OP_OR:
8390                 case DIF_OP_XOR:
8391                 case DIF_OP_AND:
8392                 case DIF_OP_SLL:
8393                 case DIF_OP_SRL:
8394                 case DIF_OP_SRA:
8395                 case DIF_OP_SUB:
8396                 case DIF_OP_ADD:
8397                 case DIF_OP_MUL:
8398                 case DIF_OP_SDIV:
8399                 case DIF_OP_UDIV:
8400                 case DIF_OP_SREM:
8401                 case DIF_OP_UREM:
8402                 case DIF_OP_COPYS:
8403                         if (r1 >= nregs)
8404                                 err += efunc(pc, "invalid register %u\n", r1);
8405                         if (r2 >= nregs)
8406                                 err += efunc(pc, "invalid register %u\n", r2);
8407                         if (rd >= nregs)
8408                                 err += efunc(pc, "invalid register %u\n", rd);
8409                         if (rd == 0)
8410                                 err += efunc(pc, "cannot write to %r0\n");
8411                         break;
8412                 case DIF_OP_NOT:
8413                 case DIF_OP_MOV:
8414                 case DIF_OP_ALLOCS:
8415                         if (r1 >= nregs)
8416                                 err += efunc(pc, "invalid register %u\n", r1);
8417                         if (r2 != 0)
8418                                 err += efunc(pc, "non-zero reserved bits\n");
8419                         if (rd >= nregs)
8420                                 err += efunc(pc, "invalid register %u\n", rd);
8421                         if (rd == 0)
8422                                 err += efunc(pc, "cannot write to %r0\n");
8423                         break;
8424                 case DIF_OP_LDSB:
8425                 case DIF_OP_LDSH:
8426                 case DIF_OP_LDSW:
8427                 case DIF_OP_LDUB:
8428                 case DIF_OP_LDUH:
8429                 case DIF_OP_LDUW:
8430                 case DIF_OP_LDX:
8431                         if (r1 >= nregs)
8432                                 err += efunc(pc, "invalid register %u\n", r1);
8433                         if (r2 != 0)
8434                                 err += efunc(pc, "non-zero reserved bits\n");
8435                         if (rd >= nregs)
8436                                 err += efunc(pc, "invalid register %u\n", rd);
8437                         if (rd == 0)
8438                                 err += efunc(pc, "cannot write to %r0\n");
8439                         if (kcheckload)
8440                                 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
8441                                     DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
8442                         break;
8443                 case DIF_OP_RLDSB:
8444                 case DIF_OP_RLDSH:
8445                 case DIF_OP_RLDSW:
8446                 case DIF_OP_RLDUB:
8447                 case DIF_OP_RLDUH:
8448                 case DIF_OP_RLDUW:
8449                 case DIF_OP_RLDX:
8450                         if (r1 >= nregs)
8451                                 err += efunc(pc, "invalid register %u\n", r1);
8452                         if (r2 != 0)
8453                                 err += efunc(pc, "non-zero reserved bits\n");
8454                         if (rd >= nregs)
8455                                 err += efunc(pc, "invalid register %u\n", rd);
8456                         if (rd == 0)
8457                                 err += efunc(pc, "cannot write to %r0\n");
8458                         break;
8459                 case DIF_OP_ULDSB:
8460                 case DIF_OP_ULDSH:
8461                 case DIF_OP_ULDSW:
8462                 case DIF_OP_ULDUB:
8463                 case DIF_OP_ULDUH:
8464                 case DIF_OP_ULDUW:
8465                 case DIF_OP_ULDX:
8466                         if (r1 >= nregs)
8467                                 err += efunc(pc, "invalid register %u\n", r1);
8468                         if (r2 != 0)
8469                                 err += efunc(pc, "non-zero reserved bits\n");
8470                         if (rd >= nregs)
8471                                 err += efunc(pc, "invalid register %u\n", rd);
8472                         if (rd == 0)
8473                                 err += efunc(pc, "cannot write to %r0\n");
8474                         break;
8475                 case DIF_OP_STB:
8476                 case DIF_OP_STH:
8477                 case DIF_OP_STW:
8478                 case DIF_OP_STX:
8479                         if (r1 >= nregs)
8480                                 err += efunc(pc, "invalid register %u\n", r1);
8481                         if (r2 != 0)
8482                                 err += efunc(pc, "non-zero reserved bits\n");
8483                         if (rd >= nregs)
8484                                 err += efunc(pc, "invalid register %u\n", rd);
8485                         if (rd == 0)
8486                                 err += efunc(pc, "cannot write to 0 address\n");
8487                         break;
8488                 case DIF_OP_CMP:
8489                 case DIF_OP_SCMP:
8490                         if (r1 >= nregs)
8491                                 err += efunc(pc, "invalid register %u\n", r1);
8492                         if (r2 >= nregs)
8493                                 err += efunc(pc, "invalid register %u\n", r2);
8494                         if (rd != 0)
8495                                 err += efunc(pc, "non-zero reserved bits\n");
8496                         break;
8497                 case DIF_OP_TST:
8498                         if (r1 >= nregs)
8499                                 err += efunc(pc, "invalid register %u\n", r1);
8500                         if (r2 != 0 || rd != 0)
8501                                 err += efunc(pc, "non-zero reserved bits\n");
8502                         break;
8503                 case DIF_OP_BA:
8504                 case DIF_OP_BE:
8505                 case DIF_OP_BNE:
8506                 case DIF_OP_BG:
8507                 case DIF_OP_BGU:
8508                 case DIF_OP_BGE:
8509                 case DIF_OP_BGEU:
8510                 case DIF_OP_BL:
8511                 case DIF_OP_BLU:
8512                 case DIF_OP_BLE:
8513                 case DIF_OP_BLEU:
8514                         if (label >= dp->dtdo_len) {
8515                                 err += efunc(pc, "invalid branch target %u\n",
8516                                     label);
8517                         }
8518                         if (label <= pc) {
8519                                 err += efunc(pc, "backward branch to %u\n",
8520                                     label);
8521                         }
8522                         break;
8523                 case DIF_OP_RET:
8524                         if (r1 != 0 || r2 != 0)
8525                                 err += efunc(pc, "non-zero reserved bits\n");
8526                         if (rd >= nregs)
8527                                 err += efunc(pc, "invalid register %u\n", rd);
8528                         break;
8529                 case DIF_OP_NOP:
8530                 case DIF_OP_POPTS:
8531                 case DIF_OP_FLUSHTS:
8532                         if (r1 != 0 || r2 != 0 || rd != 0)
8533                                 err += efunc(pc, "non-zero reserved bits\n");
8534                         break;
8535                 case DIF_OP_SETX:
8536                         if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
8537                                 err += efunc(pc, "invalid integer ref %u\n",
8538                                     DIF_INSTR_INTEGER(instr));
8539                         }
8540                         if (rd >= nregs)
8541                                 err += efunc(pc, "invalid register %u\n", rd);
8542                         if (rd == 0)
8543                                 err += efunc(pc, "cannot write to %r0\n");
8544                         break;
8545                 case DIF_OP_SETS:
8546                         if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
8547                                 err += efunc(pc, "invalid string ref %u\n",
8548                                     DIF_INSTR_STRING(instr));
8549                         }
8550                         if (rd >= nregs)
8551                                 err += efunc(pc, "invalid register %u\n", rd);
8552                         if (rd == 0)
8553                                 err += efunc(pc, "cannot write to %r0\n");
8554                         break;
8555                 case DIF_OP_LDGA:
8556                 case DIF_OP_LDTA:
8557                         if (r1 > DIF_VAR_ARRAY_MAX)
8558                                 err += efunc(pc, "invalid array %u\n", r1);
8559                         if (r2 >= nregs)
8560                                 err += efunc(pc, "invalid register %u\n", r2);
8561                         if (rd >= nregs)
8562                                 err += efunc(pc, "invalid register %u\n", rd);
8563                         if (rd == 0)
8564                                 err += efunc(pc, "cannot write to %r0\n");
8565                         break;
8566                 case DIF_OP_LDGS:
8567                 case DIF_OP_LDTS:
8568                 case DIF_OP_LDLS:
8569                 case DIF_OP_LDGAA:
8570                 case DIF_OP_LDTAA:
8571                         if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
8572                                 err += efunc(pc, "invalid variable %u\n", v);
8573                         if (rd >= nregs)
8574                                 err += efunc(pc, "invalid register %u\n", rd);
8575                         if (rd == 0)
8576                                 err += efunc(pc, "cannot write to %r0\n");
8577                         break;
8578                 case DIF_OP_STGS:
8579                 case DIF_OP_STTS:
8580                 case DIF_OP_STLS:
8581                 case DIF_OP_STGAA:
8582                 case DIF_OP_STTAA:
8583                         if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
8584                                 err += efunc(pc, "invalid variable %u\n", v);
8585                         if (rs >= nregs)
8586                                 err += efunc(pc, "invalid register %u\n", rd);
8587                         break;
8588                 case DIF_OP_CALL:
8589                         if (subr > DIF_SUBR_MAX)
8590                                 err += efunc(pc, "invalid subr %u\n", subr);
8591                         if (rd >= nregs)
8592                                 err += efunc(pc, "invalid register %u\n", rd);
8593                         if (rd == 0)
8594                                 err += efunc(pc, "cannot write to %r0\n");
8595 
8596                         if (subr == DIF_SUBR_COPYOUT ||
8597                             subr == DIF_SUBR_COPYOUTSTR) {
8598                                 dp->dtdo_destructive = 1;
8599                         }
8600 
8601                         if (subr == DIF_SUBR_GETF) {
8602                                 /*
8603                                  * If we have a getf() we need to record that
8604                                  * in our state.  Note that our state can be
8605                                  * NULL if this is a helper -- but in that
8606                                  * case, the call to getf() is itself illegal,
8607                                  * and will be caught (slightly later) when
8608                                  * the helper is validated.
8609                                  */
8610                                 if (vstate->dtvs_state != NULL)
8611                                         vstate->dtvs_state->dts_getf++;
8612                         }
8613 
8614                         break;
8615                 case DIF_OP_PUSHTR:
8616                         if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
8617                                 err += efunc(pc, "invalid ref type %u\n", type);
8618                         if (r2 >= nregs)
8619                                 err += efunc(pc, "invalid register %u\n", r2);
8620                         if (rs >= nregs)
8621                                 err += efunc(pc, "invalid register %u\n", rs);
8622                         break;
8623                 case DIF_OP_PUSHTV:
8624                         if (type != DIF_TYPE_CTF)
8625                                 err += efunc(pc, "invalid val type %u\n", type);
8626                         if (r2 >= nregs)
8627                                 err += efunc(pc, "invalid register %u\n", r2);
8628                         if (rs >= nregs)
8629                                 err += efunc(pc, "invalid register %u\n", rs);
8630                         break;
8631                 default:
8632                         err += efunc(pc, "invalid opcode %u\n",
8633                             DIF_INSTR_OP(instr));
8634                 }
8635         }
8636 
8637         if (dp->dtdo_len != 0 &&
8638             DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
8639                 err += efunc(dp->dtdo_len - 1,
8640                     "expected 'ret' as last DIF instruction\n");
8641         }
8642 
8643         if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
8644                 /*
8645                  * If we're not returning by reference, the size must be either
8646                  * 0 or the size of one of the base types.
8647                  */
8648                 switch (dp->dtdo_rtype.dtdt_size) {
8649                 case 0:
8650                 case sizeof (uint8_t):
8651                 case sizeof (uint16_t):
8652                 case sizeof (uint32_t):
8653                 case sizeof (uint64_t):
8654                         break;
8655 
8656                 default:
8657                         err += efunc(dp->dtdo_len - 1, "bad return size\n");
8658                 }
8659         }
8660 
8661         for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
8662                 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
8663                 dtrace_diftype_t *vt, *et;
8664                 uint_t id, ndx;
8665 
8666                 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
8667                     v->dtdv_scope != DIFV_SCOPE_THREAD &&
8668                     v->dtdv_scope != DIFV_SCOPE_LOCAL) {
8669                         err += efunc(i, "unrecognized variable scope %d\n",
8670                             v->dtdv_scope);
8671                         break;
8672                 }
8673 
8674                 if (v->dtdv_kind != DIFV_KIND_ARRAY &&
8675                     v->dtdv_kind != DIFV_KIND_SCALAR) {
8676                         err += efunc(i, "unrecognized variable type %d\n",
8677                             v->dtdv_kind);
8678                         break;
8679                 }
8680 
8681                 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
8682                         err += efunc(i, "%d exceeds variable id limit\n", id);
8683                         break;
8684                 }
8685 
8686                 if (id < DIF_VAR_OTHER_UBASE)
8687                         continue;
8688 
8689                 /*
8690                  * For user-defined variables, we need to check that this
8691                  * definition is identical to any previous definition that we
8692                  * encountered.
8693                  */
8694                 ndx = id - DIF_VAR_OTHER_UBASE;
8695 
8696                 switch (v->dtdv_scope) {
8697                 case DIFV_SCOPE_GLOBAL:
8698                         if (ndx < vstate->dtvs_nglobals) {
8699                                 dtrace_statvar_t *svar;
8700 
8701                                 if ((svar = vstate->dtvs_globals[ndx]) != NULL)
8702                                         existing = &svar->dtsv_var;
8703                         }
8704 
8705                         break;
8706 
8707                 case DIFV_SCOPE_THREAD:
8708                         if (ndx < vstate->dtvs_ntlocals)
8709                                 existing = &vstate->dtvs_tlocals[ndx];
8710                         break;
8711 
8712                 case DIFV_SCOPE_LOCAL:
8713                         if (ndx < vstate->dtvs_nlocals) {
8714                                 dtrace_statvar_t *svar;
8715 
8716                                 if ((svar = vstate->dtvs_locals[ndx]) != NULL)
8717                                         existing = &svar->dtsv_var;
8718                         }
8719 
8720                         break;
8721                 }
8722 
8723                 vt = &v->dtdv_type;
8724 
8725                 if (vt->dtdt_flags & DIF_TF_BYREF) {
8726                         if (vt->dtdt_size == 0) {
8727                                 err += efunc(i, "zero-sized variable\n");
8728                                 break;
8729                         }
8730 
8731                         if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
8732                             vt->dtdt_size > dtrace_global_maxsize) {
8733                                 err += efunc(i, "oversized by-ref global\n");
8734                                 break;
8735                         }
8736                 }
8737 
8738                 if (existing == NULL || existing->dtdv_id == 0)
8739                         continue;
8740 
8741                 ASSERT(existing->dtdv_id == v->dtdv_id);
8742                 ASSERT(existing->dtdv_scope == v->dtdv_scope);
8743 
8744                 if (existing->dtdv_kind != v->dtdv_kind)
8745                         err += efunc(i, "%d changed variable kind\n", id);
8746 
8747                 et = &existing->dtdv_type;
8748 
8749                 if (vt->dtdt_flags != et->dtdt_flags) {
8750                         err += efunc(i, "%d changed variable type flags\n", id);
8751                         break;
8752                 }
8753 
8754                 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
8755                         err += efunc(i, "%d changed variable type size\n", id);
8756                         break;
8757                 }
8758         }
8759 
8760         return (err);
8761 }
8762 
8763 /*
8764  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
8765  * are much more constrained than normal DIFOs.  Specifically, they may
8766  * not:
8767  *
8768  * 1. Make calls to subroutines other than copyin(), copyinstr() or
8769  *    miscellaneous string routines
8770  * 2. Access DTrace variables other than the args[] array, and the
8771  *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
8772  * 3. Have thread-local variables.
8773  * 4. Have dynamic variables.
8774  */
8775 static int
8776 dtrace_difo_validate_helper(dtrace_difo_t *dp)
8777 {
8778         int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8779         int err = 0;
8780         uint_t pc;
8781 
8782         for (pc = 0; pc < dp->dtdo_len; pc++) {
8783                 dif_instr_t instr = dp->dtdo_buf[pc];
8784 
8785                 uint_t v = DIF_INSTR_VAR(instr);
8786                 uint_t subr = DIF_INSTR_SUBR(instr);
8787                 uint_t op = DIF_INSTR_OP(instr);
8788 
8789                 switch (op) {
8790                 case DIF_OP_OR:
8791                 case DIF_OP_XOR:
8792                 case DIF_OP_AND:
8793                 case DIF_OP_SLL:
8794                 case DIF_OP_SRL:
8795                 case DIF_OP_SRA:
8796                 case DIF_OP_SUB:
8797                 case DIF_OP_ADD:
8798                 case DIF_OP_MUL:
8799                 case DIF_OP_SDIV:
8800                 case DIF_OP_UDIV:
8801                 case DIF_OP_SREM:
8802                 case DIF_OP_UREM:
8803                 case DIF_OP_COPYS:
8804                 case DIF_OP_NOT:
8805                 case DIF_OP_MOV:
8806                 case DIF_OP_RLDSB:
8807                 case DIF_OP_RLDSH:
8808                 case DIF_OP_RLDSW:
8809                 case DIF_OP_RLDUB:
8810                 case DIF_OP_RLDUH:
8811                 case DIF_OP_RLDUW:
8812                 case DIF_OP_RLDX:
8813                 case DIF_OP_ULDSB:
8814                 case DIF_OP_ULDSH:
8815                 case DIF_OP_ULDSW:
8816                 case DIF_OP_ULDUB:
8817                 case DIF_OP_ULDUH:
8818                 case DIF_OP_ULDUW:
8819                 case DIF_OP_ULDX:
8820                 case DIF_OP_STB:
8821                 case DIF_OP_STH:
8822                 case DIF_OP_STW:
8823                 case DIF_OP_STX:
8824                 case DIF_OP_ALLOCS:
8825                 case DIF_OP_CMP:
8826                 case DIF_OP_SCMP:
8827                 case DIF_OP_TST:
8828                 case DIF_OP_BA:
8829                 case DIF_OP_BE:
8830                 case DIF_OP_BNE:
8831                 case DIF_OP_BG:
8832                 case DIF_OP_BGU:
8833                 case DIF_OP_BGE:
8834                 case DIF_OP_BGEU:
8835                 case DIF_OP_BL:
8836                 case DIF_OP_BLU:
8837                 case DIF_OP_BLE:
8838                 case DIF_OP_BLEU:
8839                 case DIF_OP_RET:
8840                 case DIF_OP_NOP:
8841                 case DIF_OP_POPTS:
8842                 case DIF_OP_FLUSHTS:
8843                 case DIF_OP_SETX:
8844                 case DIF_OP_SETS:
8845                 case DIF_OP_LDGA:
8846                 case DIF_OP_LDLS:
8847                 case DIF_OP_STGS:
8848                 case DIF_OP_STLS:
8849                 case DIF_OP_PUSHTR:
8850                 case DIF_OP_PUSHTV:
8851                         break;
8852 
8853                 case DIF_OP_LDGS:
8854                         if (v >= DIF_VAR_OTHER_UBASE)
8855                                 break;
8856 
8857                         if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
8858                                 break;
8859 
8860                         if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
8861                             v == DIF_VAR_PPID || v == DIF_VAR_TID ||
8862                             v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
8863                             v == DIF_VAR_UID || v == DIF_VAR_GID)
8864                                 break;
8865 
8866                         err += efunc(pc, "illegal variable %u\n", v);
8867                         break;
8868 
8869                 case DIF_OP_LDTA:
8870                 case DIF_OP_LDTS:
8871                 case DIF_OP_LDGAA:
8872                 case DIF_OP_LDTAA:
8873                         err += efunc(pc, "illegal dynamic variable load\n");
8874                         break;
8875 
8876                 case DIF_OP_STTS:
8877                 case DIF_OP_STGAA:
8878                 case DIF_OP_STTAA:
8879                         err += efunc(pc, "illegal dynamic variable store\n");
8880                         break;
8881 
8882                 case DIF_OP_CALL:
8883                         if (subr == DIF_SUBR_ALLOCA ||
8884                             subr == DIF_SUBR_BCOPY ||
8885                             subr == DIF_SUBR_COPYIN ||
8886                             subr == DIF_SUBR_COPYINTO ||
8887                             subr == DIF_SUBR_COPYINSTR ||
8888                             subr == DIF_SUBR_INDEX ||
8889                             subr == DIF_SUBR_INET_NTOA ||
8890                             subr == DIF_SUBR_INET_NTOA6 ||
8891                             subr == DIF_SUBR_INET_NTOP ||
8892                             subr == DIF_SUBR_LLTOSTR ||
8893                             subr == DIF_SUBR_RINDEX ||
8894                             subr == DIF_SUBR_STRCHR ||
8895                             subr == DIF_SUBR_STRJOIN ||
8896                             subr == DIF_SUBR_STRRCHR ||
8897                             subr == DIF_SUBR_STRSTR ||
8898                             subr == DIF_SUBR_HTONS ||
8899                             subr == DIF_SUBR_HTONL ||
8900                             subr == DIF_SUBR_HTONLL ||
8901                             subr == DIF_SUBR_NTOHS ||
8902                             subr == DIF_SUBR_NTOHL ||
8903                             subr == DIF_SUBR_NTOHLL)
8904                                 break;
8905 
8906                         err += efunc(pc, "invalid subr %u\n", subr);
8907                         break;
8908 
8909                 default:
8910                         err += efunc(pc, "invalid opcode %u\n",
8911                             DIF_INSTR_OP(instr));
8912                 }
8913         }
8914 
8915         return (err);
8916 }
8917 
8918 /*
8919  * Returns 1 if the expression in the DIF object can be cached on a per-thread
8920  * basis; 0 if not.
8921  */
8922 static int
8923 dtrace_difo_cacheable(dtrace_difo_t *dp)
8924 {
8925         int i;
8926 
8927         if (dp == NULL)
8928                 return (0);
8929 
8930         for (i = 0; i < dp->dtdo_varlen; i++) {
8931                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
8932 
8933                 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
8934                         continue;
8935 
8936                 switch (v->dtdv_id) {
8937                 case DIF_VAR_CURTHREAD:
8938                 case DIF_VAR_PID:
8939                 case DIF_VAR_TID:
8940                 case DIF_VAR_EXECNAME:
8941                 case DIF_VAR_ZONENAME:
8942                         break;
8943 
8944                 default:
8945                         return (0);
8946                 }
8947         }
8948 
8949         /*
8950          * This DIF object may be cacheable.  Now we need to look for any
8951          * array loading instructions, any memory loading instructions, or
8952          * any stores to thread-local variables.
8953          */
8954         for (i = 0; i < dp->dtdo_len; i++) {
8955                 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
8956 
8957                 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
8958                     (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
8959                     (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
8960                     op == DIF_OP_LDGA || op == DIF_OP_STTS)
8961                         return (0);
8962         }
8963 
8964         return (1);
8965 }
8966 
8967 static void
8968 dtrace_difo_hold(dtrace_difo_t *dp)
8969 {
8970         int i;
8971 
8972         ASSERT(MUTEX_HELD(&dtrace_lock));
8973 
8974         dp->dtdo_refcnt++;
8975         ASSERT(dp->dtdo_refcnt != 0);
8976 
8977         /*
8978          * We need to check this DIF object for references to the variable
8979          * DIF_VAR_VTIMESTAMP.
8980          */
8981         for (i = 0; i < dp->dtdo_varlen; i++) {
8982                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
8983 
8984                 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
8985                         continue;
8986 
8987                 if (dtrace_vtime_references++ == 0)
8988                         dtrace_vtime_enable();
8989         }
8990 }
8991 
8992 /*
8993  * This routine calculates the dynamic variable chunksize for a given DIF
8994  * object.  The calculation is not fool-proof, and can probably be tricked by
8995  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
8996  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
8997  * if a dynamic variable size exceeds the chunksize.
8998  */
8999 static void
9000 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9001 {
9002         uint64_t sval;
9003         dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
9004         const dif_instr_t *text = dp->dtdo_buf;
9005         uint_t pc, srd = 0;
9006         uint_t ttop = 0;
9007         size_t size, ksize;
9008         uint_t id, i;
9009 
9010         for (pc = 0; pc < dp->dtdo_len; pc++) {
9011                 dif_instr_t instr = text[pc];
9012                 uint_t op = DIF_INSTR_OP(instr);
9013                 uint_t rd = DIF_INSTR_RD(instr);
9014                 uint_t r1 = DIF_INSTR_R1(instr);
9015                 uint_t nkeys = 0;
9016                 uchar_t scope;
9017 
9018                 dtrace_key_t *key = tupregs;
9019 
9020                 switch (op) {
9021                 case DIF_OP_SETX:
9022                         sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
9023                         srd = rd;
9024                         continue;
9025 
9026                 case DIF_OP_STTS:
9027                         key = &tupregs[DIF_DTR_NREGS];
9028                         key[0].dttk_size = 0;
9029                         key[1].dttk_size = 0;
9030                         nkeys = 2;
9031                         scope = DIFV_SCOPE_THREAD;
9032                         break;
9033 
9034                 case DIF_OP_STGAA:
9035                 case DIF_OP_STTAA:
9036                         nkeys = ttop;
9037 
9038                         if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9039                                 key[nkeys++].dttk_size = 0;
9040 
9041                         key[nkeys++].dttk_size = 0;
9042 
9043                         if (op == DIF_OP_STTAA) {
9044                                 scope = DIFV_SCOPE_THREAD;
9045                         } else {
9046                                 scope = DIFV_SCOPE_GLOBAL;
9047                         }
9048 
9049                         break;
9050 
9051                 case DIF_OP_PUSHTR:
9052                         if (ttop == DIF_DTR_NREGS)
9053                                 return;
9054 
9055                         if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
9056                                 /*
9057                                  * If the register for the size of the "pushtr"
9058                                  * is %r0 (or the value is 0) and the type is
9059                                  * a string, we'll use the system-wide default
9060                                  * string size.
9061                                  */
9062                                 tupregs[ttop++].dttk_size =
9063                                     dtrace_strsize_default;
9064                         } else {
9065                                 if (srd == 0)
9066                                         return;
9067 
9068                                 tupregs[ttop++].dttk_size = sval;
9069                         }
9070 
9071                         break;
9072 
9073                 case DIF_OP_PUSHTV:
9074                         if (ttop == DIF_DTR_NREGS)
9075                                 return;
9076 
9077                         tupregs[ttop++].dttk_size = 0;
9078                         break;
9079 
9080                 case DIF_OP_FLUSHTS:
9081                         ttop = 0;
9082                         break;
9083 
9084                 case DIF_OP_POPTS:
9085                         if (ttop != 0)
9086                                 ttop--;
9087                         break;
9088                 }
9089 
9090                 sval = 0;
9091                 srd = 0;
9092 
9093                 if (nkeys == 0)
9094                         continue;
9095 
9096                 /*
9097                  * We have a dynamic variable allocation; calculate its size.
9098                  */
9099                 for (ksize = 0, i = 0; i < nkeys; i++)
9100                         ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
9101 
9102                 size = sizeof (dtrace_dynvar_t);
9103                 size += sizeof (dtrace_key_t) * (nkeys - 1);
9104                 size += ksize;
9105 
9106                 /*
9107                  * Now we need to determine the size of the stored data.
9108                  */
9109                 id = DIF_INSTR_VAR(instr);
9110 
9111                 for (i = 0; i < dp->dtdo_varlen; i++) {
9112                         dtrace_difv_t *v = &dp->dtdo_vartab[i];
9113 
9114                         if (v->dtdv_id == id && v->dtdv_scope == scope) {
9115                                 size += v->dtdv_type.dtdt_size;
9116                                 break;
9117                         }
9118                 }
9119 
9120                 if (i == dp->dtdo_varlen)
9121                         return;
9122 
9123                 /*
9124                  * We have the size.  If this is larger than the chunk size
9125                  * for our dynamic variable state, reset the chunk size.
9126                  */
9127                 size = P2ROUNDUP(size, sizeof (uint64_t));
9128 
9129                 if (size > vstate->dtvs_dynvars.dtds_chunksize)
9130                         vstate->dtvs_dynvars.dtds_chunksize = size;
9131         }
9132 }
9133 
9134 static void
9135 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9136 {
9137         int i, oldsvars, osz, nsz, otlocals, ntlocals;
9138         uint_t id;
9139 
9140         ASSERT(MUTEX_HELD(&dtrace_lock));
9141         ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
9142 
9143         for (i = 0; i < dp->dtdo_varlen; i++) {
9144                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9145                 dtrace_statvar_t *svar, ***svarp;
9146                 size_t dsize = 0;
9147                 uint8_t scope = v->dtdv_scope;
9148                 int *np;
9149 
9150                 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9151                         continue;
9152 
9153                 id -= DIF_VAR_OTHER_UBASE;
9154 
9155                 switch (scope) {
9156                 case DIFV_SCOPE_THREAD:
9157                         while (id >= (otlocals = vstate->dtvs_ntlocals)) {
9158                                 dtrace_difv_t *tlocals;
9159 
9160                                 if ((ntlocals = (otlocals << 1)) == 0)
9161                                         ntlocals = 1;
9162 
9163                                 osz = otlocals * sizeof (dtrace_difv_t);
9164                                 nsz = ntlocals * sizeof (dtrace_difv_t);
9165 
9166                                 tlocals = kmem_zalloc(nsz, KM_SLEEP);
9167 
9168                                 if (osz != 0) {
9169                                         bcopy(vstate->dtvs_tlocals,
9170                                             tlocals, osz);
9171                                         kmem_free(vstate->dtvs_tlocals, osz);
9172                                 }
9173 
9174                                 vstate->dtvs_tlocals = tlocals;
9175                                 vstate->dtvs_ntlocals = ntlocals;
9176                         }
9177 
9178                         vstate->dtvs_tlocals[id] = *v;
9179                         continue;
9180 
9181                 case DIFV_SCOPE_LOCAL:
9182                         np = &vstate->dtvs_nlocals;
9183                         svarp = &vstate->dtvs_locals;
9184 
9185                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9186                                 dsize = NCPU * (v->dtdv_type.dtdt_size +
9187                                     sizeof (uint64_t));
9188                         else
9189                                 dsize = NCPU * sizeof (uint64_t);
9190 
9191                         break;
9192 
9193                 case DIFV_SCOPE_GLOBAL:
9194                         np = &vstate->dtvs_nglobals;
9195                         svarp = &vstate->dtvs_globals;
9196 
9197                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9198                                 dsize = v->dtdv_type.dtdt_size +
9199                                     sizeof (uint64_t);
9200 
9201                         break;
9202 
9203                 default:
9204                         ASSERT(0);
9205                 }
9206 
9207                 while (id >= (oldsvars = *np)) {
9208                         dtrace_statvar_t **statics;
9209                         int newsvars, oldsize, newsize;
9210 
9211                         if ((newsvars = (oldsvars << 1)) == 0)
9212                                 newsvars = 1;
9213 
9214                         oldsize = oldsvars * sizeof (dtrace_statvar_t *);
9215                         newsize = newsvars * sizeof (dtrace_statvar_t *);
9216 
9217                         statics = kmem_zalloc(newsize, KM_SLEEP);
9218 
9219                         if (oldsize != 0) {
9220                                 bcopy(*svarp, statics, oldsize);
9221                                 kmem_free(*svarp, oldsize);
9222                         }
9223 
9224                         *svarp = statics;
9225                         *np = newsvars;
9226                 }
9227 
9228                 if ((svar = (*svarp)[id]) == NULL) {
9229                         svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
9230                         svar->dtsv_var = *v;
9231 
9232                         if ((svar->dtsv_size = dsize) != 0) {
9233                                 svar->dtsv_data = (uint64_t)(uintptr_t)
9234                                     kmem_zalloc(dsize, KM_SLEEP);
9235                         }
9236 
9237                         (*svarp)[id] = svar;
9238                 }
9239 
9240                 svar->dtsv_refcnt++;
9241         }
9242 
9243         dtrace_difo_chunksize(dp, vstate);
9244         dtrace_difo_hold(dp);
9245 }
9246 
9247 static dtrace_difo_t *
9248 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9249 {
9250         dtrace_difo_t *new;
9251         size_t sz;
9252 
9253         ASSERT(dp->dtdo_buf != NULL);
9254         ASSERT(dp->dtdo_refcnt != 0);
9255 
9256         new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
9257 
9258         ASSERT(dp->dtdo_buf != NULL);
9259         sz = dp->dtdo_len * sizeof (dif_instr_t);
9260         new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
9261         bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
9262         new->dtdo_len = dp->dtdo_len;
9263 
9264         if (dp->dtdo_strtab != NULL) {
9265                 ASSERT(dp->dtdo_strlen != 0);
9266                 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
9267                 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
9268                 new->dtdo_strlen = dp->dtdo_strlen;
9269         }
9270 
9271         if (dp->dtdo_inttab != NULL) {
9272                 ASSERT(dp->dtdo_intlen != 0);
9273                 sz = dp->dtdo_intlen * sizeof (uint64_t);
9274                 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
9275                 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
9276                 new->dtdo_intlen = dp->dtdo_intlen;
9277         }
9278 
9279         if (dp->dtdo_vartab != NULL) {
9280                 ASSERT(dp->dtdo_varlen != 0);
9281                 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9282                 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
9283                 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
9284                 new->dtdo_varlen = dp->dtdo_varlen;
9285         }
9286 
9287         dtrace_difo_init(new, vstate);
9288         return (new);
9289 }
9290 
9291 static void
9292 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9293 {
9294         int i;
9295 
9296         ASSERT(dp->dtdo_refcnt == 0);
9297 
9298         for (i = 0; i < dp->dtdo_varlen; i++) {
9299                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9300                 dtrace_statvar_t *svar, **svarp;
9301                 uint_t id;
9302                 uint8_t scope = v->dtdv_scope;
9303                 int *np;
9304 
9305                 switch (scope) {
9306                 case DIFV_SCOPE_THREAD:
9307                         continue;
9308 
9309                 case DIFV_SCOPE_LOCAL:
9310                         np = &vstate->dtvs_nlocals;
9311                         svarp = vstate->dtvs_locals;
9312                         break;
9313 
9314                 case DIFV_SCOPE_GLOBAL:
9315                         np = &vstate->dtvs_nglobals;
9316                         svarp = vstate->dtvs_globals;
9317                         break;
9318 
9319                 default:
9320                         ASSERT(0);
9321                 }
9322 
9323                 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9324                         continue;
9325 
9326                 id -= DIF_VAR_OTHER_UBASE;
9327                 ASSERT(id < *np);
9328 
9329                 svar = svarp[id];
9330                 ASSERT(svar != NULL);
9331                 ASSERT(svar->dtsv_refcnt > 0);
9332 
9333                 if (--svar->dtsv_refcnt > 0)
9334                         continue;
9335 
9336                 if (svar->dtsv_size != 0) {
9337                         ASSERT(svar->dtsv_data != NULL);
9338                         kmem_free((void *)(uintptr_t)svar->dtsv_data,
9339                             svar->dtsv_size);
9340                 }
9341 
9342                 kmem_free(svar, sizeof (dtrace_statvar_t));
9343                 svarp[id] = NULL;
9344         }
9345 
9346         kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
9347         kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
9348         kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
9349         kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
9350 
9351         kmem_free(dp, sizeof (dtrace_difo_t));
9352 }
9353 
9354 static void
9355 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9356 {
9357         int i;
9358 
9359         ASSERT(MUTEX_HELD(&dtrace_lock));
9360         ASSERT(dp->dtdo_refcnt != 0);
9361 
9362         for (i = 0; i < dp->dtdo_varlen; i++) {
9363                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9364 
9365                 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9366                         continue;
9367 
9368                 ASSERT(dtrace_vtime_references > 0);
9369                 if (--dtrace_vtime_references == 0)
9370                         dtrace_vtime_disable();
9371         }
9372 
9373         if (--dp->dtdo_refcnt == 0)
9374                 dtrace_difo_destroy(dp, vstate);
9375 }
9376 
9377 /*
9378  * DTrace Format Functions
9379  */
9380 static uint16_t
9381 dtrace_format_add(dtrace_state_t *state, char *str)
9382 {
9383         char *fmt, **new;
9384         uint16_t ndx, len = strlen(str) + 1;
9385 
9386         fmt = kmem_zalloc(len, KM_SLEEP);
9387         bcopy(str, fmt, len);
9388 
9389         for (ndx = 0; ndx < state->dts_nformats; ndx++) {
9390                 if (state->dts_formats[ndx] == NULL) {
9391                         state->dts_formats[ndx] = fmt;
9392                         return (ndx + 1);
9393                 }
9394         }
9395 
9396         if (state->dts_nformats == USHRT_MAX) {
9397                 /*
9398                  * This is only likely if a denial-of-service attack is being
9399                  * attempted.  As such, it's okay to fail silently here.
9400                  */
9401                 kmem_free(fmt, len);
9402                 return (0);
9403         }
9404 
9405         /*
9406          * For simplicity, we always resize the formats array to be exactly the
9407          * number of formats.
9408          */
9409         ndx = state->dts_nformats++;
9410         new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
9411 
9412         if (state->dts_formats != NULL) {
9413                 ASSERT(ndx != 0);
9414                 bcopy(state->dts_formats, new, ndx * sizeof (char *));
9415                 kmem_free(state->dts_formats, ndx * sizeof (char *));
9416         }
9417 
9418         state->dts_formats = new;
9419         state->dts_formats[ndx] = fmt;
9420 
9421         return (ndx + 1);
9422 }
9423 
9424 static void
9425 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
9426 {
9427         char *fmt;
9428 
9429         ASSERT(state->dts_formats != NULL);
9430         ASSERT(format <= state->dts_nformats);
9431         ASSERT(state->dts_formats[format - 1] != NULL);
9432 
9433         fmt = state->dts_formats[format - 1];
9434         kmem_free(fmt, strlen(fmt) + 1);
9435         state->dts_formats[format - 1] = NULL;
9436 }
9437 
9438 static void
9439 dtrace_format_destroy(dtrace_state_t *state)
9440 {
9441         int i;
9442 
9443         if (state->dts_nformats == 0) {
9444                 ASSERT(state->dts_formats == NULL);
9445                 return;
9446         }
9447 
9448         ASSERT(state->dts_formats != NULL);
9449 
9450         for (i = 0; i < state->dts_nformats; i++) {
9451                 char *fmt = state->dts_formats[i];
9452 
9453                 if (fmt == NULL)
9454                         continue;
9455 
9456                 kmem_free(fmt, strlen(fmt) + 1);
9457         }
9458 
9459         kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
9460         state->dts_nformats = 0;
9461         state->dts_formats = NULL;
9462 }
9463 
9464 /*
9465  * DTrace Predicate Functions
9466  */
9467 static dtrace_predicate_t *
9468 dtrace_predicate_create(dtrace_difo_t *dp)
9469 {
9470         dtrace_predicate_t *pred;
9471 
9472         ASSERT(MUTEX_HELD(&dtrace_lock));
9473         ASSERT(dp->dtdo_refcnt != 0);
9474 
9475         pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
9476         pred->dtp_difo = dp;
9477         pred->dtp_refcnt = 1;
9478 
9479         if (!dtrace_difo_cacheable(dp))
9480                 return (pred);
9481 
9482         if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
9483                 /*
9484                  * This is only theoretically possible -- we have had 2^32
9485                  * cacheable predicates on this machine.  We cannot allow any
9486                  * more predicates to become cacheable:  as unlikely as it is,
9487                  * there may be a thread caching a (now stale) predicate cache
9488                  * ID. (N.B.: the temptation is being successfully resisted to
9489                  * have this cmn_err() "Holy shit -- we executed this code!")
9490                  */
9491                 return (pred);
9492         }
9493 
9494         pred->dtp_cacheid = dtrace_predcache_id++;
9495 
9496         return (pred);
9497 }
9498 
9499 static void
9500 dtrace_predicate_hold(dtrace_predicate_t *pred)
9501 {
9502         ASSERT(MUTEX_HELD(&dtrace_lock));
9503         ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
9504         ASSERT(pred->dtp_refcnt > 0);
9505 
9506         pred->dtp_refcnt++;
9507 }
9508 
9509 static void
9510 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
9511 {
9512         dtrace_difo_t *dp = pred->dtp_difo;
9513 
9514         ASSERT(MUTEX_HELD(&dtrace_lock));
9515         ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
9516         ASSERT(pred->dtp_refcnt > 0);
9517 
9518         if (--pred->dtp_refcnt == 0) {
9519                 dtrace_difo_release(pred->dtp_difo, vstate);
9520                 kmem_free(pred, sizeof (dtrace_predicate_t));
9521         }
9522 }
9523 
9524 /*
9525  * DTrace Action Description Functions
9526  */
9527 static dtrace_actdesc_t *
9528 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
9529     uint64_t uarg, uint64_t arg)
9530 {
9531         dtrace_actdesc_t *act;
9532 
9533         ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
9534             arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
9535 
9536         act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
9537         act->dtad_kind = kind;
9538         act->dtad_ntuple = ntuple;
9539         act->dtad_uarg = uarg;
9540         act->dtad_arg = arg;
9541         act->dtad_refcnt = 1;
9542 
9543         return (act);
9544 }
9545 
9546 static void
9547 dtrace_actdesc_hold(dtrace_actdesc_t *act)
9548 {
9549         ASSERT(act->dtad_refcnt >= 1);
9550         act->dtad_refcnt++;
9551 }
9552 
9553 static void
9554 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
9555 {
9556         dtrace_actkind_t kind = act->dtad_kind;
9557         dtrace_difo_t *dp;
9558 
9559         ASSERT(act->dtad_refcnt >= 1);
9560 
9561         if (--act->dtad_refcnt != 0)
9562                 return;
9563 
9564         if ((dp = act->dtad_difo) != NULL)
9565                 dtrace_difo_release(dp, vstate);
9566 
9567         if (DTRACEACT_ISPRINTFLIKE(kind)) {
9568                 char *str = (char *)(uintptr_t)act->dtad_arg;
9569 
9570                 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
9571                     (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
9572 
9573                 if (str != NULL)
9574                         kmem_free(str, strlen(str) + 1);
9575         }
9576 
9577         kmem_free(act, sizeof (dtrace_actdesc_t));
9578 }
9579 
9580 /*
9581  * DTrace ECB Functions
9582  */
9583 static dtrace_ecb_t *
9584 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
9585 {
9586         dtrace_ecb_t *ecb;
9587         dtrace_epid_t epid;
9588 
9589         ASSERT(MUTEX_HELD(&dtrace_lock));
9590 
9591         ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
9592         ecb->dte_predicate = NULL;
9593         ecb->dte_probe = probe;
9594 
9595         /*
9596          * The default size is the size of the default action: recording
9597          * the header.
9598          */
9599         ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
9600         ecb->dte_alignment = sizeof (dtrace_epid_t);
9601 
9602         epid = state->dts_epid++;
9603 
9604         if (epid - 1 >= state->dts_necbs) {
9605                 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
9606                 int necbs = state->dts_necbs << 1;
9607 
9608                 ASSERT(epid == state->dts_necbs + 1);
9609 
9610                 if (necbs == 0) {
9611                         ASSERT(oecbs == NULL);
9612                         necbs = 1;
9613                 }
9614 
9615                 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
9616 
9617                 if (oecbs != NULL)
9618                         bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
9619 
9620                 dtrace_membar_producer();
9621                 state->dts_ecbs = ecbs;
9622 
9623                 if (oecbs != NULL) {
9624                         /*
9625                          * If this state is active, we must dtrace_sync()
9626                          * before we can free the old dts_ecbs array:  we're
9627                          * coming in hot, and there may be active ring
9628                          * buffer processing (which indexes into the dts_ecbs
9629                          * array) on another CPU.
9630                          */
9631                         if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
9632                                 dtrace_sync();
9633 
9634                         kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
9635                 }
9636 
9637                 dtrace_membar_producer();
9638                 state->dts_necbs = necbs;
9639         }
9640 
9641         ecb->dte_state = state;
9642 
9643         ASSERT(state->dts_ecbs[epid - 1] == NULL);
9644         dtrace_membar_producer();
9645         state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
9646 
9647         return (ecb);
9648 }
9649 
9650 static int
9651 dtrace_ecb_enable(dtrace_ecb_t *ecb)
9652 {
9653         dtrace_probe_t *probe = ecb->dte_probe;
9654 
9655         ASSERT(MUTEX_HELD(&cpu_lock));
9656         ASSERT(MUTEX_HELD(&dtrace_lock));
9657         ASSERT(ecb->dte_next == NULL);
9658 
9659         if (probe == NULL) {
9660                 /*
9661                  * This is the NULL probe -- there's nothing to do.
9662                  */
9663                 return (0);
9664         }
9665 
9666         if (probe->dtpr_ecb == NULL) {
9667                 dtrace_provider_t *prov = probe->dtpr_provider;
9668 
9669                 /*
9670                  * We're the first ECB on this probe.
9671                  */
9672                 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
9673 
9674                 if (ecb->dte_predicate != NULL)
9675                         probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
9676 
9677                 return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
9678                     probe->dtpr_id, probe->dtpr_arg));
9679         } else {
9680                 /*
9681                  * This probe is already active.  Swing the last pointer to
9682                  * point to the new ECB, and issue a dtrace_sync() to assure
9683                  * that all CPUs have seen the change.
9684                  */
9685                 ASSERT(probe->dtpr_ecb_last != NULL);
9686                 probe->dtpr_ecb_last->dte_next = ecb;
9687                 probe->dtpr_ecb_last = ecb;
9688                 probe->dtpr_predcache = 0;
9689 
9690                 dtrace_sync();
9691                 return (0);
9692         }
9693 }
9694 
9695 static void
9696 dtrace_ecb_resize(dtrace_ecb_t *ecb)
9697 {
9698         dtrace_action_t *act;
9699         uint32_t curneeded = UINT32_MAX;
9700         uint32_t aggbase = UINT32_MAX;
9701 
9702         /*
9703          * If we record anything, we always record the dtrace_rechdr_t.  (And
9704          * we always record it first.)
9705          */
9706         ecb->dte_size = sizeof (dtrace_rechdr_t);
9707         ecb->dte_alignment = sizeof (dtrace_epid_t);
9708 
9709         for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9710                 dtrace_recdesc_t *rec = &act->dta_rec;
9711                 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
9712 
9713                 ecb->dte_alignment = MAX(ecb->dte_alignment,
9714                     rec->dtrd_alignment);
9715 
9716                 if (DTRACEACT_ISAGG(act->dta_kind)) {
9717                         dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9718 
9719                         ASSERT(rec->dtrd_size != 0);
9720                         ASSERT(agg->dtag_first != NULL);
9721                         ASSERT(act->dta_prev->dta_intuple);
9722                         ASSERT(aggbase != UINT32_MAX);
9723                         ASSERT(curneeded != UINT32_MAX);
9724 
9725                         agg->dtag_base = aggbase;
9726 
9727                         curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
9728                         rec->dtrd_offset = curneeded;
9729                         curneeded += rec->dtrd_size;
9730                         ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
9731 
9732                         aggbase = UINT32_MAX;
9733                         curneeded = UINT32_MAX;
9734                 } else if (act->dta_intuple) {
9735                         if (curneeded == UINT32_MAX) {
9736                                 /*
9737                                  * This is the first record in a tuple.  Align
9738                                  * curneeded to be at offset 4 in an 8-byte
9739                                  * aligned block.
9740                                  */
9741                                 ASSERT(act->dta_prev == NULL ||
9742                                     !act->dta_prev->dta_intuple);
9743                                 ASSERT3U(aggbase, ==, UINT32_MAX);
9744                                 curneeded = P2PHASEUP(ecb->dte_size,
9745                                     sizeof (uint64_t), sizeof (dtrace_aggid_t));
9746 
9747                                 aggbase = curneeded - sizeof (dtrace_aggid_t);
9748                                 ASSERT(IS_P2ALIGNED(aggbase,
9749                                     sizeof (uint64_t)));
9750                         }
9751                         curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
9752                         rec->dtrd_offset = curneeded;
9753                         curneeded += rec->dtrd_size;
9754                 } else {
9755                         /* tuples must be followed by an aggregation */
9756                         ASSERT(act->dta_prev == NULL ||
9757                             !act->dta_prev->dta_intuple);
9758 
9759                         ecb->dte_size = P2ROUNDUP(ecb->dte_size,
9760                             rec->dtrd_alignment);
9761                         rec->dtrd_offset = ecb->dte_size;
9762                         ecb->dte_size += rec->dtrd_size;
9763                         ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
9764                 }
9765         }
9766 
9767         if ((act = ecb->dte_action) != NULL &&
9768             !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
9769             ecb->dte_size == sizeof (dtrace_rechdr_t)) {
9770                 /*
9771                  * If the size is still sizeof (dtrace_rechdr_t), then all
9772                  * actions store no data; set the size to 0.
9773                  */
9774                 ecb->dte_size = 0;
9775         }
9776 
9777         ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
9778         ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
9779         ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
9780             ecb->dte_needed);
9781 }
9782 
9783 static dtrace_action_t *
9784 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9785 {
9786         dtrace_aggregation_t *agg;
9787         size_t size = sizeof (uint64_t);
9788         int ntuple = desc->dtad_ntuple;
9789         dtrace_action_t *act;
9790         dtrace_recdesc_t *frec;
9791         dtrace_aggid_t aggid;
9792         dtrace_state_t *state = ecb->dte_state;
9793 
9794         agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
9795         agg->dtag_ecb = ecb;
9796 
9797         ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
9798 
9799         switch (desc->dtad_kind) {
9800         case DTRACEAGG_MIN:
9801                 agg->dtag_initial = INT64_MAX;
9802                 agg->dtag_aggregate = dtrace_aggregate_min;
9803                 break;
9804 
9805         case DTRACEAGG_MAX:
9806                 agg->dtag_initial = INT64_MIN;
9807                 agg->dtag_aggregate = dtrace_aggregate_max;
9808                 break;
9809 
9810         case DTRACEAGG_COUNT:
9811                 agg->dtag_aggregate = dtrace_aggregate_count;
9812                 break;
9813 
9814         case DTRACEAGG_QUANTIZE:
9815                 agg->dtag_aggregate = dtrace_aggregate_quantize;
9816                 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
9817                     sizeof (uint64_t);
9818                 break;
9819 
9820         case DTRACEAGG_LQUANTIZE: {
9821                 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
9822                 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
9823 
9824                 agg->dtag_initial = desc->dtad_arg;
9825                 agg->dtag_aggregate = dtrace_aggregate_lquantize;
9826 
9827                 if (step == 0 || levels == 0)
9828                         goto err;
9829 
9830                 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
9831                 break;
9832         }
9833 
9834         case DTRACEAGG_LLQUANTIZE: {
9835                 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
9836                 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
9837                 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
9838                 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
9839                 int64_t v;
9840 
9841                 agg->dtag_initial = desc->dtad_arg;
9842                 agg->dtag_aggregate = dtrace_aggregate_llquantize;
9843 
9844                 if (factor < 2 || low >= high || nsteps < factor)
9845                         goto err;
9846 
9847                 /*
9848                  * Now check that the number of steps evenly divides a power
9849                  * of the factor.  (This assures both integer bucket size and
9850                  * linearity within each magnitude.)
9851                  */
9852                 for (v = factor; v < nsteps; v *= factor)
9853                         continue;
9854 
9855                 if ((v % nsteps) || (nsteps % factor))
9856                         goto err;
9857 
9858                 size = (dtrace_aggregate_llquantize_bucket(factor,
9859                     low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
9860                 break;
9861         }
9862 
9863         case DTRACEAGG_AVG:
9864                 agg->dtag_aggregate = dtrace_aggregate_avg;
9865                 size = sizeof (uint64_t) * 2;
9866                 break;
9867 
9868         case DTRACEAGG_STDDEV:
9869                 agg->dtag_aggregate = dtrace_aggregate_stddev;
9870                 size = sizeof (uint64_t) * 4;
9871                 break;
9872 
9873         case DTRACEAGG_SUM:
9874                 agg->dtag_aggregate = dtrace_aggregate_sum;
9875                 break;
9876 
9877         default:
9878                 goto err;
9879         }
9880 
9881         agg->dtag_action.dta_rec.dtrd_size = size;
9882 
9883         if (ntuple == 0)
9884                 goto err;
9885 
9886         /*
9887          * We must make sure that we have enough actions for the n-tuple.
9888          */
9889         for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
9890                 if (DTRACEACT_ISAGG(act->dta_kind))
9891                         break;
9892 
9893                 if (--ntuple == 0) {
9894                         /*
9895                          * This is the action with which our n-tuple begins.
9896                          */
9897                         agg->dtag_first = act;
9898                         goto success;
9899                 }
9900         }
9901 
9902         /*
9903          * This n-tuple is short by ntuple elements.  Return failure.
9904          */
9905         ASSERT(ntuple != 0);
9906 err:
9907         kmem_free(agg, sizeof (dtrace_aggregation_t));
9908         return (NULL);
9909 
9910 success:
9911         /*
9912          * If the last action in the tuple has a size of zero, it's actually
9913          * an expression argument for the aggregating action.
9914          */
9915         ASSERT(ecb->dte_action_last != NULL);
9916         act = ecb->dte_action_last;
9917 
9918         if (act->dta_kind == DTRACEACT_DIFEXPR) {
9919                 ASSERT(act->dta_difo != NULL);
9920 
9921                 if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
9922                         agg->dtag_hasarg = 1;
9923         }
9924 
9925         /*
9926          * We need to allocate an id for this aggregation.
9927          */
9928         aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
9929             VM_BESTFIT | VM_SLEEP);
9930 
9931         if (aggid - 1 >= state->dts_naggregations) {
9932                 dtrace_aggregation_t **oaggs = state->dts_aggregations;
9933                 dtrace_aggregation_t **aggs;
9934                 int naggs = state->dts_naggregations << 1;
9935                 int onaggs = state->dts_naggregations;
9936 
9937                 ASSERT(aggid == state->dts_naggregations + 1);
9938 
9939                 if (naggs == 0) {
9940                         ASSERT(oaggs == NULL);
9941                         naggs = 1;
9942                 }
9943 
9944                 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
9945 
9946                 if (oaggs != NULL) {
9947                         bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
9948                         kmem_free(oaggs, onaggs * sizeof (*aggs));
9949                 }
9950 
9951                 state->dts_aggregations = aggs;
9952                 state->dts_naggregations = naggs;
9953         }
9954 
9955         ASSERT(state->dts_aggregations[aggid - 1] == NULL);
9956         state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
9957 
9958         frec = &agg->dtag_first->dta_rec;
9959         if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
9960                 frec->dtrd_alignment = sizeof (dtrace_aggid_t);
9961 
9962         for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
9963                 ASSERT(!act->dta_intuple);
9964                 act->dta_intuple = 1;
9965         }
9966 
9967         return (&agg->dtag_action);
9968 }
9969 
9970 static void
9971 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
9972 {
9973         dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9974         dtrace_state_t *state = ecb->dte_state;
9975         dtrace_aggid_t aggid = agg->dtag_id;
9976 
9977         ASSERT(DTRACEACT_ISAGG(act->dta_kind));
9978         vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
9979 
9980         ASSERT(state->dts_aggregations[aggid - 1] == agg);
9981         state->dts_aggregations[aggid - 1] = NULL;
9982 
9983         kmem_free(agg, sizeof (dtrace_aggregation_t));
9984 }
9985 
9986 static int
9987 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9988 {
9989         dtrace_action_t *action, *last;
9990         dtrace_difo_t *dp = desc->dtad_difo;
9991         uint32_t size = 0, align = sizeof (uint8_t), mask;
9992         uint16_t format = 0;
9993         dtrace_recdesc_t *rec;
9994         dtrace_state_t *state = ecb->dte_state;
9995         dtrace_optval_t *opt = state->dts_options, nframes, strsize;
9996         uint64_t arg = desc->dtad_arg;
9997 
9998         ASSERT(MUTEX_HELD(&dtrace_lock));
9999         ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
10000 
10001         if (DTRACEACT_ISAGG(desc->dtad_kind)) {
10002                 /*
10003                  * If this is an aggregating action, there must be neither
10004                  * a speculate nor a commit on the action chain.
10005                  */
10006                 dtrace_action_t *act;
10007 
10008                 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10009                         if (act->dta_kind == DTRACEACT_COMMIT)
10010                                 return (EINVAL);
10011 
10012                         if (act->dta_kind == DTRACEACT_SPECULATE)
10013                                 return (EINVAL);
10014                 }
10015 
10016                 action = dtrace_ecb_aggregation_create(ecb, desc);
10017 
10018                 if (action == NULL)
10019                         return (EINVAL);
10020         } else {
10021                 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10022                     (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10023                     dp != NULL && dp->dtdo_destructive)) {
10024                         state->dts_destructive = 1;
10025                 }
10026 
10027                 switch (desc->dtad_kind) {
10028                 case DTRACEACT_PRINTF:
10029                 case DTRACEACT_PRINTA:
10030                 case DTRACEACT_SYSTEM:
10031                 case DTRACEACT_FREOPEN:
10032                 case DTRACEACT_DIFEXPR:
10033                         /*
10034                          * We know that our arg is a string -- turn it into a
10035                          * format.
10036                          */
10037                         if (arg == NULL) {
10038                                 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
10039                                     desc->dtad_kind == DTRACEACT_DIFEXPR);
10040                                 format = 0;
10041                         } else {
10042                                 ASSERT(arg != NULL);
10043                                 ASSERT(arg > KERNELBASE);
10044                                 format = dtrace_format_add(state,
10045                                     (char *)(uintptr_t)arg);
10046                         }
10047 
10048                         /*FALLTHROUGH*/
10049                 case DTRACEACT_LIBACT:
10050                 case DTRACEACT_TRACEMEM:
10051                 case DTRACEACT_TRACEMEM_DYNSIZE:
10052                         if (dp == NULL)
10053                                 return (EINVAL);
10054 
10055                         if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10056                                 break;
10057 
10058                         if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10059                                 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10060                                         return (EINVAL);
10061 
10062                                 size = opt[DTRACEOPT_STRSIZE];
10063                         }
10064 
10065                         break;
10066 
10067                 case DTRACEACT_STACK:
10068                         if ((nframes = arg) == 0) {
10069                                 nframes = opt[DTRACEOPT_STACKFRAMES];
10070                                 ASSERT(nframes > 0);
10071                                 arg = nframes;
10072                         }
10073 
10074                         size = nframes * sizeof (pc_t);
10075                         break;
10076 
10077                 case DTRACEACT_JSTACK:
10078                         if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10079                                 strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
10080 
10081                         if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10082                                 nframes = opt[DTRACEOPT_JSTACKFRAMES];
10083 
10084                         arg = DTRACE_USTACK_ARG(nframes, strsize);
10085 
10086                         /*FALLTHROUGH*/
10087                 case DTRACEACT_USTACK:
10088                         if (desc->dtad_kind != DTRACEACT_JSTACK &&
10089                             (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10090                                 strsize = DTRACE_USTACK_STRSIZE(arg);
10091                                 nframes = opt[DTRACEOPT_USTACKFRAMES];
10092                                 ASSERT(nframes > 0);
10093                                 arg = DTRACE_USTACK_ARG(nframes, strsize);
10094                         }
10095 
10096                         /*
10097                          * Save a slot for the pid.
10098                          */
10099                         size = (nframes + 1) * sizeof (uint64_t);
10100                         size += DTRACE_USTACK_STRSIZE(arg);
10101                         size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
10102 
10103                         break;
10104 
10105                 case DTRACEACT_SYM:
10106                 case DTRACEACT_MOD:
10107                         if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
10108                             sizeof (uint64_t)) ||
10109                             (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10110                                 return (EINVAL);
10111                         break;
10112 
10113                 case DTRACEACT_USYM:
10114                 case DTRACEACT_UMOD:
10115                 case DTRACEACT_UADDR:
10116                         if (dp == NULL ||
10117                             (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
10118                             (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10119                                 return (EINVAL);
10120 
10121                         /*
10122                          * We have a slot for the pid, plus a slot for the
10123                          * argument.  To keep things simple (aligned with
10124                          * bitness-neutral sizing), we store each as a 64-bit
10125                          * quantity.
10126                          */
10127                         size = 2 * sizeof (uint64_t);
10128                         break;
10129 
10130                 case DTRACEACT_STOP:
10131                 case DTRACEACT_BREAKPOINT:
10132                 case DTRACEACT_PANIC:
10133                         break;
10134 
10135                 case DTRACEACT_CHILL:
10136                 case DTRACEACT_DISCARD:
10137                 case DTRACEACT_RAISE:
10138                         if (dp == NULL)
10139                                 return (EINVAL);
10140                         break;
10141 
10142                 case DTRACEACT_EXIT:
10143                         if (dp == NULL ||
10144                             (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
10145                             (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10146                                 return (EINVAL);
10147                         break;
10148 
10149                 case DTRACEACT_SPECULATE:
10150                         if (ecb->dte_size > sizeof (dtrace_rechdr_t))
10151                                 return (EINVAL);
10152 
10153                         if (dp == NULL)
10154                                 return (EINVAL);
10155 
10156                         state->dts_speculates = 1;
10157                         break;
10158 
10159                 case DTRACEACT_COMMIT: {
10160                         dtrace_action_t *act = ecb->dte_action;
10161 
10162                         for (; act != NULL; act = act->dta_next) {
10163                                 if (act->dta_kind == DTRACEACT_COMMIT)
10164                                         return (EINVAL);
10165                         }
10166 
10167                         if (dp == NULL)
10168                                 return (EINVAL);
10169                         break;
10170                 }
10171 
10172                 default:
10173                         return (EINVAL);
10174                 }
10175 
10176                 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
10177                         /*
10178                          * If this is a data-storing action or a speculate,
10179                          * we must be sure that there isn't a commit on the
10180                          * action chain.
10181                          */
10182                         dtrace_action_t *act = ecb->dte_action;
10183 
10184                         for (; act != NULL; act = act->dta_next) {
10185                                 if (act->dta_kind == DTRACEACT_COMMIT)
10186                                         return (EINVAL);
10187                         }
10188                 }
10189 
10190                 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
10191                 action->dta_rec.dtrd_size = size;
10192         }
10193 
10194         action->dta_refcnt = 1;
10195         rec = &action->dta_rec;
10196         size = rec->dtrd_size;
10197 
10198         for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
10199                 if (!(size & mask)) {
10200                         align = mask + 1;
10201                         break;
10202                 }
10203         }
10204 
10205         action->dta_kind = desc->dtad_kind;
10206 
10207         if ((action->dta_difo = dp) != NULL)
10208                 dtrace_difo_hold(dp);
10209 
10210         rec->dtrd_action = action->dta_kind;
10211         rec->dtrd_arg = arg;
10212         rec->dtrd_uarg = desc->dtad_uarg;
10213         rec->dtrd_alignment = (uint16_t)align;
10214         rec->dtrd_format = format;
10215 
10216         if ((last = ecb->dte_action_last) != NULL) {
10217                 ASSERT(ecb->dte_action != NULL);
10218                 action->dta_prev = last;
10219                 last->dta_next = action;
10220         } else {
10221                 ASSERT(ecb->dte_action == NULL);
10222                 ecb->dte_action = action;
10223         }
10224 
10225         ecb->dte_action_last = action;
10226 
10227         return (0);
10228 }
10229 
10230 static void
10231 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
10232 {
10233         dtrace_action_t *act = ecb->dte_action, *next;
10234         dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
10235         dtrace_difo_t *dp;
10236         uint16_t format;
10237 
10238         if (act != NULL && act->dta_refcnt > 1) {
10239                 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10240                 act->dta_refcnt--;
10241         } else {
10242                 for (; act != NULL; act = next) {
10243                         next = act->dta_next;
10244                         ASSERT(next != NULL || act == ecb->dte_action_last);
10245                         ASSERT(act->dta_refcnt == 1);
10246 
10247                         if ((format = act->dta_rec.dtrd_format) != 0)
10248                                 dtrace_format_remove(ecb->dte_state, format);
10249 
10250                         if ((dp = act->dta_difo) != NULL)
10251                                 dtrace_difo_release(dp, vstate);
10252 
10253                         if (DTRACEACT_ISAGG(act->dta_kind)) {
10254                                 dtrace_ecb_aggregation_destroy(ecb, act);
10255                         } else {
10256                                 kmem_free(act, sizeof (dtrace_action_t));
10257                         }
10258                 }
10259         }
10260 
10261         ecb->dte_action = NULL;
10262         ecb->dte_action_last = NULL;
10263         ecb->dte_size = 0;
10264 }
10265 
10266 static void
10267 dtrace_ecb_disable(dtrace_ecb_t *ecb)
10268 {
10269         /*
10270          * We disable the ECB by removing it from its probe.
10271          */
10272         dtrace_ecb_t *pecb, *prev = NULL;
10273         dtrace_probe_t *probe = ecb->dte_probe;
10274 
10275         ASSERT(MUTEX_HELD(&dtrace_lock));
10276 
10277         if (probe == NULL) {
10278                 /*
10279                  * This is the NULL probe; there is nothing to disable.
10280                  */
10281                 return;
10282         }
10283 
10284         for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
10285                 if (pecb == ecb)
10286                         break;
10287                 prev = pecb;
10288         }
10289 
10290         ASSERT(pecb != NULL);
10291 
10292         if (prev == NULL) {
10293                 probe->dtpr_ecb = ecb->dte_next;
10294         } else {
10295                 prev->dte_next = ecb->dte_next;
10296         }
10297 
10298         if (ecb == probe->dtpr_ecb_last) {
10299                 ASSERT(ecb->dte_next == NULL);
10300                 probe->dtpr_ecb_last = prev;
10301         }
10302 
10303         /*
10304          * The ECB has been disconnected from the probe; now sync to assure
10305          * that all CPUs have seen the change before returning.
10306          */
10307         dtrace_sync();
10308 
10309         if (probe->dtpr_ecb == NULL) {
10310                 /*
10311                  * That was the last ECB on the probe; clear the predicate
10312                  * cache ID for the probe, disable it and sync one more time
10313                  * to assure that we'll never hit it again.
10314                  */
10315                 dtrace_provider_t *prov = probe->dtpr_provider;
10316 
10317                 ASSERT(ecb->dte_next == NULL);
10318                 ASSERT(probe->dtpr_ecb_last == NULL);
10319                 probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10320                 prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
10321                     probe->dtpr_id, probe->dtpr_arg);
10322                 dtrace_sync();
10323         } else {
10324                 /*
10325                  * There is at least one ECB remaining on the probe.  If there
10326                  * is _exactly_ one, set the probe's predicate cache ID to be
10327                  * the predicate cache ID of the remaining ECB.
10328                  */
10329                 ASSERT(probe->dtpr_ecb_last != NULL);
10330                 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
10331 
10332                 if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
10333                         dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
10334 
10335                         ASSERT(probe->dtpr_ecb->dte_next == NULL);
10336 
10337                         if (p != NULL)
10338                                 probe->dtpr_predcache = p->dtp_cacheid;
10339                 }
10340 
10341                 ecb->dte_next = NULL;
10342         }
10343 }
10344 
10345 static void
10346 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
10347 {
10348         dtrace_state_t *state = ecb->dte_state;
10349         dtrace_vstate_t *vstate = &state->dts_vstate;
10350         dtrace_predicate_t *pred;
10351         dtrace_epid_t epid = ecb->dte_epid;
10352 
10353         ASSERT(MUTEX_HELD(&dtrace_lock));
10354         ASSERT(ecb->dte_next == NULL);
10355         ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
10356 
10357         if ((pred = ecb->dte_predicate) != NULL)
10358                 dtrace_predicate_release(pred, vstate);
10359 
10360         dtrace_ecb_action_remove(ecb);
10361 
10362         ASSERT(state->dts_ecbs[epid - 1] == ecb);
10363         state->dts_ecbs[epid - 1] = NULL;
10364 
10365         kmem_free(ecb, sizeof (dtrace_ecb_t));
10366 }
10367 
10368 static dtrace_ecb_t *
10369 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10370     dtrace_enabling_t *enab)
10371 {
10372         dtrace_ecb_t *ecb;
10373         dtrace_predicate_t *pred;
10374         dtrace_actdesc_t *act;
10375         dtrace_provider_t *prov;
10376         dtrace_ecbdesc_t *desc = enab->dten_current;
10377 
10378         ASSERT(MUTEX_HELD(&dtrace_lock));
10379         ASSERT(state != NULL);
10380 
10381         ecb = dtrace_ecb_add(state, probe);
10382         ecb->dte_uarg = desc->dted_uarg;
10383 
10384         if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
10385                 dtrace_predicate_hold(pred);
10386                 ecb->dte_predicate = pred;
10387         }
10388 
10389         if (probe != NULL) {
10390                 /*
10391                  * If the provider shows more leg than the consumer is old
10392                  * enough to see, we need to enable the appropriate implicit
10393                  * predicate bits to prevent the ecb from activating at
10394                  * revealing times.
10395                  *
10396                  * Providers specifying DTRACE_PRIV_USER at register time
10397                  * are stating that they need the /proc-style privilege
10398                  * model to be enforced, and this is what DTRACE_COND_OWNER
10399                  * and DTRACE_COND_ZONEOWNER will then do at probe time.
10400                  */
10401                 prov = probe->dtpr_provider;
10402                 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
10403                     (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10404                         ecb->dte_cond |= DTRACE_COND_OWNER;
10405 
10406                 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
10407                     (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10408                         ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
10409 
10410                 /*
10411                  * If the provider shows us kernel innards and the user
10412                  * is lacking sufficient privilege, enable the
10413                  * DTRACE_COND_USERMODE implicit predicate.
10414                  */
10415                 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
10416                     (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
10417                         ecb->dte_cond |= DTRACE_COND_USERMODE;
10418         }
10419 
10420         if (dtrace_ecb_create_cache != NULL) {
10421                 /*
10422                  * If we have a cached ecb, we'll use its action list instead
10423                  * of creating our own (saving both time and space).
10424                  */
10425                 dtrace_ecb_t *cached = dtrace_ecb_create_cache;
10426                 dtrace_action_t *act = cached->dte_action;
10427 
10428                 if (act != NULL) {
10429                         ASSERT(act->dta_refcnt > 0);
10430                         act->dta_refcnt++;
10431                         ecb->dte_action = act;
10432                         ecb->dte_action_last = cached->dte_action_last;
10433                         ecb->dte_needed = cached->dte_needed;
10434                         ecb->dte_size = cached->dte_size;
10435                         ecb->dte_alignment = cached->dte_alignment;
10436                 }
10437 
10438                 return (ecb);
10439         }
10440 
10441         for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
10442                 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
10443                         dtrace_ecb_destroy(ecb);
10444                         return (NULL);
10445                 }
10446         }
10447 
10448         dtrace_ecb_resize(ecb);
10449 
10450         return (dtrace_ecb_create_cache = ecb);
10451 }
10452 
10453 static int
10454 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
10455 {
10456         dtrace_ecb_t *ecb;
10457         dtrace_enabling_t *enab = arg;
10458         dtrace_state_t *state = enab->dten_vstate->dtvs_state;
10459 
10460         ASSERT(state != NULL);
10461 
10462         if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
10463                 /*
10464                  * This probe was created in a generation for which this
10465                  * enabling has previously created ECBs; we don't want to
10466                  * enable it again, so just kick out.
10467                  */
10468                 return (DTRACE_MATCH_NEXT);
10469         }
10470 
10471         if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
10472                 return (DTRACE_MATCH_DONE);
10473 
10474         if (dtrace_ecb_enable(ecb) < 0)
10475                 return (DTRACE_MATCH_FAIL);
10476 
10477         return (DTRACE_MATCH_NEXT);
10478 }
10479 
10480 static dtrace_ecb_t *
10481 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
10482 {
10483         dtrace_ecb_t *ecb;
10484 
10485         ASSERT(MUTEX_HELD(&dtrace_lock));
10486 
10487         if (id == 0 || id > state->dts_necbs)
10488                 return (NULL);
10489 
10490         ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
10491         ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
10492 
10493         return (state->dts_ecbs[id - 1]);
10494 }
10495 
10496 static dtrace_aggregation_t *
10497 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
10498 {
10499         dtrace_aggregation_t *agg;
10500 
10501         ASSERT(MUTEX_HELD(&dtrace_lock));
10502 
10503         if (id == 0 || id > state->dts_naggregations)
10504                 return (NULL);
10505 
10506         ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
10507         ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
10508             agg->dtag_id == id);
10509 
10510         return (state->dts_aggregations[id - 1]);
10511 }
10512 
10513 /*
10514  * DTrace Buffer Functions
10515  *
10516  * The following functions manipulate DTrace buffers.  Most of these functions
10517  * are called in the context of establishing or processing consumer state;
10518  * exceptions are explicitly noted.
10519  */
10520 
10521 /*
10522  * Note:  called from cross call context.  This function switches the two
10523  * buffers on a given CPU.  The atomicity of this operation is assured by
10524  * disabling interrupts while the actual switch takes place; the disabling of
10525  * interrupts serializes the execution with any execution of dtrace_probe() on
10526  * the same CPU.
10527  */
10528 static void
10529 dtrace_buffer_switch(dtrace_buffer_t *buf)
10530 {
10531         caddr_t tomax = buf->dtb_tomax;
10532         caddr_t xamot = buf->dtb_xamot;
10533         dtrace_icookie_t cookie;
10534         hrtime_t now;
10535 
10536         ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10537         ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
10538 
10539         cookie = dtrace_interrupt_disable();
10540         now = dtrace_gethrtime();
10541         buf->dtb_tomax = xamot;
10542         buf->dtb_xamot = tomax;
10543         buf->dtb_xamot_drops = buf->dtb_drops;
10544         buf->dtb_xamot_offset = buf->dtb_offset;
10545         buf->dtb_xamot_errors = buf->dtb_errors;
10546         buf->dtb_xamot_flags = buf->dtb_flags;
10547         buf->dtb_offset = 0;
10548         buf->dtb_drops = 0;
10549         buf->dtb_errors = 0;
10550         buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
10551         buf->dtb_interval = now - buf->dtb_switched;
10552         buf->dtb_switched = now;
10553         dtrace_interrupt_enable(cookie);
10554 }
10555 
10556 /*
10557  * Note:  called from cross call context.  This function activates a buffer
10558  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
10559  * is guaranteed by the disabling of interrupts.
10560  */
10561 static void
10562 dtrace_buffer_activate(dtrace_state_t *state)
10563 {
10564         dtrace_buffer_t *buf;
10565         dtrace_icookie_t cookie = dtrace_interrupt_disable();
10566 
10567         buf = &state->dts_buffer[CPU->cpu_id];
10568 
10569         if (buf->dtb_tomax != NULL) {
10570                 /*
10571                  * We might like to assert that the buffer is marked inactive,
10572                  * but this isn't necessarily true:  the buffer for the CPU
10573                  * that processes the BEGIN probe has its buffer activated
10574                  * manually.  In this case, we take the (harmless) action
10575                  * re-clearing the bit INACTIVE bit.
10576                  */
10577                 buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
10578         }
10579 
10580         dtrace_interrupt_enable(cookie);
10581 }
10582 
10583 static int
10584 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
10585     processorid_t cpu, int *factor)
10586 {
10587         cpu_t *cp;
10588         dtrace_buffer_t *buf;
10589         int allocated = 0, desired = 0;
10590 
10591         ASSERT(MUTEX_HELD(&cpu_lock));
10592         ASSERT(MUTEX_HELD(&dtrace_lock));
10593 
10594         *factor = 1;
10595 
10596         if (size > dtrace_nonroot_maxsize &&
10597             !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
10598                 return (EFBIG);
10599 
10600         cp = cpu_list;
10601 
10602         do {
10603                 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10604                         continue;
10605 
10606                 buf = &bufs[cp->cpu_id];
10607 
10608                 /*
10609                  * If there is already a buffer allocated for this CPU, it
10610                  * is only possible that this is a DR event.  In this case,
10611                  * the buffer size must match our specified size.
10612                  */
10613                 if (buf->dtb_tomax != NULL) {
10614                         ASSERT(buf->dtb_size == size);
10615                         continue;
10616                 }
10617 
10618                 ASSERT(buf->dtb_xamot == NULL);
10619 
10620                 if ((buf->dtb_tomax = kmem_zalloc(size,
10621                     KM_NOSLEEP | KM_NORMALPRI)) == NULL)
10622                         goto err;
10623 
10624                 buf->dtb_size = size;
10625                 buf->dtb_flags = flags;
10626                 buf->dtb_offset = 0;
10627                 buf->dtb_drops = 0;
10628 
10629                 if (flags & DTRACEBUF_NOSWITCH)
10630                         continue;
10631 
10632                 if ((buf->dtb_xamot = kmem_zalloc(size,
10633                     KM_NOSLEEP | KM_NORMALPRI)) == NULL)
10634                         goto err;
10635         } while ((cp = cp->cpu_next) != cpu_list);
10636 
10637         return (0);
10638 
10639 err:
10640         cp = cpu_list;
10641 
10642         do {
10643                 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10644                         continue;
10645 
10646                 buf = &bufs[cp->cpu_id];
10647                 desired += 2;
10648 
10649                 if (buf->dtb_xamot != NULL) {
10650                         ASSERT(buf->dtb_tomax != NULL);
10651                         ASSERT(buf->dtb_size == size);
10652                         kmem_free(buf->dtb_xamot, size);
10653                         allocated++;
10654                 }
10655 
10656                 if (buf->dtb_tomax != NULL) {
10657                         ASSERT(buf->dtb_size == size);
10658                         kmem_free(buf->dtb_tomax, size);
10659                         allocated++;
10660                 }
10661 
10662                 buf->dtb_tomax = NULL;
10663                 buf->dtb_xamot = NULL;
10664                 buf->dtb_size = 0;
10665         } while ((cp = cp->cpu_next) != cpu_list);
10666 
10667         *factor = desired / (allocated > 0 ? allocated : 1);
10668 
10669         return (ENOMEM);
10670 }
10671 
10672 /*
10673  * Note:  called from probe context.  This function just increments the drop
10674  * count on a buffer.  It has been made a function to allow for the
10675  * possibility of understanding the source of mysterious drop counts.  (A
10676  * problem for which one may be particularly disappointed that DTrace cannot
10677  * be used to understand DTrace.)
10678  */
10679 static void
10680 dtrace_buffer_drop(dtrace_buffer_t *buf)
10681 {
10682         buf->dtb_drops++;
10683 }
10684 
10685 /*
10686  * Note:  called from probe context.  This function is called to reserve space
10687  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
10688  * mstate.  Returns the new offset in the buffer, or a negative value if an
10689  * error has occurred.
10690  */
10691 static intptr_t
10692 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
10693     dtrace_state_t *state, dtrace_mstate_t *mstate)
10694 {
10695         intptr_t offs = buf->dtb_offset, soffs;
10696         intptr_t woffs;
10697         caddr_t tomax;
10698         size_t total;
10699 
10700         if (buf->dtb_flags & DTRACEBUF_INACTIVE)
10701                 return (-1);
10702 
10703         if ((tomax = buf->dtb_tomax) == NULL) {
10704                 dtrace_buffer_drop(buf);
10705                 return (-1);
10706         }
10707 
10708         if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
10709                 while (offs & (align - 1)) {
10710                         /*
10711                          * Assert that our alignment is off by a number which
10712                          * is itself sizeof (uint32_t) aligned.
10713                          */
10714                         ASSERT(!((align - (offs & (align - 1))) &
10715                             (sizeof (uint32_t) - 1)));
10716                         DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10717                         offs += sizeof (uint32_t);
10718                 }
10719 
10720                 if ((soffs = offs + needed) > buf->dtb_size) {
10721                         dtrace_buffer_drop(buf);
10722                         return (-1);
10723                 }
10724 
10725                 if (mstate == NULL)
10726                         return (offs);
10727 
10728                 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
10729                 mstate->dtms_scratch_size = buf->dtb_size - soffs;
10730                 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10731 
10732                 return (offs);
10733         }
10734 
10735         if (buf->dtb_flags & DTRACEBUF_FILL) {
10736                 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
10737                     (buf->dtb_flags & DTRACEBUF_FULL))
10738                         return (-1);
10739                 goto out;
10740         }
10741 
10742         total = needed + (offs & (align - 1));
10743 
10744         /*
10745          * For a ring buffer, life is quite a bit more complicated.  Before
10746          * we can store any padding, we need to adjust our wrapping offset.
10747          * (If we've never before wrapped or we're not about to, no adjustment
10748          * is required.)
10749          */
10750         if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
10751             offs + total > buf->dtb_size) {
10752                 woffs = buf->dtb_xamot_offset;
10753 
10754                 if (offs + total > buf->dtb_size) {
10755                         /*
10756                          * We can't fit in the end of the buffer.  First, a
10757                          * sanity check that we can fit in the buffer at all.
10758                          */
10759                         if (total > buf->dtb_size) {
10760                                 dtrace_buffer_drop(buf);
10761                                 return (-1);
10762                         }
10763 
10764                         /*
10765                          * We're going to be storing at the top of the buffer,
10766                          * so now we need to deal with the wrapped offset.  We
10767                          * only reset our wrapped offset to 0 if it is
10768                          * currently greater than the current offset.  If it
10769                          * is less than the current offset, it is because a
10770                          * previous allocation induced a wrap -- but the
10771                          * allocation didn't subsequently take the space due
10772                          * to an error or false predicate evaluation.  In this
10773                          * case, we'll just leave the wrapped offset alone: if
10774                          * the wrapped offset hasn't been advanced far enough
10775                          * for this allocation, it will be adjusted in the
10776                          * lower loop.
10777                          */
10778                         if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
10779                                 if (woffs >= offs)
10780                                         woffs = 0;
10781                         } else {
10782                                 woffs = 0;
10783                         }
10784 
10785                         /*
10786                          * Now we know that we're going to be storing to the
10787                          * top of the buffer and that there is room for us
10788                          * there.  We need to clear the buffer from the current
10789                          * offset to the end (there may be old gunk there).
10790                          */
10791                         while (offs < buf->dtb_size)
10792                                 tomax[offs++] = 0;
10793 
10794                         /*
10795                          * We need to set our offset to zero.  And because we
10796                          * are wrapping, we need to set the bit indicating as
10797                          * much.  We can also adjust our needed space back
10798                          * down to the space required by the ECB -- we know
10799                          * that the top of the buffer is aligned.
10800                          */
10801                         offs = 0;
10802                         total = needed;
10803                         buf->dtb_flags |= DTRACEBUF_WRAPPED;
10804                 } else {
10805                         /*
10806                          * There is room for us in the buffer, so we simply
10807                          * need to check the wrapped offset.
10808                          */
10809                         if (woffs < offs) {
10810                                 /*
10811                                  * The wrapped offset is less than the offset.
10812                                  * This can happen if we allocated buffer space
10813                                  * that induced a wrap, but then we didn't
10814                                  * subsequently take the space due to an error
10815                                  * or false predicate evaluation.  This is
10816                                  * okay; we know that _this_ allocation isn't
10817                                  * going to induce a wrap.  We still can't
10818                                  * reset the wrapped offset to be zero,
10819                                  * however: the space may have been trashed in
10820                                  * the previous failed probe attempt.  But at
10821                                  * least the wrapped offset doesn't need to
10822                                  * be adjusted at all...
10823                                  */
10824                                 goto out;
10825                         }
10826                 }
10827 
10828                 while (offs + total > woffs) {
10829                         dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
10830                         size_t size;
10831 
10832                         if (epid == DTRACE_EPIDNONE) {
10833                                 size = sizeof (uint32_t);
10834                         } else {
10835                                 ASSERT3U(epid, <=, state->dts_necbs);
10836                                 ASSERT(state->dts_ecbs[epid - 1] != NULL);
10837 
10838                                 size = state->dts_ecbs[epid - 1]->dte_size;
10839                         }
10840 
10841                         ASSERT(woffs + size <= buf->dtb_size);
10842                         ASSERT(size != 0);
10843 
10844                         if (woffs + size == buf->dtb_size) {
10845                                 /*
10846                                  * We've reached the end of the buffer; we want
10847                                  * to set the wrapped offset to 0 and break
10848                                  * out.  However, if the offs is 0, then we're
10849                                  * in a strange edge-condition:  the amount of
10850                                  * space that we want to reserve plus the size
10851                                  * of the record that we're overwriting is
10852                                  * greater than the size of the buffer.  This
10853                                  * is problematic because if we reserve the
10854                                  * space but subsequently don't consume it (due
10855                                  * to a failed predicate or error) the wrapped
10856                                  * offset will be 0 -- yet the EPID at offset 0
10857                                  * will not be committed.  This situation is
10858                                  * relatively easy to deal with:  if we're in
10859                                  * this case, the buffer is indistinguishable
10860                                  * from one that hasn't wrapped; we need only
10861                                  * finish the job by clearing the wrapped bit,
10862                                  * explicitly setting the offset to be 0, and
10863                                  * zero'ing out the old data in the buffer.
10864                                  */
10865                                 if (offs == 0) {
10866                                         buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
10867                                         buf->dtb_offset = 0;
10868                                         woffs = total;
10869 
10870                                         while (woffs < buf->dtb_size)
10871                                                 tomax[woffs++] = 0;
10872                                 }
10873 
10874                                 woffs = 0;
10875                                 break;
10876                         }
10877 
10878                         woffs += size;
10879                 }
10880 
10881                 /*
10882                  * We have a wrapped offset.  It may be that the wrapped offset
10883                  * has become zero -- that's okay.
10884                  */
10885                 buf->dtb_xamot_offset = woffs;
10886         }
10887 
10888 out:
10889         /*
10890          * Now we can plow the buffer with any necessary padding.
10891          */
10892         while (offs & (align - 1)) {
10893                 /*
10894                  * Assert that our alignment is off by a number which
10895                  * is itself sizeof (uint32_t) aligned.
10896                  */
10897                 ASSERT(!((align - (offs & (align - 1))) &
10898                     (sizeof (uint32_t) - 1)));
10899                 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10900                 offs += sizeof (uint32_t);
10901         }
10902 
10903         if (buf->dtb_flags & DTRACEBUF_FILL) {
10904                 if (offs + needed > buf->dtb_size - state->dts_reserve) {
10905                         buf->dtb_flags |= DTRACEBUF_FULL;
10906                         return (-1);
10907                 }
10908         }
10909 
10910         if (mstate == NULL)
10911                 return (offs);
10912 
10913         /*
10914          * For ring buffers and fill buffers, the scratch space is always
10915          * the inactive buffer.
10916          */
10917         mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
10918         mstate->dtms_scratch_size = buf->dtb_size;
10919         mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10920 
10921         return (offs);
10922 }
10923 
10924 static void
10925 dtrace_buffer_polish(dtrace_buffer_t *buf)
10926 {
10927         ASSERT(buf->dtb_flags & DTRACEBUF_RING);
10928         ASSERT(MUTEX_HELD(&dtrace_lock));
10929 
10930         if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
10931                 return;
10932 
10933         /*
10934          * We need to polish the ring buffer.  There are three cases:
10935          *
10936          * - The first (and presumably most common) is that there is no gap
10937          *   between the buffer offset and the wrapped offset.  In this case,
10938          *   there is nothing in the buffer that isn't valid data; we can
10939          *   mark the buffer as polished and return.
10940          *
10941          * - The second (less common than the first but still more common
10942          *   than the third) is that there is a gap between the buffer offset
10943          *   and the wrapped offset, and the wrapped offset is larger than the
10944          *   buffer offset.  This can happen because of an alignment issue, or
10945          *   can happen because of a call to dtrace_buffer_reserve() that
10946          *   didn't subsequently consume the buffer space.  In this case,
10947          *   we need to zero the data from the buffer offset to the wrapped
10948          *   offset.
10949          *
10950          * - The third (and least common) is that there is a gap between the
10951          *   buffer offset and the wrapped offset, but the wrapped offset is
10952          *   _less_ than the buffer offset.  This can only happen because a
10953          *   call to dtrace_buffer_reserve() induced a wrap, but the space
10954          *   was not subsequently consumed.  In this case, we need to zero the
10955          *   space from the offset to the end of the buffer _and_ from the
10956          *   top of the buffer to the wrapped offset.
10957          */
10958         if (buf->dtb_offset < buf->dtb_xamot_offset) {
10959                 bzero(buf->dtb_tomax + buf->dtb_offset,
10960                     buf->dtb_xamot_offset - buf->dtb_offset);
10961         }
10962 
10963         if (buf->dtb_offset > buf->dtb_xamot_offset) {
10964                 bzero(buf->dtb_tomax + buf->dtb_offset,
10965                     buf->dtb_size - buf->dtb_offset);
10966                 bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
10967         }
10968 }
10969 
10970 /*
10971  * This routine determines if data generated at the specified time has likely
10972  * been entirely consumed at user-level.  This routine is called to determine
10973  * if an ECB on a defunct probe (but for an active enabling) can be safely
10974  * disabled and destroyed.
10975  */
10976 static int
10977 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
10978 {
10979         int i;
10980 
10981         for (i = 0; i < NCPU; i++) {
10982                 dtrace_buffer_t *buf = &bufs[i];
10983 
10984                 if (buf->dtb_size == 0)
10985                         continue;
10986 
10987                 if (buf->dtb_flags & DTRACEBUF_RING)
10988                         return (0);
10989 
10990                 if (!buf->dtb_switched && buf->dtb_offset != 0)
10991                         return (0);
10992 
10993                 if (buf->dtb_switched - buf->dtb_interval < when)
10994                         return (0);
10995         }
10996 
10997         return (1);
10998 }
10999 
11000 static void
11001 dtrace_buffer_free(dtrace_buffer_t *bufs)
11002 {
11003         int i;
11004 
11005         for (i = 0; i < NCPU; i++) {
11006                 dtrace_buffer_t *buf = &bufs[i];
11007 
11008                 if (buf->dtb_tomax == NULL) {
11009                         ASSERT(buf->dtb_xamot == NULL);
11010                         ASSERT(buf->dtb_size == 0);
11011                         continue;
11012                 }
11013 
11014                 if (buf->dtb_xamot != NULL) {
11015                         ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11016                         kmem_free(buf->dtb_xamot, buf->dtb_size);
11017                 }
11018 
11019                 kmem_free(buf->dtb_tomax, buf->dtb_size);
11020                 buf->dtb_size = 0;
11021                 buf->dtb_tomax = NULL;
11022                 buf->dtb_xamot = NULL;
11023         }
11024 }
11025 
11026 /*
11027  * DTrace Enabling Functions
11028  */
11029 static dtrace_enabling_t *
11030 dtrace_enabling_create(dtrace_vstate_t *vstate)
11031 {
11032         dtrace_enabling_t *enab;
11033 
11034         enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
11035         enab->dten_vstate = vstate;
11036 
11037         return (enab);
11038 }
11039 
11040 static void
11041 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
11042 {
11043         dtrace_ecbdesc_t **ndesc;
11044         size_t osize, nsize;
11045 
11046         /*
11047          * We can't add to enablings after we've enabled them, or after we've
11048          * retained them.
11049          */
11050         ASSERT(enab->dten_probegen == 0);
11051         ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11052 
11053         if (enab->dten_ndesc < enab->dten_maxdesc) {
11054                 enab->dten_desc[enab->dten_ndesc++] = ecb;
11055                 return;
11056         }
11057 
11058         osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11059 
11060         if (enab->dten_maxdesc == 0) {
11061                 enab->dten_maxdesc = 1;
11062         } else {
11063                 enab->dten_maxdesc <<= 1;
11064         }
11065 
11066         ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
11067 
11068         nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11069         ndesc = kmem_zalloc(nsize, KM_SLEEP);
11070         bcopy(enab->dten_desc, ndesc, osize);
11071         kmem_free(enab->dten_desc, osize);
11072 
11073         enab->dten_desc = ndesc;
11074         enab->dten_desc[enab->dten_ndesc++] = ecb;
11075 }
11076 
11077 static void
11078 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11079     dtrace_probedesc_t *pd)
11080 {
11081         dtrace_ecbdesc_t *new;
11082         dtrace_predicate_t *pred;
11083         dtrace_actdesc_t *act;
11084 
11085         /*
11086          * We're going to create a new ECB description that matches the
11087          * specified ECB in every way, but has the specified probe description.
11088          */
11089         new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11090 
11091         if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11092                 dtrace_predicate_hold(pred);
11093 
11094         for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11095                 dtrace_actdesc_hold(act);
11096 
11097         new->dted_action = ecb->dted_action;
11098         new->dted_pred = ecb->dted_pred;
11099         new->dted_probe = *pd;
11100         new->dted_uarg = ecb->dted_uarg;
11101 
11102         dtrace_enabling_add(enab, new);
11103 }
11104 
11105 static void
11106 dtrace_enabling_dump(dtrace_enabling_t *enab)
11107 {
11108         int i;
11109 
11110         for (i = 0; i < enab->dten_ndesc; i++) {
11111                 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
11112 
11113                 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
11114                     desc->dtpd_provider, desc->dtpd_mod,
11115                     desc->dtpd_func, desc->dtpd_name);
11116         }
11117 }
11118 
11119 static void
11120 dtrace_enabling_destroy(dtrace_enabling_t *enab)
11121 {
11122         int i;
11123         dtrace_ecbdesc_t *ep;
11124         dtrace_vstate_t *vstate = enab->dten_vstate;
11125 
11126         ASSERT(MUTEX_HELD(&dtrace_lock));
11127 
11128         for (i = 0; i < enab->dten_ndesc; i++) {
11129                 dtrace_actdesc_t *act, *next;
11130                 dtrace_predicate_t *pred;
11131 
11132                 ep = enab->dten_desc[i];
11133 
11134                 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
11135                         dtrace_predicate_release(pred, vstate);
11136 
11137                 for (act = ep->dted_action; act != NULL; act = next) {
11138                         next = act->dtad_next;
11139                         dtrace_actdesc_release(act, vstate);
11140                 }
11141 
11142                 kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11143         }
11144 
11145         kmem_free(enab->dten_desc,
11146             enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
11147 
11148         /*
11149          * If this was a retained enabling, decrement the dts_nretained count
11150          * and take it off of the dtrace_retained list.
11151          */
11152         if (enab->dten_prev != NULL || enab->dten_next != NULL ||
11153             dtrace_retained == enab) {
11154                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11155                 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
11156                 enab->dten_vstate->dtvs_state->dts_nretained--;
11157                 dtrace_retained_gen++;
11158         }
11159 
11160         if (enab->dten_prev == NULL) {
11161                 if (dtrace_retained == enab) {
11162                         dtrace_retained = enab->dten_next;
11163 
11164                         if (dtrace_retained != NULL)
11165                                 dtrace_retained->dten_prev = NULL;
11166                 }
11167         } else {
11168                 ASSERT(enab != dtrace_retained);
11169                 ASSERT(dtrace_retained != NULL);
11170                 enab->dten_prev->dten_next = enab->dten_next;
11171         }
11172 
11173         if (enab->dten_next != NULL) {
11174                 ASSERT(dtrace_retained != NULL);
11175                 enab->dten_next->dten_prev = enab->dten_prev;
11176         }
11177 
11178         kmem_free(enab, sizeof (dtrace_enabling_t));
11179 }
11180 
11181 static int
11182 dtrace_enabling_retain(dtrace_enabling_t *enab)
11183 {
11184         dtrace_state_t *state;
11185 
11186         ASSERT(MUTEX_HELD(&dtrace_lock));
11187         ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11188         ASSERT(enab->dten_vstate != NULL);
11189 
11190         state = enab->dten_vstate->dtvs_state;
11191         ASSERT(state != NULL);
11192 
11193         /*
11194          * We only allow each state to retain dtrace_retain_max enablings.
11195          */
11196         if (state->dts_nretained >= dtrace_retain_max)
11197                 return (ENOSPC);
11198 
11199         state->dts_nretained++;
11200         dtrace_retained_gen++;
11201 
11202         if (dtrace_retained == NULL) {
11203                 dtrace_retained = enab;
11204                 return (0);
11205         }
11206 
11207         enab->dten_next = dtrace_retained;
11208         dtrace_retained->dten_prev = enab;
11209         dtrace_retained = enab;
11210 
11211         return (0);
11212 }
11213 
11214 static int
11215 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11216     dtrace_probedesc_t *create)
11217 {
11218         dtrace_enabling_t *new, *enab;
11219         int found = 0, err = ENOENT;
11220 
11221         ASSERT(MUTEX_HELD(&dtrace_lock));
11222         ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
11223         ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
11224         ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
11225         ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
11226 
11227         new = dtrace_enabling_create(&state->dts_vstate);
11228 
11229         /*
11230          * Iterate over all retained enablings, looking for enablings that
11231          * match the specified state.
11232          */
11233         for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11234                 int i;
11235 
11236                 /*
11237                  * dtvs_state can only be NULL for helper enablings -- and
11238                  * helper enablings can't be retained.
11239                  */
11240                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11241 
11242                 if (enab->dten_vstate->dtvs_state != state)
11243                         continue;
11244 
11245                 /*
11246                  * Now iterate over each probe description; we're looking for
11247                  * an exact match to the specified probe description.
11248                  */
11249                 for (i = 0; i < enab->dten_ndesc; i++) {
11250                         dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11251                         dtrace_probedesc_t *pd = &ep->dted_probe;
11252 
11253                         if (strcmp(pd->dtpd_provider, match->dtpd_provider))
11254                                 continue;
11255 
11256                         if (strcmp(pd->dtpd_mod, match->dtpd_mod))
11257                                 continue;
11258 
11259                         if (strcmp(pd->dtpd_func, match->dtpd_func))
11260                                 continue;
11261 
11262                         if (strcmp(pd->dtpd_name, match->dtpd_name))
11263                                 continue;
11264 
11265                         /*
11266                          * We have a winning probe!  Add it to our growing
11267                          * enabling.
11268                          */
11269                         found = 1;
11270                         dtrace_enabling_addlike(new, ep, create);
11271                 }
11272         }
11273 
11274         if (!found || (err = dtrace_enabling_retain(new)) != 0) {
11275                 dtrace_enabling_destroy(new);
11276                 return (err);
11277         }
11278 
11279         return (0);
11280 }
11281 
11282 static void
11283 dtrace_enabling_retract(dtrace_state_t *state)
11284 {
11285         dtrace_enabling_t *enab, *next;
11286 
11287         ASSERT(MUTEX_HELD(&dtrace_lock));
11288 
11289         /*
11290          * Iterate over all retained enablings, destroy the enablings retained
11291          * for the specified state.
11292          */
11293         for (enab = dtrace_retained; enab != NULL; enab = next) {
11294                 next = enab->dten_next;
11295 
11296                 /*
11297                  * dtvs_state can only be NULL for helper enablings -- and
11298                  * helper enablings can't be retained.
11299                  */
11300                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11301 
11302                 if (enab->dten_vstate->dtvs_state == state) {
11303                         ASSERT(state->dts_nretained > 0);
11304                         dtrace_enabling_destroy(enab);
11305                 }
11306         }
11307 
11308         ASSERT(state->dts_nretained == 0);
11309 }
11310 
11311 static int
11312 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
11313 {
11314         int i = 0;
11315         int total_matched = 0, matched = 0;
11316 
11317         ASSERT(MUTEX_HELD(&cpu_lock));
11318         ASSERT(MUTEX_HELD(&dtrace_lock));
11319 
11320         for (i = 0; i < enab->dten_ndesc; i++) {
11321                 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11322 
11323                 enab->dten_current = ep;
11324                 enab->dten_error = 0;
11325 
11326                 /*
11327                  * If a provider failed to enable a probe then get out and
11328                  * let the consumer know we failed.
11329                  */
11330                 if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0)
11331                         return (EBUSY);
11332 
11333                 total_matched += matched;
11334 
11335                 if (enab->dten_error != 0) {
11336                         /*
11337                          * If we get an error half-way through enabling the
11338                          * probes, we kick out -- perhaps with some number of
11339                          * them enabled.  Leaving enabled probes enabled may
11340                          * be slightly confusing for user-level, but we expect
11341                          * that no one will attempt to actually drive on in
11342                          * the face of such errors.  If this is an anonymous
11343                          * enabling (indicated with a NULL nmatched pointer),
11344                          * we cmn_err() a message.  We aren't expecting to
11345                          * get such an error -- such as it can exist at all,
11346                          * it would be a result of corrupted DOF in the driver
11347                          * properties.
11348                          */
11349                         if (nmatched == NULL) {
11350                                 cmn_err(CE_WARN, "dtrace_enabling_match() "
11351                                     "error on %p: %d", (void *)ep,
11352                                     enab->dten_error);
11353                         }
11354 
11355                         return (enab->dten_error);
11356                 }
11357         }
11358 
11359         enab->dten_probegen = dtrace_probegen;
11360         if (nmatched != NULL)
11361                 *nmatched = total_matched;
11362 
11363         return (0);
11364 }
11365 
11366 static void
11367 dtrace_enabling_matchall(void)
11368 {
11369         dtrace_enabling_t *enab;
11370 
11371         mutex_enter(&cpu_lock);
11372         mutex_enter(&dtrace_lock);
11373 
11374         /*
11375          * Iterate over all retained enablings to see if any probes match
11376          * against them.  We only perform this operation on enablings for which
11377          * we have sufficient permissions by virtue of being in the global zone
11378          * or in the same zone as the DTrace client.  Because we can be called
11379          * after dtrace_detach() has been called, we cannot assert that there
11380          * are retained enablings.  We can safely load from dtrace_retained,
11381          * however:  the taskq_destroy() at the end of dtrace_detach() will
11382          * block pending our completion.
11383          */
11384         for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11385                 dtrace_cred_t *dcr = &enab->dten_vstate->dtvs_state->dts_cred;
11386                 cred_t *cr = dcr->dcr_cred;
11387                 zoneid_t zone = cr != NULL ? crgetzoneid(cr) : 0;
11388 
11389                 if ((dcr->dcr_visible & DTRACE_CRV_ALLZONE) || (cr != NULL &&
11390                     (zone == GLOBAL_ZONEID || getzoneid() == zone)))
11391                         (void) dtrace_enabling_match(enab, NULL);
11392         }
11393 
11394         mutex_exit(&dtrace_lock);
11395         mutex_exit(&cpu_lock);
11396 }
11397 
11398 /*
11399  * If an enabling is to be enabled without having matched probes (that is, if
11400  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11401  * enabling must be _primed_ by creating an ECB for every ECB description.
11402  * This must be done to assure that we know the number of speculations, the
11403  * number of aggregations, the minimum buffer size needed, etc. before we
11404  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
11405  * enabling any probes, we create ECBs for every ECB decription, but with a
11406  * NULL probe -- which is exactly what this function does.
11407  */
11408 static void
11409 dtrace_enabling_prime(dtrace_state_t *state)
11410 {
11411         dtrace_enabling_t *enab;
11412         int i;
11413 
11414         for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11415                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11416 
11417                 if (enab->dten_vstate->dtvs_state != state)
11418                         continue;
11419 
11420                 /*
11421                  * We don't want to prime an enabling more than once, lest
11422                  * we allow a malicious user to induce resource exhaustion.
11423                  * (The ECBs that result from priming an enabling aren't
11424                  * leaked -- but they also aren't deallocated until the
11425                  * consumer state is destroyed.)
11426                  */
11427                 if (enab->dten_primed)
11428                         continue;
11429 
11430                 for (i = 0; i < enab->dten_ndesc; i++) {
11431                         enab->dten_current = enab->dten_desc[i];
11432                         (void) dtrace_probe_enable(NULL, enab);
11433                 }
11434 
11435                 enab->dten_primed = 1;
11436         }
11437 }
11438 
11439 /*
11440  * Called to indicate that probes should be provided due to retained
11441  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
11442  * must take an initial lap through the enabling calling the dtps_provide()
11443  * entry point explicitly to allow for autocreated probes.
11444  */
11445 static void
11446 dtrace_enabling_provide(dtrace_provider_t *prv)
11447 {
11448         int i, all = 0;
11449         dtrace_probedesc_t desc;
11450         dtrace_genid_t gen;
11451 
11452         ASSERT(MUTEX_HELD(&dtrace_lock));
11453         ASSERT(MUTEX_HELD(&dtrace_provider_lock));
11454 
11455         if (prv == NULL) {
11456                 all = 1;
11457                 prv = dtrace_provider;
11458         }
11459 
11460         do {
11461                 dtrace_enabling_t *enab;
11462                 void *parg = prv->dtpv_arg;
11463 
11464 retry:
11465                 gen = dtrace_retained_gen;
11466                 for (enab = dtrace_retained; enab != NULL;
11467                     enab = enab->dten_next) {
11468                         for (i = 0; i < enab->dten_ndesc; i++) {
11469                                 desc = enab->dten_desc[i]->dted_probe;
11470                                 mutex_exit(&dtrace_lock);
11471                                 prv->dtpv_pops.dtps_provide(parg, &desc);
11472                                 mutex_enter(&dtrace_lock);
11473                                 /*
11474                                  * Process the retained enablings again if
11475                                  * they have changed while we weren't holding
11476                                  * dtrace_lock.
11477                                  */
11478                                 if (gen != dtrace_retained_gen)
11479                                         goto retry;
11480                         }
11481                 }
11482         } while (all && (prv = prv->dtpv_next) != NULL);
11483 
11484         mutex_exit(&dtrace_lock);
11485         dtrace_probe_provide(NULL, all ? NULL : prv);
11486         mutex_enter(&dtrace_lock);
11487 }
11488 
11489 /*
11490  * Called to reap ECBs that are attached to probes from defunct providers.
11491  */
11492 static void
11493 dtrace_enabling_reap(void)
11494 {
11495         dtrace_provider_t *prov;
11496         dtrace_probe_t *probe;
11497         dtrace_ecb_t *ecb;
11498         hrtime_t when;
11499         int i;
11500 
11501         mutex_enter(&cpu_lock);
11502         mutex_enter(&dtrace_lock);
11503 
11504         for (i = 0; i < dtrace_nprobes; i++) {
11505                 if ((probe = dtrace_probes[i]) == NULL)
11506                         continue;
11507 
11508                 if (probe->dtpr_ecb == NULL)
11509                         continue;
11510 
11511                 prov = probe->dtpr_provider;
11512 
11513                 if ((when = prov->dtpv_defunct) == 0)
11514                         continue;
11515 
11516                 /*
11517                  * We have ECBs on a defunct provider:  we want to reap these
11518                  * ECBs to allow the provider to unregister.  The destruction
11519                  * of these ECBs must be done carefully:  if we destroy the ECB
11520                  * and the consumer later wishes to consume an EPID that
11521                  * corresponds to the destroyed ECB (and if the EPID metadata
11522                  * has not been previously consumed), the consumer will abort
11523                  * processing on the unknown EPID.  To reduce (but not, sadly,
11524                  * eliminate) the possibility of this, we will only destroy an
11525                  * ECB for a defunct provider if, for the state that
11526                  * corresponds to the ECB:
11527                  *
11528                  *  (a) There is no speculative tracing (which can effectively
11529                  *      cache an EPID for an arbitrary amount of time).
11530                  *
11531                  *  (b) The principal buffers have been switched twice since the
11532                  *      provider became defunct.
11533                  *
11534                  *  (c) The aggregation buffers are of zero size or have been
11535                  *      switched twice since the provider became defunct.
11536                  *
11537                  * We use dts_speculates to determine (a) and call a function
11538                  * (dtrace_buffer_consumed()) to determine (b) and (c).  Note
11539                  * that as soon as we've been unable to destroy one of the ECBs
11540                  * associated with the probe, we quit trying -- reaping is only
11541                  * fruitful in as much as we can destroy all ECBs associated
11542                  * with the defunct provider's probes.
11543                  */
11544                 while ((ecb = probe->dtpr_ecb) != NULL) {
11545                         dtrace_state_t *state = ecb->dte_state;
11546                         dtrace_buffer_t *buf = state->dts_buffer;
11547                         dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
11548 
11549                         if (state->dts_speculates)
11550                                 break;
11551 
11552                         if (!dtrace_buffer_consumed(buf, when))
11553                                 break;
11554 
11555                         if (!dtrace_buffer_consumed(aggbuf, when))
11556                                 break;
11557 
11558                         dtrace_ecb_disable(ecb);
11559                         ASSERT(probe->dtpr_ecb != ecb);
11560                         dtrace_ecb_destroy(ecb);
11561                 }
11562         }
11563 
11564         mutex_exit(&dtrace_lock);
11565         mutex_exit(&cpu_lock);
11566 }
11567 
11568 /*
11569  * DTrace DOF Functions
11570  */
11571 /*ARGSUSED*/
11572 static void
11573 dtrace_dof_error(dof_hdr_t *dof, const char *str)
11574 {
11575         if (dtrace_err_verbose)
11576                 cmn_err(CE_WARN, "failed to process DOF: %s", str);
11577 
11578 #ifdef DTRACE_ERRDEBUG
11579         dtrace_errdebug(str);
11580 #endif
11581 }
11582 
11583 /*
11584  * Create DOF out of a currently enabled state.  Right now, we only create
11585  * DOF containing the run-time options -- but this could be expanded to create
11586  * complete DOF representing the enabled state.
11587  */
11588 static dof_hdr_t *
11589 dtrace_dof_create(dtrace_state_t *state)
11590 {
11591         dof_hdr_t *dof;
11592         dof_sec_t *sec;
11593         dof_optdesc_t *opt;
11594         int i, len = sizeof (dof_hdr_t) +
11595             roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
11596             sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11597 
11598         ASSERT(MUTEX_HELD(&dtrace_lock));
11599 
11600         dof = kmem_zalloc(len, KM_SLEEP);
11601         dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
11602         dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
11603         dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
11604         dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
11605 
11606         dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
11607         dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
11608         dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
11609         dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
11610         dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
11611         dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
11612 
11613         dof->dofh_flags = 0;
11614         dof->dofh_hdrsize = sizeof (dof_hdr_t);
11615         dof->dofh_secsize = sizeof (dof_sec_t);
11616         dof->dofh_secnum = 1;        /* only DOF_SECT_OPTDESC */
11617         dof->dofh_secoff = sizeof (dof_hdr_t);
11618         dof->dofh_loadsz = len;
11619         dof->dofh_filesz = len;
11620         dof->dofh_pad = 0;
11621 
11622         /*
11623          * Fill in the option section header...
11624          */
11625         sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
11626         sec->dofs_type = DOF_SECT_OPTDESC;
11627         sec->dofs_align = sizeof (uint64_t);
11628         sec->dofs_flags = DOF_SECF_LOAD;
11629         sec->dofs_entsize = sizeof (dof_optdesc_t);
11630 
11631         opt = (dof_optdesc_t *)((uintptr_t)sec +
11632             roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
11633 
11634         sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
11635         sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11636 
11637         for (i = 0; i < DTRACEOPT_MAX; i++) {
11638                 opt[i].dofo_option = i;
11639                 opt[i].dofo_strtab = DOF_SECIDX_NONE;
11640                 opt[i].dofo_value = state->dts_options[i];
11641         }
11642 
11643         return (dof);
11644 }
11645 
11646 static dof_hdr_t *
11647 dtrace_dof_copyin(uintptr_t uarg, int *errp)
11648 {
11649         dof_hdr_t hdr, *dof;
11650 
11651         ASSERT(!MUTEX_HELD(&dtrace_lock));
11652 
11653         /*
11654          * First, we're going to copyin() the sizeof (dof_hdr_t).
11655          */
11656         if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
11657                 dtrace_dof_error(NULL, "failed to copyin DOF header");
11658                 *errp = EFAULT;
11659                 return (NULL);
11660         }
11661 
11662         /*
11663          * Now we'll allocate the entire DOF and copy it in -- provided
11664          * that the length isn't outrageous.
11665          */
11666         if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
11667                 dtrace_dof_error(&hdr, "load size exceeds maximum");
11668                 *errp = E2BIG;
11669                 return (NULL);
11670         }
11671 
11672         if (hdr.dofh_loadsz < sizeof (hdr)) {
11673                 dtrace_dof_error(&hdr, "invalid load size");
11674                 *errp = EINVAL;
11675                 return (NULL);
11676         }
11677 
11678         dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
11679 
11680         if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
11681             dof->dofh_loadsz != hdr.dofh_loadsz) {
11682                 kmem_free(dof, hdr.dofh_loadsz);
11683                 *errp = EFAULT;
11684                 return (NULL);
11685         }
11686 
11687         return (dof);
11688 }
11689 
11690 static dof_hdr_t *
11691 dtrace_dof_property(const char *name)
11692 {
11693         uchar_t *buf;
11694         uint64_t loadsz;
11695         unsigned int len, i;
11696         dof_hdr_t *dof;
11697 
11698         /*
11699          * Unfortunately, array of values in .conf files are always (and
11700          * only) interpreted to be integer arrays.  We must read our DOF
11701          * as an integer array, and then squeeze it into a byte array.
11702          */
11703         if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
11704             (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
11705                 return (NULL);
11706 
11707         for (i = 0; i < len; i++)
11708                 buf[i] = (uchar_t)(((int *)buf)[i]);
11709 
11710         if (len < sizeof (dof_hdr_t)) {
11711                 ddi_prop_free(buf);
11712                 dtrace_dof_error(NULL, "truncated header");
11713                 return (NULL);
11714         }
11715 
11716         if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
11717                 ddi_prop_free(buf);
11718                 dtrace_dof_error(NULL, "truncated DOF");
11719                 return (NULL);
11720         }
11721 
11722         if (loadsz >= dtrace_dof_maxsize) {
11723                 ddi_prop_free(buf);
11724                 dtrace_dof_error(NULL, "oversized DOF");
11725                 return (NULL);
11726         }
11727 
11728         dof = kmem_alloc(loadsz, KM_SLEEP);
11729         bcopy(buf, dof, loadsz);
11730         ddi_prop_free(buf);
11731 
11732         return (dof);
11733 }
11734 
11735 static void
11736 dtrace_dof_destroy(dof_hdr_t *dof)
11737 {
11738         kmem_free(dof, dof->dofh_loadsz);
11739 }
11740 
11741 /*
11742  * Return the dof_sec_t pointer corresponding to a given section index.  If the
11743  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
11744  * a type other than DOF_SECT_NONE is specified, the header is checked against
11745  * this type and NULL is returned if the types do not match.
11746  */
11747 static dof_sec_t *
11748 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
11749 {
11750         dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
11751             ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
11752 
11753         if (i >= dof->dofh_secnum) {
11754                 dtrace_dof_error(dof, "referenced section index is invalid");
11755                 return (NULL);
11756         }
11757 
11758         if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
11759                 dtrace_dof_error(dof, "referenced section is not loadable");
11760                 return (NULL);
11761         }
11762 
11763         if (type != DOF_SECT_NONE && type != sec->dofs_type) {
11764                 dtrace_dof_error(dof, "referenced section is the wrong type");
11765                 return (NULL);
11766         }
11767 
11768         return (sec);
11769 }
11770 
11771 static dtrace_probedesc_t *
11772 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
11773 {
11774         dof_probedesc_t *probe;
11775         dof_sec_t *strtab;
11776         uintptr_t daddr = (uintptr_t)dof;
11777         uintptr_t str;
11778         size_t size;
11779 
11780         if (sec->dofs_type != DOF_SECT_PROBEDESC) {
11781                 dtrace_dof_error(dof, "invalid probe section");
11782                 return (NULL);
11783         }
11784 
11785         if (sec->dofs_align != sizeof (dof_secidx_t)) {
11786                 dtrace_dof_error(dof, "bad alignment in probe description");
11787                 return (NULL);
11788         }
11789 
11790         if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
11791                 dtrace_dof_error(dof, "truncated probe description");
11792                 return (NULL);
11793         }
11794 
11795         probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
11796         strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
11797 
11798         if (strtab == NULL)
11799                 return (NULL);
11800 
11801         str = daddr + strtab->dofs_offset;
11802         size = strtab->dofs_size;
11803 
11804         if (probe->dofp_provider >= strtab->dofs_size) {
11805                 dtrace_dof_error(dof, "corrupt probe provider");
11806                 return (NULL);
11807         }
11808 
11809         (void) strncpy(desc->dtpd_provider,
11810             (char *)(str + probe->dofp_provider),
11811             MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
11812 
11813         if (probe->dofp_mod >= strtab->dofs_size) {
11814                 dtrace_dof_error(dof, "corrupt probe module");
11815                 return (NULL);
11816         }
11817 
11818         (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
11819             MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
11820 
11821         if (probe->dofp_func >= strtab->dofs_size) {
11822                 dtrace_dof_error(dof, "corrupt probe function");
11823                 return (NULL);
11824         }
11825 
11826         (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
11827             MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
11828 
11829         if (probe->dofp_name >= strtab->dofs_size) {
11830                 dtrace_dof_error(dof, "corrupt probe name");
11831                 return (NULL);
11832         }
11833 
11834         (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
11835             MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
11836 
11837         return (desc);
11838 }
11839 
11840 static dtrace_difo_t *
11841 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11842     cred_t *cr)
11843 {
11844         dtrace_difo_t *dp;
11845         size_t ttl = 0;
11846         dof_difohdr_t *dofd;
11847         uintptr_t daddr = (uintptr_t)dof;
11848         size_t max = dtrace_difo_maxsize;
11849         int i, l, n;
11850 
11851         static const struct {
11852                 int section;
11853                 int bufoffs;
11854                 int lenoffs;
11855                 int entsize;
11856                 int align;
11857                 const char *msg;
11858         } difo[] = {
11859                 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
11860                 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
11861                 sizeof (dif_instr_t), "multiple DIF sections" },
11862 
11863                 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
11864                 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
11865                 sizeof (uint64_t), "multiple integer tables" },
11866 
11867                 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
11868                 offsetof(dtrace_difo_t, dtdo_strlen), 0,
11869                 sizeof (char), "multiple string tables" },
11870 
11871                 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
11872                 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
11873                 sizeof (uint_t), "multiple variable tables" },
11874 
11875                 { DOF_SECT_NONE, 0, 0, 0, NULL }
11876         };
11877 
11878         if (sec->dofs_type != DOF_SECT_DIFOHDR) {
11879                 dtrace_dof_error(dof, "invalid DIFO header section");
11880                 return (NULL);
11881         }
11882 
11883         if (sec->dofs_align != sizeof (dof_secidx_t)) {
11884                 dtrace_dof_error(dof, "bad alignment in DIFO header");
11885                 return (NULL);
11886         }
11887 
11888         if (sec->dofs_size < sizeof (dof_difohdr_t) ||
11889             sec->dofs_size % sizeof (dof_secidx_t)) {
11890                 dtrace_dof_error(dof, "bad size in DIFO header");
11891                 return (NULL);
11892         }
11893 
11894         dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
11895         n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
11896 
11897         dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
11898         dp->dtdo_rtype = dofd->dofd_rtype;
11899 
11900         for (l = 0; l < n; l++) {
11901                 dof_sec_t *subsec;
11902                 void **bufp;
11903                 uint32_t *lenp;
11904 
11905                 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
11906                     dofd->dofd_links[l])) == NULL)
11907                         goto err; /* invalid section link */
11908 
11909                 if (ttl + subsec->dofs_size > max) {
11910                         dtrace_dof_error(dof, "exceeds maximum size");
11911                         goto err;
11912                 }
11913 
11914                 ttl += subsec->dofs_size;
11915 
11916                 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
11917                         if (subsec->dofs_type != difo[i].section)
11918                                 continue;
11919 
11920                         if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
11921                                 dtrace_dof_error(dof, "section not loaded");
11922                                 goto err;
11923                         }
11924 
11925                         if (subsec->dofs_align != difo[i].align) {
11926                                 dtrace_dof_error(dof, "bad alignment");
11927                                 goto err;
11928                         }
11929 
11930                         bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
11931                         lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
11932 
11933                         if (*bufp != NULL) {
11934                                 dtrace_dof_error(dof, difo[i].msg);
11935                                 goto err;
11936                         }
11937 
11938                         if (difo[i].entsize != subsec->dofs_entsize) {
11939                                 dtrace_dof_error(dof, "entry size mismatch");
11940                                 goto err;
11941                         }
11942 
11943                         if (subsec->dofs_entsize != 0 &&
11944                             (subsec->dofs_size % subsec->dofs_entsize) != 0) {
11945                                 dtrace_dof_error(dof, "corrupt entry size");
11946                                 goto err;
11947                         }
11948 
11949                         *lenp = subsec->dofs_size;
11950                         *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
11951                         bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
11952                             *bufp, subsec->dofs_size);
11953 
11954                         if (subsec->dofs_entsize != 0)
11955                                 *lenp /= subsec->dofs_entsize;
11956 
11957                         break;
11958                 }
11959 
11960                 /*
11961                  * If we encounter a loadable DIFO sub-section that is not
11962                  * known to us, assume this is a broken program and fail.
11963                  */
11964                 if (difo[i].section == DOF_SECT_NONE &&
11965                     (subsec->dofs_flags & DOF_SECF_LOAD)) {
11966                         dtrace_dof_error(dof, "unrecognized DIFO subsection");
11967                         goto err;
11968                 }
11969         }
11970 
11971         if (dp->dtdo_buf == NULL) {
11972                 /*
11973                  * We can't have a DIF object without DIF text.
11974                  */
11975                 dtrace_dof_error(dof, "missing DIF text");
11976                 goto err;
11977         }
11978 
11979         /*
11980          * Before we validate the DIF object, run through the variable table
11981          * looking for the strings -- if any of their size are under, we'll set
11982          * their size to be the system-wide default string size.  Note that
11983          * this should _not_ happen if the "strsize" option has been set --
11984          * in this case, the compiler should have set the size to reflect the
11985          * setting of the option.
11986          */
11987         for (i = 0; i < dp->dtdo_varlen; i++) {
11988                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
11989                 dtrace_diftype_t *t = &v->dtdv_type;
11990 
11991                 if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
11992                         continue;
11993 
11994                 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
11995                         t->dtdt_size = dtrace_strsize_default;
11996         }
11997 
11998         if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
11999                 goto err;
12000 
12001         dtrace_difo_init(dp, vstate);
12002         return (dp);
12003 
12004 err:
12005         kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
12006         kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12007         kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
12008         kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
12009 
12010         kmem_free(dp, sizeof (dtrace_difo_t));
12011         return (NULL);
12012 }
12013 
12014 static dtrace_predicate_t *
12015 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12016     cred_t *cr)
12017 {
12018         dtrace_difo_t *dp;
12019 
12020         if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
12021                 return (NULL);
12022 
12023         return (dtrace_predicate_create(dp));
12024 }
12025 
12026 static dtrace_actdesc_t *
12027 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12028     cred_t *cr)
12029 {
12030         dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
12031         dof_actdesc_t *desc;
12032         dof_sec_t *difosec;
12033         size_t offs;
12034         uintptr_t daddr = (uintptr_t)dof;
12035         uint64_t arg;
12036         dtrace_actkind_t kind;
12037 
12038         if (sec->dofs_type != DOF_SECT_ACTDESC) {
12039                 dtrace_dof_error(dof, "invalid action section");
12040                 return (NULL);
12041         }
12042 
12043         if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
12044                 dtrace_dof_error(dof, "truncated action description");
12045                 return (NULL);
12046         }
12047 
12048         if (sec->dofs_align != sizeof (uint64_t)) {
12049                 dtrace_dof_error(dof, "bad alignment in action description");
12050                 return (NULL);
12051         }
12052 
12053         if (sec->dofs_size < sec->dofs_entsize) {
12054                 dtrace_dof_error(dof, "section entry size exceeds total size");
12055                 return (NULL);
12056         }
12057 
12058         if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12059                 dtrace_dof_error(dof, "bad entry size in action description");
12060                 return (NULL);
12061         }
12062 
12063         if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12064                 dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12065                 return (NULL);
12066         }
12067 
12068         for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12069                 desc = (dof_actdesc_t *)(daddr +
12070                     (uintptr_t)sec->dofs_offset + offs);
12071                 kind = (dtrace_actkind_t)desc->dofa_kind;
12072 
12073                 if ((DTRACEACT_ISPRINTFLIKE(kind) &&
12074                     (kind != DTRACEACT_PRINTA ||
12075                     desc->dofa_strtab != DOF_SECIDX_NONE)) ||
12076                     (kind == DTRACEACT_DIFEXPR &&
12077                     desc->dofa_strtab != DOF_SECIDX_NONE)) {
12078                         dof_sec_t *strtab;
12079                         char *str, *fmt;
12080                         uint64_t i;
12081 
12082                         /*
12083                          * The argument to these actions is an index into the
12084                          * DOF string table.  For printf()-like actions, this
12085                          * is the format string.  For print(), this is the
12086                          * CTF type of the expression result.
12087                          */
12088                         if ((strtab = dtrace_dof_sect(dof,
12089                             DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12090                                 goto err;
12091 
12092                         str = (char *)((uintptr_t)dof +
12093                             (uintptr_t)strtab->dofs_offset);
12094 
12095                         for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12096                                 if (str[i] == '\0')
12097                                         break;
12098                         }
12099 
12100                         if (i >= strtab->dofs_size) {
12101                                 dtrace_dof_error(dof, "bogus format string");
12102                                 goto err;
12103                         }
12104 
12105                         if (i == desc->dofa_arg) {
12106                                 dtrace_dof_error(dof, "empty format string");
12107                                 goto err;
12108                         }
12109 
12110                         i -= desc->dofa_arg;
12111                         fmt = kmem_alloc(i + 1, KM_SLEEP);
12112                         bcopy(&str[desc->dofa_arg], fmt, i + 1);
12113                         arg = (uint64_t)(uintptr_t)fmt;
12114                 } else {
12115                         if (kind == DTRACEACT_PRINTA) {
12116                                 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
12117                                 arg = 0;
12118                         } else {
12119                                 arg = desc->dofa_arg;
12120                         }
12121                 }
12122 
12123                 act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
12124                     desc->dofa_uarg, arg);
12125 
12126                 if (last != NULL) {
12127                         last->dtad_next = act;
12128                 } else {
12129                         first = act;
12130                 }
12131 
12132                 last = act;
12133 
12134                 if (desc->dofa_difo == DOF_SECIDX_NONE)
12135                         continue;
12136 
12137                 if ((difosec = dtrace_dof_sect(dof,
12138                     DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
12139                         goto err;
12140 
12141                 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
12142 
12143                 if (act->dtad_difo == NULL)
12144                         goto err;
12145         }
12146 
12147         ASSERT(first != NULL);
12148         return (first);
12149 
12150 err:
12151         for (act = first; act != NULL; act = next) {
12152                 next = act->dtad_next;
12153                 dtrace_actdesc_release(act, vstate);
12154         }
12155 
12156         return (NULL);
12157 }
12158 
12159 static dtrace_ecbdesc_t *
12160 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12161     cred_t *cr)
12162 {
12163         dtrace_ecbdesc_t *ep;
12164         dof_ecbdesc_t *ecb;
12165         dtrace_probedesc_t *desc;
12166         dtrace_predicate_t *pred = NULL;
12167 
12168         if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
12169                 dtrace_dof_error(dof, "truncated ECB description");
12170                 return (NULL);
12171         }
12172 
12173         if (sec->dofs_align != sizeof (uint64_t)) {
12174                 dtrace_dof_error(dof, "bad alignment in ECB description");
12175                 return (NULL);
12176         }
12177 
12178         ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
12179         sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
12180 
12181         if (sec == NULL)
12182                 return (NULL);
12183 
12184         ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12185         ep->dted_uarg = ecb->dofe_uarg;
12186         desc = &ep->dted_probe;
12187 
12188         if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
12189                 goto err;
12190 
12191         if (ecb->dofe_pred != DOF_SECIDX_NONE) {
12192                 if ((sec = dtrace_dof_sect(dof,
12193                     DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
12194                         goto err;
12195 
12196                 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
12197                         goto err;
12198 
12199                 ep->dted_pred.dtpdd_predicate = pred;
12200         }
12201 
12202         if (ecb->dofe_actions != DOF_SECIDX_NONE) {
12203                 if ((sec = dtrace_dof_sect(dof,
12204                     DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
12205                         goto err;
12206 
12207                 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
12208 
12209                 if (ep->dted_action == NULL)
12210                         goto err;
12211         }
12212 
12213         return (ep);
12214 
12215 err:
12216         if (pred != NULL)
12217                 dtrace_predicate_release(pred, vstate);
12218         kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12219         return (NULL);
12220 }
12221 
12222 /*
12223  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
12224  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
12225  * site of any user SETX relocations to account for load object base address.
12226  * In the future, if we need other relocations, this function can be extended.
12227  */
12228 static int
12229 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
12230 {
12231         uintptr_t daddr = (uintptr_t)dof;
12232         dof_relohdr_t *dofr =
12233             (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12234         dof_sec_t *ss, *rs, *ts;
12235         dof_relodesc_t *r;
12236         uint_t i, n;
12237 
12238         if (sec->dofs_size < sizeof (dof_relohdr_t) ||
12239             sec->dofs_align != sizeof (dof_secidx_t)) {
12240                 dtrace_dof_error(dof, "invalid relocation header");
12241                 return (-1);
12242         }
12243 
12244         ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
12245         rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
12246         ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
12247 
12248         if (ss == NULL || rs == NULL || ts == NULL)
12249                 return (-1); /* dtrace_dof_error() has been called already */
12250 
12251         if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
12252             rs->dofs_align != sizeof (uint64_t)) {
12253                 dtrace_dof_error(dof, "invalid relocation section");
12254                 return (-1);
12255         }
12256 
12257         r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
12258         n = rs->dofs_size / rs->dofs_entsize;
12259 
12260         for (i = 0; i < n; i++) {
12261                 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
12262 
12263                 switch (r->dofr_type) {
12264                 case DOF_RELO_NONE:
12265                         break;
12266                 case DOF_RELO_SETX:
12267                         if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
12268                             sizeof (uint64_t) > ts->dofs_size) {
12269                                 dtrace_dof_error(dof, "bad relocation offset");
12270                                 return (-1);
12271                         }
12272 
12273                         if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
12274                                 dtrace_dof_error(dof, "misaligned setx relo");
12275                                 return (-1);
12276                         }
12277 
12278                         *(uint64_t *)taddr += ubase;
12279                         break;
12280                 default:
12281                         dtrace_dof_error(dof, "invalid relocation type");
12282                         return (-1);
12283                 }
12284 
12285                 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
12286         }
12287 
12288         return (0);
12289 }
12290 
12291 /*
12292  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12293  * header:  it should be at the front of a memory region that is at least
12294  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12295  * size.  It need not be validated in any other way.
12296  */
12297 static int
12298 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12299     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12300 {
12301         uint64_t len = dof->dofh_loadsz, seclen;
12302         uintptr_t daddr = (uintptr_t)dof;
12303         dtrace_ecbdesc_t *ep;
12304         dtrace_enabling_t *enab;
12305         uint_t i;
12306 
12307         ASSERT(MUTEX_HELD(&dtrace_lock));
12308         ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
12309 
12310         /*
12311          * Check the DOF header identification bytes.  In addition to checking
12312          * valid settings, we also verify that unused bits/bytes are zeroed so
12313          * we can use them later without fear of regressing existing binaries.
12314          */
12315         if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
12316             DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
12317                 dtrace_dof_error(dof, "DOF magic string mismatch");
12318                 return (-1);
12319         }
12320 
12321         if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
12322             dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
12323                 dtrace_dof_error(dof, "DOF has invalid data model");
12324                 return (-1);
12325         }
12326 
12327         if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
12328                 dtrace_dof_error(dof, "DOF encoding mismatch");
12329                 return (-1);
12330         }
12331 
12332         if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
12333             dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
12334                 dtrace_dof_error(dof, "DOF version mismatch");
12335                 return (-1);
12336         }
12337 
12338         if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
12339                 dtrace_dof_error(dof, "DOF uses unsupported instruction set");
12340                 return (-1);
12341         }
12342 
12343         if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
12344                 dtrace_dof_error(dof, "DOF uses too many integer registers");
12345                 return (-1);
12346         }
12347 
12348         if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
12349                 dtrace_dof_error(dof, "DOF uses too many tuple registers");
12350                 return (-1);
12351         }
12352 
12353         for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
12354                 if (dof->dofh_ident[i] != 0) {
12355                         dtrace_dof_error(dof, "DOF has invalid ident byte set");
12356                         return (-1);
12357                 }
12358         }
12359 
12360         if (dof->dofh_flags & ~DOF_FL_VALID) {
12361                 dtrace_dof_error(dof, "DOF has invalid flag bits set");
12362                 return (-1);
12363         }
12364 
12365         if (dof->dofh_secsize == 0) {
12366                 dtrace_dof_error(dof, "zero section header size");
12367                 return (-1);
12368         }
12369 
12370         /*
12371          * Check that the section headers don't exceed the amount of DOF
12372          * data.  Note that we cast the section size and number of sections
12373          * to uint64_t's to prevent possible overflow in the multiplication.
12374          */
12375         seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
12376 
12377         if (dof->dofh_secoff > len || seclen > len ||
12378             dof->dofh_secoff + seclen > len) {
12379                 dtrace_dof_error(dof, "truncated section headers");
12380                 return (-1);
12381         }
12382 
12383         if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
12384                 dtrace_dof_error(dof, "misaligned section headers");
12385                 return (-1);
12386         }
12387 
12388         if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
12389                 dtrace_dof_error(dof, "misaligned section size");
12390                 return (-1);
12391         }
12392 
12393         /*
12394          * Take an initial pass through the section headers to be sure that
12395          * the headers don't have stray offsets.  If the 'noprobes' flag is
12396          * set, do not permit sections relating to providers, probes, or args.
12397          */
12398         for (i = 0; i < dof->dofh_secnum; i++) {
12399                 dof_sec_t *sec = (dof_sec_t *)(daddr +
12400                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12401 
12402                 if (noprobes) {
12403                         switch (sec->dofs_type) {
12404                         case DOF_SECT_PROVIDER:
12405                         case DOF_SECT_PROBES:
12406                         case DOF_SECT_PRARGS:
12407                         case DOF_SECT_PROFFS:
12408                                 dtrace_dof_error(dof, "illegal sections "
12409                                     "for enabling");
12410                                 return (-1);
12411                         }
12412                 }
12413 
12414                 if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
12415                     !(sec->dofs_flags & DOF_SECF_LOAD)) {
12416                         dtrace_dof_error(dof, "loadable section with load "
12417                             "flag unset");
12418                         return (-1);
12419                 }
12420 
12421                 if (!(sec->dofs_flags & DOF_SECF_LOAD))
12422                         continue; /* just ignore non-loadable sections */
12423 
12424                 if (sec->dofs_align & (sec->dofs_align - 1)) {
12425                         dtrace_dof_error(dof, "bad section alignment");
12426                         return (-1);
12427                 }
12428 
12429                 if (sec->dofs_offset & (sec->dofs_align - 1)) {
12430                         dtrace_dof_error(dof, "misaligned section");
12431                         return (-1);
12432                 }
12433 
12434                 if (sec->dofs_offset > len || sec->dofs_size > len ||
12435                     sec->dofs_offset + sec->dofs_size > len) {
12436                         dtrace_dof_error(dof, "corrupt section header");
12437                         return (-1);
12438                 }
12439 
12440                 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
12441                     sec->dofs_offset + sec->dofs_size - 1) != '\0') {
12442                         dtrace_dof_error(dof, "non-terminating string table");
12443                         return (-1);
12444                 }
12445         }
12446 
12447         /*
12448          * Take a second pass through the sections and locate and perform any
12449          * relocations that are present.  We do this after the first pass to
12450          * be sure that all sections have had their headers validated.
12451          */
12452         for (i = 0; i < dof->dofh_secnum; i++) {
12453                 dof_sec_t *sec = (dof_sec_t *)(daddr +
12454                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12455 
12456                 if (!(sec->dofs_flags & DOF_SECF_LOAD))
12457                         continue; /* skip sections that are not loadable */
12458 
12459                 switch (sec->dofs_type) {
12460                 case DOF_SECT_URELHDR:
12461                         if (dtrace_dof_relocate(dof, sec, ubase) != 0)
12462                                 return (-1);
12463                         break;
12464                 }
12465         }
12466 
12467         if ((enab = *enabp) == NULL)
12468                 enab = *enabp = dtrace_enabling_create(vstate);
12469 
12470         for (i = 0; i < dof->dofh_secnum; i++) {
12471                 dof_sec_t *sec = (dof_sec_t *)(daddr +
12472                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12473 
12474                 if (sec->dofs_type != DOF_SECT_ECBDESC)
12475                         continue;
12476 
12477                 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
12478                         dtrace_enabling_destroy(enab);
12479                         *enabp = NULL;
12480                         return (-1);
12481                 }
12482 
12483                 dtrace_enabling_add(enab, ep);
12484         }
12485 
12486         return (0);
12487 }
12488 
12489 /*
12490  * Process DOF for any options.  This routine assumes that the DOF has been
12491  * at least processed by dtrace_dof_slurp().
12492  */
12493 static int
12494 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
12495 {
12496         int i, rval;
12497         uint32_t entsize;
12498         size_t offs;
12499         dof_optdesc_t *desc;
12500 
12501         for (i = 0; i < dof->dofh_secnum; i++) {
12502                 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
12503                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12504 
12505                 if (sec->dofs_type != DOF_SECT_OPTDESC)
12506                         continue;
12507 
12508                 if (sec->dofs_align != sizeof (uint64_t)) {
12509                         dtrace_dof_error(dof, "bad alignment in "
12510                             "option description");
12511                         return (EINVAL);
12512                 }
12513 
12514                 if ((entsize = sec->dofs_entsize) == 0) {
12515                         dtrace_dof_error(dof, "zeroed option entry size");
12516                         return (EINVAL);
12517                 }
12518 
12519                 if (entsize < sizeof (dof_optdesc_t)) {
12520                         dtrace_dof_error(dof, "bad option entry size");
12521                         return (EINVAL);
12522                 }
12523 
12524                 for (offs = 0; offs < sec->dofs_size; offs += entsize) {
12525                         desc = (dof_optdesc_t *)((uintptr_t)dof +
12526                             (uintptr_t)sec->dofs_offset + offs);
12527 
12528                         if (desc->dofo_strtab != DOF_SECIDX_NONE) {
12529                                 dtrace_dof_error(dof, "non-zero option string");
12530                                 return (EINVAL);
12531                         }
12532 
12533                         if (desc->dofo_value == DTRACEOPT_UNSET) {
12534                                 dtrace_dof_error(dof, "unset option");
12535                                 return (EINVAL);
12536                         }
12537 
12538                         if ((rval = dtrace_state_option(state,
12539                             desc->dofo_option, desc->dofo_value)) != 0) {
12540                                 dtrace_dof_error(dof, "rejected option");
12541                                 return (rval);
12542                         }
12543                 }
12544         }
12545 
12546         return (0);
12547 }
12548 
12549 /*
12550  * DTrace Consumer State Functions
12551  */
12552 int
12553 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
12554 {
12555         size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
12556         void *base;
12557         uintptr_t limit;
12558         dtrace_dynvar_t *dvar, *next, *start;
12559         int i;
12560 
12561         ASSERT(MUTEX_HELD(&dtrace_lock));
12562         ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
12563 
12564         bzero(dstate, sizeof (dtrace_dstate_t));
12565 
12566         if ((dstate->dtds_chunksize = chunksize) == 0)
12567                 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
12568 
12569         if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
12570                 size = min;
12571 
12572         if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12573                 return (ENOMEM);
12574 
12575         dstate->dtds_size = size;
12576         dstate->dtds_base = base;
12577         dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
12578         bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
12579 
12580         hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
12581 
12582         if (hashsize != 1 && (hashsize & 1))
12583                 hashsize--;
12584 
12585         dstate->dtds_hashsize = hashsize;
12586         dstate->dtds_hash = dstate->dtds_base;
12587 
12588         /*
12589          * Set all of our hash buckets to point to the single sink, and (if
12590          * it hasn't already been set), set the sink's hash value to be the
12591          * sink sentinel value.  The sink is needed for dynamic variable
12592          * lookups to know that they have iterated over an entire, valid hash
12593          * chain.
12594          */
12595         for (i = 0; i < hashsize; i++)
12596                 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
12597 
12598         if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
12599                 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
12600 
12601         /*
12602          * Determine number of active CPUs.  Divide free list evenly among
12603          * active CPUs.
12604          */
12605         start = (dtrace_dynvar_t *)
12606             ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
12607         limit = (uintptr_t)base + size;
12608 
12609         maxper = (limit - (uintptr_t)start) / NCPU;
12610         maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
12611 
12612         for (i = 0; i < NCPU; i++) {
12613                 dstate->dtds_percpu[i].dtdsc_free = dvar = start;
12614 
12615                 /*
12616                  * If we don't even have enough chunks to make it once through
12617                  * NCPUs, we're just going to allocate everything to the first
12618                  * CPU.  And if we're on the last CPU, we're going to allocate
12619                  * whatever is left over.  In either case, we set the limit to
12620                  * be the limit of the dynamic variable space.
12621                  */
12622                 if (maxper == 0 || i == NCPU - 1) {
12623                         limit = (uintptr_t)base + size;
12624                         start = NULL;
12625                 } else {
12626                         limit = (uintptr_t)start + maxper;
12627                         start = (dtrace_dynvar_t *)limit;
12628                 }
12629 
12630                 ASSERT(limit <= (uintptr_t)base + size);
12631 
12632                 for (;;) {
12633                         next = (dtrace_dynvar_t *)((uintptr_t)dvar +
12634                             dstate->dtds_chunksize);
12635 
12636                         if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
12637                                 break;
12638 
12639                         dvar->dtdv_next = next;
12640                         dvar = next;
12641                 }
12642 
12643                 if (maxper == 0)
12644                         break;
12645         }
12646 
12647         return (0);
12648 }
12649 
12650 void
12651 dtrace_dstate_fini(dtrace_dstate_t *dstate)
12652 {
12653         ASSERT(MUTEX_HELD(&cpu_lock));
12654 
12655         if (dstate->dtds_base == NULL)
12656                 return;
12657 
12658         kmem_free(dstate->dtds_base, dstate->dtds_size);
12659         kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
12660 }
12661 
12662 static void
12663 dtrace_vstate_fini(dtrace_vstate_t *vstate)
12664 {
12665         /*
12666          * Logical XOR, where are you?
12667          */
12668         ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
12669 
12670         if (vstate->dtvs_nglobals > 0) {
12671                 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
12672                     sizeof (dtrace_statvar_t *));
12673         }
12674 
12675         if (vstate->dtvs_ntlocals > 0) {
12676                 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
12677                     sizeof (dtrace_difv_t));
12678         }
12679 
12680         ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
12681 
12682         if (vstate->dtvs_nlocals > 0) {
12683                 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
12684                     sizeof (dtrace_statvar_t *));
12685         }
12686 }
12687 
12688 static void
12689 dtrace_state_clean(dtrace_state_t *state)
12690 {
12691         if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
12692                 return;
12693 
12694         dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
12695         dtrace_speculation_clean(state);
12696 }
12697 
12698 static void
12699 dtrace_state_deadman(dtrace_state_t *state)
12700 {
12701         hrtime_t now;
12702 
12703         dtrace_sync();
12704 
12705         now = dtrace_gethrtime();
12706 
12707         if (state != dtrace_anon.dta_state &&
12708             now - state->dts_laststatus >= dtrace_deadman_user)
12709                 return;
12710 
12711         /*
12712          * We must be sure that dts_alive never appears to be less than the
12713          * value upon entry to dtrace_state_deadman(), and because we lack a
12714          * dtrace_cas64(), we cannot store to it atomically.  We thus instead
12715          * store INT64_MAX to it, followed by a memory barrier, followed by
12716          * the new value.  This assures that dts_alive never appears to be
12717          * less than its true value, regardless of the order in which the
12718          * stores to the underlying storage are issued.
12719          */
12720         state->dts_alive = INT64_MAX;
12721         dtrace_membar_producer();
12722         state->dts_alive = now;
12723 }
12724 
12725 dtrace_state_t *
12726 dtrace_state_create(dev_t *devp, cred_t *cr)
12727 {
12728         minor_t minor;
12729         major_t major;
12730         char c[30];
12731         dtrace_state_t *state;
12732         dtrace_optval_t *opt;
12733         int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
12734 
12735         ASSERT(MUTEX_HELD(&dtrace_lock));
12736         ASSERT(MUTEX_HELD(&cpu_lock));
12737 
12738         minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
12739             VM_BESTFIT | VM_SLEEP);
12740 
12741         if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
12742                 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
12743                 return (NULL);
12744         }
12745 
12746         state = ddi_get_soft_state(dtrace_softstate, minor);
12747         state->dts_epid = DTRACE_EPIDNONE + 1;
12748 
12749         (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor);
12750         state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
12751             NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
12752 
12753         if (devp != NULL) {
12754                 major = getemajor(*devp);
12755         } else {
12756                 major = ddi_driver_major(dtrace_devi);
12757         }
12758 
12759         state->dts_dev = makedevice(major, minor);
12760 
12761         if (devp != NULL)
12762                 *devp = state->dts_dev;
12763 
12764         /*
12765          * We allocate NCPU buffers.  On the one hand, this can be quite
12766          * a bit of memory per instance (nearly 36K on a Starcat).  On the
12767          * other hand, it saves an additional memory reference in the probe
12768          * path.
12769          */
12770         state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
12771         state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
12772         state->dts_cleaner = CYCLIC_NONE;
12773         state->dts_deadman = CYCLIC_NONE;
12774         state->dts_vstate.dtvs_state = state;
12775 
12776         for (i = 0; i < DTRACEOPT_MAX; i++)
12777                 state->dts_options[i] = DTRACEOPT_UNSET;
12778 
12779         /*
12780          * Set the default options.
12781          */
12782         opt = state->dts_options;
12783         opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
12784         opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
12785         opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
12786         opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
12787         opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
12788         opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
12789         opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
12790         opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
12791         opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
12792         opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
12793         opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
12794         opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
12795         opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
12796         opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
12797 
12798         state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
12799 
12800         /*
12801          * Depending on the user credentials, we set flag bits which alter probe
12802          * visibility or the amount of destructiveness allowed.  In the case of
12803          * actual anonymous tracing, or the possession of all privileges, all of
12804          * the normal checks are bypassed.
12805          */
12806         if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
12807                 state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
12808                 state->dts_cred.dcr_action = DTRACE_CRA_ALL;
12809         } else {
12810                 /*
12811                  * Set up the credentials for this instantiation.  We take a
12812                  * hold on the credential to prevent it from disappearing on
12813                  * us; this in turn prevents the zone_t referenced by this
12814                  * credential from disappearing.  This means that we can
12815                  * examine the credential and the zone from probe context.
12816                  */
12817                 crhold(cr);
12818                 state->dts_cred.dcr_cred = cr;
12819 
12820                 /*
12821                  * CRA_PROC means "we have *some* privilege for dtrace" and
12822                  * unlocks the use of variables like pid, zonename, etc.
12823                  */
12824                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
12825                     PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
12826                         state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
12827                 }
12828 
12829                 /*
12830                  * dtrace_user allows use of syscall and profile providers.
12831                  * If the user also has proc_owner and/or proc_zone, we
12832                  * extend the scope to include additional visibility and
12833                  * destructive power.
12834                  */
12835                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
12836                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
12837                                 state->dts_cred.dcr_visible |=
12838                                     DTRACE_CRV_ALLPROC;
12839 
12840                                 state->dts_cred.dcr_action |=
12841                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12842                         }
12843 
12844                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
12845                                 state->dts_cred.dcr_visible |=
12846                                     DTRACE_CRV_ALLZONE;
12847 
12848                                 state->dts_cred.dcr_action |=
12849                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12850                         }
12851 
12852                         /*
12853                          * If we have all privs in whatever zone this is,
12854                          * we can do destructive things to processes which
12855                          * have altered credentials.
12856                          */
12857                         if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
12858                             cr->cr_zone->zone_privset)) {
12859                                 state->dts_cred.dcr_action |=
12860                                     DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
12861                         }
12862                 }
12863 
12864                 /*
12865                  * Holding the dtrace_kernel privilege also implies that
12866                  * the user has the dtrace_user privilege from a visibility
12867                  * perspective.  But without further privileges, some
12868                  * destructive actions are not available.
12869                  */
12870                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
12871                         /*
12872                          * Make all probes in all zones visible.  However,
12873                          * this doesn't mean that all actions become available
12874                          * to all zones.
12875                          */
12876                         state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
12877                             DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
12878 
12879                         state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
12880                             DTRACE_CRA_PROC;
12881                         /*
12882                          * Holding proc_owner means that destructive actions
12883                          * for *this* zone are allowed.
12884                          */
12885                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
12886                                 state->dts_cred.dcr_action |=
12887                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12888 
12889                         /*
12890                          * Holding proc_zone means that destructive actions
12891                          * for this user/group ID in all zones is allowed.
12892                          */
12893                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
12894                                 state->dts_cred.dcr_action |=
12895                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12896 
12897                         /*
12898                          * If we have all privs in whatever zone this is,
12899                          * we can do destructive things to processes which
12900                          * have altered credentials.
12901                          */
12902                         if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
12903                             cr->cr_zone->zone_privset)) {
12904                                 state->dts_cred.dcr_action |=
12905                                     DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
12906                         }
12907                 }
12908 
12909                 /*
12910                  * Holding the dtrace_proc privilege gives control over fasttrap
12911                  * and pid providers.  We need to grant wider destructive
12912                  * privileges in the event that the user has proc_owner and/or
12913                  * proc_zone.
12914                  */
12915                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
12916                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
12917                                 state->dts_cred.dcr_action |=
12918                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12919 
12920                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
12921                                 state->dts_cred.dcr_action |=
12922                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12923                 }
12924         }
12925 
12926         return (state);
12927 }
12928 
12929 static int
12930 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
12931 {
12932         dtrace_optval_t *opt = state->dts_options, size;
12933         processorid_t cpu;
12934         int flags = 0, rval, factor, divisor = 1;
12935 
12936         ASSERT(MUTEX_HELD(&dtrace_lock));
12937         ASSERT(MUTEX_HELD(&cpu_lock));
12938         ASSERT(which < DTRACEOPT_MAX);
12939         ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
12940             (state == dtrace_anon.dta_state &&
12941             state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
12942 
12943         if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
12944                 return (0);
12945 
12946         if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
12947                 cpu = opt[DTRACEOPT_CPU];
12948 
12949         if (which == DTRACEOPT_SPECSIZE)
12950                 flags |= DTRACEBUF_NOSWITCH;
12951 
12952         if (which == DTRACEOPT_BUFSIZE) {
12953                 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
12954                         flags |= DTRACEBUF_RING;
12955 
12956                 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
12957                         flags |= DTRACEBUF_FILL;
12958 
12959                 if (state != dtrace_anon.dta_state ||
12960                     state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
12961                         flags |= DTRACEBUF_INACTIVE;
12962         }
12963 
12964         for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
12965                 /*
12966                  * The size must be 8-byte aligned.  If the size is not 8-byte
12967                  * aligned, drop it down by the difference.
12968                  */
12969                 if (size & (sizeof (uint64_t) - 1))
12970                         size -= size & (sizeof (uint64_t) - 1);
12971 
12972                 if (size < state->dts_reserve) {
12973                         /*
12974                          * Buffers always must be large enough to accommodate
12975                          * their prereserved space.  We return E2BIG instead
12976                          * of ENOMEM in this case to allow for user-level
12977                          * software to differentiate the cases.
12978                          */
12979                         return (E2BIG);
12980                 }
12981 
12982                 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);
12983 
12984                 if (rval != ENOMEM) {
12985                         opt[which] = size;
12986                         return (rval);
12987                 }
12988 
12989                 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
12990                         return (rval);
12991 
12992                 for (divisor = 2; divisor < factor; divisor <<= 1)
12993                         continue;
12994         }
12995 
12996         return (ENOMEM);
12997 }
12998 
12999 static int
13000 dtrace_state_buffers(dtrace_state_t *state)
13001 {
13002         dtrace_speculation_t *spec = state->dts_speculations;
13003         int rval, i;
13004 
13005         if ((rval = dtrace_state_buffer(state, state->dts_buffer,
13006             DTRACEOPT_BUFSIZE)) != 0)
13007                 return (rval);
13008 
13009         if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
13010             DTRACEOPT_AGGSIZE)) != 0)
13011                 return (rval);
13012 
13013         for (i = 0; i < state->dts_nspeculations; i++) {
13014                 if ((rval = dtrace_state_buffer(state,
13015                     spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
13016                         return (rval);
13017         }
13018 
13019         return (0);
13020 }
13021 
13022 static void
13023 dtrace_state_prereserve(dtrace_state_t *state)
13024 {
13025         dtrace_ecb_t *ecb;
13026         dtrace_probe_t *probe;
13027 
13028         state->dts_reserve = 0;
13029 
13030         if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
13031                 return;
13032 
13033         /*
13034          * If our buffer policy is a "fill" buffer policy, we need to set the
13035          * prereserved space to be the space required by the END probes.
13036          */
13037         probe = dtrace_probes[dtrace_probeid_end - 1];
13038         ASSERT(probe != NULL);
13039 
13040         for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
13041                 if (ecb->dte_state != state)
13042                         continue;
13043 
13044                 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
13045         }
13046 }
13047 
13048 static int
13049 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
13050 {
13051         dtrace_optval_t *opt = state->dts_options, sz, nspec;
13052         dtrace_speculation_t *spec;
13053         dtrace_buffer_t *buf;
13054         cyc_handler_t hdlr;
13055         cyc_time_t when;
13056         int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13057         dtrace_icookie_t cookie;
13058 
13059         mutex_enter(&cpu_lock);
13060         mutex_enter(&dtrace_lock);
13061 
13062         if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13063                 rval = EBUSY;
13064                 goto out;
13065         }
13066 
13067         /*
13068          * Before we can perform any checks, we must prime all of the
13069          * retained enablings that correspond to this state.
13070          */
13071         dtrace_enabling_prime(state);
13072 
13073         if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
13074                 rval = EACCES;
13075                 goto out;
13076         }
13077 
13078         dtrace_state_prereserve(state);
13079 
13080         /*
13081          * Now we want to do is try to allocate our speculations.
13082          * We do not automatically resize the number of speculations; if
13083          * this fails, we will fail the operation.
13084          */
13085         nspec = opt[DTRACEOPT_NSPEC];
13086         ASSERT(nspec != DTRACEOPT_UNSET);
13087 
13088         if (nspec > INT_MAX) {
13089                 rval = ENOMEM;
13090                 goto out;
13091         }
13092 
13093         spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
13094             KM_NOSLEEP | KM_NORMALPRI);
13095 
13096         if (spec == NULL) {
13097                 rval = ENOMEM;
13098                 goto out;
13099         }
13100 
13101         state->dts_speculations = spec;
13102         state->dts_nspeculations = (int)nspec;
13103 
13104         for (i = 0; i < nspec; i++) {
13105                 if ((buf = kmem_zalloc(bufsize,
13106                     KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
13107                         rval = ENOMEM;
13108                         goto err;
13109                 }
13110 
13111                 spec[i].dtsp_buffer = buf;
13112         }
13113 
13114         if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
13115                 if (dtrace_anon.dta_state == NULL) {
13116                         rval = ENOENT;
13117                         goto out;
13118                 }
13119 
13120                 if (state->dts_necbs != 0) {
13121                         rval = EALREADY;
13122                         goto out;
13123                 }
13124 
13125                 state->dts_anon = dtrace_anon_grab();
13126                 ASSERT(state->dts_anon != NULL);
13127                 state = state->dts_anon;
13128 
13129                 /*
13130                  * We want "grabanon" to be set in the grabbed state, so we'll
13131                  * copy that option value from the grabbing state into the
13132                  * grabbed state.
13133                  */
13134                 state->dts_options[DTRACEOPT_GRABANON] =
13135                     opt[DTRACEOPT_GRABANON];
13136 
13137                 *cpu = dtrace_anon.dta_beganon;
13138 
13139                 /*
13140                  * If the anonymous state is active (as it almost certainly
13141                  * is if the anonymous enabling ultimately matched anything),
13142                  * we don't allow any further option processing -- but we
13143                  * don't return failure.
13144                  */
13145                 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13146                         goto out;
13147         }
13148 
13149         if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
13150             opt[DTRACEOPT_AGGSIZE] != 0) {
13151                 if (state->dts_aggregations == NULL) {
13152                         /*
13153                          * We're not going to create an aggregation buffer
13154                          * because we don't have any ECBs that contain
13155                          * aggregations -- set this option to 0.
13156                          */
13157                         opt[DTRACEOPT_AGGSIZE] = 0;
13158                 } else {
13159                         /*
13160                          * If we have an aggregation buffer, we must also have
13161                          * a buffer to use as scratch.
13162                          */
13163                         if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
13164                             opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
13165                                 opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
13166                         }
13167                 }
13168         }
13169 
13170         if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
13171             opt[DTRACEOPT_SPECSIZE] != 0) {
13172                 if (!state->dts_speculates) {
13173                         /*
13174                          * We're not going to create speculation buffers
13175                          * because we don't have any ECBs that actually
13176                          * speculate -- set the speculation size to 0.
13177                          */
13178                         opt[DTRACEOPT_SPECSIZE] = 0;
13179                 }
13180         }
13181 
13182         /*
13183          * The bare minimum size for any buffer that we're actually going to
13184          * do anything to is sizeof (uint64_t).
13185          */
13186         sz = sizeof (uint64_t);
13187 
13188         if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
13189             (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
13190             (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
13191                 /*
13192                  * A buffer size has been explicitly set to 0 (or to a size
13193                  * that will be adjusted to 0) and we need the space -- we
13194                  * need to return failure.  We return ENOSPC to differentiate
13195                  * it from failing to allocate a buffer due to failure to meet
13196                  * the reserve (for which we return E2BIG).
13197                  */
13198                 rval = ENOSPC;
13199                 goto out;
13200         }
13201 
13202         if ((rval = dtrace_state_buffers(state)) != 0)
13203                 goto err;
13204 
13205         if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
13206                 sz = dtrace_dstate_defsize;
13207 
13208         do {
13209                 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
13210 
13211                 if (rval == 0)
13212                         break;
13213 
13214                 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13215                         goto err;
13216         } while (sz >>= 1);
13217 
13218         opt[DTRACEOPT_DYNVARSIZE] = sz;
13219 
13220         if (rval != 0)
13221                 goto err;
13222 
13223         if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
13224                 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
13225 
13226         if (opt[DTRACEOPT_CLEANRATE] == 0)
13227                 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13228 
13229         if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
13230                 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
13231 
13232         if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
13233                 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13234 
13235         hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
13236         hdlr.cyh_arg = state;
13237         hdlr.cyh_level = CY_LOW_LEVEL;
13238 
13239         when.cyt_when = 0;
13240         when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
13241 
13242         state->dts_cleaner = cyclic_add(&hdlr, &when);
13243 
13244         hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
13245         hdlr.cyh_arg = state;
13246         hdlr.cyh_level = CY_LOW_LEVEL;
13247 
13248         when.cyt_when = 0;
13249         when.cyt_interval = dtrace_deadman_interval;
13250 
13251         state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
13252         state->dts_deadman = cyclic_add(&hdlr, &when);
13253 
13254         state->dts_activity = DTRACE_ACTIVITY_WARMUP;
13255 
13256         if (state->dts_getf != 0 &&
13257             !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
13258                 /*
13259                  * We don't have kernel privs but we have at least one call
13260                  * to getf(); we need to bump our zone's count, and (if
13261                  * this is the first enabling to have an unprivileged call
13262                  * to getf()) we need to hook into closef().
13263                  */
13264                 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++;
13265 
13266                 if (dtrace_getf++ == 0) {
13267                         ASSERT(dtrace_closef == NULL);
13268                         dtrace_closef = dtrace_getf_barrier;
13269                 }
13270         }
13271 
13272         /*
13273          * Now it's time to actually fire the BEGIN probe.  We need to disable
13274          * interrupts here both to record the CPU on which we fired the BEGIN
13275          * probe (the data from this CPU will be processed first at user
13276          * level) and to manually activate the buffer for this CPU.
13277          */
13278         cookie = dtrace_interrupt_disable();
13279         *cpu = CPU->cpu_id;
13280         ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
13281         state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
13282 
13283         dtrace_probe(dtrace_probeid_begin,
13284             (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13285         dtrace_interrupt_enable(cookie);
13286         /*
13287          * We may have had an exit action from a BEGIN probe; only change our
13288          * state to ACTIVE if we're still in WARMUP.
13289          */
13290         ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
13291             state->dts_activity == DTRACE_ACTIVITY_DRAINING);
13292 
13293         if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
13294                 state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
13295 
13296         /*
13297          * Regardless of whether or not now we're in ACTIVE or DRAINING, we
13298          * want each CPU to transition its principal buffer out of the
13299          * INACTIVE state.  Doing this assures that no CPU will suddenly begin
13300          * processing an ECB halfway down a probe's ECB chain; all CPUs will
13301          * atomically transition from processing none of a state's ECBs to
13302          * processing all of them.
13303          */
13304         dtrace_xcall(DTRACE_CPUALL,
13305             (dtrace_xcall_t)dtrace_buffer_activate, state);
13306         goto out;
13307 
13308 err:
13309         dtrace_buffer_free(state->dts_buffer);
13310         dtrace_buffer_free(state->dts_aggbuffer);
13311 
13312         if ((nspec = state->dts_nspeculations) == 0) {
13313                 ASSERT(state->dts_speculations == NULL);
13314                 goto out;
13315         }
13316 
13317         spec = state->dts_speculations;
13318         ASSERT(spec != NULL);
13319 
13320         for (i = 0; i < state->dts_nspeculations; i++) {
13321                 if ((buf = spec[i].dtsp_buffer) == NULL)
13322                         break;
13323 
13324                 dtrace_buffer_free(buf);
13325                 kmem_free(buf, bufsize);
13326         }
13327 
13328         kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13329         state->dts_nspeculations = 0;
13330         state->dts_speculations = NULL;
13331 
13332 out:
13333         mutex_exit(&dtrace_lock);
13334         mutex_exit(&cpu_lock);
13335 
13336         return (rval);
13337 }
13338 
13339 static int
13340 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
13341 {
13342         dtrace_icookie_t cookie;
13343 
13344         ASSERT(MUTEX_HELD(&dtrace_lock));
13345 
13346         if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
13347             state->dts_activity != DTRACE_ACTIVITY_DRAINING)
13348                 return (EINVAL);
13349 
13350         /*
13351          * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13352          * to be sure that every CPU has seen it.  See below for the details
13353          * on why this is done.
13354          */
13355         state->dts_activity = DTRACE_ACTIVITY_DRAINING;
13356         dtrace_sync();
13357 
13358         /*
13359          * By this point, it is impossible for any CPU to be still processing
13360          * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
13361          * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13362          * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
13363          * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13364          * iff we're in the END probe.
13365          */
13366         state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
13367         dtrace_sync();
13368         ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
13369 
13370         /*
13371          * Finally, we can release the reserve and call the END probe.  We
13372          * disable interrupts across calling the END probe to allow us to
13373          * return the CPU on which we actually called the END probe.  This
13374          * allows user-land to be sure that this CPU's principal buffer is
13375          * processed last.
13376          */
13377         state->dts_reserve = 0;
13378 
13379         cookie = dtrace_interrupt_disable();
13380         *cpu = CPU->cpu_id;
13381         dtrace_probe(dtrace_probeid_end,
13382             (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13383         dtrace_interrupt_enable(cookie);
13384 
13385         state->dts_activity = DTRACE_ACTIVITY_STOPPED;
13386         dtrace_sync();
13387 
13388         if (state->dts_getf != 0 &&
13389             !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
13390                 /*
13391                  * We don't have kernel privs but we have at least one call
13392                  * to getf(); we need to lower our zone's count, and (if
13393                  * this is the last enabling to have an unprivileged call
13394                  * to getf()) we need to clear the closef() hook.
13395                  */
13396                 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0);
13397                 ASSERT(dtrace_closef == dtrace_getf_barrier);
13398                 ASSERT(dtrace_getf > 0);
13399 
13400                 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--;
13401 
13402                 if (--dtrace_getf == 0)
13403                         dtrace_closef = NULL;
13404         }
13405 
13406         return (0);
13407 }
13408 
13409 static int
13410 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
13411     dtrace_optval_t val)
13412 {
13413         ASSERT(MUTEX_HELD(&dtrace_lock));
13414 
13415         if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13416                 return (EBUSY);
13417 
13418         if (option >= DTRACEOPT_MAX)
13419                 return (EINVAL);
13420 
13421         if (option != DTRACEOPT_CPU && val < 0)
13422                 return (EINVAL);
13423 
13424         switch (option) {
13425         case DTRACEOPT_DESTRUCTIVE:
13426                 if (dtrace_destructive_disallow)
13427                         return (EACCES);
13428 
13429                 state->dts_cred.dcr_destructive = 1;
13430                 break;
13431 
13432         case DTRACEOPT_BUFSIZE:
13433         case DTRACEOPT_DYNVARSIZE:
13434         case DTRACEOPT_AGGSIZE:
13435         case DTRACEOPT_SPECSIZE:
13436         case DTRACEOPT_STRSIZE:
13437                 if (val < 0)
13438                         return (EINVAL);
13439 
13440                 if (val >= LONG_MAX) {
13441                         /*
13442                          * If this is an otherwise negative value, set it to
13443                          * the highest multiple of 128m less than LONG_MAX.
13444                          * Technically, we're adjusting the size without
13445                          * regard to the buffer resizing policy, but in fact,
13446                          * this has no effect -- if we set the buffer size to
13447                          * ~LONG_MAX and the buffer policy is ultimately set to
13448                          * be "manual", the buffer allocation is guaranteed to
13449                          * fail, if only because the allocation requires two
13450                          * buffers.  (We set the the size to the highest
13451                          * multiple of 128m because it ensures that the size
13452                          * will remain a multiple of a megabyte when
13453                          * repeatedly halved -- all the way down to 15m.)
13454                          */
13455                         val = LONG_MAX - (1 << 27) + 1;
13456                 }
13457         }
13458 
13459         state->dts_options[option] = val;
13460 
13461         return (0);
13462 }
13463 
13464 static void
13465 dtrace_state_destroy(dtrace_state_t *state)
13466 {
13467         dtrace_ecb_t *ecb;
13468         dtrace_vstate_t *vstate = &state->dts_vstate;
13469         minor_t minor = getminor(state->dts_dev);
13470         int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13471         dtrace_speculation_t *spec = state->dts_speculations;
13472         int nspec = state->dts_nspeculations;
13473         uint32_t match;
13474 
13475         ASSERT(MUTEX_HELD(&dtrace_lock));
13476         ASSERT(MUTEX_HELD(&cpu_lock));
13477 
13478         /*
13479          * First, retract any retained enablings for this state.
13480          */
13481         dtrace_enabling_retract(state);
13482         ASSERT(state->dts_nretained == 0);
13483 
13484         if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
13485             state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
13486                 /*
13487                  * We have managed to come into dtrace_state_destroy() on a
13488                  * hot enabling -- almost certainly because of a disorderly
13489                  * shutdown of a consumer.  (That is, a consumer that is
13490                  * exiting without having called dtrace_stop().) In this case,
13491                  * we're going to set our activity to be KILLED, and then
13492                  * issue a sync to be sure that everyone is out of probe
13493                  * context before we start blowing away ECBs.
13494                  */
13495                 state->dts_activity = DTRACE_ACTIVITY_KILLED;
13496                 dtrace_sync();
13497         }
13498 
13499         /*
13500          * Release the credential hold we took in dtrace_state_create().
13501          */
13502         if (state->dts_cred.dcr_cred != NULL)
13503                 crfree(state->dts_cred.dcr_cred);
13504 
13505         /*
13506          * Now we can safely disable and destroy any enabled probes.  Because
13507          * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
13508          * (especially if they're all enabled), we take two passes through the
13509          * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
13510          * in the second we disable whatever is left over.
13511          */
13512         for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
13513                 for (i = 0; i < state->dts_necbs; i++) {
13514                         if ((ecb = state->dts_ecbs[i]) == NULL)
13515                                 continue;
13516 
13517                         if (match && ecb->dte_probe != NULL) {
13518                                 dtrace_probe_t *probe = ecb->dte_probe;
13519                                 dtrace_provider_t *prov = probe->dtpr_provider;
13520 
13521                                 if (!(prov->dtpv_priv.dtpp_flags & match))
13522                                         continue;
13523                         }
13524 
13525                         dtrace_ecb_disable(ecb);
13526                         dtrace_ecb_destroy(ecb);
13527                 }
13528 
13529                 if (!match)
13530                         break;
13531         }
13532 
13533         /*
13534          * Before we free the buffers, perform one more sync to assure that
13535          * every CPU is out of probe context.
13536          */
13537         dtrace_sync();
13538 
13539         dtrace_buffer_free(state->dts_buffer);
13540         dtrace_buffer_free(state->dts_aggbuffer);
13541 
13542         for (i = 0; i < nspec; i++)
13543                 dtrace_buffer_free(spec[i].dtsp_buffer);
13544 
13545         if (state->dts_cleaner != CYCLIC_NONE)
13546                 cyclic_remove(state->dts_cleaner);
13547 
13548         if (state->dts_deadman != CYCLIC_NONE)
13549                 cyclic_remove(state->dts_deadman);
13550 
13551         dtrace_dstate_fini(&vstate->dtvs_dynvars);
13552         dtrace_vstate_fini(vstate);
13553         kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
13554 
13555         if (state->dts_aggregations != NULL) {
13556 #ifdef DEBUG
13557                 for (i = 0; i < state->dts_naggregations; i++)
13558                         ASSERT(state->dts_aggregations[i] == NULL);
13559 #endif
13560                 ASSERT(state->dts_naggregations > 0);
13561                 kmem_free(state->dts_aggregations,
13562                     state->dts_naggregations * sizeof (dtrace_aggregation_t *));
13563         }
13564 
13565         kmem_free(state->dts_buffer, bufsize);
13566         kmem_free(state->dts_aggbuffer, bufsize);
13567 
13568         for (i = 0; i < nspec; i++)
13569                 kmem_free(spec[i].dtsp_buffer, bufsize);
13570 
13571         kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13572 
13573         dtrace_format_destroy(state);
13574 
13575         vmem_destroy(state->dts_aggid_arena);
13576         ddi_soft_state_free(dtrace_softstate, minor);
13577         vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13578 }
13579 
13580 /*
13581  * DTrace Anonymous Enabling Functions
13582  */
13583 static dtrace_state_t *
13584 dtrace_anon_grab(void)
13585 {
13586         dtrace_state_t *state;
13587 
13588         ASSERT(MUTEX_HELD(&dtrace_lock));
13589 
13590         if ((state = dtrace_anon.dta_state) == NULL) {
13591                 ASSERT(dtrace_anon.dta_enabling == NULL);
13592                 return (NULL);
13593         }
13594 
13595         ASSERT(dtrace_anon.dta_enabling != NULL);
13596         ASSERT(dtrace_retained != NULL);
13597 
13598         dtrace_enabling_destroy(dtrace_anon.dta_enabling);
13599         dtrace_anon.dta_enabling = NULL;
13600         dtrace_anon.dta_state = NULL;
13601 
13602         return (state);
13603 }
13604 
13605 static void
13606 dtrace_anon_property(void)
13607 {
13608         int i, rv;
13609         dtrace_state_t *state;
13610         dof_hdr_t *dof;
13611         char c[32];             /* enough for "dof-data-" + digits */
13612 
13613         ASSERT(MUTEX_HELD(&dtrace_lock));
13614         ASSERT(MUTEX_HELD(&cpu_lock));
13615 
13616         for (i = 0; ; i++) {
13617                 (void) snprintf(c, sizeof (c), "dof-data-%d", i);
13618 
13619                 dtrace_err_verbose = 1;
13620 
13621                 if ((dof = dtrace_dof_property(c)) == NULL) {
13622                         dtrace_err_verbose = 0;
13623                         break;
13624                 }
13625 
13626                 /*
13627                  * We want to create anonymous state, so we need to transition
13628                  * the kernel debugger to indicate that DTrace is active.  If
13629                  * this fails (e.g. because the debugger has modified text in
13630                  * some way), we won't continue with the processing.
13631                  */
13632                 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
13633                         cmn_err(CE_NOTE, "kernel debugger active; anonymous "
13634                             "enabling ignored.");
13635                         dtrace_dof_destroy(dof);
13636                         break;
13637                 }
13638 
13639                 /*
13640                  * If we haven't allocated an anonymous state, we'll do so now.
13641                  */
13642                 if ((state = dtrace_anon.dta_state) == NULL) {
13643                         state = dtrace_state_create(NULL, NULL);
13644                         dtrace_anon.dta_state = state;
13645 
13646                         if (state == NULL) {
13647                                 /*
13648                                  * This basically shouldn't happen:  the only
13649                                  * failure mode from dtrace_state_create() is a
13650                                  * failure of ddi_soft_state_zalloc() that
13651                                  * itself should never happen.  Still, the
13652                                  * interface allows for a failure mode, and
13653                                  * we want to fail as gracefully as possible:
13654                                  * we'll emit an error message and cease
13655                                  * processing anonymous state in this case.
13656                                  */
13657                                 cmn_err(CE_WARN, "failed to create "
13658                                     "anonymous state");
13659                                 dtrace_dof_destroy(dof);
13660                                 break;
13661                         }
13662                 }
13663 
13664                 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
13665                     &dtrace_anon.dta_enabling, 0, B_TRUE);
13666 
13667                 if (rv == 0)
13668                         rv = dtrace_dof_options(dof, state);
13669 
13670                 dtrace_err_verbose = 0;
13671                 dtrace_dof_destroy(dof);
13672 
13673                 if (rv != 0) {
13674                         /*
13675                          * This is malformed DOF; chuck any anonymous state
13676                          * that we created.
13677                          */
13678                         ASSERT(dtrace_anon.dta_enabling == NULL);
13679                         dtrace_state_destroy(state);
13680                         dtrace_anon.dta_state = NULL;
13681                         break;
13682                 }
13683 
13684                 ASSERT(dtrace_anon.dta_enabling != NULL);
13685         }
13686 
13687         if (dtrace_anon.dta_enabling != NULL) {
13688                 int rval;
13689 
13690                 /*
13691                  * dtrace_enabling_retain() can only fail because we are
13692                  * trying to retain more enablings than are allowed -- but
13693                  * we only have one anonymous enabling, and we are guaranteed
13694                  * to be allowed at least one retained enabling; we assert
13695                  * that dtrace_enabling_retain() returns success.
13696                  */
13697                 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
13698                 ASSERT(rval == 0);
13699 
13700                 dtrace_enabling_dump(dtrace_anon.dta_enabling);
13701         }
13702 }
13703 
13704 /*
13705  * DTrace Helper Functions
13706  */
13707 static void
13708 dtrace_helper_trace(dtrace_helper_action_t *helper,
13709     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
13710 {
13711         uint32_t size, next, nnext, i;
13712         dtrace_helptrace_t *ent, *buffer;
13713         uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
13714 
13715         if ((buffer = dtrace_helptrace_buffer) == NULL)
13716                 return;
13717 
13718         ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
13719 
13720         /*
13721          * What would a tracing framework be without its own tracing
13722          * framework?  (Well, a hell of a lot simpler, for starters...)
13723          */
13724         size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
13725             sizeof (uint64_t) - sizeof (uint64_t);
13726 
13727         /*
13728          * Iterate until we can allocate a slot in the trace buffer.
13729          */
13730         do {
13731                 next = dtrace_helptrace_next;
13732 
13733                 if (next + size < dtrace_helptrace_bufsize) {
13734                         nnext = next + size;
13735                 } else {
13736                         nnext = size;
13737                 }
13738         } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
13739 
13740         /*
13741          * We have our slot; fill it in.
13742          */
13743         if (nnext == size) {
13744                 dtrace_helptrace_wrapped++;
13745                 next = 0;
13746         }
13747 
13748         ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next);
13749         ent->dtht_helper = helper;
13750         ent->dtht_where = where;
13751         ent->dtht_nlocals = vstate->dtvs_nlocals;
13752 
13753         ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
13754             mstate->dtms_fltoffs : -1;
13755         ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
13756         ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
13757 
13758         for (i = 0; i < vstate->dtvs_nlocals; i++) {
13759                 dtrace_statvar_t *svar;
13760 
13761                 if ((svar = vstate->dtvs_locals[i]) == NULL)
13762                         continue;
13763 
13764                 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
13765                 ent->dtht_locals[i] =
13766                     ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id];
13767         }
13768 }
13769 
13770 static uint64_t
13771 dtrace_helper(int which, dtrace_mstate_t *mstate,
13772     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
13773 {
13774         uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
13775         uint64_t sarg0 = mstate->dtms_arg[0];
13776         uint64_t sarg1 = mstate->dtms_arg[1];
13777         uint64_t rval;
13778         dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
13779         dtrace_helper_action_t *helper;
13780         dtrace_vstate_t *vstate;
13781         dtrace_difo_t *pred;
13782         int i, trace = dtrace_helptrace_buffer != NULL;
13783 
13784         ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
13785 
13786         if (helpers == NULL)
13787                 return (0);
13788 
13789         if ((helper = helpers->dthps_actions[which]) == NULL)
13790                 return (0);
13791 
13792         vstate = &helpers->dthps_vstate;
13793         mstate->dtms_arg[0] = arg0;
13794         mstate->dtms_arg[1] = arg1;
13795 
13796         /*
13797          * Now iterate over each helper.  If its predicate evaluates to 'true',
13798          * we'll call the corresponding actions.  Note that the below calls
13799          * to dtrace_dif_emulate() may set faults in machine state.  This is
13800          * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
13801          * the stored DIF offset with its own (which is the desired behavior).
13802          * Also, note the calls to dtrace_dif_emulate() may allocate scratch
13803          * from machine state; this is okay, too.
13804          */
13805         for (; helper != NULL; helper = helper->dtha_next) {
13806                 if ((pred = helper->dtha_predicate) != NULL) {
13807                         if (trace)
13808                                 dtrace_helper_trace(helper, mstate, vstate, 0);
13809 
13810                         if (!dtrace_dif_emulate(pred, mstate, vstate, state))
13811                                 goto next;
13812 
13813                         if (*flags & CPU_DTRACE_FAULT)
13814                                 goto err;
13815                 }
13816 
13817                 for (i = 0; i < helper->dtha_nactions; i++) {
13818                         if (trace)
13819                                 dtrace_helper_trace(helper,
13820                                     mstate, vstate, i + 1);
13821 
13822                         rval = dtrace_dif_emulate(helper->dtha_actions[i],
13823                             mstate, vstate, state);
13824 
13825                         if (*flags & CPU_DTRACE_FAULT)
13826                                 goto err;
13827                 }
13828 
13829 next:
13830                 if (trace)
13831                         dtrace_helper_trace(helper, mstate, vstate,
13832                             DTRACE_HELPTRACE_NEXT);
13833         }
13834 
13835         if (trace)
13836                 dtrace_helper_trace(helper, mstate, vstate,
13837                     DTRACE_HELPTRACE_DONE);
13838 
13839         /*
13840          * Restore the arg0 that we saved upon entry.
13841          */
13842         mstate->dtms_arg[0] = sarg0;
13843         mstate->dtms_arg[1] = sarg1;
13844 
13845         return (rval);
13846 
13847 err:
13848         if (trace)
13849                 dtrace_helper_trace(helper, mstate, vstate,
13850                     DTRACE_HELPTRACE_ERR);
13851 
13852         /*
13853          * Restore the arg0 that we saved upon entry.
13854          */
13855         mstate->dtms_arg[0] = sarg0;
13856         mstate->dtms_arg[1] = sarg1;
13857 
13858         return (NULL);
13859 }
13860 
13861 static void
13862 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
13863     dtrace_vstate_t *vstate)
13864 {
13865         int i;
13866 
13867         if (helper->dtha_predicate != NULL)
13868                 dtrace_difo_release(helper->dtha_predicate, vstate);
13869 
13870         for (i = 0; i < helper->dtha_nactions; i++) {
13871                 ASSERT(helper->dtha_actions[i] != NULL);
13872                 dtrace_difo_release(helper->dtha_actions[i], vstate);
13873         }
13874 
13875         kmem_free(helper->dtha_actions,
13876             helper->dtha_nactions * sizeof (dtrace_difo_t *));
13877         kmem_free(helper, sizeof (dtrace_helper_action_t));
13878 }
13879 
13880 static int
13881 dtrace_helper_destroygen(int gen)
13882 {
13883         proc_t *p = curproc;
13884         dtrace_helpers_t *help = p->p_dtrace_helpers;
13885         dtrace_vstate_t *vstate;
13886         int i;
13887 
13888         ASSERT(MUTEX_HELD(&dtrace_lock));
13889 
13890         if (help == NULL || gen > help->dthps_generation)
13891                 return (EINVAL);
13892 
13893         vstate = &help->dthps_vstate;
13894 
13895         for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
13896                 dtrace_helper_action_t *last = NULL, *h, *next;
13897 
13898                 for (h = help->dthps_actions[i]; h != NULL; h = next) {
13899                         next = h->dtha_next;
13900 
13901                         if (h->dtha_generation == gen) {
13902                                 if (last != NULL) {
13903                                         last->dtha_next = next;
13904                                 } else {
13905                                         help->dthps_actions[i] = next;
13906                                 }
13907 
13908                                 dtrace_helper_action_destroy(h, vstate);
13909                         } else {
13910                                 last = h;
13911                         }
13912                 }
13913         }
13914 
13915         /*
13916          * Interate until we've cleared out all helper providers with the
13917          * given generation number.
13918          */
13919         for (;;) {
13920                 dtrace_helper_provider_t *prov;
13921 
13922                 /*
13923                  * Look for a helper provider with the right generation. We
13924                  * have to start back at the beginning of the list each time
13925                  * because we drop dtrace_lock. It's unlikely that we'll make
13926                  * more than two passes.
13927                  */
13928                 for (i = 0; i < help->dthps_nprovs; i++) {
13929                         prov = help->dthps_provs[i];
13930 
13931                         if (prov->dthp_generation == gen)
13932                                 break;
13933                 }
13934 
13935                 /*
13936                  * If there were no matches, we're done.
13937                  */
13938                 if (i == help->dthps_nprovs)
13939                         break;
13940 
13941                 /*
13942                  * Move the last helper provider into this slot.
13943                  */
13944                 help->dthps_nprovs--;
13945                 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
13946                 help->dthps_provs[help->dthps_nprovs] = NULL;
13947 
13948                 mutex_exit(&dtrace_lock);
13949 
13950                 /*
13951                  * If we have a meta provider, remove this helper provider.
13952                  */
13953                 mutex_enter(&dtrace_meta_lock);
13954                 if (dtrace_meta_pid != NULL) {
13955                         ASSERT(dtrace_deferred_pid == NULL);
13956                         dtrace_helper_provider_remove(&prov->dthp_prov,
13957                             p->p_pid);
13958                 }
13959                 mutex_exit(&dtrace_meta_lock);
13960 
13961                 dtrace_helper_provider_destroy(prov);
13962 
13963                 mutex_enter(&dtrace_lock);
13964         }
13965 
13966         return (0);
13967 }
13968 
13969 static int
13970 dtrace_helper_validate(dtrace_helper_action_t *helper)
13971 {
13972         int err = 0, i;
13973         dtrace_difo_t *dp;
13974 
13975         if ((dp = helper->dtha_predicate) != NULL)
13976                 err += dtrace_difo_validate_helper(dp);
13977 
13978         for (i = 0; i < helper->dtha_nactions; i++)
13979                 err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
13980 
13981         return (err == 0);
13982 }
13983 
13984 static int
13985 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
13986 {
13987         dtrace_helpers_t *help;
13988         dtrace_helper_action_t *helper, *last;
13989         dtrace_actdesc_t *act;
13990         dtrace_vstate_t *vstate;
13991         dtrace_predicate_t *pred;
13992         int count = 0, nactions = 0, i;
13993 
13994         if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
13995                 return (EINVAL);
13996 
13997         help = curproc->p_dtrace_helpers;
13998         last = help->dthps_actions[which];
13999         vstate = &help->dthps_vstate;
14000 
14001         for (count = 0; last != NULL; last = last->dtha_next) {
14002                 count++;
14003                 if (last->dtha_next == NULL)
14004                         break;
14005         }
14006 
14007         /*
14008          * If we already have dtrace_helper_actions_max helper actions for this
14009          * helper action type, we'll refuse to add a new one.
14010          */
14011         if (count >= dtrace_helper_actions_max)
14012                 return (ENOSPC);
14013 
14014         helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
14015         helper->dtha_generation = help->dthps_generation;
14016 
14017         if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
14018                 ASSERT(pred->dtp_difo != NULL);
14019                 dtrace_difo_hold(pred->dtp_difo);
14020                 helper->dtha_predicate = pred->dtp_difo;
14021         }
14022 
14023         for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
14024                 if (act->dtad_kind != DTRACEACT_DIFEXPR)
14025                         goto err;
14026 
14027                 if (act->dtad_difo == NULL)
14028                         goto err;
14029 
14030                 nactions++;
14031         }
14032 
14033         helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
14034             (helper->dtha_nactions = nactions), KM_SLEEP);
14035 
14036         for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14037                 dtrace_difo_hold(act->dtad_difo);
14038                 helper->dtha_actions[i++] = act->dtad_difo;
14039         }
14040 
14041         if (!dtrace_helper_validate(helper))
14042                 goto err;
14043 
14044         if (last == NULL) {
14045                 help->dthps_actions[which] = helper;
14046         } else {
14047                 last->dtha_next = helper;
14048         }
14049 
14050         if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
14051                 dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
14052                 dtrace_helptrace_next = 0;
14053         }
14054 
14055         return (0);
14056 err:
14057         dtrace_helper_action_destroy(helper, vstate);
14058         return (EINVAL);
14059 }
14060 
14061 static void
14062 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
14063     dof_helper_t *dofhp)
14064 {
14065         ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
14066 
14067         mutex_enter(&dtrace_meta_lock);
14068         mutex_enter(&dtrace_lock);
14069 
14070         if (!dtrace_attached() || dtrace_meta_pid == NULL) {
14071                 /*
14072                  * If the dtrace module is loaded but not attached, or if
14073                  * there aren't isn't a meta provider registered to deal with
14074                  * these provider descriptions, we need to postpone creating
14075                  * the actual providers until later.
14076                  */
14077 
14078                 if (help->dthps_next == NULL && help->dthps_prev == NULL &&
14079                     dtrace_deferred_pid != help) {
14080                         help->dthps_deferred = 1;
14081                         help->dthps_pid = p->p_pid;
14082                         help->dthps_next = dtrace_deferred_pid;
14083                         help->dthps_prev = NULL;
14084                         if (dtrace_deferred_pid != NULL)
14085                                 dtrace_deferred_pid->dthps_prev = help;
14086                         dtrace_deferred_pid = help;
14087                 }
14088 
14089                 mutex_exit(&dtrace_lock);
14090 
14091         } else if (dofhp != NULL) {
14092                 /*
14093                  * If the dtrace module is loaded and we have a particular
14094                  * helper provider description, pass that off to the
14095                  * meta provider.
14096                  */
14097 
14098                 mutex_exit(&dtrace_lock);
14099 
14100                 dtrace_helper_provide(dofhp, p->p_pid);
14101 
14102         } else {
14103                 /*
14104                  * Otherwise, just pass all the helper provider descriptions
14105                  * off to the meta provider.
14106                  */
14107 
14108                 int i;
14109                 mutex_exit(&dtrace_lock);
14110 
14111                 for (i = 0; i < help->dthps_nprovs; i++) {
14112                         dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
14113                             p->p_pid);
14114                 }
14115         }
14116 
14117         mutex_exit(&dtrace_meta_lock);
14118 }
14119 
14120 static int
14121 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
14122 {
14123         dtrace_helpers_t *help;
14124         dtrace_helper_provider_t *hprov, **tmp_provs;
14125         uint_t tmp_maxprovs, i;
14126 
14127         ASSERT(MUTEX_HELD(&dtrace_lock));
14128 
14129         help = curproc->p_dtrace_helpers;
14130         ASSERT(help != NULL);
14131 
14132         /*
14133          * If we already have dtrace_helper_providers_max helper providers,
14134          * we're refuse to add a new one.
14135          */
14136         if (help->dthps_nprovs >= dtrace_helper_providers_max)
14137                 return (ENOSPC);
14138 
14139         /*
14140          * Check to make sure this isn't a duplicate.
14141          */
14142         for (i = 0; i < help->dthps_nprovs; i++) {
14143                 if (dofhp->dofhp_addr ==
14144                     help->dthps_provs[i]->dthp_prov.dofhp_addr)
14145                         return (EALREADY);
14146         }
14147 
14148         hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
14149         hprov->dthp_prov = *dofhp;
14150         hprov->dthp_ref = 1;
14151         hprov->dthp_generation = gen;
14152 
14153         /*
14154          * Allocate a bigger table for helper providers if it's already full.
14155          */
14156         if (help->dthps_maxprovs == help->dthps_nprovs) {
14157                 tmp_maxprovs = help->dthps_maxprovs;
14158                 tmp_provs = help->dthps_provs;
14159 
14160                 if (help->dthps_maxprovs == 0)
14161                         help->dthps_maxprovs = 2;
14162                 else
14163                         help->dthps_maxprovs *= 2;
14164                 if (help->dthps_maxprovs > dtrace_helper_providers_max)
14165                         help->dthps_maxprovs = dtrace_helper_providers_max;
14166 
14167                 ASSERT(tmp_maxprovs < help->dthps_maxprovs);
14168 
14169                 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
14170                     sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14171 
14172                 if (tmp_provs != NULL) {
14173                         bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
14174                             sizeof (dtrace_helper_provider_t *));
14175                         kmem_free(tmp_provs, tmp_maxprovs *
14176                             sizeof (dtrace_helper_provider_t *));
14177                 }
14178         }
14179 
14180         help->dthps_provs[help->dthps_nprovs] = hprov;
14181         help->dthps_nprovs++;
14182 
14183         return (0);
14184 }
14185 
14186 static void
14187 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
14188 {
14189         mutex_enter(&dtrace_lock);
14190 
14191         if (--hprov->dthp_ref == 0) {
14192                 dof_hdr_t *dof;
14193                 mutex_exit(&dtrace_lock);
14194                 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
14195                 dtrace_dof_destroy(dof);
14196                 kmem_free(hprov, sizeof (dtrace_helper_provider_t));
14197         } else {
14198                 mutex_exit(&dtrace_lock);
14199         }
14200 }
14201 
14202 static int
14203 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
14204 {
14205         uintptr_t daddr = (uintptr_t)dof;
14206         dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
14207         dof_provider_t *provider;
14208         dof_probe_t *probe;
14209         uint8_t *arg;
14210         char *strtab, *typestr;
14211         dof_stridx_t typeidx;
14212         size_t typesz;
14213         uint_t nprobes, j, k;
14214 
14215         ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
14216 
14217         if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
14218                 dtrace_dof_error(dof, "misaligned section offset");
14219                 return (-1);
14220         }
14221 
14222         /*
14223          * The section needs to be large enough to contain the DOF provider
14224          * structure appropriate for the given version.
14225          */
14226         if (sec->dofs_size <
14227             ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
14228             offsetof(dof_provider_t, dofpv_prenoffs) :
14229             sizeof (dof_provider_t))) {
14230                 dtrace_dof_error(dof, "provider section too small");
14231                 return (-1);
14232         }
14233 
14234         provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
14235         str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
14236         prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
14237         arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
14238         off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
14239 
14240         if (str_sec == NULL || prb_sec == NULL ||
14241             arg_sec == NULL || off_sec == NULL)
14242                 return (-1);
14243 
14244         enoff_sec = NULL;
14245 
14246         if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14247             provider->dofpv_prenoffs != DOF_SECT_NONE &&
14248             (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
14249             provider->dofpv_prenoffs)) == NULL)
14250                 return (-1);
14251 
14252         strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
14253 
14254         if (provider->dofpv_name >= str_sec->dofs_size ||
14255             strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
14256                 dtrace_dof_error(dof, "invalid provider name");
14257                 return (-1);
14258         }
14259 
14260         if (prb_sec->dofs_entsize == 0 ||
14261             prb_sec->dofs_entsize > prb_sec->dofs_size) {
14262                 dtrace_dof_error(dof, "invalid entry size");
14263                 return (-1);
14264         }
14265 
14266         if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
14267                 dtrace_dof_error(dof, "misaligned entry size");
14268                 return (-1);
14269         }
14270 
14271         if (off_sec->dofs_entsize != sizeof (uint32_t)) {
14272                 dtrace_dof_error(dof, "invalid entry size");
14273                 return (-1);
14274         }
14275 
14276         if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
14277                 dtrace_dof_error(dof, "misaligned section offset");
14278                 return (-1);
14279         }
14280 
14281         if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
14282                 dtrace_dof_error(dof, "invalid entry size");
14283                 return (-1);
14284         }
14285 
14286         arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
14287 
14288         nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
14289 
14290         /*
14291          * Take a pass through the probes to check for errors.
14292          */
14293         for (j = 0; j < nprobes; j++) {
14294                 probe = (dof_probe_t *)(uintptr_t)(daddr +
14295                     prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
14296 
14297                 if (probe->dofpr_func >= str_sec->dofs_size) {
14298                         dtrace_dof_error(dof, "invalid function name");
14299                         return (-1);
14300                 }
14301 
14302                 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
14303                         dtrace_dof_error(dof, "function name too long");
14304                         return (-1);
14305                 }
14306 
14307                 if (probe->dofpr_name >= str_sec->dofs_size ||
14308                     strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
14309                         dtrace_dof_error(dof, "invalid probe name");
14310                         return (-1);
14311                 }
14312 
14313                 /*
14314                  * The offset count must not wrap the index, and the offsets
14315                  * must also not overflow the section's data.
14316                  */
14317                 if (probe->dofpr_offidx + probe->dofpr_noffs <
14318                     probe->dofpr_offidx ||
14319                     (probe->dofpr_offidx + probe->dofpr_noffs) *
14320                     off_sec->dofs_entsize > off_sec->dofs_size) {
14321                         dtrace_dof_error(dof, "invalid probe offset");
14322                         return (-1);
14323                 }
14324 
14325                 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
14326                         /*
14327                          * If there's no is-enabled offset section, make sure
14328                          * there aren't any is-enabled offsets. Otherwise
14329                          * perform the same checks as for probe offsets
14330                          * (immediately above).
14331                          */
14332                         if (enoff_sec == NULL) {
14333                                 if (probe->dofpr_enoffidx != 0 ||
14334                                     probe->dofpr_nenoffs != 0) {
14335                                         dtrace_dof_error(dof, "is-enabled "
14336                                             "offsets with null section");
14337                                         return (-1);
14338                                 }
14339                         } else if (probe->dofpr_enoffidx +
14340                             probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
14341                             (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
14342                             enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
14343                                 dtrace_dof_error(dof, "invalid is-enabled "
14344                                     "offset");
14345                                 return (-1);
14346                         }
14347 
14348                         if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
14349                                 dtrace_dof_error(dof, "zero probe and "
14350                                     "is-enabled offsets");
14351                                 return (-1);
14352                         }
14353                 } else if (probe->dofpr_noffs == 0) {
14354                         dtrace_dof_error(dof, "zero probe offsets");
14355                         return (-1);
14356                 }
14357 
14358                 if (probe->dofpr_argidx + probe->dofpr_xargc <
14359                     probe->dofpr_argidx ||
14360                     (probe->dofpr_argidx + probe->dofpr_xargc) *
14361                     arg_sec->dofs_entsize > arg_sec->dofs_size) {
14362                         dtrace_dof_error(dof, "invalid args");
14363                         return (-1);
14364                 }
14365 
14366                 typeidx = probe->dofpr_nargv;
14367                 typestr = strtab + probe->dofpr_nargv;
14368                 for (k = 0; k < probe->dofpr_nargc; k++) {
14369                         if (typeidx >= str_sec->dofs_size) {
14370                                 dtrace_dof_error(dof, "bad "
14371                                     "native argument type");
14372                                 return (-1);
14373                         }
14374 
14375                         typesz = strlen(typestr) + 1;
14376                         if (typesz > DTRACE_ARGTYPELEN) {
14377                                 dtrace_dof_error(dof, "native "
14378                                     "argument type too long");
14379                                 return (-1);
14380                         }
14381                         typeidx += typesz;
14382                         typestr += typesz;
14383                 }
14384 
14385                 typeidx = probe->dofpr_xargv;
14386                 typestr = strtab + probe->dofpr_xargv;
14387                 for (k = 0; k < probe->dofpr_xargc; k++) {
14388                         if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
14389                                 dtrace_dof_error(dof, "bad "
14390                                     "native argument index");
14391                                 return (-1);
14392                         }
14393 
14394                         if (typeidx >= str_sec->dofs_size) {
14395                                 dtrace_dof_error(dof, "bad "
14396                                     "translated argument type");
14397                                 return (-1);
14398                         }
14399 
14400                         typesz = strlen(typestr) + 1;
14401                         if (typesz > DTRACE_ARGTYPELEN) {
14402                                 dtrace_dof_error(dof, "translated argument "
14403                                     "type too long");
14404                                 return (-1);
14405                         }
14406 
14407                         typeidx += typesz;
14408                         typestr += typesz;
14409                 }
14410         }
14411 
14412         return (0);
14413 }
14414 
14415 static int
14416 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
14417 {
14418         dtrace_helpers_t *help;
14419         dtrace_vstate_t *vstate;
14420         dtrace_enabling_t *enab = NULL;
14421         int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
14422         uintptr_t daddr = (uintptr_t)dof;
14423 
14424         ASSERT(MUTEX_HELD(&dtrace_lock));
14425 
14426         if ((help = curproc->p_dtrace_helpers) == NULL)
14427                 help = dtrace_helpers_create(curproc);
14428 
14429         vstate = &help->dthps_vstate;
14430 
14431         if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
14432             dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
14433                 dtrace_dof_destroy(dof);
14434                 return (rv);
14435         }
14436 
14437         /*
14438          * Look for helper providers and validate their descriptions.
14439          */
14440         if (dhp != NULL) {
14441                 for (i = 0; i < dof->dofh_secnum; i++) {
14442                         dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
14443                             dof->dofh_secoff + i * dof->dofh_secsize);
14444 
14445                         if (sec->dofs_type != DOF_SECT_PROVIDER)
14446                                 continue;
14447 
14448                         if (dtrace_helper_provider_validate(dof, sec) != 0) {
14449                                 dtrace_enabling_destroy(enab);
14450                                 dtrace_dof_destroy(dof);
14451                                 return (-1);
14452                         }
14453 
14454                         nprovs++;
14455                 }
14456         }
14457 
14458         /*
14459          * Now we need to walk through the ECB descriptions in the enabling.
14460          */
14461         for (i = 0; i < enab->dten_ndesc; i++) {
14462                 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
14463                 dtrace_probedesc_t *desc = &ep->dted_probe;
14464 
14465                 if (strcmp(desc->dtpd_provider, "dtrace") != 0)
14466                         continue;
14467 
14468                 if (strcmp(desc->dtpd_mod, "helper") != 0)
14469                         continue;
14470 
14471                 if (strcmp(desc->dtpd_func, "ustack") != 0)
14472                         continue;
14473 
14474                 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
14475                     ep)) != 0) {
14476                         /*
14477                          * Adding this helper action failed -- we are now going
14478                          * to rip out the entire generation and return failure.
14479                          */
14480                         (void) dtrace_helper_destroygen(help->dthps_generation);
14481                         dtrace_enabling_destroy(enab);
14482                         dtrace_dof_destroy(dof);
14483                         return (-1);
14484                 }
14485 
14486                 nhelpers++;
14487         }
14488 
14489         if (nhelpers < enab->dten_ndesc)
14490                 dtrace_dof_error(dof, "unmatched helpers");
14491 
14492         gen = help->dthps_generation++;
14493         dtrace_enabling_destroy(enab);
14494 
14495         if (dhp != NULL && nprovs > 0) {
14496                 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
14497                 if (dtrace_helper_provider_add(dhp, gen) == 0) {
14498                         mutex_exit(&dtrace_lock);
14499                         dtrace_helper_provider_register(curproc, help, dhp);
14500                         mutex_enter(&dtrace_lock);
14501 
14502                         destroy = 0;
14503                 }
14504         }
14505 
14506         if (destroy)
14507                 dtrace_dof_destroy(dof);
14508 
14509         return (gen);
14510 }
14511 
14512 static dtrace_helpers_t *
14513 dtrace_helpers_create(proc_t *p)
14514 {
14515         dtrace_helpers_t *help;
14516 
14517         ASSERT(MUTEX_HELD(&dtrace_lock));
14518         ASSERT(p->p_dtrace_helpers == NULL);
14519 
14520         help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
14521         help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
14522             DTRACE_NHELPER_ACTIONS, KM_SLEEP);
14523 
14524         p->p_dtrace_helpers = help;
14525         dtrace_helpers++;
14526 
14527         return (help);
14528 }
14529 
14530 static void
14531 dtrace_helpers_destroy(void)
14532 {
14533         dtrace_helpers_t *help;
14534         dtrace_vstate_t *vstate;
14535         proc_t *p = curproc;
14536         int i;
14537 
14538         mutex_enter(&dtrace_lock);
14539 
14540         ASSERT(p->p_dtrace_helpers != NULL);
14541         ASSERT(dtrace_helpers > 0);
14542 
14543         help = p->p_dtrace_helpers;
14544         vstate = &help->dthps_vstate;
14545 
14546         /*
14547          * We're now going to lose the help from this process.
14548          */
14549         p->p_dtrace_helpers = NULL;
14550         dtrace_sync();
14551 
14552         /*
14553          * Destory the helper actions.
14554          */
14555         for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14556                 dtrace_helper_action_t *h, *next;
14557 
14558                 for (h = help->dthps_actions[i]; h != NULL; h = next) {
14559                         next = h->dtha_next;
14560                         dtrace_helper_action_destroy(h, vstate);
14561                         h = next;
14562                 }
14563         }
14564 
14565         mutex_exit(&dtrace_lock);
14566 
14567         /*
14568          * Destroy the helper providers.
14569          */
14570         if (help->dthps_maxprovs > 0) {
14571                 mutex_enter(&dtrace_meta_lock);
14572                 if (dtrace_meta_pid != NULL) {
14573                         ASSERT(dtrace_deferred_pid == NULL);
14574 
14575                         for (i = 0; i < help->dthps_nprovs; i++) {
14576                                 dtrace_helper_provider_remove(
14577                                     &help->dthps_provs[i]->dthp_prov, p->p_pid);
14578                         }
14579                 } else {
14580                         mutex_enter(&dtrace_lock);
14581                         ASSERT(help->dthps_deferred == 0 ||
14582                             help->dthps_next != NULL ||
14583                             help->dthps_prev != NULL ||
14584                             help == dtrace_deferred_pid);
14585 
14586                         /*
14587                          * Remove the helper from the deferred list.
14588                          */
14589                         if (help->dthps_next != NULL)
14590                                 help->dthps_next->dthps_prev = help->dthps_prev;
14591                         if (help->dthps_prev != NULL)
14592                                 help->dthps_prev->dthps_next = help->dthps_next;
14593                         if (dtrace_deferred_pid == help) {
14594                                 dtrace_deferred_pid = help->dthps_next;
14595                                 ASSERT(help->dthps_prev == NULL);
14596                         }
14597 
14598                         mutex_exit(&dtrace_lock);
14599                 }
14600 
14601                 mutex_exit(&dtrace_meta_lock);
14602 
14603                 for (i = 0; i < help->dthps_nprovs; i++) {
14604                         dtrace_helper_provider_destroy(help->dthps_provs[i]);
14605                 }
14606 
14607                 kmem_free(help->dthps_provs, help->dthps_maxprovs *
14608                     sizeof (dtrace_helper_provider_t *));
14609         }
14610 
14611         mutex_enter(&dtrace_lock);
14612 
14613         dtrace_vstate_fini(&help->dthps_vstate);
14614         kmem_free(help->dthps_actions,
14615             sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
14616         kmem_free(help, sizeof (dtrace_helpers_t));
14617 
14618         --dtrace_helpers;
14619         mutex_exit(&dtrace_lock);
14620 }
14621 
14622 static void
14623 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
14624 {
14625         dtrace_helpers_t *help, *newhelp;
14626         dtrace_helper_action_t *helper, *new, *last;
14627         dtrace_difo_t *dp;
14628         dtrace_vstate_t *vstate;
14629         int i, j, sz, hasprovs = 0;
14630 
14631         mutex_enter(&dtrace_lock);
14632         ASSERT(from->p_dtrace_helpers != NULL);
14633         ASSERT(dtrace_helpers > 0);
14634 
14635         help = from->p_dtrace_helpers;
14636         newhelp = dtrace_helpers_create(to);
14637         ASSERT(to->p_dtrace_helpers != NULL);
14638 
14639         newhelp->dthps_generation = help->dthps_generation;
14640         vstate = &newhelp->dthps_vstate;
14641 
14642         /*
14643          * Duplicate the helper actions.
14644          */
14645         for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14646                 if ((helper = help->dthps_actions[i]) == NULL)
14647                         continue;
14648 
14649                 for (last = NULL; helper != NULL; helper = helper->dtha_next) {
14650                         new = kmem_zalloc(sizeof (dtrace_helper_action_t),
14651                             KM_SLEEP);
14652                         new->dtha_generation = helper->dtha_generation;
14653 
14654                         if ((dp = helper->dtha_predicate) != NULL) {
14655                                 dp = dtrace_difo_duplicate(dp, vstate);
14656                                 new->dtha_predicate = dp;
14657                         }
14658 
14659                         new->dtha_nactions = helper->dtha_nactions;
14660                         sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
14661                         new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
14662 
14663                         for (j = 0; j < new->dtha_nactions; j++) {
14664                                 dtrace_difo_t *dp = helper->dtha_actions[j];
14665 
14666                                 ASSERT(dp != NULL);
14667                                 dp = dtrace_difo_duplicate(dp, vstate);
14668                                 new->dtha_actions[j] = dp;
14669                         }
14670 
14671                         if (last != NULL) {
14672                                 last->dtha_next = new;
14673                         } else {
14674                                 newhelp->dthps_actions[i] = new;
14675                         }
14676 
14677                         last = new;
14678                 }
14679         }
14680 
14681         /*
14682          * Duplicate the helper providers and register them with the
14683          * DTrace framework.
14684          */
14685         if (help->dthps_nprovs > 0) {
14686                 newhelp->dthps_nprovs = help->dthps_nprovs;
14687                 newhelp->dthps_maxprovs = help->dthps_nprovs;
14688                 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
14689                     sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14690                 for (i = 0; i < newhelp->dthps_nprovs; i++) {
14691                         newhelp->dthps_provs[i] = help->dthps_provs[i];
14692                         newhelp->dthps_provs[i]->dthp_ref++;
14693                 }
14694 
14695                 hasprovs = 1;
14696         }
14697 
14698         mutex_exit(&dtrace_lock);
14699 
14700         if (hasprovs)
14701                 dtrace_helper_provider_register(to, newhelp, NULL);
14702 }
14703 
14704 /*
14705  * DTrace Hook Functions
14706  */
14707 static void
14708 dtrace_module_loaded(struct modctl *ctl)
14709 {
14710         dtrace_provider_t *prv;
14711 
14712         mutex_enter(&dtrace_provider_lock);
14713         mutex_enter(&mod_lock);
14714 
14715         ASSERT(ctl->mod_busy);
14716 
14717         /*
14718          * We're going to call each providers per-module provide operation
14719          * specifying only this module.
14720          */
14721         for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
14722                 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
14723 
14724         mutex_exit(&mod_lock);
14725         mutex_exit(&dtrace_provider_lock);
14726 
14727         /*
14728          * If we have any retained enablings, we need to match against them.
14729          * Enabling probes requires that cpu_lock be held, and we cannot hold
14730          * cpu_lock here -- it is legal for cpu_lock to be held when loading a
14731          * module.  (In particular, this happens when loading scheduling
14732          * classes.)  So if we have any retained enablings, we need to dispatch
14733          * our task queue to do the match for us.
14734          */
14735         mutex_enter(&dtrace_lock);
14736 
14737         if (dtrace_retained == NULL) {
14738                 mutex_exit(&dtrace_lock);
14739                 return;
14740         }
14741 
14742         (void) taskq_dispatch(dtrace_taskq,
14743             (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
14744 
14745         mutex_exit(&dtrace_lock);
14746 
14747         /*
14748          * And now, for a little heuristic sleaze:  in general, we want to
14749          * match modules as soon as they load.  However, we cannot guarantee
14750          * this, because it would lead us to the lock ordering violation
14751          * outlined above.  The common case, of course, is that cpu_lock is
14752          * _not_ held -- so we delay here for a clock tick, hoping that that's
14753          * long enough for the task queue to do its work.  If it's not, it's
14754          * not a serious problem -- it just means that the module that we
14755          * just loaded may not be immediately instrumentable.
14756          */
14757         delay(1);
14758 }
14759 
14760 static void
14761 dtrace_module_unloaded(struct modctl *ctl)
14762 {
14763         dtrace_probe_t template, *probe, *first, *next;
14764         dtrace_provider_t *prov;
14765 
14766         template.dtpr_mod = ctl->mod_modname;
14767 
14768         mutex_enter(&dtrace_provider_lock);
14769         mutex_enter(&mod_lock);
14770         mutex_enter(&dtrace_lock);
14771 
14772         if (dtrace_bymod == NULL) {
14773                 /*
14774                  * The DTrace module is loaded (obviously) but not attached;
14775                  * we don't have any work to do.
14776                  */
14777                 mutex_exit(&dtrace_provider_lock);
14778                 mutex_exit(&mod_lock);
14779                 mutex_exit(&dtrace_lock);
14780                 return;
14781         }
14782 
14783         for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
14784             probe != NULL; probe = probe->dtpr_nextmod) {
14785                 if (probe->dtpr_ecb != NULL) {
14786                         mutex_exit(&dtrace_provider_lock);
14787                         mutex_exit(&mod_lock);
14788                         mutex_exit(&dtrace_lock);
14789 
14790                         /*
14791                          * This shouldn't _actually_ be possible -- we're
14792                          * unloading a module that has an enabled probe in it.
14793                          * (It's normally up to the provider to make sure that
14794                          * this can't happen.)  However, because dtps_enable()
14795                          * doesn't have a failure mode, there can be an
14796                          * enable/unload race.  Upshot:  we don't want to
14797                          * assert, but we're not going to disable the
14798                          * probe, either.
14799                          */
14800                         if (dtrace_err_verbose) {
14801                                 cmn_err(CE_WARN, "unloaded module '%s' had "
14802                                     "enabled probes", ctl->mod_modname);
14803                         }
14804 
14805                         return;
14806                 }
14807         }
14808 
14809         probe = first;
14810 
14811         for (first = NULL; probe != NULL; probe = next) {
14812                 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
14813 
14814                 dtrace_probes[probe->dtpr_id - 1] = NULL;
14815 
14816                 next = probe->dtpr_nextmod;
14817                 dtrace_hash_remove(dtrace_bymod, probe);
14818                 dtrace_hash_remove(dtrace_byfunc, probe);
14819                 dtrace_hash_remove(dtrace_byname, probe);
14820 
14821                 if (first == NULL) {
14822                         first = probe;
14823                         probe->dtpr_nextmod = NULL;
14824                 } else {
14825                         probe->dtpr_nextmod = first;
14826                         first = probe;
14827                 }
14828         }
14829 
14830         /*
14831          * We've removed all of the module's probes from the hash chains and
14832          * from the probe array.  Now issue a dtrace_sync() to be sure that
14833          * everyone has cleared out from any probe array processing.
14834          */
14835         dtrace_sync();
14836 
14837         for (probe = first; probe != NULL; probe = first) {
14838                 first = probe->dtpr_nextmod;
14839                 prov = probe->dtpr_provider;
14840                 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
14841                     probe->dtpr_arg);
14842                 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
14843                 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
14844                 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
14845                 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
14846                 kmem_free(probe, sizeof (dtrace_probe_t));
14847         }
14848 
14849         mutex_exit(&dtrace_lock);
14850         mutex_exit(&mod_lock);
14851         mutex_exit(&dtrace_provider_lock);
14852 }
14853 
14854 void
14855 dtrace_suspend(void)
14856 {
14857         dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
14858 }
14859 
14860 void
14861 dtrace_resume(void)
14862 {
14863         dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
14864 }
14865 
14866 static int
14867 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
14868 {
14869         ASSERT(MUTEX_HELD(&cpu_lock));
14870         mutex_enter(&dtrace_lock);
14871 
14872         switch (what) {
14873         case CPU_CONFIG: {
14874                 dtrace_state_t *state;
14875                 dtrace_optval_t *opt, rs, c;
14876 
14877                 /*
14878                  * For now, we only allocate a new buffer for anonymous state.
14879                  */
14880                 if ((state = dtrace_anon.dta_state) == NULL)
14881                         break;
14882 
14883                 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
14884                         break;
14885 
14886                 opt = state->dts_options;
14887                 c = opt[DTRACEOPT_CPU];
14888 
14889                 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
14890                         break;
14891 
14892                 /*
14893                  * Regardless of what the actual policy is, we're going to
14894                  * temporarily set our resize policy to be manual.  We're
14895                  * also going to temporarily set our CPU option to denote
14896                  * the newly configured CPU.
14897                  */
14898                 rs = opt[DTRACEOPT_BUFRESIZE];
14899                 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
14900                 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
14901 
14902                 (void) dtrace_state_buffers(state);
14903 
14904                 opt[DTRACEOPT_BUFRESIZE] = rs;
14905                 opt[DTRACEOPT_CPU] = c;
14906 
14907                 break;
14908         }
14909 
14910         case CPU_UNCONFIG:
14911                 /*
14912                  * We don't free the buffer in the CPU_UNCONFIG case.  (The
14913                  * buffer will be freed when the consumer exits.)
14914                  */
14915                 break;
14916 
14917         default:
14918                 break;
14919         }
14920 
14921         mutex_exit(&dtrace_lock);
14922         return (0);
14923 }
14924 
14925 static void
14926 dtrace_cpu_setup_initial(processorid_t cpu)
14927 {
14928         (void) dtrace_cpu_setup(CPU_CONFIG, cpu);
14929 }
14930 
14931 static void
14932 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
14933 {
14934         if (dtrace_toxranges >= dtrace_toxranges_max) {
14935                 int osize, nsize;
14936                 dtrace_toxrange_t *range;
14937 
14938                 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
14939 
14940                 if (osize == 0) {
14941                         ASSERT(dtrace_toxrange == NULL);
14942                         ASSERT(dtrace_toxranges_max == 0);
14943                         dtrace_toxranges_max = 1;
14944                 } else {
14945                         dtrace_toxranges_max <<= 1;
14946                 }
14947 
14948                 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
14949                 range = kmem_zalloc(nsize, KM_SLEEP);
14950 
14951                 if (dtrace_toxrange != NULL) {
14952                         ASSERT(osize != 0);
14953                         bcopy(dtrace_toxrange, range, osize);
14954                         kmem_free(dtrace_toxrange, osize);
14955                 }
14956 
14957                 dtrace_toxrange = range;
14958         }
14959 
14960         ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL);
14961         ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL);
14962 
14963         dtrace_toxrange[dtrace_toxranges].dtt_base = base;
14964         dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
14965         dtrace_toxranges++;
14966 }
14967 
14968 static void
14969 dtrace_getf_barrier()
14970 {
14971         /*
14972          * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings
14973          * that contain calls to getf(), this routine will be called on every
14974          * closef() before either the underlying vnode is released or the
14975          * file_t itself is freed.  By the time we are here, it is essential
14976          * that the file_t can no longer be accessed from a call to getf()
14977          * in probe context -- that assures that a dtrace_sync() can be used
14978          * to clear out any enablings referring to the old structures.
14979          */
14980         if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 ||
14981             kcred->cr_zone->zone_dtrace_getf != 0)
14982                 dtrace_sync();
14983 }
14984 
14985 /*
14986  * DTrace Driver Cookbook Functions
14987  */
14988 /*ARGSUSED*/
14989 static int
14990 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
14991 {
14992         dtrace_provider_id_t id;
14993         dtrace_state_t *state = NULL;
14994         dtrace_enabling_t *enab;
14995 
14996         mutex_enter(&cpu_lock);
14997         mutex_enter(&dtrace_provider_lock);
14998         mutex_enter(&dtrace_lock);
14999 
15000         if (ddi_soft_state_init(&dtrace_softstate,
15001             sizeof (dtrace_state_t), 0) != 0) {
15002                 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
15003                 mutex_exit(&cpu_lock);
15004                 mutex_exit(&dtrace_provider_lock);
15005                 mutex_exit(&dtrace_lock);
15006                 return (DDI_FAILURE);
15007         }
15008 
15009         if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
15010             DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
15011             ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
15012             DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
15013                 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
15014                 ddi_remove_minor_node(devi, NULL);
15015                 ddi_soft_state_fini(&dtrace_softstate);
15016                 mutex_exit(&cpu_lock);
15017                 mutex_exit(&dtrace_provider_lock);
15018                 mutex_exit(&dtrace_lock);
15019                 return (DDI_FAILURE);
15020         }
15021 
15022         ddi_report_dev(devi);
15023         dtrace_devi = devi;
15024 
15025         dtrace_modload = dtrace_module_loaded;
15026         dtrace_modunload = dtrace_module_unloaded;
15027         dtrace_cpu_init = dtrace_cpu_setup_initial;
15028         dtrace_helpers_cleanup = dtrace_helpers_destroy;
15029         dtrace_helpers_fork = dtrace_helpers_duplicate;
15030         dtrace_cpustart_init = dtrace_suspend;
15031         dtrace_cpustart_fini = dtrace_resume;
15032         dtrace_debugger_init = dtrace_suspend;
15033         dtrace_debugger_fini = dtrace_resume;
15034 
15035         register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15036 
15037         ASSERT(MUTEX_HELD(&cpu_lock));
15038 
15039         dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
15040             NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
15041         dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
15042             UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
15043             VM_SLEEP | VMC_IDENTIFIER);
15044         dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15045             1, INT_MAX, 0);
15046 
15047         dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
15048             sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
15049             NULL, NULL, NULL, NULL, NULL, 0);
15050 
15051         ASSERT(MUTEX_HELD(&cpu_lock));
15052         dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
15053             offsetof(dtrace_probe_t, dtpr_nextmod),
15054             offsetof(dtrace_probe_t, dtpr_prevmod));
15055 
15056         dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
15057             offsetof(dtrace_probe_t, dtpr_nextfunc),
15058             offsetof(dtrace_probe_t, dtpr_prevfunc));
15059 
15060         dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
15061             offsetof(dtrace_probe_t, dtpr_nextname),
15062             offsetof(dtrace_probe_t, dtpr_prevname));
15063 
15064         if (dtrace_retain_max < 1) {
15065                 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15066                     "setting to 1", dtrace_retain_max);
15067                 dtrace_retain_max = 1;
15068         }
15069 
15070         /*
15071          * Now discover our toxic ranges.
15072          */
15073         dtrace_toxic_ranges(dtrace_toxrange_add);
15074 
15075         /*
15076          * Before we register ourselves as a provider to our own framework,
15077          * we would like to assert that dtrace_provider is NULL -- but that's
15078          * not true if we were loaded as a dependency of a DTrace provider.
15079          * Once we've registered, we can assert that dtrace_provider is our
15080          * pseudo provider.
15081          */
15082         (void) dtrace_register("dtrace", &dtrace_provider_attr,
15083             DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
15084 
15085         ASSERT(dtrace_provider != NULL);
15086         ASSERT((dtrace_provider_id_t)dtrace_provider == id);
15087 
15088         dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
15089             dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
15090         dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
15091             dtrace_provider, NULL, NULL, "END", 0, NULL);
15092         dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
15093             dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
15094 
15095         dtrace_anon_property();
15096         mutex_exit(&cpu_lock);
15097 
15098         /*
15099          * If there are already providers, we must ask them to provide their
15100          * probes, and then match any anonymous enabling against them.  Note
15101          * that there should be no other retained enablings at this time:
15102          * the only retained enablings at this time should be the anonymous
15103          * enabling.
15104          */
15105         if (dtrace_anon.dta_enabling != NULL) {
15106                 ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
15107 
15108                 dtrace_enabling_provide(NULL);
15109                 state = dtrace_anon.dta_state;
15110 
15111                 /*
15112                  * We couldn't hold cpu_lock across the above call to
15113                  * dtrace_enabling_provide(), but we must hold it to actually
15114                  * enable the probes.  We have to drop all of our locks, pick
15115                  * up cpu_lock, and regain our locks before matching the
15116                  * retained anonymous enabling.
15117                  */
15118                 mutex_exit(&dtrace_lock);
15119                 mutex_exit(&dtrace_provider_lock);
15120 
15121                 mutex_enter(&cpu_lock);
15122                 mutex_enter(&dtrace_provider_lock);
15123                 mutex_enter(&dtrace_lock);
15124 
15125                 if ((enab = dtrace_anon.dta_enabling) != NULL)
15126                         (void) dtrace_enabling_match(enab, NULL);
15127 
15128                 mutex_exit(&cpu_lock);
15129         }
15130 
15131         mutex_exit(&dtrace_lock);
15132         mutex_exit(&dtrace_provider_lock);
15133 
15134         if (state != NULL) {
15135                 /*
15136                  * If we created any anonymous state, set it going now.
15137                  */
15138                 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
15139         }
15140 
15141         return (DDI_SUCCESS);
15142 }
15143 
15144 /*ARGSUSED*/
15145 static int
15146 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
15147 {
15148         dtrace_state_t *state;
15149         uint32_t priv;
15150         uid_t uid;
15151         zoneid_t zoneid;
15152 
15153         if (getminor(*devp) == DTRACEMNRN_HELPER)
15154                 return (0);
15155 
15156         /*
15157          * If this wasn't an open with the "helper" minor, then it must be
15158          * the "dtrace" minor.
15159          */
15160         if (getminor(*devp) != DTRACEMNRN_DTRACE)
15161                 return (ENXIO);
15162 
15163         /*
15164          * If no DTRACE_PRIV_* bits are set in the credential, then the
15165          * caller lacks sufficient permission to do anything with DTrace.
15166          */
15167         dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
15168         if (priv == DTRACE_PRIV_NONE)
15169                 return (EACCES);
15170 
15171         /*
15172          * Ask all providers to provide all their probes.
15173          */
15174         mutex_enter(&dtrace_provider_lock);
15175         dtrace_probe_provide(NULL, NULL);
15176         mutex_exit(&dtrace_provider_lock);
15177 
15178         mutex_enter(&cpu_lock);
15179         mutex_enter(&dtrace_lock);
15180         dtrace_opens++;
15181         dtrace_membar_producer();
15182 
15183         /*
15184          * If the kernel debugger is active (that is, if the kernel debugger
15185          * modified text in some way), we won't allow the open.
15186          */
15187         if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15188                 dtrace_opens--;
15189                 mutex_exit(&cpu_lock);
15190                 mutex_exit(&dtrace_lock);
15191                 return (EBUSY);
15192         }
15193 
15194         if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) {
15195                 /*
15196                  * If DTrace helper tracing is enabled, we need to allocate the
15197                  * trace buffer and initialize the values.
15198                  */
15199                 dtrace_helptrace_buffer =
15200                     kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
15201                 dtrace_helptrace_next = 0;
15202                 dtrace_helptrace_wrapped = 0;
15203                 dtrace_helptrace_enable = 0;
15204         }
15205 
15206         state = dtrace_state_create(devp, cred_p);
15207         mutex_exit(&cpu_lock);
15208 
15209         if (state == NULL) {
15210                 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
15211                         (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15212                 mutex_exit(&dtrace_lock);
15213                 return (EAGAIN);
15214         }
15215 
15216         mutex_exit(&dtrace_lock);
15217 
15218         return (0);
15219 }
15220 
15221 /*ARGSUSED*/
15222 static int
15223 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
15224 {
15225         minor_t minor = getminor(dev);
15226         dtrace_state_t *state;
15227         dtrace_helptrace_t *buf = NULL;
15228 
15229         if (minor == DTRACEMNRN_HELPER)
15230                 return (0);
15231 
15232         state = ddi_get_soft_state(dtrace_softstate, minor);
15233 
15234         mutex_enter(&cpu_lock);
15235         mutex_enter(&dtrace_lock);
15236 
15237         if (state->dts_anon) {
15238                 /*
15239                  * There is anonymous state. Destroy that first.
15240                  */
15241                 ASSERT(dtrace_anon.dta_state == NULL);
15242                 dtrace_state_destroy(state->dts_anon);
15243         }
15244 
15245         if (dtrace_helptrace_disable) {
15246                 /*
15247                  * If we have been told to disable helper tracing, set the
15248                  * buffer to NULL before calling into dtrace_state_destroy();
15249                  * we take advantage of its dtrace_sync() to know that no
15250                  * CPU is in probe context with enabled helper tracing
15251                  * after it returns.
15252                  */
15253                 buf = dtrace_helptrace_buffer;
15254                 dtrace_helptrace_buffer = NULL;
15255         }
15256 
15257         dtrace_state_destroy(state);
15258         ASSERT(dtrace_opens > 0);
15259 
15260         /*
15261          * Only relinquish control of the kernel debugger interface when there
15262          * are no consumers and no anonymous enablings.
15263          */
15264         if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
15265                 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15266 
15267         if (buf != NULL) {
15268                 kmem_free(buf, dtrace_helptrace_bufsize);
15269                 dtrace_helptrace_disable = 0;
15270         }
15271 
15272         mutex_exit(&dtrace_lock);
15273         mutex_exit(&cpu_lock);
15274 
15275         return (0);
15276 }
15277 
15278 /*ARGSUSED*/
15279 static int
15280 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
15281 {
15282         int rval;
15283         dof_helper_t help, *dhp = NULL;
15284 
15285         switch (cmd) {
15286         case DTRACEHIOC_ADDDOF:
15287                 if (copyin((void *)arg, &help, sizeof (help)) != 0) {
15288                         dtrace_dof_error(NULL, "failed to copyin DOF helper");
15289                         return (EFAULT);
15290                 }
15291 
15292                 dhp = &help;
15293                 arg = (intptr_t)help.dofhp_dof;
15294                 /*FALLTHROUGH*/
15295 
15296         case DTRACEHIOC_ADD: {
15297                 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
15298 
15299                 if (dof == NULL)
15300                         return (rval);
15301 
15302                 mutex_enter(&dtrace_lock);
15303 
15304                 /*
15305                  * dtrace_helper_slurp() takes responsibility for the dof --
15306                  * it may free it now or it may save it and free it later.
15307                  */
15308                 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
15309                         *rv = rval;
15310                         rval = 0;
15311                 } else {
15312                         rval = EINVAL;
15313                 }
15314 
15315                 mutex_exit(&dtrace_lock);
15316                 return (rval);
15317         }
15318 
15319         case DTRACEHIOC_REMOVE: {
15320                 mutex_enter(&dtrace_lock);
15321                 rval = dtrace_helper_destroygen(arg);
15322                 mutex_exit(&dtrace_lock);
15323 
15324                 return (rval);
15325         }
15326 
15327         default:
15328                 break;
15329         }
15330 
15331         return (ENOTTY);
15332 }
15333 
15334 /*ARGSUSED*/
15335 static int
15336 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
15337 {
15338         minor_t minor = getminor(dev);
15339         dtrace_state_t *state;
15340         int rval;
15341 
15342         if (minor == DTRACEMNRN_HELPER)
15343                 return (dtrace_ioctl_helper(cmd, arg, rv));
15344 
15345         state = ddi_get_soft_state(dtrace_softstate, minor);
15346 
15347         if (state->dts_anon) {
15348                 ASSERT(dtrace_anon.dta_state == NULL);
15349                 state = state->dts_anon;
15350         }
15351 
15352         switch (cmd) {
15353         case DTRACEIOC_PROVIDER: {
15354                 dtrace_providerdesc_t pvd;
15355                 dtrace_provider_t *pvp;
15356 
15357                 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
15358                         return (EFAULT);
15359 
15360                 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
15361                 mutex_enter(&dtrace_provider_lock);
15362 
15363                 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
15364                         if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
15365                                 break;
15366                 }
15367 
15368                 mutex_exit(&dtrace_provider_lock);
15369 
15370                 if (pvp == NULL)
15371                         return (ESRCH);
15372 
15373                 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
15374                 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
15375                 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
15376                         return (EFAULT);
15377 
15378                 return (0);
15379         }
15380 
15381         case DTRACEIOC_EPROBE: {
15382                 dtrace_eprobedesc_t epdesc;
15383                 dtrace_ecb_t *ecb;
15384                 dtrace_action_t *act;
15385                 void *buf;
15386                 size_t size;
15387                 uintptr_t dest;
15388                 int nrecs;
15389 
15390                 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
15391                         return (EFAULT);
15392 
15393                 mutex_enter(&dtrace_lock);
15394 
15395                 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
15396                         mutex_exit(&dtrace_lock);
15397                         return (EINVAL);
15398                 }
15399 
15400                 if (ecb->dte_probe == NULL) {
15401                         mutex_exit(&dtrace_lock);
15402                         return (EINVAL);
15403                 }
15404 
15405                 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
15406                 epdesc.dtepd_uarg = ecb->dte_uarg;
15407                 epdesc.dtepd_size = ecb->dte_size;
15408 
15409                 nrecs = epdesc.dtepd_nrecs;
15410                 epdesc.dtepd_nrecs = 0;
15411                 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15412                         if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15413                                 continue;
15414 
15415                         epdesc.dtepd_nrecs++;
15416                 }
15417 
15418                 /*
15419                  * Now that we have the size, we need to allocate a temporary
15420                  * buffer in which to store the complete description.  We need
15421                  * the temporary buffer to be able to drop dtrace_lock()
15422                  * across the copyout(), below.
15423                  */
15424                 size = sizeof (dtrace_eprobedesc_t) +
15425                     (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
15426 
15427                 buf = kmem_alloc(size, KM_SLEEP);
15428                 dest = (uintptr_t)buf;
15429 
15430                 bcopy(&epdesc, (void *)dest, sizeof (epdesc));
15431                 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
15432 
15433                 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15434                         if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15435                                 continue;
15436 
15437                         if (nrecs-- == 0)
15438                                 break;
15439 
15440                         bcopy(&act->dta_rec, (void *)dest,
15441                             sizeof (dtrace_recdesc_t));
15442                         dest += sizeof (dtrace_recdesc_t);
15443                 }
15444 
15445                 mutex_exit(&dtrace_lock);
15446 
15447                 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15448                         kmem_free(buf, size);
15449                         return (EFAULT);
15450                 }
15451 
15452                 kmem_free(buf, size);
15453                 return (0);
15454         }
15455 
15456         case DTRACEIOC_AGGDESC: {
15457                 dtrace_aggdesc_t aggdesc;
15458                 dtrace_action_t *act;
15459                 dtrace_aggregation_t *agg;
15460                 int nrecs;
15461                 uint32_t offs;
15462                 dtrace_recdesc_t *lrec;
15463                 void *buf;
15464                 size_t size;
15465                 uintptr_t dest;
15466 
15467                 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
15468                         return (EFAULT);
15469 
15470                 mutex_enter(&dtrace_lock);
15471 
15472                 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
15473                         mutex_exit(&dtrace_lock);
15474                         return (EINVAL);
15475                 }
15476 
15477                 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
15478 
15479                 nrecs = aggdesc.dtagd_nrecs;
15480                 aggdesc.dtagd_nrecs = 0;
15481 
15482                 offs = agg->dtag_base;
15483                 lrec = &agg->dtag_action.dta_rec;
15484                 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
15485 
15486                 for (act = agg->dtag_first; ; act = act->dta_next) {
15487                         ASSERT(act->dta_intuple ||
15488                             DTRACEACT_ISAGG(act->dta_kind));
15489 
15490                         /*
15491                          * If this action has a record size of zero, it
15492                          * denotes an argument to the aggregating action.
15493                          * Because the presence of this record doesn't (or
15494                          * shouldn't) affect the way the data is interpreted,
15495                          * we don't copy it out to save user-level the
15496                          * confusion of dealing with a zero-length record.
15497                          */
15498                         if (act->dta_rec.dtrd_size == 0) {
15499                                 ASSERT(agg->dtag_hasarg);
15500                                 continue;
15501                         }
15502 
15503                         aggdesc.dtagd_nrecs++;
15504 
15505                         if (act == &agg->dtag_action)
15506                                 break;
15507                 }
15508 
15509                 /*
15510                  * Now that we have the size, we need to allocate a temporary
15511                  * buffer in which to store the complete description.  We need
15512                  * the temporary buffer to be able to drop dtrace_lock()
15513                  * across the copyout(), below.
15514                  */
15515                 size = sizeof (dtrace_aggdesc_t) +
15516                     (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
15517 
15518                 buf = kmem_alloc(size, KM_SLEEP);
15519                 dest = (uintptr_t)buf;
15520 
15521                 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
15522                 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
15523 
15524                 for (act = agg->dtag_first; ; act = act->dta_next) {
15525                         dtrace_recdesc_t rec = act->dta_rec;
15526 
15527                         /*
15528                          * See the comment in the above loop for why we pass
15529                          * over zero-length records.
15530                          */
15531                         if (rec.dtrd_size == 0) {
15532                                 ASSERT(agg->dtag_hasarg);
15533                                 continue;
15534                         }
15535 
15536                         if (nrecs-- == 0)
15537                                 break;
15538 
15539                         rec.dtrd_offset -= offs;
15540                         bcopy(&rec, (void *)dest, sizeof (rec));
15541                         dest += sizeof (dtrace_recdesc_t);
15542 
15543                         if (act == &agg->dtag_action)
15544                                 break;
15545                 }
15546 
15547                 mutex_exit(&dtrace_lock);
15548 
15549                 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15550                         kmem_free(buf, size);
15551                         return (EFAULT);
15552                 }
15553 
15554                 kmem_free(buf, size);
15555                 return (0);
15556         }
15557 
15558         case DTRACEIOC_ENABLE: {
15559                 dof_hdr_t *dof;
15560                 dtrace_enabling_t *enab = NULL;
15561                 dtrace_vstate_t *vstate;
15562                 int err = 0;
15563 
15564                 *rv = 0;
15565 
15566                 /*
15567                  * If a NULL argument has been passed, we take this as our
15568                  * cue to reevaluate our enablings.
15569                  */
15570                 if (arg == NULL) {
15571                         dtrace_enabling_matchall();
15572 
15573                         return (0);
15574                 }
15575 
15576                 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
15577                         return (rval);
15578 
15579                 mutex_enter(&cpu_lock);
15580                 mutex_enter(&dtrace_lock);
15581                 vstate = &state->dts_vstate;
15582 
15583                 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
15584                         mutex_exit(&dtrace_lock);
15585                         mutex_exit(&cpu_lock);
15586                         dtrace_dof_destroy(dof);
15587                         return (EBUSY);
15588                 }
15589 
15590                 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
15591                         mutex_exit(&dtrace_lock);
15592                         mutex_exit(&cpu_lock);
15593                         dtrace_dof_destroy(dof);
15594                         return (EINVAL);
15595                 }
15596 
15597                 if ((rval = dtrace_dof_options(dof, state)) != 0) {
15598                         dtrace_enabling_destroy(enab);
15599                         mutex_exit(&dtrace_lock);
15600                         mutex_exit(&cpu_lock);
15601                         dtrace_dof_destroy(dof);
15602                         return (rval);
15603                 }
15604 
15605                 if ((err = dtrace_enabling_match(enab, rv)) == 0) {
15606                         err = dtrace_enabling_retain(enab);
15607                 } else {
15608                         dtrace_enabling_destroy(enab);
15609                 }
15610 
15611                 mutex_exit(&cpu_lock);
15612                 mutex_exit(&dtrace_lock);
15613                 dtrace_dof_destroy(dof);
15614 
15615                 return (err);
15616         }
15617 
15618         case DTRACEIOC_REPLICATE: {
15619                 dtrace_repldesc_t desc;
15620                 dtrace_probedesc_t *match = &desc.dtrpd_match;
15621                 dtrace_probedesc_t *create = &desc.dtrpd_create;
15622                 int err;
15623 
15624                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15625                         return (EFAULT);
15626 
15627                 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15628                 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15629                 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15630                 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15631 
15632                 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15633                 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15634                 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15635                 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15636 
15637                 mutex_enter(&dtrace_lock);
15638                 err = dtrace_enabling_replicate(state, match, create);
15639                 mutex_exit(&dtrace_lock);
15640 
15641                 return (err);
15642         }
15643 
15644         case DTRACEIOC_PROBEMATCH:
15645         case DTRACEIOC_PROBES: {
15646                 dtrace_probe_t *probe = NULL;
15647                 dtrace_probedesc_t desc;
15648                 dtrace_probekey_t pkey;
15649                 dtrace_id_t i;
15650                 int m = 0;
15651                 uint32_t priv;
15652                 uid_t uid;
15653                 zoneid_t zoneid;
15654 
15655                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15656                         return (EFAULT);
15657 
15658                 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15659                 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15660                 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15661                 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15662 
15663                 /*
15664                  * Before we attempt to match this probe, we want to give
15665                  * all providers the opportunity to provide it.
15666                  */
15667                 if (desc.dtpd_id == DTRACE_IDNONE) {
15668                         mutex_enter(&dtrace_provider_lock);
15669                         dtrace_probe_provide(&desc, NULL);
15670                         mutex_exit(&dtrace_provider_lock);
15671                         desc.dtpd_id++;
15672                 }
15673 
15674                 if (cmd == DTRACEIOC_PROBEMATCH)  {
15675                         dtrace_probekey(&desc, &pkey);
15676                         pkey.dtpk_id = DTRACE_IDNONE;
15677                 }
15678 
15679                 dtrace_cred2priv(cr, &priv, &uid, &zoneid);
15680 
15681                 mutex_enter(&dtrace_lock);
15682 
15683                 if (cmd == DTRACEIOC_PROBEMATCH) {
15684                         for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15685                                 if ((probe = dtrace_probes[i - 1]) != NULL &&
15686                                     (m = dtrace_match_probe(probe, &pkey,
15687                                     priv, uid, zoneid)) != 0)
15688                                         break;
15689                         }
15690 
15691                         if (m < 0) {
15692                                 mutex_exit(&dtrace_lock);
15693                                 return (EINVAL);
15694                         }
15695 
15696                 } else {
15697                         for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15698                                 if ((probe = dtrace_probes[i - 1]) != NULL &&
15699                                     dtrace_match_priv(probe, priv, uid, zoneid))
15700                                         break;
15701                         }
15702                 }
15703 
15704                 if (probe == NULL) {
15705                         mutex_exit(&dtrace_lock);
15706                         return (ESRCH);
15707                 }
15708 
15709                 dtrace_probe_description(probe, &desc);
15710                 mutex_exit(&dtrace_lock);
15711 
15712                 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15713                         return (EFAULT);
15714 
15715                 return (0);
15716         }
15717 
15718         case DTRACEIOC_PROBEARG: {
15719                 dtrace_argdesc_t desc;
15720                 dtrace_probe_t *probe;
15721                 dtrace_provider_t *prov;
15722 
15723                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15724                         return (EFAULT);
15725 
15726                 if (desc.dtargd_id == DTRACE_IDNONE)
15727                         return (EINVAL);
15728 
15729                 if (desc.dtargd_ndx == DTRACE_ARGNONE)
15730                         return (EINVAL);
15731 
15732                 mutex_enter(&dtrace_provider_lock);
15733                 mutex_enter(&mod_lock);
15734                 mutex_enter(&dtrace_lock);
15735 
15736                 if (desc.dtargd_id > dtrace_nprobes) {
15737                         mutex_exit(&dtrace_lock);
15738                         mutex_exit(&mod_lock);
15739                         mutex_exit(&dtrace_provider_lock);
15740                         return (EINVAL);
15741                 }
15742 
15743                 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
15744                         mutex_exit(&dtrace_lock);
15745                         mutex_exit(&mod_lock);
15746                         mutex_exit(&dtrace_provider_lock);
15747                         return (EINVAL);
15748                 }
15749 
15750                 mutex_exit(&dtrace_lock);
15751 
15752                 prov = probe->dtpr_provider;
15753 
15754                 if (prov->dtpv_pops.dtps_getargdesc == NULL) {
15755                         /*
15756                          * There isn't any typed information for this probe.
15757                          * Set the argument number to DTRACE_ARGNONE.
15758                          */
15759                         desc.dtargd_ndx = DTRACE_ARGNONE;
15760                 } else {
15761                         desc.dtargd_native[0] = '\0';
15762                         desc.dtargd_xlate[0] = '\0';
15763                         desc.dtargd_mapping = desc.dtargd_ndx;
15764 
15765                         prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
15766                             probe->dtpr_id, probe->dtpr_arg, &desc);
15767                 }
15768 
15769                 mutex_exit(&mod_lock);
15770                 mutex_exit(&dtrace_provider_lock);
15771 
15772                 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15773                         return (EFAULT);
15774 
15775                 return (0);
15776         }
15777 
15778         case DTRACEIOC_GO: {
15779                 processorid_t cpuid;
15780                 rval = dtrace_state_go(state, &cpuid);
15781 
15782                 if (rval != 0)
15783                         return (rval);
15784 
15785                 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
15786                         return (EFAULT);
15787 
15788                 return (0);
15789         }
15790 
15791         case DTRACEIOC_STOP: {
15792                 processorid_t cpuid;
15793 
15794                 mutex_enter(&dtrace_lock);
15795                 rval = dtrace_state_stop(state, &cpuid);
15796                 mutex_exit(&dtrace_lock);
15797 
15798                 if (rval != 0)
15799                         return (rval);
15800 
15801                 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
15802                         return (EFAULT);
15803 
15804                 return (0);
15805         }
15806 
15807         case DTRACEIOC_DOFGET: {
15808                 dof_hdr_t hdr, *dof;
15809                 uint64_t len;
15810 
15811                 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
15812                         return (EFAULT);
15813 
15814                 mutex_enter(&dtrace_lock);
15815                 dof = dtrace_dof_create(state);
15816                 mutex_exit(&dtrace_lock);
15817 
15818                 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
15819                 rval = copyout(dof, (void *)arg, len);
15820                 dtrace_dof_destroy(dof);
15821 
15822                 return (rval == 0 ? 0 : EFAULT);
15823         }
15824 
15825         case DTRACEIOC_AGGSNAP:
15826         case DTRACEIOC_BUFSNAP: {
15827                 dtrace_bufdesc_t desc;
15828                 caddr_t cached;
15829                 dtrace_buffer_t *buf;
15830 
15831                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15832                         return (EFAULT);
15833 
15834                 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
15835                         return (EINVAL);
15836 
15837                 mutex_enter(&dtrace_lock);
15838 
15839                 if (cmd == DTRACEIOC_BUFSNAP) {
15840                         buf = &state->dts_buffer[desc.dtbd_cpu];
15841                 } else {
15842                         buf = &state->dts_aggbuffer[desc.dtbd_cpu];
15843                 }
15844 
15845                 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
15846                         size_t sz = buf->dtb_offset;
15847 
15848                         if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
15849                                 mutex_exit(&dtrace_lock);
15850                                 return (EBUSY);
15851                         }
15852 
15853                         /*
15854                          * If this buffer has already been consumed, we're
15855                          * going to indicate that there's nothing left here
15856                          * to consume.
15857                          */
15858                         if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
15859                                 mutex_exit(&dtrace_lock);
15860 
15861                                 desc.dtbd_size = 0;
15862                                 desc.dtbd_drops = 0;
15863                                 desc.dtbd_errors = 0;
15864                                 desc.dtbd_oldest = 0;
15865                                 sz = sizeof (desc);
15866 
15867                                 if (copyout(&desc, (void *)arg, sz) != 0)
15868                                         return (EFAULT);
15869 
15870                                 return (0);
15871                         }
15872 
15873                         /*
15874                          * If this is a ring buffer that has wrapped, we want
15875                          * to copy the whole thing out.
15876                          */
15877                         if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
15878                                 dtrace_buffer_polish(buf);
15879                                 sz = buf->dtb_size;
15880                         }
15881 
15882                         if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
15883                                 mutex_exit(&dtrace_lock);
15884                                 return (EFAULT);
15885                         }
15886 
15887                         desc.dtbd_size = sz;
15888                         desc.dtbd_drops = buf->dtb_drops;
15889                         desc.dtbd_errors = buf->dtb_errors;
15890                         desc.dtbd_oldest = buf->dtb_xamot_offset;
15891                         desc.dtbd_timestamp = dtrace_gethrtime();
15892 
15893                         mutex_exit(&dtrace_lock);
15894 
15895                         if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15896                                 return (EFAULT);
15897 
15898                         buf->dtb_flags |= DTRACEBUF_CONSUMED;
15899 
15900                         return (0);
15901                 }
15902 
15903                 if (buf->dtb_tomax == NULL) {
15904                         ASSERT(buf->dtb_xamot == NULL);
15905                         mutex_exit(&dtrace_lock);
15906                         return (ENOENT);
15907                 }
15908 
15909                 cached = buf->dtb_tomax;
15910                 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
15911 
15912                 dtrace_xcall(desc.dtbd_cpu,
15913                     (dtrace_xcall_t)dtrace_buffer_switch, buf);
15914 
15915                 state->dts_errors += buf->dtb_xamot_errors;
15916 
15917                 /*
15918                  * If the buffers did not actually switch, then the cross call
15919                  * did not take place -- presumably because the given CPU is
15920                  * not in the ready set.  If this is the case, we'll return
15921                  * ENOENT.
15922                  */
15923                 if (buf->dtb_tomax == cached) {
15924                         ASSERT(buf->dtb_xamot != cached);
15925                         mutex_exit(&dtrace_lock);
15926                         return (ENOENT);
15927                 }
15928 
15929                 ASSERT(cached == buf->dtb_xamot);
15930 
15931                 /*
15932                  * We have our snapshot; now copy it out.
15933                  */
15934                 if (copyout(buf->dtb_xamot, desc.dtbd_data,
15935                     buf->dtb_xamot_offset) != 0) {
15936                         mutex_exit(&dtrace_lock);
15937                         return (EFAULT);
15938                 }
15939 
15940                 desc.dtbd_size = buf->dtb_xamot_offset;
15941                 desc.dtbd_drops = buf->dtb_xamot_drops;
15942                 desc.dtbd_errors = buf->dtb_xamot_errors;
15943                 desc.dtbd_oldest = 0;
15944                 desc.dtbd_timestamp = buf->dtb_switched;
15945 
15946                 mutex_exit(&dtrace_lock);
15947 
15948                 /*
15949                  * Finally, copy out the buffer description.
15950                  */
15951                 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15952                         return (EFAULT);
15953 
15954                 return (0);
15955         }
15956 
15957         case DTRACEIOC_CONF: {
15958                 dtrace_conf_t conf;
15959 
15960                 bzero(&conf, sizeof (conf));
15961                 conf.dtc_difversion = DIF_VERSION;
15962                 conf.dtc_difintregs = DIF_DIR_NREGS;
15963                 conf.dtc_diftupregs = DIF_DTR_NREGS;
15964                 conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
15965 
15966                 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
15967                         return (EFAULT);
15968 
15969                 return (0);
15970         }
15971 
15972         case DTRACEIOC_STATUS: {
15973                 dtrace_status_t stat;
15974                 dtrace_dstate_t *dstate;
15975                 int i, j;
15976                 uint64_t nerrs;
15977 
15978                 /*
15979                  * See the comment in dtrace_state_deadman() for the reason
15980                  * for setting dts_laststatus to INT64_MAX before setting
15981                  * it to the correct value.
15982                  */
15983                 state->dts_laststatus = INT64_MAX;
15984                 dtrace_membar_producer();
15985                 state->dts_laststatus = dtrace_gethrtime();
15986 
15987                 bzero(&stat, sizeof (stat));
15988 
15989                 mutex_enter(&dtrace_lock);
15990 
15991                 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
15992                         mutex_exit(&dtrace_lock);
15993                         return (ENOENT);
15994                 }
15995 
15996                 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
15997                         stat.dtst_exiting = 1;
15998 
15999                 nerrs = state->dts_errors;
16000                 dstate = &state->dts_vstate.dtvs_dynvars;
16001 
16002                 for (i = 0; i < NCPU; i++) {
16003                         dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
16004 
16005                         stat.dtst_dyndrops += dcpu->dtdsc_drops;
16006                         stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
16007                         stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
16008 
16009                         if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
16010                                 stat.dtst_filled++;
16011 
16012                         nerrs += state->dts_buffer[i].dtb_errors;
16013 
16014                         for (j = 0; j < state->dts_nspeculations; j++) {
16015                                 dtrace_speculation_t *spec;
16016                                 dtrace_buffer_t *buf;
16017 
16018                                 spec = &state->dts_speculations[j];
16019                                 buf = &spec->dtsp_buffer[i];
16020                                 stat.dtst_specdrops += buf->dtb_xamot_drops;
16021                         }
16022                 }
16023 
16024                 stat.dtst_specdrops_busy = state->dts_speculations_busy;
16025                 stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
16026                 stat.dtst_stkstroverflows = state->dts_stkstroverflows;
16027                 stat.dtst_dblerrors = state->dts_dblerrors;
16028                 stat.dtst_killed =
16029                     (state->dts_activity == DTRACE_ACTIVITY_KILLED);
16030                 stat.dtst_errors = nerrs;
16031 
16032                 mutex_exit(&dtrace_lock);
16033 
16034                 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
16035                         return (EFAULT);
16036 
16037                 return (0);
16038         }
16039 
16040         case DTRACEIOC_FORMAT: {
16041                 dtrace_fmtdesc_t fmt;
16042                 char *str;
16043                 int len;
16044 
16045                 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
16046                         return (EFAULT);
16047 
16048                 mutex_enter(&dtrace_lock);
16049 
16050                 if (fmt.dtfd_format == 0 ||
16051                     fmt.dtfd_format > state->dts_nformats) {
16052                         mutex_exit(&dtrace_lock);
16053                         return (EINVAL);
16054                 }
16055 
16056                 /*
16057                  * Format strings are allocated contiguously and they are
16058                  * never freed; if a format index is less than the number
16059                  * of formats, we can assert that the format map is non-NULL
16060                  * and that the format for the specified index is non-NULL.
16061                  */
16062                 ASSERT(state->dts_formats != NULL);
16063                 str = state->dts_formats[fmt.dtfd_format - 1];
16064                 ASSERT(str != NULL);
16065 
16066                 len = strlen(str) + 1;
16067 
16068                 if (len > fmt.dtfd_length) {
16069                         fmt.dtfd_length = len;
16070 
16071                         if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
16072                                 mutex_exit(&dtrace_lock);
16073                                 return (EINVAL);
16074                         }
16075                 } else {
16076                         if (copyout(str, fmt.dtfd_string, len) != 0) {
16077                                 mutex_exit(&dtrace_lock);
16078                                 return (EINVAL);
16079                         }
16080                 }
16081 
16082                 mutex_exit(&dtrace_lock);
16083                 return (0);
16084         }
16085 
16086         default:
16087                 break;
16088         }
16089 
16090         return (ENOTTY);
16091 }
16092 
16093 /*ARGSUSED*/
16094 static int
16095 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
16096 {
16097         dtrace_state_t *state;
16098 
16099         switch (cmd) {
16100         case DDI_DETACH:
16101                 break;
16102 
16103         case DDI_SUSPEND:
16104                 return (DDI_SUCCESS);
16105 
16106         default:
16107                 return (DDI_FAILURE);
16108         }
16109 
16110         mutex_enter(&cpu_lock);
16111         mutex_enter(&dtrace_provider_lock);
16112         mutex_enter(&dtrace_lock);
16113 
16114         ASSERT(dtrace_opens == 0);
16115 
16116         if (dtrace_helpers > 0) {
16117                 mutex_exit(&dtrace_provider_lock);
16118                 mutex_exit(&dtrace_lock);
16119                 mutex_exit(&cpu_lock);
16120                 return (DDI_FAILURE);
16121         }
16122 
16123         if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
16124                 mutex_exit(&dtrace_provider_lock);
16125                 mutex_exit(&dtrace_lock);
16126                 mutex_exit(&cpu_lock);
16127                 return (DDI_FAILURE);
16128         }
16129 
16130         dtrace_provider = NULL;
16131 
16132         if ((state = dtrace_anon_grab()) != NULL) {
16133                 /*
16134                  * If there were ECBs on this state, the provider should
16135                  * have not been allowed to detach; assert that there is
16136                  * none.
16137                  */
16138                 ASSERT(state->dts_necbs == 0);
16139                 dtrace_state_destroy(state);
16140 
16141                 /*
16142                  * If we're being detached with anonymous state, we need to
16143                  * indicate to the kernel debugger that DTrace is now inactive.
16144                  */
16145                 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16146         }
16147 
16148         bzero(&dtrace_anon, sizeof (dtrace_anon_t));
16149         unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16150         dtrace_cpu_init = NULL;
16151         dtrace_helpers_cleanup = NULL;
16152         dtrace_helpers_fork = NULL;
16153         dtrace_cpustart_init = NULL;
16154         dtrace_cpustart_fini = NULL;
16155         dtrace_debugger_init = NULL;
16156         dtrace_debugger_fini = NULL;
16157         dtrace_modload = NULL;
16158         dtrace_modunload = NULL;
16159 
16160         ASSERT(dtrace_getf == 0);
16161         ASSERT(dtrace_closef == NULL);
16162 
16163         mutex_exit(&cpu_lock);
16164 
16165         kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
16166         dtrace_probes = NULL;
16167         dtrace_nprobes = 0;
16168 
16169         dtrace_hash_destroy(dtrace_bymod);
16170         dtrace_hash_destroy(dtrace_byfunc);
16171         dtrace_hash_destroy(dtrace_byname);
16172         dtrace_bymod = NULL;
16173         dtrace_byfunc = NULL;
16174         dtrace_byname = NULL;
16175 
16176         kmem_cache_destroy(dtrace_state_cache);
16177         vmem_destroy(dtrace_minor);
16178         vmem_destroy(dtrace_arena);
16179 
16180         if (dtrace_toxrange != NULL) {
16181                 kmem_free(dtrace_toxrange,
16182                     dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
16183                 dtrace_toxrange = NULL;
16184                 dtrace_toxranges = 0;
16185                 dtrace_toxranges_max = 0;
16186         }
16187 
16188         ddi_remove_minor_node(dtrace_devi, NULL);
16189         dtrace_devi = NULL;
16190 
16191         ddi_soft_state_fini(&dtrace_softstate);
16192 
16193         ASSERT(dtrace_vtime_references == 0);
16194         ASSERT(dtrace_opens == 0);
16195         ASSERT(dtrace_retained == NULL);
16196 
16197         mutex_exit(&dtrace_lock);
16198         mutex_exit(&dtrace_provider_lock);
16199 
16200         /*
16201          * We don't destroy the task queue until after we have dropped our
16202          * locks (taskq_destroy() may block on running tasks).  To prevent
16203          * attempting to do work after we have effectively detached but before
16204          * the task queue has been destroyed, all tasks dispatched via the
16205          * task queue must check that DTrace is still attached before
16206          * performing any operation.
16207          */
16208         taskq_destroy(dtrace_taskq);
16209         dtrace_taskq = NULL;
16210 
16211         return (DDI_SUCCESS);
16212 }
16213 
16214 /*ARGSUSED*/
16215 static int
16216 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
16217 {
16218         int error;
16219 
16220         switch (infocmd) {
16221         case DDI_INFO_DEVT2DEVINFO:
16222                 *result = (void *)dtrace_devi;
16223                 error = DDI_SUCCESS;
16224                 break;
16225         case DDI_INFO_DEVT2INSTANCE:
16226                 *result = (void *)0;
16227                 error = DDI_SUCCESS;
16228                 break;
16229         default:
16230                 error = DDI_FAILURE;
16231         }
16232         return (error);
16233 }
16234 
16235 static struct cb_ops dtrace_cb_ops = {
16236         dtrace_open,            /* open */
16237         dtrace_close,           /* close */
16238         nulldev,                /* strategy */
16239         nulldev,                /* print */
16240         nodev,                  /* dump */
16241         nodev,                  /* read */
16242         nodev,                  /* write */
16243         dtrace_ioctl,           /* ioctl */
16244         nodev,                  /* devmap */
16245         nodev,                  /* mmap */
16246         nodev,                  /* segmap */
16247         nochpoll,               /* poll */
16248         ddi_prop_op,            /* cb_prop_op */
16249         0,                      /* streamtab  */
16250         D_NEW | D_MP            /* Driver compatibility flag */
16251 };
16252 
16253 static struct dev_ops dtrace_ops = {
16254         DEVO_REV,               /* devo_rev */
16255         0,                      /* refcnt */
16256         dtrace_info,            /* get_dev_info */
16257         nulldev,                /* identify */
16258         nulldev,                /* probe */
16259         dtrace_attach,          /* attach */
16260         dtrace_detach,          /* detach */
16261         nodev,                  /* reset */
16262         &dtrace_cb_ops,             /* driver operations */
16263         NULL,                   /* bus operations */
16264         nodev,                  /* dev power */
16265         ddi_quiesce_not_needed,         /* quiesce */
16266 };
16267 
16268 static struct modldrv modldrv = {
16269         &mod_driverops,             /* module type (this is a pseudo driver) */
16270         "Dynamic Tracing",      /* name of module */
16271         &dtrace_ops,                /* driver ops */
16272 };
16273 
16274 static struct modlinkage modlinkage = {
16275         MODREV_1,
16276         (void *)&modldrv,
16277         NULL
16278 };
16279 
16280 int
16281 _init(void)
16282 {
16283         return (mod_install(&modlinkage));
16284 }
16285 
16286 int
16287 _info(struct modinfo *modinfop)
16288 {
16289         return (mod_info(&modlinkage, modinfop));
16290 }
16291 
16292 int
16293 _fini(void)
16294 {
16295         return (mod_remove(&modlinkage));
16296 }