1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012 by Delphix. All rights reserved. 24 * Copyright (c) 2012, Joyent, Inc. All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/zfs_zone.h> 29 #include <sys/spa_impl.h> 30 #include <sys/refcount.h> 31 #include <sys/vdev_disk.h> 32 #include <sys/vdev_impl.h> 33 #include <sys/fs/zfs.h> 34 #include <sys/zio.h> 35 #include <sys/sunldi.h> 36 #include <sys/efi_partition.h> 37 #include <sys/fm/fs/zfs.h> 38 39 /* 40 * Virtual device vector for disks. 41 */ 42 43 extern ldi_ident_t zfs_li; 44 45 typedef struct vdev_disk_buf { 46 buf_t vdb_buf; 47 zio_t *vdb_io; 48 } vdev_disk_buf_t; 49 50 static void 51 vdev_disk_hold(vdev_t *vd) 52 { 53 ddi_devid_t devid; 54 char *minor; 55 56 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER)); 57 58 /* 59 * We must have a pathname, and it must be absolute. 60 */ 61 if (vd->vdev_path == NULL || vd->vdev_path[0] != '/') 62 return; 63 64 /* 65 * Only prefetch path and devid info if the device has 66 * never been opened. 67 */ 68 if (vd->vdev_tsd != NULL) 69 return; 70 71 if (vd->vdev_wholedisk == -1ULL) { 72 size_t len = strlen(vd->vdev_path) + 3; 73 char *buf = kmem_alloc(len, KM_SLEEP); 74 75 (void) snprintf(buf, len, "%ss0", vd->vdev_path); 76 77 (void) ldi_vp_from_name(buf, &vd->vdev_name_vp); 78 kmem_free(buf, len); 79 } 80 81 if (vd->vdev_name_vp == NULL) 82 (void) ldi_vp_from_name(vd->vdev_path, &vd->vdev_name_vp); 83 84 if (vd->vdev_devid != NULL && 85 ddi_devid_str_decode(vd->vdev_devid, &devid, &minor) == 0) { 86 (void) ldi_vp_from_devid(devid, minor, &vd->vdev_devid_vp); 87 ddi_devid_str_free(minor); 88 ddi_devid_free(devid); 89 } 90 } 91 92 static void 93 vdev_disk_rele(vdev_t *vd) 94 { 95 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER)); 96 97 if (vd->vdev_name_vp) { 98 VN_RELE_ASYNC(vd->vdev_name_vp, 99 dsl_pool_vnrele_taskq(vd->vdev_spa->spa_dsl_pool)); 100 vd->vdev_name_vp = NULL; 101 } 102 if (vd->vdev_devid_vp) { 103 VN_RELE_ASYNC(vd->vdev_devid_vp, 104 dsl_pool_vnrele_taskq(vd->vdev_spa->spa_dsl_pool)); 105 vd->vdev_devid_vp = NULL; 106 } 107 } 108 109 static uint64_t 110 vdev_disk_get_space(vdev_t *vd, uint64_t capacity, uint_t blksz) 111 { 112 ASSERT(vd->vdev_wholedisk); 113 114 vdev_disk_t *dvd = vd->vdev_tsd; 115 dk_efi_t dk_ioc; 116 efi_gpt_t *efi; 117 uint64_t avail_space = 0; 118 int efisize = EFI_LABEL_SIZE * 2; 119 120 dk_ioc.dki_data = kmem_alloc(efisize, KM_SLEEP); 121 dk_ioc.dki_lba = 1; 122 dk_ioc.dki_length = efisize; 123 dk_ioc.dki_data_64 = (uint64_t)(uintptr_t)dk_ioc.dki_data; 124 efi = dk_ioc.dki_data; 125 126 if (ldi_ioctl(dvd->vd_lh, DKIOCGETEFI, (intptr_t)&dk_ioc, 127 FKIOCTL, kcred, NULL) == 0) { 128 uint64_t efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA); 129 130 zfs_dbgmsg("vdev %s, capacity %llu, altern lba %llu", 131 vd->vdev_path, capacity, efi_altern_lba); 132 if (capacity > efi_altern_lba) 133 avail_space = (capacity - efi_altern_lba) * blksz; 134 } 135 kmem_free(dk_ioc.dki_data, efisize); 136 return (avail_space); 137 } 138 139 static int 140 vdev_disk_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize, 141 uint64_t *ashift) 142 { 143 spa_t *spa = vd->vdev_spa; 144 vdev_disk_t *dvd; 145 struct dk_minfo_ext dkmext; 146 int error; 147 dev_t dev; 148 int otyp; 149 150 /* 151 * We must have a pathname, and it must be absolute. 152 */ 153 if (vd->vdev_path == NULL || vd->vdev_path[0] != '/') { 154 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; 155 return (EINVAL); 156 } 157 158 /* 159 * Reopen the device if it's not currently open. Otherwise, 160 * just update the physical size of the device. 161 */ 162 if (vd->vdev_tsd != NULL) { 163 ASSERT(vd->vdev_reopening); 164 dvd = vd->vdev_tsd; 165 goto skip_open; 166 } 167 168 dvd = vd->vdev_tsd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP); 169 170 /* 171 * When opening a disk device, we want to preserve the user's original 172 * intent. We always want to open the device by the path the user gave 173 * us, even if it is one of multiple paths to the save device. But we 174 * also want to be able to survive disks being removed/recabled. 175 * Therefore the sequence of opening devices is: 176 * 177 * 1. Try opening the device by path. For legacy pools without the 178 * 'whole_disk' property, attempt to fix the path by appending 's0'. 179 * 180 * 2. If the devid of the device matches the stored value, return 181 * success. 182 * 183 * 3. Otherwise, the device may have moved. Try opening the device 184 * by the devid instead. 185 */ 186 if (vd->vdev_devid != NULL) { 187 if (ddi_devid_str_decode(vd->vdev_devid, &dvd->vd_devid, 188 &dvd->vd_minor) != 0) { 189 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; 190 return (EINVAL); 191 } 192 } 193 194 error = EINVAL; /* presume failure */ 195 196 if (vd->vdev_path != NULL) { 197 ddi_devid_t devid; 198 199 if (vd->vdev_wholedisk == -1ULL) { 200 size_t len = strlen(vd->vdev_path) + 3; 201 char *buf = kmem_alloc(len, KM_SLEEP); 202 ldi_handle_t lh; 203 204 (void) snprintf(buf, len, "%ss0", vd->vdev_path); 205 206 if (ldi_open_by_name(buf, spa_mode(spa), kcred, 207 &lh, zfs_li) == 0) { 208 spa_strfree(vd->vdev_path); 209 vd->vdev_path = buf; 210 vd->vdev_wholedisk = 1ULL; 211 (void) ldi_close(lh, spa_mode(spa), kcred); 212 } else { 213 kmem_free(buf, len); 214 } 215 } 216 217 error = ldi_open_by_name(vd->vdev_path, spa_mode(spa), kcred, 218 &dvd->vd_lh, zfs_li); 219 220 /* 221 * Compare the devid to the stored value. 222 */ 223 if (error == 0 && vd->vdev_devid != NULL && 224 ldi_get_devid(dvd->vd_lh, &devid) == 0) { 225 if (ddi_devid_compare(devid, dvd->vd_devid) != 0) { 226 error = EINVAL; 227 (void) ldi_close(dvd->vd_lh, spa_mode(spa), 228 kcred); 229 dvd->vd_lh = NULL; 230 } 231 ddi_devid_free(devid); 232 } 233 234 /* 235 * If we succeeded in opening the device, but 'vdev_wholedisk' 236 * is not yet set, then this must be a slice. 237 */ 238 if (error == 0 && vd->vdev_wholedisk == -1ULL) 239 vd->vdev_wholedisk = 0; 240 } 241 242 /* 243 * If we were unable to open by path, or the devid check fails, open by 244 * devid instead. 245 */ 246 if (error != 0 && vd->vdev_devid != NULL) 247 error = ldi_open_by_devid(dvd->vd_devid, dvd->vd_minor, 248 spa_mode(spa), kcred, &dvd->vd_lh, zfs_li); 249 250 /* 251 * If all else fails, then try opening by physical path (if available) 252 * or the logical path (if we failed due to the devid check). While not 253 * as reliable as the devid, this will give us something, and the higher 254 * level vdev validation will prevent us from opening the wrong device. 255 */ 256 if (error) { 257 if (vd->vdev_physpath != NULL && 258 (dev = ddi_pathname_to_dev_t(vd->vdev_physpath)) != NODEV) 259 error = ldi_open_by_dev(&dev, OTYP_BLK, spa_mode(spa), 260 kcred, &dvd->vd_lh, zfs_li); 261 262 /* 263 * Note that we don't support the legacy auto-wholedisk support 264 * as above. This hasn't been used in a very long time and we 265 * don't need to propagate its oddities to this edge condition. 266 */ 267 if (error && vd->vdev_path != NULL) 268 error = ldi_open_by_name(vd->vdev_path, spa_mode(spa), 269 kcred, &dvd->vd_lh, zfs_li); 270 } 271 272 if (error) { 273 vd->vdev_stat.vs_aux = VDEV_AUX_OPEN_FAILED; 274 return (error); 275 } 276 277 /* 278 * Once a device is opened, verify that the physical device path (if 279 * available) is up to date. 280 */ 281 if (ldi_get_dev(dvd->vd_lh, &dev) == 0 && 282 ldi_get_otyp(dvd->vd_lh, &otyp) == 0) { 283 char *physpath, *minorname; 284 285 physpath = kmem_alloc(MAXPATHLEN, KM_SLEEP); 286 minorname = NULL; 287 if (ddi_dev_pathname(dev, otyp, physpath) == 0 && 288 ldi_get_minor_name(dvd->vd_lh, &minorname) == 0 && 289 (vd->vdev_physpath == NULL || 290 strcmp(vd->vdev_physpath, physpath) != 0)) { 291 if (vd->vdev_physpath) 292 spa_strfree(vd->vdev_physpath); 293 (void) strlcat(physpath, ":", MAXPATHLEN); 294 (void) strlcat(physpath, minorname, MAXPATHLEN); 295 vd->vdev_physpath = spa_strdup(physpath); 296 } 297 if (minorname) 298 kmem_free(minorname, strlen(minorname) + 1); 299 kmem_free(physpath, MAXPATHLEN); 300 } 301 302 skip_open: 303 /* 304 * Determine the actual size of the device. 305 */ 306 if (ldi_get_size(dvd->vd_lh, psize) != 0) { 307 vd->vdev_stat.vs_aux = VDEV_AUX_OPEN_FAILED; 308 return (EINVAL); 309 } 310 311 /* 312 * Determine the device's minimum transfer size. 313 * If the ioctl isn't supported, assume DEV_BSIZE. 314 */ 315 if (ldi_ioctl(dvd->vd_lh, DKIOCGMEDIAINFOEXT, (intptr_t)&dkmext, 316 FKIOCTL, kcred, NULL) != 0) 317 dkmext.dki_pbsize = DEV_BSIZE; 318 319 *ashift = highbit(MAX(dkmext.dki_pbsize, SPA_MINBLOCKSIZE)) - 1; 320 321 if (vd->vdev_wholedisk == 1) { 322 uint64_t capacity = dkmext.dki_capacity - 1; 323 uint64_t blksz = dkmext.dki_lbsize; 324 int wce = 1; 325 326 /* 327 * If we own the whole disk, try to enable disk write caching. 328 * We ignore errors because it's OK if we can't do it. 329 */ 330 (void) ldi_ioctl(dvd->vd_lh, DKIOCSETWCE, (intptr_t)&wce, 331 FKIOCTL, kcred, NULL); 332 333 *max_psize = *psize + vdev_disk_get_space(vd, capacity, blksz); 334 zfs_dbgmsg("capacity change: vdev %s, psize %llu, " 335 "max_psize %llu", vd->vdev_path, *psize, *max_psize); 336 } else { 337 *max_psize = *psize; 338 } 339 340 /* 341 * Clear the nowritecache bit, so that on a vdev_reopen() we will 342 * try again. 343 */ 344 vd->vdev_nowritecache = B_FALSE; 345 346 return (0); 347 } 348 349 static void 350 vdev_disk_close(vdev_t *vd) 351 { 352 vdev_disk_t *dvd = vd->vdev_tsd; 353 354 if (vd->vdev_reopening || dvd == NULL) 355 return; 356 357 if (dvd->vd_minor != NULL) 358 ddi_devid_str_free(dvd->vd_minor); 359 360 if (dvd->vd_devid != NULL) 361 ddi_devid_free(dvd->vd_devid); 362 363 if (dvd->vd_lh != NULL) 364 (void) ldi_close(dvd->vd_lh, spa_mode(vd->vdev_spa), kcred); 365 366 vd->vdev_delayed_close = B_FALSE; 367 kmem_free(dvd, sizeof (vdev_disk_t)); 368 vd->vdev_tsd = NULL; 369 } 370 371 int 372 vdev_disk_physio(vdev_t *vd, caddr_t data, 373 size_t size, uint64_t offset, int flags) 374 { 375 vdev_disk_t *dvd = vd->vdev_tsd; 376 377 /* 378 * If the vdev is closed, it's likely in the REMOVED or FAULTED state. 379 * Nothing to be done here but return failure. 380 */ 381 if (dvd == NULL) 382 return (EIO); 383 384 ASSERT(vd->vdev_ops == &vdev_disk_ops); 385 return (vdev_disk_ldi_physio(dvd->vd_lh, data, size, offset, flags)); 386 } 387 388 int 389 vdev_disk_ldi_physio(ldi_handle_t vd_lh, caddr_t data, 390 size_t size, uint64_t offset, int flags) 391 { 392 buf_t *bp; 393 int error = 0; 394 395 if (vd_lh == NULL) 396 return (EINVAL); 397 398 ASSERT(flags & B_READ || flags & B_WRITE); 399 400 bp = getrbuf(KM_SLEEP); 401 bp->b_flags = flags | B_BUSY | B_NOCACHE | B_FAILFAST; 402 bp->b_bcount = size; 403 bp->b_un.b_addr = (void *)data; 404 bp->b_lblkno = lbtodb(offset); 405 bp->b_bufsize = size; 406 407 error = ldi_strategy(vd_lh, bp); 408 ASSERT(error == 0); 409 if ((error = biowait(bp)) == 0 && bp->b_resid != 0) 410 error = EIO; 411 freerbuf(bp); 412 413 return (error); 414 } 415 416 static void 417 vdev_disk_io_intr(buf_t *bp) 418 { 419 vdev_disk_buf_t *vdb = (vdev_disk_buf_t *)bp; 420 zio_t *zio = vdb->vdb_io; 421 422 /* 423 * The rest of the zio stack only deals with EIO, ECKSUM, and ENXIO. 424 * Rather than teach the rest of the stack about other error 425 * possibilities (EFAULT, etc), we normalize the error value here. 426 */ 427 zio->io_error = (geterror(bp) != 0 ? EIO : 0); 428 429 if (zio->io_error == 0 && bp->b_resid != 0) 430 zio->io_error = EIO; 431 432 kmem_free(vdb, sizeof (vdev_disk_buf_t)); 433 434 zio_interrupt(zio); 435 } 436 437 static void 438 vdev_disk_ioctl_free(zio_t *zio) 439 { 440 kmem_free(zio->io_vsd, sizeof (struct dk_callback)); 441 } 442 443 static const zio_vsd_ops_t vdev_disk_vsd_ops = { 444 vdev_disk_ioctl_free, 445 zio_vsd_default_cksum_report 446 }; 447 448 static void 449 vdev_disk_ioctl_done(void *zio_arg, int error) 450 { 451 zio_t *zio = zio_arg; 452 453 zio->io_error = error; 454 455 zio_interrupt(zio); 456 } 457 458 static int 459 vdev_disk_io_start(zio_t *zio) 460 { 461 vdev_t *vd = zio->io_vd; 462 vdev_disk_t *dvd = vd->vdev_tsd; 463 vdev_disk_buf_t *vdb; 464 struct dk_callback *dkc; 465 buf_t *bp; 466 int error; 467 468 if (zio->io_type == ZIO_TYPE_IOCTL) { 469 /* XXPOLICY */ 470 if (!vdev_readable(vd)) { 471 zio->io_error = ENXIO; 472 return (ZIO_PIPELINE_CONTINUE); 473 } 474 475 switch (zio->io_cmd) { 476 477 case DKIOCFLUSHWRITECACHE: 478 479 if (zfs_nocacheflush) 480 break; 481 482 if (vd->vdev_nowritecache) { 483 zio->io_error = ENOTSUP; 484 break; 485 } 486 487 zio->io_vsd = dkc = kmem_alloc(sizeof (*dkc), KM_SLEEP); 488 zio->io_vsd_ops = &vdev_disk_vsd_ops; 489 490 dkc->dkc_callback = vdev_disk_ioctl_done; 491 dkc->dkc_flag = FLUSH_VOLATILE; 492 dkc->dkc_cookie = zio; 493 494 error = ldi_ioctl(dvd->vd_lh, zio->io_cmd, 495 (uintptr_t)dkc, FKIOCTL, kcred, NULL); 496 497 if (error == 0) { 498 /* 499 * The ioctl will be done asychronously, 500 * and will call vdev_disk_ioctl_done() 501 * upon completion. 502 */ 503 return (ZIO_PIPELINE_STOP); 504 } 505 506 if (error == ENOTSUP || error == ENOTTY) { 507 /* 508 * If we get ENOTSUP or ENOTTY, we know that 509 * no future attempts will ever succeed. 510 * In this case we set a persistent bit so 511 * that we don't bother with the ioctl in the 512 * future. 513 */ 514 vd->vdev_nowritecache = B_TRUE; 515 } 516 zio->io_error = error; 517 518 break; 519 520 default: 521 zio->io_error = ENOTSUP; 522 } 523 524 return (ZIO_PIPELINE_CONTINUE); 525 } 526 527 vdb = kmem_alloc(sizeof (vdev_disk_buf_t), KM_SLEEP); 528 529 vdb->vdb_io = zio; 530 bp = &vdb->vdb_buf; 531 532 bioinit(bp); 533 bp->b_flags = B_BUSY | B_NOCACHE | 534 (zio->io_type == ZIO_TYPE_READ ? B_READ : B_WRITE); 535 if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD))) 536 bp->b_flags |= B_FAILFAST; 537 bp->b_bcount = zio->io_size; 538 bp->b_un.b_addr = zio->io_data; 539 bp->b_lblkno = lbtodb(zio->io_offset); 540 bp->b_bufsize = zio->io_size; 541 bp->b_iodone = (int (*)())vdev_disk_io_intr; 542 543 zfs_zone_zio_start(zio); 544 545 /* ldi_strategy() will return non-zero only on programming errors */ 546 VERIFY(ldi_strategy(dvd->vd_lh, bp) == 0); 547 548 return (ZIO_PIPELINE_STOP); 549 } 550 551 static void 552 vdev_disk_io_done(zio_t *zio) 553 { 554 vdev_t *vd = zio->io_vd; 555 556 zfs_zone_zio_done(zio); 557 558 /* 559 * If the device returned EIO, then attempt a DKIOCSTATE ioctl to see if 560 * the device has been removed. If this is the case, then we trigger an 561 * asynchronous removal of the device. Otherwise, probe the device and 562 * make sure it's still accessible. 563 */ 564 if (zio->io_error == EIO && !vd->vdev_remove_wanted) { 565 vdev_disk_t *dvd = vd->vdev_tsd; 566 int state = DKIO_NONE; 567 568 if (ldi_ioctl(dvd->vd_lh, DKIOCSTATE, (intptr_t)&state, 569 FKIOCTL, kcred, NULL) == 0 && state != DKIO_INSERTED) { 570 /* 571 * We post the resource as soon as possible, instead of 572 * when the async removal actually happens, because the 573 * DE is using this information to discard previous I/O 574 * errors. 575 */ 576 zfs_post_remove(zio->io_spa, vd); 577 vd->vdev_remove_wanted = B_TRUE; 578 spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE); 579 } else if (!vd->vdev_delayed_close) { 580 vd->vdev_delayed_close = B_TRUE; 581 } 582 } 583 } 584 585 vdev_ops_t vdev_disk_ops = { 586 vdev_disk_open, 587 vdev_disk_close, 588 vdev_default_asize, 589 vdev_disk_io_start, 590 vdev_disk_io_done, 591 NULL, 592 vdev_disk_hold, 593 vdev_disk_rele, 594 VDEV_TYPE_DISK, /* name of this vdev type */ 595 B_TRUE /* leaf vdev */ 596 }; 597 598 /* 599 * Given the root disk device devid or pathname, read the label from 600 * the device, and construct a configuration nvlist. 601 */ 602 int 603 vdev_disk_read_rootlabel(char *devpath, char *devid, nvlist_t **config) 604 { 605 ldi_handle_t vd_lh; 606 vdev_label_t *label; 607 uint64_t s, size; 608 int l; 609 ddi_devid_t tmpdevid; 610 int error = -1; 611 char *minor_name; 612 613 /* 614 * Read the device label and build the nvlist. 615 */ 616 if (devid != NULL && ddi_devid_str_decode(devid, &tmpdevid, 617 &minor_name) == 0) { 618 error = ldi_open_by_devid(tmpdevid, minor_name, 619 FREAD, kcred, &vd_lh, zfs_li); 620 ddi_devid_free(tmpdevid); 621 ddi_devid_str_free(minor_name); 622 } 623 624 if (error && (error = ldi_open_by_name(devpath, FREAD, kcred, &vd_lh, 625 zfs_li))) 626 return (error); 627 628 if (ldi_get_size(vd_lh, &s)) { 629 (void) ldi_close(vd_lh, FREAD, kcred); 630 return (EIO); 631 } 632 633 size = P2ALIGN_TYPED(s, sizeof (vdev_label_t), uint64_t); 634 label = kmem_alloc(sizeof (vdev_label_t), KM_SLEEP); 635 636 *config = NULL; 637 for (l = 0; l < VDEV_LABELS; l++) { 638 uint64_t offset, state, txg = 0; 639 640 /* read vdev label */ 641 offset = vdev_label_offset(size, l, 0); 642 if (vdev_disk_ldi_physio(vd_lh, (caddr_t)label, 643 VDEV_SKIP_SIZE + VDEV_PHYS_SIZE, offset, B_READ) != 0) 644 continue; 645 646 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist, 647 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) { 648 *config = NULL; 649 continue; 650 } 651 652 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, 653 &state) != 0 || state >= POOL_STATE_DESTROYED) { 654 nvlist_free(*config); 655 *config = NULL; 656 continue; 657 } 658 659 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, 660 &txg) != 0 || txg == 0) { 661 nvlist_free(*config); 662 *config = NULL; 663 continue; 664 } 665 666 break; 667 } 668 669 kmem_free(label, sizeof (vdev_label_t)); 670 (void) ldi_close(vd_lh, FREAD, kcred); 671 if (*config == NULL) 672 error = EIDRM; 673 674 return (error); 675 }