1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright 2012 DEY Storage Systems, Inc.  All rights reserved.
  24  * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
  25  */
  26 /*
  27  * Copyright (c) 2010, Intel Corporation.
  28  * All rights reserved.
  29  */
  30 
  31 #include <sys/types.h>
  32 #include <sys/t_lock.h>
  33 #include <sys/param.h>
  34 #include <sys/sysmacros.h>
  35 #include <sys/signal.h>
  36 #include <sys/systm.h>
  37 #include <sys/user.h>
  38 #include <sys/mman.h>
  39 #include <sys/vm.h>
  40 #include <sys/conf.h>
  41 #include <sys/avintr.h>
  42 #include <sys/autoconf.h>
  43 #include <sys/disp.h>
  44 #include <sys/class.h>
  45 #include <sys/bitmap.h>
  46 
  47 #include <sys/privregs.h>
  48 
  49 #include <sys/proc.h>
  50 #include <sys/buf.h>
  51 #include <sys/kmem.h>
  52 #include <sys/mem.h>
  53 #include <sys/kstat.h>
  54 
  55 #include <sys/reboot.h>
  56 
  57 #include <sys/cred.h>
  58 #include <sys/vnode.h>
  59 #include <sys/file.h>
  60 
  61 #include <sys/procfs.h>
  62 
  63 #include <sys/vfs.h>
  64 #include <sys/cmn_err.h>
  65 #include <sys/utsname.h>
  66 #include <sys/debug.h>
  67 #include <sys/kdi.h>
  68 
  69 #include <sys/dumphdr.h>
  70 #include <sys/bootconf.h>
  71 #include <sys/memlist_plat.h>
  72 #include <sys/varargs.h>
  73 #include <sys/promif.h>
  74 #include <sys/modctl.h>
  75 
  76 #include <sys/sunddi.h>
  77 #include <sys/sunndi.h>
  78 #include <sys/ndi_impldefs.h>
  79 #include <sys/ddidmareq.h>
  80 #include <sys/psw.h>
  81 #include <sys/regset.h>
  82 #include <sys/clock.h>
  83 #include <sys/pte.h>
  84 #include <sys/tss.h>
  85 #include <sys/stack.h>
  86 #include <sys/trap.h>
  87 #include <sys/fp.h>
  88 #include <vm/kboot_mmu.h>
  89 #include <vm/anon.h>
  90 #include <vm/as.h>
  91 #include <vm/page.h>
  92 #include <vm/seg.h>
  93 #include <vm/seg_dev.h>
  94 #include <vm/seg_kmem.h>
  95 #include <vm/seg_kpm.h>
  96 #include <vm/seg_map.h>
  97 #include <vm/seg_vn.h>
  98 #include <vm/seg_kp.h>
  99 #include <sys/memnode.h>
 100 #include <vm/vm_dep.h>
 101 #include <sys/thread.h>
 102 #include <sys/sysconf.h>
 103 #include <sys/vm_machparam.h>
 104 #include <sys/archsystm.h>
 105 #include <sys/machsystm.h>
 106 #include <vm/hat.h>
 107 #include <vm/hat_i86.h>
 108 #include <sys/pmem.h>
 109 #include <sys/smp_impldefs.h>
 110 #include <sys/x86_archext.h>
 111 #include <sys/cpuvar.h>
 112 #include <sys/segments.h>
 113 #include <sys/clconf.h>
 114 #include <sys/kobj.h>
 115 #include <sys/kobj_lex.h>
 116 #include <sys/cpc_impl.h>
 117 #include <sys/cpu_module.h>
 118 #include <sys/smbios.h>
 119 #include <sys/debug_info.h>
 120 #include <sys/bootinfo.h>
 121 #include <sys/ddi_timer.h>
 122 #include <sys/systeminfo.h>
 123 #include <sys/multiboot.h>
 124 
 125 #ifdef  __xpv
 126 
 127 #include <sys/hypervisor.h>
 128 #include <sys/xen_mmu.h>
 129 #include <sys/evtchn_impl.h>
 130 #include <sys/gnttab.h>
 131 #include <sys/xpv_panic.h>
 132 #include <xen/sys/xenbus_comms.h>
 133 #include <xen/public/physdev.h>
 134 
 135 extern void xen_late_startup(void);
 136 
 137 struct xen_evt_data cpu0_evt_data;
 138 
 139 #else   /* __xpv */
 140 #include <sys/memlist_impl.h>
 141 
 142 extern void mem_config_init(void);
 143 #endif /* __xpv */
 144 
 145 extern void progressbar_init(void);
 146 extern void brand_init(void);
 147 extern void pcf_init(void);
 148 extern void pg_init(void);
 149 
 150 extern int size_pse_array(pgcnt_t, int);
 151 
 152 #if defined(_SOFT_HOSTID)
 153 
 154 #include <sys/rtc.h>
 155 
 156 static int32_t set_soft_hostid(void);
 157 static char hostid_file[] = "/etc/hostid";
 158 
 159 #endif
 160 
 161 void *gfx_devinfo_list;
 162 
 163 #if defined(__amd64) && !defined(__xpv)
 164 extern void immu_startup(void);
 165 #endif
 166 
 167 /*
 168  * XXX make declaration below "static" when drivers no longer use this
 169  * interface.
 170  */
 171 extern caddr_t p0_va;   /* Virtual address for accessing physical page 0 */
 172 
 173 /*
 174  * segkp
 175  */
 176 extern int segkp_fromheap;
 177 
 178 static void kvm_init(void);
 179 static void startup_init(void);
 180 static void startup_memlist(void);
 181 static void startup_kmem(void);
 182 static void startup_modules(void);
 183 static void startup_vm(void);
 184 static void startup_end(void);
 185 static void layout_kernel_va(void);
 186 
 187 /*
 188  * Declare these as initialized data so we can patch them.
 189  */
 190 #ifdef __i386
 191 
 192 /*
 193  * Due to virtual address space limitations running in 32 bit mode, restrict
 194  * the amount of physical memory configured to a max of PHYSMEM pages (16g).
 195  *
 196  * If the physical max memory size of 64g were allowed to be configured, the
 197  * size of user virtual address space will be less than 1g. A limited user
 198  * address space greatly reduces the range of applications that can run.
 199  *
 200  * If more physical memory than PHYSMEM is required, users should preferably
 201  * run in 64 bit mode which has far looser virtual address space limitations.
 202  *
 203  * If 64 bit mode is not available (as in IA32) and/or more physical memory
 204  * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired
 205  * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase
 206  * should also be carefully tuned to balance out the need of the user
 207  * application while minimizing the risk of kernel heap exhaustion due to
 208  * kernelbase being set too high.
 209  */
 210 #define PHYSMEM 0x400000
 211 
 212 #else /* __amd64 */
 213 
 214 /*
 215  * For now we can handle memory with physical addresses up to about
 216  * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly
 217  * half the VA space for seg_kpm. When systems get bigger than 64TB this
 218  * code will need revisiting. There is an implicit assumption that there
 219  * are no *huge* holes in the physical address space too.
 220  */
 221 #define TERABYTE                (1ul << 40)
 222 #define PHYSMEM_MAX64           mmu_btop(64 * TERABYTE)
 223 #define PHYSMEM                 PHYSMEM_MAX64
 224 #define AMD64_VA_HOLE_END       0xFFFF800000000000ul
 225 
 226 #endif /* __amd64 */
 227 
 228 pgcnt_t physmem = PHYSMEM;
 229 pgcnt_t obp_pages;      /* Memory used by PROM for its text and data */
 230 
 231 char *kobj_file_buf;
 232 int kobj_file_bufsize;  /* set in /etc/system */
 233 
 234 /* Global variables for MP support. Used in mp_startup */
 235 caddr_t rm_platter_va = 0;
 236 uint32_t rm_platter_pa;
 237 
 238 int     auto_lpg_disable = 1;
 239 
 240 /*
 241  * Some CPUs have holes in the middle of the 64-bit virtual address range.
 242  */
 243 uintptr_t hole_start, hole_end;
 244 
 245 /*
 246  * kpm mapping window
 247  */
 248 caddr_t kpm_vbase;
 249 size_t  kpm_size;
 250 static int kpm_desired;
 251 #ifdef __amd64
 252 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE;
 253 #endif
 254 
 255 /*
 256  * Configuration parameters set at boot time.
 257  */
 258 
 259 caddr_t econtig;                /* end of first block of contiguous kernel */
 260 
 261 struct bootops          *bootops = 0;   /* passed in from boot */
 262 struct bootops          **bootopsp;
 263 struct boot_syscalls    *sysp;          /* passed in from boot */
 264 
 265 char bootblock_fstype[16];
 266 
 267 char kern_bootargs[OBP_MAXPATHLEN];
 268 char kern_bootfile[OBP_MAXPATHLEN];
 269 
 270 /*
 271  * ZFS zio segment.  This allows us to exclude large portions of ZFS data that
 272  * gets cached in kmem caches on the heap.  If this is set to zero, we allocate
 273  * zio buffers from their own segment, otherwise they are allocated from the
 274  * heap.  The optimization of allocating zio buffers from their own segment is
 275  * only valid on 64-bit kernels.
 276  */
 277 #if defined(__amd64)
 278 int segzio_fromheap = 0;
 279 #else
 280 int segzio_fromheap = 1;
 281 #endif
 282 
 283 /*
 284  * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this
 285  * depends on number of BOP_ALLOC calls made and requested size, memory size
 286  * combination and whether boot.bin memory needs to be freed.
 287  */
 288 #define POSS_NEW_FRAGMENTS      12
 289 
 290 /*
 291  * VM data structures
 292  */
 293 long page_hashsz;               /* Size of page hash table (power of two) */
 294 unsigned int page_hashsz_shift; /* log2(page_hashsz) */
 295 struct page *pp_base;           /* Base of initial system page struct array */
 296 struct page **page_hash;        /* Page hash table */
 297 pad_mutex_t *pse_mutex;         /* Locks protecting pp->p_selock */
 298 size_t pse_table_size;          /* Number of mutexes in pse_mutex[] */
 299 int pse_shift;                  /* log2(pse_table_size) */
 300 struct seg ktextseg;            /* Segment used for kernel executable image */
 301 struct seg kvalloc;             /* Segment used for "valloc" mapping */
 302 struct seg kpseg;               /* Segment used for pageable kernel virt mem */
 303 struct seg kmapseg;             /* Segment used for generic kernel mappings */
 304 struct seg kdebugseg;           /* Segment used for the kernel debugger */
 305 
 306 struct seg *segkmap = &kmapseg;     /* Kernel generic mapping segment */
 307 static struct seg *segmap = &kmapseg;       /* easier to use name for in here */
 308 
 309 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */
 310 
 311 #if defined(__amd64)
 312 struct seg kvseg_core;          /* Segment used for the core heap */
 313 struct seg kpmseg;              /* Segment used for physical mapping */
 314 struct seg *segkpm = &kpmseg;       /* 64bit kernel physical mapping segment */
 315 #else
 316 struct seg *segkpm = NULL;      /* Unused on IA32 */
 317 #endif
 318 
 319 caddr_t segkp_base;             /* Base address of segkp */
 320 caddr_t segzio_base;            /* Base address of segzio */
 321 #if defined(__amd64)
 322 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */
 323 #else
 324 pgcnt_t segkpsize = 0;
 325 #endif
 326 pgcnt_t segziosize = 0;         /* size of zio segment in pages */
 327 
 328 /*
 329  * A static DR page_t VA map is reserved that can map the page structures
 330  * for a domain's entire RA space. The pages that back this space are
 331  * dynamically allocated and need not be physically contiguous.  The DR
 332  * map size is derived from KPM size.
 333  * This mechanism isn't used by x86 yet, so just stubs here.
 334  */
 335 int ppvm_enable = 0;            /* Static virtual map for page structs */
 336 page_t *ppvm_base = NULL;       /* Base of page struct map */
 337 pgcnt_t ppvm_size = 0;          /* Size of page struct map */
 338 
 339 /*
 340  * VA range available to the debugger
 341  */
 342 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE;
 343 const size_t kdi_segdebugsize = SEGDEBUGSIZE;
 344 
 345 struct memseg *memseg_base;
 346 struct vnode unused_pages_vp;
 347 
 348 #define FOURGB  0x100000000LL
 349 
 350 struct memlist *memlist;
 351 
 352 caddr_t s_text;         /* start of kernel text segment */
 353 caddr_t e_text;         /* end of kernel text segment */
 354 caddr_t s_data;         /* start of kernel data segment */
 355 caddr_t e_data;         /* end of kernel data segment */
 356 caddr_t modtext;        /* start of loadable module text reserved */
 357 caddr_t e_modtext;      /* end of loadable module text reserved */
 358 caddr_t moddata;        /* start of loadable module data reserved */
 359 caddr_t e_moddata;      /* end of loadable module data reserved */
 360 
 361 struct memlist *phys_install;   /* Total installed physical memory */
 362 struct memlist *phys_avail;     /* Total available physical memory */
 363 struct memlist *bios_rsvd;      /* Bios reserved memory */
 364 
 365 /*
 366  * kphysm_init returns the number of pages that were processed
 367  */
 368 static pgcnt_t kphysm_init(page_t *, pgcnt_t);
 369 
 370 #define IO_PROP_SIZE    64      /* device property size */
 371 
 372 /*
 373  * a couple useful roundup macros
 374  */
 375 #define ROUND_UP_PAGE(x)        \
 376         ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE))
 377 #define ROUND_UP_LPAGE(x)       \
 378         ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1]))
 379 #define ROUND_UP_4MEG(x)        \
 380         ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG))
 381 #define ROUND_UP_TOPLEVEL(x)    \
 382         ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level]))
 383 
 384 /*
 385  *      32-bit Kernel's Virtual memory layout.
 386  *              +-----------------------+
 387  *              |                       |
 388  * 0xFFC00000  -|-----------------------|- ARGSBASE
 389  *              |       debugger        |
 390  * 0xFF800000  -|-----------------------|- SEGDEBUGBASE
 391  *              |      Kernel Data      |
 392  * 0xFEC00000  -|-----------------------|
 393  *              |      Kernel Text      |
 394  * 0xFE800000  -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen)
 395  *              |---       GDT       ---|- GDT page (GDT_VA)
 396  *              |---    debug info   ---|- debug info (DEBUG_INFO_VA)
 397  *              |                       |
 398  *              |   page_t structures   |
 399  *              |   memsegs, memlists,  |
 400  *              |   page hash, etc.     |
 401  * ---         -|-----------------------|- ekernelheap, valloc_base (floating)
 402  *              |                       |  (segkp is just an arena in the heap)
 403  *              |                       |
 404  *              |       kvseg           |
 405  *              |                       |
 406  *              |                       |
 407  * ---         -|-----------------------|- kernelheap (floating)
 408  *              |        Segkmap        |
 409  * 0xC3002000  -|-----------------------|- segmap_start (floating)
 410  *              |       Red Zone        |
 411  * 0xC3000000  -|-----------------------|- kernelbase / userlimit (floating)
 412  *              |                       |                       ||
 413  *              |     Shared objects    |                       \/
 414  *              |                       |
 415  *              :                       :
 416  *              |       user data       |
 417  *              |-----------------------|
 418  *              |       user text       |
 419  * 0x08048000  -|-----------------------|
 420  *              |       user stack      |
 421  *              :                       :
 422  *              |       invalid         |
 423  * 0x00000000   +-----------------------+
 424  *
 425  *
 426  *              64-bit Kernel's Virtual memory layout. (assuming 64 bit app)
 427  *                      +-----------------------+
 428  *                      |                       |
 429  * 0xFFFFFFFF.FFC00000  |-----------------------|- ARGSBASE
 430  *                      |       debugger (?)    |
 431  * 0xFFFFFFFF.FF800000  |-----------------------|- SEGDEBUGBASE
 432  *                      |      unused           |
 433  *                      +-----------------------+
 434  *                      |      Kernel Data      |
 435  * 0xFFFFFFFF.FBC00000  |-----------------------|
 436  *                      |      Kernel Text      |
 437  * 0xFFFFFFFF.FB800000  |-----------------------|- KERNEL_TEXT
 438  *                      |---       GDT       ---|- GDT page (GDT_VA)
 439  *                      |---    debug info   ---|- debug info (DEBUG_INFO_VA)
 440  *                      |                       |
 441  *                      |      Core heap        | (used for loadable modules)
 442  * 0xFFFFFFFF.C0000000  |-----------------------|- core_base / ekernelheap
 443  *                      |        Kernel         |
 444  *                      |         heap          |
 445  * 0xFFFFFXXX.XXX00000  |-----------------------|- kernelheap (floating)
 446  *                      |        segmap         |
 447  * 0xFFFFFXXX.XXX00000  |-----------------------|- segmap_start (floating)
 448  *                      |    device mappings    |
 449  * 0xFFFFFXXX.XXX00000  |-----------------------|- toxic_addr (floating)
 450  *                      |         segzio        |
 451  * 0xFFFFFXXX.XXX00000  |-----------------------|- segzio_base (floating)
 452  *                      |         segkp         |
 453  * ---                  |-----------------------|- segkp_base (floating)
 454  *                      |   page_t structures   |  valloc_base + valloc_sz
 455  *                      |   memsegs, memlists,  |
 456  *                      |   page hash, etc.     |
 457  * 0xFFFFFF00.00000000  |-----------------------|- valloc_base (lower if > 1TB)
 458  *                      |        segkpm         |
 459  * 0xFFFFFE00.00000000  |-----------------------|
 460  *                      |       Red Zone        |
 461  * 0xFFFFFD80.00000000  |-----------------------|- KERNELBASE (lower if > 1TB)
 462  *                      |     User stack        |- User space memory
 463  *                      |                       |
 464  *                      | shared objects, etc   |       (grows downwards)
 465  *                      :                       :
 466  *                      |                       |
 467  * 0xFFFF8000.00000000  |-----------------------|
 468  *                      |                       |
 469  *                      | VA Hole / unused      |
 470  *                      |                       |
 471  * 0x00008000.00000000  |-----------------------|
 472  *                      |                       |
 473  *                      |                       |
 474  *                      :                       :
 475  *                      |       user heap       |       (grows upwards)
 476  *                      |                       |
 477  *                      |       user data       |
 478  *                      |-----------------------|
 479  *                      |       user text       |
 480  * 0x00000000.04000000  |-----------------------|
 481  *                      |       invalid         |
 482  * 0x00000000.00000000  +-----------------------+
 483  *
 484  * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit
 485  * kernel, except that userlimit is raised to 0xfe000000
 486  *
 487  * Floating values:
 488  *
 489  * valloc_base: start of the kernel's memory management/tracking data
 490  * structures.  This region contains page_t structures for
 491  * physical memory, memsegs, memlists, and the page hash.
 492  *
 493  * core_base: start of the kernel's "core" heap area on 64-bit systems.
 494  * This area is intended to be used for global data as well as for module
 495  * text/data that does not fit into the nucleus pages.  The core heap is
 496  * restricted to a 2GB range, allowing every address within it to be
 497  * accessed using rip-relative addressing
 498  *
 499  * ekernelheap: end of kernelheap and start of segmap.
 500  *
 501  * kernelheap: start of kernel heap.  On 32-bit systems, this starts right
 502  * above a red zone that separates the user's address space from the
 503  * kernel's.  On 64-bit systems, it sits above segkp and segkpm.
 504  *
 505  * segmap_start: start of segmap. The length of segmap can be modified
 506  * through eeprom. The default length is 16MB on 32-bit systems and 64MB
 507  * on 64-bit systems.
 508  *
 509  * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be
 510  * decreased by 2X the size required for page_t.  This allows the kernel
 511  * heap to grow in size with physical memory.  With sizeof(page_t) == 80
 512  * bytes, the following shows the values of kernelbase and kernel heap
 513  * sizes for different memory configurations (assuming default segmap and
 514  * segkp sizes).
 515  *
 516  *      mem     size for        kernelbase      kernel heap
 517  *      size    page_t's                        size
 518  *      ----    ---------       ----------      -----------
 519  *      1gb     0x01400000      0xd1800000      684MB
 520  *      2gb     0x02800000      0xcf000000      704MB
 521  *      4gb     0x05000000      0xca000000      744MB
 522  *      6gb     0x07800000      0xc5000000      784MB
 523  *      8gb     0x0a000000      0xc0000000      824MB
 524  *      16gb    0x14000000      0xac000000      984MB
 525  *      32gb    0x28000000      0x84000000      1304MB
 526  *      64gb    0x50000000      0x34000000      1944MB (*)
 527  *
 528  * kernelbase is less than the abi minimum of 0xc0000000 for memory
 529  * configurations above 8gb.
 530  *
 531  * (*) support for memory configurations above 32gb will require manual tuning
 532  * of kernelbase to balance out the need of user applications.
 533  */
 534 
 535 /* real-time-clock initialization parameters */
 536 extern time_t process_rtc_config_file(void);
 537 
 538 uintptr_t       kernelbase;
 539 uintptr_t       postbootkernelbase;     /* not set till boot loader is gone */
 540 uintptr_t       eprom_kernelbase;
 541 size_t          segmapsize;
 542 uintptr_t       segmap_start;
 543 int             segmapfreelists;
 544 pgcnt_t         npages;
 545 pgcnt_t         orig_npages;
 546 size_t          core_size;              /* size of "core" heap */
 547 uintptr_t       core_base;              /* base address of "core" heap */
 548 
 549 /*
 550  * List of bootstrap pages. We mark these as allocated in startup.
 551  * release_bootstrap() will free them when we're completely done with
 552  * the bootstrap.
 553  */
 554 static page_t *bootpages;
 555 
 556 /*
 557  * boot time pages that have a vnode from the ramdisk will keep that forever.
 558  */
 559 static page_t *rd_pages;
 560 
 561 /*
 562  * Lower 64K
 563  */
 564 static page_t *lower_pages = NULL;
 565 static int lower_pages_count = 0;
 566 
 567 struct system_hardware system_hardware;
 568 
 569 /*
 570  * Enable some debugging messages concerning memory usage...
 571  */
 572 static void
 573 print_memlist(char *title, struct memlist *mp)
 574 {
 575         prom_printf("MEMLIST: %s:\n", title);
 576         while (mp != NULL)  {
 577                 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n",
 578                     mp->ml_address, mp->ml_size);
 579                 mp = mp->ml_next;
 580         }
 581 }
 582 
 583 /*
 584  * XX64 need a comment here.. are these just default values, surely
 585  * we read the "cpuid" type information to figure this out.
 586  */
 587 int     l2cache_sz = 0x80000;
 588 int     l2cache_linesz = 0x40;
 589 int     l2cache_assoc = 1;
 590 
 591 static size_t   textrepl_min_gb = 10;
 592 
 593 /*
 594  * on 64 bit we use a predifined VA range for mapping devices in the kernel
 595  * on 32 bit the mappings are intermixed in the heap, so we use a bit map
 596  */
 597 #ifdef __amd64
 598 
 599 vmem_t          *device_arena;
 600 uintptr_t       toxic_addr = (uintptr_t)NULL;
 601 size_t          toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */
 602 
 603 #else   /* __i386 */
 604 
 605 ulong_t         *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */
 606 size_t          toxic_bit_map_len = 0;  /* in bits */
 607 
 608 #endif  /* __i386 */
 609 
 610 /*
 611  * Simple boot time debug facilities
 612  */
 613 static char *prm_dbg_str[] = {
 614         "%s:%d: '%s' is 0x%x\n",
 615         "%s:%d: '%s' is 0x%llx\n"
 616 };
 617 
 618 int prom_debug;
 619 
 620 #define PRM_DEBUG(q)    if (prom_debug)         \
 621         prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q);
 622 #define PRM_POINT(q)    if (prom_debug)         \
 623         prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q);
 624 
 625 /*
 626  * This structure is used to keep track of the intial allocations
 627  * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to
 628  * be >= the number of ADD_TO_ALLOCATIONS() executed in the code.
 629  */
 630 #define NUM_ALLOCATIONS 8
 631 int num_allocations = 0;
 632 struct {
 633         void **al_ptr;
 634         size_t al_size;
 635 } allocations[NUM_ALLOCATIONS];
 636 size_t valloc_sz = 0;
 637 uintptr_t valloc_base;
 638 
 639 #define ADD_TO_ALLOCATIONS(ptr, size) {                                 \
 640                 size = ROUND_UP_PAGE(size);                             \
 641                 if (num_allocations == NUM_ALLOCATIONS)                 \
 642                         panic("too many ADD_TO_ALLOCATIONS()");         \
 643                 allocations[num_allocations].al_ptr = (void**)&ptr; \
 644                 allocations[num_allocations].al_size = size;            \
 645                 valloc_sz += size;                                      \
 646                 ++num_allocations;                                      \
 647         }
 648 
 649 /*
 650  * Allocate all the initial memory needed by the page allocator.
 651  */
 652 static void
 653 perform_allocations(void)
 654 {
 655         caddr_t mem;
 656         int i;
 657         int valloc_align;
 658 
 659         PRM_DEBUG(valloc_base);
 660         PRM_DEBUG(valloc_sz);
 661         valloc_align = mmu.level_size[mmu.max_page_level > 0];
 662         mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align);
 663         if (mem != (caddr_t)valloc_base)
 664                 panic("BOP_ALLOC() failed");
 665         bzero(mem, valloc_sz);
 666         for (i = 0; i < num_allocations; ++i) {
 667                 *allocations[i].al_ptr = (void *)mem;
 668                 mem += allocations[i].al_size;
 669         }
 670 }
 671 
 672 /*
 673  * Our world looks like this at startup time.
 674  *
 675  * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data
 676  * at 0xfec00000.  On a 64-bit OS, kernel text and data are loaded at
 677  * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively.  Those
 678  * addresses are fixed in the binary at link time.
 679  *
 680  * On the text page:
 681  * unix/genunix/krtld/module text loads.
 682  *
 683  * On the data page:
 684  * unix/genunix/krtld/module data loads.
 685  *
 686  * Machine-dependent startup code
 687  */
 688 void
 689 startup(void)
 690 {
 691 #if !defined(__xpv)
 692         extern void startup_pci_bios(void);
 693 #endif
 694         extern cpuset_t cpu_ready_set;
 695 
 696         /*
 697          * Make sure that nobody tries to use sekpm until we have
 698          * initialized it properly.
 699          */
 700 #if defined(__amd64)
 701         kpm_desired = 1;
 702 #endif
 703         kpm_enable = 0;
 704         CPUSET_ONLY(cpu_ready_set, 0);  /* cpu 0 is boot cpu */
 705 
 706 #if defined(__xpv)      /* XXPV fix me! */
 707         {
 708                 extern int segvn_use_regions;
 709                 segvn_use_regions = 0;
 710         }
 711 #endif
 712         progressbar_init();
 713         startup_init();
 714 #if defined(__xpv)
 715         startup_xen_version();
 716 #endif
 717         startup_memlist();
 718         startup_kmem();
 719         startup_vm();
 720 #if !defined(__xpv)
 721         /*
 722          * Note we need to do this even on fast reboot in order to access
 723          * the irq routing table (used for pci labels).
 724          */
 725         startup_pci_bios();
 726 #endif
 727 #if defined(__xpv)
 728         startup_xen_mca();
 729 #endif
 730         startup_modules();
 731 
 732         startup_end();
 733 }
 734 
 735 static void
 736 startup_init()
 737 {
 738         PRM_POINT("startup_init() starting...");
 739 
 740         /*
 741          * Complete the extraction of cpuid data
 742          */
 743         cpuid_pass2(CPU);
 744 
 745         (void) check_boot_version(BOP_GETVERSION(bootops));
 746 
 747         /*
 748          * Check for prom_debug in boot environment
 749          */
 750         if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) {
 751                 ++prom_debug;
 752                 PRM_POINT("prom_debug found in boot enviroment");
 753         }
 754 
 755         /*
 756          * Collect node, cpu and memory configuration information.
 757          */
 758         get_system_configuration();
 759 
 760         /*
 761          * Halt if this is an unsupported processor.
 762          */
 763         if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) {
 764                 printf("\n486 processor (\"%s\") detected.\n",
 765                     CPU->cpu_brandstr);
 766                 halt("This processor is not supported by this release "
 767                     "of Solaris.");
 768         }
 769 
 770         PRM_POINT("startup_init() done");
 771 }
 772 
 773 /*
 774  * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie.
 775  * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it
 776  * also filters out physical page zero.  There is some reliance on the
 777  * boot loader allocating only a few contiguous physical memory chunks.
 778  */
 779 static void
 780 avail_filter(uint64_t *addr, uint64_t *size)
 781 {
 782         uintptr_t va;
 783         uintptr_t next_va;
 784         pfn_t pfn;
 785         uint64_t pfn_addr;
 786         uint64_t pfn_eaddr;
 787         uint_t prot;
 788         size_t len;
 789         uint_t change;
 790 
 791         if (prom_debug)
 792                 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n",
 793                     *addr, *size);
 794 
 795         /*
 796          * page zero is required for BIOS.. never make it available
 797          */
 798         if (*addr == 0) {
 799                 *addr += MMU_PAGESIZE;
 800                 *size -= MMU_PAGESIZE;
 801         }
 802 
 803         /*
 804          * First we trim from the front of the range. Since kbm_probe()
 805          * walks ranges in virtual order, but addr/size are physical, we need
 806          * to the list until no changes are seen.  This deals with the case
 807          * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w
 808          * but w < v.
 809          */
 810         do {
 811                 change = 0;
 812                 for (va = KERNEL_TEXT;
 813                     *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
 814                     va = next_va) {
 815 
 816                         next_va = va + len;
 817                         pfn_addr = pfn_to_pa(pfn);
 818                         pfn_eaddr = pfn_addr + len;
 819 
 820                         if (pfn_addr <= *addr && pfn_eaddr > *addr) {
 821                                 change = 1;
 822                                 while (*size > 0 && len > 0) {
 823                                         *addr += MMU_PAGESIZE;
 824                                         *size -= MMU_PAGESIZE;
 825                                         len -= MMU_PAGESIZE;
 826                                 }
 827                         }
 828                 }
 829                 if (change && prom_debug)
 830                         prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n",
 831                             *addr, *size);
 832         } while (change);
 833 
 834         /*
 835          * Trim pages from the end of the range.
 836          */
 837         for (va = KERNEL_TEXT;
 838             *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
 839             va = next_va) {
 840 
 841                 next_va = va + len;
 842                 pfn_addr = pfn_to_pa(pfn);
 843 
 844                 if (pfn_addr >= *addr && pfn_addr < *addr + *size)
 845                         *size = pfn_addr - *addr;
 846         }
 847 
 848         if (prom_debug)
 849                 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n",
 850                     *addr, *size);
 851 }
 852 
 853 static void
 854 kpm_init()
 855 {
 856         struct segkpm_crargs b;
 857 
 858         /*
 859          * These variables were all designed for sfmmu in which segkpm is
 860          * mapped using a single pagesize - either 8KB or 4MB.  On x86, we
 861          * might use 2+ page sizes on a single machine, so none of these
 862          * variables have a single correct value.  They are set up as if we
 863          * always use a 4KB pagesize, which should do no harm.  In the long
 864          * run, we should get rid of KPM's assumption that only a single
 865          * pagesize is used.
 866          */
 867         kpm_pgshft = MMU_PAGESHIFT;
 868         kpm_pgsz =  MMU_PAGESIZE;
 869         kpm_pgoff = MMU_PAGEOFFSET;
 870         kpmp2pshft = 0;
 871         kpmpnpgs = 1;
 872         ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0);
 873 
 874         PRM_POINT("about to create segkpm");
 875         rw_enter(&kas.a_lock, RW_WRITER);
 876 
 877         if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0)
 878                 panic("cannot attach segkpm");
 879 
 880         b.prot = PROT_READ | PROT_WRITE;
 881         b.nvcolors = 1;
 882 
 883         if (segkpm_create(segkpm, (caddr_t)&b) != 0)
 884                 panic("segkpm_create segkpm");
 885 
 886         rw_exit(&kas.a_lock);
 887 }
 888 
 889 /*
 890  * The debug info page provides enough information to allow external
 891  * inspectors (e.g. when running under a hypervisor) to bootstrap
 892  * themselves into allowing full-blown kernel debugging.
 893  */
 894 static void
 895 init_debug_info(void)
 896 {
 897         caddr_t mem;
 898         debug_info_t *di;
 899 
 900 #ifndef __lint
 901         ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE);
 902 #endif
 903 
 904         mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE,
 905             MMU_PAGESIZE);
 906 
 907         if (mem != (caddr_t)DEBUG_INFO_VA)
 908                 panic("BOP_ALLOC() failed");
 909         bzero(mem, MMU_PAGESIZE);
 910 
 911         di = (debug_info_t *)mem;
 912 
 913         di->di_magic = DEBUG_INFO_MAGIC;
 914         di->di_version = DEBUG_INFO_VERSION;
 915         di->di_modules = (uintptr_t)&modules;
 916         di->di_s_text = (uintptr_t)s_text;
 917         di->di_e_text = (uintptr_t)e_text;
 918         di->di_s_data = (uintptr_t)s_data;
 919         di->di_e_data = (uintptr_t)e_data;
 920         di->di_hat_htable_off = offsetof(hat_t, hat_htable);
 921         di->di_ht_pfn_off = offsetof(htable_t, ht_pfn);
 922 }
 923 
 924 /*
 925  * Build the memlists and other kernel essential memory system data structures.
 926  * This is everything at valloc_base.
 927  */
 928 static void
 929 startup_memlist(void)
 930 {
 931         size_t memlist_sz;
 932         size_t memseg_sz;
 933         size_t pagehash_sz;
 934         size_t pp_sz;
 935         uintptr_t va;
 936         size_t len;
 937         uint_t prot;
 938         pfn_t pfn;
 939         int memblocks;
 940         pfn_t rsvd_high_pfn;
 941         pgcnt_t rsvd_pgcnt;
 942         size_t rsvdmemlist_sz;
 943         int rsvdmemblocks;
 944         caddr_t pagecolor_mem;
 945         size_t pagecolor_memsz;
 946         caddr_t page_ctrs_mem;
 947         size_t page_ctrs_size;
 948         size_t pse_table_alloc_size;
 949         struct memlist *current;
 950         extern void startup_build_mem_nodes(struct memlist *);
 951 
 952         /* XX64 fix these - they should be in include files */
 953         extern size_t page_coloring_init(uint_t, int, int);
 954         extern void page_coloring_setup(caddr_t);
 955 
 956         PRM_POINT("startup_memlist() starting...");
 957 
 958         /*
 959          * Use leftover large page nucleus text/data space for loadable modules.
 960          * Use at most MODTEXT/MODDATA.
 961          */
 962         len = kbm_nucleus_size;
 963         ASSERT(len > MMU_PAGESIZE);
 964 
 965         moddata = (caddr_t)ROUND_UP_PAGE(e_data);
 966         e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len);
 967         if (e_moddata - moddata > MODDATA)
 968                 e_moddata = moddata + MODDATA;
 969 
 970         modtext = (caddr_t)ROUND_UP_PAGE(e_text);
 971         e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len);
 972         if (e_modtext - modtext > MODTEXT)
 973                 e_modtext = modtext + MODTEXT;
 974 
 975         econtig = e_moddata;
 976 
 977         PRM_DEBUG(modtext);
 978         PRM_DEBUG(e_modtext);
 979         PRM_DEBUG(moddata);
 980         PRM_DEBUG(e_moddata);
 981         PRM_DEBUG(econtig);
 982 
 983         /*
 984          * Examine the boot loader physical memory map to find out:
 985          * - total memory in system - physinstalled
 986          * - the max physical address - physmax
 987          * - the number of discontiguous segments of memory.
 988          */
 989         if (prom_debug)
 990                 print_memlist("boot physinstalled",
 991                     bootops->boot_mem->physinstalled);
 992         installed_top_size_ex(bootops->boot_mem->physinstalled, &physmax,
 993             &physinstalled, &memblocks);
 994         PRM_DEBUG(physmax);
 995         PRM_DEBUG(physinstalled);
 996         PRM_DEBUG(memblocks);
 997 
 998         /*
 999          * Compute maximum physical address for memory DR operations.
1000          * Memory DR operations are unsupported on xpv or 32bit OSes.
1001          */
1002 #ifdef  __amd64
1003         if (plat_dr_support_memory()) {
1004                 if (plat_dr_physmax == 0) {
1005                         uint_t pabits = UINT_MAX;
1006 
1007                         cpuid_get_addrsize(CPU, &pabits, NULL);
1008                         plat_dr_physmax = btop(1ULL << pabits);
1009                 }
1010                 if (plat_dr_physmax > PHYSMEM_MAX64)
1011                         plat_dr_physmax = PHYSMEM_MAX64;
1012         } else
1013 #endif
1014                 plat_dr_physmax = 0;
1015 
1016         /*
1017          * Examine the bios reserved memory to find out:
1018          * - the number of discontiguous segments of memory.
1019          */
1020         if (prom_debug)
1021                 print_memlist("boot reserved mem",
1022                     bootops->boot_mem->rsvdmem);
1023         installed_top_size_ex(bootops->boot_mem->rsvdmem, &rsvd_high_pfn,
1024             &rsvd_pgcnt, &rsvdmemblocks);
1025         PRM_DEBUG(rsvd_high_pfn);
1026         PRM_DEBUG(rsvd_pgcnt);
1027         PRM_DEBUG(rsvdmemblocks);
1028 
1029         /*
1030          * Initialize hat's mmu parameters.
1031          * Check for enforce-prot-exec in boot environment. It's used to
1032          * enable/disable support for the page table entry NX bit.
1033          * The default is to enforce PROT_EXEC on processors that support NX.
1034          * Boot seems to round up the "len", but 8 seems to be big enough.
1035          */
1036         mmu_init();
1037 
1038 #ifdef  __i386
1039         /*
1040          * physmax is lowered if there is more memory than can be
1041          * physically addressed in 32 bit (PAE/non-PAE) modes.
1042          */
1043         if (mmu.pae_hat) {
1044                 if (PFN_ABOVE64G(physmax)) {
1045                         physinstalled -= (physmax - (PFN_64G - 1));
1046                         physmax = PFN_64G - 1;
1047                 }
1048         } else {
1049                 if (PFN_ABOVE4G(physmax)) {
1050                         physinstalled -= (physmax - (PFN_4G - 1));
1051                         physmax = PFN_4G - 1;
1052                 }
1053         }
1054 #endif
1055 
1056         startup_build_mem_nodes(bootops->boot_mem->physinstalled);
1057 
1058         if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) {
1059                 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec");
1060                 char value[8];
1061 
1062                 if (len < 8)
1063                         (void) BOP_GETPROP(bootops, "enforce-prot-exec", value);
1064                 else
1065                         (void) strcpy(value, "");
1066                 if (strcmp(value, "off") == 0)
1067                         mmu.pt_nx = 0;
1068         }
1069         PRM_DEBUG(mmu.pt_nx);
1070 
1071         /*
1072          * We will need page_t's for every page in the system, except for
1073          * memory mapped at or above above the start of the kernel text segment.
1074          *
1075          * pages above e_modtext are attributed to kernel debugger (obp_pages)
1076          */
1077         npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */
1078         obp_pages = 0;
1079         va = KERNEL_TEXT;
1080         while (kbm_probe(&va, &len, &pfn, &prot) != 0) {
1081                 npages -= len >> MMU_PAGESHIFT;
1082                 if (va >= (uintptr_t)e_moddata)
1083                         obp_pages += len >> MMU_PAGESHIFT;
1084                 va += len;
1085         }
1086         PRM_DEBUG(npages);
1087         PRM_DEBUG(obp_pages);
1088 
1089         /*
1090          * If physmem is patched to be non-zero, use it instead of the computed
1091          * value unless it is larger than the actual amount of memory on hand.
1092          */
1093         if (physmem == 0 || physmem > npages) {
1094                 physmem = npages;
1095         } else if (physmem < npages) {
1096                 orig_npages = npages;
1097                 npages = physmem;
1098         }
1099         PRM_DEBUG(physmem);
1100 
1101         /*
1102          * We now compute the sizes of all the  initial allocations for
1103          * structures the kernel needs in order do kmem_alloc(). These
1104          * include:
1105          *      memsegs
1106          *      memlists
1107          *      page hash table
1108          *      page_t's
1109          *      page coloring data structs
1110          */
1111         memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS);
1112         ADD_TO_ALLOCATIONS(memseg_base, memseg_sz);
1113         PRM_DEBUG(memseg_sz);
1114 
1115         /*
1116          * Reserve space for memlists. There's no real good way to know exactly
1117          * how much room we'll need, but this should be a good upper bound.
1118          */
1119         memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) *
1120             (memblocks + POSS_NEW_FRAGMENTS));
1121         ADD_TO_ALLOCATIONS(memlist, memlist_sz);
1122         PRM_DEBUG(memlist_sz);
1123 
1124         /*
1125          * Reserve space for bios reserved memlists.
1126          */
1127         rsvdmemlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) *
1128             (rsvdmemblocks + POSS_NEW_FRAGMENTS));
1129         ADD_TO_ALLOCATIONS(bios_rsvd, rsvdmemlist_sz);
1130         PRM_DEBUG(rsvdmemlist_sz);
1131 
1132         /* LINTED */
1133         ASSERT(P2SAMEHIGHBIT((1 << PP_SHIFT), sizeof (struct page)));
1134         /*
1135          * The page structure hash table size is a power of 2
1136          * such that the average hash chain length is PAGE_HASHAVELEN.
1137          */
1138         page_hashsz = npages / PAGE_HASHAVELEN;
1139         page_hashsz_shift = highbit(page_hashsz);
1140         page_hashsz = 1 << page_hashsz_shift;
1141         pagehash_sz = sizeof (struct page *) * page_hashsz;
1142         ADD_TO_ALLOCATIONS(page_hash, pagehash_sz);
1143         PRM_DEBUG(pagehash_sz);
1144 
1145         /*
1146          * Set aside room for the page structures themselves.
1147          */
1148         PRM_DEBUG(npages);
1149         pp_sz = sizeof (struct page) * npages;
1150         ADD_TO_ALLOCATIONS(pp_base, pp_sz);
1151         PRM_DEBUG(pp_sz);
1152 
1153         /*
1154          * determine l2 cache info and memory size for page coloring
1155          */
1156         (void) getl2cacheinfo(CPU,
1157             &l2cache_sz, &l2cache_linesz, &l2cache_assoc);
1158         pagecolor_memsz =
1159             page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc);
1160         ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz);
1161         PRM_DEBUG(pagecolor_memsz);
1162 
1163         page_ctrs_size = page_ctrs_sz();
1164         ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size);
1165         PRM_DEBUG(page_ctrs_size);
1166 
1167         /*
1168          * Allocate the array that protects pp->p_selock.
1169          */
1170         pse_shift = size_pse_array(physmem, max_ncpus);
1171         pse_table_size = 1 << pse_shift;
1172         pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t);
1173         ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size);
1174 
1175 #if defined(__amd64)
1176         valloc_sz = ROUND_UP_LPAGE(valloc_sz);
1177         valloc_base = VALLOC_BASE;
1178 
1179         /*
1180          * The default values of VALLOC_BASE and SEGKPM_BASE should work
1181          * for values of physmax up to 1 Terabyte. They need adjusting when
1182          * memory is at addresses above 1 TB. When adjusted, segkpm_base must
1183          * be aligned on KERNEL_REDZONE_SIZE boundary (span of top level pte).
1184          */
1185         if (physmax + 1 > mmu_btop(TERABYTE) ||
1186             plat_dr_physmax > mmu_btop(TERABYTE)) {
1187                 uint64_t kpm_resv_amount = mmu_ptob(physmax + 1);
1188 
1189                 if (kpm_resv_amount < mmu_ptob(plat_dr_physmax)) {
1190                         kpm_resv_amount = mmu_ptob(plat_dr_physmax);
1191                 }
1192 
1193                 segkpm_base = -(P2ROUNDUP((2 * kpm_resv_amount),
1194                     KERNEL_REDZONE_SIZE));      /* down from top VA */
1195 
1196                 /* make sure we leave some space for user apps above hole */
1197                 segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE);
1198                 if (segkpm_base > SEGKPM_BASE)
1199                         segkpm_base = SEGKPM_BASE;
1200                 PRM_DEBUG(segkpm_base);
1201 
1202                 valloc_base = segkpm_base + P2ROUNDUP(kpm_resv_amount, ONE_GIG);
1203                 if (valloc_base < segkpm_base)
1204                         panic("not enough kernel VA to support memory size");
1205                 PRM_DEBUG(valloc_base);
1206         }
1207 #else   /* __i386 */
1208         valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz);
1209         valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]);
1210         PRM_DEBUG(valloc_base);
1211 #endif  /* __i386 */
1212 
1213         /*
1214          * do all the initial allocations
1215          */
1216         perform_allocations();
1217 
1218         /*
1219          * Build phys_install and phys_avail in kernel memspace.
1220          * - phys_install should be all memory in the system.
1221          * - phys_avail is phys_install minus any memory mapped before this
1222          *    point above KERNEL_TEXT.
1223          */
1224         current = phys_install = memlist;
1225         copy_memlist_filter(bootops->boot_mem->physinstalled, &current, NULL);
1226         if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1227                 panic("physinstalled was too big!");
1228         if (prom_debug)
1229                 print_memlist("phys_install", phys_install);
1230 
1231         phys_avail = current;
1232         PRM_POINT("Building phys_avail:\n");
1233         copy_memlist_filter(bootops->boot_mem->physinstalled, &current,
1234             avail_filter);
1235         if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1236                 panic("physavail was too big!");
1237         if (prom_debug)
1238                 print_memlist("phys_avail", phys_avail);
1239 #ifndef __xpv
1240         /*
1241          * Free unused memlist items, which may be used by memory DR driver
1242          * at runtime.
1243          */
1244         if ((caddr_t)current < (caddr_t)memlist + memlist_sz) {
1245                 memlist_free_block((caddr_t)current,
1246                     (caddr_t)memlist + memlist_sz - (caddr_t)current);
1247         }
1248 #endif
1249 
1250         /*
1251          * Build bios reserved memspace
1252          */
1253         current = bios_rsvd;
1254         copy_memlist_filter(bootops->boot_mem->rsvdmem, &current, NULL);
1255         if ((caddr_t)current > (caddr_t)bios_rsvd + rsvdmemlist_sz)
1256                 panic("bios_rsvd was too big!");
1257         if (prom_debug)
1258                 print_memlist("bios_rsvd", bios_rsvd);
1259 #ifndef __xpv
1260         /*
1261          * Free unused memlist items, which may be used by memory DR driver
1262          * at runtime.
1263          */
1264         if ((caddr_t)current < (caddr_t)bios_rsvd + rsvdmemlist_sz) {
1265                 memlist_free_block((caddr_t)current,
1266                     (caddr_t)bios_rsvd + rsvdmemlist_sz - (caddr_t)current);
1267         }
1268 #endif
1269 
1270         /*
1271          * setup page coloring
1272          */
1273         page_coloring_setup(pagecolor_mem);
1274         page_lock_init();       /* currently a no-op */
1275 
1276         /*
1277          * free page list counters
1278          */
1279         (void) page_ctrs_alloc(page_ctrs_mem);
1280 
1281         /*
1282          * Size the pcf array based on the number of cpus in the box at
1283          * boot time.
1284          */
1285 
1286         pcf_init();
1287 
1288         /*
1289          * Initialize the page structures from the memory lists.
1290          */
1291         availrmem_initial = availrmem = freemem = 0;
1292         PRM_POINT("Calling kphysm_init()...");
1293         npages = kphysm_init(pp_base, npages);
1294         PRM_POINT("kphysm_init() done");
1295         PRM_DEBUG(npages);
1296 
1297         init_debug_info();
1298 
1299         /*
1300          * Now that page_t's have been initialized, remove all the
1301          * initial allocation pages from the kernel free page lists.
1302          */
1303         boot_mapin((caddr_t)valloc_base, valloc_sz);
1304         boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE);
1305         PRM_POINT("startup_memlist() done");
1306 
1307         PRM_DEBUG(valloc_sz);
1308 
1309 #if defined(__amd64)
1310         if ((availrmem >> (30 - MMU_PAGESHIFT)) >=
1311             textrepl_min_gb && l2cache_sz <= 2 << 20) {
1312                 extern size_t textrepl_size_thresh;
1313                 textrepl_size_thresh = (16 << 20) - 1;
1314         }
1315 #endif
1316 }
1317 
1318 /*
1319  * Layout the kernel's part of address space and initialize kmem allocator.
1320  */
1321 static void
1322 startup_kmem(void)
1323 {
1324         extern void page_set_colorequiv_arr(void);
1325 
1326         PRM_POINT("startup_kmem() starting...");
1327 
1328 #if defined(__amd64)
1329         if (eprom_kernelbase && eprom_kernelbase != KERNELBASE)
1330                 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit "
1331                     "systems.");
1332         kernelbase = segkpm_base - KERNEL_REDZONE_SIZE;
1333         core_base = (uintptr_t)COREHEAP_BASE;
1334         core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE;
1335 #else   /* __i386 */
1336         /*
1337          * We configure kernelbase based on:
1338          *
1339          * 1. user specified kernelbase via eeprom command. Value cannot exceed
1340          *    KERNELBASE_MAX. we large page align eprom_kernelbase
1341          *
1342          * 2. Default to KERNELBASE and adjust to 2X less the size for page_t.
1343          *    On large memory systems we must lower kernelbase to allow
1344          *    enough room for page_t's for all of memory.
1345          *
1346          * The value set here, might be changed a little later.
1347          */
1348         if (eprom_kernelbase) {
1349                 kernelbase = eprom_kernelbase & mmu.level_mask[1];
1350                 if (kernelbase > KERNELBASE_MAX)
1351                         kernelbase = KERNELBASE_MAX;
1352         } else {
1353                 kernelbase = (uintptr_t)KERNELBASE;
1354                 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz);
1355         }
1356         ASSERT((kernelbase & mmu.level_offset[1]) == 0);
1357         core_base = valloc_base;
1358         core_size = 0;
1359 #endif  /* __i386 */
1360 
1361         PRM_DEBUG(core_base);
1362         PRM_DEBUG(core_size);
1363         PRM_DEBUG(kernelbase);
1364 
1365 #if defined(__i386)
1366         segkp_fromheap = 1;
1367 #endif  /* __i386 */
1368 
1369         ekernelheap = (char *)core_base;
1370         PRM_DEBUG(ekernelheap);
1371 
1372         /*
1373          * Now that we know the real value of kernelbase,
1374          * update variables that were initialized with a value of
1375          * KERNELBASE (in common/conf/param.c).
1376          *
1377          * XXX  The problem with this sort of hackery is that the
1378          *      compiler just may feel like putting the const declarations
1379          *      (in param.c) into the .text section.  Perhaps they should
1380          *      just be declared as variables there?
1381          */
1382 
1383         *(uintptr_t *)&_kernelbase = kernelbase;
1384         *(uintptr_t *)&_userlimit = kernelbase;
1385 #if defined(__amd64)
1386         *(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT;
1387 #else
1388         *(uintptr_t *)&_userlimit32 = _userlimit;
1389 #endif
1390         PRM_DEBUG(_kernelbase);
1391         PRM_DEBUG(_userlimit);
1392         PRM_DEBUG(_userlimit32);
1393 
1394         layout_kernel_va();
1395 
1396 #if defined(__i386)
1397         /*
1398          * If segmap is too large we can push the bottom of the kernel heap
1399          * higher than the base.  Or worse, it could exceed the top of the
1400          * VA space entirely, causing it to wrap around.
1401          */
1402         if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase)
1403                 panic("too little address space available for kernelheap,"
1404                     " use eeprom for lower kernelbase or smaller segmapsize");
1405 #endif  /* __i386 */
1406 
1407         /*
1408          * Initialize the kernel heap. Note 3rd argument must be > 1st.
1409          */
1410         kernelheap_init(kernelheap, ekernelheap,
1411             kernelheap + MMU_PAGESIZE,
1412             (void *)core_base, (void *)(core_base + core_size));
1413 
1414 #if defined(__xpv)
1415         /*
1416          * Link pending events struct into cpu struct
1417          */
1418         CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data;
1419 #endif
1420         /*
1421          * Initialize kernel memory allocator.
1422          */
1423         kmem_init();
1424 
1425         /*
1426          * Factor in colorequiv to check additional 'equivalent' bins
1427          */
1428         page_set_colorequiv_arr();
1429 
1430         /*
1431          * print this out early so that we know what's going on
1432          */
1433         print_x86_featureset(x86_featureset);
1434 
1435         /*
1436          * Initialize bp_mapin().
1437          */
1438         bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK);
1439 
1440         /*
1441          * orig_npages is non-zero if physmem has been configured for less
1442          * than the available memory.
1443          */
1444         if (orig_npages) {
1445                 cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages",
1446                     (npages == PHYSMEM ? "Due to virtual address space " : ""),
1447                     npages, orig_npages);
1448         }
1449 #if defined(__i386)
1450         if (eprom_kernelbase && (eprom_kernelbase != kernelbase))
1451                 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, "
1452                     "System using 0x%lx",
1453                     (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase);
1454 #endif
1455 
1456 #ifdef  KERNELBASE_ABI_MIN
1457         if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) {
1458                 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not "
1459                     "i386 ABI compliant.", (uintptr_t)kernelbase);
1460         }
1461 #endif
1462 
1463 #ifndef __xpv
1464         if (plat_dr_support_memory()) {
1465                 mem_config_init();
1466         }
1467 #else   /* __xpv */
1468         /*
1469          * Some of the xen start information has to be relocated up
1470          * into the kernel's permanent address space.
1471          */
1472         PRM_POINT("calling xen_relocate_start_info()");
1473         xen_relocate_start_info();
1474         PRM_POINT("xen_relocate_start_info() done");
1475 
1476         /*
1477          * (Update the vcpu pointer in our cpu structure to point into
1478          * the relocated shared info.)
1479          */
1480         CPU->cpu_m.mcpu_vcpu_info =
1481             &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id];
1482 #endif  /* __xpv */
1483 
1484         PRM_POINT("startup_kmem() done");
1485 }
1486 
1487 #ifndef __xpv
1488 /*
1489  * If we have detected that we are running in an HVM environment, we need
1490  * to prepend the PV driver directory to the module search path.
1491  */
1492 #define HVM_MOD_DIR "/platform/i86hvm/kernel"
1493 static void
1494 update_default_path()
1495 {
1496         char *current, *newpath;
1497         int newlen;
1498 
1499         /*
1500          * We are about to resync with krtld.  krtld will reset its
1501          * internal module search path iff Solaris has set default_path.
1502          * We want to be sure we're prepending this new directory to the
1503          * right search path.
1504          */
1505         current = (default_path == NULL) ? kobj_module_path : default_path;
1506 
1507         newlen = strlen(HVM_MOD_DIR) + strlen(current) + 2;
1508         newpath = kmem_alloc(newlen, KM_SLEEP);
1509         (void) strcpy(newpath, HVM_MOD_DIR);
1510         (void) strcat(newpath, " ");
1511         (void) strcat(newpath, current);
1512 
1513         default_path = newpath;
1514 }
1515 #endif
1516 
1517 static void
1518 startup_modules(void)
1519 {
1520         int cnt;
1521         extern void prom_setup(void);
1522         int32_t v, h;
1523         char d[11];
1524         char *cp;
1525         cmi_hdl_t hdl;
1526 
1527         PRM_POINT("startup_modules() starting...");
1528 
1529 #ifndef __xpv
1530         /*
1531          * Initialize ten-micro second timer so that drivers will
1532          * not get short changed in their init phase. This was
1533          * not getting called until clkinit which, on fast cpu's
1534          * caused the drv_usecwait to be way too short.
1535          */
1536         microfind();
1537 
1538         if ((get_hwenv() & HW_XEN_HVM) != 0)
1539                 update_default_path();
1540 #endif
1541 
1542         /*
1543          * Read the GMT lag from /etc/rtc_config.
1544          */
1545         sgmtl(process_rtc_config_file());
1546 
1547         /*
1548          * Calculate default settings of system parameters based upon
1549          * maxusers, yet allow to be overridden via the /etc/system file.
1550          */
1551         param_calc(0);
1552 
1553         mod_setup();
1554 
1555         /*
1556          * Initialize system parameters.
1557          */
1558         param_init();
1559 
1560         /*
1561          * Initialize the default brands
1562          */
1563         brand_init();
1564 
1565         /*
1566          * maxmem is the amount of physical memory we're playing with.
1567          */
1568         maxmem = physmem;
1569 
1570         /*
1571          * Initialize segment management stuff.
1572          */
1573         seg_init();
1574 
1575         if (modload("fs", "specfs") == -1)
1576                 halt("Can't load specfs");
1577 
1578         if (modload("fs", "devfs") == -1)
1579                 halt("Can't load devfs");
1580 
1581         if (modload("fs", "dev") == -1)
1582                 halt("Can't load dev");
1583 
1584         if (modload("fs", "procfs") == -1)
1585                 halt("Can't load procfs");
1586 
1587         (void) modloadonly("sys", "lbl_edition");
1588 
1589         dispinit();
1590 
1591         /* Read cluster configuration data. */
1592         clconf_init();
1593 
1594 #if defined(__xpv)
1595         (void) ec_init();
1596         gnttab_init();
1597         (void) xs_early_init();
1598 #endif /* __xpv */
1599 
1600         /*
1601          * Create a kernel device tree. First, create rootnex and
1602          * then invoke bus specific code to probe devices.
1603          */
1604         setup_ddi();
1605 
1606 #ifdef __xpv
1607         if (DOMAIN_IS_INITDOMAIN(xen_info))
1608 #endif
1609         {
1610                 /*
1611                  * Load the System Management BIOS into the global ksmbios
1612                  * handle, if an SMBIOS is present on this system.
1613                  */
1614                 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL);
1615         }
1616 
1617 
1618         /*
1619          * Originally clconf_init() apparently needed the hostid.  But
1620          * this no longer appears to be true - it uses its own nodeid.
1621          * By placing the hostid logic here, we are able to make use of
1622          * the SMBIOS UUID.
1623          */
1624         if ((h = set_soft_hostid()) == HW_INVALID_HOSTID) {
1625                 cmn_err(CE_WARN, "Unable to set hostid");
1626         } else {
1627                 for (v = h, cnt = 0; cnt < 10; cnt++) {
1628                         d[cnt] = (char)(v % 10);
1629                         v /= 10;
1630                         if (v == 0)
1631                                 break;
1632                 }
1633                 for (cp = hw_serial; cnt >= 0; cnt--)
1634                         *cp++ = d[cnt] + '0';
1635                 *cp = 0;
1636         }
1637 
1638         /*
1639          * Set up the CPU module subsystem for the boot cpu in the native
1640          * case, and all physical cpu resource in the xpv dom0 case.
1641          * Modifies the device tree, so this must be done after
1642          * setup_ddi().
1643          */
1644 #ifdef __xpv
1645         /*
1646          * If paravirtualized and on dom0 then we initialize all physical
1647          * cpu handles now;  if paravirtualized on a domU then do not
1648          * initialize.
1649          */
1650         if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1651                 xen_mc_lcpu_cookie_t cpi;
1652 
1653                 for (cpi = xen_physcpu_next(NULL); cpi != NULL;
1654                     cpi = xen_physcpu_next(cpi)) {
1655                         if ((hdl = cmi_init(CMI_HDL_SOLARIS_xVM_MCA,
1656                             xen_physcpu_chipid(cpi), xen_physcpu_coreid(cpi),
1657                             xen_physcpu_strandid(cpi))) != NULL &&
1658                             is_x86_feature(x86_featureset, X86FSET_MCA))
1659                                 cmi_mca_init(hdl);
1660                 }
1661         }
1662 #else
1663         /*
1664          * Initialize a handle for the boot cpu - others will initialize
1665          * as they startup.  Do not do this if we know we are in an HVM domU.
1666          */
1667         if ((get_hwenv() & HW_XEN_HVM) == 0 &&
1668             (hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU),
1669             cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL &&
1670             is_x86_feature(x86_featureset, X86FSET_MCA)) {
1671                         cmi_mca_init(hdl);
1672                         CPU->cpu_m.mcpu_cmi_hdl = hdl;
1673         }
1674 #endif  /* __xpv */
1675 
1676         /*
1677          * Fake a prom tree such that /dev/openprom continues to work
1678          */
1679         PRM_POINT("startup_modules: calling prom_setup...");
1680         prom_setup();
1681         PRM_POINT("startup_modules: done");
1682 
1683         /*
1684          * Load all platform specific modules
1685          */
1686         PRM_POINT("startup_modules: calling psm_modload...");
1687         psm_modload();
1688 
1689         PRM_POINT("startup_modules() done");
1690 }
1691 
1692 /*
1693  * claim a "setaside" boot page for use in the kernel
1694  */
1695 page_t *
1696 boot_claim_page(pfn_t pfn)
1697 {
1698         page_t *pp;
1699 
1700         pp = page_numtopp_nolock(pfn);
1701         ASSERT(pp != NULL);
1702 
1703         if (PP_ISBOOTPAGES(pp)) {
1704                 if (pp->p_next != NULL)
1705                         pp->p_next->p_prev = pp->p_prev;
1706                 if (pp->p_prev == NULL)
1707                         bootpages = pp->p_next;
1708                 else
1709                         pp->p_prev->p_next = pp->p_next;
1710         } else {
1711                 /*
1712                  * htable_attach() expects a base pagesize page
1713                  */
1714                 if (pp->p_szc != 0)
1715                         page_boot_demote(pp);
1716                 pp = page_numtopp(pfn, SE_EXCL);
1717         }
1718         return (pp);
1719 }
1720 
1721 /*
1722  * Walk through the pagetables looking for pages mapped in by boot.  If the
1723  * setaside flag is set the pages are expected to be returned to the
1724  * kernel later in boot, so we add them to the bootpages list.
1725  */
1726 static void
1727 protect_boot_range(uintptr_t low, uintptr_t high, int setaside)
1728 {
1729         uintptr_t va = low;
1730         size_t len;
1731         uint_t prot;
1732         pfn_t pfn;
1733         page_t *pp;
1734         pgcnt_t boot_protect_cnt = 0;
1735 
1736         while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) {
1737                 if (va + len >= high)
1738                         panic("0x%lx byte mapping at 0x%p exceeds boot's "
1739                             "legal range.", len, (void *)va);
1740 
1741                 while (len > 0) {
1742                         pp = page_numtopp_alloc(pfn);
1743                         if (pp != NULL) {
1744                                 if (setaside == 0)
1745                                         panic("Unexpected mapping by boot.  "
1746                                             "addr=%p pfn=%lx\n",
1747                                             (void *)va, pfn);
1748 
1749                                 pp->p_next = bootpages;
1750                                 pp->p_prev = NULL;
1751                                 PP_SETBOOTPAGES(pp);
1752                                 if (bootpages != NULL) {
1753                                         bootpages->p_prev = pp;
1754                                 }
1755                                 bootpages = pp;
1756                                 ++boot_protect_cnt;
1757                         }
1758 
1759                         ++pfn;
1760                         len -= MMU_PAGESIZE;
1761                         va += MMU_PAGESIZE;
1762                 }
1763         }
1764         PRM_DEBUG(boot_protect_cnt);
1765 }
1766 
1767 /*
1768  *
1769  */
1770 static void
1771 layout_kernel_va(void)
1772 {
1773         PRM_POINT("layout_kernel_va() starting...");
1774         /*
1775          * Establish the final size of the kernel's heap, size of segmap,
1776          * segkp, etc.
1777          */
1778 
1779 #if defined(__amd64)
1780 
1781         kpm_vbase = (caddr_t)segkpm_base;
1782         if (physmax + 1 < plat_dr_physmax) {
1783                 kpm_size = ROUND_UP_LPAGE(mmu_ptob(plat_dr_physmax));
1784         } else {
1785                 kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1));
1786         }
1787         if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base)
1788                 panic("not enough room for kpm!");
1789         PRM_DEBUG(kpm_size);
1790         PRM_DEBUG(kpm_vbase);
1791 
1792         /*
1793          * By default we create a seg_kp in 64 bit kernels, it's a little
1794          * faster to access than embedding it in the heap.
1795          */
1796         segkp_base = (caddr_t)valloc_base + valloc_sz;
1797         if (!segkp_fromheap) {
1798                 size_t sz = mmu_ptob(segkpsize);
1799 
1800                 /*
1801                  * determine size of segkp
1802                  */
1803                 if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) {
1804                         sz = SEGKPDEFSIZE;
1805                         cmn_err(CE_WARN, "!Illegal value for segkpsize. "
1806                             "segkpsize has been reset to %ld pages",
1807                             mmu_btop(sz));
1808                 }
1809                 sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem)));
1810 
1811                 segkpsize = mmu_btop(ROUND_UP_LPAGE(sz));
1812         }
1813         PRM_DEBUG(segkp_base);
1814         PRM_DEBUG(segkpsize);
1815 
1816         /*
1817          * segzio is used for ZFS cached data. It uses a distinct VA
1818          * segment (from kernel heap) so that we can easily tell not to
1819          * include it in kernel crash dumps on 64 bit kernels. The trick is
1820          * to give it lots of VA, but not constrain the kernel heap.
1821          * We scale the size of segzio linearly with physmem up to
1822          * SEGZIOMAXSIZE. Above that amount it scales at 50% of physmem.
1823          */
1824         segzio_base = segkp_base + mmu_ptob(segkpsize);
1825         if (segzio_fromheap) {
1826                 segziosize = 0;
1827         } else {
1828                 size_t physmem_size = mmu_ptob(physmem);
1829                 size_t size = (segziosize == 0) ?
1830                     physmem_size : mmu_ptob(segziosize);
1831 
1832                 if (size < SEGZIOMINSIZE)
1833                         size = SEGZIOMINSIZE;
1834                 if (size > SEGZIOMAXSIZE) {
1835                         size = SEGZIOMAXSIZE;
1836                         if (physmem_size > size)
1837                                 size += (physmem_size - size) / 2;
1838                 }
1839                 segziosize = mmu_btop(ROUND_UP_LPAGE(size));
1840         }
1841         PRM_DEBUG(segziosize);
1842         PRM_DEBUG(segzio_base);
1843 
1844         /*
1845          * Put the range of VA for device mappings next, kmdb knows to not
1846          * grep in this range of addresses.
1847          */
1848         toxic_addr =
1849             ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize));
1850         PRM_DEBUG(toxic_addr);
1851         segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size);
1852 #else /* __i386 */
1853         segmap_start = ROUND_UP_LPAGE(kernelbase);
1854 #endif /* __i386 */
1855         PRM_DEBUG(segmap_start);
1856 
1857         /*
1858          * Users can change segmapsize through eeprom. If the variable
1859          * is tuned through eeprom, there is no upper bound on the
1860          * size of segmap.
1861          */
1862         segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT);
1863 
1864 #if defined(__i386)
1865         /*
1866          * 32-bit systems don't have segkpm or segkp, so segmap appears at
1867          * the bottom of the kernel's address range.  Set aside space for a
1868          * small red zone just below the start of segmap.
1869          */
1870         segmap_start += KERNEL_REDZONE_SIZE;
1871         segmapsize -= KERNEL_REDZONE_SIZE;
1872 #endif
1873 
1874         PRM_DEBUG(segmap_start);
1875         PRM_DEBUG(segmapsize);
1876         kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize);
1877         PRM_DEBUG(kernelheap);
1878         PRM_POINT("layout_kernel_va() done...");
1879 }
1880 
1881 /*
1882  * Finish initializing the VM system, now that we are no longer
1883  * relying on the boot time memory allocators.
1884  */
1885 static void
1886 startup_vm(void)
1887 {
1888         struct segmap_crargs a;
1889 
1890         extern int use_brk_lpg, use_stk_lpg;
1891 
1892         PRM_POINT("startup_vm() starting...");
1893 
1894         /*
1895          * Initialize the hat layer.
1896          */
1897         hat_init();
1898 
1899         /*
1900          * Do final allocations of HAT data structures that need to
1901          * be allocated before quiescing the boot loader.
1902          */
1903         PRM_POINT("Calling hat_kern_alloc()...");
1904         hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap);
1905         PRM_POINT("hat_kern_alloc() done");
1906 
1907 #ifndef __xpv
1908         /*
1909          * Setup Page Attribute Table
1910          */
1911         pat_sync();
1912 #endif
1913 
1914         /*
1915          * The next two loops are done in distinct steps in order
1916          * to be sure that any page that is doubly mapped (both above
1917          * KERNEL_TEXT and below kernelbase) is dealt with correctly.
1918          * Note this may never happen, but it might someday.
1919          */
1920         bootpages = NULL;
1921         PRM_POINT("Protecting boot pages");
1922 
1923         /*
1924          * Protect any pages mapped above KERNEL_TEXT that somehow have
1925          * page_t's. This can only happen if something weird allocated
1926          * in this range (like kadb/kmdb).
1927          */
1928         protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0);
1929 
1930         /*
1931          * Before we can take over memory allocation/mapping from the boot
1932          * loader we must remove from our free page lists any boot allocated
1933          * pages that stay mapped until release_bootstrap().
1934          */
1935         protect_boot_range(0, kernelbase, 1);
1936 
1937 
1938         /*
1939          * Switch to running on regular HAT (not boot_mmu)
1940          */
1941         PRM_POINT("Calling hat_kern_setup()...");
1942         hat_kern_setup();
1943 
1944         /*
1945          * It is no longer safe to call BOP_ALLOC(), so make sure we don't.
1946          */
1947         bop_no_more_mem();
1948 
1949         PRM_POINT("hat_kern_setup() done");
1950 
1951         hat_cpu_online(CPU);
1952 
1953         /*
1954          * Initialize VM system
1955          */
1956         PRM_POINT("Calling kvm_init()...");
1957         kvm_init();
1958         PRM_POINT("kvm_init() done");
1959 
1960         /*
1961          * Tell kmdb that the VM system is now working
1962          */
1963         if (boothowto & RB_DEBUG)
1964                 kdi_dvec_vmready();
1965 
1966 #if defined(__xpv)
1967         /*
1968          * Populate the I/O pool on domain 0
1969          */
1970         if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1971                 extern long populate_io_pool(void);
1972                 long init_io_pool_cnt;
1973 
1974                 PRM_POINT("Populating reserve I/O page pool");
1975                 init_io_pool_cnt = populate_io_pool();
1976                 PRM_DEBUG(init_io_pool_cnt);
1977         }
1978 #endif
1979         /*
1980          * Mangle the brand string etc.
1981          */
1982         cpuid_pass3(CPU);
1983 
1984 #if defined(__amd64)
1985 
1986         /*
1987          * Create the device arena for toxic (to dtrace/kmdb) mappings.
1988          */
1989         device_arena = vmem_create("device", (void *)toxic_addr,
1990             toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP);
1991 
1992 #else   /* __i386 */
1993 
1994         /*
1995          * allocate the bit map that tracks toxic pages
1996          */
1997         toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase));
1998         PRM_DEBUG(toxic_bit_map_len);
1999         toxic_bit_map =
2000             kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP);
2001         ASSERT(toxic_bit_map != NULL);
2002         PRM_DEBUG(toxic_bit_map);
2003 
2004 #endif  /* __i386 */
2005 
2006 
2007         /*
2008          * Now that we've got more VA, as well as the ability to allocate from
2009          * it, tell the debugger.
2010          */
2011         if (boothowto & RB_DEBUG)
2012                 kdi_dvec_memavail();
2013 
2014         /*
2015          * The following code installs a special page fault handler (#pf)
2016          * to work around a pentium bug.
2017          */
2018 #if !defined(__amd64) && !defined(__xpv)
2019         if (x86_type == X86_TYPE_P5) {
2020                 desctbr_t idtr;
2021                 gate_desc_t *newidt;
2022 
2023                 if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL)
2024                         panic("failed to install pentium_pftrap");
2025 
2026                 bcopy(idt0, newidt, NIDT * sizeof (*idt0));
2027                 set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap,
2028                     KCS_SEL, SDT_SYSIGT, TRP_KPL, 0);
2029 
2030                 (void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE,
2031                     PROT_READ | PROT_EXEC);
2032 
2033                 CPU->cpu_idt = newidt;
2034                 idtr.dtr_base = (uintptr_t)CPU->cpu_idt;
2035                 idtr.dtr_limit = (NIDT * sizeof (*idt0)) - 1;
2036                 wr_idtr(&idtr);
2037         }
2038 #endif  /* !__amd64 */
2039 
2040 #if !defined(__xpv)
2041         /*
2042          * Map page pfn=0 for drivers, such as kd, that need to pick up
2043          * parameters left there by controllers/BIOS.
2044          */
2045         PRM_POINT("setup up p0_va");
2046         p0_va = i86devmap(0, 1, PROT_READ);
2047         PRM_DEBUG(p0_va);
2048 #endif
2049 
2050         cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n",
2051             physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled));
2052 
2053         /*
2054          * disable automatic large pages for small memory systems or
2055          * when the disable flag is set.
2056          *
2057          * Do not yet consider page sizes larger than 2m/4m.
2058          */
2059         if (!auto_lpg_disable && mmu.max_page_level > 0) {
2060                 max_uheap_lpsize = LEVEL_SIZE(1);
2061                 max_ustack_lpsize = LEVEL_SIZE(1);
2062                 max_privmap_lpsize = LEVEL_SIZE(1);
2063                 max_uidata_lpsize = LEVEL_SIZE(1);
2064                 max_utext_lpsize = LEVEL_SIZE(1);
2065                 max_shm_lpsize = LEVEL_SIZE(1);
2066         }
2067         if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 ||
2068             auto_lpg_disable) {
2069                 use_brk_lpg = 0;
2070                 use_stk_lpg = 0;
2071         }
2072         mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level);
2073 
2074         PRM_POINT("Calling hat_init_finish()...");
2075         hat_init_finish();
2076         PRM_POINT("hat_init_finish() done");
2077 
2078         /*
2079          * Initialize the segkp segment type.
2080          */
2081         rw_enter(&kas.a_lock, RW_WRITER);
2082         PRM_POINT("Attaching segkp");
2083         if (segkp_fromheap) {
2084                 segkp->s_as = &kas;
2085         } else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize),
2086             segkp) < 0) {
2087                 panic("startup: cannot attach segkp");
2088                 /*NOTREACHED*/
2089         }
2090         PRM_POINT("Doing segkp_create()");
2091         if (segkp_create(segkp) != 0) {
2092                 panic("startup: segkp_create failed");
2093                 /*NOTREACHED*/
2094         }
2095         PRM_DEBUG(segkp);
2096         rw_exit(&kas.a_lock);
2097 
2098         /*
2099          * kpm segment
2100          */
2101         segmap_kpm = 0;
2102         if (kpm_desired) {
2103                 kpm_init();
2104                 kpm_enable = 1;
2105         }
2106 
2107         /*
2108          * Now create segmap segment.
2109          */
2110         rw_enter(&kas.a_lock, RW_WRITER);
2111         if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) {
2112                 panic("cannot attach segmap");
2113                 /*NOTREACHED*/
2114         }
2115         PRM_DEBUG(segmap);
2116 
2117         a.prot = PROT_READ | PROT_WRITE;
2118         a.shmsize = 0;
2119         a.nfreelist = segmapfreelists;
2120 
2121         if (segmap_create(segmap, (caddr_t)&a) != 0)
2122                 panic("segmap_create segmap");
2123         rw_exit(&kas.a_lock);
2124 
2125         setup_vaddr_for_ppcopy(CPU);
2126 
2127         segdev_init();
2128 #if defined(__xpv)
2129         if (DOMAIN_IS_INITDOMAIN(xen_info))
2130 #endif
2131                 pmem_init();
2132 
2133         PRM_POINT("startup_vm() done");
2134 }
2135 
2136 /*
2137  * Load a tod module for the non-standard tod part found on this system.
2138  */
2139 static void
2140 load_tod_module(char *todmod)
2141 {
2142         if (modload("tod", todmod) == -1)
2143                 halt("Can't load TOD module");
2144 }
2145 
2146 static void
2147 startup_end(void)
2148 {
2149         int i;
2150         extern void setx86isalist(void);
2151         extern void cpu_event_init(void);
2152 
2153         PRM_POINT("startup_end() starting...");
2154 
2155         /*
2156          * Perform tasks that get done after most of the VM
2157          * initialization has been done but before the clock
2158          * and other devices get started.
2159          */
2160         kern_setup1();
2161 
2162         /*
2163          * Perform CPC initialization for this CPU.
2164          */
2165         kcpc_hw_init(CPU);
2166 
2167         /*
2168          * Initialize cpu event framework.
2169          */
2170         cpu_event_init();
2171 
2172 #if defined(OPTERON_WORKAROUND_6323525)
2173         if (opteron_workaround_6323525)
2174                 patch_workaround_6323525();
2175 #endif
2176         /*
2177          * If needed, load TOD module now so that ddi_get_time(9F) etc. work
2178          * (For now, "needed" is defined as set tod_module_name in /etc/system)
2179          */
2180         if (tod_module_name != NULL) {
2181                 PRM_POINT("load_tod_module()");
2182                 load_tod_module(tod_module_name);
2183         }
2184 
2185 #if defined(__xpv)
2186         /*
2187          * Forceload interposing TOD module for the hypervisor.
2188          */
2189         PRM_POINT("load_tod_module()");
2190         load_tod_module("xpvtod");
2191 #endif
2192 
2193         /*
2194          * Configure the system.
2195          */
2196         PRM_POINT("Calling configure()...");
2197         configure();            /* set up devices */
2198         PRM_POINT("configure() done");
2199 
2200         /*
2201          * We can now setup for XSAVE because fpu_probe is done in configure().
2202          */
2203         if (fp_save_mech == FP_XSAVE) {
2204                 xsave_setup_msr(CPU);
2205         }
2206 
2207         /*
2208          * Set the isa_list string to the defined instruction sets we
2209          * support.
2210          */
2211         setx86isalist();
2212         cpu_intr_alloc(CPU, NINTR_THREADS);
2213         psm_install();
2214 
2215         /*
2216          * We're done with bootops.  We don't unmap the bootstrap yet because
2217          * we're still using bootsvcs.
2218          */
2219         PRM_POINT("NULLing out bootops");
2220         *bootopsp = (struct bootops *)NULL;
2221         bootops = (struct bootops *)NULL;
2222 
2223 #if defined(__xpv)
2224         ec_init_debug_irq();
2225         xs_domu_init();
2226 #endif
2227 
2228 #if defined(__amd64) && !defined(__xpv)
2229         /*
2230          * Intel IOMMU has been setup/initialized in ddi_impl.c
2231          * Start it up now.
2232          */
2233         immu_startup();
2234 #endif
2235 
2236         PRM_POINT("Enabling interrupts");
2237         (*picinitf)();
2238         sti();
2239 #if defined(__xpv)
2240         ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0);
2241         xen_late_startup();
2242 #endif
2243 
2244         (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1,
2245             "softlevel1", NULL, NULL); /* XXX to be moved later */
2246 
2247         /*
2248          * Register these software interrupts for ddi timer.
2249          * Software interrupts up to the level 10 are supported.
2250          */
2251         for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) {
2252                 char name[sizeof ("timer_softintr") + 2];
2253                 (void) sprintf(name, "timer_softintr%02d", i);
2254                 (void) add_avsoftintr((void *)&softlevel_hdl[i-1], i,
2255                     (avfunc)timer_softintr, name, (caddr_t)(uintptr_t)i, NULL);
2256         }
2257 
2258 #if !defined(__xpv)
2259         if (modload("drv", "amd_iommu") < 0) {
2260                 PRM_POINT("No AMD IOMMU present\n");
2261         } else if (ddi_hold_installed_driver(ddi_name_to_major(
2262             "amd_iommu")) == NULL) {
2263                 prom_printf("ERROR: failed to attach AMD IOMMU\n");
2264         }
2265 #endif
2266         post_startup_cpu_fixups();
2267 
2268         PRM_POINT("startup_end() done");
2269 }
2270 
2271 /*
2272  * Don't remove the following 2 variables.  They are necessary
2273  * for reading the hostid from the legacy file (/kernel/misc/sysinit).
2274  */
2275 char *_hs1107 = hw_serial;
2276 ulong_t  _bdhs34;
2277 
2278 void
2279 post_startup(void)
2280 {
2281         extern void cpupm_init(cpu_t *);
2282         extern void cpu_event_init_cpu(cpu_t *);
2283 
2284         /*
2285          * Set the system wide, processor-specific flags to be passed
2286          * to userland via the aux vector for performance hints and
2287          * instruction set extensions.
2288          */
2289         bind_hwcap();
2290 
2291 #ifdef __xpv
2292         if (DOMAIN_IS_INITDOMAIN(xen_info))
2293 #endif
2294         {
2295 #if defined(__xpv)
2296                 xpv_panic_init();
2297 #else
2298                 /*
2299                  * Startup the memory scrubber.
2300                  * XXPV This should be running somewhere ..
2301                  */
2302                 if ((get_hwenv() & HW_VIRTUAL) == 0)
2303                         memscrub_init();
2304 #endif
2305         }
2306 
2307         /*
2308          * Complete CPU module initialization
2309          */
2310         cmi_post_startup();
2311 
2312         /*
2313          * Perform forceloading tasks for /etc/system.
2314          */
2315         (void) mod_sysctl(SYS_FORCELOAD, NULL);
2316 
2317         /*
2318          * ON4.0: Force /proc module in until clock interrupt handle fixed
2319          * ON4.0: This must be fixed or restated in /etc/systems.
2320          */
2321         (void) modload("fs", "procfs");
2322 
2323         (void) i_ddi_attach_hw_nodes("pit_beep");
2324 
2325 #if defined(__i386)
2326         /*
2327          * Check for required functional Floating Point hardware,
2328          * unless FP hardware explicitly disabled.
2329          */
2330         if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO))
2331                 halt("No working FP hardware found");
2332 #endif
2333 
2334         maxmem = freemem;
2335 
2336         cpu_event_init_cpu(CPU);
2337         cpupm_init(CPU);
2338         (void) mach_cpu_create_device_node(CPU, NULL);
2339 
2340         pg_init();
2341 }
2342 
2343 static int
2344 pp_in_range(page_t *pp, uint64_t low_addr, uint64_t high_addr)
2345 {
2346         return ((pp->p_pagenum >= btop(low_addr)) &&
2347             (pp->p_pagenum < btopr(high_addr)));
2348 }
2349 
2350 void
2351 release_bootstrap(void)
2352 {
2353         int root_is_ramdisk;
2354         page_t *pp;
2355         extern void kobj_boot_unmountroot(void);
2356         extern dev_t rootdev;
2357 #if !defined(__xpv)
2358         pfn_t   pfn;
2359 #endif
2360 
2361         /* unmount boot ramdisk and release kmem usage */
2362         kobj_boot_unmountroot();
2363 
2364         /*
2365          * We're finished using the boot loader so free its pages.
2366          */
2367         PRM_POINT("Unmapping lower boot pages");
2368 
2369         clear_boot_mappings(0, _userlimit);
2370 
2371         postbootkernelbase = kernelbase;
2372 
2373         /*
2374          * If root isn't on ramdisk, destroy the hardcoded
2375          * ramdisk node now and release the memory. Else,
2376          * ramdisk memory is kept in rd_pages.
2377          */
2378         root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk"));
2379         if (!root_is_ramdisk) {
2380                 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0);
2381                 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node());
2382                 ndi_rele_devi(dip);     /* held from ddi_find_devinfo */
2383                 (void) ddi_remove_child(dip, 0);
2384         }
2385 
2386         PRM_POINT("Releasing boot pages");
2387         while (bootpages) {
2388                 extern uint64_t ramdisk_start, ramdisk_end;
2389                 pp = bootpages;
2390                 bootpages = pp->p_next;
2391 
2392 
2393                 /* Keep pages for the lower 64K */
2394                 if (pp_in_range(pp, 0, 0x40000)) {
2395                         pp->p_next = lower_pages;
2396                         lower_pages = pp;
2397                         lower_pages_count++;
2398                         continue;
2399                 }
2400 
2401 
2402                 if (root_is_ramdisk && pp_in_range(pp, ramdisk_start,
2403                     ramdisk_end)) {
2404                         pp->p_next = rd_pages;
2405                         rd_pages = pp;
2406                         continue;
2407                 }
2408                 pp->p_next = (struct page *)0;
2409                 pp->p_prev = (struct page *)0;
2410                 PP_CLRBOOTPAGES(pp);
2411                 page_free(pp, 1);
2412         }
2413         PRM_POINT("Boot pages released");
2414 
2415 #if !defined(__xpv)
2416 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */
2417         /*
2418          * Find 1 page below 1 MB so that other processors can boot up or
2419          * so that any processor can resume.
2420          * Make sure it has a kernel VA as well as a 1:1 mapping.
2421          * We should have just free'd one up.
2422          */
2423 
2424         /*
2425          * 0x10 pages is 64K.  Leave the bottom 64K alone
2426          * for BIOS.
2427          */
2428         for (pfn = 0x10; pfn < btop(1*1024*1024); pfn++) {
2429                 if (page_numtopp_alloc(pfn) == NULL)
2430                         continue;
2431                 rm_platter_va = i86devmap(pfn, 1,
2432                     PROT_READ | PROT_WRITE | PROT_EXEC);
2433                 rm_platter_pa = ptob(pfn);
2434                 break;
2435         }
2436         if (pfn == btop(1*1024*1024) && use_mp)
2437                 panic("No page below 1M available for starting "
2438                     "other processors or for resuming from system-suspend");
2439 #endif  /* !__xpv */
2440 }
2441 
2442 /*
2443  * Initialize the platform-specific parts of a page_t.
2444  */
2445 void
2446 add_physmem_cb(page_t *pp, pfn_t pnum)
2447 {
2448         pp->p_pagenum = pnum;
2449         pp->p_mapping = NULL;
2450         pp->p_embed = 0;
2451         pp->p_share = 0;
2452         pp->p_mlentry = 0;
2453 }
2454 
2455 /*
2456  * kphysm_init() initializes physical memory.
2457  */
2458 static pgcnt_t
2459 kphysm_init(
2460         page_t *pp,
2461         pgcnt_t npages)
2462 {
2463         struct memlist  *pmem;
2464         struct memseg   *cur_memseg;
2465         pfn_t           base_pfn;
2466         pfn_t           end_pfn;
2467         pgcnt_t         num;
2468         pgcnt_t         pages_done = 0;
2469         uint64_t        addr;
2470         uint64_t        size;
2471         extern pfn_t    ddiphysmin;
2472         extern int      mnode_xwa;
2473         int             ms = 0, me = 0;
2474 
2475         ASSERT(page_hash != NULL && page_hashsz != 0);
2476 
2477         cur_memseg = memseg_base;
2478         for (pmem = phys_avail; pmem && npages; pmem = pmem->ml_next) {
2479                 /*
2480                  * In a 32 bit kernel can't use higher memory if we're
2481                  * not booting in PAE mode. This check takes care of that.
2482                  */
2483                 addr = pmem->ml_address;
2484                 size = pmem->ml_size;
2485                 if (btop(addr) > physmax)
2486                         continue;
2487 
2488                 /*
2489                  * align addr and size - they may not be at page boundaries
2490                  */
2491                 if ((addr & MMU_PAGEOFFSET) != 0) {
2492                         addr += MMU_PAGEOFFSET;
2493                         addr &= ~(uint64_t)MMU_PAGEOFFSET;
2494                         size -= addr - pmem->ml_address;
2495                 }
2496 
2497                 /* only process pages below or equal to physmax */
2498                 if ((btop(addr + size) - 1) > physmax)
2499                         size = ptob(physmax - btop(addr) + 1);
2500 
2501                 num = btop(size);
2502                 if (num == 0)
2503                         continue;
2504 
2505                 if (num > npages)
2506                         num = npages;
2507 
2508                 npages -= num;
2509                 pages_done += num;
2510                 base_pfn = btop(addr);
2511 
2512                 if (prom_debug)
2513                         prom_printf("MEMSEG addr=0x%" PRIx64
2514                             " pgs=0x%lx pfn 0x%lx-0x%lx\n",
2515                             addr, num, base_pfn, base_pfn + num);
2516 
2517                 /*
2518                  * Ignore pages below ddiphysmin to simplify ddi memory
2519                  * allocation with non-zero addr_lo requests.
2520                  */
2521                 if (base_pfn < ddiphysmin) {
2522                         if (base_pfn + num <= ddiphysmin)
2523                                 continue;
2524                         pp += (ddiphysmin - base_pfn);
2525                         num -= (ddiphysmin - base_pfn);
2526                         base_pfn = ddiphysmin;
2527                 }
2528 
2529                 /*
2530                  * mnode_xwa is greater than 1 when large pages regions can
2531                  * cross memory node boundaries. To prevent the formation
2532                  * of these large pages, configure the memsegs based on the
2533                  * memory node ranges which had been made non-contiguous.
2534                  */
2535                 if (mnode_xwa > 1) {
2536 
2537                         end_pfn = base_pfn + num - 1;
2538                         ms = PFN_2_MEM_NODE(base_pfn);
2539                         me = PFN_2_MEM_NODE(end_pfn);
2540 
2541                         if (ms != me) {
2542                                 /*
2543                                  * current range spans more than 1 memory node.
2544                                  * Set num to only the pfn range in the start
2545                                  * memory node.
2546                                  */
2547                                 num = mem_node_config[ms].physmax - base_pfn
2548                                     + 1;
2549                                 ASSERT(end_pfn > mem_node_config[ms].physmax);
2550                         }
2551                 }
2552 
2553                 for (;;) {
2554                         /*
2555                          * Build the memsegs entry
2556                          */
2557                         cur_memseg->pages = pp;
2558                         cur_memseg->epages = pp + num;
2559                         cur_memseg->pages_base = base_pfn;
2560                         cur_memseg->pages_end = base_pfn + num;
2561 
2562                         /*
2563                          * Insert into memseg list in decreasing pfn range
2564                          * order. Low memory is typically more fragmented such
2565                          * that this ordering keeps the larger ranges at the
2566                          * front of the list for code that searches memseg.
2567                          * This ASSERTS that the memsegs coming in from boot
2568                          * are in increasing physical address order and not
2569                          * contiguous.
2570                          */
2571                         if (memsegs != NULL) {
2572                                 ASSERT(cur_memseg->pages_base >=
2573                                     memsegs->pages_end);
2574                                 cur_memseg->next = memsegs;
2575                         }
2576                         memsegs = cur_memseg;
2577 
2578                         /*
2579                          * add_physmem() initializes the PSM part of the page
2580                          * struct by calling the PSM back with add_physmem_cb().
2581                          * In addition it coalesces pages into larger pages as
2582                          * it initializes them.
2583                          */
2584                         add_physmem(pp, num, base_pfn);
2585                         cur_memseg++;
2586                         availrmem_initial += num;
2587                         availrmem += num;
2588 
2589                         pp += num;
2590                         if (ms >= me)
2591                                 break;
2592 
2593                         /* process next memory node range */
2594                         ms++;
2595                         base_pfn = mem_node_config[ms].physbase;
2596                         num = MIN(mem_node_config[ms].physmax,
2597                             end_pfn) - base_pfn + 1;
2598                 }
2599         }
2600 
2601         PRM_DEBUG(availrmem_initial);
2602         PRM_DEBUG(availrmem);
2603         PRM_DEBUG(freemem);
2604         build_pfn_hash();
2605         return (pages_done);
2606 }
2607 
2608 /*
2609  * Kernel VM initialization.
2610  */
2611 static void
2612 kvm_init(void)
2613 {
2614         ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0);
2615 
2616         /*
2617          * Put the kernel segments in kernel address space.
2618          */
2619         rw_enter(&kas.a_lock, RW_WRITER);
2620         as_avlinit(&kas);
2621 
2622         (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg);
2623         (void) segkmem_create(&ktextseg);
2624 
2625         (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc);
2626         (void) segkmem_create(&kvalloc);
2627 
2628         (void) seg_attach(&kas, kernelheap,
2629             ekernelheap - kernelheap, &kvseg);
2630         (void) segkmem_create(&kvseg);
2631 
2632         if (core_size > 0) {
2633                 PRM_POINT("attaching kvseg_core");
2634                 (void) seg_attach(&kas, (caddr_t)core_base, core_size,
2635                     &kvseg_core);
2636                 (void) segkmem_create(&kvseg_core);
2637         }
2638 
2639         if (segziosize > 0) {
2640                 PRM_POINT("attaching segzio");
2641                 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize),
2642                     &kzioseg);
2643                 (void) segkmem_zio_create(&kzioseg);
2644 
2645                 /* create zio area covering new segment */
2646                 segkmem_zio_init(segzio_base, mmu_ptob(segziosize));
2647         }
2648 
2649         (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg);
2650         (void) segkmem_create(&kdebugseg);
2651 
2652         rw_exit(&kas.a_lock);
2653 
2654         /*
2655          * Ensure that the red zone at kernelbase is never accessible.
2656          */
2657         PRM_POINT("protecting redzone");
2658         (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0);
2659 
2660         /*
2661          * Make the text writable so that it can be hot patched by DTrace.
2662          */
2663         (void) as_setprot(&kas, s_text, e_modtext - s_text,
2664             PROT_READ | PROT_WRITE | PROT_EXEC);
2665 
2666         /*
2667          * Make data writable until end.
2668          */
2669         (void) as_setprot(&kas, s_data, e_moddata - s_data,
2670             PROT_READ | PROT_WRITE | PROT_EXEC);
2671 }
2672 
2673 #ifndef __xpv
2674 /*
2675  * Solaris adds an entry for Write Combining caching to the PAT
2676  */
2677 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE;
2678 
2679 void
2680 pat_sync(void)
2681 {
2682         ulong_t cr0, cr0_orig, cr4;
2683 
2684         if (!is_x86_feature(x86_featureset, X86FSET_PAT))
2685                 return;
2686         cr0_orig = cr0 = getcr0();
2687         cr4 = getcr4();
2688 
2689         /* disable caching and flush all caches and TLBs */
2690         cr0 |= CR0_CD;
2691         cr0 &= ~CR0_NW;
2692         setcr0(cr0);
2693         invalidate_cache();
2694         if (cr4 & CR4_PGE) {
2695                 setcr4(cr4 & ~(ulong_t)CR4_PGE);
2696                 setcr4(cr4);
2697         } else {
2698                 reload_cr3();
2699         }
2700 
2701         /* add our entry to the PAT */
2702         wrmsr(REG_PAT, pat_attr_reg);
2703 
2704         /* flush TLBs and cache again, then reenable cr0 caching */
2705         if (cr4 & CR4_PGE) {
2706                 setcr4(cr4 & ~(ulong_t)CR4_PGE);
2707                 setcr4(cr4);
2708         } else {
2709                 reload_cr3();
2710         }
2711         invalidate_cache();
2712         setcr0(cr0_orig);
2713 }
2714 
2715 #endif /* !__xpv */
2716 
2717 #if defined(_SOFT_HOSTID)
2718 /*
2719  * On platforms that do not have a hardware serial number, attempt
2720  * to set one based on the contents of /etc/hostid.  If this file does
2721  * not exist, assume that we are to generate a new hostid and set
2722  * it in the kernel, for subsequent saving by a userland process
2723  * once the system is up and the root filesystem is mounted r/w.
2724  *
2725  * In order to gracefully support upgrade on OpenSolaris, if
2726  * /etc/hostid does not exist, we will attempt to get a serial number
2727  * using the legacy method (/kernel/misc/sysinit).
2728  *
2729  * If that isn't present, we attempt to use an SMBIOS UUID, which is
2730  * a hardware serial number.  Note that we don't automatically trust
2731  * all SMBIOS UUIDs (some older platforms are defective and ship duplicate
2732  * UUIDs in violation of the standard), we check against a blacklist.
2733  *
2734  * In an attempt to make the hostid less prone to abuse
2735  * (for license circumvention, etc), we store it in /etc/hostid
2736  * in rot47 format.
2737  */
2738 extern volatile unsigned long tenmicrodata;
2739 static int atoi(char *);
2740 
2741 /*
2742  * Set this to non-zero in /etc/system if you think your SMBIOS returns a
2743  * UUID that is not unique. (Also report it so that the smbios_uuid_blacklist
2744  * array can be updated.)
2745  */
2746 int smbios_broken_uuid = 0;
2747 
2748 /*
2749  * List of known bad UUIDs.  This is just the lower 32-bit values, since
2750  * that's what we use for the host id.  If your hostid falls here, you need
2751  * to contact your hardware OEM for a fix for your BIOS.
2752  */
2753 static unsigned char
2754 smbios_uuid_blacklist[][16] = {
2755 
2756         {       /* Reported bad UUID (Google search) */
2757                 0x00, 0x02, 0x00, 0x03, 0x00, 0x04, 0x00, 0x05,
2758                 0x00, 0x06, 0x00, 0x07, 0x00, 0x08, 0x00, 0x09,
2759         },
2760         {       /* Known bad DELL UUID */
2761                 0x4C, 0x4C, 0x45, 0x44, 0x00, 0x00, 0x20, 0x10,
2762                 0x80, 0x20, 0x80, 0xC0, 0x4F, 0x20, 0x20, 0x20,
2763         },
2764         {       /* Uninitialized flash */
2765                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
2766                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2767         },
2768         {       /* All zeros */
2769                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2770                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
2771         },
2772 };
2773 
2774 static int32_t
2775 uuid_to_hostid(const uint8_t *uuid)
2776 {
2777         /*
2778          * Although the UUIDs are 128-bits, they may not distribute entropy
2779          * evenly.  We would like to use SHA or MD5, but those are located
2780          * in loadable modules and not available this early in boot.  As we
2781          * don't need the values to be cryptographically strong, we just
2782          * generate 32-bit vaue by xor'ing the various sequences together,
2783          * which ensures that the enire UUID contributes to the hostid.
2784          */
2785         int32_t id = 0;
2786 
2787         /* first check against the blacklist */
2788         for (int i = 0; i < (sizeof (smbios_uuid_blacklist) / 16); i++) {
2789                 if (bcmp(smbios_uuid_blacklist[0], uuid, 16) == 0) {
2790                         cmn_err(CE_CONT, "?Broken SMBIOS UUID. "
2791                             "Contact BIOS manufacturer for repair.\n");
2792                         return ((int32_t)HW_INVALID_HOSTID);
2793                 }
2794         }
2795 
2796         for (int i = 0; i < 16; i++)
2797                 id ^= ((uuid[i]) << (8 * (i % sizeof (id))));
2798 
2799         return (id);
2800 }
2801 
2802 static int32_t
2803 set_soft_hostid(void)
2804 {
2805         struct _buf *file;
2806         char tokbuf[MAXNAMELEN];
2807         token_t token;
2808         int done = 0;
2809         u_longlong_t tmp;
2810         int i;
2811         int32_t hostid = (int32_t)HW_INVALID_HOSTID;
2812         unsigned char *c;
2813         hrtime_t tsc;
2814         smbios_system_t smsys;
2815 
2816         /*
2817          * If /etc/hostid file not found, we'd like to get a pseudo
2818          * random number to use at the hostid.  A nice way to do this
2819          * is to read the real time clock.  To remain xen-compatible,
2820          * we can't poke the real hardware, so we use tsc_read() to
2821          * read the real time clock.  However, there is an ominous
2822          * warning in tsc_read that says it can return zero, so we
2823          * deal with that possibility by falling back to using the
2824          * (hopefully random enough) value in tenmicrodata.
2825          */
2826 
2827         if ((file = kobj_open_file(hostid_file)) == (struct _buf *)-1) {
2828                 /*
2829                  * hostid file not found - try to load sysinit module
2830                  * and see if it has a nonzero hostid value...use that
2831                  * instead of generating a new hostid here if so.
2832                  */
2833                 if ((i = modload("misc", "sysinit")) != -1) {
2834                         if (strlen(hw_serial) > 0)
2835                                 hostid = (int32_t)atoi(hw_serial);
2836                         (void) modunload(i);
2837                 }
2838 
2839                 /*
2840                  * We try to use the SMBIOS UUID. But not if it is blacklisted
2841                  * in /etc/system.
2842                  */
2843                 if ((hostid == HW_INVALID_HOSTID) &&
2844                     (smbios_broken_uuid == 0) &&
2845                     (ksmbios != NULL) &&
2846                     (smbios_info_system(ksmbios, &smsys) != SMB_ERR) &&
2847                     (smsys.smbs_uuidlen >= 16)) {
2848                         hostid = uuid_to_hostid(smsys.smbs_uuid);
2849                 }
2850 
2851                 /*
2852                  * Generate a "random" hostid using the clock.  These
2853                  * hostids will change on each boot if the value is not
2854                  * saved to a persistent /etc/hostid file.
2855                  */
2856                 if (hostid == HW_INVALID_HOSTID) {
2857                         tsc = tsc_read();
2858                         if (tsc == 0)   /* tsc_read can return zero sometimes */
2859                                 hostid = (int32_t)tenmicrodata & 0x0CFFFFF;
2860                         else
2861                                 hostid = (int32_t)tsc & 0x0CFFFFF;
2862                 }
2863         } else {
2864                 /* hostid file found */
2865                 while (!done) {
2866                         token = kobj_lex(file, tokbuf, sizeof (tokbuf));
2867 
2868                         switch (token) {
2869                         case POUND:
2870                                 /*
2871                                  * skip comments
2872                                  */
2873                                 kobj_find_eol(file);
2874                                 break;
2875                         case STRING:
2876                                 /*
2877                                  * un-rot47 - obviously this
2878                                  * nonsense is ascii-specific
2879                                  */
2880                                 for (c = (unsigned char *)tokbuf;
2881                                     *c != '\0'; c++) {
2882                                         *c += 47;
2883                                         if (*c > '~')
2884                                                 *c -= 94;
2885                                         else if (*c < '!')
2886                                                 *c += 94;
2887                                 }
2888                                 /*
2889                                  * now we should have a real number
2890                                  */
2891 
2892                                 if (kobj_getvalue(tokbuf, &tmp) != 0)
2893                                         kobj_file_err(CE_WARN, file,
2894                                             "Bad value %s for hostid",
2895                                             tokbuf);
2896                                 else
2897                                         hostid = (int32_t)tmp;
2898 
2899                                 break;
2900                         case EOF:
2901                                 done = 1;
2902                                 /* FALLTHROUGH */
2903                         case NEWLINE:
2904                                 kobj_newline(file);
2905                                 break;
2906                         default:
2907                                 break;
2908 
2909                         }
2910                 }
2911                 if (hostid == HW_INVALID_HOSTID) /* didn't find a hostid */
2912                         kobj_file_err(CE_WARN, file,
2913                             "hostid missing or corrupt");
2914 
2915                 kobj_close_file(file);
2916         }
2917         /*
2918          * hostid is now the value read from /etc/hostid, or the
2919          * new hostid we generated in this routine or HW_INVALID_HOSTID if not
2920          * set.
2921          */
2922         return (hostid);
2923 }
2924 
2925 static int
2926 atoi(char *p)
2927 {
2928         int i = 0;
2929 
2930         while (*p != '\0')
2931                 i = 10 * i + (*p++ - '0');
2932 
2933         return (i);
2934 }
2935 
2936 #endif /* _SOFT_HOSTID */
2937 
2938 void
2939 get_system_configuration(void)
2940 {
2941         char    prop[32];
2942         u_longlong_t nodes_ll, cpus_pernode_ll, lvalue;
2943 
2944         if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) ||
2945             BOP_GETPROP(bootops, "nodes", prop) < 0 ||
2946             kobj_getvalue(prop, &nodes_ll) == -1 ||
2947             nodes_ll > MAXNODES ||
2948             BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) ||
2949             BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 ||
2950             kobj_getvalue(prop, &cpus_pernode_ll) == -1) {
2951                 system_hardware.hd_nodes = 1;
2952                 system_hardware.hd_cpus_per_node = 0;
2953         } else {
2954                 system_hardware.hd_nodes = (int)nodes_ll;
2955                 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll;
2956         }
2957 
2958         if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) ||
2959             BOP_GETPROP(bootops, "kernelbase", prop) < 0 ||
2960             kobj_getvalue(prop, &lvalue) == -1)
2961                 eprom_kernelbase = NULL;
2962         else
2963                 eprom_kernelbase = (uintptr_t)lvalue;
2964 
2965         if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) ||
2966             BOP_GETPROP(bootops, "segmapsize", prop) < 0 ||
2967             kobj_getvalue(prop, &lvalue) == -1)
2968                 segmapsize = SEGMAPDEFAULT;
2969         else
2970                 segmapsize = (uintptr_t)lvalue;
2971 
2972         if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) ||
2973             BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 ||
2974             kobj_getvalue(prop, &lvalue) == -1)
2975                 segmapfreelists = 0;    /* use segmap driver default */
2976         else
2977                 segmapfreelists = (int)lvalue;
2978 
2979         /* physmem used to be here, but moved much earlier to fakebop.c */
2980 }
2981 
2982 /*
2983  * Add to a memory list.
2984  * start = start of new memory segment
2985  * len = length of new memory segment in bytes
2986  * new = pointer to a new struct memlist
2987  * memlistp = memory list to which to add segment.
2988  */
2989 void
2990 memlist_add(
2991         uint64_t start,
2992         uint64_t len,
2993         struct memlist *new,
2994         struct memlist **memlistp)
2995 {
2996         struct memlist *cur;
2997         uint64_t end = start + len;
2998 
2999         new->ml_address = start;
3000         new->ml_size = len;
3001 
3002         cur = *memlistp;
3003 
3004         while (cur) {
3005                 if (cur->ml_address >= end) {
3006                         new->ml_next = cur;
3007                         *memlistp = new;
3008                         new->ml_prev = cur->ml_prev;
3009                         cur->ml_prev = new;
3010                         return;
3011                 }
3012                 ASSERT(cur->ml_address + cur->ml_size <= start);
3013                 if (cur->ml_next == NULL) {
3014                         cur->ml_next = new;
3015                         new->ml_prev = cur;
3016                         new->ml_next = NULL;
3017                         return;
3018                 }
3019                 memlistp = &cur->ml_next;
3020                 cur = cur->ml_next;
3021         }
3022 }
3023 
3024 void
3025 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
3026 {
3027         size_t tsize = e_modtext - modtext;
3028         size_t dsize = e_moddata - moddata;
3029 
3030         *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize,
3031             1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP);
3032         *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize,
3033             1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
3034 }
3035 
3036 caddr_t
3037 kobj_text_alloc(vmem_t *arena, size_t size)
3038 {
3039         return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT));
3040 }
3041 
3042 /*ARGSUSED*/
3043 caddr_t
3044 kobj_texthole_alloc(caddr_t addr, size_t size)
3045 {
3046         panic("unexpected call to kobj_texthole_alloc()");
3047         /*NOTREACHED*/
3048         return (0);
3049 }
3050 
3051 /*ARGSUSED*/
3052 void
3053 kobj_texthole_free(caddr_t addr, size_t size)
3054 {
3055         panic("unexpected call to kobj_texthole_free()");
3056 }
3057 
3058 /*
3059  * This is called just after configure() in startup().
3060  *
3061  * The ISALIST concept is a bit hopeless on Intel, because
3062  * there's no guarantee of an ever-more-capable processor
3063  * given that various parts of the instruction set may appear
3064  * and disappear between different implementations.
3065  *
3066  * While it would be possible to correct it and even enhance
3067  * it somewhat, the explicit hardware capability bitmask allows
3068  * more flexibility.
3069  *
3070  * So, we just leave this alone.
3071  */
3072 void
3073 setx86isalist(void)
3074 {
3075         char *tp;
3076         size_t len;
3077         extern char *isa_list;
3078 
3079 #define TBUFSIZE        1024
3080 
3081         tp = kmem_alloc(TBUFSIZE, KM_SLEEP);
3082         *tp = '\0';
3083 
3084 #if defined(__amd64)
3085         (void) strcpy(tp, "amd64 ");
3086 #endif
3087 
3088         switch (x86_vendor) {
3089         case X86_VENDOR_Intel:
3090         case X86_VENDOR_AMD:
3091         case X86_VENDOR_TM:
3092                 if (is_x86_feature(x86_featureset, X86FSET_CMOV)) {
3093                         /*
3094                          * Pentium Pro or later
3095                          */
3096                         (void) strcat(tp, "pentium_pro");
3097                         (void) strcat(tp,
3098                             is_x86_feature(x86_featureset, X86FSET_MMX) ?
3099                             "+mmx pentium_pro " : " ");
3100                 }
3101                 /*FALLTHROUGH*/
3102         case X86_VENDOR_Cyrix:
3103                 /*
3104                  * The Cyrix 6x86 does not have any Pentium features
3105                  * accessible while not at privilege level 0.
3106                  */
3107                 if (is_x86_feature(x86_featureset, X86FSET_CPUID)) {
3108                         (void) strcat(tp, "pentium");
3109                         (void) strcat(tp,
3110                             is_x86_feature(x86_featureset, X86FSET_MMX) ?
3111                             "+mmx pentium " : " ");
3112                 }
3113                 break;
3114         default:
3115                 break;
3116         }
3117         (void) strcat(tp, "i486 i386 i86");
3118         len = strlen(tp) + 1;   /* account for NULL at end of string */
3119         isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp);
3120         kmem_free(tp, TBUFSIZE);
3121 
3122 #undef TBUFSIZE
3123 }
3124 
3125 
3126 #ifdef __amd64
3127 
3128 void *
3129 device_arena_alloc(size_t size, int vm_flag)
3130 {
3131         return (vmem_alloc(device_arena, size, vm_flag));
3132 }
3133 
3134 void
3135 device_arena_free(void *vaddr, size_t size)
3136 {
3137         vmem_free(device_arena, vaddr, size);
3138 }
3139 
3140 #else /* __i386 */
3141 
3142 void *
3143 device_arena_alloc(size_t size, int vm_flag)
3144 {
3145         caddr_t vaddr;
3146         uintptr_t v;
3147         size_t  start;
3148         size_t  end;
3149 
3150         vaddr = vmem_alloc(heap_arena, size, vm_flag);
3151         if (vaddr == NULL)
3152                 return (NULL);
3153 
3154         v = (uintptr_t)vaddr;
3155         ASSERT(v >= kernelbase);
3156         ASSERT(v + size <= valloc_base);
3157 
3158         start = btop(v - kernelbase);
3159         end = btop(v + size - 1 - kernelbase);
3160         ASSERT(start < toxic_bit_map_len);
3161         ASSERT(end < toxic_bit_map_len);
3162 
3163         while (start <= end) {
3164                 BT_ATOMIC_SET(toxic_bit_map, start);
3165                 ++start;
3166         }
3167         return (vaddr);
3168 }
3169 
3170 void
3171 device_arena_free(void *vaddr, size_t size)
3172 {
3173         uintptr_t v = (uintptr_t)vaddr;
3174         size_t  start;
3175         size_t  end;
3176 
3177         ASSERT(v >= kernelbase);
3178         ASSERT(v + size <= valloc_base);
3179 
3180         start = btop(v - kernelbase);
3181         end = btop(v + size - 1 - kernelbase);
3182         ASSERT(start < toxic_bit_map_len);
3183         ASSERT(end < toxic_bit_map_len);
3184 
3185         while (start <= end) {
3186                 ASSERT(BT_TEST(toxic_bit_map, start) != 0);
3187                 BT_ATOMIC_CLEAR(toxic_bit_map, start);
3188                 ++start;
3189         }
3190         vmem_free(heap_arena, vaddr, size);
3191 }
3192 
3193 /*
3194  * returns 1st address in range that is in device arena, or NULL
3195  * if len is not NULL it returns the length of the toxic range
3196  */
3197 void *
3198 device_arena_contains(void *vaddr, size_t size, size_t *len)
3199 {
3200         uintptr_t v = (uintptr_t)vaddr;
3201         uintptr_t eaddr = v + size;
3202         size_t start;
3203         size_t end;
3204 
3205         /*
3206          * if called very early by kmdb, just return NULL
3207          */
3208         if (toxic_bit_map == NULL)
3209                 return (NULL);
3210 
3211         /*
3212          * First check if we're completely outside the bitmap range.
3213          */
3214         if (v >= valloc_base || eaddr < kernelbase)
3215                 return (NULL);
3216 
3217         /*
3218          * Trim ends of search to look at only what the bitmap covers.
3219          */
3220         if (v < kernelbase)
3221                 v = kernelbase;
3222         start = btop(v - kernelbase);
3223         end = btop(eaddr - kernelbase);
3224         if (end >= toxic_bit_map_len)
3225                 end = toxic_bit_map_len;
3226 
3227         if (bt_range(toxic_bit_map, &start, &end, end) == 0)
3228                 return (NULL);
3229 
3230         v = kernelbase + ptob(start);
3231         if (len != NULL)
3232                 *len = ptob(end - start);
3233         return ((void *)v);
3234 }
3235 
3236 #endif  /* __i386 */