1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 /* 26 * Copyright (c) 2010, Intel Corporation. 27 * All rights reserved. 28 */ 29 30 /* 31 * To understand how the pcplusmp module interacts with the interrupt subsystem 32 * read the theory statement in uts/i86pc/os/intr.c. 33 */ 34 35 /* 36 * PSMI 1.1 extensions are supported only in 2.6 and later versions. 37 * PSMI 1.2 extensions are supported only in 2.7 and later versions. 38 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10. 39 * PSMI 1.5 extensions are supported in Solaris Nevada. 40 * PSMI 1.6 extensions are supported in Solaris Nevada. 41 * PSMI 1.7 extensions are supported in Solaris Nevada. 42 */ 43 #define PSMI_1_7 44 45 #include <sys/processor.h> 46 #include <sys/time.h> 47 #include <sys/psm.h> 48 #include <sys/smp_impldefs.h> 49 #include <sys/cram.h> 50 #include <sys/acpi/acpi.h> 51 #include <sys/acpica.h> 52 #include <sys/psm_common.h> 53 #include <sys/apic.h> 54 #include <sys/pit.h> 55 #include <sys/ddi.h> 56 #include <sys/sunddi.h> 57 #include <sys/ddi_impldefs.h> 58 #include <sys/pci.h> 59 #include <sys/promif.h> 60 #include <sys/x86_archext.h> 61 #include <sys/cpc_impl.h> 62 #include <sys/uadmin.h> 63 #include <sys/panic.h> 64 #include <sys/debug.h> 65 #include <sys/archsystm.h> 66 #include <sys/trap.h> 67 #include <sys/machsystm.h> 68 #include <sys/sysmacros.h> 69 #include <sys/cpuvar.h> 70 #include <sys/rm_platter.h> 71 #include <sys/privregs.h> 72 #include <sys/note.h> 73 #include <sys/pci_intr_lib.h> 74 #include <sys/spl.h> 75 #include <sys/clock.h> 76 #include <sys/dditypes.h> 77 #include <sys/sunddi.h> 78 #include <sys/x_call.h> 79 #include <sys/reboot.h> 80 #include <sys/hpet.h> 81 #include <sys/apic_common.h> 82 #include <sys/apic_timer.h> 83 84 /* 85 * Local Function Prototypes 86 */ 87 static void apic_init_intr(void); 88 89 /* 90 * standard MP entries 91 */ 92 static int apic_probe(void); 93 static int apic_getclkirq(int ipl); 94 static void apic_init(void); 95 static void apic_picinit(void); 96 static int apic_post_cpu_start(void); 97 static int apic_intr_enter(int ipl, int *vect); 98 static void apic_setspl(int ipl); 99 static void x2apic_setspl(int ipl); 100 static int apic_addspl(int ipl, int vector, int min_ipl, int max_ipl); 101 static int apic_delspl(int ipl, int vector, int min_ipl, int max_ipl); 102 static int apic_disable_intr(processorid_t cpun); 103 static void apic_enable_intr(processorid_t cpun); 104 static int apic_get_ipivect(int ipl, int type); 105 static void apic_post_cyclic_setup(void *arg); 106 107 /* 108 * The following vector assignments influence the value of ipltopri and 109 * vectortoipl. Note that vectors 0 - 0x1f are not used. We can program 110 * idle to 0 and IPL 0 to 0xf to differentiate idle in case 111 * we care to do so in future. Note some IPLs which are rarely used 112 * will share the vector ranges and heavily used IPLs (5 and 6) have 113 * a wide range. 114 * 115 * This array is used to initialize apic_ipls[] (in apic_init()). 116 * 117 * IPL Vector range. as passed to intr_enter 118 * 0 none. 119 * 1,2,3 0x20-0x2f 0x0-0xf 120 * 4 0x30-0x3f 0x10-0x1f 121 * 5 0x40-0x5f 0x20-0x3f 122 * 6 0x60-0x7f 0x40-0x5f 123 * 7,8,9 0x80-0x8f 0x60-0x6f 124 * 10 0x90-0x9f 0x70-0x7f 125 * 11 0xa0-0xaf 0x80-0x8f 126 * ... ... 127 * 15 0xe0-0xef 0xc0-0xcf 128 * 15 0xf0-0xff 0xd0-0xdf 129 */ 130 uchar_t apic_vectortoipl[APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL] = { 131 3, 4, 5, 5, 6, 6, 9, 10, 11, 12, 13, 14, 15, 15 132 }; 133 /* 134 * The ipl of an ISR at vector X is apic_vectortoipl[X>>4] 135 * NOTE that this is vector as passed into intr_enter which is 136 * programmed vector - 0x20 (APIC_BASE_VECT) 137 */ 138 139 uchar_t apic_ipltopri[MAXIPL + 1]; /* unix ipl to apic pri */ 140 /* The taskpri to be programmed into apic to mask given ipl */ 141 142 #if defined(__amd64) 143 uchar_t apic_cr8pri[MAXIPL + 1]; /* unix ipl to cr8 pri */ 144 #endif 145 146 /* 147 * Correlation of the hardware vector to the IPL in use, initialized 148 * from apic_vectortoipl[] in apic_init(). The final IPLs may not correlate 149 * to the IPLs in apic_vectortoipl on some systems that share interrupt lines 150 * connected to errata-stricken IOAPICs 151 */ 152 uchar_t apic_ipls[APIC_AVAIL_VECTOR]; 153 154 /* 155 * Patchable global variables. 156 */ 157 int apic_enable_hwsoftint = 0; /* 0 - disable, 1 - enable */ 158 int apic_enable_bind_log = 1; /* 1 - display interrupt binding log */ 159 160 /* 161 * Local static data 162 */ 163 static struct psm_ops apic_ops = { 164 apic_probe, 165 166 apic_init, 167 apic_picinit, 168 apic_intr_enter, 169 apic_intr_exit, 170 apic_setspl, 171 apic_addspl, 172 apic_delspl, 173 apic_disable_intr, 174 apic_enable_intr, 175 (int (*)(int))NULL, /* psm_softlvl_to_irq */ 176 (void (*)(int))NULL, /* psm_set_softintr */ 177 178 apic_set_idlecpu, 179 apic_unset_idlecpu, 180 181 apic_clkinit, 182 apic_getclkirq, 183 (void (*)(void))NULL, /* psm_hrtimeinit */ 184 apic_gethrtime, 185 186 apic_get_next_processorid, 187 apic_cpu_start, 188 apic_post_cpu_start, 189 apic_shutdown, 190 apic_get_ipivect, 191 apic_send_ipi, 192 193 (int (*)(dev_info_t *, int))NULL, /* psm_translate_irq */ 194 (void (*)(int, char *))NULL, /* psm_notify_error */ 195 (void (*)(int))NULL, /* psm_notify_func */ 196 apic_timer_reprogram, 197 apic_timer_enable, 198 apic_timer_disable, 199 apic_post_cyclic_setup, 200 apic_preshutdown, 201 apic_intr_ops, /* Advanced DDI Interrupt framework */ 202 apic_state, /* save, restore apic state for S3 */ 203 apic_cpu_ops, /* CPU control interface. */ 204 }; 205 206 struct psm_ops *psmops = &apic_ops; 207 208 static struct psm_info apic_psm_info = { 209 PSM_INFO_VER01_7, /* version */ 210 PSM_OWN_EXCLUSIVE, /* ownership */ 211 (struct psm_ops *)&apic_ops, /* operation */ 212 APIC_PCPLUSMP_NAME, /* machine name */ 213 "pcplusmp v1.4 compatible", 214 }; 215 216 static void *apic_hdlp; 217 218 /* 219 * apic_let_idle_redistribute can have the following values: 220 * 0 - If clock decremented it from 1 to 0, clock has to call redistribute. 221 * apic_redistribute_lock prevents multiple idle cpus from redistributing 222 */ 223 int apic_num_idle_redistributions = 0; 224 static int apic_let_idle_redistribute = 0; 225 226 /* to gather intr data and redistribute */ 227 static void apic_redistribute_compute(void); 228 229 /* 230 * This is the loadable module wrapper 231 */ 232 233 int 234 _init(void) 235 { 236 if (apic_coarse_hrtime) 237 apic_ops.psm_gethrtime = &apic_gettime; 238 return (psm_mod_init(&apic_hdlp, &apic_psm_info)); 239 } 240 241 int 242 _fini(void) 243 { 244 return (psm_mod_fini(&apic_hdlp, &apic_psm_info)); 245 } 246 247 int 248 _info(struct modinfo *modinfop) 249 { 250 return (psm_mod_info(&apic_hdlp, &apic_psm_info, modinfop)); 251 } 252 253 static int 254 apic_probe(void) 255 { 256 /* check if apix is initialized */ 257 if (apix_enable && apix_loaded()) 258 return (PSM_FAILURE); 259 else 260 apix_enable = 0; /* continue using pcplusmp PSM */ 261 262 return (apic_probe_common(apic_psm_info.p_mach_idstring)); 263 } 264 265 static uchar_t 266 apic_xlate_vector_by_irq(uchar_t irq) 267 { 268 if (apic_irq_table[irq] == NULL) 269 return (0); 270 271 return (apic_irq_table[irq]->airq_vector); 272 } 273 274 void 275 apic_init(void) 276 { 277 int i; 278 int j = 1; 279 280 psm_get_ioapicid = apic_get_ioapicid; 281 psm_get_localapicid = apic_get_localapicid; 282 psm_xlate_vector_by_irq = apic_xlate_vector_by_irq; 283 284 apic_ipltopri[0] = APIC_VECTOR_PER_IPL; /* leave 0 for idle */ 285 for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) { 286 if ((i < ((APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL) - 1)) && 287 (apic_vectortoipl[i + 1] == apic_vectortoipl[i])) 288 /* get to highest vector at the same ipl */ 289 continue; 290 for (; j <= apic_vectortoipl[i]; j++) { 291 apic_ipltopri[j] = (i << APIC_IPL_SHIFT) + 292 APIC_BASE_VECT; 293 } 294 } 295 for (; j < MAXIPL + 1; j++) 296 /* fill up any empty ipltopri slots */ 297 apic_ipltopri[j] = (i << APIC_IPL_SHIFT) + APIC_BASE_VECT; 298 apic_init_common(); 299 #if defined(__amd64) 300 /* 301 * Make cpu-specific interrupt info point to cr8pri vector 302 */ 303 for (i = 0; i <= MAXIPL; i++) 304 apic_cr8pri[i] = apic_ipltopri[i] >> APIC_IPL_SHIFT; 305 CPU->cpu_pri_data = apic_cr8pri; 306 #else 307 if (cpuid_have_cr8access(CPU)) 308 apic_have_32bit_cr8 = 1; 309 #endif /* __amd64 */ 310 } 311 312 static void 313 apic_init_intr(void) 314 { 315 processorid_t cpun = psm_get_cpu_id(); 316 uint_t nlvt; 317 uint32_t svr = AV_UNIT_ENABLE | APIC_SPUR_INTR; 318 319 apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL); 320 321 if (apic_mode == LOCAL_APIC) { 322 /* 323 * We are running APIC in MMIO mode. 324 */ 325 if (apic_flat_model) { 326 apic_reg_ops->apic_write(APIC_FORMAT_REG, 327 APIC_FLAT_MODEL); 328 } else { 329 apic_reg_ops->apic_write(APIC_FORMAT_REG, 330 APIC_CLUSTER_MODEL); 331 } 332 333 apic_reg_ops->apic_write(APIC_DEST_REG, 334 AV_HIGH_ORDER >> cpun); 335 } 336 337 if (apic_directed_EOI_supported()) { 338 /* 339 * Setting the 12th bit in the Spurious Interrupt Vector 340 * Register suppresses broadcast EOIs generated by the local 341 * APIC. The suppression of broadcast EOIs happens only when 342 * interrupts are level-triggered. 343 */ 344 svr |= APIC_SVR_SUPPRESS_BROADCAST_EOI; 345 } 346 347 /* need to enable APIC before unmasking NMI */ 348 apic_reg_ops->apic_write(APIC_SPUR_INT_REG, svr); 349 350 /* 351 * Presence of an invalid vector with delivery mode AV_FIXED can 352 * cause an error interrupt, even if the entry is masked...so 353 * write a valid vector to LVT entries along with the mask bit 354 */ 355 356 /* All APICs have timer and LINT0/1 */ 357 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK|APIC_RESV_IRQ); 358 apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK|APIC_RESV_IRQ); 359 apic_reg_ops->apic_write(APIC_INT_VECT1, AV_NMI); /* enable NMI */ 360 361 /* 362 * On integrated APICs, the number of LVT entries is 363 * 'Max LVT entry' + 1; on 82489DX's (non-integrated 364 * APICs), nlvt is "3" (LINT0, LINT1, and timer) 365 */ 366 367 if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) { 368 nlvt = 3; 369 } else { 370 nlvt = ((apic_reg_ops->apic_read(APIC_VERS_REG) >> 16) & 371 0xFF) + 1; 372 } 373 374 if (nlvt >= 5) { 375 /* Enable performance counter overflow interrupt */ 376 377 if (!is_x86_feature(x86_featureset, X86FSET_MSR)) 378 apic_enable_cpcovf_intr = 0; 379 if (apic_enable_cpcovf_intr) { 380 if (apic_cpcovf_vect == 0) { 381 int ipl = APIC_PCINT_IPL; 382 int irq = apic_get_ipivect(ipl, -1); 383 384 ASSERT(irq != -1); 385 apic_cpcovf_vect = 386 apic_irq_table[irq]->airq_vector; 387 ASSERT(apic_cpcovf_vect); 388 (void) add_avintr(NULL, ipl, 389 (avfunc)kcpc_hw_overflow_intr, 390 "apic pcint", irq, NULL, NULL, NULL, NULL); 391 kcpc_hw_overflow_intr_installed = 1; 392 kcpc_hw_enable_cpc_intr = 393 apic_cpcovf_mask_clear; 394 } 395 apic_reg_ops->apic_write(APIC_PCINT_VECT, 396 apic_cpcovf_vect); 397 } 398 } 399 400 if (nlvt >= 6) { 401 /* Only mask TM intr if the BIOS apparently doesn't use it */ 402 403 uint32_t lvtval; 404 405 lvtval = apic_reg_ops->apic_read(APIC_THERM_VECT); 406 if (((lvtval & AV_MASK) == AV_MASK) || 407 ((lvtval & AV_DELIV_MODE) != AV_SMI)) { 408 apic_reg_ops->apic_write(APIC_THERM_VECT, 409 AV_MASK|APIC_RESV_IRQ); 410 } 411 } 412 413 /* Enable error interrupt */ 414 415 if (nlvt >= 4 && apic_enable_error_intr) { 416 if (apic_errvect == 0) { 417 int ipl = 0xf; /* get highest priority intr */ 418 int irq = apic_get_ipivect(ipl, -1); 419 420 ASSERT(irq != -1); 421 apic_errvect = apic_irq_table[irq]->airq_vector; 422 ASSERT(apic_errvect); 423 /* 424 * Not PSMI compliant, but we are going to merge 425 * with ON anyway 426 */ 427 (void) add_avintr((void *)NULL, ipl, 428 (avfunc)apic_error_intr, "apic error intr", 429 irq, NULL, NULL, NULL, NULL); 430 } 431 apic_reg_ops->apic_write(APIC_ERR_VECT, apic_errvect); 432 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); 433 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); 434 } 435 436 /* Enable CMCI interrupt */ 437 if (cmi_enable_cmci) { 438 439 mutex_enter(&cmci_cpu_setup_lock); 440 if (cmci_cpu_setup_registered == 0) { 441 mutex_enter(&cpu_lock); 442 register_cpu_setup_func(cmci_cpu_setup, NULL); 443 mutex_exit(&cpu_lock); 444 cmci_cpu_setup_registered = 1; 445 } 446 mutex_exit(&cmci_cpu_setup_lock); 447 448 if (apic_cmci_vect == 0) { 449 int ipl = 0x2; 450 int irq = apic_get_ipivect(ipl, -1); 451 452 ASSERT(irq != -1); 453 apic_cmci_vect = apic_irq_table[irq]->airq_vector; 454 ASSERT(apic_cmci_vect); 455 456 (void) add_avintr(NULL, ipl, 457 (avfunc)cmi_cmci_trap, 458 "apic cmci intr", irq, NULL, NULL, NULL, NULL); 459 } 460 apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect); 461 } 462 } 463 464 static void 465 apic_picinit(void) 466 { 467 int i, j; 468 uint_t isr; 469 470 /* 471 * Initialize and enable interrupt remapping before apic 472 * hardware initialization 473 */ 474 apic_intrmap_init(apic_mode); 475 476 /* 477 * On UniSys Model 6520, the BIOS leaves vector 0x20 isr 478 * bit on without clearing it with EOI. Since softint 479 * uses vector 0x20 to interrupt itself, so softint will 480 * not work on this machine. In order to fix this problem 481 * a check is made to verify all the isr bits are clear. 482 * If not, EOIs are issued to clear the bits. 483 */ 484 for (i = 7; i >= 1; i--) { 485 isr = apic_reg_ops->apic_read(APIC_ISR_REG + (i * 4)); 486 if (isr != 0) 487 for (j = 0; ((j < 32) && (isr != 0)); j++) 488 if (isr & (1 << j)) { 489 apic_reg_ops->apic_write( 490 APIC_EOI_REG, 0); 491 isr &= ~(1 << j); 492 apic_error |= APIC_ERR_BOOT_EOI; 493 } 494 } 495 496 /* set a flag so we know we have run apic_picinit() */ 497 apic_picinit_called = 1; 498 LOCK_INIT_CLEAR(&apic_gethrtime_lock); 499 LOCK_INIT_CLEAR(&apic_ioapic_lock); 500 LOCK_INIT_CLEAR(&apic_error_lock); 501 LOCK_INIT_CLEAR(&apic_mode_switch_lock); 502 503 picsetup(); /* initialise the 8259 */ 504 505 /* add nmi handler - least priority nmi handler */ 506 LOCK_INIT_CLEAR(&apic_nmi_lock); 507 508 if (!psm_add_nmintr(0, (avfunc) apic_nmi_intr, 509 "pcplusmp NMI handler", (caddr_t)NULL)) 510 cmn_err(CE_WARN, "pcplusmp: Unable to add nmi handler"); 511 512 /* 513 * Check for directed-EOI capability in the local APIC. 514 */ 515 if (apic_directed_EOI_supported() == 1) { 516 apic_set_directed_EOI_handler(); 517 } 518 519 apic_init_intr(); 520 521 /* enable apic mode if imcr present */ 522 if (apic_imcrp) { 523 outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT); 524 outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_APIC); 525 } 526 527 ioapic_init_intr(IOAPIC_MASK); 528 } 529 530 #ifdef DEBUG 531 void 532 apic_break(void) 533 { 534 } 535 #endif /* DEBUG */ 536 537 /* 538 * platform_intr_enter 539 * 540 * Called at the beginning of the interrupt service routine to 541 * mask all level equal to and below the interrupt priority 542 * of the interrupting vector. An EOI should be given to 543 * the interrupt controller to enable other HW interrupts. 544 * 545 * Return -1 for spurious interrupts 546 * 547 */ 548 /*ARGSUSED*/ 549 static int 550 apic_intr_enter(int ipl, int *vectorp) 551 { 552 uchar_t vector; 553 int nipl; 554 int irq; 555 ulong_t iflag; 556 apic_cpus_info_t *cpu_infop; 557 558 /* 559 * The real vector delivered is (*vectorp + 0x20), but our caller 560 * subtracts 0x20 from the vector before passing it to us. 561 * (That's why APIC_BASE_VECT is 0x20.) 562 */ 563 vector = (uchar_t)*vectorp; 564 565 /* if interrupted by the clock, increment apic_nsec_since_boot */ 566 if (vector == apic_clkvect) { 567 if (!apic_oneshot) { 568 /* NOTE: this is not MT aware */ 569 apic_hrtime_stamp++; 570 apic_nsec_since_boot += apic_nsec_per_intr; 571 apic_hrtime_stamp++; 572 last_count_read = apic_hertz_count; 573 apic_redistribute_compute(); 574 } 575 576 /* We will avoid all the book keeping overhead for clock */ 577 nipl = apic_ipls[vector]; 578 579 *vectorp = apic_vector_to_irq[vector + APIC_BASE_VECT]; 580 if (apic_mode == LOCAL_APIC) { 581 #if defined(__amd64) 582 setcr8((ulong_t)(apic_ipltopri[nipl] >> 583 APIC_IPL_SHIFT)); 584 #else 585 if (apic_have_32bit_cr8) 586 setcr8((ulong_t)(apic_ipltopri[nipl] >> 587 APIC_IPL_SHIFT)); 588 else 589 LOCAL_APIC_WRITE_REG(APIC_TASK_REG, 590 (uint32_t)apic_ipltopri[nipl]); 591 #endif 592 LOCAL_APIC_WRITE_REG(APIC_EOI_REG, 0); 593 } else { 594 X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[nipl]); 595 X2APIC_WRITE(APIC_EOI_REG, 0); 596 } 597 598 return (nipl); 599 } 600 601 cpu_infop = &apic_cpus[psm_get_cpu_id()]; 602 603 if (vector == (APIC_SPUR_INTR - APIC_BASE_VECT)) { 604 cpu_infop->aci_spur_cnt++; 605 return (APIC_INT_SPURIOUS); 606 } 607 608 /* Check if the vector we got is really what we need */ 609 if (apic_revector_pending) { 610 /* 611 * Disable interrupts for the duration of 612 * the vector translation to prevent a self-race for 613 * the apic_revector_lock. This cannot be done 614 * in apic_xlate_vector because it is recursive and 615 * we want the vector translation to be atomic with 616 * respect to other (higher-priority) interrupts. 617 */ 618 iflag = intr_clear(); 619 vector = apic_xlate_vector(vector + APIC_BASE_VECT) - 620 APIC_BASE_VECT; 621 intr_restore(iflag); 622 } 623 624 nipl = apic_ipls[vector]; 625 *vectorp = irq = apic_vector_to_irq[vector + APIC_BASE_VECT]; 626 627 if (apic_mode == LOCAL_APIC) { 628 #if defined(__amd64) 629 setcr8((ulong_t)(apic_ipltopri[nipl] >> APIC_IPL_SHIFT)); 630 #else 631 if (apic_have_32bit_cr8) 632 setcr8((ulong_t)(apic_ipltopri[nipl] >> 633 APIC_IPL_SHIFT)); 634 else 635 LOCAL_APIC_WRITE_REG(APIC_TASK_REG, 636 (uint32_t)apic_ipltopri[nipl]); 637 #endif 638 } else { 639 X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[nipl]); 640 } 641 642 cpu_infop->aci_current[nipl] = (uchar_t)irq; 643 cpu_infop->aci_curipl = (uchar_t)nipl; 644 cpu_infop->aci_ISR_in_progress |= 1 << nipl; 645 646 /* 647 * apic_level_intr could have been assimilated into the irq struct. 648 * but, having it as a character array is more efficient in terms of 649 * cache usage. So, we leave it as is. 650 */ 651 if (!apic_level_intr[irq]) { 652 if (apic_mode == LOCAL_APIC) { 653 LOCAL_APIC_WRITE_REG(APIC_EOI_REG, 0); 654 } else { 655 X2APIC_WRITE(APIC_EOI_REG, 0); 656 } 657 } 658 659 #ifdef DEBUG 660 APIC_DEBUG_BUF_PUT(vector); 661 APIC_DEBUG_BUF_PUT(irq); 662 APIC_DEBUG_BUF_PUT(nipl); 663 APIC_DEBUG_BUF_PUT(psm_get_cpu_id()); 664 if ((apic_stretch_interrupts) && (apic_stretch_ISR & (1 << nipl))) 665 drv_usecwait(apic_stretch_interrupts); 666 667 if (apic_break_on_cpu == psm_get_cpu_id()) 668 apic_break(); 669 #endif /* DEBUG */ 670 return (nipl); 671 } 672 673 /* 674 * This macro is a common code used by MMIO local apic and X2APIC 675 * local apic. 676 */ 677 #define APIC_INTR_EXIT() \ 678 { \ 679 cpu_infop = &apic_cpus[psm_get_cpu_id()]; \ 680 if (apic_level_intr[irq]) \ 681 apic_reg_ops->apic_send_eoi(irq); \ 682 cpu_infop->aci_curipl = (uchar_t)prev_ipl; \ 683 /* ISR above current pri could not be in progress */ \ 684 cpu_infop->aci_ISR_in_progress &= (2 << prev_ipl) - 1; \ 685 } 686 687 /* 688 * Any changes made to this function must also change X2APIC 689 * version of intr_exit. 690 */ 691 void 692 apic_intr_exit(int prev_ipl, int irq) 693 { 694 apic_cpus_info_t *cpu_infop; 695 696 #if defined(__amd64) 697 setcr8((ulong_t)apic_cr8pri[prev_ipl]); 698 #else 699 if (apic_have_32bit_cr8) 700 setcr8((ulong_t)(apic_ipltopri[prev_ipl] >> APIC_IPL_SHIFT)); 701 else 702 apicadr[APIC_TASK_REG] = apic_ipltopri[prev_ipl]; 703 #endif 704 705 APIC_INTR_EXIT(); 706 } 707 708 /* 709 * Same as apic_intr_exit() except it uses MSR rather than MMIO 710 * to access local apic registers. 711 */ 712 void 713 x2apic_intr_exit(int prev_ipl, int irq) 714 { 715 apic_cpus_info_t *cpu_infop; 716 717 X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[prev_ipl]); 718 APIC_INTR_EXIT(); 719 } 720 721 intr_exit_fn_t 722 psm_intr_exit_fn(void) 723 { 724 if (apic_mode == LOCAL_X2APIC) 725 return (x2apic_intr_exit); 726 727 return (apic_intr_exit); 728 } 729 730 /* 731 * Mask all interrupts below or equal to the given IPL. 732 * Any changes made to this function must also change X2APIC 733 * version of setspl. 734 */ 735 static void 736 apic_setspl(int ipl) 737 { 738 #if defined(__amd64) 739 setcr8((ulong_t)apic_cr8pri[ipl]); 740 #else 741 if (apic_have_32bit_cr8) 742 setcr8((ulong_t)(apic_ipltopri[ipl] >> APIC_IPL_SHIFT)); 743 else 744 apicadr[APIC_TASK_REG] = apic_ipltopri[ipl]; 745 #endif 746 747 /* interrupts at ipl above this cannot be in progress */ 748 apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1; 749 /* 750 * this is a patch fix for the ALR QSMP P5 machine, so that interrupts 751 * have enough time to come in before the priority is raised again 752 * during the idle() loop. 753 */ 754 if (apic_setspl_delay) 755 (void) apic_reg_ops->apic_get_pri(); 756 } 757 758 /* 759 * X2APIC version of setspl. 760 * Mask all interrupts below or equal to the given IPL 761 */ 762 static void 763 x2apic_setspl(int ipl) 764 { 765 X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[ipl]); 766 767 /* interrupts at ipl above this cannot be in progress */ 768 apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1; 769 } 770 771 /*ARGSUSED*/ 772 static int 773 apic_addspl(int irqno, int ipl, int min_ipl, int max_ipl) 774 { 775 return (apic_addspl_common(irqno, ipl, min_ipl, max_ipl)); 776 } 777 778 static int 779 apic_delspl(int irqno, int ipl, int min_ipl, int max_ipl) 780 { 781 return (apic_delspl_common(irqno, ipl, min_ipl, max_ipl)); 782 } 783 784 static int 785 apic_post_cpu_start(void) 786 { 787 int cpun; 788 static int cpus_started = 1; 789 790 /* We know this CPU + BSP started successfully. */ 791 cpus_started++; 792 793 /* 794 * On BSP we would have enabled X2APIC, if supported by processor, 795 * in acpi_probe(), but on AP we do it here. 796 * 797 * We enable X2APIC mode only if BSP is running in X2APIC & the 798 * local APIC mode of the current CPU is MMIO (xAPIC). 799 */ 800 if (apic_mode == LOCAL_X2APIC && apic_detect_x2apic() && 801 apic_local_mode() == LOCAL_APIC) { 802 apic_enable_x2apic(); 803 } 804 805 /* 806 * Switch back to x2apic IPI sending method for performance when target 807 * CPU has entered x2apic mode. 808 */ 809 if (apic_mode == LOCAL_X2APIC) { 810 apic_switch_ipi_callback(B_FALSE); 811 } 812 813 splx(ipltospl(LOCK_LEVEL)); 814 apic_init_intr(); 815 816 /* 817 * since some systems don't enable the internal cache on the non-boot 818 * cpus, so we have to enable them here 819 */ 820 setcr0(getcr0() & ~(CR0_CD | CR0_NW)); 821 822 #ifdef DEBUG 823 APIC_AV_PENDING_SET(); 824 #else 825 if (apic_mode == LOCAL_APIC) 826 APIC_AV_PENDING_SET(); 827 #endif /* DEBUG */ 828 829 /* 830 * We may be booting, or resuming from suspend; aci_status will 831 * be APIC_CPU_INTR_ENABLE if coming from suspend, so we add the 832 * APIC_CPU_ONLINE flag here rather than setting aci_status completely. 833 */ 834 cpun = psm_get_cpu_id(); 835 apic_cpus[cpun].aci_status |= APIC_CPU_ONLINE; 836 837 apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init); 838 return (PSM_SUCCESS); 839 } 840 841 /* 842 * type == -1 indicates it is an internal request. Do not change 843 * resv_vector for these requests 844 */ 845 static int 846 apic_get_ipivect(int ipl, int type) 847 { 848 uchar_t vector; 849 int irq; 850 851 if ((irq = apic_allocate_irq(APIC_VECTOR(ipl))) != -1) { 852 if (vector = apic_allocate_vector(ipl, irq, 1)) { 853 apic_irq_table[irq]->airq_mps_intr_index = 854 RESERVE_INDEX; 855 apic_irq_table[irq]->airq_vector = vector; 856 if (type != -1) { 857 apic_resv_vector[ipl] = vector; 858 } 859 return (irq); 860 } 861 } 862 apic_error |= APIC_ERR_GET_IPIVECT_FAIL; 863 return (-1); /* shouldn't happen */ 864 } 865 866 static int 867 apic_getclkirq(int ipl) 868 { 869 int irq; 870 871 if ((irq = apic_get_ipivect(ipl, -1)) == -1) 872 return (-1); 873 /* 874 * Note the vector in apic_clkvect for per clock handling. 875 */ 876 apic_clkvect = apic_irq_table[irq]->airq_vector - APIC_BASE_VECT; 877 APIC_VERBOSE_IOAPIC((CE_NOTE, "get_clkirq: vector = %x\n", 878 apic_clkvect)); 879 return (irq); 880 } 881 882 /* 883 * Try and disable all interrupts. We just assign interrupts to other 884 * processors based on policy. If any were bound by user request, we 885 * let them continue and return failure. We do not bother to check 886 * for cache affinity while rebinding. 887 */ 888 889 static int 890 apic_disable_intr(processorid_t cpun) 891 { 892 int bind_cpu = 0, i, hardbound = 0; 893 apic_irq_t *irq_ptr; 894 ulong_t iflag; 895 896 iflag = intr_clear(); 897 lock_set(&apic_ioapic_lock); 898 899 for (i = 0; i <= APIC_MAX_VECTOR; i++) { 900 if (apic_reprogram_info[i].done == B_FALSE) { 901 if (apic_reprogram_info[i].bindcpu == cpun) { 902 /* 903 * CPU is busy -- it's the target of 904 * a pending reprogramming attempt 905 */ 906 lock_clear(&apic_ioapic_lock); 907 intr_restore(iflag); 908 return (PSM_FAILURE); 909 } 910 } 911 } 912 913 apic_cpus[cpun].aci_status &= ~APIC_CPU_INTR_ENABLE; 914 915 apic_cpus[cpun].aci_curipl = 0; 916 917 i = apic_min_device_irq; 918 for (; i <= apic_max_device_irq; i++) { 919 /* 920 * If there are bound interrupts on this cpu, then 921 * rebind them to other processors. 922 */ 923 if ((irq_ptr = apic_irq_table[i]) != NULL) { 924 ASSERT((irq_ptr->airq_temp_cpu == IRQ_UNBOUND) || 925 (irq_ptr->airq_temp_cpu == IRQ_UNINIT) || 926 (apic_cpu_in_range(irq_ptr->airq_temp_cpu))); 927 928 if (irq_ptr->airq_temp_cpu == (cpun | IRQ_USER_BOUND)) { 929 hardbound = 1; 930 continue; 931 } 932 933 if (irq_ptr->airq_temp_cpu == cpun) { 934 do { 935 bind_cpu = 936 apic_find_cpu(APIC_CPU_INTR_ENABLE); 937 } while (apic_rebind_all(irq_ptr, bind_cpu)); 938 } 939 } 940 } 941 942 lock_clear(&apic_ioapic_lock); 943 intr_restore(iflag); 944 945 if (hardbound) { 946 cmn_err(CE_WARN, "Could not disable interrupts on %d" 947 "due to user bound interrupts", cpun); 948 return (PSM_FAILURE); 949 } 950 else 951 return (PSM_SUCCESS); 952 } 953 954 /* 955 * Bind interrupts to the CPU's local APIC. 956 * Interrupts should not be bound to a CPU's local APIC until the CPU 957 * is ready to receive interrupts. 958 */ 959 static void 960 apic_enable_intr(processorid_t cpun) 961 { 962 int i; 963 apic_irq_t *irq_ptr; 964 ulong_t iflag; 965 966 iflag = intr_clear(); 967 lock_set(&apic_ioapic_lock); 968 969 apic_cpus[cpun].aci_status |= APIC_CPU_INTR_ENABLE; 970 971 i = apic_min_device_irq; 972 for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) { 973 if ((irq_ptr = apic_irq_table[i]) != NULL) { 974 if ((irq_ptr->airq_cpu & ~IRQ_USER_BOUND) == cpun) { 975 (void) apic_rebind_all(irq_ptr, 976 irq_ptr->airq_cpu); 977 } 978 } 979 } 980 981 if (apic_cpus[cpun].aci_status & APIC_CPU_SUSPEND) 982 apic_cpus[cpun].aci_status &= ~APIC_CPU_SUSPEND; 983 984 lock_clear(&apic_ioapic_lock); 985 intr_restore(iflag); 986 } 987 988 /* 989 * If this module needs a periodic handler for the interrupt distribution, it 990 * can be added here. The argument to the periodic handler is not currently 991 * used, but is reserved for future. 992 */ 993 static void 994 apic_post_cyclic_setup(void *arg) 995 { 996 _NOTE(ARGUNUSED(arg)) 997 /* cpu_lock is held */ 998 /* set up a periodic handler for intr redistribution */ 999 1000 /* 1001 * In peridoc mode intr redistribution processing is done in 1002 * apic_intr_enter during clk intr processing 1003 */ 1004 if (!apic_oneshot) 1005 return; 1006 /* 1007 * Register a periodical handler for the redistribution processing. 1008 * On X86, CY_LOW_LEVEL is mapped to the level 2 interrupt, so 1009 * DDI_IPL_2 should be passed to ddi_periodic_add() here. 1010 */ 1011 apic_periodic_id = ddi_periodic_add( 1012 (void (*)(void *))apic_redistribute_compute, NULL, 1013 apic_redistribute_sample_interval, DDI_IPL_2); 1014 } 1015 1016 static void 1017 apic_redistribute_compute(void) 1018 { 1019 int i, j, max_busy; 1020 1021 if (apic_enable_dynamic_migration) { 1022 if (++apic_nticks == apic_sample_factor_redistribution) { 1023 /* 1024 * Time to call apic_intr_redistribute(). 1025 * reset apic_nticks. This will cause max_busy 1026 * to be calculated below and if it is more than 1027 * apic_int_busy, we will do the whole thing 1028 */ 1029 apic_nticks = 0; 1030 } 1031 max_busy = 0; 1032 for (i = 0; i < apic_nproc; i++) { 1033 if (!apic_cpu_in_range(i)) 1034 continue; 1035 1036 /* 1037 * Check if curipl is non zero & if ISR is in 1038 * progress 1039 */ 1040 if (((j = apic_cpus[i].aci_curipl) != 0) && 1041 (apic_cpus[i].aci_ISR_in_progress & (1 << j))) { 1042 1043 int irq; 1044 apic_cpus[i].aci_busy++; 1045 irq = apic_cpus[i].aci_current[j]; 1046 apic_irq_table[irq]->airq_busy++; 1047 } 1048 1049 if (!apic_nticks && 1050 (apic_cpus[i].aci_busy > max_busy)) 1051 max_busy = apic_cpus[i].aci_busy; 1052 } 1053 if (!apic_nticks) { 1054 if (max_busy > apic_int_busy_mark) { 1055 /* 1056 * We could make the following check be 1057 * skipped > 1 in which case, we get a 1058 * redistribution at half the busy mark (due to 1059 * double interval). Need to be able to collect 1060 * more empirical data to decide if that is a 1061 * good strategy. Punt for now. 1062 */ 1063 if (apic_skipped_redistribute) { 1064 apic_cleanup_busy(); 1065 apic_skipped_redistribute = 0; 1066 } else { 1067 apic_intr_redistribute(); 1068 } 1069 } else 1070 apic_skipped_redistribute++; 1071 } 1072 } 1073 } 1074 1075 1076 /* 1077 * The following functions are in the platform specific file so that they 1078 * can be different functions depending on whether we are running on 1079 * bare metal or a hypervisor. 1080 */ 1081 1082 /* 1083 * Check to make sure there are enough irq slots 1084 */ 1085 int 1086 apic_check_free_irqs(int count) 1087 { 1088 int i, avail; 1089 1090 avail = 0; 1091 for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) { 1092 if ((apic_irq_table[i] == NULL) || 1093 apic_irq_table[i]->airq_mps_intr_index == FREE_INDEX) { 1094 if (++avail >= count) 1095 return (PSM_SUCCESS); 1096 } 1097 } 1098 return (PSM_FAILURE); 1099 } 1100 1101 /* 1102 * This function allocates "count" MSI vector(s) for the given "dip/pri/type" 1103 */ 1104 int 1105 apic_alloc_msi_vectors(dev_info_t *dip, int inum, int count, int pri, 1106 int behavior) 1107 { 1108 int rcount, i; 1109 uchar_t start, irqno; 1110 uint32_t cpu; 1111 major_t major; 1112 apic_irq_t *irqptr; 1113 1114 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: dip=0x%p " 1115 "inum=0x%x pri=0x%x count=0x%x behavior=%d\n", 1116 (void *)dip, inum, pri, count, behavior)); 1117 1118 if (count > 1) { 1119 if (behavior == DDI_INTR_ALLOC_STRICT && 1120 apic_multi_msi_enable == 0) 1121 return (0); 1122 if (apic_multi_msi_enable == 0) 1123 count = 1; 1124 } 1125 1126 if ((rcount = apic_navail_vector(dip, pri)) > count) 1127 rcount = count; 1128 else if (rcount == 0 || (rcount < count && 1129 behavior == DDI_INTR_ALLOC_STRICT)) 1130 return (0); 1131 1132 /* if not ISP2, then round it down */ 1133 if (!ISP2(rcount)) 1134 rcount = 1 << (highbit(rcount) - 1); 1135 1136 mutex_enter(&airq_mutex); 1137 1138 for (start = 0; rcount > 0; rcount >>= 1) { 1139 if ((start = apic_find_multi_vectors(pri, rcount)) != 0 || 1140 behavior == DDI_INTR_ALLOC_STRICT) 1141 break; 1142 } 1143 1144 if (start == 0) { 1145 /* no vector available */ 1146 mutex_exit(&airq_mutex); 1147 return (0); 1148 } 1149 1150 if (apic_check_free_irqs(rcount) == PSM_FAILURE) { 1151 /* not enough free irq slots available */ 1152 mutex_exit(&airq_mutex); 1153 return (0); 1154 } 1155 1156 major = (dip != NULL) ? ddi_driver_major(dip) : 0; 1157 for (i = 0; i < rcount; i++) { 1158 if ((irqno = apic_allocate_irq(apic_first_avail_irq)) == 1159 (uchar_t)-1) { 1160 /* 1161 * shouldn't happen because of the 1162 * apic_check_free_irqs() check earlier 1163 */ 1164 mutex_exit(&airq_mutex); 1165 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: " 1166 "apic_allocate_irq failed\n")); 1167 return (i); 1168 } 1169 apic_max_device_irq = max(irqno, apic_max_device_irq); 1170 apic_min_device_irq = min(irqno, apic_min_device_irq); 1171 irqptr = apic_irq_table[irqno]; 1172 #ifdef DEBUG 1173 if (apic_vector_to_irq[start + i] != APIC_RESV_IRQ) 1174 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: " 1175 "apic_vector_to_irq is not APIC_RESV_IRQ\n")); 1176 #endif 1177 apic_vector_to_irq[start + i] = (uchar_t)irqno; 1178 1179 irqptr->airq_vector = (uchar_t)(start + i); 1180 irqptr->airq_ioapicindex = (uchar_t)inum; /* start */ 1181 irqptr->airq_intin_no = (uchar_t)rcount; 1182 irqptr->airq_ipl = pri; 1183 irqptr->airq_vector = start + i; 1184 irqptr->airq_origirq = (uchar_t)(inum + i); 1185 irqptr->airq_share_id = 0; 1186 irqptr->airq_mps_intr_index = MSI_INDEX; 1187 irqptr->airq_dip = dip; 1188 irqptr->airq_major = major; 1189 if (i == 0) /* they all bound to the same cpu */ 1190 cpu = irqptr->airq_cpu = apic_bind_intr(dip, irqno, 1191 0xff, 0xff); 1192 else 1193 irqptr->airq_cpu = cpu; 1194 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: irq=0x%x " 1195 "dip=0x%p vector=0x%x origirq=0x%x pri=0x%x\n", irqno, 1196 (void *)irqptr->airq_dip, irqptr->airq_vector, 1197 irqptr->airq_origirq, pri)); 1198 } 1199 mutex_exit(&airq_mutex); 1200 return (rcount); 1201 } 1202 1203 /* 1204 * This function allocates "count" MSI-X vector(s) for the given "dip/pri/type" 1205 */ 1206 int 1207 apic_alloc_msix_vectors(dev_info_t *dip, int inum, int count, int pri, 1208 int behavior) 1209 { 1210 int rcount, i; 1211 major_t major; 1212 1213 mutex_enter(&airq_mutex); 1214 1215 if ((rcount = apic_navail_vector(dip, pri)) > count) 1216 rcount = count; 1217 else if (rcount == 0 || (rcount < count && 1218 behavior == DDI_INTR_ALLOC_STRICT)) { 1219 rcount = 0; 1220 goto out; 1221 } 1222 1223 if (apic_check_free_irqs(rcount) == PSM_FAILURE) { 1224 /* not enough free irq slots available */ 1225 rcount = 0; 1226 goto out; 1227 } 1228 1229 major = (dip != NULL) ? ddi_driver_major(dip) : 0; 1230 for (i = 0; i < rcount; i++) { 1231 uchar_t vector, irqno; 1232 apic_irq_t *irqptr; 1233 1234 if ((irqno = apic_allocate_irq(apic_first_avail_irq)) == 1235 (uchar_t)-1) { 1236 /* 1237 * shouldn't happen because of the 1238 * apic_check_free_irqs() check earlier 1239 */ 1240 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: " 1241 "apic_allocate_irq failed\n")); 1242 rcount = i; 1243 goto out; 1244 } 1245 if ((vector = apic_allocate_vector(pri, irqno, 1)) == 0) { 1246 /* 1247 * shouldn't happen because of the 1248 * apic_navail_vector() call earlier 1249 */ 1250 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: " 1251 "apic_allocate_vector failed\n")); 1252 rcount = i; 1253 goto out; 1254 } 1255 apic_max_device_irq = max(irqno, apic_max_device_irq); 1256 apic_min_device_irq = min(irqno, apic_min_device_irq); 1257 irqptr = apic_irq_table[irqno]; 1258 irqptr->airq_vector = (uchar_t)vector; 1259 irqptr->airq_ipl = pri; 1260 irqptr->airq_origirq = (uchar_t)(inum + i); 1261 irqptr->airq_share_id = 0; 1262 irqptr->airq_mps_intr_index = MSIX_INDEX; 1263 irqptr->airq_dip = dip; 1264 irqptr->airq_major = major; 1265 irqptr->airq_cpu = apic_bind_intr(dip, irqno, 0xff, 0xff); 1266 } 1267 out: 1268 mutex_exit(&airq_mutex); 1269 return (rcount); 1270 } 1271 1272 /* 1273 * Allocate a free vector for irq at ipl. Takes care of merging of multiple 1274 * IPLs into a single APIC level as well as stretching some IPLs onto multiple 1275 * levels. APIC_HI_PRI_VECTS interrupts are reserved for high priority 1276 * requests and allocated only when pri is set. 1277 */ 1278 uchar_t 1279 apic_allocate_vector(int ipl, int irq, int pri) 1280 { 1281 int lowest, highest, i; 1282 1283 highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK; 1284 lowest = apic_ipltopri[ipl - 1] + APIC_VECTOR_PER_IPL; 1285 1286 if (highest < lowest) /* Both ipl and ipl - 1 map to same pri */ 1287 lowest -= APIC_VECTOR_PER_IPL; 1288 1289 #ifdef DEBUG 1290 if (apic_restrict_vector) /* for testing shared interrupt logic */ 1291 highest = lowest + apic_restrict_vector + APIC_HI_PRI_VECTS; 1292 #endif /* DEBUG */ 1293 if (pri == 0) 1294 highest -= APIC_HI_PRI_VECTS; 1295 1296 for (i = lowest; i <= highest; i++) { 1297 if (APIC_CHECK_RESERVE_VECTORS(i)) 1298 continue; 1299 if (apic_vector_to_irq[i] == APIC_RESV_IRQ) { 1300 apic_vector_to_irq[i] = (uchar_t)irq; 1301 return (i); 1302 } 1303 } 1304 1305 return (0); 1306 } 1307 1308 /* Mark vector as not being used by any irq */ 1309 void 1310 apic_free_vector(uchar_t vector) 1311 { 1312 apic_vector_to_irq[vector] = APIC_RESV_IRQ; 1313 } 1314 1315 /* 1316 * Call rebind to do the actual programming. 1317 * Must be called with interrupts disabled and apic_ioapic_lock held 1318 * 'p' is polymorphic -- if this function is called to process a deferred 1319 * reprogramming, p is of type 'struct ioapic_reprogram_data *', from which 1320 * the irq pointer is retrieved. If not doing deferred reprogramming, 1321 * p is of the type 'apic_irq_t *'. 1322 * 1323 * apic_ioapic_lock must be held across this call, as it protects apic_rebind 1324 * and it protects apic_get_next_bind_cpu() from a race in which a CPU can be 1325 * taken offline after a cpu is selected, but before apic_rebind is called to 1326 * bind interrupts to it. 1327 */ 1328 int 1329 apic_setup_io_intr(void *p, int irq, boolean_t deferred) 1330 { 1331 apic_irq_t *irqptr; 1332 struct ioapic_reprogram_data *drep = NULL; 1333 int rv; 1334 1335 if (deferred) { 1336 drep = (struct ioapic_reprogram_data *)p; 1337 ASSERT(drep != NULL); 1338 irqptr = drep->irqp; 1339 } else 1340 irqptr = (apic_irq_t *)p; 1341 1342 ASSERT(irqptr != NULL); 1343 1344 rv = apic_rebind(irqptr, apic_irq_table[irq]->airq_cpu, drep); 1345 if (rv) { 1346 /* 1347 * CPU is not up or interrupts are disabled. Fall back to 1348 * the first available CPU 1349 */ 1350 rv = apic_rebind(irqptr, apic_find_cpu(APIC_CPU_INTR_ENABLE), 1351 drep); 1352 } 1353 1354 return (rv); 1355 } 1356 1357 1358 uchar_t 1359 apic_modify_vector(uchar_t vector, int irq) 1360 { 1361 apic_vector_to_irq[vector] = (uchar_t)irq; 1362 return (vector); 1363 } 1364 1365 char * 1366 apic_get_apic_type(void) 1367 { 1368 return (apic_psm_info.p_mach_idstring); 1369 } 1370 1371 void 1372 x2apic_update_psm(void) 1373 { 1374 struct psm_ops *pops = &apic_ops; 1375 1376 ASSERT(pops != NULL); 1377 1378 pops->psm_intr_exit = x2apic_intr_exit; 1379 pops->psm_setspl = x2apic_setspl; 1380 1381 pops->psm_send_ipi = x2apic_send_ipi; 1382 send_dirintf = pops->psm_send_ipi; 1383 1384 apic_mode = LOCAL_X2APIC; 1385 apic_change_ops(); 1386 }