Print this page
    
OS-2366 ddi_periodic_add(9F) is entirely rubbish
    
      
        | Split | Close | 
      | Expand all | 
      | Collapse all | 
    
    
          --- old/usr/src/uts/common/os/clock.c
          +++ new/usr/src/uts/common/os/clock.c
   1    1  /*
   2    2   * CDDL HEADER START
   3    3   *
   4    4   * The contents of this file are subject to the terms of the
   5    5   * Common Development and Distribution License (the "License").
   6    6   * You may not use this file except in compliance with the License.
   7    7   *
   8    8   * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9    9   * or http://www.opensolaris.org/os/licensing.
  10   10   * See the License for the specific language governing permissions
  11   11   * and limitations under the License.
  12   12   *
  13   13   * When distributing Covered Code, include this CDDL HEADER in each
  14   14   * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15   15   * If applicable, add the following below this CDDL HEADER, with the
  
    | ↓ open down ↓ | 15 lines elided | ↑ open up ↑ | 
  16   16   * fields enclosed by brackets "[]" replaced with your own identifying
  17   17   * information: Portions Copyright [yyyy] [name of copyright owner]
  18   18   *
  19   19   * CDDL HEADER END
  20   20   */
  21   21  /*      Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
  22   22  /*        All Rights Reserved   */
  23   23  
  24   24  /*
  25   25   * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
  26      - * Copyright (c) 2011, Joyent, Inc. All rights reserved.
       26 + * Copyright (c) 2013, Joyent, Inc.  All rights reserved.
  27   27   */
  28   28  
  29   29  #include <sys/param.h>
  30   30  #include <sys/t_lock.h>
  31   31  #include <sys/types.h>
  32   32  #include <sys/tuneable.h>
  33   33  #include <sys/sysmacros.h>
  34   34  #include <sys/systm.h>
  35   35  #include <sys/cpuvar.h>
  36   36  #include <sys/lgrp.h>
  37   37  #include <sys/user.h>
  38   38  #include <sys/proc.h>
  39   39  #include <sys/callo.h>
  40   40  #include <sys/kmem.h>
  41   41  #include <sys/var.h>
  42   42  #include <sys/cmn_err.h>
  43   43  #include <sys/swap.h>
  44   44  #include <sys/vmsystm.h>
  45   45  #include <sys/class.h>
  46   46  #include <sys/time.h>
  47   47  #include <sys/debug.h>
  48   48  #include <sys/vtrace.h>
  49   49  #include <sys/spl.h>
  50   50  #include <sys/atomic.h>
  51   51  #include <sys/dumphdr.h>
  52   52  #include <sys/archsystm.h>
  53   53  #include <sys/fs/swapnode.h>
  54   54  #include <sys/panic.h>
  55   55  #include <sys/disp.h>
  56   56  #include <sys/msacct.h>
  
    | ↓ open down ↓ | 20 lines elided | ↑ open up ↑ | 
  57   57  #include <sys/mem_cage.h>
  58   58  
  59   59  #include <vm/page.h>
  60   60  #include <vm/anon.h>
  61   61  #include <vm/rm.h>
  62   62  #include <sys/cyclic.h>
  63   63  #include <sys/cpupart.h>
  64   64  #include <sys/rctl.h>
  65   65  #include <sys/task.h>
  66   66  #include <sys/sdt.h>
  67      -#include <sys/ddi_timer.h>
       67 +#include <sys/ddi_periodic.h>
  68   68  #include <sys/random.h>
  69   69  #include <sys/modctl.h>
  70   70  #include <sys/zone.h>
  71   71  
  72   72  /*
  73   73   * for NTP support
  74   74   */
  75   75  #include <sys/timex.h>
  76   76  #include <sys/inttypes.h>
  77   77  
  78   78  #include <sys/sunddi.h>
  79   79  #include <sys/clock_impl.h>
  80   80  
  81   81  /*
  82   82   * clock() is called straight from the clock cyclic; see clock_init().
  83   83   *
  84   84   * Functions:
  85   85   *      reprime clock
  86   86   *      maintain date
  87   87   *      jab the scheduler
  88   88   */
  89   89  
  90   90  extern kcondvar_t       fsflush_cv;
  91   91  extern sysinfo_t        sysinfo;
  92   92  extern vminfo_t vminfo;
  93   93  extern int      idleswtch;      /* flag set while idle in pswtch() */
  94   94  extern hrtime_t volatile devinfo_freeze;
  95   95  
  96   96  /*
  97   97   * high-precision avenrun values.  These are needed to make the
  98   98   * regular avenrun values accurate.
  99   99   */
 100  100  static uint64_t hp_avenrun[3];
 101  101  int     avenrun[3];             /* FSCALED average run queue lengths */
 102  102  time_t  time;   /* time in seconds since 1970 - for compatibility only */
 103  103  
 104  104  static struct loadavg_s loadavg;
 105  105  /*
 106  106   * Phase/frequency-lock loop (PLL/FLL) definitions
 107  107   *
 108  108   * The following variables are read and set by the ntp_adjtime() system
 109  109   * call.
 110  110   *
 111  111   * time_state shows the state of the system clock, with values defined
 112  112   * in the timex.h header file.
 113  113   *
 114  114   * time_status shows the status of the system clock, with bits defined
 115  115   * in the timex.h header file.
 116  116   *
 117  117   * time_offset is used by the PLL/FLL to adjust the system time in small
 118  118   * increments.
 119  119   *
 120  120   * time_constant determines the bandwidth or "stiffness" of the PLL.
 121  121   *
 122  122   * time_tolerance determines maximum frequency error or tolerance of the
 123  123   * CPU clock oscillator and is a property of the architecture; however,
 124  124   * in principle it could change as result of the presence of external
 125  125   * discipline signals, for instance.
 126  126   *
 127  127   * time_precision is usually equal to the kernel tick variable; however,
 128  128   * in cases where a precision clock counter or external clock is
 129  129   * available, the resolution can be much less than this and depend on
 130  130   * whether the external clock is working or not.
 131  131   *
 132  132   * time_maxerror is initialized by a ntp_adjtime() call and increased by
 133  133   * the kernel once each second to reflect the maximum error bound
 134  134   * growth.
 135  135   *
 136  136   * time_esterror is set and read by the ntp_adjtime() call, but
 137  137   * otherwise not used by the kernel.
 138  138   */
 139  139  int32_t time_state = TIME_OK;   /* clock state */
 140  140  int32_t time_status = STA_UNSYNC;       /* clock status bits */
 141  141  int32_t time_offset = 0;                /* time offset (us) */
 142  142  int32_t time_constant = 0;              /* pll time constant */
 143  143  int32_t time_tolerance = MAXFREQ;       /* frequency tolerance (scaled ppm) */
 144  144  int32_t time_precision = 1;     /* clock precision (us) */
 145  145  int32_t time_maxerror = MAXPHASE;       /* maximum error (us) */
 146  146  int32_t time_esterror = MAXPHASE;       /* estimated error (us) */
 147  147  
 148  148  /*
 149  149   * The following variables establish the state of the PLL/FLL and the
 150  150   * residual time and frequency offset of the local clock. The scale
 151  151   * factors are defined in the timex.h header file.
 152  152   *
 153  153   * time_phase and time_freq are the phase increment and the frequency
 154  154   * increment, respectively, of the kernel time variable.
 155  155   *
 156  156   * time_freq is set via ntp_adjtime() from a value stored in a file when
 157  157   * the synchronization daemon is first started. Its value is retrieved
 158  158   * via ntp_adjtime() and written to the file about once per hour by the
 159  159   * daemon.
 160  160   *
 161  161   * time_adj is the adjustment added to the value of tick at each timer
 162  162   * interrupt and is recomputed from time_phase and time_freq at each
 163  163   * seconds rollover.
 164  164   *
 165  165   * time_reftime is the second's portion of the system time at the last
 166  166   * call to ntp_adjtime(). It is used to adjust the time_freq variable
 167  167   * and to increase the time_maxerror as the time since last update
 168  168   * increases.
 169  169   */
 170  170  int32_t time_phase = 0;         /* phase offset (scaled us) */
 171  171  int32_t time_freq = 0;          /* frequency offset (scaled ppm) */
 172  172  int32_t time_adj = 0;           /* tick adjust (scaled 1 / hz) */
 173  173  int32_t time_reftime = 0;               /* time at last adjustment (s) */
 174  174  
 175  175  /*
 176  176   * The scale factors of the following variables are defined in the
 177  177   * timex.h header file.
 178  178   *
 179  179   * pps_time contains the time at each calibration interval, as read by
 180  180   * microtime(). pps_count counts the seconds of the calibration
 181  181   * interval, the duration of which is nominally pps_shift in powers of
 182  182   * two.
 183  183   *
 184  184   * pps_offset is the time offset produced by the time median filter
 185  185   * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
 186  186   * this filter.
 187  187   *
 188  188   * pps_freq is the frequency offset produced by the frequency median
 189  189   * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
 190  190   * by this filter.
 191  191   *
 192  192   * pps_usec is latched from a high resolution counter or external clock
 193  193   * at pps_time. Here we want the hardware counter contents only, not the
 194  194   * contents plus the time_tv.usec as usual.
 195  195   *
 196  196   * pps_valid counts the number of seconds since the last PPS update. It
 197  197   * is used as a watchdog timer to disable the PPS discipline should the
 198  198   * PPS signal be lost.
 199  199   *
 200  200   * pps_glitch counts the number of seconds since the beginning of an
 201  201   * offset burst more than tick/2 from current nominal offset. It is used
 202  202   * mainly to suppress error bursts due to priority conflicts between the
 203  203   * PPS interrupt and timer interrupt.
 204  204   *
 205  205   * pps_intcnt counts the calibration intervals for use in the interval-
 206  206   * adaptation algorithm. It's just too complicated for words.
 207  207   */
 208  208  struct timeval pps_time;        /* kernel time at last interval */
 209  209  int32_t pps_tf[] = {0, 0, 0};   /* pps time offset median filter (us) */
 210  210  int32_t pps_offset = 0;         /* pps time offset (us) */
 211  211  int32_t pps_jitter = MAXTIME;   /* time dispersion (jitter) (us) */
 212  212  int32_t pps_ff[] = {0, 0, 0};   /* pps frequency offset median filter */
 213  213  int32_t pps_freq = 0;           /* frequency offset (scaled ppm) */
 214  214  int32_t pps_stabil = MAXFREQ;   /* frequency dispersion (scaled ppm) */
 215  215  int32_t pps_usec = 0;           /* microsec counter at last interval */
 216  216  int32_t pps_valid = PPS_VALID;  /* pps signal watchdog counter */
 217  217  int32_t pps_glitch = 0;         /* pps signal glitch counter */
 218  218  int32_t pps_count = 0;          /* calibration interval counter (s) */
 219  219  int32_t pps_shift = PPS_SHIFT;  /* interval duration (s) (shift) */
 220  220  int32_t pps_intcnt = 0;         /* intervals at current duration */
 221  221  
 222  222  /*
 223  223   * PPS signal quality monitors
 224  224   *
 225  225   * pps_jitcnt counts the seconds that have been discarded because the
 226  226   * jitter measured by the time median filter exceeds the limit MAXTIME
 227  227   * (100 us).
 228  228   *
 229  229   * pps_calcnt counts the frequency calibration intervals, which are
 230  230   * variable from 4 s to 256 s.
 231  231   *
 232  232   * pps_errcnt counts the calibration intervals which have been discarded
 233  233   * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
 234  234   * calibration interval jitter exceeds two ticks.
 235  235   *
 236  236   * pps_stbcnt counts the calibration intervals that have been discarded
 237  237   * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
 238  238   */
 239  239  int32_t pps_jitcnt = 0;         /* jitter limit exceeded */
 240  240  int32_t pps_calcnt = 0;         /* calibration intervals */
 241  241  int32_t pps_errcnt = 0;         /* calibration errors */
 242  242  int32_t pps_stbcnt = 0;         /* stability limit exceeded */
 243  243  
 244  244  kcondvar_t lbolt_cv;
 245  245  
 246  246  /*
 247  247   * Hybrid lbolt implementation:
 248  248   *
 249  249   * The service historically provided by the lbolt and lbolt64 variables has
 250  250   * been replaced by the ddi_get_lbolt() and ddi_get_lbolt64() routines, and the
 251  251   * original symbols removed from the system. The once clock driven variables are
 252  252   * now implemented in an event driven fashion, backed by gethrtime() coarsed to
 253  253   * the appropriate clock resolution. The default event driven implementation is
 254  254   * complemented by a cyclic driven one, active only during periods of intense
 255  255   * activity around the DDI lbolt routines, when a lbolt specific cyclic is
 256  256   * reprogramed to fire at a clock tick interval to serve consumers of lbolt who
 257  257   * rely on the original low cost of consulting a memory position.
 258  258   *
 259  259   * The implementation uses the number of calls to these routines and the
 260  260   * frequency of these to determine when to transition from event to cyclic
 261  261   * driven and vice-versa. These values are kept on a per CPU basis for
 262  262   * scalability reasons and to prevent CPUs from constantly invalidating a single
 263  263   * cache line when modifying a global variable. The transition from event to
 264  264   * cyclic mode happens once the thresholds are crossed, and activity on any CPU
 265  265   * can cause such transition.
 266  266   *
 267  267   * The lbolt_hybrid function pointer is called by ddi_get_lbolt() and
 268  268   * ddi_get_lbolt64(), and will point to lbolt_event_driven() or
 269  269   * lbolt_cyclic_driven() according to the current mode. When the thresholds
 270  270   * are exceeded, lbolt_event_driven() will reprogram the lbolt cyclic to
 271  271   * fire at a nsec_per_tick interval and increment an internal variable at
 272  272   * each firing. lbolt_hybrid will then point to lbolt_cyclic_driven(), which
 273  273   * will simply return the value of such variable. lbolt_cyclic() will attempt
 274  274   * to shut itself off at each threshold interval (sampling period for calls
 275  275   * to the DDI lbolt routines), and return to the event driven mode, but will
 276  276   * be prevented from doing so if lbolt_cyclic_driven() is being heavily used.
 277  277   *
 278  278   * lbolt_bootstrap is used during boot to serve lbolt consumers who don't wait
 279  279   * for the cyclic subsystem to be intialized.
 280  280   *
 281  281   */
 282  282  int64_t lbolt_bootstrap(void);
 283  283  int64_t lbolt_event_driven(void);
 284  284  int64_t lbolt_cyclic_driven(void);
 285  285  int64_t (*lbolt_hybrid)(void) = lbolt_bootstrap;
 286  286  uint_t lbolt_ev_to_cyclic(caddr_t, caddr_t);
 287  287  
 288  288  /*
 289  289   * lbolt's cyclic, installed by clock_init().
 290  290   */
 291  291  static void lbolt_cyclic(void);
 292  292  
 293  293  /*
 294  294   * Tunable to keep lbolt in cyclic driven mode. This will prevent the system
 295  295   * from switching back to event driven, once it reaches cyclic mode.
 296  296   */
 297  297  static boolean_t lbolt_cyc_only = B_FALSE;
 298  298  
 299  299  /*
 300  300   * Cache aligned, per CPU structure with lbolt usage statistics.
 301  301   */
 302  302  static lbolt_cpu_t *lb_cpu;
 303  303  
 304  304  /*
 305  305   * Single, cache aligned, structure with all the information required by
 306  306   * the lbolt implementation.
 307  307   */
 308  308  lbolt_info_t *lb_info;
  
    | ↓ open down ↓ | 231 lines elided | ↑ open up ↑ | 
 309  309  
 310  310  
 311  311  int one_sec = 1; /* turned on once every second */
 312  312  static int fsflushcnt;  /* counter for t_fsflushr */
 313  313  int     dosynctodr = 1; /* patchable; enable/disable sync to TOD chip */
 314  314  int     tod_needsync = 0;       /* need to sync tod chip with software time */
 315  315  static int tod_broken = 0;      /* clock chip doesn't work */
 316  316  time_t  boot_time = 0;          /* Boot time in seconds since 1970 */
 317  317  cyclic_id_t clock_cyclic;       /* clock()'s cyclic_id */
 318  318  cyclic_id_t deadman_cyclic;     /* deadman()'s cyclic_id */
 319      -cyclic_id_t ddi_timer_cyclic;   /* cyclic_timer()'s cyclic_id */
 320  319  
 321  320  extern void     clock_tick_schedule(int);
 322  321  
 323  322  static int lgrp_ticks;          /* counter to schedule lgrp load calcs */
 324  323  
 325  324  /*
 326  325   * for tod fault detection
 327  326   */
 328  327  #define TOD_REF_FREQ            ((longlong_t)(NANOSEC))
 329  328  #define TOD_STALL_THRESHOLD     (TOD_REF_FREQ * 3 / 2)
 330  329  #define TOD_JUMP_THRESHOLD      (TOD_REF_FREQ / 2)
 331  330  #define TOD_FILTER_N            4
 332  331  #define TOD_FILTER_SETTLE       (4 * TOD_FILTER_N)
 333  332  static int tod_faulted = TOD_NOFAULT;
 334  333  
 335  334  static int tod_status_flag = 0;         /* used by tod_validate() */
 336  335  
 337  336  static hrtime_t prev_set_tick = 0;      /* gethrtime() prior to tod_set() */
 338  337  static time_t prev_set_tod = 0;         /* tv_sec value passed to tod_set() */
 339  338  
 340  339  /* patchable via /etc/system */
 341  340  int tod_validate_enable = 1;
 342  341  
 343  342  /* Diagnose/Limit messages about delay(9F) called from interrupt context */
 344  343  int                     delay_from_interrupt_diagnose = 0;
 345  344  volatile uint32_t       delay_from_interrupt_msg = 20;
 346  345  
 347  346  /*
 348  347   * On non-SPARC systems, TOD validation must be deferred until gethrtime
 349  348   * returns non-zero values (after mach_clkinit's execution).
 350  349   * On SPARC systems, it must be deferred until after hrtime_base
 351  350   * and hres_last_tick are set (in the first invocation of hres_tick).
 352  351   * Since in both cases the prerequisites occur before the invocation of
 353  352   * tod_get() in clock(), the deferment is lifted there.
 354  353   */
 355  354  static boolean_t tod_validate_deferred = B_TRUE;
 356  355  
 357  356  /*
 358  357   * tod_fault_table[] must be aligned with
 359  358   * enum tod_fault_type in systm.h
 360  359   */
 361  360  static char *tod_fault_table[] = {
 362  361          "Reversed",                     /* TOD_REVERSED */
 363  362          "Stalled",                      /* TOD_STALLED */
 364  363          "Jumped",                       /* TOD_JUMPED */
 365  364          "Changed in Clock Rate",        /* TOD_RATECHANGED */
 366  365          "Is Read-Only"                  /* TOD_RDONLY */
 367  366          /*
 368  367           * no strings needed for TOD_NOFAULT
 369  368           */
 370  369  };
 371  370  
 372  371  /*
 373  372   * test hook for tod broken detection in tod_validate
 374  373   */
 375  374  int tod_unit_test = 0;
 376  375  time_t tod_test_injector;
 377  376  
 378  377  #define CLOCK_ADJ_HIST_SIZE     4
 379  378  
 380  379  static int      adj_hist_entry;
 381  380  
 382  381  int64_t clock_adj_hist[CLOCK_ADJ_HIST_SIZE];
 383  382  
 384  383  static void calcloadavg(int, uint64_t *);
 385  384  static int genloadavg(struct loadavg_s *);
 386  385  static void loadavg_update();
 387  386  
 388  387  void (*cmm_clock_callout)() = NULL;
 389  388  void (*cpucaps_clock_callout)() = NULL;
 390  389  
 391  390  extern clock_t clock_tick_proc_max;
 392  391  
 393  392  static int64_t deadman_counter = 0;
 394  393  
 395  394  static void
 396  395  clock(void)
 397  396  {
 398  397          kthread_t       *t;
 399  398          uint_t  nrunnable;
 400  399          uint_t  w_io;
 401  400          cpu_t   *cp;
 402  401          cpupart_t *cpupart;
 403  402          extern  void    set_freemem();
 404  403          void    (*funcp)();
 405  404          int32_t ltemp;
 406  405          int64_t lltemp;
 407  406          int s;
 408  407          int do_lgrp_load;
 409  408          int i;
 410  409          clock_t now = LBOLT_NO_ACCOUNT; /* current tick */
 411  410  
 412  411          if (panicstr)
 413  412                  return;
 414  413  
 415  414          /*
 416  415           * Make sure that 'freemem' do not drift too far from the truth
 417  416           */
 418  417          set_freemem();
 419  418  
 420  419  
 421  420          /*
 422  421           * Before the section which is repeated is executed, we do
 423  422           * the time delta processing which occurs every clock tick
 424  423           *
 425  424           * There is additional processing which happens every time
 426  425           * the nanosecond counter rolls over which is described
 427  426           * below - see the section which begins with : if (one_sec)
 428  427           *
 429  428           * This section marks the beginning of the precision-kernel
 430  429           * code fragment.
 431  430           *
 432  431           * First, compute the phase adjustment. If the low-order bits
 433  432           * (time_phase) of the update overflow, bump the higher order
 434  433           * bits (time_update).
 435  434           */
 436  435          time_phase += time_adj;
 437  436          if (time_phase <= -FINEUSEC) {
 438  437                  ltemp = -time_phase / SCALE_PHASE;
 439  438                  time_phase += ltemp * SCALE_PHASE;
 440  439                  s = hr_clock_lock();
 441  440                  timedelta -= ltemp * (NANOSEC/MICROSEC);
 442  441                  hr_clock_unlock(s);
 443  442          } else if (time_phase >= FINEUSEC) {
 444  443                  ltemp = time_phase / SCALE_PHASE;
 445  444                  time_phase -= ltemp * SCALE_PHASE;
 446  445                  s = hr_clock_lock();
 447  446                  timedelta += ltemp * (NANOSEC/MICROSEC);
 448  447                  hr_clock_unlock(s);
 449  448          }
 450  449  
 451  450          /*
 452  451           * End of precision-kernel code fragment which is processed
 453  452           * every timer interrupt.
 454  453           *
 455  454           * Continue with the interrupt processing as scheduled.
 456  455           */
 457  456          /*
 458  457           * Count the number of runnable threads and the number waiting
 459  458           * for some form of I/O to complete -- gets added to
 460  459           * sysinfo.waiting.  To know the state of the system, must add
 461  460           * wait counts from all CPUs.  Also add up the per-partition
 462  461           * statistics.
 463  462           */
 464  463          w_io = 0;
 465  464          nrunnable = 0;
 466  465  
 467  466          /*
 468  467           * keep track of when to update lgrp/part loads
 469  468           */
 470  469  
 471  470          do_lgrp_load = 0;
 472  471          if (lgrp_ticks++ >= hz / 10) {
 473  472                  lgrp_ticks = 0;
 474  473                  do_lgrp_load = 1;
 475  474          }
 476  475  
 477  476          if (one_sec) {
 478  477                  loadavg_update();
 479  478                  deadman_counter++;
 480  479          }
 481  480  
 482  481          /*
 483  482           * First count the threads waiting on kpreempt queues in each
 484  483           * CPU partition.
 485  484           */
 486  485  
 487  486          cpupart = cp_list_head;
 488  487          do {
 489  488                  uint_t cpupart_nrunnable = cpupart->cp_kp_queue.disp_nrunnable;
 490  489  
 491  490                  cpupart->cp_updates++;
 492  491                  nrunnable += cpupart_nrunnable;
 493  492                  cpupart->cp_nrunnable_cum += cpupart_nrunnable;
 494  493                  if (one_sec) {
 495  494                          cpupart->cp_nrunning = 0;
 496  495                          cpupart->cp_nrunnable = cpupart_nrunnable;
 497  496                  }
 498  497          } while ((cpupart = cpupart->cp_next) != cp_list_head);
 499  498  
 500  499  
 501  500          /* Now count the per-CPU statistics. */
 502  501          cp = cpu_list;
 503  502          do {
 504  503                  uint_t cpu_nrunnable = cp->cpu_disp->disp_nrunnable;
 505  504  
 506  505                  nrunnable += cpu_nrunnable;
 507  506                  cpupart = cp->cpu_part;
 508  507                  cpupart->cp_nrunnable_cum += cpu_nrunnable;
 509  508                  if (one_sec) {
 510  509                          cpupart->cp_nrunnable += cpu_nrunnable;
 511  510                          /*
 512  511                           * Update user, system, and idle cpu times.
 513  512                           */
 514  513                          cpupart->cp_nrunning++;
 515  514                          /*
 516  515                           * w_io is used to update sysinfo.waiting during
 517  516                           * one_second processing below.  Only gather w_io
 518  517                           * information when we walk the list of cpus if we're
 519  518                           * going to perform one_second processing.
 520  519                           */
 521  520                          w_io += CPU_STATS(cp, sys.iowait);
 522  521                  }
 523  522  
 524  523                  if (one_sec && (cp->cpu_flags & CPU_EXISTS)) {
 525  524                          int i, load, change;
 526  525                          hrtime_t intracct, intrused;
 527  526                          const hrtime_t maxnsec = 1000000000;
 528  527                          const int precision = 100;
 529  528  
 530  529                          /*
 531  530                           * Estimate interrupt load on this cpu each second.
 532  531                           * Computes cpu_intrload as %utilization (0-99).
 533  532                           */
 534  533  
 535  534                          /* add up interrupt time from all micro states */
 536  535                          for (intracct = 0, i = 0; i < NCMSTATES; i++)
 537  536                                  intracct += cp->cpu_intracct[i];
 538  537                          scalehrtime(&intracct);
 539  538  
 540  539                          /* compute nsec used in the past second */
 541  540                          intrused = intracct - cp->cpu_intrlast;
 542  541                          cp->cpu_intrlast = intracct;
 543  542  
 544  543                          /* limit the value for safety (and the first pass) */
 545  544                          if (intrused >= maxnsec)
 546  545                                  intrused = maxnsec - 1;
 547  546  
 548  547                          /* calculate %time in interrupt */
 549  548                          load = (precision * intrused) / maxnsec;
 550  549                          ASSERT(load >= 0 && load < precision);
 551  550                          change = cp->cpu_intrload - load;
 552  551  
 553  552                          /* jump to new max, or decay the old max */
 554  553                          if (change < 0)
 555  554                                  cp->cpu_intrload = load;
 556  555                          else if (change > 0)
 557  556                                  cp->cpu_intrload -= (change + 3) / 4;
 558  557  
 559  558                          DTRACE_PROBE3(cpu_intrload,
 560  559                              cpu_t *, cp,
 561  560                              hrtime_t, intracct,
 562  561                              hrtime_t, intrused);
 563  562                  }
 564  563  
 565  564                  if (do_lgrp_load &&
 566  565                      (cp->cpu_flags & CPU_EXISTS)) {
 567  566                          /*
 568  567                           * When updating the lgroup's load average,
 569  568                           * account for the thread running on the CPU.
 570  569                           * If the CPU is the current one, then we need
 571  570                           * to account for the underlying thread which
 572  571                           * got the clock interrupt not the thread that is
 573  572                           * handling the interrupt and caculating the load
 574  573                           * average
 575  574                           */
 576  575                          t = cp->cpu_thread;
 577  576                          if (CPU == cp)
 578  577                                  t = t->t_intr;
 579  578  
 580  579                          /*
 581  580                           * Account for the load average for this thread if
 582  581                           * it isn't the idle thread or it is on the interrupt
 583  582                           * stack and not the current CPU handling the clock
 584  583                           * interrupt
 585  584                           */
 586  585                          if ((t && t != cp->cpu_idle_thread) || (CPU != cp &&
 587  586                              CPU_ON_INTR(cp))) {
 588  587                                  if (t->t_lpl == cp->cpu_lpl) {
 589  588                                          /* local thread */
 590  589                                          cpu_nrunnable++;
 591  590                                  } else {
 592  591                                          /*
 593  592                                           * This is a remote thread, charge it
 594  593                                           * against its home lgroup.  Note that
 595  594                                           * we notice that a thread is remote
 596  595                                           * only if it's currently executing.
 597  596                                           * This is a reasonable approximation,
 598  597                                           * since queued remote threads are rare.
 599  598                                           * Note also that if we didn't charge
 600  599                                           * it to its home lgroup, remote
 601  600                                           * execution would often make a system
 602  601                                           * appear balanced even though it was
 603  602                                           * not, and thread placement/migration
 604  603                                           * would often not be done correctly.
 605  604                                           */
 606  605                                          lgrp_loadavg(t->t_lpl,
 607  606                                              LGRP_LOADAVG_IN_THREAD_MAX, 0);
 608  607                                  }
 609  608                          }
 610  609                          lgrp_loadavg(cp->cpu_lpl,
 611  610                              cpu_nrunnable * LGRP_LOADAVG_IN_THREAD_MAX, 1);
 612  611                  }
 613  612          } while ((cp = cp->cpu_next) != cpu_list);
 614  613  
 615  614          clock_tick_schedule(one_sec);
 616  615  
 617  616          /*
 618  617           * Check for a callout that needs be called from the clock
 619  618           * thread to support the membership protocol in a clustered
 620  619           * system.  Copy the function pointer so that we can reset
 621  620           * this to NULL if needed.
 622  621           */
 623  622          if ((funcp = cmm_clock_callout) != NULL)
 624  623                  (*funcp)();
 625  624  
 626  625          if ((funcp = cpucaps_clock_callout) != NULL)
 627  626                  (*funcp)();
 628  627  
 629  628          /*
 630  629           * Wakeup the cageout thread waiters once per second.
 631  630           */
 632  631          if (one_sec)
 633  632                  kcage_tick();
 634  633  
 635  634          if (one_sec) {
 636  635  
 637  636                  int drift, absdrift;
 638  637                  timestruc_t tod;
 639  638                  int s;
 640  639  
 641  640                  /*
 642  641                   * Beginning of precision-kernel code fragment executed
 643  642                   * every second.
 644  643                   *
 645  644                   * On rollover of the second the phase adjustment to be
 646  645                   * used for the next second is calculated.  Also, the
 647  646                   * maximum error is increased by the tolerance.  If the
 648  647                   * PPS frequency discipline code is present, the phase is
 649  648                   * increased to compensate for the CPU clock oscillator
 650  649                   * frequency error.
 651  650                   *
 652  651                   * On a 32-bit machine and given parameters in the timex.h
 653  652                   * header file, the maximum phase adjustment is +-512 ms
 654  653                   * and maximum frequency offset is (a tad less than)
 655  654                   * +-512 ppm. On a 64-bit machine, you shouldn't need to ask.
 656  655                   */
 657  656                  time_maxerror += time_tolerance / SCALE_USEC;
 658  657  
 659  658                  /*
 660  659                   * Leap second processing. If in leap-insert state at
 661  660                   * the end of the day, the system clock is set back one
 662  661                   * second; if in leap-delete state, the system clock is
 663  662                   * set ahead one second. The microtime() routine or
 664  663                   * external clock driver will insure that reported time
 665  664                   * is always monotonic. The ugly divides should be
 666  665                   * replaced.
 667  666                   */
 668  667                  switch (time_state) {
 669  668  
 670  669                  case TIME_OK:
 671  670                          if (time_status & STA_INS)
 672  671                                  time_state = TIME_INS;
 673  672                          else if (time_status & STA_DEL)
 674  673                                  time_state = TIME_DEL;
 675  674                          break;
 676  675  
 677  676                  case TIME_INS:
 678  677                          if (hrestime.tv_sec % 86400 == 0) {
 679  678                                  s = hr_clock_lock();
 680  679                                  hrestime.tv_sec--;
 681  680                                  hr_clock_unlock(s);
 682  681                                  time_state = TIME_OOP;
 683  682                          }
 684  683                          break;
 685  684  
 686  685                  case TIME_DEL:
 687  686                          if ((hrestime.tv_sec + 1) % 86400 == 0) {
 688  687                                  s = hr_clock_lock();
 689  688                                  hrestime.tv_sec++;
 690  689                                  hr_clock_unlock(s);
 691  690                                  time_state = TIME_WAIT;
 692  691                          }
 693  692                          break;
 694  693  
 695  694                  case TIME_OOP:
 696  695                          time_state = TIME_WAIT;
 697  696                          break;
 698  697  
 699  698                  case TIME_WAIT:
 700  699                          if (!(time_status & (STA_INS | STA_DEL)))
 701  700                                  time_state = TIME_OK;
 702  701                  default:
 703  702                          break;
 704  703                  }
 705  704  
 706  705                  /*
 707  706                   * Compute the phase adjustment for the next second. In
 708  707                   * PLL mode, the offset is reduced by a fixed factor
 709  708                   * times the time constant. In FLL mode the offset is
 710  709                   * used directly. In either mode, the maximum phase
 711  710                   * adjustment for each second is clamped so as to spread
 712  711                   * the adjustment over not more than the number of
 713  712                   * seconds between updates.
 714  713                   */
 715  714                  if (time_offset == 0)
 716  715                          time_adj = 0;
 717  716                  else if (time_offset < 0) {
 718  717                          lltemp = -time_offset;
 719  718                          if (!(time_status & STA_FLL)) {
 720  719                                  if ((1 << time_constant) >= SCALE_KG)
 721  720                                          lltemp *= (1 << time_constant) /
 722  721                                              SCALE_KG;
 723  722                                  else
 724  723                                          lltemp = (lltemp / SCALE_KG) >>
 725  724                                              time_constant;
 726  725                          }
 727  726                          if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE)
 728  727                                  lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE;
 729  728                          time_offset += lltemp;
 730  729                          time_adj = -(lltemp * SCALE_PHASE) / hz / SCALE_UPDATE;
 731  730                  } else {
 732  731                          lltemp = time_offset;
 733  732                          if (!(time_status & STA_FLL)) {
 734  733                                  if ((1 << time_constant) >= SCALE_KG)
 735  734                                          lltemp *= (1 << time_constant) /
 736  735                                              SCALE_KG;
 737  736                                  else
 738  737                                          lltemp = (lltemp / SCALE_KG) >>
 739  738                                              time_constant;
 740  739                          }
 741  740                          if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE)
 742  741                                  lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE;
 743  742                          time_offset -= lltemp;
 744  743                          time_adj = (lltemp * SCALE_PHASE) / hz / SCALE_UPDATE;
 745  744                  }
 746  745  
 747  746                  /*
 748  747                   * Compute the frequency estimate and additional phase
 749  748                   * adjustment due to frequency error for the next
 750  749                   * second. When the PPS signal is engaged, gnaw on the
 751  750                   * watchdog counter and update the frequency computed by
 752  751                   * the pll and the PPS signal.
 753  752                   */
 754  753                  pps_valid++;
 755  754                  if (pps_valid == PPS_VALID) {
 756  755                          pps_jitter = MAXTIME;
 757  756                          pps_stabil = MAXFREQ;
 758  757                          time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
 759  758                              STA_PPSWANDER | STA_PPSERROR);
 760  759                  }
 761  760                  lltemp = time_freq + pps_freq;
 762  761  
 763  762                  if (lltemp)
 764  763                          time_adj += (lltemp * SCALE_PHASE) / (SCALE_USEC * hz);
 765  764  
 766  765                  /*
 767  766                   * End of precision kernel-code fragment
 768  767                   *
 769  768                   * The section below should be modified if we are planning
 770  769                   * to use NTP for synchronization.
 771  770                   *
 772  771                   * Note: the clock synchronization code now assumes
 773  772                   * the following:
 774  773                   *   - if dosynctodr is 1, then compute the drift between
 775  774                   *      the tod chip and software time and adjust one or
 776  775                   *      the other depending on the circumstances
 777  776                   *
 778  777                   *   - if dosynctodr is 0, then the tod chip is independent
 779  778                   *      of the software clock and should not be adjusted,
 780  779                   *      but allowed to free run.  this allows NTP to sync.
 781  780                   *      hrestime without any interference from the tod chip.
 782  781                   */
 783  782  
 784  783                  tod_validate_deferred = B_FALSE;
 785  784                  mutex_enter(&tod_lock);
 786  785                  tod = tod_get();
 787  786                  drift = tod.tv_sec - hrestime.tv_sec;
 788  787                  absdrift = (drift >= 0) ? drift : -drift;
 789  788                  if (tod_needsync || absdrift > 1) {
 790  789                          int s;
 791  790                          if (absdrift > 2) {
 792  791                                  if (!tod_broken && tod_faulted == TOD_NOFAULT) {
 793  792                                          s = hr_clock_lock();
 794  793                                          hrestime = tod;
 795  794                                          membar_enter(); /* hrestime visible */
 796  795                                          timedelta = 0;
 797  796                                          timechanged++;
 798  797                                          tod_needsync = 0;
 799  798                                          hr_clock_unlock(s);
 800  799                                          callout_hrestime();
 801  800  
 802  801                                  }
 803  802                          } else {
 804  803                                  if (tod_needsync || !dosynctodr) {
 805  804                                          gethrestime(&tod);
 806  805                                          tod_set(tod);
 807  806                                          s = hr_clock_lock();
 808  807                                          if (timedelta == 0)
 809  808                                                  tod_needsync = 0;
 810  809                                          hr_clock_unlock(s);
 811  810                                  } else {
 812  811                                          /*
 813  812                                           * If the drift is 2 seconds on the
 814  813                                           * money, then the TOD is adjusting
 815  814                                           * the clock;  record that.
 816  815                                           */
 817  816                                          clock_adj_hist[adj_hist_entry++ %
 818  817                                              CLOCK_ADJ_HIST_SIZE] = now;
 819  818                                          s = hr_clock_lock();
 820  819                                          timedelta = (int64_t)drift*NANOSEC;
 821  820                                          hr_clock_unlock(s);
 822  821                                  }
 823  822                          }
 824  823                  }
 825  824                  one_sec = 0;
 826  825                  time = gethrestime_sec();  /* for crusty old kmem readers */
 827  826                  mutex_exit(&tod_lock);
 828  827  
 829  828                  /*
 830  829                   * Some drivers still depend on this... XXX
 831  830                   */
 832  831                  cv_broadcast(&lbolt_cv);
 833  832  
 834  833                  vminfo.freemem += freemem;
 835  834                  {
 836  835                          pgcnt_t maxswap, resv, free;
 837  836                          pgcnt_t avail =
 838  837                              MAX((spgcnt_t)(availrmem - swapfs_minfree), 0);
 839  838  
 840  839                          maxswap = k_anoninfo.ani_mem_resv +
 841  840                              k_anoninfo.ani_max +avail;
 842  841                          /* Update ani_free */
 843  842                          set_anoninfo();
 844  843                          free = k_anoninfo.ani_free + avail;
 845  844                          resv = k_anoninfo.ani_phys_resv +
 846  845                              k_anoninfo.ani_mem_resv;
 847  846  
 848  847                          vminfo.swap_resv += resv;
 849  848                          /* number of reserved and allocated pages */
 850  849  #ifdef  DEBUG
 851  850                          if (maxswap < free)
 852  851                                  cmn_err(CE_WARN, "clock: maxswap < free");
 853  852                          if (maxswap < resv)
 854  853                                  cmn_err(CE_WARN, "clock: maxswap < resv");
 855  854  #endif
 856  855                          vminfo.swap_alloc += maxswap - free;
 857  856                          vminfo.swap_avail += maxswap - resv;
 858  857                          vminfo.swap_free += free;
 859  858                  }
 860  859                  vminfo.updates++;
 861  860                  if (nrunnable) {
 862  861                          sysinfo.runque += nrunnable;
 863  862                          sysinfo.runocc++;
 864  863                  }
 865  864                  if (nswapped) {
 866  865                          sysinfo.swpque += nswapped;
 867  866                          sysinfo.swpocc++;
 868  867                  }
 869  868                  sysinfo.waiting += w_io;
 870  869                  sysinfo.updates++;
 871  870  
 872  871                  /*
 873  872                   * Wake up fsflush to write out DELWRI
 874  873                   * buffers, dirty pages and other cached
 875  874                   * administrative data, e.g. inodes.
 876  875                   */
 877  876                  if (--fsflushcnt <= 0) {
 878  877                          fsflushcnt = tune.t_fsflushr;
 879  878                          cv_signal(&fsflush_cv);
 880  879                  }
 881  880  
 882  881                  vmmeter();
 883  882                  calcloadavg(genloadavg(&loadavg), hp_avenrun);
 884  883                  for (i = 0; i < 3; i++)
 885  884                          /*
 886  885                           * At the moment avenrun[] can only hold 31
 887  886                           * bits of load average as it is a signed
 888  887                           * int in the API. We need to ensure that
 889  888                           * hp_avenrun[i] >> (16 - FSHIFT) will not be
 890  889                           * too large. If it is, we put the largest value
 891  890                           * that we can use into avenrun[i]. This is
 892  891                           * kludgey, but about all we can do until we
 893  892                           * avenrun[] is declared as an array of uint64[]
 894  893                           */
 895  894                          if (hp_avenrun[i] < ((uint64_t)1<<(31+16-FSHIFT)))
 896  895                                  avenrun[i] = (int32_t)(hp_avenrun[i] >>
 897  896                                      (16 - FSHIFT));
 898  897                          else
 899  898                                  avenrun[i] = 0x7fffffff;
 900  899  
 901  900                  cpupart = cp_list_head;
 902  901                  do {
 903  902                          calcloadavg(genloadavg(&cpupart->cp_loadavg),
 904  903                              cpupart->cp_hp_avenrun);
 905  904                  } while ((cpupart = cpupart->cp_next) != cp_list_head);
 906  905  
 907  906                  /*
 908  907                   * Wake up the swapper thread if necessary.
 909  908                   */
 910  909                  if (runin ||
 911  910                      (runout && (avefree < desfree || wake_sched_sec))) {
 912  911                          t = &t0;
 913  912                          thread_lock(t);
 914  913                          if (t->t_state == TS_STOPPED) {
 915  914                                  runin = runout = 0;
 916  915                                  wake_sched_sec = 0;
 917  916                                  t->t_whystop = 0;
 918  917                                  t->t_whatstop = 0;
 919  918                                  t->t_schedflag &= ~TS_ALLSTART;
 920  919                                  THREAD_TRANSITION(t);
 921  920                                  setfrontdq(t);
 922  921                          }
 923  922                          thread_unlock(t);
 924  923                  }
 925  924          }
 926  925  
 927  926          /*
 928  927           * Wake up the swapper if any high priority swapped-out threads
 929  928           * became runable during the last tick.
 930  929           */
 931  930          if (wake_sched) {
 932  931                  t = &t0;
 933  932                  thread_lock(t);
 934  933                  if (t->t_state == TS_STOPPED) {
 935  934                          runin = runout = 0;
 936  935                          wake_sched = 0;
 937  936                          t->t_whystop = 0;
 938  937                          t->t_whatstop = 0;
 939  938                          t->t_schedflag &= ~TS_ALLSTART;
  
    | ↓ open down ↓ | 610 lines elided | ↑ open up ↑ | 
 940  939                          THREAD_TRANSITION(t);
 941  940                          setfrontdq(t);
 942  941                  }
 943  942                  thread_unlock(t);
 944  943          }
 945  944  }
 946  945  
 947  946  void
 948  947  clock_init(void)
 949  948  {
 950      -        cyc_handler_t clk_hdlr, timer_hdlr, lbolt_hdlr;
      949 +        cyc_handler_t clk_hdlr, lbolt_hdlr;
 951  950          cyc_time_t clk_when, lbolt_when;
 952  951          int i, sz;
 953  952          intptr_t buf;
 954  953  
 955  954          /*
 956  955           * Setup handler and timer for the clock cyclic.
 957  956           */
 958  957          clk_hdlr.cyh_func = (cyc_func_t)clock;
 959  958          clk_hdlr.cyh_level = CY_LOCK_LEVEL;
 960  959          clk_hdlr.cyh_arg = NULL;
 961  960  
 962  961          clk_when.cyt_when = 0;
 963  962          clk_when.cyt_interval = nsec_per_tick;
 964  963  
 965  964          /*
 966      -         * cyclic_timer is dedicated to the ddi interface, which
 967      -         * uses the same clock resolution as the system one.
 968      -         */
 969      -        timer_hdlr.cyh_func = (cyc_func_t)cyclic_timer;
 970      -        timer_hdlr.cyh_level = CY_LOCK_LEVEL;
 971      -        timer_hdlr.cyh_arg = NULL;
 972      -
 973      -        /*
 974  965           * The lbolt cyclic will be reprogramed to fire at a nsec_per_tick
 975  966           * interval to satisfy performance needs of the DDI lbolt consumers.
 976  967           * It is off by default.
 977  968           */
 978  969          lbolt_hdlr.cyh_func = (cyc_func_t)lbolt_cyclic;
 979  970          lbolt_hdlr.cyh_level = CY_LOCK_LEVEL;
 980  971          lbolt_hdlr.cyh_arg = NULL;
 981  972  
 982  973          lbolt_when.cyt_interval = nsec_per_tick;
 983  974  
 984  975          /*
 985  976           * Allocate cache line aligned space for the per CPU lbolt data and
 986  977           * lbolt info structures, and initialize them with their default
 987  978           * values. Note that these structures are also cache line sized.
 988  979           */
 989  980          sz = sizeof (lbolt_info_t) + CPU_CACHE_COHERENCE_SIZE;
 990  981          buf = (intptr_t)kmem_zalloc(sz, KM_SLEEP);
 991  982          lb_info = (lbolt_info_t *)P2ROUNDUP(buf, CPU_CACHE_COHERENCE_SIZE);
 992  983  
 993  984          if (hz != HZ_DEFAULT)
 994  985                  lb_info->lbi_thresh_interval = LBOLT_THRESH_INTERVAL *
 995  986                      hz/HZ_DEFAULT;
 996  987          else
 997  988                  lb_info->lbi_thresh_interval = LBOLT_THRESH_INTERVAL;
 998  989  
 999  990          lb_info->lbi_thresh_calls = LBOLT_THRESH_CALLS;
1000  991  
1001  992          sz = (sizeof (lbolt_cpu_t) * max_ncpus) + CPU_CACHE_COHERENCE_SIZE;
1002  993          buf = (intptr_t)kmem_zalloc(sz, KM_SLEEP);
1003  994          lb_cpu = (lbolt_cpu_t *)P2ROUNDUP(buf, CPU_CACHE_COHERENCE_SIZE);
1004  995  
1005  996          for (i = 0; i < max_ncpus; i++)
1006  997                  lb_cpu[i].lbc_counter = lb_info->lbi_thresh_calls;
1007  998  
1008  999          /*
1009 1000           * Install the softint used to switch between event and cyclic driven
1010 1001           * lbolt. We use a soft interrupt to make sure the context of the
1011 1002           * cyclic reprogram call is safe.
1012 1003           */
1013 1004          lbolt_softint_add();
1014 1005  
1015 1006          /*
1016 1007           * Since the hybrid lbolt implementation is based on a hardware counter
1017 1008           * that is reset at every hardware reboot and that we'd like to have
1018 1009           * the lbolt value starting at zero after both a hardware and a fast
1019 1010           * reboot, we calculate the number of clock ticks the system's been up
1020 1011           * and store it in the lbi_debug_time field of the lbolt info structure.
1021 1012           * The value of this field will be subtracted from lbolt before
1022 1013           * returning it.
1023 1014           */
1024 1015          lb_info->lbi_internal = lb_info->lbi_debug_time =
1025 1016              (gethrtime()/nsec_per_tick);
1026 1017  
1027 1018          /*
1028 1019           * lbolt_hybrid points at lbolt_bootstrap until now. The LBOLT_* macros
1029 1020           * and lbolt_debug_{enter,return} use this value as an indication that
1030 1021           * the initializaion above hasn't been completed. Setting lbolt_hybrid
1031 1022           * to either lbolt_{cyclic,event}_driven here signals those code paths
1032 1023           * that the lbolt related structures can be used.
1033 1024           */
1034 1025          if (lbolt_cyc_only) {
1035 1026                  lbolt_when.cyt_when = 0;
1036 1027                  lbolt_hybrid = lbolt_cyclic_driven;
1037 1028          } else {
  
    | ↓ open down ↓ | 54 lines elided | ↑ open up ↑ | 
1038 1029                  lbolt_when.cyt_when = CY_INFINITY;
1039 1030                  lbolt_hybrid = lbolt_event_driven;
1040 1031          }
1041 1032  
1042 1033          /*
1043 1034           * Grab cpu_lock and install all three cyclics.
1044 1035           */
1045 1036          mutex_enter(&cpu_lock);
1046 1037  
1047 1038          clock_cyclic = cyclic_add(&clk_hdlr, &clk_when);
1048      -        ddi_timer_cyclic = cyclic_add(&timer_hdlr, &clk_when);
1049 1039          lb_info->id.lbi_cyclic_id = cyclic_add(&lbolt_hdlr, &lbolt_when);
1050 1040  
1051 1041          mutex_exit(&cpu_lock);
1052 1042  }
1053 1043  
1054 1044  /*
1055 1045   * Called before calcloadavg to get 10-sec moving loadavg together
1056 1046   */
1057 1047  
1058 1048  static int
1059 1049  genloadavg(struct loadavg_s *avgs)
1060 1050  {
1061 1051          int avg;
1062 1052          int spos; /* starting position */
1063 1053          int cpos; /* moving current position */
1064 1054          int i;
1065 1055          int slen;
1066 1056          hrtime_t hr_avg;
1067 1057  
1068 1058          /* 10-second snapshot, calculate first positon */
1069 1059          if (avgs->lg_len == 0) {
1070 1060                  return (0);
1071 1061          }
1072 1062          slen = avgs->lg_len < S_MOVAVG_SZ ? avgs->lg_len : S_MOVAVG_SZ;
1073 1063  
1074 1064          spos = (avgs->lg_cur - 1) >= 0 ? avgs->lg_cur - 1 :
1075 1065              S_LOADAVG_SZ + (avgs->lg_cur - 1);
1076 1066          for (i = hr_avg = 0; i < slen; i++) {
1077 1067                  cpos = (spos - i) >= 0 ? spos - i : S_LOADAVG_SZ + (spos - i);
1078 1068                  hr_avg += avgs->lg_loads[cpos];
1079 1069          }
1080 1070  
1081 1071          hr_avg = hr_avg / slen;
1082 1072          avg = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX);
1083 1073  
1084 1074          return (avg);
1085 1075  }
1086 1076  
1087 1077  /*
1088 1078   * Run every second from clock () to update the loadavg count available to the
1089 1079   * system and cpu-partitions.
1090 1080   *
1091 1081   * This works by sampling the previous usr, sys, wait time elapsed,
1092 1082   * computing a delta, and adding that delta to the elapsed usr, sys,
1093 1083   * wait increase.
1094 1084   */
1095 1085  
1096 1086  static void
1097 1087  loadavg_update()
1098 1088  {
1099 1089          cpu_t *cp;
1100 1090          cpupart_t *cpupart;
1101 1091          hrtime_t cpu_total;
1102 1092          int prev;
1103 1093  
1104 1094          cp = cpu_list;
1105 1095          loadavg.lg_total = 0;
1106 1096  
1107 1097          /*
1108 1098           * first pass totals up per-cpu statistics for system and cpu
1109 1099           * partitions
1110 1100           */
1111 1101  
1112 1102          do {
1113 1103                  struct loadavg_s *lavg;
1114 1104  
1115 1105                  lavg = &cp->cpu_loadavg;
1116 1106  
1117 1107                  cpu_total = cp->cpu_acct[CMS_USER] +
1118 1108                      cp->cpu_acct[CMS_SYSTEM] + cp->cpu_waitrq;
1119 1109                  /* compute delta against last total */
1120 1110                  scalehrtime(&cpu_total);
1121 1111                  prev = (lavg->lg_cur - 1) >= 0 ? lavg->lg_cur - 1 :
1122 1112                      S_LOADAVG_SZ + (lavg->lg_cur - 1);
1123 1113                  if (lavg->lg_loads[prev] <= 0) {
1124 1114                          lavg->lg_loads[lavg->lg_cur] = cpu_total;
1125 1115                          cpu_total = 0;
1126 1116                  } else {
1127 1117                          lavg->lg_loads[lavg->lg_cur] = cpu_total;
1128 1118                          cpu_total = cpu_total - lavg->lg_loads[prev];
1129 1119                          if (cpu_total < 0)
1130 1120                                  cpu_total = 0;
1131 1121                  }
1132 1122  
1133 1123                  lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
1134 1124                  lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ?
1135 1125                      lavg->lg_len + 1 : S_LOADAVG_SZ;
1136 1126  
1137 1127                  loadavg.lg_total += cpu_total;
1138 1128                  cp->cpu_part->cp_loadavg.lg_total += cpu_total;
1139 1129  
1140 1130          } while ((cp = cp->cpu_next) != cpu_list);
1141 1131  
1142 1132          loadavg.lg_loads[loadavg.lg_cur] = loadavg.lg_total;
1143 1133          loadavg.lg_cur = (loadavg.lg_cur + 1) % S_LOADAVG_SZ;
1144 1134          loadavg.lg_len = (loadavg.lg_len + 1) < S_LOADAVG_SZ ?
1145 1135              loadavg.lg_len + 1 : S_LOADAVG_SZ;
1146 1136          /*
1147 1137           * Second pass updates counts
1148 1138           */
1149 1139          cpupart = cp_list_head;
1150 1140  
1151 1141          do {
1152 1142                  struct loadavg_s *lavg;
1153 1143  
1154 1144                  lavg = &cpupart->cp_loadavg;
1155 1145                  lavg->lg_loads[lavg->lg_cur] = lavg->lg_total;
1156 1146                  lavg->lg_total = 0;
1157 1147                  lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
1158 1148                  lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ?
1159 1149                      lavg->lg_len + 1 : S_LOADAVG_SZ;
1160 1150  
1161 1151          } while ((cpupart = cpupart->cp_next) != cp_list_head);
1162 1152  
1163 1153          /*
1164 1154           * Third pass totals up per-zone statistics.
1165 1155           */
1166 1156          zone_loadavg_update();
1167 1157  }
1168 1158  
1169 1159  /*
1170 1160   * clock_update() - local clock update
1171 1161   *
1172 1162   * This routine is called by ntp_adjtime() to update the local clock
1173 1163   * phase and frequency. The implementation is of an
1174 1164   * adaptive-parameter, hybrid phase/frequency-lock loop (PLL/FLL). The
1175 1165   * routine computes new time and frequency offset estimates for each
1176 1166   * call.  The PPS signal itself determines the new time offset,
1177 1167   * instead of the calling argument.  Presumably, calls to
1178 1168   * ntp_adjtime() occur only when the caller believes the local clock
1179 1169   * is valid within some bound (+-128 ms with NTP). If the caller's
1180 1170   * time is far different than the PPS time, an argument will ensue,
1181 1171   * and it's not clear who will lose.
1182 1172   *
1183 1173   * For uncompensated quartz crystal oscillatores and nominal update
1184 1174   * intervals less than 1024 s, operation should be in phase-lock mode
1185 1175   * (STA_FLL = 0), where the loop is disciplined to phase. For update
1186 1176   * intervals greater than this, operation should be in frequency-lock
1187 1177   * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1188 1178   *
1189 1179   * Note: mutex(&tod_lock) is in effect.
1190 1180   */
1191 1181  void
1192 1182  clock_update(int offset)
1193 1183  {
1194 1184          int ltemp, mtemp, s;
1195 1185  
1196 1186          ASSERT(MUTEX_HELD(&tod_lock));
1197 1187  
1198 1188          if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1199 1189                  return;
1200 1190          ltemp = offset;
1201 1191          if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL))
1202 1192                  ltemp = pps_offset;
1203 1193  
1204 1194          /*
1205 1195           * Scale the phase adjustment and clamp to the operating range.
1206 1196           */
1207 1197          if (ltemp > MAXPHASE)
1208 1198                  time_offset = MAXPHASE * SCALE_UPDATE;
1209 1199          else if (ltemp < -MAXPHASE)
1210 1200                  time_offset = -(MAXPHASE * SCALE_UPDATE);
1211 1201          else
1212 1202                  time_offset = ltemp * SCALE_UPDATE;
1213 1203  
1214 1204          /*
1215 1205           * Select whether the frequency is to be controlled and in which
1216 1206           * mode (PLL or FLL). Clamp to the operating range. Ugly
1217 1207           * multiply/divide should be replaced someday.
1218 1208           */
1219 1209          if (time_status & STA_FREQHOLD || time_reftime == 0)
1220 1210                  time_reftime = hrestime.tv_sec;
1221 1211  
1222 1212          mtemp = hrestime.tv_sec - time_reftime;
1223 1213          time_reftime = hrestime.tv_sec;
1224 1214  
1225 1215          if (time_status & STA_FLL) {
1226 1216                  if (mtemp >= MINSEC) {
1227 1217                          ltemp = ((time_offset / mtemp) * (SCALE_USEC /
1228 1218                              SCALE_UPDATE));
1229 1219                          if (ltemp)
1230 1220                                  time_freq += ltemp / SCALE_KH;
1231 1221                  }
1232 1222          } else {
1233 1223                  if (mtemp < MAXSEC) {
1234 1224                          ltemp *= mtemp;
1235 1225                          if (ltemp)
1236 1226                                  time_freq += (int)(((int64_t)ltemp *
1237 1227                                      SCALE_USEC) / SCALE_KF)
1238 1228                                      / (1 << (time_constant * 2));
1239 1229                  }
1240 1230          }
1241 1231          if (time_freq > time_tolerance)
1242 1232                  time_freq = time_tolerance;
1243 1233          else if (time_freq < -time_tolerance)
1244 1234                  time_freq = -time_tolerance;
1245 1235  
1246 1236          s = hr_clock_lock();
1247 1237          tod_needsync = 1;
1248 1238          hr_clock_unlock(s);
1249 1239  }
1250 1240  
1251 1241  /*
1252 1242   * ddi_hardpps() - discipline CPU clock oscillator to external PPS signal
1253 1243   *
1254 1244   * This routine is called at each PPS interrupt in order to discipline
1255 1245   * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1256 1246   * and leaves it in a handy spot for the clock() routine. It
1257 1247   * integrates successive PPS phase differences and calculates the
1258 1248   * frequency offset. This is used in clock() to discipline the CPU
1259 1249   * clock oscillator so that intrinsic frequency error is cancelled out.
1260 1250   * The code requires the caller to capture the time and hardware counter
1261 1251   * value at the on-time PPS signal transition.
1262 1252   *
1263 1253   * Note that, on some Unix systems, this routine runs at an interrupt
1264 1254   * priority level higher than the timer interrupt routine clock().
1265 1255   * Therefore, the variables used are distinct from the clock()
1266 1256   * variables, except for certain exceptions: The PPS frequency pps_freq
1267 1257   * and phase pps_offset variables are determined by this routine and
1268 1258   * updated atomically. The time_tolerance variable can be considered a
1269 1259   * constant, since it is infrequently changed, and then only when the
1270 1260   * PPS signal is disabled. The watchdog counter pps_valid is updated
1271 1261   * once per second by clock() and is atomically cleared in this
1272 1262   * routine.
1273 1263   *
1274 1264   * tvp is the time of the last tick; usec is a microsecond count since the
1275 1265   * last tick.
1276 1266   *
1277 1267   * Note: In Solaris systems, the tick value is actually given by
1278 1268   *       usec_per_tick.  This is called from the serial driver cdintr(),
1279 1269   *       or equivalent, at a high PIL.  Because the kernel keeps a
1280 1270   *       highresolution time, the following code can accept either
1281 1271   *       the traditional argument pair, or the current highres timestamp
1282 1272   *       in tvp and zero in usec.
1283 1273   */
1284 1274  void
1285 1275  ddi_hardpps(struct timeval *tvp, int usec)
1286 1276  {
1287 1277          int u_usec, v_usec, bigtick;
1288 1278          time_t cal_sec;
1289 1279          int cal_usec;
1290 1280  
1291 1281          /*
1292 1282           * An occasional glitch can be produced when the PPS interrupt
1293 1283           * occurs in the clock() routine before the time variable is
1294 1284           * updated. Here the offset is discarded when the difference
1295 1285           * between it and the last one is greater than tick/2, but not
1296 1286           * if the interval since the first discard exceeds 30 s.
1297 1287           */
1298 1288          time_status |= STA_PPSSIGNAL;
1299 1289          time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1300 1290          pps_valid = 0;
1301 1291          u_usec = -tvp->tv_usec;
1302 1292          if (u_usec < -(MICROSEC/2))
1303 1293                  u_usec += MICROSEC;
1304 1294          v_usec = pps_offset - u_usec;
1305 1295          if (v_usec < 0)
1306 1296                  v_usec = -v_usec;
1307 1297          if (v_usec > (usec_per_tick >> 1)) {
1308 1298                  if (pps_glitch > MAXGLITCH) {
1309 1299                          pps_glitch = 0;
1310 1300                          pps_tf[2] = u_usec;
1311 1301                          pps_tf[1] = u_usec;
1312 1302                  } else {
1313 1303                          pps_glitch++;
1314 1304                          u_usec = pps_offset;
1315 1305                  }
1316 1306          } else
1317 1307                  pps_glitch = 0;
1318 1308  
1319 1309          /*
1320 1310           * A three-stage median filter is used to help deglitch the pps
1321 1311           * time. The median sample becomes the time offset estimate; the
1322 1312           * difference between the other two samples becomes the time
1323 1313           * dispersion (jitter) estimate.
1324 1314           */
1325 1315          pps_tf[2] = pps_tf[1];
1326 1316          pps_tf[1] = pps_tf[0];
1327 1317          pps_tf[0] = u_usec;
1328 1318          if (pps_tf[0] > pps_tf[1]) {
1329 1319                  if (pps_tf[1] > pps_tf[2]) {
1330 1320                          pps_offset = pps_tf[1];         /* 0 1 2 */
1331 1321                          v_usec = pps_tf[0] - pps_tf[2];
1332 1322                  } else if (pps_tf[2] > pps_tf[0]) {
1333 1323                          pps_offset = pps_tf[0];         /* 2 0 1 */
1334 1324                          v_usec = pps_tf[2] - pps_tf[1];
1335 1325                  } else {
1336 1326                          pps_offset = pps_tf[2];         /* 0 2 1 */
1337 1327                          v_usec = pps_tf[0] - pps_tf[1];
1338 1328                  }
1339 1329          } else {
1340 1330                  if (pps_tf[1] < pps_tf[2]) {
1341 1331                          pps_offset = pps_tf[1];         /* 2 1 0 */
1342 1332                          v_usec = pps_tf[2] - pps_tf[0];
1343 1333                  } else  if (pps_tf[2] < pps_tf[0]) {
1344 1334                          pps_offset = pps_tf[0];         /* 1 0 2 */
1345 1335                          v_usec = pps_tf[1] - pps_tf[2];
1346 1336                  } else {
1347 1337                          pps_offset = pps_tf[2];         /* 1 2 0 */
1348 1338                          v_usec = pps_tf[1] - pps_tf[0];
1349 1339                  }
1350 1340          }
1351 1341          if (v_usec > MAXTIME)
1352 1342                  pps_jitcnt++;
1353 1343          v_usec = (v_usec << PPS_AVG) - pps_jitter;
1354 1344          pps_jitter += v_usec / (1 << PPS_AVG);
1355 1345          if (pps_jitter > (MAXTIME >> 1))
1356 1346                  time_status |= STA_PPSJITTER;
1357 1347  
1358 1348          /*
1359 1349           * During the calibration interval adjust the starting time when
1360 1350           * the tick overflows. At the end of the interval compute the
1361 1351           * duration of the interval and the difference of the hardware
1362 1352           * counters at the beginning and end of the interval. This code
1363 1353           * is deliciously complicated by the fact valid differences may
1364 1354           * exceed the value of tick when using long calibration
1365 1355           * intervals and small ticks. Note that the counter can be
1366 1356           * greater than tick if caught at just the wrong instant, but
1367 1357           * the values returned and used here are correct.
1368 1358           */
1369 1359          bigtick = (int)usec_per_tick * SCALE_USEC;
1370 1360          pps_usec -= pps_freq;
1371 1361          if (pps_usec >= bigtick)
1372 1362                  pps_usec -= bigtick;
1373 1363          if (pps_usec < 0)
1374 1364                  pps_usec += bigtick;
1375 1365          pps_time.tv_sec++;
1376 1366          pps_count++;
1377 1367          if (pps_count < (1 << pps_shift))
1378 1368                  return;
1379 1369          pps_count = 0;
1380 1370          pps_calcnt++;
1381 1371          u_usec = usec * SCALE_USEC;
1382 1372          v_usec = pps_usec - u_usec;
1383 1373          if (v_usec >= bigtick >> 1)
1384 1374                  v_usec -= bigtick;
1385 1375          if (v_usec < -(bigtick >> 1))
1386 1376                  v_usec += bigtick;
1387 1377          if (v_usec < 0)
1388 1378                  v_usec = -(-v_usec >> pps_shift);
1389 1379          else
1390 1380                  v_usec = v_usec >> pps_shift;
1391 1381          pps_usec = u_usec;
1392 1382          cal_sec = tvp->tv_sec;
1393 1383          cal_usec = tvp->tv_usec;
1394 1384          cal_sec -= pps_time.tv_sec;
1395 1385          cal_usec -= pps_time.tv_usec;
1396 1386          if (cal_usec < 0) {
1397 1387                  cal_usec += MICROSEC;
1398 1388                  cal_sec--;
1399 1389          }
1400 1390          pps_time = *tvp;
1401 1391  
1402 1392          /*
1403 1393           * Check for lost interrupts, noise, excessive jitter and
1404 1394           * excessive frequency error. The number of timer ticks during
1405 1395           * the interval may vary +-1 tick. Add to this a margin of one
1406 1396           * tick for the PPS signal jitter and maximum frequency
1407 1397           * deviation. If the limits are exceeded, the calibration
1408 1398           * interval is reset to the minimum and we start over.
1409 1399           */
1410 1400          u_usec = (int)usec_per_tick << 1;
1411 1401          if (!((cal_sec == -1 && cal_usec > (MICROSEC - u_usec)) ||
1412 1402              (cal_sec == 0 && cal_usec < u_usec)) ||
1413 1403              v_usec > time_tolerance || v_usec < -time_tolerance) {
1414 1404                  pps_errcnt++;
1415 1405                  pps_shift = PPS_SHIFT;
1416 1406                  pps_intcnt = 0;
1417 1407                  time_status |= STA_PPSERROR;
1418 1408                  return;
1419 1409          }
1420 1410  
1421 1411          /*
1422 1412           * A three-stage median filter is used to help deglitch the pps
1423 1413           * frequency. The median sample becomes the frequency offset
1424 1414           * estimate; the difference between the other two samples
1425 1415           * becomes the frequency dispersion (stability) estimate.
1426 1416           */
1427 1417          pps_ff[2] = pps_ff[1];
1428 1418          pps_ff[1] = pps_ff[0];
1429 1419          pps_ff[0] = v_usec;
1430 1420          if (pps_ff[0] > pps_ff[1]) {
1431 1421                  if (pps_ff[1] > pps_ff[2]) {
1432 1422                          u_usec = pps_ff[1];             /* 0 1 2 */
1433 1423                          v_usec = pps_ff[0] - pps_ff[2];
1434 1424                  } else if (pps_ff[2] > pps_ff[0]) {
1435 1425                          u_usec = pps_ff[0];             /* 2 0 1 */
1436 1426                          v_usec = pps_ff[2] - pps_ff[1];
1437 1427                  } else {
1438 1428                          u_usec = pps_ff[2];             /* 0 2 1 */
1439 1429                          v_usec = pps_ff[0] - pps_ff[1];
1440 1430                  }
1441 1431          } else {
1442 1432                  if (pps_ff[1] < pps_ff[2]) {
1443 1433                          u_usec = pps_ff[1];             /* 2 1 0 */
1444 1434                          v_usec = pps_ff[2] - pps_ff[0];
1445 1435                  } else  if (pps_ff[2] < pps_ff[0]) {
1446 1436                          u_usec = pps_ff[0];             /* 1 0 2 */
1447 1437                          v_usec = pps_ff[1] - pps_ff[2];
1448 1438                  } else {
1449 1439                          u_usec = pps_ff[2];             /* 1 2 0 */
1450 1440                          v_usec = pps_ff[1] - pps_ff[0];
1451 1441                  }
1452 1442          }
1453 1443  
1454 1444          /*
1455 1445           * Here the frequency dispersion (stability) is updated. If it
1456 1446           * is less than one-fourth the maximum (MAXFREQ), the frequency
1457 1447           * offset is updated as well, but clamped to the tolerance. It
1458 1448           * will be processed later by the clock() routine.
1459 1449           */
1460 1450          v_usec = (v_usec >> 1) - pps_stabil;
1461 1451          if (v_usec < 0)
1462 1452                  pps_stabil -= -v_usec >> PPS_AVG;
1463 1453          else
1464 1454                  pps_stabil += v_usec >> PPS_AVG;
1465 1455          if (pps_stabil > MAXFREQ >> 2) {
1466 1456                  pps_stbcnt++;
1467 1457                  time_status |= STA_PPSWANDER;
1468 1458                  return;
1469 1459          }
1470 1460          if (time_status & STA_PPSFREQ) {
1471 1461                  if (u_usec < 0) {
1472 1462                          pps_freq -= -u_usec >> PPS_AVG;
1473 1463                          if (pps_freq < -time_tolerance)
1474 1464                                  pps_freq = -time_tolerance;
1475 1465                          u_usec = -u_usec;
1476 1466                  } else {
1477 1467                          pps_freq += u_usec >> PPS_AVG;
1478 1468                          if (pps_freq > time_tolerance)
1479 1469                                  pps_freq = time_tolerance;
1480 1470                  }
1481 1471          }
1482 1472  
1483 1473          /*
1484 1474           * Here the calibration interval is adjusted. If the maximum
1485 1475           * time difference is greater than tick / 4, reduce the interval
1486 1476           * by half. If this is not the case for four consecutive
1487 1477           * intervals, double the interval.
1488 1478           */
1489 1479          if (u_usec << pps_shift > bigtick >> 2) {
1490 1480                  pps_intcnt = 0;
1491 1481                  if (pps_shift > PPS_SHIFT)
1492 1482                          pps_shift--;
1493 1483          } else if (pps_intcnt >= 4) {
1494 1484                  pps_intcnt = 0;
1495 1485                  if (pps_shift < PPS_SHIFTMAX)
1496 1486                          pps_shift++;
1497 1487          } else
1498 1488                  pps_intcnt++;
1499 1489  
1500 1490          /*
1501 1491           * If recovering from kmdb, then make sure the tod chip gets resynced.
1502 1492           * If we took an early exit above, then we don't yet have a stable
1503 1493           * calibration signal to lock onto, so don't mark the tod for sync
1504 1494           * until we get all the way here.
1505 1495           */
1506 1496          {
1507 1497                  int s = hr_clock_lock();
1508 1498  
1509 1499                  tod_needsync = 1;
1510 1500                  hr_clock_unlock(s);
1511 1501          }
1512 1502  }
1513 1503  
1514 1504  /*
1515 1505   * Handle clock tick processing for a thread.
1516 1506   * Check for timer action, enforce CPU rlimit, do profiling etc.
1517 1507   */
1518 1508  void
1519 1509  clock_tick(kthread_t *t, int pending)
1520 1510  {
1521 1511          struct proc *pp;
1522 1512          klwp_id_t    lwp;
1523 1513          struct as *as;
1524 1514          clock_t ticks;
1525 1515          int     poke = 0;               /* notify another CPU */
1526 1516          int     user_mode;
1527 1517          size_t   rss;
1528 1518          int i, total_usec, usec;
1529 1519          rctl_qty_t secs;
1530 1520  
1531 1521          ASSERT(pending > 0);
1532 1522  
1533 1523          /* Must be operating on a lwp/thread */
1534 1524          if ((lwp = ttolwp(t)) == NULL) {
1535 1525                  panic("clock_tick: no lwp");
1536 1526                  /*NOTREACHED*/
1537 1527          }
1538 1528  
1539 1529          for (i = 0; i < pending; i++) {
1540 1530                  CL_TICK(t);     /* Class specific tick processing */
1541 1531                  DTRACE_SCHED1(tick, kthread_t *, t);
1542 1532          }
1543 1533  
1544 1534          pp = ttoproc(t);
1545 1535  
1546 1536          /* pp->p_lock makes sure that the thread does not exit */
1547 1537          ASSERT(MUTEX_HELD(&pp->p_lock));
1548 1538  
1549 1539          user_mode = (lwp->lwp_state == LWP_USER);
1550 1540  
1551 1541          ticks = (pp->p_utime + pp->p_stime) % hz;
1552 1542          /*
1553 1543           * Update process times. Should use high res clock and state
1554 1544           * changes instead of statistical sampling method. XXX
1555 1545           */
1556 1546          if (user_mode) {
1557 1547                  pp->p_utime += pending;
1558 1548          } else {
1559 1549                  pp->p_stime += pending;
1560 1550          }
1561 1551  
1562 1552          pp->p_ttime += pending;
1563 1553          as = pp->p_as;
1564 1554  
1565 1555          /*
1566 1556           * Update user profiling statistics. Get the pc from the
1567 1557           * lwp when the AST happens.
1568 1558           */
1569 1559          if (pp->p_prof.pr_scale) {
1570 1560                  atomic_add_32(&lwp->lwp_oweupc, (int32_t)pending);
1571 1561                  if (user_mode) {
1572 1562                          poke = 1;
1573 1563                          aston(t);
1574 1564                  }
1575 1565          }
1576 1566  
1577 1567          /*
1578 1568           * If CPU was in user state, process lwp-virtual time
1579 1569           * interval timer. The value passed to itimerdecr() has to be
1580 1570           * in microseconds and has to be less than one second. Hence
1581 1571           * this loop.
1582 1572           */
1583 1573          total_usec = usec_per_tick * pending;
1584 1574          while (total_usec > 0) {
1585 1575                  usec = MIN(total_usec, (MICROSEC - 1));
1586 1576                  if (user_mode &&
1587 1577                      timerisset(&lwp->lwp_timer[ITIMER_VIRTUAL].it_value) &&
1588 1578                      itimerdecr(&lwp->lwp_timer[ITIMER_VIRTUAL], usec) == 0) {
1589 1579                          poke = 1;
1590 1580                          sigtoproc(pp, t, SIGVTALRM);
1591 1581                  }
1592 1582                  total_usec -= usec;
1593 1583          }
1594 1584  
1595 1585          /*
1596 1586           * If CPU was in user state, process lwp-profile
1597 1587           * interval timer.
1598 1588           */
1599 1589          total_usec = usec_per_tick * pending;
1600 1590          while (total_usec > 0) {
1601 1591                  usec = MIN(total_usec, (MICROSEC - 1));
1602 1592                  if (timerisset(&lwp->lwp_timer[ITIMER_PROF].it_value) &&
1603 1593                      itimerdecr(&lwp->lwp_timer[ITIMER_PROF], usec) == 0) {
1604 1594                          poke = 1;
1605 1595                          sigtoproc(pp, t, SIGPROF);
1606 1596                  }
1607 1597                  total_usec -= usec;
1608 1598          }
1609 1599  
1610 1600          /*
1611 1601           * Enforce CPU resource controls:
1612 1602           *   (a) process.max-cpu-time resource control
1613 1603           *
1614 1604           * Perform the check only if we have accumulated more a second.
1615 1605           */
1616 1606          if ((ticks + pending) >= hz) {
1617 1607                  (void) rctl_test(rctlproc_legacy[RLIMIT_CPU], pp->p_rctls, pp,
1618 1608                      (pp->p_utime + pp->p_stime)/hz, RCA_UNSAFE_SIGINFO);
1619 1609          }
1620 1610  
1621 1611          /*
1622 1612           *   (b) task.max-cpu-time resource control
1623 1613           *
1624 1614           * If we have accumulated enough ticks, increment the task CPU
1625 1615           * time usage and test for the resource limit. This minimizes the
1626 1616           * number of calls to the rct_test(). The task CPU time mutex
1627 1617           * is highly contentious as many processes can be sharing a task.
1628 1618           */
1629 1619          if (pp->p_ttime >= clock_tick_proc_max) {
1630 1620                  secs = task_cpu_time_incr(pp->p_task, pp->p_ttime);
1631 1621                  pp->p_ttime = 0;
1632 1622                  if (secs) {
1633 1623                          (void) rctl_test(rc_task_cpu_time, pp->p_task->tk_rctls,
1634 1624                              pp, secs, RCA_UNSAFE_SIGINFO);
1635 1625                  }
1636 1626          }
1637 1627  
1638 1628          /*
1639 1629           * Update memory usage for the currently running process.
1640 1630           */
1641 1631          rss = rm_asrss(as);
1642 1632          PTOU(pp)->u_mem += rss;
1643 1633          if (rss > PTOU(pp)->u_mem_max)
1644 1634                  PTOU(pp)->u_mem_max = rss;
1645 1635  
1646 1636          /*
1647 1637           * Notify the CPU the thread is running on.
1648 1638           */
1649 1639          if (poke && t->t_cpu != CPU)
1650 1640                  poke_cpu(t->t_cpu->cpu_id);
1651 1641  }
1652 1642  
1653 1643  void
1654 1644  profil_tick(uintptr_t upc)
1655 1645  {
1656 1646          int ticks;
1657 1647          proc_t *p = ttoproc(curthread);
1658 1648          klwp_t *lwp = ttolwp(curthread);
1659 1649          struct prof *pr = &p->p_prof;
1660 1650  
1661 1651          do {
1662 1652                  ticks = lwp->lwp_oweupc;
1663 1653          } while (cas32(&lwp->lwp_oweupc, ticks, 0) != ticks);
1664 1654  
1665 1655          mutex_enter(&p->p_pflock);
1666 1656          if (pr->pr_scale >= 2 && upc >= pr->pr_off) {
1667 1657                  /*
1668 1658                   * Old-style profiling
1669 1659                   */
1670 1660                  uint16_t *slot = pr->pr_base;
1671 1661                  uint16_t old, new;
1672 1662                  if (pr->pr_scale != 2) {
1673 1663                          uintptr_t delta = upc - pr->pr_off;
1674 1664                          uintptr_t byteoff = ((delta >> 16) * pr->pr_scale) +
1675 1665                              (((delta & 0xffff) * pr->pr_scale) >> 16);
1676 1666                          if (byteoff >= (uintptr_t)pr->pr_size) {
1677 1667                                  mutex_exit(&p->p_pflock);
1678 1668                                  return;
1679 1669                          }
1680 1670                          slot += byteoff / sizeof (uint16_t);
1681 1671                  }
1682 1672                  if (fuword16(slot, &old) < 0 ||
1683 1673                      (new = old + ticks) > SHRT_MAX ||
1684 1674                      suword16(slot, new) < 0) {
1685 1675                          pr->pr_scale = 0;
1686 1676                  }
1687 1677          } else if (pr->pr_scale == 1) {
1688 1678                  /*
1689 1679                   * PC Sampling
1690 1680                   */
1691 1681                  model_t model = lwp_getdatamodel(lwp);
1692 1682                  int result;
1693 1683  #ifdef __lint
1694 1684                  model = model;
1695 1685  #endif
1696 1686                  while (ticks-- > 0) {
1697 1687                          if (pr->pr_samples == pr->pr_size) {
1698 1688                                  /* buffer full, turn off sampling */
1699 1689                                  pr->pr_scale = 0;
1700 1690                                  break;
1701 1691                          }
1702 1692                          switch (SIZEOF_PTR(model)) {
1703 1693                          case sizeof (uint32_t):
1704 1694                                  result = suword32(pr->pr_base, (uint32_t)upc);
1705 1695                                  break;
1706 1696  #ifdef _LP64
1707 1697                          case sizeof (uint64_t):
1708 1698                                  result = suword64(pr->pr_base, (uint64_t)upc);
1709 1699                                  break;
1710 1700  #endif
1711 1701                          default:
1712 1702                                  cmn_err(CE_WARN, "profil_tick: unexpected "
1713 1703                                      "data model");
1714 1704                                  result = -1;
1715 1705                                  break;
1716 1706                          }
1717 1707                          if (result != 0) {
1718 1708                                  pr->pr_scale = 0;
1719 1709                                  break;
1720 1710                          }
1721 1711                          pr->pr_base = (caddr_t)pr->pr_base + SIZEOF_PTR(model);
1722 1712                          pr->pr_samples++;
1723 1713                  }
1724 1714          }
1725 1715          mutex_exit(&p->p_pflock);
1726 1716  }
1727 1717  
1728 1718  static void
1729 1719  delay_wakeup(void *arg)
1730 1720  {
1731 1721          kthread_t       *t = arg;
1732 1722  
1733 1723          mutex_enter(&t->t_delay_lock);
1734 1724          cv_signal(&t->t_delay_cv);
1735 1725          mutex_exit(&t->t_delay_lock);
1736 1726  }
1737 1727  
1738 1728  /*
1739 1729   * The delay(9F) man page indicates that it can only be called from user or
1740 1730   * kernel context - detect and diagnose bad calls. The following macro will
1741 1731   * produce a limited number of messages identifying bad callers.  This is done
1742 1732   * in a macro so that caller() is meaningful. When a bad caller is identified,
1743 1733   * switching to 'drv_usecwait(TICK_TO_USEC(ticks));' may be appropriate.
1744 1734   */
1745 1735  #define DELAY_CONTEXT_CHECK()   {                                       \
1746 1736          uint32_t        m;                                              \
1747 1737          char            *f;                                             \
1748 1738          ulong_t         off;                                            \
1749 1739                                                                          \
1750 1740          m = delay_from_interrupt_msg;                                   \
1751 1741          if (delay_from_interrupt_diagnose && servicing_interrupt() &&   \
1752 1742              !panicstr && !devinfo_freeze &&                             \
1753 1743              atomic_cas_32(&delay_from_interrupt_msg, m ? m : 1, m-1)) { \
1754 1744                  f = modgetsymname((uintptr_t)caller(), &off);           \
1755 1745                  cmn_err(CE_WARN, "delay(9F) called from "               \
1756 1746                      "interrupt context: %s`%s",                         \
1757 1747                      mod_containing_pc(caller()), f ? f : "...");        \
1758 1748          }                                                               \
1759 1749  }
1760 1750  
1761 1751  /*
1762 1752   * delay_common: common delay code.
1763 1753   */
1764 1754  static void
1765 1755  delay_common(clock_t ticks)
1766 1756  {
1767 1757          kthread_t       *t = curthread;
1768 1758          clock_t         deadline;
1769 1759          clock_t         timeleft;
1770 1760          callout_id_t    id;
1771 1761  
1772 1762          /* If timeouts aren't running all we can do is spin. */
1773 1763          if (panicstr || devinfo_freeze) {
1774 1764                  /* Convert delay(9F) call into drv_usecwait(9F) call. */
1775 1765                  if (ticks > 0)
1776 1766                          drv_usecwait(TICK_TO_USEC(ticks));
1777 1767                  return;
1778 1768          }
1779 1769  
1780 1770          deadline = ddi_get_lbolt() + ticks;
1781 1771          while ((timeleft = deadline - ddi_get_lbolt()) > 0) {
1782 1772                  mutex_enter(&t->t_delay_lock);
1783 1773                  id = timeout_default(delay_wakeup, t, timeleft);
1784 1774                  cv_wait(&t->t_delay_cv, &t->t_delay_lock);
1785 1775                  mutex_exit(&t->t_delay_lock);
1786 1776                  (void) untimeout_default(id, 0);
1787 1777          }
1788 1778  }
1789 1779  
1790 1780  /*
1791 1781   * Delay specified number of clock ticks.
1792 1782   */
1793 1783  void
1794 1784  delay(clock_t ticks)
1795 1785  {
1796 1786          DELAY_CONTEXT_CHECK();
1797 1787  
1798 1788          delay_common(ticks);
1799 1789  }
1800 1790  
1801 1791  /*
1802 1792   * Delay a random number of clock ticks between 1 and ticks.
1803 1793   */
1804 1794  void
1805 1795  delay_random(clock_t ticks)
1806 1796  {
1807 1797          int     r;
1808 1798  
1809 1799          DELAY_CONTEXT_CHECK();
1810 1800  
1811 1801          (void) random_get_pseudo_bytes((void *)&r, sizeof (r));
1812 1802          if (ticks == 0)
1813 1803                  ticks = 1;
1814 1804          ticks = (r % ticks) + 1;
1815 1805          delay_common(ticks);
1816 1806  }
1817 1807  
1818 1808  /*
1819 1809   * Like delay, but interruptible by a signal.
1820 1810   */
1821 1811  int
1822 1812  delay_sig(clock_t ticks)
1823 1813  {
1824 1814          kthread_t       *t = curthread;
1825 1815          clock_t         deadline;
1826 1816          clock_t         rc;
1827 1817  
1828 1818          /* If timeouts aren't running all we can do is spin. */
1829 1819          if (panicstr || devinfo_freeze) {
1830 1820                  if (ticks > 0)
1831 1821                          drv_usecwait(TICK_TO_USEC(ticks));
1832 1822                  return (0);
1833 1823          }
1834 1824  
1835 1825          deadline = ddi_get_lbolt() + ticks;
1836 1826          mutex_enter(&t->t_delay_lock);
1837 1827          do {
1838 1828                  rc = cv_timedwait_sig(&t->t_delay_cv,
1839 1829                      &t->t_delay_lock, deadline);
1840 1830                  /* loop until past deadline or signaled */
1841 1831          } while (rc > 0);
1842 1832          mutex_exit(&t->t_delay_lock);
1843 1833          if (rc == 0)
1844 1834                  return (EINTR);
1845 1835          return (0);
1846 1836  }
1847 1837  
1848 1838  
1849 1839  #define SECONDS_PER_DAY 86400
1850 1840  
1851 1841  /*
1852 1842   * Initialize the system time based on the TOD chip.  approx is used as
1853 1843   * an approximation of time (e.g. from the filesystem) in the event that
1854 1844   * the TOD chip has been cleared or is unresponsive.  An approx of -1
1855 1845   * means the filesystem doesn't keep time.
1856 1846   */
1857 1847  void
1858 1848  clkset(time_t approx)
1859 1849  {
1860 1850          timestruc_t ts;
1861 1851          int spl;
1862 1852          int set_clock = 0;
1863 1853  
1864 1854          mutex_enter(&tod_lock);
1865 1855          ts = tod_get();
1866 1856  
1867 1857          if (ts.tv_sec > 365 * SECONDS_PER_DAY) {
1868 1858                  /*
1869 1859                   * If the TOD chip is reporting some time after 1971,
1870 1860                   * then it probably didn't lose power or become otherwise
1871 1861                   * cleared in the recent past;  check to assure that
1872 1862                   * the time coming from the filesystem isn't in the future
1873 1863                   * according to the TOD chip.
1874 1864                   */
1875 1865                  if (approx != -1 && approx > ts.tv_sec) {
1876 1866                          cmn_err(CE_WARN, "Last shutdown is later "
1877 1867                              "than time on time-of-day chip; check date.");
1878 1868                  }
1879 1869          } else {
1880 1870                  /*
1881 1871                   * If the TOD chip isn't giving correct time, set it to the
1882 1872                   * greater of i) approx and ii) 1987. That way if approx
1883 1873                   * is negative or is earlier than 1987, we set the clock
1884 1874                   * back to a time when Oliver North, ALF and Dire Straits
1885 1875                   * were all on the collective brain:  1987.
1886 1876                   */
1887 1877                  timestruc_t tmp;
1888 1878                  time_t diagnose_date = (1987 - 1970) * 365 * SECONDS_PER_DAY;
1889 1879                  ts.tv_sec = (approx > diagnose_date ? approx : diagnose_date);
1890 1880                  ts.tv_nsec = 0;
1891 1881  
1892 1882                  /*
1893 1883                   * Attempt to write the new time to the TOD chip.  Set spl high
1894 1884                   * to avoid getting preempted between the tod_set and tod_get.
1895 1885                   */
1896 1886                  spl = splhi();
1897 1887                  tod_set(ts);
1898 1888                  tmp = tod_get();
1899 1889                  splx(spl);
1900 1890  
1901 1891                  if (tmp.tv_sec != ts.tv_sec && tmp.tv_sec != ts.tv_sec + 1) {
1902 1892                          tod_broken = 1;
1903 1893                          dosynctodr = 0;
1904 1894                          cmn_err(CE_WARN, "Time-of-day chip unresponsive.");
1905 1895                  } else {
1906 1896                          cmn_err(CE_WARN, "Time-of-day chip had "
1907 1897                              "incorrect date; check and reset.");
1908 1898                  }
1909 1899                  set_clock = 1;
1910 1900          }
1911 1901  
1912 1902          if (!boot_time) {
1913 1903                  boot_time = ts.tv_sec;
1914 1904                  set_clock = 1;
1915 1905          }
1916 1906  
1917 1907          if (set_clock)
1918 1908                  set_hrestime(&ts);
1919 1909  
1920 1910          mutex_exit(&tod_lock);
1921 1911  }
1922 1912  
1923 1913  int     timechanged;    /* for testing if the system time has been reset */
1924 1914  
1925 1915  void
1926 1916  set_hrestime(timestruc_t *ts)
1927 1917  {
1928 1918          int spl = hr_clock_lock();
1929 1919          hrestime = *ts;
1930 1920          membar_enter(); /* hrestime must be visible before timechanged++ */
1931 1921          timedelta = 0;
1932 1922          timechanged++;
1933 1923          hr_clock_unlock(spl);
1934 1924          callout_hrestime();
1935 1925  }
1936 1926  
1937 1927  static uint_t deadman_seconds;
1938 1928  static uint32_t deadman_panics;
1939 1929  static int deadman_enabled = 0;
1940 1930  static int deadman_panic_timers = 1;
1941 1931  
1942 1932  static void
1943 1933  deadman(void)
1944 1934  {
1945 1935          if (panicstr) {
1946 1936                  /*
1947 1937                   * During panic, other CPUs besides the panic
1948 1938                   * master continue to handle cyclics and some other
1949 1939                   * interrupts.  The code below is intended to be
1950 1940                   * single threaded, so any CPU other than the master
1951 1941                   * must keep out.
1952 1942                   */
1953 1943                  if (CPU->cpu_id != panic_cpu.cpu_id)
1954 1944                          return;
1955 1945  
1956 1946                  if (!deadman_panic_timers)
1957 1947                          return; /* allow all timers to be manually disabled */
1958 1948  
1959 1949                  /*
1960 1950                   * If we are generating a crash dump or syncing filesystems and
1961 1951                   * the corresponding timer is set, decrement it and re-enter
1962 1952                   * the panic code to abort it and advance to the next state.
1963 1953                   * The panic states and triggers are explained in panic.c.
1964 1954                   */
1965 1955                  if (panic_dump) {
1966 1956                          if (dump_timeleft && (--dump_timeleft == 0)) {
1967 1957                                  panic("panic dump timeout");
1968 1958                                  /*NOTREACHED*/
1969 1959                          }
1970 1960                  } else if (panic_sync) {
1971 1961                          if (sync_timeleft && (--sync_timeleft == 0)) {
1972 1962                                  panic("panic sync timeout");
1973 1963                                  /*NOTREACHED*/
1974 1964                          }
1975 1965                  }
1976 1966  
1977 1967                  return;
1978 1968          }
1979 1969  
1980 1970          if (deadman_counter != CPU->cpu_deadman_counter) {
1981 1971                  CPU->cpu_deadman_counter = deadman_counter;
1982 1972                  CPU->cpu_deadman_countdown = deadman_seconds;
1983 1973                  return;
1984 1974          }
1985 1975  
1986 1976          if (--CPU->cpu_deadman_countdown > 0)
1987 1977                  return;
1988 1978  
1989 1979          /*
1990 1980           * Regardless of whether or not we actually bring the system down,
1991 1981           * bump the deadman_panics variable.
1992 1982           *
1993 1983           * N.B. deadman_panics is incremented once for each CPU that
1994 1984           * passes through here.  It's expected that all the CPUs will
1995 1985           * detect this condition within one second of each other, so
1996 1986           * when deadman_enabled is off, deadman_panics will
1997 1987           * typically be a multiple of the total number of CPUs in
1998 1988           * the system.
1999 1989           */
2000 1990          atomic_add_32(&deadman_panics, 1);
2001 1991  
2002 1992          if (!deadman_enabled) {
2003 1993                  CPU->cpu_deadman_countdown = deadman_seconds;
2004 1994                  return;
2005 1995          }
2006 1996  
2007 1997          /*
2008 1998           * If we're here, we want to bring the system down.
2009 1999           */
2010 2000          panic("deadman: timed out after %d seconds of clock "
2011 2001              "inactivity", deadman_seconds);
2012 2002          /*NOTREACHED*/
2013 2003  }
2014 2004  
2015 2005  /*ARGSUSED*/
2016 2006  static void
2017 2007  deadman_online(void *arg, cpu_t *cpu, cyc_handler_t *hdlr, cyc_time_t *when)
2018 2008  {
2019 2009          cpu->cpu_deadman_counter = 0;
2020 2010          cpu->cpu_deadman_countdown = deadman_seconds;
2021 2011  
2022 2012          hdlr->cyh_func = (cyc_func_t)deadman;
2023 2013          hdlr->cyh_level = CY_HIGH_LEVEL;
2024 2014          hdlr->cyh_arg = NULL;
2025 2015  
2026 2016          /*
2027 2017           * Stagger the CPUs so that they don't all run deadman() at
2028 2018           * the same time.  Simplest reason to do this is to make it
2029 2019           * more likely that only one CPU will panic in case of a
2030 2020           * timeout.  This is (strictly speaking) an aesthetic, not a
2031 2021           * technical consideration.
2032 2022           */
2033 2023          when->cyt_when = cpu->cpu_id * (NANOSEC / NCPU);
2034 2024          when->cyt_interval = NANOSEC;
2035 2025  }
2036 2026  
2037 2027  
2038 2028  void
2039 2029  deadman_init(void)
2040 2030  {
2041 2031          cyc_omni_handler_t hdlr;
2042 2032  
2043 2033          if (deadman_seconds == 0)
2044 2034                  deadman_seconds = snoop_interval / MICROSEC;
2045 2035  
2046 2036          if (snooping)
2047 2037                  deadman_enabled = 1;
2048 2038  
2049 2039          hdlr.cyo_online = deadman_online;
2050 2040          hdlr.cyo_offline = NULL;
2051 2041          hdlr.cyo_arg = NULL;
2052 2042  
2053 2043          mutex_enter(&cpu_lock);
2054 2044          deadman_cyclic = cyclic_add_omni(&hdlr);
2055 2045          mutex_exit(&cpu_lock);
2056 2046  }
2057 2047  
2058 2048  /*
2059 2049   * tod_fault() is for updating tod validate mechanism state:
2060 2050   * (1) TOD_NOFAULT: for resetting the state to 'normal'.
2061 2051   *     currently used for debugging only
2062 2052   * (2) The following four cases detected by tod validate mechanism:
2063 2053   *       TOD_REVERSED: current tod value is less than previous value.
2064 2054   *       TOD_STALLED: current tod value hasn't advanced.
2065 2055   *       TOD_JUMPED: current tod value advanced too far from previous value.
2066 2056   *       TOD_RATECHANGED: the ratio between average tod delta and
2067 2057   *       average tick delta has changed.
2068 2058   * (3) TOD_RDONLY: when the TOD clock is not writeable e.g. because it is
2069 2059   *     a virtual TOD provided by a hypervisor.
2070 2060   */
2071 2061  enum tod_fault_type
2072 2062  tod_fault(enum tod_fault_type ftype, int off)
2073 2063  {
2074 2064          ASSERT(MUTEX_HELD(&tod_lock));
2075 2065  
2076 2066          if (tod_faulted != ftype) {
2077 2067                  switch (ftype) {
2078 2068                  case TOD_NOFAULT:
2079 2069                          plat_tod_fault(TOD_NOFAULT);
2080 2070                          cmn_err(CE_NOTE, "Restarted tracking "
2081 2071                              "Time of Day clock.");
2082 2072                          tod_faulted = ftype;
2083 2073                          break;
2084 2074                  case TOD_REVERSED:
2085 2075                  case TOD_JUMPED:
2086 2076                          if (tod_faulted == TOD_NOFAULT) {
2087 2077                                  plat_tod_fault(ftype);
2088 2078                                  cmn_err(CE_WARN, "Time of Day clock error: "
2089 2079                                      "reason [%s by 0x%x]. -- "
2090 2080                                      " Stopped tracking Time Of Day clock.",
2091 2081                                      tod_fault_table[ftype], off);
2092 2082                                  tod_faulted = ftype;
2093 2083                          }
2094 2084                          break;
2095 2085                  case TOD_STALLED:
2096 2086                  case TOD_RATECHANGED:
2097 2087                          if (tod_faulted == TOD_NOFAULT) {
2098 2088                                  plat_tod_fault(ftype);
2099 2089                                  cmn_err(CE_WARN, "Time of Day clock error: "
2100 2090                                      "reason [%s]. -- "
2101 2091                                      " Stopped tracking Time Of Day clock.",
2102 2092                                      tod_fault_table[ftype]);
2103 2093                                  tod_faulted = ftype;
2104 2094                          }
2105 2095                          break;
2106 2096                  case TOD_RDONLY:
2107 2097                          if (tod_faulted == TOD_NOFAULT) {
2108 2098                                  plat_tod_fault(ftype);
2109 2099                                  cmn_err(CE_NOTE, "!Time of Day clock is "
2110 2100                                      "Read-Only; set of Date/Time will not "
2111 2101                                      "persist across reboot.");
2112 2102                                  tod_faulted = ftype;
2113 2103                          }
2114 2104                          break;
2115 2105                  default:
2116 2106                          break;
2117 2107                  }
2118 2108          }
2119 2109          return (tod_faulted);
2120 2110  }
2121 2111  
2122 2112  /*
2123 2113   * Two functions that allow tod_status_flag to be manipulated by functions
2124 2114   * external to this file.
2125 2115   */
2126 2116  
2127 2117  void
2128 2118  tod_status_set(int tod_flag)
2129 2119  {
2130 2120          tod_status_flag |= tod_flag;
2131 2121  }
2132 2122  
2133 2123  void
2134 2124  tod_status_clear(int tod_flag)
2135 2125  {
2136 2126          tod_status_flag &= ~tod_flag;
2137 2127  }
2138 2128  
2139 2129  /*
2140 2130   * Record a timestamp and the value passed to tod_set().  The next call to
2141 2131   * tod_validate() can use these values, prev_set_tick and prev_set_tod,
2142 2132   * when checking the timestruc_t returned by tod_get().  Ordinarily,
2143 2133   * tod_validate() will use prev_tick and prev_tod for this task but these
2144 2134   * become obsolete, and will be re-assigned with the prev_set_* values,
2145 2135   * in the case when the TOD is re-written.
2146 2136   */
2147 2137  void
2148 2138  tod_set_prev(timestruc_t ts)
2149 2139  {
2150 2140          if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) ||
2151 2141              tod_validate_deferred) {
2152 2142                  return;
2153 2143          }
2154 2144          prev_set_tick = gethrtime();
2155 2145          /*
2156 2146           * A negative value will be set to zero in utc_to_tod() so we fake
2157 2147           * a zero here in such a case.  This would need to change if the
2158 2148           * behavior of utc_to_tod() changes.
2159 2149           */
2160 2150          prev_set_tod = ts.tv_sec < 0 ? 0 : ts.tv_sec;
2161 2151  }
2162 2152  
2163 2153  /*
2164 2154   * tod_validate() is used for checking values returned by tod_get().
2165 2155   * Four error cases can be detected by this routine:
2166 2156   *   TOD_REVERSED: current tod value is less than previous.
2167 2157   *   TOD_STALLED: current tod value hasn't advanced.
2168 2158   *   TOD_JUMPED: current tod value advanced too far from previous value.
2169 2159   *   TOD_RATECHANGED: the ratio between average tod delta and
2170 2160   *   average tick delta has changed.
2171 2161   */
2172 2162  time_t
2173 2163  tod_validate(time_t tod)
2174 2164  {
2175 2165          time_t diff_tod;
2176 2166          hrtime_t diff_tick;
2177 2167  
2178 2168          long dtick;
2179 2169          int dtick_delta;
2180 2170  
2181 2171          int off = 0;
2182 2172          enum tod_fault_type tod_bad = TOD_NOFAULT;
2183 2173  
2184 2174          static int firsttime = 1;
2185 2175  
2186 2176          static time_t prev_tod = 0;
2187 2177          static hrtime_t prev_tick = 0;
2188 2178          static long dtick_avg = TOD_REF_FREQ;
2189 2179  
2190 2180          int cpr_resume_done = 0;
2191 2181          int dr_resume_done = 0;
2192 2182  
2193 2183          hrtime_t tick = gethrtime();
2194 2184  
2195 2185          ASSERT(MUTEX_HELD(&tod_lock));
2196 2186  
2197 2187          /*
2198 2188           * tod_validate_enable is patchable via /etc/system.
2199 2189           * If TOD is already faulted, or if TOD validation is deferred,
2200 2190           * there is nothing to do.
2201 2191           */
2202 2192          if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) ||
2203 2193              tod_validate_deferred) {
2204 2194                  return (tod);
2205 2195          }
2206 2196  
2207 2197          /*
2208 2198           * If this is the first time through, we just need to save the tod
2209 2199           * we were called with and hrtime so we can use them next time to
2210 2200           * validate tod_get().
2211 2201           */
2212 2202          if (firsttime) {
2213 2203                  firsttime = 0;
2214 2204                  prev_tod = tod;
2215 2205                  prev_tick = tick;
2216 2206                  return (tod);
2217 2207          }
2218 2208  
2219 2209          /*
2220 2210           * Handle any flags that have been turned on by tod_status_set().
2221 2211           * In the case where a tod_set() is done and then a subsequent
2222 2212           * tod_get() fails (ie, both TOD_SET_DONE and TOD_GET_FAILED are
2223 2213           * true), we treat the TOD_GET_FAILED with precedence by switching
2224 2214           * off the flag, returning tod and leaving TOD_SET_DONE asserted
2225 2215           * until such time as tod_get() completes successfully.
2226 2216           */
2227 2217          if (tod_status_flag & TOD_GET_FAILED) {
2228 2218                  /*
2229 2219                   * tod_get() has encountered an issue, possibly transitory,
2230 2220                   * when reading TOD.  We'll just return the incoming tod
2231 2221                   * value (which is actually hrestime.tv_sec in this case)
2232 2222                   * and when we get a genuine tod, following a successful
2233 2223                   * tod_get(), we can validate using prev_tod and prev_tick.
2234 2224                   */
2235 2225                  tod_status_flag &= ~TOD_GET_FAILED;
2236 2226                  return (tod);
2237 2227          } else if (tod_status_flag & TOD_SET_DONE) {
2238 2228                  /*
2239 2229                   * TOD has been modified.  Just before the TOD was written,
2240 2230                   * tod_set_prev() saved tod and hrtime; we can now use
2241 2231                   * those values, prev_set_tod and prev_set_tick, to validate
2242 2232                   * the incoming tod that's just been read.
2243 2233                   */
2244 2234                  prev_tod = prev_set_tod;
2245 2235                  prev_tick = prev_set_tick;
2246 2236                  dtick_avg = TOD_REF_FREQ;
2247 2237                  tod_status_flag &= ~TOD_SET_DONE;
2248 2238                  /*
2249 2239                   * If a tod_set() preceded a cpr_suspend() without an
2250 2240                   * intervening tod_validate(), we need to ensure that a
2251 2241                   * TOD_JUMPED condition is ignored.
2252 2242                   * Note this isn't a concern in the case of DR as we've
2253 2243                   * just reassigned dtick_avg, above.
2254 2244                   */
2255 2245                  if (tod_status_flag & TOD_CPR_RESUME_DONE) {
2256 2246                          cpr_resume_done = 1;
2257 2247                          tod_status_flag &= ~TOD_CPR_RESUME_DONE;
2258 2248                  }
2259 2249          } else if (tod_status_flag & TOD_CPR_RESUME_DONE) {
2260 2250                  /*
2261 2251                   * The system's coming back from a checkpoint resume.
2262 2252                   */
2263 2253                  cpr_resume_done = 1;
2264 2254                  tod_status_flag &= ~TOD_CPR_RESUME_DONE;
2265 2255                  /*
2266 2256                   * We need to handle the possibility of a CPR suspend
2267 2257                   * operation having been initiated whilst a DR event was
2268 2258                   * in-flight.
2269 2259                   */
2270 2260                  if (tod_status_flag & TOD_DR_RESUME_DONE) {
2271 2261                          dr_resume_done = 1;
2272 2262                          tod_status_flag &= ~TOD_DR_RESUME_DONE;
2273 2263                  }
2274 2264          } else if (tod_status_flag & TOD_DR_RESUME_DONE) {
2275 2265                  /*
2276 2266                   * A Dynamic Reconfiguration event has taken place.
2277 2267                   */
2278 2268                  dr_resume_done = 1;
2279 2269                  tod_status_flag &= ~TOD_DR_RESUME_DONE;
2280 2270          }
2281 2271  
2282 2272          /* test hook */
2283 2273          switch (tod_unit_test) {
2284 2274          case 1: /* for testing jumping tod */
2285 2275                  tod += tod_test_injector;
2286 2276                  tod_unit_test = 0;
2287 2277                  break;
2288 2278          case 2: /* for testing stuck tod bit */
2289 2279                  tod |= 1 << tod_test_injector;
2290 2280                  tod_unit_test = 0;
2291 2281                  break;
2292 2282          case 3: /* for testing stalled tod */
2293 2283                  tod = prev_tod;
2294 2284                  tod_unit_test = 0;
2295 2285                  break;
2296 2286          case 4: /* reset tod fault status */
2297 2287                  (void) tod_fault(TOD_NOFAULT, 0);
2298 2288                  tod_unit_test = 0;
2299 2289                  break;
2300 2290          default:
2301 2291                  break;
2302 2292          }
2303 2293  
2304 2294          diff_tod = tod - prev_tod;
2305 2295          diff_tick = tick - prev_tick;
2306 2296  
2307 2297          ASSERT(diff_tick >= 0);
2308 2298  
2309 2299          if (diff_tod < 0) {
2310 2300                  /* ERROR - tod reversed */
2311 2301                  tod_bad = TOD_REVERSED;
2312 2302                  off = (int)(prev_tod - tod);
2313 2303          } else if (diff_tod == 0) {
2314 2304                  /* tod did not advance */
2315 2305                  if (diff_tick > TOD_STALL_THRESHOLD) {
2316 2306                          /* ERROR - tod stalled */
2317 2307                          tod_bad = TOD_STALLED;
2318 2308                  } else {
2319 2309                          /*
2320 2310                           * Make sure we don't update prev_tick
2321 2311                           * so that diff_tick is calculated since
2322 2312                           * the first diff_tod == 0
2323 2313                           */
2324 2314                          return (tod);
2325 2315                  }
2326 2316          } else {
2327 2317                  /* calculate dtick */
2328 2318                  dtick = diff_tick / diff_tod;
2329 2319  
2330 2320                  /* update dtick averages */
2331 2321                  dtick_avg += ((dtick - dtick_avg) / TOD_FILTER_N);
2332 2322  
2333 2323                  /*
2334 2324                   * Calculate dtick_delta as
2335 2325                   * variation from reference freq in quartiles
2336 2326                   */
2337 2327                  dtick_delta = (dtick_avg - TOD_REF_FREQ) /
2338 2328                      (TOD_REF_FREQ >> 2);
2339 2329  
2340 2330                  /*
2341 2331                   * Even with a perfectly functioning TOD device,
2342 2332                   * when the number of elapsed seconds is low the
2343 2333                   * algorithm can calculate a rate that is beyond
2344 2334                   * tolerance, causing an error.  The algorithm is
2345 2335                   * inaccurate when elapsed time is low (less than
2346 2336                   * 5 seconds).
2347 2337                   */
2348 2338                  if (diff_tod > 4) {
2349 2339                          if (dtick < TOD_JUMP_THRESHOLD) {
2350 2340                                  /*
2351 2341                                   * If we've just done a CPR resume, we detect
2352 2342                                   * a jump in the TOD but, actually, what's
2353 2343                                   * happened is that the TOD has been increasing
2354 2344                                   * whilst the system was suspended and the tick
2355 2345                                   * count hasn't kept up.  We consider the first
2356 2346                                   * occurrence of this after a resume as normal
2357 2347                                   * and ignore it; otherwise, in a non-resume
2358 2348                                   * case, we regard it as a TOD problem.
2359 2349                                   */
2360 2350                                  if (!cpr_resume_done) {
2361 2351                                          /* ERROR - tod jumped */
2362 2352                                          tod_bad = TOD_JUMPED;
2363 2353                                          off = (int)diff_tod;
2364 2354                                  }
2365 2355                          }
2366 2356                          if (dtick_delta) {
2367 2357                                  /*
2368 2358                                   * If we've just done a DR resume, dtick_avg
2369 2359                                   * can go a bit askew so we reset it and carry
2370 2360                                   * on; otherwise, the TOD is in error.
2371 2361                                   */
2372 2362                                  if (dr_resume_done) {
2373 2363                                          dtick_avg = TOD_REF_FREQ;
2374 2364                                  } else {
2375 2365                                          /* ERROR - change in clock rate */
2376 2366                                          tod_bad = TOD_RATECHANGED;
2377 2367                                  }
2378 2368                          }
2379 2369                  }
2380 2370          }
2381 2371  
2382 2372          if (tod_bad != TOD_NOFAULT) {
2383 2373                  (void) tod_fault(tod_bad, off);
2384 2374  
2385 2375                  /*
2386 2376                   * Disable dosynctodr since we are going to fault
2387 2377                   * the TOD chip anyway here
2388 2378                   */
2389 2379                  dosynctodr = 0;
2390 2380  
2391 2381                  /*
2392 2382                   * Set tod to the correct value from hrestime
2393 2383                   */
2394 2384                  tod = hrestime.tv_sec;
2395 2385          }
2396 2386  
2397 2387          prev_tod = tod;
2398 2388          prev_tick = tick;
2399 2389          return (tod);
2400 2390  }
2401 2391  
2402 2392  static void
2403 2393  calcloadavg(int nrun, uint64_t *hp_ave)
2404 2394  {
2405 2395          static int64_t f[3] = { 135, 27, 9 };
2406 2396          uint_t i;
2407 2397          int64_t q, r;
2408 2398  
2409 2399          /*
2410 2400           * Compute load average over the last 1, 5, and 15 minutes
2411 2401           * (60, 300, and 900 seconds).  The constants in f[3] are for
2412 2402           * exponential decay:
2413 2403           * (1 - exp(-1/60)) << 13 = 135,
2414 2404           * (1 - exp(-1/300)) << 13 = 27,
2415 2405           * (1 - exp(-1/900)) << 13 = 9.
2416 2406           */
2417 2407  
2418 2408          /*
2419 2409           * a little hoop-jumping to avoid integer overflow
2420 2410           */
2421 2411          for (i = 0; i < 3; i++) {
2422 2412                  q = (hp_ave[i]  >> 16) << 7;
2423 2413                  r = (hp_ave[i]  & 0xffff) << 7;
2424 2414                  hp_ave[i] += ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4;
2425 2415          }
2426 2416  }
2427 2417  
2428 2418  /*
2429 2419   * lbolt_hybrid() is used by ddi_get_lbolt() and ddi_get_lbolt64() to
2430 2420   * calculate the value of lbolt according to the current mode. In the event
2431 2421   * driven mode (the default), lbolt is calculated by dividing the current hires
2432 2422   * time by the number of nanoseconds per clock tick. In the cyclic driven mode
2433 2423   * an internal variable is incremented at each firing of the lbolt cyclic
2434 2424   * and returned by lbolt_cyclic_driven().
2435 2425   *
2436 2426   * The system will transition from event to cyclic driven mode when the number
2437 2427   * of calls to lbolt_event_driven() exceeds the (per CPU) threshold within a
2438 2428   * window of time. It does so by reprograming lbolt_cyclic from CY_INFINITY to
2439 2429   * nsec_per_tick. The lbolt cyclic will remain ON while at least one CPU is
2440 2430   * causing enough activity to cross the thresholds.
2441 2431   */
2442 2432  int64_t
2443 2433  lbolt_bootstrap(void)
2444 2434  {
2445 2435          return (0);
2446 2436  }
2447 2437  
2448 2438  /* ARGSUSED */
2449 2439  uint_t
2450 2440  lbolt_ev_to_cyclic(caddr_t arg1, caddr_t arg2)
2451 2441  {
2452 2442          hrtime_t ts, exp;
2453 2443          int ret;
2454 2444  
2455 2445          ASSERT(lbolt_hybrid != lbolt_cyclic_driven);
2456 2446  
2457 2447          kpreempt_disable();
2458 2448  
2459 2449          ts = gethrtime();
2460 2450          lb_info->lbi_internal = (ts/nsec_per_tick);
2461 2451  
2462 2452          /*
2463 2453           * Align the next expiration to a clock tick boundary.
2464 2454           */
2465 2455          exp = ts + nsec_per_tick - 1;
2466 2456          exp = (exp/nsec_per_tick) * nsec_per_tick;
2467 2457  
2468 2458          ret = cyclic_reprogram(lb_info->id.lbi_cyclic_id, exp);
2469 2459          ASSERT(ret);
2470 2460  
2471 2461          lbolt_hybrid = lbolt_cyclic_driven;
2472 2462          lb_info->lbi_cyc_deactivate = B_FALSE;
2473 2463          lb_info->lbi_cyc_deac_start = lb_info->lbi_internal;
2474 2464  
2475 2465          kpreempt_enable();
2476 2466  
2477 2467          ret = atomic_dec_32_nv(&lb_info->lbi_token);
2478 2468          ASSERT(ret == 0);
2479 2469  
2480 2470          return (1);
2481 2471  }
2482 2472  
2483 2473  int64_t
2484 2474  lbolt_event_driven(void)
2485 2475  {
2486 2476          hrtime_t ts;
2487 2477          int64_t lb;
2488 2478          int ret, cpu = CPU->cpu_seqid;
2489 2479  
2490 2480          ts = gethrtime();
2491 2481          ASSERT(ts > 0);
2492 2482  
2493 2483          ASSERT(nsec_per_tick > 0);
2494 2484          lb = (ts/nsec_per_tick);
2495 2485  
2496 2486          /*
2497 2487           * Switch to cyclic mode if the number of calls to this routine
2498 2488           * has reached the threshold within the interval.
2499 2489           */
2500 2490          if ((lb - lb_cpu[cpu].lbc_cnt_start) < lb_info->lbi_thresh_interval) {
2501 2491  
2502 2492                  if (--lb_cpu[cpu].lbc_counter == 0) {
2503 2493                          /*
2504 2494                           * Reached the threshold within the interval, reset
2505 2495                           * the usage statistics.
2506 2496                           */
2507 2497                          lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls;
2508 2498                          lb_cpu[cpu].lbc_cnt_start = lb;
2509 2499  
2510 2500                          /*
2511 2501                           * Make sure only one thread reprograms the
2512 2502                           * lbolt cyclic and changes the mode.
2513 2503                           */
2514 2504                          if (panicstr == NULL &&
2515 2505                              atomic_cas_32(&lb_info->lbi_token, 0, 1) == 0) {
2516 2506  
2517 2507                                  if (lbolt_hybrid == lbolt_cyclic_driven) {
2518 2508                                          ret = atomic_dec_32_nv(
2519 2509                                              &lb_info->lbi_token);
2520 2510                                          ASSERT(ret == 0);
2521 2511                                  } else {
2522 2512                                          lbolt_softint_post();
2523 2513                                  }
2524 2514                          }
2525 2515                  }
2526 2516          } else {
2527 2517                  /*
2528 2518                   * Exceeded the interval, reset the usage statistics.
2529 2519                   */
2530 2520                  lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls;
2531 2521                  lb_cpu[cpu].lbc_cnt_start = lb;
2532 2522          }
2533 2523  
2534 2524          ASSERT(lb >= lb_info->lbi_debug_time);
2535 2525  
2536 2526          return (lb - lb_info->lbi_debug_time);
2537 2527  }
2538 2528  
2539 2529  int64_t
2540 2530  lbolt_cyclic_driven(void)
2541 2531  {
2542 2532          int64_t lb = lb_info->lbi_internal;
2543 2533          int cpu;
2544 2534  
2545 2535          /*
2546 2536           * If a CPU has already prevented the lbolt cyclic from deactivating
2547 2537           * itself, don't bother tracking the usage. Otherwise check if we're
2548 2538           * within the interval and how the per CPU counter is doing.
2549 2539           */
2550 2540          if (lb_info->lbi_cyc_deactivate) {
2551 2541                  cpu = CPU->cpu_seqid;
2552 2542                  if ((lb - lb_cpu[cpu].lbc_cnt_start) <
2553 2543                      lb_info->lbi_thresh_interval) {
2554 2544  
2555 2545                          if (lb_cpu[cpu].lbc_counter == 0)
2556 2546                                  /*
2557 2547                                   * Reached the threshold within the interval,
2558 2548                                   * prevent the lbolt cyclic from turning itself
2559 2549                                   * off.
2560 2550                                   */
2561 2551                                  lb_info->lbi_cyc_deactivate = B_FALSE;
2562 2552                          else
2563 2553                                  lb_cpu[cpu].lbc_counter--;
2564 2554                  } else {
2565 2555                          /*
2566 2556                           * Only reset the usage statistics when we have
2567 2557                           * exceeded the interval.
2568 2558                           */
2569 2559                          lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls;
2570 2560                          lb_cpu[cpu].lbc_cnt_start = lb;
2571 2561                  }
2572 2562          }
2573 2563  
2574 2564          ASSERT(lb >= lb_info->lbi_debug_time);
2575 2565  
2576 2566          return (lb - lb_info->lbi_debug_time);
2577 2567  }
2578 2568  
2579 2569  /*
2580 2570   * The lbolt_cyclic() routine will fire at a nsec_per_tick interval to satisfy
2581 2571   * performance needs of ddi_get_lbolt() and ddi_get_lbolt64() consumers.
2582 2572   * It is inactive by default, and will be activated when switching from event
2583 2573   * to cyclic driven lbolt. The cyclic will turn itself off unless signaled
2584 2574   * by lbolt_cyclic_driven().
2585 2575   */
2586 2576  static void
2587 2577  lbolt_cyclic(void)
2588 2578  {
2589 2579          int ret;
2590 2580  
2591 2581          lb_info->lbi_internal++;
2592 2582  
2593 2583          if (!lbolt_cyc_only) {
2594 2584  
2595 2585                  if (lb_info->lbi_cyc_deactivate) {
2596 2586                          /*
2597 2587                           * Switching from cyclic to event driven mode.
2598 2588                           */
2599 2589                          if (panicstr == NULL &&
2600 2590                              atomic_cas_32(&lb_info->lbi_token, 0, 1) == 0) {
2601 2591  
2602 2592                                  if (lbolt_hybrid == lbolt_event_driven) {
2603 2593                                          ret = atomic_dec_32_nv(
2604 2594                                              &lb_info->lbi_token);
2605 2595                                          ASSERT(ret == 0);
2606 2596                                          return;
2607 2597                                  }
2608 2598  
2609 2599                                  kpreempt_disable();
2610 2600  
2611 2601                                  lbolt_hybrid = lbolt_event_driven;
2612 2602                                  ret = cyclic_reprogram(
2613 2603                                      lb_info->id.lbi_cyclic_id,
2614 2604                                      CY_INFINITY);
2615 2605                                  ASSERT(ret);
2616 2606  
2617 2607                                  kpreempt_enable();
2618 2608  
2619 2609                                  ret = atomic_dec_32_nv(&lb_info->lbi_token);
2620 2610                                  ASSERT(ret == 0);
2621 2611                          }
2622 2612                  }
2623 2613  
2624 2614                  /*
2625 2615                   * The lbolt cyclic should not try to deactivate itself before
2626 2616                   * the sampling period has elapsed.
2627 2617                   */
2628 2618                  if (lb_info->lbi_internal - lb_info->lbi_cyc_deac_start >=
2629 2619                      lb_info->lbi_thresh_interval) {
2630 2620                          lb_info->lbi_cyc_deactivate = B_TRUE;
2631 2621                          lb_info->lbi_cyc_deac_start = lb_info->lbi_internal;
2632 2622                  }
2633 2623          }
2634 2624  }
2635 2625  
2636 2626  /*
2637 2627   * Since the lbolt service was historically cyclic driven, it must be 'stopped'
2638 2628   * when the system drops into the kernel debugger. lbolt_debug_entry() is
2639 2629   * called by the KDI system claim callbacks to record a hires timestamp at
2640 2630   * debug enter time. lbolt_debug_return() is called by the sistem release
2641 2631   * callbacks to account for the time spent in the debugger. The value is then
2642 2632   * accumulated in the lb_info structure and used by lbolt_event_driven() and
2643 2633   * lbolt_cyclic_driven(), as well as the mdb_get_lbolt() routine.
2644 2634   */
2645 2635  void
2646 2636  lbolt_debug_entry(void)
2647 2637  {
2648 2638          if (lbolt_hybrid != lbolt_bootstrap) {
2649 2639                  ASSERT(lb_info != NULL);
2650 2640                  lb_info->lbi_debug_ts = gethrtime();
2651 2641          }
2652 2642  }
2653 2643  
2654 2644  /*
2655 2645   * Calculate the time spent in the debugger and add it to the lbolt info
2656 2646   * structure. We also update the internal lbolt value in case we were in
2657 2647   * cyclic driven mode going in.
2658 2648   */
2659 2649  void
2660 2650  lbolt_debug_return(void)
2661 2651  {
2662 2652          hrtime_t ts;
2663 2653  
2664 2654          if (lbolt_hybrid != lbolt_bootstrap) {
2665 2655                  ASSERT(lb_info != NULL);
2666 2656                  ASSERT(nsec_per_tick > 0);
2667 2657  
2668 2658                  ts = gethrtime();
2669 2659                  lb_info->lbi_internal = (ts/nsec_per_tick);
2670 2660                  lb_info->lbi_debug_time +=
2671 2661                      ((ts - lb_info->lbi_debug_ts)/nsec_per_tick);
2672 2662  
2673 2663                  lb_info->lbi_debug_ts = 0;
2674 2664          }
2675 2665  }
  
    | ↓ open down ↓ | 1617 lines elided | ↑ open up ↑ | 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX