1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 23 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012 Joyent, Inc. All rights reserved. 25 */ 26 27 #include <mdb/mdb_param.h> 28 #include <mdb/mdb_modapi.h> 29 #include <mdb/mdb_ks.h> 30 #include <mdb/mdb_ctf.h> 31 32 #include <sys/types.h> 33 #include <sys/thread.h> 34 #include <sys/session.h> 35 #include <sys/user.h> 36 #include <sys/proc.h> 37 #include <sys/var.h> 38 #include <sys/t_lock.h> 39 #include <sys/callo.h> 40 #include <sys/priocntl.h> 41 #include <sys/class.h> 42 #include <sys/regset.h> 43 #include <sys/stack.h> 44 #include <sys/cpuvar.h> 45 #include <sys/vnode.h> 46 #include <sys/vfs.h> 47 #include <sys/flock_impl.h> 48 #include <sys/kmem_impl.h> 49 #include <sys/vmem_impl.h> 50 #include <sys/kstat.h> 51 #include <sys/dditypes.h> 52 #include <sys/ddi_impldefs.h> 53 #include <sys/sysmacros.h> 54 #include <sys/sysconf.h> 55 #include <sys/task.h> 56 #include <sys/project.h> 57 #include <sys/errorq_impl.h> 58 #include <sys/cred_impl.h> 59 #include <sys/zone.h> 60 #include <sys/panic.h> 61 #include <regex.h> 62 #include <sys/port_impl.h> 63 64 #include "avl.h" 65 #include "bio.h" 66 #include "bitset.h" 67 #include "combined.h" 68 #include "contract.h" 69 #include "cpupart_mdb.h" 70 #include "cred.h" 71 #include "ctxop.h" 72 #include "cyclic.h" 73 #include "damap.h" 74 #include "devinfo.h" 75 #include "findstack.h" 76 #include "fm.h" 77 #include "group.h" 78 #include "irm.h" 79 #include "kgrep.h" 80 #include "kmem.h" 81 #include "ldi.h" 82 #include "leaky.h" 83 #include "lgrp.h" 84 #include "list.h" 85 #include "log.h" 86 #include "mdi.h" 87 #include "memory.h" 88 #include "mmd.h" 89 #include "modhash.h" 90 #include "ndievents.h" 91 #include "net.h" 92 #include "netstack.h" 93 #include "nvpair.h" 94 #include "pg.h" 95 #include "rctl.h" 96 #include "sobj.h" 97 #include "streams.h" 98 #include "sysevent.h" 99 #include "taskq.h" 100 #include "thread.h" 101 #include "tsd.h" 102 #include "tsol.h" 103 #include "typegraph.h" 104 #include "vfs.h" 105 #include "zone.h" 106 #include "hotplug.h" 107 108 /* 109 * Surely this is defined somewhere... 110 */ 111 #define NINTR 16 112 113 #ifndef STACK_BIAS 114 #define STACK_BIAS 0 115 #endif 116 117 static char 118 pstat2ch(uchar_t state) 119 { 120 switch (state) { 121 case SSLEEP: return ('S'); 122 case SRUN: return ('R'); 123 case SZOMB: return ('Z'); 124 case SIDL: return ('I'); 125 case SONPROC: return ('O'); 126 case SSTOP: return ('T'); 127 case SWAIT: return ('W'); 128 default: return ('?'); 129 } 130 } 131 132 #define PS_PRTTHREADS 0x1 133 #define PS_PRTLWPS 0x2 134 #define PS_PSARGS 0x4 135 #define PS_TASKS 0x8 136 #define PS_PROJECTS 0x10 137 #define PS_ZONES 0x20 138 139 static int 140 ps_threadprint(uintptr_t addr, const void *data, void *private) 141 { 142 const kthread_t *t = (const kthread_t *)data; 143 uint_t prt_flags = *((uint_t *)private); 144 145 static const mdb_bitmask_t t_state_bits[] = { 146 { "TS_FREE", UINT_MAX, TS_FREE }, 147 { "TS_SLEEP", TS_SLEEP, TS_SLEEP }, 148 { "TS_RUN", TS_RUN, TS_RUN }, 149 { "TS_ONPROC", TS_ONPROC, TS_ONPROC }, 150 { "TS_ZOMB", TS_ZOMB, TS_ZOMB }, 151 { "TS_STOPPED", TS_STOPPED, TS_STOPPED }, 152 { "TS_WAIT", TS_WAIT, TS_WAIT }, 153 { NULL, 0, 0 } 154 }; 155 156 if (prt_flags & PS_PRTTHREADS) 157 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits); 158 159 if (prt_flags & PS_PRTLWPS) 160 mdb_printf("\tL %?a ID: %u\n", t->t_lwp, t->t_tid); 161 162 return (WALK_NEXT); 163 } 164 165 int 166 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 167 { 168 uint_t prt_flags = 0; 169 proc_t pr; 170 struct pid pid, pgid, sid; 171 sess_t session; 172 cred_t cred; 173 task_t tk; 174 kproject_t pj; 175 zone_t zn; 176 177 if (!(flags & DCMD_ADDRSPEC)) { 178 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) { 179 mdb_warn("can't walk 'proc'"); 180 return (DCMD_ERR); 181 } 182 return (DCMD_OK); 183 } 184 185 if (mdb_getopts(argc, argv, 186 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags, 187 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags, 188 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags, 189 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags, 190 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags, 191 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc) 192 return (DCMD_USAGE); 193 194 if (DCMD_HDRSPEC(flags)) { 195 mdb_printf("%<u>%1s %6s %6s %6s %6s ", 196 "S", "PID", "PPID", "PGID", "SID"); 197 if (prt_flags & PS_TASKS) 198 mdb_printf("%5s ", "TASK"); 199 if (prt_flags & PS_PROJECTS) 200 mdb_printf("%5s ", "PROJ"); 201 if (prt_flags & PS_ZONES) 202 mdb_printf("%5s ", "ZONE"); 203 mdb_printf("%6s %10s %?s %s%</u>\n", 204 "UID", "FLAGS", "ADDR", "NAME"); 205 } 206 207 mdb_vread(&pr, sizeof (pr), addr); 208 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp); 209 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp); 210 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred); 211 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp); 212 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp); 213 if (prt_flags & (PS_TASKS | PS_PROJECTS)) 214 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task); 215 if (prt_flags & PS_PROJECTS) 216 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj); 217 if (prt_flags & PS_ZONES) 218 mdb_vread(&zn, sizeof (zone_t), (uintptr_t)pr.p_zone); 219 220 mdb_printf("%c %6d %6d %6d %6d ", 221 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id, 222 sid.pid_id); 223 if (prt_flags & PS_TASKS) 224 mdb_printf("%5d ", tk.tk_tkid); 225 if (prt_flags & PS_PROJECTS) 226 mdb_printf("%5d ", pj.kpj_id); 227 if (prt_flags & PS_ZONES) 228 mdb_printf("%5d ", zn.zone_id); 229 mdb_printf("%6d 0x%08x %0?p %s\n", 230 cred.cr_uid, pr.p_flag, addr, 231 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm); 232 233 if (prt_flags & ~PS_PSARGS) 234 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr); 235 236 return (DCMD_OK); 237 } 238 239 #define PG_NEWEST 0x0001 240 #define PG_OLDEST 0x0002 241 #define PG_PIPE_OUT 0x0004 242 #define PG_EXACT_MATCH 0x0008 243 244 typedef struct pgrep_data { 245 uint_t pg_flags; 246 uint_t pg_psflags; 247 uintptr_t pg_xaddr; 248 hrtime_t pg_xstart; 249 const char *pg_pat; 250 #ifndef _KMDB 251 regex_t pg_reg; 252 #endif 253 } pgrep_data_t; 254 255 /*ARGSUSED*/ 256 static int 257 pgrep_cb(uintptr_t addr, const void *pdata, void *data) 258 { 259 const proc_t *prp = pdata; 260 pgrep_data_t *pgp = data; 261 #ifndef _KMDB 262 regmatch_t pmatch; 263 #endif 264 265 /* 266 * kmdb doesn't have access to the reg* functions, so we fall back 267 * to strstr/strcmp. 268 */ 269 #ifdef _KMDB 270 if ((pgp->pg_flags & PG_EXACT_MATCH) ? 271 (strcmp(prp->p_user.u_comm, pgp->pg_pat) != 0) : 272 (strstr(prp->p_user.u_comm, pgp->pg_pat) == NULL)) 273 return (WALK_NEXT); 274 #else 275 if (regexec(&pgp->pg_reg, prp->p_user.u_comm, 1, &pmatch, 0) != 0) 276 return (WALK_NEXT); 277 278 if ((pgp->pg_flags & PG_EXACT_MATCH) && 279 (pmatch.rm_so != 0 || prp->p_user.u_comm[pmatch.rm_eo] != '\0')) 280 return (WALK_NEXT); 281 #endif 282 283 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) { 284 hrtime_t start; 285 286 start = (hrtime_t)prp->p_user.u_start.tv_sec * NANOSEC + 287 prp->p_user.u_start.tv_nsec; 288 289 if (pgp->pg_flags & PG_NEWEST) { 290 if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) { 291 pgp->pg_xaddr = addr; 292 pgp->pg_xstart = start; 293 } 294 } else { 295 if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) { 296 pgp->pg_xaddr = addr; 297 pgp->pg_xstart = start; 298 } 299 } 300 301 } else if (pgp->pg_flags & PG_PIPE_OUT) { 302 mdb_printf("%p\n", addr); 303 304 } else { 305 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) { 306 mdb_warn("can't invoke 'ps'"); 307 return (WALK_DONE); 308 } 309 pgp->pg_psflags &= ~DCMD_LOOPFIRST; 310 } 311 312 return (WALK_NEXT); 313 } 314 315 /*ARGSUSED*/ 316 int 317 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 318 { 319 pgrep_data_t pg; 320 int i; 321 #ifndef _KMDB 322 int err; 323 #endif 324 325 if (flags & DCMD_ADDRSPEC) 326 return (DCMD_USAGE); 327 328 pg.pg_flags = 0; 329 pg.pg_xaddr = 0; 330 331 i = mdb_getopts(argc, argv, 332 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags, 333 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags, 334 'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags, 335 NULL); 336 337 argc -= i; 338 argv += i; 339 340 if (argc != 1) 341 return (DCMD_USAGE); 342 343 /* 344 * -n and -o are mutually exclusive. 345 */ 346 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST)) 347 return (DCMD_USAGE); 348 349 if (argv->a_type != MDB_TYPE_STRING) 350 return (DCMD_USAGE); 351 352 if (flags & DCMD_PIPE_OUT) 353 pg.pg_flags |= PG_PIPE_OUT; 354 355 pg.pg_pat = argv->a_un.a_str; 356 if (DCMD_HDRSPEC(flags)) 357 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST; 358 else 359 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP; 360 361 #ifndef _KMDB 362 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) { 363 size_t nbytes; 364 char *buf; 365 366 nbytes = regerror(err, &pg.pg_reg, NULL, 0); 367 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC); 368 (void) regerror(err, &pg.pg_reg, buf, nbytes); 369 mdb_warn("%s\n", buf); 370 371 return (DCMD_ERR); 372 } 373 #endif 374 375 if (mdb_walk("proc", pgrep_cb, &pg) != 0) { 376 mdb_warn("can't walk 'proc'"); 377 return (DCMD_ERR); 378 } 379 380 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) { 381 if (pg.pg_flags & PG_PIPE_OUT) { 382 mdb_printf("%p\n", pg.pg_xaddr); 383 } else { 384 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags, 385 0, NULL) != 0) { 386 mdb_warn("can't invoke 'ps'"); 387 return (DCMD_ERR); 388 } 389 } 390 } 391 392 return (DCMD_OK); 393 } 394 395 int 396 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 397 { 398 task_t tk; 399 kproject_t pj; 400 401 if (!(flags & DCMD_ADDRSPEC)) { 402 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) { 403 mdb_warn("can't walk task_cache"); 404 return (DCMD_ERR); 405 } 406 return (DCMD_OK); 407 } 408 if (DCMD_HDRSPEC(flags)) { 409 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n", 410 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS"); 411 } 412 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) { 413 mdb_warn("can't read task_t structure at %p", addr); 414 return (DCMD_ERR); 415 } 416 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) { 417 mdb_warn("can't read project_t structure at %p", addr); 418 return (DCMD_ERR); 419 } 420 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n", 421 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count, 422 tk.tk_flags); 423 return (DCMD_OK); 424 } 425 426 int 427 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 428 { 429 kproject_t pj; 430 431 if (!(flags & DCMD_ADDRSPEC)) { 432 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) { 433 mdb_warn("can't walk projects"); 434 return (DCMD_ERR); 435 } 436 return (DCMD_OK); 437 } 438 if (DCMD_HDRSPEC(flags)) { 439 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n", 440 "ADDR", "PROJID", "ZONEID", "REFCNT"); 441 } 442 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 443 mdb_warn("can't read kproject_t structure at %p", addr); 444 return (DCMD_ERR); 445 } 446 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid, 447 pj.kpj_count); 448 return (DCMD_OK); 449 } 450 451 /* walk callouts themselves, either by list or id hash. */ 452 int 453 callout_walk_init(mdb_walk_state_t *wsp) 454 { 455 if (wsp->walk_addr == NULL) { 456 mdb_warn("callout doesn't support global walk"); 457 return (WALK_ERR); 458 } 459 wsp->walk_data = mdb_alloc(sizeof (callout_t), UM_SLEEP); 460 return (WALK_NEXT); 461 } 462 463 #define CALLOUT_WALK_BYLIST 0 464 #define CALLOUT_WALK_BYID 1 465 466 /* the walker arg switches between walking by list (0) and walking by id (1). */ 467 int 468 callout_walk_step(mdb_walk_state_t *wsp) 469 { 470 int retval; 471 472 if (wsp->walk_addr == NULL) { 473 return (WALK_DONE); 474 } 475 if (mdb_vread(wsp->walk_data, sizeof (callout_t), 476 wsp->walk_addr) == -1) { 477 mdb_warn("failed to read callout at %p", wsp->walk_addr); 478 return (WALK_DONE); 479 } 480 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data, 481 wsp->walk_cbdata); 482 483 if ((ulong_t)wsp->walk_arg == CALLOUT_WALK_BYID) { 484 wsp->walk_addr = 485 (uintptr_t)(((callout_t *)wsp->walk_data)->c_idnext); 486 } else { 487 wsp->walk_addr = 488 (uintptr_t)(((callout_t *)wsp->walk_data)->c_clnext); 489 } 490 491 return (retval); 492 } 493 494 void 495 callout_walk_fini(mdb_walk_state_t *wsp) 496 { 497 mdb_free(wsp->walk_data, sizeof (callout_t)); 498 } 499 500 /* 501 * walker for callout lists. This is different from hashes and callouts. 502 * Thankfully, it's also simpler. 503 */ 504 int 505 callout_list_walk_init(mdb_walk_state_t *wsp) 506 { 507 if (wsp->walk_addr == NULL) { 508 mdb_warn("callout list doesn't support global walk"); 509 return (WALK_ERR); 510 } 511 wsp->walk_data = mdb_alloc(sizeof (callout_list_t), UM_SLEEP); 512 return (WALK_NEXT); 513 } 514 515 int 516 callout_list_walk_step(mdb_walk_state_t *wsp) 517 { 518 int retval; 519 520 if (wsp->walk_addr == NULL) { 521 return (WALK_DONE); 522 } 523 if (mdb_vread(wsp->walk_data, sizeof (callout_list_t), 524 wsp->walk_addr) != sizeof (callout_list_t)) { 525 mdb_warn("failed to read callout_list at %p", wsp->walk_addr); 526 return (WALK_ERR); 527 } 528 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data, 529 wsp->walk_cbdata); 530 531 wsp->walk_addr = (uintptr_t) 532 (((callout_list_t *)wsp->walk_data)->cl_next); 533 534 return (retval); 535 } 536 537 void 538 callout_list_walk_fini(mdb_walk_state_t *wsp) 539 { 540 mdb_free(wsp->walk_data, sizeof (callout_list_t)); 541 } 542 543 /* routines/structs to walk callout table(s) */ 544 typedef struct cot_data { 545 callout_table_t *ct0; 546 callout_table_t ct; 547 callout_hash_t cot_idhash[CALLOUT_BUCKETS]; 548 callout_hash_t cot_clhash[CALLOUT_BUCKETS]; 549 kstat_named_t ct_kstat_data[CALLOUT_NUM_STATS]; 550 int cotndx; 551 int cotsize; 552 } cot_data_t; 553 554 int 555 callout_table_walk_init(mdb_walk_state_t *wsp) 556 { 557 int max_ncpus; 558 cot_data_t *cot_walk_data; 559 560 cot_walk_data = mdb_alloc(sizeof (cot_data_t), UM_SLEEP); 561 562 if (wsp->walk_addr == NULL) { 563 if (mdb_readvar(&cot_walk_data->ct0, "callout_table") == -1) { 564 mdb_warn("failed to read 'callout_table'"); 565 return (WALK_ERR); 566 } 567 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 568 mdb_warn("failed to get callout_table array size"); 569 return (WALK_ERR); 570 } 571 cot_walk_data->cotsize = CALLOUT_NTYPES * max_ncpus; 572 wsp->walk_addr = (uintptr_t)cot_walk_data->ct0; 573 } else { 574 /* not a global walk */ 575 cot_walk_data->cotsize = 1; 576 } 577 578 cot_walk_data->cotndx = 0; 579 wsp->walk_data = cot_walk_data; 580 581 return (WALK_NEXT); 582 } 583 584 int 585 callout_table_walk_step(mdb_walk_state_t *wsp) 586 { 587 int retval; 588 cot_data_t *cotwd = (cot_data_t *)wsp->walk_data; 589 size_t size; 590 591 if (cotwd->cotndx >= cotwd->cotsize) { 592 return (WALK_DONE); 593 } 594 if (mdb_vread(&(cotwd->ct), sizeof (callout_table_t), 595 wsp->walk_addr) != sizeof (callout_table_t)) { 596 mdb_warn("failed to read callout_table at %p", wsp->walk_addr); 597 return (WALK_ERR); 598 } 599 600 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS; 601 if (cotwd->ct.ct_idhash != NULL) { 602 if (mdb_vread(cotwd->cot_idhash, size, 603 (uintptr_t)(cotwd->ct.ct_idhash)) != size) { 604 mdb_warn("failed to read id_hash at %p", 605 cotwd->ct.ct_idhash); 606 return (WALK_ERR); 607 } 608 } 609 if (cotwd->ct.ct_clhash != NULL) { 610 if (mdb_vread(&(cotwd->cot_clhash), size, 611 (uintptr_t)cotwd->ct.ct_clhash) == -1) { 612 mdb_warn("failed to read cl_hash at %p", 613 cotwd->ct.ct_clhash); 614 return (WALK_ERR); 615 } 616 } 617 size = sizeof (kstat_named_t) * CALLOUT_NUM_STATS; 618 if (cotwd->ct.ct_kstat_data != NULL) { 619 if (mdb_vread(&(cotwd->ct_kstat_data), size, 620 (uintptr_t)cotwd->ct.ct_kstat_data) == -1) { 621 mdb_warn("failed to read kstats at %p", 622 cotwd->ct.ct_kstat_data); 623 return (WALK_ERR); 624 } 625 } 626 retval = wsp->walk_callback(wsp->walk_addr, (void *)cotwd, 627 wsp->walk_cbdata); 628 629 cotwd->cotndx++; 630 if (cotwd->cotndx >= cotwd->cotsize) { 631 return (WALK_DONE); 632 } 633 wsp->walk_addr = (uintptr_t)((char *)wsp->walk_addr + 634 sizeof (callout_table_t)); 635 636 return (retval); 637 } 638 639 void 640 callout_table_walk_fini(mdb_walk_state_t *wsp) 641 { 642 mdb_free(wsp->walk_data, sizeof (cot_data_t)); 643 } 644 645 static const char *co_typenames[] = { "R", "N" }; 646 647 #define CO_PLAIN_ID(xid) ((xid) & CALLOUT_ID_MASK) 648 649 #define TABLE_TO_SEQID(x) ((x) >> CALLOUT_TYPE_BITS) 650 651 /* callout flags, in no particular order */ 652 #define COF_REAL 0x00000001 653 #define COF_NORM 0x00000002 654 #define COF_LONG 0x00000004 655 #define COF_SHORT 0x00000008 656 #define COF_EMPTY 0x00000010 657 #define COF_TIME 0x00000020 658 #define COF_BEFORE 0x00000040 659 #define COF_AFTER 0x00000080 660 #define COF_SEQID 0x00000100 661 #define COF_FUNC 0x00000200 662 #define COF_ADDR 0x00000400 663 #define COF_EXEC 0x00000800 664 #define COF_HIRES 0x00001000 665 #define COF_ABS 0x00002000 666 #define COF_TABLE 0x00004000 667 #define COF_BYIDH 0x00008000 668 #define COF_FREE 0x00010000 669 #define COF_LIST 0x00020000 670 #define COF_EXPREL 0x00040000 671 #define COF_HDR 0x00080000 672 #define COF_VERBOSE 0x00100000 673 #define COF_LONGLIST 0x00200000 674 #define COF_THDR 0x00400000 675 #define COF_LHDR 0x00800000 676 #define COF_CHDR 0x01000000 677 #define COF_PARAM 0x02000000 678 #define COF_DECODE 0x04000000 679 #define COF_HEAP 0x08000000 680 #define COF_QUEUE 0x10000000 681 682 /* show real and normal, short and long, expired and unexpired. */ 683 #define COF_DEFAULT (COF_REAL | COF_NORM | COF_LONG | COF_SHORT) 684 685 #define COF_LIST_FLAGS \ 686 (CALLOUT_LIST_FLAG_HRESTIME | CALLOUT_LIST_FLAG_ABSOLUTE) 687 688 /* private callout data for callback functions */ 689 typedef struct callout_data { 690 uint_t flags; /* COF_* */ 691 cpu_t *cpu; /* cpu pointer if given */ 692 int seqid; /* cpu seqid, or -1 */ 693 hrtime_t time; /* expiration time value */ 694 hrtime_t atime; /* expiration before value */ 695 hrtime_t btime; /* expiration after value */ 696 uintptr_t funcaddr; /* function address or NULL */ 697 uintptr_t param; /* parameter to function or NULL */ 698 hrtime_t now; /* current system time */ 699 int nsec_per_tick; /* for conversions */ 700 ulong_t ctbits; /* for decoding xid */ 701 callout_table_t *co_table; /* top of callout table array */ 702 int ndx; /* table index. */ 703 int bucket; /* which list/id bucket are we in */ 704 hrtime_t exp; /* expire time */ 705 int list_flags; /* copy of cl_flags */ 706 } callout_data_t; 707 708 /* this callback does the actual callback itself (finally). */ 709 /*ARGSUSED*/ 710 static int 711 callouts_cb(uintptr_t addr, const void *data, void *priv) 712 { 713 callout_data_t *coargs = (callout_data_t *)priv; 714 callout_t *co = (callout_t *)data; 715 int tableid, list_flags; 716 callout_id_t coid; 717 718 if ((coargs == NULL) || (co == NULL)) { 719 return (WALK_ERR); 720 } 721 722 if ((coargs->flags & COF_FREE) && !(co->c_xid & CALLOUT_ID_FREE)) { 723 /* 724 * The callout must have been reallocated. No point in 725 * walking any more. 726 */ 727 return (WALK_DONE); 728 } 729 if (!(coargs->flags & COF_FREE) && (co->c_xid & CALLOUT_ID_FREE)) { 730 /* 731 * The callout must have been freed. No point in 732 * walking any more. 733 */ 734 return (WALK_DONE); 735 } 736 if ((coargs->flags & COF_FUNC) && 737 (coargs->funcaddr != (uintptr_t)co->c_func)) { 738 return (WALK_NEXT); 739 } 740 if ((coargs->flags & COF_PARAM) && 741 (coargs->param != (uintptr_t)co->c_arg)) { 742 return (WALK_NEXT); 743 } 744 if (!(coargs->flags & COF_LONG) && (co->c_xid & CALLOUT_LONGTERM)) { 745 return (WALK_NEXT); 746 } 747 if (!(coargs->flags & COF_SHORT) && !(co->c_xid & CALLOUT_LONGTERM)) { 748 return (WALK_NEXT); 749 } 750 if ((coargs->flags & COF_EXEC) && !(co->c_xid & CALLOUT_EXECUTING)) { 751 return (WALK_NEXT); 752 } 753 /* it is possible we don't have the exp time or flags */ 754 if (coargs->flags & COF_BYIDH) { 755 if (!(coargs->flags & COF_FREE)) { 756 /* we have to fetch the expire time ourselves. */ 757 if (mdb_vread(&coargs->exp, sizeof (hrtime_t), 758 (uintptr_t)co->c_list + offsetof(callout_list_t, 759 cl_expiration)) == -1) { 760 mdb_warn("failed to read expiration " 761 "time from %p", co->c_list); 762 coargs->exp = 0; 763 } 764 /* and flags. */ 765 if (mdb_vread(&coargs->list_flags, sizeof (int), 766 (uintptr_t)co->c_list + offsetof(callout_list_t, 767 cl_flags)) == -1) { 768 mdb_warn("failed to read list flags" 769 "from %p", co->c_list); 770 coargs->list_flags = 0; 771 } 772 } else { 773 /* free callouts can't use list pointer. */ 774 coargs->exp = 0; 775 coargs->list_flags = 0; 776 } 777 if (coargs->exp != 0) { 778 if ((coargs->flags & COF_TIME) && 779 (coargs->exp != coargs->time)) { 780 return (WALK_NEXT); 781 } 782 if ((coargs->flags & COF_BEFORE) && 783 (coargs->exp > coargs->btime)) { 784 return (WALK_NEXT); 785 } 786 if ((coargs->flags & COF_AFTER) && 787 (coargs->exp < coargs->atime)) { 788 return (WALK_NEXT); 789 } 790 } 791 /* tricky part, since both HIRES and ABS can be set */ 792 list_flags = coargs->list_flags; 793 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) { 794 /* both flags are set, only skip "regular" ones */ 795 if (! (list_flags & COF_LIST_FLAGS)) { 796 return (WALK_NEXT); 797 } 798 } else { 799 /* individual flags, or no flags */ 800 if ((coargs->flags & COF_HIRES) && 801 !(list_flags & CALLOUT_LIST_FLAG_HRESTIME)) { 802 return (WALK_NEXT); 803 } 804 if ((coargs->flags & COF_ABS) && 805 !(list_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) { 806 return (WALK_NEXT); 807 } 808 } 809 /* 810 * We do the checks for COF_HEAP and COF_QUEUE here only if we 811 * are traversing BYIDH. If the traversal is by callout list, 812 * we do this check in callout_list_cb() to be more 813 * efficient. 814 */ 815 if ((coargs->flags & COF_HEAP) && 816 !(list_flags & CALLOUT_LIST_FLAG_HEAPED)) { 817 return (WALK_NEXT); 818 } 819 820 if ((coargs->flags & COF_QUEUE) && 821 !(list_flags & CALLOUT_LIST_FLAG_QUEUED)) { 822 return (WALK_NEXT); 823 } 824 } 825 826 #define callout_table_mask ((1 << coargs->ctbits) - 1) 827 tableid = CALLOUT_ID_TO_TABLE(co->c_xid); 828 #undef callout_table_mask 829 coid = CO_PLAIN_ID(co->c_xid); 830 831 if ((coargs->flags & COF_CHDR) && !(coargs->flags & COF_ADDR)) { 832 /* 833 * We need to print the headers. If walking by id, then 834 * the list header isn't printed, so we must include 835 * that info here. 836 */ 837 if (!(coargs->flags & COF_VERBOSE)) { 838 mdb_printf("%<u>%3s %-1s %-14s %</u>", 839 "SEQ", "T", "EXP"); 840 } else if (coargs->flags & COF_BYIDH) { 841 mdb_printf("%<u>%-14s %</u>", "EXP"); 842 } 843 mdb_printf("%<u>%-4s %-?s %-20s%</u>", 844 "XHAL", "XID", "FUNC(ARG)"); 845 if (coargs->flags & COF_LONGLIST) { 846 mdb_printf("%<u> %-?s %-?s %-?s %-?s%</u>", 847 "PREVID", "NEXTID", "PREVL", "NEXTL"); 848 mdb_printf("%<u> %-?s %-4s %-?s%</u>", 849 "DONE", "UTOS", "THREAD"); 850 } 851 mdb_printf("\n"); 852 coargs->flags &= ~COF_CHDR; 853 coargs->flags |= (COF_THDR | COF_LHDR); 854 } 855 856 if (!(coargs->flags & COF_ADDR)) { 857 if (!(coargs->flags & COF_VERBOSE)) { 858 mdb_printf("%-3d %1s %-14llx ", 859 TABLE_TO_SEQID(tableid), 860 co_typenames[tableid & CALLOUT_TYPE_MASK], 861 (coargs->flags & COF_EXPREL) ? 862 coargs->exp - coargs->now : coargs->exp); 863 } else if (coargs->flags & COF_BYIDH) { 864 mdb_printf("%-14x ", 865 (coargs->flags & COF_EXPREL) ? 866 coargs->exp - coargs->now : coargs->exp); 867 } 868 list_flags = coargs->list_flags; 869 mdb_printf("%1s%1s%1s%1s %-?llx %a(%p)", 870 (co->c_xid & CALLOUT_EXECUTING) ? "X" : " ", 871 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? "H" : " ", 872 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? "A" : " ", 873 (co->c_xid & CALLOUT_LONGTERM) ? "L" : " ", 874 (long long)coid, co->c_func, co->c_arg); 875 if (coargs->flags & COF_LONGLIST) { 876 mdb_printf(" %-?p %-?p %-?p %-?p", 877 co->c_idprev, co->c_idnext, co->c_clprev, 878 co->c_clnext); 879 mdb_printf(" %-?p %-4d %-0?p", 880 co->c_done, co->c_waiting, co->c_executor); 881 } 882 } else { 883 /* address only */ 884 mdb_printf("%-0p", addr); 885 } 886 mdb_printf("\n"); 887 return (WALK_NEXT); 888 } 889 890 /* this callback is for callout list handling. idhash is done by callout_t_cb */ 891 /*ARGSUSED*/ 892 static int 893 callout_list_cb(uintptr_t addr, const void *data, void *priv) 894 { 895 callout_data_t *coargs = (callout_data_t *)priv; 896 callout_list_t *cl = (callout_list_t *)data; 897 callout_t *coptr; 898 int list_flags; 899 900 if ((coargs == NULL) || (cl == NULL)) { 901 return (WALK_ERR); 902 } 903 904 coargs->exp = cl->cl_expiration; 905 coargs->list_flags = cl->cl_flags; 906 if ((coargs->flags & COF_FREE) && 907 !(cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) { 908 /* 909 * The callout list must have been reallocated. No point in 910 * walking any more. 911 */ 912 return (WALK_DONE); 913 } 914 if (!(coargs->flags & COF_FREE) && 915 (cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) { 916 /* 917 * The callout list must have been freed. No point in 918 * walking any more. 919 */ 920 return (WALK_DONE); 921 } 922 if ((coargs->flags & COF_TIME) && 923 (cl->cl_expiration != coargs->time)) { 924 return (WALK_NEXT); 925 } 926 if ((coargs->flags & COF_BEFORE) && 927 (cl->cl_expiration > coargs->btime)) { 928 return (WALK_NEXT); 929 } 930 if ((coargs->flags & COF_AFTER) && 931 (cl->cl_expiration < coargs->atime)) { 932 return (WALK_NEXT); 933 } 934 if (!(coargs->flags & COF_EMPTY) && 935 (cl->cl_callouts.ch_head == NULL)) { 936 return (WALK_NEXT); 937 } 938 /* FOUR cases, each different, !A!B, !AB, A!B, AB */ 939 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) { 940 /* both flags are set, only skip "regular" ones */ 941 if (! (cl->cl_flags & COF_LIST_FLAGS)) { 942 return (WALK_NEXT); 943 } 944 } else { 945 if ((coargs->flags & COF_HIRES) && 946 !(cl->cl_flags & CALLOUT_LIST_FLAG_HRESTIME)) { 947 return (WALK_NEXT); 948 } 949 if ((coargs->flags & COF_ABS) && 950 !(cl->cl_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) { 951 return (WALK_NEXT); 952 } 953 } 954 955 if ((coargs->flags & COF_HEAP) && 956 !(coargs->list_flags & CALLOUT_LIST_FLAG_HEAPED)) { 957 return (WALK_NEXT); 958 } 959 960 if ((coargs->flags & COF_QUEUE) && 961 !(coargs->list_flags & CALLOUT_LIST_FLAG_QUEUED)) { 962 return (WALK_NEXT); 963 } 964 965 if ((coargs->flags & COF_LHDR) && !(coargs->flags & COF_ADDR) && 966 (coargs->flags & (COF_LIST | COF_VERBOSE))) { 967 if (!(coargs->flags & COF_VERBOSE)) { 968 /* don't be redundant again */ 969 mdb_printf("%<u>SEQ T %</u>"); 970 } 971 mdb_printf("%<u>EXP HA BUCKET " 972 "CALLOUTS %</u>"); 973 974 if (coargs->flags & COF_LONGLIST) { 975 mdb_printf("%<u> %-?s %-?s%</u>", 976 "PREV", "NEXT"); 977 } 978 mdb_printf("\n"); 979 coargs->flags &= ~COF_LHDR; 980 coargs->flags |= (COF_THDR | COF_CHDR); 981 } 982 if (coargs->flags & (COF_LIST | COF_VERBOSE)) { 983 if (!(coargs->flags & COF_ADDR)) { 984 if (!(coargs->flags & COF_VERBOSE)) { 985 mdb_printf("%3d %1s ", 986 TABLE_TO_SEQID(coargs->ndx), 987 co_typenames[coargs->ndx & 988 CALLOUT_TYPE_MASK]); 989 } 990 991 list_flags = coargs->list_flags; 992 mdb_printf("%-14llx %1s%1s %-6d %-0?p ", 993 (coargs->flags & COF_EXPREL) ? 994 coargs->exp - coargs->now : coargs->exp, 995 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? 996 "H" : " ", 997 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? 998 "A" : " ", 999 coargs->bucket, cl->cl_callouts.ch_head); 1000 1001 if (coargs->flags & COF_LONGLIST) { 1002 mdb_printf(" %-?p %-?p", 1003 cl->cl_prev, cl->cl_next); 1004 } 1005 } else { 1006 /* address only */ 1007 mdb_printf("%-0p", addr); 1008 } 1009 mdb_printf("\n"); 1010 if (coargs->flags & COF_LIST) { 1011 return (WALK_NEXT); 1012 } 1013 } 1014 /* yet another layer as we walk the actual callouts via list. */ 1015 if (cl->cl_callouts.ch_head == NULL) { 1016 return (WALK_NEXT); 1017 } 1018 /* free list structures do not have valid callouts off of them. */ 1019 if (coargs->flags & COF_FREE) { 1020 return (WALK_NEXT); 1021 } 1022 coptr = (callout_t *)cl->cl_callouts.ch_head; 1023 1024 if (coargs->flags & COF_VERBOSE) { 1025 mdb_inc_indent(4); 1026 } 1027 /* 1028 * walk callouts using yet another callback routine. 1029 * we use callouts_bytime because id hash is handled via 1030 * the callout_t_cb callback. 1031 */ 1032 if (mdb_pwalk("callouts_bytime", callouts_cb, coargs, 1033 (uintptr_t)coptr) == -1) { 1034 mdb_warn("cannot walk callouts at %p", coptr); 1035 return (WALK_ERR); 1036 } 1037 if (coargs->flags & COF_VERBOSE) { 1038 mdb_dec_indent(4); 1039 } 1040 1041 return (WALK_NEXT); 1042 } 1043 1044 /* this callback handles the details of callout table walking. */ 1045 static int 1046 callout_t_cb(uintptr_t addr, const void *data, void *priv) 1047 { 1048 callout_data_t *coargs = (callout_data_t *)priv; 1049 cot_data_t *cotwd = (cot_data_t *)data; 1050 callout_table_t *ct = &(cotwd->ct); 1051 int index, seqid, cotype; 1052 int i; 1053 callout_list_t *clptr; 1054 callout_t *coptr; 1055 1056 if ((coargs == NULL) || (ct == NULL) || (coargs->co_table == NULL)) { 1057 return (WALK_ERR); 1058 } 1059 1060 index = ((char *)addr - (char *)coargs->co_table) / 1061 sizeof (callout_table_t); 1062 cotype = index & CALLOUT_TYPE_MASK; 1063 seqid = TABLE_TO_SEQID(index); 1064 1065 if ((coargs->flags & COF_SEQID) && (coargs->seqid != seqid)) { 1066 return (WALK_NEXT); 1067 } 1068 1069 if (!(coargs->flags & COF_REAL) && (cotype == CALLOUT_REALTIME)) { 1070 return (WALK_NEXT); 1071 } 1072 1073 if (!(coargs->flags & COF_NORM) && (cotype == CALLOUT_NORMAL)) { 1074 return (WALK_NEXT); 1075 } 1076 1077 if (!(coargs->flags & COF_EMPTY) && ( 1078 (ct->ct_heap == NULL) || (ct->ct_cyclic == NULL))) { 1079 return (WALK_NEXT); 1080 } 1081 1082 if ((coargs->flags & COF_THDR) && !(coargs->flags & COF_ADDR) && 1083 (coargs->flags & (COF_TABLE | COF_VERBOSE))) { 1084 /* print table hdr */ 1085 mdb_printf("%<u>%-3s %-1s %-?s %-?s %-?s %-?s%</u>", 1086 "SEQ", "T", "FREE", "LFREE", "CYCLIC", "HEAP"); 1087 coargs->flags &= ~COF_THDR; 1088 coargs->flags |= (COF_LHDR | COF_CHDR); 1089 if (coargs->flags & COF_LONGLIST) { 1090 /* more info! */ 1091 mdb_printf("%<u> %-T%-7s %-7s %-?s %-?s %-?s" 1092 " %-?s %-?s %-?s%</u>", 1093 "HEAPNUM", "HEAPMAX", "TASKQ", "EXPQ", "QUE", 1094 "PEND", "FREE", "LOCK"); 1095 } 1096 mdb_printf("\n"); 1097 } 1098 if (coargs->flags & (COF_TABLE | COF_VERBOSE)) { 1099 if (!(coargs->flags & COF_ADDR)) { 1100 mdb_printf("%-3d %-1s %-0?p %-0?p %-0?p %-?p", 1101 seqid, co_typenames[cotype], 1102 ct->ct_free, ct->ct_lfree, ct->ct_cyclic, 1103 ct->ct_heap); 1104 if (coargs->flags & COF_LONGLIST) { 1105 /* more info! */ 1106 mdb_printf(" %-7d %-7d %-?p %-?p %-?p" 1107 " %-?lld %-?lld %-?p", 1108 ct->ct_heap_num, ct->ct_heap_max, 1109 ct->ct_taskq, ct->ct_expired.ch_head, 1110 ct->ct_queue.ch_head, 1111 cotwd->ct_timeouts_pending, 1112 cotwd->ct_allocations - 1113 cotwd->ct_timeouts_pending, 1114 ct->ct_mutex); 1115 } 1116 } else { 1117 /* address only */ 1118 mdb_printf("%-0?p", addr); 1119 } 1120 mdb_printf("\n"); 1121 if (coargs->flags & COF_TABLE) { 1122 return (WALK_NEXT); 1123 } 1124 } 1125 1126 coargs->ndx = index; 1127 if (coargs->flags & COF_VERBOSE) { 1128 mdb_inc_indent(4); 1129 } 1130 /* keep digging. */ 1131 if (!(coargs->flags & COF_BYIDH)) { 1132 /* walk the list hash table */ 1133 if (coargs->flags & COF_FREE) { 1134 clptr = ct->ct_lfree; 1135 coargs->bucket = 0; 1136 if (clptr == NULL) { 1137 return (WALK_NEXT); 1138 } 1139 if (mdb_pwalk("callout_list", callout_list_cb, coargs, 1140 (uintptr_t)clptr) == -1) { 1141 mdb_warn("cannot walk callout free list at %p", 1142 clptr); 1143 return (WALK_ERR); 1144 } 1145 } else { 1146 /* first print the expired list. */ 1147 clptr = (callout_list_t *)ct->ct_expired.ch_head; 1148 if (clptr != NULL) { 1149 coargs->bucket = -1; 1150 if (mdb_pwalk("callout_list", callout_list_cb, 1151 coargs, (uintptr_t)clptr) == -1) { 1152 mdb_warn("cannot walk callout_list" 1153 " at %p", clptr); 1154 return (WALK_ERR); 1155 } 1156 } 1157 /* then, print the callout queue */ 1158 clptr = (callout_list_t *)ct->ct_queue.ch_head; 1159 if (clptr != NULL) { 1160 coargs->bucket = -1; 1161 if (mdb_pwalk("callout_list", callout_list_cb, 1162 coargs, (uintptr_t)clptr) == -1) { 1163 mdb_warn("cannot walk callout_list" 1164 " at %p", clptr); 1165 return (WALK_ERR); 1166 } 1167 } 1168 for (i = 0; i < CALLOUT_BUCKETS; i++) { 1169 if (ct->ct_clhash == NULL) { 1170 /* nothing to do */ 1171 break; 1172 } 1173 if (cotwd->cot_clhash[i].ch_head == NULL) { 1174 continue; 1175 } 1176 clptr = (callout_list_t *) 1177 cotwd->cot_clhash[i].ch_head; 1178 coargs->bucket = i; 1179 /* walk list with callback routine. */ 1180 if (mdb_pwalk("callout_list", callout_list_cb, 1181 coargs, (uintptr_t)clptr) == -1) { 1182 mdb_warn("cannot walk callout_list" 1183 " at %p", clptr); 1184 return (WALK_ERR); 1185 } 1186 } 1187 } 1188 } else { 1189 /* walk the id hash table. */ 1190 if (coargs->flags & COF_FREE) { 1191 coptr = ct->ct_free; 1192 coargs->bucket = 0; 1193 if (coptr == NULL) { 1194 return (WALK_NEXT); 1195 } 1196 if (mdb_pwalk("callouts_byid", callouts_cb, coargs, 1197 (uintptr_t)coptr) == -1) { 1198 mdb_warn("cannot walk callout id free list" 1199 " at %p", coptr); 1200 return (WALK_ERR); 1201 } 1202 } else { 1203 for (i = 0; i < CALLOUT_BUCKETS; i++) { 1204 if (ct->ct_idhash == NULL) { 1205 break; 1206 } 1207 coptr = (callout_t *) 1208 cotwd->cot_idhash[i].ch_head; 1209 if (coptr == NULL) { 1210 continue; 1211 } 1212 coargs->bucket = i; 1213 1214 /* 1215 * walk callouts directly by id. For id 1216 * chain, the callout list is just a header, 1217 * so there's no need to walk it. 1218 */ 1219 if (mdb_pwalk("callouts_byid", callouts_cb, 1220 coargs, (uintptr_t)coptr) == -1) { 1221 mdb_warn("cannot walk callouts at %p", 1222 coptr); 1223 return (WALK_ERR); 1224 } 1225 } 1226 } 1227 } 1228 if (coargs->flags & COF_VERBOSE) { 1229 mdb_dec_indent(4); 1230 } 1231 return (WALK_NEXT); 1232 } 1233 1234 /* 1235 * initialize some common info for both callout dcmds. 1236 */ 1237 int 1238 callout_common_init(callout_data_t *coargs) 1239 { 1240 /* we need a couple of things */ 1241 if (mdb_readvar(&(coargs->co_table), "callout_table") == -1) { 1242 mdb_warn("failed to read 'callout_table'"); 1243 return (DCMD_ERR); 1244 } 1245 /* need to get now in nsecs. Approximate with hrtime vars */ 1246 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), "hrtime_last") != 1247 sizeof (hrtime_t)) { 1248 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), 1249 "hrtime_base") != sizeof (hrtime_t)) { 1250 mdb_warn("Could not determine current system time"); 1251 return (DCMD_ERR); 1252 } 1253 } 1254 1255 if (mdb_readvar(&(coargs->ctbits), "callout_table_bits") == -1) { 1256 mdb_warn("failed to read 'callout_table_bits'"); 1257 return (DCMD_ERR); 1258 } 1259 if (mdb_readvar(&(coargs->nsec_per_tick), "nsec_per_tick") == -1) { 1260 mdb_warn("failed to read 'nsec_per_tick'"); 1261 return (DCMD_ERR); 1262 } 1263 return (DCMD_OK); 1264 } 1265 1266 /* 1267 * dcmd to print callouts. Optional addr limits to specific table. 1268 * Parses lots of options that get passed to callbacks for walkers. 1269 * Has it's own help function. 1270 */ 1271 /*ARGSUSED*/ 1272 int 1273 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1274 { 1275 callout_data_t coargs; 1276 /* getopts doesn't help much with stuff like this */ 1277 boolean_t Sflag, Cflag, tflag, aflag, bflag, dflag, kflag; 1278 char *funcname = NULL; 1279 char *paramstr = NULL; 1280 uintptr_t Stmp, Ctmp; /* for getopt. */ 1281 int retval; 1282 1283 coargs.flags = COF_DEFAULT; 1284 Sflag = Cflag = tflag = bflag = aflag = dflag = kflag = FALSE; 1285 coargs.seqid = -1; 1286 1287 if (mdb_getopts(argc, argv, 1288 'r', MDB_OPT_CLRBITS, COF_NORM, &coargs.flags, 1289 'n', MDB_OPT_CLRBITS, COF_REAL, &coargs.flags, 1290 'l', MDB_OPT_CLRBITS, COF_SHORT, &coargs.flags, 1291 's', MDB_OPT_CLRBITS, COF_LONG, &coargs.flags, 1292 'x', MDB_OPT_SETBITS, COF_EXEC, &coargs.flags, 1293 'h', MDB_OPT_SETBITS, COF_HIRES, &coargs.flags, 1294 'B', MDB_OPT_SETBITS, COF_ABS, &coargs.flags, 1295 'E', MDB_OPT_SETBITS, COF_EMPTY, &coargs.flags, 1296 'd', MDB_OPT_SETBITS, 1, &dflag, 1297 'C', MDB_OPT_UINTPTR_SET, &Cflag, &Ctmp, 1298 'S', MDB_OPT_UINTPTR_SET, &Sflag, &Stmp, 1299 't', MDB_OPT_UINTPTR_SET, &tflag, (uintptr_t *)&coargs.time, 1300 'a', MDB_OPT_UINTPTR_SET, &aflag, (uintptr_t *)&coargs.atime, 1301 'b', MDB_OPT_UINTPTR_SET, &bflag, (uintptr_t *)&coargs.btime, 1302 'k', MDB_OPT_SETBITS, 1, &kflag, 1303 'f', MDB_OPT_STR, &funcname, 1304 'p', MDB_OPT_STR, ¶mstr, 1305 'T', MDB_OPT_SETBITS, COF_TABLE, &coargs.flags, 1306 'D', MDB_OPT_SETBITS, COF_EXPREL, &coargs.flags, 1307 'L', MDB_OPT_SETBITS, COF_LIST, &coargs.flags, 1308 'V', MDB_OPT_SETBITS, COF_VERBOSE, &coargs.flags, 1309 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags, 1310 'i', MDB_OPT_SETBITS, COF_BYIDH, &coargs.flags, 1311 'F', MDB_OPT_SETBITS, COF_FREE, &coargs.flags, 1312 'H', MDB_OPT_SETBITS, COF_HEAP, &coargs.flags, 1313 'Q', MDB_OPT_SETBITS, COF_QUEUE, &coargs.flags, 1314 'A', MDB_OPT_SETBITS, COF_ADDR, &coargs.flags, 1315 NULL) != argc) { 1316 return (DCMD_USAGE); 1317 } 1318 1319 /* initialize from kernel variables */ 1320 if ((retval = callout_common_init(&coargs)) != DCMD_OK) { 1321 return (retval); 1322 } 1323 1324 /* do some option post-processing */ 1325 if (kflag) { 1326 coargs.time *= coargs.nsec_per_tick; 1327 coargs.atime *= coargs.nsec_per_tick; 1328 coargs.btime *= coargs.nsec_per_tick; 1329 } 1330 1331 if (dflag) { 1332 coargs.time += coargs.now; 1333 coargs.atime += coargs.now; 1334 coargs.btime += coargs.now; 1335 } 1336 if (Sflag) { 1337 if (flags & DCMD_ADDRSPEC) { 1338 mdb_printf("-S option conflicts with explicit" 1339 " address\n"); 1340 return (DCMD_USAGE); 1341 } 1342 coargs.flags |= COF_SEQID; 1343 coargs.seqid = (int)Stmp; 1344 } 1345 if (Cflag) { 1346 if (flags & DCMD_ADDRSPEC) { 1347 mdb_printf("-C option conflicts with explicit" 1348 " address\n"); 1349 return (DCMD_USAGE); 1350 } 1351 if (coargs.flags & COF_SEQID) { 1352 mdb_printf("-C and -S are mutually exclusive\n"); 1353 return (DCMD_USAGE); 1354 } 1355 coargs.cpu = (cpu_t *)Ctmp; 1356 if (mdb_vread(&coargs.seqid, sizeof (processorid_t), 1357 (uintptr_t)&(coargs.cpu->cpu_seqid)) == -1) { 1358 mdb_warn("failed to read cpu_t at %p", Ctmp); 1359 return (DCMD_ERR); 1360 } 1361 coargs.flags |= COF_SEQID; 1362 } 1363 /* avoid null outputs. */ 1364 if (!(coargs.flags & (COF_REAL | COF_NORM))) { 1365 coargs.flags |= COF_REAL | COF_NORM; 1366 } 1367 if (!(coargs.flags & (COF_LONG | COF_SHORT))) { 1368 coargs.flags |= COF_LONG | COF_SHORT; 1369 } 1370 if (tflag) { 1371 if (aflag || bflag) { 1372 mdb_printf("-t and -a|b are mutually exclusive\n"); 1373 return (DCMD_USAGE); 1374 } 1375 coargs.flags |= COF_TIME; 1376 } 1377 if (aflag) { 1378 coargs.flags |= COF_AFTER; 1379 } 1380 if (bflag) { 1381 coargs.flags |= COF_BEFORE; 1382 } 1383 if ((aflag && bflag) && (coargs.btime <= coargs.atime)) { 1384 mdb_printf("value for -a must be earlier than the value" 1385 " for -b.\n"); 1386 return (DCMD_USAGE); 1387 } 1388 1389 if ((coargs.flags & COF_HEAP) && (coargs.flags & COF_QUEUE)) { 1390 mdb_printf("-H and -Q are mutually exclusive\n"); 1391 return (DCMD_USAGE); 1392 } 1393 1394 if (funcname != NULL) { 1395 GElf_Sym sym; 1396 1397 if (mdb_lookup_by_name(funcname, &sym) != 0) { 1398 coargs.funcaddr = mdb_strtoull(funcname); 1399 } else { 1400 coargs.funcaddr = sym.st_value; 1401 } 1402 coargs.flags |= COF_FUNC; 1403 } 1404 1405 if (paramstr != NULL) { 1406 GElf_Sym sym; 1407 1408 if (mdb_lookup_by_name(paramstr, &sym) != 0) { 1409 coargs.param = mdb_strtoull(paramstr); 1410 } else { 1411 coargs.param = sym.st_value; 1412 } 1413 coargs.flags |= COF_PARAM; 1414 } 1415 1416 if (!(flags & DCMD_ADDRSPEC)) { 1417 /* don't pass "dot" if no addr. */ 1418 addr = NULL; 1419 } 1420 if (addr != NULL) { 1421 /* 1422 * a callout table was specified. Ignore -r|n option 1423 * to avoid null output. 1424 */ 1425 coargs.flags |= (COF_REAL | COF_NORM); 1426 } 1427 1428 if (DCMD_HDRSPEC(flags) || (coargs.flags & COF_VERBOSE)) { 1429 coargs.flags |= COF_THDR | COF_LHDR | COF_CHDR; 1430 } 1431 if (coargs.flags & COF_FREE) { 1432 coargs.flags |= COF_EMPTY; 1433 /* -F = free callouts, -FL = free lists */ 1434 if (!(coargs.flags & COF_LIST)) { 1435 coargs.flags |= COF_BYIDH; 1436 } 1437 } 1438 1439 /* walk table, using specialized callback routine. */ 1440 if (mdb_pwalk("callout_table", callout_t_cb, &coargs, addr) == -1) { 1441 mdb_warn("cannot walk callout_table"); 1442 return (DCMD_ERR); 1443 } 1444 return (DCMD_OK); 1445 } 1446 1447 1448 /* 1449 * Given an extended callout id, dump its information. 1450 */ 1451 /*ARGSUSED*/ 1452 int 1453 calloutid(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1454 { 1455 callout_data_t coargs; 1456 callout_table_t *ctptr; 1457 callout_table_t ct; 1458 callout_id_t coid; 1459 callout_t *coptr; 1460 int tableid; 1461 callout_id_t xid; 1462 ulong_t idhash; 1463 int i, retval; 1464 const mdb_arg_t *arg; 1465 size_t size; 1466 callout_hash_t cot_idhash[CALLOUT_BUCKETS]; 1467 1468 coargs.flags = COF_DEFAULT | COF_BYIDH; 1469 i = mdb_getopts(argc, argv, 1470 'd', MDB_OPT_SETBITS, COF_DECODE, &coargs.flags, 1471 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags, 1472 NULL); 1473 argc -= i; 1474 argv += i; 1475 1476 if (argc != 1) { 1477 return (DCMD_USAGE); 1478 } 1479 arg = &argv[0]; 1480 1481 if (arg->a_type == MDB_TYPE_IMMEDIATE) { 1482 xid = arg->a_un.a_val; 1483 } else { 1484 xid = (callout_id_t)mdb_strtoull(arg->a_un.a_str); 1485 } 1486 1487 if (DCMD_HDRSPEC(flags)) { 1488 coargs.flags |= COF_CHDR; 1489 } 1490 1491 1492 /* initialize from kernel variables */ 1493 if ((retval = callout_common_init(&coargs)) != DCMD_OK) { 1494 return (retval); 1495 } 1496 1497 /* we must massage the environment so that the macros will play nice */ 1498 #define callout_table_mask ((1 << coargs.ctbits) - 1) 1499 #define callout_table_bits coargs.ctbits 1500 #define nsec_per_tick coargs.nsec_per_tick 1501 tableid = CALLOUT_ID_TO_TABLE(xid); 1502 idhash = CALLOUT_IDHASH(xid); 1503 #undef callouts_table_bits 1504 #undef callout_table_mask 1505 #undef nsec_per_tick 1506 coid = CO_PLAIN_ID(xid); 1507 1508 if (flags & DCMD_ADDRSPEC) { 1509 mdb_printf("calloutid does not accept explicit address.\n"); 1510 return (DCMD_USAGE); 1511 } 1512 1513 if (coargs.flags & COF_DECODE) { 1514 if (DCMD_HDRSPEC(flags)) { 1515 mdb_printf("%<u>%3s %1s %2s %-?s %-6s %</u>\n", 1516 "SEQ", "T", "XL", "XID", "IDHASH"); 1517 } 1518 mdb_printf("%-3d %1s %1s%1s %-?llx %-6d\n", 1519 TABLE_TO_SEQID(tableid), 1520 co_typenames[tableid & CALLOUT_TYPE_MASK], 1521 (xid & CALLOUT_EXECUTING) ? "X" : " ", 1522 (xid & CALLOUT_LONGTERM) ? "L" : " ", 1523 (long long)coid, idhash); 1524 return (DCMD_OK); 1525 } 1526 1527 /* get our table. Note this relies on the types being correct */ 1528 ctptr = coargs.co_table + tableid; 1529 if (mdb_vread(&ct, sizeof (callout_table_t), (uintptr_t)ctptr) == -1) { 1530 mdb_warn("failed to read callout_table at %p", ctptr); 1531 return (DCMD_ERR); 1532 } 1533 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS; 1534 if (ct.ct_idhash != NULL) { 1535 if (mdb_vread(&(cot_idhash), size, 1536 (uintptr_t)ct.ct_idhash) == -1) { 1537 mdb_warn("failed to read id_hash at %p", 1538 ct.ct_idhash); 1539 return (WALK_ERR); 1540 } 1541 } 1542 1543 /* callout at beginning of hash chain */ 1544 if (ct.ct_idhash == NULL) { 1545 mdb_printf("id hash chain for this xid is empty\n"); 1546 return (DCMD_ERR); 1547 } 1548 coptr = (callout_t *)cot_idhash[idhash].ch_head; 1549 if (coptr == NULL) { 1550 mdb_printf("id hash chain for this xid is empty\n"); 1551 return (DCMD_ERR); 1552 } 1553 1554 coargs.ndx = tableid; 1555 coargs.bucket = idhash; 1556 1557 /* use the walker, luke */ 1558 if (mdb_pwalk("callouts_byid", callouts_cb, &coargs, 1559 (uintptr_t)coptr) == -1) { 1560 mdb_warn("cannot walk callouts at %p", coptr); 1561 return (WALK_ERR); 1562 } 1563 1564 return (DCMD_OK); 1565 } 1566 1567 void 1568 callout_help(void) 1569 { 1570 mdb_printf("callout: display callouts.\n" 1571 "Given a callout table address, display callouts from table.\n" 1572 "Without an address, display callouts from all tables.\n" 1573 "options:\n" 1574 " -r|n : limit display to (r)ealtime or (n)ormal type callouts\n" 1575 " -s|l : limit display to (s)hort-term ids or (l)ong-term ids\n" 1576 " -x : limit display to callouts which are executing\n" 1577 " -h : limit display to callouts based on hrestime\n" 1578 " -B : limit display to callouts based on absolute time\n" 1579 " -t|a|b nsec: limit display to callouts that expire a(t) time," 1580 " (a)fter time,\n or (b)efore time. Use -a and -b together " 1581 " to specify a range.\n For \"now\", use -d[t|a|b] 0.\n" 1582 " -d : interpret time option to -t|a|b as delta from current time\n" 1583 " -k : use ticks instead of nanoseconds as arguments to" 1584 " -t|a|b. Note that\n ticks are less accurate and may not" 1585 " match other tick times (ie: lbolt).\n" 1586 " -D : display exiration time as delta from current time\n" 1587 " -S seqid : limit display to callouts for this cpu sequence id\n" 1588 " -C addr : limit display to callouts for this cpu pointer\n" 1589 " -f name|addr : limit display to callouts with this function\n" 1590 " -p name|addr : limit display to callouts functions with this" 1591 " parameter\n" 1592 " -T : display the callout table itself, instead of callouts\n" 1593 " -L : display callout lists instead of callouts\n" 1594 " -E : with -T or L, display empty data structures.\n" 1595 " -i : traverse callouts by id hash instead of list hash\n" 1596 " -F : walk free callout list (free list with -i) instead\n" 1597 " -v : display more info for each item\n" 1598 " -V : show details of each level of info as it is traversed\n" 1599 " -H : limit display to callouts in the callout heap\n" 1600 " -Q : limit display to callouts in the callout queue\n" 1601 " -A : show only addresses. Useful for pipelines.\n"); 1602 } 1603 1604 void 1605 calloutid_help(void) 1606 { 1607 mdb_printf("calloutid: display callout by id.\n" 1608 "Given an extended callout id, display the callout infomation.\n" 1609 "options:\n" 1610 " -d : do not dereference callout, just decode the id.\n" 1611 " -v : verbose display more info about the callout\n"); 1612 } 1613 1614 /*ARGSUSED*/ 1615 int 1616 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1617 { 1618 long num_classes, i; 1619 sclass_t *class_tbl; 1620 GElf_Sym g_sclass; 1621 char class_name[PC_CLNMSZ]; 1622 size_t tbl_size; 1623 1624 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) { 1625 mdb_warn("failed to find symbol sclass\n"); 1626 return (DCMD_ERR); 1627 } 1628 1629 tbl_size = (size_t)g_sclass.st_size; 1630 num_classes = tbl_size / (sizeof (sclass_t)); 1631 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC); 1632 1633 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) { 1634 mdb_warn("failed to read sclass"); 1635 return (DCMD_ERR); 1636 } 1637 1638 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME", 1639 "INIT FCN", "CLASS FCN"); 1640 1641 for (i = 0; i < num_classes; i++) { 1642 if (mdb_vread(class_name, sizeof (class_name), 1643 (uintptr_t)class_tbl[i].cl_name) == -1) 1644 (void) strcpy(class_name, "???"); 1645 1646 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name, 1647 class_tbl[i].cl_init, class_tbl[i].cl_funcs); 1648 } 1649 1650 return (DCMD_OK); 1651 } 1652 1653 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */ 1654 1655 int 1656 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1657 { 1658 uintptr_t rootdir; 1659 vnode_t vn; 1660 char buf[MAXPATHLEN]; 1661 1662 uint_t opt_F = FALSE; 1663 1664 if (mdb_getopts(argc, argv, 1665 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc) 1666 return (DCMD_USAGE); 1667 1668 if (!(flags & DCMD_ADDRSPEC)) { 1669 mdb_warn("expected explicit vnode_t address before ::\n"); 1670 return (DCMD_USAGE); 1671 } 1672 1673 if (mdb_readvar(&rootdir, "rootdir") == -1) { 1674 mdb_warn("failed to read rootdir"); 1675 return (DCMD_ERR); 1676 } 1677 1678 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1) 1679 return (DCMD_ERR); 1680 1681 if (*buf == '\0') { 1682 mdb_printf("??\n"); 1683 return (DCMD_OK); 1684 } 1685 1686 mdb_printf("%s", buf); 1687 if (opt_F && buf[strlen(buf)-1] != '/' && 1688 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn)) 1689 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0)); 1690 mdb_printf("\n"); 1691 1692 return (DCMD_OK); 1693 } 1694 1695 int 1696 ld_walk_init(mdb_walk_state_t *wsp) 1697 { 1698 wsp->walk_data = (void *)wsp->walk_addr; 1699 return (WALK_NEXT); 1700 } 1701 1702 int 1703 ld_walk_step(mdb_walk_state_t *wsp) 1704 { 1705 int status; 1706 lock_descriptor_t ld; 1707 1708 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) { 1709 mdb_warn("couldn't read lock_descriptor_t at %p\n", 1710 wsp->walk_addr); 1711 return (WALK_ERR); 1712 } 1713 1714 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata); 1715 if (status == WALK_ERR) 1716 return (WALK_ERR); 1717 1718 wsp->walk_addr = (uintptr_t)ld.l_next; 1719 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) 1720 return (WALK_DONE); 1721 1722 return (status); 1723 } 1724 1725 int 1726 lg_walk_init(mdb_walk_state_t *wsp) 1727 { 1728 GElf_Sym sym; 1729 1730 if (mdb_lookup_by_name("lock_graph", &sym) == -1) { 1731 mdb_warn("failed to find symbol 'lock_graph'\n"); 1732 return (WALK_ERR); 1733 } 1734 1735 wsp->walk_addr = (uintptr_t)sym.st_value; 1736 wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size); 1737 1738 return (WALK_NEXT); 1739 } 1740 1741 typedef struct lg_walk_data { 1742 uintptr_t startaddr; 1743 mdb_walk_cb_t callback; 1744 void *data; 1745 } lg_walk_data_t; 1746 1747 /* 1748 * We can't use ::walk lock_descriptor directly, because the head of each graph 1749 * is really a dummy lock. Rather than trying to dynamically determine if this 1750 * is a dummy node or not, we just filter out the initial element of the 1751 * list. 1752 */ 1753 static int 1754 lg_walk_cb(uintptr_t addr, const void *data, void *priv) 1755 { 1756 lg_walk_data_t *lw = priv; 1757 1758 if (addr != lw->startaddr) 1759 return (lw->callback(addr, data, lw->data)); 1760 1761 return (WALK_NEXT); 1762 } 1763 1764 int 1765 lg_walk_step(mdb_walk_state_t *wsp) 1766 { 1767 graph_t *graph; 1768 lg_walk_data_t lw; 1769 1770 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data) 1771 return (WALK_DONE); 1772 1773 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) { 1774 mdb_warn("failed to read graph_t at %p", wsp->walk_addr); 1775 return (WALK_ERR); 1776 } 1777 1778 wsp->walk_addr += sizeof (graph); 1779 1780 if (graph == NULL) 1781 return (WALK_NEXT); 1782 1783 lw.callback = wsp->walk_callback; 1784 lw.data = wsp->walk_cbdata; 1785 1786 lw.startaddr = (uintptr_t)&(graph->active_locks); 1787 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 1788 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 1789 return (WALK_ERR); 1790 } 1791 1792 lw.startaddr = (uintptr_t)&(graph->sleeping_locks); 1793 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 1794 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 1795 return (WALK_ERR); 1796 } 1797 1798 return (WALK_NEXT); 1799 } 1800 1801 /* 1802 * The space available for the path corresponding to the locked vnode depends 1803 * on whether we are printing 32- or 64-bit addresses. 1804 */ 1805 #ifdef _LP64 1806 #define LM_VNPATHLEN 20 1807 #else 1808 #define LM_VNPATHLEN 30 1809 #endif 1810 1811 /*ARGSUSED*/ 1812 static int 1813 lminfo_cb(uintptr_t addr, const void *data, void *priv) 1814 { 1815 const lock_descriptor_t *ld = data; 1816 char buf[LM_VNPATHLEN]; 1817 proc_t p; 1818 1819 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ", 1820 addr, ld->l_type == F_RDLCK ? "RD" : 1821 ld->l_type == F_WRLCK ? "WR" : "??", 1822 ld->l_state, ld->l_flock.l_pid, 1823 ld->l_flock.l_pid == 0 ? "<kernel>" : 1824 mdb_pid2proc(ld->l_flock.l_pid, &p) == NULL ? 1825 "<defunct>" : p.p_user.u_comm, 1826 ld->l_vnode); 1827 1828 mdb_vnode2path((uintptr_t)ld->l_vnode, buf, 1829 sizeof (buf)); 1830 mdb_printf("%s\n", buf); 1831 1832 return (WALK_NEXT); 1833 } 1834 1835 /*ARGSUSED*/ 1836 int 1837 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1838 { 1839 if (DCMD_HDRSPEC(flags)) 1840 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n", 1841 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH"); 1842 1843 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL)); 1844 } 1845 1846 /*ARGSUSED*/ 1847 int 1848 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target) 1849 { 1850 if ((uintptr_t)f->f_vnode == *target) { 1851 mdb_printf("file %p\n", addr); 1852 *target = NULL; 1853 } 1854 1855 return (WALK_NEXT); 1856 } 1857 1858 /*ARGSUSED*/ 1859 int 1860 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target) 1861 { 1862 uintptr_t t = *target; 1863 1864 if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) { 1865 mdb_warn("couldn't file walk proc %p", addr); 1866 return (WALK_ERR); 1867 } 1868 1869 if (t == NULL) 1870 mdb_printf("%p\n", addr); 1871 1872 return (WALK_NEXT); 1873 } 1874 1875 /*ARGSUSED*/ 1876 int 1877 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1878 { 1879 uintptr_t target = addr; 1880 1881 if (!(flags & DCMD_ADDRSPEC) || addr == NULL) 1882 return (DCMD_USAGE); 1883 1884 if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) { 1885 mdb_warn("can't proc walk"); 1886 return (DCMD_ERR); 1887 } 1888 1889 return (DCMD_OK); 1890 } 1891 1892 typedef struct datafmt { 1893 char *hdr1; 1894 char *hdr2; 1895 char *dashes; 1896 char *fmt; 1897 } datafmt_t; 1898 1899 static datafmt_t kmemfmt[] = { 1900 { "cache ", "name ", 1901 "------------------------------", "%-30s " }, 1902 { " buf", " size", "-----", "%5H " }, 1903 { " buf", " in use", "---------", "%9u " }, 1904 { " buf", " total", "---------", "%9u " }, 1905 { "memory", "in use", "------", "%6lH " }, 1906 { " alloc", " succeed", "----------", "%10u " }, 1907 { "alloc", " fail", "-----", "%5u" }, 1908 { NULL, NULL, NULL, NULL } 1909 }; 1910 1911 static datafmt_t vmemfmt[] = { 1912 { "vmem ", "name ", 1913 "------------------------------", "%-*s " }, 1914 { " memory", " in use", "---------", "%9llH " }, 1915 { " memory", " total", "----------", "%10llH " }, 1916 { " memory", " import", "---------", "%9llH " }, 1917 { " alloc", " succeed", "----------", "%10llu " }, 1918 { "alloc", " fail", "-----", "%5llu " }, 1919 { NULL, NULL, NULL, NULL } 1920 }; 1921 1922 /*ARGSUSED*/ 1923 static int 1924 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail) 1925 { 1926 short rounds, prounds; 1927 1928 if (KMEM_DUMPCC(ccp)) { 1929 rounds = ccp->cc_dump_rounds; 1930 prounds = ccp->cc_dump_prounds; 1931 } else { 1932 rounds = ccp->cc_rounds; 1933 prounds = ccp->cc_prounds; 1934 } 1935 if (rounds > 0) 1936 *avail += rounds; 1937 if (prounds > 0) 1938 *avail += prounds; 1939 1940 return (WALK_NEXT); 1941 } 1942 1943 /*ARGSUSED*/ 1944 static int 1945 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc) 1946 { 1947 *alloc += ccp->cc_alloc; 1948 1949 return (WALK_NEXT); 1950 } 1951 1952 /*ARGSUSED*/ 1953 static int 1954 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail) 1955 { 1956 *avail += sp->slab_chunks - sp->slab_refcnt; 1957 1958 return (WALK_NEXT); 1959 } 1960 1961 typedef struct kmastat_vmem { 1962 uintptr_t kv_addr; 1963 struct kmastat_vmem *kv_next; 1964 size_t kv_meminuse; 1965 int kv_alloc; 1966 int kv_fail; 1967 } kmastat_vmem_t; 1968 1969 static int 1970 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_vmem_t **kvpp) 1971 { 1972 kmastat_vmem_t *kv; 1973 datafmt_t *dfp = kmemfmt; 1974 int magsize; 1975 1976 int avail, alloc, total; 1977 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) * 1978 cp->cache_slabsize; 1979 1980 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail; 1981 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc; 1982 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail; 1983 1984 magsize = kmem_get_magsize(cp); 1985 1986 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc; 1987 avail = cp->cache_full.ml_total * magsize; 1988 total = cp->cache_buftotal; 1989 1990 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr); 1991 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr); 1992 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr); 1993 1994 for (kv = *kvpp; kv != NULL; kv = kv->kv_next) { 1995 if (kv->kv_addr == (uintptr_t)cp->cache_arena) 1996 goto out; 1997 } 1998 1999 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC); 2000 kv->kv_next = *kvpp; 2001 kv->kv_addr = (uintptr_t)cp->cache_arena; 2002 *kvpp = kv; 2003 out: 2004 kv->kv_meminuse += meminuse; 2005 kv->kv_alloc += alloc; 2006 kv->kv_fail += cp->cache_alloc_fail; 2007 2008 mdb_printf((dfp++)->fmt, cp->cache_name); 2009 mdb_printf((dfp++)->fmt, cp->cache_bufsize); 2010 mdb_printf((dfp++)->fmt, total - avail); 2011 mdb_printf((dfp++)->fmt, total); 2012 mdb_printf((dfp++)->fmt, meminuse); 2013 mdb_printf((dfp++)->fmt, alloc); 2014 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail); 2015 mdb_printf("\n"); 2016 2017 return (WALK_NEXT); 2018 } 2019 2020 static int 2021 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_vmem_t *kv) 2022 { 2023 size_t len; 2024 2025 while (kv != NULL && kv->kv_addr != addr) 2026 kv = kv->kv_next; 2027 2028 if (kv == NULL || kv->kv_alloc == 0) 2029 return (WALK_NEXT); 2030 2031 len = MIN(22, strlen(v->vm_name)); 2032 2033 mdb_printf("Total [%s]%*s %5s %9s %9s %6lH %10u %5u\n", v->vm_name, 2034 22 - len, "", "", "", "", 2035 kv->kv_meminuse, kv->kv_alloc, kv->kv_fail); 2036 2037 return (WALK_NEXT); 2038 } 2039 2040 /*ARGSUSED*/ 2041 static int 2042 kmastat_vmem(uintptr_t addr, const vmem_t *v, const void *ignored) 2043 { 2044 datafmt_t *dfp = vmemfmt; 2045 const vmem_kstat_t *vkp = &v->vm_kstat; 2046 uintptr_t paddr; 2047 vmem_t parent; 2048 int ident = 0; 2049 2050 for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) { 2051 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) { 2052 mdb_warn("couldn't trace %p's ancestry", addr); 2053 ident = 0; 2054 break; 2055 } 2056 paddr = (uintptr_t)parent.vm_source; 2057 } 2058 2059 mdb_printf("%*s", ident, ""); 2060 mdb_printf((dfp++)->fmt, 30 - ident, v->vm_name); 2061 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64); 2062 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64); 2063 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64); 2064 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64); 2065 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64); 2066 2067 mdb_printf("\n"); 2068 2069 return (WALK_NEXT); 2070 } 2071 2072 /*ARGSUSED*/ 2073 int 2074 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2075 { 2076 kmastat_vmem_t *kv = NULL; 2077 datafmt_t *dfp; 2078 2079 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2080 mdb_printf("%s%s", dfp == kmemfmt ? "" : " ", dfp->hdr1); 2081 mdb_printf("\n"); 2082 2083 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2084 mdb_printf("%s%s", dfp == kmemfmt ? "" : " ", dfp->hdr2); 2085 mdb_printf("\n"); 2086 2087 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2088 mdb_printf("%s%s", dfp == kmemfmt ? "" : " ", dfp->dashes); 2089 mdb_printf("\n"); 2090 2091 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &kv) == -1) { 2092 mdb_warn("can't walk 'kmem_cache'"); 2093 return (DCMD_ERR); 2094 } 2095 2096 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2097 mdb_printf("%s%s", dfp == kmemfmt ? "" : " ", dfp->dashes); 2098 mdb_printf("\n"); 2099 2100 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, kv) == -1) { 2101 mdb_warn("can't walk 'vmem'"); 2102 return (DCMD_ERR); 2103 } 2104 2105 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2106 mdb_printf("%s%s", dfp == kmemfmt ? "" : " ", dfp->dashes); 2107 mdb_printf("\n"); 2108 2109 mdb_printf("\n"); 2110 2111 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2112 mdb_printf("%s ", dfp->hdr1); 2113 mdb_printf("\n"); 2114 2115 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2116 mdb_printf("%s ", dfp->hdr2); 2117 mdb_printf("\n"); 2118 2119 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2120 mdb_printf("%s ", dfp->dashes); 2121 mdb_printf("\n"); 2122 2123 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, NULL) == -1) { 2124 mdb_warn("can't walk 'vmem'"); 2125 return (DCMD_ERR); 2126 } 2127 2128 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2129 mdb_printf("%s ", dfp->dashes); 2130 mdb_printf("\n"); 2131 return (DCMD_OK); 2132 } 2133 2134 /* 2135 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made 2136 * up of a set of 'struct seg's. We could just scan each seg en masse, but 2137 * unfortunately, a few of the segs are both large and sparse, so we could 2138 * spend quite a bit of time scanning VAs which have no backing pages. 2139 * 2140 * So for the few very sparse segs, we skip the segment itself, and scan 2141 * the allocated vmem_segs in the vmem arena which manages that part of kas. 2142 * Currently, we do this for: 2143 * 2144 * SEG VMEM ARENA 2145 * kvseg heap_arena 2146 * kvseg32 heap32_arena 2147 * kvseg_core heap_core_arena 2148 * 2149 * In addition, we skip the segkpm segment in its entirety, since it is very 2150 * sparse, and contains no new kernel data. 2151 */ 2152 typedef struct kgrep_walk_data { 2153 kgrep_cb_func *kg_cb; 2154 void *kg_cbdata; 2155 uintptr_t kg_kvseg; 2156 uintptr_t kg_kvseg32; 2157 uintptr_t kg_kvseg_core; 2158 uintptr_t kg_segkpm; 2159 uintptr_t kg_heap_lp_base; 2160 uintptr_t kg_heap_lp_end; 2161 } kgrep_walk_data_t; 2162 2163 static int 2164 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg) 2165 { 2166 uintptr_t base = (uintptr_t)seg->s_base; 2167 2168 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 || 2169 addr == kg->kg_kvseg_core) 2170 return (WALK_NEXT); 2171 2172 if ((uintptr_t)seg->s_ops == kg->kg_segkpm) 2173 return (WALK_NEXT); 2174 2175 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata)); 2176 } 2177 2178 /*ARGSUSED*/ 2179 static int 2180 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 2181 { 2182 /* 2183 * skip large page heap address range - it is scanned by walking 2184 * allocated vmem_segs in the heap_lp_arena 2185 */ 2186 if (seg->vs_start == kg->kg_heap_lp_base && 2187 seg->vs_end == kg->kg_heap_lp_end) 2188 return (WALK_NEXT); 2189 2190 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 2191 } 2192 2193 /*ARGSUSED*/ 2194 static int 2195 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 2196 { 2197 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 2198 } 2199 2200 static int 2201 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg) 2202 { 2203 mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg; 2204 2205 if (strcmp(vmem->vm_name, "heap") != 0 && 2206 strcmp(vmem->vm_name, "heap32") != 0 && 2207 strcmp(vmem->vm_name, "heap_core") != 0 && 2208 strcmp(vmem->vm_name, "heap_lp") != 0) 2209 return (WALK_NEXT); 2210 2211 if (strcmp(vmem->vm_name, "heap_lp") == 0) 2212 walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg; 2213 2214 if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) { 2215 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr); 2216 return (WALK_ERR); 2217 } 2218 2219 return (WALK_NEXT); 2220 } 2221 2222 int 2223 kgrep_subr(kgrep_cb_func *cb, void *cbdata) 2224 { 2225 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm; 2226 kgrep_walk_data_t kg; 2227 2228 if (mdb_get_state() == MDB_STATE_RUNNING) { 2229 mdb_warn("kgrep can only be run on a system " 2230 "dump or under kmdb; see dumpadm(1M)\n"); 2231 return (DCMD_ERR); 2232 } 2233 2234 if (mdb_lookup_by_name("kas", &kas) == -1) { 2235 mdb_warn("failed to locate 'kas' symbol\n"); 2236 return (DCMD_ERR); 2237 } 2238 2239 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) { 2240 mdb_warn("failed to locate 'kvseg' symbol\n"); 2241 return (DCMD_ERR); 2242 } 2243 2244 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) { 2245 mdb_warn("failed to locate 'kvseg32' symbol\n"); 2246 return (DCMD_ERR); 2247 } 2248 2249 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) { 2250 mdb_warn("failed to locate 'kvseg_core' symbol\n"); 2251 return (DCMD_ERR); 2252 } 2253 2254 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) { 2255 mdb_warn("failed to locate 'segkpm_ops' symbol\n"); 2256 return (DCMD_ERR); 2257 } 2258 2259 if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) { 2260 mdb_warn("failed to read 'heap_lp_base'\n"); 2261 return (DCMD_ERR); 2262 } 2263 2264 if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) { 2265 mdb_warn("failed to read 'heap_lp_end'\n"); 2266 return (DCMD_ERR); 2267 } 2268 2269 kg.kg_cb = cb; 2270 kg.kg_cbdata = cbdata; 2271 kg.kg_kvseg = (uintptr_t)kvseg.st_value; 2272 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value; 2273 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value; 2274 kg.kg_segkpm = (uintptr_t)segkpm.st_value; 2275 2276 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg, 2277 &kg, kas.st_value) == -1) { 2278 mdb_warn("failed to walk kas segments"); 2279 return (DCMD_ERR); 2280 } 2281 2282 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) { 2283 mdb_warn("failed to walk heap/heap32 vmem arenas"); 2284 return (DCMD_ERR); 2285 } 2286 2287 return (DCMD_OK); 2288 } 2289 2290 size_t 2291 kgrep_subr_pagesize(void) 2292 { 2293 return (PAGESIZE); 2294 } 2295 2296 typedef struct file_walk_data { 2297 struct uf_entry *fw_flist; 2298 int fw_flistsz; 2299 int fw_ndx; 2300 int fw_nofiles; 2301 } file_walk_data_t; 2302 2303 int 2304 file_walk_init(mdb_walk_state_t *wsp) 2305 { 2306 file_walk_data_t *fw; 2307 proc_t p; 2308 2309 if (wsp->walk_addr == NULL) { 2310 mdb_warn("file walk doesn't support global walks\n"); 2311 return (WALK_ERR); 2312 } 2313 2314 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP); 2315 2316 if (mdb_vread(&p, sizeof (p), wsp->walk_addr) == -1) { 2317 mdb_free(fw, sizeof (file_walk_data_t)); 2318 mdb_warn("failed to read proc structure at %p", wsp->walk_addr); 2319 return (WALK_ERR); 2320 } 2321 2322 if (p.p_user.u_finfo.fi_nfiles == 0) { 2323 mdb_free(fw, sizeof (file_walk_data_t)); 2324 return (WALK_DONE); 2325 } 2326 2327 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles; 2328 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles; 2329 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP); 2330 2331 if (mdb_vread(fw->fw_flist, fw->fw_flistsz, 2332 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) { 2333 mdb_warn("failed to read file array at %p", 2334 p.p_user.u_finfo.fi_list); 2335 mdb_free(fw->fw_flist, fw->fw_flistsz); 2336 mdb_free(fw, sizeof (file_walk_data_t)); 2337 return (WALK_ERR); 2338 } 2339 2340 fw->fw_ndx = 0; 2341 wsp->walk_data = fw; 2342 2343 return (WALK_NEXT); 2344 } 2345 2346 int 2347 file_walk_step(mdb_walk_state_t *wsp) 2348 { 2349 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2350 struct file file; 2351 uintptr_t fp; 2352 2353 again: 2354 if (fw->fw_ndx == fw->fw_nofiles) 2355 return (WALK_DONE); 2356 2357 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == NULL) 2358 goto again; 2359 2360 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 2361 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 2362 } 2363 2364 int 2365 allfile_walk_step(mdb_walk_state_t *wsp) 2366 { 2367 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2368 struct file file; 2369 uintptr_t fp; 2370 2371 if (fw->fw_ndx == fw->fw_nofiles) 2372 return (WALK_DONE); 2373 2374 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != NULL) 2375 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 2376 else 2377 bzero(&file, sizeof (file)); 2378 2379 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 2380 } 2381 2382 void 2383 file_walk_fini(mdb_walk_state_t *wsp) 2384 { 2385 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2386 2387 mdb_free(fw->fw_flist, fw->fw_flistsz); 2388 mdb_free(fw, sizeof (file_walk_data_t)); 2389 } 2390 2391 int 2392 port_walk_init(mdb_walk_state_t *wsp) 2393 { 2394 if (wsp->walk_addr == NULL) { 2395 mdb_warn("port walk doesn't support global walks\n"); 2396 return (WALK_ERR); 2397 } 2398 2399 if (mdb_layered_walk("file", wsp) == -1) { 2400 mdb_warn("couldn't walk 'file'"); 2401 return (WALK_ERR); 2402 } 2403 return (WALK_NEXT); 2404 } 2405 2406 int 2407 port_walk_step(mdb_walk_state_t *wsp) 2408 { 2409 struct vnode vn; 2410 uintptr_t vp; 2411 uintptr_t pp; 2412 struct port port; 2413 2414 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode; 2415 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 2416 mdb_warn("failed to read vnode_t at %p", vp); 2417 return (WALK_ERR); 2418 } 2419 if (vn.v_type != VPORT) 2420 return (WALK_NEXT); 2421 2422 pp = (uintptr_t)vn.v_data; 2423 if (mdb_vread(&port, sizeof (port), pp) == -1) { 2424 mdb_warn("failed to read port_t at %p", pp); 2425 return (WALK_ERR); 2426 } 2427 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata)); 2428 } 2429 2430 typedef struct portev_walk_data { 2431 list_node_t *pev_node; 2432 list_node_t *pev_last; 2433 size_t pev_offset; 2434 } portev_walk_data_t; 2435 2436 int 2437 portev_walk_init(mdb_walk_state_t *wsp) 2438 { 2439 portev_walk_data_t *pevd; 2440 struct port port; 2441 struct vnode vn; 2442 struct list *list; 2443 uintptr_t vp; 2444 2445 if (wsp->walk_addr == NULL) { 2446 mdb_warn("portev walk doesn't support global walks\n"); 2447 return (WALK_ERR); 2448 } 2449 2450 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP); 2451 2452 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) { 2453 mdb_free(pevd, sizeof (portev_walk_data_t)); 2454 mdb_warn("failed to read port structure at %p", wsp->walk_addr); 2455 return (WALK_ERR); 2456 } 2457 2458 vp = (uintptr_t)port.port_vnode; 2459 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 2460 mdb_free(pevd, sizeof (portev_walk_data_t)); 2461 mdb_warn("failed to read vnode_t at %p", vp); 2462 return (WALK_ERR); 2463 } 2464 2465 if (vn.v_type != VPORT) { 2466 mdb_free(pevd, sizeof (portev_walk_data_t)); 2467 mdb_warn("input address (%p) does not point to an event port", 2468 wsp->walk_addr); 2469 return (WALK_ERR); 2470 } 2471 2472 if (port.port_queue.portq_nent == 0) { 2473 mdb_free(pevd, sizeof (portev_walk_data_t)); 2474 return (WALK_DONE); 2475 } 2476 list = &port.port_queue.portq_list; 2477 pevd->pev_offset = list->list_offset; 2478 pevd->pev_last = list->list_head.list_prev; 2479 pevd->pev_node = list->list_head.list_next; 2480 wsp->walk_data = pevd; 2481 return (WALK_NEXT); 2482 } 2483 2484 int 2485 portev_walk_step(mdb_walk_state_t *wsp) 2486 { 2487 portev_walk_data_t *pevd; 2488 struct port_kevent ev; 2489 uintptr_t evp; 2490 2491 pevd = (portev_walk_data_t *)wsp->walk_data; 2492 2493 if (pevd->pev_last == NULL) 2494 return (WALK_DONE); 2495 if (pevd->pev_node == pevd->pev_last) 2496 pevd->pev_last = NULL; /* last round */ 2497 2498 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset)); 2499 if (mdb_vread(&ev, sizeof (ev), evp) == -1) { 2500 mdb_warn("failed to read port_kevent at %p", evp); 2501 return (WALK_DONE); 2502 } 2503 pevd->pev_node = ev.portkev_node.list_next; 2504 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata)); 2505 } 2506 2507 void 2508 portev_walk_fini(mdb_walk_state_t *wsp) 2509 { 2510 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data; 2511 2512 if (pevd != NULL) 2513 mdb_free(pevd, sizeof (portev_walk_data_t)); 2514 } 2515 2516 typedef struct proc_walk_data { 2517 uintptr_t *pw_stack; 2518 int pw_depth; 2519 int pw_max; 2520 } proc_walk_data_t; 2521 2522 int 2523 proc_walk_init(mdb_walk_state_t *wsp) 2524 { 2525 GElf_Sym sym; 2526 proc_walk_data_t *pw; 2527 2528 if (wsp->walk_addr == NULL) { 2529 if (mdb_lookup_by_name("p0", &sym) == -1) { 2530 mdb_warn("failed to read 'practive'"); 2531 return (WALK_ERR); 2532 } 2533 wsp->walk_addr = (uintptr_t)sym.st_value; 2534 } 2535 2536 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP); 2537 2538 if (mdb_readvar(&pw->pw_max, "nproc") == -1) { 2539 mdb_warn("failed to read 'nproc'"); 2540 mdb_free(pw, sizeof (pw)); 2541 return (WALK_ERR); 2542 } 2543 2544 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP); 2545 wsp->walk_data = pw; 2546 2547 return (WALK_NEXT); 2548 } 2549 2550 int 2551 proc_walk_step(mdb_walk_state_t *wsp) 2552 { 2553 proc_walk_data_t *pw = wsp->walk_data; 2554 uintptr_t addr = wsp->walk_addr; 2555 uintptr_t cld, sib; 2556 2557 int status; 2558 proc_t pr; 2559 2560 if (mdb_vread(&pr, sizeof (proc_t), addr) == -1) { 2561 mdb_warn("failed to read proc at %p", addr); 2562 return (WALK_DONE); 2563 } 2564 2565 cld = (uintptr_t)pr.p_child; 2566 sib = (uintptr_t)pr.p_sibling; 2567 2568 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) { 2569 pw->pw_depth--; 2570 goto sib; 2571 } 2572 2573 status = wsp->walk_callback(addr, &pr, wsp->walk_cbdata); 2574 2575 if (status != WALK_NEXT) 2576 return (status); 2577 2578 if ((wsp->walk_addr = cld) != NULL) { 2579 if (mdb_vread(&pr, sizeof (proc_t), cld) == -1) { 2580 mdb_warn("proc %p has invalid p_child %p; skipping\n", 2581 addr, cld); 2582 goto sib; 2583 } 2584 2585 pw->pw_stack[pw->pw_depth++] = addr; 2586 2587 if (pw->pw_depth == pw->pw_max) { 2588 mdb_warn("depth %d exceeds max depth; try again\n", 2589 pw->pw_depth); 2590 return (WALK_DONE); 2591 } 2592 return (WALK_NEXT); 2593 } 2594 2595 sib: 2596 /* 2597 * We know that p0 has no siblings, and if another starting proc 2598 * was given, we don't want to walk its siblings anyway. 2599 */ 2600 if (pw->pw_depth == 0) 2601 return (WALK_DONE); 2602 2603 if (sib != NULL && mdb_vread(&pr, sizeof (proc_t), sib) == -1) { 2604 mdb_warn("proc %p has invalid p_sibling %p; skipping\n", 2605 addr, sib); 2606 sib = NULL; 2607 } 2608 2609 if ((wsp->walk_addr = sib) == NULL) { 2610 if (pw->pw_depth > 0) { 2611 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1]; 2612 return (WALK_NEXT); 2613 } 2614 return (WALK_DONE); 2615 } 2616 2617 return (WALK_NEXT); 2618 } 2619 2620 void 2621 proc_walk_fini(mdb_walk_state_t *wsp) 2622 { 2623 proc_walk_data_t *pw = wsp->walk_data; 2624 2625 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t)); 2626 mdb_free(pw, sizeof (proc_walk_data_t)); 2627 } 2628 2629 int 2630 task_walk_init(mdb_walk_state_t *wsp) 2631 { 2632 task_t task; 2633 2634 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) { 2635 mdb_warn("failed to read task at %p", wsp->walk_addr); 2636 return (WALK_ERR); 2637 } 2638 wsp->walk_addr = (uintptr_t)task.tk_memb_list; 2639 wsp->walk_data = task.tk_memb_list; 2640 return (WALK_NEXT); 2641 } 2642 2643 int 2644 task_walk_step(mdb_walk_state_t *wsp) 2645 { 2646 proc_t proc; 2647 int status; 2648 2649 if (mdb_vread(&proc, sizeof (proc_t), wsp->walk_addr) == -1) { 2650 mdb_warn("failed to read proc at %p", wsp->walk_addr); 2651 return (WALK_DONE); 2652 } 2653 2654 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata); 2655 2656 if (proc.p_tasknext == wsp->walk_data) 2657 return (WALK_DONE); 2658 2659 wsp->walk_addr = (uintptr_t)proc.p_tasknext; 2660 return (status); 2661 } 2662 2663 int 2664 project_walk_init(mdb_walk_state_t *wsp) 2665 { 2666 if (wsp->walk_addr == NULL) { 2667 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) { 2668 mdb_warn("failed to read 'proj0p'"); 2669 return (WALK_ERR); 2670 } 2671 } 2672 wsp->walk_data = (void *)wsp->walk_addr; 2673 return (WALK_NEXT); 2674 } 2675 2676 int 2677 project_walk_step(mdb_walk_state_t *wsp) 2678 { 2679 uintptr_t addr = wsp->walk_addr; 2680 kproject_t pj; 2681 int status; 2682 2683 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 2684 mdb_warn("failed to read project at %p", addr); 2685 return (WALK_DONE); 2686 } 2687 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata); 2688 if (status != WALK_NEXT) 2689 return (status); 2690 wsp->walk_addr = (uintptr_t)pj.kpj_next; 2691 if ((void *)wsp->walk_addr == wsp->walk_data) 2692 return (WALK_DONE); 2693 return (WALK_NEXT); 2694 } 2695 2696 static int 2697 generic_walk_step(mdb_walk_state_t *wsp) 2698 { 2699 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer, 2700 wsp->walk_cbdata)); 2701 } 2702 2703 static int 2704 cpu_walk_cmp(const void *l, const void *r) 2705 { 2706 uintptr_t lhs = *((uintptr_t *)l); 2707 uintptr_t rhs = *((uintptr_t *)r); 2708 cpu_t lcpu, rcpu; 2709 2710 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs); 2711 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs); 2712 2713 if (lcpu.cpu_id < rcpu.cpu_id) 2714 return (-1); 2715 2716 if (lcpu.cpu_id > rcpu.cpu_id) 2717 return (1); 2718 2719 return (0); 2720 } 2721 2722 typedef struct cpu_walk { 2723 uintptr_t *cw_array; 2724 int cw_ndx; 2725 } cpu_walk_t; 2726 2727 int 2728 cpu_walk_init(mdb_walk_state_t *wsp) 2729 { 2730 cpu_walk_t *cw; 2731 int max_ncpus, i = 0; 2732 uintptr_t current, first; 2733 cpu_t cpu, panic_cpu; 2734 uintptr_t panicstr, addr; 2735 GElf_Sym sym; 2736 2737 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC); 2738 2739 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 2740 mdb_warn("failed to read 'max_ncpus'"); 2741 return (WALK_ERR); 2742 } 2743 2744 if (mdb_readvar(&panicstr, "panicstr") == -1) { 2745 mdb_warn("failed to read 'panicstr'"); 2746 return (WALK_ERR); 2747 } 2748 2749 if (panicstr != NULL) { 2750 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) { 2751 mdb_warn("failed to find 'panic_cpu'"); 2752 return (WALK_ERR); 2753 } 2754 2755 addr = (uintptr_t)sym.st_value; 2756 2757 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) { 2758 mdb_warn("failed to read 'panic_cpu'"); 2759 return (WALK_ERR); 2760 } 2761 } 2762 2763 /* 2764 * Unfortunately, there is no platform-independent way to walk 2765 * CPUs in ID order. We therefore loop through in cpu_next order, 2766 * building an array of CPU pointers which will subsequently be 2767 * sorted. 2768 */ 2769 cw->cw_array = 2770 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC); 2771 2772 if (mdb_readvar(&first, "cpu_list") == -1) { 2773 mdb_warn("failed to read 'cpu_list'"); 2774 return (WALK_ERR); 2775 } 2776 2777 current = first; 2778 do { 2779 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) { 2780 mdb_warn("failed to read cpu at %p", current); 2781 return (WALK_ERR); 2782 } 2783 2784 if (panicstr != NULL && panic_cpu.cpu_id == cpu.cpu_id) { 2785 cw->cw_array[i++] = addr; 2786 } else { 2787 cw->cw_array[i++] = current; 2788 } 2789 } while ((current = (uintptr_t)cpu.cpu_next) != first); 2790 2791 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp); 2792 wsp->walk_data = cw; 2793 2794 return (WALK_NEXT); 2795 } 2796 2797 int 2798 cpu_walk_step(mdb_walk_state_t *wsp) 2799 { 2800 cpu_walk_t *cw = wsp->walk_data; 2801 cpu_t cpu; 2802 uintptr_t addr = cw->cw_array[cw->cw_ndx++]; 2803 2804 if (addr == NULL) 2805 return (WALK_DONE); 2806 2807 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) { 2808 mdb_warn("failed to read cpu at %p", addr); 2809 return (WALK_DONE); 2810 } 2811 2812 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata)); 2813 } 2814 2815 typedef struct cpuinfo_data { 2816 intptr_t cid_cpu; 2817 uintptr_t **cid_ithr; 2818 char cid_print_head; 2819 char cid_print_thr; 2820 char cid_print_ithr; 2821 char cid_print_flags; 2822 } cpuinfo_data_t; 2823 2824 int 2825 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid) 2826 { 2827 cpu_t c; 2828 int id; 2829 uint8_t pil; 2830 2831 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE) 2832 return (WALK_NEXT); 2833 2834 if (thr->t_bound_cpu == NULL) { 2835 mdb_warn("thr %p is intr thread w/out a CPU\n", addr); 2836 return (WALK_NEXT); 2837 } 2838 2839 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu); 2840 2841 if ((id = c.cpu_id) >= NCPU) { 2842 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n", 2843 thr->t_bound_cpu, id, NCPU); 2844 return (WALK_NEXT); 2845 } 2846 2847 if ((pil = thr->t_pil) >= NINTR) { 2848 mdb_warn("thread %p has pil (%d) greater than %d\n", 2849 addr, pil, NINTR); 2850 return (WALK_NEXT); 2851 } 2852 2853 if (cid->cid_ithr[id][pil] != NULL) { 2854 mdb_warn("CPU %d has multiple threads at pil %d (at least " 2855 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]); 2856 return (WALK_NEXT); 2857 } 2858 2859 cid->cid_ithr[id][pil] = addr; 2860 2861 return (WALK_NEXT); 2862 } 2863 2864 #define CPUINFO_IDWIDTH 3 2865 #define CPUINFO_FLAGWIDTH 9 2866 2867 #ifdef _LP64 2868 #if defined(__amd64) 2869 #define CPUINFO_TWIDTH 16 2870 #define CPUINFO_CPUWIDTH 16 2871 #else 2872 #define CPUINFO_CPUWIDTH 11 2873 #define CPUINFO_TWIDTH 11 2874 #endif 2875 #else 2876 #define CPUINFO_CPUWIDTH 8 2877 #define CPUINFO_TWIDTH 8 2878 #endif 2879 2880 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9) 2881 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4) 2882 #define CPUINFO_ITHRDELT 4 2883 2884 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \ 2885 flagline < nflaglines ? flagbuf[flagline++] : "") 2886 2887 int 2888 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid) 2889 { 2890 kthread_t t; 2891 disp_t disp; 2892 proc_t p; 2893 uintptr_t pinned; 2894 char **flagbuf; 2895 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT; 2896 2897 const char *flags[] = { 2898 "RUNNING", "READY", "QUIESCED", "EXISTS", 2899 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN", 2900 "SPARE", "FAULTED", NULL 2901 }; 2902 2903 if (cid->cid_cpu != -1) { 2904 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu) 2905 return (WALK_NEXT); 2906 2907 /* 2908 * Set cid_cpu to -1 to indicate that we found a matching CPU. 2909 */ 2910 cid->cid_cpu = -1; 2911 rval = WALK_DONE; 2912 } 2913 2914 if (cid->cid_print_head) { 2915 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n", 2916 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL", 2917 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD", 2918 "PROC"); 2919 cid->cid_print_head = FALSE; 2920 } 2921 2922 bspl = cpu->cpu_base_spl; 2923 2924 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) { 2925 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp); 2926 return (WALK_ERR); 2927 } 2928 2929 mdb_printf("%3d %0*p %3x %4d %4d ", 2930 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags, 2931 disp.disp_nrunnable, bspl); 2932 2933 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) { 2934 mdb_printf("%3d ", t.t_pri); 2935 } else { 2936 mdb_printf("%3s ", "-"); 2937 } 2938 2939 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no", 2940 cpu->cpu_kprunrun ? "yes" : "no"); 2941 2942 if (cpu->cpu_last_swtch) { 2943 mdb_printf("t-%-4d ", 2944 (clock_t)mdb_get_lbolt() - cpu->cpu_last_swtch); 2945 } else { 2946 mdb_printf("%-6s ", "-"); 2947 } 2948 2949 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread); 2950 2951 if (cpu->cpu_thread == cpu->cpu_idle_thread) 2952 mdb_printf(" (idle)\n"); 2953 else if (cpu->cpu_thread == NULL) 2954 mdb_printf(" -\n"); 2955 else { 2956 if (mdb_vread(&p, sizeof (p), (uintptr_t)t.t_procp) != -1) { 2957 mdb_printf(" %s\n", p.p_user.u_comm); 2958 } else { 2959 mdb_printf(" ?\n"); 2960 } 2961 } 2962 2963 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC); 2964 2965 if (cid->cid_print_flags) { 2966 int first = 1, i, j, k; 2967 char *s; 2968 2969 cid->cid_print_head = TRUE; 2970 2971 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) { 2972 if (!(cpu->cpu_flags & i)) 2973 continue; 2974 2975 if (first) { 2976 s = mdb_alloc(CPUINFO_THRDELT + 1, 2977 UM_GC | UM_SLEEP); 2978 2979 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, 2980 "%*s|%*s", CPUINFO_FLAGDELT, "", 2981 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, ""); 2982 flagbuf[nflaglines++] = s; 2983 } 2984 2985 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP); 2986 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s", 2987 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH - 2988 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j], 2989 first ? "<--+" : ""); 2990 2991 for (k = strlen(s); k < CPUINFO_THRDELT; k++) 2992 s[k] = ' '; 2993 s[k] = '\0'; 2994 2995 flagbuf[nflaglines++] = s; 2996 first = 0; 2997 } 2998 } 2999 3000 if (cid->cid_print_ithr) { 3001 int i, found_one = FALSE; 3002 int print_thr = disp.disp_nrunnable && cid->cid_print_thr; 3003 3004 for (i = NINTR - 1; i >= 0; i--) { 3005 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i]; 3006 3007 if (iaddr == NULL) 3008 continue; 3009 3010 if (!found_one) { 3011 found_one = TRUE; 3012 3013 CPUINFO_INDENT; 3014 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ', 3015 CPUINFO_ITHRDELT, ""); 3016 3017 CPUINFO_INDENT; 3018 mdb_printf("%c%*s+--> %3s %s\n", 3019 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, 3020 "", "PIL", "THREAD"); 3021 } 3022 3023 if (mdb_vread(&t, sizeof (t), iaddr) == -1) { 3024 mdb_warn("failed to read kthread_t at %p", 3025 iaddr); 3026 return (WALK_ERR); 3027 } 3028 3029 CPUINFO_INDENT; 3030 mdb_printf("%c%*s %3d %0*p\n", 3031 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", 3032 t.t_pil, CPUINFO_TWIDTH, iaddr); 3033 3034 pinned = (uintptr_t)t.t_intr; 3035 } 3036 3037 if (found_one && pinned != NULL) { 3038 cid->cid_print_head = TRUE; 3039 (void) strcpy(p.p_user.u_comm, "?"); 3040 3041 if (mdb_vread(&t, sizeof (t), 3042 (uintptr_t)pinned) == -1) { 3043 mdb_warn("failed to read kthread_t at %p", 3044 pinned); 3045 return (WALK_ERR); 3046 } 3047 if (mdb_vread(&p, sizeof (p), 3048 (uintptr_t)t.t_procp) == -1) { 3049 mdb_warn("failed to read proc_t at %p", 3050 t.t_procp); 3051 return (WALK_ERR); 3052 } 3053 3054 CPUINFO_INDENT; 3055 mdb_printf("%c%*s %3s %0*p %s\n", 3056 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-", 3057 CPUINFO_TWIDTH, pinned, 3058 pinned == (uintptr_t)cpu->cpu_idle_thread ? 3059 "(idle)" : p.p_user.u_comm); 3060 } 3061 } 3062 3063 if (disp.disp_nrunnable && cid->cid_print_thr) { 3064 dispq_t *dq; 3065 3066 int i, npri = disp.disp_npri; 3067 3068 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC); 3069 3070 if (mdb_vread(dq, sizeof (dispq_t) * npri, 3071 (uintptr_t)disp.disp_q) == -1) { 3072 mdb_warn("failed to read dispq_t at %p", disp.disp_q); 3073 return (WALK_ERR); 3074 } 3075 3076 CPUINFO_INDENT; 3077 mdb_printf("|\n"); 3078 3079 CPUINFO_INDENT; 3080 mdb_printf("+--> %3s %-*s %s\n", "PRI", 3081 CPUINFO_TWIDTH, "THREAD", "PROC"); 3082 3083 for (i = npri - 1; i >= 0; i--) { 3084 uintptr_t taddr = (uintptr_t)dq[i].dq_first; 3085 3086 while (taddr != NULL) { 3087 if (mdb_vread(&t, sizeof (t), taddr) == -1) { 3088 mdb_warn("failed to read kthread_t " 3089 "at %p", taddr); 3090 return (WALK_ERR); 3091 } 3092 if (mdb_vread(&p, sizeof (p), 3093 (uintptr_t)t.t_procp) == -1) { 3094 mdb_warn("failed to read proc_t at %p", 3095 t.t_procp); 3096 return (WALK_ERR); 3097 } 3098 3099 CPUINFO_INDENT; 3100 mdb_printf(" %3d %0*p %s\n", t.t_pri, 3101 CPUINFO_TWIDTH, taddr, p.p_user.u_comm); 3102 3103 taddr = (uintptr_t)t.t_link; 3104 } 3105 } 3106 cid->cid_print_head = TRUE; 3107 } 3108 3109 while (flagline < nflaglines) 3110 mdb_printf("%s\n", flagbuf[flagline++]); 3111 3112 if (cid->cid_print_head) 3113 mdb_printf("\n"); 3114 3115 return (rval); 3116 } 3117 3118 int 3119 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3120 { 3121 uint_t verbose = FALSE; 3122 cpuinfo_data_t cid; 3123 3124 cid.cid_print_ithr = FALSE; 3125 cid.cid_print_thr = FALSE; 3126 cid.cid_print_flags = FALSE; 3127 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE; 3128 cid.cid_cpu = -1; 3129 3130 if (flags & DCMD_ADDRSPEC) 3131 cid.cid_cpu = addr; 3132 3133 if (mdb_getopts(argc, argv, 3134 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc) 3135 return (DCMD_USAGE); 3136 3137 if (verbose) { 3138 cid.cid_print_ithr = TRUE; 3139 cid.cid_print_thr = TRUE; 3140 cid.cid_print_flags = TRUE; 3141 cid.cid_print_head = TRUE; 3142 } 3143 3144 if (cid.cid_print_ithr) { 3145 int i; 3146 3147 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **) 3148 * NCPU, UM_SLEEP | UM_GC); 3149 3150 for (i = 0; i < NCPU; i++) 3151 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) * 3152 NINTR, UM_SLEEP | UM_GC); 3153 3154 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread, 3155 &cid) == -1) { 3156 mdb_warn("couldn't walk thread"); 3157 return (DCMD_ERR); 3158 } 3159 } 3160 3161 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) { 3162 mdb_warn("can't walk cpus"); 3163 return (DCMD_ERR); 3164 } 3165 3166 if (cid.cid_cpu != -1) { 3167 /* 3168 * We didn't find this CPU when we walked through the CPUs 3169 * (i.e. the address specified doesn't show up in the "cpu" 3170 * walk). However, the specified address may still correspond 3171 * to a valid cpu_t (for example, if the specified address is 3172 * the actual panicking cpu_t and not the cached panic_cpu). 3173 * Point is: even if we didn't find it, we still want to try 3174 * to print the specified address as a cpu_t. 3175 */ 3176 cpu_t cpu; 3177 3178 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) { 3179 mdb_warn("%p is neither a valid CPU ID nor a " 3180 "valid cpu_t address\n", cid.cid_cpu); 3181 return (DCMD_ERR); 3182 } 3183 3184 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid); 3185 } 3186 3187 return (DCMD_OK); 3188 } 3189 3190 /*ARGSUSED*/ 3191 int 3192 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3193 { 3194 int i; 3195 3196 if (!(flags & DCMD_ADDRSPEC)) 3197 return (DCMD_USAGE); 3198 3199 for (i = 0; i < sizeof (addr) * NBBY; i++) 3200 mdb_printf("%p\n", addr ^ (1UL << i)); 3201 3202 return (DCMD_OK); 3203 } 3204 3205 int 3206 as2proc_walk(uintptr_t addr, const proc_t *p, struct as **asp) 3207 { 3208 if (p->p_as == *asp) 3209 mdb_printf("%p\n", addr); 3210 return (WALK_NEXT); 3211 } 3212 3213 /*ARGSUSED*/ 3214 int 3215 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3216 { 3217 if (!(flags & DCMD_ADDRSPEC) || argc != 0) 3218 return (DCMD_USAGE); 3219 3220 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) { 3221 mdb_warn("failed to walk proc"); 3222 return (DCMD_ERR); 3223 } 3224 3225 return (DCMD_OK); 3226 } 3227 3228 /*ARGSUSED*/ 3229 int 3230 ptree_walk(uintptr_t addr, const proc_t *p, void *ignored) 3231 { 3232 proc_t parent; 3233 int ident = 0; 3234 uintptr_t paddr; 3235 3236 for (paddr = (uintptr_t)p->p_parent; paddr != NULL; ident += 5) { 3237 mdb_vread(&parent, sizeof (parent), paddr); 3238 paddr = (uintptr_t)parent.p_parent; 3239 } 3240 3241 mdb_inc_indent(ident); 3242 mdb_printf("%0?p %s\n", addr, p->p_user.u_comm); 3243 mdb_dec_indent(ident); 3244 3245 return (WALK_NEXT); 3246 } 3247 3248 void 3249 ptree_ancestors(uintptr_t addr, uintptr_t start) 3250 { 3251 proc_t p; 3252 3253 if (mdb_vread(&p, sizeof (p), addr) == -1) { 3254 mdb_warn("couldn't read ancestor at %p", addr); 3255 return; 3256 } 3257 3258 if (p.p_parent != NULL) 3259 ptree_ancestors((uintptr_t)p.p_parent, start); 3260 3261 if (addr != start) 3262 (void) ptree_walk(addr, &p, NULL); 3263 } 3264 3265 /*ARGSUSED*/ 3266 int 3267 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3268 { 3269 if (!(flags & DCMD_ADDRSPEC)) 3270 addr = NULL; 3271 else 3272 ptree_ancestors(addr, addr); 3273 3274 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) { 3275 mdb_warn("couldn't walk 'proc'"); 3276 return (DCMD_ERR); 3277 } 3278 3279 return (DCMD_OK); 3280 } 3281 3282 /*ARGSUSED*/ 3283 static int 3284 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3285 { 3286 int fdnum; 3287 const mdb_arg_t *argp = &argv[0]; 3288 proc_t p; 3289 uf_entry_t uf; 3290 3291 if ((flags & DCMD_ADDRSPEC) == 0) { 3292 mdb_warn("fd doesn't give global information\n"); 3293 return (DCMD_ERR); 3294 } 3295 if (argc != 1) 3296 return (DCMD_USAGE); 3297 3298 if (argp->a_type == MDB_TYPE_IMMEDIATE) 3299 fdnum = argp->a_un.a_val; 3300 else 3301 fdnum = mdb_strtoull(argp->a_un.a_str); 3302 3303 if (mdb_vread(&p, sizeof (struct proc), addr) == -1) { 3304 mdb_warn("couldn't read proc_t at %p", addr); 3305 return (DCMD_ERR); 3306 } 3307 if (fdnum > p.p_user.u_finfo.fi_nfiles) { 3308 mdb_warn("process %p only has %d files open.\n", 3309 addr, p.p_user.u_finfo.fi_nfiles); 3310 return (DCMD_ERR); 3311 } 3312 if (mdb_vread(&uf, sizeof (uf_entry_t), 3313 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) { 3314 mdb_warn("couldn't read uf_entry_t at %p", 3315 &p.p_user.u_finfo.fi_list[fdnum]); 3316 return (DCMD_ERR); 3317 } 3318 3319 mdb_printf("%p\n", uf.uf_file); 3320 return (DCMD_OK); 3321 } 3322 3323 /*ARGSUSED*/ 3324 static int 3325 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3326 { 3327 pid_t pid = (pid_t)addr; 3328 3329 if (argc != 0) 3330 return (DCMD_USAGE); 3331 3332 if ((addr = mdb_pid2proc(pid, NULL)) == NULL) { 3333 mdb_warn("PID 0t%d not found\n", pid); 3334 return (DCMD_ERR); 3335 } 3336 3337 mdb_printf("%p\n", addr); 3338 return (DCMD_OK); 3339 } 3340 3341 static char *sysfile_cmd[] = { 3342 "exclude:", 3343 "include:", 3344 "forceload:", 3345 "rootdev:", 3346 "rootfs:", 3347 "swapdev:", 3348 "swapfs:", 3349 "moddir:", 3350 "set", 3351 "unknown", 3352 }; 3353 3354 static char *sysfile_ops[] = { "", "=", "&", "|" }; 3355 3356 /*ARGSUSED*/ 3357 static int 3358 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target) 3359 { 3360 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) { 3361 *target = NULL; 3362 return (WALK_DONE); 3363 } 3364 return (WALK_NEXT); 3365 } 3366 3367 /*ARGSUSED*/ 3368 static int 3369 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3370 { 3371 struct sysparam *sysp, sys; 3372 char var[256]; 3373 char modname[256]; 3374 char val[256]; 3375 char strval[256]; 3376 vmem_t *mod_sysfile_arena; 3377 void *straddr; 3378 3379 if (mdb_readvar(&sysp, "sysparam_hd") == -1) { 3380 mdb_warn("failed to read sysparam_hd"); 3381 return (DCMD_ERR); 3382 } 3383 3384 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) { 3385 mdb_warn("failed to read mod_sysfile_arena"); 3386 return (DCMD_ERR); 3387 } 3388 3389 while (sysp != NULL) { 3390 var[0] = '\0'; 3391 val[0] = '\0'; 3392 modname[0] = '\0'; 3393 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) { 3394 mdb_warn("couldn't read sysparam %p", sysp); 3395 return (DCMD_ERR); 3396 } 3397 if (sys.sys_modnam != NULL && 3398 mdb_readstr(modname, 256, 3399 (uintptr_t)sys.sys_modnam) == -1) { 3400 mdb_warn("couldn't read modname in %p", sysp); 3401 return (DCMD_ERR); 3402 } 3403 if (sys.sys_ptr != NULL && 3404 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) { 3405 mdb_warn("couldn't read ptr in %p", sysp); 3406 return (DCMD_ERR); 3407 } 3408 if (sys.sys_op != SETOP_NONE) { 3409 /* 3410 * Is this an int or a string? We determine this 3411 * by checking whether straddr is contained in 3412 * mod_sysfile_arena. If so, the walker will set 3413 * straddr to NULL. 3414 */ 3415 straddr = (void *)(uintptr_t)sys.sys_info; 3416 if (sys.sys_op == SETOP_ASSIGN && 3417 sys.sys_info != 0 && 3418 mdb_pwalk("vmem_seg", 3419 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr, 3420 (uintptr_t)mod_sysfile_arena) == 0 && 3421 straddr == NULL && 3422 mdb_readstr(strval, 256, 3423 (uintptr_t)sys.sys_info) != -1) { 3424 (void) mdb_snprintf(val, sizeof (val), "\"%s\"", 3425 strval); 3426 } else { 3427 (void) mdb_snprintf(val, sizeof (val), 3428 "0x%llx [0t%llu]", sys.sys_info, 3429 sys.sys_info); 3430 } 3431 } 3432 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type], 3433 modname, modname[0] == '\0' ? "" : ":", 3434 var, sysfile_ops[sys.sys_op], val); 3435 3436 sysp = sys.sys_next; 3437 } 3438 3439 return (DCMD_OK); 3440 } 3441 3442 int 3443 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp) 3444 { 3445 3446 if (*didp == thr->t_did) { 3447 mdb_printf("%p\n", addr); 3448 return (WALK_DONE); 3449 } else 3450 return (WALK_NEXT); 3451 } 3452 3453 /*ARGSUSED*/ 3454 int 3455 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3456 { 3457 const mdb_arg_t *argp = &argv[0]; 3458 kt_did_t did; 3459 3460 if (argc != 1) 3461 return (DCMD_USAGE); 3462 3463 did = (kt_did_t)mdb_strtoull(argp->a_un.a_str); 3464 3465 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) { 3466 mdb_warn("failed to walk thread"); 3467 return (DCMD_ERR); 3468 3469 } 3470 return (DCMD_OK); 3471 3472 } 3473 3474 static int 3475 errorq_walk_init(mdb_walk_state_t *wsp) 3476 { 3477 if (wsp->walk_addr == NULL && 3478 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) { 3479 mdb_warn("failed to read errorq_list"); 3480 return (WALK_ERR); 3481 } 3482 3483 return (WALK_NEXT); 3484 } 3485 3486 static int 3487 errorq_walk_step(mdb_walk_state_t *wsp) 3488 { 3489 uintptr_t addr = wsp->walk_addr; 3490 errorq_t eq; 3491 3492 if (addr == NULL) 3493 return (WALK_DONE); 3494 3495 if (mdb_vread(&eq, sizeof (eq), addr) == -1) { 3496 mdb_warn("failed to read errorq at %p", addr); 3497 return (WALK_ERR); 3498 } 3499 3500 wsp->walk_addr = (uintptr_t)eq.eq_next; 3501 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata)); 3502 } 3503 3504 typedef struct eqd_walk_data { 3505 uintptr_t *eqd_stack; 3506 void *eqd_buf; 3507 ulong_t eqd_qpos; 3508 ulong_t eqd_qlen; 3509 size_t eqd_size; 3510 } eqd_walk_data_t; 3511 3512 /* 3513 * In order to walk the list of pending error queue elements, we push the 3514 * addresses of the corresponding data buffers in to the eqd_stack array. 3515 * The error lists are in reverse chronological order when iterating using 3516 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the 3517 * walker client gets addresses in order from oldest error to newest error. 3518 */ 3519 static void 3520 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr) 3521 { 3522 errorq_elem_t eqe; 3523 3524 while (addr != NULL) { 3525 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) { 3526 mdb_warn("failed to read errorq element at %p", addr); 3527 break; 3528 } 3529 3530 if (eqdp->eqd_qpos == eqdp->eqd_qlen) { 3531 mdb_warn("errorq is overfull -- more than %lu " 3532 "elems found\n", eqdp->eqd_qlen); 3533 break; 3534 } 3535 3536 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data; 3537 addr = (uintptr_t)eqe.eqe_prev; 3538 } 3539 } 3540 3541 static int 3542 eqd_walk_init(mdb_walk_state_t *wsp) 3543 { 3544 eqd_walk_data_t *eqdp; 3545 errorq_elem_t eqe, *addr; 3546 errorq_t eq; 3547 ulong_t i; 3548 3549 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) { 3550 mdb_warn("failed to read errorq at %p", wsp->walk_addr); 3551 return (WALK_ERR); 3552 } 3553 3554 if (eq.eq_ptail != NULL && 3555 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) { 3556 mdb_warn("failed to read errorq element at %p", eq.eq_ptail); 3557 return (WALK_ERR); 3558 } 3559 3560 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP); 3561 wsp->walk_data = eqdp; 3562 3563 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP); 3564 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP); 3565 eqdp->eqd_qlen = eq.eq_qlen; 3566 eqdp->eqd_qpos = 0; 3567 eqdp->eqd_size = eq.eq_size; 3568 3569 /* 3570 * The newest elements in the queue are on the pending list, so we 3571 * push those on to our stack first. 3572 */ 3573 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend); 3574 3575 /* 3576 * If eq_ptail is set, it may point to a subset of the errors on the 3577 * pending list in the event a casptr() failed; if ptail's data is 3578 * already in our stack, NULL out eq_ptail and ignore it. 3579 */ 3580 if (eq.eq_ptail != NULL) { 3581 for (i = 0; i < eqdp->eqd_qpos; i++) { 3582 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) { 3583 eq.eq_ptail = NULL; 3584 break; 3585 } 3586 } 3587 } 3588 3589 /* 3590 * If eq_phead is set, it has the processing list in order from oldest 3591 * to newest. Use this to recompute eq_ptail as best we can and then 3592 * we nicely fall into eqd_push_list() of eq_ptail below. 3593 */ 3594 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe), 3595 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next) 3596 eq.eq_ptail = addr; 3597 3598 /* 3599 * The oldest elements in the queue are on the processing list, subject 3600 * to machinations in the if-clauses above. Push any such elements. 3601 */ 3602 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail); 3603 return (WALK_NEXT); 3604 } 3605 3606 static int 3607 eqd_walk_step(mdb_walk_state_t *wsp) 3608 { 3609 eqd_walk_data_t *eqdp = wsp->walk_data; 3610 uintptr_t addr; 3611 3612 if (eqdp->eqd_qpos == 0) 3613 return (WALK_DONE); 3614 3615 addr = eqdp->eqd_stack[--eqdp->eqd_qpos]; 3616 3617 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) { 3618 mdb_warn("failed to read errorq data at %p", addr); 3619 return (WALK_ERR); 3620 } 3621 3622 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata)); 3623 } 3624 3625 static void 3626 eqd_walk_fini(mdb_walk_state_t *wsp) 3627 { 3628 eqd_walk_data_t *eqdp = wsp->walk_data; 3629 3630 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen); 3631 mdb_free(eqdp->eqd_buf, eqdp->eqd_size); 3632 mdb_free(eqdp, sizeof (eqd_walk_data_t)); 3633 } 3634 3635 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64) 3636 3637 static int 3638 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3639 { 3640 int i; 3641 errorq_t eq; 3642 uint_t opt_v = FALSE; 3643 3644 if (!(flags & DCMD_ADDRSPEC)) { 3645 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) { 3646 mdb_warn("can't walk 'errorq'"); 3647 return (DCMD_ERR); 3648 } 3649 return (DCMD_OK); 3650 } 3651 3652 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL); 3653 argc -= i; 3654 argv += i; 3655 3656 if (argc != 0) 3657 return (DCMD_USAGE); 3658 3659 if (opt_v || DCMD_HDRSPEC(flags)) { 3660 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ", 3661 "ADDR", "NAME", "S", "V", "N"); 3662 if (!opt_v) { 3663 mdb_printf("%7s %7s %7s%</u>\n", 3664 "ACCEPT", "DROP", "LOG"); 3665 } else { 3666 mdb_printf("%5s %6s %6s %3s %16s%</u>\n", 3667 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC"); 3668 } 3669 } 3670 3671 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) { 3672 mdb_warn("failed to read errorq at %p", addr); 3673 return (DCMD_ERR); 3674 } 3675 3676 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name, 3677 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-', 3678 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ', 3679 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' '); 3680 3681 if (!opt_v) { 3682 mdb_printf("%7llu %7llu %7llu\n", 3683 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed), 3684 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) + 3685 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged)); 3686 } else { 3687 mdb_printf("%5s %6lu %6lu %3u %a\n", 3688 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func); 3689 mdb_printf("%38s\n%41s" 3690 "%12s %llu\n" 3691 "%53s %llu\n" 3692 "%53s %llu\n" 3693 "%53s %llu\n" 3694 "%53s %llu\n" 3695 "%53s %llu\n" 3696 "%53s %llu\n" 3697 "%53s %llu\n\n", 3698 "|", "+-> ", 3699 "DISPATCHED", EQKSVAL(eq, eqk_dispatched), 3700 "DROPPED", EQKSVAL(eq, eqk_dropped), 3701 "LOGGED", EQKSVAL(eq, eqk_logged), 3702 "RESERVED", EQKSVAL(eq, eqk_reserved), 3703 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail), 3704 "COMMITTED", EQKSVAL(eq, eqk_committed), 3705 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail), 3706 "CANCELLED", EQKSVAL(eq, eqk_cancelled)); 3707 } 3708 3709 return (DCMD_OK); 3710 } 3711 3712 /*ARGSUSED*/ 3713 static int 3714 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3715 { 3716 cpu_t panic_cpu; 3717 kthread_t *panic_thread; 3718 void *buf; 3719 panic_data_t *pd; 3720 int i, n; 3721 3722 if (!mdb_prop_postmortem) { 3723 mdb_warn("panicinfo can only be run on a system " 3724 "dump; see dumpadm(1M)\n"); 3725 return (DCMD_ERR); 3726 } 3727 3728 if (flags & DCMD_ADDRSPEC || argc != 0) 3729 return (DCMD_USAGE); 3730 3731 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1) 3732 mdb_warn("failed to read 'panic_cpu'"); 3733 else 3734 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id); 3735 3736 if (mdb_readvar(&panic_thread, "panic_thread") == -1) 3737 mdb_warn("failed to read 'panic_thread'"); 3738 else 3739 mdb_printf("%16s %?p\n", "thread", panic_thread); 3740 3741 buf = mdb_alloc(PANICBUFSIZE, UM_SLEEP); 3742 pd = (panic_data_t *)buf; 3743 3744 if (mdb_readsym(buf, PANICBUFSIZE, "panicbuf") == -1 || 3745 pd->pd_version != PANICBUFVERS) { 3746 mdb_warn("failed to read 'panicbuf'"); 3747 mdb_free(buf, PANICBUFSIZE); 3748 return (DCMD_ERR); 3749 } 3750 3751 mdb_printf("%16s %s\n", "message", (char *)buf + pd->pd_msgoff); 3752 3753 n = (pd->pd_msgoff - (sizeof (panic_data_t) - 3754 sizeof (panic_nv_t))) / sizeof (panic_nv_t); 3755 3756 for (i = 0; i < n; i++) 3757 mdb_printf("%16s %?llx\n", 3758 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value); 3759 3760 mdb_free(buf, PANICBUFSIZE); 3761 return (DCMD_OK); 3762 } 3763 3764 /* 3765 * ::time dcmd, which will print a hires timestamp of when we entered the 3766 * debugger, or the lbolt value if used with the -l option. 3767 * 3768 */ 3769 /*ARGSUSED*/ 3770 static int 3771 time(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3772 { 3773 uint_t opt_dec = FALSE; 3774 uint_t opt_lbolt = FALSE; 3775 uint_t opt_hex = FALSE; 3776 const char *fmt; 3777 hrtime_t result; 3778 3779 if (mdb_getopts(argc, argv, 3780 'd', MDB_OPT_SETBITS, TRUE, &opt_dec, 3781 'l', MDB_OPT_SETBITS, TRUE, &opt_lbolt, 3782 'x', MDB_OPT_SETBITS, TRUE, &opt_hex, 3783 NULL) != argc) 3784 return (DCMD_USAGE); 3785 3786 if (opt_dec && opt_hex) 3787 return (DCMD_USAGE); 3788 3789 result = opt_lbolt ? mdb_get_lbolt() : mdb_gethrtime(); 3790 fmt = 3791 opt_hex ? "0x%llx\n" : 3792 opt_dec ? "0t%lld\n" : "%#llr\n"; 3793 3794 mdb_printf(fmt, result); 3795 return (DCMD_OK); 3796 } 3797 3798 void 3799 time_help(void) 3800 { 3801 mdb_printf("Prints the system time in nanoseconds.\n\n" 3802 "::time will return the timestamp at which we dropped into, \n" 3803 "if called from, kmdb(1); the core dump's high resolution \n" 3804 "time if inspecting one; or the running hires time if we're \n" 3805 "looking at a live system.\n\n" 3806 "Switches:\n" 3807 " -d report times in decimal\n" 3808 " -l prints the number of clock ticks since system boot\n" 3809 " -x report times in hexadecimal\n"); 3810 } 3811 3812 static const mdb_dcmd_t dcmds[] = { 3813 3814 /* from genunix.c */ 3815 { "as2proc", ":", "convert as to proc_t address", as2proc }, 3816 { "binding_hash_entry", ":", "print driver names hash table entry", 3817 binding_hash_entry }, 3818 { "callout", "?[-r|n] [-s|l] [-xhB] [-t | -ab nsec [-dkD]]" 3819 " [-C addr | -S seqid] [-f name|addr] [-p name| addr] [-T|L [-E]]" 3820 " [-FivVA]", 3821 "display callouts", callout, callout_help }, 3822 { "calloutid", "[-d|v] xid", "print callout by extended id", 3823 calloutid, calloutid_help }, 3824 { "class", NULL, "print process scheduler classes", class }, 3825 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo }, 3826 { "did2thread", "? kt_did", "find kernel thread for this id", 3827 did2thread }, 3828 { "errorq", "?[-v]", "display kernel error queues", errorq }, 3829 { "fd", ":[fd num]", "get a file pointer from an fd", fd }, 3830 { "flipone", ":", "the vik_rev_level 2 special", flipone }, 3831 { "lminfo", NULL, "print lock manager information", lminfo }, 3832 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl }, 3833 { "panicinfo", NULL, "print panic information", panicinfo }, 3834 { "pid2proc", "?", "convert PID to proc_t address", pid2proc }, 3835 { "project", NULL, "display kernel project(s)", project }, 3836 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps }, 3837 { "pgrep", "[-x] [-n | -o] pattern", 3838 "pattern match against all processes", pgrep }, 3839 { "ptree", NULL, "print process tree", ptree }, 3840 { "sysevent", "?[-sv]", "print sysevent pending or sent queue", 3841 sysevent}, 3842 { "sysevent_channel", "?", "print sysevent channel database", 3843 sysevent_channel}, 3844 { "sysevent_class_list", ":", "print sysevent class list", 3845 sysevent_class_list}, 3846 { "sysevent_subclass_list", ":", 3847 "print sysevent subclass list", sysevent_subclass_list}, 3848 { "system", NULL, "print contents of /etc/system file", sysfile }, 3849 { "task", NULL, "display kernel task(s)", task }, 3850 { "time", "[-dlx]", "display system time", time, time_help }, 3851 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path }, 3852 { "whereopen", ":", "given a vnode, dumps procs which have it open", 3853 whereopen }, 3854 3855 /* from bio.c */ 3856 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind }, 3857 3858 /* from bitset.c */ 3859 { "bitset", ":", "display a bitset", bitset, bitset_help }, 3860 3861 /* from contract.c */ 3862 { "contract", "?", "display a contract", cmd_contract }, 3863 { "ctevent", ":", "display a contract event", cmd_ctevent }, 3864 { "ctid", ":", "convert id to a contract pointer", cmd_ctid }, 3865 3866 /* from cpupart.c */ 3867 { "cpupart", "?[-v]", "print cpu partition info", cpupart }, 3868 3869 /* from cred.c */ 3870 { "cred", ":[-v]", "display a credential", cmd_cred }, 3871 { "credgrp", ":[-v]", "display cred_t groups", cmd_credgrp }, 3872 { "credsid", ":[-v]", "display a credsid_t", cmd_credsid }, 3873 { "ksidlist", ":[-v]", "display a ksidlist_t", cmd_ksidlist }, 3874 3875 /* from cyclic.c */ 3876 { "cyccover", NULL, "dump cyclic coverage information", cyccover }, 3877 { "cycid", "?", "dump a cyclic id", cycid }, 3878 { "cycinfo", "?", "dump cyc_cpu info", cycinfo }, 3879 { "cyclic", ":", "developer information", cyclic }, 3880 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace }, 3881 3882 /* from damap.c */ 3883 { "damap", ":", "display a damap_t", damap, damap_help }, 3884 3885 /* from devinfo.c */ 3886 { "devbindings", "?[-qs] [device-name | major-num]", 3887 "print devinfo nodes bound to device-name or major-num", 3888 devbindings, devinfo_help }, 3889 { "devinfo", ":[-qs]", "detailed devinfo of one node", devinfo, 3890 devinfo_help }, 3891 { "devinfo_audit", ":[-v]", "devinfo configuration audit record", 3892 devinfo_audit }, 3893 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log", 3894 devinfo_audit_log }, 3895 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history", 3896 devinfo_audit_node }, 3897 { "devinfo2driver", ":", "find driver name for this devinfo node", 3898 devinfo2driver }, 3899 { "devnames", "?[-vm] [num]", "print devnames array", devnames }, 3900 { "dev2major", "?<dev_t>", "convert dev_t to a major number", 3901 dev2major }, 3902 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number", 3903 dev2minor }, 3904 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers", 3905 devt }, 3906 { "major2name", "?<major-num>", "convert major number to dev name", 3907 major2name }, 3908 { "minornodes", ":", "given a devinfo node, print its minor nodes", 3909 minornodes }, 3910 { "modctl2devinfo", ":", "given a modctl, list its devinfos", 3911 modctl2devinfo }, 3912 { "name2major", "<dev-name>", "convert dev name to major number", 3913 name2major }, 3914 { "prtconf", "?[-vpc]", "print devinfo tree", prtconf, prtconf_help }, 3915 { "softstate", ":<instance>", "retrieve soft-state pointer", 3916 softstate }, 3917 { "devinfo_fm", ":", "devinfo fault managment configuration", 3918 devinfo_fm }, 3919 { "devinfo_fmce", ":", "devinfo fault managment cache entry", 3920 devinfo_fmce}, 3921 3922 /* from findstack.c */ 3923 { "findstack", ":[-v]", "find kernel thread stack", findstack }, 3924 { "findstack_debug", NULL, "toggle findstack debugging", 3925 findstack_debug }, 3926 { "stacks", "?[-afiv] [-c func] [-C func] [-m module] [-M module] " 3927 "[-s sobj | -S sobj] [-t tstate | -T tstate]", 3928 "print unique kernel thread stacks", 3929 stacks, stacks_help }, 3930 3931 /* from fm.c */ 3932 { "ereport", "[-v]", "print ereports logged in dump", 3933 ereport }, 3934 3935 /* from group.c */ 3936 { "group", "?[-q]", "display a group", group}, 3937 3938 /* from hotplug.c */ 3939 { "hotplug", "?[-p]", "display a registered hotplug attachment", 3940 hotplug, hotplug_help }, 3941 3942 /* from irm.c */ 3943 { "irmpools", NULL, "display interrupt pools", irmpools_dcmd }, 3944 { "irmreqs", NULL, "display interrupt requests in an interrupt pool", 3945 irmreqs_dcmd }, 3946 { "irmreq", NULL, "display an interrupt request", irmreq_dcmd }, 3947 3948 /* from kgrep.c + genunix.c */ 3949 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep, 3950 kgrep_help }, 3951 3952 /* from kmem.c */ 3953 { "allocdby", ":", "given a thread, print its allocated buffers", 3954 allocdby }, 3955 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] " 3956 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help }, 3957 { "freedby", ":", "given a thread, print its freed buffers", freedby }, 3958 { "kmalog", "?[ fail | slab ]", 3959 "display kmem transaction log and stack traces", kmalog }, 3960 { "kmastat", NULL, "kernel memory allocator stats", kmastat }, 3961 { "kmausers", "?[-ef] [cache ...]", "current medium and large users " 3962 "of the kmem allocator", kmausers, kmausers_help }, 3963 { "kmem_cache", "?[-n name]", 3964 "print kernel memory caches", kmem_cache, kmem_cache_help}, 3965 { "kmem_slabs", "?[-v] [-n cache] [-N cache] [-b maxbins] " 3966 "[-B minbinsize]", "display slab usage per kmem cache", 3967 kmem_slabs, kmem_slabs_help }, 3968 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug }, 3969 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log }, 3970 { "kmem_verify", "?", "check integrity of kmem-managed memory", 3971 kmem_verify }, 3972 { "vmem", "?", "print a vmem_t", vmem }, 3973 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] " 3974 "[-m minsize] [-M maxsize] [-t thread] [-T type]", 3975 "print or filter a vmem_seg", vmem_seg, vmem_seg_help }, 3976 { "whatthread", ":[-v]", "print threads whose stack contains the " 3977 "given address", whatthread }, 3978 3979 /* from ldi.c */ 3980 { "ldi_handle", "?[-i]", "display a layered driver handle", 3981 ldi_handle, ldi_handle_help }, 3982 { "ldi_ident", NULL, "display a layered driver identifier", 3983 ldi_ident, ldi_ident_help }, 3984 3985 /* from leaky.c + leaky_subr.c */ 3986 { "findleaks", FINDLEAKS_USAGE, 3987 "search for potential kernel memory leaks", findleaks, 3988 findleaks_help }, 3989 3990 /* from lgrp.c */ 3991 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp}, 3992 { "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set}, 3993 3994 /* from log.c */ 3995 { "msgbuf", "?[-v]", "print most recent console messages", msgbuf }, 3996 3997 /* from mdi.c */ 3998 { "mdipi", NULL, "given a path, dump mdi_pathinfo " 3999 "and detailed pi_prop list", mdipi }, 4000 { "mdiprops", NULL, "given a pi_prop, dump the pi_prop list", 4001 mdiprops }, 4002 { "mdiphci", NULL, "given a phci, dump mdi_phci and " 4003 "list all paths", mdiphci }, 4004 { "mdivhci", NULL, "given a vhci, dump mdi_vhci and list " 4005 "all phcis", mdivhci }, 4006 { "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo " 4007 "client links", mdiclient_paths }, 4008 { "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo " 4009 "phci links", mdiphci_paths }, 4010 { "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links", 4011 mdiphcis }, 4012 4013 /* from memory.c */ 4014 { "addr2smap", ":[offset]", "translate address to smap", addr2smap }, 4015 { "memlist", "?[-iav]", "display a struct memlist", memlist }, 4016 { "memstat", NULL, "display memory usage summary", memstat }, 4017 { "page", "?", "display a summarized page_t", page }, 4018 { "pagelookup", "?[-v vp] [-o offset]", 4019 "find the page_t with the name {vp, offset}", 4020 pagelookup, pagelookup_help }, 4021 { "page_num2pp", ":", "find the page_t for a given page frame number", 4022 page_num2pp }, 4023 { "pmap", ":[-q]", "print process memory map", pmap }, 4024 { "seg", ":", "print address space segment", seg }, 4025 { "swapinfo", "?", "display a struct swapinfo", swapinfof }, 4026 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap }, 4027 4028 /* from mmd.c */ 4029 { "multidata", ":[-sv]", "display a summarized multidata_t", 4030 multidata }, 4031 { "pattbl", ":", "display a summarized multidata attribute table", 4032 pattbl }, 4033 { "pattr2multidata", ":", "print multidata pointer from pattr_t", 4034 pattr2multidata }, 4035 { "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t", 4036 pdesc2slab }, 4037 { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify }, 4038 { "slab2multidata", ":", "print multidata pointer from pdesc_slab_t", 4039 slab2multidata }, 4040 4041 /* from modhash.c */ 4042 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]", 4043 "display information about one or all mod_hash structures", 4044 modhash, modhash_help }, 4045 { "modent", ":[-k | -v | -t type]", 4046 "display information about a mod_hash_entry", modent, 4047 modent_help }, 4048 4049 /* from net.c */ 4050 { "dladm", "?<sub-command> [flags]", "show data link information", 4051 dladm, dladm_help }, 4052 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload", 4053 mi }, 4054 { "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp | icmp]", 4055 "show network statistics", netstat }, 4056 { "sonode", "?[-f inet | inet6 | unix | #] " 4057 "[-t stream | dgram | raw | #] [-p #]", 4058 "filter and display sonode", sonode }, 4059 4060 /* from netstack.c */ 4061 { "netstack", "", "show stack instances", netstack }, 4062 { "netstackid2netstack", ":", 4063 "translate a netstack id to its netstack_t", 4064 netstackid2netstack }, 4065 4066 /* from nvpair.c */ 4067 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR, 4068 nvpair_print }, 4069 { NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR, 4070 print_nvlist }, 4071 4072 /* from pg.c */ 4073 { "pg", "?[-q]", "display a pg", pg}, 4074 4075 /* from rctl.c */ 4076 { "rctl_dict", "?", "print systemwide default rctl definitions", 4077 rctl_dict }, 4078 { "rctl_list", ":[handle]", "print rctls for the given proc", 4079 rctl_list }, 4080 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle", 4081 rctl }, 4082 { "rctl_validate", ":[-v] [-n #]", "test resource control value " 4083 "sequence", rctl_validate }, 4084 4085 /* from sobj.c */ 4086 { "rwlock", ":", "dump out a readers/writer lock", rwlock }, 4087 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex, 4088 mutex_help }, 4089 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts }, 4090 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo }, 4091 { "turnstile", "?", "display a turnstile", turnstile }, 4092 4093 /* from stream.c */ 4094 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]", 4095 "print an mblk", mblk_prt, mblk_help }, 4096 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify }, 4097 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address", 4098 mblk2dblk }, 4099 { "q2otherq", ":", "print peer queue for a given queue", q2otherq }, 4100 { "q2rdq", ":", "print read queue for a given queue", q2rdq }, 4101 { "q2syncq", ":", "print syncq for a given queue", q2syncq }, 4102 { "q2stream", ":", "print stream pointer for a given queue", q2stream }, 4103 { "q2wrq", ":", "print write queue for a given queue", q2wrq }, 4104 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]", 4105 "filter and display STREAM queue", queue, queue_help }, 4106 { "stdata", ":[-q|v] [-f flag] [-F flag]", 4107 "filter and display STREAM head", stdata, stdata_help }, 4108 { "str2mate", ":", "print mate of this stream", str2mate }, 4109 { "str2wrq", ":", "print write queue of this stream", str2wrq }, 4110 { "stream", ":", "display STREAM", stream }, 4111 { "strftevent", ":", "print STREAMS flow trace event", strftevent }, 4112 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]", 4113 "filter and display STREAM sync queue", syncq, syncq_help }, 4114 { "syncq2q", ":", "print queue for a given syncq", syncq2q }, 4115 4116 /* from taskq.c */ 4117 { "taskq", ":[-atT] [-m min_maxq] [-n name]", 4118 "display a taskq", taskq, taskq_help }, 4119 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent }, 4120 4121 /* from thread.c */ 4122 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread, 4123 thread_help }, 4124 { "threadlist", "?[-t] [-v [count]]", 4125 "display threads and associated C stack traces", threadlist, 4126 threadlist_help }, 4127 { "stackinfo", "?[-h|-a]", "display kthread_t stack usage", stackinfo, 4128 stackinfo_help }, 4129 4130 /* from tsd.c */ 4131 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd }, 4132 { "tsdtot", ":", "find thread with this tsd", tsdtot }, 4133 4134 /* 4135 * typegraph does not work under kmdb, as it requires too much memory 4136 * for its internal data structures. 4137 */ 4138 #ifndef _KMDB 4139 /* from typegraph.c */ 4140 { "findlocks", ":", "find locks held by specified thread", findlocks }, 4141 { "findfalse", "?[-v]", "find potentially falsely shared structures", 4142 findfalse }, 4143 { "typegraph", NULL, "build type graph", typegraph }, 4144 { "istype", ":type", "manually set object type", istype }, 4145 { "notype", ":", "manually clear object type", notype }, 4146 { "whattype", ":", "determine object type", whattype }, 4147 #endif 4148 4149 /* from vfs.c */ 4150 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo }, 4151 { "pfiles", ":[-fp]", "print process file information", pfiles, 4152 pfiles_help }, 4153 4154 /* from zone.c */ 4155 { "zid2zone", ":", "find the zone_t with the given zone id", 4156 zid2zone }, 4157 { "zdid2zone", ":", "find the zone_t with the given zone debug id", 4158 zdid2zone }, 4159 { "zone", "?[-r [-v]]", "display kernel zone(s)", zoneprt }, 4160 { "zsd", ":[-v] [zsd_key]", "display zone-specific-data entries for " 4161 "selected zones", zsd }, 4162 4163 { NULL } 4164 }; 4165 4166 static const mdb_walker_t walkers[] = { 4167 4168 /* from genunix.c */ 4169 { "callouts_bytime", "walk callouts by list chain (expiration time)", 4170 callout_walk_init, callout_walk_step, callout_walk_fini, 4171 (void *)CALLOUT_WALK_BYLIST }, 4172 { "callouts_byid", "walk callouts by id hash chain", 4173 callout_walk_init, callout_walk_step, callout_walk_fini, 4174 (void *)CALLOUT_WALK_BYID }, 4175 { "callout_list", "walk a callout list", callout_list_walk_init, 4176 callout_list_walk_step, callout_list_walk_fini }, 4177 { "callout_table", "walk callout table array", callout_table_walk_init, 4178 callout_table_walk_step, callout_table_walk_fini }, 4179 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step }, 4180 { "ereportq_dump", "walk list of ereports in dump error queue", 4181 ereportq_dump_walk_init, ereportq_dump_walk_step, NULL }, 4182 { "ereportq_pend", "walk list of ereports in pending error queue", 4183 ereportq_pend_walk_init, ereportq_pend_walk_step, NULL }, 4184 { "errorq", "walk list of system error queues", 4185 errorq_walk_init, errorq_walk_step, NULL }, 4186 { "errorq_data", "walk pending error queue data buffers", 4187 eqd_walk_init, eqd_walk_step, eqd_walk_fini }, 4188 { "allfile", "given a proc pointer, list all file pointers", 4189 file_walk_init, allfile_walk_step, file_walk_fini }, 4190 { "file", "given a proc pointer, list of open file pointers", 4191 file_walk_init, file_walk_step, file_walk_fini }, 4192 { "lock_descriptor", "walk lock_descriptor_t structures", 4193 ld_walk_init, ld_walk_step, NULL }, 4194 { "lock_graph", "walk lock graph", 4195 lg_walk_init, lg_walk_step, NULL }, 4196 { "port", "given a proc pointer, list of created event ports", 4197 port_walk_init, port_walk_step, NULL }, 4198 { "portev", "given a port pointer, list of events in the queue", 4199 portev_walk_init, portev_walk_step, portev_walk_fini }, 4200 { "proc", "list of active proc_t structures", 4201 proc_walk_init, proc_walk_step, proc_walk_fini }, 4202 { "projects", "walk a list of kernel projects", 4203 project_walk_init, project_walk_step, NULL }, 4204 { "sysevent_pend", "walk sysevent pending queue", 4205 sysevent_pend_walk_init, sysevent_walk_step, 4206 sysevent_walk_fini}, 4207 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init, 4208 sysevent_walk_step, sysevent_walk_fini}, 4209 { "sysevent_channel", "walk sysevent channel subscriptions", 4210 sysevent_channel_walk_init, sysevent_channel_walk_step, 4211 sysevent_channel_walk_fini}, 4212 { "sysevent_class_list", "walk sysevent subscription's class list", 4213 sysevent_class_list_walk_init, sysevent_class_list_walk_step, 4214 sysevent_class_list_walk_fini}, 4215 { "sysevent_subclass_list", 4216 "walk sysevent subscription's subclass list", 4217 sysevent_subclass_list_walk_init, 4218 sysevent_subclass_list_walk_step, 4219 sysevent_subclass_list_walk_fini}, 4220 { "task", "given a task pointer, walk its processes", 4221 task_walk_init, task_walk_step, NULL }, 4222 4223 /* from avl.c */ 4224 { AVL_WALK_NAME, AVL_WALK_DESC, 4225 avl_walk_init, avl_walk_step, avl_walk_fini }, 4226 4227 /* from bio.c */ 4228 { "buf", "walk the bio buf hash", 4229 buf_walk_init, buf_walk_step, buf_walk_fini }, 4230 4231 /* from contract.c */ 4232 { "contract", "walk all contracts, or those of the specified type", 4233 ct_walk_init, generic_walk_step, NULL }, 4234 { "ct_event", "walk events on a contract event queue", 4235 ct_event_walk_init, generic_walk_step, NULL }, 4236 { "ct_listener", "walk contract event queue listeners", 4237 ct_listener_walk_init, generic_walk_step, NULL }, 4238 4239 /* from cpupart.c */ 4240 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition", 4241 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step, 4242 NULL }, 4243 { "cpupart_walk", "walk the set of cpu partitions", 4244 cpupart_walk_init, cpupart_walk_step, NULL }, 4245 4246 /* from ctxop.c */ 4247 { "ctxop", "walk list of context ops on a thread", 4248 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini }, 4249 4250 /* from cyclic.c */ 4251 { "cyccpu", "walk per-CPU cyc_cpu structures", 4252 cyccpu_walk_init, cyccpu_walk_step, NULL }, 4253 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list", 4254 cycomni_walk_init, cycomni_walk_step, NULL }, 4255 { "cyctrace", "walk cyclic trace buffer", 4256 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini }, 4257 4258 /* from devinfo.c */ 4259 { "binding_hash", "walk all entries in binding hash table", 4260 binding_hash_walk_init, binding_hash_walk_step, NULL }, 4261 { "devinfo", "walk devinfo tree or subtree", 4262 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini }, 4263 { "devinfo_audit_log", "walk devinfo audit system-wide log", 4264 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step, 4265 devinfo_audit_log_walk_fini}, 4266 { "devinfo_audit_node", "walk per-devinfo audit history", 4267 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step, 4268 devinfo_audit_node_walk_fini}, 4269 { "devinfo_children", "walk children of devinfo node", 4270 devinfo_children_walk_init, devinfo_children_walk_step, 4271 devinfo_children_walk_fini }, 4272 { "devinfo_parents", "walk ancestors of devinfo node", 4273 devinfo_parents_walk_init, devinfo_parents_walk_step, 4274 devinfo_parents_walk_fini }, 4275 { "devinfo_siblings", "walk siblings of devinfo node", 4276 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL }, 4277 { "devi_next", "walk devinfo list", 4278 NULL, devi_next_walk_step, NULL }, 4279 { "devnames", "walk devnames array", 4280 devnames_walk_init, devnames_walk_step, devnames_walk_fini }, 4281 { "minornode", "given a devinfo node, walk minor nodes", 4282 minornode_walk_init, minornode_walk_step, NULL }, 4283 { "softstate", 4284 "given an i_ddi_soft_state*, list all in-use driver stateps", 4285 soft_state_walk_init, soft_state_walk_step, 4286 NULL, NULL }, 4287 { "softstate_all", 4288 "given an i_ddi_soft_state*, list all driver stateps", 4289 soft_state_walk_init, soft_state_all_walk_step, 4290 NULL, NULL }, 4291 { "devinfo_fmc", 4292 "walk a fault management handle cache active list", 4293 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL }, 4294 4295 /* from group.c */ 4296 { "group", "walk all elements of a group", 4297 group_walk_init, group_walk_step, NULL }, 4298 4299 /* from irm.c */ 4300 { "irmpools", "walk global list of interrupt pools", 4301 irmpools_walk_init, list_walk_step, list_walk_fini }, 4302 { "irmreqs", "walk list of interrupt requests in an interrupt pool", 4303 irmreqs_walk_init, list_walk_step, list_walk_fini }, 4304 4305 /* from kmem.c */ 4306 { "allocdby", "given a thread, walk its allocated bufctls", 4307 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 4308 { "bufctl", "walk a kmem cache's bufctls", 4309 bufctl_walk_init, kmem_walk_step, kmem_walk_fini }, 4310 { "bufctl_history", "walk the available history of a bufctl", 4311 bufctl_history_walk_init, bufctl_history_walk_step, 4312 bufctl_history_walk_fini }, 4313 { "freedby", "given a thread, walk its freed bufctls", 4314 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 4315 { "freectl", "walk a kmem cache's free bufctls", 4316 freectl_walk_init, kmem_walk_step, kmem_walk_fini }, 4317 { "freectl_constructed", "walk a kmem cache's constructed free bufctls", 4318 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 4319 { "freemem", "walk a kmem cache's free memory", 4320 freemem_walk_init, kmem_walk_step, kmem_walk_fini }, 4321 { "freemem_constructed", "walk a kmem cache's constructed free memory", 4322 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 4323 { "kmem", "walk a kmem cache", 4324 kmem_walk_init, kmem_walk_step, kmem_walk_fini }, 4325 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches", 4326 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL }, 4327 { "kmem_hash", "given a kmem cache, walk its allocated hash table", 4328 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini }, 4329 { "kmem_log", "walk the kmem transaction log", 4330 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini }, 4331 { "kmem_slab", "given a kmem cache, walk its slabs", 4332 kmem_slab_walk_init, combined_walk_step, combined_walk_fini }, 4333 { "kmem_slab_partial", 4334 "given a kmem cache, walk its partially allocated slabs (min 1)", 4335 kmem_slab_walk_partial_init, combined_walk_step, 4336 combined_walk_fini }, 4337 { "vmem", "walk vmem structures in pre-fix, depth-first order", 4338 vmem_walk_init, vmem_walk_step, vmem_walk_fini }, 4339 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs", 4340 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4341 { "vmem_free", "given a vmem_t, walk its free vmem_segs", 4342 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4343 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order", 4344 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini }, 4345 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs", 4346 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4347 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs", 4348 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4349 4350 /* from ldi.c */ 4351 { "ldi_handle", "walk the layered driver handle hash", 4352 ldi_handle_walk_init, ldi_handle_walk_step, NULL }, 4353 { "ldi_ident", "walk the layered driver identifier hash", 4354 ldi_ident_walk_init, ldi_ident_walk_step, NULL }, 4355 4356 /* from leaky.c + leaky_subr.c */ 4357 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same " 4358 "stack trace", 4359 leaky_walk_init, leaky_walk_step, leaky_walk_fini }, 4360 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for " 4361 "leaks w/ same stack trace", 4362 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini }, 4363 4364 /* from lgrp.c */ 4365 { "lgrp_cpulist", "walk CPUs in a given lgroup", 4366 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL }, 4367 { "lgrptbl", "walk lgroup table", 4368 lgrp_walk_init, lgrp_walk_step, NULL }, 4369 { "lgrp_parents", "walk up lgroup lineage from given lgroup", 4370 lgrp_parents_walk_init, lgrp_parents_walk_step, NULL }, 4371 { "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup", 4372 lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL }, 4373 { "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup", 4374 lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL }, 4375 4376 /* from list.c */ 4377 { LIST_WALK_NAME, LIST_WALK_DESC, 4378 list_walk_init, list_walk_step, list_walk_fini }, 4379 4380 /* from mdi.c */ 4381 { "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link", 4382 mdi_pi_client_link_walk_init, 4383 mdi_pi_client_link_walk_step, 4384 mdi_pi_client_link_walk_fini }, 4385 { "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link", 4386 mdi_pi_phci_link_walk_init, 4387 mdi_pi_phci_link_walk_step, 4388 mdi_pi_phci_link_walk_fini }, 4389 { "mdiphci_list", "Walker for mdi_phci ph_next link", 4390 mdi_phci_ph_next_walk_init, 4391 mdi_phci_ph_next_walk_step, 4392 mdi_phci_ph_next_walk_fini }, 4393 4394 /* from memory.c */ 4395 { "allpages", "walk all pages, including free pages", 4396 allpages_walk_init, allpages_walk_step, allpages_walk_fini }, 4397 { "anon", "given an amp, list allocated anon structures", 4398 anon_walk_init, anon_walk_step, anon_walk_fini, 4399 ANON_WALK_ALLOC }, 4400 { "anon_all", "given an amp, list contents of all anon slots", 4401 anon_walk_init, anon_walk_step, anon_walk_fini, 4402 ANON_WALK_ALL }, 4403 { "memlist", "walk specified memlist", 4404 NULL, memlist_walk_step, NULL }, 4405 { "page", "walk all pages, or those from the specified vnode", 4406 page_walk_init, page_walk_step, page_walk_fini }, 4407 { "seg", "given an as, list of segments", 4408 seg_walk_init, avl_walk_step, avl_walk_fini }, 4409 { "segvn_anon", 4410 "given a struct segvn_data, list allocated anon structures", 4411 segvn_anon_walk_init, anon_walk_step, anon_walk_fini, 4412 ANON_WALK_ALLOC }, 4413 { "segvn_anon_all", 4414 "given a struct segvn_data, list contents of all anon slots", 4415 segvn_anon_walk_init, anon_walk_step, anon_walk_fini, 4416 ANON_WALK_ALL }, 4417 { "segvn_pages", 4418 "given a struct segvn_data, list resident pages in " 4419 "offset order", 4420 segvn_pages_walk_init, segvn_pages_walk_step, 4421 segvn_pages_walk_fini, SEGVN_PAGES_RESIDENT }, 4422 { "segvn_pages_all", 4423 "for each offset in a struct segvn_data, give page_t pointer " 4424 "(if resident), or NULL.", 4425 segvn_pages_walk_init, segvn_pages_walk_step, 4426 segvn_pages_walk_fini, SEGVN_PAGES_ALL }, 4427 { "swapinfo", "walk swapinfo structures", 4428 swap_walk_init, swap_walk_step, NULL }, 4429 4430 /* from mmd.c */ 4431 { "pattr", "walk pattr_t structures", pattr_walk_init, 4432 mmdq_walk_step, mmdq_walk_fini }, 4433 { "pdesc", "walk pdesc_t structures", 4434 pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini }, 4435 { "pdesc_slab", "walk pdesc_slab_t structures", 4436 pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini }, 4437 4438 /* from modhash.c */ 4439 { "modhash", "walk list of mod_hash structures", modhash_walk_init, 4440 modhash_walk_step, NULL }, 4441 { "modent", "walk list of entries in a given mod_hash", 4442 modent_walk_init, modent_walk_step, modent_walk_fini }, 4443 { "modchain", "walk list of entries in a given mod_hash_entry", 4444 NULL, modchain_walk_step, NULL }, 4445 4446 /* from net.c */ 4447 { "icmp", "walk ICMP control structures using MI for all stacks", 4448 mi_payload_walk_init, mi_payload_walk_step, NULL, 4449 &mi_icmp_arg }, 4450 { "mi", "given a MI_O, walk the MI", 4451 mi_walk_init, mi_walk_step, mi_walk_fini, NULL }, 4452 { "sonode", "given a sonode, walk its children", 4453 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL }, 4454 { "icmp_stacks", "walk all the icmp_stack_t", 4455 icmp_stacks_walk_init, icmp_stacks_walk_step, NULL }, 4456 { "tcp_stacks", "walk all the tcp_stack_t", 4457 tcp_stacks_walk_init, tcp_stacks_walk_step, NULL }, 4458 { "udp_stacks", "walk all the udp_stack_t", 4459 udp_stacks_walk_init, udp_stacks_walk_step, NULL }, 4460 4461 /* from netstack.c */ 4462 { "netstack", "walk a list of kernel netstacks", 4463 netstack_walk_init, netstack_walk_step, NULL }, 4464 4465 /* from nvpair.c */ 4466 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR, 4467 nvpair_walk_init, nvpair_walk_step, NULL }, 4468 4469 /* from rctl.c */ 4470 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists", 4471 rctl_dict_walk_init, rctl_dict_walk_step, NULL }, 4472 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init, 4473 rctl_set_walk_step, NULL }, 4474 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated", 4475 rctl_val_walk_init, rctl_val_walk_step }, 4476 4477 /* from sobj.c */ 4478 { "blocked", "walk threads blocked on a given sobj", 4479 blocked_walk_init, blocked_walk_step, NULL }, 4480 { "wchan", "given a wchan, list of blocked threads", 4481 wchan_walk_init, wchan_walk_step, wchan_walk_fini }, 4482 4483 /* from stream.c */ 4484 { "b_cont", "walk mblk_t list using b_cont", 4485 mblk_walk_init, b_cont_step, mblk_walk_fini }, 4486 { "b_next", "walk mblk_t list using b_next", 4487 mblk_walk_init, b_next_step, mblk_walk_fini }, 4488 { "qlink", "walk queue_t list using q_link", 4489 queue_walk_init, queue_link_step, queue_walk_fini }, 4490 { "qnext", "walk queue_t list using q_next", 4491 queue_walk_init, queue_next_step, queue_walk_fini }, 4492 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list", 4493 strftblk_walk_init, strftblk_step, strftblk_walk_fini }, 4494 { "readq", "walk read queue side of stdata", 4495 str_walk_init, strr_walk_step, str_walk_fini }, 4496 { "writeq", "walk write queue side of stdata", 4497 str_walk_init, strw_walk_step, str_walk_fini }, 4498 4499 /* from taskq.c */ 4500 { "taskq_thread", "given a taskq_t, list all of its threads", 4501 taskq_thread_walk_init, 4502 taskq_thread_walk_step, 4503 taskq_thread_walk_fini }, 4504 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list", 4505 taskq_ent_walk_init, taskq_ent_walk_step, NULL }, 4506 4507 /* from thread.c */ 4508 { "deathrow", "walk threads on both lwp_ and thread_deathrow", 4509 deathrow_walk_init, deathrow_walk_step, NULL }, 4510 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues", 4511 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 4512 { "cpupart_dispq", 4513 "given a cpupart_t, walk threads in dispatcher queues", 4514 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 4515 { "lwp_deathrow", "walk lwp_deathrow", 4516 lwp_deathrow_walk_init, deathrow_walk_step, NULL }, 4517 { "thread", "global or per-process kthread_t structures", 4518 thread_walk_init, thread_walk_step, thread_walk_fini }, 4519 { "thread_deathrow", "walk threads on thread_deathrow", 4520 thread_deathrow_walk_init, deathrow_walk_step, NULL }, 4521 4522 /* from tsd.c */ 4523 { "tsd", "walk list of thread-specific data", 4524 tsd_walk_init, tsd_walk_step, tsd_walk_fini }, 4525 4526 /* from tsol.c */ 4527 { "tnrh", "walk remote host cache structures", 4528 tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini }, 4529 { "tnrhtp", "walk remote host template structures", 4530 tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini }, 4531 4532 /* 4533 * typegraph does not work under kmdb, as it requires too much memory 4534 * for its internal data structures. 4535 */ 4536 #ifndef _KMDB 4537 /* from typegraph.c */ 4538 { "typeconflict", "walk buffers with conflicting type inferences", 4539 typegraph_walk_init, typeconflict_walk_step }, 4540 { "typeunknown", "walk buffers with unknown types", 4541 typegraph_walk_init, typeunknown_walk_step }, 4542 #endif 4543 4544 /* from vfs.c */ 4545 { "vfs", "walk file system list", 4546 vfs_walk_init, vfs_walk_step }, 4547 4548 /* from zone.c */ 4549 { "zone", "walk a list of kernel zones", 4550 zone_walk_init, zone_walk_step, NULL }, 4551 { "zsd", "walk list of zsd entries for a zone", 4552 zsd_walk_init, zsd_walk_step, NULL }, 4553 4554 { NULL } 4555 }; 4556 4557 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers }; 4558 4559 /*ARGSUSED*/ 4560 static void 4561 genunix_statechange_cb(void *ignored) 4562 { 4563 /* 4564 * Force ::findleaks and ::stacks to let go any cached state. 4565 */ 4566 leaky_cleanup(1); 4567 stacks_cleanup(1); 4568 4569 kmem_statechange(); /* notify kmem */ 4570 } 4571 4572 const mdb_modinfo_t * 4573 _mdb_init(void) 4574 { 4575 kmem_init(); 4576 4577 (void) mdb_callback_add(MDB_CALLBACK_STCHG, 4578 genunix_statechange_cb, NULL); 4579 4580 return (&modinfo); 4581 } 4582 4583 void 4584 _mdb_fini(void) 4585 { 4586 leaky_cleanup(1); 4587 stacks_cleanup(1); 4588 }