1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
23 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012 Joyent, Inc. All rights reserved.
25 */
26
27 #include <mdb/mdb_param.h>
28 #include <mdb/mdb_modapi.h>
29 #include <mdb/mdb_ks.h>
30 #include <mdb/mdb_ctf.h>
31
32 #include <sys/types.h>
33 #include <sys/thread.h>
34 #include <sys/session.h>
35 #include <sys/user.h>
36 #include <sys/proc.h>
37 #include <sys/var.h>
38 #include <sys/t_lock.h>
39 #include <sys/callo.h>
40 #include <sys/priocntl.h>
41 #include <sys/class.h>
42 #include <sys/regset.h>
43 #include <sys/stack.h>
44 #include <sys/cpuvar.h>
45 #include <sys/vnode.h>
46 #include <sys/vfs.h>
47 #include <sys/flock_impl.h>
48 #include <sys/kmem_impl.h>
49 #include <sys/vmem_impl.h>
50 #include <sys/kstat.h>
51 #include <sys/dditypes.h>
52 #include <sys/ddi_impldefs.h>
53 #include <sys/sysmacros.h>
54 #include <sys/sysconf.h>
55 #include <sys/task.h>
56 #include <sys/project.h>
57 #include <sys/errorq_impl.h>
58 #include <sys/cred_impl.h>
59 #include <sys/zone.h>
60 #include <sys/panic.h>
61 #include <regex.h>
62 #include <sys/port_impl.h>
63
64 #include "avl.h"
65 #include "bio.h"
66 #include "bitset.h"
67 #include "combined.h"
68 #include "contract.h"
69 #include "cpupart_mdb.h"
70 #include "cred.h"
71 #include "ctxop.h"
72 #include "cyclic.h"
73 #include "damap.h"
74 #include "devinfo.h"
75 #include "findstack.h"
76 #include "fm.h"
77 #include "group.h"
78 #include "irm.h"
79 #include "kgrep.h"
80 #include "kmem.h"
81 #include "ldi.h"
82 #include "leaky.h"
83 #include "lgrp.h"
84 #include "list.h"
85 #include "log.h"
86 #include "mdi.h"
87 #include "memory.h"
88 #include "mmd.h"
89 #include "modhash.h"
90 #include "ndievents.h"
91 #include "net.h"
92 #include "netstack.h"
93 #include "nvpair.h"
94 #include "pg.h"
95 #include "rctl.h"
96 #include "sobj.h"
97 #include "streams.h"
98 #include "sysevent.h"
99 #include "taskq.h"
100 #include "thread.h"
101 #include "tsd.h"
102 #include "tsol.h"
103 #include "typegraph.h"
104 #include "vfs.h"
105 #include "zone.h"
106 #include "hotplug.h"
107
108 /*
109 * Surely this is defined somewhere...
110 */
111 #define NINTR 16
112
113 #ifndef STACK_BIAS
114 #define STACK_BIAS 0
115 #endif
116
117 static char
118 pstat2ch(uchar_t state)
119 {
120 switch (state) {
121 case SSLEEP: return ('S');
122 case SRUN: return ('R');
123 case SZOMB: return ('Z');
124 case SIDL: return ('I');
125 case SONPROC: return ('O');
126 case SSTOP: return ('T');
127 case SWAIT: return ('W');
128 default: return ('?');
129 }
130 }
131
132 #define PS_PRTTHREADS 0x1
133 #define PS_PRTLWPS 0x2
134 #define PS_PSARGS 0x4
135 #define PS_TASKS 0x8
136 #define PS_PROJECTS 0x10
137 #define PS_ZONES 0x20
138
139 static int
140 ps_threadprint(uintptr_t addr, const void *data, void *private)
141 {
142 const kthread_t *t = (const kthread_t *)data;
143 uint_t prt_flags = *((uint_t *)private);
144
145 static const mdb_bitmask_t t_state_bits[] = {
146 { "TS_FREE", UINT_MAX, TS_FREE },
147 { "TS_SLEEP", TS_SLEEP, TS_SLEEP },
148 { "TS_RUN", TS_RUN, TS_RUN },
149 { "TS_ONPROC", TS_ONPROC, TS_ONPROC },
150 { "TS_ZOMB", TS_ZOMB, TS_ZOMB },
151 { "TS_STOPPED", TS_STOPPED, TS_STOPPED },
152 { "TS_WAIT", TS_WAIT, TS_WAIT },
153 { NULL, 0, 0 }
154 };
155
156 if (prt_flags & PS_PRTTHREADS)
157 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits);
158
159 if (prt_flags & PS_PRTLWPS)
160 mdb_printf("\tL %?a ID: %u\n", t->t_lwp, t->t_tid);
161
162 return (WALK_NEXT);
163 }
164
165 int
166 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
167 {
168 uint_t prt_flags = 0;
169 proc_t pr;
170 struct pid pid, pgid, sid;
171 sess_t session;
172 cred_t cred;
173 task_t tk;
174 kproject_t pj;
175 zone_t zn;
176
177 if (!(flags & DCMD_ADDRSPEC)) {
178 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) {
179 mdb_warn("can't walk 'proc'");
180 return (DCMD_ERR);
181 }
182 return (DCMD_OK);
183 }
184
185 if (mdb_getopts(argc, argv,
186 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags,
187 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags,
188 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags,
189 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags,
190 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags,
191 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc)
192 return (DCMD_USAGE);
193
194 if (DCMD_HDRSPEC(flags)) {
195 mdb_printf("%<u>%1s %6s %6s %6s %6s ",
196 "S", "PID", "PPID", "PGID", "SID");
197 if (prt_flags & PS_TASKS)
198 mdb_printf("%5s ", "TASK");
199 if (prt_flags & PS_PROJECTS)
200 mdb_printf("%5s ", "PROJ");
201 if (prt_flags & PS_ZONES)
202 mdb_printf("%5s ", "ZONE");
203 mdb_printf("%6s %10s %?s %s%</u>\n",
204 "UID", "FLAGS", "ADDR", "NAME");
205 }
206
207 mdb_vread(&pr, sizeof (pr), addr);
208 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp);
209 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp);
210 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred);
211 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp);
212 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp);
213 if (prt_flags & (PS_TASKS | PS_PROJECTS))
214 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task);
215 if (prt_flags & PS_PROJECTS)
216 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj);
217 if (prt_flags & PS_ZONES)
218 mdb_vread(&zn, sizeof (zone_t), (uintptr_t)pr.p_zone);
219
220 mdb_printf("%c %6d %6d %6d %6d ",
221 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id,
222 sid.pid_id);
223 if (prt_flags & PS_TASKS)
224 mdb_printf("%5d ", tk.tk_tkid);
225 if (prt_flags & PS_PROJECTS)
226 mdb_printf("%5d ", pj.kpj_id);
227 if (prt_flags & PS_ZONES)
228 mdb_printf("%5d ", zn.zone_id);
229 mdb_printf("%6d 0x%08x %0?p %s\n",
230 cred.cr_uid, pr.p_flag, addr,
231 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm);
232
233 if (prt_flags & ~PS_PSARGS)
234 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr);
235
236 return (DCMD_OK);
237 }
238
239 #define PG_NEWEST 0x0001
240 #define PG_OLDEST 0x0002
241 #define PG_PIPE_OUT 0x0004
242 #define PG_EXACT_MATCH 0x0008
243
244 typedef struct pgrep_data {
245 uint_t pg_flags;
246 uint_t pg_psflags;
247 uintptr_t pg_xaddr;
248 hrtime_t pg_xstart;
249 const char *pg_pat;
250 #ifndef _KMDB
251 regex_t pg_reg;
252 #endif
253 } pgrep_data_t;
254
255 /*ARGSUSED*/
256 static int
257 pgrep_cb(uintptr_t addr, const void *pdata, void *data)
258 {
259 const proc_t *prp = pdata;
260 pgrep_data_t *pgp = data;
261 #ifndef _KMDB
262 regmatch_t pmatch;
263 #endif
264
265 /*
266 * kmdb doesn't have access to the reg* functions, so we fall back
267 * to strstr/strcmp.
268 */
269 #ifdef _KMDB
270 if ((pgp->pg_flags & PG_EXACT_MATCH) ?
271 (strcmp(prp->p_user.u_comm, pgp->pg_pat) != 0) :
272 (strstr(prp->p_user.u_comm, pgp->pg_pat) == NULL))
273 return (WALK_NEXT);
274 #else
275 if (regexec(&pgp->pg_reg, prp->p_user.u_comm, 1, &pmatch, 0) != 0)
276 return (WALK_NEXT);
277
278 if ((pgp->pg_flags & PG_EXACT_MATCH) &&
279 (pmatch.rm_so != 0 || prp->p_user.u_comm[pmatch.rm_eo] != '\0'))
280 return (WALK_NEXT);
281 #endif
282
283 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) {
284 hrtime_t start;
285
286 start = (hrtime_t)prp->p_user.u_start.tv_sec * NANOSEC +
287 prp->p_user.u_start.tv_nsec;
288
289 if (pgp->pg_flags & PG_NEWEST) {
290 if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) {
291 pgp->pg_xaddr = addr;
292 pgp->pg_xstart = start;
293 }
294 } else {
295 if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) {
296 pgp->pg_xaddr = addr;
297 pgp->pg_xstart = start;
298 }
299 }
300
301 } else if (pgp->pg_flags & PG_PIPE_OUT) {
302 mdb_printf("%p\n", addr);
303
304 } else {
305 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) {
306 mdb_warn("can't invoke 'ps'");
307 return (WALK_DONE);
308 }
309 pgp->pg_psflags &= ~DCMD_LOOPFIRST;
310 }
311
312 return (WALK_NEXT);
313 }
314
315 /*ARGSUSED*/
316 int
317 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
318 {
319 pgrep_data_t pg;
320 int i;
321 #ifndef _KMDB
322 int err;
323 #endif
324
325 if (flags & DCMD_ADDRSPEC)
326 return (DCMD_USAGE);
327
328 pg.pg_flags = 0;
329 pg.pg_xaddr = 0;
330
331 i = mdb_getopts(argc, argv,
332 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags,
333 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags,
334 'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags,
335 NULL);
336
337 argc -= i;
338 argv += i;
339
340 if (argc != 1)
341 return (DCMD_USAGE);
342
343 /*
344 * -n and -o are mutually exclusive.
345 */
346 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST))
347 return (DCMD_USAGE);
348
349 if (argv->a_type != MDB_TYPE_STRING)
350 return (DCMD_USAGE);
351
352 if (flags & DCMD_PIPE_OUT)
353 pg.pg_flags |= PG_PIPE_OUT;
354
355 pg.pg_pat = argv->a_un.a_str;
356 if (DCMD_HDRSPEC(flags))
357 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST;
358 else
359 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP;
360
361 #ifndef _KMDB
362 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) {
363 size_t nbytes;
364 char *buf;
365
366 nbytes = regerror(err, &pg.pg_reg, NULL, 0);
367 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC);
368 (void) regerror(err, &pg.pg_reg, buf, nbytes);
369 mdb_warn("%s\n", buf);
370
371 return (DCMD_ERR);
372 }
373 #endif
374
375 if (mdb_walk("proc", pgrep_cb, &pg) != 0) {
376 mdb_warn("can't walk 'proc'");
377 return (DCMD_ERR);
378 }
379
380 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) {
381 if (pg.pg_flags & PG_PIPE_OUT) {
382 mdb_printf("%p\n", pg.pg_xaddr);
383 } else {
384 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags,
385 0, NULL) != 0) {
386 mdb_warn("can't invoke 'ps'");
387 return (DCMD_ERR);
388 }
389 }
390 }
391
392 return (DCMD_OK);
393 }
394
395 int
396 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
397 {
398 task_t tk;
399 kproject_t pj;
400
401 if (!(flags & DCMD_ADDRSPEC)) {
402 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) {
403 mdb_warn("can't walk task_cache");
404 return (DCMD_ERR);
405 }
406 return (DCMD_OK);
407 }
408 if (DCMD_HDRSPEC(flags)) {
409 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n",
410 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS");
411 }
412 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) {
413 mdb_warn("can't read task_t structure at %p", addr);
414 return (DCMD_ERR);
415 }
416 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) {
417 mdb_warn("can't read project_t structure at %p", addr);
418 return (DCMD_ERR);
419 }
420 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n",
421 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count,
422 tk.tk_flags);
423 return (DCMD_OK);
424 }
425
426 int
427 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
428 {
429 kproject_t pj;
430
431 if (!(flags & DCMD_ADDRSPEC)) {
432 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) {
433 mdb_warn("can't walk projects");
434 return (DCMD_ERR);
435 }
436 return (DCMD_OK);
437 }
438 if (DCMD_HDRSPEC(flags)) {
439 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n",
440 "ADDR", "PROJID", "ZONEID", "REFCNT");
441 }
442 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
443 mdb_warn("can't read kproject_t structure at %p", addr);
444 return (DCMD_ERR);
445 }
446 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid,
447 pj.kpj_count);
448 return (DCMD_OK);
449 }
450
451 /* walk callouts themselves, either by list or id hash. */
452 int
453 callout_walk_init(mdb_walk_state_t *wsp)
454 {
455 if (wsp->walk_addr == NULL) {
456 mdb_warn("callout doesn't support global walk");
457 return (WALK_ERR);
458 }
459 wsp->walk_data = mdb_alloc(sizeof (callout_t), UM_SLEEP);
460 return (WALK_NEXT);
461 }
462
463 #define CALLOUT_WALK_BYLIST 0
464 #define CALLOUT_WALK_BYID 1
465
466 /* the walker arg switches between walking by list (0) and walking by id (1). */
467 int
468 callout_walk_step(mdb_walk_state_t *wsp)
469 {
470 int retval;
471
472 if (wsp->walk_addr == NULL) {
473 return (WALK_DONE);
474 }
475 if (mdb_vread(wsp->walk_data, sizeof (callout_t),
476 wsp->walk_addr) == -1) {
477 mdb_warn("failed to read callout at %p", wsp->walk_addr);
478 return (WALK_DONE);
479 }
480 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
481 wsp->walk_cbdata);
482
483 if ((ulong_t)wsp->walk_arg == CALLOUT_WALK_BYID) {
484 wsp->walk_addr =
485 (uintptr_t)(((callout_t *)wsp->walk_data)->c_idnext);
486 } else {
487 wsp->walk_addr =
488 (uintptr_t)(((callout_t *)wsp->walk_data)->c_clnext);
489 }
490
491 return (retval);
492 }
493
494 void
495 callout_walk_fini(mdb_walk_state_t *wsp)
496 {
497 mdb_free(wsp->walk_data, sizeof (callout_t));
498 }
499
500 /*
501 * walker for callout lists. This is different from hashes and callouts.
502 * Thankfully, it's also simpler.
503 */
504 int
505 callout_list_walk_init(mdb_walk_state_t *wsp)
506 {
507 if (wsp->walk_addr == NULL) {
508 mdb_warn("callout list doesn't support global walk");
509 return (WALK_ERR);
510 }
511 wsp->walk_data = mdb_alloc(sizeof (callout_list_t), UM_SLEEP);
512 return (WALK_NEXT);
513 }
514
515 int
516 callout_list_walk_step(mdb_walk_state_t *wsp)
517 {
518 int retval;
519
520 if (wsp->walk_addr == NULL) {
521 return (WALK_DONE);
522 }
523 if (mdb_vread(wsp->walk_data, sizeof (callout_list_t),
524 wsp->walk_addr) != sizeof (callout_list_t)) {
525 mdb_warn("failed to read callout_list at %p", wsp->walk_addr);
526 return (WALK_ERR);
527 }
528 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
529 wsp->walk_cbdata);
530
531 wsp->walk_addr = (uintptr_t)
532 (((callout_list_t *)wsp->walk_data)->cl_next);
533
534 return (retval);
535 }
536
537 void
538 callout_list_walk_fini(mdb_walk_state_t *wsp)
539 {
540 mdb_free(wsp->walk_data, sizeof (callout_list_t));
541 }
542
543 /* routines/structs to walk callout table(s) */
544 typedef struct cot_data {
545 callout_table_t *ct0;
546 callout_table_t ct;
547 callout_hash_t cot_idhash[CALLOUT_BUCKETS];
548 callout_hash_t cot_clhash[CALLOUT_BUCKETS];
549 kstat_named_t ct_kstat_data[CALLOUT_NUM_STATS];
550 int cotndx;
551 int cotsize;
552 } cot_data_t;
553
554 int
555 callout_table_walk_init(mdb_walk_state_t *wsp)
556 {
557 int max_ncpus;
558 cot_data_t *cot_walk_data;
559
560 cot_walk_data = mdb_alloc(sizeof (cot_data_t), UM_SLEEP);
561
562 if (wsp->walk_addr == NULL) {
563 if (mdb_readvar(&cot_walk_data->ct0, "callout_table") == -1) {
564 mdb_warn("failed to read 'callout_table'");
565 return (WALK_ERR);
566 }
567 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) {
568 mdb_warn("failed to get callout_table array size");
569 return (WALK_ERR);
570 }
571 cot_walk_data->cotsize = CALLOUT_NTYPES * max_ncpus;
572 wsp->walk_addr = (uintptr_t)cot_walk_data->ct0;
573 } else {
574 /* not a global walk */
575 cot_walk_data->cotsize = 1;
576 }
577
578 cot_walk_data->cotndx = 0;
579 wsp->walk_data = cot_walk_data;
580
581 return (WALK_NEXT);
582 }
583
584 int
585 callout_table_walk_step(mdb_walk_state_t *wsp)
586 {
587 int retval;
588 cot_data_t *cotwd = (cot_data_t *)wsp->walk_data;
589 size_t size;
590
591 if (cotwd->cotndx >= cotwd->cotsize) {
592 return (WALK_DONE);
593 }
594 if (mdb_vread(&(cotwd->ct), sizeof (callout_table_t),
595 wsp->walk_addr) != sizeof (callout_table_t)) {
596 mdb_warn("failed to read callout_table at %p", wsp->walk_addr);
597 return (WALK_ERR);
598 }
599
600 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS;
601 if (cotwd->ct.ct_idhash != NULL) {
602 if (mdb_vread(cotwd->cot_idhash, size,
603 (uintptr_t)(cotwd->ct.ct_idhash)) != size) {
604 mdb_warn("failed to read id_hash at %p",
605 cotwd->ct.ct_idhash);
606 return (WALK_ERR);
607 }
608 }
609 if (cotwd->ct.ct_clhash != NULL) {
610 if (mdb_vread(&(cotwd->cot_clhash), size,
611 (uintptr_t)cotwd->ct.ct_clhash) == -1) {
612 mdb_warn("failed to read cl_hash at %p",
613 cotwd->ct.ct_clhash);
614 return (WALK_ERR);
615 }
616 }
617 size = sizeof (kstat_named_t) * CALLOUT_NUM_STATS;
618 if (cotwd->ct.ct_kstat_data != NULL) {
619 if (mdb_vread(&(cotwd->ct_kstat_data), size,
620 (uintptr_t)cotwd->ct.ct_kstat_data) == -1) {
621 mdb_warn("failed to read kstats at %p",
622 cotwd->ct.ct_kstat_data);
623 return (WALK_ERR);
624 }
625 }
626 retval = wsp->walk_callback(wsp->walk_addr, (void *)cotwd,
627 wsp->walk_cbdata);
628
629 cotwd->cotndx++;
630 if (cotwd->cotndx >= cotwd->cotsize) {
631 return (WALK_DONE);
632 }
633 wsp->walk_addr = (uintptr_t)((char *)wsp->walk_addr +
634 sizeof (callout_table_t));
635
636 return (retval);
637 }
638
639 void
640 callout_table_walk_fini(mdb_walk_state_t *wsp)
641 {
642 mdb_free(wsp->walk_data, sizeof (cot_data_t));
643 }
644
645 static const char *co_typenames[] = { "R", "N" };
646
647 #define CO_PLAIN_ID(xid) ((xid) & CALLOUT_ID_MASK)
648
649 #define TABLE_TO_SEQID(x) ((x) >> CALLOUT_TYPE_BITS)
650
651 /* callout flags, in no particular order */
652 #define COF_REAL 0x00000001
653 #define COF_NORM 0x00000002
654 #define COF_LONG 0x00000004
655 #define COF_SHORT 0x00000008
656 #define COF_EMPTY 0x00000010
657 #define COF_TIME 0x00000020
658 #define COF_BEFORE 0x00000040
659 #define COF_AFTER 0x00000080
660 #define COF_SEQID 0x00000100
661 #define COF_FUNC 0x00000200
662 #define COF_ADDR 0x00000400
663 #define COF_EXEC 0x00000800
664 #define COF_HIRES 0x00001000
665 #define COF_ABS 0x00002000
666 #define COF_TABLE 0x00004000
667 #define COF_BYIDH 0x00008000
668 #define COF_FREE 0x00010000
669 #define COF_LIST 0x00020000
670 #define COF_EXPREL 0x00040000
671 #define COF_HDR 0x00080000
672 #define COF_VERBOSE 0x00100000
673 #define COF_LONGLIST 0x00200000
674 #define COF_THDR 0x00400000
675 #define COF_LHDR 0x00800000
676 #define COF_CHDR 0x01000000
677 #define COF_PARAM 0x02000000
678 #define COF_DECODE 0x04000000
679 #define COF_HEAP 0x08000000
680 #define COF_QUEUE 0x10000000
681
682 /* show real and normal, short and long, expired and unexpired. */
683 #define COF_DEFAULT (COF_REAL | COF_NORM | COF_LONG | COF_SHORT)
684
685 #define COF_LIST_FLAGS \
686 (CALLOUT_LIST_FLAG_HRESTIME | CALLOUT_LIST_FLAG_ABSOLUTE)
687
688 /* private callout data for callback functions */
689 typedef struct callout_data {
690 uint_t flags; /* COF_* */
691 cpu_t *cpu; /* cpu pointer if given */
692 int seqid; /* cpu seqid, or -1 */
693 hrtime_t time; /* expiration time value */
694 hrtime_t atime; /* expiration before value */
695 hrtime_t btime; /* expiration after value */
696 uintptr_t funcaddr; /* function address or NULL */
697 uintptr_t param; /* parameter to function or NULL */
698 hrtime_t now; /* current system time */
699 int nsec_per_tick; /* for conversions */
700 ulong_t ctbits; /* for decoding xid */
701 callout_table_t *co_table; /* top of callout table array */
702 int ndx; /* table index. */
703 int bucket; /* which list/id bucket are we in */
704 hrtime_t exp; /* expire time */
705 int list_flags; /* copy of cl_flags */
706 } callout_data_t;
707
708 /* this callback does the actual callback itself (finally). */
709 /*ARGSUSED*/
710 static int
711 callouts_cb(uintptr_t addr, const void *data, void *priv)
712 {
713 callout_data_t *coargs = (callout_data_t *)priv;
714 callout_t *co = (callout_t *)data;
715 int tableid, list_flags;
716 callout_id_t coid;
717
718 if ((coargs == NULL) || (co == NULL)) {
719 return (WALK_ERR);
720 }
721
722 if ((coargs->flags & COF_FREE) && !(co->c_xid & CALLOUT_ID_FREE)) {
723 /*
724 * The callout must have been reallocated. No point in
725 * walking any more.
726 */
727 return (WALK_DONE);
728 }
729 if (!(coargs->flags & COF_FREE) && (co->c_xid & CALLOUT_ID_FREE)) {
730 /*
731 * The callout must have been freed. No point in
732 * walking any more.
733 */
734 return (WALK_DONE);
735 }
736 if ((coargs->flags & COF_FUNC) &&
737 (coargs->funcaddr != (uintptr_t)co->c_func)) {
738 return (WALK_NEXT);
739 }
740 if ((coargs->flags & COF_PARAM) &&
741 (coargs->param != (uintptr_t)co->c_arg)) {
742 return (WALK_NEXT);
743 }
744 if (!(coargs->flags & COF_LONG) && (co->c_xid & CALLOUT_LONGTERM)) {
745 return (WALK_NEXT);
746 }
747 if (!(coargs->flags & COF_SHORT) && !(co->c_xid & CALLOUT_LONGTERM)) {
748 return (WALK_NEXT);
749 }
750 if ((coargs->flags & COF_EXEC) && !(co->c_xid & CALLOUT_EXECUTING)) {
751 return (WALK_NEXT);
752 }
753 /* it is possible we don't have the exp time or flags */
754 if (coargs->flags & COF_BYIDH) {
755 if (!(coargs->flags & COF_FREE)) {
756 /* we have to fetch the expire time ourselves. */
757 if (mdb_vread(&coargs->exp, sizeof (hrtime_t),
758 (uintptr_t)co->c_list + offsetof(callout_list_t,
759 cl_expiration)) == -1) {
760 mdb_warn("failed to read expiration "
761 "time from %p", co->c_list);
762 coargs->exp = 0;
763 }
764 /* and flags. */
765 if (mdb_vread(&coargs->list_flags, sizeof (int),
766 (uintptr_t)co->c_list + offsetof(callout_list_t,
767 cl_flags)) == -1) {
768 mdb_warn("failed to read list flags"
769 "from %p", co->c_list);
770 coargs->list_flags = 0;
771 }
772 } else {
773 /* free callouts can't use list pointer. */
774 coargs->exp = 0;
775 coargs->list_flags = 0;
776 }
777 if (coargs->exp != 0) {
778 if ((coargs->flags & COF_TIME) &&
779 (coargs->exp != coargs->time)) {
780 return (WALK_NEXT);
781 }
782 if ((coargs->flags & COF_BEFORE) &&
783 (coargs->exp > coargs->btime)) {
784 return (WALK_NEXT);
785 }
786 if ((coargs->flags & COF_AFTER) &&
787 (coargs->exp < coargs->atime)) {
788 return (WALK_NEXT);
789 }
790 }
791 /* tricky part, since both HIRES and ABS can be set */
792 list_flags = coargs->list_flags;
793 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) {
794 /* both flags are set, only skip "regular" ones */
795 if (! (list_flags & COF_LIST_FLAGS)) {
796 return (WALK_NEXT);
797 }
798 } else {
799 /* individual flags, or no flags */
800 if ((coargs->flags & COF_HIRES) &&
801 !(list_flags & CALLOUT_LIST_FLAG_HRESTIME)) {
802 return (WALK_NEXT);
803 }
804 if ((coargs->flags & COF_ABS) &&
805 !(list_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) {
806 return (WALK_NEXT);
807 }
808 }
809 /*
810 * We do the checks for COF_HEAP and COF_QUEUE here only if we
811 * are traversing BYIDH. If the traversal is by callout list,
812 * we do this check in callout_list_cb() to be more
813 * efficient.
814 */
815 if ((coargs->flags & COF_HEAP) &&
816 !(list_flags & CALLOUT_LIST_FLAG_HEAPED)) {
817 return (WALK_NEXT);
818 }
819
820 if ((coargs->flags & COF_QUEUE) &&
821 !(list_flags & CALLOUT_LIST_FLAG_QUEUED)) {
822 return (WALK_NEXT);
823 }
824 }
825
826 #define callout_table_mask ((1 << coargs->ctbits) - 1)
827 tableid = CALLOUT_ID_TO_TABLE(co->c_xid);
828 #undef callout_table_mask
829 coid = CO_PLAIN_ID(co->c_xid);
830
831 if ((coargs->flags & COF_CHDR) && !(coargs->flags & COF_ADDR)) {
832 /*
833 * We need to print the headers. If walking by id, then
834 * the list header isn't printed, so we must include
835 * that info here.
836 */
837 if (!(coargs->flags & COF_VERBOSE)) {
838 mdb_printf("%<u>%3s %-1s %-14s %</u>",
839 "SEQ", "T", "EXP");
840 } else if (coargs->flags & COF_BYIDH) {
841 mdb_printf("%<u>%-14s %</u>", "EXP");
842 }
843 mdb_printf("%<u>%-4s %-?s %-20s%</u>",
844 "XHAL", "XID", "FUNC(ARG)");
845 if (coargs->flags & COF_LONGLIST) {
846 mdb_printf("%<u> %-?s %-?s %-?s %-?s%</u>",
847 "PREVID", "NEXTID", "PREVL", "NEXTL");
848 mdb_printf("%<u> %-?s %-4s %-?s%</u>",
849 "DONE", "UTOS", "THREAD");
850 }
851 mdb_printf("\n");
852 coargs->flags &= ~COF_CHDR;
853 coargs->flags |= (COF_THDR | COF_LHDR);
854 }
855
856 if (!(coargs->flags & COF_ADDR)) {
857 if (!(coargs->flags & COF_VERBOSE)) {
858 mdb_printf("%-3d %1s %-14llx ",
859 TABLE_TO_SEQID(tableid),
860 co_typenames[tableid & CALLOUT_TYPE_MASK],
861 (coargs->flags & COF_EXPREL) ?
862 coargs->exp - coargs->now : coargs->exp);
863 } else if (coargs->flags & COF_BYIDH) {
864 mdb_printf("%-14x ",
865 (coargs->flags & COF_EXPREL) ?
866 coargs->exp - coargs->now : coargs->exp);
867 }
868 list_flags = coargs->list_flags;
869 mdb_printf("%1s%1s%1s%1s %-?llx %a(%p)",
870 (co->c_xid & CALLOUT_EXECUTING) ? "X" : " ",
871 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? "H" : " ",
872 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? "A" : " ",
873 (co->c_xid & CALLOUT_LONGTERM) ? "L" : " ",
874 (long long)coid, co->c_func, co->c_arg);
875 if (coargs->flags & COF_LONGLIST) {
876 mdb_printf(" %-?p %-?p %-?p %-?p",
877 co->c_idprev, co->c_idnext, co->c_clprev,
878 co->c_clnext);
879 mdb_printf(" %-?p %-4d %-0?p",
880 co->c_done, co->c_waiting, co->c_executor);
881 }
882 } else {
883 /* address only */
884 mdb_printf("%-0p", addr);
885 }
886 mdb_printf("\n");
887 return (WALK_NEXT);
888 }
889
890 /* this callback is for callout list handling. idhash is done by callout_t_cb */
891 /*ARGSUSED*/
892 static int
893 callout_list_cb(uintptr_t addr, const void *data, void *priv)
894 {
895 callout_data_t *coargs = (callout_data_t *)priv;
896 callout_list_t *cl = (callout_list_t *)data;
897 callout_t *coptr;
898 int list_flags;
899
900 if ((coargs == NULL) || (cl == NULL)) {
901 return (WALK_ERR);
902 }
903
904 coargs->exp = cl->cl_expiration;
905 coargs->list_flags = cl->cl_flags;
906 if ((coargs->flags & COF_FREE) &&
907 !(cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) {
908 /*
909 * The callout list must have been reallocated. No point in
910 * walking any more.
911 */
912 return (WALK_DONE);
913 }
914 if (!(coargs->flags & COF_FREE) &&
915 (cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) {
916 /*
917 * The callout list must have been freed. No point in
918 * walking any more.
919 */
920 return (WALK_DONE);
921 }
922 if ((coargs->flags & COF_TIME) &&
923 (cl->cl_expiration != coargs->time)) {
924 return (WALK_NEXT);
925 }
926 if ((coargs->flags & COF_BEFORE) &&
927 (cl->cl_expiration > coargs->btime)) {
928 return (WALK_NEXT);
929 }
930 if ((coargs->flags & COF_AFTER) &&
931 (cl->cl_expiration < coargs->atime)) {
932 return (WALK_NEXT);
933 }
934 if (!(coargs->flags & COF_EMPTY) &&
935 (cl->cl_callouts.ch_head == NULL)) {
936 return (WALK_NEXT);
937 }
938 /* FOUR cases, each different, !A!B, !AB, A!B, AB */
939 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) {
940 /* both flags are set, only skip "regular" ones */
941 if (! (cl->cl_flags & COF_LIST_FLAGS)) {
942 return (WALK_NEXT);
943 }
944 } else {
945 if ((coargs->flags & COF_HIRES) &&
946 !(cl->cl_flags & CALLOUT_LIST_FLAG_HRESTIME)) {
947 return (WALK_NEXT);
948 }
949 if ((coargs->flags & COF_ABS) &&
950 !(cl->cl_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) {
951 return (WALK_NEXT);
952 }
953 }
954
955 if ((coargs->flags & COF_HEAP) &&
956 !(coargs->list_flags & CALLOUT_LIST_FLAG_HEAPED)) {
957 return (WALK_NEXT);
958 }
959
960 if ((coargs->flags & COF_QUEUE) &&
961 !(coargs->list_flags & CALLOUT_LIST_FLAG_QUEUED)) {
962 return (WALK_NEXT);
963 }
964
965 if ((coargs->flags & COF_LHDR) && !(coargs->flags & COF_ADDR) &&
966 (coargs->flags & (COF_LIST | COF_VERBOSE))) {
967 if (!(coargs->flags & COF_VERBOSE)) {
968 /* don't be redundant again */
969 mdb_printf("%<u>SEQ T %</u>");
970 }
971 mdb_printf("%<u>EXP HA BUCKET "
972 "CALLOUTS %</u>");
973
974 if (coargs->flags & COF_LONGLIST) {
975 mdb_printf("%<u> %-?s %-?s%</u>",
976 "PREV", "NEXT");
977 }
978 mdb_printf("\n");
979 coargs->flags &= ~COF_LHDR;
980 coargs->flags |= (COF_THDR | COF_CHDR);
981 }
982 if (coargs->flags & (COF_LIST | COF_VERBOSE)) {
983 if (!(coargs->flags & COF_ADDR)) {
984 if (!(coargs->flags & COF_VERBOSE)) {
985 mdb_printf("%3d %1s ",
986 TABLE_TO_SEQID(coargs->ndx),
987 co_typenames[coargs->ndx &
988 CALLOUT_TYPE_MASK]);
989 }
990
991 list_flags = coargs->list_flags;
992 mdb_printf("%-14llx %1s%1s %-6d %-0?p ",
993 (coargs->flags & COF_EXPREL) ?
994 coargs->exp - coargs->now : coargs->exp,
995 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ?
996 "H" : " ",
997 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ?
998 "A" : " ",
999 coargs->bucket, cl->cl_callouts.ch_head);
1000
1001 if (coargs->flags & COF_LONGLIST) {
1002 mdb_printf(" %-?p %-?p",
1003 cl->cl_prev, cl->cl_next);
1004 }
1005 } else {
1006 /* address only */
1007 mdb_printf("%-0p", addr);
1008 }
1009 mdb_printf("\n");
1010 if (coargs->flags & COF_LIST) {
1011 return (WALK_NEXT);
1012 }
1013 }
1014 /* yet another layer as we walk the actual callouts via list. */
1015 if (cl->cl_callouts.ch_head == NULL) {
1016 return (WALK_NEXT);
1017 }
1018 /* free list structures do not have valid callouts off of them. */
1019 if (coargs->flags & COF_FREE) {
1020 return (WALK_NEXT);
1021 }
1022 coptr = (callout_t *)cl->cl_callouts.ch_head;
1023
1024 if (coargs->flags & COF_VERBOSE) {
1025 mdb_inc_indent(4);
1026 }
1027 /*
1028 * walk callouts using yet another callback routine.
1029 * we use callouts_bytime because id hash is handled via
1030 * the callout_t_cb callback.
1031 */
1032 if (mdb_pwalk("callouts_bytime", callouts_cb, coargs,
1033 (uintptr_t)coptr) == -1) {
1034 mdb_warn("cannot walk callouts at %p", coptr);
1035 return (WALK_ERR);
1036 }
1037 if (coargs->flags & COF_VERBOSE) {
1038 mdb_dec_indent(4);
1039 }
1040
1041 return (WALK_NEXT);
1042 }
1043
1044 /* this callback handles the details of callout table walking. */
1045 static int
1046 callout_t_cb(uintptr_t addr, const void *data, void *priv)
1047 {
1048 callout_data_t *coargs = (callout_data_t *)priv;
1049 cot_data_t *cotwd = (cot_data_t *)data;
1050 callout_table_t *ct = &(cotwd->ct);
1051 int index, seqid, cotype;
1052 int i;
1053 callout_list_t *clptr;
1054 callout_t *coptr;
1055
1056 if ((coargs == NULL) || (ct == NULL) || (coargs->co_table == NULL)) {
1057 return (WALK_ERR);
1058 }
1059
1060 index = ((char *)addr - (char *)coargs->co_table) /
1061 sizeof (callout_table_t);
1062 cotype = index & CALLOUT_TYPE_MASK;
1063 seqid = TABLE_TO_SEQID(index);
1064
1065 if ((coargs->flags & COF_SEQID) && (coargs->seqid != seqid)) {
1066 return (WALK_NEXT);
1067 }
1068
1069 if (!(coargs->flags & COF_REAL) && (cotype == CALLOUT_REALTIME)) {
1070 return (WALK_NEXT);
1071 }
1072
1073 if (!(coargs->flags & COF_NORM) && (cotype == CALLOUT_NORMAL)) {
1074 return (WALK_NEXT);
1075 }
1076
1077 if (!(coargs->flags & COF_EMPTY) && (
1078 (ct->ct_heap == NULL) || (ct->ct_cyclic == NULL))) {
1079 return (WALK_NEXT);
1080 }
1081
1082 if ((coargs->flags & COF_THDR) && !(coargs->flags & COF_ADDR) &&
1083 (coargs->flags & (COF_TABLE | COF_VERBOSE))) {
1084 /* print table hdr */
1085 mdb_printf("%<u>%-3s %-1s %-?s %-?s %-?s %-?s%</u>",
1086 "SEQ", "T", "FREE", "LFREE", "CYCLIC", "HEAP");
1087 coargs->flags &= ~COF_THDR;
1088 coargs->flags |= (COF_LHDR | COF_CHDR);
1089 if (coargs->flags & COF_LONGLIST) {
1090 /* more info! */
1091 mdb_printf("%<u> %-T%-7s %-7s %-?s %-?s %-?s"
1092 " %-?s %-?s %-?s%</u>",
1093 "HEAPNUM", "HEAPMAX", "TASKQ", "EXPQ", "QUE",
1094 "PEND", "FREE", "LOCK");
1095 }
1096 mdb_printf("\n");
1097 }
1098 if (coargs->flags & (COF_TABLE | COF_VERBOSE)) {
1099 if (!(coargs->flags & COF_ADDR)) {
1100 mdb_printf("%-3d %-1s %-0?p %-0?p %-0?p %-?p",
1101 seqid, co_typenames[cotype],
1102 ct->ct_free, ct->ct_lfree, ct->ct_cyclic,
1103 ct->ct_heap);
1104 if (coargs->flags & COF_LONGLIST) {
1105 /* more info! */
1106 mdb_printf(" %-7d %-7d %-?p %-?p %-?p"
1107 " %-?lld %-?lld %-?p",
1108 ct->ct_heap_num, ct->ct_heap_max,
1109 ct->ct_taskq, ct->ct_expired.ch_head,
1110 ct->ct_queue.ch_head,
1111 cotwd->ct_timeouts_pending,
1112 cotwd->ct_allocations -
1113 cotwd->ct_timeouts_pending,
1114 ct->ct_mutex);
1115 }
1116 } else {
1117 /* address only */
1118 mdb_printf("%-0?p", addr);
1119 }
1120 mdb_printf("\n");
1121 if (coargs->flags & COF_TABLE) {
1122 return (WALK_NEXT);
1123 }
1124 }
1125
1126 coargs->ndx = index;
1127 if (coargs->flags & COF_VERBOSE) {
1128 mdb_inc_indent(4);
1129 }
1130 /* keep digging. */
1131 if (!(coargs->flags & COF_BYIDH)) {
1132 /* walk the list hash table */
1133 if (coargs->flags & COF_FREE) {
1134 clptr = ct->ct_lfree;
1135 coargs->bucket = 0;
1136 if (clptr == NULL) {
1137 return (WALK_NEXT);
1138 }
1139 if (mdb_pwalk("callout_list", callout_list_cb, coargs,
1140 (uintptr_t)clptr) == -1) {
1141 mdb_warn("cannot walk callout free list at %p",
1142 clptr);
1143 return (WALK_ERR);
1144 }
1145 } else {
1146 /* first print the expired list. */
1147 clptr = (callout_list_t *)ct->ct_expired.ch_head;
1148 if (clptr != NULL) {
1149 coargs->bucket = -1;
1150 if (mdb_pwalk("callout_list", callout_list_cb,
1151 coargs, (uintptr_t)clptr) == -1) {
1152 mdb_warn("cannot walk callout_list"
1153 " at %p", clptr);
1154 return (WALK_ERR);
1155 }
1156 }
1157 /* then, print the callout queue */
1158 clptr = (callout_list_t *)ct->ct_queue.ch_head;
1159 if (clptr != NULL) {
1160 coargs->bucket = -1;
1161 if (mdb_pwalk("callout_list", callout_list_cb,
1162 coargs, (uintptr_t)clptr) == -1) {
1163 mdb_warn("cannot walk callout_list"
1164 " at %p", clptr);
1165 return (WALK_ERR);
1166 }
1167 }
1168 for (i = 0; i < CALLOUT_BUCKETS; i++) {
1169 if (ct->ct_clhash == NULL) {
1170 /* nothing to do */
1171 break;
1172 }
1173 if (cotwd->cot_clhash[i].ch_head == NULL) {
1174 continue;
1175 }
1176 clptr = (callout_list_t *)
1177 cotwd->cot_clhash[i].ch_head;
1178 coargs->bucket = i;
1179 /* walk list with callback routine. */
1180 if (mdb_pwalk("callout_list", callout_list_cb,
1181 coargs, (uintptr_t)clptr) == -1) {
1182 mdb_warn("cannot walk callout_list"
1183 " at %p", clptr);
1184 return (WALK_ERR);
1185 }
1186 }
1187 }
1188 } else {
1189 /* walk the id hash table. */
1190 if (coargs->flags & COF_FREE) {
1191 coptr = ct->ct_free;
1192 coargs->bucket = 0;
1193 if (coptr == NULL) {
1194 return (WALK_NEXT);
1195 }
1196 if (mdb_pwalk("callouts_byid", callouts_cb, coargs,
1197 (uintptr_t)coptr) == -1) {
1198 mdb_warn("cannot walk callout id free list"
1199 " at %p", coptr);
1200 return (WALK_ERR);
1201 }
1202 } else {
1203 for (i = 0; i < CALLOUT_BUCKETS; i++) {
1204 if (ct->ct_idhash == NULL) {
1205 break;
1206 }
1207 coptr = (callout_t *)
1208 cotwd->cot_idhash[i].ch_head;
1209 if (coptr == NULL) {
1210 continue;
1211 }
1212 coargs->bucket = i;
1213
1214 /*
1215 * walk callouts directly by id. For id
1216 * chain, the callout list is just a header,
1217 * so there's no need to walk it.
1218 */
1219 if (mdb_pwalk("callouts_byid", callouts_cb,
1220 coargs, (uintptr_t)coptr) == -1) {
1221 mdb_warn("cannot walk callouts at %p",
1222 coptr);
1223 return (WALK_ERR);
1224 }
1225 }
1226 }
1227 }
1228 if (coargs->flags & COF_VERBOSE) {
1229 mdb_dec_indent(4);
1230 }
1231 return (WALK_NEXT);
1232 }
1233
1234 /*
1235 * initialize some common info for both callout dcmds.
1236 */
1237 int
1238 callout_common_init(callout_data_t *coargs)
1239 {
1240 /* we need a couple of things */
1241 if (mdb_readvar(&(coargs->co_table), "callout_table") == -1) {
1242 mdb_warn("failed to read 'callout_table'");
1243 return (DCMD_ERR);
1244 }
1245 /* need to get now in nsecs. Approximate with hrtime vars */
1246 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), "hrtime_last") !=
1247 sizeof (hrtime_t)) {
1248 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t),
1249 "hrtime_base") != sizeof (hrtime_t)) {
1250 mdb_warn("Could not determine current system time");
1251 return (DCMD_ERR);
1252 }
1253 }
1254
1255 if (mdb_readvar(&(coargs->ctbits), "callout_table_bits") == -1) {
1256 mdb_warn("failed to read 'callout_table_bits'");
1257 return (DCMD_ERR);
1258 }
1259 if (mdb_readvar(&(coargs->nsec_per_tick), "nsec_per_tick") == -1) {
1260 mdb_warn("failed to read 'nsec_per_tick'");
1261 return (DCMD_ERR);
1262 }
1263 return (DCMD_OK);
1264 }
1265
1266 /*
1267 * dcmd to print callouts. Optional addr limits to specific table.
1268 * Parses lots of options that get passed to callbacks for walkers.
1269 * Has it's own help function.
1270 */
1271 /*ARGSUSED*/
1272 int
1273 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1274 {
1275 callout_data_t coargs;
1276 /* getopts doesn't help much with stuff like this */
1277 boolean_t Sflag, Cflag, tflag, aflag, bflag, dflag, kflag;
1278 char *funcname = NULL;
1279 char *paramstr = NULL;
1280 uintptr_t Stmp, Ctmp; /* for getopt. */
1281 int retval;
1282
1283 coargs.flags = COF_DEFAULT;
1284 Sflag = Cflag = tflag = bflag = aflag = dflag = kflag = FALSE;
1285 coargs.seqid = -1;
1286
1287 if (mdb_getopts(argc, argv,
1288 'r', MDB_OPT_CLRBITS, COF_NORM, &coargs.flags,
1289 'n', MDB_OPT_CLRBITS, COF_REAL, &coargs.flags,
1290 'l', MDB_OPT_CLRBITS, COF_SHORT, &coargs.flags,
1291 's', MDB_OPT_CLRBITS, COF_LONG, &coargs.flags,
1292 'x', MDB_OPT_SETBITS, COF_EXEC, &coargs.flags,
1293 'h', MDB_OPT_SETBITS, COF_HIRES, &coargs.flags,
1294 'B', MDB_OPT_SETBITS, COF_ABS, &coargs.flags,
1295 'E', MDB_OPT_SETBITS, COF_EMPTY, &coargs.flags,
1296 'd', MDB_OPT_SETBITS, 1, &dflag,
1297 'C', MDB_OPT_UINTPTR_SET, &Cflag, &Ctmp,
1298 'S', MDB_OPT_UINTPTR_SET, &Sflag, &Stmp,
1299 't', MDB_OPT_UINTPTR_SET, &tflag, (uintptr_t *)&coargs.time,
1300 'a', MDB_OPT_UINTPTR_SET, &aflag, (uintptr_t *)&coargs.atime,
1301 'b', MDB_OPT_UINTPTR_SET, &bflag, (uintptr_t *)&coargs.btime,
1302 'k', MDB_OPT_SETBITS, 1, &kflag,
1303 'f', MDB_OPT_STR, &funcname,
1304 'p', MDB_OPT_STR, ¶mstr,
1305 'T', MDB_OPT_SETBITS, COF_TABLE, &coargs.flags,
1306 'D', MDB_OPT_SETBITS, COF_EXPREL, &coargs.flags,
1307 'L', MDB_OPT_SETBITS, COF_LIST, &coargs.flags,
1308 'V', MDB_OPT_SETBITS, COF_VERBOSE, &coargs.flags,
1309 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags,
1310 'i', MDB_OPT_SETBITS, COF_BYIDH, &coargs.flags,
1311 'F', MDB_OPT_SETBITS, COF_FREE, &coargs.flags,
1312 'H', MDB_OPT_SETBITS, COF_HEAP, &coargs.flags,
1313 'Q', MDB_OPT_SETBITS, COF_QUEUE, &coargs.flags,
1314 'A', MDB_OPT_SETBITS, COF_ADDR, &coargs.flags,
1315 NULL) != argc) {
1316 return (DCMD_USAGE);
1317 }
1318
1319 /* initialize from kernel variables */
1320 if ((retval = callout_common_init(&coargs)) != DCMD_OK) {
1321 return (retval);
1322 }
1323
1324 /* do some option post-processing */
1325 if (kflag) {
1326 coargs.time *= coargs.nsec_per_tick;
1327 coargs.atime *= coargs.nsec_per_tick;
1328 coargs.btime *= coargs.nsec_per_tick;
1329 }
1330
1331 if (dflag) {
1332 coargs.time += coargs.now;
1333 coargs.atime += coargs.now;
1334 coargs.btime += coargs.now;
1335 }
1336 if (Sflag) {
1337 if (flags & DCMD_ADDRSPEC) {
1338 mdb_printf("-S option conflicts with explicit"
1339 " address\n");
1340 return (DCMD_USAGE);
1341 }
1342 coargs.flags |= COF_SEQID;
1343 coargs.seqid = (int)Stmp;
1344 }
1345 if (Cflag) {
1346 if (flags & DCMD_ADDRSPEC) {
1347 mdb_printf("-C option conflicts with explicit"
1348 " address\n");
1349 return (DCMD_USAGE);
1350 }
1351 if (coargs.flags & COF_SEQID) {
1352 mdb_printf("-C and -S are mutually exclusive\n");
1353 return (DCMD_USAGE);
1354 }
1355 coargs.cpu = (cpu_t *)Ctmp;
1356 if (mdb_vread(&coargs.seqid, sizeof (processorid_t),
1357 (uintptr_t)&(coargs.cpu->cpu_seqid)) == -1) {
1358 mdb_warn("failed to read cpu_t at %p", Ctmp);
1359 return (DCMD_ERR);
1360 }
1361 coargs.flags |= COF_SEQID;
1362 }
1363 /* avoid null outputs. */
1364 if (!(coargs.flags & (COF_REAL | COF_NORM))) {
1365 coargs.flags |= COF_REAL | COF_NORM;
1366 }
1367 if (!(coargs.flags & (COF_LONG | COF_SHORT))) {
1368 coargs.flags |= COF_LONG | COF_SHORT;
1369 }
1370 if (tflag) {
1371 if (aflag || bflag) {
1372 mdb_printf("-t and -a|b are mutually exclusive\n");
1373 return (DCMD_USAGE);
1374 }
1375 coargs.flags |= COF_TIME;
1376 }
1377 if (aflag) {
1378 coargs.flags |= COF_AFTER;
1379 }
1380 if (bflag) {
1381 coargs.flags |= COF_BEFORE;
1382 }
1383 if ((aflag && bflag) && (coargs.btime <= coargs.atime)) {
1384 mdb_printf("value for -a must be earlier than the value"
1385 " for -b.\n");
1386 return (DCMD_USAGE);
1387 }
1388
1389 if ((coargs.flags & COF_HEAP) && (coargs.flags & COF_QUEUE)) {
1390 mdb_printf("-H and -Q are mutually exclusive\n");
1391 return (DCMD_USAGE);
1392 }
1393
1394 if (funcname != NULL) {
1395 GElf_Sym sym;
1396
1397 if (mdb_lookup_by_name(funcname, &sym) != 0) {
1398 coargs.funcaddr = mdb_strtoull(funcname);
1399 } else {
1400 coargs.funcaddr = sym.st_value;
1401 }
1402 coargs.flags |= COF_FUNC;
1403 }
1404
1405 if (paramstr != NULL) {
1406 GElf_Sym sym;
1407
1408 if (mdb_lookup_by_name(paramstr, &sym) != 0) {
1409 coargs.param = mdb_strtoull(paramstr);
1410 } else {
1411 coargs.param = sym.st_value;
1412 }
1413 coargs.flags |= COF_PARAM;
1414 }
1415
1416 if (!(flags & DCMD_ADDRSPEC)) {
1417 /* don't pass "dot" if no addr. */
1418 addr = NULL;
1419 }
1420 if (addr != NULL) {
1421 /*
1422 * a callout table was specified. Ignore -r|n option
1423 * to avoid null output.
1424 */
1425 coargs.flags |= (COF_REAL | COF_NORM);
1426 }
1427
1428 if (DCMD_HDRSPEC(flags) || (coargs.flags & COF_VERBOSE)) {
1429 coargs.flags |= COF_THDR | COF_LHDR | COF_CHDR;
1430 }
1431 if (coargs.flags & COF_FREE) {
1432 coargs.flags |= COF_EMPTY;
1433 /* -F = free callouts, -FL = free lists */
1434 if (!(coargs.flags & COF_LIST)) {
1435 coargs.flags |= COF_BYIDH;
1436 }
1437 }
1438
1439 /* walk table, using specialized callback routine. */
1440 if (mdb_pwalk("callout_table", callout_t_cb, &coargs, addr) == -1) {
1441 mdb_warn("cannot walk callout_table");
1442 return (DCMD_ERR);
1443 }
1444 return (DCMD_OK);
1445 }
1446
1447
1448 /*
1449 * Given an extended callout id, dump its information.
1450 */
1451 /*ARGSUSED*/
1452 int
1453 calloutid(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1454 {
1455 callout_data_t coargs;
1456 callout_table_t *ctptr;
1457 callout_table_t ct;
1458 callout_id_t coid;
1459 callout_t *coptr;
1460 int tableid;
1461 callout_id_t xid;
1462 ulong_t idhash;
1463 int i, retval;
1464 const mdb_arg_t *arg;
1465 size_t size;
1466 callout_hash_t cot_idhash[CALLOUT_BUCKETS];
1467
1468 coargs.flags = COF_DEFAULT | COF_BYIDH;
1469 i = mdb_getopts(argc, argv,
1470 'd', MDB_OPT_SETBITS, COF_DECODE, &coargs.flags,
1471 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags,
1472 NULL);
1473 argc -= i;
1474 argv += i;
1475
1476 if (argc != 1) {
1477 return (DCMD_USAGE);
1478 }
1479 arg = &argv[0];
1480
1481 if (arg->a_type == MDB_TYPE_IMMEDIATE) {
1482 xid = arg->a_un.a_val;
1483 } else {
1484 xid = (callout_id_t)mdb_strtoull(arg->a_un.a_str);
1485 }
1486
1487 if (DCMD_HDRSPEC(flags)) {
1488 coargs.flags |= COF_CHDR;
1489 }
1490
1491
1492 /* initialize from kernel variables */
1493 if ((retval = callout_common_init(&coargs)) != DCMD_OK) {
1494 return (retval);
1495 }
1496
1497 /* we must massage the environment so that the macros will play nice */
1498 #define callout_table_mask ((1 << coargs.ctbits) - 1)
1499 #define callout_table_bits coargs.ctbits
1500 #define nsec_per_tick coargs.nsec_per_tick
1501 tableid = CALLOUT_ID_TO_TABLE(xid);
1502 idhash = CALLOUT_IDHASH(xid);
1503 #undef callouts_table_bits
1504 #undef callout_table_mask
1505 #undef nsec_per_tick
1506 coid = CO_PLAIN_ID(xid);
1507
1508 if (flags & DCMD_ADDRSPEC) {
1509 mdb_printf("calloutid does not accept explicit address.\n");
1510 return (DCMD_USAGE);
1511 }
1512
1513 if (coargs.flags & COF_DECODE) {
1514 if (DCMD_HDRSPEC(flags)) {
1515 mdb_printf("%<u>%3s %1s %2s %-?s %-6s %</u>\n",
1516 "SEQ", "T", "XL", "XID", "IDHASH");
1517 }
1518 mdb_printf("%-3d %1s %1s%1s %-?llx %-6d\n",
1519 TABLE_TO_SEQID(tableid),
1520 co_typenames[tableid & CALLOUT_TYPE_MASK],
1521 (xid & CALLOUT_EXECUTING) ? "X" : " ",
1522 (xid & CALLOUT_LONGTERM) ? "L" : " ",
1523 (long long)coid, idhash);
1524 return (DCMD_OK);
1525 }
1526
1527 /* get our table. Note this relies on the types being correct */
1528 ctptr = coargs.co_table + tableid;
1529 if (mdb_vread(&ct, sizeof (callout_table_t), (uintptr_t)ctptr) == -1) {
1530 mdb_warn("failed to read callout_table at %p", ctptr);
1531 return (DCMD_ERR);
1532 }
1533 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS;
1534 if (ct.ct_idhash != NULL) {
1535 if (mdb_vread(&(cot_idhash), size,
1536 (uintptr_t)ct.ct_idhash) == -1) {
1537 mdb_warn("failed to read id_hash at %p",
1538 ct.ct_idhash);
1539 return (WALK_ERR);
1540 }
1541 }
1542
1543 /* callout at beginning of hash chain */
1544 if (ct.ct_idhash == NULL) {
1545 mdb_printf("id hash chain for this xid is empty\n");
1546 return (DCMD_ERR);
1547 }
1548 coptr = (callout_t *)cot_idhash[idhash].ch_head;
1549 if (coptr == NULL) {
1550 mdb_printf("id hash chain for this xid is empty\n");
1551 return (DCMD_ERR);
1552 }
1553
1554 coargs.ndx = tableid;
1555 coargs.bucket = idhash;
1556
1557 /* use the walker, luke */
1558 if (mdb_pwalk("callouts_byid", callouts_cb, &coargs,
1559 (uintptr_t)coptr) == -1) {
1560 mdb_warn("cannot walk callouts at %p", coptr);
1561 return (WALK_ERR);
1562 }
1563
1564 return (DCMD_OK);
1565 }
1566
1567 void
1568 callout_help(void)
1569 {
1570 mdb_printf("callout: display callouts.\n"
1571 "Given a callout table address, display callouts from table.\n"
1572 "Without an address, display callouts from all tables.\n"
1573 "options:\n"
1574 " -r|n : limit display to (r)ealtime or (n)ormal type callouts\n"
1575 " -s|l : limit display to (s)hort-term ids or (l)ong-term ids\n"
1576 " -x : limit display to callouts which are executing\n"
1577 " -h : limit display to callouts based on hrestime\n"
1578 " -B : limit display to callouts based on absolute time\n"
1579 " -t|a|b nsec: limit display to callouts that expire a(t) time,"
1580 " (a)fter time,\n or (b)efore time. Use -a and -b together "
1581 " to specify a range.\n For \"now\", use -d[t|a|b] 0.\n"
1582 " -d : interpret time option to -t|a|b as delta from current time\n"
1583 " -k : use ticks instead of nanoseconds as arguments to"
1584 " -t|a|b. Note that\n ticks are less accurate and may not"
1585 " match other tick times (ie: lbolt).\n"
1586 " -D : display exiration time as delta from current time\n"
1587 " -S seqid : limit display to callouts for this cpu sequence id\n"
1588 " -C addr : limit display to callouts for this cpu pointer\n"
1589 " -f name|addr : limit display to callouts with this function\n"
1590 " -p name|addr : limit display to callouts functions with this"
1591 " parameter\n"
1592 " -T : display the callout table itself, instead of callouts\n"
1593 " -L : display callout lists instead of callouts\n"
1594 " -E : with -T or L, display empty data structures.\n"
1595 " -i : traverse callouts by id hash instead of list hash\n"
1596 " -F : walk free callout list (free list with -i) instead\n"
1597 " -v : display more info for each item\n"
1598 " -V : show details of each level of info as it is traversed\n"
1599 " -H : limit display to callouts in the callout heap\n"
1600 " -Q : limit display to callouts in the callout queue\n"
1601 " -A : show only addresses. Useful for pipelines.\n");
1602 }
1603
1604 void
1605 calloutid_help(void)
1606 {
1607 mdb_printf("calloutid: display callout by id.\n"
1608 "Given an extended callout id, display the callout infomation.\n"
1609 "options:\n"
1610 " -d : do not dereference callout, just decode the id.\n"
1611 " -v : verbose display more info about the callout\n");
1612 }
1613
1614 /*ARGSUSED*/
1615 int
1616 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1617 {
1618 long num_classes, i;
1619 sclass_t *class_tbl;
1620 GElf_Sym g_sclass;
1621 char class_name[PC_CLNMSZ];
1622 size_t tbl_size;
1623
1624 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) {
1625 mdb_warn("failed to find symbol sclass\n");
1626 return (DCMD_ERR);
1627 }
1628
1629 tbl_size = (size_t)g_sclass.st_size;
1630 num_classes = tbl_size / (sizeof (sclass_t));
1631 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC);
1632
1633 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) {
1634 mdb_warn("failed to read sclass");
1635 return (DCMD_ERR);
1636 }
1637
1638 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME",
1639 "INIT FCN", "CLASS FCN");
1640
1641 for (i = 0; i < num_classes; i++) {
1642 if (mdb_vread(class_name, sizeof (class_name),
1643 (uintptr_t)class_tbl[i].cl_name) == -1)
1644 (void) strcpy(class_name, "???");
1645
1646 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name,
1647 class_tbl[i].cl_init, class_tbl[i].cl_funcs);
1648 }
1649
1650 return (DCMD_OK);
1651 }
1652
1653 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */
1654
1655 int
1656 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1657 {
1658 uintptr_t rootdir;
1659 vnode_t vn;
1660 char buf[MAXPATHLEN];
1661
1662 uint_t opt_F = FALSE;
1663
1664 if (mdb_getopts(argc, argv,
1665 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc)
1666 return (DCMD_USAGE);
1667
1668 if (!(flags & DCMD_ADDRSPEC)) {
1669 mdb_warn("expected explicit vnode_t address before ::\n");
1670 return (DCMD_USAGE);
1671 }
1672
1673 if (mdb_readvar(&rootdir, "rootdir") == -1) {
1674 mdb_warn("failed to read rootdir");
1675 return (DCMD_ERR);
1676 }
1677
1678 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1)
1679 return (DCMD_ERR);
1680
1681 if (*buf == '\0') {
1682 mdb_printf("??\n");
1683 return (DCMD_OK);
1684 }
1685
1686 mdb_printf("%s", buf);
1687 if (opt_F && buf[strlen(buf)-1] != '/' &&
1688 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn))
1689 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0));
1690 mdb_printf("\n");
1691
1692 return (DCMD_OK);
1693 }
1694
1695 int
1696 ld_walk_init(mdb_walk_state_t *wsp)
1697 {
1698 wsp->walk_data = (void *)wsp->walk_addr;
1699 return (WALK_NEXT);
1700 }
1701
1702 int
1703 ld_walk_step(mdb_walk_state_t *wsp)
1704 {
1705 int status;
1706 lock_descriptor_t ld;
1707
1708 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) {
1709 mdb_warn("couldn't read lock_descriptor_t at %p\n",
1710 wsp->walk_addr);
1711 return (WALK_ERR);
1712 }
1713
1714 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata);
1715 if (status == WALK_ERR)
1716 return (WALK_ERR);
1717
1718 wsp->walk_addr = (uintptr_t)ld.l_next;
1719 if (wsp->walk_addr == (uintptr_t)wsp->walk_data)
1720 return (WALK_DONE);
1721
1722 return (status);
1723 }
1724
1725 int
1726 lg_walk_init(mdb_walk_state_t *wsp)
1727 {
1728 GElf_Sym sym;
1729
1730 if (mdb_lookup_by_name("lock_graph", &sym) == -1) {
1731 mdb_warn("failed to find symbol 'lock_graph'\n");
1732 return (WALK_ERR);
1733 }
1734
1735 wsp->walk_addr = (uintptr_t)sym.st_value;
1736 wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size);
1737
1738 return (WALK_NEXT);
1739 }
1740
1741 typedef struct lg_walk_data {
1742 uintptr_t startaddr;
1743 mdb_walk_cb_t callback;
1744 void *data;
1745 } lg_walk_data_t;
1746
1747 /*
1748 * We can't use ::walk lock_descriptor directly, because the head of each graph
1749 * is really a dummy lock. Rather than trying to dynamically determine if this
1750 * is a dummy node or not, we just filter out the initial element of the
1751 * list.
1752 */
1753 static int
1754 lg_walk_cb(uintptr_t addr, const void *data, void *priv)
1755 {
1756 lg_walk_data_t *lw = priv;
1757
1758 if (addr != lw->startaddr)
1759 return (lw->callback(addr, data, lw->data));
1760
1761 return (WALK_NEXT);
1762 }
1763
1764 int
1765 lg_walk_step(mdb_walk_state_t *wsp)
1766 {
1767 graph_t *graph;
1768 lg_walk_data_t lw;
1769
1770 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data)
1771 return (WALK_DONE);
1772
1773 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) {
1774 mdb_warn("failed to read graph_t at %p", wsp->walk_addr);
1775 return (WALK_ERR);
1776 }
1777
1778 wsp->walk_addr += sizeof (graph);
1779
1780 if (graph == NULL)
1781 return (WALK_NEXT);
1782
1783 lw.callback = wsp->walk_callback;
1784 lw.data = wsp->walk_cbdata;
1785
1786 lw.startaddr = (uintptr_t)&(graph->active_locks);
1787 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
1788 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
1789 return (WALK_ERR);
1790 }
1791
1792 lw.startaddr = (uintptr_t)&(graph->sleeping_locks);
1793 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
1794 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
1795 return (WALK_ERR);
1796 }
1797
1798 return (WALK_NEXT);
1799 }
1800
1801 /*
1802 * The space available for the path corresponding to the locked vnode depends
1803 * on whether we are printing 32- or 64-bit addresses.
1804 */
1805 #ifdef _LP64
1806 #define LM_VNPATHLEN 20
1807 #else
1808 #define LM_VNPATHLEN 30
1809 #endif
1810
1811 /*ARGSUSED*/
1812 static int
1813 lminfo_cb(uintptr_t addr, const void *data, void *priv)
1814 {
1815 const lock_descriptor_t *ld = data;
1816 char buf[LM_VNPATHLEN];
1817 proc_t p;
1818
1819 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ",
1820 addr, ld->l_type == F_RDLCK ? "RD" :
1821 ld->l_type == F_WRLCK ? "WR" : "??",
1822 ld->l_state, ld->l_flock.l_pid,
1823 ld->l_flock.l_pid == 0 ? "<kernel>" :
1824 mdb_pid2proc(ld->l_flock.l_pid, &p) == NULL ?
1825 "<defunct>" : p.p_user.u_comm,
1826 ld->l_vnode);
1827
1828 mdb_vnode2path((uintptr_t)ld->l_vnode, buf,
1829 sizeof (buf));
1830 mdb_printf("%s\n", buf);
1831
1832 return (WALK_NEXT);
1833 }
1834
1835 /*ARGSUSED*/
1836 int
1837 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1838 {
1839 if (DCMD_HDRSPEC(flags))
1840 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n",
1841 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH");
1842
1843 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL));
1844 }
1845
1846 /*ARGSUSED*/
1847 int
1848 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target)
1849 {
1850 if ((uintptr_t)f->f_vnode == *target) {
1851 mdb_printf("file %p\n", addr);
1852 *target = NULL;
1853 }
1854
1855 return (WALK_NEXT);
1856 }
1857
1858 /*ARGSUSED*/
1859 int
1860 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target)
1861 {
1862 uintptr_t t = *target;
1863
1864 if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) {
1865 mdb_warn("couldn't file walk proc %p", addr);
1866 return (WALK_ERR);
1867 }
1868
1869 if (t == NULL)
1870 mdb_printf("%p\n", addr);
1871
1872 return (WALK_NEXT);
1873 }
1874
1875 /*ARGSUSED*/
1876 int
1877 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1878 {
1879 uintptr_t target = addr;
1880
1881 if (!(flags & DCMD_ADDRSPEC) || addr == NULL)
1882 return (DCMD_USAGE);
1883
1884 if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) {
1885 mdb_warn("can't proc walk");
1886 return (DCMD_ERR);
1887 }
1888
1889 return (DCMD_OK);
1890 }
1891
1892 typedef struct datafmt {
1893 char *hdr1;
1894 char *hdr2;
1895 char *dashes;
1896 char *fmt;
1897 } datafmt_t;
1898
1899 static datafmt_t kmemfmt[] = {
1900 { "cache ", "name ",
1901 "------------------------------", "%-30s " },
1902 { " buf", " size", "-----", "%5H " },
1903 { " buf", " in use", "---------", "%9u " },
1904 { " buf", " total", "---------", "%9u " },
1905 { "memory", "in use", "------", "%6lH " },
1906 { " alloc", " succeed", "----------", "%10u " },
1907 { "alloc", " fail", "-----", "%5u" },
1908 { NULL, NULL, NULL, NULL }
1909 };
1910
1911 static datafmt_t vmemfmt[] = {
1912 { "vmem ", "name ",
1913 "------------------------------", "%-*s " },
1914 { " memory", " in use", "---------", "%9llH " },
1915 { " memory", " total", "----------", "%10llH " },
1916 { " memory", " import", "---------", "%9llH " },
1917 { " alloc", " succeed", "----------", "%10llu " },
1918 { "alloc", " fail", "-----", "%5llu " },
1919 { NULL, NULL, NULL, NULL }
1920 };
1921
1922 /*ARGSUSED*/
1923 static int
1924 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail)
1925 {
1926 short rounds, prounds;
1927
1928 if (KMEM_DUMPCC(ccp)) {
1929 rounds = ccp->cc_dump_rounds;
1930 prounds = ccp->cc_dump_prounds;
1931 } else {
1932 rounds = ccp->cc_rounds;
1933 prounds = ccp->cc_prounds;
1934 }
1935 if (rounds > 0)
1936 *avail += rounds;
1937 if (prounds > 0)
1938 *avail += prounds;
1939
1940 return (WALK_NEXT);
1941 }
1942
1943 /*ARGSUSED*/
1944 static int
1945 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc)
1946 {
1947 *alloc += ccp->cc_alloc;
1948
1949 return (WALK_NEXT);
1950 }
1951
1952 /*ARGSUSED*/
1953 static int
1954 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail)
1955 {
1956 *avail += sp->slab_chunks - sp->slab_refcnt;
1957
1958 return (WALK_NEXT);
1959 }
1960
1961 typedef struct kmastat_vmem {
1962 uintptr_t kv_addr;
1963 struct kmastat_vmem *kv_next;
1964 size_t kv_meminuse;
1965 int kv_alloc;
1966 int kv_fail;
1967 } kmastat_vmem_t;
1968
1969 static int
1970 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_vmem_t **kvpp)
1971 {
1972 kmastat_vmem_t *kv;
1973 datafmt_t *dfp = kmemfmt;
1974 int magsize;
1975
1976 int avail, alloc, total;
1977 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) *
1978 cp->cache_slabsize;
1979
1980 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail;
1981 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc;
1982 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail;
1983
1984 magsize = kmem_get_magsize(cp);
1985
1986 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc;
1987 avail = cp->cache_full.ml_total * magsize;
1988 total = cp->cache_buftotal;
1989
1990 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr);
1991 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr);
1992 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr);
1993
1994 for (kv = *kvpp; kv != NULL; kv = kv->kv_next) {
1995 if (kv->kv_addr == (uintptr_t)cp->cache_arena)
1996 goto out;
1997 }
1998
1999 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC);
2000 kv->kv_next = *kvpp;
2001 kv->kv_addr = (uintptr_t)cp->cache_arena;
2002 *kvpp = kv;
2003 out:
2004 kv->kv_meminuse += meminuse;
2005 kv->kv_alloc += alloc;
2006 kv->kv_fail += cp->cache_alloc_fail;
2007
2008 mdb_printf((dfp++)->fmt, cp->cache_name);
2009 mdb_printf((dfp++)->fmt, cp->cache_bufsize);
2010 mdb_printf((dfp++)->fmt, total - avail);
2011 mdb_printf((dfp++)->fmt, total);
2012 mdb_printf((dfp++)->fmt, meminuse);
2013 mdb_printf((dfp++)->fmt, alloc);
2014 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail);
2015 mdb_printf("\n");
2016
2017 return (WALK_NEXT);
2018 }
2019
2020 static int
2021 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_vmem_t *kv)
2022 {
2023 size_t len;
2024
2025 while (kv != NULL && kv->kv_addr != addr)
2026 kv = kv->kv_next;
2027
2028 if (kv == NULL || kv->kv_alloc == 0)
2029 return (WALK_NEXT);
2030
2031 len = MIN(22, strlen(v->vm_name));
2032
2033 mdb_printf("Total [%s]%*s %5s %9s %9s %6lH %10u %5u\n", v->vm_name,
2034 22 - len, "", "", "", "",
2035 kv->kv_meminuse, kv->kv_alloc, kv->kv_fail);
2036
2037 return (WALK_NEXT);
2038 }
2039
2040 /*ARGSUSED*/
2041 static int
2042 kmastat_vmem(uintptr_t addr, const vmem_t *v, const void *ignored)
2043 {
2044 datafmt_t *dfp = vmemfmt;
2045 const vmem_kstat_t *vkp = &v->vm_kstat;
2046 uintptr_t paddr;
2047 vmem_t parent;
2048 int ident = 0;
2049
2050 for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) {
2051 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) {
2052 mdb_warn("couldn't trace %p's ancestry", addr);
2053 ident = 0;
2054 break;
2055 }
2056 paddr = (uintptr_t)parent.vm_source;
2057 }
2058
2059 mdb_printf("%*s", ident, "");
2060 mdb_printf((dfp++)->fmt, 30 - ident, v->vm_name);
2061 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64);
2062 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64);
2063 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64);
2064 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64);
2065 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64);
2066
2067 mdb_printf("\n");
2068
2069 return (WALK_NEXT);
2070 }
2071
2072 /*ARGSUSED*/
2073 int
2074 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2075 {
2076 kmastat_vmem_t *kv = NULL;
2077 datafmt_t *dfp;
2078
2079 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2080 mdb_printf("%s%s", dfp == kmemfmt ? "" : " ", dfp->hdr1);
2081 mdb_printf("\n");
2082
2083 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2084 mdb_printf("%s%s", dfp == kmemfmt ? "" : " ", dfp->hdr2);
2085 mdb_printf("\n");
2086
2087 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2088 mdb_printf("%s%s", dfp == kmemfmt ? "" : " ", dfp->dashes);
2089 mdb_printf("\n");
2090
2091 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &kv) == -1) {
2092 mdb_warn("can't walk 'kmem_cache'");
2093 return (DCMD_ERR);
2094 }
2095
2096 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2097 mdb_printf("%s%s", dfp == kmemfmt ? "" : " ", dfp->dashes);
2098 mdb_printf("\n");
2099
2100 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, kv) == -1) {
2101 mdb_warn("can't walk 'vmem'");
2102 return (DCMD_ERR);
2103 }
2104
2105 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2106 mdb_printf("%s%s", dfp == kmemfmt ? "" : " ", dfp->dashes);
2107 mdb_printf("\n");
2108
2109 mdb_printf("\n");
2110
2111 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2112 mdb_printf("%s ", dfp->hdr1);
2113 mdb_printf("\n");
2114
2115 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2116 mdb_printf("%s ", dfp->hdr2);
2117 mdb_printf("\n");
2118
2119 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2120 mdb_printf("%s ", dfp->dashes);
2121 mdb_printf("\n");
2122
2123 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, NULL) == -1) {
2124 mdb_warn("can't walk 'vmem'");
2125 return (DCMD_ERR);
2126 }
2127
2128 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2129 mdb_printf("%s ", dfp->dashes);
2130 mdb_printf("\n");
2131 return (DCMD_OK);
2132 }
2133
2134 /*
2135 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made
2136 * up of a set of 'struct seg's. We could just scan each seg en masse, but
2137 * unfortunately, a few of the segs are both large and sparse, so we could
2138 * spend quite a bit of time scanning VAs which have no backing pages.
2139 *
2140 * So for the few very sparse segs, we skip the segment itself, and scan
2141 * the allocated vmem_segs in the vmem arena which manages that part of kas.
2142 * Currently, we do this for:
2143 *
2144 * SEG VMEM ARENA
2145 * kvseg heap_arena
2146 * kvseg32 heap32_arena
2147 * kvseg_core heap_core_arena
2148 *
2149 * In addition, we skip the segkpm segment in its entirety, since it is very
2150 * sparse, and contains no new kernel data.
2151 */
2152 typedef struct kgrep_walk_data {
2153 kgrep_cb_func *kg_cb;
2154 void *kg_cbdata;
2155 uintptr_t kg_kvseg;
2156 uintptr_t kg_kvseg32;
2157 uintptr_t kg_kvseg_core;
2158 uintptr_t kg_segkpm;
2159 uintptr_t kg_heap_lp_base;
2160 uintptr_t kg_heap_lp_end;
2161 } kgrep_walk_data_t;
2162
2163 static int
2164 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg)
2165 {
2166 uintptr_t base = (uintptr_t)seg->s_base;
2167
2168 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 ||
2169 addr == kg->kg_kvseg_core)
2170 return (WALK_NEXT);
2171
2172 if ((uintptr_t)seg->s_ops == kg->kg_segkpm)
2173 return (WALK_NEXT);
2174
2175 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata));
2176 }
2177
2178 /*ARGSUSED*/
2179 static int
2180 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
2181 {
2182 /*
2183 * skip large page heap address range - it is scanned by walking
2184 * allocated vmem_segs in the heap_lp_arena
2185 */
2186 if (seg->vs_start == kg->kg_heap_lp_base &&
2187 seg->vs_end == kg->kg_heap_lp_end)
2188 return (WALK_NEXT);
2189
2190 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
2191 }
2192
2193 /*ARGSUSED*/
2194 static int
2195 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
2196 {
2197 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
2198 }
2199
2200 static int
2201 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg)
2202 {
2203 mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg;
2204
2205 if (strcmp(vmem->vm_name, "heap") != 0 &&
2206 strcmp(vmem->vm_name, "heap32") != 0 &&
2207 strcmp(vmem->vm_name, "heap_core") != 0 &&
2208 strcmp(vmem->vm_name, "heap_lp") != 0)
2209 return (WALK_NEXT);
2210
2211 if (strcmp(vmem->vm_name, "heap_lp") == 0)
2212 walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg;
2213
2214 if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) {
2215 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr);
2216 return (WALK_ERR);
2217 }
2218
2219 return (WALK_NEXT);
2220 }
2221
2222 int
2223 kgrep_subr(kgrep_cb_func *cb, void *cbdata)
2224 {
2225 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm;
2226 kgrep_walk_data_t kg;
2227
2228 if (mdb_get_state() == MDB_STATE_RUNNING) {
2229 mdb_warn("kgrep can only be run on a system "
2230 "dump or under kmdb; see dumpadm(1M)\n");
2231 return (DCMD_ERR);
2232 }
2233
2234 if (mdb_lookup_by_name("kas", &kas) == -1) {
2235 mdb_warn("failed to locate 'kas' symbol\n");
2236 return (DCMD_ERR);
2237 }
2238
2239 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) {
2240 mdb_warn("failed to locate 'kvseg' symbol\n");
2241 return (DCMD_ERR);
2242 }
2243
2244 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) {
2245 mdb_warn("failed to locate 'kvseg32' symbol\n");
2246 return (DCMD_ERR);
2247 }
2248
2249 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) {
2250 mdb_warn("failed to locate 'kvseg_core' symbol\n");
2251 return (DCMD_ERR);
2252 }
2253
2254 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) {
2255 mdb_warn("failed to locate 'segkpm_ops' symbol\n");
2256 return (DCMD_ERR);
2257 }
2258
2259 if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) {
2260 mdb_warn("failed to read 'heap_lp_base'\n");
2261 return (DCMD_ERR);
2262 }
2263
2264 if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) {
2265 mdb_warn("failed to read 'heap_lp_end'\n");
2266 return (DCMD_ERR);
2267 }
2268
2269 kg.kg_cb = cb;
2270 kg.kg_cbdata = cbdata;
2271 kg.kg_kvseg = (uintptr_t)kvseg.st_value;
2272 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value;
2273 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value;
2274 kg.kg_segkpm = (uintptr_t)segkpm.st_value;
2275
2276 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg,
2277 &kg, kas.st_value) == -1) {
2278 mdb_warn("failed to walk kas segments");
2279 return (DCMD_ERR);
2280 }
2281
2282 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) {
2283 mdb_warn("failed to walk heap/heap32 vmem arenas");
2284 return (DCMD_ERR);
2285 }
2286
2287 return (DCMD_OK);
2288 }
2289
2290 size_t
2291 kgrep_subr_pagesize(void)
2292 {
2293 return (PAGESIZE);
2294 }
2295
2296 typedef struct file_walk_data {
2297 struct uf_entry *fw_flist;
2298 int fw_flistsz;
2299 int fw_ndx;
2300 int fw_nofiles;
2301 } file_walk_data_t;
2302
2303 int
2304 file_walk_init(mdb_walk_state_t *wsp)
2305 {
2306 file_walk_data_t *fw;
2307 proc_t p;
2308
2309 if (wsp->walk_addr == NULL) {
2310 mdb_warn("file walk doesn't support global walks\n");
2311 return (WALK_ERR);
2312 }
2313
2314 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP);
2315
2316 if (mdb_vread(&p, sizeof (p), wsp->walk_addr) == -1) {
2317 mdb_free(fw, sizeof (file_walk_data_t));
2318 mdb_warn("failed to read proc structure at %p", wsp->walk_addr);
2319 return (WALK_ERR);
2320 }
2321
2322 if (p.p_user.u_finfo.fi_nfiles == 0) {
2323 mdb_free(fw, sizeof (file_walk_data_t));
2324 return (WALK_DONE);
2325 }
2326
2327 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles;
2328 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles;
2329 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP);
2330
2331 if (mdb_vread(fw->fw_flist, fw->fw_flistsz,
2332 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) {
2333 mdb_warn("failed to read file array at %p",
2334 p.p_user.u_finfo.fi_list);
2335 mdb_free(fw->fw_flist, fw->fw_flistsz);
2336 mdb_free(fw, sizeof (file_walk_data_t));
2337 return (WALK_ERR);
2338 }
2339
2340 fw->fw_ndx = 0;
2341 wsp->walk_data = fw;
2342
2343 return (WALK_NEXT);
2344 }
2345
2346 int
2347 file_walk_step(mdb_walk_state_t *wsp)
2348 {
2349 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2350 struct file file;
2351 uintptr_t fp;
2352
2353 again:
2354 if (fw->fw_ndx == fw->fw_nofiles)
2355 return (WALK_DONE);
2356
2357 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == NULL)
2358 goto again;
2359
2360 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
2361 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
2362 }
2363
2364 int
2365 allfile_walk_step(mdb_walk_state_t *wsp)
2366 {
2367 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2368 struct file file;
2369 uintptr_t fp;
2370
2371 if (fw->fw_ndx == fw->fw_nofiles)
2372 return (WALK_DONE);
2373
2374 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != NULL)
2375 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
2376 else
2377 bzero(&file, sizeof (file));
2378
2379 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
2380 }
2381
2382 void
2383 file_walk_fini(mdb_walk_state_t *wsp)
2384 {
2385 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2386
2387 mdb_free(fw->fw_flist, fw->fw_flistsz);
2388 mdb_free(fw, sizeof (file_walk_data_t));
2389 }
2390
2391 int
2392 port_walk_init(mdb_walk_state_t *wsp)
2393 {
2394 if (wsp->walk_addr == NULL) {
2395 mdb_warn("port walk doesn't support global walks\n");
2396 return (WALK_ERR);
2397 }
2398
2399 if (mdb_layered_walk("file", wsp) == -1) {
2400 mdb_warn("couldn't walk 'file'");
2401 return (WALK_ERR);
2402 }
2403 return (WALK_NEXT);
2404 }
2405
2406 int
2407 port_walk_step(mdb_walk_state_t *wsp)
2408 {
2409 struct vnode vn;
2410 uintptr_t vp;
2411 uintptr_t pp;
2412 struct port port;
2413
2414 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode;
2415 if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
2416 mdb_warn("failed to read vnode_t at %p", vp);
2417 return (WALK_ERR);
2418 }
2419 if (vn.v_type != VPORT)
2420 return (WALK_NEXT);
2421
2422 pp = (uintptr_t)vn.v_data;
2423 if (mdb_vread(&port, sizeof (port), pp) == -1) {
2424 mdb_warn("failed to read port_t at %p", pp);
2425 return (WALK_ERR);
2426 }
2427 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata));
2428 }
2429
2430 typedef struct portev_walk_data {
2431 list_node_t *pev_node;
2432 list_node_t *pev_last;
2433 size_t pev_offset;
2434 } portev_walk_data_t;
2435
2436 int
2437 portev_walk_init(mdb_walk_state_t *wsp)
2438 {
2439 portev_walk_data_t *pevd;
2440 struct port port;
2441 struct vnode vn;
2442 struct list *list;
2443 uintptr_t vp;
2444
2445 if (wsp->walk_addr == NULL) {
2446 mdb_warn("portev walk doesn't support global walks\n");
2447 return (WALK_ERR);
2448 }
2449
2450 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP);
2451
2452 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) {
2453 mdb_free(pevd, sizeof (portev_walk_data_t));
2454 mdb_warn("failed to read port structure at %p", wsp->walk_addr);
2455 return (WALK_ERR);
2456 }
2457
2458 vp = (uintptr_t)port.port_vnode;
2459 if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
2460 mdb_free(pevd, sizeof (portev_walk_data_t));
2461 mdb_warn("failed to read vnode_t at %p", vp);
2462 return (WALK_ERR);
2463 }
2464
2465 if (vn.v_type != VPORT) {
2466 mdb_free(pevd, sizeof (portev_walk_data_t));
2467 mdb_warn("input address (%p) does not point to an event port",
2468 wsp->walk_addr);
2469 return (WALK_ERR);
2470 }
2471
2472 if (port.port_queue.portq_nent == 0) {
2473 mdb_free(pevd, sizeof (portev_walk_data_t));
2474 return (WALK_DONE);
2475 }
2476 list = &port.port_queue.portq_list;
2477 pevd->pev_offset = list->list_offset;
2478 pevd->pev_last = list->list_head.list_prev;
2479 pevd->pev_node = list->list_head.list_next;
2480 wsp->walk_data = pevd;
2481 return (WALK_NEXT);
2482 }
2483
2484 int
2485 portev_walk_step(mdb_walk_state_t *wsp)
2486 {
2487 portev_walk_data_t *pevd;
2488 struct port_kevent ev;
2489 uintptr_t evp;
2490
2491 pevd = (portev_walk_data_t *)wsp->walk_data;
2492
2493 if (pevd->pev_last == NULL)
2494 return (WALK_DONE);
2495 if (pevd->pev_node == pevd->pev_last)
2496 pevd->pev_last = NULL; /* last round */
2497
2498 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset));
2499 if (mdb_vread(&ev, sizeof (ev), evp) == -1) {
2500 mdb_warn("failed to read port_kevent at %p", evp);
2501 return (WALK_DONE);
2502 }
2503 pevd->pev_node = ev.portkev_node.list_next;
2504 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata));
2505 }
2506
2507 void
2508 portev_walk_fini(mdb_walk_state_t *wsp)
2509 {
2510 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data;
2511
2512 if (pevd != NULL)
2513 mdb_free(pevd, sizeof (portev_walk_data_t));
2514 }
2515
2516 typedef struct proc_walk_data {
2517 uintptr_t *pw_stack;
2518 int pw_depth;
2519 int pw_max;
2520 } proc_walk_data_t;
2521
2522 int
2523 proc_walk_init(mdb_walk_state_t *wsp)
2524 {
2525 GElf_Sym sym;
2526 proc_walk_data_t *pw;
2527
2528 if (wsp->walk_addr == NULL) {
2529 if (mdb_lookup_by_name("p0", &sym) == -1) {
2530 mdb_warn("failed to read 'practive'");
2531 return (WALK_ERR);
2532 }
2533 wsp->walk_addr = (uintptr_t)sym.st_value;
2534 }
2535
2536 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP);
2537
2538 if (mdb_readvar(&pw->pw_max, "nproc") == -1) {
2539 mdb_warn("failed to read 'nproc'");
2540 mdb_free(pw, sizeof (pw));
2541 return (WALK_ERR);
2542 }
2543
2544 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP);
2545 wsp->walk_data = pw;
2546
2547 return (WALK_NEXT);
2548 }
2549
2550 int
2551 proc_walk_step(mdb_walk_state_t *wsp)
2552 {
2553 proc_walk_data_t *pw = wsp->walk_data;
2554 uintptr_t addr = wsp->walk_addr;
2555 uintptr_t cld, sib;
2556
2557 int status;
2558 proc_t pr;
2559
2560 if (mdb_vread(&pr, sizeof (proc_t), addr) == -1) {
2561 mdb_warn("failed to read proc at %p", addr);
2562 return (WALK_DONE);
2563 }
2564
2565 cld = (uintptr_t)pr.p_child;
2566 sib = (uintptr_t)pr.p_sibling;
2567
2568 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) {
2569 pw->pw_depth--;
2570 goto sib;
2571 }
2572
2573 status = wsp->walk_callback(addr, &pr, wsp->walk_cbdata);
2574
2575 if (status != WALK_NEXT)
2576 return (status);
2577
2578 if ((wsp->walk_addr = cld) != NULL) {
2579 if (mdb_vread(&pr, sizeof (proc_t), cld) == -1) {
2580 mdb_warn("proc %p has invalid p_child %p; skipping\n",
2581 addr, cld);
2582 goto sib;
2583 }
2584
2585 pw->pw_stack[pw->pw_depth++] = addr;
2586
2587 if (pw->pw_depth == pw->pw_max) {
2588 mdb_warn("depth %d exceeds max depth; try again\n",
2589 pw->pw_depth);
2590 return (WALK_DONE);
2591 }
2592 return (WALK_NEXT);
2593 }
2594
2595 sib:
2596 /*
2597 * We know that p0 has no siblings, and if another starting proc
2598 * was given, we don't want to walk its siblings anyway.
2599 */
2600 if (pw->pw_depth == 0)
2601 return (WALK_DONE);
2602
2603 if (sib != NULL && mdb_vread(&pr, sizeof (proc_t), sib) == -1) {
2604 mdb_warn("proc %p has invalid p_sibling %p; skipping\n",
2605 addr, sib);
2606 sib = NULL;
2607 }
2608
2609 if ((wsp->walk_addr = sib) == NULL) {
2610 if (pw->pw_depth > 0) {
2611 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1];
2612 return (WALK_NEXT);
2613 }
2614 return (WALK_DONE);
2615 }
2616
2617 return (WALK_NEXT);
2618 }
2619
2620 void
2621 proc_walk_fini(mdb_walk_state_t *wsp)
2622 {
2623 proc_walk_data_t *pw = wsp->walk_data;
2624
2625 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t));
2626 mdb_free(pw, sizeof (proc_walk_data_t));
2627 }
2628
2629 int
2630 task_walk_init(mdb_walk_state_t *wsp)
2631 {
2632 task_t task;
2633
2634 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) {
2635 mdb_warn("failed to read task at %p", wsp->walk_addr);
2636 return (WALK_ERR);
2637 }
2638 wsp->walk_addr = (uintptr_t)task.tk_memb_list;
2639 wsp->walk_data = task.tk_memb_list;
2640 return (WALK_NEXT);
2641 }
2642
2643 int
2644 task_walk_step(mdb_walk_state_t *wsp)
2645 {
2646 proc_t proc;
2647 int status;
2648
2649 if (mdb_vread(&proc, sizeof (proc_t), wsp->walk_addr) == -1) {
2650 mdb_warn("failed to read proc at %p", wsp->walk_addr);
2651 return (WALK_DONE);
2652 }
2653
2654 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata);
2655
2656 if (proc.p_tasknext == wsp->walk_data)
2657 return (WALK_DONE);
2658
2659 wsp->walk_addr = (uintptr_t)proc.p_tasknext;
2660 return (status);
2661 }
2662
2663 int
2664 project_walk_init(mdb_walk_state_t *wsp)
2665 {
2666 if (wsp->walk_addr == NULL) {
2667 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) {
2668 mdb_warn("failed to read 'proj0p'");
2669 return (WALK_ERR);
2670 }
2671 }
2672 wsp->walk_data = (void *)wsp->walk_addr;
2673 return (WALK_NEXT);
2674 }
2675
2676 int
2677 project_walk_step(mdb_walk_state_t *wsp)
2678 {
2679 uintptr_t addr = wsp->walk_addr;
2680 kproject_t pj;
2681 int status;
2682
2683 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
2684 mdb_warn("failed to read project at %p", addr);
2685 return (WALK_DONE);
2686 }
2687 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata);
2688 if (status != WALK_NEXT)
2689 return (status);
2690 wsp->walk_addr = (uintptr_t)pj.kpj_next;
2691 if ((void *)wsp->walk_addr == wsp->walk_data)
2692 return (WALK_DONE);
2693 return (WALK_NEXT);
2694 }
2695
2696 static int
2697 generic_walk_step(mdb_walk_state_t *wsp)
2698 {
2699 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer,
2700 wsp->walk_cbdata));
2701 }
2702
2703 static int
2704 cpu_walk_cmp(const void *l, const void *r)
2705 {
2706 uintptr_t lhs = *((uintptr_t *)l);
2707 uintptr_t rhs = *((uintptr_t *)r);
2708 cpu_t lcpu, rcpu;
2709
2710 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs);
2711 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs);
2712
2713 if (lcpu.cpu_id < rcpu.cpu_id)
2714 return (-1);
2715
2716 if (lcpu.cpu_id > rcpu.cpu_id)
2717 return (1);
2718
2719 return (0);
2720 }
2721
2722 typedef struct cpu_walk {
2723 uintptr_t *cw_array;
2724 int cw_ndx;
2725 } cpu_walk_t;
2726
2727 int
2728 cpu_walk_init(mdb_walk_state_t *wsp)
2729 {
2730 cpu_walk_t *cw;
2731 int max_ncpus, i = 0;
2732 uintptr_t current, first;
2733 cpu_t cpu, panic_cpu;
2734 uintptr_t panicstr, addr;
2735 GElf_Sym sym;
2736
2737 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC);
2738
2739 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) {
2740 mdb_warn("failed to read 'max_ncpus'");
2741 return (WALK_ERR);
2742 }
2743
2744 if (mdb_readvar(&panicstr, "panicstr") == -1) {
2745 mdb_warn("failed to read 'panicstr'");
2746 return (WALK_ERR);
2747 }
2748
2749 if (panicstr != NULL) {
2750 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) {
2751 mdb_warn("failed to find 'panic_cpu'");
2752 return (WALK_ERR);
2753 }
2754
2755 addr = (uintptr_t)sym.st_value;
2756
2757 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) {
2758 mdb_warn("failed to read 'panic_cpu'");
2759 return (WALK_ERR);
2760 }
2761 }
2762
2763 /*
2764 * Unfortunately, there is no platform-independent way to walk
2765 * CPUs in ID order. We therefore loop through in cpu_next order,
2766 * building an array of CPU pointers which will subsequently be
2767 * sorted.
2768 */
2769 cw->cw_array =
2770 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC);
2771
2772 if (mdb_readvar(&first, "cpu_list") == -1) {
2773 mdb_warn("failed to read 'cpu_list'");
2774 return (WALK_ERR);
2775 }
2776
2777 current = first;
2778 do {
2779 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) {
2780 mdb_warn("failed to read cpu at %p", current);
2781 return (WALK_ERR);
2782 }
2783
2784 if (panicstr != NULL && panic_cpu.cpu_id == cpu.cpu_id) {
2785 cw->cw_array[i++] = addr;
2786 } else {
2787 cw->cw_array[i++] = current;
2788 }
2789 } while ((current = (uintptr_t)cpu.cpu_next) != first);
2790
2791 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp);
2792 wsp->walk_data = cw;
2793
2794 return (WALK_NEXT);
2795 }
2796
2797 int
2798 cpu_walk_step(mdb_walk_state_t *wsp)
2799 {
2800 cpu_walk_t *cw = wsp->walk_data;
2801 cpu_t cpu;
2802 uintptr_t addr = cw->cw_array[cw->cw_ndx++];
2803
2804 if (addr == NULL)
2805 return (WALK_DONE);
2806
2807 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) {
2808 mdb_warn("failed to read cpu at %p", addr);
2809 return (WALK_DONE);
2810 }
2811
2812 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata));
2813 }
2814
2815 typedef struct cpuinfo_data {
2816 intptr_t cid_cpu;
2817 uintptr_t **cid_ithr;
2818 char cid_print_head;
2819 char cid_print_thr;
2820 char cid_print_ithr;
2821 char cid_print_flags;
2822 } cpuinfo_data_t;
2823
2824 int
2825 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid)
2826 {
2827 cpu_t c;
2828 int id;
2829 uint8_t pil;
2830
2831 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE)
2832 return (WALK_NEXT);
2833
2834 if (thr->t_bound_cpu == NULL) {
2835 mdb_warn("thr %p is intr thread w/out a CPU\n", addr);
2836 return (WALK_NEXT);
2837 }
2838
2839 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu);
2840
2841 if ((id = c.cpu_id) >= NCPU) {
2842 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n",
2843 thr->t_bound_cpu, id, NCPU);
2844 return (WALK_NEXT);
2845 }
2846
2847 if ((pil = thr->t_pil) >= NINTR) {
2848 mdb_warn("thread %p has pil (%d) greater than %d\n",
2849 addr, pil, NINTR);
2850 return (WALK_NEXT);
2851 }
2852
2853 if (cid->cid_ithr[id][pil] != NULL) {
2854 mdb_warn("CPU %d has multiple threads at pil %d (at least "
2855 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]);
2856 return (WALK_NEXT);
2857 }
2858
2859 cid->cid_ithr[id][pil] = addr;
2860
2861 return (WALK_NEXT);
2862 }
2863
2864 #define CPUINFO_IDWIDTH 3
2865 #define CPUINFO_FLAGWIDTH 9
2866
2867 #ifdef _LP64
2868 #if defined(__amd64)
2869 #define CPUINFO_TWIDTH 16
2870 #define CPUINFO_CPUWIDTH 16
2871 #else
2872 #define CPUINFO_CPUWIDTH 11
2873 #define CPUINFO_TWIDTH 11
2874 #endif
2875 #else
2876 #define CPUINFO_CPUWIDTH 8
2877 #define CPUINFO_TWIDTH 8
2878 #endif
2879
2880 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9)
2881 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4)
2882 #define CPUINFO_ITHRDELT 4
2883
2884 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \
2885 flagline < nflaglines ? flagbuf[flagline++] : "")
2886
2887 int
2888 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid)
2889 {
2890 kthread_t t;
2891 disp_t disp;
2892 proc_t p;
2893 uintptr_t pinned;
2894 char **flagbuf;
2895 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT;
2896
2897 const char *flags[] = {
2898 "RUNNING", "READY", "QUIESCED", "EXISTS",
2899 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN",
2900 "SPARE", "FAULTED", NULL
2901 };
2902
2903 if (cid->cid_cpu != -1) {
2904 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu)
2905 return (WALK_NEXT);
2906
2907 /*
2908 * Set cid_cpu to -1 to indicate that we found a matching CPU.
2909 */
2910 cid->cid_cpu = -1;
2911 rval = WALK_DONE;
2912 }
2913
2914 if (cid->cid_print_head) {
2915 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n",
2916 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL",
2917 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD",
2918 "PROC");
2919 cid->cid_print_head = FALSE;
2920 }
2921
2922 bspl = cpu->cpu_base_spl;
2923
2924 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) {
2925 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp);
2926 return (WALK_ERR);
2927 }
2928
2929 mdb_printf("%3d %0*p %3x %4d %4d ",
2930 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags,
2931 disp.disp_nrunnable, bspl);
2932
2933 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) {
2934 mdb_printf("%3d ", t.t_pri);
2935 } else {
2936 mdb_printf("%3s ", "-");
2937 }
2938
2939 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no",
2940 cpu->cpu_kprunrun ? "yes" : "no");
2941
2942 if (cpu->cpu_last_swtch) {
2943 mdb_printf("t-%-4d ",
2944 (clock_t)mdb_get_lbolt() - cpu->cpu_last_swtch);
2945 } else {
2946 mdb_printf("%-6s ", "-");
2947 }
2948
2949 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread);
2950
2951 if (cpu->cpu_thread == cpu->cpu_idle_thread)
2952 mdb_printf(" (idle)\n");
2953 else if (cpu->cpu_thread == NULL)
2954 mdb_printf(" -\n");
2955 else {
2956 if (mdb_vread(&p, sizeof (p), (uintptr_t)t.t_procp) != -1) {
2957 mdb_printf(" %s\n", p.p_user.u_comm);
2958 } else {
2959 mdb_printf(" ?\n");
2960 }
2961 }
2962
2963 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC);
2964
2965 if (cid->cid_print_flags) {
2966 int first = 1, i, j, k;
2967 char *s;
2968
2969 cid->cid_print_head = TRUE;
2970
2971 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) {
2972 if (!(cpu->cpu_flags & i))
2973 continue;
2974
2975 if (first) {
2976 s = mdb_alloc(CPUINFO_THRDELT + 1,
2977 UM_GC | UM_SLEEP);
2978
2979 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1,
2980 "%*s|%*s", CPUINFO_FLAGDELT, "",
2981 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, "");
2982 flagbuf[nflaglines++] = s;
2983 }
2984
2985 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP);
2986 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s",
2987 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH -
2988 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j],
2989 first ? "<--+" : "");
2990
2991 for (k = strlen(s); k < CPUINFO_THRDELT; k++)
2992 s[k] = ' ';
2993 s[k] = '\0';
2994
2995 flagbuf[nflaglines++] = s;
2996 first = 0;
2997 }
2998 }
2999
3000 if (cid->cid_print_ithr) {
3001 int i, found_one = FALSE;
3002 int print_thr = disp.disp_nrunnable && cid->cid_print_thr;
3003
3004 for (i = NINTR - 1; i >= 0; i--) {
3005 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i];
3006
3007 if (iaddr == NULL)
3008 continue;
3009
3010 if (!found_one) {
3011 found_one = TRUE;
3012
3013 CPUINFO_INDENT;
3014 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ',
3015 CPUINFO_ITHRDELT, "");
3016
3017 CPUINFO_INDENT;
3018 mdb_printf("%c%*s+--> %3s %s\n",
3019 print_thr ? '|' : ' ', CPUINFO_ITHRDELT,
3020 "", "PIL", "THREAD");
3021 }
3022
3023 if (mdb_vread(&t, sizeof (t), iaddr) == -1) {
3024 mdb_warn("failed to read kthread_t at %p",
3025 iaddr);
3026 return (WALK_ERR);
3027 }
3028
3029 CPUINFO_INDENT;
3030 mdb_printf("%c%*s %3d %0*p\n",
3031 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "",
3032 t.t_pil, CPUINFO_TWIDTH, iaddr);
3033
3034 pinned = (uintptr_t)t.t_intr;
3035 }
3036
3037 if (found_one && pinned != NULL) {
3038 cid->cid_print_head = TRUE;
3039 (void) strcpy(p.p_user.u_comm, "?");
3040
3041 if (mdb_vread(&t, sizeof (t),
3042 (uintptr_t)pinned) == -1) {
3043 mdb_warn("failed to read kthread_t at %p",
3044 pinned);
3045 return (WALK_ERR);
3046 }
3047 if (mdb_vread(&p, sizeof (p),
3048 (uintptr_t)t.t_procp) == -1) {
3049 mdb_warn("failed to read proc_t at %p",
3050 t.t_procp);
3051 return (WALK_ERR);
3052 }
3053
3054 CPUINFO_INDENT;
3055 mdb_printf("%c%*s %3s %0*p %s\n",
3056 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-",
3057 CPUINFO_TWIDTH, pinned,
3058 pinned == (uintptr_t)cpu->cpu_idle_thread ?
3059 "(idle)" : p.p_user.u_comm);
3060 }
3061 }
3062
3063 if (disp.disp_nrunnable && cid->cid_print_thr) {
3064 dispq_t *dq;
3065
3066 int i, npri = disp.disp_npri;
3067
3068 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC);
3069
3070 if (mdb_vread(dq, sizeof (dispq_t) * npri,
3071 (uintptr_t)disp.disp_q) == -1) {
3072 mdb_warn("failed to read dispq_t at %p", disp.disp_q);
3073 return (WALK_ERR);
3074 }
3075
3076 CPUINFO_INDENT;
3077 mdb_printf("|\n");
3078
3079 CPUINFO_INDENT;
3080 mdb_printf("+--> %3s %-*s %s\n", "PRI",
3081 CPUINFO_TWIDTH, "THREAD", "PROC");
3082
3083 for (i = npri - 1; i >= 0; i--) {
3084 uintptr_t taddr = (uintptr_t)dq[i].dq_first;
3085
3086 while (taddr != NULL) {
3087 if (mdb_vread(&t, sizeof (t), taddr) == -1) {
3088 mdb_warn("failed to read kthread_t "
3089 "at %p", taddr);
3090 return (WALK_ERR);
3091 }
3092 if (mdb_vread(&p, sizeof (p),
3093 (uintptr_t)t.t_procp) == -1) {
3094 mdb_warn("failed to read proc_t at %p",
3095 t.t_procp);
3096 return (WALK_ERR);
3097 }
3098
3099 CPUINFO_INDENT;
3100 mdb_printf(" %3d %0*p %s\n", t.t_pri,
3101 CPUINFO_TWIDTH, taddr, p.p_user.u_comm);
3102
3103 taddr = (uintptr_t)t.t_link;
3104 }
3105 }
3106 cid->cid_print_head = TRUE;
3107 }
3108
3109 while (flagline < nflaglines)
3110 mdb_printf("%s\n", flagbuf[flagline++]);
3111
3112 if (cid->cid_print_head)
3113 mdb_printf("\n");
3114
3115 return (rval);
3116 }
3117
3118 int
3119 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3120 {
3121 uint_t verbose = FALSE;
3122 cpuinfo_data_t cid;
3123
3124 cid.cid_print_ithr = FALSE;
3125 cid.cid_print_thr = FALSE;
3126 cid.cid_print_flags = FALSE;
3127 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE;
3128 cid.cid_cpu = -1;
3129
3130 if (flags & DCMD_ADDRSPEC)
3131 cid.cid_cpu = addr;
3132
3133 if (mdb_getopts(argc, argv,
3134 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc)
3135 return (DCMD_USAGE);
3136
3137 if (verbose) {
3138 cid.cid_print_ithr = TRUE;
3139 cid.cid_print_thr = TRUE;
3140 cid.cid_print_flags = TRUE;
3141 cid.cid_print_head = TRUE;
3142 }
3143
3144 if (cid.cid_print_ithr) {
3145 int i;
3146
3147 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **)
3148 * NCPU, UM_SLEEP | UM_GC);
3149
3150 for (i = 0; i < NCPU; i++)
3151 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) *
3152 NINTR, UM_SLEEP | UM_GC);
3153
3154 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread,
3155 &cid) == -1) {
3156 mdb_warn("couldn't walk thread");
3157 return (DCMD_ERR);
3158 }
3159 }
3160
3161 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) {
3162 mdb_warn("can't walk cpus");
3163 return (DCMD_ERR);
3164 }
3165
3166 if (cid.cid_cpu != -1) {
3167 /*
3168 * We didn't find this CPU when we walked through the CPUs
3169 * (i.e. the address specified doesn't show up in the "cpu"
3170 * walk). However, the specified address may still correspond
3171 * to a valid cpu_t (for example, if the specified address is
3172 * the actual panicking cpu_t and not the cached panic_cpu).
3173 * Point is: even if we didn't find it, we still want to try
3174 * to print the specified address as a cpu_t.
3175 */
3176 cpu_t cpu;
3177
3178 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) {
3179 mdb_warn("%p is neither a valid CPU ID nor a "
3180 "valid cpu_t address\n", cid.cid_cpu);
3181 return (DCMD_ERR);
3182 }
3183
3184 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid);
3185 }
3186
3187 return (DCMD_OK);
3188 }
3189
3190 /*ARGSUSED*/
3191 int
3192 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3193 {
3194 int i;
3195
3196 if (!(flags & DCMD_ADDRSPEC))
3197 return (DCMD_USAGE);
3198
3199 for (i = 0; i < sizeof (addr) * NBBY; i++)
3200 mdb_printf("%p\n", addr ^ (1UL << i));
3201
3202 return (DCMD_OK);
3203 }
3204
3205 int
3206 as2proc_walk(uintptr_t addr, const proc_t *p, struct as **asp)
3207 {
3208 if (p->p_as == *asp)
3209 mdb_printf("%p\n", addr);
3210 return (WALK_NEXT);
3211 }
3212
3213 /*ARGSUSED*/
3214 int
3215 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3216 {
3217 if (!(flags & DCMD_ADDRSPEC) || argc != 0)
3218 return (DCMD_USAGE);
3219
3220 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) {
3221 mdb_warn("failed to walk proc");
3222 return (DCMD_ERR);
3223 }
3224
3225 return (DCMD_OK);
3226 }
3227
3228 /*ARGSUSED*/
3229 int
3230 ptree_walk(uintptr_t addr, const proc_t *p, void *ignored)
3231 {
3232 proc_t parent;
3233 int ident = 0;
3234 uintptr_t paddr;
3235
3236 for (paddr = (uintptr_t)p->p_parent; paddr != NULL; ident += 5) {
3237 mdb_vread(&parent, sizeof (parent), paddr);
3238 paddr = (uintptr_t)parent.p_parent;
3239 }
3240
3241 mdb_inc_indent(ident);
3242 mdb_printf("%0?p %s\n", addr, p->p_user.u_comm);
3243 mdb_dec_indent(ident);
3244
3245 return (WALK_NEXT);
3246 }
3247
3248 void
3249 ptree_ancestors(uintptr_t addr, uintptr_t start)
3250 {
3251 proc_t p;
3252
3253 if (mdb_vread(&p, sizeof (p), addr) == -1) {
3254 mdb_warn("couldn't read ancestor at %p", addr);
3255 return;
3256 }
3257
3258 if (p.p_parent != NULL)
3259 ptree_ancestors((uintptr_t)p.p_parent, start);
3260
3261 if (addr != start)
3262 (void) ptree_walk(addr, &p, NULL);
3263 }
3264
3265 /*ARGSUSED*/
3266 int
3267 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3268 {
3269 if (!(flags & DCMD_ADDRSPEC))
3270 addr = NULL;
3271 else
3272 ptree_ancestors(addr, addr);
3273
3274 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) {
3275 mdb_warn("couldn't walk 'proc'");
3276 return (DCMD_ERR);
3277 }
3278
3279 return (DCMD_OK);
3280 }
3281
3282 /*ARGSUSED*/
3283 static int
3284 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3285 {
3286 int fdnum;
3287 const mdb_arg_t *argp = &argv[0];
3288 proc_t p;
3289 uf_entry_t uf;
3290
3291 if ((flags & DCMD_ADDRSPEC) == 0) {
3292 mdb_warn("fd doesn't give global information\n");
3293 return (DCMD_ERR);
3294 }
3295 if (argc != 1)
3296 return (DCMD_USAGE);
3297
3298 if (argp->a_type == MDB_TYPE_IMMEDIATE)
3299 fdnum = argp->a_un.a_val;
3300 else
3301 fdnum = mdb_strtoull(argp->a_un.a_str);
3302
3303 if (mdb_vread(&p, sizeof (struct proc), addr) == -1) {
3304 mdb_warn("couldn't read proc_t at %p", addr);
3305 return (DCMD_ERR);
3306 }
3307 if (fdnum > p.p_user.u_finfo.fi_nfiles) {
3308 mdb_warn("process %p only has %d files open.\n",
3309 addr, p.p_user.u_finfo.fi_nfiles);
3310 return (DCMD_ERR);
3311 }
3312 if (mdb_vread(&uf, sizeof (uf_entry_t),
3313 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) {
3314 mdb_warn("couldn't read uf_entry_t at %p",
3315 &p.p_user.u_finfo.fi_list[fdnum]);
3316 return (DCMD_ERR);
3317 }
3318
3319 mdb_printf("%p\n", uf.uf_file);
3320 return (DCMD_OK);
3321 }
3322
3323 /*ARGSUSED*/
3324 static int
3325 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3326 {
3327 pid_t pid = (pid_t)addr;
3328
3329 if (argc != 0)
3330 return (DCMD_USAGE);
3331
3332 if ((addr = mdb_pid2proc(pid, NULL)) == NULL) {
3333 mdb_warn("PID 0t%d not found\n", pid);
3334 return (DCMD_ERR);
3335 }
3336
3337 mdb_printf("%p\n", addr);
3338 return (DCMD_OK);
3339 }
3340
3341 static char *sysfile_cmd[] = {
3342 "exclude:",
3343 "include:",
3344 "forceload:",
3345 "rootdev:",
3346 "rootfs:",
3347 "swapdev:",
3348 "swapfs:",
3349 "moddir:",
3350 "set",
3351 "unknown",
3352 };
3353
3354 static char *sysfile_ops[] = { "", "=", "&", "|" };
3355
3356 /*ARGSUSED*/
3357 static int
3358 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target)
3359 {
3360 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) {
3361 *target = NULL;
3362 return (WALK_DONE);
3363 }
3364 return (WALK_NEXT);
3365 }
3366
3367 /*ARGSUSED*/
3368 static int
3369 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3370 {
3371 struct sysparam *sysp, sys;
3372 char var[256];
3373 char modname[256];
3374 char val[256];
3375 char strval[256];
3376 vmem_t *mod_sysfile_arena;
3377 void *straddr;
3378
3379 if (mdb_readvar(&sysp, "sysparam_hd") == -1) {
3380 mdb_warn("failed to read sysparam_hd");
3381 return (DCMD_ERR);
3382 }
3383
3384 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) {
3385 mdb_warn("failed to read mod_sysfile_arena");
3386 return (DCMD_ERR);
3387 }
3388
3389 while (sysp != NULL) {
3390 var[0] = '\0';
3391 val[0] = '\0';
3392 modname[0] = '\0';
3393 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) {
3394 mdb_warn("couldn't read sysparam %p", sysp);
3395 return (DCMD_ERR);
3396 }
3397 if (sys.sys_modnam != NULL &&
3398 mdb_readstr(modname, 256,
3399 (uintptr_t)sys.sys_modnam) == -1) {
3400 mdb_warn("couldn't read modname in %p", sysp);
3401 return (DCMD_ERR);
3402 }
3403 if (sys.sys_ptr != NULL &&
3404 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) {
3405 mdb_warn("couldn't read ptr in %p", sysp);
3406 return (DCMD_ERR);
3407 }
3408 if (sys.sys_op != SETOP_NONE) {
3409 /*
3410 * Is this an int or a string? We determine this
3411 * by checking whether straddr is contained in
3412 * mod_sysfile_arena. If so, the walker will set
3413 * straddr to NULL.
3414 */
3415 straddr = (void *)(uintptr_t)sys.sys_info;
3416 if (sys.sys_op == SETOP_ASSIGN &&
3417 sys.sys_info != 0 &&
3418 mdb_pwalk("vmem_seg",
3419 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr,
3420 (uintptr_t)mod_sysfile_arena) == 0 &&
3421 straddr == NULL &&
3422 mdb_readstr(strval, 256,
3423 (uintptr_t)sys.sys_info) != -1) {
3424 (void) mdb_snprintf(val, sizeof (val), "\"%s\"",
3425 strval);
3426 } else {
3427 (void) mdb_snprintf(val, sizeof (val),
3428 "0x%llx [0t%llu]", sys.sys_info,
3429 sys.sys_info);
3430 }
3431 }
3432 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type],
3433 modname, modname[0] == '\0' ? "" : ":",
3434 var, sysfile_ops[sys.sys_op], val);
3435
3436 sysp = sys.sys_next;
3437 }
3438
3439 return (DCMD_OK);
3440 }
3441
3442 int
3443 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp)
3444 {
3445
3446 if (*didp == thr->t_did) {
3447 mdb_printf("%p\n", addr);
3448 return (WALK_DONE);
3449 } else
3450 return (WALK_NEXT);
3451 }
3452
3453 /*ARGSUSED*/
3454 int
3455 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3456 {
3457 const mdb_arg_t *argp = &argv[0];
3458 kt_did_t did;
3459
3460 if (argc != 1)
3461 return (DCMD_USAGE);
3462
3463 did = (kt_did_t)mdb_strtoull(argp->a_un.a_str);
3464
3465 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) {
3466 mdb_warn("failed to walk thread");
3467 return (DCMD_ERR);
3468
3469 }
3470 return (DCMD_OK);
3471
3472 }
3473
3474 static int
3475 errorq_walk_init(mdb_walk_state_t *wsp)
3476 {
3477 if (wsp->walk_addr == NULL &&
3478 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) {
3479 mdb_warn("failed to read errorq_list");
3480 return (WALK_ERR);
3481 }
3482
3483 return (WALK_NEXT);
3484 }
3485
3486 static int
3487 errorq_walk_step(mdb_walk_state_t *wsp)
3488 {
3489 uintptr_t addr = wsp->walk_addr;
3490 errorq_t eq;
3491
3492 if (addr == NULL)
3493 return (WALK_DONE);
3494
3495 if (mdb_vread(&eq, sizeof (eq), addr) == -1) {
3496 mdb_warn("failed to read errorq at %p", addr);
3497 return (WALK_ERR);
3498 }
3499
3500 wsp->walk_addr = (uintptr_t)eq.eq_next;
3501 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata));
3502 }
3503
3504 typedef struct eqd_walk_data {
3505 uintptr_t *eqd_stack;
3506 void *eqd_buf;
3507 ulong_t eqd_qpos;
3508 ulong_t eqd_qlen;
3509 size_t eqd_size;
3510 } eqd_walk_data_t;
3511
3512 /*
3513 * In order to walk the list of pending error queue elements, we push the
3514 * addresses of the corresponding data buffers in to the eqd_stack array.
3515 * The error lists are in reverse chronological order when iterating using
3516 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the
3517 * walker client gets addresses in order from oldest error to newest error.
3518 */
3519 static void
3520 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr)
3521 {
3522 errorq_elem_t eqe;
3523
3524 while (addr != NULL) {
3525 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) {
3526 mdb_warn("failed to read errorq element at %p", addr);
3527 break;
3528 }
3529
3530 if (eqdp->eqd_qpos == eqdp->eqd_qlen) {
3531 mdb_warn("errorq is overfull -- more than %lu "
3532 "elems found\n", eqdp->eqd_qlen);
3533 break;
3534 }
3535
3536 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data;
3537 addr = (uintptr_t)eqe.eqe_prev;
3538 }
3539 }
3540
3541 static int
3542 eqd_walk_init(mdb_walk_state_t *wsp)
3543 {
3544 eqd_walk_data_t *eqdp;
3545 errorq_elem_t eqe, *addr;
3546 errorq_t eq;
3547 ulong_t i;
3548
3549 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) {
3550 mdb_warn("failed to read errorq at %p", wsp->walk_addr);
3551 return (WALK_ERR);
3552 }
3553
3554 if (eq.eq_ptail != NULL &&
3555 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) {
3556 mdb_warn("failed to read errorq element at %p", eq.eq_ptail);
3557 return (WALK_ERR);
3558 }
3559
3560 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP);
3561 wsp->walk_data = eqdp;
3562
3563 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP);
3564 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP);
3565 eqdp->eqd_qlen = eq.eq_qlen;
3566 eqdp->eqd_qpos = 0;
3567 eqdp->eqd_size = eq.eq_size;
3568
3569 /*
3570 * The newest elements in the queue are on the pending list, so we
3571 * push those on to our stack first.
3572 */
3573 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend);
3574
3575 /*
3576 * If eq_ptail is set, it may point to a subset of the errors on the
3577 * pending list in the event a casptr() failed; if ptail's data is
3578 * already in our stack, NULL out eq_ptail and ignore it.
3579 */
3580 if (eq.eq_ptail != NULL) {
3581 for (i = 0; i < eqdp->eqd_qpos; i++) {
3582 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) {
3583 eq.eq_ptail = NULL;
3584 break;
3585 }
3586 }
3587 }
3588
3589 /*
3590 * If eq_phead is set, it has the processing list in order from oldest
3591 * to newest. Use this to recompute eq_ptail as best we can and then
3592 * we nicely fall into eqd_push_list() of eq_ptail below.
3593 */
3594 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe),
3595 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next)
3596 eq.eq_ptail = addr;
3597
3598 /*
3599 * The oldest elements in the queue are on the processing list, subject
3600 * to machinations in the if-clauses above. Push any such elements.
3601 */
3602 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail);
3603 return (WALK_NEXT);
3604 }
3605
3606 static int
3607 eqd_walk_step(mdb_walk_state_t *wsp)
3608 {
3609 eqd_walk_data_t *eqdp = wsp->walk_data;
3610 uintptr_t addr;
3611
3612 if (eqdp->eqd_qpos == 0)
3613 return (WALK_DONE);
3614
3615 addr = eqdp->eqd_stack[--eqdp->eqd_qpos];
3616
3617 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) {
3618 mdb_warn("failed to read errorq data at %p", addr);
3619 return (WALK_ERR);
3620 }
3621
3622 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata));
3623 }
3624
3625 static void
3626 eqd_walk_fini(mdb_walk_state_t *wsp)
3627 {
3628 eqd_walk_data_t *eqdp = wsp->walk_data;
3629
3630 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen);
3631 mdb_free(eqdp->eqd_buf, eqdp->eqd_size);
3632 mdb_free(eqdp, sizeof (eqd_walk_data_t));
3633 }
3634
3635 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64)
3636
3637 static int
3638 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3639 {
3640 int i;
3641 errorq_t eq;
3642 uint_t opt_v = FALSE;
3643
3644 if (!(flags & DCMD_ADDRSPEC)) {
3645 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) {
3646 mdb_warn("can't walk 'errorq'");
3647 return (DCMD_ERR);
3648 }
3649 return (DCMD_OK);
3650 }
3651
3652 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL);
3653 argc -= i;
3654 argv += i;
3655
3656 if (argc != 0)
3657 return (DCMD_USAGE);
3658
3659 if (opt_v || DCMD_HDRSPEC(flags)) {
3660 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ",
3661 "ADDR", "NAME", "S", "V", "N");
3662 if (!opt_v) {
3663 mdb_printf("%7s %7s %7s%</u>\n",
3664 "ACCEPT", "DROP", "LOG");
3665 } else {
3666 mdb_printf("%5s %6s %6s %3s %16s%</u>\n",
3667 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC");
3668 }
3669 }
3670
3671 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) {
3672 mdb_warn("failed to read errorq at %p", addr);
3673 return (DCMD_ERR);
3674 }
3675
3676 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name,
3677 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-',
3678 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ',
3679 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' ');
3680
3681 if (!opt_v) {
3682 mdb_printf("%7llu %7llu %7llu\n",
3683 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed),
3684 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) +
3685 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged));
3686 } else {
3687 mdb_printf("%5s %6lu %6lu %3u %a\n",
3688 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func);
3689 mdb_printf("%38s\n%41s"
3690 "%12s %llu\n"
3691 "%53s %llu\n"
3692 "%53s %llu\n"
3693 "%53s %llu\n"
3694 "%53s %llu\n"
3695 "%53s %llu\n"
3696 "%53s %llu\n"
3697 "%53s %llu\n\n",
3698 "|", "+-> ",
3699 "DISPATCHED", EQKSVAL(eq, eqk_dispatched),
3700 "DROPPED", EQKSVAL(eq, eqk_dropped),
3701 "LOGGED", EQKSVAL(eq, eqk_logged),
3702 "RESERVED", EQKSVAL(eq, eqk_reserved),
3703 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail),
3704 "COMMITTED", EQKSVAL(eq, eqk_committed),
3705 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail),
3706 "CANCELLED", EQKSVAL(eq, eqk_cancelled));
3707 }
3708
3709 return (DCMD_OK);
3710 }
3711
3712 /*ARGSUSED*/
3713 static int
3714 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3715 {
3716 cpu_t panic_cpu;
3717 kthread_t *panic_thread;
3718 void *buf;
3719 panic_data_t *pd;
3720 int i, n;
3721
3722 if (!mdb_prop_postmortem) {
3723 mdb_warn("panicinfo can only be run on a system "
3724 "dump; see dumpadm(1M)\n");
3725 return (DCMD_ERR);
3726 }
3727
3728 if (flags & DCMD_ADDRSPEC || argc != 0)
3729 return (DCMD_USAGE);
3730
3731 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1)
3732 mdb_warn("failed to read 'panic_cpu'");
3733 else
3734 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id);
3735
3736 if (mdb_readvar(&panic_thread, "panic_thread") == -1)
3737 mdb_warn("failed to read 'panic_thread'");
3738 else
3739 mdb_printf("%16s %?p\n", "thread", panic_thread);
3740
3741 buf = mdb_alloc(PANICBUFSIZE, UM_SLEEP);
3742 pd = (panic_data_t *)buf;
3743
3744 if (mdb_readsym(buf, PANICBUFSIZE, "panicbuf") == -1 ||
3745 pd->pd_version != PANICBUFVERS) {
3746 mdb_warn("failed to read 'panicbuf'");
3747 mdb_free(buf, PANICBUFSIZE);
3748 return (DCMD_ERR);
3749 }
3750
3751 mdb_printf("%16s %s\n", "message", (char *)buf + pd->pd_msgoff);
3752
3753 n = (pd->pd_msgoff - (sizeof (panic_data_t) -
3754 sizeof (panic_nv_t))) / sizeof (panic_nv_t);
3755
3756 for (i = 0; i < n; i++)
3757 mdb_printf("%16s %?llx\n",
3758 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value);
3759
3760 mdb_free(buf, PANICBUFSIZE);
3761 return (DCMD_OK);
3762 }
3763
3764 /*
3765 * ::time dcmd, which will print a hires timestamp of when we entered the
3766 * debugger, or the lbolt value if used with the -l option.
3767 *
3768 */
3769 /*ARGSUSED*/
3770 static int
3771 time(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3772 {
3773 uint_t opt_dec = FALSE;
3774 uint_t opt_lbolt = FALSE;
3775 uint_t opt_hex = FALSE;
3776 const char *fmt;
3777 hrtime_t result;
3778
3779 if (mdb_getopts(argc, argv,
3780 'd', MDB_OPT_SETBITS, TRUE, &opt_dec,
3781 'l', MDB_OPT_SETBITS, TRUE, &opt_lbolt,
3782 'x', MDB_OPT_SETBITS, TRUE, &opt_hex,
3783 NULL) != argc)
3784 return (DCMD_USAGE);
3785
3786 if (opt_dec && opt_hex)
3787 return (DCMD_USAGE);
3788
3789 result = opt_lbolt ? mdb_get_lbolt() : mdb_gethrtime();
3790 fmt =
3791 opt_hex ? "0x%llx\n" :
3792 opt_dec ? "0t%lld\n" : "%#llr\n";
3793
3794 mdb_printf(fmt, result);
3795 return (DCMD_OK);
3796 }
3797
3798 void
3799 time_help(void)
3800 {
3801 mdb_printf("Prints the system time in nanoseconds.\n\n"
3802 "::time will return the timestamp at which we dropped into, \n"
3803 "if called from, kmdb(1); the core dump's high resolution \n"
3804 "time if inspecting one; or the running hires time if we're \n"
3805 "looking at a live system.\n\n"
3806 "Switches:\n"
3807 " -d report times in decimal\n"
3808 " -l prints the number of clock ticks since system boot\n"
3809 " -x report times in hexadecimal\n");
3810 }
3811
3812 static const mdb_dcmd_t dcmds[] = {
3813
3814 /* from genunix.c */
3815 { "as2proc", ":", "convert as to proc_t address", as2proc },
3816 { "binding_hash_entry", ":", "print driver names hash table entry",
3817 binding_hash_entry },
3818 { "callout", "?[-r|n] [-s|l] [-xhB] [-t | -ab nsec [-dkD]]"
3819 " [-C addr | -S seqid] [-f name|addr] [-p name| addr] [-T|L [-E]]"
3820 " [-FivVA]",
3821 "display callouts", callout, callout_help },
3822 { "calloutid", "[-d|v] xid", "print callout by extended id",
3823 calloutid, calloutid_help },
3824 { "class", NULL, "print process scheduler classes", class },
3825 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo },
3826 { "did2thread", "? kt_did", "find kernel thread for this id",
3827 did2thread },
3828 { "errorq", "?[-v]", "display kernel error queues", errorq },
3829 { "fd", ":[fd num]", "get a file pointer from an fd", fd },
3830 { "flipone", ":", "the vik_rev_level 2 special", flipone },
3831 { "lminfo", NULL, "print lock manager information", lminfo },
3832 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl },
3833 { "panicinfo", NULL, "print panic information", panicinfo },
3834 { "pid2proc", "?", "convert PID to proc_t address", pid2proc },
3835 { "project", NULL, "display kernel project(s)", project },
3836 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps },
3837 { "pgrep", "[-x] [-n | -o] pattern",
3838 "pattern match against all processes", pgrep },
3839 { "ptree", NULL, "print process tree", ptree },
3840 { "sysevent", "?[-sv]", "print sysevent pending or sent queue",
3841 sysevent},
3842 { "sysevent_channel", "?", "print sysevent channel database",
3843 sysevent_channel},
3844 { "sysevent_class_list", ":", "print sysevent class list",
3845 sysevent_class_list},
3846 { "sysevent_subclass_list", ":",
3847 "print sysevent subclass list", sysevent_subclass_list},
3848 { "system", NULL, "print contents of /etc/system file", sysfile },
3849 { "task", NULL, "display kernel task(s)", task },
3850 { "time", "[-dlx]", "display system time", time, time_help },
3851 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path },
3852 { "whereopen", ":", "given a vnode, dumps procs which have it open",
3853 whereopen },
3854
3855 /* from bio.c */
3856 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind },
3857
3858 /* from bitset.c */
3859 { "bitset", ":", "display a bitset", bitset, bitset_help },
3860
3861 /* from contract.c */
3862 { "contract", "?", "display a contract", cmd_contract },
3863 { "ctevent", ":", "display a contract event", cmd_ctevent },
3864 { "ctid", ":", "convert id to a contract pointer", cmd_ctid },
3865
3866 /* from cpupart.c */
3867 { "cpupart", "?[-v]", "print cpu partition info", cpupart },
3868
3869 /* from cred.c */
3870 { "cred", ":[-v]", "display a credential", cmd_cred },
3871 { "credgrp", ":[-v]", "display cred_t groups", cmd_credgrp },
3872 { "credsid", ":[-v]", "display a credsid_t", cmd_credsid },
3873 { "ksidlist", ":[-v]", "display a ksidlist_t", cmd_ksidlist },
3874
3875 /* from cyclic.c */
3876 { "cyccover", NULL, "dump cyclic coverage information", cyccover },
3877 { "cycid", "?", "dump a cyclic id", cycid },
3878 { "cycinfo", "?", "dump cyc_cpu info", cycinfo },
3879 { "cyclic", ":", "developer information", cyclic },
3880 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace },
3881
3882 /* from damap.c */
3883 { "damap", ":", "display a damap_t", damap, damap_help },
3884
3885 /* from devinfo.c */
3886 { "devbindings", "?[-qs] [device-name | major-num]",
3887 "print devinfo nodes bound to device-name or major-num",
3888 devbindings, devinfo_help },
3889 { "devinfo", ":[-qs]", "detailed devinfo of one node", devinfo,
3890 devinfo_help },
3891 { "devinfo_audit", ":[-v]", "devinfo configuration audit record",
3892 devinfo_audit },
3893 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log",
3894 devinfo_audit_log },
3895 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history",
3896 devinfo_audit_node },
3897 { "devinfo2driver", ":", "find driver name for this devinfo node",
3898 devinfo2driver },
3899 { "devnames", "?[-vm] [num]", "print devnames array", devnames },
3900 { "dev2major", "?<dev_t>", "convert dev_t to a major number",
3901 dev2major },
3902 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number",
3903 dev2minor },
3904 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers",
3905 devt },
3906 { "major2name", "?<major-num>", "convert major number to dev name",
3907 major2name },
3908 { "minornodes", ":", "given a devinfo node, print its minor nodes",
3909 minornodes },
3910 { "modctl2devinfo", ":", "given a modctl, list its devinfos",
3911 modctl2devinfo },
3912 { "name2major", "<dev-name>", "convert dev name to major number",
3913 name2major },
3914 { "prtconf", "?[-vpc]", "print devinfo tree", prtconf, prtconf_help },
3915 { "softstate", ":<instance>", "retrieve soft-state pointer",
3916 softstate },
3917 { "devinfo_fm", ":", "devinfo fault managment configuration",
3918 devinfo_fm },
3919 { "devinfo_fmce", ":", "devinfo fault managment cache entry",
3920 devinfo_fmce},
3921
3922 /* from findstack.c */
3923 { "findstack", ":[-v]", "find kernel thread stack", findstack },
3924 { "findstack_debug", NULL, "toggle findstack debugging",
3925 findstack_debug },
3926 { "stacks", "?[-afiv] [-c func] [-C func] [-m module] [-M module] "
3927 "[-s sobj | -S sobj] [-t tstate | -T tstate]",
3928 "print unique kernel thread stacks",
3929 stacks, stacks_help },
3930
3931 /* from fm.c */
3932 { "ereport", "[-v]", "print ereports logged in dump",
3933 ereport },
3934
3935 /* from group.c */
3936 { "group", "?[-q]", "display a group", group},
3937
3938 /* from hotplug.c */
3939 { "hotplug", "?[-p]", "display a registered hotplug attachment",
3940 hotplug, hotplug_help },
3941
3942 /* from irm.c */
3943 { "irmpools", NULL, "display interrupt pools", irmpools_dcmd },
3944 { "irmreqs", NULL, "display interrupt requests in an interrupt pool",
3945 irmreqs_dcmd },
3946 { "irmreq", NULL, "display an interrupt request", irmreq_dcmd },
3947
3948 /* from kgrep.c + genunix.c */
3949 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep,
3950 kgrep_help },
3951
3952 /* from kmem.c */
3953 { "allocdby", ":", "given a thread, print its allocated buffers",
3954 allocdby },
3955 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] "
3956 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help },
3957 { "freedby", ":", "given a thread, print its freed buffers", freedby },
3958 { "kmalog", "?[ fail | slab ]",
3959 "display kmem transaction log and stack traces", kmalog },
3960 { "kmastat", NULL, "kernel memory allocator stats", kmastat },
3961 { "kmausers", "?[-ef] [cache ...]", "current medium and large users "
3962 "of the kmem allocator", kmausers, kmausers_help },
3963 { "kmem_cache", "?[-n name]",
3964 "print kernel memory caches", kmem_cache, kmem_cache_help},
3965 { "kmem_slabs", "?[-v] [-n cache] [-N cache] [-b maxbins] "
3966 "[-B minbinsize]", "display slab usage per kmem cache",
3967 kmem_slabs, kmem_slabs_help },
3968 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug },
3969 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log },
3970 { "kmem_verify", "?", "check integrity of kmem-managed memory",
3971 kmem_verify },
3972 { "vmem", "?", "print a vmem_t", vmem },
3973 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] "
3974 "[-m minsize] [-M maxsize] [-t thread] [-T type]",
3975 "print or filter a vmem_seg", vmem_seg, vmem_seg_help },
3976 { "whatthread", ":[-v]", "print threads whose stack contains the "
3977 "given address", whatthread },
3978
3979 /* from ldi.c */
3980 { "ldi_handle", "?[-i]", "display a layered driver handle",
3981 ldi_handle, ldi_handle_help },
3982 { "ldi_ident", NULL, "display a layered driver identifier",
3983 ldi_ident, ldi_ident_help },
3984
3985 /* from leaky.c + leaky_subr.c */
3986 { "findleaks", FINDLEAKS_USAGE,
3987 "search for potential kernel memory leaks", findleaks,
3988 findleaks_help },
3989
3990 /* from lgrp.c */
3991 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp},
3992 { "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set},
3993
3994 /* from log.c */
3995 { "msgbuf", "?[-v]", "print most recent console messages", msgbuf },
3996
3997 /* from mdi.c */
3998 { "mdipi", NULL, "given a path, dump mdi_pathinfo "
3999 "and detailed pi_prop list", mdipi },
4000 { "mdiprops", NULL, "given a pi_prop, dump the pi_prop list",
4001 mdiprops },
4002 { "mdiphci", NULL, "given a phci, dump mdi_phci and "
4003 "list all paths", mdiphci },
4004 { "mdivhci", NULL, "given a vhci, dump mdi_vhci and list "
4005 "all phcis", mdivhci },
4006 { "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo "
4007 "client links", mdiclient_paths },
4008 { "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo "
4009 "phci links", mdiphci_paths },
4010 { "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links",
4011 mdiphcis },
4012
4013 /* from memory.c */
4014 { "addr2smap", ":[offset]", "translate address to smap", addr2smap },
4015 { "memlist", "?[-iav]", "display a struct memlist", memlist },
4016 { "memstat", NULL, "display memory usage summary", memstat },
4017 { "page", "?", "display a summarized page_t", page },
4018 { "pagelookup", "?[-v vp] [-o offset]",
4019 "find the page_t with the name {vp, offset}",
4020 pagelookup, pagelookup_help },
4021 { "page_num2pp", ":", "find the page_t for a given page frame number",
4022 page_num2pp },
4023 { "pmap", ":[-q]", "print process memory map", pmap },
4024 { "seg", ":", "print address space segment", seg },
4025 { "swapinfo", "?", "display a struct swapinfo", swapinfof },
4026 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap },
4027
4028 /* from mmd.c */
4029 { "multidata", ":[-sv]", "display a summarized multidata_t",
4030 multidata },
4031 { "pattbl", ":", "display a summarized multidata attribute table",
4032 pattbl },
4033 { "pattr2multidata", ":", "print multidata pointer from pattr_t",
4034 pattr2multidata },
4035 { "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t",
4036 pdesc2slab },
4037 { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify },
4038 { "slab2multidata", ":", "print multidata pointer from pdesc_slab_t",
4039 slab2multidata },
4040
4041 /* from modhash.c */
4042 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]",
4043 "display information about one or all mod_hash structures",
4044 modhash, modhash_help },
4045 { "modent", ":[-k | -v | -t type]",
4046 "display information about a mod_hash_entry", modent,
4047 modent_help },
4048
4049 /* from net.c */
4050 { "dladm", "?<sub-command> [flags]", "show data link information",
4051 dladm, dladm_help },
4052 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload",
4053 mi },
4054 { "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp | icmp]",
4055 "show network statistics", netstat },
4056 { "sonode", "?[-f inet | inet6 | unix | #] "
4057 "[-t stream | dgram | raw | #] [-p #]",
4058 "filter and display sonode", sonode },
4059
4060 /* from netstack.c */
4061 { "netstack", "", "show stack instances", netstack },
4062 { "netstackid2netstack", ":",
4063 "translate a netstack id to its netstack_t",
4064 netstackid2netstack },
4065
4066 /* from nvpair.c */
4067 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR,
4068 nvpair_print },
4069 { NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR,
4070 print_nvlist },
4071
4072 /* from pg.c */
4073 { "pg", "?[-q]", "display a pg", pg},
4074
4075 /* from rctl.c */
4076 { "rctl_dict", "?", "print systemwide default rctl definitions",
4077 rctl_dict },
4078 { "rctl_list", ":[handle]", "print rctls for the given proc",
4079 rctl_list },
4080 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle",
4081 rctl },
4082 { "rctl_validate", ":[-v] [-n #]", "test resource control value "
4083 "sequence", rctl_validate },
4084
4085 /* from sobj.c */
4086 { "rwlock", ":", "dump out a readers/writer lock", rwlock },
4087 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex,
4088 mutex_help },
4089 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts },
4090 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo },
4091 { "turnstile", "?", "display a turnstile", turnstile },
4092
4093 /* from stream.c */
4094 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]",
4095 "print an mblk", mblk_prt, mblk_help },
4096 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify },
4097 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address",
4098 mblk2dblk },
4099 { "q2otherq", ":", "print peer queue for a given queue", q2otherq },
4100 { "q2rdq", ":", "print read queue for a given queue", q2rdq },
4101 { "q2syncq", ":", "print syncq for a given queue", q2syncq },
4102 { "q2stream", ":", "print stream pointer for a given queue", q2stream },
4103 { "q2wrq", ":", "print write queue for a given queue", q2wrq },
4104 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]",
4105 "filter and display STREAM queue", queue, queue_help },
4106 { "stdata", ":[-q|v] [-f flag] [-F flag]",
4107 "filter and display STREAM head", stdata, stdata_help },
4108 { "str2mate", ":", "print mate of this stream", str2mate },
4109 { "str2wrq", ":", "print write queue of this stream", str2wrq },
4110 { "stream", ":", "display STREAM", stream },
4111 { "strftevent", ":", "print STREAMS flow trace event", strftevent },
4112 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]",
4113 "filter and display STREAM sync queue", syncq, syncq_help },
4114 { "syncq2q", ":", "print queue for a given syncq", syncq2q },
4115
4116 /* from taskq.c */
4117 { "taskq", ":[-atT] [-m min_maxq] [-n name]",
4118 "display a taskq", taskq, taskq_help },
4119 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent },
4120
4121 /* from thread.c */
4122 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread,
4123 thread_help },
4124 { "threadlist", "?[-t] [-v [count]]",
4125 "display threads and associated C stack traces", threadlist,
4126 threadlist_help },
4127 { "stackinfo", "?[-h|-a]", "display kthread_t stack usage", stackinfo,
4128 stackinfo_help },
4129
4130 /* from tsd.c */
4131 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd },
4132 { "tsdtot", ":", "find thread with this tsd", tsdtot },
4133
4134 /*
4135 * typegraph does not work under kmdb, as it requires too much memory
4136 * for its internal data structures.
4137 */
4138 #ifndef _KMDB
4139 /* from typegraph.c */
4140 { "findlocks", ":", "find locks held by specified thread", findlocks },
4141 { "findfalse", "?[-v]", "find potentially falsely shared structures",
4142 findfalse },
4143 { "typegraph", NULL, "build type graph", typegraph },
4144 { "istype", ":type", "manually set object type", istype },
4145 { "notype", ":", "manually clear object type", notype },
4146 { "whattype", ":", "determine object type", whattype },
4147 #endif
4148
4149 /* from vfs.c */
4150 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo },
4151 { "pfiles", ":[-fp]", "print process file information", pfiles,
4152 pfiles_help },
4153
4154 /* from zone.c */
4155 { "zid2zone", ":", "find the zone_t with the given zone id",
4156 zid2zone },
4157 { "zdid2zone", ":", "find the zone_t with the given zone debug id",
4158 zdid2zone },
4159 { "zone", "?[-r [-v]]", "display kernel zone(s)", zoneprt },
4160 { "zsd", ":[-v] [zsd_key]", "display zone-specific-data entries for "
4161 "selected zones", zsd },
4162
4163 { NULL }
4164 };
4165
4166 static const mdb_walker_t walkers[] = {
4167
4168 /* from genunix.c */
4169 { "callouts_bytime", "walk callouts by list chain (expiration time)",
4170 callout_walk_init, callout_walk_step, callout_walk_fini,
4171 (void *)CALLOUT_WALK_BYLIST },
4172 { "callouts_byid", "walk callouts by id hash chain",
4173 callout_walk_init, callout_walk_step, callout_walk_fini,
4174 (void *)CALLOUT_WALK_BYID },
4175 { "callout_list", "walk a callout list", callout_list_walk_init,
4176 callout_list_walk_step, callout_list_walk_fini },
4177 { "callout_table", "walk callout table array", callout_table_walk_init,
4178 callout_table_walk_step, callout_table_walk_fini },
4179 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step },
4180 { "ereportq_dump", "walk list of ereports in dump error queue",
4181 ereportq_dump_walk_init, ereportq_dump_walk_step, NULL },
4182 { "ereportq_pend", "walk list of ereports in pending error queue",
4183 ereportq_pend_walk_init, ereportq_pend_walk_step, NULL },
4184 { "errorq", "walk list of system error queues",
4185 errorq_walk_init, errorq_walk_step, NULL },
4186 { "errorq_data", "walk pending error queue data buffers",
4187 eqd_walk_init, eqd_walk_step, eqd_walk_fini },
4188 { "allfile", "given a proc pointer, list all file pointers",
4189 file_walk_init, allfile_walk_step, file_walk_fini },
4190 { "file", "given a proc pointer, list of open file pointers",
4191 file_walk_init, file_walk_step, file_walk_fini },
4192 { "lock_descriptor", "walk lock_descriptor_t structures",
4193 ld_walk_init, ld_walk_step, NULL },
4194 { "lock_graph", "walk lock graph",
4195 lg_walk_init, lg_walk_step, NULL },
4196 { "port", "given a proc pointer, list of created event ports",
4197 port_walk_init, port_walk_step, NULL },
4198 { "portev", "given a port pointer, list of events in the queue",
4199 portev_walk_init, portev_walk_step, portev_walk_fini },
4200 { "proc", "list of active proc_t structures",
4201 proc_walk_init, proc_walk_step, proc_walk_fini },
4202 { "projects", "walk a list of kernel projects",
4203 project_walk_init, project_walk_step, NULL },
4204 { "sysevent_pend", "walk sysevent pending queue",
4205 sysevent_pend_walk_init, sysevent_walk_step,
4206 sysevent_walk_fini},
4207 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init,
4208 sysevent_walk_step, sysevent_walk_fini},
4209 { "sysevent_channel", "walk sysevent channel subscriptions",
4210 sysevent_channel_walk_init, sysevent_channel_walk_step,
4211 sysevent_channel_walk_fini},
4212 { "sysevent_class_list", "walk sysevent subscription's class list",
4213 sysevent_class_list_walk_init, sysevent_class_list_walk_step,
4214 sysevent_class_list_walk_fini},
4215 { "sysevent_subclass_list",
4216 "walk sysevent subscription's subclass list",
4217 sysevent_subclass_list_walk_init,
4218 sysevent_subclass_list_walk_step,
4219 sysevent_subclass_list_walk_fini},
4220 { "task", "given a task pointer, walk its processes",
4221 task_walk_init, task_walk_step, NULL },
4222
4223 /* from avl.c */
4224 { AVL_WALK_NAME, AVL_WALK_DESC,
4225 avl_walk_init, avl_walk_step, avl_walk_fini },
4226
4227 /* from bio.c */
4228 { "buf", "walk the bio buf hash",
4229 buf_walk_init, buf_walk_step, buf_walk_fini },
4230
4231 /* from contract.c */
4232 { "contract", "walk all contracts, or those of the specified type",
4233 ct_walk_init, generic_walk_step, NULL },
4234 { "ct_event", "walk events on a contract event queue",
4235 ct_event_walk_init, generic_walk_step, NULL },
4236 { "ct_listener", "walk contract event queue listeners",
4237 ct_listener_walk_init, generic_walk_step, NULL },
4238
4239 /* from cpupart.c */
4240 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition",
4241 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step,
4242 NULL },
4243 { "cpupart_walk", "walk the set of cpu partitions",
4244 cpupart_walk_init, cpupart_walk_step, NULL },
4245
4246 /* from ctxop.c */
4247 { "ctxop", "walk list of context ops on a thread",
4248 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini },
4249
4250 /* from cyclic.c */
4251 { "cyccpu", "walk per-CPU cyc_cpu structures",
4252 cyccpu_walk_init, cyccpu_walk_step, NULL },
4253 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list",
4254 cycomni_walk_init, cycomni_walk_step, NULL },
4255 { "cyctrace", "walk cyclic trace buffer",
4256 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini },
4257
4258 /* from devinfo.c */
4259 { "binding_hash", "walk all entries in binding hash table",
4260 binding_hash_walk_init, binding_hash_walk_step, NULL },
4261 { "devinfo", "walk devinfo tree or subtree",
4262 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini },
4263 { "devinfo_audit_log", "walk devinfo audit system-wide log",
4264 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step,
4265 devinfo_audit_log_walk_fini},
4266 { "devinfo_audit_node", "walk per-devinfo audit history",
4267 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step,
4268 devinfo_audit_node_walk_fini},
4269 { "devinfo_children", "walk children of devinfo node",
4270 devinfo_children_walk_init, devinfo_children_walk_step,
4271 devinfo_children_walk_fini },
4272 { "devinfo_parents", "walk ancestors of devinfo node",
4273 devinfo_parents_walk_init, devinfo_parents_walk_step,
4274 devinfo_parents_walk_fini },
4275 { "devinfo_siblings", "walk siblings of devinfo node",
4276 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL },
4277 { "devi_next", "walk devinfo list",
4278 NULL, devi_next_walk_step, NULL },
4279 { "devnames", "walk devnames array",
4280 devnames_walk_init, devnames_walk_step, devnames_walk_fini },
4281 { "minornode", "given a devinfo node, walk minor nodes",
4282 minornode_walk_init, minornode_walk_step, NULL },
4283 { "softstate",
4284 "given an i_ddi_soft_state*, list all in-use driver stateps",
4285 soft_state_walk_init, soft_state_walk_step,
4286 NULL, NULL },
4287 { "softstate_all",
4288 "given an i_ddi_soft_state*, list all driver stateps",
4289 soft_state_walk_init, soft_state_all_walk_step,
4290 NULL, NULL },
4291 { "devinfo_fmc",
4292 "walk a fault management handle cache active list",
4293 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL },
4294
4295 /* from group.c */
4296 { "group", "walk all elements of a group",
4297 group_walk_init, group_walk_step, NULL },
4298
4299 /* from irm.c */
4300 { "irmpools", "walk global list of interrupt pools",
4301 irmpools_walk_init, list_walk_step, list_walk_fini },
4302 { "irmreqs", "walk list of interrupt requests in an interrupt pool",
4303 irmreqs_walk_init, list_walk_step, list_walk_fini },
4304
4305 /* from kmem.c */
4306 { "allocdby", "given a thread, walk its allocated bufctls",
4307 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini },
4308 { "bufctl", "walk a kmem cache's bufctls",
4309 bufctl_walk_init, kmem_walk_step, kmem_walk_fini },
4310 { "bufctl_history", "walk the available history of a bufctl",
4311 bufctl_history_walk_init, bufctl_history_walk_step,
4312 bufctl_history_walk_fini },
4313 { "freedby", "given a thread, walk its freed bufctls",
4314 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini },
4315 { "freectl", "walk a kmem cache's free bufctls",
4316 freectl_walk_init, kmem_walk_step, kmem_walk_fini },
4317 { "freectl_constructed", "walk a kmem cache's constructed free bufctls",
4318 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
4319 { "freemem", "walk a kmem cache's free memory",
4320 freemem_walk_init, kmem_walk_step, kmem_walk_fini },
4321 { "freemem_constructed", "walk a kmem cache's constructed free memory",
4322 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
4323 { "kmem", "walk a kmem cache",
4324 kmem_walk_init, kmem_walk_step, kmem_walk_fini },
4325 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches",
4326 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL },
4327 { "kmem_hash", "given a kmem cache, walk its allocated hash table",
4328 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini },
4329 { "kmem_log", "walk the kmem transaction log",
4330 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini },
4331 { "kmem_slab", "given a kmem cache, walk its slabs",
4332 kmem_slab_walk_init, combined_walk_step, combined_walk_fini },
4333 { "kmem_slab_partial",
4334 "given a kmem cache, walk its partially allocated slabs (min 1)",
4335 kmem_slab_walk_partial_init, combined_walk_step,
4336 combined_walk_fini },
4337 { "vmem", "walk vmem structures in pre-fix, depth-first order",
4338 vmem_walk_init, vmem_walk_step, vmem_walk_fini },
4339 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs",
4340 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4341 { "vmem_free", "given a vmem_t, walk its free vmem_segs",
4342 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4343 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order",
4344 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini },
4345 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs",
4346 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4347 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs",
4348 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4349
4350 /* from ldi.c */
4351 { "ldi_handle", "walk the layered driver handle hash",
4352 ldi_handle_walk_init, ldi_handle_walk_step, NULL },
4353 { "ldi_ident", "walk the layered driver identifier hash",
4354 ldi_ident_walk_init, ldi_ident_walk_step, NULL },
4355
4356 /* from leaky.c + leaky_subr.c */
4357 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same "
4358 "stack trace",
4359 leaky_walk_init, leaky_walk_step, leaky_walk_fini },
4360 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for "
4361 "leaks w/ same stack trace",
4362 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini },
4363
4364 /* from lgrp.c */
4365 { "lgrp_cpulist", "walk CPUs in a given lgroup",
4366 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL },
4367 { "lgrptbl", "walk lgroup table",
4368 lgrp_walk_init, lgrp_walk_step, NULL },
4369 { "lgrp_parents", "walk up lgroup lineage from given lgroup",
4370 lgrp_parents_walk_init, lgrp_parents_walk_step, NULL },
4371 { "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup",
4372 lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL },
4373 { "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup",
4374 lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL },
4375
4376 /* from list.c */
4377 { LIST_WALK_NAME, LIST_WALK_DESC,
4378 list_walk_init, list_walk_step, list_walk_fini },
4379
4380 /* from mdi.c */
4381 { "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link",
4382 mdi_pi_client_link_walk_init,
4383 mdi_pi_client_link_walk_step,
4384 mdi_pi_client_link_walk_fini },
4385 { "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link",
4386 mdi_pi_phci_link_walk_init,
4387 mdi_pi_phci_link_walk_step,
4388 mdi_pi_phci_link_walk_fini },
4389 { "mdiphci_list", "Walker for mdi_phci ph_next link",
4390 mdi_phci_ph_next_walk_init,
4391 mdi_phci_ph_next_walk_step,
4392 mdi_phci_ph_next_walk_fini },
4393
4394 /* from memory.c */
4395 { "allpages", "walk all pages, including free pages",
4396 allpages_walk_init, allpages_walk_step, allpages_walk_fini },
4397 { "anon", "given an amp, list allocated anon structures",
4398 anon_walk_init, anon_walk_step, anon_walk_fini,
4399 ANON_WALK_ALLOC },
4400 { "anon_all", "given an amp, list contents of all anon slots",
4401 anon_walk_init, anon_walk_step, anon_walk_fini,
4402 ANON_WALK_ALL },
4403 { "memlist", "walk specified memlist",
4404 NULL, memlist_walk_step, NULL },
4405 { "page", "walk all pages, or those from the specified vnode",
4406 page_walk_init, page_walk_step, page_walk_fini },
4407 { "seg", "given an as, list of segments",
4408 seg_walk_init, avl_walk_step, avl_walk_fini },
4409 { "segvn_anon",
4410 "given a struct segvn_data, list allocated anon structures",
4411 segvn_anon_walk_init, anon_walk_step, anon_walk_fini,
4412 ANON_WALK_ALLOC },
4413 { "segvn_anon_all",
4414 "given a struct segvn_data, list contents of all anon slots",
4415 segvn_anon_walk_init, anon_walk_step, anon_walk_fini,
4416 ANON_WALK_ALL },
4417 { "segvn_pages",
4418 "given a struct segvn_data, list resident pages in "
4419 "offset order",
4420 segvn_pages_walk_init, segvn_pages_walk_step,
4421 segvn_pages_walk_fini, SEGVN_PAGES_RESIDENT },
4422 { "segvn_pages_all",
4423 "for each offset in a struct segvn_data, give page_t pointer "
4424 "(if resident), or NULL.",
4425 segvn_pages_walk_init, segvn_pages_walk_step,
4426 segvn_pages_walk_fini, SEGVN_PAGES_ALL },
4427 { "swapinfo", "walk swapinfo structures",
4428 swap_walk_init, swap_walk_step, NULL },
4429
4430 /* from mmd.c */
4431 { "pattr", "walk pattr_t structures", pattr_walk_init,
4432 mmdq_walk_step, mmdq_walk_fini },
4433 { "pdesc", "walk pdesc_t structures",
4434 pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini },
4435 { "pdesc_slab", "walk pdesc_slab_t structures",
4436 pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini },
4437
4438 /* from modhash.c */
4439 { "modhash", "walk list of mod_hash structures", modhash_walk_init,
4440 modhash_walk_step, NULL },
4441 { "modent", "walk list of entries in a given mod_hash",
4442 modent_walk_init, modent_walk_step, modent_walk_fini },
4443 { "modchain", "walk list of entries in a given mod_hash_entry",
4444 NULL, modchain_walk_step, NULL },
4445
4446 /* from net.c */
4447 { "icmp", "walk ICMP control structures using MI for all stacks",
4448 mi_payload_walk_init, mi_payload_walk_step, NULL,
4449 &mi_icmp_arg },
4450 { "mi", "given a MI_O, walk the MI",
4451 mi_walk_init, mi_walk_step, mi_walk_fini, NULL },
4452 { "sonode", "given a sonode, walk its children",
4453 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL },
4454 { "icmp_stacks", "walk all the icmp_stack_t",
4455 icmp_stacks_walk_init, icmp_stacks_walk_step, NULL },
4456 { "tcp_stacks", "walk all the tcp_stack_t",
4457 tcp_stacks_walk_init, tcp_stacks_walk_step, NULL },
4458 { "udp_stacks", "walk all the udp_stack_t",
4459 udp_stacks_walk_init, udp_stacks_walk_step, NULL },
4460
4461 /* from netstack.c */
4462 { "netstack", "walk a list of kernel netstacks",
4463 netstack_walk_init, netstack_walk_step, NULL },
4464
4465 /* from nvpair.c */
4466 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR,
4467 nvpair_walk_init, nvpair_walk_step, NULL },
4468
4469 /* from rctl.c */
4470 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists",
4471 rctl_dict_walk_init, rctl_dict_walk_step, NULL },
4472 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init,
4473 rctl_set_walk_step, NULL },
4474 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated",
4475 rctl_val_walk_init, rctl_val_walk_step },
4476
4477 /* from sobj.c */
4478 { "blocked", "walk threads blocked on a given sobj",
4479 blocked_walk_init, blocked_walk_step, NULL },
4480 { "wchan", "given a wchan, list of blocked threads",
4481 wchan_walk_init, wchan_walk_step, wchan_walk_fini },
4482
4483 /* from stream.c */
4484 { "b_cont", "walk mblk_t list using b_cont",
4485 mblk_walk_init, b_cont_step, mblk_walk_fini },
4486 { "b_next", "walk mblk_t list using b_next",
4487 mblk_walk_init, b_next_step, mblk_walk_fini },
4488 { "qlink", "walk queue_t list using q_link",
4489 queue_walk_init, queue_link_step, queue_walk_fini },
4490 { "qnext", "walk queue_t list using q_next",
4491 queue_walk_init, queue_next_step, queue_walk_fini },
4492 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list",
4493 strftblk_walk_init, strftblk_step, strftblk_walk_fini },
4494 { "readq", "walk read queue side of stdata",
4495 str_walk_init, strr_walk_step, str_walk_fini },
4496 { "writeq", "walk write queue side of stdata",
4497 str_walk_init, strw_walk_step, str_walk_fini },
4498
4499 /* from taskq.c */
4500 { "taskq_thread", "given a taskq_t, list all of its threads",
4501 taskq_thread_walk_init,
4502 taskq_thread_walk_step,
4503 taskq_thread_walk_fini },
4504 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list",
4505 taskq_ent_walk_init, taskq_ent_walk_step, NULL },
4506
4507 /* from thread.c */
4508 { "deathrow", "walk threads on both lwp_ and thread_deathrow",
4509 deathrow_walk_init, deathrow_walk_step, NULL },
4510 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues",
4511 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
4512 { "cpupart_dispq",
4513 "given a cpupart_t, walk threads in dispatcher queues",
4514 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
4515 { "lwp_deathrow", "walk lwp_deathrow",
4516 lwp_deathrow_walk_init, deathrow_walk_step, NULL },
4517 { "thread", "global or per-process kthread_t structures",
4518 thread_walk_init, thread_walk_step, thread_walk_fini },
4519 { "thread_deathrow", "walk threads on thread_deathrow",
4520 thread_deathrow_walk_init, deathrow_walk_step, NULL },
4521
4522 /* from tsd.c */
4523 { "tsd", "walk list of thread-specific data",
4524 tsd_walk_init, tsd_walk_step, tsd_walk_fini },
4525
4526 /* from tsol.c */
4527 { "tnrh", "walk remote host cache structures",
4528 tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini },
4529 { "tnrhtp", "walk remote host template structures",
4530 tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini },
4531
4532 /*
4533 * typegraph does not work under kmdb, as it requires too much memory
4534 * for its internal data structures.
4535 */
4536 #ifndef _KMDB
4537 /* from typegraph.c */
4538 { "typeconflict", "walk buffers with conflicting type inferences",
4539 typegraph_walk_init, typeconflict_walk_step },
4540 { "typeunknown", "walk buffers with unknown types",
4541 typegraph_walk_init, typeunknown_walk_step },
4542 #endif
4543
4544 /* from vfs.c */
4545 { "vfs", "walk file system list",
4546 vfs_walk_init, vfs_walk_step },
4547
4548 /* from zone.c */
4549 { "zone", "walk a list of kernel zones",
4550 zone_walk_init, zone_walk_step, NULL },
4551 { "zsd", "walk list of zsd entries for a zone",
4552 zsd_walk_init, zsd_walk_step, NULL },
4553
4554 { NULL }
4555 };
4556
4557 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers };
4558
4559 /*ARGSUSED*/
4560 static void
4561 genunix_statechange_cb(void *ignored)
4562 {
4563 /*
4564 * Force ::findleaks and ::stacks to let go any cached state.
4565 */
4566 leaky_cleanup(1);
4567 stacks_cleanup(1);
4568
4569 kmem_statechange(); /* notify kmem */
4570 }
4571
4572 const mdb_modinfo_t *
4573 _mdb_init(void)
4574 {
4575 kmem_init();
4576
4577 (void) mdb_callback_add(MDB_CALLBACK_STCHG,
4578 genunix_statechange_cb, NULL);
4579
4580 return (&modinfo);
4581 }
4582
4583 void
4584 _mdb_fini(void)
4585 {
4586 leaky_cleanup(1);
4587 stacks_cleanup(1);
4588 }