1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2012 DEY Storage Systems, Inc. All rights reserved. 24 * Copyright 2013 Nexenta Systems, Inc. All rights reserved. 25 */ 26 /* 27 * Copyright (c) 2010, Intel Corporation. 28 * All rights reserved. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/t_lock.h> 33 #include <sys/param.h> 34 #include <sys/sysmacros.h> 35 #include <sys/signal.h> 36 #include <sys/systm.h> 37 #include <sys/user.h> 38 #include <sys/mman.h> 39 #include <sys/vm.h> 40 #include <sys/conf.h> 41 #include <sys/avintr.h> 42 #include <sys/autoconf.h> 43 #include <sys/disp.h> 44 #include <sys/class.h> 45 #include <sys/bitmap.h> 46 47 #include <sys/privregs.h> 48 49 #include <sys/proc.h> 50 #include <sys/buf.h> 51 #include <sys/kmem.h> 52 #include <sys/mem.h> 53 #include <sys/kstat.h> 54 55 #include <sys/reboot.h> 56 57 #include <sys/cred.h> 58 #include <sys/vnode.h> 59 #include <sys/file.h> 60 61 #include <sys/procfs.h> 62 63 #include <sys/vfs.h> 64 #include <sys/cmn_err.h> 65 #include <sys/utsname.h> 66 #include <sys/debug.h> 67 #include <sys/kdi.h> 68 69 #include <sys/dumphdr.h> 70 #include <sys/bootconf.h> 71 #include <sys/memlist_plat.h> 72 #include <sys/varargs.h> 73 #include <sys/promif.h> 74 #include <sys/modctl.h> 75 76 #include <sys/sunddi.h> 77 #include <sys/sunndi.h> 78 #include <sys/ndi_impldefs.h> 79 #include <sys/ddidmareq.h> 80 #include <sys/psw.h> 81 #include <sys/regset.h> 82 #include <sys/clock.h> 83 #include <sys/pte.h> 84 #include <sys/tss.h> 85 #include <sys/stack.h> 86 #include <sys/trap.h> 87 #include <sys/fp.h> 88 #include <vm/kboot_mmu.h> 89 #include <vm/anon.h> 90 #include <vm/as.h> 91 #include <vm/page.h> 92 #include <vm/seg.h> 93 #include <vm/seg_dev.h> 94 #include <vm/seg_kmem.h> 95 #include <vm/seg_kpm.h> 96 #include <vm/seg_map.h> 97 #include <vm/seg_vn.h> 98 #include <vm/seg_kp.h> 99 #include <sys/memnode.h> 100 #include <vm/vm_dep.h> 101 #include <sys/thread.h> 102 #include <sys/sysconf.h> 103 #include <sys/vm_machparam.h> 104 #include <sys/archsystm.h> 105 #include <sys/machsystm.h> 106 #include <vm/hat.h> 107 #include <vm/hat_i86.h> 108 #include <sys/pmem.h> 109 #include <sys/smp_impldefs.h> 110 #include <sys/x86_archext.h> 111 #include <sys/cpuvar.h> 112 #include <sys/segments.h> 113 #include <sys/clconf.h> 114 #include <sys/kobj.h> 115 #include <sys/kobj_lex.h> 116 #include <sys/cpc_impl.h> 117 #include <sys/cpu_module.h> 118 #include <sys/smbios.h> 119 #include <sys/debug_info.h> 120 #include <sys/bootinfo.h> 121 #include <sys/ddi_periodic.h> 122 #include <sys/systeminfo.h> 123 #include <sys/multiboot.h> 124 125 #ifdef __xpv 126 127 #include <sys/hypervisor.h> 128 #include <sys/xen_mmu.h> 129 #include <sys/evtchn_impl.h> 130 #include <sys/gnttab.h> 131 #include <sys/xpv_panic.h> 132 #include <xen/sys/xenbus_comms.h> 133 #include <xen/public/physdev.h> 134 135 extern void xen_late_startup(void); 136 137 struct xen_evt_data cpu0_evt_data; 138 139 #else /* __xpv */ 140 #include <sys/memlist_impl.h> 141 142 extern void mem_config_init(void); 143 #endif /* __xpv */ 144 145 extern void progressbar_init(void); 146 extern void brand_init(void); 147 extern void pcf_init(void); 148 extern void pg_init(void); 149 150 extern int size_pse_array(pgcnt_t, int); 151 152 #if defined(_SOFT_HOSTID) 153 154 #include <sys/rtc.h> 155 156 static int32_t set_soft_hostid(void); 157 static char hostid_file[] = "/etc/hostid"; 158 159 #endif 160 161 void *gfx_devinfo_list; 162 163 #if defined(__amd64) && !defined(__xpv) 164 extern void immu_startup(void); 165 #endif 166 167 /* 168 * XXX make declaration below "static" when drivers no longer use this 169 * interface. 170 */ 171 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 172 173 /* 174 * segkp 175 */ 176 extern int segkp_fromheap; 177 178 static void kvm_init(void); 179 static void startup_init(void); 180 static void startup_memlist(void); 181 static void startup_kmem(void); 182 static void startup_modules(void); 183 static void startup_vm(void); 184 static void startup_end(void); 185 static void layout_kernel_va(void); 186 187 /* 188 * Declare these as initialized data so we can patch them. 189 */ 190 #ifdef __i386 191 192 /* 193 * Due to virtual address space limitations running in 32 bit mode, restrict 194 * the amount of physical memory configured to a max of PHYSMEM pages (16g). 195 * 196 * If the physical max memory size of 64g were allowed to be configured, the 197 * size of user virtual address space will be less than 1g. A limited user 198 * address space greatly reduces the range of applications that can run. 199 * 200 * If more physical memory than PHYSMEM is required, users should preferably 201 * run in 64 bit mode which has far looser virtual address space limitations. 202 * 203 * If 64 bit mode is not available (as in IA32) and/or more physical memory 204 * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired 205 * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase 206 * should also be carefully tuned to balance out the need of the user 207 * application while minimizing the risk of kernel heap exhaustion due to 208 * kernelbase being set too high. 209 */ 210 #define PHYSMEM 0x400000 211 212 #else /* __amd64 */ 213 214 /* 215 * For now we can handle memory with physical addresses up to about 216 * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly 217 * half the VA space for seg_kpm. When systems get bigger than 64TB this 218 * code will need revisiting. There is an implicit assumption that there 219 * are no *huge* holes in the physical address space too. 220 */ 221 #define TERABYTE (1ul << 40) 222 #define PHYSMEM_MAX64 mmu_btop(64 * TERABYTE) 223 #define PHYSMEM PHYSMEM_MAX64 224 #define AMD64_VA_HOLE_END 0xFFFF800000000000ul 225 226 #endif /* __amd64 */ 227 228 pgcnt_t physmem = PHYSMEM; 229 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */ 230 231 char *kobj_file_buf; 232 int kobj_file_bufsize; /* set in /etc/system */ 233 234 /* Global variables for MP support. Used in mp_startup */ 235 caddr_t rm_platter_va = 0; 236 uint32_t rm_platter_pa; 237 238 int auto_lpg_disable = 1; 239 240 /* 241 * Some CPUs have holes in the middle of the 64-bit virtual address range. 242 */ 243 uintptr_t hole_start, hole_end; 244 245 /* 246 * kpm mapping window 247 */ 248 caddr_t kpm_vbase; 249 size_t kpm_size; 250 static int kpm_desired; 251 #ifdef __amd64 252 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE; 253 #endif 254 255 /* 256 * Configuration parameters set at boot time. 257 */ 258 259 caddr_t econtig; /* end of first block of contiguous kernel */ 260 261 struct bootops *bootops = 0; /* passed in from boot */ 262 struct bootops **bootopsp; 263 struct boot_syscalls *sysp; /* passed in from boot */ 264 265 char bootblock_fstype[16]; 266 267 char kern_bootargs[OBP_MAXPATHLEN]; 268 char kern_bootfile[OBP_MAXPATHLEN]; 269 270 /* 271 * ZFS zio segment. This allows us to exclude large portions of ZFS data that 272 * gets cached in kmem caches on the heap. If this is set to zero, we allocate 273 * zio buffers from their own segment, otherwise they are allocated from the 274 * heap. The optimization of allocating zio buffers from their own segment is 275 * only valid on 64-bit kernels. 276 */ 277 #if defined(__amd64) 278 int segzio_fromheap = 0; 279 #else 280 int segzio_fromheap = 1; 281 #endif 282 283 /* 284 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this 285 * depends on number of BOP_ALLOC calls made and requested size, memory size 286 * combination and whether boot.bin memory needs to be freed. 287 */ 288 #define POSS_NEW_FRAGMENTS 12 289 290 /* 291 * VM data structures 292 */ 293 long page_hashsz; /* Size of page hash table (power of two) */ 294 unsigned int page_hashsz_shift; /* log2(page_hashsz) */ 295 struct page *pp_base; /* Base of initial system page struct array */ 296 struct page **page_hash; /* Page hash table */ 297 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */ 298 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */ 299 int pse_shift; /* log2(pse_table_size) */ 300 struct seg ktextseg; /* Segment used for kernel executable image */ 301 struct seg kvalloc; /* Segment used for "valloc" mapping */ 302 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 303 struct seg kmapseg; /* Segment used for generic kernel mappings */ 304 struct seg kdebugseg; /* Segment used for the kernel debugger */ 305 306 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 307 static struct seg *segmap = &kmapseg; /* easier to use name for in here */ 308 309 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 310 311 #if defined(__amd64) 312 struct seg kvseg_core; /* Segment used for the core heap */ 313 struct seg kpmseg; /* Segment used for physical mapping */ 314 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 315 #else 316 struct seg *segkpm = NULL; /* Unused on IA32 */ 317 #endif 318 319 caddr_t segkp_base; /* Base address of segkp */ 320 caddr_t segzio_base; /* Base address of segzio */ 321 #if defined(__amd64) 322 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 323 #else 324 pgcnt_t segkpsize = 0; 325 #endif 326 pgcnt_t segziosize = 0; /* size of zio segment in pages */ 327 328 /* 329 * A static DR page_t VA map is reserved that can map the page structures 330 * for a domain's entire RA space. The pages that back this space are 331 * dynamically allocated and need not be physically contiguous. The DR 332 * map size is derived from KPM size. 333 * This mechanism isn't used by x86 yet, so just stubs here. 334 */ 335 int ppvm_enable = 0; /* Static virtual map for page structs */ 336 page_t *ppvm_base = NULL; /* Base of page struct map */ 337 pgcnt_t ppvm_size = 0; /* Size of page struct map */ 338 339 /* 340 * VA range available to the debugger 341 */ 342 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE; 343 const size_t kdi_segdebugsize = SEGDEBUGSIZE; 344 345 struct memseg *memseg_base; 346 struct vnode unused_pages_vp; 347 348 #define FOURGB 0x100000000LL 349 350 struct memlist *memlist; 351 352 caddr_t s_text; /* start of kernel text segment */ 353 caddr_t e_text; /* end of kernel text segment */ 354 caddr_t s_data; /* start of kernel data segment */ 355 caddr_t e_data; /* end of kernel data segment */ 356 caddr_t modtext; /* start of loadable module text reserved */ 357 caddr_t e_modtext; /* end of loadable module text reserved */ 358 caddr_t moddata; /* start of loadable module data reserved */ 359 caddr_t e_moddata; /* end of loadable module data reserved */ 360 361 struct memlist *phys_install; /* Total installed physical memory */ 362 struct memlist *phys_avail; /* Total available physical memory */ 363 struct memlist *bios_rsvd; /* Bios reserved memory */ 364 365 /* 366 * kphysm_init returns the number of pages that were processed 367 */ 368 static pgcnt_t kphysm_init(page_t *, pgcnt_t); 369 370 #define IO_PROP_SIZE 64 /* device property size */ 371 372 /* 373 * a couple useful roundup macros 374 */ 375 #define ROUND_UP_PAGE(x) \ 376 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE)) 377 #define ROUND_UP_LPAGE(x) \ 378 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1])) 379 #define ROUND_UP_4MEG(x) \ 380 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG)) 381 #define ROUND_UP_TOPLEVEL(x) \ 382 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level])) 383 384 /* 385 * 32-bit Kernel's Virtual memory layout. 386 * +-----------------------+ 387 * | | 388 * 0xFFC00000 -|-----------------------|- ARGSBASE 389 * | debugger | 390 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE 391 * | Kernel Data | 392 * 0xFEC00000 -|-----------------------| 393 * | Kernel Text | 394 * 0xFE800000 -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen) 395 * |--- GDT ---|- GDT page (GDT_VA) 396 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 397 * | | 398 * | page_t structures | 399 * | memsegs, memlists, | 400 * | page hash, etc. | 401 * --- -|-----------------------|- ekernelheap, valloc_base (floating) 402 * | | (segkp is just an arena in the heap) 403 * | | 404 * | kvseg | 405 * | | 406 * | | 407 * --- -|-----------------------|- kernelheap (floating) 408 * | Segkmap | 409 * 0xC3002000 -|-----------------------|- segmap_start (floating) 410 * | Red Zone | 411 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating) 412 * | | || 413 * | Shared objects | \/ 414 * | | 415 * : : 416 * | user data | 417 * |-----------------------| 418 * | user text | 419 * 0x08048000 -|-----------------------| 420 * | user stack | 421 * : : 422 * | invalid | 423 * 0x00000000 +-----------------------+ 424 * 425 * 426 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app) 427 * +-----------------------+ 428 * | | 429 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE 430 * | debugger (?) | 431 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE 432 * | unused | 433 * +-----------------------+ 434 * | Kernel Data | 435 * 0xFFFFFFFF.FBC00000 |-----------------------| 436 * | Kernel Text | 437 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT 438 * |--- GDT ---|- GDT page (GDT_VA) 439 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 440 * | | 441 * | Core heap | (used for loadable modules) 442 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap 443 * | Kernel | 444 * | heap | 445 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating) 446 * | segmap | 447 * 0xFFFFFXXX.XXX00000 |-----------------------|- segmap_start (floating) 448 * | device mappings | 449 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating) 450 * | segzio | 451 * 0xFFFFFXXX.XXX00000 |-----------------------|- segzio_base (floating) 452 * | segkp | 453 * --- |-----------------------|- segkp_base (floating) 454 * | page_t structures | valloc_base + valloc_sz 455 * | memsegs, memlists, | 456 * | page hash, etc. | 457 * 0xFFFFFF00.00000000 |-----------------------|- valloc_base (lower if > 1TB) 458 * | segkpm | 459 * 0xFFFFFE00.00000000 |-----------------------| 460 * | Red Zone | 461 * 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE (lower if > 1TB) 462 * | User stack |- User space memory 463 * | | 464 * | shared objects, etc | (grows downwards) 465 * : : 466 * | | 467 * 0xFFFF8000.00000000 |-----------------------| 468 * | | 469 * | VA Hole / unused | 470 * | | 471 * 0x00008000.00000000 |-----------------------| 472 * | | 473 * | | 474 * : : 475 * | user heap | (grows upwards) 476 * | | 477 * | user data | 478 * |-----------------------| 479 * | user text | 480 * 0x00000000.04000000 |-----------------------| 481 * | invalid | 482 * 0x00000000.00000000 +-----------------------+ 483 * 484 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit 485 * kernel, except that userlimit is raised to 0xfe000000 486 * 487 * Floating values: 488 * 489 * valloc_base: start of the kernel's memory management/tracking data 490 * structures. This region contains page_t structures for 491 * physical memory, memsegs, memlists, and the page hash. 492 * 493 * core_base: start of the kernel's "core" heap area on 64-bit systems. 494 * This area is intended to be used for global data as well as for module 495 * text/data that does not fit into the nucleus pages. The core heap is 496 * restricted to a 2GB range, allowing every address within it to be 497 * accessed using rip-relative addressing 498 * 499 * ekernelheap: end of kernelheap and start of segmap. 500 * 501 * kernelheap: start of kernel heap. On 32-bit systems, this starts right 502 * above a red zone that separates the user's address space from the 503 * kernel's. On 64-bit systems, it sits above segkp and segkpm. 504 * 505 * segmap_start: start of segmap. The length of segmap can be modified 506 * through eeprom. The default length is 16MB on 32-bit systems and 64MB 507 * on 64-bit systems. 508 * 509 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be 510 * decreased by 2X the size required for page_t. This allows the kernel 511 * heap to grow in size with physical memory. With sizeof(page_t) == 80 512 * bytes, the following shows the values of kernelbase and kernel heap 513 * sizes for different memory configurations (assuming default segmap and 514 * segkp sizes). 515 * 516 * mem size for kernelbase kernel heap 517 * size page_t's size 518 * ---- --------- ---------- ----------- 519 * 1gb 0x01400000 0xd1800000 684MB 520 * 2gb 0x02800000 0xcf000000 704MB 521 * 4gb 0x05000000 0xca000000 744MB 522 * 6gb 0x07800000 0xc5000000 784MB 523 * 8gb 0x0a000000 0xc0000000 824MB 524 * 16gb 0x14000000 0xac000000 984MB 525 * 32gb 0x28000000 0x84000000 1304MB 526 * 64gb 0x50000000 0x34000000 1944MB (*) 527 * 528 * kernelbase is less than the abi minimum of 0xc0000000 for memory 529 * configurations above 8gb. 530 * 531 * (*) support for memory configurations above 32gb will require manual tuning 532 * of kernelbase to balance out the need of user applications. 533 */ 534 535 /* real-time-clock initialization parameters */ 536 extern time_t process_rtc_config_file(void); 537 538 uintptr_t kernelbase; 539 uintptr_t postbootkernelbase; /* not set till boot loader is gone */ 540 uintptr_t eprom_kernelbase; 541 size_t segmapsize; 542 uintptr_t segmap_start; 543 int segmapfreelists; 544 pgcnt_t npages; 545 pgcnt_t orig_npages; 546 size_t core_size; /* size of "core" heap */ 547 uintptr_t core_base; /* base address of "core" heap */ 548 549 /* 550 * List of bootstrap pages. We mark these as allocated in startup. 551 * release_bootstrap() will free them when we're completely done with 552 * the bootstrap. 553 */ 554 static page_t *bootpages; 555 556 /* 557 * boot time pages that have a vnode from the ramdisk will keep that forever. 558 */ 559 static page_t *rd_pages; 560 561 /* 562 * Lower 64K 563 */ 564 static page_t *lower_pages = NULL; 565 static int lower_pages_count = 0; 566 567 struct system_hardware system_hardware; 568 569 /* 570 * Enable some debugging messages concerning memory usage... 571 */ 572 static void 573 print_memlist(char *title, struct memlist *mp) 574 { 575 prom_printf("MEMLIST: %s:\n", title); 576 while (mp != NULL) { 577 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 578 mp->ml_address, mp->ml_size); 579 mp = mp->ml_next; 580 } 581 } 582 583 /* 584 * XX64 need a comment here.. are these just default values, surely 585 * we read the "cpuid" type information to figure this out. 586 */ 587 int l2cache_sz = 0x80000; 588 int l2cache_linesz = 0x40; 589 int l2cache_assoc = 1; 590 591 static size_t textrepl_min_gb = 10; 592 593 /* 594 * on 64 bit we use a predifined VA range for mapping devices in the kernel 595 * on 32 bit the mappings are intermixed in the heap, so we use a bit map 596 */ 597 #ifdef __amd64 598 599 vmem_t *device_arena; 600 uintptr_t toxic_addr = (uintptr_t)NULL; 601 size_t toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */ 602 603 #else /* __i386 */ 604 605 ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */ 606 size_t toxic_bit_map_len = 0; /* in bits */ 607 608 #endif /* __i386 */ 609 610 /* 611 * Simple boot time debug facilities 612 */ 613 static char *prm_dbg_str[] = { 614 "%s:%d: '%s' is 0x%x\n", 615 "%s:%d: '%s' is 0x%llx\n" 616 }; 617 618 int prom_debug; 619 620 #define PRM_DEBUG(q) if (prom_debug) \ 621 prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q); 622 #define PRM_POINT(q) if (prom_debug) \ 623 prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q); 624 625 /* 626 * This structure is used to keep track of the intial allocations 627 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to 628 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code. 629 */ 630 #define NUM_ALLOCATIONS 8 631 int num_allocations = 0; 632 struct { 633 void **al_ptr; 634 size_t al_size; 635 } allocations[NUM_ALLOCATIONS]; 636 size_t valloc_sz = 0; 637 uintptr_t valloc_base; 638 639 #define ADD_TO_ALLOCATIONS(ptr, size) { \ 640 size = ROUND_UP_PAGE(size); \ 641 if (num_allocations == NUM_ALLOCATIONS) \ 642 panic("too many ADD_TO_ALLOCATIONS()"); \ 643 allocations[num_allocations].al_ptr = (void**)&ptr; \ 644 allocations[num_allocations].al_size = size; \ 645 valloc_sz += size; \ 646 ++num_allocations; \ 647 } 648 649 /* 650 * Allocate all the initial memory needed by the page allocator. 651 */ 652 static void 653 perform_allocations(void) 654 { 655 caddr_t mem; 656 int i; 657 int valloc_align; 658 659 PRM_DEBUG(valloc_base); 660 PRM_DEBUG(valloc_sz); 661 valloc_align = mmu.level_size[mmu.max_page_level > 0]; 662 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align); 663 if (mem != (caddr_t)valloc_base) 664 panic("BOP_ALLOC() failed"); 665 bzero(mem, valloc_sz); 666 for (i = 0; i < num_allocations; ++i) { 667 *allocations[i].al_ptr = (void *)mem; 668 mem += allocations[i].al_size; 669 } 670 } 671 672 /* 673 * Our world looks like this at startup time. 674 * 675 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data 676 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at 677 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those 678 * addresses are fixed in the binary at link time. 679 * 680 * On the text page: 681 * unix/genunix/krtld/module text loads. 682 * 683 * On the data page: 684 * unix/genunix/krtld/module data loads. 685 * 686 * Machine-dependent startup code 687 */ 688 void 689 startup(void) 690 { 691 #if !defined(__xpv) 692 extern void startup_pci_bios(void); 693 #endif 694 extern cpuset_t cpu_ready_set; 695 696 /* 697 * Make sure that nobody tries to use sekpm until we have 698 * initialized it properly. 699 */ 700 #if defined(__amd64) 701 kpm_desired = 1; 702 #endif 703 kpm_enable = 0; 704 CPUSET_ONLY(cpu_ready_set, 0); /* cpu 0 is boot cpu */ 705 706 #if defined(__xpv) /* XXPV fix me! */ 707 { 708 extern int segvn_use_regions; 709 segvn_use_regions = 0; 710 } 711 #endif 712 progressbar_init(); 713 startup_init(); 714 #if defined(__xpv) 715 startup_xen_version(); 716 #endif 717 startup_memlist(); 718 startup_kmem(); 719 startup_vm(); 720 #if !defined(__xpv) 721 /* 722 * Note we need to do this even on fast reboot in order to access 723 * the irq routing table (used for pci labels). 724 */ 725 startup_pci_bios(); 726 #endif 727 #if defined(__xpv) 728 startup_xen_mca(); 729 #endif 730 startup_modules(); 731 732 startup_end(); 733 } 734 735 static void 736 startup_init() 737 { 738 PRM_POINT("startup_init() starting..."); 739 740 /* 741 * Complete the extraction of cpuid data 742 */ 743 cpuid_pass2(CPU); 744 745 (void) check_boot_version(BOP_GETVERSION(bootops)); 746 747 /* 748 * Check for prom_debug in boot environment 749 */ 750 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) { 751 ++prom_debug; 752 PRM_POINT("prom_debug found in boot enviroment"); 753 } 754 755 /* 756 * Collect node, cpu and memory configuration information. 757 */ 758 get_system_configuration(); 759 760 /* 761 * Halt if this is an unsupported processor. 762 */ 763 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) { 764 printf("\n486 processor (\"%s\") detected.\n", 765 CPU->cpu_brandstr); 766 halt("This processor is not supported by this release " 767 "of Solaris."); 768 } 769 770 PRM_POINT("startup_init() done"); 771 } 772 773 /* 774 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie. 775 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it 776 * also filters out physical page zero. There is some reliance on the 777 * boot loader allocating only a few contiguous physical memory chunks. 778 */ 779 static void 780 avail_filter(uint64_t *addr, uint64_t *size) 781 { 782 uintptr_t va; 783 uintptr_t next_va; 784 pfn_t pfn; 785 uint64_t pfn_addr; 786 uint64_t pfn_eaddr; 787 uint_t prot; 788 size_t len; 789 uint_t change; 790 791 if (prom_debug) 792 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n", 793 *addr, *size); 794 795 /* 796 * page zero is required for BIOS.. never make it available 797 */ 798 if (*addr == 0) { 799 *addr += MMU_PAGESIZE; 800 *size -= MMU_PAGESIZE; 801 } 802 803 /* 804 * First we trim from the front of the range. Since kbm_probe() 805 * walks ranges in virtual order, but addr/size are physical, we need 806 * to the list until no changes are seen. This deals with the case 807 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w 808 * but w < v. 809 */ 810 do { 811 change = 0; 812 for (va = KERNEL_TEXT; 813 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 814 va = next_va) { 815 816 next_va = va + len; 817 pfn_addr = pfn_to_pa(pfn); 818 pfn_eaddr = pfn_addr + len; 819 820 if (pfn_addr <= *addr && pfn_eaddr > *addr) { 821 change = 1; 822 while (*size > 0 && len > 0) { 823 *addr += MMU_PAGESIZE; 824 *size -= MMU_PAGESIZE; 825 len -= MMU_PAGESIZE; 826 } 827 } 828 } 829 if (change && prom_debug) 830 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n", 831 *addr, *size); 832 } while (change); 833 834 /* 835 * Trim pages from the end of the range. 836 */ 837 for (va = KERNEL_TEXT; 838 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 839 va = next_va) { 840 841 next_va = va + len; 842 pfn_addr = pfn_to_pa(pfn); 843 844 if (pfn_addr >= *addr && pfn_addr < *addr + *size) 845 *size = pfn_addr - *addr; 846 } 847 848 if (prom_debug) 849 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n", 850 *addr, *size); 851 } 852 853 static void 854 kpm_init() 855 { 856 struct segkpm_crargs b; 857 858 /* 859 * These variables were all designed for sfmmu in which segkpm is 860 * mapped using a single pagesize - either 8KB or 4MB. On x86, we 861 * might use 2+ page sizes on a single machine, so none of these 862 * variables have a single correct value. They are set up as if we 863 * always use a 4KB pagesize, which should do no harm. In the long 864 * run, we should get rid of KPM's assumption that only a single 865 * pagesize is used. 866 */ 867 kpm_pgshft = MMU_PAGESHIFT; 868 kpm_pgsz = MMU_PAGESIZE; 869 kpm_pgoff = MMU_PAGEOFFSET; 870 kpmp2pshft = 0; 871 kpmpnpgs = 1; 872 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); 873 874 PRM_POINT("about to create segkpm"); 875 rw_enter(&kas.a_lock, RW_WRITER); 876 877 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0) 878 panic("cannot attach segkpm"); 879 880 b.prot = PROT_READ | PROT_WRITE; 881 b.nvcolors = 1; 882 883 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 884 panic("segkpm_create segkpm"); 885 886 rw_exit(&kas.a_lock); 887 } 888 889 /* 890 * The debug info page provides enough information to allow external 891 * inspectors (e.g. when running under a hypervisor) to bootstrap 892 * themselves into allowing full-blown kernel debugging. 893 */ 894 static void 895 init_debug_info(void) 896 { 897 caddr_t mem; 898 debug_info_t *di; 899 900 #ifndef __lint 901 ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE); 902 #endif 903 904 mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE, 905 MMU_PAGESIZE); 906 907 if (mem != (caddr_t)DEBUG_INFO_VA) 908 panic("BOP_ALLOC() failed"); 909 bzero(mem, MMU_PAGESIZE); 910 911 di = (debug_info_t *)mem; 912 913 di->di_magic = DEBUG_INFO_MAGIC; 914 di->di_version = DEBUG_INFO_VERSION; 915 di->di_modules = (uintptr_t)&modules; 916 di->di_s_text = (uintptr_t)s_text; 917 di->di_e_text = (uintptr_t)e_text; 918 di->di_s_data = (uintptr_t)s_data; 919 di->di_e_data = (uintptr_t)e_data; 920 di->di_hat_htable_off = offsetof(hat_t, hat_htable); 921 di->di_ht_pfn_off = offsetof(htable_t, ht_pfn); 922 } 923 924 /* 925 * Build the memlists and other kernel essential memory system data structures. 926 * This is everything at valloc_base. 927 */ 928 static void 929 startup_memlist(void) 930 { 931 size_t memlist_sz; 932 size_t memseg_sz; 933 size_t pagehash_sz; 934 size_t pp_sz; 935 uintptr_t va; 936 size_t len; 937 uint_t prot; 938 pfn_t pfn; 939 int memblocks; 940 pfn_t rsvd_high_pfn; 941 pgcnt_t rsvd_pgcnt; 942 size_t rsvdmemlist_sz; 943 int rsvdmemblocks; 944 caddr_t pagecolor_mem; 945 size_t pagecolor_memsz; 946 caddr_t page_ctrs_mem; 947 size_t page_ctrs_size; 948 size_t pse_table_alloc_size; 949 struct memlist *current; 950 extern void startup_build_mem_nodes(struct memlist *); 951 952 /* XX64 fix these - they should be in include files */ 953 extern size_t page_coloring_init(uint_t, int, int); 954 extern void page_coloring_setup(caddr_t); 955 956 PRM_POINT("startup_memlist() starting..."); 957 958 /* 959 * Use leftover large page nucleus text/data space for loadable modules. 960 * Use at most MODTEXT/MODDATA. 961 */ 962 len = kbm_nucleus_size; 963 ASSERT(len > MMU_PAGESIZE); 964 965 moddata = (caddr_t)ROUND_UP_PAGE(e_data); 966 e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len); 967 if (e_moddata - moddata > MODDATA) 968 e_moddata = moddata + MODDATA; 969 970 modtext = (caddr_t)ROUND_UP_PAGE(e_text); 971 e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len); 972 if (e_modtext - modtext > MODTEXT) 973 e_modtext = modtext + MODTEXT; 974 975 econtig = e_moddata; 976 977 PRM_DEBUG(modtext); 978 PRM_DEBUG(e_modtext); 979 PRM_DEBUG(moddata); 980 PRM_DEBUG(e_moddata); 981 PRM_DEBUG(econtig); 982 983 /* 984 * Examine the boot loader physical memory map to find out: 985 * - total memory in system - physinstalled 986 * - the max physical address - physmax 987 * - the number of discontiguous segments of memory. 988 */ 989 if (prom_debug) 990 print_memlist("boot physinstalled", 991 bootops->boot_mem->physinstalled); 992 installed_top_size_ex(bootops->boot_mem->physinstalled, &physmax, 993 &physinstalled, &memblocks); 994 PRM_DEBUG(physmax); 995 PRM_DEBUG(physinstalled); 996 PRM_DEBUG(memblocks); 997 998 /* 999 * Compute maximum physical address for memory DR operations. 1000 * Memory DR operations are unsupported on xpv or 32bit OSes. 1001 */ 1002 #ifdef __amd64 1003 if (plat_dr_support_memory()) { 1004 if (plat_dr_physmax == 0) { 1005 uint_t pabits = UINT_MAX; 1006 1007 cpuid_get_addrsize(CPU, &pabits, NULL); 1008 plat_dr_physmax = btop(1ULL << pabits); 1009 } 1010 if (plat_dr_physmax > PHYSMEM_MAX64) 1011 plat_dr_physmax = PHYSMEM_MAX64; 1012 } else 1013 #endif 1014 plat_dr_physmax = 0; 1015 1016 /* 1017 * Examine the bios reserved memory to find out: 1018 * - the number of discontiguous segments of memory. 1019 */ 1020 if (prom_debug) 1021 print_memlist("boot reserved mem", 1022 bootops->boot_mem->rsvdmem); 1023 installed_top_size_ex(bootops->boot_mem->rsvdmem, &rsvd_high_pfn, 1024 &rsvd_pgcnt, &rsvdmemblocks); 1025 PRM_DEBUG(rsvd_high_pfn); 1026 PRM_DEBUG(rsvd_pgcnt); 1027 PRM_DEBUG(rsvdmemblocks); 1028 1029 /* 1030 * Initialize hat's mmu parameters. 1031 * Check for enforce-prot-exec in boot environment. It's used to 1032 * enable/disable support for the page table entry NX bit. 1033 * The default is to enforce PROT_EXEC on processors that support NX. 1034 * Boot seems to round up the "len", but 8 seems to be big enough. 1035 */ 1036 mmu_init(); 1037 1038 #ifdef __i386 1039 /* 1040 * physmax is lowered if there is more memory than can be 1041 * physically addressed in 32 bit (PAE/non-PAE) modes. 1042 */ 1043 if (mmu.pae_hat) { 1044 if (PFN_ABOVE64G(physmax)) { 1045 physinstalled -= (physmax - (PFN_64G - 1)); 1046 physmax = PFN_64G - 1; 1047 } 1048 } else { 1049 if (PFN_ABOVE4G(physmax)) { 1050 physinstalled -= (physmax - (PFN_4G - 1)); 1051 physmax = PFN_4G - 1; 1052 } 1053 } 1054 #endif 1055 1056 startup_build_mem_nodes(bootops->boot_mem->physinstalled); 1057 1058 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) { 1059 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec"); 1060 char value[8]; 1061 1062 if (len < 8) 1063 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value); 1064 else 1065 (void) strcpy(value, ""); 1066 if (strcmp(value, "off") == 0) 1067 mmu.pt_nx = 0; 1068 } 1069 PRM_DEBUG(mmu.pt_nx); 1070 1071 /* 1072 * We will need page_t's for every page in the system, except for 1073 * memory mapped at or above above the start of the kernel text segment. 1074 * 1075 * pages above e_modtext are attributed to kernel debugger (obp_pages) 1076 */ 1077 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */ 1078 obp_pages = 0; 1079 va = KERNEL_TEXT; 1080 while (kbm_probe(&va, &len, &pfn, &prot) != 0) { 1081 npages -= len >> MMU_PAGESHIFT; 1082 if (va >= (uintptr_t)e_moddata) 1083 obp_pages += len >> MMU_PAGESHIFT; 1084 va += len; 1085 } 1086 PRM_DEBUG(npages); 1087 PRM_DEBUG(obp_pages); 1088 1089 /* 1090 * If physmem is patched to be non-zero, use it instead of the computed 1091 * value unless it is larger than the actual amount of memory on hand. 1092 */ 1093 if (physmem == 0 || physmem > npages) { 1094 physmem = npages; 1095 } else if (physmem < npages) { 1096 orig_npages = npages; 1097 npages = physmem; 1098 } 1099 PRM_DEBUG(physmem); 1100 1101 /* 1102 * We now compute the sizes of all the initial allocations for 1103 * structures the kernel needs in order do kmem_alloc(). These 1104 * include: 1105 * memsegs 1106 * memlists 1107 * page hash table 1108 * page_t's 1109 * page coloring data structs 1110 */ 1111 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS); 1112 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz); 1113 PRM_DEBUG(memseg_sz); 1114 1115 /* 1116 * Reserve space for memlists. There's no real good way to know exactly 1117 * how much room we'll need, but this should be a good upper bound. 1118 */ 1119 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1120 (memblocks + POSS_NEW_FRAGMENTS)); 1121 ADD_TO_ALLOCATIONS(memlist, memlist_sz); 1122 PRM_DEBUG(memlist_sz); 1123 1124 /* 1125 * Reserve space for bios reserved memlists. 1126 */ 1127 rsvdmemlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1128 (rsvdmemblocks + POSS_NEW_FRAGMENTS)); 1129 ADD_TO_ALLOCATIONS(bios_rsvd, rsvdmemlist_sz); 1130 PRM_DEBUG(rsvdmemlist_sz); 1131 1132 /* LINTED */ 1133 ASSERT(P2SAMEHIGHBIT((1 << PP_SHIFT), sizeof (struct page))); 1134 /* 1135 * The page structure hash table size is a power of 2 1136 * such that the average hash chain length is PAGE_HASHAVELEN. 1137 */ 1138 page_hashsz = npages / PAGE_HASHAVELEN; 1139 page_hashsz_shift = highbit(page_hashsz); 1140 page_hashsz = 1 << page_hashsz_shift; 1141 pagehash_sz = sizeof (struct page *) * page_hashsz; 1142 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz); 1143 PRM_DEBUG(pagehash_sz); 1144 1145 /* 1146 * Set aside room for the page structures themselves. 1147 */ 1148 PRM_DEBUG(npages); 1149 pp_sz = sizeof (struct page) * npages; 1150 ADD_TO_ALLOCATIONS(pp_base, pp_sz); 1151 PRM_DEBUG(pp_sz); 1152 1153 /* 1154 * determine l2 cache info and memory size for page coloring 1155 */ 1156 (void) getl2cacheinfo(CPU, 1157 &l2cache_sz, &l2cache_linesz, &l2cache_assoc); 1158 pagecolor_memsz = 1159 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc); 1160 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz); 1161 PRM_DEBUG(pagecolor_memsz); 1162 1163 page_ctrs_size = page_ctrs_sz(); 1164 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size); 1165 PRM_DEBUG(page_ctrs_size); 1166 1167 /* 1168 * Allocate the array that protects pp->p_selock. 1169 */ 1170 pse_shift = size_pse_array(physmem, max_ncpus); 1171 pse_table_size = 1 << pse_shift; 1172 pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t); 1173 ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size); 1174 1175 #if defined(__amd64) 1176 valloc_sz = ROUND_UP_LPAGE(valloc_sz); 1177 valloc_base = VALLOC_BASE; 1178 1179 /* 1180 * The default values of VALLOC_BASE and SEGKPM_BASE should work 1181 * for values of physmax up to 1 Terabyte. They need adjusting when 1182 * memory is at addresses above 1 TB. When adjusted, segkpm_base must 1183 * be aligned on KERNEL_REDZONE_SIZE boundary (span of top level pte). 1184 */ 1185 if (physmax + 1 > mmu_btop(TERABYTE) || 1186 plat_dr_physmax > mmu_btop(TERABYTE)) { 1187 uint64_t kpm_resv_amount = mmu_ptob(physmax + 1); 1188 1189 if (kpm_resv_amount < mmu_ptob(plat_dr_physmax)) { 1190 kpm_resv_amount = mmu_ptob(plat_dr_physmax); 1191 } 1192 1193 segkpm_base = -(P2ROUNDUP((2 * kpm_resv_amount), 1194 KERNEL_REDZONE_SIZE)); /* down from top VA */ 1195 1196 /* make sure we leave some space for user apps above hole */ 1197 segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE); 1198 if (segkpm_base > SEGKPM_BASE) 1199 segkpm_base = SEGKPM_BASE; 1200 PRM_DEBUG(segkpm_base); 1201 1202 valloc_base = segkpm_base + P2ROUNDUP(kpm_resv_amount, ONE_GIG); 1203 if (valloc_base < segkpm_base) 1204 panic("not enough kernel VA to support memory size"); 1205 PRM_DEBUG(valloc_base); 1206 } 1207 #else /* __i386 */ 1208 valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz); 1209 valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]); 1210 PRM_DEBUG(valloc_base); 1211 #endif /* __i386 */ 1212 1213 /* 1214 * do all the initial allocations 1215 */ 1216 perform_allocations(); 1217 1218 /* 1219 * Build phys_install and phys_avail in kernel memspace. 1220 * - phys_install should be all memory in the system. 1221 * - phys_avail is phys_install minus any memory mapped before this 1222 * point above KERNEL_TEXT. 1223 */ 1224 current = phys_install = memlist; 1225 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL); 1226 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1227 panic("physinstalled was too big!"); 1228 if (prom_debug) 1229 print_memlist("phys_install", phys_install); 1230 1231 phys_avail = current; 1232 PRM_POINT("Building phys_avail:\n"); 1233 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, 1234 avail_filter); 1235 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1236 panic("physavail was too big!"); 1237 if (prom_debug) 1238 print_memlist("phys_avail", phys_avail); 1239 #ifndef __xpv 1240 /* 1241 * Free unused memlist items, which may be used by memory DR driver 1242 * at runtime. 1243 */ 1244 if ((caddr_t)current < (caddr_t)memlist + memlist_sz) { 1245 memlist_free_block((caddr_t)current, 1246 (caddr_t)memlist + memlist_sz - (caddr_t)current); 1247 } 1248 #endif 1249 1250 /* 1251 * Build bios reserved memspace 1252 */ 1253 current = bios_rsvd; 1254 copy_memlist_filter(bootops->boot_mem->rsvdmem, ¤t, NULL); 1255 if ((caddr_t)current > (caddr_t)bios_rsvd + rsvdmemlist_sz) 1256 panic("bios_rsvd was too big!"); 1257 if (prom_debug) 1258 print_memlist("bios_rsvd", bios_rsvd); 1259 #ifndef __xpv 1260 /* 1261 * Free unused memlist items, which may be used by memory DR driver 1262 * at runtime. 1263 */ 1264 if ((caddr_t)current < (caddr_t)bios_rsvd + rsvdmemlist_sz) { 1265 memlist_free_block((caddr_t)current, 1266 (caddr_t)bios_rsvd + rsvdmemlist_sz - (caddr_t)current); 1267 } 1268 #endif 1269 1270 /* 1271 * setup page coloring 1272 */ 1273 page_coloring_setup(pagecolor_mem); 1274 page_lock_init(); /* currently a no-op */ 1275 1276 /* 1277 * free page list counters 1278 */ 1279 (void) page_ctrs_alloc(page_ctrs_mem); 1280 1281 /* 1282 * Size the pcf array based on the number of cpus in the box at 1283 * boot time. 1284 */ 1285 1286 pcf_init(); 1287 1288 /* 1289 * Initialize the page structures from the memory lists. 1290 */ 1291 availrmem_initial = availrmem = freemem = 0; 1292 PRM_POINT("Calling kphysm_init()..."); 1293 npages = kphysm_init(pp_base, npages); 1294 PRM_POINT("kphysm_init() done"); 1295 PRM_DEBUG(npages); 1296 1297 init_debug_info(); 1298 1299 /* 1300 * Now that page_t's have been initialized, remove all the 1301 * initial allocation pages from the kernel free page lists. 1302 */ 1303 boot_mapin((caddr_t)valloc_base, valloc_sz); 1304 boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE); 1305 PRM_POINT("startup_memlist() done"); 1306 1307 PRM_DEBUG(valloc_sz); 1308 1309 #if defined(__amd64) 1310 if ((availrmem >> (30 - MMU_PAGESHIFT)) >= 1311 textrepl_min_gb && l2cache_sz <= 2 << 20) { 1312 extern size_t textrepl_size_thresh; 1313 textrepl_size_thresh = (16 << 20) - 1; 1314 } 1315 #endif 1316 } 1317 1318 /* 1319 * Layout the kernel's part of address space and initialize kmem allocator. 1320 */ 1321 static void 1322 startup_kmem(void) 1323 { 1324 extern void page_set_colorequiv_arr(void); 1325 1326 PRM_POINT("startup_kmem() starting..."); 1327 1328 #if defined(__amd64) 1329 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE) 1330 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit " 1331 "systems."); 1332 kernelbase = segkpm_base - KERNEL_REDZONE_SIZE; 1333 core_base = (uintptr_t)COREHEAP_BASE; 1334 core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE; 1335 #else /* __i386 */ 1336 /* 1337 * We configure kernelbase based on: 1338 * 1339 * 1. user specified kernelbase via eeprom command. Value cannot exceed 1340 * KERNELBASE_MAX. we large page align eprom_kernelbase 1341 * 1342 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t. 1343 * On large memory systems we must lower kernelbase to allow 1344 * enough room for page_t's for all of memory. 1345 * 1346 * The value set here, might be changed a little later. 1347 */ 1348 if (eprom_kernelbase) { 1349 kernelbase = eprom_kernelbase & mmu.level_mask[1]; 1350 if (kernelbase > KERNELBASE_MAX) 1351 kernelbase = KERNELBASE_MAX; 1352 } else { 1353 kernelbase = (uintptr_t)KERNELBASE; 1354 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz); 1355 } 1356 ASSERT((kernelbase & mmu.level_offset[1]) == 0); 1357 core_base = valloc_base; 1358 core_size = 0; 1359 #endif /* __i386 */ 1360 1361 PRM_DEBUG(core_base); 1362 PRM_DEBUG(core_size); 1363 PRM_DEBUG(kernelbase); 1364 1365 #if defined(__i386) 1366 segkp_fromheap = 1; 1367 #endif /* __i386 */ 1368 1369 ekernelheap = (char *)core_base; 1370 PRM_DEBUG(ekernelheap); 1371 1372 /* 1373 * Now that we know the real value of kernelbase, 1374 * update variables that were initialized with a value of 1375 * KERNELBASE (in common/conf/param.c). 1376 * 1377 * XXX The problem with this sort of hackery is that the 1378 * compiler just may feel like putting the const declarations 1379 * (in param.c) into the .text section. Perhaps they should 1380 * just be declared as variables there? 1381 */ 1382 1383 *(uintptr_t *)&_kernelbase = kernelbase; 1384 *(uintptr_t *)&_userlimit = kernelbase; 1385 #if defined(__amd64) 1386 *(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT; 1387 #else 1388 *(uintptr_t *)&_userlimit32 = _userlimit; 1389 #endif 1390 PRM_DEBUG(_kernelbase); 1391 PRM_DEBUG(_userlimit); 1392 PRM_DEBUG(_userlimit32); 1393 1394 layout_kernel_va(); 1395 1396 #if defined(__i386) 1397 /* 1398 * If segmap is too large we can push the bottom of the kernel heap 1399 * higher than the base. Or worse, it could exceed the top of the 1400 * VA space entirely, causing it to wrap around. 1401 */ 1402 if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase) 1403 panic("too little address space available for kernelheap," 1404 " use eeprom for lower kernelbase or smaller segmapsize"); 1405 #endif /* __i386 */ 1406 1407 /* 1408 * Initialize the kernel heap. Note 3rd argument must be > 1st. 1409 */ 1410 kernelheap_init(kernelheap, ekernelheap, 1411 kernelheap + MMU_PAGESIZE, 1412 (void *)core_base, (void *)(core_base + core_size)); 1413 1414 #if defined(__xpv) 1415 /* 1416 * Link pending events struct into cpu struct 1417 */ 1418 CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data; 1419 #endif 1420 /* 1421 * Initialize kernel memory allocator. 1422 */ 1423 kmem_init(); 1424 1425 /* 1426 * Factor in colorequiv to check additional 'equivalent' bins 1427 */ 1428 page_set_colorequiv_arr(); 1429 1430 /* 1431 * print this out early so that we know what's going on 1432 */ 1433 print_x86_featureset(x86_featureset); 1434 1435 /* 1436 * Initialize bp_mapin(). 1437 */ 1438 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK); 1439 1440 /* 1441 * orig_npages is non-zero if physmem has been configured for less 1442 * than the available memory. 1443 */ 1444 if (orig_npages) { 1445 cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages", 1446 (npages == PHYSMEM ? "Due to virtual address space " : ""), 1447 npages, orig_npages); 1448 } 1449 #if defined(__i386) 1450 if (eprom_kernelbase && (eprom_kernelbase != kernelbase)) 1451 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, " 1452 "System using 0x%lx", 1453 (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase); 1454 #endif 1455 1456 #ifdef KERNELBASE_ABI_MIN 1457 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) { 1458 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not " 1459 "i386 ABI compliant.", (uintptr_t)kernelbase); 1460 } 1461 #endif 1462 1463 #ifndef __xpv 1464 if (plat_dr_support_memory()) { 1465 mem_config_init(); 1466 } 1467 #else /* __xpv */ 1468 /* 1469 * Some of the xen start information has to be relocated up 1470 * into the kernel's permanent address space. 1471 */ 1472 PRM_POINT("calling xen_relocate_start_info()"); 1473 xen_relocate_start_info(); 1474 PRM_POINT("xen_relocate_start_info() done"); 1475 1476 /* 1477 * (Update the vcpu pointer in our cpu structure to point into 1478 * the relocated shared info.) 1479 */ 1480 CPU->cpu_m.mcpu_vcpu_info = 1481 &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id]; 1482 #endif /* __xpv */ 1483 1484 PRM_POINT("startup_kmem() done"); 1485 } 1486 1487 #ifndef __xpv 1488 /* 1489 * If we have detected that we are running in an HVM environment, we need 1490 * to prepend the PV driver directory to the module search path. 1491 */ 1492 #define HVM_MOD_DIR "/platform/i86hvm/kernel" 1493 static void 1494 update_default_path() 1495 { 1496 char *current, *newpath; 1497 int newlen; 1498 1499 /* 1500 * We are about to resync with krtld. krtld will reset its 1501 * internal module search path iff Solaris has set default_path. 1502 * We want to be sure we're prepending this new directory to the 1503 * right search path. 1504 */ 1505 current = (default_path == NULL) ? kobj_module_path : default_path; 1506 1507 newlen = strlen(HVM_MOD_DIR) + strlen(current) + 2; 1508 newpath = kmem_alloc(newlen, KM_SLEEP); 1509 (void) strcpy(newpath, HVM_MOD_DIR); 1510 (void) strcat(newpath, " "); 1511 (void) strcat(newpath, current); 1512 1513 default_path = newpath; 1514 } 1515 #endif 1516 1517 static void 1518 startup_modules(void) 1519 { 1520 int cnt; 1521 extern void prom_setup(void); 1522 int32_t v, h; 1523 char d[11]; 1524 char *cp; 1525 cmi_hdl_t hdl; 1526 1527 PRM_POINT("startup_modules() starting..."); 1528 1529 #ifndef __xpv 1530 /* 1531 * Initialize ten-micro second timer so that drivers will 1532 * not get short changed in their init phase. This was 1533 * not getting called until clkinit which, on fast cpu's 1534 * caused the drv_usecwait to be way too short. 1535 */ 1536 microfind(); 1537 1538 if ((get_hwenv() & HW_XEN_HVM) != 0) 1539 update_default_path(); 1540 #endif 1541 1542 /* 1543 * Read the GMT lag from /etc/rtc_config. 1544 */ 1545 sgmtl(process_rtc_config_file()); 1546 1547 /* 1548 * Calculate default settings of system parameters based upon 1549 * maxusers, yet allow to be overridden via the /etc/system file. 1550 */ 1551 param_calc(0); 1552 1553 mod_setup(); 1554 1555 /* 1556 * Initialize system parameters. 1557 */ 1558 param_init(); 1559 1560 /* 1561 * Initialize the default brands 1562 */ 1563 brand_init(); 1564 1565 /* 1566 * maxmem is the amount of physical memory we're playing with. 1567 */ 1568 maxmem = physmem; 1569 1570 /* 1571 * Initialize segment management stuff. 1572 */ 1573 seg_init(); 1574 1575 if (modload("fs", "specfs") == -1) 1576 halt("Can't load specfs"); 1577 1578 if (modload("fs", "devfs") == -1) 1579 halt("Can't load devfs"); 1580 1581 if (modload("fs", "dev") == -1) 1582 halt("Can't load dev"); 1583 1584 if (modload("fs", "procfs") == -1) 1585 halt("Can't load procfs"); 1586 1587 (void) modloadonly("sys", "lbl_edition"); 1588 1589 dispinit(); 1590 1591 /* Read cluster configuration data. */ 1592 clconf_init(); 1593 1594 #if defined(__xpv) 1595 (void) ec_init(); 1596 gnttab_init(); 1597 (void) xs_early_init(); 1598 #endif /* __xpv */ 1599 1600 /* 1601 * Create a kernel device tree. First, create rootnex and 1602 * then invoke bus specific code to probe devices. 1603 */ 1604 setup_ddi(); 1605 1606 #ifdef __xpv 1607 if (DOMAIN_IS_INITDOMAIN(xen_info)) 1608 #endif 1609 { 1610 /* 1611 * Load the System Management BIOS into the global ksmbios 1612 * handle, if an SMBIOS is present on this system. 1613 */ 1614 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL); 1615 } 1616 1617 1618 /* 1619 * Originally clconf_init() apparently needed the hostid. But 1620 * this no longer appears to be true - it uses its own nodeid. 1621 * By placing the hostid logic here, we are able to make use of 1622 * the SMBIOS UUID. 1623 */ 1624 if ((h = set_soft_hostid()) == HW_INVALID_HOSTID) { 1625 cmn_err(CE_WARN, "Unable to set hostid"); 1626 } else { 1627 for (v = h, cnt = 0; cnt < 10; cnt++) { 1628 d[cnt] = (char)(v % 10); 1629 v /= 10; 1630 if (v == 0) 1631 break; 1632 } 1633 for (cp = hw_serial; cnt >= 0; cnt--) 1634 *cp++ = d[cnt] + '0'; 1635 *cp = 0; 1636 } 1637 1638 /* 1639 * Set up the CPU module subsystem for the boot cpu in the native 1640 * case, and all physical cpu resource in the xpv dom0 case. 1641 * Modifies the device tree, so this must be done after 1642 * setup_ddi(). 1643 */ 1644 #ifdef __xpv 1645 /* 1646 * If paravirtualized and on dom0 then we initialize all physical 1647 * cpu handles now; if paravirtualized on a domU then do not 1648 * initialize. 1649 */ 1650 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1651 xen_mc_lcpu_cookie_t cpi; 1652 1653 for (cpi = xen_physcpu_next(NULL); cpi != NULL; 1654 cpi = xen_physcpu_next(cpi)) { 1655 if ((hdl = cmi_init(CMI_HDL_SOLARIS_xVM_MCA, 1656 xen_physcpu_chipid(cpi), xen_physcpu_coreid(cpi), 1657 xen_physcpu_strandid(cpi))) != NULL && 1658 is_x86_feature(x86_featureset, X86FSET_MCA)) 1659 cmi_mca_init(hdl); 1660 } 1661 } 1662 #else 1663 /* 1664 * Initialize a handle for the boot cpu - others will initialize 1665 * as they startup. Do not do this if we know we are in an HVM domU. 1666 */ 1667 if ((get_hwenv() & HW_XEN_HVM) == 0 && 1668 (hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU), 1669 cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL && 1670 is_x86_feature(x86_featureset, X86FSET_MCA)) { 1671 cmi_mca_init(hdl); 1672 CPU->cpu_m.mcpu_cmi_hdl = hdl; 1673 } 1674 #endif /* __xpv */ 1675 1676 /* 1677 * Fake a prom tree such that /dev/openprom continues to work 1678 */ 1679 PRM_POINT("startup_modules: calling prom_setup..."); 1680 prom_setup(); 1681 PRM_POINT("startup_modules: done"); 1682 1683 /* 1684 * Load all platform specific modules 1685 */ 1686 PRM_POINT("startup_modules: calling psm_modload..."); 1687 psm_modload(); 1688 1689 PRM_POINT("startup_modules() done"); 1690 } 1691 1692 /* 1693 * claim a "setaside" boot page for use in the kernel 1694 */ 1695 page_t * 1696 boot_claim_page(pfn_t pfn) 1697 { 1698 page_t *pp; 1699 1700 pp = page_numtopp_nolock(pfn); 1701 ASSERT(pp != NULL); 1702 1703 if (PP_ISBOOTPAGES(pp)) { 1704 if (pp->p_next != NULL) 1705 pp->p_next->p_prev = pp->p_prev; 1706 if (pp->p_prev == NULL) 1707 bootpages = pp->p_next; 1708 else 1709 pp->p_prev->p_next = pp->p_next; 1710 } else { 1711 /* 1712 * htable_attach() expects a base pagesize page 1713 */ 1714 if (pp->p_szc != 0) 1715 page_boot_demote(pp); 1716 pp = page_numtopp(pfn, SE_EXCL); 1717 } 1718 return (pp); 1719 } 1720 1721 /* 1722 * Walk through the pagetables looking for pages mapped in by boot. If the 1723 * setaside flag is set the pages are expected to be returned to the 1724 * kernel later in boot, so we add them to the bootpages list. 1725 */ 1726 static void 1727 protect_boot_range(uintptr_t low, uintptr_t high, int setaside) 1728 { 1729 uintptr_t va = low; 1730 size_t len; 1731 uint_t prot; 1732 pfn_t pfn; 1733 page_t *pp; 1734 pgcnt_t boot_protect_cnt = 0; 1735 1736 while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) { 1737 if (va + len >= high) 1738 panic("0x%lx byte mapping at 0x%p exceeds boot's " 1739 "legal range.", len, (void *)va); 1740 1741 while (len > 0) { 1742 pp = page_numtopp_alloc(pfn); 1743 if (pp != NULL) { 1744 if (setaside == 0) 1745 panic("Unexpected mapping by boot. " 1746 "addr=%p pfn=%lx\n", 1747 (void *)va, pfn); 1748 1749 pp->p_next = bootpages; 1750 pp->p_prev = NULL; 1751 PP_SETBOOTPAGES(pp); 1752 if (bootpages != NULL) { 1753 bootpages->p_prev = pp; 1754 } 1755 bootpages = pp; 1756 ++boot_protect_cnt; 1757 } 1758 1759 ++pfn; 1760 len -= MMU_PAGESIZE; 1761 va += MMU_PAGESIZE; 1762 } 1763 } 1764 PRM_DEBUG(boot_protect_cnt); 1765 } 1766 1767 /* 1768 * 1769 */ 1770 static void 1771 layout_kernel_va(void) 1772 { 1773 PRM_POINT("layout_kernel_va() starting..."); 1774 /* 1775 * Establish the final size of the kernel's heap, size of segmap, 1776 * segkp, etc. 1777 */ 1778 1779 #if defined(__amd64) 1780 1781 kpm_vbase = (caddr_t)segkpm_base; 1782 if (physmax + 1 < plat_dr_physmax) { 1783 kpm_size = ROUND_UP_LPAGE(mmu_ptob(plat_dr_physmax)); 1784 } else { 1785 kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1)); 1786 } 1787 if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base) 1788 panic("not enough room for kpm!"); 1789 PRM_DEBUG(kpm_size); 1790 PRM_DEBUG(kpm_vbase); 1791 1792 /* 1793 * By default we create a seg_kp in 64 bit kernels, it's a little 1794 * faster to access than embedding it in the heap. 1795 */ 1796 segkp_base = (caddr_t)valloc_base + valloc_sz; 1797 if (!segkp_fromheap) { 1798 size_t sz = mmu_ptob(segkpsize); 1799 1800 /* 1801 * determine size of segkp 1802 */ 1803 if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) { 1804 sz = SEGKPDEFSIZE; 1805 cmn_err(CE_WARN, "!Illegal value for segkpsize. " 1806 "segkpsize has been reset to %ld pages", 1807 mmu_btop(sz)); 1808 } 1809 sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem))); 1810 1811 segkpsize = mmu_btop(ROUND_UP_LPAGE(sz)); 1812 } 1813 PRM_DEBUG(segkp_base); 1814 PRM_DEBUG(segkpsize); 1815 1816 /* 1817 * segzio is used for ZFS cached data. It uses a distinct VA 1818 * segment (from kernel heap) so that we can easily tell not to 1819 * include it in kernel crash dumps on 64 bit kernels. The trick is 1820 * to give it lots of VA, but not constrain the kernel heap. 1821 * We scale the size of segzio linearly with physmem up to 1822 * SEGZIOMAXSIZE. Above that amount it scales at 50% of physmem. 1823 */ 1824 segzio_base = segkp_base + mmu_ptob(segkpsize); 1825 if (segzio_fromheap) { 1826 segziosize = 0; 1827 } else { 1828 size_t physmem_size = mmu_ptob(physmem); 1829 size_t size = (segziosize == 0) ? 1830 physmem_size : mmu_ptob(segziosize); 1831 1832 if (size < SEGZIOMINSIZE) 1833 size = SEGZIOMINSIZE; 1834 if (size > SEGZIOMAXSIZE) { 1835 size = SEGZIOMAXSIZE; 1836 if (physmem_size > size) 1837 size += (physmem_size - size) / 2; 1838 } 1839 segziosize = mmu_btop(ROUND_UP_LPAGE(size)); 1840 } 1841 PRM_DEBUG(segziosize); 1842 PRM_DEBUG(segzio_base); 1843 1844 /* 1845 * Put the range of VA for device mappings next, kmdb knows to not 1846 * grep in this range of addresses. 1847 */ 1848 toxic_addr = 1849 ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize)); 1850 PRM_DEBUG(toxic_addr); 1851 segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size); 1852 #else /* __i386 */ 1853 segmap_start = ROUND_UP_LPAGE(kernelbase); 1854 #endif /* __i386 */ 1855 PRM_DEBUG(segmap_start); 1856 1857 /* 1858 * Users can change segmapsize through eeprom. If the variable 1859 * is tuned through eeprom, there is no upper bound on the 1860 * size of segmap. 1861 */ 1862 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT); 1863 1864 #if defined(__i386) 1865 /* 1866 * 32-bit systems don't have segkpm or segkp, so segmap appears at 1867 * the bottom of the kernel's address range. Set aside space for a 1868 * small red zone just below the start of segmap. 1869 */ 1870 segmap_start += KERNEL_REDZONE_SIZE; 1871 segmapsize -= KERNEL_REDZONE_SIZE; 1872 #endif 1873 1874 PRM_DEBUG(segmap_start); 1875 PRM_DEBUG(segmapsize); 1876 kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize); 1877 PRM_DEBUG(kernelheap); 1878 PRM_POINT("layout_kernel_va() done..."); 1879 } 1880 1881 /* 1882 * Finish initializing the VM system, now that we are no longer 1883 * relying on the boot time memory allocators. 1884 */ 1885 static void 1886 startup_vm(void) 1887 { 1888 struct segmap_crargs a; 1889 1890 extern int use_brk_lpg, use_stk_lpg; 1891 1892 PRM_POINT("startup_vm() starting..."); 1893 1894 /* 1895 * Initialize the hat layer. 1896 */ 1897 hat_init(); 1898 1899 /* 1900 * Do final allocations of HAT data structures that need to 1901 * be allocated before quiescing the boot loader. 1902 */ 1903 PRM_POINT("Calling hat_kern_alloc()..."); 1904 hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap); 1905 PRM_POINT("hat_kern_alloc() done"); 1906 1907 #ifndef __xpv 1908 /* 1909 * Setup Page Attribute Table 1910 */ 1911 pat_sync(); 1912 #endif 1913 1914 /* 1915 * The next two loops are done in distinct steps in order 1916 * to be sure that any page that is doubly mapped (both above 1917 * KERNEL_TEXT and below kernelbase) is dealt with correctly. 1918 * Note this may never happen, but it might someday. 1919 */ 1920 bootpages = NULL; 1921 PRM_POINT("Protecting boot pages"); 1922 1923 /* 1924 * Protect any pages mapped above KERNEL_TEXT that somehow have 1925 * page_t's. This can only happen if something weird allocated 1926 * in this range (like kadb/kmdb). 1927 */ 1928 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0); 1929 1930 /* 1931 * Before we can take over memory allocation/mapping from the boot 1932 * loader we must remove from our free page lists any boot allocated 1933 * pages that stay mapped until release_bootstrap(). 1934 */ 1935 protect_boot_range(0, kernelbase, 1); 1936 1937 1938 /* 1939 * Switch to running on regular HAT (not boot_mmu) 1940 */ 1941 PRM_POINT("Calling hat_kern_setup()..."); 1942 hat_kern_setup(); 1943 1944 /* 1945 * It is no longer safe to call BOP_ALLOC(), so make sure we don't. 1946 */ 1947 bop_no_more_mem(); 1948 1949 PRM_POINT("hat_kern_setup() done"); 1950 1951 hat_cpu_online(CPU); 1952 1953 /* 1954 * Initialize VM system 1955 */ 1956 PRM_POINT("Calling kvm_init()..."); 1957 kvm_init(); 1958 PRM_POINT("kvm_init() done"); 1959 1960 /* 1961 * Tell kmdb that the VM system is now working 1962 */ 1963 if (boothowto & RB_DEBUG) 1964 kdi_dvec_vmready(); 1965 1966 #if defined(__xpv) 1967 /* 1968 * Populate the I/O pool on domain 0 1969 */ 1970 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1971 extern long populate_io_pool(void); 1972 long init_io_pool_cnt; 1973 1974 PRM_POINT("Populating reserve I/O page pool"); 1975 init_io_pool_cnt = populate_io_pool(); 1976 PRM_DEBUG(init_io_pool_cnt); 1977 } 1978 #endif 1979 /* 1980 * Mangle the brand string etc. 1981 */ 1982 cpuid_pass3(CPU); 1983 1984 #if defined(__amd64) 1985 1986 /* 1987 * Create the device arena for toxic (to dtrace/kmdb) mappings. 1988 */ 1989 device_arena = vmem_create("device", (void *)toxic_addr, 1990 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 1991 1992 #else /* __i386 */ 1993 1994 /* 1995 * allocate the bit map that tracks toxic pages 1996 */ 1997 toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase)); 1998 PRM_DEBUG(toxic_bit_map_len); 1999 toxic_bit_map = 2000 kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP); 2001 ASSERT(toxic_bit_map != NULL); 2002 PRM_DEBUG(toxic_bit_map); 2003 2004 #endif /* __i386 */ 2005 2006 2007 /* 2008 * Now that we've got more VA, as well as the ability to allocate from 2009 * it, tell the debugger. 2010 */ 2011 if (boothowto & RB_DEBUG) 2012 kdi_dvec_memavail(); 2013 2014 /* 2015 * The following code installs a special page fault handler (#pf) 2016 * to work around a pentium bug. 2017 */ 2018 #if !defined(__amd64) && !defined(__xpv) 2019 if (x86_type == X86_TYPE_P5) { 2020 desctbr_t idtr; 2021 gate_desc_t *newidt; 2022 2023 if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL) 2024 panic("failed to install pentium_pftrap"); 2025 2026 bcopy(idt0, newidt, NIDT * sizeof (*idt0)); 2027 set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap, 2028 KCS_SEL, SDT_SYSIGT, TRP_KPL, 0); 2029 2030 (void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE, 2031 PROT_READ | PROT_EXEC); 2032 2033 CPU->cpu_idt = newidt; 2034 idtr.dtr_base = (uintptr_t)CPU->cpu_idt; 2035 idtr.dtr_limit = (NIDT * sizeof (*idt0)) - 1; 2036 wr_idtr(&idtr); 2037 } 2038 #endif /* !__amd64 */ 2039 2040 #if !defined(__xpv) 2041 /* 2042 * Map page pfn=0 for drivers, such as kd, that need to pick up 2043 * parameters left there by controllers/BIOS. 2044 */ 2045 PRM_POINT("setup up p0_va"); 2046 p0_va = i86devmap(0, 1, PROT_READ); 2047 PRM_DEBUG(p0_va); 2048 #endif 2049 2050 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n", 2051 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled)); 2052 2053 /* 2054 * disable automatic large pages for small memory systems or 2055 * when the disable flag is set. 2056 * 2057 * Do not yet consider page sizes larger than 2m/4m. 2058 */ 2059 if (!auto_lpg_disable && mmu.max_page_level > 0) { 2060 max_uheap_lpsize = LEVEL_SIZE(1); 2061 max_ustack_lpsize = LEVEL_SIZE(1); 2062 max_privmap_lpsize = LEVEL_SIZE(1); 2063 max_uidata_lpsize = LEVEL_SIZE(1); 2064 max_utext_lpsize = LEVEL_SIZE(1); 2065 max_shm_lpsize = LEVEL_SIZE(1); 2066 } 2067 if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 || 2068 auto_lpg_disable) { 2069 use_brk_lpg = 0; 2070 use_stk_lpg = 0; 2071 } 2072 mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level); 2073 2074 PRM_POINT("Calling hat_init_finish()..."); 2075 hat_init_finish(); 2076 PRM_POINT("hat_init_finish() done"); 2077 2078 /* 2079 * Initialize the segkp segment type. 2080 */ 2081 rw_enter(&kas.a_lock, RW_WRITER); 2082 PRM_POINT("Attaching segkp"); 2083 if (segkp_fromheap) { 2084 segkp->s_as = &kas; 2085 } else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize), 2086 segkp) < 0) { 2087 panic("startup: cannot attach segkp"); 2088 /*NOTREACHED*/ 2089 } 2090 PRM_POINT("Doing segkp_create()"); 2091 if (segkp_create(segkp) != 0) { 2092 panic("startup: segkp_create failed"); 2093 /*NOTREACHED*/ 2094 } 2095 PRM_DEBUG(segkp); 2096 rw_exit(&kas.a_lock); 2097 2098 /* 2099 * kpm segment 2100 */ 2101 segmap_kpm = 0; 2102 if (kpm_desired) { 2103 kpm_init(); 2104 kpm_enable = 1; 2105 } 2106 2107 /* 2108 * Now create segmap segment. 2109 */ 2110 rw_enter(&kas.a_lock, RW_WRITER); 2111 if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) { 2112 panic("cannot attach segmap"); 2113 /*NOTREACHED*/ 2114 } 2115 PRM_DEBUG(segmap); 2116 2117 a.prot = PROT_READ | PROT_WRITE; 2118 a.shmsize = 0; 2119 a.nfreelist = segmapfreelists; 2120 2121 if (segmap_create(segmap, (caddr_t)&a) != 0) 2122 panic("segmap_create segmap"); 2123 rw_exit(&kas.a_lock); 2124 2125 setup_vaddr_for_ppcopy(CPU); 2126 2127 segdev_init(); 2128 #if defined(__xpv) 2129 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2130 #endif 2131 pmem_init(); 2132 2133 PRM_POINT("startup_vm() done"); 2134 } 2135 2136 /* 2137 * Load a tod module for the non-standard tod part found on this system. 2138 */ 2139 static void 2140 load_tod_module(char *todmod) 2141 { 2142 if (modload("tod", todmod) == -1) 2143 halt("Can't load TOD module"); 2144 } 2145 2146 static void 2147 startup_end(void) 2148 { 2149 int i; 2150 extern void setx86isalist(void); 2151 extern void cpu_event_init(void); 2152 2153 PRM_POINT("startup_end() starting..."); 2154 2155 /* 2156 * Perform tasks that get done after most of the VM 2157 * initialization has been done but before the clock 2158 * and other devices get started. 2159 */ 2160 kern_setup1(); 2161 2162 /* 2163 * Perform CPC initialization for this CPU. 2164 */ 2165 kcpc_hw_init(CPU); 2166 2167 /* 2168 * Initialize cpu event framework. 2169 */ 2170 cpu_event_init(); 2171 2172 #if defined(OPTERON_WORKAROUND_6323525) 2173 if (opteron_workaround_6323525) 2174 patch_workaround_6323525(); 2175 #endif 2176 /* 2177 * If needed, load TOD module now so that ddi_get_time(9F) etc. work 2178 * (For now, "needed" is defined as set tod_module_name in /etc/system) 2179 */ 2180 if (tod_module_name != NULL) { 2181 PRM_POINT("load_tod_module()"); 2182 load_tod_module(tod_module_name); 2183 } 2184 2185 #if defined(__xpv) 2186 /* 2187 * Forceload interposing TOD module for the hypervisor. 2188 */ 2189 PRM_POINT("load_tod_module()"); 2190 load_tod_module("xpvtod"); 2191 #endif 2192 2193 /* 2194 * Configure the system. 2195 */ 2196 PRM_POINT("Calling configure()..."); 2197 configure(); /* set up devices */ 2198 PRM_POINT("configure() done"); 2199 2200 /* 2201 * We can now setup for XSAVE because fpu_probe is done in configure(). 2202 */ 2203 if (fp_save_mech == FP_XSAVE) { 2204 xsave_setup_msr(CPU); 2205 } 2206 2207 /* 2208 * Set the isa_list string to the defined instruction sets we 2209 * support. 2210 */ 2211 setx86isalist(); 2212 cpu_intr_alloc(CPU, NINTR_THREADS); 2213 psm_install(); 2214 2215 /* 2216 * We're done with bootops. We don't unmap the bootstrap yet because 2217 * we're still using bootsvcs. 2218 */ 2219 PRM_POINT("NULLing out bootops"); 2220 *bootopsp = (struct bootops *)NULL; 2221 bootops = (struct bootops *)NULL; 2222 2223 #if defined(__xpv) 2224 ec_init_debug_irq(); 2225 xs_domu_init(); 2226 #endif 2227 2228 #if defined(__amd64) && !defined(__xpv) 2229 /* 2230 * Intel IOMMU has been setup/initialized in ddi_impl.c 2231 * Start it up now. 2232 */ 2233 immu_startup(); 2234 #endif 2235 2236 PRM_POINT("Enabling interrupts"); 2237 (*picinitf)(); 2238 sti(); 2239 #if defined(__xpv) 2240 ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0); 2241 xen_late_startup(); 2242 #endif 2243 2244 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1, 2245 "softlevel1", NULL, NULL); /* XXX to be moved later */ 2246 2247 /* 2248 * Register software interrupt handlers for ddi_periodic_add(9F). 2249 * Software interrupts up to the level 10 are supported. 2250 */ 2251 for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) { 2252 (void) add_avsoftintr((void *)&softlevel_hdl[i-1], i, 2253 (avfunc)ddi_periodic_softintr, "ddi_periodic", 2254 (caddr_t)(uintptr_t)i, NULL); 2255 } 2256 2257 #if !defined(__xpv) 2258 if (modload("drv", "amd_iommu") < 0) { 2259 PRM_POINT("No AMD IOMMU present\n"); 2260 } else if (ddi_hold_installed_driver(ddi_name_to_major( 2261 "amd_iommu")) == NULL) { 2262 prom_printf("ERROR: failed to attach AMD IOMMU\n"); 2263 } 2264 #endif 2265 post_startup_cpu_fixups(); 2266 2267 PRM_POINT("startup_end() done"); 2268 } 2269 2270 /* 2271 * Don't remove the following 2 variables. They are necessary 2272 * for reading the hostid from the legacy file (/kernel/misc/sysinit). 2273 */ 2274 char *_hs1107 = hw_serial; 2275 ulong_t _bdhs34; 2276 2277 void 2278 post_startup(void) 2279 { 2280 extern void cpupm_init(cpu_t *); 2281 extern void cpu_event_init_cpu(cpu_t *); 2282 2283 /* 2284 * Set the system wide, processor-specific flags to be passed 2285 * to userland via the aux vector for performance hints and 2286 * instruction set extensions. 2287 */ 2288 bind_hwcap(); 2289 2290 #ifdef __xpv 2291 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2292 #endif 2293 { 2294 #if defined(__xpv) 2295 xpv_panic_init(); 2296 #else 2297 /* 2298 * Startup the memory scrubber. 2299 * XXPV This should be running somewhere .. 2300 */ 2301 if ((get_hwenv() & HW_VIRTUAL) == 0) 2302 memscrub_init(); 2303 #endif 2304 } 2305 2306 /* 2307 * Complete CPU module initialization 2308 */ 2309 cmi_post_startup(); 2310 2311 /* 2312 * Perform forceloading tasks for /etc/system. 2313 */ 2314 (void) mod_sysctl(SYS_FORCELOAD, NULL); 2315 2316 /* 2317 * ON4.0: Force /proc module in until clock interrupt handle fixed 2318 * ON4.0: This must be fixed or restated in /etc/systems. 2319 */ 2320 (void) modload("fs", "procfs"); 2321 2322 (void) i_ddi_attach_hw_nodes("pit_beep"); 2323 2324 #if defined(__i386) 2325 /* 2326 * Check for required functional Floating Point hardware, 2327 * unless FP hardware explicitly disabled. 2328 */ 2329 if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO)) 2330 halt("No working FP hardware found"); 2331 #endif 2332 2333 maxmem = freemem; 2334 2335 cpu_event_init_cpu(CPU); 2336 cpupm_init(CPU); 2337 (void) mach_cpu_create_device_node(CPU, NULL); 2338 2339 pg_init(); 2340 } 2341 2342 static int 2343 pp_in_range(page_t *pp, uint64_t low_addr, uint64_t high_addr) 2344 { 2345 return ((pp->p_pagenum >= btop(low_addr)) && 2346 (pp->p_pagenum < btopr(high_addr))); 2347 } 2348 2349 void 2350 release_bootstrap(void) 2351 { 2352 int root_is_ramdisk; 2353 page_t *pp; 2354 extern void kobj_boot_unmountroot(void); 2355 extern dev_t rootdev; 2356 #if !defined(__xpv) 2357 pfn_t pfn; 2358 #endif 2359 2360 /* unmount boot ramdisk and release kmem usage */ 2361 kobj_boot_unmountroot(); 2362 2363 /* 2364 * We're finished using the boot loader so free its pages. 2365 */ 2366 PRM_POINT("Unmapping lower boot pages"); 2367 2368 clear_boot_mappings(0, _userlimit); 2369 2370 postbootkernelbase = kernelbase; 2371 2372 /* 2373 * If root isn't on ramdisk, destroy the hardcoded 2374 * ramdisk node now and release the memory. Else, 2375 * ramdisk memory is kept in rd_pages. 2376 */ 2377 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk")); 2378 if (!root_is_ramdisk) { 2379 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0); 2380 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node()); 2381 ndi_rele_devi(dip); /* held from ddi_find_devinfo */ 2382 (void) ddi_remove_child(dip, 0); 2383 } 2384 2385 PRM_POINT("Releasing boot pages"); 2386 while (bootpages) { 2387 extern uint64_t ramdisk_start, ramdisk_end; 2388 pp = bootpages; 2389 bootpages = pp->p_next; 2390 2391 2392 /* Keep pages for the lower 64K */ 2393 if (pp_in_range(pp, 0, 0x40000)) { 2394 pp->p_next = lower_pages; 2395 lower_pages = pp; 2396 lower_pages_count++; 2397 continue; 2398 } 2399 2400 2401 if (root_is_ramdisk && pp_in_range(pp, ramdisk_start, 2402 ramdisk_end)) { 2403 pp->p_next = rd_pages; 2404 rd_pages = pp; 2405 continue; 2406 } 2407 pp->p_next = (struct page *)0; 2408 pp->p_prev = (struct page *)0; 2409 PP_CLRBOOTPAGES(pp); 2410 page_free(pp, 1); 2411 } 2412 PRM_POINT("Boot pages released"); 2413 2414 #if !defined(__xpv) 2415 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */ 2416 /* 2417 * Find 1 page below 1 MB so that other processors can boot up or 2418 * so that any processor can resume. 2419 * Make sure it has a kernel VA as well as a 1:1 mapping. 2420 * We should have just free'd one up. 2421 */ 2422 2423 /* 2424 * 0x10 pages is 64K. Leave the bottom 64K alone 2425 * for BIOS. 2426 */ 2427 for (pfn = 0x10; pfn < btop(1*1024*1024); pfn++) { 2428 if (page_numtopp_alloc(pfn) == NULL) 2429 continue; 2430 rm_platter_va = i86devmap(pfn, 1, 2431 PROT_READ | PROT_WRITE | PROT_EXEC); 2432 rm_platter_pa = ptob(pfn); 2433 break; 2434 } 2435 if (pfn == btop(1*1024*1024) && use_mp) 2436 panic("No page below 1M available for starting " 2437 "other processors or for resuming from system-suspend"); 2438 #endif /* !__xpv */ 2439 } 2440 2441 /* 2442 * Initialize the platform-specific parts of a page_t. 2443 */ 2444 void 2445 add_physmem_cb(page_t *pp, pfn_t pnum) 2446 { 2447 pp->p_pagenum = pnum; 2448 pp->p_mapping = NULL; 2449 pp->p_embed = 0; 2450 pp->p_share = 0; 2451 pp->p_mlentry = 0; 2452 } 2453 2454 /* 2455 * kphysm_init() initializes physical memory. 2456 */ 2457 static pgcnt_t 2458 kphysm_init( 2459 page_t *pp, 2460 pgcnt_t npages) 2461 { 2462 struct memlist *pmem; 2463 struct memseg *cur_memseg; 2464 pfn_t base_pfn; 2465 pfn_t end_pfn; 2466 pgcnt_t num; 2467 pgcnt_t pages_done = 0; 2468 uint64_t addr; 2469 uint64_t size; 2470 extern pfn_t ddiphysmin; 2471 extern int mnode_xwa; 2472 int ms = 0, me = 0; 2473 2474 ASSERT(page_hash != NULL && page_hashsz != 0); 2475 2476 cur_memseg = memseg_base; 2477 for (pmem = phys_avail; pmem && npages; pmem = pmem->ml_next) { 2478 /* 2479 * In a 32 bit kernel can't use higher memory if we're 2480 * not booting in PAE mode. This check takes care of that. 2481 */ 2482 addr = pmem->ml_address; 2483 size = pmem->ml_size; 2484 if (btop(addr) > physmax) 2485 continue; 2486 2487 /* 2488 * align addr and size - they may not be at page boundaries 2489 */ 2490 if ((addr & MMU_PAGEOFFSET) != 0) { 2491 addr += MMU_PAGEOFFSET; 2492 addr &= ~(uint64_t)MMU_PAGEOFFSET; 2493 size -= addr - pmem->ml_address; 2494 } 2495 2496 /* only process pages below or equal to physmax */ 2497 if ((btop(addr + size) - 1) > physmax) 2498 size = ptob(physmax - btop(addr) + 1); 2499 2500 num = btop(size); 2501 if (num == 0) 2502 continue; 2503 2504 if (num > npages) 2505 num = npages; 2506 2507 npages -= num; 2508 pages_done += num; 2509 base_pfn = btop(addr); 2510 2511 if (prom_debug) 2512 prom_printf("MEMSEG addr=0x%" PRIx64 2513 " pgs=0x%lx pfn 0x%lx-0x%lx\n", 2514 addr, num, base_pfn, base_pfn + num); 2515 2516 /* 2517 * Ignore pages below ddiphysmin to simplify ddi memory 2518 * allocation with non-zero addr_lo requests. 2519 */ 2520 if (base_pfn < ddiphysmin) { 2521 if (base_pfn + num <= ddiphysmin) 2522 continue; 2523 pp += (ddiphysmin - base_pfn); 2524 num -= (ddiphysmin - base_pfn); 2525 base_pfn = ddiphysmin; 2526 } 2527 2528 /* 2529 * mnode_xwa is greater than 1 when large pages regions can 2530 * cross memory node boundaries. To prevent the formation 2531 * of these large pages, configure the memsegs based on the 2532 * memory node ranges which had been made non-contiguous. 2533 */ 2534 if (mnode_xwa > 1) { 2535 2536 end_pfn = base_pfn + num - 1; 2537 ms = PFN_2_MEM_NODE(base_pfn); 2538 me = PFN_2_MEM_NODE(end_pfn); 2539 2540 if (ms != me) { 2541 /* 2542 * current range spans more than 1 memory node. 2543 * Set num to only the pfn range in the start 2544 * memory node. 2545 */ 2546 num = mem_node_config[ms].physmax - base_pfn 2547 + 1; 2548 ASSERT(end_pfn > mem_node_config[ms].physmax); 2549 } 2550 } 2551 2552 for (;;) { 2553 /* 2554 * Build the memsegs entry 2555 */ 2556 cur_memseg->pages = pp; 2557 cur_memseg->epages = pp + num; 2558 cur_memseg->pages_base = base_pfn; 2559 cur_memseg->pages_end = base_pfn + num; 2560 2561 /* 2562 * Insert into memseg list in decreasing pfn range 2563 * order. Low memory is typically more fragmented such 2564 * that this ordering keeps the larger ranges at the 2565 * front of the list for code that searches memseg. 2566 * This ASSERTS that the memsegs coming in from boot 2567 * are in increasing physical address order and not 2568 * contiguous. 2569 */ 2570 if (memsegs != NULL) { 2571 ASSERT(cur_memseg->pages_base >= 2572 memsegs->pages_end); 2573 cur_memseg->next = memsegs; 2574 } 2575 memsegs = cur_memseg; 2576 2577 /* 2578 * add_physmem() initializes the PSM part of the page 2579 * struct by calling the PSM back with add_physmem_cb(). 2580 * In addition it coalesces pages into larger pages as 2581 * it initializes them. 2582 */ 2583 add_physmem(pp, num, base_pfn); 2584 cur_memseg++; 2585 availrmem_initial += num; 2586 availrmem += num; 2587 2588 pp += num; 2589 if (ms >= me) 2590 break; 2591 2592 /* process next memory node range */ 2593 ms++; 2594 base_pfn = mem_node_config[ms].physbase; 2595 num = MIN(mem_node_config[ms].physmax, 2596 end_pfn) - base_pfn + 1; 2597 } 2598 } 2599 2600 PRM_DEBUG(availrmem_initial); 2601 PRM_DEBUG(availrmem); 2602 PRM_DEBUG(freemem); 2603 build_pfn_hash(); 2604 return (pages_done); 2605 } 2606 2607 /* 2608 * Kernel VM initialization. 2609 */ 2610 static void 2611 kvm_init(void) 2612 { 2613 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0); 2614 2615 /* 2616 * Put the kernel segments in kernel address space. 2617 */ 2618 rw_enter(&kas.a_lock, RW_WRITER); 2619 as_avlinit(&kas); 2620 2621 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg); 2622 (void) segkmem_create(&ktextseg); 2623 2624 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc); 2625 (void) segkmem_create(&kvalloc); 2626 2627 (void) seg_attach(&kas, kernelheap, 2628 ekernelheap - kernelheap, &kvseg); 2629 (void) segkmem_create(&kvseg); 2630 2631 if (core_size > 0) { 2632 PRM_POINT("attaching kvseg_core"); 2633 (void) seg_attach(&kas, (caddr_t)core_base, core_size, 2634 &kvseg_core); 2635 (void) segkmem_create(&kvseg_core); 2636 } 2637 2638 if (segziosize > 0) { 2639 PRM_POINT("attaching segzio"); 2640 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize), 2641 &kzioseg); 2642 (void) segkmem_zio_create(&kzioseg); 2643 2644 /* create zio area covering new segment */ 2645 segkmem_zio_init(segzio_base, mmu_ptob(segziosize)); 2646 } 2647 2648 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg); 2649 (void) segkmem_create(&kdebugseg); 2650 2651 rw_exit(&kas.a_lock); 2652 2653 /* 2654 * Ensure that the red zone at kernelbase is never accessible. 2655 */ 2656 PRM_POINT("protecting redzone"); 2657 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0); 2658 2659 /* 2660 * Make the text writable so that it can be hot patched by DTrace. 2661 */ 2662 (void) as_setprot(&kas, s_text, e_modtext - s_text, 2663 PROT_READ | PROT_WRITE | PROT_EXEC); 2664 2665 /* 2666 * Make data writable until end. 2667 */ 2668 (void) as_setprot(&kas, s_data, e_moddata - s_data, 2669 PROT_READ | PROT_WRITE | PROT_EXEC); 2670 } 2671 2672 #ifndef __xpv 2673 /* 2674 * Solaris adds an entry for Write Combining caching to the PAT 2675 */ 2676 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE; 2677 2678 void 2679 pat_sync(void) 2680 { 2681 ulong_t cr0, cr0_orig, cr4; 2682 2683 if (!is_x86_feature(x86_featureset, X86FSET_PAT)) 2684 return; 2685 cr0_orig = cr0 = getcr0(); 2686 cr4 = getcr4(); 2687 2688 /* disable caching and flush all caches and TLBs */ 2689 cr0 |= CR0_CD; 2690 cr0 &= ~CR0_NW; 2691 setcr0(cr0); 2692 invalidate_cache(); 2693 if (cr4 & CR4_PGE) { 2694 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2695 setcr4(cr4); 2696 } else { 2697 reload_cr3(); 2698 } 2699 2700 /* add our entry to the PAT */ 2701 wrmsr(REG_PAT, pat_attr_reg); 2702 2703 /* flush TLBs and cache again, then reenable cr0 caching */ 2704 if (cr4 & CR4_PGE) { 2705 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2706 setcr4(cr4); 2707 } else { 2708 reload_cr3(); 2709 } 2710 invalidate_cache(); 2711 setcr0(cr0_orig); 2712 } 2713 2714 #endif /* !__xpv */ 2715 2716 #if defined(_SOFT_HOSTID) 2717 /* 2718 * On platforms that do not have a hardware serial number, attempt 2719 * to set one based on the contents of /etc/hostid. If this file does 2720 * not exist, assume that we are to generate a new hostid and set 2721 * it in the kernel, for subsequent saving by a userland process 2722 * once the system is up and the root filesystem is mounted r/w. 2723 * 2724 * In order to gracefully support upgrade on OpenSolaris, if 2725 * /etc/hostid does not exist, we will attempt to get a serial number 2726 * using the legacy method (/kernel/misc/sysinit). 2727 * 2728 * If that isn't present, we attempt to use an SMBIOS UUID, which is 2729 * a hardware serial number. Note that we don't automatically trust 2730 * all SMBIOS UUIDs (some older platforms are defective and ship duplicate 2731 * UUIDs in violation of the standard), we check against a blacklist. 2732 * 2733 * In an attempt to make the hostid less prone to abuse 2734 * (for license circumvention, etc), we store it in /etc/hostid 2735 * in rot47 format. 2736 */ 2737 extern volatile unsigned long tenmicrodata; 2738 static int atoi(char *); 2739 2740 /* 2741 * Set this to non-zero in /etc/system if you think your SMBIOS returns a 2742 * UUID that is not unique. (Also report it so that the smbios_uuid_blacklist 2743 * array can be updated.) 2744 */ 2745 int smbios_broken_uuid = 0; 2746 2747 /* 2748 * List of known bad UUIDs. This is just the lower 32-bit values, since 2749 * that's what we use for the host id. If your hostid falls here, you need 2750 * to contact your hardware OEM for a fix for your BIOS. 2751 */ 2752 static unsigned char 2753 smbios_uuid_blacklist[][16] = { 2754 2755 { /* Reported bad UUID (Google search) */ 2756 0x00, 0x02, 0x00, 0x03, 0x00, 0x04, 0x00, 0x05, 2757 0x00, 0x06, 0x00, 0x07, 0x00, 0x08, 0x00, 0x09, 2758 }, 2759 { /* Known bad DELL UUID */ 2760 0x4C, 0x4C, 0x45, 0x44, 0x00, 0x00, 0x20, 0x10, 2761 0x80, 0x20, 0x80, 0xC0, 0x4F, 0x20, 0x20, 0x20, 2762 }, 2763 { /* Uninitialized flash */ 2764 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 2765 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff 2766 }, 2767 { /* All zeros */ 2768 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 2769 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 2770 }, 2771 }; 2772 2773 static int32_t 2774 uuid_to_hostid(const uint8_t *uuid) 2775 { 2776 /* 2777 * Although the UUIDs are 128-bits, they may not distribute entropy 2778 * evenly. We would like to use SHA or MD5, but those are located 2779 * in loadable modules and not available this early in boot. As we 2780 * don't need the values to be cryptographically strong, we just 2781 * generate 32-bit vaue by xor'ing the various sequences together, 2782 * which ensures that the enire UUID contributes to the hostid. 2783 */ 2784 int32_t id = 0; 2785 2786 /* first check against the blacklist */ 2787 for (int i = 0; i < (sizeof (smbios_uuid_blacklist) / 16); i++) { 2788 if (bcmp(smbios_uuid_blacklist[0], uuid, 16) == 0) { 2789 cmn_err(CE_CONT, "?Broken SMBIOS UUID. " 2790 "Contact BIOS manufacturer for repair.\n"); 2791 return ((int32_t)HW_INVALID_HOSTID); 2792 } 2793 } 2794 2795 for (int i = 0; i < 16; i++) 2796 id ^= ((uuid[i]) << (8 * (i % sizeof (id)))); 2797 2798 return (id); 2799 } 2800 2801 static int32_t 2802 set_soft_hostid(void) 2803 { 2804 struct _buf *file; 2805 char tokbuf[MAXNAMELEN]; 2806 token_t token; 2807 int done = 0; 2808 u_longlong_t tmp; 2809 int i; 2810 int32_t hostid = (int32_t)HW_INVALID_HOSTID; 2811 unsigned char *c; 2812 hrtime_t tsc; 2813 smbios_system_t smsys; 2814 2815 /* 2816 * If /etc/hostid file not found, we'd like to get a pseudo 2817 * random number to use at the hostid. A nice way to do this 2818 * is to read the real time clock. To remain xen-compatible, 2819 * we can't poke the real hardware, so we use tsc_read() to 2820 * read the real time clock. However, there is an ominous 2821 * warning in tsc_read that says it can return zero, so we 2822 * deal with that possibility by falling back to using the 2823 * (hopefully random enough) value in tenmicrodata. 2824 */ 2825 2826 if ((file = kobj_open_file(hostid_file)) == (struct _buf *)-1) { 2827 /* 2828 * hostid file not found - try to load sysinit module 2829 * and see if it has a nonzero hostid value...use that 2830 * instead of generating a new hostid here if so. 2831 */ 2832 if ((i = modload("misc", "sysinit")) != -1) { 2833 if (strlen(hw_serial) > 0) 2834 hostid = (int32_t)atoi(hw_serial); 2835 (void) modunload(i); 2836 } 2837 2838 /* 2839 * We try to use the SMBIOS UUID. But not if it is blacklisted 2840 * in /etc/system. 2841 */ 2842 if ((hostid == HW_INVALID_HOSTID) && 2843 (smbios_broken_uuid == 0) && 2844 (ksmbios != NULL) && 2845 (smbios_info_system(ksmbios, &smsys) != SMB_ERR) && 2846 (smsys.smbs_uuidlen >= 16)) { 2847 hostid = uuid_to_hostid(smsys.smbs_uuid); 2848 } 2849 2850 /* 2851 * Generate a "random" hostid using the clock. These 2852 * hostids will change on each boot if the value is not 2853 * saved to a persistent /etc/hostid file. 2854 */ 2855 if (hostid == HW_INVALID_HOSTID) { 2856 tsc = tsc_read(); 2857 if (tsc == 0) /* tsc_read can return zero sometimes */ 2858 hostid = (int32_t)tenmicrodata & 0x0CFFFFF; 2859 else 2860 hostid = (int32_t)tsc & 0x0CFFFFF; 2861 } 2862 } else { 2863 /* hostid file found */ 2864 while (!done) { 2865 token = kobj_lex(file, tokbuf, sizeof (tokbuf)); 2866 2867 switch (token) { 2868 case POUND: 2869 /* 2870 * skip comments 2871 */ 2872 kobj_find_eol(file); 2873 break; 2874 case STRING: 2875 /* 2876 * un-rot47 - obviously this 2877 * nonsense is ascii-specific 2878 */ 2879 for (c = (unsigned char *)tokbuf; 2880 *c != '\0'; c++) { 2881 *c += 47; 2882 if (*c > '~') 2883 *c -= 94; 2884 else if (*c < '!') 2885 *c += 94; 2886 } 2887 /* 2888 * now we should have a real number 2889 */ 2890 2891 if (kobj_getvalue(tokbuf, &tmp) != 0) 2892 kobj_file_err(CE_WARN, file, 2893 "Bad value %s for hostid", 2894 tokbuf); 2895 else 2896 hostid = (int32_t)tmp; 2897 2898 break; 2899 case EOF: 2900 done = 1; 2901 /* FALLTHROUGH */ 2902 case NEWLINE: 2903 kobj_newline(file); 2904 break; 2905 default: 2906 break; 2907 2908 } 2909 } 2910 if (hostid == HW_INVALID_HOSTID) /* didn't find a hostid */ 2911 kobj_file_err(CE_WARN, file, 2912 "hostid missing or corrupt"); 2913 2914 kobj_close_file(file); 2915 } 2916 /* 2917 * hostid is now the value read from /etc/hostid, or the 2918 * new hostid we generated in this routine or HW_INVALID_HOSTID if not 2919 * set. 2920 */ 2921 return (hostid); 2922 } 2923 2924 static int 2925 atoi(char *p) 2926 { 2927 int i = 0; 2928 2929 while (*p != '\0') 2930 i = 10 * i + (*p++ - '0'); 2931 2932 return (i); 2933 } 2934 2935 #endif /* _SOFT_HOSTID */ 2936 2937 void 2938 get_system_configuration(void) 2939 { 2940 char prop[32]; 2941 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue; 2942 2943 if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) || 2944 BOP_GETPROP(bootops, "nodes", prop) < 0 || 2945 kobj_getvalue(prop, &nodes_ll) == -1 || 2946 nodes_ll > MAXNODES || 2947 BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) || 2948 BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 || 2949 kobj_getvalue(prop, &cpus_pernode_ll) == -1) { 2950 system_hardware.hd_nodes = 1; 2951 system_hardware.hd_cpus_per_node = 0; 2952 } else { 2953 system_hardware.hd_nodes = (int)nodes_ll; 2954 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll; 2955 } 2956 2957 if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) || 2958 BOP_GETPROP(bootops, "kernelbase", prop) < 0 || 2959 kobj_getvalue(prop, &lvalue) == -1) 2960 eprom_kernelbase = NULL; 2961 else 2962 eprom_kernelbase = (uintptr_t)lvalue; 2963 2964 if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) || 2965 BOP_GETPROP(bootops, "segmapsize", prop) < 0 || 2966 kobj_getvalue(prop, &lvalue) == -1) 2967 segmapsize = SEGMAPDEFAULT; 2968 else 2969 segmapsize = (uintptr_t)lvalue; 2970 2971 if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) || 2972 BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 || 2973 kobj_getvalue(prop, &lvalue) == -1) 2974 segmapfreelists = 0; /* use segmap driver default */ 2975 else 2976 segmapfreelists = (int)lvalue; 2977 2978 /* physmem used to be here, but moved much earlier to fakebop.c */ 2979 } 2980 2981 /* 2982 * Add to a memory list. 2983 * start = start of new memory segment 2984 * len = length of new memory segment in bytes 2985 * new = pointer to a new struct memlist 2986 * memlistp = memory list to which to add segment. 2987 */ 2988 void 2989 memlist_add( 2990 uint64_t start, 2991 uint64_t len, 2992 struct memlist *new, 2993 struct memlist **memlistp) 2994 { 2995 struct memlist *cur; 2996 uint64_t end = start + len; 2997 2998 new->ml_address = start; 2999 new->ml_size = len; 3000 3001 cur = *memlistp; 3002 3003 while (cur) { 3004 if (cur->ml_address >= end) { 3005 new->ml_next = cur; 3006 *memlistp = new; 3007 new->ml_prev = cur->ml_prev; 3008 cur->ml_prev = new; 3009 return; 3010 } 3011 ASSERT(cur->ml_address + cur->ml_size <= start); 3012 if (cur->ml_next == NULL) { 3013 cur->ml_next = new; 3014 new->ml_prev = cur; 3015 new->ml_next = NULL; 3016 return; 3017 } 3018 memlistp = &cur->ml_next; 3019 cur = cur->ml_next; 3020 } 3021 } 3022 3023 void 3024 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 3025 { 3026 size_t tsize = e_modtext - modtext; 3027 size_t dsize = e_moddata - moddata; 3028 3029 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize, 3030 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP); 3031 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize, 3032 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 3033 } 3034 3035 caddr_t 3036 kobj_text_alloc(vmem_t *arena, size_t size) 3037 { 3038 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT)); 3039 } 3040 3041 /*ARGSUSED*/ 3042 caddr_t 3043 kobj_texthole_alloc(caddr_t addr, size_t size) 3044 { 3045 panic("unexpected call to kobj_texthole_alloc()"); 3046 /*NOTREACHED*/ 3047 return (0); 3048 } 3049 3050 /*ARGSUSED*/ 3051 void 3052 kobj_texthole_free(caddr_t addr, size_t size) 3053 { 3054 panic("unexpected call to kobj_texthole_free()"); 3055 } 3056 3057 /* 3058 * This is called just after configure() in startup(). 3059 * 3060 * The ISALIST concept is a bit hopeless on Intel, because 3061 * there's no guarantee of an ever-more-capable processor 3062 * given that various parts of the instruction set may appear 3063 * and disappear between different implementations. 3064 * 3065 * While it would be possible to correct it and even enhance 3066 * it somewhat, the explicit hardware capability bitmask allows 3067 * more flexibility. 3068 * 3069 * So, we just leave this alone. 3070 */ 3071 void 3072 setx86isalist(void) 3073 { 3074 char *tp; 3075 size_t len; 3076 extern char *isa_list; 3077 3078 #define TBUFSIZE 1024 3079 3080 tp = kmem_alloc(TBUFSIZE, KM_SLEEP); 3081 *tp = '\0'; 3082 3083 #if defined(__amd64) 3084 (void) strcpy(tp, "amd64 "); 3085 #endif 3086 3087 switch (x86_vendor) { 3088 case X86_VENDOR_Intel: 3089 case X86_VENDOR_AMD: 3090 case X86_VENDOR_TM: 3091 if (is_x86_feature(x86_featureset, X86FSET_CMOV)) { 3092 /* 3093 * Pentium Pro or later 3094 */ 3095 (void) strcat(tp, "pentium_pro"); 3096 (void) strcat(tp, 3097 is_x86_feature(x86_featureset, X86FSET_MMX) ? 3098 "+mmx pentium_pro " : " "); 3099 } 3100 /*FALLTHROUGH*/ 3101 case X86_VENDOR_Cyrix: 3102 /* 3103 * The Cyrix 6x86 does not have any Pentium features 3104 * accessible while not at privilege level 0. 3105 */ 3106 if (is_x86_feature(x86_featureset, X86FSET_CPUID)) { 3107 (void) strcat(tp, "pentium"); 3108 (void) strcat(tp, 3109 is_x86_feature(x86_featureset, X86FSET_MMX) ? 3110 "+mmx pentium " : " "); 3111 } 3112 break; 3113 default: 3114 break; 3115 } 3116 (void) strcat(tp, "i486 i386 i86"); 3117 len = strlen(tp) + 1; /* account for NULL at end of string */ 3118 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp); 3119 kmem_free(tp, TBUFSIZE); 3120 3121 #undef TBUFSIZE 3122 } 3123 3124 3125 #ifdef __amd64 3126 3127 void * 3128 device_arena_alloc(size_t size, int vm_flag) 3129 { 3130 return (vmem_alloc(device_arena, size, vm_flag)); 3131 } 3132 3133 void 3134 device_arena_free(void *vaddr, size_t size) 3135 { 3136 vmem_free(device_arena, vaddr, size); 3137 } 3138 3139 #else /* __i386 */ 3140 3141 void * 3142 device_arena_alloc(size_t size, int vm_flag) 3143 { 3144 caddr_t vaddr; 3145 uintptr_t v; 3146 size_t start; 3147 size_t end; 3148 3149 vaddr = vmem_alloc(heap_arena, size, vm_flag); 3150 if (vaddr == NULL) 3151 return (NULL); 3152 3153 v = (uintptr_t)vaddr; 3154 ASSERT(v >= kernelbase); 3155 ASSERT(v + size <= valloc_base); 3156 3157 start = btop(v - kernelbase); 3158 end = btop(v + size - 1 - kernelbase); 3159 ASSERT(start < toxic_bit_map_len); 3160 ASSERT(end < toxic_bit_map_len); 3161 3162 while (start <= end) { 3163 BT_ATOMIC_SET(toxic_bit_map, start); 3164 ++start; 3165 } 3166 return (vaddr); 3167 } 3168 3169 void 3170 device_arena_free(void *vaddr, size_t size) 3171 { 3172 uintptr_t v = (uintptr_t)vaddr; 3173 size_t start; 3174 size_t end; 3175 3176 ASSERT(v >= kernelbase); 3177 ASSERT(v + size <= valloc_base); 3178 3179 start = btop(v - kernelbase); 3180 end = btop(v + size - 1 - kernelbase); 3181 ASSERT(start < toxic_bit_map_len); 3182 ASSERT(end < toxic_bit_map_len); 3183 3184 while (start <= end) { 3185 ASSERT(BT_TEST(toxic_bit_map, start) != 0); 3186 BT_ATOMIC_CLEAR(toxic_bit_map, start); 3187 ++start; 3188 } 3189 vmem_free(heap_arena, vaddr, size); 3190 } 3191 3192 /* 3193 * returns 1st address in range that is in device arena, or NULL 3194 * if len is not NULL it returns the length of the toxic range 3195 */ 3196 void * 3197 device_arena_contains(void *vaddr, size_t size, size_t *len) 3198 { 3199 uintptr_t v = (uintptr_t)vaddr; 3200 uintptr_t eaddr = v + size; 3201 size_t start; 3202 size_t end; 3203 3204 /* 3205 * if called very early by kmdb, just return NULL 3206 */ 3207 if (toxic_bit_map == NULL) 3208 return (NULL); 3209 3210 /* 3211 * First check if we're completely outside the bitmap range. 3212 */ 3213 if (v >= valloc_base || eaddr < kernelbase) 3214 return (NULL); 3215 3216 /* 3217 * Trim ends of search to look at only what the bitmap covers. 3218 */ 3219 if (v < kernelbase) 3220 v = kernelbase; 3221 start = btop(v - kernelbase); 3222 end = btop(eaddr - kernelbase); 3223 if (end >= toxic_bit_map_len) 3224 end = toxic_bit_map_len; 3225 3226 if (bt_range(toxic_bit_map, &start, &end, end) == 0) 3227 return (NULL); 3228 3229 v = kernelbase + ptob(start); 3230 if (len != NULL) 3231 *len = ptob(end - start); 3232 return ((void *)v); 3233 } 3234 3235 #endif /* __i386 */