1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 22 /* All Rights Reserved */ 23 24 /* 25 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved. 26 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 27 */ 28 29 #include <sys/param.h> 30 #include <sys/t_lock.h> 31 #include <sys/types.h> 32 #include <sys/tuneable.h> 33 #include <sys/sysmacros.h> 34 #include <sys/systm.h> 35 #include <sys/cpuvar.h> 36 #include <sys/lgrp.h> 37 #include <sys/user.h> 38 #include <sys/proc.h> 39 #include <sys/callo.h> 40 #include <sys/kmem.h> 41 #include <sys/var.h> 42 #include <sys/cmn_err.h> 43 #include <sys/swap.h> 44 #include <sys/vmsystm.h> 45 #include <sys/class.h> 46 #include <sys/time.h> 47 #include <sys/debug.h> 48 #include <sys/vtrace.h> 49 #include <sys/spl.h> 50 #include <sys/atomic.h> 51 #include <sys/dumphdr.h> 52 #include <sys/archsystm.h> 53 #include <sys/fs/swapnode.h> 54 #include <sys/panic.h> 55 #include <sys/disp.h> 56 #include <sys/msacct.h> 57 #include <sys/mem_cage.h> 58 59 #include <vm/page.h> 60 #include <vm/anon.h> 61 #include <vm/rm.h> 62 #include <sys/cyclic.h> 63 #include <sys/cpupart.h> 64 #include <sys/rctl.h> 65 #include <sys/task.h> 66 #include <sys/sdt.h> 67 #include <sys/ddi_periodic.h> 68 #include <sys/random.h> 69 #include <sys/modctl.h> 70 #include <sys/zone.h> 71 72 /* 73 * for NTP support 74 */ 75 #include <sys/timex.h> 76 #include <sys/inttypes.h> 77 78 #include <sys/sunddi.h> 79 #include <sys/clock_impl.h> 80 81 /* 82 * clock() is called straight from the clock cyclic; see clock_init(). 83 * 84 * Functions: 85 * reprime clock 86 * maintain date 87 * jab the scheduler 88 */ 89 90 extern kcondvar_t fsflush_cv; 91 extern sysinfo_t sysinfo; 92 extern vminfo_t vminfo; 93 extern int idleswtch; /* flag set while idle in pswtch() */ 94 extern hrtime_t volatile devinfo_freeze; 95 96 /* 97 * high-precision avenrun values. These are needed to make the 98 * regular avenrun values accurate. 99 */ 100 static uint64_t hp_avenrun[3]; 101 int avenrun[3]; /* FSCALED average run queue lengths */ 102 time_t time; /* time in seconds since 1970 - for compatibility only */ 103 104 static struct loadavg_s loadavg; 105 /* 106 * Phase/frequency-lock loop (PLL/FLL) definitions 107 * 108 * The following variables are read and set by the ntp_adjtime() system 109 * call. 110 * 111 * time_state shows the state of the system clock, with values defined 112 * in the timex.h header file. 113 * 114 * time_status shows the status of the system clock, with bits defined 115 * in the timex.h header file. 116 * 117 * time_offset is used by the PLL/FLL to adjust the system time in small 118 * increments. 119 * 120 * time_constant determines the bandwidth or "stiffness" of the PLL. 121 * 122 * time_tolerance determines maximum frequency error or tolerance of the 123 * CPU clock oscillator and is a property of the architecture; however, 124 * in principle it could change as result of the presence of external 125 * discipline signals, for instance. 126 * 127 * time_precision is usually equal to the kernel tick variable; however, 128 * in cases where a precision clock counter or external clock is 129 * available, the resolution can be much less than this and depend on 130 * whether the external clock is working or not. 131 * 132 * time_maxerror is initialized by a ntp_adjtime() call and increased by 133 * the kernel once each second to reflect the maximum error bound 134 * growth. 135 * 136 * time_esterror is set and read by the ntp_adjtime() call, but 137 * otherwise not used by the kernel. 138 */ 139 int32_t time_state = TIME_OK; /* clock state */ 140 int32_t time_status = STA_UNSYNC; /* clock status bits */ 141 int32_t time_offset = 0; /* time offset (us) */ 142 int32_t time_constant = 0; /* pll time constant */ 143 int32_t time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */ 144 int32_t time_precision = 1; /* clock precision (us) */ 145 int32_t time_maxerror = MAXPHASE; /* maximum error (us) */ 146 int32_t time_esterror = MAXPHASE; /* estimated error (us) */ 147 148 /* 149 * The following variables establish the state of the PLL/FLL and the 150 * residual time and frequency offset of the local clock. The scale 151 * factors are defined in the timex.h header file. 152 * 153 * time_phase and time_freq are the phase increment and the frequency 154 * increment, respectively, of the kernel time variable. 155 * 156 * time_freq is set via ntp_adjtime() from a value stored in a file when 157 * the synchronization daemon is first started. Its value is retrieved 158 * via ntp_adjtime() and written to the file about once per hour by the 159 * daemon. 160 * 161 * time_adj is the adjustment added to the value of tick at each timer 162 * interrupt and is recomputed from time_phase and time_freq at each 163 * seconds rollover. 164 * 165 * time_reftime is the second's portion of the system time at the last 166 * call to ntp_adjtime(). It is used to adjust the time_freq variable 167 * and to increase the time_maxerror as the time since last update 168 * increases. 169 */ 170 int32_t time_phase = 0; /* phase offset (scaled us) */ 171 int32_t time_freq = 0; /* frequency offset (scaled ppm) */ 172 int32_t time_adj = 0; /* tick adjust (scaled 1 / hz) */ 173 int32_t time_reftime = 0; /* time at last adjustment (s) */ 174 175 /* 176 * The scale factors of the following variables are defined in the 177 * timex.h header file. 178 * 179 * pps_time contains the time at each calibration interval, as read by 180 * microtime(). pps_count counts the seconds of the calibration 181 * interval, the duration of which is nominally pps_shift in powers of 182 * two. 183 * 184 * pps_offset is the time offset produced by the time median filter 185 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by 186 * this filter. 187 * 188 * pps_freq is the frequency offset produced by the frequency median 189 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured 190 * by this filter. 191 * 192 * pps_usec is latched from a high resolution counter or external clock 193 * at pps_time. Here we want the hardware counter contents only, not the 194 * contents plus the time_tv.usec as usual. 195 * 196 * pps_valid counts the number of seconds since the last PPS update. It 197 * is used as a watchdog timer to disable the PPS discipline should the 198 * PPS signal be lost. 199 * 200 * pps_glitch counts the number of seconds since the beginning of an 201 * offset burst more than tick/2 from current nominal offset. It is used 202 * mainly to suppress error bursts due to priority conflicts between the 203 * PPS interrupt and timer interrupt. 204 * 205 * pps_intcnt counts the calibration intervals for use in the interval- 206 * adaptation algorithm. It's just too complicated for words. 207 */ 208 struct timeval pps_time; /* kernel time at last interval */ 209 int32_t pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */ 210 int32_t pps_offset = 0; /* pps time offset (us) */ 211 int32_t pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */ 212 int32_t pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */ 213 int32_t pps_freq = 0; /* frequency offset (scaled ppm) */ 214 int32_t pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ 215 int32_t pps_usec = 0; /* microsec counter at last interval */ 216 int32_t pps_valid = PPS_VALID; /* pps signal watchdog counter */ 217 int32_t pps_glitch = 0; /* pps signal glitch counter */ 218 int32_t pps_count = 0; /* calibration interval counter (s) */ 219 int32_t pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ 220 int32_t pps_intcnt = 0; /* intervals at current duration */ 221 222 /* 223 * PPS signal quality monitors 224 * 225 * pps_jitcnt counts the seconds that have been discarded because the 226 * jitter measured by the time median filter exceeds the limit MAXTIME 227 * (100 us). 228 * 229 * pps_calcnt counts the frequency calibration intervals, which are 230 * variable from 4 s to 256 s. 231 * 232 * pps_errcnt counts the calibration intervals which have been discarded 233 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the 234 * calibration interval jitter exceeds two ticks. 235 * 236 * pps_stbcnt counts the calibration intervals that have been discarded 237 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us). 238 */ 239 int32_t pps_jitcnt = 0; /* jitter limit exceeded */ 240 int32_t pps_calcnt = 0; /* calibration intervals */ 241 int32_t pps_errcnt = 0; /* calibration errors */ 242 int32_t pps_stbcnt = 0; /* stability limit exceeded */ 243 244 kcondvar_t lbolt_cv; 245 246 /* 247 * Hybrid lbolt implementation: 248 * 249 * The service historically provided by the lbolt and lbolt64 variables has 250 * been replaced by the ddi_get_lbolt() and ddi_get_lbolt64() routines, and the 251 * original symbols removed from the system. The once clock driven variables are 252 * now implemented in an event driven fashion, backed by gethrtime() coarsed to 253 * the appropriate clock resolution. The default event driven implementation is 254 * complemented by a cyclic driven one, active only during periods of intense 255 * activity around the DDI lbolt routines, when a lbolt specific cyclic is 256 * reprogramed to fire at a clock tick interval to serve consumers of lbolt who 257 * rely on the original low cost of consulting a memory position. 258 * 259 * The implementation uses the number of calls to these routines and the 260 * frequency of these to determine when to transition from event to cyclic 261 * driven and vice-versa. These values are kept on a per CPU basis for 262 * scalability reasons and to prevent CPUs from constantly invalidating a single 263 * cache line when modifying a global variable. The transition from event to 264 * cyclic mode happens once the thresholds are crossed, and activity on any CPU 265 * can cause such transition. 266 * 267 * The lbolt_hybrid function pointer is called by ddi_get_lbolt() and 268 * ddi_get_lbolt64(), and will point to lbolt_event_driven() or 269 * lbolt_cyclic_driven() according to the current mode. When the thresholds 270 * are exceeded, lbolt_event_driven() will reprogram the lbolt cyclic to 271 * fire at a nsec_per_tick interval and increment an internal variable at 272 * each firing. lbolt_hybrid will then point to lbolt_cyclic_driven(), which 273 * will simply return the value of such variable. lbolt_cyclic() will attempt 274 * to shut itself off at each threshold interval (sampling period for calls 275 * to the DDI lbolt routines), and return to the event driven mode, but will 276 * be prevented from doing so if lbolt_cyclic_driven() is being heavily used. 277 * 278 * lbolt_bootstrap is used during boot to serve lbolt consumers who don't wait 279 * for the cyclic subsystem to be intialized. 280 * 281 */ 282 int64_t lbolt_bootstrap(void); 283 int64_t lbolt_event_driven(void); 284 int64_t lbolt_cyclic_driven(void); 285 int64_t (*lbolt_hybrid)(void) = lbolt_bootstrap; 286 uint_t lbolt_ev_to_cyclic(caddr_t, caddr_t); 287 288 /* 289 * lbolt's cyclic, installed by clock_init(). 290 */ 291 static void lbolt_cyclic(void); 292 293 /* 294 * Tunable to keep lbolt in cyclic driven mode. This will prevent the system 295 * from switching back to event driven, once it reaches cyclic mode. 296 */ 297 static boolean_t lbolt_cyc_only = B_FALSE; 298 299 /* 300 * Cache aligned, per CPU structure with lbolt usage statistics. 301 */ 302 static lbolt_cpu_t *lb_cpu; 303 304 /* 305 * Single, cache aligned, structure with all the information required by 306 * the lbolt implementation. 307 */ 308 lbolt_info_t *lb_info; 309 310 311 int one_sec = 1; /* turned on once every second */ 312 static int fsflushcnt; /* counter for t_fsflushr */ 313 int dosynctodr = 1; /* patchable; enable/disable sync to TOD chip */ 314 int tod_needsync = 0; /* need to sync tod chip with software time */ 315 static int tod_broken = 0; /* clock chip doesn't work */ 316 time_t boot_time = 0; /* Boot time in seconds since 1970 */ 317 cyclic_id_t clock_cyclic; /* clock()'s cyclic_id */ 318 cyclic_id_t deadman_cyclic; /* deadman()'s cyclic_id */ 319 320 extern void clock_tick_schedule(int); 321 322 static int lgrp_ticks; /* counter to schedule lgrp load calcs */ 323 324 /* 325 * for tod fault detection 326 */ 327 #define TOD_REF_FREQ ((longlong_t)(NANOSEC)) 328 #define TOD_STALL_THRESHOLD (TOD_REF_FREQ * 3 / 2) 329 #define TOD_JUMP_THRESHOLD (TOD_REF_FREQ / 2) 330 #define TOD_FILTER_N 4 331 #define TOD_FILTER_SETTLE (4 * TOD_FILTER_N) 332 static int tod_faulted = TOD_NOFAULT; 333 334 static int tod_status_flag = 0; /* used by tod_validate() */ 335 336 static hrtime_t prev_set_tick = 0; /* gethrtime() prior to tod_set() */ 337 static time_t prev_set_tod = 0; /* tv_sec value passed to tod_set() */ 338 339 /* patchable via /etc/system */ 340 int tod_validate_enable = 1; 341 342 /* Diagnose/Limit messages about delay(9F) called from interrupt context */ 343 int delay_from_interrupt_diagnose = 0; 344 volatile uint32_t delay_from_interrupt_msg = 20; 345 346 /* 347 * On non-SPARC systems, TOD validation must be deferred until gethrtime 348 * returns non-zero values (after mach_clkinit's execution). 349 * On SPARC systems, it must be deferred until after hrtime_base 350 * and hres_last_tick are set (in the first invocation of hres_tick). 351 * Since in both cases the prerequisites occur before the invocation of 352 * tod_get() in clock(), the deferment is lifted there. 353 */ 354 static boolean_t tod_validate_deferred = B_TRUE; 355 356 /* 357 * tod_fault_table[] must be aligned with 358 * enum tod_fault_type in systm.h 359 */ 360 static char *tod_fault_table[] = { 361 "Reversed", /* TOD_REVERSED */ 362 "Stalled", /* TOD_STALLED */ 363 "Jumped", /* TOD_JUMPED */ 364 "Changed in Clock Rate", /* TOD_RATECHANGED */ 365 "Is Read-Only" /* TOD_RDONLY */ 366 /* 367 * no strings needed for TOD_NOFAULT 368 */ 369 }; 370 371 /* 372 * test hook for tod broken detection in tod_validate 373 */ 374 int tod_unit_test = 0; 375 time_t tod_test_injector; 376 377 #define CLOCK_ADJ_HIST_SIZE 4 378 379 static int adj_hist_entry; 380 381 int64_t clock_adj_hist[CLOCK_ADJ_HIST_SIZE]; 382 383 static void calcloadavg(int, uint64_t *); 384 static int genloadavg(struct loadavg_s *); 385 static void loadavg_update(); 386 387 void (*cmm_clock_callout)() = NULL; 388 void (*cpucaps_clock_callout)() = NULL; 389 390 extern clock_t clock_tick_proc_max; 391 392 static int64_t deadman_counter = 0; 393 394 static void 395 clock(void) 396 { 397 kthread_t *t; 398 uint_t nrunnable; 399 uint_t w_io; 400 cpu_t *cp; 401 cpupart_t *cpupart; 402 extern void set_freemem(); 403 void (*funcp)(); 404 int32_t ltemp; 405 int64_t lltemp; 406 int s; 407 int do_lgrp_load; 408 int i; 409 clock_t now = LBOLT_NO_ACCOUNT; /* current tick */ 410 411 if (panicstr) 412 return; 413 414 /* 415 * Make sure that 'freemem' do not drift too far from the truth 416 */ 417 set_freemem(); 418 419 420 /* 421 * Before the section which is repeated is executed, we do 422 * the time delta processing which occurs every clock tick 423 * 424 * There is additional processing which happens every time 425 * the nanosecond counter rolls over which is described 426 * below - see the section which begins with : if (one_sec) 427 * 428 * This section marks the beginning of the precision-kernel 429 * code fragment. 430 * 431 * First, compute the phase adjustment. If the low-order bits 432 * (time_phase) of the update overflow, bump the higher order 433 * bits (time_update). 434 */ 435 time_phase += time_adj; 436 if (time_phase <= -FINEUSEC) { 437 ltemp = -time_phase / SCALE_PHASE; 438 time_phase += ltemp * SCALE_PHASE; 439 s = hr_clock_lock(); 440 timedelta -= ltemp * (NANOSEC/MICROSEC); 441 hr_clock_unlock(s); 442 } else if (time_phase >= FINEUSEC) { 443 ltemp = time_phase / SCALE_PHASE; 444 time_phase -= ltemp * SCALE_PHASE; 445 s = hr_clock_lock(); 446 timedelta += ltemp * (NANOSEC/MICROSEC); 447 hr_clock_unlock(s); 448 } 449 450 /* 451 * End of precision-kernel code fragment which is processed 452 * every timer interrupt. 453 * 454 * Continue with the interrupt processing as scheduled. 455 */ 456 /* 457 * Count the number of runnable threads and the number waiting 458 * for some form of I/O to complete -- gets added to 459 * sysinfo.waiting. To know the state of the system, must add 460 * wait counts from all CPUs. Also add up the per-partition 461 * statistics. 462 */ 463 w_io = 0; 464 nrunnable = 0; 465 466 /* 467 * keep track of when to update lgrp/part loads 468 */ 469 470 do_lgrp_load = 0; 471 if (lgrp_ticks++ >= hz / 10) { 472 lgrp_ticks = 0; 473 do_lgrp_load = 1; 474 } 475 476 if (one_sec) { 477 loadavg_update(); 478 deadman_counter++; 479 } 480 481 /* 482 * First count the threads waiting on kpreempt queues in each 483 * CPU partition. 484 */ 485 486 cpupart = cp_list_head; 487 do { 488 uint_t cpupart_nrunnable = cpupart->cp_kp_queue.disp_nrunnable; 489 490 cpupart->cp_updates++; 491 nrunnable += cpupart_nrunnable; 492 cpupart->cp_nrunnable_cum += cpupart_nrunnable; 493 if (one_sec) { 494 cpupart->cp_nrunning = 0; 495 cpupart->cp_nrunnable = cpupart_nrunnable; 496 } 497 } while ((cpupart = cpupart->cp_next) != cp_list_head); 498 499 500 /* Now count the per-CPU statistics. */ 501 cp = cpu_list; 502 do { 503 uint_t cpu_nrunnable = cp->cpu_disp->disp_nrunnable; 504 505 nrunnable += cpu_nrunnable; 506 cpupart = cp->cpu_part; 507 cpupart->cp_nrunnable_cum += cpu_nrunnable; 508 if (one_sec) { 509 cpupart->cp_nrunnable += cpu_nrunnable; 510 /* 511 * Update user, system, and idle cpu times. 512 */ 513 cpupart->cp_nrunning++; 514 /* 515 * w_io is used to update sysinfo.waiting during 516 * one_second processing below. Only gather w_io 517 * information when we walk the list of cpus if we're 518 * going to perform one_second processing. 519 */ 520 w_io += CPU_STATS(cp, sys.iowait); 521 } 522 523 if (one_sec && (cp->cpu_flags & CPU_EXISTS)) { 524 int i, load, change; 525 hrtime_t intracct, intrused; 526 const hrtime_t maxnsec = 1000000000; 527 const int precision = 100; 528 529 /* 530 * Estimate interrupt load on this cpu each second. 531 * Computes cpu_intrload as %utilization (0-99). 532 */ 533 534 /* add up interrupt time from all micro states */ 535 for (intracct = 0, i = 0; i < NCMSTATES; i++) 536 intracct += cp->cpu_intracct[i]; 537 scalehrtime(&intracct); 538 539 /* compute nsec used in the past second */ 540 intrused = intracct - cp->cpu_intrlast; 541 cp->cpu_intrlast = intracct; 542 543 /* limit the value for safety (and the first pass) */ 544 if (intrused >= maxnsec) 545 intrused = maxnsec - 1; 546 547 /* calculate %time in interrupt */ 548 load = (precision * intrused) / maxnsec; 549 ASSERT(load >= 0 && load < precision); 550 change = cp->cpu_intrload - load; 551 552 /* jump to new max, or decay the old max */ 553 if (change < 0) 554 cp->cpu_intrload = load; 555 else if (change > 0) 556 cp->cpu_intrload -= (change + 3) / 4; 557 558 DTRACE_PROBE3(cpu_intrload, 559 cpu_t *, cp, 560 hrtime_t, intracct, 561 hrtime_t, intrused); 562 } 563 564 if (do_lgrp_load && 565 (cp->cpu_flags & CPU_EXISTS)) { 566 /* 567 * When updating the lgroup's load average, 568 * account for the thread running on the CPU. 569 * If the CPU is the current one, then we need 570 * to account for the underlying thread which 571 * got the clock interrupt not the thread that is 572 * handling the interrupt and caculating the load 573 * average 574 */ 575 t = cp->cpu_thread; 576 if (CPU == cp) 577 t = t->t_intr; 578 579 /* 580 * Account for the load average for this thread if 581 * it isn't the idle thread or it is on the interrupt 582 * stack and not the current CPU handling the clock 583 * interrupt 584 */ 585 if ((t && t != cp->cpu_idle_thread) || (CPU != cp && 586 CPU_ON_INTR(cp))) { 587 if (t->t_lpl == cp->cpu_lpl) { 588 /* local thread */ 589 cpu_nrunnable++; 590 } else { 591 /* 592 * This is a remote thread, charge it 593 * against its home lgroup. Note that 594 * we notice that a thread is remote 595 * only if it's currently executing. 596 * This is a reasonable approximation, 597 * since queued remote threads are rare. 598 * Note also that if we didn't charge 599 * it to its home lgroup, remote 600 * execution would often make a system 601 * appear balanced even though it was 602 * not, and thread placement/migration 603 * would often not be done correctly. 604 */ 605 lgrp_loadavg(t->t_lpl, 606 LGRP_LOADAVG_IN_THREAD_MAX, 0); 607 } 608 } 609 lgrp_loadavg(cp->cpu_lpl, 610 cpu_nrunnable * LGRP_LOADAVG_IN_THREAD_MAX, 1); 611 } 612 } while ((cp = cp->cpu_next) != cpu_list); 613 614 clock_tick_schedule(one_sec); 615 616 /* 617 * Check for a callout that needs be called from the clock 618 * thread to support the membership protocol in a clustered 619 * system. Copy the function pointer so that we can reset 620 * this to NULL if needed. 621 */ 622 if ((funcp = cmm_clock_callout) != NULL) 623 (*funcp)(); 624 625 if ((funcp = cpucaps_clock_callout) != NULL) 626 (*funcp)(); 627 628 /* 629 * Wakeup the cageout thread waiters once per second. 630 */ 631 if (one_sec) 632 kcage_tick(); 633 634 if (one_sec) { 635 636 int drift, absdrift; 637 timestruc_t tod; 638 int s; 639 640 /* 641 * Beginning of precision-kernel code fragment executed 642 * every second. 643 * 644 * On rollover of the second the phase adjustment to be 645 * used for the next second is calculated. Also, the 646 * maximum error is increased by the tolerance. If the 647 * PPS frequency discipline code is present, the phase is 648 * increased to compensate for the CPU clock oscillator 649 * frequency error. 650 * 651 * On a 32-bit machine and given parameters in the timex.h 652 * header file, the maximum phase adjustment is +-512 ms 653 * and maximum frequency offset is (a tad less than) 654 * +-512 ppm. On a 64-bit machine, you shouldn't need to ask. 655 */ 656 time_maxerror += time_tolerance / SCALE_USEC; 657 658 /* 659 * Leap second processing. If in leap-insert state at 660 * the end of the day, the system clock is set back one 661 * second; if in leap-delete state, the system clock is 662 * set ahead one second. The microtime() routine or 663 * external clock driver will insure that reported time 664 * is always monotonic. The ugly divides should be 665 * replaced. 666 */ 667 switch (time_state) { 668 669 case TIME_OK: 670 if (time_status & STA_INS) 671 time_state = TIME_INS; 672 else if (time_status & STA_DEL) 673 time_state = TIME_DEL; 674 break; 675 676 case TIME_INS: 677 if (hrestime.tv_sec % 86400 == 0) { 678 s = hr_clock_lock(); 679 hrestime.tv_sec--; 680 hr_clock_unlock(s); 681 time_state = TIME_OOP; 682 } 683 break; 684 685 case TIME_DEL: 686 if ((hrestime.tv_sec + 1) % 86400 == 0) { 687 s = hr_clock_lock(); 688 hrestime.tv_sec++; 689 hr_clock_unlock(s); 690 time_state = TIME_WAIT; 691 } 692 break; 693 694 case TIME_OOP: 695 time_state = TIME_WAIT; 696 break; 697 698 case TIME_WAIT: 699 if (!(time_status & (STA_INS | STA_DEL))) 700 time_state = TIME_OK; 701 default: 702 break; 703 } 704 705 /* 706 * Compute the phase adjustment for the next second. In 707 * PLL mode, the offset is reduced by a fixed factor 708 * times the time constant. In FLL mode the offset is 709 * used directly. In either mode, the maximum phase 710 * adjustment for each second is clamped so as to spread 711 * the adjustment over not more than the number of 712 * seconds between updates. 713 */ 714 if (time_offset == 0) 715 time_adj = 0; 716 else if (time_offset < 0) { 717 lltemp = -time_offset; 718 if (!(time_status & STA_FLL)) { 719 if ((1 << time_constant) >= SCALE_KG) 720 lltemp *= (1 << time_constant) / 721 SCALE_KG; 722 else 723 lltemp = (lltemp / SCALE_KG) >> 724 time_constant; 725 } 726 if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE) 727 lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE; 728 time_offset += lltemp; 729 time_adj = -(lltemp * SCALE_PHASE) / hz / SCALE_UPDATE; 730 } else { 731 lltemp = time_offset; 732 if (!(time_status & STA_FLL)) { 733 if ((1 << time_constant) >= SCALE_KG) 734 lltemp *= (1 << time_constant) / 735 SCALE_KG; 736 else 737 lltemp = (lltemp / SCALE_KG) >> 738 time_constant; 739 } 740 if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE) 741 lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE; 742 time_offset -= lltemp; 743 time_adj = (lltemp * SCALE_PHASE) / hz / SCALE_UPDATE; 744 } 745 746 /* 747 * Compute the frequency estimate and additional phase 748 * adjustment due to frequency error for the next 749 * second. When the PPS signal is engaged, gnaw on the 750 * watchdog counter and update the frequency computed by 751 * the pll and the PPS signal. 752 */ 753 pps_valid++; 754 if (pps_valid == PPS_VALID) { 755 pps_jitter = MAXTIME; 756 pps_stabil = MAXFREQ; 757 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 758 STA_PPSWANDER | STA_PPSERROR); 759 } 760 lltemp = time_freq + pps_freq; 761 762 if (lltemp) 763 time_adj += (lltemp * SCALE_PHASE) / (SCALE_USEC * hz); 764 765 /* 766 * End of precision kernel-code fragment 767 * 768 * The section below should be modified if we are planning 769 * to use NTP for synchronization. 770 * 771 * Note: the clock synchronization code now assumes 772 * the following: 773 * - if dosynctodr is 1, then compute the drift between 774 * the tod chip and software time and adjust one or 775 * the other depending on the circumstances 776 * 777 * - if dosynctodr is 0, then the tod chip is independent 778 * of the software clock and should not be adjusted, 779 * but allowed to free run. this allows NTP to sync. 780 * hrestime without any interference from the tod chip. 781 */ 782 783 tod_validate_deferred = B_FALSE; 784 mutex_enter(&tod_lock); 785 tod = tod_get(); 786 drift = tod.tv_sec - hrestime.tv_sec; 787 absdrift = (drift >= 0) ? drift : -drift; 788 if (tod_needsync || absdrift > 1) { 789 int s; 790 if (absdrift > 2) { 791 if (!tod_broken && tod_faulted == TOD_NOFAULT) { 792 s = hr_clock_lock(); 793 hrestime = tod; 794 membar_enter(); /* hrestime visible */ 795 timedelta = 0; 796 timechanged++; 797 tod_needsync = 0; 798 hr_clock_unlock(s); 799 callout_hrestime(); 800 801 } 802 } else { 803 if (tod_needsync || !dosynctodr) { 804 gethrestime(&tod); 805 tod_set(tod); 806 s = hr_clock_lock(); 807 if (timedelta == 0) 808 tod_needsync = 0; 809 hr_clock_unlock(s); 810 } else { 811 /* 812 * If the drift is 2 seconds on the 813 * money, then the TOD is adjusting 814 * the clock; record that. 815 */ 816 clock_adj_hist[adj_hist_entry++ % 817 CLOCK_ADJ_HIST_SIZE] = now; 818 s = hr_clock_lock(); 819 timedelta = (int64_t)drift*NANOSEC; 820 hr_clock_unlock(s); 821 } 822 } 823 } 824 one_sec = 0; 825 time = gethrestime_sec(); /* for crusty old kmem readers */ 826 mutex_exit(&tod_lock); 827 828 /* 829 * Some drivers still depend on this... XXX 830 */ 831 cv_broadcast(&lbolt_cv); 832 833 vminfo.freemem += freemem; 834 { 835 pgcnt_t maxswap, resv, free; 836 pgcnt_t avail = 837 MAX((spgcnt_t)(availrmem - swapfs_minfree), 0); 838 839 maxswap = k_anoninfo.ani_mem_resv + 840 k_anoninfo.ani_max +avail; 841 /* Update ani_free */ 842 set_anoninfo(); 843 free = k_anoninfo.ani_free + avail; 844 resv = k_anoninfo.ani_phys_resv + 845 k_anoninfo.ani_mem_resv; 846 847 vminfo.swap_resv += resv; 848 /* number of reserved and allocated pages */ 849 #ifdef DEBUG 850 if (maxswap < free) 851 cmn_err(CE_WARN, "clock: maxswap < free"); 852 if (maxswap < resv) 853 cmn_err(CE_WARN, "clock: maxswap < resv"); 854 #endif 855 vminfo.swap_alloc += maxswap - free; 856 vminfo.swap_avail += maxswap - resv; 857 vminfo.swap_free += free; 858 } 859 vminfo.updates++; 860 if (nrunnable) { 861 sysinfo.runque += nrunnable; 862 sysinfo.runocc++; 863 } 864 if (nswapped) { 865 sysinfo.swpque += nswapped; 866 sysinfo.swpocc++; 867 } 868 sysinfo.waiting += w_io; 869 sysinfo.updates++; 870 871 /* 872 * Wake up fsflush to write out DELWRI 873 * buffers, dirty pages and other cached 874 * administrative data, e.g. inodes. 875 */ 876 if (--fsflushcnt <= 0) { 877 fsflushcnt = tune.t_fsflushr; 878 cv_signal(&fsflush_cv); 879 } 880 881 vmmeter(); 882 calcloadavg(genloadavg(&loadavg), hp_avenrun); 883 for (i = 0; i < 3; i++) 884 /* 885 * At the moment avenrun[] can only hold 31 886 * bits of load average as it is a signed 887 * int in the API. We need to ensure that 888 * hp_avenrun[i] >> (16 - FSHIFT) will not be 889 * too large. If it is, we put the largest value 890 * that we can use into avenrun[i]. This is 891 * kludgey, but about all we can do until we 892 * avenrun[] is declared as an array of uint64[] 893 */ 894 if (hp_avenrun[i] < ((uint64_t)1<<(31+16-FSHIFT))) 895 avenrun[i] = (int32_t)(hp_avenrun[i] >> 896 (16 - FSHIFT)); 897 else 898 avenrun[i] = 0x7fffffff; 899 900 cpupart = cp_list_head; 901 do { 902 calcloadavg(genloadavg(&cpupart->cp_loadavg), 903 cpupart->cp_hp_avenrun); 904 } while ((cpupart = cpupart->cp_next) != cp_list_head); 905 906 /* 907 * Wake up the swapper thread if necessary. 908 */ 909 if (runin || 910 (runout && (avefree < desfree || wake_sched_sec))) { 911 t = &t0; 912 thread_lock(t); 913 if (t->t_state == TS_STOPPED) { 914 runin = runout = 0; 915 wake_sched_sec = 0; 916 t->t_whystop = 0; 917 t->t_whatstop = 0; 918 t->t_schedflag &= ~TS_ALLSTART; 919 THREAD_TRANSITION(t); 920 setfrontdq(t); 921 } 922 thread_unlock(t); 923 } 924 } 925 926 /* 927 * Wake up the swapper if any high priority swapped-out threads 928 * became runable during the last tick. 929 */ 930 if (wake_sched) { 931 t = &t0; 932 thread_lock(t); 933 if (t->t_state == TS_STOPPED) { 934 runin = runout = 0; 935 wake_sched = 0; 936 t->t_whystop = 0; 937 t->t_whatstop = 0; 938 t->t_schedflag &= ~TS_ALLSTART; 939 THREAD_TRANSITION(t); 940 setfrontdq(t); 941 } 942 thread_unlock(t); 943 } 944 } 945 946 void 947 clock_init(void) 948 { 949 cyc_handler_t clk_hdlr, lbolt_hdlr; 950 cyc_time_t clk_when, lbolt_when; 951 int i, sz; 952 intptr_t buf; 953 954 /* 955 * Setup handler and timer for the clock cyclic. 956 */ 957 clk_hdlr.cyh_func = (cyc_func_t)clock; 958 clk_hdlr.cyh_level = CY_LOCK_LEVEL; 959 clk_hdlr.cyh_arg = NULL; 960 961 clk_when.cyt_when = 0; 962 clk_when.cyt_interval = nsec_per_tick; 963 964 /* 965 * The lbolt cyclic will be reprogramed to fire at a nsec_per_tick 966 * interval to satisfy performance needs of the DDI lbolt consumers. 967 * It is off by default. 968 */ 969 lbolt_hdlr.cyh_func = (cyc_func_t)lbolt_cyclic; 970 lbolt_hdlr.cyh_level = CY_LOCK_LEVEL; 971 lbolt_hdlr.cyh_arg = NULL; 972 973 lbolt_when.cyt_interval = nsec_per_tick; 974 975 /* 976 * Allocate cache line aligned space for the per CPU lbolt data and 977 * lbolt info structures, and initialize them with their default 978 * values. Note that these structures are also cache line sized. 979 */ 980 sz = sizeof (lbolt_info_t) + CPU_CACHE_COHERENCE_SIZE; 981 buf = (intptr_t)kmem_zalloc(sz, KM_SLEEP); 982 lb_info = (lbolt_info_t *)P2ROUNDUP(buf, CPU_CACHE_COHERENCE_SIZE); 983 984 if (hz != HZ_DEFAULT) 985 lb_info->lbi_thresh_interval = LBOLT_THRESH_INTERVAL * 986 hz/HZ_DEFAULT; 987 else 988 lb_info->lbi_thresh_interval = LBOLT_THRESH_INTERVAL; 989 990 lb_info->lbi_thresh_calls = LBOLT_THRESH_CALLS; 991 992 sz = (sizeof (lbolt_cpu_t) * max_ncpus) + CPU_CACHE_COHERENCE_SIZE; 993 buf = (intptr_t)kmem_zalloc(sz, KM_SLEEP); 994 lb_cpu = (lbolt_cpu_t *)P2ROUNDUP(buf, CPU_CACHE_COHERENCE_SIZE); 995 996 for (i = 0; i < max_ncpus; i++) 997 lb_cpu[i].lbc_counter = lb_info->lbi_thresh_calls; 998 999 /* 1000 * Install the softint used to switch between event and cyclic driven 1001 * lbolt. We use a soft interrupt to make sure the context of the 1002 * cyclic reprogram call is safe. 1003 */ 1004 lbolt_softint_add(); 1005 1006 /* 1007 * Since the hybrid lbolt implementation is based on a hardware counter 1008 * that is reset at every hardware reboot and that we'd like to have 1009 * the lbolt value starting at zero after both a hardware and a fast 1010 * reboot, we calculate the number of clock ticks the system's been up 1011 * and store it in the lbi_debug_time field of the lbolt info structure. 1012 * The value of this field will be subtracted from lbolt before 1013 * returning it. 1014 */ 1015 lb_info->lbi_internal = lb_info->lbi_debug_time = 1016 (gethrtime()/nsec_per_tick); 1017 1018 /* 1019 * lbolt_hybrid points at lbolt_bootstrap until now. The LBOLT_* macros 1020 * and lbolt_debug_{enter,return} use this value as an indication that 1021 * the initializaion above hasn't been completed. Setting lbolt_hybrid 1022 * to either lbolt_{cyclic,event}_driven here signals those code paths 1023 * that the lbolt related structures can be used. 1024 */ 1025 if (lbolt_cyc_only) { 1026 lbolt_when.cyt_when = 0; 1027 lbolt_hybrid = lbolt_cyclic_driven; 1028 } else { 1029 lbolt_when.cyt_when = CY_INFINITY; 1030 lbolt_hybrid = lbolt_event_driven; 1031 } 1032 1033 /* 1034 * Grab cpu_lock and install all three cyclics. 1035 */ 1036 mutex_enter(&cpu_lock); 1037 1038 clock_cyclic = cyclic_add(&clk_hdlr, &clk_when); 1039 lb_info->id.lbi_cyclic_id = cyclic_add(&lbolt_hdlr, &lbolt_when); 1040 1041 mutex_exit(&cpu_lock); 1042 } 1043 1044 /* 1045 * Called before calcloadavg to get 10-sec moving loadavg together 1046 */ 1047 1048 static int 1049 genloadavg(struct loadavg_s *avgs) 1050 { 1051 int avg; 1052 int spos; /* starting position */ 1053 int cpos; /* moving current position */ 1054 int i; 1055 int slen; 1056 hrtime_t hr_avg; 1057 1058 /* 10-second snapshot, calculate first positon */ 1059 if (avgs->lg_len == 0) { 1060 return (0); 1061 } 1062 slen = avgs->lg_len < S_MOVAVG_SZ ? avgs->lg_len : S_MOVAVG_SZ; 1063 1064 spos = (avgs->lg_cur - 1) >= 0 ? avgs->lg_cur - 1 : 1065 S_LOADAVG_SZ + (avgs->lg_cur - 1); 1066 for (i = hr_avg = 0; i < slen; i++) { 1067 cpos = (spos - i) >= 0 ? spos - i : S_LOADAVG_SZ + (spos - i); 1068 hr_avg += avgs->lg_loads[cpos]; 1069 } 1070 1071 hr_avg = hr_avg / slen; 1072 avg = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX); 1073 1074 return (avg); 1075 } 1076 1077 /* 1078 * Run every second from clock () to update the loadavg count available to the 1079 * system and cpu-partitions. 1080 * 1081 * This works by sampling the previous usr, sys, wait time elapsed, 1082 * computing a delta, and adding that delta to the elapsed usr, sys, 1083 * wait increase. 1084 */ 1085 1086 static void 1087 loadavg_update() 1088 { 1089 cpu_t *cp; 1090 cpupart_t *cpupart; 1091 hrtime_t cpu_total; 1092 int prev; 1093 1094 cp = cpu_list; 1095 loadavg.lg_total = 0; 1096 1097 /* 1098 * first pass totals up per-cpu statistics for system and cpu 1099 * partitions 1100 */ 1101 1102 do { 1103 struct loadavg_s *lavg; 1104 1105 lavg = &cp->cpu_loadavg; 1106 1107 cpu_total = cp->cpu_acct[CMS_USER] + 1108 cp->cpu_acct[CMS_SYSTEM] + cp->cpu_waitrq; 1109 /* compute delta against last total */ 1110 scalehrtime(&cpu_total); 1111 prev = (lavg->lg_cur - 1) >= 0 ? lavg->lg_cur - 1 : 1112 S_LOADAVG_SZ + (lavg->lg_cur - 1); 1113 if (lavg->lg_loads[prev] <= 0) { 1114 lavg->lg_loads[lavg->lg_cur] = cpu_total; 1115 cpu_total = 0; 1116 } else { 1117 lavg->lg_loads[lavg->lg_cur] = cpu_total; 1118 cpu_total = cpu_total - lavg->lg_loads[prev]; 1119 if (cpu_total < 0) 1120 cpu_total = 0; 1121 } 1122 1123 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 1124 lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ? 1125 lavg->lg_len + 1 : S_LOADAVG_SZ; 1126 1127 loadavg.lg_total += cpu_total; 1128 cp->cpu_part->cp_loadavg.lg_total += cpu_total; 1129 1130 } while ((cp = cp->cpu_next) != cpu_list); 1131 1132 loadavg.lg_loads[loadavg.lg_cur] = loadavg.lg_total; 1133 loadavg.lg_cur = (loadavg.lg_cur + 1) % S_LOADAVG_SZ; 1134 loadavg.lg_len = (loadavg.lg_len + 1) < S_LOADAVG_SZ ? 1135 loadavg.lg_len + 1 : S_LOADAVG_SZ; 1136 /* 1137 * Second pass updates counts 1138 */ 1139 cpupart = cp_list_head; 1140 1141 do { 1142 struct loadavg_s *lavg; 1143 1144 lavg = &cpupart->cp_loadavg; 1145 lavg->lg_loads[lavg->lg_cur] = lavg->lg_total; 1146 lavg->lg_total = 0; 1147 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 1148 lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ? 1149 lavg->lg_len + 1 : S_LOADAVG_SZ; 1150 1151 } while ((cpupart = cpupart->cp_next) != cp_list_head); 1152 1153 /* 1154 * Third pass totals up per-zone statistics. 1155 */ 1156 zone_loadavg_update(); 1157 } 1158 1159 /* 1160 * clock_update() - local clock update 1161 * 1162 * This routine is called by ntp_adjtime() to update the local clock 1163 * phase and frequency. The implementation is of an 1164 * adaptive-parameter, hybrid phase/frequency-lock loop (PLL/FLL). The 1165 * routine computes new time and frequency offset estimates for each 1166 * call. The PPS signal itself determines the new time offset, 1167 * instead of the calling argument. Presumably, calls to 1168 * ntp_adjtime() occur only when the caller believes the local clock 1169 * is valid within some bound (+-128 ms with NTP). If the caller's 1170 * time is far different than the PPS time, an argument will ensue, 1171 * and it's not clear who will lose. 1172 * 1173 * For uncompensated quartz crystal oscillatores and nominal update 1174 * intervals less than 1024 s, operation should be in phase-lock mode 1175 * (STA_FLL = 0), where the loop is disciplined to phase. For update 1176 * intervals greater than this, operation should be in frequency-lock 1177 * mode (STA_FLL = 1), where the loop is disciplined to frequency. 1178 * 1179 * Note: mutex(&tod_lock) is in effect. 1180 */ 1181 void 1182 clock_update(int offset) 1183 { 1184 int ltemp, mtemp, s; 1185 1186 ASSERT(MUTEX_HELD(&tod_lock)); 1187 1188 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME)) 1189 return; 1190 ltemp = offset; 1191 if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL)) 1192 ltemp = pps_offset; 1193 1194 /* 1195 * Scale the phase adjustment and clamp to the operating range. 1196 */ 1197 if (ltemp > MAXPHASE) 1198 time_offset = MAXPHASE * SCALE_UPDATE; 1199 else if (ltemp < -MAXPHASE) 1200 time_offset = -(MAXPHASE * SCALE_UPDATE); 1201 else 1202 time_offset = ltemp * SCALE_UPDATE; 1203 1204 /* 1205 * Select whether the frequency is to be controlled and in which 1206 * mode (PLL or FLL). Clamp to the operating range. Ugly 1207 * multiply/divide should be replaced someday. 1208 */ 1209 if (time_status & STA_FREQHOLD || time_reftime == 0) 1210 time_reftime = hrestime.tv_sec; 1211 1212 mtemp = hrestime.tv_sec - time_reftime; 1213 time_reftime = hrestime.tv_sec; 1214 1215 if (time_status & STA_FLL) { 1216 if (mtemp >= MINSEC) { 1217 ltemp = ((time_offset / mtemp) * (SCALE_USEC / 1218 SCALE_UPDATE)); 1219 if (ltemp) 1220 time_freq += ltemp / SCALE_KH; 1221 } 1222 } else { 1223 if (mtemp < MAXSEC) { 1224 ltemp *= mtemp; 1225 if (ltemp) 1226 time_freq += (int)(((int64_t)ltemp * 1227 SCALE_USEC) / SCALE_KF) 1228 / (1 << (time_constant * 2)); 1229 } 1230 } 1231 if (time_freq > time_tolerance) 1232 time_freq = time_tolerance; 1233 else if (time_freq < -time_tolerance) 1234 time_freq = -time_tolerance; 1235 1236 s = hr_clock_lock(); 1237 tod_needsync = 1; 1238 hr_clock_unlock(s); 1239 } 1240 1241 /* 1242 * ddi_hardpps() - discipline CPU clock oscillator to external PPS signal 1243 * 1244 * This routine is called at each PPS interrupt in order to discipline 1245 * the CPU clock oscillator to the PPS signal. It measures the PPS phase 1246 * and leaves it in a handy spot for the clock() routine. It 1247 * integrates successive PPS phase differences and calculates the 1248 * frequency offset. This is used in clock() to discipline the CPU 1249 * clock oscillator so that intrinsic frequency error is cancelled out. 1250 * The code requires the caller to capture the time and hardware counter 1251 * value at the on-time PPS signal transition. 1252 * 1253 * Note that, on some Unix systems, this routine runs at an interrupt 1254 * priority level higher than the timer interrupt routine clock(). 1255 * Therefore, the variables used are distinct from the clock() 1256 * variables, except for certain exceptions: The PPS frequency pps_freq 1257 * and phase pps_offset variables are determined by this routine and 1258 * updated atomically. The time_tolerance variable can be considered a 1259 * constant, since it is infrequently changed, and then only when the 1260 * PPS signal is disabled. The watchdog counter pps_valid is updated 1261 * once per second by clock() and is atomically cleared in this 1262 * routine. 1263 * 1264 * tvp is the time of the last tick; usec is a microsecond count since the 1265 * last tick. 1266 * 1267 * Note: In Solaris systems, the tick value is actually given by 1268 * usec_per_tick. This is called from the serial driver cdintr(), 1269 * or equivalent, at a high PIL. Because the kernel keeps a 1270 * highresolution time, the following code can accept either 1271 * the traditional argument pair, or the current highres timestamp 1272 * in tvp and zero in usec. 1273 */ 1274 void 1275 ddi_hardpps(struct timeval *tvp, int usec) 1276 { 1277 int u_usec, v_usec, bigtick; 1278 time_t cal_sec; 1279 int cal_usec; 1280 1281 /* 1282 * An occasional glitch can be produced when the PPS interrupt 1283 * occurs in the clock() routine before the time variable is 1284 * updated. Here the offset is discarded when the difference 1285 * between it and the last one is greater than tick/2, but not 1286 * if the interval since the first discard exceeds 30 s. 1287 */ 1288 time_status |= STA_PPSSIGNAL; 1289 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); 1290 pps_valid = 0; 1291 u_usec = -tvp->tv_usec; 1292 if (u_usec < -(MICROSEC/2)) 1293 u_usec += MICROSEC; 1294 v_usec = pps_offset - u_usec; 1295 if (v_usec < 0) 1296 v_usec = -v_usec; 1297 if (v_usec > (usec_per_tick >> 1)) { 1298 if (pps_glitch > MAXGLITCH) { 1299 pps_glitch = 0; 1300 pps_tf[2] = u_usec; 1301 pps_tf[1] = u_usec; 1302 } else { 1303 pps_glitch++; 1304 u_usec = pps_offset; 1305 } 1306 } else 1307 pps_glitch = 0; 1308 1309 /* 1310 * A three-stage median filter is used to help deglitch the pps 1311 * time. The median sample becomes the time offset estimate; the 1312 * difference between the other two samples becomes the time 1313 * dispersion (jitter) estimate. 1314 */ 1315 pps_tf[2] = pps_tf[1]; 1316 pps_tf[1] = pps_tf[0]; 1317 pps_tf[0] = u_usec; 1318 if (pps_tf[0] > pps_tf[1]) { 1319 if (pps_tf[1] > pps_tf[2]) { 1320 pps_offset = pps_tf[1]; /* 0 1 2 */ 1321 v_usec = pps_tf[0] - pps_tf[2]; 1322 } else if (pps_tf[2] > pps_tf[0]) { 1323 pps_offset = pps_tf[0]; /* 2 0 1 */ 1324 v_usec = pps_tf[2] - pps_tf[1]; 1325 } else { 1326 pps_offset = pps_tf[2]; /* 0 2 1 */ 1327 v_usec = pps_tf[0] - pps_tf[1]; 1328 } 1329 } else { 1330 if (pps_tf[1] < pps_tf[2]) { 1331 pps_offset = pps_tf[1]; /* 2 1 0 */ 1332 v_usec = pps_tf[2] - pps_tf[0]; 1333 } else if (pps_tf[2] < pps_tf[0]) { 1334 pps_offset = pps_tf[0]; /* 1 0 2 */ 1335 v_usec = pps_tf[1] - pps_tf[2]; 1336 } else { 1337 pps_offset = pps_tf[2]; /* 1 2 0 */ 1338 v_usec = pps_tf[1] - pps_tf[0]; 1339 } 1340 } 1341 if (v_usec > MAXTIME) 1342 pps_jitcnt++; 1343 v_usec = (v_usec << PPS_AVG) - pps_jitter; 1344 pps_jitter += v_usec / (1 << PPS_AVG); 1345 if (pps_jitter > (MAXTIME >> 1)) 1346 time_status |= STA_PPSJITTER; 1347 1348 /* 1349 * During the calibration interval adjust the starting time when 1350 * the tick overflows. At the end of the interval compute the 1351 * duration of the interval and the difference of the hardware 1352 * counters at the beginning and end of the interval. This code 1353 * is deliciously complicated by the fact valid differences may 1354 * exceed the value of tick when using long calibration 1355 * intervals and small ticks. Note that the counter can be 1356 * greater than tick if caught at just the wrong instant, but 1357 * the values returned and used here are correct. 1358 */ 1359 bigtick = (int)usec_per_tick * SCALE_USEC; 1360 pps_usec -= pps_freq; 1361 if (pps_usec >= bigtick) 1362 pps_usec -= bigtick; 1363 if (pps_usec < 0) 1364 pps_usec += bigtick; 1365 pps_time.tv_sec++; 1366 pps_count++; 1367 if (pps_count < (1 << pps_shift)) 1368 return; 1369 pps_count = 0; 1370 pps_calcnt++; 1371 u_usec = usec * SCALE_USEC; 1372 v_usec = pps_usec - u_usec; 1373 if (v_usec >= bigtick >> 1) 1374 v_usec -= bigtick; 1375 if (v_usec < -(bigtick >> 1)) 1376 v_usec += bigtick; 1377 if (v_usec < 0) 1378 v_usec = -(-v_usec >> pps_shift); 1379 else 1380 v_usec = v_usec >> pps_shift; 1381 pps_usec = u_usec; 1382 cal_sec = tvp->tv_sec; 1383 cal_usec = tvp->tv_usec; 1384 cal_sec -= pps_time.tv_sec; 1385 cal_usec -= pps_time.tv_usec; 1386 if (cal_usec < 0) { 1387 cal_usec += MICROSEC; 1388 cal_sec--; 1389 } 1390 pps_time = *tvp; 1391 1392 /* 1393 * Check for lost interrupts, noise, excessive jitter and 1394 * excessive frequency error. The number of timer ticks during 1395 * the interval may vary +-1 tick. Add to this a margin of one 1396 * tick for the PPS signal jitter and maximum frequency 1397 * deviation. If the limits are exceeded, the calibration 1398 * interval is reset to the minimum and we start over. 1399 */ 1400 u_usec = (int)usec_per_tick << 1; 1401 if (!((cal_sec == -1 && cal_usec > (MICROSEC - u_usec)) || 1402 (cal_sec == 0 && cal_usec < u_usec)) || 1403 v_usec > time_tolerance || v_usec < -time_tolerance) { 1404 pps_errcnt++; 1405 pps_shift = PPS_SHIFT; 1406 pps_intcnt = 0; 1407 time_status |= STA_PPSERROR; 1408 return; 1409 } 1410 1411 /* 1412 * A three-stage median filter is used to help deglitch the pps 1413 * frequency. The median sample becomes the frequency offset 1414 * estimate; the difference between the other two samples 1415 * becomes the frequency dispersion (stability) estimate. 1416 */ 1417 pps_ff[2] = pps_ff[1]; 1418 pps_ff[1] = pps_ff[0]; 1419 pps_ff[0] = v_usec; 1420 if (pps_ff[0] > pps_ff[1]) { 1421 if (pps_ff[1] > pps_ff[2]) { 1422 u_usec = pps_ff[1]; /* 0 1 2 */ 1423 v_usec = pps_ff[0] - pps_ff[2]; 1424 } else if (pps_ff[2] > pps_ff[0]) { 1425 u_usec = pps_ff[0]; /* 2 0 1 */ 1426 v_usec = pps_ff[2] - pps_ff[1]; 1427 } else { 1428 u_usec = pps_ff[2]; /* 0 2 1 */ 1429 v_usec = pps_ff[0] - pps_ff[1]; 1430 } 1431 } else { 1432 if (pps_ff[1] < pps_ff[2]) { 1433 u_usec = pps_ff[1]; /* 2 1 0 */ 1434 v_usec = pps_ff[2] - pps_ff[0]; 1435 } else if (pps_ff[2] < pps_ff[0]) { 1436 u_usec = pps_ff[0]; /* 1 0 2 */ 1437 v_usec = pps_ff[1] - pps_ff[2]; 1438 } else { 1439 u_usec = pps_ff[2]; /* 1 2 0 */ 1440 v_usec = pps_ff[1] - pps_ff[0]; 1441 } 1442 } 1443 1444 /* 1445 * Here the frequency dispersion (stability) is updated. If it 1446 * is less than one-fourth the maximum (MAXFREQ), the frequency 1447 * offset is updated as well, but clamped to the tolerance. It 1448 * will be processed later by the clock() routine. 1449 */ 1450 v_usec = (v_usec >> 1) - pps_stabil; 1451 if (v_usec < 0) 1452 pps_stabil -= -v_usec >> PPS_AVG; 1453 else 1454 pps_stabil += v_usec >> PPS_AVG; 1455 if (pps_stabil > MAXFREQ >> 2) { 1456 pps_stbcnt++; 1457 time_status |= STA_PPSWANDER; 1458 return; 1459 } 1460 if (time_status & STA_PPSFREQ) { 1461 if (u_usec < 0) { 1462 pps_freq -= -u_usec >> PPS_AVG; 1463 if (pps_freq < -time_tolerance) 1464 pps_freq = -time_tolerance; 1465 u_usec = -u_usec; 1466 } else { 1467 pps_freq += u_usec >> PPS_AVG; 1468 if (pps_freq > time_tolerance) 1469 pps_freq = time_tolerance; 1470 } 1471 } 1472 1473 /* 1474 * Here the calibration interval is adjusted. If the maximum 1475 * time difference is greater than tick / 4, reduce the interval 1476 * by half. If this is not the case for four consecutive 1477 * intervals, double the interval. 1478 */ 1479 if (u_usec << pps_shift > bigtick >> 2) { 1480 pps_intcnt = 0; 1481 if (pps_shift > PPS_SHIFT) 1482 pps_shift--; 1483 } else if (pps_intcnt >= 4) { 1484 pps_intcnt = 0; 1485 if (pps_shift < PPS_SHIFTMAX) 1486 pps_shift++; 1487 } else 1488 pps_intcnt++; 1489 1490 /* 1491 * If recovering from kmdb, then make sure the tod chip gets resynced. 1492 * If we took an early exit above, then we don't yet have a stable 1493 * calibration signal to lock onto, so don't mark the tod for sync 1494 * until we get all the way here. 1495 */ 1496 { 1497 int s = hr_clock_lock(); 1498 1499 tod_needsync = 1; 1500 hr_clock_unlock(s); 1501 } 1502 } 1503 1504 /* 1505 * Handle clock tick processing for a thread. 1506 * Check for timer action, enforce CPU rlimit, do profiling etc. 1507 */ 1508 void 1509 clock_tick(kthread_t *t, int pending) 1510 { 1511 struct proc *pp; 1512 klwp_id_t lwp; 1513 struct as *as; 1514 clock_t ticks; 1515 int poke = 0; /* notify another CPU */ 1516 int user_mode; 1517 size_t rss; 1518 int i, total_usec, usec; 1519 rctl_qty_t secs; 1520 1521 ASSERT(pending > 0); 1522 1523 /* Must be operating on a lwp/thread */ 1524 if ((lwp = ttolwp(t)) == NULL) { 1525 panic("clock_tick: no lwp"); 1526 /*NOTREACHED*/ 1527 } 1528 1529 for (i = 0; i < pending; i++) { 1530 CL_TICK(t); /* Class specific tick processing */ 1531 DTRACE_SCHED1(tick, kthread_t *, t); 1532 } 1533 1534 pp = ttoproc(t); 1535 1536 /* pp->p_lock makes sure that the thread does not exit */ 1537 ASSERT(MUTEX_HELD(&pp->p_lock)); 1538 1539 user_mode = (lwp->lwp_state == LWP_USER); 1540 1541 ticks = (pp->p_utime + pp->p_stime) % hz; 1542 /* 1543 * Update process times. Should use high res clock and state 1544 * changes instead of statistical sampling method. XXX 1545 */ 1546 if (user_mode) { 1547 pp->p_utime += pending; 1548 } else { 1549 pp->p_stime += pending; 1550 } 1551 1552 pp->p_ttime += pending; 1553 as = pp->p_as; 1554 1555 /* 1556 * Update user profiling statistics. Get the pc from the 1557 * lwp when the AST happens. 1558 */ 1559 if (pp->p_prof.pr_scale) { 1560 atomic_add_32(&lwp->lwp_oweupc, (int32_t)pending); 1561 if (user_mode) { 1562 poke = 1; 1563 aston(t); 1564 } 1565 } 1566 1567 /* 1568 * If CPU was in user state, process lwp-virtual time 1569 * interval timer. The value passed to itimerdecr() has to be 1570 * in microseconds and has to be less than one second. Hence 1571 * this loop. 1572 */ 1573 total_usec = usec_per_tick * pending; 1574 while (total_usec > 0) { 1575 usec = MIN(total_usec, (MICROSEC - 1)); 1576 if (user_mode && 1577 timerisset(&lwp->lwp_timer[ITIMER_VIRTUAL].it_value) && 1578 itimerdecr(&lwp->lwp_timer[ITIMER_VIRTUAL], usec) == 0) { 1579 poke = 1; 1580 sigtoproc(pp, t, SIGVTALRM); 1581 } 1582 total_usec -= usec; 1583 } 1584 1585 /* 1586 * If CPU was in user state, process lwp-profile 1587 * interval timer. 1588 */ 1589 total_usec = usec_per_tick * pending; 1590 while (total_usec > 0) { 1591 usec = MIN(total_usec, (MICROSEC - 1)); 1592 if (timerisset(&lwp->lwp_timer[ITIMER_PROF].it_value) && 1593 itimerdecr(&lwp->lwp_timer[ITIMER_PROF], usec) == 0) { 1594 poke = 1; 1595 sigtoproc(pp, t, SIGPROF); 1596 } 1597 total_usec -= usec; 1598 } 1599 1600 /* 1601 * Enforce CPU resource controls: 1602 * (a) process.max-cpu-time resource control 1603 * 1604 * Perform the check only if we have accumulated more a second. 1605 */ 1606 if ((ticks + pending) >= hz) { 1607 (void) rctl_test(rctlproc_legacy[RLIMIT_CPU], pp->p_rctls, pp, 1608 (pp->p_utime + pp->p_stime)/hz, RCA_UNSAFE_SIGINFO); 1609 } 1610 1611 /* 1612 * (b) task.max-cpu-time resource control 1613 * 1614 * If we have accumulated enough ticks, increment the task CPU 1615 * time usage and test for the resource limit. This minimizes the 1616 * number of calls to the rct_test(). The task CPU time mutex 1617 * is highly contentious as many processes can be sharing a task. 1618 */ 1619 if (pp->p_ttime >= clock_tick_proc_max) { 1620 secs = task_cpu_time_incr(pp->p_task, pp->p_ttime); 1621 pp->p_ttime = 0; 1622 if (secs) { 1623 (void) rctl_test(rc_task_cpu_time, pp->p_task->tk_rctls, 1624 pp, secs, RCA_UNSAFE_SIGINFO); 1625 } 1626 } 1627 1628 /* 1629 * Update memory usage for the currently running process. 1630 */ 1631 rss = rm_asrss(as); 1632 PTOU(pp)->u_mem += rss; 1633 if (rss > PTOU(pp)->u_mem_max) 1634 PTOU(pp)->u_mem_max = rss; 1635 1636 /* 1637 * Notify the CPU the thread is running on. 1638 */ 1639 if (poke && t->t_cpu != CPU) 1640 poke_cpu(t->t_cpu->cpu_id); 1641 } 1642 1643 void 1644 profil_tick(uintptr_t upc) 1645 { 1646 int ticks; 1647 proc_t *p = ttoproc(curthread); 1648 klwp_t *lwp = ttolwp(curthread); 1649 struct prof *pr = &p->p_prof; 1650 1651 do { 1652 ticks = lwp->lwp_oweupc; 1653 } while (cas32(&lwp->lwp_oweupc, ticks, 0) != ticks); 1654 1655 mutex_enter(&p->p_pflock); 1656 if (pr->pr_scale >= 2 && upc >= pr->pr_off) { 1657 /* 1658 * Old-style profiling 1659 */ 1660 uint16_t *slot = pr->pr_base; 1661 uint16_t old, new; 1662 if (pr->pr_scale != 2) { 1663 uintptr_t delta = upc - pr->pr_off; 1664 uintptr_t byteoff = ((delta >> 16) * pr->pr_scale) + 1665 (((delta & 0xffff) * pr->pr_scale) >> 16); 1666 if (byteoff >= (uintptr_t)pr->pr_size) { 1667 mutex_exit(&p->p_pflock); 1668 return; 1669 } 1670 slot += byteoff / sizeof (uint16_t); 1671 } 1672 if (fuword16(slot, &old) < 0 || 1673 (new = old + ticks) > SHRT_MAX || 1674 suword16(slot, new) < 0) { 1675 pr->pr_scale = 0; 1676 } 1677 } else if (pr->pr_scale == 1) { 1678 /* 1679 * PC Sampling 1680 */ 1681 model_t model = lwp_getdatamodel(lwp); 1682 int result; 1683 #ifdef __lint 1684 model = model; 1685 #endif 1686 while (ticks-- > 0) { 1687 if (pr->pr_samples == pr->pr_size) { 1688 /* buffer full, turn off sampling */ 1689 pr->pr_scale = 0; 1690 break; 1691 } 1692 switch (SIZEOF_PTR(model)) { 1693 case sizeof (uint32_t): 1694 result = suword32(pr->pr_base, (uint32_t)upc); 1695 break; 1696 #ifdef _LP64 1697 case sizeof (uint64_t): 1698 result = suword64(pr->pr_base, (uint64_t)upc); 1699 break; 1700 #endif 1701 default: 1702 cmn_err(CE_WARN, "profil_tick: unexpected " 1703 "data model"); 1704 result = -1; 1705 break; 1706 } 1707 if (result != 0) { 1708 pr->pr_scale = 0; 1709 break; 1710 } 1711 pr->pr_base = (caddr_t)pr->pr_base + SIZEOF_PTR(model); 1712 pr->pr_samples++; 1713 } 1714 } 1715 mutex_exit(&p->p_pflock); 1716 } 1717 1718 static void 1719 delay_wakeup(void *arg) 1720 { 1721 kthread_t *t = arg; 1722 1723 mutex_enter(&t->t_delay_lock); 1724 cv_signal(&t->t_delay_cv); 1725 mutex_exit(&t->t_delay_lock); 1726 } 1727 1728 /* 1729 * The delay(9F) man page indicates that it can only be called from user or 1730 * kernel context - detect and diagnose bad calls. The following macro will 1731 * produce a limited number of messages identifying bad callers. This is done 1732 * in a macro so that caller() is meaningful. When a bad caller is identified, 1733 * switching to 'drv_usecwait(TICK_TO_USEC(ticks));' may be appropriate. 1734 */ 1735 #define DELAY_CONTEXT_CHECK() { \ 1736 uint32_t m; \ 1737 char *f; \ 1738 ulong_t off; \ 1739 \ 1740 m = delay_from_interrupt_msg; \ 1741 if (delay_from_interrupt_diagnose && servicing_interrupt() && \ 1742 !panicstr && !devinfo_freeze && \ 1743 atomic_cas_32(&delay_from_interrupt_msg, m ? m : 1, m-1)) { \ 1744 f = modgetsymname((uintptr_t)caller(), &off); \ 1745 cmn_err(CE_WARN, "delay(9F) called from " \ 1746 "interrupt context: %s`%s", \ 1747 mod_containing_pc(caller()), f ? f : "..."); \ 1748 } \ 1749 } 1750 1751 /* 1752 * delay_common: common delay code. 1753 */ 1754 static void 1755 delay_common(clock_t ticks) 1756 { 1757 kthread_t *t = curthread; 1758 clock_t deadline; 1759 clock_t timeleft; 1760 callout_id_t id; 1761 1762 /* If timeouts aren't running all we can do is spin. */ 1763 if (panicstr || devinfo_freeze) { 1764 /* Convert delay(9F) call into drv_usecwait(9F) call. */ 1765 if (ticks > 0) 1766 drv_usecwait(TICK_TO_USEC(ticks)); 1767 return; 1768 } 1769 1770 deadline = ddi_get_lbolt() + ticks; 1771 while ((timeleft = deadline - ddi_get_lbolt()) > 0) { 1772 mutex_enter(&t->t_delay_lock); 1773 id = timeout_default(delay_wakeup, t, timeleft); 1774 cv_wait(&t->t_delay_cv, &t->t_delay_lock); 1775 mutex_exit(&t->t_delay_lock); 1776 (void) untimeout_default(id, 0); 1777 } 1778 } 1779 1780 /* 1781 * Delay specified number of clock ticks. 1782 */ 1783 void 1784 delay(clock_t ticks) 1785 { 1786 DELAY_CONTEXT_CHECK(); 1787 1788 delay_common(ticks); 1789 } 1790 1791 /* 1792 * Delay a random number of clock ticks between 1 and ticks. 1793 */ 1794 void 1795 delay_random(clock_t ticks) 1796 { 1797 int r; 1798 1799 DELAY_CONTEXT_CHECK(); 1800 1801 (void) random_get_pseudo_bytes((void *)&r, sizeof (r)); 1802 if (ticks == 0) 1803 ticks = 1; 1804 ticks = (r % ticks) + 1; 1805 delay_common(ticks); 1806 } 1807 1808 /* 1809 * Like delay, but interruptible by a signal. 1810 */ 1811 int 1812 delay_sig(clock_t ticks) 1813 { 1814 kthread_t *t = curthread; 1815 clock_t deadline; 1816 clock_t rc; 1817 1818 /* If timeouts aren't running all we can do is spin. */ 1819 if (panicstr || devinfo_freeze) { 1820 if (ticks > 0) 1821 drv_usecwait(TICK_TO_USEC(ticks)); 1822 return (0); 1823 } 1824 1825 deadline = ddi_get_lbolt() + ticks; 1826 mutex_enter(&t->t_delay_lock); 1827 do { 1828 rc = cv_timedwait_sig(&t->t_delay_cv, 1829 &t->t_delay_lock, deadline); 1830 /* loop until past deadline or signaled */ 1831 } while (rc > 0); 1832 mutex_exit(&t->t_delay_lock); 1833 if (rc == 0) 1834 return (EINTR); 1835 return (0); 1836 } 1837 1838 1839 #define SECONDS_PER_DAY 86400 1840 1841 /* 1842 * Initialize the system time based on the TOD chip. approx is used as 1843 * an approximation of time (e.g. from the filesystem) in the event that 1844 * the TOD chip has been cleared or is unresponsive. An approx of -1 1845 * means the filesystem doesn't keep time. 1846 */ 1847 void 1848 clkset(time_t approx) 1849 { 1850 timestruc_t ts; 1851 int spl; 1852 int set_clock = 0; 1853 1854 mutex_enter(&tod_lock); 1855 ts = tod_get(); 1856 1857 if (ts.tv_sec > 365 * SECONDS_PER_DAY) { 1858 /* 1859 * If the TOD chip is reporting some time after 1971, 1860 * then it probably didn't lose power or become otherwise 1861 * cleared in the recent past; check to assure that 1862 * the time coming from the filesystem isn't in the future 1863 * according to the TOD chip. 1864 */ 1865 if (approx != -1 && approx > ts.tv_sec) { 1866 cmn_err(CE_WARN, "Last shutdown is later " 1867 "than time on time-of-day chip; check date."); 1868 } 1869 } else { 1870 /* 1871 * If the TOD chip isn't giving correct time, set it to the 1872 * greater of i) approx and ii) 1987. That way if approx 1873 * is negative or is earlier than 1987, we set the clock 1874 * back to a time when Oliver North, ALF and Dire Straits 1875 * were all on the collective brain: 1987. 1876 */ 1877 timestruc_t tmp; 1878 time_t diagnose_date = (1987 - 1970) * 365 * SECONDS_PER_DAY; 1879 ts.tv_sec = (approx > diagnose_date ? approx : diagnose_date); 1880 ts.tv_nsec = 0; 1881 1882 /* 1883 * Attempt to write the new time to the TOD chip. Set spl high 1884 * to avoid getting preempted between the tod_set and tod_get. 1885 */ 1886 spl = splhi(); 1887 tod_set(ts); 1888 tmp = tod_get(); 1889 splx(spl); 1890 1891 if (tmp.tv_sec != ts.tv_sec && tmp.tv_sec != ts.tv_sec + 1) { 1892 tod_broken = 1; 1893 dosynctodr = 0; 1894 cmn_err(CE_WARN, "Time-of-day chip unresponsive."); 1895 } else { 1896 cmn_err(CE_WARN, "Time-of-day chip had " 1897 "incorrect date; check and reset."); 1898 } 1899 set_clock = 1; 1900 } 1901 1902 if (!boot_time) { 1903 boot_time = ts.tv_sec; 1904 set_clock = 1; 1905 } 1906 1907 if (set_clock) 1908 set_hrestime(&ts); 1909 1910 mutex_exit(&tod_lock); 1911 } 1912 1913 int timechanged; /* for testing if the system time has been reset */ 1914 1915 void 1916 set_hrestime(timestruc_t *ts) 1917 { 1918 int spl = hr_clock_lock(); 1919 hrestime = *ts; 1920 membar_enter(); /* hrestime must be visible before timechanged++ */ 1921 timedelta = 0; 1922 timechanged++; 1923 hr_clock_unlock(spl); 1924 callout_hrestime(); 1925 } 1926 1927 static uint_t deadman_seconds; 1928 static uint32_t deadman_panics; 1929 static int deadman_enabled = 0; 1930 static int deadman_panic_timers = 1; 1931 1932 static void 1933 deadman(void) 1934 { 1935 if (panicstr) { 1936 /* 1937 * During panic, other CPUs besides the panic 1938 * master continue to handle cyclics and some other 1939 * interrupts. The code below is intended to be 1940 * single threaded, so any CPU other than the master 1941 * must keep out. 1942 */ 1943 if (CPU->cpu_id != panic_cpu.cpu_id) 1944 return; 1945 1946 if (!deadman_panic_timers) 1947 return; /* allow all timers to be manually disabled */ 1948 1949 /* 1950 * If we are generating a crash dump or syncing filesystems and 1951 * the corresponding timer is set, decrement it and re-enter 1952 * the panic code to abort it and advance to the next state. 1953 * The panic states and triggers are explained in panic.c. 1954 */ 1955 if (panic_dump) { 1956 if (dump_timeleft && (--dump_timeleft == 0)) { 1957 panic("panic dump timeout"); 1958 /*NOTREACHED*/ 1959 } 1960 } else if (panic_sync) { 1961 if (sync_timeleft && (--sync_timeleft == 0)) { 1962 panic("panic sync timeout"); 1963 /*NOTREACHED*/ 1964 } 1965 } 1966 1967 return; 1968 } 1969 1970 if (deadman_counter != CPU->cpu_deadman_counter) { 1971 CPU->cpu_deadman_counter = deadman_counter; 1972 CPU->cpu_deadman_countdown = deadman_seconds; 1973 return; 1974 } 1975 1976 if (--CPU->cpu_deadman_countdown > 0) 1977 return; 1978 1979 /* 1980 * Regardless of whether or not we actually bring the system down, 1981 * bump the deadman_panics variable. 1982 * 1983 * N.B. deadman_panics is incremented once for each CPU that 1984 * passes through here. It's expected that all the CPUs will 1985 * detect this condition within one second of each other, so 1986 * when deadman_enabled is off, deadman_panics will 1987 * typically be a multiple of the total number of CPUs in 1988 * the system. 1989 */ 1990 atomic_add_32(&deadman_panics, 1); 1991 1992 if (!deadman_enabled) { 1993 CPU->cpu_deadman_countdown = deadman_seconds; 1994 return; 1995 } 1996 1997 /* 1998 * If we're here, we want to bring the system down. 1999 */ 2000 panic("deadman: timed out after %d seconds of clock " 2001 "inactivity", deadman_seconds); 2002 /*NOTREACHED*/ 2003 } 2004 2005 /*ARGSUSED*/ 2006 static void 2007 deadman_online(void *arg, cpu_t *cpu, cyc_handler_t *hdlr, cyc_time_t *when) 2008 { 2009 cpu->cpu_deadman_counter = 0; 2010 cpu->cpu_deadman_countdown = deadman_seconds; 2011 2012 hdlr->cyh_func = (cyc_func_t)deadman; 2013 hdlr->cyh_level = CY_HIGH_LEVEL; 2014 hdlr->cyh_arg = NULL; 2015 2016 /* 2017 * Stagger the CPUs so that they don't all run deadman() at 2018 * the same time. Simplest reason to do this is to make it 2019 * more likely that only one CPU will panic in case of a 2020 * timeout. This is (strictly speaking) an aesthetic, not a 2021 * technical consideration. 2022 */ 2023 when->cyt_when = cpu->cpu_id * (NANOSEC / NCPU); 2024 when->cyt_interval = NANOSEC; 2025 } 2026 2027 2028 void 2029 deadman_init(void) 2030 { 2031 cyc_omni_handler_t hdlr; 2032 2033 if (deadman_seconds == 0) 2034 deadman_seconds = snoop_interval / MICROSEC; 2035 2036 if (snooping) 2037 deadman_enabled = 1; 2038 2039 hdlr.cyo_online = deadman_online; 2040 hdlr.cyo_offline = NULL; 2041 hdlr.cyo_arg = NULL; 2042 2043 mutex_enter(&cpu_lock); 2044 deadman_cyclic = cyclic_add_omni(&hdlr); 2045 mutex_exit(&cpu_lock); 2046 } 2047 2048 /* 2049 * tod_fault() is for updating tod validate mechanism state: 2050 * (1) TOD_NOFAULT: for resetting the state to 'normal'. 2051 * currently used for debugging only 2052 * (2) The following four cases detected by tod validate mechanism: 2053 * TOD_REVERSED: current tod value is less than previous value. 2054 * TOD_STALLED: current tod value hasn't advanced. 2055 * TOD_JUMPED: current tod value advanced too far from previous value. 2056 * TOD_RATECHANGED: the ratio between average tod delta and 2057 * average tick delta has changed. 2058 * (3) TOD_RDONLY: when the TOD clock is not writeable e.g. because it is 2059 * a virtual TOD provided by a hypervisor. 2060 */ 2061 enum tod_fault_type 2062 tod_fault(enum tod_fault_type ftype, int off) 2063 { 2064 ASSERT(MUTEX_HELD(&tod_lock)); 2065 2066 if (tod_faulted != ftype) { 2067 switch (ftype) { 2068 case TOD_NOFAULT: 2069 plat_tod_fault(TOD_NOFAULT); 2070 cmn_err(CE_NOTE, "Restarted tracking " 2071 "Time of Day clock."); 2072 tod_faulted = ftype; 2073 break; 2074 case TOD_REVERSED: 2075 case TOD_JUMPED: 2076 if (tod_faulted == TOD_NOFAULT) { 2077 plat_tod_fault(ftype); 2078 cmn_err(CE_WARN, "Time of Day clock error: " 2079 "reason [%s by 0x%x]. -- " 2080 " Stopped tracking Time Of Day clock.", 2081 tod_fault_table[ftype], off); 2082 tod_faulted = ftype; 2083 } 2084 break; 2085 case TOD_STALLED: 2086 case TOD_RATECHANGED: 2087 if (tod_faulted == TOD_NOFAULT) { 2088 plat_tod_fault(ftype); 2089 cmn_err(CE_WARN, "Time of Day clock error: " 2090 "reason [%s]. -- " 2091 " Stopped tracking Time Of Day clock.", 2092 tod_fault_table[ftype]); 2093 tod_faulted = ftype; 2094 } 2095 break; 2096 case TOD_RDONLY: 2097 if (tod_faulted == TOD_NOFAULT) { 2098 plat_tod_fault(ftype); 2099 cmn_err(CE_NOTE, "!Time of Day clock is " 2100 "Read-Only; set of Date/Time will not " 2101 "persist across reboot."); 2102 tod_faulted = ftype; 2103 } 2104 break; 2105 default: 2106 break; 2107 } 2108 } 2109 return (tod_faulted); 2110 } 2111 2112 /* 2113 * Two functions that allow tod_status_flag to be manipulated by functions 2114 * external to this file. 2115 */ 2116 2117 void 2118 tod_status_set(int tod_flag) 2119 { 2120 tod_status_flag |= tod_flag; 2121 } 2122 2123 void 2124 tod_status_clear(int tod_flag) 2125 { 2126 tod_status_flag &= ~tod_flag; 2127 } 2128 2129 /* 2130 * Record a timestamp and the value passed to tod_set(). The next call to 2131 * tod_validate() can use these values, prev_set_tick and prev_set_tod, 2132 * when checking the timestruc_t returned by tod_get(). Ordinarily, 2133 * tod_validate() will use prev_tick and prev_tod for this task but these 2134 * become obsolete, and will be re-assigned with the prev_set_* values, 2135 * in the case when the TOD is re-written. 2136 */ 2137 void 2138 tod_set_prev(timestruc_t ts) 2139 { 2140 if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) || 2141 tod_validate_deferred) { 2142 return; 2143 } 2144 prev_set_tick = gethrtime(); 2145 /* 2146 * A negative value will be set to zero in utc_to_tod() so we fake 2147 * a zero here in such a case. This would need to change if the 2148 * behavior of utc_to_tod() changes. 2149 */ 2150 prev_set_tod = ts.tv_sec < 0 ? 0 : ts.tv_sec; 2151 } 2152 2153 /* 2154 * tod_validate() is used for checking values returned by tod_get(). 2155 * Four error cases can be detected by this routine: 2156 * TOD_REVERSED: current tod value is less than previous. 2157 * TOD_STALLED: current tod value hasn't advanced. 2158 * TOD_JUMPED: current tod value advanced too far from previous value. 2159 * TOD_RATECHANGED: the ratio between average tod delta and 2160 * average tick delta has changed. 2161 */ 2162 time_t 2163 tod_validate(time_t tod) 2164 { 2165 time_t diff_tod; 2166 hrtime_t diff_tick; 2167 2168 long dtick; 2169 int dtick_delta; 2170 2171 int off = 0; 2172 enum tod_fault_type tod_bad = TOD_NOFAULT; 2173 2174 static int firsttime = 1; 2175 2176 static time_t prev_tod = 0; 2177 static hrtime_t prev_tick = 0; 2178 static long dtick_avg = TOD_REF_FREQ; 2179 2180 int cpr_resume_done = 0; 2181 int dr_resume_done = 0; 2182 2183 hrtime_t tick = gethrtime(); 2184 2185 ASSERT(MUTEX_HELD(&tod_lock)); 2186 2187 /* 2188 * tod_validate_enable is patchable via /etc/system. 2189 * If TOD is already faulted, or if TOD validation is deferred, 2190 * there is nothing to do. 2191 */ 2192 if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) || 2193 tod_validate_deferred) { 2194 return (tod); 2195 } 2196 2197 /* 2198 * If this is the first time through, we just need to save the tod 2199 * we were called with and hrtime so we can use them next time to 2200 * validate tod_get(). 2201 */ 2202 if (firsttime) { 2203 firsttime = 0; 2204 prev_tod = tod; 2205 prev_tick = tick; 2206 return (tod); 2207 } 2208 2209 /* 2210 * Handle any flags that have been turned on by tod_status_set(). 2211 * In the case where a tod_set() is done and then a subsequent 2212 * tod_get() fails (ie, both TOD_SET_DONE and TOD_GET_FAILED are 2213 * true), we treat the TOD_GET_FAILED with precedence by switching 2214 * off the flag, returning tod and leaving TOD_SET_DONE asserted 2215 * until such time as tod_get() completes successfully. 2216 */ 2217 if (tod_status_flag & TOD_GET_FAILED) { 2218 /* 2219 * tod_get() has encountered an issue, possibly transitory, 2220 * when reading TOD. We'll just return the incoming tod 2221 * value (which is actually hrestime.tv_sec in this case) 2222 * and when we get a genuine tod, following a successful 2223 * tod_get(), we can validate using prev_tod and prev_tick. 2224 */ 2225 tod_status_flag &= ~TOD_GET_FAILED; 2226 return (tod); 2227 } else if (tod_status_flag & TOD_SET_DONE) { 2228 /* 2229 * TOD has been modified. Just before the TOD was written, 2230 * tod_set_prev() saved tod and hrtime; we can now use 2231 * those values, prev_set_tod and prev_set_tick, to validate 2232 * the incoming tod that's just been read. 2233 */ 2234 prev_tod = prev_set_tod; 2235 prev_tick = prev_set_tick; 2236 dtick_avg = TOD_REF_FREQ; 2237 tod_status_flag &= ~TOD_SET_DONE; 2238 /* 2239 * If a tod_set() preceded a cpr_suspend() without an 2240 * intervening tod_validate(), we need to ensure that a 2241 * TOD_JUMPED condition is ignored. 2242 * Note this isn't a concern in the case of DR as we've 2243 * just reassigned dtick_avg, above. 2244 */ 2245 if (tod_status_flag & TOD_CPR_RESUME_DONE) { 2246 cpr_resume_done = 1; 2247 tod_status_flag &= ~TOD_CPR_RESUME_DONE; 2248 } 2249 } else if (tod_status_flag & TOD_CPR_RESUME_DONE) { 2250 /* 2251 * The system's coming back from a checkpoint resume. 2252 */ 2253 cpr_resume_done = 1; 2254 tod_status_flag &= ~TOD_CPR_RESUME_DONE; 2255 /* 2256 * We need to handle the possibility of a CPR suspend 2257 * operation having been initiated whilst a DR event was 2258 * in-flight. 2259 */ 2260 if (tod_status_flag & TOD_DR_RESUME_DONE) { 2261 dr_resume_done = 1; 2262 tod_status_flag &= ~TOD_DR_RESUME_DONE; 2263 } 2264 } else if (tod_status_flag & TOD_DR_RESUME_DONE) { 2265 /* 2266 * A Dynamic Reconfiguration event has taken place. 2267 */ 2268 dr_resume_done = 1; 2269 tod_status_flag &= ~TOD_DR_RESUME_DONE; 2270 } 2271 2272 /* test hook */ 2273 switch (tod_unit_test) { 2274 case 1: /* for testing jumping tod */ 2275 tod += tod_test_injector; 2276 tod_unit_test = 0; 2277 break; 2278 case 2: /* for testing stuck tod bit */ 2279 tod |= 1 << tod_test_injector; 2280 tod_unit_test = 0; 2281 break; 2282 case 3: /* for testing stalled tod */ 2283 tod = prev_tod; 2284 tod_unit_test = 0; 2285 break; 2286 case 4: /* reset tod fault status */ 2287 (void) tod_fault(TOD_NOFAULT, 0); 2288 tod_unit_test = 0; 2289 break; 2290 default: 2291 break; 2292 } 2293 2294 diff_tod = tod - prev_tod; 2295 diff_tick = tick - prev_tick; 2296 2297 ASSERT(diff_tick >= 0); 2298 2299 if (diff_tod < 0) { 2300 /* ERROR - tod reversed */ 2301 tod_bad = TOD_REVERSED; 2302 off = (int)(prev_tod - tod); 2303 } else if (diff_tod == 0) { 2304 /* tod did not advance */ 2305 if (diff_tick > TOD_STALL_THRESHOLD) { 2306 /* ERROR - tod stalled */ 2307 tod_bad = TOD_STALLED; 2308 } else { 2309 /* 2310 * Make sure we don't update prev_tick 2311 * so that diff_tick is calculated since 2312 * the first diff_tod == 0 2313 */ 2314 return (tod); 2315 } 2316 } else { 2317 /* calculate dtick */ 2318 dtick = diff_tick / diff_tod; 2319 2320 /* update dtick averages */ 2321 dtick_avg += ((dtick - dtick_avg) / TOD_FILTER_N); 2322 2323 /* 2324 * Calculate dtick_delta as 2325 * variation from reference freq in quartiles 2326 */ 2327 dtick_delta = (dtick_avg - TOD_REF_FREQ) / 2328 (TOD_REF_FREQ >> 2); 2329 2330 /* 2331 * Even with a perfectly functioning TOD device, 2332 * when the number of elapsed seconds is low the 2333 * algorithm can calculate a rate that is beyond 2334 * tolerance, causing an error. The algorithm is 2335 * inaccurate when elapsed time is low (less than 2336 * 5 seconds). 2337 */ 2338 if (diff_tod > 4) { 2339 if (dtick < TOD_JUMP_THRESHOLD) { 2340 /* 2341 * If we've just done a CPR resume, we detect 2342 * a jump in the TOD but, actually, what's 2343 * happened is that the TOD has been increasing 2344 * whilst the system was suspended and the tick 2345 * count hasn't kept up. We consider the first 2346 * occurrence of this after a resume as normal 2347 * and ignore it; otherwise, in a non-resume 2348 * case, we regard it as a TOD problem. 2349 */ 2350 if (!cpr_resume_done) { 2351 /* ERROR - tod jumped */ 2352 tod_bad = TOD_JUMPED; 2353 off = (int)diff_tod; 2354 } 2355 } 2356 if (dtick_delta) { 2357 /* 2358 * If we've just done a DR resume, dtick_avg 2359 * can go a bit askew so we reset it and carry 2360 * on; otherwise, the TOD is in error. 2361 */ 2362 if (dr_resume_done) { 2363 dtick_avg = TOD_REF_FREQ; 2364 } else { 2365 /* ERROR - change in clock rate */ 2366 tod_bad = TOD_RATECHANGED; 2367 } 2368 } 2369 } 2370 } 2371 2372 if (tod_bad != TOD_NOFAULT) { 2373 (void) tod_fault(tod_bad, off); 2374 2375 /* 2376 * Disable dosynctodr since we are going to fault 2377 * the TOD chip anyway here 2378 */ 2379 dosynctodr = 0; 2380 2381 /* 2382 * Set tod to the correct value from hrestime 2383 */ 2384 tod = hrestime.tv_sec; 2385 } 2386 2387 prev_tod = tod; 2388 prev_tick = tick; 2389 return (tod); 2390 } 2391 2392 static void 2393 calcloadavg(int nrun, uint64_t *hp_ave) 2394 { 2395 static int64_t f[3] = { 135, 27, 9 }; 2396 uint_t i; 2397 int64_t q, r; 2398 2399 /* 2400 * Compute load average over the last 1, 5, and 15 minutes 2401 * (60, 300, and 900 seconds). The constants in f[3] are for 2402 * exponential decay: 2403 * (1 - exp(-1/60)) << 13 = 135, 2404 * (1 - exp(-1/300)) << 13 = 27, 2405 * (1 - exp(-1/900)) << 13 = 9. 2406 */ 2407 2408 /* 2409 * a little hoop-jumping to avoid integer overflow 2410 */ 2411 for (i = 0; i < 3; i++) { 2412 q = (hp_ave[i] >> 16) << 7; 2413 r = (hp_ave[i] & 0xffff) << 7; 2414 hp_ave[i] += ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4; 2415 } 2416 } 2417 2418 /* 2419 * lbolt_hybrid() is used by ddi_get_lbolt() and ddi_get_lbolt64() to 2420 * calculate the value of lbolt according to the current mode. In the event 2421 * driven mode (the default), lbolt is calculated by dividing the current hires 2422 * time by the number of nanoseconds per clock tick. In the cyclic driven mode 2423 * an internal variable is incremented at each firing of the lbolt cyclic 2424 * and returned by lbolt_cyclic_driven(). 2425 * 2426 * The system will transition from event to cyclic driven mode when the number 2427 * of calls to lbolt_event_driven() exceeds the (per CPU) threshold within a 2428 * window of time. It does so by reprograming lbolt_cyclic from CY_INFINITY to 2429 * nsec_per_tick. The lbolt cyclic will remain ON while at least one CPU is 2430 * causing enough activity to cross the thresholds. 2431 */ 2432 int64_t 2433 lbolt_bootstrap(void) 2434 { 2435 return (0); 2436 } 2437 2438 /* ARGSUSED */ 2439 uint_t 2440 lbolt_ev_to_cyclic(caddr_t arg1, caddr_t arg2) 2441 { 2442 hrtime_t ts, exp; 2443 int ret; 2444 2445 ASSERT(lbolt_hybrid != lbolt_cyclic_driven); 2446 2447 kpreempt_disable(); 2448 2449 ts = gethrtime(); 2450 lb_info->lbi_internal = (ts/nsec_per_tick); 2451 2452 /* 2453 * Align the next expiration to a clock tick boundary. 2454 */ 2455 exp = ts + nsec_per_tick - 1; 2456 exp = (exp/nsec_per_tick) * nsec_per_tick; 2457 2458 ret = cyclic_reprogram(lb_info->id.lbi_cyclic_id, exp); 2459 ASSERT(ret); 2460 2461 lbolt_hybrid = lbolt_cyclic_driven; 2462 lb_info->lbi_cyc_deactivate = B_FALSE; 2463 lb_info->lbi_cyc_deac_start = lb_info->lbi_internal; 2464 2465 kpreempt_enable(); 2466 2467 ret = atomic_dec_32_nv(&lb_info->lbi_token); 2468 ASSERT(ret == 0); 2469 2470 return (1); 2471 } 2472 2473 int64_t 2474 lbolt_event_driven(void) 2475 { 2476 hrtime_t ts; 2477 int64_t lb; 2478 int ret, cpu = CPU->cpu_seqid; 2479 2480 ts = gethrtime(); 2481 ASSERT(ts > 0); 2482 2483 ASSERT(nsec_per_tick > 0); 2484 lb = (ts/nsec_per_tick); 2485 2486 /* 2487 * Switch to cyclic mode if the number of calls to this routine 2488 * has reached the threshold within the interval. 2489 */ 2490 if ((lb - lb_cpu[cpu].lbc_cnt_start) < lb_info->lbi_thresh_interval) { 2491 2492 if (--lb_cpu[cpu].lbc_counter == 0) { 2493 /* 2494 * Reached the threshold within the interval, reset 2495 * the usage statistics. 2496 */ 2497 lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls; 2498 lb_cpu[cpu].lbc_cnt_start = lb; 2499 2500 /* 2501 * Make sure only one thread reprograms the 2502 * lbolt cyclic and changes the mode. 2503 */ 2504 if (panicstr == NULL && 2505 atomic_cas_32(&lb_info->lbi_token, 0, 1) == 0) { 2506 2507 if (lbolt_hybrid == lbolt_cyclic_driven) { 2508 ret = atomic_dec_32_nv( 2509 &lb_info->lbi_token); 2510 ASSERT(ret == 0); 2511 } else { 2512 lbolt_softint_post(); 2513 } 2514 } 2515 } 2516 } else { 2517 /* 2518 * Exceeded the interval, reset the usage statistics. 2519 */ 2520 lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls; 2521 lb_cpu[cpu].lbc_cnt_start = lb; 2522 } 2523 2524 ASSERT(lb >= lb_info->lbi_debug_time); 2525 2526 return (lb - lb_info->lbi_debug_time); 2527 } 2528 2529 int64_t 2530 lbolt_cyclic_driven(void) 2531 { 2532 int64_t lb = lb_info->lbi_internal; 2533 int cpu; 2534 2535 /* 2536 * If a CPU has already prevented the lbolt cyclic from deactivating 2537 * itself, don't bother tracking the usage. Otherwise check if we're 2538 * within the interval and how the per CPU counter is doing. 2539 */ 2540 if (lb_info->lbi_cyc_deactivate) { 2541 cpu = CPU->cpu_seqid; 2542 if ((lb - lb_cpu[cpu].lbc_cnt_start) < 2543 lb_info->lbi_thresh_interval) { 2544 2545 if (lb_cpu[cpu].lbc_counter == 0) 2546 /* 2547 * Reached the threshold within the interval, 2548 * prevent the lbolt cyclic from turning itself 2549 * off. 2550 */ 2551 lb_info->lbi_cyc_deactivate = B_FALSE; 2552 else 2553 lb_cpu[cpu].lbc_counter--; 2554 } else { 2555 /* 2556 * Only reset the usage statistics when we have 2557 * exceeded the interval. 2558 */ 2559 lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls; 2560 lb_cpu[cpu].lbc_cnt_start = lb; 2561 } 2562 } 2563 2564 ASSERT(lb >= lb_info->lbi_debug_time); 2565 2566 return (lb - lb_info->lbi_debug_time); 2567 } 2568 2569 /* 2570 * The lbolt_cyclic() routine will fire at a nsec_per_tick interval to satisfy 2571 * performance needs of ddi_get_lbolt() and ddi_get_lbolt64() consumers. 2572 * It is inactive by default, and will be activated when switching from event 2573 * to cyclic driven lbolt. The cyclic will turn itself off unless signaled 2574 * by lbolt_cyclic_driven(). 2575 */ 2576 static void 2577 lbolt_cyclic(void) 2578 { 2579 int ret; 2580 2581 lb_info->lbi_internal++; 2582 2583 if (!lbolt_cyc_only) { 2584 2585 if (lb_info->lbi_cyc_deactivate) { 2586 /* 2587 * Switching from cyclic to event driven mode. 2588 */ 2589 if (panicstr == NULL && 2590 atomic_cas_32(&lb_info->lbi_token, 0, 1) == 0) { 2591 2592 if (lbolt_hybrid == lbolt_event_driven) { 2593 ret = atomic_dec_32_nv( 2594 &lb_info->lbi_token); 2595 ASSERT(ret == 0); 2596 return; 2597 } 2598 2599 kpreempt_disable(); 2600 2601 lbolt_hybrid = lbolt_event_driven; 2602 ret = cyclic_reprogram( 2603 lb_info->id.lbi_cyclic_id, 2604 CY_INFINITY); 2605 ASSERT(ret); 2606 2607 kpreempt_enable(); 2608 2609 ret = atomic_dec_32_nv(&lb_info->lbi_token); 2610 ASSERT(ret == 0); 2611 } 2612 } 2613 2614 /* 2615 * The lbolt cyclic should not try to deactivate itself before 2616 * the sampling period has elapsed. 2617 */ 2618 if (lb_info->lbi_internal - lb_info->lbi_cyc_deac_start >= 2619 lb_info->lbi_thresh_interval) { 2620 lb_info->lbi_cyc_deactivate = B_TRUE; 2621 lb_info->lbi_cyc_deac_start = lb_info->lbi_internal; 2622 } 2623 } 2624 } 2625 2626 /* 2627 * Since the lbolt service was historically cyclic driven, it must be 'stopped' 2628 * when the system drops into the kernel debugger. lbolt_debug_entry() is 2629 * called by the KDI system claim callbacks to record a hires timestamp at 2630 * debug enter time. lbolt_debug_return() is called by the sistem release 2631 * callbacks to account for the time spent in the debugger. The value is then 2632 * accumulated in the lb_info structure and used by lbolt_event_driven() and 2633 * lbolt_cyclic_driven(), as well as the mdb_get_lbolt() routine. 2634 */ 2635 void 2636 lbolt_debug_entry(void) 2637 { 2638 if (lbolt_hybrid != lbolt_bootstrap) { 2639 ASSERT(lb_info != NULL); 2640 lb_info->lbi_debug_ts = gethrtime(); 2641 } 2642 } 2643 2644 /* 2645 * Calculate the time spent in the debugger and add it to the lbolt info 2646 * structure. We also update the internal lbolt value in case we were in 2647 * cyclic driven mode going in. 2648 */ 2649 void 2650 lbolt_debug_return(void) 2651 { 2652 hrtime_t ts; 2653 2654 if (lbolt_hybrid != lbolt_bootstrap) { 2655 ASSERT(lb_info != NULL); 2656 ASSERT(nsec_per_tick > 0); 2657 2658 ts = gethrtime(); 2659 lb_info->lbi_internal = (ts/nsec_per_tick); 2660 lb_info->lbi_debug_time += 2661 ((ts - lb_info->lbi_debug_ts)/nsec_per_tick); 2662 2663 lb_info->lbi_debug_ts = 0; 2664 } 2665 }