1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 1990 Mentat Inc. 24 */ 25 /* 26 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 27 */ 28 29 /* 30 * This file contains the interface control functions for IP. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/stream.h> 35 #include <sys/dlpi.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/sysmacros.h> 39 #include <sys/strsubr.h> 40 #include <sys/strlog.h> 41 #include <sys/ddi.h> 42 #include <sys/sunddi.h> 43 #include <sys/cmn_err.h> 44 #include <sys/kstat.h> 45 #include <sys/debug.h> 46 #include <sys/zone.h> 47 #include <sys/sunldi.h> 48 #include <sys/file.h> 49 #include <sys/bitmap.h> 50 #include <sys/cpuvar.h> 51 #include <sys/time.h> 52 #include <sys/ctype.h> 53 #include <sys/kmem.h> 54 #include <sys/systm.h> 55 #include <sys/param.h> 56 #include <sys/socket.h> 57 #include <sys/isa_defs.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/if_types.h> 61 #include <net/if_dl.h> 62 #include <net/route.h> 63 #include <sys/sockio.h> 64 #include <netinet/in.h> 65 #include <netinet/ip6.h> 66 #include <netinet/icmp6.h> 67 #include <netinet/igmp_var.h> 68 #include <sys/policy.h> 69 #include <sys/ethernet.h> 70 #include <sys/callb.h> 71 #include <sys/md5.h> 72 73 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 74 #include <inet/mi.h> 75 #include <inet/nd.h> 76 #include <inet/tunables.h> 77 #include <inet/arp.h> 78 #include <inet/ip_arp.h> 79 #include <inet/mib2.h> 80 #include <inet/ip.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/ip_multi.h> 85 #include <inet/ip_ire.h> 86 #include <inet/ip_ftable.h> 87 #include <inet/ip_rts.h> 88 #include <inet/ip_ndp.h> 89 #include <inet/ip_if.h> 90 #include <inet/ip_impl.h> 91 #include <inet/sctp_ip.h> 92 #include <inet/ip_netinfo.h> 93 #include <inet/ilb_ip.h> 94 95 #include <netinet/igmp.h> 96 #include <inet/ip_listutils.h> 97 #include <inet/ipclassifier.h> 98 #include <sys/mac_client.h> 99 #include <sys/dld.h> 100 #include <sys/mac_flow.h> 101 102 #include <sys/systeminfo.h> 103 #include <sys/bootconf.h> 104 105 #include <sys/tsol/tndb.h> 106 #include <sys/tsol/tnet.h> 107 108 #include <inet/rawip_impl.h> /* needed for icmp_stack_t */ 109 #include <inet/udp_impl.h> /* needed for udp_stack_t */ 110 111 /* The character which tells where the ill_name ends */ 112 #define IPIF_SEPARATOR_CHAR ':' 113 114 /* IP ioctl function table entry */ 115 typedef struct ipft_s { 116 int ipft_cmd; 117 pfi_t ipft_pfi; 118 int ipft_min_size; 119 int ipft_flags; 120 } ipft_t; 121 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 122 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 123 124 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 125 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 126 char *value, caddr_t cp, cred_t *ioc_cr); 127 128 static boolean_t ill_is_quiescent(ill_t *); 129 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 130 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 131 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 132 mblk_t *mp, boolean_t need_up); 133 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 134 mblk_t *mp, boolean_t need_up); 135 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 136 queue_t *q, mblk_t *mp, boolean_t need_up); 137 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 138 mblk_t *mp); 139 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 140 mblk_t *mp); 141 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 142 queue_t *q, mblk_t *mp, boolean_t need_up); 143 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 144 int ioccmd, struct linkblk *li); 145 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 146 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 147 static void ipsq_flush(ill_t *ill); 148 149 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 150 queue_t *q, mblk_t *mp, boolean_t need_up); 151 static void ipsq_delete(ipsq_t *); 152 153 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 154 boolean_t initialize, boolean_t insert, int *errorp); 155 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 156 static void ipif_delete_bcast_ires(ipif_t *ipif); 157 static int ipif_add_ires_v4(ipif_t *, boolean_t); 158 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 159 boolean_t isv6); 160 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 161 static void ipif_free(ipif_t *ipif); 162 static void ipif_free_tail(ipif_t *ipif); 163 static void ipif_set_default(ipif_t *ipif); 164 static int ipif_set_values(queue_t *q, mblk_t *mp, 165 char *interf_name, uint_t *ppa); 166 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 167 queue_t *q); 168 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 169 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 170 ip_stack_t *); 171 static ipif_t *ipif_lookup_on_name_async(char *name, size_t namelen, 172 boolean_t isv6, zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, 173 int *error, ip_stack_t *); 174 175 static int ill_alloc_ppa(ill_if_t *, ill_t *); 176 static void ill_delete_interface_type(ill_if_t *); 177 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 178 static void ill_dl_down(ill_t *ill); 179 static void ill_down(ill_t *ill); 180 static void ill_down_ipifs(ill_t *, boolean_t); 181 static void ill_free_mib(ill_t *ill); 182 static void ill_glist_delete(ill_t *); 183 static void ill_phyint_reinit(ill_t *ill); 184 static void ill_set_nce_router_flags(ill_t *, boolean_t); 185 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 186 static void ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *); 187 188 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid; 189 static ip_v6intfid_func_t ip_ipv4_v6intfid, ip_ipv6_v6intfid; 190 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid; 191 static ip_v6intfid_func_t ip_ipv4_v6destintfid, ip_ipv6_v6destintfid; 192 static ip_v4mapinfo_func_t ip_ether_v4_mapping; 193 static ip_v6mapinfo_func_t ip_ether_v6_mapping; 194 static ip_v4mapinfo_func_t ip_ib_v4_mapping; 195 static ip_v6mapinfo_func_t ip_ib_v6_mapping; 196 static ip_v4mapinfo_func_t ip_mbcast_mapping; 197 static void ip_cgtp_bcast_add(ire_t *, ip_stack_t *); 198 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 199 static void phyint_free(phyint_t *); 200 201 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *); 202 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 203 static void ill_capability_vrrp_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 204 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 205 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *); 206 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 207 dl_capability_sub_t *); 208 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *); 209 static void ill_capability_dld_reset_fill(ill_t *, mblk_t *); 210 static void ill_capability_dld_ack(ill_t *, mblk_t *, 211 dl_capability_sub_t *); 212 static void ill_capability_dld_enable(ill_t *); 213 static void ill_capability_ack_thr(void *); 214 static void ill_capability_lso_enable(ill_t *); 215 216 static ill_t *ill_prev_usesrc(ill_t *); 217 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 218 static void ill_disband_usesrc_group(ill_t *); 219 static void ip_sioctl_garp_reply(mblk_t *, ill_t *, void *, int); 220 221 #ifdef DEBUG 222 static void ill_trace_cleanup(const ill_t *); 223 static void ipif_trace_cleanup(const ipif_t *); 224 #endif 225 226 static void ill_dlpi_clear_deferred(ill_t *ill); 227 228 static void phyint_flags_init(phyint_t *, t_uscalar_t); 229 230 /* 231 * if we go over the memory footprint limit more than once in this msec 232 * interval, we'll start pruning aggressively. 233 */ 234 int ip_min_frag_prune_time = 0; 235 236 static ipft_t ip_ioctl_ftbl[] = { 237 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 238 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 239 IPFT_F_NO_REPLY }, 240 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 241 { 0 } 242 }; 243 244 /* Simple ICMP IP Header Template */ 245 static ipha_t icmp_ipha = { 246 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 247 }; 248 249 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 250 251 static ip_m_t ip_m_tbl[] = { 252 { DL_ETHER, IFT_ETHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 253 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 254 ip_nodef_v6intfid }, 255 { DL_CSMACD, IFT_ISO88023, ETHERTYPE_IP, ETHERTYPE_IPV6, 256 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 257 ip_nodef_v6intfid }, 258 { DL_TPB, IFT_ISO88024, ETHERTYPE_IP, ETHERTYPE_IPV6, 259 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 260 ip_nodef_v6intfid }, 261 { DL_TPR, IFT_ISO88025, ETHERTYPE_IP, ETHERTYPE_IPV6, 262 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 263 ip_nodef_v6intfid }, 264 { DL_FDDI, IFT_FDDI, ETHERTYPE_IP, ETHERTYPE_IPV6, 265 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 266 ip_nodef_v6intfid }, 267 { DL_IB, IFT_IB, ETHERTYPE_IP, ETHERTYPE_IPV6, 268 ip_ib_v4_mapping, ip_ib_v6_mapping, ip_ib_v6intfid, 269 ip_nodef_v6intfid }, 270 { DL_IPV4, IFT_IPV4, IPPROTO_ENCAP, IPPROTO_IPV6, 271 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 272 ip_ipv4_v6destintfid }, 273 { DL_IPV6, IFT_IPV6, IPPROTO_ENCAP, IPPROTO_IPV6, 274 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv6_v6intfid, 275 ip_ipv6_v6destintfid }, 276 { DL_6TO4, IFT_6TO4, IPPROTO_ENCAP, IPPROTO_IPV6, 277 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 278 ip_nodef_v6intfid }, 279 { SUNW_DL_VNI, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 280 NULL, NULL, ip_nodef_v6intfid, ip_nodef_v6intfid }, 281 { SUNW_DL_IPMP, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 282 NULL, NULL, ip_ipmp_v6intfid, ip_nodef_v6intfid }, 283 { DL_OTHER, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 284 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 285 ip_nodef_v6intfid } 286 }; 287 288 char ipif_loopback_name[] = "lo0"; 289 290 /* These are used by all IP network modules. */ 291 sin6_t sin6_null; /* Zero address for quick clears */ 292 sin_t sin_null; /* Zero address for quick clears */ 293 294 /* When set search for unused ipif_seqid */ 295 static ipif_t ipif_zero; 296 297 /* 298 * ppa arena is created after these many 299 * interfaces have been plumbed. 300 */ 301 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 302 303 /* 304 * Allocate per-interface mibs. 305 * Returns true if ok. False otherwise. 306 * ipsq may not yet be allocated (loopback case ). 307 */ 308 static boolean_t 309 ill_allocate_mibs(ill_t *ill) 310 { 311 /* Already allocated? */ 312 if (ill->ill_ip_mib != NULL) { 313 if (ill->ill_isv6) 314 ASSERT(ill->ill_icmp6_mib != NULL); 315 return (B_TRUE); 316 } 317 318 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 319 KM_NOSLEEP); 320 if (ill->ill_ip_mib == NULL) { 321 return (B_FALSE); 322 } 323 324 /* Setup static information */ 325 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 326 sizeof (mib2_ipIfStatsEntry_t)); 327 if (ill->ill_isv6) { 328 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 329 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 330 sizeof (mib2_ipv6AddrEntry_t)); 331 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 332 sizeof (mib2_ipv6RouteEntry_t)); 333 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 334 sizeof (mib2_ipv6NetToMediaEntry_t)); 335 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 336 sizeof (ipv6_member_t)); 337 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 338 sizeof (ipv6_grpsrc_t)); 339 } else { 340 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 341 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 342 sizeof (mib2_ipAddrEntry_t)); 343 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 344 sizeof (mib2_ipRouteEntry_t)); 345 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 346 sizeof (mib2_ipNetToMediaEntry_t)); 347 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 348 sizeof (ip_member_t)); 349 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 350 sizeof (ip_grpsrc_t)); 351 352 /* 353 * For a v4 ill, we are done at this point, because per ill 354 * icmp mibs are only used for v6. 355 */ 356 return (B_TRUE); 357 } 358 359 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 360 KM_NOSLEEP); 361 if (ill->ill_icmp6_mib == NULL) { 362 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 363 ill->ill_ip_mib = NULL; 364 return (B_FALSE); 365 } 366 /* static icmp info */ 367 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 368 sizeof (mib2_ipv6IfIcmpEntry_t); 369 /* 370 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 371 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 372 * -> ill_phyint_reinit 373 */ 374 return (B_TRUE); 375 } 376 377 /* 378 * Completely vaporize a lower level tap and all associated interfaces. 379 * ill_delete is called only out of ip_close when the device control 380 * stream is being closed. 381 */ 382 void 383 ill_delete(ill_t *ill) 384 { 385 ipif_t *ipif; 386 ill_t *prev_ill; 387 ip_stack_t *ipst = ill->ill_ipst; 388 389 /* 390 * ill_delete may be forcibly entering the ipsq. The previous 391 * ioctl may not have completed and may need to be aborted. 392 * ipsq_flush takes care of it. If we don't need to enter the 393 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 394 * ill_delete_tail is sufficient. 395 */ 396 ipsq_flush(ill); 397 398 /* 399 * Nuke all interfaces. ipif_free will take down the interface, 400 * remove it from the list, and free the data structure. 401 * Walk down the ipif list and remove the logical interfaces 402 * first before removing the main ipif. We can't unplumb 403 * zeroth interface first in the case of IPv6 as update_conn_ill 404 * -> ip_ll_multireq de-references ill_ipif for checking 405 * POINTOPOINT. 406 * 407 * If ill_ipif was not properly initialized (i.e low on memory), 408 * then no interfaces to clean up. In this case just clean up the 409 * ill. 410 */ 411 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 412 ipif_free(ipif); 413 414 /* 415 * clean out all the nce_t entries that depend on this 416 * ill for the ill_phys_addr. 417 */ 418 nce_flush(ill, B_TRUE); 419 420 /* Clean up msgs on pending upcalls for mrouted */ 421 reset_mrt_ill(ill); 422 423 update_conn_ill(ill, ipst); 424 425 /* 426 * Remove multicast references added as a result of calls to 427 * ip_join_allmulti(). 428 */ 429 ip_purge_allmulti(ill); 430 431 /* 432 * If the ill being deleted is under IPMP, boot it out of the illgrp. 433 */ 434 if (IS_UNDER_IPMP(ill)) 435 ipmp_ill_leave_illgrp(ill); 436 437 /* 438 * ill_down will arrange to blow off any IRE's dependent on this 439 * ILL, and shut down fragmentation reassembly. 440 */ 441 ill_down(ill); 442 443 /* Let SCTP know, so that it can remove this from its list. */ 444 sctp_update_ill(ill, SCTP_ILL_REMOVE); 445 446 /* 447 * Walk all CONNs that can have a reference on an ire or nce for this 448 * ill (we actually walk all that now have stale references). 449 */ 450 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 451 452 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 453 if (ill->ill_isv6) 454 dce_cleanup(ill->ill_phyint->phyint_ifindex, ipst); 455 456 /* 457 * If an address on this ILL is being used as a source address then 458 * clear out the pointers in other ILLs that point to this ILL. 459 */ 460 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 461 if (ill->ill_usesrc_grp_next != NULL) { 462 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 463 ill_disband_usesrc_group(ill); 464 } else { /* consumer of the usesrc ILL */ 465 prev_ill = ill_prev_usesrc(ill); 466 prev_ill->ill_usesrc_grp_next = 467 ill->ill_usesrc_grp_next; 468 } 469 } 470 rw_exit(&ipst->ips_ill_g_usesrc_lock); 471 } 472 473 static void 474 ipif_non_duplicate(ipif_t *ipif) 475 { 476 ill_t *ill = ipif->ipif_ill; 477 mutex_enter(&ill->ill_lock); 478 if (ipif->ipif_flags & IPIF_DUPLICATE) { 479 ipif->ipif_flags &= ~IPIF_DUPLICATE; 480 ASSERT(ill->ill_ipif_dup_count > 0); 481 ill->ill_ipif_dup_count--; 482 } 483 mutex_exit(&ill->ill_lock); 484 } 485 486 /* 487 * ill_delete_tail is called from ip_modclose after all references 488 * to the closing ill are gone. The wait is done in ip_modclose 489 */ 490 void 491 ill_delete_tail(ill_t *ill) 492 { 493 mblk_t **mpp; 494 ipif_t *ipif; 495 ip_stack_t *ipst = ill->ill_ipst; 496 497 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 498 ipif_non_duplicate(ipif); 499 (void) ipif_down_tail(ipif); 500 } 501 502 ASSERT(ill->ill_ipif_dup_count == 0); 503 504 /* 505 * If polling capability is enabled (which signifies direct 506 * upcall into IP and driver has ill saved as a handle), 507 * we need to make sure that unbind has completed before we 508 * let the ill disappear and driver no longer has any reference 509 * to this ill. 510 */ 511 mutex_enter(&ill->ill_lock); 512 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 513 cv_wait(&ill->ill_cv, &ill->ill_lock); 514 mutex_exit(&ill->ill_lock); 515 ASSERT(!(ill->ill_capabilities & 516 (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT))); 517 518 if (ill->ill_net_type != IRE_LOOPBACK) 519 qprocsoff(ill->ill_rq); 520 521 /* 522 * We do an ipsq_flush once again now. New messages could have 523 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 524 * could also have landed up if an ioctl thread had looked up 525 * the ill before we set the ILL_CONDEMNED flag, but not yet 526 * enqueued the ioctl when we did the ipsq_flush last time. 527 */ 528 ipsq_flush(ill); 529 530 /* 531 * Free capabilities. 532 */ 533 if (ill->ill_hcksum_capab != NULL) { 534 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 535 ill->ill_hcksum_capab = NULL; 536 } 537 538 if (ill->ill_zerocopy_capab != NULL) { 539 kmem_free(ill->ill_zerocopy_capab, 540 sizeof (ill_zerocopy_capab_t)); 541 ill->ill_zerocopy_capab = NULL; 542 } 543 544 if (ill->ill_lso_capab != NULL) { 545 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 546 ill->ill_lso_capab = NULL; 547 } 548 549 if (ill->ill_dld_capab != NULL) { 550 kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t)); 551 ill->ill_dld_capab = NULL; 552 } 553 554 /* Clean up ill_allowed_ips* related state */ 555 if (ill->ill_allowed_ips != NULL) { 556 ASSERT(ill->ill_allowed_ips_cnt > 0); 557 kmem_free(ill->ill_allowed_ips, 558 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t)); 559 ill->ill_allowed_ips = NULL; 560 ill->ill_allowed_ips_cnt = 0; 561 } 562 563 while (ill->ill_ipif != NULL) 564 ipif_free_tail(ill->ill_ipif); 565 566 /* 567 * We have removed all references to ilm from conn and the ones joined 568 * within the kernel. 569 * 570 * We don't walk conns, mrts and ires because 571 * 572 * 1) update_conn_ill and reset_mrt_ill cleans up conns and mrts. 573 * 2) ill_down ->ill_downi walks all the ires and cleans up 574 * ill references. 575 */ 576 577 /* 578 * If this ill is an IPMP meta-interface, blow away the illgrp. This 579 * is safe to do because the illgrp has already been unlinked from the 580 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it. 581 */ 582 if (IS_IPMP(ill)) { 583 ipmp_illgrp_destroy(ill->ill_grp); 584 ill->ill_grp = NULL; 585 } 586 587 if (ill->ill_mphysaddr_list != NULL) { 588 multiphysaddr_t *mpa, *tmpa; 589 590 mpa = ill->ill_mphysaddr_list; 591 ill->ill_mphysaddr_list = NULL; 592 while (mpa) { 593 tmpa = mpa->mpa_next; 594 kmem_free(mpa, sizeof (*mpa)); 595 mpa = tmpa; 596 } 597 } 598 /* 599 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free 600 * could free the phyint. No more reference to the phyint after this 601 * point. 602 */ 603 (void) ill_glist_delete(ill); 604 605 if (ill->ill_frag_ptr != NULL) { 606 uint_t count; 607 608 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 609 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 610 } 611 mi_free(ill->ill_frag_ptr); 612 ill->ill_frag_ptr = NULL; 613 ill->ill_frag_hash_tbl = NULL; 614 } 615 616 freemsg(ill->ill_nd_lla_mp); 617 /* Free all retained control messages. */ 618 mpp = &ill->ill_first_mp_to_free; 619 do { 620 while (mpp[0]) { 621 mblk_t *mp; 622 mblk_t *mp1; 623 624 mp = mpp[0]; 625 mpp[0] = mp->b_next; 626 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 627 mp1->b_next = NULL; 628 mp1->b_prev = NULL; 629 } 630 freemsg(mp); 631 } 632 } while (mpp++ != &ill->ill_last_mp_to_free); 633 634 ill_free_mib(ill); 635 636 #ifdef DEBUG 637 ill_trace_cleanup(ill); 638 #endif 639 640 /* The default multicast interface might have changed */ 641 ire_increment_multicast_generation(ipst, ill->ill_isv6); 642 643 /* Drop refcnt here */ 644 netstack_rele(ill->ill_ipst->ips_netstack); 645 ill->ill_ipst = NULL; 646 } 647 648 static void 649 ill_free_mib(ill_t *ill) 650 { 651 ip_stack_t *ipst = ill->ill_ipst; 652 653 /* 654 * MIB statistics must not be lost, so when an interface 655 * goes away the counter values will be added to the global 656 * MIBs. 657 */ 658 if (ill->ill_ip_mib != NULL) { 659 if (ill->ill_isv6) { 660 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 661 ill->ill_ip_mib); 662 } else { 663 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 664 ill->ill_ip_mib); 665 } 666 667 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 668 ill->ill_ip_mib = NULL; 669 } 670 if (ill->ill_icmp6_mib != NULL) { 671 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 672 ill->ill_icmp6_mib); 673 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 674 ill->ill_icmp6_mib = NULL; 675 } 676 } 677 678 /* 679 * Concatenate together a physical address and a sap. 680 * 681 * Sap_lengths are interpreted as follows: 682 * sap_length == 0 ==> no sap 683 * sap_length > 0 ==> sap is at the head of the dlpi address 684 * sap_length < 0 ==> sap is at the tail of the dlpi address 685 */ 686 static void 687 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 688 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 689 { 690 uint16_t sap_addr = (uint16_t)sap_src; 691 692 if (sap_length == 0) { 693 if (phys_src == NULL) 694 bzero(dst, phys_length); 695 else 696 bcopy(phys_src, dst, phys_length); 697 } else if (sap_length < 0) { 698 if (phys_src == NULL) 699 bzero(dst, phys_length); 700 else 701 bcopy(phys_src, dst, phys_length); 702 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 703 } else { 704 bcopy(&sap_addr, dst, sizeof (sap_addr)); 705 if (phys_src == NULL) 706 bzero((char *)dst + sap_length, phys_length); 707 else 708 bcopy(phys_src, (char *)dst + sap_length, phys_length); 709 } 710 } 711 712 /* 713 * Generate a dl_unitdata_req mblk for the device and address given. 714 * addr_length is the length of the physical portion of the address. 715 * If addr is NULL include an all zero address of the specified length. 716 * TRUE? In any case, addr_length is taken to be the entire length of the 717 * dlpi address, including the absolute value of sap_length. 718 */ 719 mblk_t * 720 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 721 t_scalar_t sap_length) 722 { 723 dl_unitdata_req_t *dlur; 724 mblk_t *mp; 725 t_scalar_t abs_sap_length; /* absolute value */ 726 727 abs_sap_length = ABS(sap_length); 728 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 729 DL_UNITDATA_REQ); 730 if (mp == NULL) 731 return (NULL); 732 dlur = (dl_unitdata_req_t *)mp->b_rptr; 733 /* HACK: accomodate incompatible DLPI drivers */ 734 if (addr_length == 8) 735 addr_length = 6; 736 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 737 dlur->dl_dest_addr_offset = sizeof (*dlur); 738 dlur->dl_priority.dl_min = 0; 739 dlur->dl_priority.dl_max = 0; 740 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 741 (uchar_t *)&dlur[1]); 742 return (mp); 743 } 744 745 /* 746 * Add the pending mp to the list. There can be only 1 pending mp 747 * in the list. Any exclusive ioctl that needs to wait for a response 748 * from another module or driver needs to use this function to set 749 * the ipx_pending_mp to the ioctl mblk and wait for the response from 750 * the other module/driver. This is also used while waiting for the 751 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 752 */ 753 boolean_t 754 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 755 int waitfor) 756 { 757 ipxop_t *ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop; 758 759 ASSERT(IAM_WRITER_IPIF(ipif)); 760 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 761 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 762 ASSERT(ipx->ipx_pending_mp == NULL); 763 /* 764 * The caller may be using a different ipif than the one passed into 765 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 766 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 767 * that `ipx_current_ipif == ipif'. 768 */ 769 ASSERT(ipx->ipx_current_ipif != NULL); 770 771 /* 772 * M_IOCDATA from ioctls, M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the 773 * driver. 774 */ 775 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_ERROR) || 776 (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) || 777 (DB_TYPE(add_mp) == M_PCPROTO)); 778 779 if (connp != NULL) { 780 ASSERT(MUTEX_HELD(&connp->conn_lock)); 781 /* 782 * Return error if the conn has started closing. The conn 783 * could have finished cleaning up the pending mp list, 784 * If so we should not add another mp to the list negating 785 * the cleanup. 786 */ 787 if (connp->conn_state_flags & CONN_CLOSING) 788 return (B_FALSE); 789 } 790 mutex_enter(&ipx->ipx_lock); 791 ipx->ipx_pending_ipif = ipif; 792 /* 793 * Note down the queue in b_queue. This will be returned by 794 * ipsq_pending_mp_get. Caller will then use these values to restart 795 * the processing 796 */ 797 add_mp->b_next = NULL; 798 add_mp->b_queue = q; 799 ipx->ipx_pending_mp = add_mp; 800 ipx->ipx_waitfor = waitfor; 801 mutex_exit(&ipx->ipx_lock); 802 803 if (connp != NULL) 804 connp->conn_oper_pending_ill = ipif->ipif_ill; 805 806 return (B_TRUE); 807 } 808 809 /* 810 * Retrieve the ipx_pending_mp and return it. There can be only 1 mp 811 * queued in the list. 812 */ 813 mblk_t * 814 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 815 { 816 mblk_t *curr = NULL; 817 ipxop_t *ipx = ipsq->ipsq_xop; 818 819 *connpp = NULL; 820 mutex_enter(&ipx->ipx_lock); 821 if (ipx->ipx_pending_mp == NULL) { 822 mutex_exit(&ipx->ipx_lock); 823 return (NULL); 824 } 825 826 /* There can be only 1 such excl message */ 827 curr = ipx->ipx_pending_mp; 828 ASSERT(curr->b_next == NULL); 829 ipx->ipx_pending_ipif = NULL; 830 ipx->ipx_pending_mp = NULL; 831 ipx->ipx_waitfor = 0; 832 mutex_exit(&ipx->ipx_lock); 833 834 if (CONN_Q(curr->b_queue)) { 835 /* 836 * This mp did a refhold on the conn, at the start of the ioctl. 837 * So we can safely return a pointer to the conn to the caller. 838 */ 839 *connpp = Q_TO_CONN(curr->b_queue); 840 } else { 841 *connpp = NULL; 842 } 843 curr->b_next = NULL; 844 curr->b_prev = NULL; 845 return (curr); 846 } 847 848 /* 849 * Cleanup the ioctl mp queued in ipx_pending_mp 850 * - Called in the ill_delete path 851 * - Called in the M_ERROR or M_HANGUP path on the ill. 852 * - Called in the conn close path. 853 * 854 * Returns success on finding the pending mblk associated with the ioctl or 855 * exclusive operation in progress, failure otherwise. 856 */ 857 boolean_t 858 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 859 { 860 mblk_t *mp; 861 ipxop_t *ipx; 862 queue_t *q; 863 ipif_t *ipif; 864 int cmd; 865 866 ASSERT(IAM_WRITER_ILL(ill)); 867 ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 868 869 mutex_enter(&ipx->ipx_lock); 870 mp = ipx->ipx_pending_mp; 871 if (connp != NULL) { 872 if (mp == NULL || mp->b_queue != CONNP_TO_WQ(connp)) { 873 /* 874 * Nothing to clean since the conn that is closing 875 * does not have a matching pending mblk in 876 * ipx_pending_mp. 877 */ 878 mutex_exit(&ipx->ipx_lock); 879 return (B_FALSE); 880 } 881 } else { 882 /* 883 * A non-zero ill_error signifies we are called in the 884 * M_ERROR or M_HANGUP path and we need to unconditionally 885 * abort any current ioctl and do the corresponding cleanup. 886 * A zero ill_error means we are in the ill_delete path and 887 * we do the cleanup only if there is a pending mp. 888 */ 889 if (mp == NULL && ill->ill_error == 0) { 890 mutex_exit(&ipx->ipx_lock); 891 return (B_FALSE); 892 } 893 } 894 895 /* Now remove from the ipx_pending_mp */ 896 ipx->ipx_pending_mp = NULL; 897 ipif = ipx->ipx_pending_ipif; 898 ipx->ipx_pending_ipif = NULL; 899 ipx->ipx_waitfor = 0; 900 ipx->ipx_current_ipif = NULL; 901 cmd = ipx->ipx_current_ioctl; 902 ipx->ipx_current_ioctl = 0; 903 ipx->ipx_current_done = B_TRUE; 904 mutex_exit(&ipx->ipx_lock); 905 906 if (mp == NULL) 907 return (B_FALSE); 908 909 q = mp->b_queue; 910 mp->b_next = NULL; 911 mp->b_prev = NULL; 912 mp->b_queue = NULL; 913 914 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 915 DTRACE_PROBE4(ipif__ioctl, 916 char *, "ipsq_pending_mp_cleanup", 917 int, cmd, ill_t *, ipif == NULL ? NULL : ipif->ipif_ill, 918 ipif_t *, ipif); 919 if (connp == NULL) { 920 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 921 } else { 922 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 923 mutex_enter(&ipif->ipif_ill->ill_lock); 924 ipif->ipif_state_flags &= ~IPIF_CHANGING; 925 mutex_exit(&ipif->ipif_ill->ill_lock); 926 } 927 } else { 928 inet_freemsg(mp); 929 } 930 return (B_TRUE); 931 } 932 933 /* 934 * Called in the conn close path and ill delete path 935 */ 936 static void 937 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 938 { 939 ipsq_t *ipsq; 940 mblk_t *prev; 941 mblk_t *curr; 942 mblk_t *next; 943 queue_t *wq, *rq = NULL; 944 mblk_t *tmp_list = NULL; 945 946 ASSERT(IAM_WRITER_ILL(ill)); 947 if (connp != NULL) 948 wq = CONNP_TO_WQ(connp); 949 else 950 wq = ill->ill_wq; 951 952 /* 953 * In the case of lo0 being unplumbed, ill_wq will be NULL. Guard 954 * against this here. 955 */ 956 if (wq != NULL) 957 rq = RD(wq); 958 959 ipsq = ill->ill_phyint->phyint_ipsq; 960 /* 961 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 962 * In the case of ioctl from a conn, there can be only 1 mp 963 * queued on the ipsq. If an ill is being unplumbed flush all 964 * the messages. 965 */ 966 mutex_enter(&ipsq->ipsq_lock); 967 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 968 curr = next) { 969 next = curr->b_next; 970 if (connp == NULL || 971 (curr->b_queue == wq || curr->b_queue == rq)) { 972 /* Unlink the mblk from the pending mp list */ 973 if (prev != NULL) { 974 prev->b_next = curr->b_next; 975 } else { 976 ASSERT(ipsq->ipsq_xopq_mphead == curr); 977 ipsq->ipsq_xopq_mphead = curr->b_next; 978 } 979 if (ipsq->ipsq_xopq_mptail == curr) 980 ipsq->ipsq_xopq_mptail = prev; 981 /* 982 * Create a temporary list and release the ipsq lock 983 * New elements are added to the head of the tmp_list 984 */ 985 curr->b_next = tmp_list; 986 tmp_list = curr; 987 } else { 988 prev = curr; 989 } 990 } 991 mutex_exit(&ipsq->ipsq_lock); 992 993 while (tmp_list != NULL) { 994 curr = tmp_list; 995 tmp_list = curr->b_next; 996 curr->b_next = NULL; 997 curr->b_prev = NULL; 998 wq = curr->b_queue; 999 curr->b_queue = NULL; 1000 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1001 DTRACE_PROBE4(ipif__ioctl, 1002 char *, "ipsq_xopq_mp_cleanup", 1003 int, 0, ill_t *, NULL, ipif_t *, NULL); 1004 ip_ioctl_finish(wq, curr, ENXIO, connp != NULL ? 1005 CONN_CLOSE : NO_COPYOUT, NULL); 1006 } else { 1007 /* 1008 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1009 * this can't be just inet_freemsg. we have to 1010 * restart it otherwise the thread will be stuck. 1011 */ 1012 inet_freemsg(curr); 1013 } 1014 } 1015 } 1016 1017 /* 1018 * This conn has started closing. Cleanup any pending ioctl from this conn. 1019 * STREAMS ensures that there can be at most 1 active ioctl on a stream. 1020 */ 1021 void 1022 conn_ioctl_cleanup(conn_t *connp) 1023 { 1024 ipsq_t *ipsq; 1025 ill_t *ill; 1026 boolean_t refheld; 1027 1028 /* 1029 * Check for a queued ioctl. If the ioctl has not yet started, the mp 1030 * is pending in the list headed by ipsq_xopq_head. If the ioctl has 1031 * started the mp could be present in ipx_pending_mp. Note that if 1032 * conn_oper_pending_ill is NULL, the ioctl may still be in flight and 1033 * not yet queued anywhere. In this case, the conn close code will wait 1034 * until the conn_ref is dropped. If the stream was a tcp stream, then 1035 * tcp_close will wait first until all ioctls have completed for this 1036 * conn. 1037 */ 1038 mutex_enter(&connp->conn_lock); 1039 ill = connp->conn_oper_pending_ill; 1040 if (ill == NULL) { 1041 mutex_exit(&connp->conn_lock); 1042 return; 1043 } 1044 1045 /* 1046 * We may not be able to refhold the ill if the ill/ipif 1047 * is changing. But we need to make sure that the ill will 1048 * not vanish. So we just bump up the ill_waiter count. 1049 */ 1050 refheld = ill_waiter_inc(ill); 1051 mutex_exit(&connp->conn_lock); 1052 if (refheld) { 1053 if (ipsq_enter(ill, B_TRUE, NEW_OP)) { 1054 ill_waiter_dcr(ill); 1055 /* 1056 * Check whether this ioctl has started and is 1057 * pending. If it is not found there then check 1058 * whether this ioctl has not even started and is in 1059 * the ipsq_xopq list. 1060 */ 1061 if (!ipsq_pending_mp_cleanup(ill, connp)) 1062 ipsq_xopq_mp_cleanup(ill, connp); 1063 ipsq = ill->ill_phyint->phyint_ipsq; 1064 ipsq_exit(ipsq); 1065 return; 1066 } 1067 } 1068 1069 /* 1070 * The ill is also closing and we could not bump up the 1071 * ill_waiter_count or we could not enter the ipsq. Leave 1072 * the cleanup to ill_delete 1073 */ 1074 mutex_enter(&connp->conn_lock); 1075 while (connp->conn_oper_pending_ill != NULL) 1076 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1077 mutex_exit(&connp->conn_lock); 1078 if (refheld) 1079 ill_waiter_dcr(ill); 1080 } 1081 1082 /* 1083 * ipcl_walk function for cleaning up conn_*_ill fields. 1084 * Note that we leave ixa_multicast_ifindex, conn_incoming_ifindex, and 1085 * conn_bound_if in place. We prefer dropping 1086 * packets instead of sending them out the wrong interface, or accepting 1087 * packets from the wrong ifindex. 1088 */ 1089 static void 1090 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1091 { 1092 ill_t *ill = (ill_t *)arg; 1093 1094 mutex_enter(&connp->conn_lock); 1095 if (connp->conn_dhcpinit_ill == ill) { 1096 connp->conn_dhcpinit_ill = NULL; 1097 ASSERT(ill->ill_dhcpinit != 0); 1098 atomic_dec_32(&ill->ill_dhcpinit); 1099 ill_set_inputfn(ill); 1100 } 1101 mutex_exit(&connp->conn_lock); 1102 } 1103 1104 static int 1105 ill_down_ipifs_tail(ill_t *ill) 1106 { 1107 ipif_t *ipif; 1108 int err; 1109 1110 ASSERT(IAM_WRITER_ILL(ill)); 1111 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1112 ipif_non_duplicate(ipif); 1113 /* 1114 * ipif_down_tail will call arp_ll_down on the last ipif 1115 * and typically return EINPROGRESS when the DL_UNBIND is sent. 1116 */ 1117 if ((err = ipif_down_tail(ipif)) != 0) 1118 return (err); 1119 } 1120 return (0); 1121 } 1122 1123 /* ARGSUSED */ 1124 void 1125 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1126 { 1127 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1128 (void) ill_down_ipifs_tail(q->q_ptr); 1129 freemsg(mp); 1130 ipsq_current_finish(ipsq); 1131 } 1132 1133 /* 1134 * ill_down_start is called when we want to down this ill and bring it up again 1135 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1136 * all interfaces, but don't tear down any plumbing. 1137 */ 1138 boolean_t 1139 ill_down_start(queue_t *q, mblk_t *mp) 1140 { 1141 ill_t *ill = q->q_ptr; 1142 ipif_t *ipif; 1143 1144 ASSERT(IAM_WRITER_ILL(ill)); 1145 /* 1146 * It is possible that some ioctl is already in progress while we 1147 * received the M_ERROR / M_HANGUP in which case, we need to abort 1148 * the ioctl. ill_down_start() is being processed as CUR_OP rather 1149 * than as NEW_OP since the cause of the M_ERROR / M_HANGUP may prevent 1150 * the in progress ioctl from ever completing. 1151 * 1152 * The thread that started the ioctl (if any) must have returned, 1153 * since we are now executing as writer. After the 2 calls below, 1154 * the state of the ipsq and the ill would reflect no trace of any 1155 * pending operation. Subsequently if there is any response to the 1156 * original ioctl from the driver, it would be discarded as an 1157 * unsolicited message from the driver. 1158 */ 1159 (void) ipsq_pending_mp_cleanup(ill, NULL); 1160 ill_dlpi_clear_deferred(ill); 1161 1162 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1163 (void) ipif_down(ipif, NULL, NULL); 1164 1165 ill_down(ill); 1166 1167 /* 1168 * Walk all CONNs that can have a reference on an ire or nce for this 1169 * ill (we actually walk all that now have stale references). 1170 */ 1171 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ill->ill_ipst); 1172 1173 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 1174 if (ill->ill_isv6) 1175 dce_cleanup(ill->ill_phyint->phyint_ifindex, ill->ill_ipst); 1176 1177 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1178 1179 /* 1180 * Atomically test and add the pending mp if references are active. 1181 */ 1182 mutex_enter(&ill->ill_lock); 1183 if (!ill_is_quiescent(ill)) { 1184 /* call cannot fail since `conn_t *' argument is NULL */ 1185 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1186 mp, ILL_DOWN); 1187 mutex_exit(&ill->ill_lock); 1188 return (B_FALSE); 1189 } 1190 mutex_exit(&ill->ill_lock); 1191 return (B_TRUE); 1192 } 1193 1194 static void 1195 ill_down(ill_t *ill) 1196 { 1197 mblk_t *mp; 1198 ip_stack_t *ipst = ill->ill_ipst; 1199 1200 /* 1201 * Blow off any IREs dependent on this ILL. 1202 * The caller needs to handle conn_ixa_cleanup 1203 */ 1204 ill_delete_ires(ill); 1205 1206 ire_walk_ill(0, 0, ill_downi, ill, ill); 1207 1208 /* Remove any conn_*_ill depending on this ill */ 1209 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1210 1211 /* 1212 * Free state for additional IREs. 1213 */ 1214 mutex_enter(&ill->ill_saved_ire_lock); 1215 mp = ill->ill_saved_ire_mp; 1216 ill->ill_saved_ire_mp = NULL; 1217 ill->ill_saved_ire_cnt = 0; 1218 mutex_exit(&ill->ill_saved_ire_lock); 1219 freemsg(mp); 1220 } 1221 1222 /* 1223 * ire_walk routine used to delete every IRE that depends on 1224 * 'ill'. (Always called as writer, and may only be called from ire_walk.) 1225 * 1226 * Note: since the routes added by the kernel are deleted separately, 1227 * this will only be 1) IRE_IF_CLONE and 2) manually added IRE_INTERFACE. 1228 * 1229 * We also remove references on ire_nce_cache entries that refer to the ill. 1230 */ 1231 void 1232 ill_downi(ire_t *ire, char *ill_arg) 1233 { 1234 ill_t *ill = (ill_t *)ill_arg; 1235 nce_t *nce; 1236 1237 mutex_enter(&ire->ire_lock); 1238 nce = ire->ire_nce_cache; 1239 if (nce != NULL && nce->nce_ill == ill) 1240 ire->ire_nce_cache = NULL; 1241 else 1242 nce = NULL; 1243 mutex_exit(&ire->ire_lock); 1244 if (nce != NULL) 1245 nce_refrele(nce); 1246 if (ire->ire_ill == ill) { 1247 /* 1248 * The existing interface binding for ire must be 1249 * deleted before trying to bind the route to another 1250 * interface. However, since we are using the contents of the 1251 * ire after ire_delete, the caller has to ensure that 1252 * CONDEMNED (deleted) ire's are not removed from the list 1253 * when ire_delete() returns. Currently ill_downi() is 1254 * only called as part of ire_walk*() routines, so that 1255 * the irb_refhold() done by ire_walk*() will ensure that 1256 * ire_delete() does not lead to ire_inactive(). 1257 */ 1258 ASSERT(ire->ire_bucket->irb_refcnt > 0); 1259 ire_delete(ire); 1260 if (ire->ire_unbound) 1261 ire_rebind(ire); 1262 } 1263 } 1264 1265 /* Remove IRE_IF_CLONE on this ill */ 1266 void 1267 ill_downi_if_clone(ire_t *ire, char *ill_arg) 1268 { 1269 ill_t *ill = (ill_t *)ill_arg; 1270 1271 ASSERT(ire->ire_type & IRE_IF_CLONE); 1272 if (ire->ire_ill == ill) 1273 ire_delete(ire); 1274 } 1275 1276 /* Consume an M_IOCACK of the fastpath probe. */ 1277 void 1278 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1279 { 1280 mblk_t *mp1 = mp; 1281 1282 /* 1283 * If this was the first attempt turn on the fastpath probing. 1284 */ 1285 mutex_enter(&ill->ill_lock); 1286 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1287 ill->ill_dlpi_fastpath_state = IDS_OK; 1288 mutex_exit(&ill->ill_lock); 1289 1290 /* Free the M_IOCACK mblk, hold on to the data */ 1291 mp = mp->b_cont; 1292 freeb(mp1); 1293 if (mp == NULL) 1294 return; 1295 if (mp->b_cont != NULL) 1296 nce_fastpath_update(ill, mp); 1297 else 1298 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1299 freemsg(mp); 1300 } 1301 1302 /* 1303 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1304 * The data portion of the request is a dl_unitdata_req_t template for 1305 * what we would send downstream in the absence of a fastpath confirmation. 1306 */ 1307 int 1308 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1309 { 1310 struct iocblk *ioc; 1311 mblk_t *mp; 1312 1313 if (dlur_mp == NULL) 1314 return (EINVAL); 1315 1316 mutex_enter(&ill->ill_lock); 1317 switch (ill->ill_dlpi_fastpath_state) { 1318 case IDS_FAILED: 1319 /* 1320 * Driver NAKed the first fastpath ioctl - assume it doesn't 1321 * support it. 1322 */ 1323 mutex_exit(&ill->ill_lock); 1324 return (ENOTSUP); 1325 case IDS_UNKNOWN: 1326 /* This is the first probe */ 1327 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1328 break; 1329 default: 1330 break; 1331 } 1332 mutex_exit(&ill->ill_lock); 1333 1334 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1335 return (EAGAIN); 1336 1337 mp->b_cont = copyb(dlur_mp); 1338 if (mp->b_cont == NULL) { 1339 freeb(mp); 1340 return (EAGAIN); 1341 } 1342 1343 ioc = (struct iocblk *)mp->b_rptr; 1344 ioc->ioc_count = msgdsize(mp->b_cont); 1345 1346 DTRACE_PROBE3(ill__dlpi, char *, "ill_fastpath_probe", 1347 char *, "DL_IOC_HDR_INFO", ill_t *, ill); 1348 putnext(ill->ill_wq, mp); 1349 return (0); 1350 } 1351 1352 void 1353 ill_capability_probe(ill_t *ill) 1354 { 1355 mblk_t *mp; 1356 1357 ASSERT(IAM_WRITER_ILL(ill)); 1358 1359 if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN && 1360 ill->ill_dlpi_capab_state != IDCS_FAILED) 1361 return; 1362 1363 /* 1364 * We are starting a new cycle of capability negotiation. 1365 * Free up the capab reset messages of any previous incarnation. 1366 * We will do a fresh allocation when we get the response to our probe 1367 */ 1368 if (ill->ill_capab_reset_mp != NULL) { 1369 freemsg(ill->ill_capab_reset_mp); 1370 ill->ill_capab_reset_mp = NULL; 1371 } 1372 1373 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1374 1375 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ); 1376 if (mp == NULL) 1377 return; 1378 1379 ill_capability_send(ill, mp); 1380 ill->ill_dlpi_capab_state = IDCS_PROBE_SENT; 1381 } 1382 1383 void 1384 ill_capability_reset(ill_t *ill, boolean_t reneg) 1385 { 1386 ASSERT(IAM_WRITER_ILL(ill)); 1387 1388 if (ill->ill_dlpi_capab_state != IDCS_OK) 1389 return; 1390 1391 ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT; 1392 1393 ill_capability_send(ill, ill->ill_capab_reset_mp); 1394 ill->ill_capab_reset_mp = NULL; 1395 /* 1396 * We turn off all capabilities except those pertaining to 1397 * direct function call capabilities viz. ILL_CAPAB_DLD* 1398 * which will be turned off by the corresponding reset functions. 1399 */ 1400 ill->ill_capabilities &= ~(ILL_CAPAB_HCKSUM | ILL_CAPAB_ZEROCOPY); 1401 } 1402 1403 static void 1404 ill_capability_reset_alloc(ill_t *ill) 1405 { 1406 mblk_t *mp; 1407 size_t size = 0; 1408 int err; 1409 dl_capability_req_t *capb; 1410 1411 ASSERT(IAM_WRITER_ILL(ill)); 1412 ASSERT(ill->ill_capab_reset_mp == NULL); 1413 1414 if (ILL_HCKSUM_CAPABLE(ill)) { 1415 size += sizeof (dl_capability_sub_t) + 1416 sizeof (dl_capab_hcksum_t); 1417 } 1418 1419 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) { 1420 size += sizeof (dl_capability_sub_t) + 1421 sizeof (dl_capab_zerocopy_t); 1422 } 1423 1424 if (ill->ill_capabilities & ILL_CAPAB_DLD) { 1425 size += sizeof (dl_capability_sub_t) + 1426 sizeof (dl_capab_dld_t); 1427 } 1428 1429 mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED, 1430 STR_NOSIG, &err); 1431 1432 mp->b_datap->db_type = M_PROTO; 1433 bzero(mp->b_rptr, size + sizeof (dl_capability_req_t)); 1434 1435 capb = (dl_capability_req_t *)mp->b_rptr; 1436 capb->dl_primitive = DL_CAPABILITY_REQ; 1437 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1438 capb->dl_sub_length = size; 1439 1440 mp->b_wptr += sizeof (dl_capability_req_t); 1441 1442 /* 1443 * Each handler fills in the corresponding dl_capability_sub_t 1444 * inside the mblk, 1445 */ 1446 ill_capability_hcksum_reset_fill(ill, mp); 1447 ill_capability_zerocopy_reset_fill(ill, mp); 1448 ill_capability_dld_reset_fill(ill, mp); 1449 1450 ill->ill_capab_reset_mp = mp; 1451 } 1452 1453 static void 1454 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1455 { 1456 dl_capab_id_t *id_ic; 1457 uint_t sub_dl_cap = outers->dl_cap; 1458 dl_capability_sub_t *inners; 1459 uint8_t *capend; 1460 1461 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1462 1463 /* 1464 * Note: range checks here are not absolutely sufficient to 1465 * make us robust against malformed messages sent by drivers; 1466 * this is in keeping with the rest of IP's dlpi handling. 1467 * (Remember, it's coming from something else in the kernel 1468 * address space) 1469 */ 1470 1471 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1472 if (capend > mp->b_wptr) { 1473 cmn_err(CE_WARN, "ill_capability_id_ack: " 1474 "malformed sub-capability too long for mblk"); 1475 return; 1476 } 1477 1478 id_ic = (dl_capab_id_t *)(outers + 1); 1479 1480 if (outers->dl_length < sizeof (*id_ic) || 1481 (inners = &id_ic->id_subcap, 1482 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1483 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1484 "encapsulated capab type %d too long for mblk", 1485 inners->dl_cap); 1486 return; 1487 } 1488 1489 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1490 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1491 "isn't as expected; pass-thru module(s) detected, " 1492 "discarding capability\n", inners->dl_cap)); 1493 return; 1494 } 1495 1496 /* Process the encapsulated sub-capability */ 1497 ill_capability_dispatch(ill, mp, inners); 1498 } 1499 1500 static void 1501 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp) 1502 { 1503 dl_capability_sub_t *dl_subcap; 1504 1505 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 1506 return; 1507 1508 /* 1509 * The dl_capab_dld_t that follows the dl_capability_sub_t is not 1510 * initialized below since it is not used by DLD. 1511 */ 1512 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1513 dl_subcap->dl_cap = DL_CAPAB_DLD; 1514 dl_subcap->dl_length = sizeof (dl_capab_dld_t); 1515 1516 mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t); 1517 } 1518 1519 static void 1520 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp) 1521 { 1522 /* 1523 * If no ipif was brought up over this ill, this DL_CAPABILITY_REQ/ACK 1524 * is only to get the VRRP capability. 1525 * 1526 * Note that we cannot check ill_ipif_up_count here since 1527 * ill_ipif_up_count is only incremented when the resolver is setup. 1528 * That is done asynchronously, and can race with this function. 1529 */ 1530 if (!ill->ill_dl_up) { 1531 if (subp->dl_cap == DL_CAPAB_VRRP) 1532 ill_capability_vrrp_ack(ill, mp, subp); 1533 return; 1534 } 1535 1536 switch (subp->dl_cap) { 1537 case DL_CAPAB_HCKSUM: 1538 ill_capability_hcksum_ack(ill, mp, subp); 1539 break; 1540 case DL_CAPAB_ZEROCOPY: 1541 ill_capability_zerocopy_ack(ill, mp, subp); 1542 break; 1543 case DL_CAPAB_DLD: 1544 ill_capability_dld_ack(ill, mp, subp); 1545 break; 1546 case DL_CAPAB_VRRP: 1547 break; 1548 default: 1549 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 1550 subp->dl_cap)); 1551 } 1552 } 1553 1554 /* 1555 * Process the vrrp capability received from a DLS Provider. isub must point 1556 * to the sub-capability (DL_CAPAB_VRRP) of a DL_CAPABILITY_ACK message. 1557 */ 1558 static void 1559 ill_capability_vrrp_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1560 { 1561 dl_capab_vrrp_t *vrrp; 1562 uint_t sub_dl_cap = isub->dl_cap; 1563 uint8_t *capend; 1564 1565 ASSERT(IAM_WRITER_ILL(ill)); 1566 ASSERT(sub_dl_cap == DL_CAPAB_VRRP); 1567 1568 /* 1569 * Note: range checks here are not absolutely sufficient to 1570 * make us robust against malformed messages sent by drivers; 1571 * this is in keeping with the rest of IP's dlpi handling. 1572 * (Remember, it's coming from something else in the kernel 1573 * address space) 1574 */ 1575 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1576 if (capend > mp->b_wptr) { 1577 cmn_err(CE_WARN, "ill_capability_vrrp_ack: " 1578 "malformed sub-capability too long for mblk"); 1579 return; 1580 } 1581 vrrp = (dl_capab_vrrp_t *)(isub + 1); 1582 1583 /* 1584 * Compare the IP address family and set ILLF_VRRP for the right ill. 1585 */ 1586 if ((vrrp->vrrp_af == AF_INET6 && ill->ill_isv6) || 1587 (vrrp->vrrp_af == AF_INET && !ill->ill_isv6)) { 1588 ill->ill_flags |= ILLF_VRRP; 1589 } 1590 } 1591 1592 /* 1593 * Process a hardware checksum offload capability negotiation ack received 1594 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 1595 * of a DL_CAPABILITY_ACK message. 1596 */ 1597 static void 1598 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1599 { 1600 dl_capability_req_t *ocap; 1601 dl_capab_hcksum_t *ihck, *ohck; 1602 ill_hcksum_capab_t **ill_hcksum; 1603 mblk_t *nmp = NULL; 1604 uint_t sub_dl_cap = isub->dl_cap; 1605 uint8_t *capend; 1606 1607 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 1608 1609 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 1610 1611 /* 1612 * Note: range checks here are not absolutely sufficient to 1613 * make us robust against malformed messages sent by drivers; 1614 * this is in keeping with the rest of IP's dlpi handling. 1615 * (Remember, it's coming from something else in the kernel 1616 * address space) 1617 */ 1618 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1619 if (capend > mp->b_wptr) { 1620 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1621 "malformed sub-capability too long for mblk"); 1622 return; 1623 } 1624 1625 /* 1626 * There are two types of acks we process here: 1627 * 1. acks in reply to a (first form) generic capability req 1628 * (no ENABLE flag set) 1629 * 2. acks in reply to a ENABLE capability req. 1630 * (ENABLE flag set) 1631 */ 1632 ihck = (dl_capab_hcksum_t *)(isub + 1); 1633 1634 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 1635 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 1636 "unsupported hardware checksum " 1637 "sub-capability (version %d, expected %d)", 1638 ihck->hcksum_version, HCKSUM_VERSION_1); 1639 return; 1640 } 1641 1642 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 1643 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 1644 "checksum capability isn't as expected; pass-thru " 1645 "module(s) detected, discarding capability\n")); 1646 return; 1647 } 1648 1649 #define CURR_HCKSUM_CAPAB \ 1650 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 1651 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 1652 1653 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 1654 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 1655 /* do ENABLE processing */ 1656 if (*ill_hcksum == NULL) { 1657 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 1658 KM_NOSLEEP); 1659 1660 if (*ill_hcksum == NULL) { 1661 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1662 "could not enable hcksum version %d " 1663 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 1664 ill->ill_name); 1665 return; 1666 } 1667 } 1668 1669 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 1670 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 1671 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 1672 ip1dbg(("ill_capability_hcksum_ack: interface %s " 1673 "has enabled hardware checksumming\n ", 1674 ill->ill_name)); 1675 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 1676 /* 1677 * Enabling hardware checksum offload 1678 * Currently IP supports {TCP,UDP}/IPv4 1679 * partial and full cksum offload and 1680 * IPv4 header checksum offload. 1681 * Allocate new mblk which will 1682 * contain a new capability request 1683 * to enable hardware checksum offload. 1684 */ 1685 uint_t size; 1686 uchar_t *rptr; 1687 1688 size = sizeof (dl_capability_req_t) + 1689 sizeof (dl_capability_sub_t) + isub->dl_length; 1690 1691 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1692 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1693 "could not enable hardware cksum for %s (ENOMEM)\n", 1694 ill->ill_name); 1695 return; 1696 } 1697 1698 rptr = nmp->b_rptr; 1699 /* initialize dl_capability_req_t */ 1700 ocap = (dl_capability_req_t *)nmp->b_rptr; 1701 ocap->dl_sub_offset = 1702 sizeof (dl_capability_req_t); 1703 ocap->dl_sub_length = 1704 sizeof (dl_capability_sub_t) + 1705 isub->dl_length; 1706 nmp->b_rptr += sizeof (dl_capability_req_t); 1707 1708 /* initialize dl_capability_sub_t */ 1709 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 1710 nmp->b_rptr += sizeof (*isub); 1711 1712 /* initialize dl_capab_hcksum_t */ 1713 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 1714 bcopy(ihck, ohck, sizeof (*ihck)); 1715 1716 nmp->b_rptr = rptr; 1717 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 1718 1719 /* Set ENABLE flag */ 1720 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 1721 ohck->hcksum_txflags |= HCKSUM_ENABLE; 1722 1723 /* 1724 * nmp points to a DL_CAPABILITY_REQ message to enable 1725 * hardware checksum acceleration. 1726 */ 1727 ill_capability_send(ill, nmp); 1728 } else { 1729 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 1730 "advertised %x hardware checksum capability flags\n", 1731 ill->ill_name, ihck->hcksum_txflags)); 1732 } 1733 } 1734 1735 static void 1736 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp) 1737 { 1738 dl_capab_hcksum_t *hck_subcap; 1739 dl_capability_sub_t *dl_subcap; 1740 1741 if (!ILL_HCKSUM_CAPABLE(ill)) 1742 return; 1743 1744 ASSERT(ill->ill_hcksum_capab != NULL); 1745 1746 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1747 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 1748 dl_subcap->dl_length = sizeof (*hck_subcap); 1749 1750 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 1751 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 1752 hck_subcap->hcksum_txflags = 0; 1753 1754 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap); 1755 } 1756 1757 static void 1758 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1759 { 1760 mblk_t *nmp = NULL; 1761 dl_capability_req_t *oc; 1762 dl_capab_zerocopy_t *zc_ic, *zc_oc; 1763 ill_zerocopy_capab_t **ill_zerocopy_capab; 1764 uint_t sub_dl_cap = isub->dl_cap; 1765 uint8_t *capend; 1766 1767 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 1768 1769 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 1770 1771 /* 1772 * Note: range checks here are not absolutely sufficient to 1773 * make us robust against malformed messages sent by drivers; 1774 * this is in keeping with the rest of IP's dlpi handling. 1775 * (Remember, it's coming from something else in the kernel 1776 * address space) 1777 */ 1778 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1779 if (capend > mp->b_wptr) { 1780 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1781 "malformed sub-capability too long for mblk"); 1782 return; 1783 } 1784 1785 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 1786 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 1787 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 1788 "unsupported ZEROCOPY sub-capability (version %d, " 1789 "expected %d)", zc_ic->zerocopy_version, 1790 ZEROCOPY_VERSION_1); 1791 return; 1792 } 1793 1794 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 1795 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 1796 "capability isn't as expected; pass-thru module(s) " 1797 "detected, discarding capability\n")); 1798 return; 1799 } 1800 1801 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 1802 if (*ill_zerocopy_capab == NULL) { 1803 *ill_zerocopy_capab = 1804 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 1805 KM_NOSLEEP); 1806 1807 if (*ill_zerocopy_capab == NULL) { 1808 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1809 "could not enable Zero-copy version %d " 1810 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 1811 ill->ill_name); 1812 return; 1813 } 1814 } 1815 1816 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 1817 "supports Zero-copy version %d\n", ill->ill_name, 1818 ZEROCOPY_VERSION_1)); 1819 1820 (*ill_zerocopy_capab)->ill_zerocopy_version = 1821 zc_ic->zerocopy_version; 1822 (*ill_zerocopy_capab)->ill_zerocopy_flags = 1823 zc_ic->zerocopy_flags; 1824 1825 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 1826 } else { 1827 uint_t size; 1828 uchar_t *rptr; 1829 1830 size = sizeof (dl_capability_req_t) + 1831 sizeof (dl_capability_sub_t) + 1832 sizeof (dl_capab_zerocopy_t); 1833 1834 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1835 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1836 "could not enable zerocopy for %s (ENOMEM)\n", 1837 ill->ill_name); 1838 return; 1839 } 1840 1841 rptr = nmp->b_rptr; 1842 /* initialize dl_capability_req_t */ 1843 oc = (dl_capability_req_t *)rptr; 1844 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1845 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1846 sizeof (dl_capab_zerocopy_t); 1847 rptr += sizeof (dl_capability_req_t); 1848 1849 /* initialize dl_capability_sub_t */ 1850 bcopy(isub, rptr, sizeof (*isub)); 1851 rptr += sizeof (*isub); 1852 1853 /* initialize dl_capab_zerocopy_t */ 1854 zc_oc = (dl_capab_zerocopy_t *)rptr; 1855 *zc_oc = *zc_ic; 1856 1857 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 1858 "to enable zero-copy version %d\n", ill->ill_name, 1859 ZEROCOPY_VERSION_1)); 1860 1861 /* set VMSAFE_MEM flag */ 1862 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 1863 1864 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 1865 ill_capability_send(ill, nmp); 1866 } 1867 } 1868 1869 static void 1870 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp) 1871 { 1872 dl_capab_zerocopy_t *zerocopy_subcap; 1873 dl_capability_sub_t *dl_subcap; 1874 1875 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 1876 return; 1877 1878 ASSERT(ill->ill_zerocopy_capab != NULL); 1879 1880 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1881 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 1882 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 1883 1884 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 1885 zerocopy_subcap->zerocopy_version = 1886 ill->ill_zerocopy_capab->ill_zerocopy_version; 1887 zerocopy_subcap->zerocopy_flags = 0; 1888 1889 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 1890 } 1891 1892 /* 1893 * DLD capability 1894 * Refer to dld.h for more information regarding the purpose and usage 1895 * of this capability. 1896 */ 1897 static void 1898 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1899 { 1900 dl_capab_dld_t *dld_ic, dld; 1901 uint_t sub_dl_cap = isub->dl_cap; 1902 uint8_t *capend; 1903 ill_dld_capab_t *idc; 1904 1905 ASSERT(IAM_WRITER_ILL(ill)); 1906 ASSERT(sub_dl_cap == DL_CAPAB_DLD); 1907 1908 /* 1909 * Note: range checks here are not absolutely sufficient to 1910 * make us robust against malformed messages sent by drivers; 1911 * this is in keeping with the rest of IP's dlpi handling. 1912 * (Remember, it's coming from something else in the kernel 1913 * address space) 1914 */ 1915 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1916 if (capend > mp->b_wptr) { 1917 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1918 "malformed sub-capability too long for mblk"); 1919 return; 1920 } 1921 dld_ic = (dl_capab_dld_t *)(isub + 1); 1922 if (dld_ic->dld_version != DLD_CURRENT_VERSION) { 1923 cmn_err(CE_CONT, "ill_capability_dld_ack: " 1924 "unsupported DLD sub-capability (version %d, " 1925 "expected %d)", dld_ic->dld_version, 1926 DLD_CURRENT_VERSION); 1927 return; 1928 } 1929 if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) { 1930 ip1dbg(("ill_capability_dld_ack: mid token for dld " 1931 "capability isn't as expected; pass-thru module(s) " 1932 "detected, discarding capability\n")); 1933 return; 1934 } 1935 1936 /* 1937 * Copy locally to ensure alignment. 1938 */ 1939 bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t)); 1940 1941 if ((idc = ill->ill_dld_capab) == NULL) { 1942 idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP); 1943 if (idc == NULL) { 1944 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1945 "could not enable DLD version %d " 1946 "for %s (ENOMEM)\n", DLD_CURRENT_VERSION, 1947 ill->ill_name); 1948 return; 1949 } 1950 ill->ill_dld_capab = idc; 1951 } 1952 idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab; 1953 idc->idc_capab_dh = (void *)dld.dld_capab_handle; 1954 ip1dbg(("ill_capability_dld_ack: interface %s " 1955 "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION)); 1956 1957 ill_capability_dld_enable(ill); 1958 } 1959 1960 /* 1961 * Typically capability negotiation between IP and the driver happens via 1962 * DLPI message exchange. However GLD also offers a direct function call 1963 * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities, 1964 * But arbitrary function calls into IP or GLD are not permitted, since both 1965 * of them are protected by their own perimeter mechanism. The perimeter can 1966 * be viewed as a coarse lock or serialization mechanism. The hierarchy of 1967 * these perimeters is IP -> MAC. Thus for example to enable the squeue 1968 * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter 1969 * to enter the mac perimeter and then do the direct function calls into 1970 * GLD to enable squeue polling. The ring related callbacks from the mac into 1971 * the stack to add, bind, quiesce, restart or cleanup a ring are all 1972 * protected by the mac perimeter. 1973 */ 1974 static void 1975 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp) 1976 { 1977 ill_dld_capab_t *idc = ill->ill_dld_capab; 1978 int err; 1979 1980 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp, 1981 DLD_ENABLE); 1982 ASSERT(err == 0); 1983 } 1984 1985 static void 1986 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph) 1987 { 1988 ill_dld_capab_t *idc = ill->ill_dld_capab; 1989 int err; 1990 1991 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph, 1992 DLD_DISABLE); 1993 ASSERT(err == 0); 1994 } 1995 1996 boolean_t 1997 ill_mac_perim_held(ill_t *ill) 1998 { 1999 ill_dld_capab_t *idc = ill->ill_dld_capab; 2000 2001 return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL, 2002 DLD_QUERY)); 2003 } 2004 2005 static void 2006 ill_capability_direct_enable(ill_t *ill) 2007 { 2008 ill_dld_capab_t *idc = ill->ill_dld_capab; 2009 ill_dld_direct_t *idd = &idc->idc_direct; 2010 dld_capab_direct_t direct; 2011 int rc; 2012 2013 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2014 2015 bzero(&direct, sizeof (direct)); 2016 direct.di_rx_cf = (uintptr_t)ip_input; 2017 direct.di_rx_ch = ill; 2018 2019 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct, 2020 DLD_ENABLE); 2021 if (rc == 0) { 2022 idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df; 2023 idd->idd_tx_dh = direct.di_tx_dh; 2024 idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df; 2025 idd->idd_tx_cb_dh = direct.di_tx_cb_dh; 2026 idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df; 2027 idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh; 2028 ASSERT(idd->idd_tx_cb_df != NULL); 2029 ASSERT(idd->idd_tx_fctl_df != NULL); 2030 ASSERT(idd->idd_tx_df != NULL); 2031 /* 2032 * One time registration of flow enable callback function 2033 */ 2034 ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh, 2035 ill_flow_enable, ill); 2036 ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT; 2037 DTRACE_PROBE1(direct_on, (ill_t *), ill); 2038 } else { 2039 cmn_err(CE_WARN, "warning: could not enable DIRECT " 2040 "capability, rc = %d\n", rc); 2041 DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc); 2042 } 2043 } 2044 2045 static void 2046 ill_capability_poll_enable(ill_t *ill) 2047 { 2048 ill_dld_capab_t *idc = ill->ill_dld_capab; 2049 dld_capab_poll_t poll; 2050 int rc; 2051 2052 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2053 2054 bzero(&poll, sizeof (poll)); 2055 poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring; 2056 poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring; 2057 poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring; 2058 poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring; 2059 poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring; 2060 poll.poll_ring_ch = ill; 2061 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll, 2062 DLD_ENABLE); 2063 if (rc == 0) { 2064 ill->ill_capabilities |= ILL_CAPAB_DLD_POLL; 2065 DTRACE_PROBE1(poll_on, (ill_t *), ill); 2066 } else { 2067 ip1dbg(("warning: could not enable POLL " 2068 "capability, rc = %d\n", rc)); 2069 DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc); 2070 } 2071 } 2072 2073 /* 2074 * Enable the LSO capability. 2075 */ 2076 static void 2077 ill_capability_lso_enable(ill_t *ill) 2078 { 2079 ill_dld_capab_t *idc = ill->ill_dld_capab; 2080 dld_capab_lso_t lso; 2081 int rc; 2082 2083 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2084 2085 if (ill->ill_lso_capab == NULL) { 2086 ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 2087 KM_NOSLEEP); 2088 if (ill->ill_lso_capab == NULL) { 2089 cmn_err(CE_WARN, "ill_capability_lso_enable: " 2090 "could not enable LSO for %s (ENOMEM)\n", 2091 ill->ill_name); 2092 return; 2093 } 2094 } 2095 2096 bzero(&lso, sizeof (lso)); 2097 if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso, 2098 DLD_ENABLE)) == 0) { 2099 ill->ill_lso_capab->ill_lso_flags = lso.lso_flags; 2100 ill->ill_lso_capab->ill_lso_max = lso.lso_max; 2101 ill->ill_capabilities |= ILL_CAPAB_LSO; 2102 ip1dbg(("ill_capability_lso_enable: interface %s " 2103 "has enabled LSO\n ", ill->ill_name)); 2104 } else { 2105 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 2106 ill->ill_lso_capab = NULL; 2107 DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc); 2108 } 2109 } 2110 2111 static void 2112 ill_capability_dld_enable(ill_t *ill) 2113 { 2114 mac_perim_handle_t mph; 2115 2116 ASSERT(IAM_WRITER_ILL(ill)); 2117 2118 if (ill->ill_isv6) 2119 return; 2120 2121 ill_mac_perim_enter(ill, &mph); 2122 if (!ill->ill_isv6) { 2123 ill_capability_direct_enable(ill); 2124 ill_capability_poll_enable(ill); 2125 ill_capability_lso_enable(ill); 2126 } 2127 ill->ill_capabilities |= ILL_CAPAB_DLD; 2128 ill_mac_perim_exit(ill, mph); 2129 } 2130 2131 static void 2132 ill_capability_dld_disable(ill_t *ill) 2133 { 2134 ill_dld_capab_t *idc; 2135 ill_dld_direct_t *idd; 2136 mac_perim_handle_t mph; 2137 2138 ASSERT(IAM_WRITER_ILL(ill)); 2139 2140 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 2141 return; 2142 2143 ill_mac_perim_enter(ill, &mph); 2144 2145 idc = ill->ill_dld_capab; 2146 if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) { 2147 /* 2148 * For performance we avoid locks in the transmit data path 2149 * and don't maintain a count of the number of threads using 2150 * direct calls. Thus some threads could be using direct 2151 * transmit calls to GLD, even after the capability mechanism 2152 * turns it off. This is still safe since the handles used in 2153 * the direct calls continue to be valid until the unplumb is 2154 * completed. Remove the callback that was added (1-time) at 2155 * capab enable time. 2156 */ 2157 mutex_enter(&ill->ill_lock); 2158 ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT; 2159 mutex_exit(&ill->ill_lock); 2160 if (ill->ill_flownotify_mh != NULL) { 2161 idd = &idc->idc_direct; 2162 idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL, 2163 ill->ill_flownotify_mh); 2164 ill->ill_flownotify_mh = NULL; 2165 } 2166 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, 2167 NULL, DLD_DISABLE); 2168 } 2169 2170 if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) { 2171 ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL; 2172 ip_squeue_clean_all(ill); 2173 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, 2174 NULL, DLD_DISABLE); 2175 } 2176 2177 if ((ill->ill_capabilities & ILL_CAPAB_LSO) != 0) { 2178 ASSERT(ill->ill_lso_capab != NULL); 2179 /* 2180 * Clear the capability flag for LSO but retain the 2181 * ill_lso_capab structure since it's possible that another 2182 * thread is still referring to it. The structure only gets 2183 * deallocated when we destroy the ill. 2184 */ 2185 2186 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 2187 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, 2188 NULL, DLD_DISABLE); 2189 } 2190 2191 ill->ill_capabilities &= ~ILL_CAPAB_DLD; 2192 ill_mac_perim_exit(ill, mph); 2193 } 2194 2195 /* 2196 * Capability Negotiation protocol 2197 * 2198 * We don't wait for DLPI capability operations to finish during interface 2199 * bringup or teardown. Doing so would introduce more asynchrony and the 2200 * interface up/down operations will need multiple return and restarts. 2201 * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as 2202 * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next 2203 * exclusive operation won't start until the DLPI operations of the previous 2204 * exclusive operation complete. 2205 * 2206 * The capability state machine is shown below. 2207 * 2208 * state next state event, action 2209 * 2210 * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe 2211 * IDCS_PROBE_SENT IDCS_OK ill_capability_ack 2212 * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack) 2213 * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG 2214 * IDCS_OK IDCS_RESET_SENT ill_capability_reset 2215 * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr 2216 * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr -> 2217 * ill_capability_probe. 2218 */ 2219 2220 /* 2221 * Dedicated thread started from ip_stack_init that handles capability 2222 * disable. This thread ensures the taskq dispatch does not fail by waiting 2223 * for resources using TQ_SLEEP. The taskq mechanism is used to ensure 2224 * that direct calls to DLD are done in a cv_waitable context. 2225 */ 2226 void 2227 ill_taskq_dispatch(ip_stack_t *ipst) 2228 { 2229 callb_cpr_t cprinfo; 2230 char name[64]; 2231 mblk_t *mp; 2232 2233 (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d", 2234 ipst->ips_netstack->netstack_stackid); 2235 CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr, 2236 name); 2237 mutex_enter(&ipst->ips_capab_taskq_lock); 2238 2239 for (;;) { 2240 mp = ipst->ips_capab_taskq_head; 2241 while (mp != NULL) { 2242 ipst->ips_capab_taskq_head = mp->b_next; 2243 if (ipst->ips_capab_taskq_head == NULL) 2244 ipst->ips_capab_taskq_tail = NULL; 2245 mutex_exit(&ipst->ips_capab_taskq_lock); 2246 mp->b_next = NULL; 2247 2248 VERIFY(taskq_dispatch(system_taskq, 2249 ill_capability_ack_thr, mp, TQ_SLEEP) != 0); 2250 mutex_enter(&ipst->ips_capab_taskq_lock); 2251 mp = ipst->ips_capab_taskq_head; 2252 } 2253 2254 if (ipst->ips_capab_taskq_quit) 2255 break; 2256 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2257 cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock); 2258 CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock); 2259 } 2260 VERIFY(ipst->ips_capab_taskq_head == NULL); 2261 VERIFY(ipst->ips_capab_taskq_tail == NULL); 2262 CALLB_CPR_EXIT(&cprinfo); 2263 thread_exit(); 2264 } 2265 2266 /* 2267 * Consume a new-style hardware capabilities negotiation ack. 2268 * Called via taskq on receipt of DL_CAPABILITY_ACK. 2269 */ 2270 static void 2271 ill_capability_ack_thr(void *arg) 2272 { 2273 mblk_t *mp = arg; 2274 dl_capability_ack_t *capp; 2275 dl_capability_sub_t *subp, *endp; 2276 ill_t *ill; 2277 boolean_t reneg; 2278 2279 ill = (ill_t *)mp->b_prev; 2280 mp->b_prev = NULL; 2281 2282 VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE); 2283 2284 if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT || 2285 ill->ill_dlpi_capab_state == IDCS_RENEG) { 2286 /* 2287 * We have received the ack for our DL_CAPAB reset request. 2288 * There isnt' anything in the message that needs processing. 2289 * All message based capabilities have been disabled, now 2290 * do the function call based capability disable. 2291 */ 2292 reneg = ill->ill_dlpi_capab_state == IDCS_RENEG; 2293 ill_capability_dld_disable(ill); 2294 ill->ill_dlpi_capab_state = IDCS_UNKNOWN; 2295 if (reneg) 2296 ill_capability_probe(ill); 2297 goto done; 2298 } 2299 2300 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 2301 ill->ill_dlpi_capab_state = IDCS_OK; 2302 2303 capp = (dl_capability_ack_t *)mp->b_rptr; 2304 2305 if (capp->dl_sub_length == 0) { 2306 /* no new-style capabilities */ 2307 goto done; 2308 } 2309 2310 /* make sure the driver supplied correct dl_sub_length */ 2311 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 2312 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 2313 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 2314 goto done; 2315 } 2316 2317 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 2318 /* 2319 * There are sub-capabilities. Process the ones we know about. 2320 * Loop until we don't have room for another sub-cap header.. 2321 */ 2322 for (subp = SC(capp, capp->dl_sub_offset), 2323 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 2324 subp <= endp; 2325 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 2326 2327 switch (subp->dl_cap) { 2328 case DL_CAPAB_ID_WRAPPER: 2329 ill_capability_id_ack(ill, mp, subp); 2330 break; 2331 default: 2332 ill_capability_dispatch(ill, mp, subp); 2333 break; 2334 } 2335 } 2336 #undef SC 2337 done: 2338 inet_freemsg(mp); 2339 ill_capability_done(ill); 2340 ipsq_exit(ill->ill_phyint->phyint_ipsq); 2341 } 2342 2343 /* 2344 * This needs to be started in a taskq thread to provide a cv_waitable 2345 * context. 2346 */ 2347 void 2348 ill_capability_ack(ill_t *ill, mblk_t *mp) 2349 { 2350 ip_stack_t *ipst = ill->ill_ipst; 2351 2352 mp->b_prev = (mblk_t *)ill; 2353 ASSERT(mp->b_next == NULL); 2354 2355 if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp, 2356 TQ_NOSLEEP) != 0) 2357 return; 2358 2359 /* 2360 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread 2361 * which will do the dispatch using TQ_SLEEP to guarantee success. 2362 */ 2363 mutex_enter(&ipst->ips_capab_taskq_lock); 2364 if (ipst->ips_capab_taskq_head == NULL) { 2365 ASSERT(ipst->ips_capab_taskq_tail == NULL); 2366 ipst->ips_capab_taskq_head = mp; 2367 } else { 2368 ipst->ips_capab_taskq_tail->b_next = mp; 2369 } 2370 ipst->ips_capab_taskq_tail = mp; 2371 2372 cv_signal(&ipst->ips_capab_taskq_cv); 2373 mutex_exit(&ipst->ips_capab_taskq_lock); 2374 } 2375 2376 /* 2377 * This routine is called to scan the fragmentation reassembly table for 2378 * the specified ILL for any packets that are starting to smell. 2379 * dead_interval is the maximum time in seconds that will be tolerated. It 2380 * will either be the value specified in ip_g_frag_timeout, or zero if the 2381 * ILL is shutting down and it is time to blow everything off. 2382 * 2383 * It returns the number of seconds (as a time_t) that the next frag timer 2384 * should be scheduled for, 0 meaning that the timer doesn't need to be 2385 * re-started. Note that the method of calculating next_timeout isn't 2386 * entirely accurate since time will flow between the time we grab 2387 * current_time and the time we schedule the next timeout. This isn't a 2388 * big problem since this is the timer for sending an ICMP reassembly time 2389 * exceeded messages, and it doesn't have to be exactly accurate. 2390 * 2391 * This function is 2392 * sometimes called as writer, although this is not required. 2393 */ 2394 time_t 2395 ill_frag_timeout(ill_t *ill, time_t dead_interval) 2396 { 2397 ipfb_t *ipfb; 2398 ipfb_t *endp; 2399 ipf_t *ipf; 2400 ipf_t *ipfnext; 2401 mblk_t *mp; 2402 time_t current_time = gethrestime_sec(); 2403 time_t next_timeout = 0; 2404 uint32_t hdr_length; 2405 mblk_t *send_icmp_head; 2406 mblk_t *send_icmp_head_v6; 2407 ip_stack_t *ipst = ill->ill_ipst; 2408 ip_recv_attr_t iras; 2409 2410 bzero(&iras, sizeof (iras)); 2411 iras.ira_flags = 0; 2412 iras.ira_ill = iras.ira_rill = ill; 2413 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 2414 iras.ira_rifindex = iras.ira_ruifindex; 2415 2416 ipfb = ill->ill_frag_hash_tbl; 2417 if (ipfb == NULL) 2418 return (B_FALSE); 2419 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 2420 /* Walk the frag hash table. */ 2421 for (; ipfb < endp; ipfb++) { 2422 send_icmp_head = NULL; 2423 send_icmp_head_v6 = NULL; 2424 mutex_enter(&ipfb->ipfb_lock); 2425 while ((ipf = ipfb->ipfb_ipf) != 0) { 2426 time_t frag_time = current_time - ipf->ipf_timestamp; 2427 time_t frag_timeout; 2428 2429 if (frag_time < dead_interval) { 2430 /* 2431 * There are some outstanding fragments 2432 * that will timeout later. Make note of 2433 * the time so that we can reschedule the 2434 * next timeout appropriately. 2435 */ 2436 frag_timeout = dead_interval - frag_time; 2437 if (next_timeout == 0 || 2438 frag_timeout < next_timeout) { 2439 next_timeout = frag_timeout; 2440 } 2441 break; 2442 } 2443 /* Time's up. Get it out of here. */ 2444 hdr_length = ipf->ipf_nf_hdr_len; 2445 ipfnext = ipf->ipf_hash_next; 2446 if (ipfnext) 2447 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 2448 *ipf->ipf_ptphn = ipfnext; 2449 mp = ipf->ipf_mp->b_cont; 2450 for (; mp; mp = mp->b_cont) { 2451 /* Extra points for neatness. */ 2452 IP_REASS_SET_START(mp, 0); 2453 IP_REASS_SET_END(mp, 0); 2454 } 2455 mp = ipf->ipf_mp->b_cont; 2456 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); 2457 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 2458 ipfb->ipfb_count -= ipf->ipf_count; 2459 ASSERT(ipfb->ipfb_frag_pkts > 0); 2460 ipfb->ipfb_frag_pkts--; 2461 /* 2462 * We do not send any icmp message from here because 2463 * we currently are holding the ipfb_lock for this 2464 * hash chain. If we try and send any icmp messages 2465 * from here we may end up via a put back into ip 2466 * trying to get the same lock, causing a recursive 2467 * mutex panic. Instead we build a list and send all 2468 * the icmp messages after we have dropped the lock. 2469 */ 2470 if (ill->ill_isv6) { 2471 if (hdr_length != 0) { 2472 mp->b_next = send_icmp_head_v6; 2473 send_icmp_head_v6 = mp; 2474 } else { 2475 freemsg(mp); 2476 } 2477 } else { 2478 if (hdr_length != 0) { 2479 mp->b_next = send_icmp_head; 2480 send_icmp_head = mp; 2481 } else { 2482 freemsg(mp); 2483 } 2484 } 2485 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2486 ip_drop_input("ipIfStatsReasmFails", ipf->ipf_mp, ill); 2487 freeb(ipf->ipf_mp); 2488 } 2489 mutex_exit(&ipfb->ipfb_lock); 2490 /* 2491 * Now need to send any icmp messages that we delayed from 2492 * above. 2493 */ 2494 while (send_icmp_head_v6 != NULL) { 2495 ip6_t *ip6h; 2496 2497 mp = send_icmp_head_v6; 2498 send_icmp_head_v6 = send_icmp_head_v6->b_next; 2499 mp->b_next = NULL; 2500 ip6h = (ip6_t *)mp->b_rptr; 2501 iras.ira_flags = 0; 2502 /* 2503 * This will result in an incorrect ALL_ZONES zoneid 2504 * for multicast packets, but we 2505 * don't send ICMP errors for those in any case. 2506 */ 2507 iras.ira_zoneid = 2508 ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 2509 ill, ipst); 2510 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2511 icmp_time_exceeded_v6(mp, 2512 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 2513 &iras); 2514 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2515 } 2516 while (send_icmp_head != NULL) { 2517 ipaddr_t dst; 2518 2519 mp = send_icmp_head; 2520 send_icmp_head = send_icmp_head->b_next; 2521 mp->b_next = NULL; 2522 2523 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 2524 2525 iras.ira_flags = IRAF_IS_IPV4; 2526 /* 2527 * This will result in an incorrect ALL_ZONES zoneid 2528 * for broadcast and multicast packets, but we 2529 * don't send ICMP errors for those in any case. 2530 */ 2531 iras.ira_zoneid = ipif_lookup_addr_zoneid(dst, 2532 ill, ipst); 2533 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2534 icmp_time_exceeded(mp, 2535 ICMP_REASSEMBLY_TIME_EXCEEDED, &iras); 2536 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2537 } 2538 } 2539 /* 2540 * A non-dying ILL will use the return value to decide whether to 2541 * restart the frag timer, and for how long. 2542 */ 2543 return (next_timeout); 2544 } 2545 2546 /* 2547 * This routine is called when the approximate count of mblk memory used 2548 * for the specified ILL has exceeded max_count. 2549 */ 2550 void 2551 ill_frag_prune(ill_t *ill, uint_t max_count) 2552 { 2553 ipfb_t *ipfb; 2554 ipf_t *ipf; 2555 size_t count; 2556 clock_t now; 2557 2558 /* 2559 * If we are here within ip_min_frag_prune_time msecs remove 2560 * ill_frag_free_num_pkts oldest packets from each bucket and increment 2561 * ill_frag_free_num_pkts. 2562 */ 2563 mutex_enter(&ill->ill_lock); 2564 now = ddi_get_lbolt(); 2565 if (TICK_TO_MSEC(now - ill->ill_last_frag_clean_time) <= 2566 (ip_min_frag_prune_time != 0 ? 2567 ip_min_frag_prune_time : msec_per_tick)) { 2568 2569 ill->ill_frag_free_num_pkts++; 2570 2571 } else { 2572 ill->ill_frag_free_num_pkts = 0; 2573 } 2574 ill->ill_last_frag_clean_time = now; 2575 mutex_exit(&ill->ill_lock); 2576 2577 /* 2578 * free ill_frag_free_num_pkts oldest packets from each bucket. 2579 */ 2580 if (ill->ill_frag_free_num_pkts != 0) { 2581 int ix; 2582 2583 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2584 ipfb = &ill->ill_frag_hash_tbl[ix]; 2585 mutex_enter(&ipfb->ipfb_lock); 2586 if (ipfb->ipfb_ipf != NULL) { 2587 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 2588 ill->ill_frag_free_num_pkts); 2589 } 2590 mutex_exit(&ipfb->ipfb_lock); 2591 } 2592 } 2593 /* 2594 * While the reassembly list for this ILL is too big, prune a fragment 2595 * queue by age, oldest first. 2596 */ 2597 while (ill->ill_frag_count > max_count) { 2598 int ix; 2599 ipfb_t *oipfb = NULL; 2600 uint_t oldest = UINT_MAX; 2601 2602 count = 0; 2603 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2604 ipfb = &ill->ill_frag_hash_tbl[ix]; 2605 mutex_enter(&ipfb->ipfb_lock); 2606 ipf = ipfb->ipfb_ipf; 2607 if (ipf != NULL && ipf->ipf_gen < oldest) { 2608 oldest = ipf->ipf_gen; 2609 oipfb = ipfb; 2610 } 2611 count += ipfb->ipfb_count; 2612 mutex_exit(&ipfb->ipfb_lock); 2613 } 2614 if (oipfb == NULL) 2615 break; 2616 2617 if (count <= max_count) 2618 return; /* Somebody beat us to it, nothing to do */ 2619 mutex_enter(&oipfb->ipfb_lock); 2620 ipf = oipfb->ipfb_ipf; 2621 if (ipf != NULL) { 2622 ill_frag_free_pkts(ill, oipfb, ipf, 1); 2623 } 2624 mutex_exit(&oipfb->ipfb_lock); 2625 } 2626 } 2627 2628 /* 2629 * free 'free_cnt' fragmented packets starting at ipf. 2630 */ 2631 void 2632 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 2633 { 2634 size_t count; 2635 mblk_t *mp; 2636 mblk_t *tmp; 2637 ipf_t **ipfp = ipf->ipf_ptphn; 2638 2639 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 2640 ASSERT(ipfp != NULL); 2641 ASSERT(ipf != NULL); 2642 2643 while (ipf != NULL && free_cnt-- > 0) { 2644 count = ipf->ipf_count; 2645 mp = ipf->ipf_mp; 2646 ipf = ipf->ipf_hash_next; 2647 for (tmp = mp; tmp; tmp = tmp->b_cont) { 2648 IP_REASS_SET_START(tmp, 0); 2649 IP_REASS_SET_END(tmp, 0); 2650 } 2651 atomic_add_32(&ill->ill_frag_count, -count); 2652 ASSERT(ipfb->ipfb_count >= count); 2653 ipfb->ipfb_count -= count; 2654 ASSERT(ipfb->ipfb_frag_pkts > 0); 2655 ipfb->ipfb_frag_pkts--; 2656 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2657 ip_drop_input("ipIfStatsReasmFails", mp, ill); 2658 freemsg(mp); 2659 } 2660 2661 if (ipf) 2662 ipf->ipf_ptphn = ipfp; 2663 ipfp[0] = ipf; 2664 } 2665 2666 /* 2667 * Helper function for ill_forward_set(). 2668 */ 2669 static void 2670 ill_forward_set_on_ill(ill_t *ill, boolean_t enable) 2671 { 2672 ip_stack_t *ipst = ill->ill_ipst; 2673 2674 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2675 2676 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 2677 (enable ? "Enabling" : "Disabling"), 2678 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 2679 mutex_enter(&ill->ill_lock); 2680 if (enable) 2681 ill->ill_flags |= ILLF_ROUTER; 2682 else 2683 ill->ill_flags &= ~ILLF_ROUTER; 2684 mutex_exit(&ill->ill_lock); 2685 if (ill->ill_isv6) 2686 ill_set_nce_router_flags(ill, enable); 2687 /* Notify routing socket listeners of this change. */ 2688 if (ill->ill_ipif != NULL) 2689 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 2690 } 2691 2692 /* 2693 * Set an ill's ILLF_ROUTER flag appropriately. Send up RTS_IFINFO routing 2694 * socket messages for each interface whose flags we change. 2695 */ 2696 int 2697 ill_forward_set(ill_t *ill, boolean_t enable) 2698 { 2699 ipmp_illgrp_t *illg; 2700 ip_stack_t *ipst = ill->ill_ipst; 2701 2702 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2703 2704 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 2705 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 2706 return (0); 2707 2708 if (IS_LOOPBACK(ill)) 2709 return (EINVAL); 2710 2711 if (enable && ill->ill_allowed_ips_cnt > 0) 2712 return (EPERM); 2713 2714 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { 2715 /* 2716 * Update all of the interfaces in the group. 2717 */ 2718 illg = ill->ill_grp; 2719 ill = list_head(&illg->ig_if); 2720 for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) 2721 ill_forward_set_on_ill(ill, enable); 2722 2723 /* 2724 * Update the IPMP meta-interface. 2725 */ 2726 ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable); 2727 return (0); 2728 } 2729 2730 ill_forward_set_on_ill(ill, enable); 2731 return (0); 2732 } 2733 2734 /* 2735 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 2736 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 2737 * set or clear. 2738 */ 2739 static void 2740 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 2741 { 2742 ipif_t *ipif; 2743 ncec_t *ncec; 2744 nce_t *nce; 2745 2746 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 2747 /* 2748 * NOTE: we match across the illgrp because nce's for 2749 * addresses on IPMP interfaces have an nce_ill that points to 2750 * the bound underlying ill. 2751 */ 2752 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 2753 if (nce != NULL) { 2754 ncec = nce->nce_common; 2755 mutex_enter(&ncec->ncec_lock); 2756 if (enable) 2757 ncec->ncec_flags |= NCE_F_ISROUTER; 2758 else 2759 ncec->ncec_flags &= ~NCE_F_ISROUTER; 2760 mutex_exit(&ncec->ncec_lock); 2761 nce_refrele(nce); 2762 } 2763 } 2764 } 2765 2766 /* 2767 * Intializes the context structure and returns the first ill in the list 2768 * cuurently start_list and end_list can have values: 2769 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 2770 * IP_V4_G_HEAD Traverse IPV4 list only. 2771 * IP_V6_G_HEAD Traverse IPV6 list only. 2772 */ 2773 2774 /* 2775 * We don't check for CONDEMNED ills here. Caller must do that if 2776 * necessary under the ill lock. 2777 */ 2778 ill_t * 2779 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 2780 ip_stack_t *ipst) 2781 { 2782 ill_if_t *ifp; 2783 ill_t *ill; 2784 avl_tree_t *avl_tree; 2785 2786 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 2787 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 2788 2789 /* 2790 * setup the lists to search 2791 */ 2792 if (end_list != MAX_G_HEADS) { 2793 ctx->ctx_current_list = start_list; 2794 ctx->ctx_last_list = end_list; 2795 } else { 2796 ctx->ctx_last_list = MAX_G_HEADS - 1; 2797 ctx->ctx_current_list = 0; 2798 } 2799 2800 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 2801 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2802 if (ifp != (ill_if_t *) 2803 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2804 avl_tree = &ifp->illif_avl_by_ppa; 2805 ill = avl_first(avl_tree); 2806 /* 2807 * ill is guaranteed to be non NULL or ifp should have 2808 * not existed. 2809 */ 2810 ASSERT(ill != NULL); 2811 return (ill); 2812 } 2813 ctx->ctx_current_list++; 2814 } 2815 2816 return (NULL); 2817 } 2818 2819 /* 2820 * returns the next ill in the list. ill_first() must have been called 2821 * before calling ill_next() or bad things will happen. 2822 */ 2823 2824 /* 2825 * We don't check for CONDEMNED ills here. Caller must do that if 2826 * necessary under the ill lock. 2827 */ 2828 ill_t * 2829 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 2830 { 2831 ill_if_t *ifp; 2832 ill_t *ill; 2833 ip_stack_t *ipst = lastill->ill_ipst; 2834 2835 ASSERT(lastill->ill_ifptr != (ill_if_t *) 2836 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 2837 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 2838 AVL_AFTER)) != NULL) { 2839 return (ill); 2840 } 2841 2842 /* goto next ill_ifp in the list. */ 2843 ifp = lastill->ill_ifptr->illif_next; 2844 2845 /* make sure not at end of circular list */ 2846 while (ifp == 2847 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2848 if (++ctx->ctx_current_list > ctx->ctx_last_list) 2849 return (NULL); 2850 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2851 } 2852 2853 return (avl_first(&ifp->illif_avl_by_ppa)); 2854 } 2855 2856 /* 2857 * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+ 2858 * The final number (PPA) must not have any leading zeros. Upon success, a 2859 * pointer to the start of the PPA is returned; otherwise NULL is returned. 2860 */ 2861 static char * 2862 ill_get_ppa_ptr(char *name) 2863 { 2864 int namelen = strlen(name); 2865 int end_ndx = namelen - 1; 2866 int ppa_ndx, i; 2867 2868 /* 2869 * Check that the first character is [a-zA-Z], and that the last 2870 * character is [0-9]. 2871 */ 2872 if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx])) 2873 return (NULL); 2874 2875 /* 2876 * Set `ppa_ndx' to the PPA start, and check for leading zeroes. 2877 */ 2878 for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--) 2879 if (!isdigit(name[ppa_ndx - 1])) 2880 break; 2881 2882 if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx) 2883 return (NULL); 2884 2885 /* 2886 * Check that the intermediate characters are [a-z0-9.] 2887 */ 2888 for (i = 1; i < ppa_ndx; i++) { 2889 if (!isalpha(name[i]) && !isdigit(name[i]) && 2890 name[i] != '.' && name[i] != '_') { 2891 return (NULL); 2892 } 2893 } 2894 2895 return (name + ppa_ndx); 2896 } 2897 2898 /* 2899 * use avl tree to locate the ill. 2900 */ 2901 static ill_t * 2902 ill_find_by_name(char *name, boolean_t isv6, ip_stack_t *ipst) 2903 { 2904 char *ppa_ptr = NULL; 2905 int len; 2906 uint_t ppa; 2907 ill_t *ill = NULL; 2908 ill_if_t *ifp; 2909 int list; 2910 2911 /* 2912 * get ppa ptr 2913 */ 2914 if (isv6) 2915 list = IP_V6_G_HEAD; 2916 else 2917 list = IP_V4_G_HEAD; 2918 2919 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 2920 return (NULL); 2921 } 2922 2923 len = ppa_ptr - name + 1; 2924 2925 ppa = stoi(&ppa_ptr); 2926 2927 ifp = IP_VX_ILL_G_LIST(list, ipst); 2928 2929 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 2930 /* 2931 * match is done on len - 1 as the name is not null 2932 * terminated it contains ppa in addition to the interface 2933 * name. 2934 */ 2935 if ((ifp->illif_name_len == len) && 2936 bcmp(ifp->illif_name, name, len - 1) == 0) { 2937 break; 2938 } else { 2939 ifp = ifp->illif_next; 2940 } 2941 } 2942 2943 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 2944 /* 2945 * Even the interface type does not exist. 2946 */ 2947 return (NULL); 2948 } 2949 2950 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 2951 if (ill != NULL) { 2952 mutex_enter(&ill->ill_lock); 2953 if (ILL_CAN_LOOKUP(ill)) { 2954 ill_refhold_locked(ill); 2955 mutex_exit(&ill->ill_lock); 2956 return (ill); 2957 } 2958 mutex_exit(&ill->ill_lock); 2959 } 2960 return (NULL); 2961 } 2962 2963 /* 2964 * comparison function for use with avl. 2965 */ 2966 static int 2967 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 2968 { 2969 uint_t ppa; 2970 uint_t ill_ppa; 2971 2972 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 2973 2974 ppa = *((uint_t *)ppa_ptr); 2975 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 2976 /* 2977 * We want the ill with the lowest ppa to be on the 2978 * top. 2979 */ 2980 if (ill_ppa < ppa) 2981 return (1); 2982 if (ill_ppa > ppa) 2983 return (-1); 2984 return (0); 2985 } 2986 2987 /* 2988 * remove an interface type from the global list. 2989 */ 2990 static void 2991 ill_delete_interface_type(ill_if_t *interface) 2992 { 2993 ASSERT(interface != NULL); 2994 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 2995 2996 avl_destroy(&interface->illif_avl_by_ppa); 2997 if (interface->illif_ppa_arena != NULL) 2998 vmem_destroy(interface->illif_ppa_arena); 2999 3000 remque(interface); 3001 3002 mi_free(interface); 3003 } 3004 3005 /* 3006 * remove ill from the global list. 3007 */ 3008 static void 3009 ill_glist_delete(ill_t *ill) 3010 { 3011 ip_stack_t *ipst; 3012 phyint_t *phyi; 3013 3014 if (ill == NULL) 3015 return; 3016 ipst = ill->ill_ipst; 3017 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 3018 3019 /* 3020 * If the ill was never inserted into the AVL tree 3021 * we skip the if branch. 3022 */ 3023 if (ill->ill_ifptr != NULL) { 3024 /* 3025 * remove from AVL tree and free ppa number 3026 */ 3027 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 3028 3029 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 3030 vmem_free(ill->ill_ifptr->illif_ppa_arena, 3031 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3032 } 3033 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 3034 ill_delete_interface_type(ill->ill_ifptr); 3035 } 3036 3037 /* 3038 * Indicate ill is no longer in the list. 3039 */ 3040 ill->ill_ifptr = NULL; 3041 ill->ill_name_length = 0; 3042 ill->ill_name[0] = '\0'; 3043 ill->ill_ppa = UINT_MAX; 3044 } 3045 3046 /* Generate one last event for this ill. */ 3047 ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name, 3048 ill->ill_name_length); 3049 3050 ASSERT(ill->ill_phyint != NULL); 3051 phyi = ill->ill_phyint; 3052 ill->ill_phyint = NULL; 3053 3054 /* 3055 * ill_init allocates a phyint always to store the copy 3056 * of flags relevant to phyint. At that point in time, we could 3057 * not assign the name and hence phyint_illv4/v6 could not be 3058 * initialized. Later in ipif_set_values, we assign the name to 3059 * the ill, at which point in time we assign phyint_illv4/v6. 3060 * Thus we don't rely on phyint_illv6 to be initialized always. 3061 */ 3062 if (ill->ill_flags & ILLF_IPV6) 3063 phyi->phyint_illv6 = NULL; 3064 else 3065 phyi->phyint_illv4 = NULL; 3066 3067 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) { 3068 rw_exit(&ipst->ips_ill_g_lock); 3069 return; 3070 } 3071 3072 /* 3073 * There are no ills left on this phyint; pull it out of the phyint 3074 * avl trees, and free it. 3075 */ 3076 if (phyi->phyint_ifindex > 0) { 3077 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3078 phyi); 3079 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 3080 phyi); 3081 } 3082 rw_exit(&ipst->ips_ill_g_lock); 3083 3084 phyint_free(phyi); 3085 } 3086 3087 /* 3088 * allocate a ppa, if the number of plumbed interfaces of this type are 3089 * less than ill_no_arena do a linear search to find a unused ppa. 3090 * When the number goes beyond ill_no_arena switch to using an arena. 3091 * Note: ppa value of zero cannot be allocated from vmem_arena as it 3092 * is the return value for an error condition, so allocation starts at one 3093 * and is decremented by one. 3094 */ 3095 static int 3096 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 3097 { 3098 ill_t *tmp_ill; 3099 uint_t start, end; 3100 int ppa; 3101 3102 if (ifp->illif_ppa_arena == NULL && 3103 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 3104 /* 3105 * Create an arena. 3106 */ 3107 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 3108 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 3109 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 3110 /* allocate what has already been assigned */ 3111 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 3112 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 3113 tmp_ill, AVL_AFTER)) { 3114 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3115 1, /* size */ 3116 1, /* align/quantum */ 3117 0, /* phase */ 3118 0, /* nocross */ 3119 /* minaddr */ 3120 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 3121 /* maxaddr */ 3122 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 3123 VM_NOSLEEP|VM_FIRSTFIT); 3124 if (ppa == 0) { 3125 ip1dbg(("ill_alloc_ppa: ppa allocation" 3126 " failed while switching")); 3127 vmem_destroy(ifp->illif_ppa_arena); 3128 ifp->illif_ppa_arena = NULL; 3129 break; 3130 } 3131 } 3132 } 3133 3134 if (ifp->illif_ppa_arena != NULL) { 3135 if (ill->ill_ppa == UINT_MAX) { 3136 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 3137 1, VM_NOSLEEP|VM_FIRSTFIT); 3138 if (ppa == 0) 3139 return (EAGAIN); 3140 ill->ill_ppa = --ppa; 3141 } else { 3142 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3143 1, /* size */ 3144 1, /* align/quantum */ 3145 0, /* phase */ 3146 0, /* nocross */ 3147 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 3148 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 3149 VM_NOSLEEP|VM_FIRSTFIT); 3150 /* 3151 * Most likely the allocation failed because 3152 * the requested ppa was in use. 3153 */ 3154 if (ppa == 0) 3155 return (EEXIST); 3156 } 3157 return (0); 3158 } 3159 3160 /* 3161 * No arena is in use and not enough (>ill_no_arena) interfaces have 3162 * been plumbed to create one. Do a linear search to get a unused ppa. 3163 */ 3164 if (ill->ill_ppa == UINT_MAX) { 3165 end = UINT_MAX - 1; 3166 start = 0; 3167 } else { 3168 end = start = ill->ill_ppa; 3169 } 3170 3171 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 3172 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 3173 if (start++ >= end) { 3174 if (ill->ill_ppa == UINT_MAX) 3175 return (EAGAIN); 3176 else 3177 return (EEXIST); 3178 } 3179 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 3180 } 3181 ill->ill_ppa = start; 3182 return (0); 3183 } 3184 3185 /* 3186 * Insert ill into the list of configured ill's. Once this function completes, 3187 * the ill is globally visible and is available through lookups. More precisely 3188 * this happens after the caller drops the ill_g_lock. 3189 */ 3190 static int 3191 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 3192 { 3193 ill_if_t *ill_interface; 3194 avl_index_t where = 0; 3195 int error; 3196 int name_length; 3197 int index; 3198 boolean_t check_length = B_FALSE; 3199 ip_stack_t *ipst = ill->ill_ipst; 3200 3201 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 3202 3203 name_length = mi_strlen(name) + 1; 3204 3205 if (isv6) 3206 index = IP_V6_G_HEAD; 3207 else 3208 index = IP_V4_G_HEAD; 3209 3210 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 3211 /* 3212 * Search for interface type based on name 3213 */ 3214 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3215 if ((ill_interface->illif_name_len == name_length) && 3216 (strcmp(ill_interface->illif_name, name) == 0)) { 3217 break; 3218 } 3219 ill_interface = ill_interface->illif_next; 3220 } 3221 3222 /* 3223 * Interface type not found, create one. 3224 */ 3225 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3226 ill_g_head_t ghead; 3227 3228 /* 3229 * allocate ill_if_t structure 3230 */ 3231 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 3232 if (ill_interface == NULL) { 3233 return (ENOMEM); 3234 } 3235 3236 (void) strcpy(ill_interface->illif_name, name); 3237 ill_interface->illif_name_len = name_length; 3238 3239 avl_create(&ill_interface->illif_avl_by_ppa, 3240 ill_compare_ppa, sizeof (ill_t), 3241 offsetof(struct ill_s, ill_avl_byppa)); 3242 3243 /* 3244 * link the structure in the back to maintain order 3245 * of configuration for ifconfig output. 3246 */ 3247 ghead = ipst->ips_ill_g_heads[index]; 3248 insque(ill_interface, ghead.ill_g_list_tail); 3249 } 3250 3251 if (ill->ill_ppa == UINT_MAX) 3252 check_length = B_TRUE; 3253 3254 error = ill_alloc_ppa(ill_interface, ill); 3255 if (error != 0) { 3256 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3257 ill_delete_interface_type(ill->ill_ifptr); 3258 return (error); 3259 } 3260 3261 /* 3262 * When the ppa is choosen by the system, check that there is 3263 * enough space to insert ppa. if a specific ppa was passed in this 3264 * check is not required as the interface name passed in will have 3265 * the right ppa in it. 3266 */ 3267 if (check_length) { 3268 /* 3269 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 3270 */ 3271 char buf[sizeof (uint_t) * 3]; 3272 3273 /* 3274 * convert ppa to string to calculate the amount of space 3275 * required for it in the name. 3276 */ 3277 numtos(ill->ill_ppa, buf); 3278 3279 /* Do we have enough space to insert ppa ? */ 3280 3281 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 3282 /* Free ppa and interface type struct */ 3283 if (ill_interface->illif_ppa_arena != NULL) { 3284 vmem_free(ill_interface->illif_ppa_arena, 3285 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3286 } 3287 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3288 ill_delete_interface_type(ill->ill_ifptr); 3289 3290 return (EINVAL); 3291 } 3292 } 3293 3294 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 3295 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 3296 3297 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 3298 &where); 3299 ill->ill_ifptr = ill_interface; 3300 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 3301 3302 ill_phyint_reinit(ill); 3303 return (0); 3304 } 3305 3306 /* Initialize the per phyint ipsq used for serialization */ 3307 static boolean_t 3308 ipsq_init(ill_t *ill, boolean_t enter) 3309 { 3310 ipsq_t *ipsq; 3311 ipxop_t *ipx; 3312 3313 if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL) 3314 return (B_FALSE); 3315 3316 ill->ill_phyint->phyint_ipsq = ipsq; 3317 ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop; 3318 ipx->ipx_ipsq = ipsq; 3319 ipsq->ipsq_next = ipsq; 3320 ipsq->ipsq_phyint = ill->ill_phyint; 3321 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 3322 mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0); 3323 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 3324 if (enter) { 3325 ipx->ipx_writer = curthread; 3326 ipx->ipx_forced = B_FALSE; 3327 ipx->ipx_reentry_cnt = 1; 3328 #ifdef DEBUG 3329 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 3330 #endif 3331 } 3332 return (B_TRUE); 3333 } 3334 3335 /* 3336 * Here we perform initialisation of the ill_t common to both regular 3337 * interface ILLs and the special loopback ILL created by ill_lookup_on_name. 3338 */ 3339 static int 3340 ill_init_common(ill_t *ill, queue_t *q, boolean_t isv6, boolean_t is_loopback, 3341 boolean_t ipsq_enter) 3342 { 3343 int count; 3344 uchar_t *frag_ptr; 3345 3346 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 3347 mutex_init(&ill->ill_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 3348 ill->ill_saved_ire_cnt = 0; 3349 3350 if (is_loopback == B_TRUE) { 3351 ill->ill_max_frag = isv6 == B_TRUE ? ip_loopback_mtu_v6plus : 3352 ip_loopback_mtuplus; 3353 /* 3354 * No resolver here. 3355 */ 3356 ill->ill_net_type = IRE_LOOPBACK; 3357 } else { 3358 ill->ill_rq = q; 3359 ill->ill_wq = WR(q); 3360 ill->ill_ppa = UINT_MAX; 3361 } 3362 3363 ill->ill_isv6 = isv6; 3364 3365 /* 3366 * Allocate sufficient space to contain our fragment hash table and 3367 * the device name. 3368 */ 3369 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 2 * LIFNAMSIZ); 3370 if (frag_ptr == NULL) 3371 return (ENOMEM); 3372 ill->ill_frag_ptr = frag_ptr; 3373 ill->ill_frag_free_num_pkts = 0; 3374 ill->ill_last_frag_clean_time = 0; 3375 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 3376 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 3377 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 3378 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 3379 NULL, MUTEX_DEFAULT, NULL); 3380 } 3381 3382 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 3383 if (ill->ill_phyint == NULL) { 3384 mi_free(frag_ptr); 3385 return (ENOMEM); 3386 } 3387 3388 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 3389 if (isv6 == B_TRUE) { 3390 ill->ill_phyint->phyint_illv6 = ill; 3391 } else { 3392 ill->ill_phyint->phyint_illv4 = ill; 3393 } 3394 if (is_loopback == B_TRUE) { 3395 phyint_flags_init(ill->ill_phyint, DL_LOOP); 3396 } 3397 3398 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node)); 3399 3400 ill_set_inputfn(ill); 3401 3402 if (!ipsq_init(ill, ipsq_enter)) { 3403 mi_free(frag_ptr); 3404 mi_free(ill->ill_phyint); 3405 return (ENOMEM); 3406 } 3407 3408 /* Frag queue limit stuff */ 3409 ill->ill_frag_count = 0; 3410 ill->ill_ipf_gen = 0; 3411 3412 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL); 3413 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL); 3414 ill->ill_global_timer = INFINITY; 3415 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 3416 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 3417 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 3418 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 3419 3420 /* 3421 * Initialize IPv6 configuration variables. The IP module is always 3422 * opened as an IPv4 module. Instead tracking down the cases where 3423 * it switches to do ipv6, we'll just initialize the IPv6 configuration 3424 * here for convenience, this has no effect until the ill is set to do 3425 * IPv6. 3426 */ 3427 ill->ill_reachable_time = ND_REACHABLE_TIME; 3428 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 3429 ill->ill_max_buf = ND_MAX_Q; 3430 ill->ill_refcnt = 0; 3431 3432 return (0); 3433 } 3434 3435 /* 3436 * ill_init is called by ip_open when a device control stream is opened. 3437 * It does a few initializations, and shoots a DL_INFO_REQ message down 3438 * to the driver. The response is later picked up in ip_rput_dlpi and 3439 * used to set up default mechanisms for talking to the driver. (Always 3440 * called as writer.) 3441 * 3442 * If this function returns error, ip_open will call ip_close which in 3443 * turn will call ill_delete to clean up any memory allocated here that 3444 * is not yet freed. 3445 * 3446 * Note: ill_ipst and ill_zoneid must be set before calling ill_init. 3447 */ 3448 int 3449 ill_init(queue_t *q, ill_t *ill) 3450 { 3451 int ret; 3452 dl_info_req_t *dlir; 3453 mblk_t *info_mp; 3454 3455 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 3456 BPRI_HI); 3457 if (info_mp == NULL) 3458 return (ENOMEM); 3459 3460 /* 3461 * The ill is initialized to zero by mi_alloc*(). In addition 3462 * some fields already contain valid values, initialized in 3463 * ip_open(), before we reach here. 3464 * 3465 * For now pretend this is a v4 ill. We need to set phyint_ill* 3466 * at this point because of the following reason. If we can't 3467 * enter the ipsq at some point and cv_wait, the writer that 3468 * wakes us up tries to locate us using the list of all phyints 3469 * in an ipsq and the ills from the phyint thru the phyint_ill*. 3470 * If we don't set it now, we risk a missed wakeup. 3471 */ 3472 if ((ret = ill_init_common(ill, q, B_FALSE, B_FALSE, B_TRUE)) != 0) { 3473 freemsg(info_mp); 3474 return (ret); 3475 } 3476 3477 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 3478 3479 /* Send down the Info Request to the driver. */ 3480 info_mp->b_datap->db_type = M_PCPROTO; 3481 dlir = (dl_info_req_t *)info_mp->b_rptr; 3482 info_mp->b_wptr = (uchar_t *)&dlir[1]; 3483 dlir->dl_primitive = DL_INFO_REQ; 3484 3485 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3486 3487 qprocson(q); 3488 ill_dlpi_send(ill, info_mp); 3489 3490 return (0); 3491 } 3492 3493 /* 3494 * ill_dls_info 3495 * creates datalink socket info from the device. 3496 */ 3497 int 3498 ill_dls_info(struct sockaddr_dl *sdl, const ill_t *ill) 3499 { 3500 size_t len; 3501 3502 sdl->sdl_family = AF_LINK; 3503 sdl->sdl_index = ill_get_upper_ifindex(ill); 3504 sdl->sdl_type = ill->ill_type; 3505 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3506 len = strlen(sdl->sdl_data); 3507 ASSERT(len < 256); 3508 sdl->sdl_nlen = (uchar_t)len; 3509 sdl->sdl_alen = ill->ill_phys_addr_length; 3510 sdl->sdl_slen = 0; 3511 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 3512 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 3513 3514 return (sizeof (struct sockaddr_dl)); 3515 } 3516 3517 /* 3518 * ill_xarp_info 3519 * creates xarp info from the device. 3520 */ 3521 static int 3522 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 3523 { 3524 sdl->sdl_family = AF_LINK; 3525 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 3526 sdl->sdl_type = ill->ill_type; 3527 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3528 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 3529 sdl->sdl_alen = ill->ill_phys_addr_length; 3530 sdl->sdl_slen = 0; 3531 return (sdl->sdl_nlen); 3532 } 3533 3534 static int 3535 loopback_kstat_update(kstat_t *ksp, int rw) 3536 { 3537 kstat_named_t *kn; 3538 netstackid_t stackid; 3539 netstack_t *ns; 3540 ip_stack_t *ipst; 3541 3542 if (ksp == NULL || ksp->ks_data == NULL) 3543 return (EIO); 3544 3545 if (rw == KSTAT_WRITE) 3546 return (EACCES); 3547 3548 kn = KSTAT_NAMED_PTR(ksp); 3549 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 3550 3551 ns = netstack_find_by_stackid(stackid); 3552 if (ns == NULL) 3553 return (-1); 3554 3555 ipst = ns->netstack_ip; 3556 if (ipst == NULL) { 3557 netstack_rele(ns); 3558 return (-1); 3559 } 3560 kn[0].value.ui32 = ipst->ips_loopback_packets; 3561 kn[1].value.ui32 = ipst->ips_loopback_packets; 3562 netstack_rele(ns); 3563 return (0); 3564 } 3565 3566 /* 3567 * Has ifindex been plumbed already? 3568 */ 3569 static boolean_t 3570 phyint_exists(uint_t index, ip_stack_t *ipst) 3571 { 3572 ASSERT(index != 0); 3573 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 3574 3575 return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3576 &index, NULL) != NULL); 3577 } 3578 3579 /* 3580 * Pick a unique ifindex. 3581 * When the index counter passes IF_INDEX_MAX for the first time, the wrap 3582 * flag is set so that next time time ip_assign_ifindex() is called, it 3583 * falls through and resets the index counter back to 1, the minimum value 3584 * for the interface index. The logic below assumes that ips_ill_index 3585 * can hold a value of IF_INDEX_MAX+1 without there being any loss 3586 * (i.e. reset back to 0.) 3587 */ 3588 boolean_t 3589 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 3590 { 3591 uint_t loops; 3592 3593 if (!ipst->ips_ill_index_wrap) { 3594 *indexp = ipst->ips_ill_index++; 3595 if (ipst->ips_ill_index > IF_INDEX_MAX) { 3596 /* 3597 * Reached the maximum ifindex value, set the wrap 3598 * flag to indicate that it is no longer possible 3599 * to assume that a given index is unallocated. 3600 */ 3601 ipst->ips_ill_index_wrap = B_TRUE; 3602 } 3603 return (B_TRUE); 3604 } 3605 3606 if (ipst->ips_ill_index > IF_INDEX_MAX) 3607 ipst->ips_ill_index = 1; 3608 3609 /* 3610 * Start reusing unused indexes. Note that we hold the ill_g_lock 3611 * at this point and don't want to call any function that attempts 3612 * to get the lock again. 3613 */ 3614 for (loops = IF_INDEX_MAX; loops > 0; loops--) { 3615 if (!phyint_exists(ipst->ips_ill_index, ipst)) { 3616 /* found unused index - use it */ 3617 *indexp = ipst->ips_ill_index; 3618 return (B_TRUE); 3619 } 3620 3621 ipst->ips_ill_index++; 3622 if (ipst->ips_ill_index > IF_INDEX_MAX) 3623 ipst->ips_ill_index = 1; 3624 } 3625 3626 /* 3627 * all interface indicies are inuse. 3628 */ 3629 return (B_FALSE); 3630 } 3631 3632 /* 3633 * Assign a unique interface index for the phyint. 3634 */ 3635 static boolean_t 3636 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 3637 { 3638 ASSERT(phyi->phyint_ifindex == 0); 3639 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 3640 } 3641 3642 /* 3643 * Initialize the flags on `phyi' as per the provided mactype. 3644 */ 3645 static void 3646 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype) 3647 { 3648 uint64_t flags = 0; 3649 3650 /* 3651 * Initialize PHYI_RUNNING and PHYI_FAILED. For non-IPMP interfaces, 3652 * we always presume the underlying hardware is working and set 3653 * PHYI_RUNNING (if it's not, the driver will subsequently send a 3654 * DL_NOTE_LINK_DOWN message). For IPMP interfaces, at initialization 3655 * there are no active interfaces in the group so we set PHYI_FAILED. 3656 */ 3657 if (mactype == SUNW_DL_IPMP) 3658 flags |= PHYI_FAILED; 3659 else 3660 flags |= PHYI_RUNNING; 3661 3662 switch (mactype) { 3663 case SUNW_DL_VNI: 3664 flags |= PHYI_VIRTUAL; 3665 break; 3666 case SUNW_DL_IPMP: 3667 flags |= PHYI_IPMP; 3668 break; 3669 case DL_LOOP: 3670 flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL); 3671 break; 3672 } 3673 3674 mutex_enter(&phyi->phyint_lock); 3675 phyi->phyint_flags |= flags; 3676 mutex_exit(&phyi->phyint_lock); 3677 } 3678 3679 /* 3680 * Return a pointer to the ill which matches the supplied name. Note that 3681 * the ill name length includes the null termination character. (May be 3682 * called as writer.) 3683 * If do_alloc and the interface is "lo0" it will be automatically created. 3684 * Cannot bump up reference on condemned ills. So dup detect can't be done 3685 * using this func. 3686 */ 3687 ill_t * 3688 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 3689 boolean_t *did_alloc, ip_stack_t *ipst) 3690 { 3691 ill_t *ill; 3692 ipif_t *ipif; 3693 ipsq_t *ipsq; 3694 kstat_named_t *kn; 3695 boolean_t isloopback; 3696 in6_addr_t ov6addr; 3697 3698 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 3699 3700 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3701 ill = ill_find_by_name(name, isv6, ipst); 3702 rw_exit(&ipst->ips_ill_g_lock); 3703 if (ill != NULL) 3704 return (ill); 3705 3706 /* 3707 * Couldn't find it. Does this happen to be a lookup for the 3708 * loopback device and are we allowed to allocate it? 3709 */ 3710 if (!isloopback || !do_alloc) 3711 return (NULL); 3712 3713 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 3714 ill = ill_find_by_name(name, isv6, ipst); 3715 if (ill != NULL) { 3716 rw_exit(&ipst->ips_ill_g_lock); 3717 return (ill); 3718 } 3719 3720 /* Create the loopback device on demand */ 3721 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 3722 sizeof (ipif_loopback_name), BPRI_MED)); 3723 if (ill == NULL) 3724 goto done; 3725 3726 bzero(ill, sizeof (*ill)); 3727 ill->ill_ipst = ipst; 3728 netstack_hold(ipst->ips_netstack); 3729 /* 3730 * For exclusive stacks we set the zoneid to zero 3731 * to make IP operate as if in the global zone. 3732 */ 3733 ill->ill_zoneid = GLOBAL_ZONEID; 3734 3735 if (ill_init_common(ill, NULL, isv6, B_TRUE, B_FALSE) != 0) 3736 goto done; 3737 3738 if (!ill_allocate_mibs(ill)) 3739 goto done; 3740 3741 ill->ill_current_frag = ill->ill_max_frag; 3742 ill->ill_mtu = ill->ill_max_frag; /* Initial value */ 3743 ill->ill_mc_mtu = ill->ill_mtu; 3744 /* 3745 * ipif_loopback_name can't be pointed at directly because its used 3746 * by both the ipv4 and ipv6 interfaces. When the ill is removed 3747 * from the glist, ill_glist_delete() sets the first character of 3748 * ill_name to '\0'. 3749 */ 3750 ill->ill_name = (char *)ill + sizeof (*ill); 3751 (void) strcpy(ill->ill_name, ipif_loopback_name); 3752 ill->ill_name_length = sizeof (ipif_loopback_name); 3753 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 3754 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3755 3756 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE, NULL); 3757 if (ipif == NULL) 3758 goto done; 3759 3760 ill->ill_flags = ILLF_MULTICAST; 3761 3762 ov6addr = ipif->ipif_v6lcl_addr; 3763 /* Set up default loopback address and mask. */ 3764 if (!isv6) { 3765 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 3766 3767 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 3768 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 3769 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3770 ipif->ipif_v6subnet); 3771 ill->ill_flags |= ILLF_IPV4; 3772 } else { 3773 ipif->ipif_v6lcl_addr = ipv6_loopback; 3774 ipif->ipif_v6net_mask = ipv6_all_ones; 3775 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3776 ipif->ipif_v6subnet); 3777 ill->ill_flags |= ILLF_IPV6; 3778 } 3779 3780 /* 3781 * Chain us in at the end of the ill list. hold the ill 3782 * before we make it globally visible. 1 for the lookup. 3783 */ 3784 ill_refhold(ill); 3785 3786 ipsq = ill->ill_phyint->phyint_ipsq; 3787 3788 if (ill_glist_insert(ill, "lo", isv6) != 0) 3789 cmn_err(CE_PANIC, "cannot insert loopback interface"); 3790 3791 /* Let SCTP know so that it can add this to its list */ 3792 sctp_update_ill(ill, SCTP_ILL_INSERT); 3793 3794 /* 3795 * We have already assigned ipif_v6lcl_addr above, but we need to 3796 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 3797 * requires to be after ill_glist_insert() since we need the 3798 * ill_index set. Pass on ipv6_loopback as the old address. 3799 */ 3800 sctp_update_ipif_addr(ipif, ov6addr); 3801 3802 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 3803 3804 /* 3805 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs. 3806 * If so, free our original one. 3807 */ 3808 if (ipsq != ill->ill_phyint->phyint_ipsq) 3809 ipsq_delete(ipsq); 3810 3811 if (ipst->ips_loopback_ksp == NULL) { 3812 /* Export loopback interface statistics */ 3813 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 3814 ipif_loopback_name, "net", 3815 KSTAT_TYPE_NAMED, 2, 0, 3816 ipst->ips_netstack->netstack_stackid); 3817 if (ipst->ips_loopback_ksp != NULL) { 3818 ipst->ips_loopback_ksp->ks_update = 3819 loopback_kstat_update; 3820 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 3821 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 3822 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 3823 ipst->ips_loopback_ksp->ks_private = 3824 (void *)(uintptr_t)ipst->ips_netstack-> 3825 netstack_stackid; 3826 kstat_install(ipst->ips_loopback_ksp); 3827 } 3828 } 3829 3830 *did_alloc = B_TRUE; 3831 rw_exit(&ipst->ips_ill_g_lock); 3832 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id), 3833 NE_PLUMB, ill->ill_name, ill->ill_name_length); 3834 return (ill); 3835 done: 3836 if (ill != NULL) { 3837 if (ill->ill_phyint != NULL) { 3838 ipsq = ill->ill_phyint->phyint_ipsq; 3839 if (ipsq != NULL) { 3840 ipsq->ipsq_phyint = NULL; 3841 ipsq_delete(ipsq); 3842 } 3843 mi_free(ill->ill_phyint); 3844 } 3845 ill_free_mib(ill); 3846 if (ill->ill_ipst != NULL) 3847 netstack_rele(ill->ill_ipst->ips_netstack); 3848 mi_free(ill); 3849 } 3850 rw_exit(&ipst->ips_ill_g_lock); 3851 return (NULL); 3852 } 3853 3854 /* 3855 * For IPP calls - use the ip_stack_t for global stack. 3856 */ 3857 ill_t * 3858 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6) 3859 { 3860 ip_stack_t *ipst; 3861 ill_t *ill; 3862 3863 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 3864 if (ipst == NULL) { 3865 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 3866 return (NULL); 3867 } 3868 3869 ill = ill_lookup_on_ifindex(index, isv6, ipst); 3870 netstack_rele(ipst->ips_netstack); 3871 return (ill); 3872 } 3873 3874 /* 3875 * Return a pointer to the ill which matches the index and IP version type. 3876 */ 3877 ill_t * 3878 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3879 { 3880 ill_t *ill; 3881 phyint_t *phyi; 3882 3883 /* 3884 * Indexes are stored in the phyint - a common structure 3885 * to both IPv4 and IPv6. 3886 */ 3887 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3888 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3889 (void *) &index, NULL); 3890 if (phyi != NULL) { 3891 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 3892 if (ill != NULL) { 3893 mutex_enter(&ill->ill_lock); 3894 if (!ILL_IS_CONDEMNED(ill)) { 3895 ill_refhold_locked(ill); 3896 mutex_exit(&ill->ill_lock); 3897 rw_exit(&ipst->ips_ill_g_lock); 3898 return (ill); 3899 } 3900 mutex_exit(&ill->ill_lock); 3901 } 3902 } 3903 rw_exit(&ipst->ips_ill_g_lock); 3904 return (NULL); 3905 } 3906 3907 /* 3908 * Verify whether or not an interface index is valid for the specified zoneid 3909 * to transmit packets. 3910 * It can be zero (meaning "reset") or an interface index assigned 3911 * to a non-VNI interface. (We don't use VNI interface to send packets.) 3912 */ 3913 boolean_t 3914 ip_xmit_ifindex_valid(uint_t ifindex, zoneid_t zoneid, boolean_t isv6, 3915 ip_stack_t *ipst) 3916 { 3917 ill_t *ill; 3918 3919 if (ifindex == 0) 3920 return (B_TRUE); 3921 3922 ill = ill_lookup_on_ifindex_zoneid(ifindex, zoneid, isv6, ipst); 3923 if (ill == NULL) 3924 return (B_FALSE); 3925 if (IS_VNI(ill)) { 3926 ill_refrele(ill); 3927 return (B_FALSE); 3928 } 3929 ill_refrele(ill); 3930 return (B_TRUE); 3931 } 3932 3933 /* 3934 * Return the ifindex next in sequence after the passed in ifindex. 3935 * If there is no next ifindex for the given protocol, return 0. 3936 */ 3937 uint_t 3938 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3939 { 3940 phyint_t *phyi; 3941 phyint_t *phyi_initial; 3942 uint_t ifindex; 3943 3944 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3945 3946 if (index == 0) { 3947 phyi = avl_first( 3948 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 3949 } else { 3950 phyi = phyi_initial = avl_find( 3951 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3952 (void *) &index, NULL); 3953 } 3954 3955 for (; phyi != NULL; 3956 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3957 phyi, AVL_AFTER)) { 3958 /* 3959 * If we're not returning the first interface in the tree 3960 * and we still haven't moved past the phyint_t that 3961 * corresponds to index, avl_walk needs to be called again 3962 */ 3963 if (!((index != 0) && (phyi == phyi_initial))) { 3964 if (isv6) { 3965 if ((phyi->phyint_illv6) && 3966 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 3967 (phyi->phyint_illv6->ill_isv6 == 1)) 3968 break; 3969 } else { 3970 if ((phyi->phyint_illv4) && 3971 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 3972 (phyi->phyint_illv4->ill_isv6 == 0)) 3973 break; 3974 } 3975 } 3976 } 3977 3978 rw_exit(&ipst->ips_ill_g_lock); 3979 3980 if (phyi != NULL) 3981 ifindex = phyi->phyint_ifindex; 3982 else 3983 ifindex = 0; 3984 3985 return (ifindex); 3986 } 3987 3988 /* 3989 * Return the ifindex for the named interface. 3990 * If there is no next ifindex for the interface, return 0. 3991 */ 3992 uint_t 3993 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 3994 { 3995 phyint_t *phyi; 3996 avl_index_t where = 0; 3997 uint_t ifindex; 3998 3999 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4000 4001 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 4002 name, &where)) == NULL) { 4003 rw_exit(&ipst->ips_ill_g_lock); 4004 return (0); 4005 } 4006 4007 ifindex = phyi->phyint_ifindex; 4008 4009 rw_exit(&ipst->ips_ill_g_lock); 4010 4011 return (ifindex); 4012 } 4013 4014 /* 4015 * Return the ifindex to be used by upper layer protocols for instance 4016 * for IPV6_RECVPKTINFO. If IPMP this is the one for the upper ill. 4017 */ 4018 uint_t 4019 ill_get_upper_ifindex(const ill_t *ill) 4020 { 4021 if (IS_UNDER_IPMP(ill)) 4022 return (ipmp_ill_get_ipmp_ifindex(ill)); 4023 else 4024 return (ill->ill_phyint->phyint_ifindex); 4025 } 4026 4027 4028 /* 4029 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 4030 * that gives a running thread a reference to the ill. This reference must be 4031 * released by the thread when it is done accessing the ill and related 4032 * objects. ill_refcnt can not be used to account for static references 4033 * such as other structures pointing to an ill. Callers must generally 4034 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 4035 * or be sure that the ill is not being deleted or changing state before 4036 * calling the refhold functions. A non-zero ill_refcnt ensures that the 4037 * ill won't change any of its critical state such as address, netmask etc. 4038 */ 4039 void 4040 ill_refhold(ill_t *ill) 4041 { 4042 mutex_enter(&ill->ill_lock); 4043 ill->ill_refcnt++; 4044 ILL_TRACE_REF(ill); 4045 mutex_exit(&ill->ill_lock); 4046 } 4047 4048 void 4049 ill_refhold_locked(ill_t *ill) 4050 { 4051 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4052 ill->ill_refcnt++; 4053 ILL_TRACE_REF(ill); 4054 } 4055 4056 /* Returns true if we managed to get a refhold */ 4057 boolean_t 4058 ill_check_and_refhold(ill_t *ill) 4059 { 4060 mutex_enter(&ill->ill_lock); 4061 if (!ILL_IS_CONDEMNED(ill)) { 4062 ill_refhold_locked(ill); 4063 mutex_exit(&ill->ill_lock); 4064 return (B_TRUE); 4065 } 4066 mutex_exit(&ill->ill_lock); 4067 return (B_FALSE); 4068 } 4069 4070 /* 4071 * Must not be called while holding any locks. Otherwise if this is 4072 * the last reference to be released, there is a chance of recursive mutex 4073 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 4074 * to restart an ioctl. 4075 */ 4076 void 4077 ill_refrele(ill_t *ill) 4078 { 4079 mutex_enter(&ill->ill_lock); 4080 ASSERT(ill->ill_refcnt != 0); 4081 ill->ill_refcnt--; 4082 ILL_UNTRACE_REF(ill); 4083 if (ill->ill_refcnt != 0) { 4084 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 4085 mutex_exit(&ill->ill_lock); 4086 return; 4087 } 4088 4089 /* Drops the ill_lock */ 4090 ipif_ill_refrele_tail(ill); 4091 } 4092 4093 /* 4094 * Obtain a weak reference count on the ill. This reference ensures the 4095 * ill won't be freed, but the ill may change any of its critical state 4096 * such as netmask, address etc. Returns an error if the ill has started 4097 * closing. 4098 */ 4099 boolean_t 4100 ill_waiter_inc(ill_t *ill) 4101 { 4102 mutex_enter(&ill->ill_lock); 4103 if (ill->ill_state_flags & ILL_CONDEMNED) { 4104 mutex_exit(&ill->ill_lock); 4105 return (B_FALSE); 4106 } 4107 ill->ill_waiters++; 4108 mutex_exit(&ill->ill_lock); 4109 return (B_TRUE); 4110 } 4111 4112 void 4113 ill_waiter_dcr(ill_t *ill) 4114 { 4115 mutex_enter(&ill->ill_lock); 4116 ill->ill_waiters--; 4117 if (ill->ill_waiters == 0) 4118 cv_broadcast(&ill->ill_cv); 4119 mutex_exit(&ill->ill_lock); 4120 } 4121 4122 /* 4123 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 4124 * driver. We construct best guess defaults for lower level information that 4125 * we need. If an interface is brought up without injection of any overriding 4126 * information from outside, we have to be ready to go with these defaults. 4127 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 4128 * we primarely want the dl_provider_style. 4129 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 4130 * at which point we assume the other part of the information is valid. 4131 */ 4132 void 4133 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 4134 { 4135 uchar_t *brdcst_addr; 4136 uint_t brdcst_addr_length, phys_addr_length; 4137 t_scalar_t sap_length; 4138 dl_info_ack_t *dlia; 4139 ip_m_t *ipm; 4140 dl_qos_cl_sel1_t *sel1; 4141 int min_mtu; 4142 4143 ASSERT(IAM_WRITER_ILL(ill)); 4144 4145 /* 4146 * Till the ill is fully up the ill is not globally visible. 4147 * So no need for a lock. 4148 */ 4149 dlia = (dl_info_ack_t *)mp->b_rptr; 4150 ill->ill_mactype = dlia->dl_mac_type; 4151 4152 ipm = ip_m_lookup(dlia->dl_mac_type); 4153 if (ipm == NULL) { 4154 ipm = ip_m_lookup(DL_OTHER); 4155 ASSERT(ipm != NULL); 4156 } 4157 ill->ill_media = ipm; 4158 4159 /* 4160 * When the new DLPI stuff is ready we'll pull lengths 4161 * from dlia. 4162 */ 4163 if (dlia->dl_version == DL_VERSION_2) { 4164 brdcst_addr_length = dlia->dl_brdcst_addr_length; 4165 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 4166 brdcst_addr_length); 4167 if (brdcst_addr == NULL) { 4168 brdcst_addr_length = 0; 4169 } 4170 sap_length = dlia->dl_sap_length; 4171 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 4172 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 4173 brdcst_addr_length, sap_length, phys_addr_length)); 4174 } else { 4175 brdcst_addr_length = 6; 4176 brdcst_addr = ip_six_byte_all_ones; 4177 sap_length = -2; 4178 phys_addr_length = brdcst_addr_length; 4179 } 4180 4181 ill->ill_bcast_addr_length = brdcst_addr_length; 4182 ill->ill_phys_addr_length = phys_addr_length; 4183 ill->ill_sap_length = sap_length; 4184 4185 /* 4186 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU, 4187 * but we must ensure a minimum IP MTU is used since other bits of 4188 * IP will fly apart otherwise. 4189 */ 4190 min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU; 4191 ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu); 4192 ill->ill_current_frag = ill->ill_max_frag; 4193 ill->ill_mtu = ill->ill_max_frag; 4194 ill->ill_mc_mtu = ill->ill_mtu; /* Overridden by DL_NOTE_SDU_SIZE2 */ 4195 4196 ill->ill_type = ipm->ip_m_type; 4197 4198 if (!ill->ill_dlpi_style_set) { 4199 if (dlia->dl_provider_style == DL_STYLE2) 4200 ill->ill_needs_attach = 1; 4201 4202 phyint_flags_init(ill->ill_phyint, ill->ill_mactype); 4203 4204 /* 4205 * Allocate the first ipif on this ill. We don't delay it 4206 * further as ioctl handling assumes at least one ipif exists. 4207 * 4208 * At this point we don't know whether the ill is v4 or v6. 4209 * We will know this whan the SIOCSLIFNAME happens and 4210 * the correct value for ill_isv6 will be assigned in 4211 * ipif_set_values(). We need to hold the ill lock and 4212 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 4213 * the wakeup. 4214 */ 4215 (void) ipif_allocate(ill, 0, IRE_LOCAL, 4216 dlia->dl_provider_style != DL_STYLE2, B_TRUE, NULL); 4217 mutex_enter(&ill->ill_lock); 4218 ASSERT(ill->ill_dlpi_style_set == 0); 4219 ill->ill_dlpi_style_set = 1; 4220 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 4221 cv_broadcast(&ill->ill_cv); 4222 mutex_exit(&ill->ill_lock); 4223 freemsg(mp); 4224 return; 4225 } 4226 ASSERT(ill->ill_ipif != NULL); 4227 /* 4228 * We know whether it is IPv4 or IPv6 now, as this is the 4229 * second DL_INFO_ACK we are recieving in response to the 4230 * DL_INFO_REQ sent in ipif_set_values. 4231 */ 4232 ill->ill_sap = (ill->ill_isv6) ? ipm->ip_m_ipv6sap : ipm->ip_m_ipv4sap; 4233 /* 4234 * Clear all the flags that were set based on ill_bcast_addr_length 4235 * and ill_phys_addr_length (in ipif_set_values) as these could have 4236 * changed now and we need to re-evaluate. 4237 */ 4238 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 4239 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 4240 4241 /* 4242 * Free ill_bcast_mp as things could have changed now. 4243 * 4244 * NOTE: The IPMP meta-interface is special-cased because it starts 4245 * with no underlying interfaces (and thus an unknown broadcast 4246 * address length), but we enforce that an interface is broadcast- 4247 * capable as part of allowing it to join a group. 4248 */ 4249 if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) { 4250 if (ill->ill_bcast_mp != NULL) 4251 freemsg(ill->ill_bcast_mp); 4252 ill->ill_net_type = IRE_IF_NORESOLVER; 4253 4254 ill->ill_bcast_mp = ill_dlur_gen(NULL, 4255 ill->ill_phys_addr_length, 4256 ill->ill_sap, 4257 ill->ill_sap_length); 4258 4259 if (ill->ill_isv6) 4260 /* 4261 * Note: xresolv interfaces will eventually need NOARP 4262 * set here as well, but that will require those 4263 * external resolvers to have some knowledge of 4264 * that flag and act appropriately. Not to be changed 4265 * at present. 4266 */ 4267 ill->ill_flags |= ILLF_NONUD; 4268 else 4269 ill->ill_flags |= ILLF_NOARP; 4270 4271 if (ill->ill_mactype == SUNW_DL_VNI) { 4272 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 4273 } else if (ill->ill_phys_addr_length == 0 || 4274 ill->ill_mactype == DL_IPV4 || 4275 ill->ill_mactype == DL_IPV6) { 4276 /* 4277 * The underying link is point-to-point, so mark the 4278 * interface as such. We can do IP multicast over 4279 * such a link since it transmits all network-layer 4280 * packets to the remote side the same way. 4281 */ 4282 ill->ill_flags |= ILLF_MULTICAST; 4283 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 4284 } 4285 } else { 4286 ill->ill_net_type = IRE_IF_RESOLVER; 4287 if (ill->ill_bcast_mp != NULL) 4288 freemsg(ill->ill_bcast_mp); 4289 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 4290 ill->ill_bcast_addr_length, ill->ill_sap, 4291 ill->ill_sap_length); 4292 /* 4293 * Later detect lack of DLPI driver multicast 4294 * capability by catching DL_ENABMULTI errors in 4295 * ip_rput_dlpi. 4296 */ 4297 ill->ill_flags |= ILLF_MULTICAST; 4298 if (!ill->ill_isv6) 4299 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 4300 } 4301 4302 /* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */ 4303 if (ill->ill_mactype == SUNW_DL_IPMP) 4304 ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP); 4305 4306 /* By default an interface does not support any CoS marking */ 4307 ill->ill_flags &= ~ILLF_COS_ENABLED; 4308 4309 /* 4310 * If we get QoS information in DL_INFO_ACK, the device supports 4311 * some form of CoS marking, set ILLF_COS_ENABLED. 4312 */ 4313 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 4314 dlia->dl_qos_length); 4315 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 4316 ill->ill_flags |= ILLF_COS_ENABLED; 4317 } 4318 4319 /* Clear any previous error indication. */ 4320 ill->ill_error = 0; 4321 freemsg(mp); 4322 } 4323 4324 /* 4325 * Perform various checks to verify that an address would make sense as a 4326 * local, remote, or subnet interface address. 4327 */ 4328 static boolean_t 4329 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 4330 { 4331 ipaddr_t net_mask; 4332 4333 /* 4334 * Don't allow all zeroes, or all ones, but allow 4335 * all ones netmask. 4336 */ 4337 if ((net_mask = ip_net_mask(addr)) == 0) 4338 return (B_FALSE); 4339 /* A given netmask overrides the "guess" netmask */ 4340 if (subnet_mask != 0) 4341 net_mask = subnet_mask; 4342 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 4343 (addr == (addr | ~net_mask)))) { 4344 return (B_FALSE); 4345 } 4346 4347 /* 4348 * Even if the netmask is all ones, we do not allow address to be 4349 * 255.255.255.255 4350 */ 4351 if (addr == INADDR_BROADCAST) 4352 return (B_FALSE); 4353 4354 if (CLASSD(addr)) 4355 return (B_FALSE); 4356 4357 return (B_TRUE); 4358 } 4359 4360 #define V6_IPIF_LINKLOCAL(p) \ 4361 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 4362 4363 /* 4364 * Compare two given ipifs and check if the second one is better than 4365 * the first one using the order of preference (not taking deprecated 4366 * into acount) specified in ipif_lookup_multicast(). 4367 */ 4368 static boolean_t 4369 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 4370 { 4371 /* Check the least preferred first. */ 4372 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 4373 /* If both ipifs are the same, use the first one. */ 4374 if (IS_LOOPBACK(new_ipif->ipif_ill)) 4375 return (B_FALSE); 4376 else 4377 return (B_TRUE); 4378 } 4379 4380 /* For IPv6, check for link local address. */ 4381 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 4382 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4383 V6_IPIF_LINKLOCAL(new_ipif)) { 4384 /* The second one is equal or less preferred. */ 4385 return (B_FALSE); 4386 } else { 4387 return (B_TRUE); 4388 } 4389 } 4390 4391 /* Then check for point to point interface. */ 4392 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 4393 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4394 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 4395 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 4396 return (B_FALSE); 4397 } else { 4398 return (B_TRUE); 4399 } 4400 } 4401 4402 /* old_ipif is a normal interface, so no need to use the new one. */ 4403 return (B_FALSE); 4404 } 4405 4406 /* 4407 * Find a mulitcast-capable ipif given an IP instance and zoneid. 4408 * The ipif must be up, and its ill must multicast-capable, not 4409 * condemned, not an underlying interface in an IPMP group, and 4410 * not a VNI interface. Order of preference: 4411 * 4412 * 1a. normal 4413 * 1b. normal, but deprecated 4414 * 2a. point to point 4415 * 2b. point to point, but deprecated 4416 * 3a. link local 4417 * 3b. link local, but deprecated 4418 * 4. loopback. 4419 */ 4420 static ipif_t * 4421 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4422 { 4423 ill_t *ill; 4424 ill_walk_context_t ctx; 4425 ipif_t *ipif; 4426 ipif_t *saved_ipif = NULL; 4427 ipif_t *dep_ipif = NULL; 4428 4429 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4430 if (isv6) 4431 ill = ILL_START_WALK_V6(&ctx, ipst); 4432 else 4433 ill = ILL_START_WALK_V4(&ctx, ipst); 4434 4435 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4436 mutex_enter(&ill->ill_lock); 4437 if (IS_VNI(ill) || IS_UNDER_IPMP(ill) || 4438 ILL_IS_CONDEMNED(ill) || 4439 !(ill->ill_flags & ILLF_MULTICAST)) { 4440 mutex_exit(&ill->ill_lock); 4441 continue; 4442 } 4443 for (ipif = ill->ill_ipif; ipif != NULL; 4444 ipif = ipif->ipif_next) { 4445 if (zoneid != ipif->ipif_zoneid && 4446 zoneid != ALL_ZONES && 4447 ipif->ipif_zoneid != ALL_ZONES) { 4448 continue; 4449 } 4450 if (!(ipif->ipif_flags & IPIF_UP) || 4451 IPIF_IS_CONDEMNED(ipif)) { 4452 continue; 4453 } 4454 4455 /* 4456 * Found one candidate. If it is deprecated, 4457 * remember it in dep_ipif. If it is not deprecated, 4458 * remember it in saved_ipif. 4459 */ 4460 if (ipif->ipif_flags & IPIF_DEPRECATED) { 4461 if (dep_ipif == NULL) { 4462 dep_ipif = ipif; 4463 } else if (ipif_comp_multi(dep_ipif, ipif, 4464 isv6)) { 4465 /* 4466 * If the previous dep_ipif does not 4467 * belong to the same ill, we've done 4468 * a ipif_refhold() on it. So we need 4469 * to release it. 4470 */ 4471 if (dep_ipif->ipif_ill != ill) 4472 ipif_refrele(dep_ipif); 4473 dep_ipif = ipif; 4474 } 4475 continue; 4476 } 4477 if (saved_ipif == NULL) { 4478 saved_ipif = ipif; 4479 } else { 4480 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 4481 if (saved_ipif->ipif_ill != ill) 4482 ipif_refrele(saved_ipif); 4483 saved_ipif = ipif; 4484 } 4485 } 4486 } 4487 /* 4488 * Before going to the next ill, do a ipif_refhold() on the 4489 * saved ones. 4490 */ 4491 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 4492 ipif_refhold_locked(saved_ipif); 4493 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 4494 ipif_refhold_locked(dep_ipif); 4495 mutex_exit(&ill->ill_lock); 4496 } 4497 rw_exit(&ipst->ips_ill_g_lock); 4498 4499 /* 4500 * If we have only the saved_ipif, return it. But if we have both 4501 * saved_ipif and dep_ipif, check to see which one is better. 4502 */ 4503 if (saved_ipif != NULL) { 4504 if (dep_ipif != NULL) { 4505 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 4506 ipif_refrele(saved_ipif); 4507 return (dep_ipif); 4508 } else { 4509 ipif_refrele(dep_ipif); 4510 return (saved_ipif); 4511 } 4512 } 4513 return (saved_ipif); 4514 } else { 4515 return (dep_ipif); 4516 } 4517 } 4518 4519 ill_t * 4520 ill_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4521 { 4522 ipif_t *ipif; 4523 ill_t *ill; 4524 4525 ipif = ipif_lookup_multicast(ipst, zoneid, isv6); 4526 if (ipif == NULL) 4527 return (NULL); 4528 4529 ill = ipif->ipif_ill; 4530 ill_refhold(ill); 4531 ipif_refrele(ipif); 4532 return (ill); 4533 } 4534 4535 /* 4536 * This function is called when an application does not specify an interface 4537 * to be used for multicast traffic (joining a group/sending data). It 4538 * calls ire_lookup_multi() to look for an interface route for the 4539 * specified multicast group. Doing this allows the administrator to add 4540 * prefix routes for multicast to indicate which interface to be used for 4541 * multicast traffic in the above scenario. The route could be for all 4542 * multicast (224.0/4), for a single multicast group (a /32 route) or 4543 * anything in between. If there is no such multicast route, we just find 4544 * any multicast capable interface and return it. The returned ipif 4545 * is refhold'ed. 4546 * 4547 * We support MULTIRT and RTF_SETSRC on the multicast routes added to the 4548 * unicast table. This is used by CGTP. 4549 */ 4550 ill_t * 4551 ill_lookup_group_v4(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst, 4552 boolean_t *multirtp, ipaddr_t *setsrcp) 4553 { 4554 ill_t *ill; 4555 4556 ill = ire_lookup_multi_ill_v4(group, zoneid, ipst, multirtp, setsrcp); 4557 if (ill != NULL) 4558 return (ill); 4559 4560 return (ill_lookup_multicast(ipst, zoneid, B_FALSE)); 4561 } 4562 4563 /* 4564 * Look for an ipif with the specified interface address and destination. 4565 * The destination address is used only for matching point-to-point interfaces. 4566 */ 4567 ipif_t * 4568 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, ip_stack_t *ipst) 4569 { 4570 ipif_t *ipif; 4571 ill_t *ill; 4572 ill_walk_context_t ctx; 4573 4574 /* 4575 * First match all the point-to-point interfaces 4576 * before looking at non-point-to-point interfaces. 4577 * This is done to avoid returning non-point-to-point 4578 * ipif instead of unnumbered point-to-point ipif. 4579 */ 4580 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4581 ill = ILL_START_WALK_V4(&ctx, ipst); 4582 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4583 mutex_enter(&ill->ill_lock); 4584 for (ipif = ill->ill_ipif; ipif != NULL; 4585 ipif = ipif->ipif_next) { 4586 /* Allow the ipif to be down */ 4587 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 4588 (ipif->ipif_lcl_addr == if_addr) && 4589 (ipif->ipif_pp_dst_addr == dst)) { 4590 if (!IPIF_IS_CONDEMNED(ipif)) { 4591 ipif_refhold_locked(ipif); 4592 mutex_exit(&ill->ill_lock); 4593 rw_exit(&ipst->ips_ill_g_lock); 4594 return (ipif); 4595 } 4596 } 4597 } 4598 mutex_exit(&ill->ill_lock); 4599 } 4600 rw_exit(&ipst->ips_ill_g_lock); 4601 4602 /* lookup the ipif based on interface address */ 4603 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, ipst); 4604 ASSERT(ipif == NULL || !ipif->ipif_isv6); 4605 return (ipif); 4606 } 4607 4608 /* 4609 * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact(). 4610 */ 4611 static ipif_t * 4612 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, uint32_t match_flags, 4613 zoneid_t zoneid, ip_stack_t *ipst) 4614 { 4615 ipif_t *ipif; 4616 ill_t *ill; 4617 boolean_t ptp = B_FALSE; 4618 ill_walk_context_t ctx; 4619 boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP); 4620 boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP); 4621 4622 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4623 /* 4624 * Repeat twice, first based on local addresses and 4625 * next time for pointopoint. 4626 */ 4627 repeat: 4628 ill = ILL_START_WALK_V4(&ctx, ipst); 4629 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4630 if (match_ill != NULL && ill != match_ill && 4631 (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) { 4632 continue; 4633 } 4634 mutex_enter(&ill->ill_lock); 4635 for (ipif = ill->ill_ipif; ipif != NULL; 4636 ipif = ipif->ipif_next) { 4637 if (zoneid != ALL_ZONES && 4638 zoneid != ipif->ipif_zoneid && 4639 ipif->ipif_zoneid != ALL_ZONES) 4640 continue; 4641 4642 if (no_duplicate && !(ipif->ipif_flags & IPIF_UP)) 4643 continue; 4644 4645 /* Allow the ipif to be down */ 4646 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4647 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4648 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4649 (ipif->ipif_pp_dst_addr == addr))) { 4650 if (!IPIF_IS_CONDEMNED(ipif)) { 4651 ipif_refhold_locked(ipif); 4652 mutex_exit(&ill->ill_lock); 4653 rw_exit(&ipst->ips_ill_g_lock); 4654 return (ipif); 4655 } 4656 } 4657 } 4658 mutex_exit(&ill->ill_lock); 4659 } 4660 4661 /* If we already did the ptp case, then we are done */ 4662 if (ptp) { 4663 rw_exit(&ipst->ips_ill_g_lock); 4664 return (NULL); 4665 } 4666 ptp = B_TRUE; 4667 goto repeat; 4668 } 4669 4670 /* 4671 * Lookup an ipif with the specified address. For point-to-point links we 4672 * look for matches on either the destination address or the local address, 4673 * but we skip the local address check if IPIF_UNNUMBERED is set. If the 4674 * `match_ill' argument is non-NULL, the lookup is restricted to that ill 4675 * (or illgrp if `match_ill' is in an IPMP group). 4676 */ 4677 ipif_t * 4678 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4679 ip_stack_t *ipst) 4680 { 4681 return (ipif_lookup_addr_common(addr, match_ill, IPIF_MATCH_ILLGRP, 4682 zoneid, ipst)); 4683 } 4684 4685 /* 4686 * Lookup an ipif with the specified address. Similar to ipif_lookup_addr, 4687 * except that we will only return an address if it is not marked as 4688 * IPIF_DUPLICATE 4689 */ 4690 ipif_t * 4691 ipif_lookup_addr_nondup(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4692 ip_stack_t *ipst) 4693 { 4694 return (ipif_lookup_addr_common(addr, match_ill, 4695 (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP), 4696 zoneid, ipst)); 4697 } 4698 4699 /* 4700 * Special abbreviated version of ipif_lookup_addr() that doesn't match 4701 * `match_ill' across the IPMP group. This function is only needed in some 4702 * corner-cases; almost everything should use ipif_lookup_addr(). 4703 */ 4704 ipif_t * 4705 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4706 { 4707 ASSERT(match_ill != NULL); 4708 return (ipif_lookup_addr_common(addr, match_ill, 0, ALL_ZONES, 4709 ipst)); 4710 } 4711 4712 /* 4713 * Look for an ipif with the specified address. For point-point links 4714 * we look for matches on either the destination address and the local 4715 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 4716 * is set. 4717 * If the `match_ill' argument is non-NULL, the lookup is restricted to that 4718 * ill (or illgrp if `match_ill' is in an IPMP group). 4719 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 4720 */ 4721 zoneid_t 4722 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4723 { 4724 zoneid_t zoneid; 4725 ipif_t *ipif; 4726 ill_t *ill; 4727 boolean_t ptp = B_FALSE; 4728 ill_walk_context_t ctx; 4729 4730 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4731 /* 4732 * Repeat twice, first based on local addresses and 4733 * next time for pointopoint. 4734 */ 4735 repeat: 4736 ill = ILL_START_WALK_V4(&ctx, ipst); 4737 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4738 if (match_ill != NULL && ill != match_ill && 4739 !IS_IN_SAME_ILLGRP(ill, match_ill)) { 4740 continue; 4741 } 4742 mutex_enter(&ill->ill_lock); 4743 for (ipif = ill->ill_ipif; ipif != NULL; 4744 ipif = ipif->ipif_next) { 4745 /* Allow the ipif to be down */ 4746 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4747 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4748 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4749 (ipif->ipif_pp_dst_addr == addr)) && 4750 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 4751 zoneid = ipif->ipif_zoneid; 4752 mutex_exit(&ill->ill_lock); 4753 rw_exit(&ipst->ips_ill_g_lock); 4754 /* 4755 * If ipif_zoneid was ALL_ZONES then we have 4756 * a trusted extensions shared IP address. 4757 * In that case GLOBAL_ZONEID works to send. 4758 */ 4759 if (zoneid == ALL_ZONES) 4760 zoneid = GLOBAL_ZONEID; 4761 return (zoneid); 4762 } 4763 } 4764 mutex_exit(&ill->ill_lock); 4765 } 4766 4767 /* If we already did the ptp case, then we are done */ 4768 if (ptp) { 4769 rw_exit(&ipst->ips_ill_g_lock); 4770 return (ALL_ZONES); 4771 } 4772 ptp = B_TRUE; 4773 goto repeat; 4774 } 4775 4776 /* 4777 * Look for an ipif that matches the specified remote address i.e. the 4778 * ipif that would receive the specified packet. 4779 * First look for directly connected interfaces and then do a recursive 4780 * IRE lookup and pick the first ipif corresponding to the source address in the 4781 * ire. 4782 * Returns: held ipif 4783 * 4784 * This is only used for ICMP_ADDRESS_MASK_REQUESTs 4785 */ 4786 ipif_t * 4787 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 4788 { 4789 ipif_t *ipif; 4790 4791 ASSERT(!ill->ill_isv6); 4792 4793 /* 4794 * Someone could be changing this ipif currently or change it 4795 * after we return this. Thus a few packets could use the old 4796 * old values. However structure updates/creates (ire, ilg, ilm etc) 4797 * will atomically be updated or cleaned up with the new value 4798 * Thus we don't need a lock to check the flags or other attrs below. 4799 */ 4800 mutex_enter(&ill->ill_lock); 4801 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4802 if (IPIF_IS_CONDEMNED(ipif)) 4803 continue; 4804 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 4805 ipif->ipif_zoneid != ALL_ZONES) 4806 continue; 4807 /* Allow the ipif to be down */ 4808 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 4809 if ((ipif->ipif_pp_dst_addr == addr) || 4810 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 4811 ipif->ipif_lcl_addr == addr)) { 4812 ipif_refhold_locked(ipif); 4813 mutex_exit(&ill->ill_lock); 4814 return (ipif); 4815 } 4816 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 4817 ipif_refhold_locked(ipif); 4818 mutex_exit(&ill->ill_lock); 4819 return (ipif); 4820 } 4821 } 4822 mutex_exit(&ill->ill_lock); 4823 /* 4824 * For a remote destination it isn't possible to nail down a particular 4825 * ipif. 4826 */ 4827 4828 /* Pick the first interface */ 4829 ipif = ipif_get_next_ipif(NULL, ill); 4830 return (ipif); 4831 } 4832 4833 /* 4834 * This func does not prevent refcnt from increasing. But if 4835 * the caller has taken steps to that effect, then this func 4836 * can be used to determine whether the ill has become quiescent 4837 */ 4838 static boolean_t 4839 ill_is_quiescent(ill_t *ill) 4840 { 4841 ipif_t *ipif; 4842 4843 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4844 4845 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4846 if (ipif->ipif_refcnt != 0) 4847 return (B_FALSE); 4848 } 4849 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 4850 return (B_FALSE); 4851 } 4852 return (B_TRUE); 4853 } 4854 4855 boolean_t 4856 ill_is_freeable(ill_t *ill) 4857 { 4858 ipif_t *ipif; 4859 4860 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4861 4862 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4863 if (ipif->ipif_refcnt != 0) { 4864 return (B_FALSE); 4865 } 4866 } 4867 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 4868 return (B_FALSE); 4869 } 4870 return (B_TRUE); 4871 } 4872 4873 /* 4874 * This func does not prevent refcnt from increasing. But if 4875 * the caller has taken steps to that effect, then this func 4876 * can be used to determine whether the ipif has become quiescent 4877 */ 4878 static boolean_t 4879 ipif_is_quiescent(ipif_t *ipif) 4880 { 4881 ill_t *ill; 4882 4883 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4884 4885 if (ipif->ipif_refcnt != 0) 4886 return (B_FALSE); 4887 4888 ill = ipif->ipif_ill; 4889 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 4890 ill->ill_logical_down) { 4891 return (B_TRUE); 4892 } 4893 4894 /* This is the last ipif going down or being deleted on this ill */ 4895 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 4896 return (B_FALSE); 4897 } 4898 4899 return (B_TRUE); 4900 } 4901 4902 /* 4903 * return true if the ipif can be destroyed: the ipif has to be quiescent 4904 * with zero references from ire/ilm to it. 4905 */ 4906 static boolean_t 4907 ipif_is_freeable(ipif_t *ipif) 4908 { 4909 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4910 ASSERT(ipif->ipif_id != 0); 4911 return (ipif->ipif_refcnt == 0); 4912 } 4913 4914 /* 4915 * The ipif/ill/ire has been refreled. Do the tail processing. 4916 * Determine if the ipif or ill in question has become quiescent and if so 4917 * wakeup close and/or restart any queued pending ioctl that is waiting 4918 * for the ipif_down (or ill_down) 4919 */ 4920 void 4921 ipif_ill_refrele_tail(ill_t *ill) 4922 { 4923 mblk_t *mp; 4924 conn_t *connp; 4925 ipsq_t *ipsq; 4926 ipxop_t *ipx; 4927 ipif_t *ipif; 4928 dl_notify_ind_t *dlindp; 4929 4930 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4931 4932 if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) { 4933 /* ip_modclose() may be waiting */ 4934 cv_broadcast(&ill->ill_cv); 4935 } 4936 4937 ipsq = ill->ill_phyint->phyint_ipsq; 4938 mutex_enter(&ipsq->ipsq_lock); 4939 ipx = ipsq->ipsq_xop; 4940 mutex_enter(&ipx->ipx_lock); 4941 if (ipx->ipx_waitfor == 0) /* no one's waiting; bail */ 4942 goto unlock; 4943 4944 ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL); 4945 4946 ipif = ipx->ipx_pending_ipif; 4947 if (ipif->ipif_ill != ill) /* wait is for another ill; bail */ 4948 goto unlock; 4949 4950 switch (ipx->ipx_waitfor) { 4951 case IPIF_DOWN: 4952 if (!ipif_is_quiescent(ipif)) 4953 goto unlock; 4954 break; 4955 case IPIF_FREE: 4956 if (!ipif_is_freeable(ipif)) 4957 goto unlock; 4958 break; 4959 case ILL_DOWN: 4960 if (!ill_is_quiescent(ill)) 4961 goto unlock; 4962 break; 4963 case ILL_FREE: 4964 /* 4965 * ILL_FREE is only for loopback; normal ill teardown waits 4966 * synchronously in ip_modclose() without using ipx_waitfor, 4967 * handled by the cv_broadcast() at the top of this function. 4968 */ 4969 if (!ill_is_freeable(ill)) 4970 goto unlock; 4971 break; 4972 default: 4973 cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n", 4974 (void *)ipsq, ipx->ipx_waitfor); 4975 } 4976 4977 ill_refhold_locked(ill); /* for qwriter_ip() call below */ 4978 mutex_exit(&ipx->ipx_lock); 4979 mp = ipsq_pending_mp_get(ipsq, &connp); 4980 mutex_exit(&ipsq->ipsq_lock); 4981 mutex_exit(&ill->ill_lock); 4982 4983 ASSERT(mp != NULL); 4984 /* 4985 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 4986 * we can only get here when the current operation decides it 4987 * it needs to quiesce via ipsq_pending_mp_add(). 4988 */ 4989 switch (mp->b_datap->db_type) { 4990 case M_PCPROTO: 4991 case M_PROTO: 4992 /* 4993 * For now, only DL_NOTIFY_IND messages can use this facility. 4994 */ 4995 dlindp = (dl_notify_ind_t *)mp->b_rptr; 4996 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 4997 4998 switch (dlindp->dl_notification) { 4999 case DL_NOTE_PHYS_ADDR: 5000 qwriter_ip(ill, ill->ill_rq, mp, 5001 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 5002 return; 5003 case DL_NOTE_REPLUMB: 5004 qwriter_ip(ill, ill->ill_rq, mp, 5005 ill_replumb_tail, CUR_OP, B_TRUE); 5006 return; 5007 default: 5008 ASSERT(0); 5009 ill_refrele(ill); 5010 } 5011 break; 5012 5013 case M_ERROR: 5014 case M_HANGUP: 5015 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 5016 B_TRUE); 5017 return; 5018 5019 case M_IOCTL: 5020 case M_IOCDATA: 5021 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 5022 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 5023 return; 5024 5025 default: 5026 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 5027 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 5028 } 5029 return; 5030 unlock: 5031 mutex_exit(&ipsq->ipsq_lock); 5032 mutex_exit(&ipx->ipx_lock); 5033 mutex_exit(&ill->ill_lock); 5034 } 5035 5036 #ifdef DEBUG 5037 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 5038 static void 5039 th_trace_rrecord(th_trace_t *th_trace) 5040 { 5041 tr_buf_t *tr_buf; 5042 uint_t lastref; 5043 5044 lastref = th_trace->th_trace_lastref; 5045 lastref++; 5046 if (lastref == TR_BUF_MAX) 5047 lastref = 0; 5048 th_trace->th_trace_lastref = lastref; 5049 tr_buf = &th_trace->th_trbuf[lastref]; 5050 tr_buf->tr_time = ddi_get_lbolt(); 5051 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 5052 } 5053 5054 static void 5055 th_trace_free(void *value) 5056 { 5057 th_trace_t *th_trace = value; 5058 5059 ASSERT(th_trace->th_refcnt == 0); 5060 kmem_free(th_trace, sizeof (*th_trace)); 5061 } 5062 5063 /* 5064 * Find or create the per-thread hash table used to track object references. 5065 * The ipst argument is NULL if we shouldn't allocate. 5066 * 5067 * Accesses per-thread data, so there's no need to lock here. 5068 */ 5069 static mod_hash_t * 5070 th_trace_gethash(ip_stack_t *ipst) 5071 { 5072 th_hash_t *thh; 5073 5074 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 5075 mod_hash_t *mh; 5076 char name[256]; 5077 size_t objsize, rshift; 5078 int retv; 5079 5080 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 5081 return (NULL); 5082 (void) snprintf(name, sizeof (name), "th_trace_%p", 5083 (void *)curthread); 5084 5085 /* 5086 * We use mod_hash_create_extended here rather than the more 5087 * obvious mod_hash_create_ptrhash because the latter has a 5088 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 5089 * block. 5090 */ 5091 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 5092 MAX(sizeof (ire_t), sizeof (ncec_t))); 5093 rshift = highbit(objsize); 5094 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 5095 th_trace_free, mod_hash_byptr, (void *)rshift, 5096 mod_hash_ptrkey_cmp, KM_NOSLEEP); 5097 if (mh == NULL) { 5098 kmem_free(thh, sizeof (*thh)); 5099 return (NULL); 5100 } 5101 thh->thh_hash = mh; 5102 thh->thh_ipst = ipst; 5103 /* 5104 * We trace ills, ipifs, ires, and nces. All of these are 5105 * per-IP-stack, so the lock on the thread list is as well. 5106 */ 5107 rw_enter(&ip_thread_rwlock, RW_WRITER); 5108 list_insert_tail(&ip_thread_list, thh); 5109 rw_exit(&ip_thread_rwlock); 5110 retv = tsd_set(ip_thread_data, thh); 5111 ASSERT(retv == 0); 5112 } 5113 return (thh != NULL ? thh->thh_hash : NULL); 5114 } 5115 5116 boolean_t 5117 th_trace_ref(const void *obj, ip_stack_t *ipst) 5118 { 5119 th_trace_t *th_trace; 5120 mod_hash_t *mh; 5121 mod_hash_val_t val; 5122 5123 if ((mh = th_trace_gethash(ipst)) == NULL) 5124 return (B_FALSE); 5125 5126 /* 5127 * Attempt to locate the trace buffer for this obj and thread. 5128 * If it does not exist, then allocate a new trace buffer and 5129 * insert into the hash. 5130 */ 5131 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 5132 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 5133 if (th_trace == NULL) 5134 return (B_FALSE); 5135 5136 th_trace->th_id = curthread; 5137 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 5138 (mod_hash_val_t)th_trace) != 0) { 5139 kmem_free(th_trace, sizeof (th_trace_t)); 5140 return (B_FALSE); 5141 } 5142 } else { 5143 th_trace = (th_trace_t *)val; 5144 } 5145 5146 ASSERT(th_trace->th_refcnt >= 0 && 5147 th_trace->th_refcnt < TR_BUF_MAX - 1); 5148 5149 th_trace->th_refcnt++; 5150 th_trace_rrecord(th_trace); 5151 return (B_TRUE); 5152 } 5153 5154 /* 5155 * For the purpose of tracing a reference release, we assume that global 5156 * tracing is always on and that the same thread initiated the reference hold 5157 * is releasing. 5158 */ 5159 void 5160 th_trace_unref(const void *obj) 5161 { 5162 int retv; 5163 mod_hash_t *mh; 5164 th_trace_t *th_trace; 5165 mod_hash_val_t val; 5166 5167 mh = th_trace_gethash(NULL); 5168 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 5169 ASSERT(retv == 0); 5170 th_trace = (th_trace_t *)val; 5171 5172 ASSERT(th_trace->th_refcnt > 0); 5173 th_trace->th_refcnt--; 5174 th_trace_rrecord(th_trace); 5175 } 5176 5177 /* 5178 * If tracing has been disabled, then we assume that the reference counts are 5179 * now useless, and we clear them out before destroying the entries. 5180 */ 5181 void 5182 th_trace_cleanup(const void *obj, boolean_t trace_disable) 5183 { 5184 th_hash_t *thh; 5185 mod_hash_t *mh; 5186 mod_hash_val_t val; 5187 th_trace_t *th_trace; 5188 int retv; 5189 5190 rw_enter(&ip_thread_rwlock, RW_READER); 5191 for (thh = list_head(&ip_thread_list); thh != NULL; 5192 thh = list_next(&ip_thread_list, thh)) { 5193 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 5194 &val) == 0) { 5195 th_trace = (th_trace_t *)val; 5196 if (trace_disable) 5197 th_trace->th_refcnt = 0; 5198 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 5199 ASSERT(retv == 0); 5200 } 5201 } 5202 rw_exit(&ip_thread_rwlock); 5203 } 5204 5205 void 5206 ipif_trace_ref(ipif_t *ipif) 5207 { 5208 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5209 5210 if (ipif->ipif_trace_disable) 5211 return; 5212 5213 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 5214 ipif->ipif_trace_disable = B_TRUE; 5215 ipif_trace_cleanup(ipif); 5216 } 5217 } 5218 5219 void 5220 ipif_untrace_ref(ipif_t *ipif) 5221 { 5222 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5223 5224 if (!ipif->ipif_trace_disable) 5225 th_trace_unref(ipif); 5226 } 5227 5228 void 5229 ill_trace_ref(ill_t *ill) 5230 { 5231 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5232 5233 if (ill->ill_trace_disable) 5234 return; 5235 5236 if (!th_trace_ref(ill, ill->ill_ipst)) { 5237 ill->ill_trace_disable = B_TRUE; 5238 ill_trace_cleanup(ill); 5239 } 5240 } 5241 5242 void 5243 ill_untrace_ref(ill_t *ill) 5244 { 5245 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5246 5247 if (!ill->ill_trace_disable) 5248 th_trace_unref(ill); 5249 } 5250 5251 /* 5252 * Called when ipif is unplumbed or when memory alloc fails. Note that on 5253 * failure, ipif_trace_disable is set. 5254 */ 5255 static void 5256 ipif_trace_cleanup(const ipif_t *ipif) 5257 { 5258 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 5259 } 5260 5261 /* 5262 * Called when ill is unplumbed or when memory alloc fails. Note that on 5263 * failure, ill_trace_disable is set. 5264 */ 5265 static void 5266 ill_trace_cleanup(const ill_t *ill) 5267 { 5268 th_trace_cleanup(ill, ill->ill_trace_disable); 5269 } 5270 #endif /* DEBUG */ 5271 5272 void 5273 ipif_refhold_locked(ipif_t *ipif) 5274 { 5275 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5276 ipif->ipif_refcnt++; 5277 IPIF_TRACE_REF(ipif); 5278 } 5279 5280 void 5281 ipif_refhold(ipif_t *ipif) 5282 { 5283 ill_t *ill; 5284 5285 ill = ipif->ipif_ill; 5286 mutex_enter(&ill->ill_lock); 5287 ipif->ipif_refcnt++; 5288 IPIF_TRACE_REF(ipif); 5289 mutex_exit(&ill->ill_lock); 5290 } 5291 5292 /* 5293 * Must not be called while holding any locks. Otherwise if this is 5294 * the last reference to be released there is a chance of recursive mutex 5295 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5296 * to restart an ioctl. 5297 */ 5298 void 5299 ipif_refrele(ipif_t *ipif) 5300 { 5301 ill_t *ill; 5302 5303 ill = ipif->ipif_ill; 5304 5305 mutex_enter(&ill->ill_lock); 5306 ASSERT(ipif->ipif_refcnt != 0); 5307 ipif->ipif_refcnt--; 5308 IPIF_UNTRACE_REF(ipif); 5309 if (ipif->ipif_refcnt != 0) { 5310 mutex_exit(&ill->ill_lock); 5311 return; 5312 } 5313 5314 /* Drops the ill_lock */ 5315 ipif_ill_refrele_tail(ill); 5316 } 5317 5318 ipif_t * 5319 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 5320 { 5321 ipif_t *ipif; 5322 5323 mutex_enter(&ill->ill_lock); 5324 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 5325 ipif != NULL; ipif = ipif->ipif_next) { 5326 if (IPIF_IS_CONDEMNED(ipif)) 5327 continue; 5328 ipif_refhold_locked(ipif); 5329 mutex_exit(&ill->ill_lock); 5330 return (ipif); 5331 } 5332 mutex_exit(&ill->ill_lock); 5333 return (NULL); 5334 } 5335 5336 /* 5337 * TODO: make this table extendible at run time 5338 * Return a pointer to the mac type info for 'mac_type' 5339 */ 5340 static ip_m_t * 5341 ip_m_lookup(t_uscalar_t mac_type) 5342 { 5343 ip_m_t *ipm; 5344 5345 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 5346 if (ipm->ip_m_mac_type == mac_type) 5347 return (ipm); 5348 return (NULL); 5349 } 5350 5351 /* 5352 * Make a link layer address from the multicast IP address *addr. 5353 * To form the link layer address, invoke the ip_m_v*mapping function 5354 * associated with the link-layer type. 5355 */ 5356 void 5357 ip_mcast_mapping(ill_t *ill, uchar_t *addr, uchar_t *hwaddr) 5358 { 5359 ip_m_t *ipm; 5360 5361 if (ill->ill_net_type == IRE_IF_NORESOLVER) 5362 return; 5363 5364 ASSERT(addr != NULL); 5365 5366 ipm = ip_m_lookup(ill->ill_mactype); 5367 if (ipm == NULL || 5368 (ill->ill_isv6 && ipm->ip_m_v6mapping == NULL) || 5369 (!ill->ill_isv6 && ipm->ip_m_v4mapping == NULL)) { 5370 ip0dbg(("no mapping for ill %s mactype 0x%x\n", 5371 ill->ill_name, ill->ill_mactype)); 5372 return; 5373 } 5374 if (ill->ill_isv6) 5375 (*ipm->ip_m_v6mapping)(ill, addr, hwaddr); 5376 else 5377 (*ipm->ip_m_v4mapping)(ill, addr, hwaddr); 5378 } 5379 5380 /* 5381 * Returns B_FALSE if the IPv4 netmask pointed by `mask' is non-contiguous. 5382 * Otherwise returns B_TRUE. 5383 * 5384 * The netmask can be verified to be contiguous with 32 shifts and or 5385 * operations. Take the contiguous mask (in host byte order) and compute 5386 * mask | mask << 1 | mask << 2 | ... | mask << 31 5387 * the result will be the same as the 'mask' for contiguous mask. 5388 */ 5389 static boolean_t 5390 ip_contiguous_mask(uint32_t mask) 5391 { 5392 uint32_t m = mask; 5393 int i; 5394 5395 for (i = 1; i < 32; i++) 5396 m |= (mask << i); 5397 5398 return (m == mask); 5399 } 5400 5401 /* 5402 * ip_rt_add is called to add an IPv4 route to the forwarding table. 5403 * ill is passed in to associate it with the correct interface. 5404 * If ire_arg is set, then we return the held IRE in that location. 5405 */ 5406 int 5407 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5408 ipaddr_t src_addr, int flags, ill_t *ill, ire_t **ire_arg, 5409 boolean_t ioctl_msg, struct rtsa_s *sp, ip_stack_t *ipst, zoneid_t zoneid) 5410 { 5411 ire_t *ire, *nire; 5412 ire_t *gw_ire = NULL; 5413 ipif_t *ipif = NULL; 5414 uint_t type; 5415 int match_flags = MATCH_IRE_TYPE; 5416 tsol_gc_t *gc = NULL; 5417 tsol_gcgrp_t *gcgrp = NULL; 5418 boolean_t gcgrp_xtraref = B_FALSE; 5419 boolean_t cgtp_broadcast; 5420 boolean_t unbound = B_FALSE; 5421 5422 ip1dbg(("ip_rt_add:")); 5423 5424 if (ire_arg != NULL) 5425 *ire_arg = NULL; 5426 5427 /* disallow non-contiguous netmasks */ 5428 if (!ip_contiguous_mask(ntohl(mask))) 5429 return (ENOTSUP); 5430 5431 /* 5432 * If this is the case of RTF_HOST being set, then we set the netmask 5433 * to all ones (regardless if one was supplied). 5434 */ 5435 if (flags & RTF_HOST) 5436 mask = IP_HOST_MASK; 5437 5438 /* 5439 * Prevent routes with a zero gateway from being created (since 5440 * interfaces can currently be plumbed and brought up no assigned 5441 * address). 5442 */ 5443 if (gw_addr == 0) 5444 return (ENETUNREACH); 5445 /* 5446 * Get the ipif, if any, corresponding to the gw_addr 5447 * If -ifp was specified we restrict ourselves to the ill, otherwise 5448 * we match on the gatway and destination to handle unnumbered pt-pt 5449 * interfaces. 5450 */ 5451 if (ill != NULL) 5452 ipif = ipif_lookup_addr(gw_addr, ill, ALL_ZONES, ipst); 5453 else 5454 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 5455 if (ipif != NULL) { 5456 if (IS_VNI(ipif->ipif_ill)) { 5457 ipif_refrele(ipif); 5458 return (EINVAL); 5459 } 5460 } 5461 5462 /* 5463 * GateD will attempt to create routes with a loopback interface 5464 * address as the gateway and with RTF_GATEWAY set. We allow 5465 * these routes to be added, but create them as interface routes 5466 * since the gateway is an interface address. 5467 */ 5468 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 5469 flags &= ~RTF_GATEWAY; 5470 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 5471 mask == IP_HOST_MASK) { 5472 ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK, 5473 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 5474 NULL); 5475 if (ire != NULL) { 5476 ire_refrele(ire); 5477 ipif_refrele(ipif); 5478 return (EEXIST); 5479 } 5480 ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x" 5481 "for 0x%x\n", (void *)ipif, 5482 ipif->ipif_ire_type, 5483 ntohl(ipif->ipif_lcl_addr))); 5484 ire = ire_create( 5485 (uchar_t *)&dst_addr, /* dest address */ 5486 (uchar_t *)&mask, /* mask */ 5487 NULL, /* no gateway */ 5488 ipif->ipif_ire_type, /* LOOPBACK */ 5489 ipif->ipif_ill, 5490 zoneid, 5491 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0, 5492 NULL, 5493 ipst); 5494 5495 if (ire == NULL) { 5496 ipif_refrele(ipif); 5497 return (ENOMEM); 5498 } 5499 /* src address assigned by the caller? */ 5500 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5501 ire->ire_setsrc_addr = src_addr; 5502 5503 nire = ire_add(ire); 5504 if (nire == NULL) { 5505 /* 5506 * In the result of failure, ire_add() will have 5507 * already deleted the ire in question, so there 5508 * is no need to do that here. 5509 */ 5510 ipif_refrele(ipif); 5511 return (ENOMEM); 5512 } 5513 /* 5514 * Check if it was a duplicate entry. This handles 5515 * the case of two racing route adds for the same route 5516 */ 5517 if (nire != ire) { 5518 ASSERT(nire->ire_identical_ref > 1); 5519 ire_delete(nire); 5520 ire_refrele(nire); 5521 ipif_refrele(ipif); 5522 return (EEXIST); 5523 } 5524 ire = nire; 5525 goto save_ire; 5526 } 5527 } 5528 5529 /* 5530 * The routes for multicast with CGTP are quite special in that 5531 * the gateway is the local interface address, yet RTF_GATEWAY 5532 * is set. We turn off RTF_GATEWAY to provide compatibility with 5533 * this undocumented and unusual use of multicast routes. 5534 */ 5535 if ((flags & RTF_MULTIRT) && ipif != NULL) 5536 flags &= ~RTF_GATEWAY; 5537 5538 /* 5539 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 5540 * and the gateway address provided is one of the system's interface 5541 * addresses. By using the routing socket interface and supplying an 5542 * RTA_IFP sockaddr with an interface index, an alternate method of 5543 * specifying an interface route to be created is available which uses 5544 * the interface index that specifies the outgoing interface rather than 5545 * the address of an outgoing interface (which may not be able to 5546 * uniquely identify an interface). When coupled with the RTF_GATEWAY 5547 * flag, routes can be specified which not only specify the next-hop to 5548 * be used when routing to a certain prefix, but also which outgoing 5549 * interface should be used. 5550 * 5551 * Previously, interfaces would have unique addresses assigned to them 5552 * and so the address assigned to a particular interface could be used 5553 * to identify a particular interface. One exception to this was the 5554 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 5555 * 5556 * With the advent of IPv6 and its link-local addresses, this 5557 * restriction was relaxed and interfaces could share addresses between 5558 * themselves. In fact, typically all of the link-local interfaces on 5559 * an IPv6 node or router will have the same link-local address. In 5560 * order to differentiate between these interfaces, the use of an 5561 * interface index is necessary and this index can be carried inside a 5562 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 5563 * of using the interface index, however, is that all of the ipif's that 5564 * are part of an ill have the same index and so the RTA_IFP sockaddr 5565 * cannot be used to differentiate between ipif's (or logical 5566 * interfaces) that belong to the same ill (physical interface). 5567 * 5568 * For example, in the following case involving IPv4 interfaces and 5569 * logical interfaces 5570 * 5571 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 5572 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0 5573 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0 5574 * 5575 * the ipif's corresponding to each of these interface routes can be 5576 * uniquely identified by the "gateway" (actually interface address). 5577 * 5578 * In this case involving multiple IPv6 default routes to a particular 5579 * link-local gateway, the use of RTA_IFP is necessary to specify which 5580 * default route is of interest: 5581 * 5582 * default fe80::123:4567:89ab:cdef U if0 5583 * default fe80::123:4567:89ab:cdef U if1 5584 */ 5585 5586 /* RTF_GATEWAY not set */ 5587 if (!(flags & RTF_GATEWAY)) { 5588 if (sp != NULL) { 5589 ip2dbg(("ip_rt_add: gateway security attributes " 5590 "cannot be set with interface route\n")); 5591 if (ipif != NULL) 5592 ipif_refrele(ipif); 5593 return (EINVAL); 5594 } 5595 5596 /* 5597 * Whether or not ill (RTA_IFP) is set, we require that 5598 * the gateway is one of our local addresses. 5599 */ 5600 if (ipif == NULL) 5601 return (ENETUNREACH); 5602 5603 /* 5604 * We use MATCH_IRE_ILL here. If the caller specified an 5605 * interface (from the RTA_IFP sockaddr) we use it, otherwise 5606 * we use the ill derived from the gateway address. 5607 * We can always match the gateway address since we record it 5608 * in ire_gateway_addr. 5609 * We don't allow RTA_IFP to specify a different ill than the 5610 * one matching the ipif to make sure we can delete the route. 5611 */ 5612 match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL; 5613 if (ill == NULL) { 5614 ill = ipif->ipif_ill; 5615 } else if (ill != ipif->ipif_ill) { 5616 ipif_refrele(ipif); 5617 return (EINVAL); 5618 } 5619 5620 /* 5621 * We check for an existing entry at this point. 5622 * 5623 * Since a netmask isn't passed in via the ioctl interface 5624 * (SIOCADDRT), we don't check for a matching netmask in that 5625 * case. 5626 */ 5627 if (!ioctl_msg) 5628 match_flags |= MATCH_IRE_MASK; 5629 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 5630 IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst, 5631 NULL); 5632 if (ire != NULL) { 5633 ire_refrele(ire); 5634 ipif_refrele(ipif); 5635 return (EEXIST); 5636 } 5637 5638 /* 5639 * Some software (for example, GateD and Sun Cluster) attempts 5640 * to create (what amount to) IRE_PREFIX routes with the 5641 * loopback address as the gateway. This is primarily done to 5642 * set up prefixes with the RTF_REJECT flag set (for example, 5643 * when generating aggregate routes.) 5644 * 5645 * If the IRE type (as defined by ill->ill_net_type) would be 5646 * IRE_LOOPBACK, then we map the request into a 5647 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 5648 * these interface routes, by definition, can only be that. 5649 * 5650 * Needless to say, the real IRE_LOOPBACK is NOT created by this 5651 * routine, but rather using ire_create() directly. 5652 * 5653 */ 5654 type = ill->ill_net_type; 5655 if (type == IRE_LOOPBACK) { 5656 type = IRE_IF_NORESOLVER; 5657 flags |= RTF_BLACKHOLE; 5658 } 5659 5660 /* 5661 * Create a copy of the IRE_IF_NORESOLVER or 5662 * IRE_IF_RESOLVER with the modified address, netmask, and 5663 * gateway. 5664 */ 5665 ire = ire_create( 5666 (uchar_t *)&dst_addr, 5667 (uint8_t *)&mask, 5668 (uint8_t *)&gw_addr, 5669 type, 5670 ill, 5671 zoneid, 5672 flags, 5673 NULL, 5674 ipst); 5675 if (ire == NULL) { 5676 ipif_refrele(ipif); 5677 return (ENOMEM); 5678 } 5679 5680 /* src address assigned by the caller? */ 5681 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5682 ire->ire_setsrc_addr = src_addr; 5683 5684 nire = ire_add(ire); 5685 if (nire == NULL) { 5686 /* 5687 * In the result of failure, ire_add() will have 5688 * already deleted the ire in question, so there 5689 * is no need to do that here. 5690 */ 5691 ipif_refrele(ipif); 5692 return (ENOMEM); 5693 } 5694 /* 5695 * Check if it was a duplicate entry. This handles 5696 * the case of two racing route adds for the same route 5697 */ 5698 if (nire != ire) { 5699 ire_delete(nire); 5700 ire_refrele(nire); 5701 ipif_refrele(ipif); 5702 return (EEXIST); 5703 } 5704 ire = nire; 5705 goto save_ire; 5706 } 5707 5708 /* 5709 * Get an interface IRE for the specified gateway. 5710 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 5711 * gateway, it is currently unreachable and we fail the request 5712 * accordingly. We reject any RTF_GATEWAY routes where the gateway 5713 * is an IRE_LOCAL or IRE_LOOPBACK. 5714 * If RTA_IFP was specified we look on that particular ill. 5715 */ 5716 if (ill != NULL) 5717 match_flags |= MATCH_IRE_ILL; 5718 5719 /* Check whether the gateway is reachable. */ 5720 again: 5721 type = IRE_INTERFACE | IRE_LOCAL | IRE_LOOPBACK; 5722 if (flags & RTF_INDIRECT) 5723 type |= IRE_OFFLINK; 5724 5725 gw_ire = ire_ftable_lookup_v4(gw_addr, 0, 0, type, ill, 5726 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 5727 if (gw_ire == NULL) { 5728 /* 5729 * With IPMP, we allow host routes to influence in.mpathd's 5730 * target selection. However, if the test addresses are on 5731 * their own network, the above lookup will fail since the 5732 * underlying IRE_INTERFACEs are marked hidden. So allow 5733 * hidden test IREs to be found and try again. 5734 */ 5735 if (!(match_flags & MATCH_IRE_TESTHIDDEN)) { 5736 match_flags |= MATCH_IRE_TESTHIDDEN; 5737 goto again; 5738 } 5739 if (ipif != NULL) 5740 ipif_refrele(ipif); 5741 return (ENETUNREACH); 5742 } 5743 if (gw_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 5744 ire_refrele(gw_ire); 5745 if (ipif != NULL) 5746 ipif_refrele(ipif); 5747 return (ENETUNREACH); 5748 } 5749 5750 if (ill == NULL && !(flags & RTF_INDIRECT)) { 5751 unbound = B_TRUE; 5752 if (ipst->ips_ip_strict_src_multihoming > 0) 5753 ill = gw_ire->ire_ill; 5754 } 5755 5756 /* 5757 * We create one of three types of IREs as a result of this request 5758 * based on the netmask. A netmask of all ones (which is automatically 5759 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 5760 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 5761 * created. Otherwise, an IRE_PREFIX route is created for the 5762 * destination prefix. 5763 */ 5764 if (mask == IP_HOST_MASK) 5765 type = IRE_HOST; 5766 else if (mask == 0) 5767 type = IRE_DEFAULT; 5768 else 5769 type = IRE_PREFIX; 5770 5771 /* check for a duplicate entry */ 5772 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 5773 ALL_ZONES, NULL, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, 5774 0, ipst, NULL); 5775 if (ire != NULL) { 5776 if (ipif != NULL) 5777 ipif_refrele(ipif); 5778 ire_refrele(gw_ire); 5779 ire_refrele(ire); 5780 return (EEXIST); 5781 } 5782 5783 /* Security attribute exists */ 5784 if (sp != NULL) { 5785 tsol_gcgrp_addr_t ga; 5786 5787 /* find or create the gateway credentials group */ 5788 ga.ga_af = AF_INET; 5789 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 5790 5791 /* we hold reference to it upon success */ 5792 gcgrp = gcgrp_lookup(&ga, B_TRUE); 5793 if (gcgrp == NULL) { 5794 if (ipif != NULL) 5795 ipif_refrele(ipif); 5796 ire_refrele(gw_ire); 5797 return (ENOMEM); 5798 } 5799 5800 /* 5801 * Create and add the security attribute to the group; a 5802 * reference to the group is made upon allocating a new 5803 * entry successfully. If it finds an already-existing 5804 * entry for the security attribute in the group, it simply 5805 * returns it and no new reference is made to the group. 5806 */ 5807 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 5808 if (gc == NULL) { 5809 if (ipif != NULL) 5810 ipif_refrele(ipif); 5811 /* release reference held by gcgrp_lookup */ 5812 GCGRP_REFRELE(gcgrp); 5813 ire_refrele(gw_ire); 5814 return (ENOMEM); 5815 } 5816 } 5817 5818 /* Create the IRE. */ 5819 ire = ire_create( 5820 (uchar_t *)&dst_addr, /* dest address */ 5821 (uchar_t *)&mask, /* mask */ 5822 (uchar_t *)&gw_addr, /* gateway address */ 5823 (ushort_t)type, /* IRE type */ 5824 ill, 5825 zoneid, 5826 flags, 5827 gc, /* security attribute */ 5828 ipst); 5829 5830 /* 5831 * The ire holds a reference to the 'gc' and the 'gc' holds a 5832 * reference to the 'gcgrp'. We can now release the extra reference 5833 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 5834 */ 5835 if (gcgrp_xtraref) 5836 GCGRP_REFRELE(gcgrp); 5837 if (ire == NULL) { 5838 if (gc != NULL) 5839 GC_REFRELE(gc); 5840 if (ipif != NULL) 5841 ipif_refrele(ipif); 5842 ire_refrele(gw_ire); 5843 return (ENOMEM); 5844 } 5845 5846 /* Before we add, check if an extra CGTP broadcast is needed */ 5847 cgtp_broadcast = ((flags & RTF_MULTIRT) && 5848 ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST); 5849 5850 /* src address assigned by the caller? */ 5851 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5852 ire->ire_setsrc_addr = src_addr; 5853 5854 ire->ire_unbound = unbound; 5855 5856 /* 5857 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 5858 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 5859 */ 5860 5861 /* Add the new IRE. */ 5862 nire = ire_add(ire); 5863 if (nire == NULL) { 5864 /* 5865 * In the result of failure, ire_add() will have 5866 * already deleted the ire in question, so there 5867 * is no need to do that here. 5868 */ 5869 if (ipif != NULL) 5870 ipif_refrele(ipif); 5871 ire_refrele(gw_ire); 5872 return (ENOMEM); 5873 } 5874 /* 5875 * Check if it was a duplicate entry. This handles 5876 * the case of two racing route adds for the same route 5877 */ 5878 if (nire != ire) { 5879 ire_delete(nire); 5880 ire_refrele(nire); 5881 if (ipif != NULL) 5882 ipif_refrele(ipif); 5883 ire_refrele(gw_ire); 5884 return (EEXIST); 5885 } 5886 ire = nire; 5887 5888 if (flags & RTF_MULTIRT) { 5889 /* 5890 * Invoke the CGTP (multirouting) filtering module 5891 * to add the dst address in the filtering database. 5892 * Replicated inbound packets coming from that address 5893 * will be filtered to discard the duplicates. 5894 * It is not necessary to call the CGTP filter hook 5895 * when the dst address is a broadcast or multicast, 5896 * because an IP source address cannot be a broadcast 5897 * or a multicast. 5898 */ 5899 if (cgtp_broadcast) { 5900 ip_cgtp_bcast_add(ire, ipst); 5901 goto save_ire; 5902 } 5903 if (ipst->ips_ip_cgtp_filter_ops != NULL && 5904 !CLASSD(ire->ire_addr)) { 5905 int res; 5906 ipif_t *src_ipif; 5907 5908 /* Find the source address corresponding to gw_ire */ 5909 src_ipif = ipif_lookup_addr(gw_ire->ire_gateway_addr, 5910 NULL, zoneid, ipst); 5911 if (src_ipif != NULL) { 5912 res = ipst->ips_ip_cgtp_filter_ops-> 5913 cfo_add_dest_v4( 5914 ipst->ips_netstack->netstack_stackid, 5915 ire->ire_addr, 5916 ire->ire_gateway_addr, 5917 ire->ire_setsrc_addr, 5918 src_ipif->ipif_lcl_addr); 5919 ipif_refrele(src_ipif); 5920 } else { 5921 res = EADDRNOTAVAIL; 5922 } 5923 if (res != 0) { 5924 if (ipif != NULL) 5925 ipif_refrele(ipif); 5926 ire_refrele(gw_ire); 5927 ire_delete(ire); 5928 ire_refrele(ire); /* Held in ire_add */ 5929 return (res); 5930 } 5931 } 5932 } 5933 5934 save_ire: 5935 if (gw_ire != NULL) { 5936 ire_refrele(gw_ire); 5937 gw_ire = NULL; 5938 } 5939 if (ill != NULL) { 5940 /* 5941 * Save enough information so that we can recreate the IRE if 5942 * the interface goes down and then up. The metrics associated 5943 * with the route will be saved as well when rts_setmetrics() is 5944 * called after the IRE has been created. In the case where 5945 * memory cannot be allocated, none of this information will be 5946 * saved. 5947 */ 5948 ill_save_ire(ill, ire); 5949 } 5950 if (ioctl_msg) 5951 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 5952 if (ire_arg != NULL) { 5953 /* 5954 * Store the ire that was successfully added into where ire_arg 5955 * points to so that callers don't have to look it up 5956 * themselves (but they are responsible for ire_refrele()ing 5957 * the ire when they are finished with it). 5958 */ 5959 *ire_arg = ire; 5960 } else { 5961 ire_refrele(ire); /* Held in ire_add */ 5962 } 5963 if (ipif != NULL) 5964 ipif_refrele(ipif); 5965 return (0); 5966 } 5967 5968 /* 5969 * ip_rt_delete is called to delete an IPv4 route. 5970 * ill is passed in to associate it with the correct interface. 5971 */ 5972 /* ARGSUSED4 */ 5973 int 5974 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5975 uint_t rtm_addrs, int flags, ill_t *ill, boolean_t ioctl_msg, 5976 ip_stack_t *ipst, zoneid_t zoneid) 5977 { 5978 ire_t *ire = NULL; 5979 ipif_t *ipif; 5980 uint_t type; 5981 uint_t match_flags = MATCH_IRE_TYPE; 5982 int err = 0; 5983 5984 ip1dbg(("ip_rt_delete:")); 5985 /* 5986 * If this is the case of RTF_HOST being set, then we set the netmask 5987 * to all ones. Otherwise, we use the netmask if one was supplied. 5988 */ 5989 if (flags & RTF_HOST) { 5990 mask = IP_HOST_MASK; 5991 match_flags |= MATCH_IRE_MASK; 5992 } else if (rtm_addrs & RTA_NETMASK) { 5993 match_flags |= MATCH_IRE_MASK; 5994 } 5995 5996 /* 5997 * Note that RTF_GATEWAY is never set on a delete, therefore 5998 * we check if the gateway address is one of our interfaces first, 5999 * and fall back on RTF_GATEWAY routes. 6000 * 6001 * This makes it possible to delete an original 6002 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 6003 * However, we have RTF_KERNEL set on the ones created by ipif_up 6004 * and those can not be deleted here. 6005 * 6006 * We use MATCH_IRE_ILL if we know the interface. If the caller 6007 * specified an interface (from the RTA_IFP sockaddr) we use it, 6008 * otherwise we use the ill derived from the gateway address. 6009 * We can always match the gateway address since we record it 6010 * in ire_gateway_addr. 6011 * 6012 * For more detail on specifying routes by gateway address and by 6013 * interface index, see the comments in ip_rt_add(). 6014 */ 6015 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 6016 if (ipif != NULL) { 6017 ill_t *ill_match; 6018 6019 if (ill != NULL) 6020 ill_match = ill; 6021 else 6022 ill_match = ipif->ipif_ill; 6023 6024 match_flags |= MATCH_IRE_ILL; 6025 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 6026 ire = ire_ftable_lookup_v4(dst_addr, mask, 0, 6027 IRE_LOOPBACK, ill_match, ALL_ZONES, NULL, 6028 match_flags, 0, ipst, NULL); 6029 } 6030 if (ire == NULL) { 6031 match_flags |= MATCH_IRE_GW; 6032 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 6033 IRE_INTERFACE, ill_match, ALL_ZONES, NULL, 6034 match_flags, 0, ipst, NULL); 6035 } 6036 /* Avoid deleting routes created by kernel from an ipif */ 6037 if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) { 6038 ire_refrele(ire); 6039 ire = NULL; 6040 } 6041 6042 /* Restore in case we didn't find a match */ 6043 match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL); 6044 } 6045 6046 if (ire == NULL) { 6047 /* 6048 * At this point, the gateway address is not one of our own 6049 * addresses or a matching interface route was not found. We 6050 * set the IRE type to lookup based on whether 6051 * this is a host route, a default route or just a prefix. 6052 * 6053 * If an ill was passed in, then the lookup is based on an 6054 * interface index so MATCH_IRE_ILL is added to match_flags. 6055 */ 6056 match_flags |= MATCH_IRE_GW; 6057 if (ill != NULL) 6058 match_flags |= MATCH_IRE_ILL; 6059 if (mask == IP_HOST_MASK) 6060 type = IRE_HOST; 6061 else if (mask == 0) 6062 type = IRE_DEFAULT; 6063 else 6064 type = IRE_PREFIX; 6065 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 6066 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 6067 } 6068 6069 if (ipif != NULL) { 6070 ipif_refrele(ipif); 6071 ipif = NULL; 6072 } 6073 6074 if (ire == NULL) 6075 return (ESRCH); 6076 6077 if (ire->ire_flags & RTF_MULTIRT) { 6078 /* 6079 * Invoke the CGTP (multirouting) filtering module 6080 * to remove the dst address from the filtering database. 6081 * Packets coming from that address will no longer be 6082 * filtered to remove duplicates. 6083 */ 6084 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 6085 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 6086 ipst->ips_netstack->netstack_stackid, 6087 ire->ire_addr, ire->ire_gateway_addr); 6088 } 6089 ip_cgtp_bcast_delete(ire, ipst); 6090 } 6091 6092 ill = ire->ire_ill; 6093 if (ill != NULL) 6094 ill_remove_saved_ire(ill, ire); 6095 if (ioctl_msg) 6096 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 6097 ire_delete(ire); 6098 ire_refrele(ire); 6099 return (err); 6100 } 6101 6102 /* 6103 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 6104 */ 6105 /* ARGSUSED */ 6106 int 6107 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6108 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6109 { 6110 ipaddr_t dst_addr; 6111 ipaddr_t gw_addr; 6112 ipaddr_t mask; 6113 int error = 0; 6114 mblk_t *mp1; 6115 struct rtentry *rt; 6116 ipif_t *ipif = NULL; 6117 ip_stack_t *ipst; 6118 6119 ASSERT(q->q_next == NULL); 6120 ipst = CONNQ_TO_IPST(q); 6121 6122 ip1dbg(("ip_siocaddrt:")); 6123 /* Existence of mp1 verified in ip_wput_nondata */ 6124 mp1 = mp->b_cont->b_cont; 6125 rt = (struct rtentry *)mp1->b_rptr; 6126 6127 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6128 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6129 6130 /* 6131 * If the RTF_HOST flag is on, this is a request to assign a gateway 6132 * to a particular host address. In this case, we set the netmask to 6133 * all ones for the particular destination address. Otherwise, 6134 * determine the netmask to be used based on dst_addr and the interfaces 6135 * in use. 6136 */ 6137 if (rt->rt_flags & RTF_HOST) { 6138 mask = IP_HOST_MASK; 6139 } else { 6140 /* 6141 * Note that ip_subnet_mask returns a zero mask in the case of 6142 * default (an all-zeroes address). 6143 */ 6144 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6145 } 6146 6147 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 6148 B_TRUE, NULL, ipst, ALL_ZONES); 6149 if (ipif != NULL) 6150 ipif_refrele(ipif); 6151 return (error); 6152 } 6153 6154 /* 6155 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 6156 */ 6157 /* ARGSUSED */ 6158 int 6159 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6160 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6161 { 6162 ipaddr_t dst_addr; 6163 ipaddr_t gw_addr; 6164 ipaddr_t mask; 6165 int error; 6166 mblk_t *mp1; 6167 struct rtentry *rt; 6168 ipif_t *ipif = NULL; 6169 ip_stack_t *ipst; 6170 6171 ASSERT(q->q_next == NULL); 6172 ipst = CONNQ_TO_IPST(q); 6173 6174 ip1dbg(("ip_siocdelrt:")); 6175 /* Existence of mp1 verified in ip_wput_nondata */ 6176 mp1 = mp->b_cont->b_cont; 6177 rt = (struct rtentry *)mp1->b_rptr; 6178 6179 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6180 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6181 6182 /* 6183 * If the RTF_HOST flag is on, this is a request to delete a gateway 6184 * to a particular host address. In this case, we set the netmask to 6185 * all ones for the particular destination address. Otherwise, 6186 * determine the netmask to be used based on dst_addr and the interfaces 6187 * in use. 6188 */ 6189 if (rt->rt_flags & RTF_HOST) { 6190 mask = IP_HOST_MASK; 6191 } else { 6192 /* 6193 * Note that ip_subnet_mask returns a zero mask in the case of 6194 * default (an all-zeroes address). 6195 */ 6196 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6197 } 6198 6199 error = ip_rt_delete(dst_addr, mask, gw_addr, 6200 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, 6201 ipst, ALL_ZONES); 6202 if (ipif != NULL) 6203 ipif_refrele(ipif); 6204 return (error); 6205 } 6206 6207 /* 6208 * Enqueue the mp onto the ipsq, chained by b_next. 6209 * b_prev stores the function to be executed later, and b_queue the queue 6210 * where this mp originated. 6211 */ 6212 void 6213 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6214 ill_t *pending_ill) 6215 { 6216 conn_t *connp; 6217 ipxop_t *ipx = ipsq->ipsq_xop; 6218 6219 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 6220 ASSERT(MUTEX_HELD(&ipx->ipx_lock)); 6221 ASSERT(func != NULL); 6222 6223 mp->b_queue = q; 6224 mp->b_prev = (void *)func; 6225 mp->b_next = NULL; 6226 6227 switch (type) { 6228 case CUR_OP: 6229 if (ipx->ipx_mptail != NULL) { 6230 ASSERT(ipx->ipx_mphead != NULL); 6231 ipx->ipx_mptail->b_next = mp; 6232 } else { 6233 ASSERT(ipx->ipx_mphead == NULL); 6234 ipx->ipx_mphead = mp; 6235 } 6236 ipx->ipx_mptail = mp; 6237 break; 6238 6239 case NEW_OP: 6240 if (ipsq->ipsq_xopq_mptail != NULL) { 6241 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 6242 ipsq->ipsq_xopq_mptail->b_next = mp; 6243 } else { 6244 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 6245 ipsq->ipsq_xopq_mphead = mp; 6246 } 6247 ipsq->ipsq_xopq_mptail = mp; 6248 ipx->ipx_ipsq_queued = B_TRUE; 6249 break; 6250 6251 case SWITCH_OP: 6252 ASSERT(ipsq->ipsq_swxop != NULL); 6253 /* only one switch operation is currently allowed */ 6254 ASSERT(ipsq->ipsq_switch_mp == NULL); 6255 ipsq->ipsq_switch_mp = mp; 6256 ipx->ipx_ipsq_queued = B_TRUE; 6257 break; 6258 default: 6259 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 6260 } 6261 6262 if (CONN_Q(q) && pending_ill != NULL) { 6263 connp = Q_TO_CONN(q); 6264 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6265 connp->conn_oper_pending_ill = pending_ill; 6266 } 6267 } 6268 6269 /* 6270 * Dequeue the next message that requested exclusive access to this IPSQ's 6271 * xop. Specifically: 6272 * 6273 * 1. If we're still processing the current operation on `ipsq', then 6274 * dequeue the next message for the operation (from ipx_mphead), or 6275 * return NULL if there are no queued messages for the operation. 6276 * These messages are queued via CUR_OP to qwriter_ip() and friends. 6277 * 6278 * 2. If the current operation on `ipsq' has completed (ipx_current_ipif is 6279 * not set) see if the ipsq has requested an xop switch. If so, switch 6280 * `ipsq' to a different xop. Xop switches only happen when joining or 6281 * leaving IPMP groups and require a careful dance -- see the comments 6282 * in-line below for details. If we're leaving a group xop or if we're 6283 * joining a group xop and become writer on it, then we proceed to (3). 6284 * Otherwise, we return NULL and exit the xop. 6285 * 6286 * 3. For each IPSQ in the xop, return any switch operation stored on 6287 * ipsq_switch_mp (set via SWITCH_OP); these must be processed before 6288 * any other messages queued on the IPSQ. Otherwise, dequeue the next 6289 * exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead. 6290 * Note that if the phyint tied to `ipsq' is not using IPMP there will 6291 * only be one IPSQ in the xop. Otherwise, there will be one IPSQ for 6292 * each phyint in the group, including the IPMP meta-interface phyint. 6293 */ 6294 static mblk_t * 6295 ipsq_dq(ipsq_t *ipsq) 6296 { 6297 ill_t *illv4, *illv6; 6298 mblk_t *mp; 6299 ipsq_t *xopipsq; 6300 ipsq_t *leftipsq = NULL; 6301 ipxop_t *ipx; 6302 phyint_t *phyi = ipsq->ipsq_phyint; 6303 ip_stack_t *ipst = ipsq->ipsq_ipst; 6304 boolean_t emptied = B_FALSE; 6305 6306 /* 6307 * Grab all the locks we need in the defined order (ill_g_lock -> 6308 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next. 6309 */ 6310 rw_enter(&ipst->ips_ill_g_lock, 6311 ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER); 6312 mutex_enter(&ipsq->ipsq_lock); 6313 ipx = ipsq->ipsq_xop; 6314 mutex_enter(&ipx->ipx_lock); 6315 6316 /* 6317 * Dequeue the next message associated with the current exclusive 6318 * operation, if any. 6319 */ 6320 if ((mp = ipx->ipx_mphead) != NULL) { 6321 ipx->ipx_mphead = mp->b_next; 6322 if (ipx->ipx_mphead == NULL) 6323 ipx->ipx_mptail = NULL; 6324 mp->b_next = (void *)ipsq; 6325 goto out; 6326 } 6327 6328 if (ipx->ipx_current_ipif != NULL) 6329 goto empty; 6330 6331 if (ipsq->ipsq_swxop != NULL) { 6332 /* 6333 * The exclusive operation that is now being completed has 6334 * requested a switch to a different xop. This happens 6335 * when an interface joins or leaves an IPMP group. Joins 6336 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()). 6337 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb 6338 * (phyint_free()), or interface plumb for an ill type 6339 * not in the IPMP group (ip_rput_dlpi_writer()). 6340 * 6341 * Xop switches are not allowed on the IPMP meta-interface. 6342 */ 6343 ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP)); 6344 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 6345 DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq); 6346 6347 if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) { 6348 /* 6349 * We're switching back to our own xop, so we have two 6350 * xop's to drain/exit: our own, and the group xop 6351 * that we are leaving. 6352 * 6353 * First, pull ourselves out of the group ipsq list. 6354 * This is safe since we're writer on ill_g_lock. 6355 */ 6356 ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop); 6357 6358 xopipsq = ipx->ipx_ipsq; 6359 while (xopipsq->ipsq_next != ipsq) 6360 xopipsq = xopipsq->ipsq_next; 6361 6362 xopipsq->ipsq_next = ipsq->ipsq_next; 6363 ipsq->ipsq_next = ipsq; 6364 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6365 ipsq->ipsq_swxop = NULL; 6366 6367 /* 6368 * Second, prepare to exit the group xop. The actual 6369 * ipsq_exit() is done at the end of this function 6370 * since we cannot hold any locks across ipsq_exit(). 6371 * Note that although we drop the group's ipx_lock, no 6372 * threads can proceed since we're still ipx_writer. 6373 */ 6374 leftipsq = xopipsq; 6375 mutex_exit(&ipx->ipx_lock); 6376 6377 /* 6378 * Third, set ipx to point to our own xop (which was 6379 * inactive and therefore can be entered). 6380 */ 6381 ipx = ipsq->ipsq_xop; 6382 mutex_enter(&ipx->ipx_lock); 6383 ASSERT(ipx->ipx_writer == NULL); 6384 ASSERT(ipx->ipx_current_ipif == NULL); 6385 } else { 6386 /* 6387 * We're switching from our own xop to a group xop. 6388 * The requestor of the switch must ensure that the 6389 * group xop cannot go away (e.g. by ensuring the 6390 * phyint associated with the xop cannot go away). 6391 * 6392 * If we can become writer on our new xop, then we'll 6393 * do the drain. Otherwise, the current writer of our 6394 * new xop will do the drain when it exits. 6395 * 6396 * First, splice ourselves into the group IPSQ list. 6397 * This is safe since we're writer on ill_g_lock. 6398 */ 6399 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6400 6401 xopipsq = ipsq->ipsq_swxop->ipx_ipsq; 6402 while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq) 6403 xopipsq = xopipsq->ipsq_next; 6404 6405 xopipsq->ipsq_next = ipsq; 6406 ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq; 6407 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6408 ipsq->ipsq_swxop = NULL; 6409 6410 /* 6411 * Second, exit our own xop, since it's now unused. 6412 * This is safe since we've got the only reference. 6413 */ 6414 ASSERT(ipx->ipx_writer == curthread); 6415 ipx->ipx_writer = NULL; 6416 VERIFY(--ipx->ipx_reentry_cnt == 0); 6417 ipx->ipx_ipsq_queued = B_FALSE; 6418 mutex_exit(&ipx->ipx_lock); 6419 6420 /* 6421 * Third, set ipx to point to our new xop, and check 6422 * if we can become writer on it. If we cannot, then 6423 * the current writer will drain the IPSQ group when 6424 * it exits. Our ipsq_xop is guaranteed to be stable 6425 * because we're still holding ipsq_lock. 6426 */ 6427 ipx = ipsq->ipsq_xop; 6428 mutex_enter(&ipx->ipx_lock); 6429 if (ipx->ipx_writer != NULL || 6430 ipx->ipx_current_ipif != NULL) { 6431 goto out; 6432 } 6433 } 6434 6435 /* 6436 * Fourth, become writer on our new ipx before we continue 6437 * with the drain. Note that we never dropped ipsq_lock 6438 * above, so no other thread could've raced with us to 6439 * become writer first. Also, we're holding ipx_lock, so 6440 * no other thread can examine the ipx right now. 6441 */ 6442 ASSERT(ipx->ipx_current_ipif == NULL); 6443 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6444 VERIFY(ipx->ipx_reentry_cnt++ == 0); 6445 ipx->ipx_writer = curthread; 6446 ipx->ipx_forced = B_FALSE; 6447 #ifdef DEBUG 6448 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6449 #endif 6450 } 6451 6452 xopipsq = ipsq; 6453 do { 6454 /* 6455 * So that other operations operate on a consistent and 6456 * complete phyint, a switch message on an IPSQ must be 6457 * handled prior to any other operations on that IPSQ. 6458 */ 6459 if ((mp = xopipsq->ipsq_switch_mp) != NULL) { 6460 xopipsq->ipsq_switch_mp = NULL; 6461 ASSERT(mp->b_next == NULL); 6462 mp->b_next = (void *)xopipsq; 6463 goto out; 6464 } 6465 6466 if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) { 6467 xopipsq->ipsq_xopq_mphead = mp->b_next; 6468 if (xopipsq->ipsq_xopq_mphead == NULL) 6469 xopipsq->ipsq_xopq_mptail = NULL; 6470 mp->b_next = (void *)xopipsq; 6471 goto out; 6472 } 6473 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6474 empty: 6475 /* 6476 * There are no messages. Further, we are holding ipx_lock, hence no 6477 * new messages can end up on any IPSQ in the xop. 6478 */ 6479 ipx->ipx_writer = NULL; 6480 ipx->ipx_forced = B_FALSE; 6481 VERIFY(--ipx->ipx_reentry_cnt == 0); 6482 ipx->ipx_ipsq_queued = B_FALSE; 6483 emptied = B_TRUE; 6484 #ifdef DEBUG 6485 ipx->ipx_depth = 0; 6486 #endif 6487 out: 6488 mutex_exit(&ipx->ipx_lock); 6489 mutex_exit(&ipsq->ipsq_lock); 6490 6491 /* 6492 * If we completely emptied the xop, then wake up any threads waiting 6493 * to enter any of the IPSQ's associated with it. 6494 */ 6495 if (emptied) { 6496 xopipsq = ipsq; 6497 do { 6498 if ((phyi = xopipsq->ipsq_phyint) == NULL) 6499 continue; 6500 6501 illv4 = phyi->phyint_illv4; 6502 illv6 = phyi->phyint_illv6; 6503 6504 GRAB_ILL_LOCKS(illv4, illv6); 6505 if (illv4 != NULL) 6506 cv_broadcast(&illv4->ill_cv); 6507 if (illv6 != NULL) 6508 cv_broadcast(&illv6->ill_cv); 6509 RELEASE_ILL_LOCKS(illv4, illv6); 6510 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6511 } 6512 rw_exit(&ipst->ips_ill_g_lock); 6513 6514 /* 6515 * Now that all locks are dropped, exit the IPSQ we left. 6516 */ 6517 if (leftipsq != NULL) 6518 ipsq_exit(leftipsq); 6519 6520 return (mp); 6521 } 6522 6523 /* 6524 * Return completion status of previously initiated DLPI operations on 6525 * ills in the purview of an ipsq. 6526 */ 6527 static boolean_t 6528 ipsq_dlpi_done(ipsq_t *ipsq) 6529 { 6530 ipsq_t *ipsq_start; 6531 phyint_t *phyi; 6532 ill_t *ill; 6533 6534 ASSERT(RW_LOCK_HELD(&ipsq->ipsq_ipst->ips_ill_g_lock)); 6535 ipsq_start = ipsq; 6536 6537 do { 6538 /* 6539 * The only current users of this function are ipsq_try_enter 6540 * and ipsq_enter which have made sure that ipsq_writer is 6541 * NULL before we reach here. ill_dlpi_pending is modified 6542 * only by an ipsq writer 6543 */ 6544 ASSERT(ipsq->ipsq_xop->ipx_writer == NULL); 6545 phyi = ipsq->ipsq_phyint; 6546 /* 6547 * phyi could be NULL if a phyint that is part of an 6548 * IPMP group is being unplumbed. A more detailed 6549 * comment is in ipmp_grp_update_kstats() 6550 */ 6551 if (phyi != NULL) { 6552 ill = phyi->phyint_illv4; 6553 if (ill != NULL && 6554 (ill->ill_dlpi_pending != DL_PRIM_INVAL || 6555 ill->ill_arl_dlpi_pending)) 6556 return (B_FALSE); 6557 6558 ill = phyi->phyint_illv6; 6559 if (ill != NULL && 6560 ill->ill_dlpi_pending != DL_PRIM_INVAL) 6561 return (B_FALSE); 6562 } 6563 6564 } while ((ipsq = ipsq->ipsq_next) != ipsq_start); 6565 6566 return (B_TRUE); 6567 } 6568 6569 /* 6570 * Enter the ipsq corresponding to ill, by waiting synchronously till 6571 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 6572 * will have to drain completely before ipsq_enter returns success. 6573 * ipx_current_ipif will be set if some exclusive op is in progress, 6574 * and the ipsq_exit logic will start the next enqueued op after 6575 * completion of the current op. If 'force' is used, we don't wait 6576 * for the enqueued ops. This is needed when a conn_close wants to 6577 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 6578 * of an ill can also use this option. But we dont' use it currently. 6579 */ 6580 #define ENTER_SQ_WAIT_TICKS 100 6581 boolean_t 6582 ipsq_enter(ill_t *ill, boolean_t force, int type) 6583 { 6584 ipsq_t *ipsq; 6585 ipxop_t *ipx; 6586 boolean_t waited_enough = B_FALSE; 6587 ip_stack_t *ipst = ill->ill_ipst; 6588 6589 /* 6590 * Note that the relationship between ill and ipsq is fixed as long as 6591 * the ill is not ILL_CONDEMNED. Holding ipsq_lock ensures the 6592 * relationship between the IPSQ and xop cannot change. However, 6593 * since we cannot hold ipsq_lock across the cv_wait(), it may change 6594 * while we're waiting. We wait on ill_cv and rely on ipsq_exit() 6595 * waking up all ills in the xop when it becomes available. 6596 */ 6597 for (;;) { 6598 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6599 mutex_enter(&ill->ill_lock); 6600 if (ill->ill_state_flags & ILL_CONDEMNED) { 6601 mutex_exit(&ill->ill_lock); 6602 rw_exit(&ipst->ips_ill_g_lock); 6603 return (B_FALSE); 6604 } 6605 6606 ipsq = ill->ill_phyint->phyint_ipsq; 6607 mutex_enter(&ipsq->ipsq_lock); 6608 ipx = ipsq->ipsq_xop; 6609 mutex_enter(&ipx->ipx_lock); 6610 6611 if (ipx->ipx_writer == NULL && (type == CUR_OP || 6612 (ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq)) || 6613 waited_enough)) 6614 break; 6615 6616 rw_exit(&ipst->ips_ill_g_lock); 6617 6618 if (!force || ipx->ipx_writer != NULL) { 6619 mutex_exit(&ipx->ipx_lock); 6620 mutex_exit(&ipsq->ipsq_lock); 6621 cv_wait(&ill->ill_cv, &ill->ill_lock); 6622 } else { 6623 mutex_exit(&ipx->ipx_lock); 6624 mutex_exit(&ipsq->ipsq_lock); 6625 (void) cv_reltimedwait(&ill->ill_cv, 6626 &ill->ill_lock, ENTER_SQ_WAIT_TICKS, TR_CLOCK_TICK); 6627 waited_enough = B_TRUE; 6628 } 6629 mutex_exit(&ill->ill_lock); 6630 } 6631 6632 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6633 ASSERT(ipx->ipx_reentry_cnt == 0); 6634 ipx->ipx_writer = curthread; 6635 ipx->ipx_forced = (ipx->ipx_current_ipif != NULL); 6636 ipx->ipx_reentry_cnt++; 6637 #ifdef DEBUG 6638 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6639 #endif 6640 mutex_exit(&ipx->ipx_lock); 6641 mutex_exit(&ipsq->ipsq_lock); 6642 mutex_exit(&ill->ill_lock); 6643 rw_exit(&ipst->ips_ill_g_lock); 6644 6645 return (B_TRUE); 6646 } 6647 6648 /* 6649 * ipif_set_values() has a constraint that it cannot drop the ips_ill_g_lock 6650 * across the call to the core interface ipsq_try_enter() and hence calls this 6651 * function directly. This is explained more fully in ipif_set_values(). 6652 * In order to support the above constraint, ipsq_try_enter is implemented as 6653 * a wrapper that grabs the ips_ill_g_lock and calls this function subsequently 6654 */ 6655 static ipsq_t * 6656 ipsq_try_enter_internal(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, 6657 int type, boolean_t reentry_ok) 6658 { 6659 ipsq_t *ipsq; 6660 ipxop_t *ipx; 6661 ip_stack_t *ipst = ill->ill_ipst; 6662 6663 /* 6664 * lock ordering: 6665 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock. 6666 * 6667 * ipx of an ipsq can't change when ipsq_lock is held. 6668 */ 6669 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 6670 GRAB_CONN_LOCK(q); 6671 mutex_enter(&ill->ill_lock); 6672 ipsq = ill->ill_phyint->phyint_ipsq; 6673 mutex_enter(&ipsq->ipsq_lock); 6674 ipx = ipsq->ipsq_xop; 6675 mutex_enter(&ipx->ipx_lock); 6676 6677 /* 6678 * 1. Enter the ipsq if we are already writer and reentry is ok. 6679 * (Note: If the caller does not specify reentry_ok then neither 6680 * 'func' nor any of its callees must ever attempt to enter the ipsq 6681 * again. Otherwise it can lead to an infinite loop 6682 * 2. Enter the ipsq if there is no current writer and this attempted 6683 * entry is part of the current operation 6684 * 3. Enter the ipsq if there is no current writer and this is a new 6685 * operation and the operation queue is empty and there is no 6686 * operation currently in progress and if all previously initiated 6687 * DLPI operations have completed. 6688 */ 6689 if ((ipx->ipx_writer == curthread && reentry_ok) || 6690 (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP && 6691 !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL && 6692 ipsq_dlpi_done(ipsq))))) { 6693 /* Success. */ 6694 ipx->ipx_reentry_cnt++; 6695 ipx->ipx_writer = curthread; 6696 ipx->ipx_forced = B_FALSE; 6697 mutex_exit(&ipx->ipx_lock); 6698 mutex_exit(&ipsq->ipsq_lock); 6699 mutex_exit(&ill->ill_lock); 6700 RELEASE_CONN_LOCK(q); 6701 #ifdef DEBUG 6702 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6703 #endif 6704 return (ipsq); 6705 } 6706 6707 if (func != NULL) 6708 ipsq_enq(ipsq, q, mp, func, type, ill); 6709 6710 mutex_exit(&ipx->ipx_lock); 6711 mutex_exit(&ipsq->ipsq_lock); 6712 mutex_exit(&ill->ill_lock); 6713 RELEASE_CONN_LOCK(q); 6714 return (NULL); 6715 } 6716 6717 /* 6718 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 6719 * certain critical operations like plumbing (i.e. most set ioctls), etc. 6720 * There is one ipsq per phyint. The ipsq 6721 * serializes exclusive ioctls issued by applications on a per ipsq basis in 6722 * ipsq_xopq_mphead. It also protects against multiple threads executing in 6723 * the ipsq. Responses from the driver pertain to the current ioctl (say a 6724 * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing 6725 * up the interface) and are enqueued in ipx_mphead. 6726 * 6727 * If a thread does not want to reenter the ipsq when it is already writer, 6728 * it must make sure that the specified reentry point to be called later 6729 * when the ipsq is empty, nor any code path starting from the specified reentry 6730 * point must never ever try to enter the ipsq again. Otherwise it can lead 6731 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 6732 * When the thread that is currently exclusive finishes, it (ipsq_exit) 6733 * dequeues the requests waiting to become exclusive in ipx_mphead and calls 6734 * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit 6735 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 6736 * ioctl if the current ioctl has completed. If the current ioctl is still 6737 * in progress it simply returns. The current ioctl could be waiting for 6738 * a response from another module (the driver or could be waiting for 6739 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp 6740 * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the 6741 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 6742 * ipx_current_ipif is NULL which happens only once the ioctl is complete and 6743 * all associated DLPI operations have completed. 6744 */ 6745 6746 /* 6747 * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif' 6748 * and `ill' cannot both be specified). Returns a pointer to the entered IPSQ 6749 * on success, or NULL on failure. The caller ensures ipif/ill is valid by 6750 * refholding it as necessary. If the IPSQ cannot be entered and `func' is 6751 * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ 6752 * can be entered. If `func' is NULL, then `q' and `mp' are ignored. 6753 */ 6754 ipsq_t * 6755 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 6756 ipsq_func_t func, int type, boolean_t reentry_ok) 6757 { 6758 ip_stack_t *ipst; 6759 ipsq_t *ipsq; 6760 6761 /* Only 1 of ipif or ill can be specified */ 6762 ASSERT((ipif != NULL) ^ (ill != NULL)); 6763 6764 if (ipif != NULL) 6765 ill = ipif->ipif_ill; 6766 ipst = ill->ill_ipst; 6767 6768 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6769 ipsq = ipsq_try_enter_internal(ill, q, mp, func, type, reentry_ok); 6770 rw_exit(&ipst->ips_ill_g_lock); 6771 6772 return (ipsq); 6773 } 6774 6775 /* 6776 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 6777 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 6778 * cannot be entered, the mp is queued for completion. 6779 */ 6780 void 6781 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6782 boolean_t reentry_ok) 6783 { 6784 ipsq_t *ipsq; 6785 6786 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 6787 6788 /* 6789 * Drop the caller's refhold on the ill. This is safe since we either 6790 * entered the IPSQ (and thus are exclusive), or failed to enter the 6791 * IPSQ, in which case we return without accessing ill anymore. This 6792 * is needed because func needs to see the correct refcount. 6793 * e.g. removeif can work only then. 6794 */ 6795 ill_refrele(ill); 6796 if (ipsq != NULL) { 6797 (*func)(ipsq, q, mp, NULL); 6798 ipsq_exit(ipsq); 6799 } 6800 } 6801 6802 /* 6803 * Exit the specified IPSQ. If this is the final exit on it then drain it 6804 * prior to exiting. Caller must be writer on the specified IPSQ. 6805 */ 6806 void 6807 ipsq_exit(ipsq_t *ipsq) 6808 { 6809 mblk_t *mp; 6810 ipsq_t *mp_ipsq; 6811 queue_t *q; 6812 phyint_t *phyi; 6813 ipsq_func_t func; 6814 6815 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6816 6817 ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1); 6818 if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) { 6819 ipsq->ipsq_xop->ipx_reentry_cnt--; 6820 return; 6821 } 6822 6823 for (;;) { 6824 phyi = ipsq->ipsq_phyint; 6825 mp = ipsq_dq(ipsq); 6826 mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next; 6827 6828 /* 6829 * If we've changed to a new IPSQ, and the phyint associated 6830 * with the old one has gone away, free the old IPSQ. Note 6831 * that this cannot happen while the IPSQ is in a group. 6832 */ 6833 if (mp_ipsq != ipsq && phyi == NULL) { 6834 ASSERT(ipsq->ipsq_next == ipsq); 6835 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6836 ipsq_delete(ipsq); 6837 } 6838 6839 if (mp == NULL) 6840 break; 6841 6842 q = mp->b_queue; 6843 func = (ipsq_func_t)mp->b_prev; 6844 ipsq = mp_ipsq; 6845 mp->b_next = mp->b_prev = NULL; 6846 mp->b_queue = NULL; 6847 6848 /* 6849 * If 'q' is an conn queue, it is valid, since we did a 6850 * a refhold on the conn at the start of the ioctl. 6851 * If 'q' is an ill queue, it is valid, since close of an 6852 * ill will clean up its IPSQ. 6853 */ 6854 (*func)(ipsq, q, mp, NULL); 6855 } 6856 } 6857 6858 /* 6859 * Used to start any igmp or mld timers that could not be started 6860 * while holding ill_mcast_lock. The timers can't be started while holding 6861 * the lock, since mld/igmp_start_timers may need to call untimeout() 6862 * which can't be done while holding the lock which the timeout handler 6863 * acquires. Otherwise 6864 * there could be a deadlock since the timeout handlers 6865 * mld_timeout_handler_per_ill/igmp_timeout_handler_per_ill also acquire 6866 * ill_mcast_lock. 6867 */ 6868 void 6869 ill_mcast_timer_start(ip_stack_t *ipst) 6870 { 6871 int next; 6872 6873 mutex_enter(&ipst->ips_igmp_timer_lock); 6874 next = ipst->ips_igmp_deferred_next; 6875 ipst->ips_igmp_deferred_next = INFINITY; 6876 mutex_exit(&ipst->ips_igmp_timer_lock); 6877 6878 if (next != INFINITY) 6879 igmp_start_timers(next, ipst); 6880 6881 mutex_enter(&ipst->ips_mld_timer_lock); 6882 next = ipst->ips_mld_deferred_next; 6883 ipst->ips_mld_deferred_next = INFINITY; 6884 mutex_exit(&ipst->ips_mld_timer_lock); 6885 6886 if (next != INFINITY) 6887 mld_start_timers(next, ipst); 6888 } 6889 6890 /* 6891 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 6892 * and `ioccmd'. 6893 */ 6894 void 6895 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 6896 { 6897 ill_t *ill = ipif->ipif_ill; 6898 ipxop_t *ipx = ipsq->ipsq_xop; 6899 6900 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6901 ASSERT(ipx->ipx_current_ipif == NULL); 6902 ASSERT(ipx->ipx_current_ioctl == 0); 6903 6904 ipx->ipx_current_done = B_FALSE; 6905 ipx->ipx_current_ioctl = ioccmd; 6906 mutex_enter(&ipx->ipx_lock); 6907 ipx->ipx_current_ipif = ipif; 6908 mutex_exit(&ipx->ipx_lock); 6909 6910 /* 6911 * Set IPIF_CHANGING on one or more ipifs associated with the 6912 * current exclusive operation. IPIF_CHANGING prevents any new 6913 * references to the ipif (so that the references will eventually 6914 * drop to zero) and also prevents any "get" operations (e.g., 6915 * SIOCGLIFFLAGS) from being able to access the ipif until the 6916 * operation has completed and the ipif is again in a stable state. 6917 * 6918 * For ioctls, IPIF_CHANGING is set on the ipif associated with the 6919 * ioctl. For internal operations (where ioccmd is zero), all ipifs 6920 * on the ill are marked with IPIF_CHANGING since it's unclear which 6921 * ipifs will be affected. 6922 * 6923 * Note that SIOCLIFREMOVEIF is a special case as it sets 6924 * IPIF_CONDEMNED internally after identifying the right ipif to 6925 * operate on. 6926 */ 6927 switch (ioccmd) { 6928 case SIOCLIFREMOVEIF: 6929 break; 6930 case 0: 6931 mutex_enter(&ill->ill_lock); 6932 ipif = ipif->ipif_ill->ill_ipif; 6933 for (; ipif != NULL; ipif = ipif->ipif_next) 6934 ipif->ipif_state_flags |= IPIF_CHANGING; 6935 mutex_exit(&ill->ill_lock); 6936 break; 6937 default: 6938 mutex_enter(&ill->ill_lock); 6939 ipif->ipif_state_flags |= IPIF_CHANGING; 6940 mutex_exit(&ill->ill_lock); 6941 } 6942 } 6943 6944 /* 6945 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 6946 * the next exclusive operation to begin once we ipsq_exit(). However, if 6947 * pending DLPI operations remain, then we will wait for the queue to drain 6948 * before allowing the next exclusive operation to begin. This ensures that 6949 * DLPI operations from one exclusive operation are never improperly processed 6950 * as part of a subsequent exclusive operation. 6951 */ 6952 void 6953 ipsq_current_finish(ipsq_t *ipsq) 6954 { 6955 ipxop_t *ipx = ipsq->ipsq_xop; 6956 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 6957 ipif_t *ipif = ipx->ipx_current_ipif; 6958 6959 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6960 6961 /* 6962 * For SIOCLIFREMOVEIF, the ipif has been already been blown away 6963 * (but in that case, IPIF_CHANGING will already be clear and no 6964 * pending DLPI messages can remain). 6965 */ 6966 if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) { 6967 ill_t *ill = ipif->ipif_ill; 6968 6969 mutex_enter(&ill->ill_lock); 6970 dlpi_pending = ill->ill_dlpi_pending; 6971 if (ipx->ipx_current_ioctl == 0) { 6972 ipif = ill->ill_ipif; 6973 for (; ipif != NULL; ipif = ipif->ipif_next) 6974 ipif->ipif_state_flags &= ~IPIF_CHANGING; 6975 } else { 6976 ipif->ipif_state_flags &= ~IPIF_CHANGING; 6977 } 6978 mutex_exit(&ill->ill_lock); 6979 } 6980 6981 ASSERT(!ipx->ipx_current_done); 6982 ipx->ipx_current_done = B_TRUE; 6983 ipx->ipx_current_ioctl = 0; 6984 if (dlpi_pending == DL_PRIM_INVAL) { 6985 mutex_enter(&ipx->ipx_lock); 6986 ipx->ipx_current_ipif = NULL; 6987 mutex_exit(&ipx->ipx_lock); 6988 } 6989 } 6990 6991 /* 6992 * The ill is closing. Flush all messages on the ipsq that originated 6993 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 6994 * for this ill since ipsq_enter could not have entered until then. 6995 * New messages can't be queued since the CONDEMNED flag is set. 6996 */ 6997 static void 6998 ipsq_flush(ill_t *ill) 6999 { 7000 queue_t *q; 7001 mblk_t *prev; 7002 mblk_t *mp; 7003 mblk_t *mp_next; 7004 ipxop_t *ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 7005 7006 ASSERT(IAM_WRITER_ILL(ill)); 7007 7008 /* 7009 * Flush any messages sent up by the driver. 7010 */ 7011 mutex_enter(&ipx->ipx_lock); 7012 for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) { 7013 mp_next = mp->b_next; 7014 q = mp->b_queue; 7015 if (q == ill->ill_rq || q == ill->ill_wq) { 7016 /* dequeue mp */ 7017 if (prev == NULL) 7018 ipx->ipx_mphead = mp->b_next; 7019 else 7020 prev->b_next = mp->b_next; 7021 if (ipx->ipx_mptail == mp) { 7022 ASSERT(mp_next == NULL); 7023 ipx->ipx_mptail = prev; 7024 } 7025 inet_freemsg(mp); 7026 } else { 7027 prev = mp; 7028 } 7029 } 7030 mutex_exit(&ipx->ipx_lock); 7031 (void) ipsq_pending_mp_cleanup(ill, NULL); 7032 ipsq_xopq_mp_cleanup(ill, NULL); 7033 } 7034 7035 /* 7036 * Parse an ifreq or lifreq struct coming down ioctls and refhold 7037 * and return the associated ipif. 7038 * Return value: 7039 * Non zero: An error has occurred. ci may not be filled out. 7040 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 7041 * a held ipif in ci.ci_ipif. 7042 */ 7043 int 7044 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 7045 cmd_info_t *ci) 7046 { 7047 char *name; 7048 struct ifreq *ifr; 7049 struct lifreq *lifr; 7050 ipif_t *ipif = NULL; 7051 ill_t *ill; 7052 conn_t *connp; 7053 boolean_t isv6; 7054 int err; 7055 mblk_t *mp1; 7056 zoneid_t zoneid; 7057 ip_stack_t *ipst; 7058 7059 if (q->q_next != NULL) { 7060 ill = (ill_t *)q->q_ptr; 7061 isv6 = ill->ill_isv6; 7062 connp = NULL; 7063 zoneid = ALL_ZONES; 7064 ipst = ill->ill_ipst; 7065 } else { 7066 ill = NULL; 7067 connp = Q_TO_CONN(q); 7068 isv6 = (connp->conn_family == AF_INET6); 7069 zoneid = connp->conn_zoneid; 7070 if (zoneid == GLOBAL_ZONEID) { 7071 /* global zone can access ipifs in all zones */ 7072 zoneid = ALL_ZONES; 7073 } 7074 ipst = connp->conn_netstack->netstack_ip; 7075 } 7076 7077 /* Has been checked in ip_wput_nondata */ 7078 mp1 = mp->b_cont->b_cont; 7079 7080 if (ipip->ipi_cmd_type == IF_CMD) { 7081 /* This a old style SIOC[GS]IF* command */ 7082 ifr = (struct ifreq *)mp1->b_rptr; 7083 /* 7084 * Null terminate the string to protect against buffer 7085 * overrun. String was generated by user code and may not 7086 * be trusted. 7087 */ 7088 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 7089 name = ifr->ifr_name; 7090 ci->ci_sin = (sin_t *)&ifr->ifr_addr; 7091 ci->ci_sin6 = NULL; 7092 ci->ci_lifr = (struct lifreq *)ifr; 7093 } else { 7094 /* This a new style SIOC[GS]LIF* command */ 7095 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 7096 lifr = (struct lifreq *)mp1->b_rptr; 7097 /* 7098 * Null terminate the string to protect against buffer 7099 * overrun. String was generated by user code and may not 7100 * be trusted. 7101 */ 7102 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 7103 name = lifr->lifr_name; 7104 ci->ci_sin = (sin_t *)&lifr->lifr_addr; 7105 ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr; 7106 ci->ci_lifr = lifr; 7107 } 7108 7109 if (ipip->ipi_cmd == SIOCSLIFNAME) { 7110 /* 7111 * The ioctl will be failed if the ioctl comes down 7112 * an conn stream 7113 */ 7114 if (ill == NULL) { 7115 /* 7116 * Not an ill queue, return EINVAL same as the 7117 * old error code. 7118 */ 7119 return (ENXIO); 7120 } 7121 ipif = ill->ill_ipif; 7122 ipif_refhold(ipif); 7123 } else { 7124 /* 7125 * Ensure that ioctls don't see any internal state changes 7126 * caused by set ioctls by deferring them if IPIF_CHANGING is 7127 * set. 7128 */ 7129 ipif = ipif_lookup_on_name_async(name, mi_strlen(name), 7130 isv6, zoneid, q, mp, ip_process_ioctl, &err, ipst); 7131 if (ipif == NULL) { 7132 if (err == EINPROGRESS) 7133 return (err); 7134 err = 0; /* Ensure we don't use it below */ 7135 } 7136 } 7137 7138 /* 7139 * Old style [GS]IFCMD does not admit IPv6 ipif 7140 */ 7141 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 7142 ipif_refrele(ipif); 7143 return (ENXIO); 7144 } 7145 7146 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 7147 name[0] == '\0') { 7148 /* 7149 * Handle a or a SIOC?IF* with a null name 7150 * during plumb (on the ill queue before the I_PLINK). 7151 */ 7152 ipif = ill->ill_ipif; 7153 ipif_refhold(ipif); 7154 } 7155 7156 if (ipif == NULL) 7157 return (ENXIO); 7158 7159 DTRACE_PROBE4(ipif__ioctl, char *, "ip_extract_lifreq", 7160 int, ipip->ipi_cmd, ill_t *, ipif->ipif_ill, ipif_t *, ipif); 7161 7162 ci->ci_ipif = ipif; 7163 return (0); 7164 } 7165 7166 /* 7167 * Return the total number of ipifs. 7168 */ 7169 static uint_t 7170 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 7171 { 7172 uint_t numifs = 0; 7173 ill_t *ill; 7174 ill_walk_context_t ctx; 7175 ipif_t *ipif; 7176 7177 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7178 ill = ILL_START_WALK_V4(&ctx, ipst); 7179 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7180 if (IS_UNDER_IPMP(ill)) 7181 continue; 7182 for (ipif = ill->ill_ipif; ipif != NULL; 7183 ipif = ipif->ipif_next) { 7184 if (ipif->ipif_zoneid == zoneid || 7185 ipif->ipif_zoneid == ALL_ZONES) 7186 numifs++; 7187 } 7188 } 7189 rw_exit(&ipst->ips_ill_g_lock); 7190 return (numifs); 7191 } 7192 7193 /* 7194 * Return the total number of ipifs. 7195 */ 7196 static uint_t 7197 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 7198 { 7199 uint_t numifs = 0; 7200 ill_t *ill; 7201 ipif_t *ipif; 7202 ill_walk_context_t ctx; 7203 7204 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 7205 7206 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7207 if (family == AF_INET) 7208 ill = ILL_START_WALK_V4(&ctx, ipst); 7209 else if (family == AF_INET6) 7210 ill = ILL_START_WALK_V6(&ctx, ipst); 7211 else 7212 ill = ILL_START_WALK_ALL(&ctx, ipst); 7213 7214 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7215 if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP)) 7216 continue; 7217 7218 for (ipif = ill->ill_ipif; ipif != NULL; 7219 ipif = ipif->ipif_next) { 7220 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7221 !(lifn_flags & LIFC_NOXMIT)) 7222 continue; 7223 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7224 !(lifn_flags & LIFC_TEMPORARY)) 7225 continue; 7226 if (((ipif->ipif_flags & 7227 (IPIF_NOXMIT|IPIF_NOLOCAL| 7228 IPIF_DEPRECATED)) || 7229 IS_LOOPBACK(ill) || 7230 !(ipif->ipif_flags & IPIF_UP)) && 7231 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 7232 continue; 7233 7234 if (zoneid != ipif->ipif_zoneid && 7235 ipif->ipif_zoneid != ALL_ZONES && 7236 (zoneid != GLOBAL_ZONEID || 7237 !(lifn_flags & LIFC_ALLZONES))) 7238 continue; 7239 7240 numifs++; 7241 } 7242 } 7243 rw_exit(&ipst->ips_ill_g_lock); 7244 return (numifs); 7245 } 7246 7247 uint_t 7248 ip_get_lifsrcofnum(ill_t *ill) 7249 { 7250 uint_t numifs = 0; 7251 ill_t *ill_head = ill; 7252 ip_stack_t *ipst = ill->ill_ipst; 7253 7254 /* 7255 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 7256 * other thread may be trying to relink the ILLs in this usesrc group 7257 * and adjusting the ill_usesrc_grp_next pointers 7258 */ 7259 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7260 if ((ill->ill_usesrc_ifindex == 0) && 7261 (ill->ill_usesrc_grp_next != NULL)) { 7262 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 7263 ill = ill->ill_usesrc_grp_next) 7264 numifs++; 7265 } 7266 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7267 7268 return (numifs); 7269 } 7270 7271 /* Null values are passed in for ipif, sin, and ifreq */ 7272 /* ARGSUSED */ 7273 int 7274 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7275 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7276 { 7277 int *nump; 7278 conn_t *connp = Q_TO_CONN(q); 7279 7280 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7281 7282 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 7283 nump = (int *)mp->b_cont->b_cont->b_rptr; 7284 7285 *nump = ip_get_numifs(connp->conn_zoneid, 7286 connp->conn_netstack->netstack_ip); 7287 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 7288 return (0); 7289 } 7290 7291 /* Null values are passed in for ipif, sin, and ifreq */ 7292 /* ARGSUSED */ 7293 int 7294 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 7295 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7296 { 7297 struct lifnum *lifn; 7298 mblk_t *mp1; 7299 conn_t *connp = Q_TO_CONN(q); 7300 7301 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7302 7303 /* Existence checked in ip_wput_nondata */ 7304 mp1 = mp->b_cont->b_cont; 7305 7306 lifn = (struct lifnum *)mp1->b_rptr; 7307 switch (lifn->lifn_family) { 7308 case AF_UNSPEC: 7309 case AF_INET: 7310 case AF_INET6: 7311 break; 7312 default: 7313 return (EAFNOSUPPORT); 7314 } 7315 7316 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 7317 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 7318 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 7319 return (0); 7320 } 7321 7322 /* ARGSUSED */ 7323 int 7324 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7325 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7326 { 7327 STRUCT_HANDLE(ifconf, ifc); 7328 mblk_t *mp1; 7329 struct iocblk *iocp; 7330 struct ifreq *ifr; 7331 ill_walk_context_t ctx; 7332 ill_t *ill; 7333 ipif_t *ipif; 7334 struct sockaddr_in *sin; 7335 int32_t ifclen; 7336 zoneid_t zoneid; 7337 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7338 7339 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 7340 7341 ip1dbg(("ip_sioctl_get_ifconf")); 7342 /* Existence verified in ip_wput_nondata */ 7343 mp1 = mp->b_cont->b_cont; 7344 iocp = (struct iocblk *)mp->b_rptr; 7345 zoneid = Q_TO_CONN(q)->conn_zoneid; 7346 7347 /* 7348 * The original SIOCGIFCONF passed in a struct ifconf which specified 7349 * the user buffer address and length into which the list of struct 7350 * ifreqs was to be copied. Since AT&T Streams does not seem to 7351 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 7352 * the SIOCGIFCONF operation was redefined to simply provide 7353 * a large output buffer into which we are supposed to jam the ifreq 7354 * array. The same ioctl command code was used, despite the fact that 7355 * both the applications and the kernel code had to change, thus making 7356 * it impossible to support both interfaces. 7357 * 7358 * For reasons not good enough to try to explain, the following 7359 * algorithm is used for deciding what to do with one of these: 7360 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 7361 * form with the output buffer coming down as the continuation message. 7362 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 7363 * and we have to copy in the ifconf structure to find out how big the 7364 * output buffer is and where to copy out to. Sure no problem... 7365 * 7366 */ 7367 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 7368 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 7369 int numifs = 0; 7370 size_t ifc_bufsize; 7371 7372 /* 7373 * Must be (better be!) continuation of a TRANSPARENT 7374 * IOCTL. We just copied in the ifconf structure. 7375 */ 7376 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 7377 (struct ifconf *)mp1->b_rptr); 7378 7379 /* 7380 * Allocate a buffer to hold requested information. 7381 * 7382 * If ifc_len is larger than what is needed, we only 7383 * allocate what we will use. 7384 * 7385 * If ifc_len is smaller than what is needed, return 7386 * EINVAL. 7387 * 7388 * XXX: the ill_t structure can hava 2 counters, for 7389 * v4 and v6 (not just ill_ipif_up_count) to store the 7390 * number of interfaces for a device, so we don't need 7391 * to count them here... 7392 */ 7393 numifs = ip_get_numifs(zoneid, ipst); 7394 7395 ifclen = STRUCT_FGET(ifc, ifc_len); 7396 ifc_bufsize = numifs * sizeof (struct ifreq); 7397 if (ifc_bufsize > ifclen) { 7398 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7399 /* old behaviour */ 7400 return (EINVAL); 7401 } else { 7402 ifc_bufsize = ifclen; 7403 } 7404 } 7405 7406 mp1 = mi_copyout_alloc(q, mp, 7407 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 7408 if (mp1 == NULL) 7409 return (ENOMEM); 7410 7411 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 7412 } 7413 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7414 /* 7415 * the SIOCGIFCONF ioctl only knows about 7416 * IPv4 addresses, so don't try to tell 7417 * it about interfaces with IPv6-only 7418 * addresses. (Last parm 'isv6' is B_FALSE) 7419 */ 7420 7421 ifr = (struct ifreq *)mp1->b_rptr; 7422 7423 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7424 ill = ILL_START_WALK_V4(&ctx, ipst); 7425 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7426 if (IS_UNDER_IPMP(ill)) 7427 continue; 7428 for (ipif = ill->ill_ipif; ipif != NULL; 7429 ipif = ipif->ipif_next) { 7430 if (zoneid != ipif->ipif_zoneid && 7431 ipif->ipif_zoneid != ALL_ZONES) 7432 continue; 7433 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 7434 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7435 /* old behaviour */ 7436 rw_exit(&ipst->ips_ill_g_lock); 7437 return (EINVAL); 7438 } else { 7439 goto if_copydone; 7440 } 7441 } 7442 ipif_get_name(ipif, ifr->ifr_name, 7443 sizeof (ifr->ifr_name)); 7444 sin = (sin_t *)&ifr->ifr_addr; 7445 *sin = sin_null; 7446 sin->sin_family = AF_INET; 7447 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7448 ifr++; 7449 } 7450 } 7451 if_copydone: 7452 rw_exit(&ipst->ips_ill_g_lock); 7453 mp1->b_wptr = (uchar_t *)ifr; 7454 7455 if (STRUCT_BUF(ifc) != NULL) { 7456 STRUCT_FSET(ifc, ifc_len, 7457 (int)((uchar_t *)ifr - mp1->b_rptr)); 7458 } 7459 return (0); 7460 } 7461 7462 /* 7463 * Get the interfaces using the address hosted on the interface passed in, 7464 * as a source adddress 7465 */ 7466 /* ARGSUSED */ 7467 int 7468 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7469 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7470 { 7471 mblk_t *mp1; 7472 ill_t *ill, *ill_head; 7473 ipif_t *ipif, *orig_ipif; 7474 int numlifs = 0; 7475 size_t lifs_bufsize, lifsmaxlen; 7476 struct lifreq *lifr; 7477 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7478 uint_t ifindex; 7479 zoneid_t zoneid; 7480 boolean_t isv6 = B_FALSE; 7481 struct sockaddr_in *sin; 7482 struct sockaddr_in6 *sin6; 7483 STRUCT_HANDLE(lifsrcof, lifs); 7484 ip_stack_t *ipst; 7485 7486 ipst = CONNQ_TO_IPST(q); 7487 7488 ASSERT(q->q_next == NULL); 7489 7490 zoneid = Q_TO_CONN(q)->conn_zoneid; 7491 7492 /* Existence verified in ip_wput_nondata */ 7493 mp1 = mp->b_cont->b_cont; 7494 7495 /* 7496 * Must be (better be!) continuation of a TRANSPARENT 7497 * IOCTL. We just copied in the lifsrcof structure. 7498 */ 7499 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 7500 (struct lifsrcof *)mp1->b_rptr); 7501 7502 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 7503 return (EINVAL); 7504 7505 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 7506 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 7507 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, ipst); 7508 if (ipif == NULL) { 7509 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 7510 ifindex)); 7511 return (ENXIO); 7512 } 7513 7514 /* Allocate a buffer to hold requested information */ 7515 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 7516 lifs_bufsize = numlifs * sizeof (struct lifreq); 7517 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 7518 /* The actual size needed is always returned in lifs_len */ 7519 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 7520 7521 /* If the amount we need is more than what is passed in, abort */ 7522 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 7523 ipif_refrele(ipif); 7524 return (0); 7525 } 7526 7527 mp1 = mi_copyout_alloc(q, mp, 7528 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 7529 if (mp1 == NULL) { 7530 ipif_refrele(ipif); 7531 return (ENOMEM); 7532 } 7533 7534 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 7535 bzero(mp1->b_rptr, lifs_bufsize); 7536 7537 lifr = (struct lifreq *)mp1->b_rptr; 7538 7539 ill = ill_head = ipif->ipif_ill; 7540 orig_ipif = ipif; 7541 7542 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 7543 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7544 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7545 7546 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 7547 for (; (ill != NULL) && (ill != ill_head); 7548 ill = ill->ill_usesrc_grp_next) { 7549 7550 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 7551 break; 7552 7553 ipif = ill->ill_ipif; 7554 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 7555 if (ipif->ipif_isv6) { 7556 sin6 = (sin6_t *)&lifr->lifr_addr; 7557 *sin6 = sin6_null; 7558 sin6->sin6_family = AF_INET6; 7559 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 7560 lifr->lifr_addrlen = ip_mask_to_plen_v6( 7561 &ipif->ipif_v6net_mask); 7562 } else { 7563 sin = (sin_t *)&lifr->lifr_addr; 7564 *sin = sin_null; 7565 sin->sin_family = AF_INET; 7566 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7567 lifr->lifr_addrlen = ip_mask_to_plen( 7568 ipif->ipif_net_mask); 7569 } 7570 lifr++; 7571 } 7572 rw_exit(&ipst->ips_ill_g_lock); 7573 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7574 ipif_refrele(orig_ipif); 7575 mp1->b_wptr = (uchar_t *)lifr; 7576 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 7577 7578 return (0); 7579 } 7580 7581 /* ARGSUSED */ 7582 int 7583 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7584 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7585 { 7586 mblk_t *mp1; 7587 int list; 7588 ill_t *ill; 7589 ipif_t *ipif; 7590 int flags; 7591 int numlifs = 0; 7592 size_t lifc_bufsize; 7593 struct lifreq *lifr; 7594 sa_family_t family; 7595 struct sockaddr_in *sin; 7596 struct sockaddr_in6 *sin6; 7597 ill_walk_context_t ctx; 7598 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7599 int32_t lifclen; 7600 zoneid_t zoneid; 7601 STRUCT_HANDLE(lifconf, lifc); 7602 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7603 7604 ip1dbg(("ip_sioctl_get_lifconf")); 7605 7606 ASSERT(q->q_next == NULL); 7607 7608 zoneid = Q_TO_CONN(q)->conn_zoneid; 7609 7610 /* Existence verified in ip_wput_nondata */ 7611 mp1 = mp->b_cont->b_cont; 7612 7613 /* 7614 * An extended version of SIOCGIFCONF that takes an 7615 * additional address family and flags field. 7616 * AF_UNSPEC retrieve both IPv4 and IPv6. 7617 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 7618 * interfaces are omitted. 7619 * Similarly, IPIF_TEMPORARY interfaces are omitted 7620 * unless LIFC_TEMPORARY is specified. 7621 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 7622 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 7623 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 7624 * has priority over LIFC_NOXMIT. 7625 */ 7626 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 7627 7628 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 7629 return (EINVAL); 7630 7631 /* 7632 * Must be (better be!) continuation of a TRANSPARENT 7633 * IOCTL. We just copied in the lifconf structure. 7634 */ 7635 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 7636 7637 family = STRUCT_FGET(lifc, lifc_family); 7638 flags = STRUCT_FGET(lifc, lifc_flags); 7639 7640 switch (family) { 7641 case AF_UNSPEC: 7642 /* 7643 * walk all ILL's. 7644 */ 7645 list = MAX_G_HEADS; 7646 break; 7647 case AF_INET: 7648 /* 7649 * walk only IPV4 ILL's. 7650 */ 7651 list = IP_V4_G_HEAD; 7652 break; 7653 case AF_INET6: 7654 /* 7655 * walk only IPV6 ILL's. 7656 */ 7657 list = IP_V6_G_HEAD; 7658 break; 7659 default: 7660 return (EAFNOSUPPORT); 7661 } 7662 7663 /* 7664 * Allocate a buffer to hold requested information. 7665 * 7666 * If lifc_len is larger than what is needed, we only 7667 * allocate what we will use. 7668 * 7669 * If lifc_len is smaller than what is needed, return 7670 * EINVAL. 7671 */ 7672 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 7673 lifc_bufsize = numlifs * sizeof (struct lifreq); 7674 lifclen = STRUCT_FGET(lifc, lifc_len); 7675 if (lifc_bufsize > lifclen) { 7676 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 7677 return (EINVAL); 7678 else 7679 lifc_bufsize = lifclen; 7680 } 7681 7682 mp1 = mi_copyout_alloc(q, mp, 7683 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 7684 if (mp1 == NULL) 7685 return (ENOMEM); 7686 7687 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 7688 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7689 7690 lifr = (struct lifreq *)mp1->b_rptr; 7691 7692 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7693 ill = ill_first(list, list, &ctx, ipst); 7694 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7695 if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP)) 7696 continue; 7697 7698 for (ipif = ill->ill_ipif; ipif != NULL; 7699 ipif = ipif->ipif_next) { 7700 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7701 !(flags & LIFC_NOXMIT)) 7702 continue; 7703 7704 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7705 !(flags & LIFC_TEMPORARY)) 7706 continue; 7707 7708 if (((ipif->ipif_flags & 7709 (IPIF_NOXMIT|IPIF_NOLOCAL| 7710 IPIF_DEPRECATED)) || 7711 IS_LOOPBACK(ill) || 7712 !(ipif->ipif_flags & IPIF_UP)) && 7713 (flags & LIFC_EXTERNAL_SOURCE)) 7714 continue; 7715 7716 if (zoneid != ipif->ipif_zoneid && 7717 ipif->ipif_zoneid != ALL_ZONES && 7718 (zoneid != GLOBAL_ZONEID || 7719 !(flags & LIFC_ALLZONES))) 7720 continue; 7721 7722 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 7723 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 7724 rw_exit(&ipst->ips_ill_g_lock); 7725 return (EINVAL); 7726 } else { 7727 goto lif_copydone; 7728 } 7729 } 7730 7731 ipif_get_name(ipif, lifr->lifr_name, 7732 sizeof (lifr->lifr_name)); 7733 lifr->lifr_type = ill->ill_type; 7734 if (ipif->ipif_isv6) { 7735 sin6 = (sin6_t *)&lifr->lifr_addr; 7736 *sin6 = sin6_null; 7737 sin6->sin6_family = AF_INET6; 7738 sin6->sin6_addr = 7739 ipif->ipif_v6lcl_addr; 7740 lifr->lifr_addrlen = 7741 ip_mask_to_plen_v6( 7742 &ipif->ipif_v6net_mask); 7743 } else { 7744 sin = (sin_t *)&lifr->lifr_addr; 7745 *sin = sin_null; 7746 sin->sin_family = AF_INET; 7747 sin->sin_addr.s_addr = 7748 ipif->ipif_lcl_addr; 7749 lifr->lifr_addrlen = 7750 ip_mask_to_plen( 7751 ipif->ipif_net_mask); 7752 } 7753 lifr++; 7754 } 7755 } 7756 lif_copydone: 7757 rw_exit(&ipst->ips_ill_g_lock); 7758 7759 mp1->b_wptr = (uchar_t *)lifr; 7760 if (STRUCT_BUF(lifc) != NULL) { 7761 STRUCT_FSET(lifc, lifc_len, 7762 (int)((uchar_t *)lifr - mp1->b_rptr)); 7763 } 7764 return (0); 7765 } 7766 7767 static void 7768 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 7769 { 7770 ip6_asp_t *table; 7771 size_t table_size; 7772 mblk_t *data_mp; 7773 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7774 ip_stack_t *ipst; 7775 7776 if (q->q_next == NULL) 7777 ipst = CONNQ_TO_IPST(q); 7778 else 7779 ipst = ILLQ_TO_IPST(q); 7780 7781 /* These two ioctls are I_STR only */ 7782 if (iocp->ioc_count == TRANSPARENT) { 7783 miocnak(q, mp, 0, EINVAL); 7784 return; 7785 } 7786 7787 data_mp = mp->b_cont; 7788 if (data_mp == NULL) { 7789 /* The user passed us a NULL argument */ 7790 table = NULL; 7791 table_size = iocp->ioc_count; 7792 } else { 7793 /* 7794 * The user provided a table. The stream head 7795 * may have copied in the user data in chunks, 7796 * so make sure everything is pulled up 7797 * properly. 7798 */ 7799 if (MBLKL(data_mp) < iocp->ioc_count) { 7800 mblk_t *new_data_mp; 7801 if ((new_data_mp = msgpullup(data_mp, -1)) == 7802 NULL) { 7803 miocnak(q, mp, 0, ENOMEM); 7804 return; 7805 } 7806 freemsg(data_mp); 7807 data_mp = new_data_mp; 7808 mp->b_cont = data_mp; 7809 } 7810 table = (ip6_asp_t *)data_mp->b_rptr; 7811 table_size = iocp->ioc_count; 7812 } 7813 7814 switch (iocp->ioc_cmd) { 7815 case SIOCGIP6ADDRPOLICY: 7816 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 7817 if (iocp->ioc_rval == -1) 7818 iocp->ioc_error = EINVAL; 7819 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7820 else if (table != NULL && 7821 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 7822 ip6_asp_t *src = table; 7823 ip6_asp32_t *dst = (void *)table; 7824 int count = table_size / sizeof (ip6_asp_t); 7825 int i; 7826 7827 /* 7828 * We need to do an in-place shrink of the array 7829 * to match the alignment attributes of the 7830 * 32-bit ABI looking at it. 7831 */ 7832 /* LINTED: logical expression always true: op "||" */ 7833 ASSERT(sizeof (*src) > sizeof (*dst)); 7834 for (i = 1; i < count; i++) 7835 bcopy(src + i, dst + i, sizeof (*dst)); 7836 } 7837 #endif 7838 break; 7839 7840 case SIOCSIP6ADDRPOLICY: 7841 ASSERT(mp->b_prev == NULL); 7842 mp->b_prev = (void *)q; 7843 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7844 /* 7845 * We pass in the datamodel here so that the ip6_asp_replace() 7846 * routine can handle converting from 32-bit to native formats 7847 * where necessary. 7848 * 7849 * A better way to handle this might be to convert the inbound 7850 * data structure here, and hang it off a new 'mp'; thus the 7851 * ip6_asp_replace() logic would always be dealing with native 7852 * format data structures.. 7853 * 7854 * (An even simpler way to handle these ioctls is to just 7855 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 7856 * and just recompile everything that depends on it.) 7857 */ 7858 #endif 7859 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 7860 iocp->ioc_flag & IOC_MODELS); 7861 return; 7862 } 7863 7864 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 7865 qreply(q, mp); 7866 } 7867 7868 static void 7869 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 7870 { 7871 mblk_t *data_mp; 7872 struct dstinforeq *dir; 7873 uint8_t *end, *cur; 7874 in6_addr_t *daddr, *saddr; 7875 ipaddr_t v4daddr; 7876 ire_t *ire; 7877 ipaddr_t v4setsrc; 7878 in6_addr_t v6setsrc; 7879 char *slabel, *dlabel; 7880 boolean_t isipv4; 7881 int match_ire; 7882 ill_t *dst_ill; 7883 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7884 conn_t *connp = Q_TO_CONN(q); 7885 zoneid_t zoneid = IPCL_ZONEID(connp); 7886 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 7887 uint64_t ipif_flags; 7888 7889 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 7890 7891 /* 7892 * This ioctl is I_STR only, and must have a 7893 * data mblk following the M_IOCTL mblk. 7894 */ 7895 data_mp = mp->b_cont; 7896 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 7897 miocnak(q, mp, 0, EINVAL); 7898 return; 7899 } 7900 7901 if (MBLKL(data_mp) < iocp->ioc_count) { 7902 mblk_t *new_data_mp; 7903 7904 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 7905 miocnak(q, mp, 0, ENOMEM); 7906 return; 7907 } 7908 freemsg(data_mp); 7909 data_mp = new_data_mp; 7910 mp->b_cont = data_mp; 7911 } 7912 match_ire = MATCH_IRE_DSTONLY; 7913 7914 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 7915 end - cur >= sizeof (struct dstinforeq); 7916 cur += sizeof (struct dstinforeq)) { 7917 dir = (struct dstinforeq *)cur; 7918 daddr = &dir->dir_daddr; 7919 saddr = &dir->dir_saddr; 7920 7921 /* 7922 * ip_addr_scope_v6() and ip6_asp_lookup() handle 7923 * v4 mapped addresses; ire_ftable_lookup_v6() 7924 * and ip_select_source_v6() do not. 7925 */ 7926 dir->dir_dscope = ip_addr_scope_v6(daddr); 7927 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 7928 7929 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 7930 if (isipv4) { 7931 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 7932 v4setsrc = INADDR_ANY; 7933 ire = ire_route_recursive_v4(v4daddr, 0, NULL, zoneid, 7934 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v4setsrc, 7935 NULL, NULL); 7936 } else { 7937 v6setsrc = ipv6_all_zeros; 7938 ire = ire_route_recursive_v6(daddr, 0, NULL, zoneid, 7939 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v6setsrc, 7940 NULL, NULL); 7941 } 7942 ASSERT(ire != NULL); 7943 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 7944 ire_refrele(ire); 7945 dir->dir_dreachable = 0; 7946 7947 /* move on to next dst addr */ 7948 continue; 7949 } 7950 dir->dir_dreachable = 1; 7951 7952 dst_ill = ire_nexthop_ill(ire); 7953 if (dst_ill == NULL) { 7954 ire_refrele(ire); 7955 continue; 7956 } 7957 7958 /* With ipmp we most likely look at the ipmp ill here */ 7959 dir->dir_dmactype = dst_ill->ill_mactype; 7960 7961 if (isipv4) { 7962 ipaddr_t v4saddr; 7963 7964 if (ip_select_source_v4(dst_ill, v4setsrc, v4daddr, 7965 connp->conn_ixa->ixa_multicast_ifaddr, zoneid, ipst, 7966 &v4saddr, NULL, &ipif_flags) != 0) { 7967 v4saddr = INADDR_ANY; 7968 ipif_flags = 0; 7969 } 7970 IN6_IPADDR_TO_V4MAPPED(v4saddr, saddr); 7971 } else { 7972 if (ip_select_source_v6(dst_ill, &v6setsrc, daddr, 7973 zoneid, ipst, B_FALSE, IPV6_PREFER_SRC_DEFAULT, 7974 saddr, NULL, &ipif_flags) != 0) { 7975 *saddr = ipv6_all_zeros; 7976 ipif_flags = 0; 7977 } 7978 } 7979 7980 dir->dir_sscope = ip_addr_scope_v6(saddr); 7981 slabel = ip6_asp_lookup(saddr, NULL, ipst); 7982 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 7983 dir->dir_sdeprecated = (ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 7984 ire_refrele(ire); 7985 ill_refrele(dst_ill); 7986 } 7987 miocack(q, mp, iocp->ioc_count, 0); 7988 } 7989 7990 /* 7991 * Check if this is an address assigned to this machine. 7992 * Skips interfaces that are down by using ire checks. 7993 * Translates mapped addresses to v4 addresses and then 7994 * treats them as such, returning true if the v4 address 7995 * associated with this mapped address is configured. 7996 * Note: Applications will have to be careful what they do 7997 * with the response; use of mapped addresses limits 7998 * what can be done with the socket, especially with 7999 * respect to socket options and ioctls - neither IPv4 8000 * options nor IPv6 sticky options/ancillary data options 8001 * may be used. 8002 */ 8003 /* ARGSUSED */ 8004 int 8005 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8006 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8007 { 8008 struct sioc_addrreq *sia; 8009 sin_t *sin; 8010 ire_t *ire; 8011 mblk_t *mp1; 8012 zoneid_t zoneid; 8013 ip_stack_t *ipst; 8014 8015 ip1dbg(("ip_sioctl_tmyaddr")); 8016 8017 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8018 zoneid = Q_TO_CONN(q)->conn_zoneid; 8019 ipst = CONNQ_TO_IPST(q); 8020 8021 /* Existence verified in ip_wput_nondata */ 8022 mp1 = mp->b_cont->b_cont; 8023 sia = (struct sioc_addrreq *)mp1->b_rptr; 8024 sin = (sin_t *)&sia->sa_addr; 8025 switch (sin->sin_family) { 8026 case AF_INET6: { 8027 sin6_t *sin6 = (sin6_t *)sin; 8028 8029 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8030 ipaddr_t v4_addr; 8031 8032 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8033 v4_addr); 8034 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 8035 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 8036 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8037 } else { 8038 in6_addr_t v6addr; 8039 8040 v6addr = sin6->sin6_addr; 8041 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 8042 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 8043 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8044 } 8045 break; 8046 } 8047 case AF_INET: { 8048 ipaddr_t v4addr; 8049 8050 v4addr = sin->sin_addr.s_addr; 8051 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 8052 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8053 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8054 break; 8055 } 8056 default: 8057 return (EAFNOSUPPORT); 8058 } 8059 if (ire != NULL) { 8060 sia->sa_res = 1; 8061 ire_refrele(ire); 8062 } else { 8063 sia->sa_res = 0; 8064 } 8065 return (0); 8066 } 8067 8068 /* 8069 * Check if this is an address assigned on-link i.e. neighbor, 8070 * and makes sure it's reachable from the current zone. 8071 * Returns true for my addresses as well. 8072 * Translates mapped addresses to v4 addresses and then 8073 * treats them as such, returning true if the v4 address 8074 * associated with this mapped address is configured. 8075 * Note: Applications will have to be careful what they do 8076 * with the response; use of mapped addresses limits 8077 * what can be done with the socket, especially with 8078 * respect to socket options and ioctls - neither IPv4 8079 * options nor IPv6 sticky options/ancillary data options 8080 * may be used. 8081 */ 8082 /* ARGSUSED */ 8083 int 8084 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8085 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 8086 { 8087 struct sioc_addrreq *sia; 8088 sin_t *sin; 8089 mblk_t *mp1; 8090 ire_t *ire = NULL; 8091 zoneid_t zoneid; 8092 ip_stack_t *ipst; 8093 8094 ip1dbg(("ip_sioctl_tonlink")); 8095 8096 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8097 zoneid = Q_TO_CONN(q)->conn_zoneid; 8098 ipst = CONNQ_TO_IPST(q); 8099 8100 /* Existence verified in ip_wput_nondata */ 8101 mp1 = mp->b_cont->b_cont; 8102 sia = (struct sioc_addrreq *)mp1->b_rptr; 8103 sin = (sin_t *)&sia->sa_addr; 8104 8105 /* 8106 * We check for IRE_ONLINK and exclude IRE_BROADCAST|IRE_MULTICAST 8107 * to make sure we only look at on-link unicast address. 8108 */ 8109 switch (sin->sin_family) { 8110 case AF_INET6: { 8111 sin6_t *sin6 = (sin6_t *)sin; 8112 8113 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8114 ipaddr_t v4_addr; 8115 8116 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8117 v4_addr); 8118 if (!CLASSD(v4_addr)) { 8119 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 0, 8120 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 8121 0, ipst, NULL); 8122 } 8123 } else { 8124 in6_addr_t v6addr; 8125 8126 v6addr = sin6->sin6_addr; 8127 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 8128 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 0, 8129 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0, 8130 ipst, NULL); 8131 } 8132 } 8133 break; 8134 } 8135 case AF_INET: { 8136 ipaddr_t v4addr; 8137 8138 v4addr = sin->sin_addr.s_addr; 8139 if (!CLASSD(v4addr)) { 8140 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL, 8141 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 8142 } 8143 break; 8144 } 8145 default: 8146 return (EAFNOSUPPORT); 8147 } 8148 sia->sa_res = 0; 8149 if (ire != NULL) { 8150 ASSERT(!(ire->ire_type & IRE_MULTICAST)); 8151 8152 if ((ire->ire_type & IRE_ONLINK) && 8153 !(ire->ire_type & IRE_BROADCAST)) 8154 sia->sa_res = 1; 8155 ire_refrele(ire); 8156 } 8157 return (0); 8158 } 8159 8160 /* 8161 * TBD: implement when kernel maintaines a list of site prefixes. 8162 */ 8163 /* ARGSUSED */ 8164 int 8165 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8166 ip_ioctl_cmd_t *ipip, void *ifreq) 8167 { 8168 return (ENXIO); 8169 } 8170 8171 /* ARP IOCTLs. */ 8172 /* ARGSUSED */ 8173 int 8174 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8175 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8176 { 8177 int err; 8178 ipaddr_t ipaddr; 8179 struct iocblk *iocp; 8180 conn_t *connp; 8181 struct arpreq *ar; 8182 struct xarpreq *xar; 8183 int arp_flags, flags, alength; 8184 uchar_t *lladdr; 8185 ip_stack_t *ipst; 8186 ill_t *ill = ipif->ipif_ill; 8187 ill_t *proxy_ill = NULL; 8188 ipmp_arpent_t *entp = NULL; 8189 boolean_t proxyarp = B_FALSE; 8190 boolean_t if_arp_ioctl = B_FALSE; 8191 ncec_t *ncec = NULL; 8192 nce_t *nce; 8193 8194 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8195 connp = Q_TO_CONN(q); 8196 ipst = connp->conn_netstack->netstack_ip; 8197 iocp = (struct iocblk *)mp->b_rptr; 8198 8199 if (ipip->ipi_cmd_type == XARP_CMD) { 8200 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 8201 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 8202 ar = NULL; 8203 8204 arp_flags = xar->xarp_flags; 8205 lladdr = (uchar_t *)LLADDR(&xar->xarp_ha); 8206 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 8207 /* 8208 * Validate against user's link layer address length 8209 * input and name and addr length limits. 8210 */ 8211 alength = ill->ill_phys_addr_length; 8212 if (ipip->ipi_cmd == SIOCSXARP) { 8213 if (alength != xar->xarp_ha.sdl_alen || 8214 (alength + xar->xarp_ha.sdl_nlen > 8215 sizeof (xar->xarp_ha.sdl_data))) 8216 return (EINVAL); 8217 } 8218 } else { 8219 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 8220 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 8221 xar = NULL; 8222 8223 arp_flags = ar->arp_flags; 8224 lladdr = (uchar_t *)ar->arp_ha.sa_data; 8225 /* 8226 * Theoretically, the sa_family could tell us what link 8227 * layer type this operation is trying to deal with. By 8228 * common usage AF_UNSPEC means ethernet. We'll assume 8229 * any attempt to use the SIOC?ARP ioctls is for ethernet, 8230 * for now. Our new SIOC*XARP ioctls can be used more 8231 * generally. 8232 * 8233 * If the underlying media happens to have a non 6 byte 8234 * address, arp module will fail set/get, but the del 8235 * operation will succeed. 8236 */ 8237 alength = 6; 8238 if ((ipip->ipi_cmd != SIOCDARP) && 8239 (alength != ill->ill_phys_addr_length)) { 8240 return (EINVAL); 8241 } 8242 } 8243 8244 /* Translate ATF* flags to NCE* flags */ 8245 flags = 0; 8246 if (arp_flags & ATF_AUTHORITY) 8247 flags |= NCE_F_AUTHORITY; 8248 if (arp_flags & ATF_PERM) 8249 flags |= NCE_F_NONUD; /* not subject to aging */ 8250 if (arp_flags & ATF_PUBL) 8251 flags |= NCE_F_PUBLISH; 8252 8253 /* 8254 * IPMP ARP special handling: 8255 * 8256 * 1. Since ARP mappings must appear consistent across the group, 8257 * prohibit changing ARP mappings on the underlying interfaces. 8258 * 8259 * 2. Since ARP mappings for IPMP data addresses are maintained by 8260 * IP itself, prohibit changing them. 8261 * 8262 * 3. For proxy ARP, use a functioning hardware address in the group, 8263 * provided one exists. If one doesn't, just add the entry as-is; 8264 * ipmp_illgrp_refresh_arpent() will refresh it if things change. 8265 */ 8266 if (IS_UNDER_IPMP(ill)) { 8267 if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP) 8268 return (EPERM); 8269 } 8270 if (IS_IPMP(ill)) { 8271 ipmp_illgrp_t *illg = ill->ill_grp; 8272 8273 switch (ipip->ipi_cmd) { 8274 case SIOCSARP: 8275 case SIOCSXARP: 8276 proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength); 8277 if (proxy_ill != NULL) { 8278 proxyarp = B_TRUE; 8279 if (!ipmp_ill_is_active(proxy_ill)) 8280 proxy_ill = ipmp_illgrp_next_ill(illg); 8281 if (proxy_ill != NULL) 8282 lladdr = proxy_ill->ill_phys_addr; 8283 } 8284 /* FALLTHRU */ 8285 } 8286 } 8287 8288 ipaddr = sin->sin_addr.s_addr; 8289 /* 8290 * don't match across illgrp per case (1) and (2). 8291 * XXX use IS_IPMP(ill) like ndp_sioc_update? 8292 */ 8293 nce = nce_lookup_v4(ill, &ipaddr); 8294 if (nce != NULL) 8295 ncec = nce->nce_common; 8296 8297 switch (iocp->ioc_cmd) { 8298 case SIOCDARP: 8299 case SIOCDXARP: { 8300 /* 8301 * Delete the NCE if any. 8302 */ 8303 if (ncec == NULL) { 8304 iocp->ioc_error = ENXIO; 8305 break; 8306 } 8307 /* Don't allow changes to arp mappings of local addresses. */ 8308 if (NCE_MYADDR(ncec)) { 8309 nce_refrele(nce); 8310 return (ENOTSUP); 8311 } 8312 iocp->ioc_error = 0; 8313 8314 /* 8315 * Delete the nce_common which has ncec_ill set to ipmp_ill. 8316 * This will delete all the nce entries on the under_ills. 8317 */ 8318 ncec_delete(ncec); 8319 /* 8320 * Once the NCE has been deleted, then the ire_dep* consistency 8321 * mechanism will find any IRE which depended on the now 8322 * condemned NCE (as part of sending packets). 8323 * That mechanism handles redirects by deleting redirects 8324 * that refer to UNREACHABLE nces. 8325 */ 8326 break; 8327 } 8328 case SIOCGARP: 8329 case SIOCGXARP: 8330 if (ncec != NULL) { 8331 lladdr = ncec->ncec_lladdr; 8332 flags = ncec->ncec_flags; 8333 iocp->ioc_error = 0; 8334 ip_sioctl_garp_reply(mp, ncec->ncec_ill, lladdr, flags); 8335 } else { 8336 iocp->ioc_error = ENXIO; 8337 } 8338 break; 8339 case SIOCSARP: 8340 case SIOCSXARP: 8341 /* Don't allow changes to arp mappings of local addresses. */ 8342 if (ncec != NULL && NCE_MYADDR(ncec)) { 8343 nce_refrele(nce); 8344 return (ENOTSUP); 8345 } 8346 8347 /* static arp entries will undergo NUD if ATF_PERM is not set */ 8348 flags |= NCE_F_STATIC; 8349 if (!if_arp_ioctl) { 8350 ip_nce_lookup_and_update(&ipaddr, NULL, ipst, 8351 lladdr, alength, flags); 8352 } else { 8353 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 8354 if (ipif != NULL) { 8355 ip_nce_lookup_and_update(&ipaddr, ipif, ipst, 8356 lladdr, alength, flags); 8357 ipif_refrele(ipif); 8358 } 8359 } 8360 if (nce != NULL) { 8361 nce_refrele(nce); 8362 nce = NULL; 8363 } 8364 /* 8365 * NCE_F_STATIC entries will be added in state ND_REACHABLE 8366 * by nce_add_common() 8367 */ 8368 err = nce_lookup_then_add_v4(ill, lladdr, 8369 ill->ill_phys_addr_length, &ipaddr, flags, ND_UNCHANGED, 8370 &nce); 8371 if (err == EEXIST) { 8372 ncec = nce->nce_common; 8373 mutex_enter(&ncec->ncec_lock); 8374 ncec->ncec_state = ND_REACHABLE; 8375 ncec->ncec_flags = flags; 8376 nce_update(ncec, ND_UNCHANGED, lladdr); 8377 mutex_exit(&ncec->ncec_lock); 8378 err = 0; 8379 } 8380 if (nce != NULL) { 8381 nce_refrele(nce); 8382 nce = NULL; 8383 } 8384 if (IS_IPMP(ill) && err == 0) { 8385 entp = ipmp_illgrp_create_arpent(ill->ill_grp, 8386 proxyarp, ipaddr, lladdr, ill->ill_phys_addr_length, 8387 flags); 8388 if (entp == NULL || (proxyarp && proxy_ill == NULL)) { 8389 iocp->ioc_error = (entp == NULL ? ENOMEM : 0); 8390 break; 8391 } 8392 } 8393 iocp->ioc_error = err; 8394 } 8395 8396 if (nce != NULL) { 8397 nce_refrele(nce); 8398 } 8399 8400 /* 8401 * If we created an IPMP ARP entry, mark that we've notified ARP. 8402 */ 8403 if (entp != NULL) 8404 ipmp_illgrp_mark_arpent(ill->ill_grp, entp); 8405 8406 return (iocp->ioc_error); 8407 } 8408 8409 /* 8410 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 8411 * the associated sin and refhold and return the associated ipif via `ci'. 8412 */ 8413 int 8414 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8415 cmd_info_t *ci) 8416 { 8417 mblk_t *mp1; 8418 sin_t *sin; 8419 conn_t *connp; 8420 ipif_t *ipif; 8421 ire_t *ire = NULL; 8422 ill_t *ill = NULL; 8423 boolean_t exists; 8424 ip_stack_t *ipst; 8425 struct arpreq *ar; 8426 struct xarpreq *xar; 8427 struct sockaddr_dl *sdl; 8428 8429 /* ioctl comes down on a conn */ 8430 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8431 connp = Q_TO_CONN(q); 8432 if (connp->conn_family == AF_INET6) 8433 return (ENXIO); 8434 8435 ipst = connp->conn_netstack->netstack_ip; 8436 8437 /* Verified in ip_wput_nondata */ 8438 mp1 = mp->b_cont->b_cont; 8439 8440 if (ipip->ipi_cmd_type == XARP_CMD) { 8441 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 8442 xar = (struct xarpreq *)mp1->b_rptr; 8443 sin = (sin_t *)&xar->xarp_pa; 8444 sdl = &xar->xarp_ha; 8445 8446 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 8447 return (ENXIO); 8448 if (sdl->sdl_nlen >= LIFNAMSIZ) 8449 return (EINVAL); 8450 } else { 8451 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 8452 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 8453 ar = (struct arpreq *)mp1->b_rptr; 8454 sin = (sin_t *)&ar->arp_pa; 8455 } 8456 8457 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 8458 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 8459 B_FALSE, &exists, B_FALSE, ALL_ZONES, ipst); 8460 if (ipif == NULL) 8461 return (ENXIO); 8462 if (ipif->ipif_id != 0) { 8463 ipif_refrele(ipif); 8464 return (ENXIO); 8465 } 8466 } else { 8467 /* 8468 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen 8469 * of 0: use the IP address to find the ipif. If the IP 8470 * address is an IPMP test address, ire_ftable_lookup() will 8471 * find the wrong ill, so we first do an ipif_lookup_addr(). 8472 */ 8473 ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES, 8474 ipst); 8475 if (ipif == NULL) { 8476 ire = ire_ftable_lookup_v4(sin->sin_addr.s_addr, 8477 0, 0, IRE_IF_RESOLVER, NULL, ALL_ZONES, 8478 NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 8479 if (ire == NULL || ((ill = ire->ire_ill) == NULL)) { 8480 if (ire != NULL) 8481 ire_refrele(ire); 8482 return (ENXIO); 8483 } 8484 ASSERT(ire != NULL && ill != NULL); 8485 ipif = ill->ill_ipif; 8486 ipif_refhold(ipif); 8487 ire_refrele(ire); 8488 } 8489 } 8490 8491 if (ipif->ipif_ill->ill_net_type != IRE_IF_RESOLVER) { 8492 ipif_refrele(ipif); 8493 return (ENXIO); 8494 } 8495 8496 ci->ci_sin = sin; 8497 ci->ci_ipif = ipif; 8498 return (0); 8499 } 8500 8501 /* 8502 * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the 8503 * value of `ioccmd'. While an illgrp is linked to an ipmp_grp_t, it is 8504 * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it 8505 * up and thus an ill can join that illgrp. 8506 * 8507 * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than 8508 * open()/close() primarily because close() is not allowed to fail or block 8509 * forever. On the other hand, I_PUNLINK *can* fail, and there's no reason 8510 * why anyone should ever need to I_PUNLINK an in-use IPMP stream. To ensure 8511 * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the 8512 * I_PUNLINK) we defer linking to I_PLINK. Separately, we also fail attempts 8513 * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent 8514 * state if I_UNLINK didn't occur. 8515 * 8516 * Note that for each plumb/unplumb operation, we may end up here more than 8517 * once because of the way ifconfig works. However, it's OK to link the same 8518 * illgrp more than once, or unlink an illgrp that's already unlinked. 8519 */ 8520 static int 8521 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd) 8522 { 8523 int err; 8524 ip_stack_t *ipst = ill->ill_ipst; 8525 8526 ASSERT(IS_IPMP(ill)); 8527 ASSERT(IAM_WRITER_ILL(ill)); 8528 8529 switch (ioccmd) { 8530 case I_LINK: 8531 return (ENOTSUP); 8532 8533 case I_PLINK: 8534 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8535 ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp); 8536 rw_exit(&ipst->ips_ipmp_lock); 8537 break; 8538 8539 case I_PUNLINK: 8540 /* 8541 * Require all UP ipifs be brought down prior to unlinking the 8542 * illgrp so any associated IREs (and other state) is torched. 8543 */ 8544 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0) 8545 return (EBUSY); 8546 8547 /* 8548 * NOTE: We hold ipmp_lock across the unlink to prevent a race 8549 * with an SIOCSLIFGROUPNAME request from an ill trying to 8550 * join this group. Specifically: ills trying to join grab 8551 * ipmp_lock and bump a "pending join" counter checked by 8552 * ipmp_illgrp_unlink_grp(). During the unlink no new pending 8553 * joins can occur (since we have ipmp_lock). Once we drop 8554 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not 8555 * find the illgrp (since we unlinked it) and will return 8556 * EAFNOSUPPORT. This will then take them back through the 8557 * IPMP meta-interface plumbing logic in ifconfig, and thus 8558 * back through I_PLINK above. 8559 */ 8560 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8561 err = ipmp_illgrp_unlink_grp(ill->ill_grp); 8562 rw_exit(&ipst->ips_ipmp_lock); 8563 return (err); 8564 default: 8565 break; 8566 } 8567 return (0); 8568 } 8569 8570 /* 8571 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 8572 * atomically set/clear the muxids. Also complete the ioctl by acking or 8573 * naking it. Note that the code is structured such that the link type, 8574 * whether it's persistent or not, is treated equally. ifconfig(1M) and 8575 * its clones use the persistent link, while pppd(1M) and perhaps many 8576 * other daemons may use non-persistent link. When combined with some 8577 * ill_t states, linking and unlinking lower streams may be used as 8578 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 8579 */ 8580 /* ARGSUSED */ 8581 void 8582 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8583 { 8584 mblk_t *mp1; 8585 struct linkblk *li; 8586 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 8587 int err = 0; 8588 8589 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 8590 ioccmd == I_LINK || ioccmd == I_UNLINK); 8591 8592 mp1 = mp->b_cont; /* This is the linkblk info */ 8593 li = (struct linkblk *)mp1->b_rptr; 8594 8595 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li); 8596 if (err == EINPROGRESS) 8597 return; 8598 if (err == 0) 8599 miocack(q, mp, 0, 0); 8600 else 8601 miocnak(q, mp, 0, err); 8602 8603 /* Conn was refheld in ip_sioctl_copyin_setup */ 8604 if (CONN_Q(q)) { 8605 CONN_DEC_IOCTLREF(Q_TO_CONN(q)); 8606 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 8607 } 8608 } 8609 8610 /* 8611 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 8612 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 8613 * module stream). 8614 * Returns zero on success, EINPROGRESS if the operation is still pending, or 8615 * an error code on failure. 8616 */ 8617 static int 8618 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 8619 struct linkblk *li) 8620 { 8621 int err = 0; 8622 ill_t *ill; 8623 queue_t *ipwq, *dwq; 8624 const char *name; 8625 struct qinit *qinfo; 8626 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 8627 boolean_t entered_ipsq = B_FALSE; 8628 boolean_t is_ip = B_FALSE; 8629 arl_t *arl; 8630 8631 /* 8632 * Walk the lower stream to verify it's the IP module stream. 8633 * The IP module is identified by its name, wput function, 8634 * and non-NULL q_next. STREAMS ensures that the lower stream 8635 * (li->l_qbot) will not vanish until this ioctl completes. 8636 */ 8637 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 8638 qinfo = ipwq->q_qinfo; 8639 name = qinfo->qi_minfo->mi_idname; 8640 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 8641 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 8642 is_ip = B_TRUE; 8643 break; 8644 } 8645 if (name != NULL && strcmp(name, arp_mod_info.mi_idname) == 0 && 8646 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 8647 break; 8648 } 8649 } 8650 8651 /* 8652 * If this isn't an IP module stream, bail. 8653 */ 8654 if (ipwq == NULL) 8655 return (0); 8656 8657 if (!is_ip) { 8658 arl = (arl_t *)ipwq->q_ptr; 8659 ill = arl_to_ill(arl); 8660 if (ill == NULL) 8661 return (0); 8662 } else { 8663 ill = ipwq->q_ptr; 8664 } 8665 ASSERT(ill != NULL); 8666 8667 if (ipsq == NULL) { 8668 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 8669 NEW_OP, B_FALSE); 8670 if (ipsq == NULL) { 8671 if (!is_ip) 8672 ill_refrele(ill); 8673 return (EINPROGRESS); 8674 } 8675 entered_ipsq = B_TRUE; 8676 } 8677 ASSERT(IAM_WRITER_ILL(ill)); 8678 mutex_enter(&ill->ill_lock); 8679 if (!is_ip) { 8680 if (islink && ill->ill_muxid == 0) { 8681 /* 8682 * Plumbing has to be done with IP plumbed first, arp 8683 * second, but here we have arp being plumbed first. 8684 */ 8685 mutex_exit(&ill->ill_lock); 8686 if (entered_ipsq) 8687 ipsq_exit(ipsq); 8688 ill_refrele(ill); 8689 return (EINVAL); 8690 } 8691 } 8692 mutex_exit(&ill->ill_lock); 8693 if (!is_ip) { 8694 arl->arl_muxid = islink ? li->l_index : 0; 8695 ill_refrele(ill); 8696 goto done; 8697 } 8698 8699 if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) 8700 goto done; 8701 8702 /* 8703 * As part of I_{P}LINKing, stash the number of downstream modules and 8704 * the read queue of the module immediately below IP in the ill. 8705 * These are used during the capability negotiation below. 8706 */ 8707 ill->ill_lmod_rq = NULL; 8708 ill->ill_lmod_cnt = 0; 8709 if (islink && ((dwq = ipwq->q_next) != NULL)) { 8710 ill->ill_lmod_rq = RD(dwq); 8711 for (; dwq != NULL; dwq = dwq->q_next) 8712 ill->ill_lmod_cnt++; 8713 } 8714 8715 ill->ill_muxid = islink ? li->l_index : 0; 8716 8717 /* 8718 * Mark the ipsq busy until the capability operations initiated below 8719 * complete. The PLINK/UNLINK ioctl itself completes when our caller 8720 * returns, but the capability operation may complete asynchronously 8721 * much later. 8722 */ 8723 ipsq_current_start(ipsq, ill->ill_ipif, ioccmd); 8724 /* 8725 * If there's at least one up ipif on this ill, then we're bound to 8726 * the underlying driver via DLPI. In that case, renegotiate 8727 * capabilities to account for any possible change in modules 8728 * interposed between IP and the driver. 8729 */ 8730 if (ill->ill_ipif_up_count > 0) { 8731 if (islink) 8732 ill_capability_probe(ill); 8733 else 8734 ill_capability_reset(ill, B_FALSE); 8735 } 8736 ipsq_current_finish(ipsq); 8737 done: 8738 if (entered_ipsq) 8739 ipsq_exit(ipsq); 8740 8741 return (err); 8742 } 8743 8744 /* 8745 * Search the ioctl command in the ioctl tables and return a pointer 8746 * to the ioctl command information. The ioctl command tables are 8747 * static and fully populated at compile time. 8748 */ 8749 ip_ioctl_cmd_t * 8750 ip_sioctl_lookup(int ioc_cmd) 8751 { 8752 int index; 8753 ip_ioctl_cmd_t *ipip; 8754 ip_ioctl_cmd_t *ipip_end; 8755 8756 if (ioc_cmd == IPI_DONTCARE) 8757 return (NULL); 8758 8759 /* 8760 * Do a 2 step search. First search the indexed table 8761 * based on the least significant byte of the ioctl cmd. 8762 * If we don't find a match, then search the misc table 8763 * serially. 8764 */ 8765 index = ioc_cmd & 0xFF; 8766 if (index < ip_ndx_ioctl_count) { 8767 ipip = &ip_ndx_ioctl_table[index]; 8768 if (ipip->ipi_cmd == ioc_cmd) { 8769 /* Found a match in the ndx table */ 8770 return (ipip); 8771 } 8772 } 8773 8774 /* Search the misc table */ 8775 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 8776 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 8777 if (ipip->ipi_cmd == ioc_cmd) 8778 /* Found a match in the misc table */ 8779 return (ipip); 8780 } 8781 8782 return (NULL); 8783 } 8784 8785 /* 8786 * helper function for ip_sioctl_getsetprop(), which does some sanity checks 8787 */ 8788 static boolean_t 8789 getset_ioctl_checks(mblk_t *mp) 8790 { 8791 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8792 mblk_t *mp1 = mp->b_cont; 8793 mod_ioc_prop_t *pioc; 8794 uint_t flags; 8795 uint_t pioc_size; 8796 8797 /* do sanity checks on various arguments */ 8798 if (mp1 == NULL || iocp->ioc_count == 0 || 8799 iocp->ioc_count == TRANSPARENT) { 8800 return (B_FALSE); 8801 } 8802 if (msgdsize(mp1) < iocp->ioc_count) { 8803 if (!pullupmsg(mp1, iocp->ioc_count)) 8804 return (B_FALSE); 8805 } 8806 8807 pioc = (mod_ioc_prop_t *)mp1->b_rptr; 8808 8809 /* sanity checks on mpr_valsize */ 8810 pioc_size = sizeof (mod_ioc_prop_t); 8811 if (pioc->mpr_valsize != 0) 8812 pioc_size += pioc->mpr_valsize - 1; 8813 8814 if (iocp->ioc_count != pioc_size) 8815 return (B_FALSE); 8816 8817 flags = pioc->mpr_flags; 8818 if (iocp->ioc_cmd == SIOCSETPROP) { 8819 /* 8820 * One can either reset the value to it's default value or 8821 * change the current value or append/remove the value from 8822 * a multi-valued properties. 8823 */ 8824 if ((flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT && 8825 flags != MOD_PROP_ACTIVE && 8826 flags != (MOD_PROP_ACTIVE|MOD_PROP_APPEND) && 8827 flags != (MOD_PROP_ACTIVE|MOD_PROP_REMOVE)) 8828 return (B_FALSE); 8829 } else { 8830 ASSERT(iocp->ioc_cmd == SIOCGETPROP); 8831 8832 /* 8833 * One can retrieve only one kind of property information 8834 * at a time. 8835 */ 8836 if ((flags & MOD_PROP_ACTIVE) != MOD_PROP_ACTIVE && 8837 (flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT && 8838 (flags & MOD_PROP_POSSIBLE) != MOD_PROP_POSSIBLE && 8839 (flags & MOD_PROP_PERM) != MOD_PROP_PERM) 8840 return (B_FALSE); 8841 } 8842 8843 return (B_TRUE); 8844 } 8845 8846 /* 8847 * process the SIOC{SET|GET}PROP ioctl's 8848 */ 8849 /* ARGSUSED */ 8850 static void 8851 ip_sioctl_getsetprop(queue_t *q, mblk_t *mp) 8852 { 8853 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8854 mblk_t *mp1 = mp->b_cont; 8855 mod_ioc_prop_t *pioc; 8856 mod_prop_info_t *ptbl = NULL, *pinfo = NULL; 8857 ip_stack_t *ipst; 8858 icmp_stack_t *is; 8859 tcp_stack_t *tcps; 8860 sctp_stack_t *sctps; 8861 udp_stack_t *us; 8862 netstack_t *stack; 8863 void *cbarg; 8864 cred_t *cr; 8865 boolean_t set; 8866 int err; 8867 8868 ASSERT(q->q_next == NULL); 8869 ASSERT(CONN_Q(q)); 8870 8871 if (!getset_ioctl_checks(mp)) { 8872 miocnak(q, mp, 0, EINVAL); 8873 return; 8874 } 8875 ipst = CONNQ_TO_IPST(q); 8876 stack = ipst->ips_netstack; 8877 pioc = (mod_ioc_prop_t *)mp1->b_rptr; 8878 8879 switch (pioc->mpr_proto) { 8880 case MOD_PROTO_IP: 8881 case MOD_PROTO_IPV4: 8882 case MOD_PROTO_IPV6: 8883 ptbl = ipst->ips_propinfo_tbl; 8884 cbarg = ipst; 8885 break; 8886 case MOD_PROTO_RAWIP: 8887 is = stack->netstack_icmp; 8888 ptbl = is->is_propinfo_tbl; 8889 cbarg = is; 8890 break; 8891 case MOD_PROTO_TCP: 8892 tcps = stack->netstack_tcp; 8893 ptbl = tcps->tcps_propinfo_tbl; 8894 cbarg = tcps; 8895 break; 8896 case MOD_PROTO_UDP: 8897 us = stack->netstack_udp; 8898 ptbl = us->us_propinfo_tbl; 8899 cbarg = us; 8900 break; 8901 case MOD_PROTO_SCTP: 8902 sctps = stack->netstack_sctp; 8903 ptbl = sctps->sctps_propinfo_tbl; 8904 cbarg = sctps; 8905 break; 8906 default: 8907 miocnak(q, mp, 0, EINVAL); 8908 return; 8909 } 8910 8911 /* search for given property in respective protocol propinfo table */ 8912 for (pinfo = ptbl; pinfo->mpi_name != NULL; pinfo++) { 8913 if (strcmp(pinfo->mpi_name, pioc->mpr_name) == 0 && 8914 pinfo->mpi_proto == pioc->mpr_proto) 8915 break; 8916 } 8917 if (pinfo->mpi_name == NULL) { 8918 miocnak(q, mp, 0, ENOENT); 8919 return; 8920 } 8921 8922 set = (iocp->ioc_cmd == SIOCSETPROP) ? B_TRUE : B_FALSE; 8923 if (set && pinfo->mpi_setf != NULL) { 8924 cr = msg_getcred(mp, NULL); 8925 if (cr == NULL) 8926 cr = iocp->ioc_cr; 8927 err = pinfo->mpi_setf(cbarg, cr, pinfo, pioc->mpr_ifname, 8928 pioc->mpr_val, pioc->mpr_flags); 8929 } else if (!set && pinfo->mpi_getf != NULL) { 8930 err = pinfo->mpi_getf(cbarg, pinfo, pioc->mpr_ifname, 8931 pioc->mpr_val, pioc->mpr_valsize, pioc->mpr_flags); 8932 } else { 8933 err = EPERM; 8934 } 8935 8936 if (err != 0) { 8937 miocnak(q, mp, 0, err); 8938 } else { 8939 if (set) 8940 miocack(q, mp, 0, 0); 8941 else /* For get, we need to return back the data */ 8942 miocack(q, mp, iocp->ioc_count, 0); 8943 } 8944 } 8945 8946 /* 8947 * process the legacy ND_GET, ND_SET ioctl just for {ip|ip6}_forwarding 8948 * as several routing daemons have unfortunately used this 'unpublished' 8949 * but well-known ioctls. 8950 */ 8951 /* ARGSUSED */ 8952 static void 8953 ip_process_legacy_nddprop(queue_t *q, mblk_t *mp) 8954 { 8955 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8956 mblk_t *mp1 = mp->b_cont; 8957 char *pname, *pval, *buf; 8958 uint_t bufsize, proto; 8959 mod_prop_info_t *ptbl = NULL, *pinfo = NULL; 8960 ip_stack_t *ipst; 8961 int err = 0; 8962 8963 ASSERT(CONN_Q(q)); 8964 ipst = CONNQ_TO_IPST(q); 8965 8966 if (iocp->ioc_count == 0 || mp1 == NULL) { 8967 miocnak(q, mp, 0, EINVAL); 8968 return; 8969 } 8970 8971 mp1->b_datap->db_lim[-1] = '\0'; /* Force null termination */ 8972 pval = buf = pname = (char *)mp1->b_rptr; 8973 bufsize = MBLKL(mp1); 8974 8975 if (strcmp(pname, "ip_forwarding") == 0) { 8976 pname = "forwarding"; 8977 proto = MOD_PROTO_IPV4; 8978 } else if (strcmp(pname, "ip6_forwarding") == 0) { 8979 pname = "forwarding"; 8980 proto = MOD_PROTO_IPV6; 8981 } else { 8982 miocnak(q, mp, 0, EINVAL); 8983 return; 8984 } 8985 8986 ptbl = ipst->ips_propinfo_tbl; 8987 for (pinfo = ptbl; pinfo->mpi_name != NULL; pinfo++) { 8988 if (strcmp(pinfo->mpi_name, pname) == 0 && 8989 pinfo->mpi_proto == proto) 8990 break; 8991 } 8992 8993 ASSERT(pinfo->mpi_name != NULL); 8994 8995 switch (iocp->ioc_cmd) { 8996 case ND_GET: 8997 if ((err = pinfo->mpi_getf(ipst, pinfo, NULL, buf, bufsize, 8998 0)) == 0) { 8999 miocack(q, mp, iocp->ioc_count, 0); 9000 return; 9001 } 9002 break; 9003 case ND_SET: 9004 /* 9005 * buffer will have property name and value in the following 9006 * format, 9007 * <property name>'\0'<property value>'\0', extract them; 9008 */ 9009 while (*pval++) 9010 noop; 9011 9012 if (!*pval || pval >= (char *)mp1->b_wptr) { 9013 err = EINVAL; 9014 } else if ((err = pinfo->mpi_setf(ipst, NULL, pinfo, NULL, 9015 pval, 0)) == 0) { 9016 miocack(q, mp, 0, 0); 9017 return; 9018 } 9019 break; 9020 default: 9021 err = EINVAL; 9022 break; 9023 } 9024 miocnak(q, mp, 0, err); 9025 } 9026 9027 /* 9028 * Wrapper function for resuming deferred ioctl processing 9029 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 9030 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 9031 */ 9032 /* ARGSUSED */ 9033 void 9034 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 9035 void *dummy_arg) 9036 { 9037 ip_sioctl_copyin_setup(q, mp); 9038 } 9039 9040 /* 9041 * ip_sioctl_copyin_setup is called by ip_wput_nondata with any M_IOCTL message 9042 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 9043 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 9044 * We establish here the size of the block to be copied in. mi_copyin 9045 * arranges for this to happen, an processing continues in ip_wput_nondata with 9046 * an M_IOCDATA message. 9047 */ 9048 void 9049 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 9050 { 9051 int copyin_size; 9052 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9053 ip_ioctl_cmd_t *ipip; 9054 cred_t *cr; 9055 ip_stack_t *ipst; 9056 9057 if (CONN_Q(q)) 9058 ipst = CONNQ_TO_IPST(q); 9059 else 9060 ipst = ILLQ_TO_IPST(q); 9061 9062 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 9063 if (ipip == NULL) { 9064 /* 9065 * The ioctl is not one we understand or own. 9066 * Pass it along to be processed down stream, 9067 * if this is a module instance of IP, else nak 9068 * the ioctl. 9069 */ 9070 if (q->q_next == NULL) { 9071 goto nak; 9072 } else { 9073 putnext(q, mp); 9074 return; 9075 } 9076 } 9077 9078 /* 9079 * If this is deferred, then we will do all the checks when we 9080 * come back. 9081 */ 9082 if ((iocp->ioc_cmd == SIOCGDSTINFO || 9083 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 9084 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 9085 return; 9086 } 9087 9088 /* 9089 * Only allow a very small subset of IP ioctls on this stream if 9090 * IP is a module and not a driver. Allowing ioctls to be processed 9091 * in this case may cause assert failures or data corruption. 9092 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 9093 * ioctls allowed on an IP module stream, after which this stream 9094 * normally becomes a multiplexor (at which time the stream head 9095 * will fail all ioctls). 9096 */ 9097 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 9098 goto nak; 9099 } 9100 9101 /* Make sure we have ioctl data to process. */ 9102 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 9103 goto nak; 9104 9105 /* 9106 * Prefer dblk credential over ioctl credential; some synthesized 9107 * ioctls have kcred set because there's no way to crhold() 9108 * a credential in some contexts. (ioc_cr is not crfree() by 9109 * the framework; the caller of ioctl needs to hold the reference 9110 * for the duration of the call). 9111 */ 9112 cr = msg_getcred(mp, NULL); 9113 if (cr == NULL) 9114 cr = iocp->ioc_cr; 9115 9116 /* Make sure normal users don't send down privileged ioctls */ 9117 if ((ipip->ipi_flags & IPI_PRIV) && 9118 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 9119 /* We checked the privilege earlier but log it here */ 9120 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 9121 return; 9122 } 9123 9124 /* 9125 * The ioctl command tables can only encode fixed length 9126 * ioctl data. If the length is variable, the table will 9127 * encode the length as zero. Such special cases are handled 9128 * below in the switch. 9129 */ 9130 if (ipip->ipi_copyin_size != 0) { 9131 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 9132 return; 9133 } 9134 9135 switch (iocp->ioc_cmd) { 9136 case O_SIOCGIFCONF: 9137 case SIOCGIFCONF: 9138 /* 9139 * This IOCTL is hilarious. See comments in 9140 * ip_sioctl_get_ifconf for the story. 9141 */ 9142 if (iocp->ioc_count == TRANSPARENT) 9143 copyin_size = SIZEOF_STRUCT(ifconf, 9144 iocp->ioc_flag); 9145 else 9146 copyin_size = iocp->ioc_count; 9147 mi_copyin(q, mp, NULL, copyin_size); 9148 return; 9149 9150 case O_SIOCGLIFCONF: 9151 case SIOCGLIFCONF: 9152 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 9153 mi_copyin(q, mp, NULL, copyin_size); 9154 return; 9155 9156 case SIOCGLIFSRCOF: 9157 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 9158 mi_copyin(q, mp, NULL, copyin_size); 9159 return; 9160 9161 case SIOCGIP6ADDRPOLICY: 9162 ip_sioctl_ip6addrpolicy(q, mp); 9163 ip6_asp_table_refrele(ipst); 9164 return; 9165 9166 case SIOCSIP6ADDRPOLICY: 9167 ip_sioctl_ip6addrpolicy(q, mp); 9168 return; 9169 9170 case SIOCGDSTINFO: 9171 ip_sioctl_dstinfo(q, mp); 9172 ip6_asp_table_refrele(ipst); 9173 return; 9174 9175 case ND_SET: 9176 case ND_GET: 9177 ip_process_legacy_nddprop(q, mp); 9178 return; 9179 9180 case SIOCSETPROP: 9181 case SIOCGETPROP: 9182 ip_sioctl_getsetprop(q, mp); 9183 return; 9184 9185 case I_PLINK: 9186 case I_PUNLINK: 9187 case I_LINK: 9188 case I_UNLINK: 9189 /* 9190 * We treat non-persistent link similarly as the persistent 9191 * link case, in terms of plumbing/unplumbing, as well as 9192 * dynamic re-plumbing events indicator. See comments 9193 * in ip_sioctl_plink() for more. 9194 * 9195 * Request can be enqueued in the 'ipsq' while waiting 9196 * to become exclusive. So bump up the conn ref. 9197 */ 9198 if (CONN_Q(q)) { 9199 CONN_INC_REF(Q_TO_CONN(q)); 9200 CONN_INC_IOCTLREF(Q_TO_CONN(q)) 9201 } 9202 ip_sioctl_plink(NULL, q, mp, NULL); 9203 return; 9204 9205 case IP_IOCTL: 9206 ip_wput_ioctl(q, mp); 9207 return; 9208 9209 case SIOCILB: 9210 /* The ioctl length varies depending on the ILB command. */ 9211 copyin_size = iocp->ioc_count; 9212 if (copyin_size < sizeof (ilb_cmd_t)) 9213 goto nak; 9214 mi_copyin(q, mp, NULL, copyin_size); 9215 return; 9216 9217 default: 9218 cmn_err(CE_PANIC, "should not happen "); 9219 } 9220 nak: 9221 if (mp->b_cont != NULL) { 9222 freemsg(mp->b_cont); 9223 mp->b_cont = NULL; 9224 } 9225 iocp->ioc_error = EINVAL; 9226 mp->b_datap->db_type = M_IOCNAK; 9227 iocp->ioc_count = 0; 9228 qreply(q, mp); 9229 } 9230 9231 static void 9232 ip_sioctl_garp_reply(mblk_t *mp, ill_t *ill, void *hwaddr, int flags) 9233 { 9234 struct arpreq *ar; 9235 struct xarpreq *xar; 9236 mblk_t *tmp; 9237 struct iocblk *iocp; 9238 int x_arp_ioctl = B_FALSE; 9239 int *flagsp; 9240 char *storage = NULL; 9241 9242 ASSERT(ill != NULL); 9243 9244 iocp = (struct iocblk *)mp->b_rptr; 9245 ASSERT(iocp->ioc_cmd == SIOCGXARP || iocp->ioc_cmd == SIOCGARP); 9246 9247 tmp = (mp->b_cont)->b_cont; /* xarpreq/arpreq */ 9248 if ((iocp->ioc_cmd == SIOCGXARP) || 9249 (iocp->ioc_cmd == SIOCSXARP)) { 9250 x_arp_ioctl = B_TRUE; 9251 xar = (struct xarpreq *)tmp->b_rptr; 9252 flagsp = &xar->xarp_flags; 9253 storage = xar->xarp_ha.sdl_data; 9254 } else { 9255 ar = (struct arpreq *)tmp->b_rptr; 9256 flagsp = &ar->arp_flags; 9257 storage = ar->arp_ha.sa_data; 9258 } 9259 9260 /* 9261 * We're done if this is not an SIOCG{X}ARP 9262 */ 9263 if (x_arp_ioctl) { 9264 storage += ill_xarp_info(&xar->xarp_ha, ill); 9265 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 9266 sizeof (xar->xarp_ha.sdl_data)) { 9267 iocp->ioc_error = EINVAL; 9268 return; 9269 } 9270 } 9271 *flagsp = ATF_INUSE; 9272 /* 9273 * If /sbin/arp told us we are the authority using the "permanent" 9274 * flag, or if this is one of my addresses print "permanent" 9275 * in the /sbin/arp output. 9276 */ 9277 if ((flags & NCE_F_MYADDR) || (flags & NCE_F_AUTHORITY)) 9278 *flagsp |= ATF_AUTHORITY; 9279 if (flags & NCE_F_NONUD) 9280 *flagsp |= ATF_PERM; /* not subject to aging */ 9281 if (flags & NCE_F_PUBLISH) 9282 *flagsp |= ATF_PUBL; 9283 if (hwaddr != NULL) { 9284 *flagsp |= ATF_COM; 9285 bcopy((char *)hwaddr, storage, ill->ill_phys_addr_length); 9286 } 9287 } 9288 9289 /* 9290 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 9291 * interface) create the next available logical interface for this 9292 * physical interface. 9293 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 9294 * ipif with the specified name. 9295 * 9296 * If the address family is not AF_UNSPEC then set the address as well. 9297 * 9298 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 9299 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 9300 * 9301 * Executed as a writer on the ill. 9302 * So no lock is needed to traverse the ipif chain, or examine the 9303 * phyint flags. 9304 */ 9305 /* ARGSUSED */ 9306 int 9307 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9308 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9309 { 9310 mblk_t *mp1; 9311 struct lifreq *lifr; 9312 boolean_t isv6; 9313 boolean_t exists; 9314 char *name; 9315 char *endp; 9316 char *cp; 9317 int namelen; 9318 ipif_t *ipif; 9319 long id; 9320 ipsq_t *ipsq; 9321 ill_t *ill; 9322 sin_t *sin; 9323 int err = 0; 9324 boolean_t found_sep = B_FALSE; 9325 conn_t *connp; 9326 zoneid_t zoneid; 9327 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9328 9329 ASSERT(q->q_next == NULL); 9330 ip1dbg(("ip_sioctl_addif\n")); 9331 /* Existence of mp1 has been checked in ip_wput_nondata */ 9332 mp1 = mp->b_cont->b_cont; 9333 /* 9334 * Null terminate the string to protect against buffer 9335 * overrun. String was generated by user code and may not 9336 * be trusted. 9337 */ 9338 lifr = (struct lifreq *)mp1->b_rptr; 9339 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 9340 name = lifr->lifr_name; 9341 ASSERT(CONN_Q(q)); 9342 connp = Q_TO_CONN(q); 9343 isv6 = (connp->conn_family == AF_INET6); 9344 zoneid = connp->conn_zoneid; 9345 namelen = mi_strlen(name); 9346 if (namelen == 0) 9347 return (EINVAL); 9348 9349 exists = B_FALSE; 9350 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 9351 (mi_strcmp(name, ipif_loopback_name) == 0)) { 9352 /* 9353 * Allow creating lo0 using SIOCLIFADDIF. 9354 * can't be any other writer thread. So can pass null below 9355 * for the last 4 args to ipif_lookup_name. 9356 */ 9357 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 9358 &exists, isv6, zoneid, ipst); 9359 /* Prevent any further action */ 9360 if (ipif == NULL) { 9361 return (ENOBUFS); 9362 } else if (!exists) { 9363 /* We created the ipif now and as writer */ 9364 ipif_refrele(ipif); 9365 return (0); 9366 } else { 9367 ill = ipif->ipif_ill; 9368 ill_refhold(ill); 9369 ipif_refrele(ipif); 9370 } 9371 } else { 9372 /* Look for a colon in the name. */ 9373 endp = &name[namelen]; 9374 for (cp = endp; --cp > name; ) { 9375 if (*cp == IPIF_SEPARATOR_CHAR) { 9376 found_sep = B_TRUE; 9377 /* 9378 * Reject any non-decimal aliases for plumbing 9379 * of logical interfaces. Aliases with leading 9380 * zeroes are also rejected as they introduce 9381 * ambiguity in the naming of the interfaces. 9382 * Comparing with "0" takes care of all such 9383 * cases. 9384 */ 9385 if ((strncmp("0", cp+1, 1)) == 0) 9386 return (EINVAL); 9387 9388 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 9389 id <= 0 || *endp != '\0') { 9390 return (EINVAL); 9391 } 9392 *cp = '\0'; 9393 break; 9394 } 9395 } 9396 ill = ill_lookup_on_name(name, B_FALSE, isv6, NULL, ipst); 9397 if (found_sep) 9398 *cp = IPIF_SEPARATOR_CHAR; 9399 if (ill == NULL) 9400 return (ENXIO); 9401 } 9402 9403 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 9404 B_TRUE); 9405 9406 /* 9407 * Release the refhold due to the lookup, now that we are excl 9408 * or we are just returning 9409 */ 9410 ill_refrele(ill); 9411 9412 if (ipsq == NULL) 9413 return (EINPROGRESS); 9414 9415 /* We are now exclusive on the IPSQ */ 9416 ASSERT(IAM_WRITER_ILL(ill)); 9417 9418 if (found_sep) { 9419 /* Now see if there is an IPIF with this unit number. */ 9420 for (ipif = ill->ill_ipif; ipif != NULL; 9421 ipif = ipif->ipif_next) { 9422 if (ipif->ipif_id == id) { 9423 err = EEXIST; 9424 goto done; 9425 } 9426 } 9427 } 9428 9429 /* 9430 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 9431 * of lo0. Plumbing for lo0:0 happens in ipif_lookup_on_name() 9432 * instead. 9433 */ 9434 if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL, 9435 B_TRUE, B_TRUE, &err)) == NULL) { 9436 goto done; 9437 } 9438 9439 /* Return created name with ioctl */ 9440 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 9441 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 9442 ip1dbg(("created %s\n", lifr->lifr_name)); 9443 9444 /* Set address */ 9445 sin = (sin_t *)&lifr->lifr_addr; 9446 if (sin->sin_family != AF_UNSPEC) { 9447 err = ip_sioctl_addr(ipif, sin, q, mp, 9448 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 9449 } 9450 9451 done: 9452 ipsq_exit(ipsq); 9453 return (err); 9454 } 9455 9456 /* 9457 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 9458 * interface) delete it based on the IP address (on this physical interface). 9459 * Otherwise delete it based on the ipif_id. 9460 * Also, special handling to allow a removeif of lo0. 9461 */ 9462 /* ARGSUSED */ 9463 int 9464 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9465 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9466 { 9467 conn_t *connp; 9468 ill_t *ill = ipif->ipif_ill; 9469 boolean_t success; 9470 ip_stack_t *ipst; 9471 9472 ipst = CONNQ_TO_IPST(q); 9473 9474 ASSERT(q->q_next == NULL); 9475 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 9476 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9477 ASSERT(IAM_WRITER_IPIF(ipif)); 9478 9479 connp = Q_TO_CONN(q); 9480 /* 9481 * Special case for unplumbing lo0 (the loopback physical interface). 9482 * If unplumbing lo0, the incoming address structure has been 9483 * initialized to all zeros. When unplumbing lo0, all its logical 9484 * interfaces must be removed too. 9485 * 9486 * Note that this interface may be called to remove a specific 9487 * loopback logical interface (eg, lo0:1). But in that case 9488 * ipif->ipif_id != 0 so that the code path for that case is the 9489 * same as any other interface (meaning it skips the code directly 9490 * below). 9491 */ 9492 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9493 if (sin->sin_family == AF_UNSPEC && 9494 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 9495 /* 9496 * Mark it condemned. No new ref. will be made to ill. 9497 */ 9498 mutex_enter(&ill->ill_lock); 9499 ill->ill_state_flags |= ILL_CONDEMNED; 9500 for (ipif = ill->ill_ipif; ipif != NULL; 9501 ipif = ipif->ipif_next) { 9502 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9503 } 9504 mutex_exit(&ill->ill_lock); 9505 9506 ipif = ill->ill_ipif; 9507 /* unplumb the loopback interface */ 9508 ill_delete(ill); 9509 mutex_enter(&connp->conn_lock); 9510 mutex_enter(&ill->ill_lock); 9511 9512 /* Are any references to this ill active */ 9513 if (ill_is_freeable(ill)) { 9514 mutex_exit(&ill->ill_lock); 9515 mutex_exit(&connp->conn_lock); 9516 ill_delete_tail(ill); 9517 mi_free(ill); 9518 return (0); 9519 } 9520 success = ipsq_pending_mp_add(connp, ipif, 9521 CONNP_TO_WQ(connp), mp, ILL_FREE); 9522 mutex_exit(&connp->conn_lock); 9523 mutex_exit(&ill->ill_lock); 9524 if (success) 9525 return (EINPROGRESS); 9526 else 9527 return (EINTR); 9528 } 9529 } 9530 9531 if (ipif->ipif_id == 0) { 9532 ipsq_t *ipsq; 9533 9534 /* Find based on address */ 9535 if (ipif->ipif_isv6) { 9536 sin6_t *sin6; 9537 9538 if (sin->sin_family != AF_INET6) 9539 return (EAFNOSUPPORT); 9540 9541 sin6 = (sin6_t *)sin; 9542 /* We are a writer, so we should be able to lookup */ 9543 ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill, 9544 ipst); 9545 } else { 9546 if (sin->sin_family != AF_INET) 9547 return (EAFNOSUPPORT); 9548 9549 /* We are a writer, so we should be able to lookup */ 9550 ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill, 9551 ipst); 9552 } 9553 if (ipif == NULL) { 9554 return (EADDRNOTAVAIL); 9555 } 9556 9557 /* 9558 * It is possible for a user to send an SIOCLIFREMOVEIF with 9559 * lifr_name of the physical interface but with an ip address 9560 * lifr_addr of a logical interface plumbed over it. 9561 * So update ipx_current_ipif now that ipif points to the 9562 * correct one. 9563 */ 9564 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 9565 ipsq->ipsq_xop->ipx_current_ipif = ipif; 9566 9567 /* This is a writer */ 9568 ipif_refrele(ipif); 9569 } 9570 9571 /* 9572 * Can not delete instance zero since it is tied to the ill. 9573 */ 9574 if (ipif->ipif_id == 0) 9575 return (EBUSY); 9576 9577 mutex_enter(&ill->ill_lock); 9578 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9579 mutex_exit(&ill->ill_lock); 9580 9581 ipif_free(ipif); 9582 9583 mutex_enter(&connp->conn_lock); 9584 mutex_enter(&ill->ill_lock); 9585 9586 /* Are any references to this ipif active */ 9587 if (ipif_is_freeable(ipif)) { 9588 mutex_exit(&ill->ill_lock); 9589 mutex_exit(&connp->conn_lock); 9590 ipif_non_duplicate(ipif); 9591 (void) ipif_down_tail(ipif); 9592 ipif_free_tail(ipif); /* frees ipif */ 9593 return (0); 9594 } 9595 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 9596 IPIF_FREE); 9597 mutex_exit(&ill->ill_lock); 9598 mutex_exit(&connp->conn_lock); 9599 if (success) 9600 return (EINPROGRESS); 9601 else 9602 return (EINTR); 9603 } 9604 9605 /* 9606 * Restart the removeif ioctl. The refcnt has gone down to 0. 9607 * The ipif is already condemned. So can't find it thru lookups. 9608 */ 9609 /* ARGSUSED */ 9610 int 9611 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 9612 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9613 { 9614 ill_t *ill = ipif->ipif_ill; 9615 9616 ASSERT(IAM_WRITER_IPIF(ipif)); 9617 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 9618 9619 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 9620 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9621 9622 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9623 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 9624 ill_delete_tail(ill); 9625 mi_free(ill); 9626 return (0); 9627 } 9628 9629 ipif_non_duplicate(ipif); 9630 (void) ipif_down_tail(ipif); 9631 ipif_free_tail(ipif); 9632 9633 return (0); 9634 } 9635 9636 /* 9637 * Set the local interface address using the given prefix and ill_token. 9638 */ 9639 /* ARGSUSED */ 9640 int 9641 ip_sioctl_prefix(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9642 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9643 { 9644 int err; 9645 in6_addr_t v6addr; 9646 sin6_t *sin6; 9647 ill_t *ill; 9648 int i; 9649 9650 ip1dbg(("ip_sioctl_prefix(%s:%u %p)\n", 9651 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9652 9653 ASSERT(IAM_WRITER_IPIF(ipif)); 9654 9655 if (!ipif->ipif_isv6) 9656 return (EINVAL); 9657 9658 if (sin->sin_family != AF_INET6) 9659 return (EAFNOSUPPORT); 9660 9661 sin6 = (sin6_t *)sin; 9662 v6addr = sin6->sin6_addr; 9663 ill = ipif->ipif_ill; 9664 9665 if (IN6_IS_ADDR_UNSPECIFIED(&v6addr) || 9666 IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 9667 return (EADDRNOTAVAIL); 9668 9669 for (i = 0; i < 4; i++) 9670 sin6->sin6_addr.s6_addr32[i] |= ill->ill_token.s6_addr32[i]; 9671 9672 err = ip_sioctl_addr(ipif, sin, q, mp, 9673 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], dummy_ifreq); 9674 return (err); 9675 } 9676 9677 /* 9678 * Restart entry point to restart the address set operation after the 9679 * refcounts have dropped to zero. 9680 */ 9681 /* ARGSUSED */ 9682 int 9683 ip_sioctl_prefix_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9684 ip_ioctl_cmd_t *ipip, void *ifreq) 9685 { 9686 ip1dbg(("ip_sioctl_prefix_restart(%s:%u %p)\n", 9687 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9688 return (ip_sioctl_addr_restart(ipif, sin, q, mp, ipip, ifreq)); 9689 } 9690 9691 /* 9692 * Set the local interface address. 9693 * Allow an address of all zero when the interface is down. 9694 */ 9695 /* ARGSUSED */ 9696 int 9697 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9698 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9699 { 9700 int err = 0; 9701 in6_addr_t v6addr; 9702 boolean_t need_up = B_FALSE; 9703 ill_t *ill; 9704 int i; 9705 9706 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 9707 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9708 9709 ASSERT(IAM_WRITER_IPIF(ipif)); 9710 9711 ill = ipif->ipif_ill; 9712 if (ipif->ipif_isv6) { 9713 sin6_t *sin6; 9714 phyint_t *phyi; 9715 9716 if (sin->sin_family != AF_INET6) 9717 return (EAFNOSUPPORT); 9718 9719 sin6 = (sin6_t *)sin; 9720 v6addr = sin6->sin6_addr; 9721 phyi = ill->ill_phyint; 9722 9723 /* 9724 * Enforce that true multicast interfaces have a link-local 9725 * address for logical unit 0. 9726 * 9727 * However for those ipif's for which link-local address was 9728 * not created by default, also allow setting :: as the address. 9729 * This scenario would arise, when we delete an address on ipif 9730 * with logical unit 0, we would want to set :: as the address. 9731 */ 9732 if (ipif->ipif_id == 0 && 9733 (ill->ill_flags & ILLF_MULTICAST) && 9734 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 9735 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 9736 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 9737 9738 /* 9739 * if default link-local was not created by kernel for 9740 * this ill, allow setting :: as the address on ipif:0. 9741 */ 9742 if (ill->ill_flags & ILLF_NOLINKLOCAL) { 9743 if (!IN6_IS_ADDR_UNSPECIFIED(&v6addr)) 9744 return (EADDRNOTAVAIL); 9745 } else { 9746 return (EADDRNOTAVAIL); 9747 } 9748 } 9749 9750 /* 9751 * up interfaces shouldn't have the unspecified address 9752 * unless they also have the IPIF_NOLOCAL flags set and 9753 * have a subnet assigned. 9754 */ 9755 if ((ipif->ipif_flags & IPIF_UP) && 9756 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 9757 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 9758 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 9759 return (EADDRNOTAVAIL); 9760 } 9761 9762 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 9763 return (EADDRNOTAVAIL); 9764 } else { 9765 ipaddr_t addr; 9766 9767 if (sin->sin_family != AF_INET) 9768 return (EAFNOSUPPORT); 9769 9770 addr = sin->sin_addr.s_addr; 9771 9772 /* Allow INADDR_ANY as the local address. */ 9773 if (addr != INADDR_ANY && 9774 !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 9775 return (EADDRNOTAVAIL); 9776 9777 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9778 } 9779 /* 9780 * verify that the address being configured is permitted by the 9781 * ill_allowed_ips[] for the interface. 9782 */ 9783 if (ill->ill_allowed_ips_cnt > 0) { 9784 for (i = 0; i < ill->ill_allowed_ips_cnt; i++) { 9785 if (IN6_ARE_ADDR_EQUAL(&ill->ill_allowed_ips[i], 9786 &v6addr)) 9787 break; 9788 } 9789 if (i == ill->ill_allowed_ips_cnt) { 9790 pr_addr_dbg("!allowed addr %s\n", AF_INET6, &v6addr); 9791 return (EPERM); 9792 } 9793 } 9794 /* 9795 * Even if there is no change we redo things just to rerun 9796 * ipif_set_default. 9797 */ 9798 if (ipif->ipif_flags & IPIF_UP) { 9799 /* 9800 * Setting a new local address, make sure 9801 * we have net and subnet bcast ire's for 9802 * the old address if we need them. 9803 */ 9804 /* 9805 * If the interface is already marked up, 9806 * we call ipif_down which will take care 9807 * of ditching any IREs that have been set 9808 * up based on the old interface address. 9809 */ 9810 err = ipif_logical_down(ipif, q, mp); 9811 if (err == EINPROGRESS) 9812 return (err); 9813 (void) ipif_down_tail(ipif); 9814 need_up = 1; 9815 } 9816 9817 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 9818 return (err); 9819 } 9820 9821 int 9822 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9823 boolean_t need_up) 9824 { 9825 in6_addr_t v6addr; 9826 in6_addr_t ov6addr; 9827 ipaddr_t addr; 9828 sin6_t *sin6; 9829 int sinlen; 9830 int err = 0; 9831 ill_t *ill = ipif->ipif_ill; 9832 boolean_t need_dl_down; 9833 boolean_t need_arp_down; 9834 struct iocblk *iocp; 9835 9836 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 9837 9838 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 9839 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9840 ASSERT(IAM_WRITER_IPIF(ipif)); 9841 9842 /* Must cancel any pending timer before taking the ill_lock */ 9843 if (ipif->ipif_recovery_id != 0) 9844 (void) untimeout(ipif->ipif_recovery_id); 9845 ipif->ipif_recovery_id = 0; 9846 9847 if (ipif->ipif_isv6) { 9848 sin6 = (sin6_t *)sin; 9849 v6addr = sin6->sin6_addr; 9850 sinlen = sizeof (struct sockaddr_in6); 9851 } else { 9852 addr = sin->sin_addr.s_addr; 9853 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9854 sinlen = sizeof (struct sockaddr_in); 9855 } 9856 mutex_enter(&ill->ill_lock); 9857 ov6addr = ipif->ipif_v6lcl_addr; 9858 ipif->ipif_v6lcl_addr = v6addr; 9859 sctp_update_ipif_addr(ipif, ov6addr); 9860 ipif->ipif_addr_ready = 0; 9861 9862 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 9863 9864 /* 9865 * If the interface was previously marked as a duplicate, then since 9866 * we've now got a "new" address, it should no longer be considered a 9867 * duplicate -- even if the "new" address is the same as the old one. 9868 * Note that if all ipifs are down, we may have a pending ARP down 9869 * event to handle. This is because we want to recover from duplicates 9870 * and thus delay tearing down ARP until the duplicates have been 9871 * removed or disabled. 9872 */ 9873 need_dl_down = need_arp_down = B_FALSE; 9874 if (ipif->ipif_flags & IPIF_DUPLICATE) { 9875 need_arp_down = !need_up; 9876 ipif->ipif_flags &= ~IPIF_DUPLICATE; 9877 if (--ill->ill_ipif_dup_count == 0 && !need_up && 9878 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 9879 need_dl_down = B_TRUE; 9880 } 9881 } 9882 9883 ipif_set_default(ipif); 9884 9885 /* 9886 * If we've just manually set the IPv6 link-local address (0th ipif), 9887 * tag the ill so that future updates to the interface ID don't result 9888 * in this address getting automatically reconfigured from under the 9889 * administrator. 9890 */ 9891 if (ipif->ipif_isv6 && ipif->ipif_id == 0) { 9892 if (iocp == NULL || (iocp->ioc_cmd == SIOCSLIFADDR && 9893 !IN6_IS_ADDR_UNSPECIFIED(&v6addr))) 9894 ill->ill_manual_linklocal = 1; 9895 } 9896 9897 /* 9898 * When publishing an interface address change event, we only notify 9899 * the event listeners of the new address. It is assumed that if they 9900 * actively care about the addresses assigned that they will have 9901 * already discovered the previous address assigned (if there was one.) 9902 * 9903 * Don't attach nic event message for SIOCLIFADDIF ioctl. 9904 */ 9905 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 9906 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id), 9907 NE_ADDRESS_CHANGE, sin, sinlen); 9908 } 9909 9910 mutex_exit(&ill->ill_lock); 9911 9912 if (need_up) { 9913 /* 9914 * Now bring the interface back up. If this 9915 * is the only IPIF for the ILL, ipif_up 9916 * will have to re-bind to the device, so 9917 * we may get back EINPROGRESS, in which 9918 * case, this IOCTL will get completed in 9919 * ip_rput_dlpi when we see the DL_BIND_ACK. 9920 */ 9921 err = ipif_up(ipif, q, mp); 9922 } else { 9923 /* Perhaps ilgs should use this ill */ 9924 update_conn_ill(NULL, ill->ill_ipst); 9925 } 9926 9927 if (need_dl_down) 9928 ill_dl_down(ill); 9929 9930 if (need_arp_down && !ill->ill_isv6) 9931 (void) ipif_arp_down(ipif); 9932 9933 /* 9934 * The default multicast interface might have changed (for 9935 * instance if the IPv6 scope of the address changed) 9936 */ 9937 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 9938 9939 return (err); 9940 } 9941 9942 /* 9943 * Restart entry point to restart the address set operation after the 9944 * refcounts have dropped to zero. 9945 */ 9946 /* ARGSUSED */ 9947 int 9948 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9949 ip_ioctl_cmd_t *ipip, void *ifreq) 9950 { 9951 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 9952 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9953 ASSERT(IAM_WRITER_IPIF(ipif)); 9954 (void) ipif_down_tail(ipif); 9955 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 9956 } 9957 9958 /* ARGSUSED */ 9959 int 9960 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9961 ip_ioctl_cmd_t *ipip, void *if_req) 9962 { 9963 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 9964 struct lifreq *lifr = (struct lifreq *)if_req; 9965 9966 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 9967 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9968 /* 9969 * The net mask and address can't change since we have a 9970 * reference to the ipif. So no lock is necessary. 9971 */ 9972 if (ipif->ipif_isv6) { 9973 *sin6 = sin6_null; 9974 sin6->sin6_family = AF_INET6; 9975 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 9976 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 9977 lifr->lifr_addrlen = 9978 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 9979 } else { 9980 *sin = sin_null; 9981 sin->sin_family = AF_INET; 9982 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 9983 if (ipip->ipi_cmd_type == LIF_CMD) { 9984 lifr->lifr_addrlen = 9985 ip_mask_to_plen(ipif->ipif_net_mask); 9986 } 9987 } 9988 return (0); 9989 } 9990 9991 /* 9992 * Set the destination address for a pt-pt interface. 9993 */ 9994 /* ARGSUSED */ 9995 int 9996 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9997 ip_ioctl_cmd_t *ipip, void *if_req) 9998 { 9999 int err = 0; 10000 in6_addr_t v6addr; 10001 boolean_t need_up = B_FALSE; 10002 10003 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 10004 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10005 ASSERT(IAM_WRITER_IPIF(ipif)); 10006 10007 if (ipif->ipif_isv6) { 10008 sin6_t *sin6; 10009 10010 if (sin->sin_family != AF_INET6) 10011 return (EAFNOSUPPORT); 10012 10013 sin6 = (sin6_t *)sin; 10014 v6addr = sin6->sin6_addr; 10015 10016 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 10017 return (EADDRNOTAVAIL); 10018 } else { 10019 ipaddr_t addr; 10020 10021 if (sin->sin_family != AF_INET) 10022 return (EAFNOSUPPORT); 10023 10024 addr = sin->sin_addr.s_addr; 10025 if (addr != INADDR_ANY && 10026 !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) { 10027 return (EADDRNOTAVAIL); 10028 } 10029 10030 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10031 } 10032 10033 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 10034 return (0); /* No change */ 10035 10036 if (ipif->ipif_flags & IPIF_UP) { 10037 /* 10038 * If the interface is already marked up, 10039 * we call ipif_down which will take care 10040 * of ditching any IREs that have been set 10041 * up based on the old pp dst address. 10042 */ 10043 err = ipif_logical_down(ipif, q, mp); 10044 if (err == EINPROGRESS) 10045 return (err); 10046 (void) ipif_down_tail(ipif); 10047 need_up = B_TRUE; 10048 } 10049 /* 10050 * could return EINPROGRESS. If so ioctl will complete in 10051 * ip_rput_dlpi_writer 10052 */ 10053 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 10054 return (err); 10055 } 10056 10057 static int 10058 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10059 boolean_t need_up) 10060 { 10061 in6_addr_t v6addr; 10062 ill_t *ill = ipif->ipif_ill; 10063 int err = 0; 10064 boolean_t need_dl_down; 10065 boolean_t need_arp_down; 10066 10067 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 10068 ipif->ipif_id, (void *)ipif)); 10069 10070 /* Must cancel any pending timer before taking the ill_lock */ 10071 if (ipif->ipif_recovery_id != 0) 10072 (void) untimeout(ipif->ipif_recovery_id); 10073 ipif->ipif_recovery_id = 0; 10074 10075 if (ipif->ipif_isv6) { 10076 sin6_t *sin6; 10077 10078 sin6 = (sin6_t *)sin; 10079 v6addr = sin6->sin6_addr; 10080 } else { 10081 ipaddr_t addr; 10082 10083 addr = sin->sin_addr.s_addr; 10084 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10085 } 10086 mutex_enter(&ill->ill_lock); 10087 /* Set point to point destination address. */ 10088 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10089 /* 10090 * Allow this as a means of creating logical 10091 * pt-pt interfaces on top of e.g. an Ethernet. 10092 * XXX Undocumented HACK for testing. 10093 * pt-pt interfaces are created with NUD disabled. 10094 */ 10095 ipif->ipif_flags |= IPIF_POINTOPOINT; 10096 ipif->ipif_flags &= ~IPIF_BROADCAST; 10097 if (ipif->ipif_isv6) 10098 ill->ill_flags |= ILLF_NONUD; 10099 } 10100 10101 /* 10102 * If the interface was previously marked as a duplicate, then since 10103 * we've now got a "new" address, it should no longer be considered a 10104 * duplicate -- even if the "new" address is the same as the old one. 10105 * Note that if all ipifs are down, we may have a pending ARP down 10106 * event to handle. 10107 */ 10108 need_dl_down = need_arp_down = B_FALSE; 10109 if (ipif->ipif_flags & IPIF_DUPLICATE) { 10110 need_arp_down = !need_up; 10111 ipif->ipif_flags &= ~IPIF_DUPLICATE; 10112 if (--ill->ill_ipif_dup_count == 0 && !need_up && 10113 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 10114 need_dl_down = B_TRUE; 10115 } 10116 } 10117 10118 /* 10119 * If we've just manually set the IPv6 destination link-local address 10120 * (0th ipif), tag the ill so that future updates to the destination 10121 * interface ID (as can happen with interfaces over IP tunnels) don't 10122 * result in this address getting automatically reconfigured from 10123 * under the administrator. 10124 */ 10125 if (ipif->ipif_isv6 && ipif->ipif_id == 0) 10126 ill->ill_manual_dst_linklocal = 1; 10127 10128 /* Set the new address. */ 10129 ipif->ipif_v6pp_dst_addr = v6addr; 10130 /* Make sure subnet tracks pp_dst */ 10131 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 10132 mutex_exit(&ill->ill_lock); 10133 10134 if (need_up) { 10135 /* 10136 * Now bring the interface back up. If this 10137 * is the only IPIF for the ILL, ipif_up 10138 * will have to re-bind to the device, so 10139 * we may get back EINPROGRESS, in which 10140 * case, this IOCTL will get completed in 10141 * ip_rput_dlpi when we see the DL_BIND_ACK. 10142 */ 10143 err = ipif_up(ipif, q, mp); 10144 } 10145 10146 if (need_dl_down) 10147 ill_dl_down(ill); 10148 if (need_arp_down && !ipif->ipif_isv6) 10149 (void) ipif_arp_down(ipif); 10150 10151 return (err); 10152 } 10153 10154 /* 10155 * Restart entry point to restart the dstaddress set operation after the 10156 * refcounts have dropped to zero. 10157 */ 10158 /* ARGSUSED */ 10159 int 10160 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10161 ip_ioctl_cmd_t *ipip, void *ifreq) 10162 { 10163 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 10164 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10165 (void) ipif_down_tail(ipif); 10166 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 10167 } 10168 10169 /* ARGSUSED */ 10170 int 10171 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10172 ip_ioctl_cmd_t *ipip, void *if_req) 10173 { 10174 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 10175 10176 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 10177 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10178 /* 10179 * Get point to point destination address. The addresses can't 10180 * change since we hold a reference to the ipif. 10181 */ 10182 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 10183 return (EADDRNOTAVAIL); 10184 10185 if (ipif->ipif_isv6) { 10186 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10187 *sin6 = sin6_null; 10188 sin6->sin6_family = AF_INET6; 10189 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 10190 } else { 10191 *sin = sin_null; 10192 sin->sin_family = AF_INET; 10193 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 10194 } 10195 return (0); 10196 } 10197 10198 /* 10199 * Check which flags will change by the given flags being set 10200 * silently ignore flags which userland is not allowed to control. 10201 * (Because these flags may change between SIOCGLIFFLAGS and 10202 * SIOCSLIFFLAGS, and that's outside of userland's control, 10203 * we need to silently ignore them rather than fail.) 10204 */ 10205 static void 10206 ip_sioctl_flags_onoff(ipif_t *ipif, uint64_t flags, uint64_t *onp, 10207 uint64_t *offp) 10208 { 10209 ill_t *ill = ipif->ipif_ill; 10210 phyint_t *phyi = ill->ill_phyint; 10211 uint64_t cantchange_flags, intf_flags; 10212 uint64_t turn_on, turn_off; 10213 10214 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 10215 cantchange_flags = IFF_CANTCHANGE; 10216 if (IS_IPMP(ill)) 10217 cantchange_flags |= IFF_IPMP_CANTCHANGE; 10218 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 10219 turn_off = intf_flags & turn_on; 10220 turn_on ^= turn_off; 10221 *onp = turn_on; 10222 *offp = turn_off; 10223 } 10224 10225 /* 10226 * Set interface flags. Many flags require special handling (e.g., 10227 * bringing the interface down); see below for details. 10228 * 10229 * NOTE : We really don't enforce that ipif_id zero should be used 10230 * for setting any flags other than IFF_LOGINT_FLAGS. This 10231 * is because applications generally does SICGLIFFLAGS and 10232 * ORs in the new flags (that affects the logical) and does a 10233 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 10234 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 10235 * flags that will be turned on is correct with respect to 10236 * ipif_id 0. For backward compatibility reasons, it is not done. 10237 */ 10238 /* ARGSUSED */ 10239 int 10240 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10241 ip_ioctl_cmd_t *ipip, void *if_req) 10242 { 10243 uint64_t turn_on; 10244 uint64_t turn_off; 10245 int err = 0; 10246 phyint_t *phyi; 10247 ill_t *ill; 10248 conn_t *connp; 10249 uint64_t intf_flags; 10250 boolean_t phyint_flags_modified = B_FALSE; 10251 uint64_t flags; 10252 struct ifreq *ifr; 10253 struct lifreq *lifr; 10254 boolean_t set_linklocal = B_FALSE; 10255 10256 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 10257 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10258 10259 ASSERT(IAM_WRITER_IPIF(ipif)); 10260 10261 ill = ipif->ipif_ill; 10262 phyi = ill->ill_phyint; 10263 10264 if (ipip->ipi_cmd_type == IF_CMD) { 10265 ifr = (struct ifreq *)if_req; 10266 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 10267 } else { 10268 lifr = (struct lifreq *)if_req; 10269 flags = lifr->lifr_flags; 10270 } 10271 10272 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 10273 10274 /* 10275 * Have the flags been set correctly until now? 10276 */ 10277 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10278 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10279 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10280 /* 10281 * Compare the new flags to the old, and partition 10282 * into those coming on and those going off. 10283 * For the 16 bit command keep the bits above bit 16 unchanged. 10284 */ 10285 if (ipip->ipi_cmd == SIOCSIFFLAGS) 10286 flags |= intf_flags & ~0xFFFF; 10287 10288 /* 10289 * Explicitly fail attempts to change flags that are always invalid on 10290 * an IPMP meta-interface. 10291 */ 10292 if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID)) 10293 return (EINVAL); 10294 10295 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10296 if ((turn_on|turn_off) == 0) 10297 return (0); /* No change */ 10298 10299 /* 10300 * All test addresses must be IFF_DEPRECATED (to ensure source address 10301 * selection avoids them) -- so force IFF_DEPRECATED on, and do not 10302 * allow it to be turned off. 10303 */ 10304 if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED && 10305 (turn_on|intf_flags) & IFF_NOFAILOVER) 10306 return (EINVAL); 10307 10308 if ((connp = Q_TO_CONN(q)) == NULL) 10309 return (EINVAL); 10310 10311 /* 10312 * Only vrrp control socket is allowed to change IFF_UP and 10313 * IFF_NOACCEPT flags when IFF_VRRP is set. 10314 */ 10315 if ((intf_flags & IFF_VRRP) && ((turn_off | turn_on) & IFF_UP)) { 10316 if (!connp->conn_isvrrp) 10317 return (EINVAL); 10318 } 10319 10320 /* 10321 * The IFF_NOACCEPT flag can only be set on an IFF_VRRP IP address by 10322 * VRRP control socket. 10323 */ 10324 if ((turn_off | turn_on) & IFF_NOACCEPT) { 10325 if (!connp->conn_isvrrp || !(intf_flags & IFF_VRRP)) 10326 return (EINVAL); 10327 } 10328 10329 if (turn_on & IFF_NOFAILOVER) { 10330 turn_on |= IFF_DEPRECATED; 10331 flags |= IFF_DEPRECATED; 10332 } 10333 10334 /* 10335 * On underlying interfaces, only allow applications to manage test 10336 * addresses -- otherwise, they may get confused when the address 10337 * moves as part of being brought up. Likewise, prevent an 10338 * application-managed test address from being converted to a data 10339 * address. To prevent migration of administratively up addresses in 10340 * the kernel, we don't allow them to be converted either. 10341 */ 10342 if (IS_UNDER_IPMP(ill)) { 10343 const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF; 10344 10345 if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER)) 10346 return (EINVAL); 10347 10348 if ((turn_off & IFF_NOFAILOVER) && 10349 (flags & (appflags | IFF_UP | IFF_DUPLICATE))) 10350 return (EINVAL); 10351 } 10352 10353 /* 10354 * Only allow IFF_TEMPORARY flag to be set on 10355 * IPv6 interfaces. 10356 */ 10357 if ((turn_on & IFF_TEMPORARY) && !(ipif->ipif_isv6)) 10358 return (EINVAL); 10359 10360 /* 10361 * cannot turn off IFF_NOXMIT on VNI interfaces. 10362 */ 10363 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 10364 return (EINVAL); 10365 10366 /* 10367 * Don't allow the IFF_ROUTER flag to be turned on on loopback 10368 * interfaces. It makes no sense in that context. 10369 */ 10370 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 10371 return (EINVAL); 10372 10373 /* 10374 * For IPv6 ipif_id 0, don't allow the interface to be up without 10375 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 10376 * If the link local address isn't set, and can be set, it will get 10377 * set later on in this function. 10378 */ 10379 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 10380 (flags & IFF_UP) && !(flags & (IFF_NOLOCAL|IFF_ANYCAST)) && 10381 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 10382 if (ipif_cant_setlinklocal(ipif)) 10383 return (EINVAL); 10384 set_linklocal = B_TRUE; 10385 } 10386 10387 /* 10388 * If we modify physical interface flags, we'll potentially need to 10389 * send up two routing socket messages for the changes (one for the 10390 * IPv4 ill, and another for the IPv6 ill). Note that here. 10391 */ 10392 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10393 phyint_flags_modified = B_TRUE; 10394 10395 /* 10396 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE 10397 * (otherwise, we'd immediately use them, defeating standby). Also, 10398 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not 10399 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already 10400 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared. We 10401 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics 10402 * will not be honored. 10403 */ 10404 if (turn_on & PHYI_STANDBY) { 10405 /* 10406 * No need to grab ill_g_usesrc_lock here; see the 10407 * synchronization notes in ip.c. 10408 */ 10409 if (ill->ill_usesrc_grp_next != NULL || 10410 intf_flags & PHYI_INACTIVE) 10411 return (EINVAL); 10412 if (!(flags & PHYI_FAILED)) { 10413 flags |= PHYI_INACTIVE; 10414 turn_on |= PHYI_INACTIVE; 10415 } 10416 } 10417 10418 if (turn_off & PHYI_STANDBY) { 10419 flags &= ~PHYI_INACTIVE; 10420 turn_off |= PHYI_INACTIVE; 10421 } 10422 10423 /* 10424 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both 10425 * would end up on. 10426 */ 10427 if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) == 10428 (PHYI_FAILED | PHYI_INACTIVE)) 10429 return (EINVAL); 10430 10431 /* 10432 * If ILLF_ROUTER changes, we need to change the ip forwarding 10433 * status of the interface. 10434 */ 10435 if ((turn_on | turn_off) & ILLF_ROUTER) { 10436 err = ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 10437 if (err != 0) 10438 return (err); 10439 } 10440 10441 /* 10442 * If the interface is not UP and we are not going to 10443 * bring it UP, record the flags and return. When the 10444 * interface comes UP later, the right actions will be 10445 * taken. 10446 */ 10447 if (!(ipif->ipif_flags & IPIF_UP) && 10448 !(turn_on & IPIF_UP)) { 10449 /* Record new flags in their respective places. */ 10450 mutex_enter(&ill->ill_lock); 10451 mutex_enter(&ill->ill_phyint->phyint_lock); 10452 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10453 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10454 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10455 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10456 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10457 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10458 mutex_exit(&ill->ill_lock); 10459 mutex_exit(&ill->ill_phyint->phyint_lock); 10460 10461 /* 10462 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the 10463 * same to the kernel: if any of them has been set by 10464 * userland, the interface cannot be used for data traffic. 10465 */ 10466 if ((turn_on|turn_off) & 10467 (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10468 ASSERT(!IS_IPMP(ill)); 10469 /* 10470 * It's possible the ill is part of an "anonymous" 10471 * IPMP group rather than a real group. In that case, 10472 * there are no other interfaces in the group and thus 10473 * no need to call ipmp_phyint_refresh_active(). 10474 */ 10475 if (IS_UNDER_IPMP(ill)) 10476 ipmp_phyint_refresh_active(phyi); 10477 } 10478 10479 if (phyint_flags_modified) { 10480 if (phyi->phyint_illv4 != NULL) { 10481 ip_rts_ifmsg(phyi->phyint_illv4-> 10482 ill_ipif, RTSQ_DEFAULT); 10483 } 10484 if (phyi->phyint_illv6 != NULL) { 10485 ip_rts_ifmsg(phyi->phyint_illv6-> 10486 ill_ipif, RTSQ_DEFAULT); 10487 } 10488 } 10489 /* The default multicast interface might have changed */ 10490 ire_increment_multicast_generation(ill->ill_ipst, 10491 ill->ill_isv6); 10492 10493 return (0); 10494 } else if (set_linklocal) { 10495 mutex_enter(&ill->ill_lock); 10496 if (set_linklocal) 10497 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 10498 mutex_exit(&ill->ill_lock); 10499 } 10500 10501 /* 10502 * Disallow IPv6 interfaces coming up that have the unspecified address, 10503 * or point-to-point interfaces with an unspecified destination. We do 10504 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 10505 * have a subnet assigned, which is how in.ndpd currently manages its 10506 * onlink prefix list when no addresses are configured with those 10507 * prefixes. 10508 */ 10509 if (ipif->ipif_isv6 && 10510 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 10511 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 10512 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 10513 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10514 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 10515 return (EINVAL); 10516 } 10517 10518 /* 10519 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 10520 * from being brought up. 10521 */ 10522 if (!ipif->ipif_isv6 && 10523 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10524 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 10525 return (EINVAL); 10526 } 10527 10528 /* 10529 * If we are going to change one or more of the flags that are 10530 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP, 10531 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and 10532 * IPIF_NOFAILOVER, we will take special action. This is 10533 * done by bring the ipif down, changing the flags and bringing 10534 * it back up again. For IPIF_NOFAILOVER, the act of bringing it 10535 * back up will trigger the address to be moved. 10536 * 10537 * If we are going to change IFF_NOACCEPT, we need to bring 10538 * all the ipifs down then bring them up again. The act of 10539 * bringing all the ipifs back up will trigger the local 10540 * ires being recreated with "no_accept" set/cleared. 10541 * 10542 * Note that ILLF_NOACCEPT is always set separately from the 10543 * other flags. 10544 */ 10545 if ((turn_on|turn_off) & 10546 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 10547 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED| 10548 IPIF_NOFAILOVER)) { 10549 /* 10550 * ipif_down() will ire_delete bcast ire's for the subnet, 10551 * while the ire_identical_ref tracks the case of IRE_BROADCAST 10552 * entries shared between multiple ipifs on the same subnet. 10553 */ 10554 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 10555 !(turn_off & IPIF_UP)) { 10556 if (ipif->ipif_flags & IPIF_UP) 10557 ill->ill_logical_down = 1; 10558 turn_on &= ~IPIF_UP; 10559 } 10560 err = ipif_down(ipif, q, mp); 10561 ip1dbg(("ipif_down returns %d err ", err)); 10562 if (err == EINPROGRESS) 10563 return (err); 10564 (void) ipif_down_tail(ipif); 10565 } else if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10566 /* 10567 * If we can quiesce the ill, then continue. If not, then 10568 * ip_sioctl_flags_tail() will be called from 10569 * ipif_ill_refrele_tail(). 10570 */ 10571 ill_down_ipifs(ill, B_TRUE); 10572 10573 mutex_enter(&connp->conn_lock); 10574 mutex_enter(&ill->ill_lock); 10575 if (!ill_is_quiescent(ill)) { 10576 boolean_t success; 10577 10578 success = ipsq_pending_mp_add(connp, ill->ill_ipif, 10579 q, mp, ILL_DOWN); 10580 mutex_exit(&ill->ill_lock); 10581 mutex_exit(&connp->conn_lock); 10582 return (success ? EINPROGRESS : EINTR); 10583 } 10584 mutex_exit(&ill->ill_lock); 10585 mutex_exit(&connp->conn_lock); 10586 } 10587 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10588 } 10589 10590 static int 10591 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp) 10592 { 10593 ill_t *ill; 10594 phyint_t *phyi; 10595 uint64_t turn_on, turn_off; 10596 boolean_t phyint_flags_modified = B_FALSE; 10597 int err = 0; 10598 boolean_t set_linklocal = B_FALSE; 10599 10600 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 10601 ipif->ipif_ill->ill_name, ipif->ipif_id)); 10602 10603 ASSERT(IAM_WRITER_IPIF(ipif)); 10604 10605 ill = ipif->ipif_ill; 10606 phyi = ill->ill_phyint; 10607 10608 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10609 10610 /* 10611 * IFF_UP is handled separately. 10612 */ 10613 turn_on &= ~IFF_UP; 10614 turn_off &= ~IFF_UP; 10615 10616 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10617 phyint_flags_modified = B_TRUE; 10618 10619 /* 10620 * Now we change the flags. Track current value of 10621 * other flags in their respective places. 10622 */ 10623 mutex_enter(&ill->ill_lock); 10624 mutex_enter(&phyi->phyint_lock); 10625 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10626 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10627 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10628 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10629 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10630 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10631 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 10632 set_linklocal = B_TRUE; 10633 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 10634 } 10635 10636 mutex_exit(&ill->ill_lock); 10637 mutex_exit(&phyi->phyint_lock); 10638 10639 if (set_linklocal) 10640 (void) ipif_setlinklocal(ipif); 10641 10642 /* 10643 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to 10644 * the kernel: if any of them has been set by userland, the interface 10645 * cannot be used for data traffic. 10646 */ 10647 if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10648 ASSERT(!IS_IPMP(ill)); 10649 /* 10650 * It's possible the ill is part of an "anonymous" IPMP group 10651 * rather than a real group. In that case, there are no other 10652 * interfaces in the group and thus no need for us to call 10653 * ipmp_phyint_refresh_active(). 10654 */ 10655 if (IS_UNDER_IPMP(ill)) 10656 ipmp_phyint_refresh_active(phyi); 10657 } 10658 10659 if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10660 /* 10661 * If the ILLF_NOACCEPT flag is changed, bring up all the 10662 * ipifs that were brought down. 10663 * 10664 * The routing sockets messages are sent as the result 10665 * of ill_up_ipifs(), further, SCTP's IPIF list was updated 10666 * as well. 10667 */ 10668 err = ill_up_ipifs(ill, q, mp); 10669 } else if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) { 10670 /* 10671 * XXX ipif_up really does not know whether a phyint flags 10672 * was modified or not. So, it sends up information on 10673 * only one routing sockets message. As we don't bring up 10674 * the interface and also set PHYI_ flags simultaneously 10675 * it should be okay. 10676 */ 10677 err = ipif_up(ipif, q, mp); 10678 } else { 10679 /* 10680 * Make sure routing socket sees all changes to the flags. 10681 * ipif_up_done* handles this when we use ipif_up. 10682 */ 10683 if (phyint_flags_modified) { 10684 if (phyi->phyint_illv4 != NULL) { 10685 ip_rts_ifmsg(phyi->phyint_illv4-> 10686 ill_ipif, RTSQ_DEFAULT); 10687 } 10688 if (phyi->phyint_illv6 != NULL) { 10689 ip_rts_ifmsg(phyi->phyint_illv6-> 10690 ill_ipif, RTSQ_DEFAULT); 10691 } 10692 } else { 10693 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 10694 } 10695 /* 10696 * Update the flags in SCTP's IPIF list, ipif_up() will do 10697 * this in need_up case. 10698 */ 10699 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10700 } 10701 10702 /* The default multicast interface might have changed */ 10703 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 10704 return (err); 10705 } 10706 10707 /* 10708 * Restart the flags operation now that the refcounts have dropped to zero. 10709 */ 10710 /* ARGSUSED */ 10711 int 10712 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10713 ip_ioctl_cmd_t *ipip, void *if_req) 10714 { 10715 uint64_t flags; 10716 struct ifreq *ifr = if_req; 10717 struct lifreq *lifr = if_req; 10718 uint64_t turn_on, turn_off; 10719 10720 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 10721 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10722 10723 if (ipip->ipi_cmd_type == IF_CMD) { 10724 /* cast to uint16_t prevents unwanted sign extension */ 10725 flags = (uint16_t)ifr->ifr_flags; 10726 } else { 10727 flags = lifr->lifr_flags; 10728 } 10729 10730 /* 10731 * If this function call is a result of the ILLF_NOACCEPT flag 10732 * change, do not call ipif_down_tail(). See ip_sioctl_flags(). 10733 */ 10734 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10735 if (!((turn_on|turn_off) & ILLF_NOACCEPT)) 10736 (void) ipif_down_tail(ipif); 10737 10738 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10739 } 10740 10741 /* 10742 * Can operate on either a module or a driver queue. 10743 */ 10744 /* ARGSUSED */ 10745 int 10746 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10747 ip_ioctl_cmd_t *ipip, void *if_req) 10748 { 10749 /* 10750 * Has the flags been set correctly till now ? 10751 */ 10752 ill_t *ill = ipif->ipif_ill; 10753 phyint_t *phyi = ill->ill_phyint; 10754 10755 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 10756 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10757 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10758 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10759 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10760 10761 /* 10762 * Need a lock since some flags can be set even when there are 10763 * references to the ipif. 10764 */ 10765 mutex_enter(&ill->ill_lock); 10766 if (ipip->ipi_cmd_type == IF_CMD) { 10767 struct ifreq *ifr = (struct ifreq *)if_req; 10768 10769 /* Get interface flags (low 16 only). */ 10770 ifr->ifr_flags = ((ipif->ipif_flags | 10771 ill->ill_flags | phyi->phyint_flags) & 0xffff); 10772 } else { 10773 struct lifreq *lifr = (struct lifreq *)if_req; 10774 10775 /* Get interface flags. */ 10776 lifr->lifr_flags = ipif->ipif_flags | 10777 ill->ill_flags | phyi->phyint_flags; 10778 } 10779 mutex_exit(&ill->ill_lock); 10780 return (0); 10781 } 10782 10783 /* 10784 * We allow the MTU to be set on an ILL, but not have it be different 10785 * for different IPIFs since we don't actually send packets on IPIFs. 10786 */ 10787 /* ARGSUSED */ 10788 int 10789 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10790 ip_ioctl_cmd_t *ipip, void *if_req) 10791 { 10792 int mtu; 10793 int ip_min_mtu; 10794 struct ifreq *ifr; 10795 struct lifreq *lifr; 10796 ill_t *ill; 10797 10798 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 10799 ipif->ipif_id, (void *)ipif)); 10800 if (ipip->ipi_cmd_type == IF_CMD) { 10801 ifr = (struct ifreq *)if_req; 10802 mtu = ifr->ifr_metric; 10803 } else { 10804 lifr = (struct lifreq *)if_req; 10805 mtu = lifr->lifr_mtu; 10806 } 10807 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 10808 if (ipif->ipif_id != 0) 10809 return (EINVAL); 10810 10811 ill = ipif->ipif_ill; 10812 if (ipif->ipif_isv6) 10813 ip_min_mtu = IPV6_MIN_MTU; 10814 else 10815 ip_min_mtu = IP_MIN_MTU; 10816 10817 mutex_enter(&ill->ill_lock); 10818 if (mtu > ill->ill_max_frag || mtu < ip_min_mtu) { 10819 mutex_exit(&ill->ill_lock); 10820 return (EINVAL); 10821 } 10822 /* Avoid increasing ill_mc_mtu */ 10823 if (ill->ill_mc_mtu > mtu) 10824 ill->ill_mc_mtu = mtu; 10825 10826 /* 10827 * The dce and fragmentation code can handle changes to ill_mtu 10828 * concurrent with sending/fragmenting packets. 10829 */ 10830 ill->ill_mtu = mtu; 10831 ill->ill_flags |= ILLF_FIXEDMTU; 10832 mutex_exit(&ill->ill_lock); 10833 10834 /* 10835 * Make sure all dce_generation checks find out 10836 * that ill_mtu/ill_mc_mtu has changed. 10837 */ 10838 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 10839 10840 /* 10841 * Refresh IPMP meta-interface MTU if necessary. 10842 */ 10843 if (IS_UNDER_IPMP(ill)) 10844 ipmp_illgrp_refresh_mtu(ill->ill_grp); 10845 10846 /* Update the MTU in SCTP's list */ 10847 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10848 return (0); 10849 } 10850 10851 /* Get interface MTU. */ 10852 /* ARGSUSED */ 10853 int 10854 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10855 ip_ioctl_cmd_t *ipip, void *if_req) 10856 { 10857 struct ifreq *ifr; 10858 struct lifreq *lifr; 10859 10860 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 10861 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10862 10863 /* 10864 * We allow a get on any logical interface even though the set 10865 * can only be done on logical unit 0. 10866 */ 10867 if (ipip->ipi_cmd_type == IF_CMD) { 10868 ifr = (struct ifreq *)if_req; 10869 ifr->ifr_metric = ipif->ipif_ill->ill_mtu; 10870 } else { 10871 lifr = (struct lifreq *)if_req; 10872 lifr->lifr_mtu = ipif->ipif_ill->ill_mtu; 10873 } 10874 return (0); 10875 } 10876 10877 /* Set interface broadcast address. */ 10878 /* ARGSUSED2 */ 10879 int 10880 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10881 ip_ioctl_cmd_t *ipip, void *if_req) 10882 { 10883 ipaddr_t addr; 10884 ire_t *ire; 10885 ill_t *ill = ipif->ipif_ill; 10886 ip_stack_t *ipst = ill->ill_ipst; 10887 10888 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ill->ill_name, 10889 ipif->ipif_id)); 10890 10891 ASSERT(IAM_WRITER_IPIF(ipif)); 10892 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10893 return (EADDRNOTAVAIL); 10894 10895 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 10896 10897 if (sin->sin_family != AF_INET) 10898 return (EAFNOSUPPORT); 10899 10900 addr = sin->sin_addr.s_addr; 10901 10902 if (ipif->ipif_flags & IPIF_UP) { 10903 /* 10904 * If we are already up, make sure the new 10905 * broadcast address makes sense. If it does, 10906 * there should be an IRE for it already. 10907 */ 10908 ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_BROADCAST, 10909 ill, ipif->ipif_zoneid, NULL, 10910 (MATCH_IRE_ILL | MATCH_IRE_TYPE), 0, ipst, NULL); 10911 if (ire == NULL) { 10912 return (EINVAL); 10913 } else { 10914 ire_refrele(ire); 10915 } 10916 } 10917 /* 10918 * Changing the broadcast addr for this ipif. Since the IRE_BROADCAST 10919 * needs to already exist we never need to change the set of 10920 * IRE_BROADCASTs when we are UP. 10921 */ 10922 if (addr != ipif->ipif_brd_addr) 10923 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 10924 10925 return (0); 10926 } 10927 10928 /* Get interface broadcast address. */ 10929 /* ARGSUSED */ 10930 int 10931 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10932 ip_ioctl_cmd_t *ipip, void *if_req) 10933 { 10934 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 10935 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10936 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10937 return (EADDRNOTAVAIL); 10938 10939 /* IPIF_BROADCAST not possible with IPv6 */ 10940 ASSERT(!ipif->ipif_isv6); 10941 *sin = sin_null; 10942 sin->sin_family = AF_INET; 10943 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 10944 return (0); 10945 } 10946 10947 /* 10948 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 10949 */ 10950 /* ARGSUSED */ 10951 int 10952 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10953 ip_ioctl_cmd_t *ipip, void *if_req) 10954 { 10955 int err = 0; 10956 in6_addr_t v6mask; 10957 10958 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 10959 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10960 10961 ASSERT(IAM_WRITER_IPIF(ipif)); 10962 10963 if (ipif->ipif_isv6) { 10964 sin6_t *sin6; 10965 10966 if (sin->sin_family != AF_INET6) 10967 return (EAFNOSUPPORT); 10968 10969 sin6 = (sin6_t *)sin; 10970 v6mask = sin6->sin6_addr; 10971 } else { 10972 ipaddr_t mask; 10973 10974 if (sin->sin_family != AF_INET) 10975 return (EAFNOSUPPORT); 10976 10977 mask = sin->sin_addr.s_addr; 10978 if (!ip_contiguous_mask(ntohl(mask))) 10979 return (ENOTSUP); 10980 V4MASK_TO_V6(mask, v6mask); 10981 } 10982 10983 /* 10984 * No big deal if the interface isn't already up, or the mask 10985 * isn't really changing, or this is pt-pt. 10986 */ 10987 if (!(ipif->ipif_flags & IPIF_UP) || 10988 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 10989 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 10990 ipif->ipif_v6net_mask = v6mask; 10991 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10992 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 10993 ipif->ipif_v6net_mask, 10994 ipif->ipif_v6subnet); 10995 } 10996 return (0); 10997 } 10998 /* 10999 * Make sure we have valid net and subnet broadcast ire's 11000 * for the old netmask, if needed by other logical interfaces. 11001 */ 11002 err = ipif_logical_down(ipif, q, mp); 11003 if (err == EINPROGRESS) 11004 return (err); 11005 (void) ipif_down_tail(ipif); 11006 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 11007 return (err); 11008 } 11009 11010 static int 11011 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 11012 { 11013 in6_addr_t v6mask; 11014 int err = 0; 11015 11016 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 11017 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11018 11019 if (ipif->ipif_isv6) { 11020 sin6_t *sin6; 11021 11022 sin6 = (sin6_t *)sin; 11023 v6mask = sin6->sin6_addr; 11024 } else { 11025 ipaddr_t mask; 11026 11027 mask = sin->sin_addr.s_addr; 11028 V4MASK_TO_V6(mask, v6mask); 11029 } 11030 11031 ipif->ipif_v6net_mask = v6mask; 11032 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11033 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 11034 ipif->ipif_v6subnet); 11035 } 11036 err = ipif_up(ipif, q, mp); 11037 11038 if (err == 0 || err == EINPROGRESS) { 11039 /* 11040 * The interface must be DL_BOUND if this packet has to 11041 * go out on the wire. Since we only go through a logical 11042 * down and are bound with the driver during an internal 11043 * down/up that is satisfied. 11044 */ 11045 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 11046 /* Potentially broadcast an address mask reply. */ 11047 ipif_mask_reply(ipif); 11048 } 11049 } 11050 return (err); 11051 } 11052 11053 /* ARGSUSED */ 11054 int 11055 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11056 ip_ioctl_cmd_t *ipip, void *if_req) 11057 { 11058 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 11059 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11060 (void) ipif_down_tail(ipif); 11061 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 11062 } 11063 11064 /* Get interface net mask. */ 11065 /* ARGSUSED */ 11066 int 11067 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11068 ip_ioctl_cmd_t *ipip, void *if_req) 11069 { 11070 struct lifreq *lifr = (struct lifreq *)if_req; 11071 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 11072 11073 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 11074 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11075 11076 /* 11077 * net mask can't change since we have a reference to the ipif. 11078 */ 11079 if (ipif->ipif_isv6) { 11080 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11081 *sin6 = sin6_null; 11082 sin6->sin6_family = AF_INET6; 11083 sin6->sin6_addr = ipif->ipif_v6net_mask; 11084 lifr->lifr_addrlen = 11085 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11086 } else { 11087 *sin = sin_null; 11088 sin->sin_family = AF_INET; 11089 sin->sin_addr.s_addr = ipif->ipif_net_mask; 11090 if (ipip->ipi_cmd_type == LIF_CMD) { 11091 lifr->lifr_addrlen = 11092 ip_mask_to_plen(ipif->ipif_net_mask); 11093 } 11094 } 11095 return (0); 11096 } 11097 11098 /* ARGSUSED */ 11099 int 11100 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11101 ip_ioctl_cmd_t *ipip, void *if_req) 11102 { 11103 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 11104 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11105 11106 /* 11107 * Since no applications should ever be setting metrics on underlying 11108 * interfaces, we explicitly fail to smoke 'em out. 11109 */ 11110 if (IS_UNDER_IPMP(ipif->ipif_ill)) 11111 return (EINVAL); 11112 11113 /* 11114 * Set interface metric. We don't use this for 11115 * anything but we keep track of it in case it is 11116 * important to routing applications or such. 11117 */ 11118 if (ipip->ipi_cmd_type == IF_CMD) { 11119 struct ifreq *ifr; 11120 11121 ifr = (struct ifreq *)if_req; 11122 ipif->ipif_ill->ill_metric = ifr->ifr_metric; 11123 } else { 11124 struct lifreq *lifr; 11125 11126 lifr = (struct lifreq *)if_req; 11127 ipif->ipif_ill->ill_metric = lifr->lifr_metric; 11128 } 11129 return (0); 11130 } 11131 11132 /* ARGSUSED */ 11133 int 11134 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11135 ip_ioctl_cmd_t *ipip, void *if_req) 11136 { 11137 /* Get interface metric. */ 11138 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 11139 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11140 11141 if (ipip->ipi_cmd_type == IF_CMD) { 11142 struct ifreq *ifr; 11143 11144 ifr = (struct ifreq *)if_req; 11145 ifr->ifr_metric = ipif->ipif_ill->ill_metric; 11146 } else { 11147 struct lifreq *lifr; 11148 11149 lifr = (struct lifreq *)if_req; 11150 lifr->lifr_metric = ipif->ipif_ill->ill_metric; 11151 } 11152 11153 return (0); 11154 } 11155 11156 /* ARGSUSED */ 11157 int 11158 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11159 ip_ioctl_cmd_t *ipip, void *if_req) 11160 { 11161 int arp_muxid; 11162 11163 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 11164 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11165 /* 11166 * Set the muxid returned from I_PLINK. 11167 */ 11168 if (ipip->ipi_cmd_type == IF_CMD) { 11169 struct ifreq *ifr = (struct ifreq *)if_req; 11170 11171 ipif->ipif_ill->ill_muxid = ifr->ifr_ip_muxid; 11172 arp_muxid = ifr->ifr_arp_muxid; 11173 } else { 11174 struct lifreq *lifr = (struct lifreq *)if_req; 11175 11176 ipif->ipif_ill->ill_muxid = lifr->lifr_ip_muxid; 11177 arp_muxid = lifr->lifr_arp_muxid; 11178 } 11179 arl_set_muxid(ipif->ipif_ill, arp_muxid); 11180 return (0); 11181 } 11182 11183 /* ARGSUSED */ 11184 int 11185 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11186 ip_ioctl_cmd_t *ipip, void *if_req) 11187 { 11188 int arp_muxid = 0; 11189 11190 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 11191 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11192 /* 11193 * Get the muxid saved in ill for I_PUNLINK. 11194 */ 11195 arp_muxid = arl_get_muxid(ipif->ipif_ill); 11196 if (ipip->ipi_cmd_type == IF_CMD) { 11197 struct ifreq *ifr = (struct ifreq *)if_req; 11198 11199 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_muxid; 11200 ifr->ifr_arp_muxid = arp_muxid; 11201 } else { 11202 struct lifreq *lifr = (struct lifreq *)if_req; 11203 11204 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_muxid; 11205 lifr->lifr_arp_muxid = arp_muxid; 11206 } 11207 return (0); 11208 } 11209 11210 /* 11211 * Set the subnet prefix. Does not modify the broadcast address. 11212 */ 11213 /* ARGSUSED */ 11214 int 11215 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11216 ip_ioctl_cmd_t *ipip, void *if_req) 11217 { 11218 int err = 0; 11219 in6_addr_t v6addr; 11220 in6_addr_t v6mask; 11221 boolean_t need_up = B_FALSE; 11222 int addrlen; 11223 11224 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 11225 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11226 11227 ASSERT(IAM_WRITER_IPIF(ipif)); 11228 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 11229 11230 if (ipif->ipif_isv6) { 11231 sin6_t *sin6; 11232 11233 if (sin->sin_family != AF_INET6) 11234 return (EAFNOSUPPORT); 11235 11236 sin6 = (sin6_t *)sin; 11237 v6addr = sin6->sin6_addr; 11238 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 11239 return (EADDRNOTAVAIL); 11240 } else { 11241 ipaddr_t addr; 11242 11243 if (sin->sin_family != AF_INET) 11244 return (EAFNOSUPPORT); 11245 11246 addr = sin->sin_addr.s_addr; 11247 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 11248 return (EADDRNOTAVAIL); 11249 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11250 /* Add 96 bits */ 11251 addrlen += IPV6_ABITS - IP_ABITS; 11252 } 11253 11254 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 11255 return (EINVAL); 11256 11257 /* Check if bits in the address is set past the mask */ 11258 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 11259 return (EINVAL); 11260 11261 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 11262 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 11263 return (0); /* No change */ 11264 11265 if (ipif->ipif_flags & IPIF_UP) { 11266 /* 11267 * If the interface is already marked up, 11268 * we call ipif_down which will take care 11269 * of ditching any IREs that have been set 11270 * up based on the old interface address. 11271 */ 11272 err = ipif_logical_down(ipif, q, mp); 11273 if (err == EINPROGRESS) 11274 return (err); 11275 (void) ipif_down_tail(ipif); 11276 need_up = B_TRUE; 11277 } 11278 11279 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 11280 return (err); 11281 } 11282 11283 static int 11284 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 11285 queue_t *q, mblk_t *mp, boolean_t need_up) 11286 { 11287 ill_t *ill = ipif->ipif_ill; 11288 int err = 0; 11289 11290 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 11291 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11292 11293 /* Set the new address. */ 11294 mutex_enter(&ill->ill_lock); 11295 ipif->ipif_v6net_mask = v6mask; 11296 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11297 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 11298 ipif->ipif_v6subnet); 11299 } 11300 mutex_exit(&ill->ill_lock); 11301 11302 if (need_up) { 11303 /* 11304 * Now bring the interface back up. If this 11305 * is the only IPIF for the ILL, ipif_up 11306 * will have to re-bind to the device, so 11307 * we may get back EINPROGRESS, in which 11308 * case, this IOCTL will get completed in 11309 * ip_rput_dlpi when we see the DL_BIND_ACK. 11310 */ 11311 err = ipif_up(ipif, q, mp); 11312 if (err == EINPROGRESS) 11313 return (err); 11314 } 11315 return (err); 11316 } 11317 11318 /* ARGSUSED */ 11319 int 11320 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11321 ip_ioctl_cmd_t *ipip, void *if_req) 11322 { 11323 int addrlen; 11324 in6_addr_t v6addr; 11325 in6_addr_t v6mask; 11326 struct lifreq *lifr = (struct lifreq *)if_req; 11327 11328 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 11329 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11330 (void) ipif_down_tail(ipif); 11331 11332 addrlen = lifr->lifr_addrlen; 11333 if (ipif->ipif_isv6) { 11334 sin6_t *sin6; 11335 11336 sin6 = (sin6_t *)sin; 11337 v6addr = sin6->sin6_addr; 11338 } else { 11339 ipaddr_t addr; 11340 11341 addr = sin->sin_addr.s_addr; 11342 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11343 addrlen += IPV6_ABITS - IP_ABITS; 11344 } 11345 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 11346 11347 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 11348 } 11349 11350 /* ARGSUSED */ 11351 int 11352 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11353 ip_ioctl_cmd_t *ipip, void *if_req) 11354 { 11355 struct lifreq *lifr = (struct lifreq *)if_req; 11356 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 11357 11358 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 11359 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11360 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11361 11362 if (ipif->ipif_isv6) { 11363 *sin6 = sin6_null; 11364 sin6->sin6_family = AF_INET6; 11365 sin6->sin6_addr = ipif->ipif_v6subnet; 11366 lifr->lifr_addrlen = 11367 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11368 } else { 11369 *sin = sin_null; 11370 sin->sin_family = AF_INET; 11371 sin->sin_addr.s_addr = ipif->ipif_subnet; 11372 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 11373 } 11374 return (0); 11375 } 11376 11377 /* 11378 * Set the IPv6 address token. 11379 */ 11380 /* ARGSUSED */ 11381 int 11382 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11383 ip_ioctl_cmd_t *ipi, void *if_req) 11384 { 11385 ill_t *ill = ipif->ipif_ill; 11386 int err; 11387 in6_addr_t v6addr; 11388 in6_addr_t v6mask; 11389 boolean_t need_up = B_FALSE; 11390 int i; 11391 sin6_t *sin6 = (sin6_t *)sin; 11392 struct lifreq *lifr = (struct lifreq *)if_req; 11393 int addrlen; 11394 11395 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 11396 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11397 ASSERT(IAM_WRITER_IPIF(ipif)); 11398 11399 addrlen = lifr->lifr_addrlen; 11400 /* Only allow for logical unit zero i.e. not on "le0:17" */ 11401 if (ipif->ipif_id != 0) 11402 return (EINVAL); 11403 11404 if (!ipif->ipif_isv6) 11405 return (EINVAL); 11406 11407 if (addrlen > IPV6_ABITS) 11408 return (EINVAL); 11409 11410 v6addr = sin6->sin6_addr; 11411 11412 /* 11413 * The length of the token is the length from the end. To get 11414 * the proper mask for this, compute the mask of the bits not 11415 * in the token; ie. the prefix, and then xor to get the mask. 11416 */ 11417 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 11418 return (EINVAL); 11419 for (i = 0; i < 4; i++) { 11420 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11421 } 11422 11423 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 11424 ill->ill_token_length == addrlen) 11425 return (0); /* No change */ 11426 11427 if (ipif->ipif_flags & IPIF_UP) { 11428 err = ipif_logical_down(ipif, q, mp); 11429 if (err == EINPROGRESS) 11430 return (err); 11431 (void) ipif_down_tail(ipif); 11432 need_up = B_TRUE; 11433 } 11434 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 11435 return (err); 11436 } 11437 11438 static int 11439 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 11440 mblk_t *mp, boolean_t need_up) 11441 { 11442 in6_addr_t v6addr; 11443 in6_addr_t v6mask; 11444 ill_t *ill = ipif->ipif_ill; 11445 int i; 11446 int err = 0; 11447 11448 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 11449 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11450 v6addr = sin6->sin6_addr; 11451 /* 11452 * The length of the token is the length from the end. To get 11453 * the proper mask for this, compute the mask of the bits not 11454 * in the token; ie. the prefix, and then xor to get the mask. 11455 */ 11456 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 11457 for (i = 0; i < 4; i++) 11458 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11459 11460 mutex_enter(&ill->ill_lock); 11461 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 11462 ill->ill_token_length = addrlen; 11463 ill->ill_manual_token = 1; 11464 11465 /* Reconfigure the link-local address based on this new token */ 11466 ipif_setlinklocal(ill->ill_ipif); 11467 11468 mutex_exit(&ill->ill_lock); 11469 11470 if (need_up) { 11471 /* 11472 * Now bring the interface back up. If this 11473 * is the only IPIF for the ILL, ipif_up 11474 * will have to re-bind to the device, so 11475 * we may get back EINPROGRESS, in which 11476 * case, this IOCTL will get completed in 11477 * ip_rput_dlpi when we see the DL_BIND_ACK. 11478 */ 11479 err = ipif_up(ipif, q, mp); 11480 if (err == EINPROGRESS) 11481 return (err); 11482 } 11483 return (err); 11484 } 11485 11486 /* ARGSUSED */ 11487 int 11488 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11489 ip_ioctl_cmd_t *ipi, void *if_req) 11490 { 11491 ill_t *ill; 11492 sin6_t *sin6 = (sin6_t *)sin; 11493 struct lifreq *lifr = (struct lifreq *)if_req; 11494 11495 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 11496 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11497 if (ipif->ipif_id != 0) 11498 return (EINVAL); 11499 11500 ill = ipif->ipif_ill; 11501 if (!ill->ill_isv6) 11502 return (ENXIO); 11503 11504 *sin6 = sin6_null; 11505 sin6->sin6_family = AF_INET6; 11506 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 11507 sin6->sin6_addr = ill->ill_token; 11508 lifr->lifr_addrlen = ill->ill_token_length; 11509 return (0); 11510 } 11511 11512 /* 11513 * Set (hardware) link specific information that might override 11514 * what was acquired through the DL_INFO_ACK. 11515 */ 11516 /* ARGSUSED */ 11517 int 11518 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11519 ip_ioctl_cmd_t *ipi, void *if_req) 11520 { 11521 ill_t *ill = ipif->ipif_ill; 11522 int ip_min_mtu; 11523 struct lifreq *lifr = (struct lifreq *)if_req; 11524 lif_ifinfo_req_t *lir; 11525 11526 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 11527 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11528 lir = &lifr->lifr_ifinfo; 11529 ASSERT(IAM_WRITER_IPIF(ipif)); 11530 11531 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 11532 if (ipif->ipif_id != 0) 11533 return (EINVAL); 11534 11535 /* Set interface MTU. */ 11536 if (ipif->ipif_isv6) 11537 ip_min_mtu = IPV6_MIN_MTU; 11538 else 11539 ip_min_mtu = IP_MIN_MTU; 11540 11541 /* 11542 * Verify values before we set anything. Allow zero to 11543 * mean unspecified. 11544 * 11545 * XXX We should be able to set the user-defined lir_mtu to some value 11546 * that is greater than ill_current_frag but less than ill_max_frag- the 11547 * ill_max_frag value tells us the max MTU that can be handled by the 11548 * datalink, whereas the ill_current_frag is dynamically computed for 11549 * some link-types like tunnels, based on the tunnel PMTU. However, 11550 * since there is currently no way of distinguishing between 11551 * administratively fixed link mtu values (e.g., those set via 11552 * /sbin/dladm) and dynamically discovered MTUs (e.g., those discovered 11553 * for tunnels) we conservatively choose the ill_current_frag as the 11554 * upper-bound. 11555 */ 11556 if (lir->lir_maxmtu != 0 && 11557 (lir->lir_maxmtu > ill->ill_current_frag || 11558 lir->lir_maxmtu < ip_min_mtu)) 11559 return (EINVAL); 11560 if (lir->lir_reachtime != 0 && 11561 lir->lir_reachtime > ND_MAX_REACHTIME) 11562 return (EINVAL); 11563 if (lir->lir_reachretrans != 0 && 11564 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 11565 return (EINVAL); 11566 11567 mutex_enter(&ill->ill_lock); 11568 /* 11569 * The dce and fragmentation code can handle changes to ill_mtu 11570 * concurrent with sending/fragmenting packets. 11571 */ 11572 if (lir->lir_maxmtu != 0) 11573 ill->ill_user_mtu = lir->lir_maxmtu; 11574 11575 if (lir->lir_reachtime != 0) 11576 ill->ill_reachable_time = lir->lir_reachtime; 11577 11578 if (lir->lir_reachretrans != 0) 11579 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 11580 11581 ill->ill_max_hops = lir->lir_maxhops; 11582 ill->ill_max_buf = ND_MAX_Q; 11583 if (!(ill->ill_flags & ILLF_FIXEDMTU) && ill->ill_user_mtu != 0) { 11584 /* 11585 * ill_mtu is the actual interface MTU, obtained as the min 11586 * of user-configured mtu and the value announced by the 11587 * driver (via DL_NOTE_SDU_SIZE/DL_INFO_ACK). Note that since 11588 * we have already made the choice of requiring 11589 * ill_user_mtu < ill_current_frag by the time we get here, 11590 * the ill_mtu effectively gets assigned to the ill_user_mtu 11591 * here. 11592 */ 11593 ill->ill_mtu = MIN(ill->ill_current_frag, ill->ill_user_mtu); 11594 ill->ill_mc_mtu = MIN(ill->ill_mc_mtu, ill->ill_user_mtu); 11595 } 11596 mutex_exit(&ill->ill_lock); 11597 11598 /* 11599 * Make sure all dce_generation checks find out 11600 * that ill_mtu/ill_mc_mtu has changed. 11601 */ 11602 if (!(ill->ill_flags & ILLF_FIXEDMTU) && (lir->lir_maxmtu != 0)) 11603 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 11604 11605 /* 11606 * Refresh IPMP meta-interface MTU if necessary. 11607 */ 11608 if (IS_UNDER_IPMP(ill)) 11609 ipmp_illgrp_refresh_mtu(ill->ill_grp); 11610 11611 return (0); 11612 } 11613 11614 /* ARGSUSED */ 11615 int 11616 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11617 ip_ioctl_cmd_t *ipi, void *if_req) 11618 { 11619 struct lif_ifinfo_req *lir; 11620 ill_t *ill = ipif->ipif_ill; 11621 11622 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 11623 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11624 if (ipif->ipif_id != 0) 11625 return (EINVAL); 11626 11627 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 11628 lir->lir_maxhops = ill->ill_max_hops; 11629 lir->lir_reachtime = ill->ill_reachable_time; 11630 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 11631 lir->lir_maxmtu = ill->ill_mtu; 11632 11633 return (0); 11634 } 11635 11636 /* 11637 * Return best guess as to the subnet mask for the specified address. 11638 * Based on the subnet masks for all the configured interfaces. 11639 * 11640 * We end up returning a zero mask in the case of default, multicast or 11641 * experimental. 11642 */ 11643 static ipaddr_t 11644 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 11645 { 11646 ipaddr_t net_mask; 11647 ill_t *ill; 11648 ipif_t *ipif; 11649 ill_walk_context_t ctx; 11650 ipif_t *fallback_ipif = NULL; 11651 11652 net_mask = ip_net_mask(addr); 11653 if (net_mask == 0) { 11654 *ipifp = NULL; 11655 return (0); 11656 } 11657 11658 /* Let's check to see if this is maybe a local subnet route. */ 11659 /* this function only applies to IPv4 interfaces */ 11660 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11661 ill = ILL_START_WALK_V4(&ctx, ipst); 11662 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 11663 mutex_enter(&ill->ill_lock); 11664 for (ipif = ill->ill_ipif; ipif != NULL; 11665 ipif = ipif->ipif_next) { 11666 if (IPIF_IS_CONDEMNED(ipif)) 11667 continue; 11668 if (!(ipif->ipif_flags & IPIF_UP)) 11669 continue; 11670 if ((ipif->ipif_subnet & net_mask) == 11671 (addr & net_mask)) { 11672 /* 11673 * Don't trust pt-pt interfaces if there are 11674 * other interfaces. 11675 */ 11676 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 11677 if (fallback_ipif == NULL) { 11678 ipif_refhold_locked(ipif); 11679 fallback_ipif = ipif; 11680 } 11681 continue; 11682 } 11683 11684 /* 11685 * Fine. Just assume the same net mask as the 11686 * directly attached subnet interface is using. 11687 */ 11688 ipif_refhold_locked(ipif); 11689 mutex_exit(&ill->ill_lock); 11690 rw_exit(&ipst->ips_ill_g_lock); 11691 if (fallback_ipif != NULL) 11692 ipif_refrele(fallback_ipif); 11693 *ipifp = ipif; 11694 return (ipif->ipif_net_mask); 11695 } 11696 } 11697 mutex_exit(&ill->ill_lock); 11698 } 11699 rw_exit(&ipst->ips_ill_g_lock); 11700 11701 *ipifp = fallback_ipif; 11702 return ((fallback_ipif != NULL) ? 11703 fallback_ipif->ipif_net_mask : net_mask); 11704 } 11705 11706 /* 11707 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 11708 */ 11709 static void 11710 ip_wput_ioctl(queue_t *q, mblk_t *mp) 11711 { 11712 IOCP iocp; 11713 ipft_t *ipft; 11714 ipllc_t *ipllc; 11715 mblk_t *mp1; 11716 cred_t *cr; 11717 int error = 0; 11718 conn_t *connp; 11719 11720 ip1dbg(("ip_wput_ioctl")); 11721 iocp = (IOCP)mp->b_rptr; 11722 mp1 = mp->b_cont; 11723 if (mp1 == NULL) { 11724 iocp->ioc_error = EINVAL; 11725 mp->b_datap->db_type = M_IOCNAK; 11726 iocp->ioc_count = 0; 11727 qreply(q, mp); 11728 return; 11729 } 11730 11731 /* 11732 * These IOCTLs provide various control capabilities to 11733 * upstream agents such as ULPs and processes. There 11734 * are currently two such IOCTLs implemented. They 11735 * are used by TCP to provide update information for 11736 * existing IREs and to forcibly delete an IRE for a 11737 * host that is not responding, thereby forcing an 11738 * attempt at a new route. 11739 */ 11740 iocp->ioc_error = EINVAL; 11741 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 11742 goto done; 11743 11744 ipllc = (ipllc_t *)mp1->b_rptr; 11745 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 11746 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 11747 break; 11748 } 11749 /* 11750 * prefer credential from mblk over ioctl; 11751 * see ip_sioctl_copyin_setup 11752 */ 11753 cr = msg_getcred(mp, NULL); 11754 if (cr == NULL) 11755 cr = iocp->ioc_cr; 11756 11757 /* 11758 * Refhold the conn in case the request gets queued up in some lookup 11759 */ 11760 ASSERT(CONN_Q(q)); 11761 connp = Q_TO_CONN(q); 11762 CONN_INC_REF(connp); 11763 CONN_INC_IOCTLREF(connp); 11764 if (ipft->ipft_pfi && 11765 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 11766 pullupmsg(mp1, ipft->ipft_min_size))) { 11767 error = (*ipft->ipft_pfi)(q, 11768 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 11769 } 11770 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 11771 /* 11772 * CONN_OPER_PENDING_DONE happens in the function called 11773 * through ipft_pfi above. 11774 */ 11775 return; 11776 } 11777 11778 CONN_DEC_IOCTLREF(connp); 11779 CONN_OPER_PENDING_DONE(connp); 11780 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 11781 freemsg(mp); 11782 return; 11783 } 11784 iocp->ioc_error = error; 11785 11786 done: 11787 mp->b_datap->db_type = M_IOCACK; 11788 if (iocp->ioc_error) 11789 iocp->ioc_count = 0; 11790 qreply(q, mp); 11791 } 11792 11793 /* 11794 * Assign a unique id for the ipif. This is used by sctp_addr.c 11795 * Note: remove if sctp_addr.c is redone to not shadow ill/ipif data structures. 11796 */ 11797 static void 11798 ipif_assign_seqid(ipif_t *ipif) 11799 { 11800 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 11801 11802 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 11803 } 11804 11805 /* 11806 * Clone the contents of `sipif' to `dipif'. Requires that both ipifs are 11807 * administratively down (i.e., no DAD), of the same type, and locked. Note 11808 * that the clone is complete -- including the seqid -- and the expectation is 11809 * that the caller will either free or overwrite `sipif' before it's unlocked. 11810 */ 11811 static void 11812 ipif_clone(const ipif_t *sipif, ipif_t *dipif) 11813 { 11814 ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock)); 11815 ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock)); 11816 ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11817 ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11818 ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type); 11819 11820 dipif->ipif_flags = sipif->ipif_flags; 11821 dipif->ipif_zoneid = sipif->ipif_zoneid; 11822 dipif->ipif_v6subnet = sipif->ipif_v6subnet; 11823 dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr; 11824 dipif->ipif_v6net_mask = sipif->ipif_v6net_mask; 11825 dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr; 11826 dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr; 11827 11828 /* 11829 * As per the comment atop the function, we assume that these sipif 11830 * fields will be changed before sipif is unlocked. 11831 */ 11832 dipif->ipif_seqid = sipif->ipif_seqid; 11833 dipif->ipif_state_flags = sipif->ipif_state_flags; 11834 } 11835 11836 /* 11837 * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif' 11838 * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin 11839 * (unreferenced) ipif. Also, if `sipif' is used by the current xop, then 11840 * transfer the xop to `dipif'. Requires that all ipifs are administratively 11841 * down (i.e., no DAD), of the same type, and unlocked. 11842 */ 11843 static void 11844 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif) 11845 { 11846 ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq; 11847 ipxop_t *ipx = ipsq->ipsq_xop; 11848 11849 ASSERT(sipif != dipif); 11850 ASSERT(sipif != virgipif); 11851 11852 /* 11853 * Grab all of the locks that protect the ipif in a defined order. 11854 */ 11855 GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11856 11857 ipif_clone(sipif, dipif); 11858 if (virgipif != NULL) { 11859 ipif_clone(virgipif, sipif); 11860 mi_free(virgipif); 11861 } 11862 11863 RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11864 11865 /* 11866 * Transfer ownership of the current xop, if necessary. 11867 */ 11868 if (ipx->ipx_current_ipif == sipif) { 11869 ASSERT(ipx->ipx_pending_ipif == NULL); 11870 mutex_enter(&ipx->ipx_lock); 11871 ipx->ipx_current_ipif = dipif; 11872 mutex_exit(&ipx->ipx_lock); 11873 } 11874 11875 if (virgipif == NULL) 11876 mi_free(sipif); 11877 } 11878 11879 /* 11880 * checks if: 11881 * - <ill_name>:<ipif_id> is at most LIFNAMSIZ - 1 and 11882 * - logical interface is within the allowed range 11883 */ 11884 static int 11885 is_lifname_valid(ill_t *ill, unsigned int ipif_id) 11886 { 11887 if (snprintf(NULL, 0, "%s:%d", ill->ill_name, ipif_id) >= LIFNAMSIZ) 11888 return (ENAMETOOLONG); 11889 11890 if (ipif_id >= ill->ill_ipst->ips_ip_addrs_per_if) 11891 return (ERANGE); 11892 return (0); 11893 } 11894 11895 /* 11896 * Insert the ipif, so that the list of ipifs on the ill will be sorted 11897 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 11898 * be inserted into the first space available in the list. The value of 11899 * ipif_id will then be set to the appropriate value for its position. 11900 */ 11901 static int 11902 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock) 11903 { 11904 ill_t *ill; 11905 ipif_t *tipif; 11906 ipif_t **tipifp; 11907 int id, err; 11908 ip_stack_t *ipst; 11909 11910 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 11911 IAM_WRITER_IPIF(ipif)); 11912 11913 ill = ipif->ipif_ill; 11914 ASSERT(ill != NULL); 11915 ipst = ill->ill_ipst; 11916 11917 /* 11918 * In the case of lo0:0 we already hold the ill_g_lock. 11919 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 11920 * ipif_insert. 11921 */ 11922 if (acquire_g_lock) 11923 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 11924 mutex_enter(&ill->ill_lock); 11925 id = ipif->ipif_id; 11926 tipifp = &(ill->ill_ipif); 11927 if (id == -1) { /* need to find a real id */ 11928 id = 0; 11929 while ((tipif = *tipifp) != NULL) { 11930 ASSERT(tipif->ipif_id >= id); 11931 if (tipif->ipif_id != id) 11932 break; /* non-consecutive id */ 11933 id++; 11934 tipifp = &(tipif->ipif_next); 11935 } 11936 if ((err = is_lifname_valid(ill, id)) != 0) { 11937 mutex_exit(&ill->ill_lock); 11938 if (acquire_g_lock) 11939 rw_exit(&ipst->ips_ill_g_lock); 11940 return (err); 11941 } 11942 ipif->ipif_id = id; /* assign new id */ 11943 } else if ((err = is_lifname_valid(ill, id)) == 0) { 11944 /* we have a real id; insert ipif in the right place */ 11945 while ((tipif = *tipifp) != NULL) { 11946 ASSERT(tipif->ipif_id != id); 11947 if (tipif->ipif_id > id) 11948 break; /* found correct location */ 11949 tipifp = &(tipif->ipif_next); 11950 } 11951 } else { 11952 mutex_exit(&ill->ill_lock); 11953 if (acquire_g_lock) 11954 rw_exit(&ipst->ips_ill_g_lock); 11955 return (err); 11956 } 11957 11958 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 11959 11960 ipif->ipif_next = tipif; 11961 *tipifp = ipif; 11962 mutex_exit(&ill->ill_lock); 11963 if (acquire_g_lock) 11964 rw_exit(&ipst->ips_ill_g_lock); 11965 11966 return (0); 11967 } 11968 11969 static void 11970 ipif_remove(ipif_t *ipif) 11971 { 11972 ipif_t **ipifp; 11973 ill_t *ill = ipif->ipif_ill; 11974 11975 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 11976 11977 mutex_enter(&ill->ill_lock); 11978 ipifp = &ill->ill_ipif; 11979 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 11980 if (*ipifp == ipif) { 11981 *ipifp = ipif->ipif_next; 11982 break; 11983 } 11984 } 11985 mutex_exit(&ill->ill_lock); 11986 } 11987 11988 /* 11989 * Allocate and initialize a new interface control structure. (Always 11990 * called as writer.) 11991 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 11992 * is not part of the global linked list of ills. ipif_seqid is unique 11993 * in the system and to preserve the uniqueness, it is assigned only 11994 * when ill becomes part of the global list. At that point ill will 11995 * have a name. If it doesn't get assigned here, it will get assigned 11996 * in ipif_set_values() as part of SIOCSLIFNAME processing. 11997 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 11998 * the interface flags or any other information from the DL_INFO_ACK for 11999 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 12000 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 12001 * second DL_INFO_ACK comes in from the driver. 12002 */ 12003 static ipif_t * 12004 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize, 12005 boolean_t insert, int *errorp) 12006 { 12007 int err; 12008 ipif_t *ipif; 12009 ip_stack_t *ipst = ill->ill_ipst; 12010 12011 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 12012 ill->ill_name, id, (void *)ill)); 12013 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 12014 12015 if (errorp != NULL) 12016 *errorp = 0; 12017 12018 if ((ipif = mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) { 12019 if (errorp != NULL) 12020 *errorp = ENOMEM; 12021 return (NULL); 12022 } 12023 *ipif = ipif_zero; /* start clean */ 12024 12025 ipif->ipif_ill = ill; 12026 ipif->ipif_id = id; /* could be -1 */ 12027 /* 12028 * Inherit the zoneid from the ill; for the shared stack instance 12029 * this is always the global zone 12030 */ 12031 ipif->ipif_zoneid = ill->ill_zoneid; 12032 12033 ipif->ipif_refcnt = 0; 12034 12035 if (insert) { 12036 if ((err = ipif_insert(ipif, ire_type != IRE_LOOPBACK)) != 0) { 12037 mi_free(ipif); 12038 if (errorp != NULL) 12039 *errorp = err; 12040 return (NULL); 12041 } 12042 /* -1 id should have been replaced by real id */ 12043 id = ipif->ipif_id; 12044 ASSERT(id >= 0); 12045 } 12046 12047 if (ill->ill_name[0] != '\0') 12048 ipif_assign_seqid(ipif); 12049 12050 /* 12051 * If this is the zeroth ipif on the IPMP ill, create the illgrp 12052 * (which must not exist yet because the zeroth ipif is created once 12053 * per ill). However, do not not link it to the ipmp_grp_t until 12054 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details. 12055 */ 12056 if (id == 0 && IS_IPMP(ill)) { 12057 if (ipmp_illgrp_create(ill) == NULL) { 12058 if (insert) { 12059 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 12060 ipif_remove(ipif); 12061 rw_exit(&ipst->ips_ill_g_lock); 12062 } 12063 mi_free(ipif); 12064 if (errorp != NULL) 12065 *errorp = ENOMEM; 12066 return (NULL); 12067 } 12068 } 12069 12070 /* 12071 * We grab ill_lock to protect the flag changes. The ipif is still 12072 * not up and can't be looked up until the ioctl completes and the 12073 * IPIF_CHANGING flag is cleared. 12074 */ 12075 mutex_enter(&ill->ill_lock); 12076 12077 ipif->ipif_ire_type = ire_type; 12078 12079 if (ipif->ipif_isv6) { 12080 ill->ill_flags |= ILLF_IPV6; 12081 } else { 12082 ipaddr_t inaddr_any = INADDR_ANY; 12083 12084 ill->ill_flags |= ILLF_IPV4; 12085 12086 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 12087 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12088 &ipif->ipif_v6lcl_addr); 12089 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12090 &ipif->ipif_v6subnet); 12091 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12092 &ipif->ipif_v6net_mask); 12093 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12094 &ipif->ipif_v6brd_addr); 12095 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12096 &ipif->ipif_v6pp_dst_addr); 12097 } 12098 12099 /* 12100 * Don't set the interface flags etc. now, will do it in 12101 * ip_ll_subnet_defaults. 12102 */ 12103 if (!initialize) 12104 goto out; 12105 12106 /* 12107 * NOTE: The IPMP meta-interface is special-cased because it starts 12108 * with no underlying interfaces (and thus an unknown broadcast 12109 * address length), but all interfaces that can be placed into an IPMP 12110 * group are required to be broadcast-capable. 12111 */ 12112 if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) { 12113 /* 12114 * Later detect lack of DLPI driver multicast capability by 12115 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi(). 12116 */ 12117 ill->ill_flags |= ILLF_MULTICAST; 12118 if (!ipif->ipif_isv6) 12119 ipif->ipif_flags |= IPIF_BROADCAST; 12120 } else { 12121 if (ill->ill_net_type != IRE_LOOPBACK) { 12122 if (ipif->ipif_isv6) 12123 /* 12124 * Note: xresolv interfaces will eventually need 12125 * NOARP set here as well, but that will require 12126 * those external resolvers to have some 12127 * knowledge of that flag and act appropriately. 12128 * Not to be changed at present. 12129 */ 12130 ill->ill_flags |= ILLF_NONUD; 12131 else 12132 ill->ill_flags |= ILLF_NOARP; 12133 } 12134 if (ill->ill_phys_addr_length == 0) { 12135 if (IS_VNI(ill)) { 12136 ipif->ipif_flags |= IPIF_NOXMIT; 12137 } else { 12138 /* pt-pt supports multicast. */ 12139 ill->ill_flags |= ILLF_MULTICAST; 12140 if (ill->ill_net_type != IRE_LOOPBACK) 12141 ipif->ipif_flags |= IPIF_POINTOPOINT; 12142 } 12143 } 12144 } 12145 out: 12146 mutex_exit(&ill->ill_lock); 12147 return (ipif); 12148 } 12149 12150 /* 12151 * Remove the neighbor cache entries associated with this logical 12152 * interface. 12153 */ 12154 int 12155 ipif_arp_down(ipif_t *ipif) 12156 { 12157 ill_t *ill = ipif->ipif_ill; 12158 int err = 0; 12159 12160 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 12161 ASSERT(IAM_WRITER_IPIF(ipif)); 12162 12163 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_down", 12164 ill_t *, ill, ipif_t *, ipif); 12165 ipif_nce_down(ipif); 12166 12167 /* 12168 * If this is the last ipif that is going down and there are no 12169 * duplicate addresses we may yet attempt to re-probe, then we need to 12170 * clean up ARP completely. 12171 */ 12172 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 12173 !ill->ill_logical_down && ill->ill_net_type == IRE_IF_RESOLVER) { 12174 /* 12175 * If this was the last ipif on an IPMP interface, purge any 12176 * static ARP entries associated with it. 12177 */ 12178 if (IS_IPMP(ill)) 12179 ipmp_illgrp_refresh_arpent(ill->ill_grp); 12180 12181 /* UNBIND, DETACH */ 12182 err = arp_ll_down(ill); 12183 } 12184 12185 return (err); 12186 } 12187 12188 /* 12189 * Get the resolver set up for a new IP address. (Always called as writer.) 12190 * Called both for IPv4 and IPv6 interfaces, though it only does some 12191 * basic DAD related initialization for IPv6. Honors ILLF_NOARP. 12192 * 12193 * The enumerated value res_act tunes the behavior: 12194 * * Res_act_initial: set up all the resolver structures for a new 12195 * IP address. 12196 * * Res_act_defend: tell ARP that it needs to send a single gratuitous 12197 * ARP message in defense of the address. 12198 * * Res_act_rebind: tell ARP to change the hardware address for an IP 12199 * address (and issue gratuitous ARPs). Used by ipmp_ill_bind_ipif(). 12200 * 12201 * Returns zero on success, or an errno upon failure. 12202 */ 12203 int 12204 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 12205 { 12206 ill_t *ill = ipif->ipif_ill; 12207 int err; 12208 boolean_t was_dup; 12209 12210 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 12211 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 12212 ASSERT(IAM_WRITER_IPIF(ipif)); 12213 12214 was_dup = B_FALSE; 12215 if (res_act == Res_act_initial) { 12216 ipif->ipif_addr_ready = 0; 12217 /* 12218 * We're bringing an interface up here. There's no way that we 12219 * should need to shut down ARP now. 12220 */ 12221 mutex_enter(&ill->ill_lock); 12222 if (ipif->ipif_flags & IPIF_DUPLICATE) { 12223 ipif->ipif_flags &= ~IPIF_DUPLICATE; 12224 ill->ill_ipif_dup_count--; 12225 was_dup = B_TRUE; 12226 } 12227 mutex_exit(&ill->ill_lock); 12228 } 12229 if (ipif->ipif_recovery_id != 0) 12230 (void) untimeout(ipif->ipif_recovery_id); 12231 ipif->ipif_recovery_id = 0; 12232 if (ill->ill_net_type != IRE_IF_RESOLVER) { 12233 ipif->ipif_addr_ready = 1; 12234 return (0); 12235 } 12236 /* NDP will set the ipif_addr_ready flag when it's ready */ 12237 if (ill->ill_isv6) 12238 return (0); 12239 12240 err = ipif_arp_up(ipif, res_act, was_dup); 12241 return (err); 12242 } 12243 12244 /* 12245 * This routine restarts IPv4/IPv6 duplicate address detection (DAD) 12246 * when a link has just gone back up. 12247 */ 12248 static void 12249 ipif_nce_start_dad(ipif_t *ipif) 12250 { 12251 ncec_t *ncec; 12252 ill_t *ill = ipif->ipif_ill; 12253 boolean_t isv6 = ill->ill_isv6; 12254 12255 if (isv6) { 12256 ncec = ncec_lookup_illgrp_v6(ipif->ipif_ill, 12257 &ipif->ipif_v6lcl_addr); 12258 } else { 12259 ipaddr_t v4addr; 12260 12261 if (ill->ill_net_type != IRE_IF_RESOLVER || 12262 (ipif->ipif_flags & IPIF_UNNUMBERED) || 12263 ipif->ipif_lcl_addr == INADDR_ANY) { 12264 /* 12265 * If we can't contact ARP for some reason, 12266 * that's not really a problem. Just send 12267 * out the routing socket notification that 12268 * DAD completion would have done, and continue. 12269 */ 12270 ipif_mask_reply(ipif); 12271 ipif_up_notify(ipif); 12272 ipif->ipif_addr_ready = 1; 12273 return; 12274 } 12275 12276 IN6_V4MAPPED_TO_IPADDR(&ipif->ipif_v6lcl_addr, v4addr); 12277 ncec = ncec_lookup_illgrp_v4(ipif->ipif_ill, &v4addr); 12278 } 12279 12280 if (ncec == NULL) { 12281 ip1dbg(("couldn't find ncec for ipif %p leaving !ready\n", 12282 (void *)ipif)); 12283 return; 12284 } 12285 if (!nce_restart_dad(ncec)) { 12286 /* 12287 * If we can't restart DAD for some reason, that's not really a 12288 * problem. Just send out the routing socket notification that 12289 * DAD completion would have done, and continue. 12290 */ 12291 ipif_up_notify(ipif); 12292 ipif->ipif_addr_ready = 1; 12293 } 12294 ncec_refrele(ncec); 12295 } 12296 12297 /* 12298 * Restart duplicate address detection on all interfaces on the given ill. 12299 * 12300 * This is called when an interface transitions from down to up 12301 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 12302 * 12303 * Note that since the underlying physical link has transitioned, we must cause 12304 * at least one routing socket message to be sent here, either via DAD 12305 * completion or just by default on the first ipif. (If we don't do this, then 12306 * in.mpathd will see long delays when doing link-based failure recovery.) 12307 */ 12308 void 12309 ill_restart_dad(ill_t *ill, boolean_t went_up) 12310 { 12311 ipif_t *ipif; 12312 12313 if (ill == NULL) 12314 return; 12315 12316 /* 12317 * If layer two doesn't support duplicate address detection, then just 12318 * send the routing socket message now and be done with it. 12319 */ 12320 if (!ill->ill_isv6 && arp_no_defense) { 12321 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 12322 return; 12323 } 12324 12325 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12326 if (went_up) { 12327 12328 if (ipif->ipif_flags & IPIF_UP) { 12329 ipif_nce_start_dad(ipif); 12330 } else if (ipif->ipif_flags & IPIF_DUPLICATE) { 12331 /* 12332 * kick off the bring-up process now. 12333 */ 12334 ipif_do_recovery(ipif); 12335 } else { 12336 /* 12337 * Unfortunately, the first ipif is "special" 12338 * and represents the underlying ill in the 12339 * routing socket messages. Thus, when this 12340 * one ipif is down, we must still notify so 12341 * that the user knows the IFF_RUNNING status 12342 * change. (If the first ipif is up, then 12343 * we'll handle eventual routing socket 12344 * notification via DAD completion.) 12345 */ 12346 if (ipif == ill->ill_ipif) { 12347 ip_rts_ifmsg(ill->ill_ipif, 12348 RTSQ_DEFAULT); 12349 } 12350 } 12351 } else { 12352 /* 12353 * After link down, we'll need to send a new routing 12354 * message when the link comes back, so clear 12355 * ipif_addr_ready. 12356 */ 12357 ipif->ipif_addr_ready = 0; 12358 } 12359 } 12360 12361 /* 12362 * If we've torn down links, then notify the user right away. 12363 */ 12364 if (!went_up) 12365 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 12366 } 12367 12368 static void 12369 ipsq_delete(ipsq_t *ipsq) 12370 { 12371 ipxop_t *ipx = ipsq->ipsq_xop; 12372 12373 ipsq->ipsq_ipst = NULL; 12374 ASSERT(ipsq->ipsq_phyint == NULL); 12375 ASSERT(ipsq->ipsq_xop != NULL); 12376 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL); 12377 ASSERT(ipx->ipx_pending_mp == NULL); 12378 kmem_free(ipsq, sizeof (ipsq_t)); 12379 } 12380 12381 static int 12382 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp) 12383 { 12384 int err = 0; 12385 ipif_t *ipif; 12386 12387 if (ill == NULL) 12388 return (0); 12389 12390 ASSERT(IAM_WRITER_ILL(ill)); 12391 ill->ill_up_ipifs = B_TRUE; 12392 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12393 if (ipif->ipif_was_up) { 12394 if (!(ipif->ipif_flags & IPIF_UP)) 12395 err = ipif_up(ipif, q, mp); 12396 ipif->ipif_was_up = B_FALSE; 12397 if (err != 0) { 12398 ASSERT(err == EINPROGRESS); 12399 return (err); 12400 } 12401 } 12402 } 12403 ill->ill_up_ipifs = B_FALSE; 12404 return (0); 12405 } 12406 12407 /* 12408 * This function is called to bring up all the ipifs that were up before 12409 * bringing the ill down via ill_down_ipifs(). 12410 */ 12411 int 12412 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 12413 { 12414 int err; 12415 12416 ASSERT(IAM_WRITER_ILL(ill)); 12417 12418 if (ill->ill_replumbing) { 12419 ill->ill_replumbing = 0; 12420 /* 12421 * Send down REPLUMB_DONE notification followed by the 12422 * BIND_REQ on the arp stream. 12423 */ 12424 if (!ill->ill_isv6) 12425 arp_send_replumb_conf(ill); 12426 } 12427 err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp); 12428 if (err != 0) 12429 return (err); 12430 12431 return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp)); 12432 } 12433 12434 /* 12435 * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring 12436 * down the ipifs without sending DL_UNBIND_REQ to the driver. 12437 */ 12438 static void 12439 ill_down_ipifs(ill_t *ill, boolean_t logical) 12440 { 12441 ipif_t *ipif; 12442 12443 ASSERT(IAM_WRITER_ILL(ill)); 12444 12445 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12446 /* 12447 * We go through the ipif_down logic even if the ipif 12448 * is already down, since routes can be added based 12449 * on down ipifs. Going through ipif_down once again 12450 * will delete any IREs created based on these routes. 12451 */ 12452 if (ipif->ipif_flags & IPIF_UP) 12453 ipif->ipif_was_up = B_TRUE; 12454 12455 if (logical) { 12456 (void) ipif_logical_down(ipif, NULL, NULL); 12457 ipif_non_duplicate(ipif); 12458 (void) ipif_down_tail(ipif); 12459 } else { 12460 (void) ipif_down(ipif, NULL, NULL); 12461 } 12462 } 12463 } 12464 12465 /* 12466 * Redo source address selection. This makes IXAF_VERIFY_SOURCE take 12467 * a look again at valid source addresses. 12468 * This should be called each time after the set of source addresses has been 12469 * changed. 12470 */ 12471 void 12472 ip_update_source_selection(ip_stack_t *ipst) 12473 { 12474 /* We skip past SRC_GENERATION_VERIFY */ 12475 if (atomic_add_32_nv(&ipst->ips_src_generation, 1) == 12476 SRC_GENERATION_VERIFY) 12477 atomic_add_32(&ipst->ips_src_generation, 1); 12478 } 12479 12480 /* 12481 * Finish the group join started in ip_sioctl_groupname(). 12482 */ 12483 /* ARGSUSED */ 12484 static void 12485 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 12486 { 12487 ill_t *ill = q->q_ptr; 12488 phyint_t *phyi = ill->ill_phyint; 12489 ipmp_grp_t *grp = phyi->phyint_grp; 12490 ip_stack_t *ipst = ill->ill_ipst; 12491 12492 /* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */ 12493 ASSERT(!IS_IPMP(ill) && grp != NULL); 12494 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12495 12496 if (phyi->phyint_illv4 != NULL) { 12497 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12498 VERIFY(grp->gr_pendv4-- > 0); 12499 rw_exit(&ipst->ips_ipmp_lock); 12500 ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4); 12501 } 12502 if (phyi->phyint_illv6 != NULL) { 12503 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12504 VERIFY(grp->gr_pendv6-- > 0); 12505 rw_exit(&ipst->ips_ipmp_lock); 12506 ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6); 12507 } 12508 freemsg(mp); 12509 } 12510 12511 /* 12512 * Process an SIOCSLIFGROUPNAME request. 12513 */ 12514 /* ARGSUSED */ 12515 int 12516 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12517 ip_ioctl_cmd_t *ipip, void *ifreq) 12518 { 12519 struct lifreq *lifr = ifreq; 12520 ill_t *ill = ipif->ipif_ill; 12521 ip_stack_t *ipst = ill->ill_ipst; 12522 phyint_t *phyi = ill->ill_phyint; 12523 ipmp_grp_t *grp = phyi->phyint_grp; 12524 mblk_t *ipsq_mp; 12525 int err = 0; 12526 12527 /* 12528 * Note that phyint_grp can only change here, where we're exclusive. 12529 */ 12530 ASSERT(IAM_WRITER_ILL(ill)); 12531 12532 if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL || 12533 (phyi->phyint_flags & PHYI_VIRTUAL)) 12534 return (EINVAL); 12535 12536 lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0'; 12537 12538 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12539 12540 /* 12541 * If the name hasn't changed, there's nothing to do. 12542 */ 12543 if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0) 12544 goto unlock; 12545 12546 /* 12547 * Handle requests to rename an IPMP meta-interface. 12548 * 12549 * Note that creation of the IPMP meta-interface is handled in 12550 * userland through the standard plumbing sequence. As part of the 12551 * plumbing the IPMP meta-interface, its initial groupname is set to 12552 * the name of the interface (see ipif_set_values_tail()). 12553 */ 12554 if (IS_IPMP(ill)) { 12555 err = ipmp_grp_rename(grp, lifr->lifr_groupname); 12556 goto unlock; 12557 } 12558 12559 /* 12560 * Handle requests to add or remove an IP interface from a group. 12561 */ 12562 if (lifr->lifr_groupname[0] != '\0') { /* add */ 12563 /* 12564 * Moves are handled by first removing the interface from 12565 * its existing group, and then adding it to another group. 12566 * So, fail if it's already in a group. 12567 */ 12568 if (IS_UNDER_IPMP(ill)) { 12569 err = EALREADY; 12570 goto unlock; 12571 } 12572 12573 grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst); 12574 if (grp == NULL) { 12575 err = ENOENT; 12576 goto unlock; 12577 } 12578 12579 /* 12580 * Check if the phyint and its ills are suitable for 12581 * inclusion into the group. 12582 */ 12583 if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0) 12584 goto unlock; 12585 12586 /* 12587 * Checks pass; join the group, and enqueue the remaining 12588 * illgrp joins for when we've become part of the group xop 12589 * and are exclusive across its IPSQs. Since qwriter_ip() 12590 * requires an mblk_t to scribble on, and since `mp' will be 12591 * freed as part of completing the ioctl, allocate another. 12592 */ 12593 if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) { 12594 err = ENOMEM; 12595 goto unlock; 12596 } 12597 12598 /* 12599 * Before we drop ipmp_lock, bump gr_pend* to ensure that the 12600 * IPMP meta-interface ills needed by `phyi' cannot go away 12601 * before ip_join_illgrps() is called back. See the comments 12602 * in ip_sioctl_plink_ipmp() for more. 12603 */ 12604 if (phyi->phyint_illv4 != NULL) 12605 grp->gr_pendv4++; 12606 if (phyi->phyint_illv6 != NULL) 12607 grp->gr_pendv6++; 12608 12609 rw_exit(&ipst->ips_ipmp_lock); 12610 12611 ipmp_phyint_join_grp(phyi, grp); 12612 ill_refhold(ill); 12613 qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps, 12614 SWITCH_OP, B_FALSE); 12615 return (0); 12616 } else { 12617 /* 12618 * Request to remove the interface from a group. If the 12619 * interface is not in a group, this trivially succeeds. 12620 */ 12621 rw_exit(&ipst->ips_ipmp_lock); 12622 if (IS_UNDER_IPMP(ill)) 12623 ipmp_phyint_leave_grp(phyi); 12624 return (0); 12625 } 12626 unlock: 12627 rw_exit(&ipst->ips_ipmp_lock); 12628 return (err); 12629 } 12630 12631 /* 12632 * Process an SIOCGLIFBINDING request. 12633 */ 12634 /* ARGSUSED */ 12635 int 12636 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12637 ip_ioctl_cmd_t *ipip, void *ifreq) 12638 { 12639 ill_t *ill; 12640 struct lifreq *lifr = ifreq; 12641 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12642 12643 if (!IS_IPMP(ipif->ipif_ill)) 12644 return (EINVAL); 12645 12646 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12647 if ((ill = ipif->ipif_bound_ill) == NULL) 12648 lifr->lifr_binding[0] = '\0'; 12649 else 12650 (void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ); 12651 rw_exit(&ipst->ips_ipmp_lock); 12652 return (0); 12653 } 12654 12655 /* 12656 * Process an SIOCGLIFGROUPNAME request. 12657 */ 12658 /* ARGSUSED */ 12659 int 12660 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12661 ip_ioctl_cmd_t *ipip, void *ifreq) 12662 { 12663 ipmp_grp_t *grp; 12664 struct lifreq *lifr = ifreq; 12665 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12666 12667 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12668 if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL) 12669 lifr->lifr_groupname[0] = '\0'; 12670 else 12671 (void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ); 12672 rw_exit(&ipst->ips_ipmp_lock); 12673 return (0); 12674 } 12675 12676 /* 12677 * Process an SIOCGLIFGROUPINFO request. 12678 */ 12679 /* ARGSUSED */ 12680 int 12681 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12682 ip_ioctl_cmd_t *ipip, void *dummy) 12683 { 12684 ipmp_grp_t *grp; 12685 lifgroupinfo_t *lifgr; 12686 ip_stack_t *ipst = CONNQ_TO_IPST(q); 12687 12688 /* ip_wput_nondata() verified mp->b_cont->b_cont */ 12689 lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr; 12690 lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0'; 12691 12692 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12693 if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) { 12694 rw_exit(&ipst->ips_ipmp_lock); 12695 return (ENOENT); 12696 } 12697 ipmp_grp_info(grp, lifgr); 12698 rw_exit(&ipst->ips_ipmp_lock); 12699 return (0); 12700 } 12701 12702 static void 12703 ill_dl_down(ill_t *ill) 12704 { 12705 DTRACE_PROBE2(ill__downup, char *, "ill_dl_down", ill_t *, ill); 12706 12707 /* 12708 * The ill is down; unbind but stay attached since we're still 12709 * associated with a PPA. If we have negotiated DLPI capabilites 12710 * with the data link service provider (IDS_OK) then reset them. 12711 * The interval between unbinding and rebinding is potentially 12712 * unbounded hence we cannot assume things will be the same. 12713 * The DLPI capabilities will be probed again when the data link 12714 * is brought up. 12715 */ 12716 mblk_t *mp = ill->ill_unbind_mp; 12717 12718 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 12719 12720 if (!ill->ill_replumbing) { 12721 /* Free all ilms for this ill */ 12722 update_conn_ill(ill, ill->ill_ipst); 12723 } else { 12724 ill_leave_multicast(ill); 12725 } 12726 12727 ill->ill_unbind_mp = NULL; 12728 if (mp != NULL) { 12729 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 12730 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 12731 ill->ill_name)); 12732 mutex_enter(&ill->ill_lock); 12733 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 12734 mutex_exit(&ill->ill_lock); 12735 /* 12736 * ip_rput does not pass up normal (M_PROTO) DLPI messages 12737 * after ILL_CONDEMNED is set. So in the unplumb case, we call 12738 * ill_capability_dld_disable disable rightaway. If this is not 12739 * an unplumb operation then the disable happens on receipt of 12740 * the capab ack via ip_rput_dlpi_writer -> 12741 * ill_capability_ack_thr. In both cases the order of 12742 * the operations seen by DLD is capability disable followed 12743 * by DL_UNBIND. Also the DLD capability disable needs a 12744 * cv_wait'able context. 12745 */ 12746 if (ill->ill_state_flags & ILL_CONDEMNED) 12747 ill_capability_dld_disable(ill); 12748 ill_capability_reset(ill, B_FALSE); 12749 ill_dlpi_send(ill, mp); 12750 } 12751 mutex_enter(&ill->ill_lock); 12752 ill->ill_dl_up = 0; 12753 ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0); 12754 mutex_exit(&ill->ill_lock); 12755 } 12756 12757 void 12758 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 12759 { 12760 union DL_primitives *dlp; 12761 t_uscalar_t prim; 12762 boolean_t waitack = B_FALSE; 12763 12764 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12765 12766 dlp = (union DL_primitives *)mp->b_rptr; 12767 prim = dlp->dl_primitive; 12768 12769 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 12770 dl_primstr(prim), prim, ill->ill_name)); 12771 12772 switch (prim) { 12773 case DL_PHYS_ADDR_REQ: 12774 { 12775 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 12776 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 12777 break; 12778 } 12779 case DL_BIND_REQ: 12780 mutex_enter(&ill->ill_lock); 12781 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 12782 mutex_exit(&ill->ill_lock); 12783 break; 12784 } 12785 12786 /* 12787 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 12788 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 12789 * we only wait for the ACK of the DL_UNBIND_REQ. 12790 */ 12791 mutex_enter(&ill->ill_lock); 12792 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 12793 (prim == DL_UNBIND_REQ)) { 12794 ill->ill_dlpi_pending = prim; 12795 waitack = B_TRUE; 12796 } 12797 12798 mutex_exit(&ill->ill_lock); 12799 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_dispatch", 12800 char *, dl_primstr(prim), ill_t *, ill); 12801 putnext(ill->ill_wq, mp); 12802 12803 /* 12804 * There is no ack for DL_NOTIFY_CONF messages 12805 */ 12806 if (waitack && prim == DL_NOTIFY_CONF) 12807 ill_dlpi_done(ill, prim); 12808 } 12809 12810 /* 12811 * Helper function for ill_dlpi_send(). 12812 */ 12813 /* ARGSUSED */ 12814 static void 12815 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12816 { 12817 ill_dlpi_send(q->q_ptr, mp); 12818 } 12819 12820 /* 12821 * Send a DLPI control message to the driver but make sure there 12822 * is only one outstanding message. Uses ill_dlpi_pending to tell 12823 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 12824 * when an ACK or a NAK is received to process the next queued message. 12825 */ 12826 void 12827 ill_dlpi_send(ill_t *ill, mblk_t *mp) 12828 { 12829 mblk_t **mpp; 12830 12831 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12832 12833 /* 12834 * To ensure that any DLPI requests for current exclusive operation 12835 * are always completely sent before any DLPI messages for other 12836 * operations, require writer access before enqueuing. 12837 */ 12838 if (!IAM_WRITER_ILL(ill)) { 12839 ill_refhold(ill); 12840 /* qwriter_ip() does the ill_refrele() */ 12841 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 12842 NEW_OP, B_TRUE); 12843 return; 12844 } 12845 12846 mutex_enter(&ill->ill_lock); 12847 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 12848 /* Must queue message. Tail insertion */ 12849 mpp = &ill->ill_dlpi_deferred; 12850 while (*mpp != NULL) 12851 mpp = &((*mpp)->b_next); 12852 12853 ip1dbg(("ill_dlpi_send: deferring request for %s " 12854 "while %s pending\n", ill->ill_name, 12855 dl_primstr(ill->ill_dlpi_pending))); 12856 12857 *mpp = mp; 12858 mutex_exit(&ill->ill_lock); 12859 return; 12860 } 12861 mutex_exit(&ill->ill_lock); 12862 ill_dlpi_dispatch(ill, mp); 12863 } 12864 12865 void 12866 ill_capability_send(ill_t *ill, mblk_t *mp) 12867 { 12868 ill->ill_capab_pending_cnt++; 12869 ill_dlpi_send(ill, mp); 12870 } 12871 12872 void 12873 ill_capability_done(ill_t *ill) 12874 { 12875 ASSERT(ill->ill_capab_pending_cnt != 0); 12876 12877 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 12878 12879 ill->ill_capab_pending_cnt--; 12880 if (ill->ill_capab_pending_cnt == 0 && 12881 ill->ill_dlpi_capab_state == IDCS_OK) 12882 ill_capability_reset_alloc(ill); 12883 } 12884 12885 /* 12886 * Send all deferred DLPI messages without waiting for their ACKs. 12887 */ 12888 void 12889 ill_dlpi_send_deferred(ill_t *ill) 12890 { 12891 mblk_t *mp, *nextmp; 12892 12893 /* 12894 * Clear ill_dlpi_pending so that the message is not queued in 12895 * ill_dlpi_send(). 12896 */ 12897 mutex_enter(&ill->ill_lock); 12898 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12899 mp = ill->ill_dlpi_deferred; 12900 ill->ill_dlpi_deferred = NULL; 12901 mutex_exit(&ill->ill_lock); 12902 12903 for (; mp != NULL; mp = nextmp) { 12904 nextmp = mp->b_next; 12905 mp->b_next = NULL; 12906 ill_dlpi_send(ill, mp); 12907 } 12908 } 12909 12910 /* 12911 * Clear all the deferred DLPI messages. Called on receiving an M_ERROR 12912 * or M_HANGUP 12913 */ 12914 static void 12915 ill_dlpi_clear_deferred(ill_t *ill) 12916 { 12917 mblk_t *mp, *nextmp; 12918 12919 mutex_enter(&ill->ill_lock); 12920 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12921 mp = ill->ill_dlpi_deferred; 12922 ill->ill_dlpi_deferred = NULL; 12923 mutex_exit(&ill->ill_lock); 12924 12925 for (; mp != NULL; mp = nextmp) { 12926 nextmp = mp->b_next; 12927 inet_freemsg(mp); 12928 } 12929 } 12930 12931 /* 12932 * Check if the DLPI primitive `prim' is pending; print a warning if not. 12933 */ 12934 boolean_t 12935 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 12936 { 12937 t_uscalar_t pending; 12938 12939 mutex_enter(&ill->ill_lock); 12940 if (ill->ill_dlpi_pending == prim) { 12941 mutex_exit(&ill->ill_lock); 12942 return (B_TRUE); 12943 } 12944 12945 /* 12946 * During teardown, ill_dlpi_dispatch() will send DLPI requests 12947 * without waiting, so don't print any warnings in that case. 12948 */ 12949 if (ill->ill_state_flags & ILL_CONDEMNED) { 12950 mutex_exit(&ill->ill_lock); 12951 return (B_FALSE); 12952 } 12953 pending = ill->ill_dlpi_pending; 12954 mutex_exit(&ill->ill_lock); 12955 12956 if (pending == DL_PRIM_INVAL) { 12957 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12958 "received unsolicited ack for %s on %s\n", 12959 dl_primstr(prim), ill->ill_name); 12960 } else { 12961 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12962 "received unexpected ack for %s on %s (expecting %s)\n", 12963 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 12964 } 12965 return (B_FALSE); 12966 } 12967 12968 /* 12969 * Complete the current DLPI operation associated with `prim' on `ill' and 12970 * start the next queued DLPI operation (if any). If there are no queued DLPI 12971 * operations and the ill's current exclusive IPSQ operation has finished 12972 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 12973 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 12974 * the comments above ipsq_current_finish() for details. 12975 */ 12976 void 12977 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 12978 { 12979 mblk_t *mp; 12980 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 12981 ipxop_t *ipx = ipsq->ipsq_xop; 12982 12983 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12984 mutex_enter(&ill->ill_lock); 12985 12986 ASSERT(prim != DL_PRIM_INVAL); 12987 ASSERT(ill->ill_dlpi_pending == prim); 12988 12989 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 12990 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 12991 12992 if ((mp = ill->ill_dlpi_deferred) == NULL) { 12993 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12994 if (ipx->ipx_current_done) { 12995 mutex_enter(&ipx->ipx_lock); 12996 ipx->ipx_current_ipif = NULL; 12997 mutex_exit(&ipx->ipx_lock); 12998 } 12999 cv_signal(&ill->ill_cv); 13000 mutex_exit(&ill->ill_lock); 13001 return; 13002 } 13003 13004 ill->ill_dlpi_deferred = mp->b_next; 13005 mp->b_next = NULL; 13006 mutex_exit(&ill->ill_lock); 13007 13008 ill_dlpi_dispatch(ill, mp); 13009 } 13010 13011 /* 13012 * Queue a (multicast) DLPI control message to be sent to the driver by 13013 * later calling ill_dlpi_send_queued. 13014 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 13015 * are sent in order i.e., prevent a DL_DISABMULTI_REQ and DL_ENABMULTI_REQ 13016 * for the same group to race. 13017 * We send DLPI control messages in order using ill_lock. 13018 * For IPMP we should be called on the cast_ill. 13019 */ 13020 void 13021 ill_dlpi_queue(ill_t *ill, mblk_t *mp) 13022 { 13023 mblk_t **mpp; 13024 13025 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 13026 13027 mutex_enter(&ill->ill_lock); 13028 /* Must queue message. Tail insertion */ 13029 mpp = &ill->ill_dlpi_deferred; 13030 while (*mpp != NULL) 13031 mpp = &((*mpp)->b_next); 13032 13033 *mpp = mp; 13034 mutex_exit(&ill->ill_lock); 13035 } 13036 13037 /* 13038 * Send the messages that were queued. Make sure there is only 13039 * one outstanding message. ip_rput_dlpi_writer calls ill_dlpi_done() 13040 * when an ACK or a NAK is received to process the next queued message. 13041 * For IPMP we are called on the upper ill, but when send what is queued 13042 * on the cast_ill. 13043 */ 13044 void 13045 ill_dlpi_send_queued(ill_t *ill) 13046 { 13047 mblk_t *mp; 13048 union DL_primitives *dlp; 13049 t_uscalar_t prim; 13050 ill_t *release_ill = NULL; 13051 13052 if (IS_IPMP(ill)) { 13053 /* On the upper IPMP ill. */ 13054 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13055 if (release_ill == NULL) { 13056 /* Avoid ever sending anything down to the ipmpstub */ 13057 return; 13058 } 13059 ill = release_ill; 13060 } 13061 mutex_enter(&ill->ill_lock); 13062 while ((mp = ill->ill_dlpi_deferred) != NULL) { 13063 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 13064 /* Can't send. Somebody else will send it */ 13065 mutex_exit(&ill->ill_lock); 13066 goto done; 13067 } 13068 ill->ill_dlpi_deferred = mp->b_next; 13069 mp->b_next = NULL; 13070 if (!ill->ill_dl_up) { 13071 /* 13072 * Nobody there. All multicast addresses will be 13073 * re-joined when we get the DL_BIND_ACK bringing the 13074 * interface up. 13075 */ 13076 freemsg(mp); 13077 continue; 13078 } 13079 dlp = (union DL_primitives *)mp->b_rptr; 13080 prim = dlp->dl_primitive; 13081 13082 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 13083 (prim == DL_UNBIND_REQ)) { 13084 ill->ill_dlpi_pending = prim; 13085 } 13086 mutex_exit(&ill->ill_lock); 13087 13088 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_send_queued", 13089 char *, dl_primstr(prim), ill_t *, ill); 13090 putnext(ill->ill_wq, mp); 13091 mutex_enter(&ill->ill_lock); 13092 } 13093 mutex_exit(&ill->ill_lock); 13094 done: 13095 if (release_ill != NULL) 13096 ill_refrele(release_ill); 13097 } 13098 13099 /* 13100 * Queue an IP (IGMP/MLD) message to be sent by IP from 13101 * ill_mcast_send_queued 13102 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 13103 * are sent in order i.e., prevent a IGMP leave and IGMP join for the same 13104 * group to race. 13105 * We send them in order using ill_lock. 13106 * For IPMP we are called on the upper ill, but we queue on the cast_ill. 13107 */ 13108 void 13109 ill_mcast_queue(ill_t *ill, mblk_t *mp) 13110 { 13111 mblk_t **mpp; 13112 ill_t *release_ill = NULL; 13113 13114 ASSERT(RW_LOCK_HELD(&ill->ill_mcast_lock)); 13115 13116 if (IS_IPMP(ill)) { 13117 /* On the upper IPMP ill. */ 13118 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13119 if (release_ill == NULL) { 13120 /* Discard instead of queuing for the ipmp interface */ 13121 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 13122 ip_drop_output("ipIfStatsOutDiscards - no cast_ill", 13123 mp, ill); 13124 freemsg(mp); 13125 return; 13126 } 13127 ill = release_ill; 13128 } 13129 13130 mutex_enter(&ill->ill_lock); 13131 /* Must queue message. Tail insertion */ 13132 mpp = &ill->ill_mcast_deferred; 13133 while (*mpp != NULL) 13134 mpp = &((*mpp)->b_next); 13135 13136 *mpp = mp; 13137 mutex_exit(&ill->ill_lock); 13138 if (release_ill != NULL) 13139 ill_refrele(release_ill); 13140 } 13141 13142 /* 13143 * Send the IP packets that were queued by ill_mcast_queue. 13144 * These are IGMP/MLD packets. 13145 * 13146 * For IPMP we are called on the upper ill, but when send what is queued 13147 * on the cast_ill. 13148 * 13149 * Request loopback of the report if we are acting as a multicast 13150 * router, so that the process-level routing demon can hear it. 13151 * This will run multiple times for the same group if there are members 13152 * on the same group for multiple ipif's on the same ill. The 13153 * igmp_input/mld_input code will suppress this due to the loopback thus we 13154 * always loopback membership report. 13155 * 13156 * We also need to make sure that this does not get load balanced 13157 * by IPMP. We do this by passing an ill to ip_output_simple. 13158 */ 13159 void 13160 ill_mcast_send_queued(ill_t *ill) 13161 { 13162 mblk_t *mp; 13163 ip_xmit_attr_t ixas; 13164 ill_t *release_ill = NULL; 13165 13166 if (IS_IPMP(ill)) { 13167 /* On the upper IPMP ill. */ 13168 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13169 if (release_ill == NULL) { 13170 /* 13171 * We should have no messages on the ipmp interface 13172 * but no point in trying to send them. 13173 */ 13174 return; 13175 } 13176 ill = release_ill; 13177 } 13178 bzero(&ixas, sizeof (ixas)); 13179 ixas.ixa_zoneid = ALL_ZONES; 13180 ixas.ixa_cred = kcred; 13181 ixas.ixa_cpid = NOPID; 13182 ixas.ixa_tsl = NULL; 13183 /* 13184 * Here we set ixa_ifindex. If IPMP it will be the lower ill which 13185 * makes ip_select_route pick the IRE_MULTICAST for the cast_ill. 13186 * That is necessary to handle IGMP/MLD snooping switches. 13187 */ 13188 ixas.ixa_ifindex = ill->ill_phyint->phyint_ifindex; 13189 ixas.ixa_ipst = ill->ill_ipst; 13190 13191 mutex_enter(&ill->ill_lock); 13192 while ((mp = ill->ill_mcast_deferred) != NULL) { 13193 ill->ill_mcast_deferred = mp->b_next; 13194 mp->b_next = NULL; 13195 if (!ill->ill_dl_up) { 13196 /* 13197 * Nobody there. Just drop the ip packets. 13198 * IGMP/MLD will resend later, if this is a replumb. 13199 */ 13200 freemsg(mp); 13201 continue; 13202 } 13203 mutex_enter(&ill->ill_phyint->phyint_lock); 13204 if (IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) { 13205 /* 13206 * When the ill is getting deactivated, we only want to 13207 * send the DLPI messages, so drop IGMP/MLD packets. 13208 * DLPI messages are handled by ill_dlpi_send_queued() 13209 */ 13210 mutex_exit(&ill->ill_phyint->phyint_lock); 13211 freemsg(mp); 13212 continue; 13213 } 13214 mutex_exit(&ill->ill_phyint->phyint_lock); 13215 mutex_exit(&ill->ill_lock); 13216 13217 /* Check whether we are sending IPv4 or IPv6. */ 13218 if (ill->ill_isv6) { 13219 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 13220 13221 ixas.ixa_multicast_ttl = ip6h->ip6_hops; 13222 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V6; 13223 } else { 13224 ipha_t *ipha = (ipha_t *)mp->b_rptr; 13225 13226 ixas.ixa_multicast_ttl = ipha->ipha_ttl; 13227 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 13228 ixas.ixa_flags &= ~IXAF_SET_ULP_CKSUM; 13229 } 13230 ixas.ixa_flags &= ~IXAF_VERIFY_SOURCE; 13231 ixas.ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_SOURCE; 13232 (void) ip_output_simple(mp, &ixas); 13233 ixa_cleanup(&ixas); 13234 13235 mutex_enter(&ill->ill_lock); 13236 } 13237 mutex_exit(&ill->ill_lock); 13238 13239 done: 13240 if (release_ill != NULL) 13241 ill_refrele(release_ill); 13242 } 13243 13244 /* 13245 * Take down a specific interface, but don't lose any information about it. 13246 * (Always called as writer.) 13247 * This function goes through the down sequence even if the interface is 13248 * already down. There are 2 reasons. 13249 * a. Currently we permit interface routes that depend on down interfaces 13250 * to be added. This behaviour itself is questionable. However it appears 13251 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 13252 * time. We go thru the cleanup in order to remove these routes. 13253 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 13254 * DL_ERROR_ACK in response to the DL_BIND request. The interface is 13255 * down, but we need to cleanup i.e. do ill_dl_down and 13256 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 13257 * 13258 * IP-MT notes: 13259 * 13260 * Model of reference to interfaces. 13261 * 13262 * The following members in ipif_t track references to the ipif. 13263 * int ipif_refcnt; Active reference count 13264 * 13265 * The following members in ill_t track references to the ill. 13266 * int ill_refcnt; active refcnt 13267 * uint_t ill_ire_cnt; Number of ires referencing ill 13268 * uint_t ill_ncec_cnt; Number of ncecs referencing ill 13269 * uint_t ill_nce_cnt; Number of nces referencing ill 13270 * uint_t ill_ilm_cnt; Number of ilms referencing ill 13271 * 13272 * Reference to an ipif or ill can be obtained in any of the following ways. 13273 * 13274 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 13275 * Pointers to ipif / ill from other data structures viz ire and conn. 13276 * Implicit reference to the ipif / ill by holding a reference to the ire. 13277 * 13278 * The ipif/ill lookup functions return a reference held ipif / ill. 13279 * ipif_refcnt and ill_refcnt track the reference counts respectively. 13280 * This is a purely dynamic reference count associated with threads holding 13281 * references to the ipif / ill. Pointers from other structures do not 13282 * count towards this reference count. 13283 * 13284 * ill_ire_cnt is the number of ire's associated with the 13285 * ill. This is incremented whenever a new ire is created referencing the 13286 * ill. This is done atomically inside ire_add_v[46] where the ire is 13287 * actually added to the ire hash table. The count is decremented in 13288 * ire_inactive where the ire is destroyed. 13289 * 13290 * ill_ncec_cnt is the number of ncec's referencing the ill thru ncec_ill. 13291 * This is incremented atomically in 13292 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 13293 * table. Similarly it is decremented in ncec_inactive() where the ncec 13294 * is destroyed. 13295 * 13296 * ill_nce_cnt is the number of nce's referencing the ill thru nce_ill. This is 13297 * incremented atomically in nce_add() where the nce is actually added to the 13298 * ill_nce. Similarly it is decremented in nce_inactive() where the nce 13299 * is destroyed. 13300 * 13301 * ill_ilm_cnt is the ilm's reference to the ill. It is incremented in 13302 * ilm_add() and decremented before the ilm is freed in ilm_delete(). 13303 * 13304 * Flow of ioctls involving interface down/up 13305 * 13306 * The following is the sequence of an attempt to set some critical flags on an 13307 * up interface. 13308 * ip_sioctl_flags 13309 * ipif_down 13310 * wait for ipif to be quiescent 13311 * ipif_down_tail 13312 * ip_sioctl_flags_tail 13313 * 13314 * All set ioctls that involve down/up sequence would have a skeleton similar 13315 * to the above. All the *tail functions are called after the refcounts have 13316 * dropped to the appropriate values. 13317 * 13318 * SIOC ioctls during the IPIF_CHANGING interval. 13319 * 13320 * Threads handling SIOC set ioctls serialize on the squeue, but this 13321 * is not done for SIOC get ioctls. Since a set ioctl can cause several 13322 * steps of internal changes to the state, some of which are visible in 13323 * ipif_flags (such as IFF_UP being cleared and later set), and we want 13324 * the set ioctl to be atomic related to the get ioctls, the SIOC get code 13325 * will wait and restart ioctls if IPIF_CHANGING is set. The mblk is then 13326 * enqueued in the ipsq and the operation is restarted by ipsq_exit() when 13327 * the current exclusive operation completes. The IPIF_CHANGING check 13328 * and enqueue is atomic using the ill_lock and ipsq_lock. The 13329 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 13330 * change while the ill_lock is held. Before dropping the ill_lock we acquire 13331 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 13332 * until we release the ipsq_lock, even though the ill/ipif state flags 13333 * can change after we drop the ill_lock. 13334 */ 13335 int 13336 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 13337 { 13338 ill_t *ill = ipif->ipif_ill; 13339 conn_t *connp; 13340 boolean_t success; 13341 boolean_t ipif_was_up = B_FALSE; 13342 ip_stack_t *ipst = ill->ill_ipst; 13343 13344 ASSERT(IAM_WRITER_IPIF(ipif)); 13345 13346 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13347 13348 DTRACE_PROBE3(ipif__downup, char *, "ipif_down", 13349 ill_t *, ill, ipif_t *, ipif); 13350 13351 if (ipif->ipif_flags & IPIF_UP) { 13352 mutex_enter(&ill->ill_lock); 13353 ipif->ipif_flags &= ~IPIF_UP; 13354 ASSERT(ill->ill_ipif_up_count > 0); 13355 --ill->ill_ipif_up_count; 13356 mutex_exit(&ill->ill_lock); 13357 ipif_was_up = B_TRUE; 13358 /* Update status in SCTP's list */ 13359 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 13360 ill_nic_event_dispatch(ipif->ipif_ill, 13361 MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0); 13362 } 13363 13364 /* 13365 * Removal of the last ipif from an ill may result in a DL_UNBIND 13366 * being sent to the driver, and we must not send any data packets to 13367 * the driver after the DL_UNBIND_REQ. To ensure this, all the 13368 * ire and nce entries used in the data path will be cleaned 13369 * up, and we also set the ILL_DOWN_IN_PROGRESS bit to make 13370 * sure on new entries will be added until the ill is bound 13371 * again. The ILL_DOWN_IN_PROGRESS bit is turned off upon 13372 * receipt of a DL_BIND_ACK. 13373 */ 13374 if (ill->ill_wq != NULL && !ill->ill_logical_down && 13375 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 13376 ill->ill_dl_up) { 13377 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 13378 } 13379 13380 /* 13381 * Blow away memberships we established in ipif_multicast_up(). 13382 */ 13383 ipif_multicast_down(ipif); 13384 13385 /* 13386 * Remove from the mapping for __sin6_src_id. We insert only 13387 * when the address is not INADDR_ANY. As IPv4 addresses are 13388 * stored as mapped addresses, we need to check for mapped 13389 * INADDR_ANY also. 13390 */ 13391 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 13392 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 13393 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 13394 int err; 13395 13396 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 13397 ipif->ipif_zoneid, ipst); 13398 if (err != 0) { 13399 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 13400 } 13401 } 13402 13403 if (ipif_was_up) { 13404 /* only delete if we'd added ire's before */ 13405 if (ipif->ipif_isv6) 13406 ipif_delete_ires_v6(ipif); 13407 else 13408 ipif_delete_ires_v4(ipif); 13409 } 13410 13411 if (ipif_was_up && ill->ill_ipif_up_count == 0) { 13412 /* 13413 * Since the interface is now down, it may have just become 13414 * inactive. Note that this needs to be done even for a 13415 * lll_logical_down(), or ARP entries will not get correctly 13416 * restored when the interface comes back up. 13417 */ 13418 if (IS_UNDER_IPMP(ill)) 13419 ipmp_ill_refresh_active(ill); 13420 } 13421 13422 /* 13423 * neighbor-discovery or arp entries for this interface. The ipif 13424 * has to be quiesced, so we walk all the nce's and delete those 13425 * that point at the ipif->ipif_ill. At the same time, we also 13426 * update IPMP so that ipifs for data addresses are unbound. We dont 13427 * call ipif_arp_down to DL_UNBIND the arp stream itself here, but defer 13428 * that for ipif_down_tail() 13429 */ 13430 ipif_nce_down(ipif); 13431 13432 /* 13433 * If this is the last ipif on the ill, we also need to remove 13434 * any IREs with ire_ill set. Otherwise ipif_is_quiescent() will 13435 * never succeed. 13436 */ 13437 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) 13438 ire_walk_ill(0, 0, ill_downi, ill, ill); 13439 13440 /* 13441 * Walk all CONNs that can have a reference on an ire for this 13442 * ipif (we actually walk all that now have stale references). 13443 */ 13444 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 13445 13446 /* 13447 * If mp is NULL the caller will wait for the appropriate refcnt. 13448 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 13449 * and ill_delete -> ipif_free -> ipif_down 13450 */ 13451 if (mp == NULL) { 13452 ASSERT(q == NULL); 13453 return (0); 13454 } 13455 13456 if (CONN_Q(q)) { 13457 connp = Q_TO_CONN(q); 13458 mutex_enter(&connp->conn_lock); 13459 } else { 13460 connp = NULL; 13461 } 13462 mutex_enter(&ill->ill_lock); 13463 /* 13464 * Are there any ire's pointing to this ipif that are still active ? 13465 * If this is the last ipif going down, are there any ire's pointing 13466 * to this ill that are still active ? 13467 */ 13468 if (ipif_is_quiescent(ipif)) { 13469 mutex_exit(&ill->ill_lock); 13470 if (connp != NULL) 13471 mutex_exit(&connp->conn_lock); 13472 return (0); 13473 } 13474 13475 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 13476 ill->ill_name, (void *)ill)); 13477 /* 13478 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 13479 * drops down, the operation will be restarted by ipif_ill_refrele_tail 13480 * which in turn is called by the last refrele on the ipif/ill/ire. 13481 */ 13482 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 13483 if (!success) { 13484 /* The conn is closing. So just return */ 13485 ASSERT(connp != NULL); 13486 mutex_exit(&ill->ill_lock); 13487 mutex_exit(&connp->conn_lock); 13488 return (EINTR); 13489 } 13490 13491 mutex_exit(&ill->ill_lock); 13492 if (connp != NULL) 13493 mutex_exit(&connp->conn_lock); 13494 return (EINPROGRESS); 13495 } 13496 13497 int 13498 ipif_down_tail(ipif_t *ipif) 13499 { 13500 ill_t *ill = ipif->ipif_ill; 13501 int err = 0; 13502 13503 DTRACE_PROBE3(ipif__downup, char *, "ipif_down_tail", 13504 ill_t *, ill, ipif_t *, ipif); 13505 13506 /* 13507 * Skip any loopback interface (null wq). 13508 * If this is the last logical interface on the ill 13509 * have ill_dl_down tell the driver we are gone (unbind) 13510 * Note that lun 0 can ipif_down even though 13511 * there are other logical units that are up. 13512 * This occurs e.g. when we change a "significant" IFF_ flag. 13513 */ 13514 if (ill->ill_wq != NULL && !ill->ill_logical_down && 13515 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 13516 ill->ill_dl_up) { 13517 ill_dl_down(ill); 13518 } 13519 if (!ipif->ipif_isv6) 13520 err = ipif_arp_down(ipif); 13521 13522 ill->ill_logical_down = 0; 13523 13524 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 13525 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT); 13526 return (err); 13527 } 13528 13529 /* 13530 * Bring interface logically down without bringing the physical interface 13531 * down e.g. when the netmask is changed. This avoids long lasting link 13532 * negotiations between an ethernet interface and a certain switches. 13533 */ 13534 static int 13535 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 13536 { 13537 DTRACE_PROBE3(ipif__downup, char *, "ipif_logical_down", 13538 ill_t *, ipif->ipif_ill, ipif_t *, ipif); 13539 13540 /* 13541 * The ill_logical_down flag is a transient flag. It is set here 13542 * and is cleared once the down has completed in ipif_down_tail. 13543 * This flag does not indicate whether the ill stream is in the 13544 * DL_BOUND state with the driver. Instead this flag is used by 13545 * ipif_down_tail to determine whether to DL_UNBIND the stream with 13546 * the driver. The state of the ill stream i.e. whether it is 13547 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 13548 */ 13549 ipif->ipif_ill->ill_logical_down = 1; 13550 return (ipif_down(ipif, q, mp)); 13551 } 13552 13553 /* 13554 * Initiate deallocate of an IPIF. Always called as writer. Called by 13555 * ill_delete or ip_sioctl_removeif. 13556 */ 13557 static void 13558 ipif_free(ipif_t *ipif) 13559 { 13560 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13561 13562 ASSERT(IAM_WRITER_IPIF(ipif)); 13563 13564 if (ipif->ipif_recovery_id != 0) 13565 (void) untimeout(ipif->ipif_recovery_id); 13566 ipif->ipif_recovery_id = 0; 13567 13568 /* 13569 * Take down the interface. We can be called either from ill_delete 13570 * or from ip_sioctl_removeif. 13571 */ 13572 (void) ipif_down(ipif, NULL, NULL); 13573 13574 /* 13575 * Now that the interface is down, there's no chance it can still 13576 * become a duplicate. Cancel any timer that may have been set while 13577 * tearing down. 13578 */ 13579 if (ipif->ipif_recovery_id != 0) 13580 (void) untimeout(ipif->ipif_recovery_id); 13581 ipif->ipif_recovery_id = 0; 13582 13583 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13584 /* Remove pointers to this ill in the multicast routing tables */ 13585 reset_mrt_vif_ipif(ipif); 13586 /* If necessary, clear the cached source ipif rotor. */ 13587 if (ipif->ipif_ill->ill_src_ipif == ipif) 13588 ipif->ipif_ill->ill_src_ipif = NULL; 13589 rw_exit(&ipst->ips_ill_g_lock); 13590 } 13591 13592 static void 13593 ipif_free_tail(ipif_t *ipif) 13594 { 13595 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13596 13597 /* 13598 * Need to hold both ill_g_lock and ill_lock while 13599 * inserting or removing an ipif from the linked list 13600 * of ipifs hanging off the ill. 13601 */ 13602 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13603 13604 #ifdef DEBUG 13605 ipif_trace_cleanup(ipif); 13606 #endif 13607 13608 /* Ask SCTP to take it out of it list */ 13609 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 13610 ip_rts_newaddrmsg(RTM_FREEADDR, 0, ipif, RTSQ_DEFAULT); 13611 13612 /* Get it out of the ILL interface list. */ 13613 ipif_remove(ipif); 13614 rw_exit(&ipst->ips_ill_g_lock); 13615 13616 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 13617 ASSERT(ipif->ipif_recovery_id == 0); 13618 ASSERT(ipif->ipif_ire_local == NULL); 13619 ASSERT(ipif->ipif_ire_if == NULL); 13620 13621 /* Free the memory. */ 13622 mi_free(ipif); 13623 } 13624 13625 /* 13626 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 13627 * is zero. 13628 */ 13629 void 13630 ipif_get_name(const ipif_t *ipif, char *buf, int len) 13631 { 13632 char lbuf[LIFNAMSIZ]; 13633 char *name; 13634 size_t name_len; 13635 13636 buf[0] = '\0'; 13637 name = ipif->ipif_ill->ill_name; 13638 name_len = ipif->ipif_ill->ill_name_length; 13639 if (ipif->ipif_id != 0) { 13640 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 13641 ipif->ipif_id); 13642 name = lbuf; 13643 name_len = mi_strlen(name) + 1; 13644 } 13645 len -= 1; 13646 buf[len] = '\0'; 13647 len = MIN(len, name_len); 13648 bcopy(name, buf, len); 13649 } 13650 13651 /* 13652 * Sets `buf' to an ill name. 13653 */ 13654 void 13655 ill_get_name(const ill_t *ill, char *buf, int len) 13656 { 13657 char *name; 13658 size_t name_len; 13659 13660 name = ill->ill_name; 13661 name_len = ill->ill_name_length; 13662 len -= 1; 13663 buf[len] = '\0'; 13664 len = MIN(len, name_len); 13665 bcopy(name, buf, len); 13666 } 13667 13668 /* 13669 * Find an IPIF based on the name passed in. Names can be of the form <phys> 13670 * (e.g., le0) or <phys>:<#> (e.g., le0:1). When there is no colon, the 13671 * implied unit id is zero. <phys> must correspond to the name of an ILL. 13672 * (May be called as writer.) 13673 */ 13674 static ipif_t * 13675 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 13676 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, ip_stack_t *ipst) 13677 { 13678 char *cp; 13679 char *endp; 13680 long id; 13681 ill_t *ill; 13682 ipif_t *ipif; 13683 uint_t ire_type; 13684 boolean_t did_alloc = B_FALSE; 13685 char last; 13686 13687 /* 13688 * If the caller wants to us to create the ipif, make sure we have a 13689 * valid zoneid 13690 */ 13691 ASSERT(!do_alloc || zoneid != ALL_ZONES); 13692 13693 if (namelen == 0) { 13694 return (NULL); 13695 } 13696 13697 *exists = B_FALSE; 13698 /* Look for a colon in the name. */ 13699 endp = &name[namelen]; 13700 for (cp = endp; --cp > name; ) { 13701 if (*cp == IPIF_SEPARATOR_CHAR) 13702 break; 13703 } 13704 13705 if (*cp == IPIF_SEPARATOR_CHAR) { 13706 /* 13707 * Reject any non-decimal aliases for logical 13708 * interfaces. Aliases with leading zeroes 13709 * are also rejected as they introduce ambiguity 13710 * in the naming of the interfaces. 13711 * In order to confirm with existing semantics, 13712 * and to not break any programs/script relying 13713 * on that behaviour, if<0>:0 is considered to be 13714 * a valid interface. 13715 * 13716 * If alias has two or more digits and the first 13717 * is zero, fail. 13718 */ 13719 if (&cp[2] < endp && cp[1] == '0') { 13720 return (NULL); 13721 } 13722 } 13723 13724 if (cp <= name) { 13725 cp = endp; 13726 } 13727 last = *cp; 13728 *cp = '\0'; 13729 13730 /* 13731 * Look up the ILL, based on the portion of the name 13732 * before the slash. ill_lookup_on_name returns a held ill. 13733 * Temporary to check whether ill exists already. If so 13734 * ill_lookup_on_name will clear it. 13735 */ 13736 ill = ill_lookup_on_name(name, do_alloc, isv6, 13737 &did_alloc, ipst); 13738 *cp = last; 13739 if (ill == NULL) 13740 return (NULL); 13741 13742 /* Establish the unit number in the name. */ 13743 id = 0; 13744 if (cp < endp && *endp == '\0') { 13745 /* If there was a colon, the unit number follows. */ 13746 cp++; 13747 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 13748 ill_refrele(ill); 13749 return (NULL); 13750 } 13751 } 13752 13753 mutex_enter(&ill->ill_lock); 13754 /* Now see if there is an IPIF with this unit number. */ 13755 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13756 if (ipif->ipif_id == id) { 13757 if (zoneid != ALL_ZONES && 13758 zoneid != ipif->ipif_zoneid && 13759 ipif->ipif_zoneid != ALL_ZONES) { 13760 mutex_exit(&ill->ill_lock); 13761 ill_refrele(ill); 13762 return (NULL); 13763 } 13764 if (IPIF_CAN_LOOKUP(ipif)) { 13765 ipif_refhold_locked(ipif); 13766 mutex_exit(&ill->ill_lock); 13767 if (!did_alloc) 13768 *exists = B_TRUE; 13769 /* 13770 * Drop locks before calling ill_refrele 13771 * since it can potentially call into 13772 * ipif_ill_refrele_tail which can end up 13773 * in trying to acquire any lock. 13774 */ 13775 ill_refrele(ill); 13776 return (ipif); 13777 } 13778 } 13779 } 13780 13781 if (!do_alloc) { 13782 mutex_exit(&ill->ill_lock); 13783 ill_refrele(ill); 13784 return (NULL); 13785 } 13786 13787 /* 13788 * If none found, atomically allocate and return a new one. 13789 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 13790 * to support "receive only" use of lo0:1 etc. as is still done 13791 * below as an initial guess. 13792 * However, this is now likely to be overriden later in ipif_up_done() 13793 * when we know for sure what address has been configured on the 13794 * interface, since we might have more than one loopback interface 13795 * with a loopback address, e.g. in the case of zones, and all the 13796 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 13797 */ 13798 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 13799 ire_type = IRE_LOOPBACK; 13800 else 13801 ire_type = IRE_LOCAL; 13802 ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE, NULL); 13803 if (ipif != NULL) 13804 ipif_refhold_locked(ipif); 13805 mutex_exit(&ill->ill_lock); 13806 ill_refrele(ill); 13807 return (ipif); 13808 } 13809 13810 /* 13811 * Variant of the above that queues the request on the ipsq when 13812 * IPIF_CHANGING is set. 13813 */ 13814 static ipif_t * 13815 ipif_lookup_on_name_async(char *name, size_t namelen, boolean_t isv6, 13816 zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, 13817 ip_stack_t *ipst) 13818 { 13819 char *cp; 13820 char *endp; 13821 long id; 13822 ill_t *ill; 13823 ipif_t *ipif; 13824 boolean_t did_alloc = B_FALSE; 13825 ipsq_t *ipsq; 13826 13827 if (error != NULL) 13828 *error = 0; 13829 13830 if (namelen == 0) { 13831 if (error != NULL) 13832 *error = ENXIO; 13833 return (NULL); 13834 } 13835 13836 /* Look for a colon in the name. */ 13837 endp = &name[namelen]; 13838 for (cp = endp; --cp > name; ) { 13839 if (*cp == IPIF_SEPARATOR_CHAR) 13840 break; 13841 } 13842 13843 if (*cp == IPIF_SEPARATOR_CHAR) { 13844 /* 13845 * Reject any non-decimal aliases for logical 13846 * interfaces. Aliases with leading zeroes 13847 * are also rejected as they introduce ambiguity 13848 * in the naming of the interfaces. 13849 * In order to confirm with existing semantics, 13850 * and to not break any programs/script relying 13851 * on that behaviour, if<0>:0 is considered to be 13852 * a valid interface. 13853 * 13854 * If alias has two or more digits and the first 13855 * is zero, fail. 13856 */ 13857 if (&cp[2] < endp && cp[1] == '0') { 13858 if (error != NULL) 13859 *error = EINVAL; 13860 return (NULL); 13861 } 13862 } 13863 13864 if (cp <= name) { 13865 cp = endp; 13866 } else { 13867 *cp = '\0'; 13868 } 13869 13870 /* 13871 * Look up the ILL, based on the portion of the name 13872 * before the slash. ill_lookup_on_name returns a held ill. 13873 * Temporary to check whether ill exists already. If so 13874 * ill_lookup_on_name will clear it. 13875 */ 13876 ill = ill_lookup_on_name(name, B_FALSE, isv6, &did_alloc, ipst); 13877 if (cp != endp) 13878 *cp = IPIF_SEPARATOR_CHAR; 13879 if (ill == NULL) 13880 return (NULL); 13881 13882 /* Establish the unit number in the name. */ 13883 id = 0; 13884 if (cp < endp && *endp == '\0') { 13885 /* If there was a colon, the unit number follows. */ 13886 cp++; 13887 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 13888 ill_refrele(ill); 13889 if (error != NULL) 13890 *error = ENXIO; 13891 return (NULL); 13892 } 13893 } 13894 13895 GRAB_CONN_LOCK(q); 13896 mutex_enter(&ill->ill_lock); 13897 /* Now see if there is an IPIF with this unit number. */ 13898 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13899 if (ipif->ipif_id == id) { 13900 if (zoneid != ALL_ZONES && 13901 zoneid != ipif->ipif_zoneid && 13902 ipif->ipif_zoneid != ALL_ZONES) { 13903 mutex_exit(&ill->ill_lock); 13904 RELEASE_CONN_LOCK(q); 13905 ill_refrele(ill); 13906 if (error != NULL) 13907 *error = ENXIO; 13908 return (NULL); 13909 } 13910 13911 if (!(IPIF_IS_CHANGING(ipif) || 13912 IPIF_IS_CONDEMNED(ipif)) || 13913 IAM_WRITER_IPIF(ipif)) { 13914 ipif_refhold_locked(ipif); 13915 mutex_exit(&ill->ill_lock); 13916 /* 13917 * Drop locks before calling ill_refrele 13918 * since it can potentially call into 13919 * ipif_ill_refrele_tail which can end up 13920 * in trying to acquire any lock. 13921 */ 13922 RELEASE_CONN_LOCK(q); 13923 ill_refrele(ill); 13924 return (ipif); 13925 } else if (q != NULL && !IPIF_IS_CONDEMNED(ipif)) { 13926 ipsq = ill->ill_phyint->phyint_ipsq; 13927 mutex_enter(&ipsq->ipsq_lock); 13928 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 13929 mutex_exit(&ill->ill_lock); 13930 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 13931 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 13932 mutex_exit(&ipsq->ipsq_lock); 13933 RELEASE_CONN_LOCK(q); 13934 ill_refrele(ill); 13935 if (error != NULL) 13936 *error = EINPROGRESS; 13937 return (NULL); 13938 } 13939 } 13940 } 13941 RELEASE_CONN_LOCK(q); 13942 mutex_exit(&ill->ill_lock); 13943 ill_refrele(ill); 13944 if (error != NULL) 13945 *error = ENXIO; 13946 return (NULL); 13947 } 13948 13949 /* 13950 * This routine is called whenever a new address comes up on an ipif. If 13951 * we are configured to respond to address mask requests, then we are supposed 13952 * to broadcast an address mask reply at this time. This routine is also 13953 * called if we are already up, but a netmask change is made. This is legal 13954 * but might not make the system manager very popular. (May be called 13955 * as writer.) 13956 */ 13957 void 13958 ipif_mask_reply(ipif_t *ipif) 13959 { 13960 icmph_t *icmph; 13961 ipha_t *ipha; 13962 mblk_t *mp; 13963 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13964 ip_xmit_attr_t ixas; 13965 13966 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 13967 13968 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 13969 return; 13970 13971 /* ICMP mask reply is IPv4 only */ 13972 ASSERT(!ipif->ipif_isv6); 13973 /* ICMP mask reply is not for a loopback interface */ 13974 ASSERT(ipif->ipif_ill->ill_wq != NULL); 13975 13976 if (ipif->ipif_lcl_addr == INADDR_ANY) 13977 return; 13978 13979 mp = allocb(REPLY_LEN, BPRI_HI); 13980 if (mp == NULL) 13981 return; 13982 mp->b_wptr = mp->b_rptr + REPLY_LEN; 13983 13984 ipha = (ipha_t *)mp->b_rptr; 13985 bzero(ipha, REPLY_LEN); 13986 *ipha = icmp_ipha; 13987 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 13988 ipha->ipha_src = ipif->ipif_lcl_addr; 13989 ipha->ipha_dst = ipif->ipif_brd_addr; 13990 ipha->ipha_length = htons(REPLY_LEN); 13991 ipha->ipha_ident = 0; 13992 13993 icmph = (icmph_t *)&ipha[1]; 13994 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 13995 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 13996 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 13997 13998 bzero(&ixas, sizeof (ixas)); 13999 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 14000 ixas.ixa_zoneid = ALL_ZONES; 14001 ixas.ixa_ifindex = 0; 14002 ixas.ixa_ipst = ipst; 14003 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 14004 (void) ip_output_simple(mp, &ixas); 14005 ixa_cleanup(&ixas); 14006 #undef REPLY_LEN 14007 } 14008 14009 /* 14010 * Join the ipif specific multicast groups. 14011 * Must be called after a mapping has been set up in the resolver. (Always 14012 * called as writer.) 14013 */ 14014 void 14015 ipif_multicast_up(ipif_t *ipif) 14016 { 14017 int err; 14018 ill_t *ill; 14019 ilm_t *ilm; 14020 14021 ASSERT(IAM_WRITER_IPIF(ipif)); 14022 14023 ill = ipif->ipif_ill; 14024 14025 ip1dbg(("ipif_multicast_up\n")); 14026 if (!(ill->ill_flags & ILLF_MULTICAST) || 14027 ipif->ipif_allhosts_ilm != NULL) 14028 return; 14029 14030 if (ipif->ipif_isv6) { 14031 in6_addr_t v6allmc = ipv6_all_hosts_mcast; 14032 in6_addr_t v6solmc = ipv6_solicited_node_mcast; 14033 14034 v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 14035 14036 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 14037 return; 14038 14039 ip1dbg(("ipif_multicast_up - addmulti\n")); 14040 14041 /* 14042 * Join the all hosts multicast address. We skip this for 14043 * underlying IPMP interfaces since they should be invisible. 14044 */ 14045 if (!IS_UNDER_IPMP(ill)) { 14046 ilm = ip_addmulti(&v6allmc, ill, ipif->ipif_zoneid, 14047 &err); 14048 if (ilm == NULL) { 14049 ASSERT(err != 0); 14050 ip0dbg(("ipif_multicast_up: " 14051 "all_hosts_mcast failed %d\n", err)); 14052 return; 14053 } 14054 ipif->ipif_allhosts_ilm = ilm; 14055 } 14056 14057 /* 14058 * Enable multicast for the solicited node multicast address. 14059 * If IPMP we need to put the membership on the upper ill. 14060 */ 14061 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 14062 ill_t *mcast_ill = NULL; 14063 boolean_t need_refrele; 14064 14065 if (IS_UNDER_IPMP(ill) && 14066 (mcast_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) { 14067 need_refrele = B_TRUE; 14068 } else { 14069 mcast_ill = ill; 14070 need_refrele = B_FALSE; 14071 } 14072 14073 ilm = ip_addmulti(&v6solmc, mcast_ill, 14074 ipif->ipif_zoneid, &err); 14075 if (need_refrele) 14076 ill_refrele(mcast_ill); 14077 14078 if (ilm == NULL) { 14079 ASSERT(err != 0); 14080 ip0dbg(("ipif_multicast_up: solicited MC" 14081 " failed %d\n", err)); 14082 if ((ilm = ipif->ipif_allhosts_ilm) != NULL) { 14083 ipif->ipif_allhosts_ilm = NULL; 14084 (void) ip_delmulti(ilm); 14085 } 14086 return; 14087 } 14088 ipif->ipif_solmulti_ilm = ilm; 14089 } 14090 } else { 14091 in6_addr_t v6group; 14092 14093 if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill)) 14094 return; 14095 14096 /* Join the all hosts multicast address */ 14097 ip1dbg(("ipif_multicast_up - addmulti\n")); 14098 IN6_IPADDR_TO_V4MAPPED(htonl(INADDR_ALLHOSTS_GROUP), &v6group); 14099 14100 ilm = ip_addmulti(&v6group, ill, ipif->ipif_zoneid, &err); 14101 if (ilm == NULL) { 14102 ASSERT(err != 0); 14103 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 14104 return; 14105 } 14106 ipif->ipif_allhosts_ilm = ilm; 14107 } 14108 } 14109 14110 /* 14111 * Blow away any multicast groups that we joined in ipif_multicast_up(). 14112 * (ilms from explicit memberships are handled in conn_update_ill.) 14113 */ 14114 void 14115 ipif_multicast_down(ipif_t *ipif) 14116 { 14117 ASSERT(IAM_WRITER_IPIF(ipif)); 14118 14119 ip1dbg(("ipif_multicast_down\n")); 14120 14121 if (ipif->ipif_allhosts_ilm != NULL) { 14122 (void) ip_delmulti(ipif->ipif_allhosts_ilm); 14123 ipif->ipif_allhosts_ilm = NULL; 14124 } 14125 if (ipif->ipif_solmulti_ilm != NULL) { 14126 (void) ip_delmulti(ipif->ipif_solmulti_ilm); 14127 ipif->ipif_solmulti_ilm = NULL; 14128 } 14129 } 14130 14131 /* 14132 * Used when an interface comes up to recreate any extra routes on this 14133 * interface. 14134 */ 14135 int 14136 ill_recover_saved_ire(ill_t *ill) 14137 { 14138 mblk_t *mp; 14139 ip_stack_t *ipst = ill->ill_ipst; 14140 14141 ip1dbg(("ill_recover_saved_ire(%s)", ill->ill_name)); 14142 14143 mutex_enter(&ill->ill_saved_ire_lock); 14144 for (mp = ill->ill_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 14145 ire_t *ire, *nire; 14146 ifrt_t *ifrt; 14147 14148 ifrt = (ifrt_t *)mp->b_rptr; 14149 /* 14150 * Create a copy of the IRE with the saved address and netmask. 14151 */ 14152 if (ill->ill_isv6) { 14153 ire = ire_create_v6( 14154 &ifrt->ifrt_v6addr, 14155 &ifrt->ifrt_v6mask, 14156 &ifrt->ifrt_v6gateway_addr, 14157 ifrt->ifrt_type, 14158 ill, 14159 ifrt->ifrt_zoneid, 14160 ifrt->ifrt_flags, 14161 NULL, 14162 ipst); 14163 } else { 14164 ire = ire_create( 14165 (uint8_t *)&ifrt->ifrt_addr, 14166 (uint8_t *)&ifrt->ifrt_mask, 14167 (uint8_t *)&ifrt->ifrt_gateway_addr, 14168 ifrt->ifrt_type, 14169 ill, 14170 ifrt->ifrt_zoneid, 14171 ifrt->ifrt_flags, 14172 NULL, 14173 ipst); 14174 } 14175 if (ire == NULL) { 14176 mutex_exit(&ill->ill_saved_ire_lock); 14177 return (ENOMEM); 14178 } 14179 14180 if (ifrt->ifrt_flags & RTF_SETSRC) { 14181 if (ill->ill_isv6) { 14182 ire->ire_setsrc_addr_v6 = 14183 ifrt->ifrt_v6setsrc_addr; 14184 } else { 14185 ire->ire_setsrc_addr = ifrt->ifrt_setsrc_addr; 14186 } 14187 } 14188 14189 /* 14190 * Some software (for example, GateD and Sun Cluster) attempts 14191 * to create (what amount to) IRE_PREFIX routes with the 14192 * loopback address as the gateway. This is primarily done to 14193 * set up prefixes with the RTF_REJECT flag set (for example, 14194 * when generating aggregate routes.) 14195 * 14196 * If the IRE type (as defined by ill->ill_net_type) is 14197 * IRE_LOOPBACK, then we map the request into a 14198 * IRE_IF_NORESOLVER. 14199 */ 14200 if (ill->ill_net_type == IRE_LOOPBACK) 14201 ire->ire_type = IRE_IF_NORESOLVER; 14202 14203 /* 14204 * ire held by ire_add, will be refreled' towards the 14205 * the end of ipif_up_done 14206 */ 14207 nire = ire_add(ire); 14208 /* 14209 * Check if it was a duplicate entry. This handles 14210 * the case of two racing route adds for the same route 14211 */ 14212 if (nire == NULL) { 14213 ip1dbg(("ill_recover_saved_ire: FAILED\n")); 14214 } else if (nire != ire) { 14215 ip1dbg(("ill_recover_saved_ire: duplicate ire %p\n", 14216 (void *)nire)); 14217 ire_delete(nire); 14218 } else { 14219 ip1dbg(("ill_recover_saved_ire: added ire %p\n", 14220 (void *)nire)); 14221 } 14222 if (nire != NULL) 14223 ire_refrele(nire); 14224 } 14225 mutex_exit(&ill->ill_saved_ire_lock); 14226 return (0); 14227 } 14228 14229 /* 14230 * Used to set the netmask and broadcast address to default values when the 14231 * interface is brought up. (Always called as writer.) 14232 */ 14233 static void 14234 ipif_set_default(ipif_t *ipif) 14235 { 14236 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 14237 14238 if (!ipif->ipif_isv6) { 14239 /* 14240 * Interface holds an IPv4 address. Default 14241 * mask is the natural netmask. 14242 */ 14243 if (!ipif->ipif_net_mask) { 14244 ipaddr_t v4mask; 14245 14246 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 14247 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 14248 } 14249 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14250 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14251 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 14252 } else { 14253 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 14254 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 14255 } 14256 /* 14257 * NOTE: SunOS 4.X does this even if the broadcast address 14258 * has been already set thus we do the same here. 14259 */ 14260 if (ipif->ipif_flags & IPIF_BROADCAST) { 14261 ipaddr_t v4addr; 14262 14263 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 14264 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 14265 } 14266 } else { 14267 /* 14268 * Interface holds an IPv6-only address. Default 14269 * mask is all-ones. 14270 */ 14271 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 14272 ipif->ipif_v6net_mask = ipv6_all_ones; 14273 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14274 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14275 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 14276 } else { 14277 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 14278 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 14279 } 14280 } 14281 } 14282 14283 /* 14284 * Return 0 if this address can be used as local address without causing 14285 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 14286 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 14287 * Note that the same IPv6 link-local address is allowed as long as the ills 14288 * are not on the same link. 14289 */ 14290 int 14291 ip_addr_availability_check(ipif_t *new_ipif) 14292 { 14293 in6_addr_t our_v6addr; 14294 ill_t *ill; 14295 ipif_t *ipif; 14296 ill_walk_context_t ctx; 14297 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 14298 14299 ASSERT(IAM_WRITER_IPIF(new_ipif)); 14300 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 14301 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 14302 14303 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 14304 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 14305 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 14306 return (0); 14307 14308 our_v6addr = new_ipif->ipif_v6lcl_addr; 14309 14310 if (new_ipif->ipif_isv6) 14311 ill = ILL_START_WALK_V6(&ctx, ipst); 14312 else 14313 ill = ILL_START_WALK_V4(&ctx, ipst); 14314 14315 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 14316 for (ipif = ill->ill_ipif; ipif != NULL; 14317 ipif = ipif->ipif_next) { 14318 if ((ipif == new_ipif) || 14319 !(ipif->ipif_flags & IPIF_UP) || 14320 (ipif->ipif_flags & IPIF_UNNUMBERED) || 14321 !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 14322 &our_v6addr)) 14323 continue; 14324 14325 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 14326 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 14327 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 14328 ipif->ipif_flags |= IPIF_UNNUMBERED; 14329 else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) || 14330 IN6_IS_ADDR_SITELOCAL(&our_v6addr)) && 14331 !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill)) 14332 continue; 14333 else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid && 14334 ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill)) 14335 continue; 14336 else if (new_ipif->ipif_ill == ill) 14337 return (EADDRINUSE); 14338 else 14339 return (EADDRNOTAVAIL); 14340 } 14341 } 14342 14343 return (0); 14344 } 14345 14346 /* 14347 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 14348 * IREs for the ipif. 14349 * When the routine returns EINPROGRESS then mp has been consumed and 14350 * the ioctl will be acked from ip_rput_dlpi. 14351 */ 14352 int 14353 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 14354 { 14355 ill_t *ill = ipif->ipif_ill; 14356 boolean_t isv6 = ipif->ipif_isv6; 14357 int err = 0; 14358 boolean_t success; 14359 uint_t ipif_orig_id; 14360 ip_stack_t *ipst = ill->ill_ipst; 14361 14362 ASSERT(IAM_WRITER_IPIF(ipif)); 14363 14364 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 14365 DTRACE_PROBE3(ipif__downup, char *, "ipif_up", 14366 ill_t *, ill, ipif_t *, ipif); 14367 14368 /* Shouldn't get here if it is already up. */ 14369 if (ipif->ipif_flags & IPIF_UP) 14370 return (EALREADY); 14371 14372 /* 14373 * If this is a request to bring up a data address on an interface 14374 * under IPMP, then move the address to its IPMP meta-interface and 14375 * try to bring it up. One complication is that the zeroth ipif for 14376 * an ill is special, in that every ill always has one, and that code 14377 * throughout IP deferences ill->ill_ipif without holding any locks. 14378 */ 14379 if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) && 14380 (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) { 14381 ipif_t *stubipif = NULL, *moveipif = NULL; 14382 ill_t *ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); 14383 14384 /* 14385 * The ipif being brought up should be quiesced. If it's not, 14386 * something has gone amiss and we need to bail out. (If it's 14387 * quiesced, we know it will remain so via IPIF_CONDEMNED.) 14388 */ 14389 mutex_enter(&ill->ill_lock); 14390 if (!ipif_is_quiescent(ipif)) { 14391 mutex_exit(&ill->ill_lock); 14392 return (EINVAL); 14393 } 14394 mutex_exit(&ill->ill_lock); 14395 14396 /* 14397 * If we're going to need to allocate ipifs, do it prior 14398 * to starting the move (and grabbing locks). 14399 */ 14400 if (ipif->ipif_id == 0) { 14401 if ((moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 14402 B_FALSE, &err)) == NULL) { 14403 return (err); 14404 } 14405 if ((stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 14406 B_FALSE, &err)) == NULL) { 14407 mi_free(moveipif); 14408 return (err); 14409 } 14410 } 14411 14412 /* 14413 * Grab or transfer the ipif to move. During the move, keep 14414 * ill_g_lock held to prevent any ill walker threads from 14415 * seeing things in an inconsistent state. 14416 */ 14417 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14418 if (ipif->ipif_id != 0) { 14419 ipif_remove(ipif); 14420 } else { 14421 ipif_transfer(ipif, moveipif, stubipif); 14422 ipif = moveipif; 14423 } 14424 14425 /* 14426 * Place the ipif on the IPMP ill. If the zeroth ipif on 14427 * the IPMP ill is a stub (0.0.0.0 down address) then we 14428 * replace that one. Otherwise, pick the next available slot. 14429 */ 14430 ipif->ipif_ill = ipmp_ill; 14431 ipif_orig_id = ipif->ipif_id; 14432 14433 if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) { 14434 ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL); 14435 ipif = ipmp_ill->ill_ipif; 14436 } else { 14437 ipif->ipif_id = -1; 14438 if ((err = ipif_insert(ipif, B_FALSE)) != 0) { 14439 /* 14440 * No more available ipif_id's -- put it back 14441 * on the original ill and fail the operation. 14442 * Since we're writer on the ill, we can be 14443 * sure our old slot is still available. 14444 */ 14445 ipif->ipif_id = ipif_orig_id; 14446 ipif->ipif_ill = ill; 14447 if (ipif_orig_id == 0) { 14448 ipif_transfer(ipif, ill->ill_ipif, 14449 NULL); 14450 } else { 14451 VERIFY(ipif_insert(ipif, B_FALSE) == 0); 14452 } 14453 rw_exit(&ipst->ips_ill_g_lock); 14454 return (err); 14455 } 14456 } 14457 rw_exit(&ipst->ips_ill_g_lock); 14458 14459 /* 14460 * Tell SCTP that the ipif has moved. Note that even if we 14461 * had to allocate a new ipif, the original sequence id was 14462 * preserved and therefore SCTP won't know. 14463 */ 14464 sctp_move_ipif(ipif, ill, ipmp_ill); 14465 14466 /* 14467 * If the ipif being brought up was on slot zero, then we 14468 * first need to bring up the placeholder we stuck there. In 14469 * ip_rput_dlpi_writer(), arp_bringup_done(), or the recursive 14470 * call to ipif_up() itself, if we successfully bring up the 14471 * placeholder, we'll check ill_move_ipif and bring it up too. 14472 */ 14473 if (ipif_orig_id == 0) { 14474 ASSERT(ill->ill_move_ipif == NULL); 14475 ill->ill_move_ipif = ipif; 14476 if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0) 14477 ASSERT(ill->ill_move_ipif == NULL); 14478 if (err != EINPROGRESS) 14479 ill->ill_move_ipif = NULL; 14480 return (err); 14481 } 14482 14483 /* 14484 * Bring it up on the IPMP ill. 14485 */ 14486 return (ipif_up(ipif, q, mp)); 14487 } 14488 14489 /* Skip arp/ndp for any loopback interface. */ 14490 if (ill->ill_wq != NULL) { 14491 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 14492 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 14493 14494 if (!ill->ill_dl_up) { 14495 /* 14496 * ill_dl_up is not yet set. i.e. we are yet to 14497 * DL_BIND with the driver and this is the first 14498 * logical interface on the ill to become "up". 14499 * Tell the driver to get going (via DL_BIND_REQ). 14500 * Note that changing "significant" IFF_ flags 14501 * address/netmask etc cause a down/up dance, but 14502 * does not cause an unbind (DL_UNBIND) with the driver 14503 */ 14504 return (ill_dl_up(ill, ipif, mp, q)); 14505 } 14506 14507 /* 14508 * ipif_resolver_up may end up needeing to bind/attach 14509 * the ARP stream, which in turn necessitates a 14510 * DLPI message exchange with the driver. ioctls are 14511 * serialized and so we cannot send more than one 14512 * interface up message at a time. If ipif_resolver_up 14513 * does need to wait for the DLPI handshake for the ARP stream, 14514 * we get EINPROGRESS and we will complete in arp_bringup_done. 14515 */ 14516 14517 ASSERT(connp != NULL || !CONN_Q(q)); 14518 if (connp != NULL) 14519 mutex_enter(&connp->conn_lock); 14520 mutex_enter(&ill->ill_lock); 14521 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 14522 mutex_exit(&ill->ill_lock); 14523 if (connp != NULL) 14524 mutex_exit(&connp->conn_lock); 14525 if (!success) 14526 return (EINTR); 14527 14528 /* 14529 * Crank up IPv6 neighbor discovery. Unlike ARP, this should 14530 * complete when ipif_ndp_up returns. 14531 */ 14532 err = ipif_resolver_up(ipif, Res_act_initial); 14533 if (err == EINPROGRESS) { 14534 /* We will complete it in arp_bringup_done() */ 14535 return (err); 14536 } 14537 14538 if (isv6 && err == 0) 14539 err = ipif_ndp_up(ipif, B_TRUE); 14540 14541 ASSERT(err != EINPROGRESS); 14542 mp = ipsq_pending_mp_get(ipsq, &connp); 14543 ASSERT(mp != NULL); 14544 if (err != 0) 14545 return (err); 14546 } else { 14547 /* 14548 * Interfaces without underlying hardware don't do duplicate 14549 * address detection. 14550 */ 14551 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 14552 ipif->ipif_addr_ready = 1; 14553 err = ill_add_ires(ill); 14554 /* allocation failure? */ 14555 if (err != 0) 14556 return (err); 14557 } 14558 14559 err = (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 14560 if (err == 0 && ill->ill_move_ipif != NULL) { 14561 ipif = ill->ill_move_ipif; 14562 ill->ill_move_ipif = NULL; 14563 return (ipif_up(ipif, q, mp)); 14564 } 14565 return (err); 14566 } 14567 14568 /* 14569 * Add any IREs tied to the ill. For now this is just an IRE_MULTICAST. 14570 * The identical set of IREs need to be removed in ill_delete_ires(). 14571 */ 14572 int 14573 ill_add_ires(ill_t *ill) 14574 { 14575 ire_t *ire; 14576 in6_addr_t dummy6 = {(uint32_t)V6_MCAST, 0, 0, 1}; 14577 in_addr_t dummy4 = htonl(INADDR_ALLHOSTS_GROUP); 14578 14579 if (ill->ill_ire_multicast != NULL) 14580 return (0); 14581 14582 /* 14583 * provide some dummy ire_addr for creating the ire. 14584 */ 14585 if (ill->ill_isv6) { 14586 ire = ire_create_v6(&dummy6, 0, 0, IRE_MULTICAST, ill, 14587 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14588 } else { 14589 ire = ire_create((uchar_t *)&dummy4, 0, 0, IRE_MULTICAST, ill, 14590 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14591 } 14592 if (ire == NULL) 14593 return (ENOMEM); 14594 14595 ill->ill_ire_multicast = ire; 14596 return (0); 14597 } 14598 14599 void 14600 ill_delete_ires(ill_t *ill) 14601 { 14602 if (ill->ill_ire_multicast != NULL) { 14603 /* 14604 * BIND/ATTACH completed; Release the ref for ill_ire_multicast 14605 * which was taken without any th_tracing enabled. 14606 * We also mark it as condemned (note that it was never added) 14607 * so that caching conn's can move off of it. 14608 */ 14609 ire_make_condemned(ill->ill_ire_multicast); 14610 ire_refrele_notr(ill->ill_ire_multicast); 14611 ill->ill_ire_multicast = NULL; 14612 } 14613 } 14614 14615 /* 14616 * Perform a bind for the physical device. 14617 * When the routine returns EINPROGRESS then mp has been consumed and 14618 * the ioctl will be acked from ip_rput_dlpi. 14619 * Allocate an unbind message and save it until ipif_down. 14620 */ 14621 static int 14622 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 14623 { 14624 mblk_t *bind_mp = NULL; 14625 mblk_t *unbind_mp = NULL; 14626 conn_t *connp; 14627 boolean_t success; 14628 int err; 14629 14630 DTRACE_PROBE2(ill__downup, char *, "ill_dl_up", ill_t *, ill); 14631 14632 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 14633 ASSERT(IAM_WRITER_ILL(ill)); 14634 ASSERT(mp != NULL); 14635 14636 /* 14637 * Make sure we have an IRE_MULTICAST in case we immediately 14638 * start receiving packets. 14639 */ 14640 err = ill_add_ires(ill); 14641 if (err != 0) 14642 goto bad; 14643 14644 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 14645 DL_BIND_REQ); 14646 if (bind_mp == NULL) 14647 goto bad; 14648 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 14649 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 14650 14651 /* 14652 * ill_unbind_mp would be non-null if the following sequence had 14653 * happened: 14654 * - send DL_BIND_REQ to driver, wait for response 14655 * - multiple ioctls that need to bring the ipif up are encountered, 14656 * but they cannot enter the ipsq due to the outstanding DL_BIND_REQ. 14657 * These ioctls will then be enqueued on the ipsq 14658 * - a DL_ERROR_ACK is returned for the DL_BIND_REQ 14659 * At this point, the pending ioctls in the ipsq will be drained, and 14660 * since ill->ill_dl_up was not set, ill_dl_up would be invoked with 14661 * a non-null ill->ill_unbind_mp 14662 */ 14663 if (ill->ill_unbind_mp == NULL) { 14664 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), 14665 DL_UNBIND_REQ); 14666 if (unbind_mp == NULL) 14667 goto bad; 14668 } 14669 /* 14670 * Record state needed to complete this operation when the 14671 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 14672 */ 14673 connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 14674 ASSERT(connp != NULL || !CONN_Q(q)); 14675 GRAB_CONN_LOCK(q); 14676 mutex_enter(&ipif->ipif_ill->ill_lock); 14677 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 14678 mutex_exit(&ipif->ipif_ill->ill_lock); 14679 RELEASE_CONN_LOCK(q); 14680 if (!success) 14681 goto bad; 14682 14683 /* 14684 * Save the unbind message for ill_dl_down(); it will be consumed when 14685 * the interface goes down. 14686 */ 14687 if (ill->ill_unbind_mp == NULL) 14688 ill->ill_unbind_mp = unbind_mp; 14689 14690 ill_dlpi_send(ill, bind_mp); 14691 /* Send down link-layer capabilities probe if not already done. */ 14692 ill_capability_probe(ill); 14693 14694 /* 14695 * Sysid used to rely on the fact that netboots set domainname 14696 * and the like. Now that miniroot boots aren't strictly netboots 14697 * and miniroot network configuration is driven from userland 14698 * these things still need to be set. This situation can be detected 14699 * by comparing the interface being configured here to the one 14700 * dhcifname was set to reference by the boot loader. Once sysid is 14701 * converted to use dhcp_ipc_getinfo() this call can go away. 14702 */ 14703 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 14704 (strcmp(ill->ill_name, dhcifname) == 0) && 14705 (strlen(srpc_domain) == 0)) { 14706 if (dhcpinit() != 0) 14707 cmn_err(CE_WARN, "no cached dhcp response"); 14708 } 14709 14710 /* 14711 * This operation will complete in ip_rput_dlpi with either 14712 * a DL_BIND_ACK or DL_ERROR_ACK. 14713 */ 14714 return (EINPROGRESS); 14715 bad: 14716 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 14717 14718 freemsg(bind_mp); 14719 freemsg(unbind_mp); 14720 return (ENOMEM); 14721 } 14722 14723 /* Add room for tcp+ip headers */ 14724 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 14725 14726 /* 14727 * DLPI and ARP is up. 14728 * Create all the IREs associated with an interface. Bring up multicast. 14729 * Set the interface flag and finish other initialization 14730 * that potentially had to be deferred to after DL_BIND_ACK. 14731 */ 14732 int 14733 ipif_up_done(ipif_t *ipif) 14734 { 14735 ill_t *ill = ipif->ipif_ill; 14736 int err = 0; 14737 boolean_t loopback = B_FALSE; 14738 boolean_t update_src_selection = B_TRUE; 14739 ipif_t *tmp_ipif; 14740 14741 ip1dbg(("ipif_up_done(%s:%u)\n", 14742 ipif->ipif_ill->ill_name, ipif->ipif_id)); 14743 DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done", 14744 ill_t *, ill, ipif_t *, ipif); 14745 14746 /* Check if this is a loopback interface */ 14747 if (ipif->ipif_ill->ill_wq == NULL) 14748 loopback = B_TRUE; 14749 14750 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 14751 14752 /* 14753 * If all other interfaces for this ill are down or DEPRECATED, 14754 * or otherwise unsuitable for source address selection, 14755 * reset the src generation numbers to make sure source 14756 * address selection gets to take this new ipif into account. 14757 * No need to hold ill_lock while traversing the ipif list since 14758 * we are writer 14759 */ 14760 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 14761 tmp_ipif = tmp_ipif->ipif_next) { 14762 if (((tmp_ipif->ipif_flags & 14763 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 14764 !(tmp_ipif->ipif_flags & IPIF_UP)) || 14765 (tmp_ipif == ipif)) 14766 continue; 14767 /* first useable pre-existing interface */ 14768 update_src_selection = B_FALSE; 14769 break; 14770 } 14771 if (update_src_selection) 14772 ip_update_source_selection(ill->ill_ipst); 14773 14774 if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) { 14775 nce_t *loop_nce = NULL; 14776 uint16_t flags = (NCE_F_MYADDR | NCE_F_AUTHORITY | NCE_F_NONUD); 14777 14778 /* 14779 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 14780 * ipif_lookup_on_name(), but in the case of zones we can have 14781 * several loopback addresses on lo0. So all the interfaces with 14782 * loopback addresses need to be marked IRE_LOOPBACK. 14783 */ 14784 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 14785 htonl(INADDR_LOOPBACK)) 14786 ipif->ipif_ire_type = IRE_LOOPBACK; 14787 else 14788 ipif->ipif_ire_type = IRE_LOCAL; 14789 if (ill->ill_net_type != IRE_LOOPBACK) 14790 flags |= NCE_F_PUBLISH; 14791 14792 /* add unicast nce for the local addr */ 14793 err = nce_lookup_then_add_v4(ill, NULL, 14794 ill->ill_phys_addr_length, &ipif->ipif_lcl_addr, flags, 14795 ND_REACHABLE, &loop_nce); 14796 /* A shared-IP zone sees EEXIST for lo0:N */ 14797 if (err == 0 || err == EEXIST) { 14798 ipif->ipif_added_nce = 1; 14799 loop_nce->nce_ipif_cnt++; 14800 nce_refrele(loop_nce); 14801 err = 0; 14802 } else { 14803 ASSERT(loop_nce == NULL); 14804 return (err); 14805 } 14806 } 14807 14808 /* Create all the IREs associated with this interface */ 14809 err = ipif_add_ires_v4(ipif, loopback); 14810 if (err != 0) { 14811 /* 14812 * see comments about return value from 14813 * ip_addr_availability_check() in ipif_add_ires_v4(). 14814 */ 14815 if (err != EADDRINUSE) { 14816 (void) ipif_arp_down(ipif); 14817 } else { 14818 /* 14819 * Make IPMP aware of the deleted ipif so that 14820 * the needed ipmp cleanup (e.g., of ipif_bound_ill) 14821 * can be completed. Note that we do not want to 14822 * destroy the nce that was created on the ipmp_ill 14823 * for the active copy of the duplicate address in 14824 * use. 14825 */ 14826 if (IS_IPMP(ill)) 14827 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 14828 err = EADDRNOTAVAIL; 14829 } 14830 return (err); 14831 } 14832 14833 if (ill->ill_ipif_up_count == 1 && !loopback) { 14834 /* Recover any additional IREs entries for this ill */ 14835 (void) ill_recover_saved_ire(ill); 14836 } 14837 14838 if (ill->ill_need_recover_multicast) { 14839 /* 14840 * Need to recover all multicast memberships in the driver. 14841 * This had to be deferred until we had attached. The same 14842 * code exists in ipif_up_done_v6() to recover IPv6 14843 * memberships. 14844 * 14845 * Note that it would be preferable to unconditionally do the 14846 * ill_recover_multicast() in ill_dl_up(), but we cannot do 14847 * that since ill_join_allmulti() depends on ill_dl_up being 14848 * set, and it is not set until we receive a DL_BIND_ACK after 14849 * having called ill_dl_up(). 14850 */ 14851 ill_recover_multicast(ill); 14852 } 14853 14854 if (ill->ill_ipif_up_count == 1) { 14855 /* 14856 * Since the interface is now up, it may now be active. 14857 */ 14858 if (IS_UNDER_IPMP(ill)) 14859 ipmp_ill_refresh_active(ill); 14860 14861 /* 14862 * If this is an IPMP interface, we may now be able to 14863 * establish ARP entries. 14864 */ 14865 if (IS_IPMP(ill)) 14866 ipmp_illgrp_refresh_arpent(ill->ill_grp); 14867 } 14868 14869 /* Join the allhosts multicast address */ 14870 ipif_multicast_up(ipif); 14871 14872 if (!loopback && !update_src_selection && 14873 !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) 14874 ip_update_source_selection(ill->ill_ipst); 14875 14876 if (!loopback && ipif->ipif_addr_ready) { 14877 /* Broadcast an address mask reply. */ 14878 ipif_mask_reply(ipif); 14879 } 14880 /* Perhaps ilgs should use this ill */ 14881 update_conn_ill(NULL, ill->ill_ipst); 14882 14883 /* 14884 * This had to be deferred until we had bound. Tell routing sockets and 14885 * others that this interface is up if it looks like the address has 14886 * been validated. Otherwise, if it isn't ready yet, wait for 14887 * duplicate address detection to do its thing. 14888 */ 14889 if (ipif->ipif_addr_ready) 14890 ipif_up_notify(ipif); 14891 return (0); 14892 } 14893 14894 /* 14895 * Add the IREs associated with the ipif. 14896 * Those MUST be explicitly removed in ipif_delete_ires_v4. 14897 */ 14898 static int 14899 ipif_add_ires_v4(ipif_t *ipif, boolean_t loopback) 14900 { 14901 ill_t *ill = ipif->ipif_ill; 14902 ip_stack_t *ipst = ill->ill_ipst; 14903 ire_t *ire_array[20]; 14904 ire_t **irep = ire_array; 14905 ire_t **irep1; 14906 ipaddr_t net_mask = 0; 14907 ipaddr_t subnet_mask, route_mask; 14908 int err; 14909 ire_t *ire_local = NULL; /* LOCAL or LOOPBACK */ 14910 ire_t *ire_if = NULL; 14911 uchar_t *gw; 14912 14913 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14914 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14915 /* 14916 * If we're on a labeled system then make sure that zone- 14917 * private addresses have proper remote host database entries. 14918 */ 14919 if (is_system_labeled() && 14920 ipif->ipif_ire_type != IRE_LOOPBACK && 14921 !tsol_check_interface_address(ipif)) 14922 return (EINVAL); 14923 14924 /* Register the source address for __sin6_src_id */ 14925 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 14926 ipif->ipif_zoneid, ipst); 14927 if (err != 0) { 14928 ip0dbg(("ipif_add_ires: srcid_insert %d\n", err)); 14929 return (err); 14930 } 14931 14932 if (loopback) 14933 gw = (uchar_t *)&ipif->ipif_lcl_addr; 14934 else 14935 gw = NULL; 14936 14937 /* If the interface address is set, create the local IRE. */ 14938 ire_local = ire_create( 14939 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 14940 (uchar_t *)&ip_g_all_ones, /* mask */ 14941 gw, /* gateway */ 14942 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 14943 ipif->ipif_ill, 14944 ipif->ipif_zoneid, 14945 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14946 RTF_PRIVATE : 0) | RTF_KERNEL, 14947 NULL, 14948 ipst); 14949 ip1dbg(("ipif_add_ires: 0x%p creating IRE %p type 0x%x" 14950 " for 0x%x\n", (void *)ipif, (void *)ire_local, 14951 ipif->ipif_ire_type, 14952 ntohl(ipif->ipif_lcl_addr))); 14953 if (ire_local == NULL) { 14954 ip1dbg(("ipif_up_done: NULL ire_local\n")); 14955 err = ENOMEM; 14956 goto bad; 14957 } 14958 } else { 14959 ip1dbg(( 14960 "ipif_add_ires: not creating IRE %d for 0x%x: flags 0x%x\n", 14961 ipif->ipif_ire_type, 14962 ntohl(ipif->ipif_lcl_addr), 14963 (uint_t)ipif->ipif_flags)); 14964 } 14965 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14966 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14967 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14968 } else { 14969 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 14970 } 14971 14972 subnet_mask = ipif->ipif_net_mask; 14973 14974 /* 14975 * If mask was not specified, use natural netmask of 14976 * interface address. Also, store this mask back into the 14977 * ipif struct. 14978 */ 14979 if (subnet_mask == 0) { 14980 subnet_mask = net_mask; 14981 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 14982 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 14983 ipif->ipif_v6subnet); 14984 } 14985 14986 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 14987 if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) && 14988 ipif->ipif_subnet != INADDR_ANY) { 14989 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14990 14991 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14992 route_mask = IP_HOST_MASK; 14993 } else { 14994 route_mask = subnet_mask; 14995 } 14996 14997 ip1dbg(("ipif_add_ires: ipif 0x%p ill 0x%p " 14998 "creating if IRE ill_net_type 0x%x for 0x%x\n", 14999 (void *)ipif, (void *)ill, ill->ill_net_type, 15000 ntohl(ipif->ipif_subnet))); 15001 ire_if = ire_create( 15002 (uchar_t *)&ipif->ipif_subnet, 15003 (uchar_t *)&route_mask, 15004 (uchar_t *)&ipif->ipif_lcl_addr, 15005 ill->ill_net_type, 15006 ill, 15007 ipif->ipif_zoneid, 15008 ((ipif->ipif_flags & IPIF_PRIVATE) ? 15009 RTF_PRIVATE: 0) | RTF_KERNEL, 15010 NULL, 15011 ipst); 15012 if (ire_if == NULL) { 15013 ip1dbg(("ipif_up_done: NULL ire_if\n")); 15014 err = ENOMEM; 15015 goto bad; 15016 } 15017 } 15018 15019 /* 15020 * Create any necessary broadcast IREs. 15021 */ 15022 if ((ipif->ipif_flags & IPIF_BROADCAST) && 15023 !(ipif->ipif_flags & IPIF_NOXMIT)) 15024 irep = ipif_create_bcast_ires(ipif, irep); 15025 15026 /* If an earlier ire_create failed, get out now */ 15027 for (irep1 = irep; irep1 > ire_array; ) { 15028 irep1--; 15029 if (*irep1 == NULL) { 15030 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 15031 err = ENOMEM; 15032 goto bad; 15033 } 15034 } 15035 15036 /* 15037 * Need to atomically check for IP address availability under 15038 * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new 15039 * ills or new ipifs can be added while we are checking availability. 15040 */ 15041 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 15042 mutex_enter(&ipst->ips_ip_addr_avail_lock); 15043 /* Mark it up, and increment counters. */ 15044 ipif->ipif_flags |= IPIF_UP; 15045 ill->ill_ipif_up_count++; 15046 err = ip_addr_availability_check(ipif); 15047 mutex_exit(&ipst->ips_ip_addr_avail_lock); 15048 rw_exit(&ipst->ips_ill_g_lock); 15049 15050 if (err != 0) { 15051 /* 15052 * Our address may already be up on the same ill. In this case, 15053 * the ARP entry for our ipif replaced the one for the other 15054 * ipif. So we don't want to delete it (otherwise the other ipif 15055 * would be unable to send packets). 15056 * ip_addr_availability_check() identifies this case for us and 15057 * returns EADDRINUSE; Caller should turn it into EADDRNOTAVAIL 15058 * which is the expected error code. 15059 */ 15060 ill->ill_ipif_up_count--; 15061 ipif->ipif_flags &= ~IPIF_UP; 15062 goto bad; 15063 } 15064 15065 /* 15066 * Add in all newly created IREs. ire_create_bcast() has 15067 * already checked for duplicates of the IRE_BROADCAST type. 15068 * We add the IRE_INTERFACE before the IRE_LOCAL to ensure 15069 * that lookups find the IRE_LOCAL even if the IRE_INTERFACE is 15070 * a /32 route. 15071 */ 15072 if (ire_if != NULL) { 15073 ire_if = ire_add(ire_if); 15074 if (ire_if == NULL) { 15075 err = ENOMEM; 15076 goto bad2; 15077 } 15078 #ifdef DEBUG 15079 ire_refhold_notr(ire_if); 15080 ire_refrele(ire_if); 15081 #endif 15082 } 15083 if (ire_local != NULL) { 15084 ire_local = ire_add(ire_local); 15085 if (ire_local == NULL) { 15086 err = ENOMEM; 15087 goto bad2; 15088 } 15089 #ifdef DEBUG 15090 ire_refhold_notr(ire_local); 15091 ire_refrele(ire_local); 15092 #endif 15093 } 15094 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15095 if (ire_local != NULL) 15096 ipif->ipif_ire_local = ire_local; 15097 if (ire_if != NULL) 15098 ipif->ipif_ire_if = ire_if; 15099 rw_exit(&ipst->ips_ill_g_lock); 15100 ire_local = NULL; 15101 ire_if = NULL; 15102 15103 /* 15104 * We first add all of them, and if that succeeds we refrele the 15105 * bunch. That enables us to delete all of them should any of the 15106 * ire_adds fail. 15107 */ 15108 for (irep1 = irep; irep1 > ire_array; ) { 15109 irep1--; 15110 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ill->ill_lock))); 15111 *irep1 = ire_add(*irep1); 15112 if (*irep1 == NULL) { 15113 err = ENOMEM; 15114 goto bad2; 15115 } 15116 } 15117 15118 for (irep1 = irep; irep1 > ire_array; ) { 15119 irep1--; 15120 /* refheld by ire_add. */ 15121 if (*irep1 != NULL) { 15122 ire_refrele(*irep1); 15123 *irep1 = NULL; 15124 } 15125 } 15126 15127 if (!loopback) { 15128 /* 15129 * If the broadcast address has been set, make sure it makes 15130 * sense based on the interface address. 15131 * Only match on ill since we are sharing broadcast addresses. 15132 */ 15133 if ((ipif->ipif_brd_addr != INADDR_ANY) && 15134 (ipif->ipif_flags & IPIF_BROADCAST)) { 15135 ire_t *ire; 15136 15137 ire = ire_ftable_lookup_v4(ipif->ipif_brd_addr, 0, 0, 15138 IRE_BROADCAST, ipif->ipif_ill, ALL_ZONES, NULL, 15139 (MATCH_IRE_TYPE | MATCH_IRE_ILL), 0, ipst, NULL); 15140 15141 if (ire == NULL) { 15142 /* 15143 * If there isn't a matching broadcast IRE, 15144 * revert to the default for this netmask. 15145 */ 15146 ipif->ipif_v6brd_addr = ipv6_all_zeros; 15147 mutex_enter(&ipif->ipif_ill->ill_lock); 15148 ipif_set_default(ipif); 15149 mutex_exit(&ipif->ipif_ill->ill_lock); 15150 } else { 15151 ire_refrele(ire); 15152 } 15153 } 15154 15155 } 15156 return (0); 15157 15158 bad2: 15159 ill->ill_ipif_up_count--; 15160 ipif->ipif_flags &= ~IPIF_UP; 15161 15162 bad: 15163 ip1dbg(("ipif_add_ires: FAILED \n")); 15164 if (ire_local != NULL) 15165 ire_delete(ire_local); 15166 if (ire_if != NULL) 15167 ire_delete(ire_if); 15168 15169 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15170 ire_local = ipif->ipif_ire_local; 15171 ipif->ipif_ire_local = NULL; 15172 ire_if = ipif->ipif_ire_if; 15173 ipif->ipif_ire_if = NULL; 15174 rw_exit(&ipst->ips_ill_g_lock); 15175 if (ire_local != NULL) { 15176 ire_delete(ire_local); 15177 ire_refrele_notr(ire_local); 15178 } 15179 if (ire_if != NULL) { 15180 ire_delete(ire_if); 15181 ire_refrele_notr(ire_if); 15182 } 15183 15184 while (irep > ire_array) { 15185 irep--; 15186 if (*irep != NULL) { 15187 ire_delete(*irep); 15188 } 15189 } 15190 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 15191 15192 return (err); 15193 } 15194 15195 /* Remove all the IREs created by ipif_add_ires_v4 */ 15196 void 15197 ipif_delete_ires_v4(ipif_t *ipif) 15198 { 15199 ill_t *ill = ipif->ipif_ill; 15200 ip_stack_t *ipst = ill->ill_ipst; 15201 ire_t *ire; 15202 15203 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15204 ire = ipif->ipif_ire_local; 15205 ipif->ipif_ire_local = NULL; 15206 rw_exit(&ipst->ips_ill_g_lock); 15207 if (ire != NULL) { 15208 /* 15209 * Move count to ipif so we don't loose the count due to 15210 * a down/up dance. 15211 */ 15212 atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count); 15213 15214 ire_delete(ire); 15215 ire_refrele_notr(ire); 15216 } 15217 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15218 ire = ipif->ipif_ire_if; 15219 ipif->ipif_ire_if = NULL; 15220 rw_exit(&ipst->ips_ill_g_lock); 15221 if (ire != NULL) { 15222 ire_delete(ire); 15223 ire_refrele_notr(ire); 15224 } 15225 15226 /* 15227 * Delete the broadcast IREs. 15228 */ 15229 if ((ipif->ipif_flags & IPIF_BROADCAST) && 15230 !(ipif->ipif_flags & IPIF_NOXMIT)) 15231 ipif_delete_bcast_ires(ipif); 15232 } 15233 15234 /* 15235 * Checks for availbility of a usable source address (if there is one) when the 15236 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 15237 * this selection is done regardless of the destination. 15238 */ 15239 boolean_t 15240 ipif_zone_avail(uint_t ifindex, boolean_t isv6, zoneid_t zoneid, 15241 ip_stack_t *ipst) 15242 { 15243 ipif_t *ipif = NULL; 15244 ill_t *uill; 15245 15246 ASSERT(ifindex != 0); 15247 15248 uill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 15249 if (uill == NULL) 15250 return (B_FALSE); 15251 15252 mutex_enter(&uill->ill_lock); 15253 for (ipif = uill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15254 if (IPIF_IS_CONDEMNED(ipif)) 15255 continue; 15256 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15257 continue; 15258 if (!(ipif->ipif_flags & IPIF_UP)) 15259 continue; 15260 if (ipif->ipif_zoneid != zoneid) 15261 continue; 15262 if (isv6 ? IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 15263 ipif->ipif_lcl_addr == INADDR_ANY) 15264 continue; 15265 mutex_exit(&uill->ill_lock); 15266 ill_refrele(uill); 15267 return (B_TRUE); 15268 } 15269 mutex_exit(&uill->ill_lock); 15270 ill_refrele(uill); 15271 return (B_FALSE); 15272 } 15273 15274 /* 15275 * Find an ipif with a good local address on the ill+zoneid. 15276 */ 15277 ipif_t * 15278 ipif_good_addr(ill_t *ill, zoneid_t zoneid) 15279 { 15280 ipif_t *ipif; 15281 15282 mutex_enter(&ill->ill_lock); 15283 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15284 if (IPIF_IS_CONDEMNED(ipif)) 15285 continue; 15286 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15287 continue; 15288 if (!(ipif->ipif_flags & IPIF_UP)) 15289 continue; 15290 if (ipif->ipif_zoneid != zoneid && 15291 ipif->ipif_zoneid != ALL_ZONES && zoneid != ALL_ZONES) 15292 continue; 15293 if (ill->ill_isv6 ? 15294 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 15295 ipif->ipif_lcl_addr == INADDR_ANY) 15296 continue; 15297 ipif_refhold_locked(ipif); 15298 mutex_exit(&ill->ill_lock); 15299 return (ipif); 15300 } 15301 mutex_exit(&ill->ill_lock); 15302 return (NULL); 15303 } 15304 15305 /* 15306 * IP source address type, sorted from worst to best. For a given type, 15307 * always prefer IP addresses on the same subnet. All-zones addresses are 15308 * suboptimal because they pose problems with unlabeled destinations. 15309 */ 15310 typedef enum { 15311 IPIF_NONE, 15312 IPIF_DIFFNET_DEPRECATED, /* deprecated and different subnet */ 15313 IPIF_SAMENET_DEPRECATED, /* deprecated and same subnet */ 15314 IPIF_DIFFNET_ALLZONES, /* allzones and different subnet */ 15315 IPIF_SAMENET_ALLZONES, /* allzones and same subnet */ 15316 IPIF_DIFFNET, /* normal and different subnet */ 15317 IPIF_SAMENET, /* normal and same subnet */ 15318 IPIF_LOCALADDR /* local loopback */ 15319 } ipif_type_t; 15320 15321 /* 15322 * Pick the optimal ipif on `ill' for sending to destination `dst' from zone 15323 * `zoneid'. We rate usable ipifs from low -> high as per the ipif_type_t 15324 * enumeration, and return the highest-rated ipif. If there's a tie, we pick 15325 * the first one, unless IPMP is used in which case we round-robin among them; 15326 * see below for more. 15327 * 15328 * Returns NULL if there is no suitable source address for the ill. 15329 * This only occurs when there is no valid source address for the ill. 15330 */ 15331 ipif_t * 15332 ipif_select_source_v4(ill_t *ill, ipaddr_t dst, zoneid_t zoneid, 15333 boolean_t allow_usesrc, boolean_t *notreadyp) 15334 { 15335 ill_t *usill = NULL; 15336 ill_t *ipmp_ill = NULL; 15337 ipif_t *start_ipif, *next_ipif, *ipif, *best_ipif; 15338 ipif_type_t type, best_type; 15339 tsol_tpc_t *src_rhtp, *dst_rhtp; 15340 ip_stack_t *ipst = ill->ill_ipst; 15341 boolean_t samenet; 15342 15343 if (ill->ill_usesrc_ifindex != 0 && allow_usesrc) { 15344 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 15345 B_FALSE, ipst); 15346 if (usill != NULL) 15347 ill = usill; /* Select source from usesrc ILL */ 15348 else 15349 return (NULL); 15350 } 15351 15352 /* 15353 * Test addresses should never be used for source address selection, 15354 * so if we were passed one, switch to the IPMP meta-interface. 15355 */ 15356 if (IS_UNDER_IPMP(ill)) { 15357 if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) 15358 ill = ipmp_ill; /* Select source from IPMP ill */ 15359 else 15360 return (NULL); 15361 } 15362 15363 /* 15364 * If we're dealing with an unlabeled destination on a labeled system, 15365 * make sure that we ignore source addresses that are incompatible with 15366 * the destination's default label. That destination's default label 15367 * must dominate the minimum label on the source address. 15368 */ 15369 dst_rhtp = NULL; 15370 if (is_system_labeled()) { 15371 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 15372 if (dst_rhtp == NULL) 15373 return (NULL); 15374 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 15375 TPC_RELE(dst_rhtp); 15376 dst_rhtp = NULL; 15377 } 15378 } 15379 15380 /* 15381 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill 15382 * can be deleted. But an ipif/ill can get CONDEMNED any time. 15383 * After selecting the right ipif, under ill_lock make sure ipif is 15384 * not condemned, and increment refcnt. If ipif is CONDEMNED, 15385 * we retry. Inside the loop we still need to check for CONDEMNED, 15386 * but not under a lock. 15387 */ 15388 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 15389 retry: 15390 /* 15391 * For source address selection, we treat the ipif list as circular 15392 * and continue until we get back to where we started. This allows 15393 * IPMP to vary source address selection (which improves inbound load 15394 * spreading) by caching its last ending point and starting from 15395 * there. NOTE: we don't have to worry about ill_src_ipif changing 15396 * ills since that can't happen on the IPMP ill. 15397 */ 15398 start_ipif = ill->ill_ipif; 15399 if (IS_IPMP(ill) && ill->ill_src_ipif != NULL) 15400 start_ipif = ill->ill_src_ipif; 15401 15402 ipif = start_ipif; 15403 best_ipif = NULL; 15404 best_type = IPIF_NONE; 15405 do { 15406 if ((next_ipif = ipif->ipif_next) == NULL) 15407 next_ipif = ill->ill_ipif; 15408 15409 if (IPIF_IS_CONDEMNED(ipif)) 15410 continue; 15411 /* Always skip NOLOCAL and ANYCAST interfaces */ 15412 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15413 continue; 15414 /* Always skip NOACCEPT interfaces */ 15415 if (ipif->ipif_ill->ill_flags & ILLF_NOACCEPT) 15416 continue; 15417 if (!(ipif->ipif_flags & IPIF_UP)) 15418 continue; 15419 15420 if (!ipif->ipif_addr_ready) { 15421 if (notreadyp != NULL) 15422 *notreadyp = B_TRUE; 15423 continue; 15424 } 15425 15426 if (zoneid != ALL_ZONES && 15427 ipif->ipif_zoneid != zoneid && 15428 ipif->ipif_zoneid != ALL_ZONES) 15429 continue; 15430 15431 /* 15432 * Interfaces with 0.0.0.0 address are allowed to be UP, but 15433 * are not valid as source addresses. 15434 */ 15435 if (ipif->ipif_lcl_addr == INADDR_ANY) 15436 continue; 15437 15438 /* 15439 * Check compatibility of local address for destination's 15440 * default label if we're on a labeled system. Incompatible 15441 * addresses can't be used at all. 15442 */ 15443 if (dst_rhtp != NULL) { 15444 boolean_t incompat; 15445 15446 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 15447 IPV4_VERSION, B_FALSE); 15448 if (src_rhtp == NULL) 15449 continue; 15450 incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO || 15451 src_rhtp->tpc_tp.tp_doi != 15452 dst_rhtp->tpc_tp.tp_doi || 15453 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 15454 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 15455 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 15456 src_rhtp->tpc_tp.tp_sl_set_cipso)); 15457 TPC_RELE(src_rhtp); 15458 if (incompat) 15459 continue; 15460 } 15461 15462 samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet); 15463 15464 if (ipif->ipif_lcl_addr == dst) { 15465 type = IPIF_LOCALADDR; 15466 } else if (ipif->ipif_flags & IPIF_DEPRECATED) { 15467 type = samenet ? IPIF_SAMENET_DEPRECATED : 15468 IPIF_DIFFNET_DEPRECATED; 15469 } else if (ipif->ipif_zoneid == ALL_ZONES) { 15470 type = samenet ? IPIF_SAMENET_ALLZONES : 15471 IPIF_DIFFNET_ALLZONES; 15472 } else { 15473 type = samenet ? IPIF_SAMENET : IPIF_DIFFNET; 15474 } 15475 15476 if (type > best_type) { 15477 best_type = type; 15478 best_ipif = ipif; 15479 if (best_type == IPIF_LOCALADDR) 15480 break; /* can't get better */ 15481 } 15482 } while ((ipif = next_ipif) != start_ipif); 15483 15484 if ((ipif = best_ipif) != NULL) { 15485 mutex_enter(&ipif->ipif_ill->ill_lock); 15486 if (IPIF_IS_CONDEMNED(ipif)) { 15487 mutex_exit(&ipif->ipif_ill->ill_lock); 15488 goto retry; 15489 } 15490 ipif_refhold_locked(ipif); 15491 15492 /* 15493 * For IPMP, update the source ipif rotor to the next ipif, 15494 * provided we can look it up. (We must not use it if it's 15495 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after 15496 * ipif_free() checked ill_src_ipif.) 15497 */ 15498 if (IS_IPMP(ill) && ipif != NULL) { 15499 next_ipif = ipif->ipif_next; 15500 if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif)) 15501 ill->ill_src_ipif = next_ipif; 15502 else 15503 ill->ill_src_ipif = NULL; 15504 } 15505 mutex_exit(&ipif->ipif_ill->ill_lock); 15506 } 15507 15508 rw_exit(&ipst->ips_ill_g_lock); 15509 if (usill != NULL) 15510 ill_refrele(usill); 15511 if (ipmp_ill != NULL) 15512 ill_refrele(ipmp_ill); 15513 if (dst_rhtp != NULL) 15514 TPC_RELE(dst_rhtp); 15515 15516 #ifdef DEBUG 15517 if (ipif == NULL) { 15518 char buf1[INET6_ADDRSTRLEN]; 15519 15520 ip1dbg(("ipif_select_source_v4(%s, %s) -> NULL\n", 15521 ill->ill_name, 15522 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 15523 } else { 15524 char buf1[INET6_ADDRSTRLEN]; 15525 char buf2[INET6_ADDRSTRLEN]; 15526 15527 ip1dbg(("ipif_select_source_v4(%s, %s) -> %s\n", 15528 ipif->ipif_ill->ill_name, 15529 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 15530 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 15531 buf2, sizeof (buf2)))); 15532 } 15533 #endif /* DEBUG */ 15534 return (ipif); 15535 } 15536 15537 /* 15538 * Pick a source address based on the destination ill and an optional setsrc 15539 * address. 15540 * The result is stored in srcp. If generation is set, then put the source 15541 * generation number there before we look for the source address (to avoid 15542 * missing changes in the set of source addresses. 15543 * If flagsp is set, then us it to pass back ipif_flags. 15544 * 15545 * If the caller wants to cache the returned source address and detect when 15546 * that might be stale, the caller should pass in a generation argument, 15547 * which the caller can later compare against ips_src_generation 15548 * 15549 * The precedence order for selecting an IPv4 source address is: 15550 * - RTF_SETSRC on the offlink ire always wins. 15551 * - If usrsrc is set, swap the ill to be the usesrc one. 15552 * - If IPMP is used on the ill, select a random address from the most 15553 * preferred ones below: 15554 * 1. If onlink destination, same subnet and not deprecated, not ALL_ZONES 15555 * 2. Not deprecated, not ALL_ZONES 15556 * 3. If onlink destination, same subnet and not deprecated, ALL_ZONES 15557 * 4. Not deprecated, ALL_ZONES 15558 * 5. If onlink destination, same subnet and deprecated 15559 * 6. Deprecated. 15560 * 15561 * We have lower preference for ALL_ZONES IP addresses, 15562 * as they pose problems with unlabeled destinations. 15563 * 15564 * Note that when multiple IP addresses match e.g., #1 we pick 15565 * the first one if IPMP is not in use. With IPMP we randomize. 15566 */ 15567 int 15568 ip_select_source_v4(ill_t *ill, ipaddr_t setsrc, ipaddr_t dst, 15569 ipaddr_t multicast_ifaddr, 15570 zoneid_t zoneid, ip_stack_t *ipst, ipaddr_t *srcp, 15571 uint32_t *generation, uint64_t *flagsp) 15572 { 15573 ipif_t *ipif; 15574 boolean_t notready = B_FALSE; /* Set if !ipif_addr_ready found */ 15575 15576 if (flagsp != NULL) 15577 *flagsp = 0; 15578 15579 /* 15580 * Need to grab the generation number before we check to 15581 * avoid a race with a change to the set of local addresses. 15582 * No lock needed since the thread which updates the set of local 15583 * addresses use ipif/ill locks and exit those (hence a store memory 15584 * barrier) before doing the atomic increase of ips_src_generation. 15585 */ 15586 if (generation != NULL) { 15587 *generation = ipst->ips_src_generation; 15588 } 15589 15590 if (CLASSD(dst) && multicast_ifaddr != INADDR_ANY) { 15591 *srcp = multicast_ifaddr; 15592 return (0); 15593 } 15594 15595 /* Was RTF_SETSRC set on the first IRE in the recursive lookup? */ 15596 if (setsrc != INADDR_ANY) { 15597 *srcp = setsrc; 15598 return (0); 15599 } 15600 ipif = ipif_select_source_v4(ill, dst, zoneid, B_TRUE, ¬ready); 15601 if (ipif == NULL) { 15602 if (notready) 15603 return (ENETDOWN); 15604 else 15605 return (EADDRNOTAVAIL); 15606 } 15607 *srcp = ipif->ipif_lcl_addr; 15608 if (flagsp != NULL) 15609 *flagsp = ipif->ipif_flags; 15610 ipif_refrele(ipif); 15611 return (0); 15612 } 15613 15614 /* ARGSUSED */ 15615 int 15616 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15617 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15618 { 15619 /* 15620 * ill_phyint_reinit merged the v4 and v6 into a single 15621 * ipsq. We might not have been able to complete the 15622 * operation in ipif_set_values, if we could not become 15623 * exclusive. If so restart it here. 15624 */ 15625 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15626 } 15627 15628 /* 15629 * Can operate on either a module or a driver queue. 15630 * Returns an error if not a module queue. 15631 */ 15632 /* ARGSUSED */ 15633 int 15634 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15635 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15636 { 15637 queue_t *q1 = q; 15638 char *cp; 15639 char interf_name[LIFNAMSIZ]; 15640 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 15641 15642 if (q->q_next == NULL) { 15643 ip1dbg(( 15644 "if_unitsel: IF_UNITSEL: no q_next\n")); 15645 return (EINVAL); 15646 } 15647 15648 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 15649 return (EALREADY); 15650 15651 do { 15652 q1 = q1->q_next; 15653 } while (q1->q_next); 15654 cp = q1->q_qinfo->qi_minfo->mi_idname; 15655 (void) sprintf(interf_name, "%s%d", cp, ppa); 15656 15657 /* 15658 * Here we are not going to delay the ioack until after 15659 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 15660 * original ioctl message before sending the requests. 15661 */ 15662 return (ipif_set_values(q, mp, interf_name, &ppa)); 15663 } 15664 15665 /* ARGSUSED */ 15666 int 15667 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15668 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15669 { 15670 return (ENXIO); 15671 } 15672 15673 /* 15674 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 15675 * `irep'. Returns a pointer to the next free `irep' entry 15676 * A mirror exists in ipif_delete_bcast_ires(). 15677 * 15678 * The management of any "extra" or seemingly duplicate IRE_BROADCASTs is 15679 * done in ire_add. 15680 */ 15681 static ire_t ** 15682 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 15683 { 15684 ipaddr_t addr; 15685 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15686 ipaddr_t subnetmask = ipif->ipif_net_mask; 15687 ill_t *ill = ipif->ipif_ill; 15688 zoneid_t zoneid = ipif->ipif_zoneid; 15689 15690 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 15691 15692 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15693 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15694 15695 if (ipif->ipif_lcl_addr == INADDR_ANY || 15696 (ipif->ipif_flags & IPIF_NOLOCAL)) 15697 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15698 15699 irep = ire_create_bcast(ill, 0, zoneid, irep); 15700 irep = ire_create_bcast(ill, INADDR_BROADCAST, zoneid, irep); 15701 15702 /* 15703 * For backward compatibility, we create net broadcast IREs based on 15704 * the old "IP address class system", since some old machines only 15705 * respond to these class derived net broadcast. However, we must not 15706 * create these net broadcast IREs if the subnetmask is shorter than 15707 * the IP address class based derived netmask. Otherwise, we may 15708 * create a net broadcast address which is the same as an IP address 15709 * on the subnet -- and then TCP will refuse to talk to that address. 15710 */ 15711 if (netmask < subnetmask) { 15712 addr = netmask & ipif->ipif_subnet; 15713 irep = ire_create_bcast(ill, addr, zoneid, irep); 15714 irep = ire_create_bcast(ill, ~netmask | addr, zoneid, irep); 15715 } 15716 15717 /* 15718 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15719 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15720 * created. Creating these broadcast IREs will only create confusion 15721 * as `addr' will be the same as the IP address. 15722 */ 15723 if (subnetmask != 0xFFFFFFFF) { 15724 addr = ipif->ipif_subnet; 15725 irep = ire_create_bcast(ill, addr, zoneid, irep); 15726 irep = ire_create_bcast(ill, ~subnetmask | addr, zoneid, irep); 15727 } 15728 15729 return (irep); 15730 } 15731 15732 /* 15733 * Mirror of ipif_create_bcast_ires() 15734 */ 15735 static void 15736 ipif_delete_bcast_ires(ipif_t *ipif) 15737 { 15738 ipaddr_t addr; 15739 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15740 ipaddr_t subnetmask = ipif->ipif_net_mask; 15741 ill_t *ill = ipif->ipif_ill; 15742 zoneid_t zoneid = ipif->ipif_zoneid; 15743 ire_t *ire; 15744 15745 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15746 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15747 15748 if (ipif->ipif_lcl_addr == INADDR_ANY || 15749 (ipif->ipif_flags & IPIF_NOLOCAL)) 15750 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15751 15752 ire = ire_lookup_bcast(ill, 0, zoneid); 15753 ASSERT(ire != NULL); 15754 ire_delete(ire); ire_refrele(ire); 15755 ire = ire_lookup_bcast(ill, INADDR_BROADCAST, zoneid); 15756 ASSERT(ire != NULL); 15757 ire_delete(ire); ire_refrele(ire); 15758 15759 /* 15760 * For backward compatibility, we create net broadcast IREs based on 15761 * the old "IP address class system", since some old machines only 15762 * respond to these class derived net broadcast. However, we must not 15763 * create these net broadcast IREs if the subnetmask is shorter than 15764 * the IP address class based derived netmask. Otherwise, we may 15765 * create a net broadcast address which is the same as an IP address 15766 * on the subnet -- and then TCP will refuse to talk to that address. 15767 */ 15768 if (netmask < subnetmask) { 15769 addr = netmask & ipif->ipif_subnet; 15770 ire = ire_lookup_bcast(ill, addr, zoneid); 15771 ASSERT(ire != NULL); 15772 ire_delete(ire); ire_refrele(ire); 15773 ire = ire_lookup_bcast(ill, ~netmask | addr, zoneid); 15774 ASSERT(ire != NULL); 15775 ire_delete(ire); ire_refrele(ire); 15776 } 15777 15778 /* 15779 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15780 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15781 * created. Creating these broadcast IREs will only create confusion 15782 * as `addr' will be the same as the IP address. 15783 */ 15784 if (subnetmask != 0xFFFFFFFF) { 15785 addr = ipif->ipif_subnet; 15786 ire = ire_lookup_bcast(ill, addr, zoneid); 15787 ASSERT(ire != NULL); 15788 ire_delete(ire); ire_refrele(ire); 15789 ire = ire_lookup_bcast(ill, ~subnetmask | addr, zoneid); 15790 ASSERT(ire != NULL); 15791 ire_delete(ire); ire_refrele(ire); 15792 } 15793 } 15794 15795 /* 15796 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 15797 * from lifr_flags and the name from lifr_name. 15798 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 15799 * since ipif_lookup_on_name uses the _isv6 flags when matching. 15800 * Returns EINPROGRESS when mp has been consumed by queueing it on 15801 * ipx_pending_mp and the ioctl will complete in ip_rput. 15802 * 15803 * Can operate on either a module or a driver queue. 15804 * Returns an error if not a module queue. 15805 */ 15806 /* ARGSUSED */ 15807 int 15808 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15809 ip_ioctl_cmd_t *ipip, void *if_req) 15810 { 15811 ill_t *ill = q->q_ptr; 15812 phyint_t *phyi; 15813 ip_stack_t *ipst; 15814 struct lifreq *lifr = if_req; 15815 uint64_t new_flags; 15816 15817 ASSERT(ipif != NULL); 15818 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 15819 15820 if (q->q_next == NULL) { 15821 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 15822 return (EINVAL); 15823 } 15824 15825 /* 15826 * If we are not writer on 'q' then this interface exists already 15827 * and previous lookups (ip_extract_lifreq()) found this ipif -- 15828 * so return EALREADY. 15829 */ 15830 if (ill != ipif->ipif_ill) 15831 return (EALREADY); 15832 15833 if (ill->ill_name[0] != '\0') 15834 return (EALREADY); 15835 15836 /* 15837 * If there's another ill already with the requested name, ensure 15838 * that it's of the same type. Otherwise, ill_phyint_reinit() will 15839 * fuse together two unrelated ills, which will cause chaos. 15840 */ 15841 ipst = ill->ill_ipst; 15842 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 15843 lifr->lifr_name, NULL); 15844 if (phyi != NULL) { 15845 ill_t *ill_mate = phyi->phyint_illv4; 15846 15847 if (ill_mate == NULL) 15848 ill_mate = phyi->phyint_illv6; 15849 ASSERT(ill_mate != NULL); 15850 15851 if (ill_mate->ill_media->ip_m_mac_type != 15852 ill->ill_media->ip_m_mac_type) { 15853 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 15854 "use the same ill name on differing media\n")); 15855 return (EINVAL); 15856 } 15857 } 15858 15859 /* 15860 * We start off as IFF_IPV4 in ipif_allocate and become 15861 * IFF_IPV4 or IFF_IPV6 here depending on lifr_flags value. 15862 * The only flags that we read from user space are IFF_IPV4, 15863 * IFF_IPV6, and IFF_BROADCAST. 15864 * 15865 * This ill has not been inserted into the global list. 15866 * So we are still single threaded and don't need any lock 15867 * 15868 * Saniy check the flags. 15869 */ 15870 15871 if ((lifr->lifr_flags & IFF_BROADCAST) && 15872 ((lifr->lifr_flags & IFF_IPV6) || 15873 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 15874 ip1dbg(("ip_sioctl_slifname: link not broadcast capable " 15875 "or IPv6 i.e., no broadcast \n")); 15876 return (EINVAL); 15877 } 15878 15879 new_flags = 15880 lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_BROADCAST); 15881 15882 if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) { 15883 ip1dbg(("ip_sioctl_slifname: flags must be exactly one of " 15884 "IFF_IPV4 or IFF_IPV6\n")); 15885 return (EINVAL); 15886 } 15887 15888 /* 15889 * We always start off as IPv4, so only need to check for IPv6. 15890 */ 15891 if ((new_flags & IFF_IPV6) != 0) { 15892 ill->ill_flags |= ILLF_IPV6; 15893 ill->ill_flags &= ~ILLF_IPV4; 15894 15895 if (lifr->lifr_flags & IFF_NOLINKLOCAL) 15896 ill->ill_flags |= ILLF_NOLINKLOCAL; 15897 } 15898 15899 if ((new_flags & IFF_BROADCAST) != 0) 15900 ipif->ipif_flags |= IPIF_BROADCAST; 15901 else 15902 ipif->ipif_flags &= ~IPIF_BROADCAST; 15903 15904 /* We started off as V4. */ 15905 if (ill->ill_flags & ILLF_IPV6) { 15906 ill->ill_phyint->phyint_illv6 = ill; 15907 ill->ill_phyint->phyint_illv4 = NULL; 15908 } 15909 15910 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 15911 } 15912 15913 /* ARGSUSED */ 15914 int 15915 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15916 ip_ioctl_cmd_t *ipip, void *if_req) 15917 { 15918 /* 15919 * ill_phyint_reinit merged the v4 and v6 into a single 15920 * ipsq. We might not have been able to complete the 15921 * slifname in ipif_set_values, if we could not become 15922 * exclusive. If so restart it here 15923 */ 15924 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15925 } 15926 15927 /* 15928 * Return a pointer to the ipif which matches the index, IP version type and 15929 * zoneid. 15930 */ 15931 ipif_t * 15932 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 15933 ip_stack_t *ipst) 15934 { 15935 ill_t *ill; 15936 ipif_t *ipif = NULL; 15937 15938 ill = ill_lookup_on_ifindex(index, isv6, ipst); 15939 if (ill != NULL) { 15940 mutex_enter(&ill->ill_lock); 15941 for (ipif = ill->ill_ipif; ipif != NULL; 15942 ipif = ipif->ipif_next) { 15943 if (!IPIF_IS_CONDEMNED(ipif) && (zoneid == ALL_ZONES || 15944 zoneid == ipif->ipif_zoneid || 15945 ipif->ipif_zoneid == ALL_ZONES)) { 15946 ipif_refhold_locked(ipif); 15947 break; 15948 } 15949 } 15950 mutex_exit(&ill->ill_lock); 15951 ill_refrele(ill); 15952 } 15953 return (ipif); 15954 } 15955 15956 /* 15957 * Change an existing physical interface's index. If the new index 15958 * is acceptable we update the index and the phyint_list_avl_by_index tree. 15959 * Finally, we update other systems which may have a dependence on the 15960 * index value. 15961 */ 15962 /* ARGSUSED */ 15963 int 15964 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15965 ip_ioctl_cmd_t *ipip, void *ifreq) 15966 { 15967 ill_t *ill; 15968 phyint_t *phyi; 15969 struct ifreq *ifr = (struct ifreq *)ifreq; 15970 struct lifreq *lifr = (struct lifreq *)ifreq; 15971 uint_t old_index, index; 15972 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15973 avl_index_t where; 15974 15975 if (ipip->ipi_cmd_type == IF_CMD) 15976 index = ifr->ifr_index; 15977 else 15978 index = lifr->lifr_index; 15979 15980 /* 15981 * Only allow on physical interface. Also, index zero is illegal. 15982 */ 15983 ill = ipif->ipif_ill; 15984 phyi = ill->ill_phyint; 15985 if (ipif->ipif_id != 0 || index == 0 || index > IF_INDEX_MAX) { 15986 return (EINVAL); 15987 } 15988 15989 /* If the index is not changing, no work to do */ 15990 if (phyi->phyint_ifindex == index) 15991 return (0); 15992 15993 /* 15994 * Use phyint_exists() to determine if the new interface index 15995 * is already in use. If the index is unused then we need to 15996 * change the phyint's position in the phyint_list_avl_by_index 15997 * tree. If we do not do this, subsequent lookups (using the new 15998 * index value) will not find the phyint. 15999 */ 16000 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16001 if (phyint_exists(index, ipst)) { 16002 rw_exit(&ipst->ips_ill_g_lock); 16003 return (EEXIST); 16004 } 16005 16006 /* 16007 * The new index is unused. Set it in the phyint. However we must not 16008 * forget to trigger NE_IFINDEX_CHANGE event before the ifindex 16009 * changes. The event must be bound to old ifindex value. 16010 */ 16011 ill_nic_event_dispatch(ill, 0, NE_IFINDEX_CHANGE, 16012 &index, sizeof (index)); 16013 16014 old_index = phyi->phyint_ifindex; 16015 phyi->phyint_ifindex = index; 16016 16017 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi); 16018 (void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16019 &index, &where); 16020 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16021 phyi, where); 16022 rw_exit(&ipst->ips_ill_g_lock); 16023 16024 /* Update SCTP's ILL list */ 16025 sctp_ill_reindex(ill, old_index); 16026 16027 /* Send the routing sockets message */ 16028 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 16029 if (ILL_OTHER(ill)) 16030 ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT); 16031 16032 /* Perhaps ilgs should use this ill */ 16033 update_conn_ill(NULL, ill->ill_ipst); 16034 return (0); 16035 } 16036 16037 /* ARGSUSED */ 16038 int 16039 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16040 ip_ioctl_cmd_t *ipip, void *ifreq) 16041 { 16042 struct ifreq *ifr = (struct ifreq *)ifreq; 16043 struct lifreq *lifr = (struct lifreq *)ifreq; 16044 16045 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 16046 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16047 /* Get the interface index */ 16048 if (ipip->ipi_cmd_type == IF_CMD) { 16049 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 16050 } else { 16051 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 16052 } 16053 return (0); 16054 } 16055 16056 /* ARGSUSED */ 16057 int 16058 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16059 ip_ioctl_cmd_t *ipip, void *ifreq) 16060 { 16061 struct lifreq *lifr = (struct lifreq *)ifreq; 16062 16063 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 16064 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16065 /* Get the interface zone */ 16066 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 16067 lifr->lifr_zoneid = ipif->ipif_zoneid; 16068 return (0); 16069 } 16070 16071 /* 16072 * Set the zoneid of an interface. 16073 */ 16074 /* ARGSUSED */ 16075 int 16076 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16077 ip_ioctl_cmd_t *ipip, void *ifreq) 16078 { 16079 struct lifreq *lifr = (struct lifreq *)ifreq; 16080 int err = 0; 16081 boolean_t need_up = B_FALSE; 16082 zone_t *zptr; 16083 zone_status_t status; 16084 zoneid_t zoneid; 16085 16086 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 16087 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 16088 if (!is_system_labeled()) 16089 return (ENOTSUP); 16090 zoneid = GLOBAL_ZONEID; 16091 } 16092 16093 /* cannot assign instance zero to a non-global zone */ 16094 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 16095 return (ENOTSUP); 16096 16097 /* 16098 * Cannot assign to a zone that doesn't exist or is shutting down. In 16099 * the event of a race with the zone shutdown processing, since IP 16100 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 16101 * interface will be cleaned up even if the zone is shut down 16102 * immediately after the status check. If the interface can't be brought 16103 * down right away, and the zone is shut down before the restart 16104 * function is called, we resolve the possible races by rechecking the 16105 * zone status in the restart function. 16106 */ 16107 if ((zptr = zone_find_by_id(zoneid)) == NULL) 16108 return (EINVAL); 16109 status = zone_status_get(zptr); 16110 zone_rele(zptr); 16111 16112 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 16113 return (EINVAL); 16114 16115 if (ipif->ipif_flags & IPIF_UP) { 16116 /* 16117 * If the interface is already marked up, 16118 * we call ipif_down which will take care 16119 * of ditching any IREs that have been set 16120 * up based on the old interface address. 16121 */ 16122 err = ipif_logical_down(ipif, q, mp); 16123 if (err == EINPROGRESS) 16124 return (err); 16125 (void) ipif_down_tail(ipif); 16126 need_up = B_TRUE; 16127 } 16128 16129 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 16130 return (err); 16131 } 16132 16133 static int 16134 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 16135 queue_t *q, mblk_t *mp, boolean_t need_up) 16136 { 16137 int err = 0; 16138 ip_stack_t *ipst; 16139 16140 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 16141 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16142 16143 if (CONN_Q(q)) 16144 ipst = CONNQ_TO_IPST(q); 16145 else 16146 ipst = ILLQ_TO_IPST(q); 16147 16148 /* 16149 * For exclusive stacks we don't allow a different zoneid than 16150 * global. 16151 */ 16152 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 16153 zoneid != GLOBAL_ZONEID) 16154 return (EINVAL); 16155 16156 /* Set the new zone id. */ 16157 ipif->ipif_zoneid = zoneid; 16158 16159 /* Update sctp list */ 16160 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 16161 16162 /* The default multicast interface might have changed */ 16163 ire_increment_multicast_generation(ipst, ipif->ipif_ill->ill_isv6); 16164 16165 if (need_up) { 16166 /* 16167 * Now bring the interface back up. If this 16168 * is the only IPIF for the ILL, ipif_up 16169 * will have to re-bind to the device, so 16170 * we may get back EINPROGRESS, in which 16171 * case, this IOCTL will get completed in 16172 * ip_rput_dlpi when we see the DL_BIND_ACK. 16173 */ 16174 err = ipif_up(ipif, q, mp); 16175 } 16176 return (err); 16177 } 16178 16179 /* ARGSUSED */ 16180 int 16181 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16182 ip_ioctl_cmd_t *ipip, void *if_req) 16183 { 16184 struct lifreq *lifr = (struct lifreq *)if_req; 16185 zoneid_t zoneid; 16186 zone_t *zptr; 16187 zone_status_t status; 16188 16189 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 16190 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 16191 zoneid = GLOBAL_ZONEID; 16192 16193 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 16194 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16195 16196 /* 16197 * We recheck the zone status to resolve the following race condition: 16198 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 16199 * 2) hme0:1 is up and can't be brought down right away; 16200 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 16201 * 3) zone "myzone" is halted; the zone status switches to 16202 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 16203 * the interfaces to remove - hme0:1 is not returned because it's not 16204 * yet in "myzone", so it won't be removed; 16205 * 4) the restart function for SIOCSLIFZONE is called; without the 16206 * status check here, we would have hme0:1 in "myzone" after it's been 16207 * destroyed. 16208 * Note that if the status check fails, we need to bring the interface 16209 * back to its state prior to ip_sioctl_slifzone(), hence the call to 16210 * ipif_up_done[_v6](). 16211 */ 16212 status = ZONE_IS_UNINITIALIZED; 16213 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 16214 status = zone_status_get(zptr); 16215 zone_rele(zptr); 16216 } 16217 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 16218 if (ipif->ipif_isv6) { 16219 (void) ipif_up_done_v6(ipif); 16220 } else { 16221 (void) ipif_up_done(ipif); 16222 } 16223 return (EINVAL); 16224 } 16225 16226 (void) ipif_down_tail(ipif); 16227 16228 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 16229 B_TRUE)); 16230 } 16231 16232 /* 16233 * Return the number of addresses on `ill' with one or more of the values 16234 * in `set' set and all of the values in `clear' clear. 16235 */ 16236 static uint_t 16237 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear) 16238 { 16239 ipif_t *ipif; 16240 uint_t cnt = 0; 16241 16242 ASSERT(IAM_WRITER_ILL(ill)); 16243 16244 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 16245 if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear)) 16246 cnt++; 16247 16248 return (cnt); 16249 } 16250 16251 /* 16252 * Return the number of migratable addresses on `ill' that are under 16253 * application control. 16254 */ 16255 uint_t 16256 ill_appaddr_cnt(const ill_t *ill) 16257 { 16258 return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF, 16259 IPIF_NOFAILOVER)); 16260 } 16261 16262 /* 16263 * Return the number of point-to-point addresses on `ill'. 16264 */ 16265 uint_t 16266 ill_ptpaddr_cnt(const ill_t *ill) 16267 { 16268 return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0)); 16269 } 16270 16271 /* ARGSUSED */ 16272 int 16273 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16274 ip_ioctl_cmd_t *ipip, void *ifreq) 16275 { 16276 struct lifreq *lifr = ifreq; 16277 16278 ASSERT(q->q_next == NULL); 16279 ASSERT(CONN_Q(q)); 16280 16281 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 16282 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16283 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 16284 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 16285 16286 return (0); 16287 } 16288 16289 /* Find the previous ILL in this usesrc group */ 16290 static ill_t * 16291 ill_prev_usesrc(ill_t *uill) 16292 { 16293 ill_t *ill; 16294 16295 for (ill = uill->ill_usesrc_grp_next; 16296 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 16297 ill = ill->ill_usesrc_grp_next) 16298 /* do nothing */; 16299 return (ill); 16300 } 16301 16302 /* 16303 * Release all members of the usesrc group. This routine is called 16304 * from ill_delete when the interface being unplumbed is the 16305 * group head. 16306 * 16307 * This silently clears the usesrc that ifconfig setup. 16308 * An alternative would be to keep that ifindex, and drop packets on the floor 16309 * since no source address can be selected. 16310 * Even if we keep the current semantics, don't need a lock and a linked list. 16311 * Can walk all the ills checking if they have a ill_usesrc_ifindex matching 16312 * the one that is being removed. Issue is how we return the usesrc users 16313 * (SIOCGLIFSRCOF). We want to be able to find the ills which have an 16314 * ill_usesrc_ifindex matching a target ill. We could also do that with an 16315 * ill walk, but the walker would need to insert in the ioctl response. 16316 */ 16317 static void 16318 ill_disband_usesrc_group(ill_t *uill) 16319 { 16320 ill_t *next_ill, *tmp_ill; 16321 ip_stack_t *ipst = uill->ill_ipst; 16322 16323 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 16324 next_ill = uill->ill_usesrc_grp_next; 16325 16326 do { 16327 ASSERT(next_ill != NULL); 16328 tmp_ill = next_ill->ill_usesrc_grp_next; 16329 ASSERT(tmp_ill != NULL); 16330 next_ill->ill_usesrc_grp_next = NULL; 16331 next_ill->ill_usesrc_ifindex = 0; 16332 next_ill = tmp_ill; 16333 } while (next_ill->ill_usesrc_ifindex != 0); 16334 uill->ill_usesrc_grp_next = NULL; 16335 } 16336 16337 /* 16338 * Remove the client usesrc ILL from the list and relink to a new list 16339 */ 16340 int 16341 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 16342 { 16343 ill_t *ill, *tmp_ill; 16344 ip_stack_t *ipst = ucill->ill_ipst; 16345 16346 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 16347 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 16348 16349 /* 16350 * Check if the usesrc client ILL passed in is not already 16351 * in use as a usesrc ILL i.e one whose source address is 16352 * in use OR a usesrc ILL is not already in use as a usesrc 16353 * client ILL 16354 */ 16355 if ((ucill->ill_usesrc_ifindex == 0) || 16356 (uill->ill_usesrc_ifindex != 0)) { 16357 return (-1); 16358 } 16359 16360 ill = ill_prev_usesrc(ucill); 16361 ASSERT(ill->ill_usesrc_grp_next != NULL); 16362 16363 /* Remove from the current list */ 16364 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 16365 /* Only two elements in the list */ 16366 ASSERT(ill->ill_usesrc_ifindex == 0); 16367 ill->ill_usesrc_grp_next = NULL; 16368 } else { 16369 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 16370 } 16371 16372 if (ifindex == 0) { 16373 ucill->ill_usesrc_ifindex = 0; 16374 ucill->ill_usesrc_grp_next = NULL; 16375 return (0); 16376 } 16377 16378 ucill->ill_usesrc_ifindex = ifindex; 16379 tmp_ill = uill->ill_usesrc_grp_next; 16380 uill->ill_usesrc_grp_next = ucill; 16381 ucill->ill_usesrc_grp_next = 16382 (tmp_ill != NULL) ? tmp_ill : uill; 16383 return (0); 16384 } 16385 16386 /* 16387 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 16388 * ip.c for locking details. 16389 */ 16390 /* ARGSUSED */ 16391 int 16392 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16393 ip_ioctl_cmd_t *ipip, void *ifreq) 16394 { 16395 struct lifreq *lifr = (struct lifreq *)ifreq; 16396 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE; 16397 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 16398 int err = 0, ret; 16399 uint_t ifindex; 16400 ipsq_t *ipsq = NULL; 16401 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16402 16403 ASSERT(IAM_WRITER_IPIF(ipif)); 16404 ASSERT(q->q_next == NULL); 16405 ASSERT(CONN_Q(q)); 16406 16407 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 16408 16409 ifindex = lifr->lifr_index; 16410 if (ifindex == 0) { 16411 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 16412 /* non usesrc group interface, nothing to reset */ 16413 return (0); 16414 } 16415 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 16416 /* valid reset request */ 16417 reset_flg = B_TRUE; 16418 } 16419 16420 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 16421 if (usesrc_ill == NULL) 16422 return (ENXIO); 16423 if (usesrc_ill == ipif->ipif_ill) { 16424 ill_refrele(usesrc_ill); 16425 return (EINVAL); 16426 } 16427 16428 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 16429 NEW_OP, B_TRUE); 16430 if (ipsq == NULL) { 16431 err = EINPROGRESS; 16432 /* Operation enqueued on the ipsq of the usesrc ILL */ 16433 goto done; 16434 } 16435 16436 /* USESRC isn't currently supported with IPMP */ 16437 if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) { 16438 err = ENOTSUP; 16439 goto done; 16440 } 16441 16442 /* 16443 * USESRC isn't compatible with the STANDBY flag. (STANDBY is only 16444 * used by IPMP underlying interfaces, but someone might think it's 16445 * more general and try to use it independently with VNI.) 16446 */ 16447 if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 16448 err = ENOTSUP; 16449 goto done; 16450 } 16451 16452 /* 16453 * If the client is already in use as a usesrc_ill or a usesrc_ill is 16454 * already a client then return EINVAL 16455 */ 16456 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 16457 err = EINVAL; 16458 goto done; 16459 } 16460 16461 /* 16462 * If the ill_usesrc_ifindex field is already set to what it needs to 16463 * be then this is a duplicate operation. 16464 */ 16465 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 16466 err = 0; 16467 goto done; 16468 } 16469 16470 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 16471 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 16472 usesrc_ill->ill_isv6)); 16473 16474 /* 16475 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 16476 * and the ill_usesrc_ifindex fields 16477 */ 16478 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 16479 16480 if (reset_flg) { 16481 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 16482 if (ret != 0) { 16483 err = EINVAL; 16484 } 16485 rw_exit(&ipst->ips_ill_g_usesrc_lock); 16486 goto done; 16487 } 16488 16489 /* 16490 * Four possibilities to consider: 16491 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 16492 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 16493 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 16494 * 4. Both are part of their respective usesrc groups 16495 */ 16496 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 16497 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 16498 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 16499 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 16500 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 16501 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 16502 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 16503 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 16504 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 16505 /* Insert at head of list */ 16506 usesrc_cli_ill->ill_usesrc_grp_next = 16507 usesrc_ill->ill_usesrc_grp_next; 16508 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 16509 } else { 16510 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 16511 ifindex); 16512 if (ret != 0) 16513 err = EINVAL; 16514 } 16515 rw_exit(&ipst->ips_ill_g_usesrc_lock); 16516 16517 done: 16518 if (ipsq != NULL) 16519 ipsq_exit(ipsq); 16520 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 16521 ill_refrele(usesrc_ill); 16522 16523 /* Let conn_ixa caching know that source address selection changed */ 16524 ip_update_source_selection(ipst); 16525 16526 return (err); 16527 } 16528 16529 /* ARGSUSED */ 16530 int 16531 ip_sioctl_get_dadstate(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16532 ip_ioctl_cmd_t *ipip, void *if_req) 16533 { 16534 struct lifreq *lifr = (struct lifreq *)if_req; 16535 ill_t *ill = ipif->ipif_ill; 16536 16537 /* 16538 * Need a lock since IFF_UP can be set even when there are 16539 * references to the ipif. 16540 */ 16541 mutex_enter(&ill->ill_lock); 16542 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_addr_ready == 0) 16543 lifr->lifr_dadstate = DAD_IN_PROGRESS; 16544 else 16545 lifr->lifr_dadstate = DAD_DONE; 16546 mutex_exit(&ill->ill_lock); 16547 return (0); 16548 } 16549 16550 /* 16551 * comparison function used by avl. 16552 */ 16553 static int 16554 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 16555 { 16556 16557 uint_t index; 16558 16559 ASSERT(phyip != NULL && index_ptr != NULL); 16560 16561 index = *((uint_t *)index_ptr); 16562 /* 16563 * let the phyint with the lowest index be on top. 16564 */ 16565 if (((phyint_t *)phyip)->phyint_ifindex < index) 16566 return (1); 16567 if (((phyint_t *)phyip)->phyint_ifindex > index) 16568 return (-1); 16569 return (0); 16570 } 16571 16572 /* 16573 * comparison function used by avl. 16574 */ 16575 static int 16576 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 16577 { 16578 ill_t *ill; 16579 int res = 0; 16580 16581 ASSERT(phyip != NULL && name_ptr != NULL); 16582 16583 if (((phyint_t *)phyip)->phyint_illv4) 16584 ill = ((phyint_t *)phyip)->phyint_illv4; 16585 else 16586 ill = ((phyint_t *)phyip)->phyint_illv6; 16587 ASSERT(ill != NULL); 16588 16589 res = strcmp(ill->ill_name, (char *)name_ptr); 16590 if (res > 0) 16591 return (1); 16592 else if (res < 0) 16593 return (-1); 16594 return (0); 16595 } 16596 16597 /* 16598 * This function is called on the unplumb path via ill_glist_delete() when 16599 * there are no ills left on the phyint and thus the phyint can be freed. 16600 */ 16601 static void 16602 phyint_free(phyint_t *phyi) 16603 { 16604 ip_stack_t *ipst = PHYINT_TO_IPST(phyi); 16605 16606 ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL); 16607 16608 /* 16609 * If this phyint was an IPMP meta-interface, blow away the group. 16610 * This is safe to do because all of the illgrps have already been 16611 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us. 16612 * If we're cleaning up as a result of failed initialization, 16613 * phyint_grp may be NULL. 16614 */ 16615 if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) { 16616 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16617 ipmp_grp_destroy(phyi->phyint_grp); 16618 phyi->phyint_grp = NULL; 16619 rw_exit(&ipst->ips_ipmp_lock); 16620 } 16621 16622 /* 16623 * If this interface was under IPMP, take it out of the group. 16624 */ 16625 if (phyi->phyint_grp != NULL) 16626 ipmp_phyint_leave_grp(phyi); 16627 16628 /* 16629 * Delete the phyint and disassociate its ipsq. The ipsq itself 16630 * will be freed in ipsq_exit(). 16631 */ 16632 phyi->phyint_ipsq->ipsq_phyint = NULL; 16633 phyi->phyint_name[0] = '\0'; 16634 16635 mi_free(phyi); 16636 } 16637 16638 /* 16639 * Attach the ill to the phyint structure which can be shared by both 16640 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 16641 * function is called from ipif_set_values and ill_lookup_on_name (for 16642 * loopback) where we know the name of the ill. We lookup the ill and if 16643 * there is one present already with the name use that phyint. Otherwise 16644 * reuse the one allocated by ill_init. 16645 */ 16646 static void 16647 ill_phyint_reinit(ill_t *ill) 16648 { 16649 boolean_t isv6 = ill->ill_isv6; 16650 phyint_t *phyi_old; 16651 phyint_t *phyi; 16652 avl_index_t where = 0; 16653 ill_t *ill_other = NULL; 16654 ip_stack_t *ipst = ill->ill_ipst; 16655 16656 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16657 16658 phyi_old = ill->ill_phyint; 16659 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 16660 phyi_old->phyint_illv6 == NULL)); 16661 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 16662 phyi_old->phyint_illv4 == NULL)); 16663 ASSERT(phyi_old->phyint_ifindex == 0); 16664 16665 /* 16666 * Now that our ill has a name, set it in the phyint. 16667 */ 16668 (void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ); 16669 16670 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16671 ill->ill_name, &where); 16672 16673 /* 16674 * 1. We grabbed the ill_g_lock before inserting this ill into 16675 * the global list of ills. So no other thread could have located 16676 * this ill and hence the ipsq of this ill is guaranteed to be empty. 16677 * 2. Now locate the other protocol instance of this ill. 16678 * 3. Now grab both ill locks in the right order, and the phyint lock of 16679 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 16680 * of neither ill can change. 16681 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 16682 * other ill. 16683 * 5. Release all locks. 16684 */ 16685 16686 /* 16687 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 16688 * we are initializing IPv4. 16689 */ 16690 if (phyi != NULL) { 16691 ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6; 16692 ASSERT(ill_other->ill_phyint != NULL); 16693 ASSERT((isv6 && !ill_other->ill_isv6) || 16694 (!isv6 && ill_other->ill_isv6)); 16695 GRAB_ILL_LOCKS(ill, ill_other); 16696 /* 16697 * We are potentially throwing away phyint_flags which 16698 * could be different from the one that we obtain from 16699 * ill_other->ill_phyint. But it is okay as we are assuming 16700 * that the state maintained within IP is correct. 16701 */ 16702 mutex_enter(&phyi->phyint_lock); 16703 if (isv6) { 16704 ASSERT(phyi->phyint_illv6 == NULL); 16705 phyi->phyint_illv6 = ill; 16706 } else { 16707 ASSERT(phyi->phyint_illv4 == NULL); 16708 phyi->phyint_illv4 = ill; 16709 } 16710 16711 /* 16712 * Delete the old phyint and make its ipsq eligible 16713 * to be freed in ipsq_exit(). 16714 */ 16715 phyi_old->phyint_illv4 = NULL; 16716 phyi_old->phyint_illv6 = NULL; 16717 phyi_old->phyint_ipsq->ipsq_phyint = NULL; 16718 phyi_old->phyint_name[0] = '\0'; 16719 mi_free(phyi_old); 16720 } else { 16721 mutex_enter(&ill->ill_lock); 16722 /* 16723 * We don't need to acquire any lock, since 16724 * the ill is not yet visible globally and we 16725 * have not yet released the ill_g_lock. 16726 */ 16727 phyi = phyi_old; 16728 mutex_enter(&phyi->phyint_lock); 16729 /* XXX We need a recovery strategy here. */ 16730 if (!phyint_assign_ifindex(phyi, ipst)) 16731 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 16732 16733 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16734 (void *)phyi, where); 16735 16736 (void) avl_find(&ipst->ips_phyint_g_list-> 16737 phyint_list_avl_by_index, 16738 &phyi->phyint_ifindex, &where); 16739 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16740 (void *)phyi, where); 16741 } 16742 16743 /* 16744 * Reassigning ill_phyint automatically reassigns the ipsq also. 16745 * pending mp is not affected because that is per ill basis. 16746 */ 16747 ill->ill_phyint = phyi; 16748 16749 /* 16750 * Now that the phyint's ifindex has been assigned, complete the 16751 * remaining 16752 */ 16753 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 16754 if (ill->ill_isv6) { 16755 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 16756 ill->ill_phyint->phyint_ifindex; 16757 ill->ill_mcast_type = ipst->ips_mld_max_version; 16758 } else { 16759 ill->ill_mcast_type = ipst->ips_igmp_max_version; 16760 } 16761 16762 /* 16763 * Generate an event within the hooks framework to indicate that 16764 * a new interface has just been added to IP. For this event to 16765 * be generated, the network interface must, at least, have an 16766 * ifindex assigned to it. (We don't generate the event for 16767 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.) 16768 * 16769 * This needs to be run inside the ill_g_lock perimeter to ensure 16770 * that the ordering of delivered events to listeners matches the 16771 * order of them in the kernel. 16772 */ 16773 if (!IS_LOOPBACK(ill)) { 16774 ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name, 16775 ill->ill_name_length); 16776 } 16777 RELEASE_ILL_LOCKS(ill, ill_other); 16778 mutex_exit(&phyi->phyint_lock); 16779 } 16780 16781 /* 16782 * Notify any downstream modules of the name of this interface. 16783 * An M_IOCTL is used even though we don't expect a successful reply. 16784 * Any reply message from the driver (presumably an M_IOCNAK) will 16785 * eventually get discarded somewhere upstream. The message format is 16786 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 16787 * to IP. 16788 */ 16789 static void 16790 ip_ifname_notify(ill_t *ill, queue_t *q) 16791 { 16792 mblk_t *mp1, *mp2; 16793 struct iocblk *iocp; 16794 struct lifreq *lifr; 16795 16796 mp1 = mkiocb(SIOCSLIFNAME); 16797 if (mp1 == NULL) 16798 return; 16799 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 16800 if (mp2 == NULL) { 16801 freeb(mp1); 16802 return; 16803 } 16804 16805 mp1->b_cont = mp2; 16806 iocp = (struct iocblk *)mp1->b_rptr; 16807 iocp->ioc_count = sizeof (struct lifreq); 16808 16809 lifr = (struct lifreq *)mp2->b_rptr; 16810 mp2->b_wptr += sizeof (struct lifreq); 16811 bzero(lifr, sizeof (struct lifreq)); 16812 16813 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 16814 lifr->lifr_ppa = ill->ill_ppa; 16815 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 16816 16817 DTRACE_PROBE3(ill__dlpi, char *, "ip_ifname_notify", 16818 char *, "SIOCSLIFNAME", ill_t *, ill); 16819 putnext(q, mp1); 16820 } 16821 16822 static int 16823 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 16824 { 16825 int err; 16826 ip_stack_t *ipst = ill->ill_ipst; 16827 phyint_t *phyi = ill->ill_phyint; 16828 16829 /* 16830 * Now that ill_name is set, the configuration for the IPMP 16831 * meta-interface can be performed. 16832 */ 16833 if (IS_IPMP(ill)) { 16834 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16835 /* 16836 * If phyi->phyint_grp is NULL, then this is the first IPMP 16837 * meta-interface and we need to create the IPMP group. 16838 */ 16839 if (phyi->phyint_grp == NULL) { 16840 /* 16841 * If someone has renamed another IPMP group to have 16842 * the same name as our interface, bail. 16843 */ 16844 if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) { 16845 rw_exit(&ipst->ips_ipmp_lock); 16846 return (EEXIST); 16847 } 16848 phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi); 16849 if (phyi->phyint_grp == NULL) { 16850 rw_exit(&ipst->ips_ipmp_lock); 16851 return (ENOMEM); 16852 } 16853 } 16854 rw_exit(&ipst->ips_ipmp_lock); 16855 } 16856 16857 /* Tell downstream modules where they are. */ 16858 ip_ifname_notify(ill, q); 16859 16860 /* 16861 * ill_dl_phys returns EINPROGRESS in the usual case. 16862 * Error cases are ENOMEM ... 16863 */ 16864 err = ill_dl_phys(ill, ipif, mp, q); 16865 16866 if (ill->ill_isv6) { 16867 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 16868 if (ipst->ips_mld_slowtimeout_id == 0) { 16869 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 16870 (void *)ipst, 16871 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16872 } 16873 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 16874 } else { 16875 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 16876 if (ipst->ips_igmp_slowtimeout_id == 0) { 16877 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 16878 (void *)ipst, 16879 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16880 } 16881 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 16882 } 16883 16884 return (err); 16885 } 16886 16887 /* 16888 * Common routine for ppa and ifname setting. Should be called exclusive. 16889 * 16890 * Returns EINPROGRESS when mp has been consumed by queueing it on 16891 * ipx_pending_mp and the ioctl will complete in ip_rput. 16892 * 16893 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 16894 * the new name and new ppa in lifr_name and lifr_ppa respectively. 16895 * For SLIFNAME, we pass these values back to the userland. 16896 */ 16897 static int 16898 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 16899 { 16900 ill_t *ill; 16901 ipif_t *ipif; 16902 ipsq_t *ipsq; 16903 char *ppa_ptr; 16904 char *old_ptr; 16905 char old_char; 16906 int error; 16907 ip_stack_t *ipst; 16908 16909 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 16910 ASSERT(q->q_next != NULL); 16911 ASSERT(interf_name != NULL); 16912 16913 ill = (ill_t *)q->q_ptr; 16914 ipst = ill->ill_ipst; 16915 16916 ASSERT(ill->ill_ipst != NULL); 16917 ASSERT(ill->ill_name[0] == '\0'); 16918 ASSERT(IAM_WRITER_ILL(ill)); 16919 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 16920 ASSERT(ill->ill_ppa == UINT_MAX); 16921 16922 ill->ill_defend_start = ill->ill_defend_count = 0; 16923 /* The ppa is sent down by ifconfig or is chosen */ 16924 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 16925 return (EINVAL); 16926 } 16927 16928 /* 16929 * make sure ppa passed in is same as ppa in the name. 16930 * This check is not made when ppa == UINT_MAX in that case ppa 16931 * in the name could be anything. System will choose a ppa and 16932 * update new_ppa_ptr and inter_name to contain the choosen ppa. 16933 */ 16934 if (*new_ppa_ptr != UINT_MAX) { 16935 /* stoi changes the pointer */ 16936 old_ptr = ppa_ptr; 16937 /* 16938 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 16939 * (they don't have an externally visible ppa). We assign one 16940 * here so that we can manage the interface. Note that in 16941 * the past this value was always 0 for DLPI 1 drivers. 16942 */ 16943 if (*new_ppa_ptr == 0) 16944 *new_ppa_ptr = stoi(&old_ptr); 16945 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 16946 return (EINVAL); 16947 } 16948 /* 16949 * terminate string before ppa 16950 * save char at that location. 16951 */ 16952 old_char = ppa_ptr[0]; 16953 ppa_ptr[0] = '\0'; 16954 16955 ill->ill_ppa = *new_ppa_ptr; 16956 /* 16957 * Finish as much work now as possible before calling ill_glist_insert 16958 * which makes the ill globally visible and also merges it with the 16959 * other protocol instance of this phyint. The remaining work is 16960 * done after entering the ipsq which may happen sometime later. 16961 */ 16962 ipif = ill->ill_ipif; 16963 16964 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 16965 ipif_assign_seqid(ipif); 16966 16967 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 16968 ill->ill_flags |= ILLF_IPV4; 16969 16970 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 16971 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 16972 16973 if (ill->ill_flags & ILLF_IPV6) { 16974 16975 ill->ill_isv6 = B_TRUE; 16976 ill_set_inputfn(ill); 16977 if (ill->ill_rq != NULL) { 16978 ill->ill_rq->q_qinfo = &iprinitv6; 16979 } 16980 16981 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 16982 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 16983 ipif->ipif_v6subnet = ipv6_all_zeros; 16984 ipif->ipif_v6net_mask = ipv6_all_zeros; 16985 ipif->ipif_v6brd_addr = ipv6_all_zeros; 16986 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 16987 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 16988 /* 16989 * point-to-point or Non-mulicast capable 16990 * interfaces won't do NUD unless explicitly 16991 * configured to do so. 16992 */ 16993 if (ipif->ipif_flags & IPIF_POINTOPOINT || 16994 !(ill->ill_flags & ILLF_MULTICAST)) { 16995 ill->ill_flags |= ILLF_NONUD; 16996 } 16997 /* Make sure IPv4 specific flag is not set on IPv6 if */ 16998 if (ill->ill_flags & ILLF_NOARP) { 16999 /* 17000 * Note: xresolv interfaces will eventually need 17001 * NOARP set here as well, but that will require 17002 * those external resolvers to have some 17003 * knowledge of that flag and act appropriately. 17004 * Not to be changed at present. 17005 */ 17006 ill->ill_flags &= ~ILLF_NOARP; 17007 } 17008 /* 17009 * Set the ILLF_ROUTER flag according to the global 17010 * IPv6 forwarding policy. 17011 */ 17012 if (ipst->ips_ipv6_forwarding != 0) 17013 ill->ill_flags |= ILLF_ROUTER; 17014 } else if (ill->ill_flags & ILLF_IPV4) { 17015 ill->ill_isv6 = B_FALSE; 17016 ill_set_inputfn(ill); 17017 ill->ill_reachable_retrans_time = ARP_RETRANS_TIMER; 17018 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 17019 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 17020 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 17021 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 17022 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 17023 /* 17024 * Set the ILLF_ROUTER flag according to the global 17025 * IPv4 forwarding policy. 17026 */ 17027 if (ipst->ips_ip_forwarding != 0) 17028 ill->ill_flags |= ILLF_ROUTER; 17029 } 17030 17031 ASSERT(ill->ill_phyint != NULL); 17032 17033 /* 17034 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 17035 * be completed in ill_glist_insert -> ill_phyint_reinit 17036 */ 17037 if (!ill_allocate_mibs(ill)) 17038 return (ENOMEM); 17039 17040 /* 17041 * Pick a default sap until we get the DL_INFO_ACK back from 17042 * the driver. 17043 */ 17044 ill->ill_sap = (ill->ill_isv6) ? ill->ill_media->ip_m_ipv6sap : 17045 ill->ill_media->ip_m_ipv4sap; 17046 17047 ill->ill_ifname_pending = 1; 17048 ill->ill_ifname_pending_err = 0; 17049 17050 /* 17051 * When the first ipif comes up in ipif_up_done(), multicast groups 17052 * that were joined while this ill was not bound to the DLPI link need 17053 * to be recovered by ill_recover_multicast(). 17054 */ 17055 ill->ill_need_recover_multicast = 1; 17056 17057 ill_refhold(ill); 17058 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17059 if ((error = ill_glist_insert(ill, interf_name, 17060 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 17061 ill->ill_ppa = UINT_MAX; 17062 ill->ill_name[0] = '\0'; 17063 /* 17064 * undo null termination done above. 17065 */ 17066 ppa_ptr[0] = old_char; 17067 rw_exit(&ipst->ips_ill_g_lock); 17068 ill_refrele(ill); 17069 return (error); 17070 } 17071 17072 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 17073 17074 /* 17075 * When we return the buffer pointed to by interf_name should contain 17076 * the same name as in ill_name. 17077 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 17078 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 17079 * so copy full name and update the ppa ptr. 17080 * When ppa passed in != UINT_MAX all values are correct just undo 17081 * null termination, this saves a bcopy. 17082 */ 17083 if (*new_ppa_ptr == UINT_MAX) { 17084 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 17085 *new_ppa_ptr = ill->ill_ppa; 17086 } else { 17087 /* 17088 * undo null termination done above. 17089 */ 17090 ppa_ptr[0] = old_char; 17091 } 17092 17093 /* Let SCTP know about this ILL */ 17094 sctp_update_ill(ill, SCTP_ILL_INSERT); 17095 17096 /* 17097 * ill_glist_insert has made the ill visible globally, and 17098 * ill_phyint_reinit could have changed the ipsq. At this point, 17099 * we need to hold the ips_ill_g_lock across the call to enter the 17100 * ipsq to enforce atomicity and prevent reordering. In the event 17101 * the ipsq has changed, and if the new ipsq is currently busy, 17102 * we need to make sure that this half-completed ioctl is ahead of 17103 * any subsequent ioctl. We achieve this by not dropping the 17104 * ips_ill_g_lock which prevents any ill lookup itself thereby 17105 * ensuring that new ioctls can't start. 17106 */ 17107 ipsq = ipsq_try_enter_internal(ill, q, mp, ip_reprocess_ioctl, NEW_OP, 17108 B_TRUE); 17109 17110 rw_exit(&ipst->ips_ill_g_lock); 17111 ill_refrele(ill); 17112 if (ipsq == NULL) 17113 return (EINPROGRESS); 17114 17115 /* 17116 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 17117 */ 17118 if (ipsq->ipsq_xop->ipx_current_ipif == NULL) 17119 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 17120 else 17121 ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif); 17122 17123 error = ipif_set_values_tail(ill, ipif, mp, q); 17124 ipsq_exit(ipsq); 17125 if (error != 0 && error != EINPROGRESS) { 17126 /* 17127 * restore previous values 17128 */ 17129 ill->ill_isv6 = B_FALSE; 17130 ill_set_inputfn(ill); 17131 } 17132 return (error); 17133 } 17134 17135 void 17136 ipif_init(ip_stack_t *ipst) 17137 { 17138 int i; 17139 17140 for (i = 0; i < MAX_G_HEADS; i++) { 17141 ipst->ips_ill_g_heads[i].ill_g_list_head = 17142 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 17143 ipst->ips_ill_g_heads[i].ill_g_list_tail = 17144 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 17145 } 17146 17147 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 17148 ill_phyint_compare_index, 17149 sizeof (phyint_t), 17150 offsetof(struct phyint, phyint_avl_by_index)); 17151 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 17152 ill_phyint_compare_name, 17153 sizeof (phyint_t), 17154 offsetof(struct phyint, phyint_avl_by_name)); 17155 } 17156 17157 /* 17158 * Save enough information so that we can recreate the IRE if 17159 * the interface goes down and then up. 17160 */ 17161 void 17162 ill_save_ire(ill_t *ill, ire_t *ire) 17163 { 17164 mblk_t *save_mp; 17165 17166 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 17167 if (save_mp != NULL) { 17168 ifrt_t *ifrt; 17169 17170 save_mp->b_wptr += sizeof (ifrt_t); 17171 ifrt = (ifrt_t *)save_mp->b_rptr; 17172 bzero(ifrt, sizeof (ifrt_t)); 17173 ifrt->ifrt_type = ire->ire_type; 17174 if (ire->ire_ipversion == IPV4_VERSION) { 17175 ASSERT(!ill->ill_isv6); 17176 ifrt->ifrt_addr = ire->ire_addr; 17177 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 17178 ifrt->ifrt_setsrc_addr = ire->ire_setsrc_addr; 17179 ifrt->ifrt_mask = ire->ire_mask; 17180 } else { 17181 ASSERT(ill->ill_isv6); 17182 ifrt->ifrt_v6addr = ire->ire_addr_v6; 17183 /* ire_gateway_addr_v6 can change due to RTM_CHANGE */ 17184 mutex_enter(&ire->ire_lock); 17185 ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6; 17186 mutex_exit(&ire->ire_lock); 17187 ifrt->ifrt_v6setsrc_addr = ire->ire_setsrc_addr_v6; 17188 ifrt->ifrt_v6mask = ire->ire_mask_v6; 17189 } 17190 ifrt->ifrt_flags = ire->ire_flags; 17191 ifrt->ifrt_zoneid = ire->ire_zoneid; 17192 mutex_enter(&ill->ill_saved_ire_lock); 17193 save_mp->b_cont = ill->ill_saved_ire_mp; 17194 ill->ill_saved_ire_mp = save_mp; 17195 ill->ill_saved_ire_cnt++; 17196 mutex_exit(&ill->ill_saved_ire_lock); 17197 } 17198 } 17199 17200 /* 17201 * Remove one entry from ill_saved_ire_mp. 17202 */ 17203 void 17204 ill_remove_saved_ire(ill_t *ill, ire_t *ire) 17205 { 17206 mblk_t **mpp; 17207 mblk_t *mp; 17208 ifrt_t *ifrt; 17209 17210 /* Remove from ill_saved_ire_mp list if it is there */ 17211 mutex_enter(&ill->ill_saved_ire_lock); 17212 for (mpp = &ill->ill_saved_ire_mp; *mpp != NULL; 17213 mpp = &(*mpp)->b_cont) { 17214 in6_addr_t gw_addr_v6; 17215 17216 /* 17217 * On a given ill, the tuple of address, gateway, mask, 17218 * ire_type, and zoneid is unique for each saved IRE. 17219 */ 17220 mp = *mpp; 17221 ifrt = (ifrt_t *)mp->b_rptr; 17222 /* ire_gateway_addr_v6 can change - need lock */ 17223 mutex_enter(&ire->ire_lock); 17224 gw_addr_v6 = ire->ire_gateway_addr_v6; 17225 mutex_exit(&ire->ire_lock); 17226 17227 if (ifrt->ifrt_zoneid != ire->ire_zoneid || 17228 ifrt->ifrt_type != ire->ire_type) 17229 continue; 17230 17231 if (ill->ill_isv6 ? 17232 (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr, 17233 &ire->ire_addr_v6) && 17234 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr, 17235 &gw_addr_v6) && 17236 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask, 17237 &ire->ire_mask_v6)) : 17238 (ifrt->ifrt_addr == ire->ire_addr && 17239 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 17240 ifrt->ifrt_mask == ire->ire_mask)) { 17241 *mpp = mp->b_cont; 17242 ill->ill_saved_ire_cnt--; 17243 freeb(mp); 17244 break; 17245 } 17246 } 17247 mutex_exit(&ill->ill_saved_ire_lock); 17248 } 17249 17250 /* 17251 * IP multirouting broadcast routes handling 17252 * Append CGTP broadcast IREs to regular ones created 17253 * at ifconfig time. 17254 * The usage is a route add <cgtp_bc> <nic_bc> -multirt i.e., both 17255 * the destination and the gateway are broadcast addresses. 17256 * The caller has verified that the destination is an IRE_BROADCAST and that 17257 * RTF_MULTIRT was set. Here if the gateway is a broadcast address, then 17258 * we create a MULTIRT IRE_BROADCAST. 17259 * Note that the IRE_HOST created by ire_rt_add doesn't get found by anything 17260 * since the IRE_BROADCAST takes precedence; ire_add_v4 does head insertion. 17261 */ 17262 static void 17263 ip_cgtp_bcast_add(ire_t *ire, ip_stack_t *ipst) 17264 { 17265 ire_t *ire_prim; 17266 17267 ASSERT(ire != NULL); 17268 17269 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 17270 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 17271 NULL); 17272 if (ire_prim != NULL) { 17273 /* 17274 * We are in the special case of broadcasts for 17275 * CGTP. We add an IRE_BROADCAST that holds 17276 * the RTF_MULTIRT flag, the destination 17277 * address and the low level 17278 * info of ire_prim. In other words, CGTP 17279 * broadcast is added to the redundant ipif. 17280 */ 17281 ill_t *ill_prim; 17282 ire_t *bcast_ire; 17283 17284 ill_prim = ire_prim->ire_ill; 17285 17286 ip2dbg(("ip_cgtp_filter_bcast_add: ire_prim %p, ill_prim %p\n", 17287 (void *)ire_prim, (void *)ill_prim)); 17288 17289 bcast_ire = ire_create( 17290 (uchar_t *)&ire->ire_addr, 17291 (uchar_t *)&ip_g_all_ones, 17292 (uchar_t *)&ire->ire_gateway_addr, 17293 IRE_BROADCAST, 17294 ill_prim, 17295 GLOBAL_ZONEID, /* CGTP is only for the global zone */ 17296 ire->ire_flags | RTF_KERNEL, 17297 NULL, 17298 ipst); 17299 17300 /* 17301 * Here we assume that ire_add does head insertion so that 17302 * the added IRE_BROADCAST comes before the existing IRE_HOST. 17303 */ 17304 if (bcast_ire != NULL) { 17305 if (ire->ire_flags & RTF_SETSRC) { 17306 bcast_ire->ire_setsrc_addr = 17307 ire->ire_setsrc_addr; 17308 } 17309 bcast_ire = ire_add(bcast_ire); 17310 if (bcast_ire != NULL) { 17311 ip2dbg(("ip_cgtp_filter_bcast_add: " 17312 "added bcast_ire %p\n", 17313 (void *)bcast_ire)); 17314 17315 ill_save_ire(ill_prim, bcast_ire); 17316 ire_refrele(bcast_ire); 17317 } 17318 } 17319 ire_refrele(ire_prim); 17320 } 17321 } 17322 17323 /* 17324 * IP multirouting broadcast routes handling 17325 * Remove the broadcast ire. 17326 * The usage is a route delete <cgtp_bc> <nic_bc> -multirt i.e., both 17327 * the destination and the gateway are broadcast addresses. 17328 * The caller has only verified that RTF_MULTIRT was set. We check 17329 * that the destination is broadcast and that the gateway is a broadcast 17330 * address, and if so delete the IRE added by ip_cgtp_bcast_add(). 17331 */ 17332 static void 17333 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 17334 { 17335 ASSERT(ire != NULL); 17336 17337 if (ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST) { 17338 ire_t *ire_prim; 17339 17340 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 17341 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, 17342 ipst, NULL); 17343 if (ire_prim != NULL) { 17344 ill_t *ill_prim; 17345 ire_t *bcast_ire; 17346 17347 ill_prim = ire_prim->ire_ill; 17348 17349 ip2dbg(("ip_cgtp_filter_bcast_delete: " 17350 "ire_prim %p, ill_prim %p\n", 17351 (void *)ire_prim, (void *)ill_prim)); 17352 17353 bcast_ire = ire_ftable_lookup_v4(ire->ire_addr, 0, 17354 ire->ire_gateway_addr, IRE_BROADCAST, 17355 ill_prim, ALL_ZONES, NULL, 17356 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_ILL | 17357 MATCH_IRE_MASK, 0, ipst, NULL); 17358 17359 if (bcast_ire != NULL) { 17360 ip2dbg(("ip_cgtp_filter_bcast_delete: " 17361 "looked up bcast_ire %p\n", 17362 (void *)bcast_ire)); 17363 ill_remove_saved_ire(bcast_ire->ire_ill, 17364 bcast_ire); 17365 ire_delete(bcast_ire); 17366 ire_refrele(bcast_ire); 17367 } 17368 ire_refrele(ire_prim); 17369 } 17370 } 17371 } 17372 17373 /* 17374 * Derive an interface id from the link layer address. 17375 * Knows about IEEE 802 and IEEE EUI-64 mappings. 17376 */ 17377 static void 17378 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17379 { 17380 char *addr; 17381 17382 /* 17383 * Note that some IPv6 interfaces get plumbed over links that claim to 17384 * be DL_ETHER, but don't actually have Ethernet MAC addresses (e.g. 17385 * PPP links). The ETHERADDRL check here ensures that we only set the 17386 * interface ID on IPv6 interfaces above links that actually have real 17387 * Ethernet addresses. 17388 */ 17389 if (ill->ill_phys_addr_length == ETHERADDRL) { 17390 /* Form EUI-64 like address */ 17391 addr = (char *)&v6addr->s6_addr32[2]; 17392 bcopy(ill->ill_phys_addr, addr, 3); 17393 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 17394 addr[3] = (char)0xff; 17395 addr[4] = (char)0xfe; 17396 bcopy(ill->ill_phys_addr + 3, addr + 5, 3); 17397 } 17398 } 17399 17400 /* ARGSUSED */ 17401 static void 17402 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17403 { 17404 } 17405 17406 typedef struct ipmp_ifcookie { 17407 uint32_t ic_hostid; 17408 char ic_ifname[LIFNAMSIZ]; 17409 char ic_zonename[ZONENAME_MAX]; 17410 } ipmp_ifcookie_t; 17411 17412 /* 17413 * Construct a pseudo-random interface ID for the IPMP interface that's both 17414 * predictable and (almost) guaranteed to be unique. 17415 */ 17416 static void 17417 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17418 { 17419 zone_t *zp; 17420 uint8_t *addr; 17421 uchar_t hash[16]; 17422 ulong_t hostid; 17423 MD5_CTX ctx; 17424 ipmp_ifcookie_t ic = { 0 }; 17425 17426 ASSERT(IS_IPMP(ill)); 17427 17428 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid); 17429 ic.ic_hostid = htonl((uint32_t)hostid); 17430 17431 (void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ); 17432 17433 if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) { 17434 (void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX); 17435 zone_rele(zp); 17436 } 17437 17438 MD5Init(&ctx); 17439 MD5Update(&ctx, &ic, sizeof (ic)); 17440 MD5Final(hash, &ctx); 17441 17442 /* 17443 * Map the hash to an interface ID per the basic approach in RFC3041. 17444 */ 17445 addr = &v6addr->s6_addr8[8]; 17446 bcopy(hash + 8, addr, sizeof (uint64_t)); 17447 addr[0] &= ~0x2; /* set local bit */ 17448 } 17449 17450 /* 17451 * Map the multicast in6_addr_t in m_ip6addr to the physaddr for ethernet. 17452 */ 17453 static void 17454 ip_ether_v6_mapping(ill_t *ill, uchar_t *m_ip6addr, uchar_t *m_physaddr) 17455 { 17456 phyint_t *phyi = ill->ill_phyint; 17457 17458 /* 17459 * Check PHYI_MULTI_BCAST and length of physical 17460 * address to determine if we use the mapping or the 17461 * broadcast address. 17462 */ 17463 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 17464 ill->ill_phys_addr_length != ETHERADDRL) { 17465 ip_mbcast_mapping(ill, m_ip6addr, m_physaddr); 17466 return; 17467 } 17468 m_physaddr[0] = 0x33; 17469 m_physaddr[1] = 0x33; 17470 m_physaddr[2] = m_ip6addr[12]; 17471 m_physaddr[3] = m_ip6addr[13]; 17472 m_physaddr[4] = m_ip6addr[14]; 17473 m_physaddr[5] = m_ip6addr[15]; 17474 } 17475 17476 /* 17477 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for ethernet. 17478 */ 17479 static void 17480 ip_ether_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17481 { 17482 phyint_t *phyi = ill->ill_phyint; 17483 17484 /* 17485 * Check PHYI_MULTI_BCAST and length of physical 17486 * address to determine if we use the mapping or the 17487 * broadcast address. 17488 */ 17489 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 17490 ill->ill_phys_addr_length != ETHERADDRL) { 17491 ip_mbcast_mapping(ill, m_ipaddr, m_physaddr); 17492 return; 17493 } 17494 m_physaddr[0] = 0x01; 17495 m_physaddr[1] = 0x00; 17496 m_physaddr[2] = 0x5e; 17497 m_physaddr[3] = m_ipaddr[1] & 0x7f; 17498 m_physaddr[4] = m_ipaddr[2]; 17499 m_physaddr[5] = m_ipaddr[3]; 17500 } 17501 17502 /* ARGSUSED */ 17503 static void 17504 ip_mbcast_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17505 { 17506 /* 17507 * for the MULTI_BCAST case and other cases when we want to 17508 * use the link-layer broadcast address for multicast. 17509 */ 17510 uint8_t *bphys_addr; 17511 dl_unitdata_req_t *dlur; 17512 17513 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17514 if (ill->ill_sap_length < 0) { 17515 bphys_addr = (uchar_t *)dlur + 17516 dlur->dl_dest_addr_offset; 17517 } else { 17518 bphys_addr = (uchar_t *)dlur + 17519 dlur->dl_dest_addr_offset + ill->ill_sap_length; 17520 } 17521 17522 bcopy(bphys_addr, m_physaddr, ill->ill_phys_addr_length); 17523 } 17524 17525 /* 17526 * Derive IPoIB interface id from the link layer address. 17527 */ 17528 static void 17529 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17530 { 17531 char *addr; 17532 17533 ASSERT(ill->ill_phys_addr_length == 20); 17534 addr = (char *)&v6addr->s6_addr32[2]; 17535 bcopy(ill->ill_phys_addr + 12, addr, 8); 17536 /* 17537 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 17538 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 17539 * rules. In these cases, the IBA considers these GUIDs to be in 17540 * "Modified EUI-64" format, and thus toggling the u/l bit is not 17541 * required; vendors are required not to assign global EUI-64's 17542 * that differ only in u/l bit values, thus guaranteeing uniqueness 17543 * of the interface identifier. Whether the GUID is in modified 17544 * or proper EUI-64 format, the ipv6 identifier must have the u/l 17545 * bit set to 1. 17546 */ 17547 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 17548 } 17549 17550 /* 17551 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for InfiniBand. 17552 * Note on mapping from multicast IP addresses to IPoIB multicast link 17553 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 17554 * The format of an IPoIB multicast address is: 17555 * 17556 * 4 byte QPN Scope Sign. Pkey 17557 * +--------------------------------------------+ 17558 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 17559 * +--------------------------------------------+ 17560 * 17561 * The Scope and Pkey components are properties of the IBA port and 17562 * network interface. They can be ascertained from the broadcast address. 17563 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 17564 */ 17565 static void 17566 ip_ib_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17567 { 17568 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 17569 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 17570 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 17571 uint8_t *bphys_addr; 17572 dl_unitdata_req_t *dlur; 17573 17574 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 17575 17576 /* 17577 * RFC 4391: IPv4 MGID is 28-bit long. 17578 */ 17579 m_physaddr[16] = m_ipaddr[0] & 0x0f; 17580 m_physaddr[17] = m_ipaddr[1]; 17581 m_physaddr[18] = m_ipaddr[2]; 17582 m_physaddr[19] = m_ipaddr[3]; 17583 17584 17585 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17586 if (ill->ill_sap_length < 0) { 17587 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 17588 } else { 17589 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 17590 ill->ill_sap_length; 17591 } 17592 /* 17593 * Now fill in the IBA scope/Pkey values from the broadcast address. 17594 */ 17595 m_physaddr[5] = bphys_addr[5]; 17596 m_physaddr[8] = bphys_addr[8]; 17597 m_physaddr[9] = bphys_addr[9]; 17598 } 17599 17600 static void 17601 ip_ib_v6_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17602 { 17603 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 17604 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 17605 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 17606 uint8_t *bphys_addr; 17607 dl_unitdata_req_t *dlur; 17608 17609 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 17610 17611 /* 17612 * RFC 4391: IPv4 MGID is 80-bit long. 17613 */ 17614 bcopy(&m_ipaddr[6], &m_physaddr[10], 10); 17615 17616 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17617 if (ill->ill_sap_length < 0) { 17618 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 17619 } else { 17620 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 17621 ill->ill_sap_length; 17622 } 17623 /* 17624 * Now fill in the IBA scope/Pkey values from the broadcast address. 17625 */ 17626 m_physaddr[5] = bphys_addr[5]; 17627 m_physaddr[8] = bphys_addr[8]; 17628 m_physaddr[9] = bphys_addr[9]; 17629 } 17630 17631 /* 17632 * Derive IPv6 interface id from an IPv4 link-layer address (e.g. from an IPv4 17633 * tunnel). The IPv4 address simply get placed in the lower 4 bytes of the 17634 * IPv6 interface id. This is a suggested mechanism described in section 3.7 17635 * of RFC4213. 17636 */ 17637 static void 17638 ip_ipv4_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17639 { 17640 ASSERT(ill->ill_phys_addr_length == sizeof (ipaddr_t)); 17641 v6addr->s6_addr32[2] = 0; 17642 bcopy(physaddr, &v6addr->s6_addr32[3], sizeof (ipaddr_t)); 17643 } 17644 17645 /* 17646 * Derive IPv6 interface id from an IPv6 link-layer address (e.g. from an IPv6 17647 * tunnel). The lower 8 bytes of the IPv6 address simply become the interface 17648 * id. 17649 */ 17650 static void 17651 ip_ipv6_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17652 { 17653 in6_addr_t *v6lladdr = (in6_addr_t *)physaddr; 17654 17655 ASSERT(ill->ill_phys_addr_length == sizeof (in6_addr_t)); 17656 bcopy(&v6lladdr->s6_addr32[2], &v6addr->s6_addr32[2], 8); 17657 } 17658 17659 static void 17660 ip_ipv6_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17661 { 17662 ip_ipv6_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17663 } 17664 17665 static void 17666 ip_ipv6_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17667 { 17668 ip_ipv6_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17669 } 17670 17671 static void 17672 ip_ipv4_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17673 { 17674 ip_ipv4_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17675 } 17676 17677 static void 17678 ip_ipv4_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17679 { 17680 ip_ipv4_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17681 } 17682 17683 /* 17684 * Lookup an ill and verify that the zoneid has an ipif on that ill. 17685 * Returns an held ill, or NULL. 17686 */ 17687 ill_t * 17688 ill_lookup_on_ifindex_zoneid(uint_t index, zoneid_t zoneid, boolean_t isv6, 17689 ip_stack_t *ipst) 17690 { 17691 ill_t *ill; 17692 ipif_t *ipif; 17693 17694 ill = ill_lookup_on_ifindex(index, isv6, ipst); 17695 if (ill == NULL) 17696 return (NULL); 17697 17698 mutex_enter(&ill->ill_lock); 17699 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17700 if (IPIF_IS_CONDEMNED(ipif)) 17701 continue; 17702 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 17703 ipif->ipif_zoneid != ALL_ZONES) 17704 continue; 17705 17706 mutex_exit(&ill->ill_lock); 17707 return (ill); 17708 } 17709 mutex_exit(&ill->ill_lock); 17710 ill_refrele(ill); 17711 return (NULL); 17712 } 17713 17714 /* 17715 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 17716 * If a pointer to an ipif_t is returned then the caller will need to do 17717 * an ill_refrele(). 17718 */ 17719 ipif_t * 17720 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 17721 ip_stack_t *ipst) 17722 { 17723 ipif_t *ipif; 17724 ill_t *ill; 17725 17726 ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 17727 if (ill == NULL) 17728 return (NULL); 17729 17730 mutex_enter(&ill->ill_lock); 17731 if (ill->ill_state_flags & ILL_CONDEMNED) { 17732 mutex_exit(&ill->ill_lock); 17733 ill_refrele(ill); 17734 return (NULL); 17735 } 17736 17737 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17738 if (!IPIF_CAN_LOOKUP(ipif)) 17739 continue; 17740 if (lifidx == ipif->ipif_id) { 17741 ipif_refhold_locked(ipif); 17742 break; 17743 } 17744 } 17745 17746 mutex_exit(&ill->ill_lock); 17747 ill_refrele(ill); 17748 return (ipif); 17749 } 17750 17751 /* 17752 * Set ill_inputfn based on the current know state. 17753 * This needs to be called when any of the factors taken into 17754 * account changes. 17755 */ 17756 void 17757 ill_set_inputfn(ill_t *ill) 17758 { 17759 ip_stack_t *ipst = ill->ill_ipst; 17760 17761 if (ill->ill_isv6) { 17762 if (is_system_labeled()) 17763 ill->ill_inputfn = ill_input_full_v6; 17764 else 17765 ill->ill_inputfn = ill_input_short_v6; 17766 } else { 17767 if (is_system_labeled()) 17768 ill->ill_inputfn = ill_input_full_v4; 17769 else if (ill->ill_dhcpinit != 0) 17770 ill->ill_inputfn = ill_input_full_v4; 17771 else if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_RSVP].connf_head 17772 != NULL) 17773 ill->ill_inputfn = ill_input_full_v4; 17774 else if (ipst->ips_ip_cgtp_filter && 17775 ipst->ips_ip_cgtp_filter_ops != NULL) 17776 ill->ill_inputfn = ill_input_full_v4; 17777 else 17778 ill->ill_inputfn = ill_input_short_v4; 17779 } 17780 } 17781 17782 /* 17783 * Re-evaluate ill_inputfn for all the IPv4 ills. 17784 * Used when RSVP and CGTP comes and goes. 17785 */ 17786 void 17787 ill_set_inputfn_all(ip_stack_t *ipst) 17788 { 17789 ill_walk_context_t ctx; 17790 ill_t *ill; 17791 17792 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 17793 ill = ILL_START_WALK_V4(&ctx, ipst); 17794 for (; ill != NULL; ill = ill_next(&ctx, ill)) 17795 ill_set_inputfn(ill); 17796 17797 rw_exit(&ipst->ips_ill_g_lock); 17798 } 17799 17800 /* 17801 * Set the physical address information for `ill' to the contents of the 17802 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 17803 * asynchronous if `ill' cannot immediately be quiesced -- in which case 17804 * EINPROGRESS will be returned. 17805 */ 17806 int 17807 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 17808 { 17809 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17810 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 17811 17812 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17813 17814 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 17815 dlindp->dl_data != DL_CURR_DEST_ADDR && 17816 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 17817 /* Changing DL_IPV6_TOKEN is not yet supported */ 17818 return (0); 17819 } 17820 17821 /* 17822 * We need to store up to two copies of `mp' in `ill'. Due to the 17823 * design of ipsq_pending_mp_add(), we can't pass them as separate 17824 * arguments to ill_set_phys_addr_tail(). Instead, chain them 17825 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 17826 */ 17827 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 17828 freemsg(mp); 17829 return (ENOMEM); 17830 } 17831 17832 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17833 17834 /* 17835 * Since we'll only do a logical down, we can't rely on ipif_down 17836 * to turn on ILL_DOWN_IN_PROGRESS, or for the DL_BIND_ACK to reset 17837 * ILL_DOWN_IN_PROGRESS. We instead manage this separately for this 17838 * case, to quiesce ire's and nce's for ill_is_quiescent. 17839 */ 17840 mutex_enter(&ill->ill_lock); 17841 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 17842 /* no more ire/nce addition allowed */ 17843 mutex_exit(&ill->ill_lock); 17844 17845 /* 17846 * If we can quiesce the ill, then set the address. If not, then 17847 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 17848 */ 17849 ill_down_ipifs(ill, B_TRUE); 17850 mutex_enter(&ill->ill_lock); 17851 if (!ill_is_quiescent(ill)) { 17852 /* call cannot fail since `conn_t *' argument is NULL */ 17853 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 17854 mp, ILL_DOWN); 17855 mutex_exit(&ill->ill_lock); 17856 return (EINPROGRESS); 17857 } 17858 mutex_exit(&ill->ill_lock); 17859 17860 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 17861 return (0); 17862 } 17863 17864 /* 17865 * When the allowed-ips link property is set on the datalink, IP receives a 17866 * DL_NOTE_ALLOWED_IPS notification that is processed in ill_set_allowed_ips() 17867 * to initialize the ill_allowed_ips[] array in the ill_t. This array is then 17868 * used to vet addresses passed to ip_sioctl_addr() and to ensure that the 17869 * only IP addresses configured on the ill_t are those in the ill_allowed_ips[] 17870 * array. 17871 */ 17872 void 17873 ill_set_allowed_ips(ill_t *ill, mblk_t *mp) 17874 { 17875 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17876 dl_notify_ind_t *dlip = (dl_notify_ind_t *)mp->b_rptr; 17877 mac_protect_t *mrp; 17878 int i; 17879 17880 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17881 mrp = (mac_protect_t *)&dlip[1]; 17882 17883 if (mrp->mp_ipaddrcnt == 0) { /* reset allowed-ips */ 17884 kmem_free(ill->ill_allowed_ips, 17885 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t)); 17886 ill->ill_allowed_ips_cnt = 0; 17887 ill->ill_allowed_ips = NULL; 17888 mutex_enter(&ill->ill_phyint->phyint_lock); 17889 ill->ill_phyint->phyint_flags &= ~PHYI_L3PROTECT; 17890 mutex_exit(&ill->ill_phyint->phyint_lock); 17891 return; 17892 } 17893 17894 if (ill->ill_allowed_ips != NULL) { 17895 kmem_free(ill->ill_allowed_ips, 17896 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t)); 17897 } 17898 ill->ill_allowed_ips_cnt = mrp->mp_ipaddrcnt; 17899 ill->ill_allowed_ips = kmem_alloc( 17900 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t), KM_SLEEP); 17901 for (i = 0; i < mrp->mp_ipaddrcnt; i++) 17902 ill->ill_allowed_ips[i] = mrp->mp_ipaddrs[i].ip_addr; 17903 17904 mutex_enter(&ill->ill_phyint->phyint_lock); 17905 ill->ill_phyint->phyint_flags |= PHYI_L3PROTECT; 17906 mutex_exit(&ill->ill_phyint->phyint_lock); 17907 } 17908 17909 /* 17910 * Once the ill associated with `q' has quiesced, set its physical address 17911 * information to the values in `addrmp'. Note that two copies of `addrmp' 17912 * are passed (linked by b_cont), since we sometimes need to save two distinct 17913 * copies in the ill_t, and our context doesn't permit sleeping or allocation 17914 * failure (we'll free the other copy if it's not needed). Since the ill_t 17915 * is quiesced, we know any stale nce's with the old address information have 17916 * already been removed, so we don't need to call nce_flush(). 17917 */ 17918 /* ARGSUSED */ 17919 static void 17920 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 17921 { 17922 ill_t *ill = q->q_ptr; 17923 mblk_t *addrmp2 = unlinkb(addrmp); 17924 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 17925 uint_t addrlen, addroff; 17926 int status; 17927 17928 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17929 17930 addroff = dlindp->dl_addr_offset; 17931 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 17932 17933 switch (dlindp->dl_data) { 17934 case DL_IPV6_LINK_LAYER_ADDR: 17935 ill_set_ndmp(ill, addrmp, addroff, addrlen); 17936 freemsg(addrmp2); 17937 break; 17938 17939 case DL_CURR_DEST_ADDR: 17940 freemsg(ill->ill_dest_addr_mp); 17941 ill->ill_dest_addr = addrmp->b_rptr + addroff; 17942 ill->ill_dest_addr_mp = addrmp; 17943 if (ill->ill_isv6) { 17944 ill_setdesttoken(ill); 17945 ipif_setdestlinklocal(ill->ill_ipif); 17946 } 17947 freemsg(addrmp2); 17948 break; 17949 17950 case DL_CURR_PHYS_ADDR: 17951 freemsg(ill->ill_phys_addr_mp); 17952 ill->ill_phys_addr = addrmp->b_rptr + addroff; 17953 ill->ill_phys_addr_mp = addrmp; 17954 ill->ill_phys_addr_length = addrlen; 17955 if (ill->ill_isv6) 17956 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 17957 else 17958 freemsg(addrmp2); 17959 if (ill->ill_isv6) { 17960 ill_setdefaulttoken(ill); 17961 ipif_setlinklocal(ill->ill_ipif); 17962 } 17963 break; 17964 default: 17965 ASSERT(0); 17966 } 17967 17968 /* 17969 * reset ILL_DOWN_IN_PROGRESS so that we can successfully add ires 17970 * as we bring the ipifs up again. 17971 */ 17972 mutex_enter(&ill->ill_lock); 17973 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 17974 mutex_exit(&ill->ill_lock); 17975 /* 17976 * If there are ipifs to bring up, ill_up_ipifs() will return 17977 * EINPROGRESS, and ipsq_current_finish() will be called by 17978 * ip_rput_dlpi_writer() or arp_bringup_done() when the last ipif is 17979 * brought up. 17980 */ 17981 status = ill_up_ipifs(ill, q, addrmp); 17982 if (status != EINPROGRESS) 17983 ipsq_current_finish(ipsq); 17984 } 17985 17986 /* 17987 * Helper routine for setting the ill_nd_lla fields. 17988 */ 17989 void 17990 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 17991 { 17992 freemsg(ill->ill_nd_lla_mp); 17993 ill->ill_nd_lla = ndmp->b_rptr + addroff; 17994 ill->ill_nd_lla_mp = ndmp; 17995 ill->ill_nd_lla_len = addrlen; 17996 } 17997 17998 /* 17999 * Replumb the ill. 18000 */ 18001 int 18002 ill_replumb(ill_t *ill, mblk_t *mp) 18003 { 18004 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 18005 18006 ASSERT(IAM_WRITER_IPSQ(ipsq)); 18007 18008 ipsq_current_start(ipsq, ill->ill_ipif, 0); 18009 18010 /* 18011 * If we can quiesce the ill, then continue. If not, then 18012 * ill_replumb_tail() will be called from ipif_ill_refrele_tail(). 18013 */ 18014 ill_down_ipifs(ill, B_FALSE); 18015 18016 mutex_enter(&ill->ill_lock); 18017 if (!ill_is_quiescent(ill)) { 18018 /* call cannot fail since `conn_t *' argument is NULL */ 18019 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 18020 mp, ILL_DOWN); 18021 mutex_exit(&ill->ill_lock); 18022 return (EINPROGRESS); 18023 } 18024 mutex_exit(&ill->ill_lock); 18025 18026 ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL); 18027 return (0); 18028 } 18029 18030 /* ARGSUSED */ 18031 static void 18032 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 18033 { 18034 ill_t *ill = q->q_ptr; 18035 int err; 18036 conn_t *connp = NULL; 18037 18038 ASSERT(IAM_WRITER_IPSQ(ipsq)); 18039 freemsg(ill->ill_replumb_mp); 18040 ill->ill_replumb_mp = copyb(mp); 18041 18042 if (ill->ill_replumb_mp == NULL) { 18043 /* out of memory */ 18044 ipsq_current_finish(ipsq); 18045 return; 18046 } 18047 18048 mutex_enter(&ill->ill_lock); 18049 ill->ill_up_ipifs = ipsq_pending_mp_add(NULL, ill->ill_ipif, 18050 ill->ill_rq, ill->ill_replumb_mp, 0); 18051 mutex_exit(&ill->ill_lock); 18052 18053 if (!ill->ill_up_ipifs) { 18054 /* already closing */ 18055 ipsq_current_finish(ipsq); 18056 return; 18057 } 18058 ill->ill_replumbing = 1; 18059 err = ill_down_ipifs_tail(ill); 18060 18061 /* 18062 * Successfully quiesced and brought down the interface, now we send 18063 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the 18064 * DL_NOTE_REPLUMB message. 18065 */ 18066 mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO, 18067 DL_NOTIFY_CONF); 18068 ASSERT(mp != NULL); 18069 ((dl_notify_conf_t *)mp->b_rptr)->dl_notification = 18070 DL_NOTE_REPLUMB_DONE; 18071 ill_dlpi_send(ill, mp); 18072 18073 /* 18074 * For IPv4, we would usually get EINPROGRESS because the ETHERTYPE_ARP 18075 * streams have to be unbound. When all the DLPI exchanges are done, 18076 * ipsq_current_finish() will be called by arp_bringup_done(). The 18077 * remainder of ipif bringup via ill_up_ipifs() will also be done in 18078 * arp_bringup_done(). 18079 */ 18080 ASSERT(ill->ill_replumb_mp != NULL); 18081 if (err == EINPROGRESS) 18082 return; 18083 else 18084 ill->ill_replumb_mp = ipsq_pending_mp_get(ipsq, &connp); 18085 ASSERT(connp == NULL); 18086 if (err == 0 && ill->ill_replumb_mp != NULL && 18087 ill_up_ipifs(ill, q, ill->ill_replumb_mp) == EINPROGRESS) { 18088 return; 18089 } 18090 ipsq_current_finish(ipsq); 18091 } 18092 18093 /* 18094 * Issue ioctl `cmd' on `lh'; caller provides the initial payload in `buf' 18095 * which is `bufsize' bytes. On success, zero is returned and `buf' updated 18096 * as per the ioctl. On failure, an errno is returned. 18097 */ 18098 static int 18099 ip_ioctl(ldi_handle_t lh, int cmd, void *buf, uint_t bufsize, cred_t *cr) 18100 { 18101 int rval; 18102 struct strioctl iocb; 18103 18104 iocb.ic_cmd = cmd; 18105 iocb.ic_timout = 15; 18106 iocb.ic_len = bufsize; 18107 iocb.ic_dp = buf; 18108 18109 return (ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval)); 18110 } 18111 18112 /* 18113 * Issue an SIOCGLIFCONF for address family `af' and store the result into a 18114 * dynamically-allocated `lifcp' that will be `bufsizep' bytes on success. 18115 */ 18116 static int 18117 ip_lifconf_ioctl(ldi_handle_t lh, int af, struct lifconf *lifcp, 18118 uint_t *bufsizep, cred_t *cr) 18119 { 18120 int err; 18121 struct lifnum lifn; 18122 18123 bzero(&lifn, sizeof (lifn)); 18124 lifn.lifn_family = af; 18125 lifn.lifn_flags = LIFC_UNDER_IPMP; 18126 18127 if ((err = ip_ioctl(lh, SIOCGLIFNUM, &lifn, sizeof (lifn), cr)) != 0) 18128 return (err); 18129 18130 /* 18131 * Pad the interface count to account for additional interfaces that 18132 * may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF. 18133 */ 18134 lifn.lifn_count += 4; 18135 bzero(lifcp, sizeof (*lifcp)); 18136 lifcp->lifc_flags = LIFC_UNDER_IPMP; 18137 lifcp->lifc_family = af; 18138 lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq); 18139 lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP); 18140 18141 err = ip_ioctl(lh, SIOCGLIFCONF, lifcp, sizeof (*lifcp), cr); 18142 if (err != 0) { 18143 kmem_free(lifcp->lifc_buf, *bufsizep); 18144 return (err); 18145 } 18146 18147 return (0); 18148 } 18149 18150 /* 18151 * Helper for ip_interface_cleanup() that removes the loopback interface. 18152 */ 18153 static void 18154 ip_loopback_removeif(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 18155 { 18156 int err; 18157 struct lifreq lifr; 18158 18159 bzero(&lifr, sizeof (lifr)); 18160 (void) strcpy(lifr.lifr_name, ipif_loopback_name); 18161 18162 /* 18163 * Attempt to remove the interface. It may legitimately not exist 18164 * (e.g. the zone administrator unplumbed it), so ignore ENXIO. 18165 */ 18166 err = ip_ioctl(lh, SIOCLIFREMOVEIF, &lifr, sizeof (lifr), cr); 18167 if (err != 0 && err != ENXIO) { 18168 ip0dbg(("ip_loopback_removeif: IP%s SIOCLIFREMOVEIF failed: " 18169 "error %d\n", isv6 ? "v6" : "v4", err)); 18170 } 18171 } 18172 18173 /* 18174 * Helper for ip_interface_cleanup() that ensures no IP interfaces are in IPMP 18175 * groups and that IPMP data addresses are down. These conditions must be met 18176 * so that IPMP interfaces can be I_PUNLINK'd, as per ip_sioctl_plink_ipmp(). 18177 */ 18178 static void 18179 ip_ipmp_cleanup(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 18180 { 18181 int af = isv6 ? AF_INET6 : AF_INET; 18182 int i, nifs; 18183 int err; 18184 uint_t bufsize; 18185 uint_t lifrsize = sizeof (struct lifreq); 18186 struct lifconf lifc; 18187 struct lifreq *lifrp; 18188 18189 if ((err = ip_lifconf_ioctl(lh, af, &lifc, &bufsize, cr)) != 0) { 18190 cmn_err(CE_WARN, "ip_ipmp_cleanup: cannot get interface list " 18191 "(error %d); any IPMP interfaces cannot be shutdown", err); 18192 return; 18193 } 18194 18195 nifs = lifc.lifc_len / lifrsize; 18196 for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) { 18197 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 18198 if (err != 0) { 18199 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot get " 18200 "flags: error %d", lifrp->lifr_name, err); 18201 continue; 18202 } 18203 18204 if (lifrp->lifr_flags & IFF_IPMP) { 18205 if ((lifrp->lifr_flags & (IFF_UP|IFF_DUPLICATE)) == 0) 18206 continue; 18207 18208 lifrp->lifr_flags &= ~IFF_UP; 18209 err = ip_ioctl(lh, SIOCSLIFFLAGS, lifrp, lifrsize, cr); 18210 if (err != 0) { 18211 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 18212 "bring down (error %d); IPMP interface may " 18213 "not be shutdown", lifrp->lifr_name, err); 18214 } 18215 18216 /* 18217 * Check if IFF_DUPLICATE is still set -- and if so, 18218 * reset the address to clear it. 18219 */ 18220 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 18221 if (err != 0 || !(lifrp->lifr_flags & IFF_DUPLICATE)) 18222 continue; 18223 18224 err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr); 18225 if (err != 0 || (err = ip_ioctl(lh, SIOCGLIFADDR, 18226 lifrp, lifrsize, cr)) != 0) { 18227 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 18228 "reset DAD (error %d); IPMP interface may " 18229 "not be shutdown", lifrp->lifr_name, err); 18230 } 18231 continue; 18232 } 18233 18234 if (strchr(lifrp->lifr_name, IPIF_SEPARATOR_CHAR) == 0) { 18235 lifrp->lifr_groupname[0] = '\0'; 18236 if ((err = ip_ioctl(lh, SIOCSLIFGROUPNAME, lifrp, 18237 lifrsize, cr)) != 0) { 18238 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 18239 "leave IPMP group (error %d); associated " 18240 "IPMP interface may not be shutdown", 18241 lifrp->lifr_name, err); 18242 continue; 18243 } 18244 } 18245 } 18246 18247 kmem_free(lifc.lifc_buf, bufsize); 18248 } 18249 18250 #define UDPDEV "/devices/pseudo/udp@0:udp" 18251 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 18252 18253 /* 18254 * Remove the loopback interfaces and prep the IPMP interfaces to be torn down. 18255 * Non-loopback interfaces are either I_LINK'd or I_PLINK'd; the former go away 18256 * when the user-level processes in the zone are killed and the latter are 18257 * cleaned up by str_stack_shutdown(). 18258 */ 18259 void 18260 ip_interface_cleanup(ip_stack_t *ipst) 18261 { 18262 ldi_handle_t lh; 18263 ldi_ident_t li; 18264 cred_t *cr; 18265 int err; 18266 int i; 18267 char *devs[] = { UDP6DEV, UDPDEV }; 18268 netstackid_t stackid = ipst->ips_netstack->netstack_stackid; 18269 18270 if ((err = ldi_ident_from_major(ddi_name_to_major("ip"), &li)) != 0) { 18271 cmn_err(CE_WARN, "ip_interface_cleanup: cannot get ldi ident:" 18272 " error %d", err); 18273 return; 18274 } 18275 18276 cr = zone_get_kcred(netstackid_to_zoneid(stackid)); 18277 ASSERT(cr != NULL); 18278 18279 /* 18280 * NOTE: loop executes exactly twice and is hardcoded to know that the 18281 * first iteration is IPv6. (Unrolling yields repetitious code, hence 18282 * the loop.) 18283 */ 18284 for (i = 0; i < 2; i++) { 18285 err = ldi_open_by_name(devs[i], FREAD|FWRITE, cr, &lh, li); 18286 if (err != 0) { 18287 cmn_err(CE_WARN, "ip_interface_cleanup: cannot open %s:" 18288 " error %d", devs[i], err); 18289 continue; 18290 } 18291 18292 ip_loopback_removeif(lh, i == 0, cr); 18293 ip_ipmp_cleanup(lh, i == 0, cr); 18294 18295 (void) ldi_close(lh, FREAD|FWRITE, cr); 18296 } 18297 18298 ldi_ident_release(li); 18299 crfree(cr); 18300 } 18301 18302 /* 18303 * This needs to be in-sync with nic_event_t definition 18304 */ 18305 static const char * 18306 ill_hook_event2str(nic_event_t event) 18307 { 18308 switch (event) { 18309 case NE_PLUMB: 18310 return ("PLUMB"); 18311 case NE_UNPLUMB: 18312 return ("UNPLUMB"); 18313 case NE_UP: 18314 return ("UP"); 18315 case NE_DOWN: 18316 return ("DOWN"); 18317 case NE_ADDRESS_CHANGE: 18318 return ("ADDRESS_CHANGE"); 18319 case NE_LIF_UP: 18320 return ("LIF_UP"); 18321 case NE_LIF_DOWN: 18322 return ("LIF_DOWN"); 18323 case NE_IFINDEX_CHANGE: 18324 return ("IFINDEX_CHANGE"); 18325 default: 18326 return ("UNKNOWN"); 18327 } 18328 } 18329 18330 void 18331 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event, 18332 nic_event_data_t data, size_t datalen) 18333 { 18334 ip_stack_t *ipst = ill->ill_ipst; 18335 hook_nic_event_int_t *info; 18336 const char *str = NULL; 18337 18338 /* create a new nic event info */ 18339 if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL) 18340 goto fail; 18341 18342 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex; 18343 info->hnei_event.hne_lif = lif; 18344 info->hnei_event.hne_event = event; 18345 info->hnei_event.hne_protocol = ill->ill_isv6 ? 18346 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 18347 info->hnei_event.hne_data = NULL; 18348 info->hnei_event.hne_datalen = 0; 18349 info->hnei_stackid = ipst->ips_netstack->netstack_stackid; 18350 18351 if (data != NULL && datalen != 0) { 18352 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP); 18353 if (info->hnei_event.hne_data == NULL) 18354 goto fail; 18355 bcopy(data, info->hnei_event.hne_data, datalen); 18356 info->hnei_event.hne_datalen = datalen; 18357 } 18358 18359 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info, 18360 DDI_NOSLEEP) == DDI_SUCCESS) 18361 return; 18362 18363 fail: 18364 if (info != NULL) { 18365 if (info->hnei_event.hne_data != NULL) { 18366 kmem_free(info->hnei_event.hne_data, 18367 info->hnei_event.hne_datalen); 18368 } 18369 kmem_free(info, sizeof (hook_nic_event_t)); 18370 } 18371 str = ill_hook_event2str(event); 18372 ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event " 18373 "information for %s (ENOMEM)\n", str, ill->ill_name)); 18374 } 18375 18376 static int 18377 ipif_arp_up_done_tail(ipif_t *ipif, enum ip_resolver_action res_act) 18378 { 18379 int err = 0; 18380 const in_addr_t *addr = NULL; 18381 nce_t *nce = NULL; 18382 ill_t *ill = ipif->ipif_ill; 18383 ill_t *bound_ill; 18384 boolean_t added_ipif = B_FALSE; 18385 uint16_t state; 18386 uint16_t flags; 18387 18388 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up_done_tail", 18389 ill_t *, ill, ipif_t *, ipif); 18390 if (ipif->ipif_lcl_addr != INADDR_ANY) { 18391 addr = &ipif->ipif_lcl_addr; 18392 } 18393 18394 if ((ipif->ipif_flags & IPIF_UNNUMBERED) || addr == NULL) { 18395 if (res_act != Res_act_initial) 18396 return (EINVAL); 18397 } 18398 18399 if (addr != NULL) { 18400 ipmp_illgrp_t *illg = ill->ill_grp; 18401 18402 /* add unicast nce for the local addr */ 18403 18404 if (IS_IPMP(ill)) { 18405 /* 18406 * If we're here via ipif_up(), then the ipif 18407 * won't be bound yet -- add it to the group, 18408 * which will bind it if possible. (We would 18409 * add it in ipif_up(), but deleting on failure 18410 * there is gruesome.) If we're here via 18411 * ipmp_ill_bind_ipif(), then the ipif has 18412 * already been added to the group and we 18413 * just need to use the binding. 18414 */ 18415 if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) { 18416 bound_ill = ipmp_illgrp_add_ipif(illg, ipif); 18417 if (bound_ill == NULL) { 18418 /* 18419 * We couldn't bind the ipif to an ill 18420 * yet, so we have nothing to publish. 18421 * Mark the address as ready and return. 18422 */ 18423 ipif->ipif_addr_ready = 1; 18424 return (0); 18425 } 18426 added_ipif = B_TRUE; 18427 } 18428 } else { 18429 bound_ill = ill; 18430 } 18431 18432 flags = (NCE_F_MYADDR | NCE_F_PUBLISH | NCE_F_AUTHORITY | 18433 NCE_F_NONUD); 18434 /* 18435 * If this is an initial bring-up (or the ipif was never 18436 * completely brought up), do DAD. Otherwise, we're here 18437 * because IPMP has rebound an address to this ill: send 18438 * unsolicited advertisements (ARP announcements) to 18439 * inform others. 18440 */ 18441 if (res_act == Res_act_initial || !ipif->ipif_addr_ready) { 18442 state = ND_UNCHANGED; /* compute in nce_add_common() */ 18443 } else { 18444 state = ND_REACHABLE; 18445 flags |= NCE_F_UNSOL_ADV; 18446 } 18447 18448 retry: 18449 err = nce_lookup_then_add_v4(ill, 18450 bound_ill->ill_phys_addr, bound_ill->ill_phys_addr_length, 18451 addr, flags, state, &nce); 18452 18453 /* 18454 * note that we may encounter EEXIST if we are moving 18455 * the nce as a result of a rebind operation. 18456 */ 18457 switch (err) { 18458 case 0: 18459 ipif->ipif_added_nce = 1; 18460 nce->nce_ipif_cnt++; 18461 break; 18462 case EEXIST: 18463 ip1dbg(("ipif_arp_up: NCE already exists for %s\n", 18464 ill->ill_name)); 18465 if (!NCE_MYADDR(nce->nce_common)) { 18466 /* 18467 * A leftover nce from before this address 18468 * existed 18469 */ 18470 ncec_delete(nce->nce_common); 18471 nce_refrele(nce); 18472 nce = NULL; 18473 goto retry; 18474 } 18475 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 18476 nce_refrele(nce); 18477 nce = NULL; 18478 ip1dbg(("ipif_arp_up: NCE already exists " 18479 "for %s:%u\n", ill->ill_name, 18480 ipif->ipif_id)); 18481 goto arp_up_done; 18482 } 18483 /* 18484 * Duplicate local addresses are permissible for 18485 * IPIF_POINTOPOINT interfaces which will get marked 18486 * IPIF_UNNUMBERED later in 18487 * ip_addr_availability_check(). 18488 * 18489 * The nce_ipif_cnt field tracks the number of 18490 * ipifs that have nce_addr as their local address. 18491 */ 18492 ipif->ipif_addr_ready = 1; 18493 ipif->ipif_added_nce = 1; 18494 nce->nce_ipif_cnt++; 18495 err = 0; 18496 break; 18497 default: 18498 ASSERT(nce == NULL); 18499 goto arp_up_done; 18500 } 18501 if (arp_no_defense) { 18502 if ((ipif->ipif_flags & IPIF_UP) && 18503 !ipif->ipif_addr_ready) 18504 ipif_up_notify(ipif); 18505 ipif->ipif_addr_ready = 1; 18506 } 18507 } else { 18508 /* zero address. nothing to publish */ 18509 ipif->ipif_addr_ready = 1; 18510 } 18511 if (nce != NULL) 18512 nce_refrele(nce); 18513 arp_up_done: 18514 if (added_ipif && err != 0) 18515 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 18516 return (err); 18517 } 18518 18519 int 18520 ipif_arp_up(ipif_t *ipif, enum ip_resolver_action res_act, boolean_t was_dup) 18521 { 18522 int err = 0; 18523 ill_t *ill = ipif->ipif_ill; 18524 boolean_t first_interface, wait_for_dlpi = B_FALSE; 18525 18526 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up", 18527 ill_t *, ill, ipif_t *, ipif); 18528 18529 /* 18530 * need to bring up ARP or setup mcast mapping only 18531 * when the first interface is coming UP. 18532 */ 18533 first_interface = (ill->ill_ipif_up_count == 0 && 18534 ill->ill_ipif_dup_count == 0 && !was_dup); 18535 18536 if (res_act == Res_act_initial && first_interface) { 18537 /* 18538 * Send ATTACH + BIND 18539 */ 18540 err = arp_ll_up(ill); 18541 if (err != EINPROGRESS && err != 0) 18542 return (err); 18543 18544 /* 18545 * Add NCE for local address. Start DAD. 18546 * we'll wait to hear that DAD has finished 18547 * before using the interface. 18548 */ 18549 if (err == EINPROGRESS) 18550 wait_for_dlpi = B_TRUE; 18551 } 18552 18553 if (!wait_for_dlpi) 18554 (void) ipif_arp_up_done_tail(ipif, res_act); 18555 18556 return (!wait_for_dlpi ? 0 : EINPROGRESS); 18557 } 18558 18559 /* 18560 * Finish processing of "arp_up" after all the DLPI message 18561 * exchanges have completed between arp and the driver. 18562 */ 18563 void 18564 arp_bringup_done(ill_t *ill, int err) 18565 { 18566 mblk_t *mp1; 18567 ipif_t *ipif; 18568 conn_t *connp = NULL; 18569 ipsq_t *ipsq; 18570 queue_t *q; 18571 18572 ip1dbg(("arp_bringup_done(%s)\n", ill->ill_name)); 18573 18574 ASSERT(IAM_WRITER_ILL(ill)); 18575 18576 ipsq = ill->ill_phyint->phyint_ipsq; 18577 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 18578 mp1 = ipsq_pending_mp_get(ipsq, &connp); 18579 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 18580 if (mp1 == NULL) /* bringup was aborted by the user */ 18581 return; 18582 18583 /* 18584 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 18585 * must have an associated conn_t. Otherwise, we're bringing this 18586 * interface back up as part of handling an asynchronous event (e.g., 18587 * physical address change). 18588 */ 18589 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18590 ASSERT(connp != NULL); 18591 q = CONNP_TO_WQ(connp); 18592 } else { 18593 ASSERT(connp == NULL); 18594 q = ill->ill_rq; 18595 } 18596 if (err == 0) { 18597 if (ipif->ipif_isv6) { 18598 if ((err = ipif_up_done_v6(ipif)) != 0) 18599 ip0dbg(("arp_bringup_done: init failed\n")); 18600 } else { 18601 err = ipif_arp_up_done_tail(ipif, Res_act_initial); 18602 if (err != 0 || 18603 (err = ipif_up_done(ipif)) != 0) { 18604 ip0dbg(("arp_bringup_done: " 18605 "init failed err %x\n", err)); 18606 (void) ipif_arp_down(ipif); 18607 } 18608 18609 } 18610 } else { 18611 ip0dbg(("arp_bringup_done: DL_BIND_REQ failed\n")); 18612 } 18613 18614 if ((err == 0) && (ill->ill_up_ipifs)) { 18615 err = ill_up_ipifs(ill, q, mp1); 18616 if (err == EINPROGRESS) 18617 return; 18618 } 18619 18620 /* 18621 * If we have a moved ipif to bring up, and everything has succeeded 18622 * to this point, bring it up on the IPMP ill. Otherwise, leave it 18623 * down -- the admin can try to bring it up by hand if need be. 18624 */ 18625 if (ill->ill_move_ipif != NULL) { 18626 ipif = ill->ill_move_ipif; 18627 ip1dbg(("bringing up ipif %p on ill %s\n", (void *)ipif, 18628 ipif->ipif_ill->ill_name)); 18629 ill->ill_move_ipif = NULL; 18630 if (err == 0) { 18631 err = ipif_up(ipif, q, mp1); 18632 if (err == EINPROGRESS) 18633 return; 18634 } 18635 } 18636 18637 /* 18638 * The operation must complete without EINPROGRESS since 18639 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 18640 * Otherwise, the operation will be stuck forever in the ipsq. 18641 */ 18642 ASSERT(err != EINPROGRESS); 18643 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18644 DTRACE_PROBE4(ipif__ioctl, char *, "arp_bringup_done finish", 18645 int, ipsq->ipsq_xop->ipx_current_ioctl, 18646 ill_t *, ill, ipif_t *, ipif); 18647 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 18648 } else { 18649 ipsq_current_finish(ipsq); 18650 } 18651 } 18652 18653 /* 18654 * Finish processing of arp replumb after all the DLPI message 18655 * exchanges have completed between arp and the driver. 18656 */ 18657 void 18658 arp_replumb_done(ill_t *ill, int err) 18659 { 18660 mblk_t *mp1; 18661 ipif_t *ipif; 18662 conn_t *connp = NULL; 18663 ipsq_t *ipsq; 18664 queue_t *q; 18665 18666 ASSERT(IAM_WRITER_ILL(ill)); 18667 18668 ipsq = ill->ill_phyint->phyint_ipsq; 18669 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 18670 mp1 = ipsq_pending_mp_get(ipsq, &connp); 18671 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 18672 if (mp1 == NULL) { 18673 ip0dbg(("arp_replumb_done: bringup aborted ioctl %x\n", 18674 ipsq->ipsq_xop->ipx_current_ioctl)); 18675 /* bringup was aborted by the user */ 18676 return; 18677 } 18678 /* 18679 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 18680 * must have an associated conn_t. Otherwise, we're bringing this 18681 * interface back up as part of handling an asynchronous event (e.g., 18682 * physical address change). 18683 */ 18684 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18685 ASSERT(connp != NULL); 18686 q = CONNP_TO_WQ(connp); 18687 } else { 18688 ASSERT(connp == NULL); 18689 q = ill->ill_rq; 18690 } 18691 if ((err == 0) && (ill->ill_up_ipifs)) { 18692 err = ill_up_ipifs(ill, q, mp1); 18693 if (err == EINPROGRESS) 18694 return; 18695 } 18696 /* 18697 * The operation must complete without EINPROGRESS since 18698 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 18699 * Otherwise, the operation will be stuck forever in the ipsq. 18700 */ 18701 ASSERT(err != EINPROGRESS); 18702 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18703 DTRACE_PROBE4(ipif__ioctl, char *, 18704 "arp_replumb_done finish", 18705 int, ipsq->ipsq_xop->ipx_current_ioctl, 18706 ill_t *, ill, ipif_t *, ipif); 18707 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 18708 } else { 18709 ipsq_current_finish(ipsq); 18710 } 18711 } 18712 18713 void 18714 ipif_up_notify(ipif_t *ipif) 18715 { 18716 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 18717 ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT); 18718 sctp_update_ipif(ipif, SCTP_IPIF_UP); 18719 ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id), 18720 NE_LIF_UP, NULL, 0); 18721 } 18722 18723 /* 18724 * ILB ioctl uses cv_wait (such as deleting a rule or adding a server) and 18725 * this assumes the context is cv_wait'able. Hence it shouldnt' be used on 18726 * TPI end points with STREAMS modules pushed above. This is assured by not 18727 * having the IPI_MODOK flag for the ioctl. And IP ensures the ILB ioctl 18728 * never ends up on an ipsq, otherwise we may end up processing the ioctl 18729 * while unwinding from the ispq and that could be a thread from the bottom. 18730 */ 18731 /* ARGSUSED */ 18732 int 18733 ip_sioctl_ilb_cmd(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18734 ip_ioctl_cmd_t *ipip, void *arg) 18735 { 18736 mblk_t *cmd_mp = mp->b_cont->b_cont; 18737 ilb_cmd_t command = *((ilb_cmd_t *)cmd_mp->b_rptr); 18738 int ret = 0; 18739 int i; 18740 size_t size; 18741 ip_stack_t *ipst; 18742 zoneid_t zoneid; 18743 ilb_stack_t *ilbs; 18744 18745 ipst = CONNQ_TO_IPST(q); 18746 ilbs = ipst->ips_netstack->netstack_ilb; 18747 zoneid = Q_TO_CONN(q)->conn_zoneid; 18748 18749 switch (command) { 18750 case ILB_CREATE_RULE: { 18751 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18752 18753 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18754 ret = EINVAL; 18755 break; 18756 } 18757 18758 ret = ilb_rule_add(ilbs, zoneid, cmd); 18759 break; 18760 } 18761 case ILB_DESTROY_RULE: 18762 case ILB_ENABLE_RULE: 18763 case ILB_DISABLE_RULE: { 18764 ilb_name_cmd_t *cmd = (ilb_name_cmd_t *)cmd_mp->b_rptr; 18765 18766 if (MBLKL(cmd_mp) != sizeof (ilb_name_cmd_t)) { 18767 ret = EINVAL; 18768 break; 18769 } 18770 18771 if (cmd->flags & ILB_RULE_ALLRULES) { 18772 if (command == ILB_DESTROY_RULE) { 18773 ilb_rule_del_all(ilbs, zoneid); 18774 break; 18775 } else if (command == ILB_ENABLE_RULE) { 18776 ilb_rule_enable_all(ilbs, zoneid); 18777 break; 18778 } else if (command == ILB_DISABLE_RULE) { 18779 ilb_rule_disable_all(ilbs, zoneid); 18780 break; 18781 } 18782 } else { 18783 if (command == ILB_DESTROY_RULE) { 18784 ret = ilb_rule_del(ilbs, zoneid, cmd->name); 18785 } else if (command == ILB_ENABLE_RULE) { 18786 ret = ilb_rule_enable(ilbs, zoneid, cmd->name, 18787 NULL); 18788 } else if (command == ILB_DISABLE_RULE) { 18789 ret = ilb_rule_disable(ilbs, zoneid, cmd->name, 18790 NULL); 18791 } 18792 } 18793 break; 18794 } 18795 case ILB_NUM_RULES: { 18796 ilb_num_rules_cmd_t *cmd; 18797 18798 if (MBLKL(cmd_mp) != sizeof (ilb_num_rules_cmd_t)) { 18799 ret = EINVAL; 18800 break; 18801 } 18802 cmd = (ilb_num_rules_cmd_t *)cmd_mp->b_rptr; 18803 ilb_get_num_rules(ilbs, zoneid, &(cmd->num)); 18804 break; 18805 } 18806 case ILB_RULE_NAMES: { 18807 ilb_rule_names_cmd_t *cmd; 18808 18809 cmd = (ilb_rule_names_cmd_t *)cmd_mp->b_rptr; 18810 if (MBLKL(cmd_mp) < sizeof (ilb_rule_names_cmd_t) || 18811 cmd->num_names == 0) { 18812 ret = EINVAL; 18813 break; 18814 } 18815 size = cmd->num_names * ILB_RULE_NAMESZ; 18816 if (cmd_mp->b_rptr + offsetof(ilb_rule_names_cmd_t, buf) + 18817 size != cmd_mp->b_wptr) { 18818 ret = EINVAL; 18819 break; 18820 } 18821 ilb_get_rulenames(ilbs, zoneid, &cmd->num_names, cmd->buf); 18822 break; 18823 } 18824 case ILB_NUM_SERVERS: { 18825 ilb_num_servers_cmd_t *cmd; 18826 18827 if (MBLKL(cmd_mp) != sizeof (ilb_num_servers_cmd_t)) { 18828 ret = EINVAL; 18829 break; 18830 } 18831 cmd = (ilb_num_servers_cmd_t *)cmd_mp->b_rptr; 18832 ret = ilb_get_num_servers(ilbs, zoneid, cmd->name, 18833 &(cmd->num)); 18834 break; 18835 } 18836 case ILB_LIST_RULE: { 18837 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18838 18839 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18840 ret = EINVAL; 18841 break; 18842 } 18843 ret = ilb_rule_list(ilbs, zoneid, cmd); 18844 break; 18845 } 18846 case ILB_LIST_SERVERS: { 18847 ilb_servers_info_cmd_t *cmd; 18848 18849 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18850 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t) || 18851 cmd->num_servers == 0) { 18852 ret = EINVAL; 18853 break; 18854 } 18855 size = cmd->num_servers * sizeof (ilb_server_info_t); 18856 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18857 size != cmd_mp->b_wptr) { 18858 ret = EINVAL; 18859 break; 18860 } 18861 18862 ret = ilb_get_servers(ilbs, zoneid, cmd->name, cmd->servers, 18863 &cmd->num_servers); 18864 break; 18865 } 18866 case ILB_ADD_SERVERS: { 18867 ilb_servers_info_cmd_t *cmd; 18868 ilb_rule_t *rule; 18869 18870 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18871 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t)) { 18872 ret = EINVAL; 18873 break; 18874 } 18875 size = cmd->num_servers * sizeof (ilb_server_info_t); 18876 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18877 size != cmd_mp->b_wptr) { 18878 ret = EINVAL; 18879 break; 18880 } 18881 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18882 if (rule == NULL) { 18883 ASSERT(ret != 0); 18884 break; 18885 } 18886 for (i = 0; i < cmd->num_servers; i++) { 18887 ilb_server_info_t *s; 18888 18889 s = &cmd->servers[i]; 18890 s->err = ilb_server_add(ilbs, rule, s); 18891 } 18892 ILB_RULE_REFRELE(rule); 18893 break; 18894 } 18895 case ILB_DEL_SERVERS: 18896 case ILB_ENABLE_SERVERS: 18897 case ILB_DISABLE_SERVERS: { 18898 ilb_servers_cmd_t *cmd; 18899 ilb_rule_t *rule; 18900 int (*f)(); 18901 18902 cmd = (ilb_servers_cmd_t *)cmd_mp->b_rptr; 18903 if (MBLKL(cmd_mp) < sizeof (ilb_servers_cmd_t)) { 18904 ret = EINVAL; 18905 break; 18906 } 18907 size = cmd->num_servers * sizeof (ilb_server_arg_t); 18908 if (cmd_mp->b_rptr + offsetof(ilb_servers_cmd_t, servers) + 18909 size != cmd_mp->b_wptr) { 18910 ret = EINVAL; 18911 break; 18912 } 18913 18914 if (command == ILB_DEL_SERVERS) 18915 f = ilb_server_del; 18916 else if (command == ILB_ENABLE_SERVERS) 18917 f = ilb_server_enable; 18918 else if (command == ILB_DISABLE_SERVERS) 18919 f = ilb_server_disable; 18920 18921 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18922 if (rule == NULL) { 18923 ASSERT(ret != 0); 18924 break; 18925 } 18926 18927 for (i = 0; i < cmd->num_servers; i++) { 18928 ilb_server_arg_t *s; 18929 18930 s = &cmd->servers[i]; 18931 s->err = f(ilbs, zoneid, NULL, rule, &s->addr); 18932 } 18933 ILB_RULE_REFRELE(rule); 18934 break; 18935 } 18936 case ILB_LIST_NAT_TABLE: { 18937 ilb_list_nat_cmd_t *cmd; 18938 18939 cmd = (ilb_list_nat_cmd_t *)cmd_mp->b_rptr; 18940 if (MBLKL(cmd_mp) < sizeof (ilb_list_nat_cmd_t)) { 18941 ret = EINVAL; 18942 break; 18943 } 18944 size = cmd->num_nat * sizeof (ilb_nat_entry_t); 18945 if (cmd_mp->b_rptr + offsetof(ilb_list_nat_cmd_t, entries) + 18946 size != cmd_mp->b_wptr) { 18947 ret = EINVAL; 18948 break; 18949 } 18950 18951 ret = ilb_list_nat(ilbs, zoneid, cmd->entries, &cmd->num_nat, 18952 &cmd->flags); 18953 break; 18954 } 18955 case ILB_LIST_STICKY_TABLE: { 18956 ilb_list_sticky_cmd_t *cmd; 18957 18958 cmd = (ilb_list_sticky_cmd_t *)cmd_mp->b_rptr; 18959 if (MBLKL(cmd_mp) < sizeof (ilb_list_sticky_cmd_t)) { 18960 ret = EINVAL; 18961 break; 18962 } 18963 size = cmd->num_sticky * sizeof (ilb_sticky_entry_t); 18964 if (cmd_mp->b_rptr + offsetof(ilb_list_sticky_cmd_t, entries) + 18965 size != cmd_mp->b_wptr) { 18966 ret = EINVAL; 18967 break; 18968 } 18969 18970 ret = ilb_list_sticky(ilbs, zoneid, cmd->entries, 18971 &cmd->num_sticky, &cmd->flags); 18972 break; 18973 } 18974 default: 18975 ret = EINVAL; 18976 break; 18977 } 18978 done: 18979 return (ret); 18980 } 18981 18982 /* Remove all cache entries for this logical interface */ 18983 void 18984 ipif_nce_down(ipif_t *ipif) 18985 { 18986 ill_t *ill = ipif->ipif_ill; 18987 nce_t *nce; 18988 18989 DTRACE_PROBE3(ipif__downup, char *, "ipif_nce_down", 18990 ill_t *, ill, ipif_t *, ipif); 18991 if (ipif->ipif_added_nce) { 18992 if (ipif->ipif_isv6) 18993 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 18994 else 18995 nce = nce_lookup_v4(ill, &ipif->ipif_lcl_addr); 18996 if (nce != NULL) { 18997 if (--nce->nce_ipif_cnt == 0) 18998 ncec_delete(nce->nce_common); 18999 ipif->ipif_added_nce = 0; 19000 nce_refrele(nce); 19001 } else { 19002 /* 19003 * nce may already be NULL because it was already 19004 * flushed, e.g., due to a call to nce_flush 19005 */ 19006 ipif->ipif_added_nce = 0; 19007 } 19008 } 19009 /* 19010 * Make IPMP aware of the deleted data address. 19011 */ 19012 if (IS_IPMP(ill)) 19013 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 19014 19015 /* 19016 * Remove all other nces dependent on this ill when the last ipif 19017 * is going away. 19018 */ 19019 if (ill->ill_ipif_up_count == 0) { 19020 ncec_walk(ill, (pfi_t)ncec_delete_per_ill, 19021 (uchar_t *)ill, ill->ill_ipst); 19022 if (IS_UNDER_IPMP(ill)) 19023 nce_flush(ill, B_TRUE); 19024 } 19025 } 19026 19027 /* 19028 * find the first interface that uses usill for its source address. 19029 */ 19030 ill_t * 19031 ill_lookup_usesrc(ill_t *usill) 19032 { 19033 ip_stack_t *ipst = usill->ill_ipst; 19034 ill_t *ill; 19035 19036 ASSERT(usill != NULL); 19037 19038 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 19039 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 19040 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19041 for (ill = usill->ill_usesrc_grp_next; ill != NULL && ill != usill; 19042 ill = ill->ill_usesrc_grp_next) { 19043 if (!IS_UNDER_IPMP(ill) && (ill->ill_flags & ILLF_MULTICAST) && 19044 !ILL_IS_CONDEMNED(ill)) { 19045 ill_refhold(ill); 19046 break; 19047 } 19048 } 19049 rw_exit(&ipst->ips_ill_g_lock); 19050 rw_exit(&ipst->ips_ill_g_usesrc_lock); 19051 return (ill); 19052 } 19053 19054 /* 19055 * This comment applies to both ip_sioctl_get_ifhwaddr and 19056 * ip_sioctl_get_lifhwaddr as the basic function of these two functions 19057 * is the same. 19058 * 19059 * The goal here is to find an IP interface that corresponds to the name 19060 * provided by the caller in the ifreq/lifreq structure held in the mblk_t 19061 * chain and to fill out a sockaddr/sockaddr_storage structure with the 19062 * mac address. 19063 * 19064 * The SIOCGIFHWADDR/SIOCGLIFHWADDR ioctl may return an error for a number 19065 * of different reasons: 19066 * ENXIO - the device name is not known to IP. 19067 * EADDRNOTAVAIL - the device has no hardware address. This is indicated 19068 * by ill_phys_addr not pointing to an actual address. 19069 * EPFNOSUPPORT - this will indicate that a request is being made for a 19070 * mac address that will not fit in the data structure supplier (struct 19071 * sockaddr). 19072 * 19073 */ 19074 /* ARGSUSED */ 19075 int 19076 ip_sioctl_get_ifhwaddr(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 19077 ip_ioctl_cmd_t *ipip, void *if_req) 19078 { 19079 struct sockaddr *sock; 19080 struct ifreq *ifr; 19081 mblk_t *mp1; 19082 ill_t *ill; 19083 19084 ASSERT(ipif != NULL); 19085 ill = ipif->ipif_ill; 19086 19087 if (ill->ill_phys_addr == NULL) { 19088 return (EADDRNOTAVAIL); 19089 } 19090 if (ill->ill_phys_addr_length > sizeof (sock->sa_data)) { 19091 return (EPFNOSUPPORT); 19092 } 19093 19094 ip1dbg(("ip_sioctl_get_hwaddr(%s)\n", ill->ill_name)); 19095 19096 /* Existence of mp1 has been checked in ip_wput_nondata */ 19097 mp1 = mp->b_cont->b_cont; 19098 ifr = (struct ifreq *)mp1->b_rptr; 19099 19100 sock = &ifr->ifr_addr; 19101 /* 19102 * The "family" field in the returned structure is set to a value 19103 * that represents the type of device to which the address belongs. 19104 * The value returned may differ to that on Linux but it will still 19105 * represent the correct symbol on Solaris. 19106 */ 19107 sock->sa_family = arp_hw_type(ill->ill_mactype); 19108 bcopy(ill->ill_phys_addr, &sock->sa_data, ill->ill_phys_addr_length); 19109 19110 return (0); 19111 } 19112 19113 /* 19114 * The expection of applications using SIOCGIFHWADDR is that data will 19115 * be returned in the sa_data field of the sockaddr structure. With 19116 * SIOCGLIFHWADDR, we're breaking new ground as there is no Linux 19117 * equivalent. In light of this, struct sockaddr_dl is used as it 19118 * offers more space for address storage in sll_data. 19119 */ 19120 /* ARGSUSED */ 19121 int 19122 ip_sioctl_get_lifhwaddr(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 19123 ip_ioctl_cmd_t *ipip, void *if_req) 19124 { 19125 struct sockaddr_dl *sock; 19126 struct lifreq *lifr; 19127 mblk_t *mp1; 19128 ill_t *ill; 19129 19130 ASSERT(ipif != NULL); 19131 ill = ipif->ipif_ill; 19132 19133 if (ill->ill_phys_addr == NULL) { 19134 return (EADDRNOTAVAIL); 19135 } 19136 if (ill->ill_phys_addr_length > sizeof (sock->sdl_data)) { 19137 return (EPFNOSUPPORT); 19138 } 19139 19140 ip1dbg(("ip_sioctl_get_lifhwaddr(%s)\n", ill->ill_name)); 19141 19142 /* Existence of mp1 has been checked in ip_wput_nondata */ 19143 mp1 = mp->b_cont->b_cont; 19144 lifr = (struct lifreq *)mp1->b_rptr; 19145 19146 /* 19147 * sockaddr_ll is used here because it is also the structure used in 19148 * responding to the same ioctl in sockpfp. The only other choice is 19149 * sockaddr_dl which contains fields that are not required here 19150 * because its purpose is different. 19151 */ 19152 lifr->lifr_type = ill->ill_type; 19153 sock = (struct sockaddr_dl *)&lifr->lifr_addr; 19154 sock->sdl_family = AF_LINK; 19155 sock->sdl_index = ill->ill_phyint->phyint_ifindex; 19156 sock->sdl_type = ill->ill_mactype; 19157 sock->sdl_nlen = 0; 19158 sock->sdl_slen = 0; 19159 sock->sdl_alen = ill->ill_phys_addr_length; 19160 bcopy(ill->ill_phys_addr, sock->sdl_data, ill->ill_phys_addr_length); 19161 19162 return (0); 19163 }