1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012 by Delphix. All rights reserved. 24 * Copyright (c) 2012, Joyent, Inc. All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/zfs_zone.h> 29 #include <sys/spa_impl.h> 30 #include <sys/refcount.h> 31 #include <sys/vdev_disk.h> 32 #include <sys/vdev_impl.h> 33 #include <sys/fs/zfs.h> 34 #include <sys/zio.h> 35 #include <sys/sunldi.h> 36 #include <sys/efi_partition.h> 37 #include <sys/fm/fs/zfs.h> 38 39 /* 40 * Virtual device vector for disks. 41 */ 42 43 extern ldi_ident_t zfs_li; 44 45 static void 46 vdev_disk_hold(vdev_t *vd) 47 { 48 ddi_devid_t devid; 49 char *minor; 50 51 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER)); 52 53 /* 54 * We must have a pathname, and it must be absolute. 55 */ 56 if (vd->vdev_path == NULL || vd->vdev_path[0] != '/') 57 return; 58 59 /* 60 * Only prefetch path and devid info if the device has 61 * never been opened. 62 */ 63 if (vd->vdev_tsd != NULL) 64 return; 65 66 if (vd->vdev_wholedisk == -1ULL) { 67 size_t len = strlen(vd->vdev_path) + 3; 68 char *buf = kmem_alloc(len, KM_SLEEP); 69 70 (void) snprintf(buf, len, "%ss0", vd->vdev_path); 71 72 (void) ldi_vp_from_name(buf, &vd->vdev_name_vp); 73 kmem_free(buf, len); 74 } 75 76 if (vd->vdev_name_vp == NULL) 77 (void) ldi_vp_from_name(vd->vdev_path, &vd->vdev_name_vp); 78 79 if (vd->vdev_devid != NULL && 80 ddi_devid_str_decode(vd->vdev_devid, &devid, &minor) == 0) { 81 (void) ldi_vp_from_devid(devid, minor, &vd->vdev_devid_vp); 82 ddi_devid_str_free(minor); 83 ddi_devid_free(devid); 84 } 85 } 86 87 static void 88 vdev_disk_rele(vdev_t *vd) 89 { 90 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER)); 91 92 if (vd->vdev_name_vp) { 93 VN_RELE_ASYNC(vd->vdev_name_vp, 94 dsl_pool_vnrele_taskq(vd->vdev_spa->spa_dsl_pool)); 95 vd->vdev_name_vp = NULL; 96 } 97 if (vd->vdev_devid_vp) { 98 VN_RELE_ASYNC(vd->vdev_devid_vp, 99 dsl_pool_vnrele_taskq(vd->vdev_spa->spa_dsl_pool)); 100 vd->vdev_devid_vp = NULL; 101 } 102 } 103 104 static uint64_t 105 vdev_disk_get_space(vdev_t *vd, uint64_t capacity, uint_t blksz) 106 { 107 ASSERT(vd->vdev_wholedisk); 108 109 vdev_disk_t *dvd = vd->vdev_tsd; 110 dk_efi_t dk_ioc; 111 efi_gpt_t *efi; 112 uint64_t avail_space = 0; 113 int efisize = EFI_LABEL_SIZE * 2; 114 115 dk_ioc.dki_data = kmem_alloc(efisize, KM_SLEEP); 116 dk_ioc.dki_lba = 1; 117 dk_ioc.dki_length = efisize; 118 dk_ioc.dki_data_64 = (uint64_t)(uintptr_t)dk_ioc.dki_data; 119 efi = dk_ioc.dki_data; 120 121 if (ldi_ioctl(dvd->vd_lh, DKIOCGETEFI, (intptr_t)&dk_ioc, 122 FKIOCTL, kcred, NULL) == 0) { 123 uint64_t efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA); 124 125 zfs_dbgmsg("vdev %s, capacity %llu, altern lba %llu", 126 vd->vdev_path, capacity, efi_altern_lba); 127 if (capacity > efi_altern_lba) 128 avail_space = (capacity - efi_altern_lba) * blksz; 129 } 130 kmem_free(dk_ioc.dki_data, efisize); 131 return (avail_space); 132 } 133 134 static int 135 vdev_disk_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize, 136 uint64_t *ashift) 137 { 138 spa_t *spa = vd->vdev_spa; 139 vdev_disk_t *dvd; 140 struct dk_minfo_ext dkmext; 141 int error; 142 dev_t dev; 143 int otyp; 144 145 /* 146 * We must have a pathname, and it must be absolute. 147 */ 148 if (vd->vdev_path == NULL || vd->vdev_path[0] != '/') { 149 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; 150 return (EINVAL); 151 } 152 153 /* 154 * Reopen the device if it's not currently open. Otherwise, 155 * just update the physical size of the device. 156 */ 157 if (vd->vdev_tsd != NULL) { 158 ASSERT(vd->vdev_reopening); 159 dvd = vd->vdev_tsd; 160 goto skip_open; 161 } 162 163 dvd = vd->vdev_tsd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP); 164 165 /* 166 * When opening a disk device, we want to preserve the user's original 167 * intent. We always want to open the device by the path the user gave 168 * us, even if it is one of multiple paths to the same device. But we 169 * also want to be able to survive disks being removed/recabled. 170 * Therefore the sequence of opening devices is: 171 * 172 * 1. Try opening the device by path. For legacy pools without the 173 * 'whole_disk' property, attempt to fix the path by appending 's0'. 174 * 175 * 2. If the devid of the device matches the stored value, return 176 * success. 177 * 178 * 3. Otherwise, the device may have moved. Try opening the device 179 * by the devid instead. 180 */ 181 if (vd->vdev_devid != NULL) { 182 if (ddi_devid_str_decode(vd->vdev_devid, &dvd->vd_devid, 183 &dvd->vd_minor) != 0) { 184 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; 185 return (EINVAL); 186 } 187 } 188 189 error = EINVAL; /* presume failure */ 190 191 if (vd->vdev_path != NULL) { 192 ddi_devid_t devid; 193 194 if (vd->vdev_wholedisk == -1ULL) { 195 size_t len = strlen(vd->vdev_path) + 3; 196 char *buf = kmem_alloc(len, KM_SLEEP); 197 ldi_handle_t lh; 198 199 (void) snprintf(buf, len, "%ss0", vd->vdev_path); 200 201 if (ldi_open_by_name(buf, spa_mode(spa), kcred, 202 &lh, zfs_li) == 0) { 203 spa_strfree(vd->vdev_path); 204 vd->vdev_path = buf; 205 vd->vdev_wholedisk = 1ULL; 206 (void) ldi_close(lh, spa_mode(spa), kcred); 207 } else { 208 kmem_free(buf, len); 209 } 210 } 211 212 error = ldi_open_by_name(vd->vdev_path, spa_mode(spa), kcred, 213 &dvd->vd_lh, zfs_li); 214 215 /* 216 * Compare the devid to the stored value. 217 */ 218 if (error == 0 && vd->vdev_devid != NULL && 219 ldi_get_devid(dvd->vd_lh, &devid) == 0) { 220 if (ddi_devid_compare(devid, dvd->vd_devid) != 0) { 221 error = EINVAL; 222 (void) ldi_close(dvd->vd_lh, spa_mode(spa), 223 kcred); 224 dvd->vd_lh = NULL; 225 } 226 ddi_devid_free(devid); 227 } 228 229 /* 230 * If we succeeded in opening the device, but 'vdev_wholedisk' 231 * is not yet set, then this must be a slice. 232 */ 233 if (error == 0 && vd->vdev_wholedisk == -1ULL) 234 vd->vdev_wholedisk = 0; 235 } 236 237 /* 238 * If we were unable to open by path, or the devid check fails, open by 239 * devid instead. 240 */ 241 if (error != 0 && vd->vdev_devid != NULL) 242 error = ldi_open_by_devid(dvd->vd_devid, dvd->vd_minor, 243 spa_mode(spa), kcred, &dvd->vd_lh, zfs_li); 244 245 /* 246 * If all else fails, then try opening by physical path (if available) 247 * or the logical path (if we failed due to the devid check). While not 248 * as reliable as the devid, this will give us something, and the higher 249 * level vdev validation will prevent us from opening the wrong device. 250 */ 251 if (error) { 252 if (vd->vdev_physpath != NULL && 253 (dev = ddi_pathname_to_dev_t(vd->vdev_physpath)) != NODEV) 254 error = ldi_open_by_dev(&dev, OTYP_BLK, spa_mode(spa), 255 kcred, &dvd->vd_lh, zfs_li); 256 257 /* 258 * Note that we don't support the legacy auto-wholedisk support 259 * as above. This hasn't been used in a very long time and we 260 * don't need to propagate its oddities to this edge condition. 261 */ 262 if (error && vd->vdev_path != NULL) 263 error = ldi_open_by_name(vd->vdev_path, spa_mode(spa), 264 kcred, &dvd->vd_lh, zfs_li); 265 } 266 267 if (error) { 268 vd->vdev_stat.vs_aux = VDEV_AUX_OPEN_FAILED; 269 return (error); 270 } 271 272 /* 273 * Once a device is opened, verify that the physical device path (if 274 * available) is up to date. 275 */ 276 if (ldi_get_dev(dvd->vd_lh, &dev) == 0 && 277 ldi_get_otyp(dvd->vd_lh, &otyp) == 0) { 278 char *physpath, *minorname; 279 280 physpath = kmem_alloc(MAXPATHLEN, KM_SLEEP); 281 minorname = NULL; 282 if (ddi_dev_pathname(dev, otyp, physpath) == 0 && 283 ldi_get_minor_name(dvd->vd_lh, &minorname) == 0 && 284 (vd->vdev_physpath == NULL || 285 strcmp(vd->vdev_physpath, physpath) != 0)) { 286 if (vd->vdev_physpath) 287 spa_strfree(vd->vdev_physpath); 288 (void) strlcat(physpath, ":", MAXPATHLEN); 289 (void) strlcat(physpath, minorname, MAXPATHLEN); 290 vd->vdev_physpath = spa_strdup(physpath); 291 } 292 if (minorname) 293 kmem_free(minorname, strlen(minorname) + 1); 294 kmem_free(physpath, MAXPATHLEN); 295 } 296 297 skip_open: 298 /* 299 * Determine the actual size of the device. 300 */ 301 if (ldi_get_size(dvd->vd_lh, psize) != 0) { 302 vd->vdev_stat.vs_aux = VDEV_AUX_OPEN_FAILED; 303 return (EINVAL); 304 } 305 306 /* 307 * Determine the device's minimum transfer size. 308 * If the ioctl isn't supported, assume DEV_BSIZE. 309 */ 310 if (ldi_ioctl(dvd->vd_lh, DKIOCGMEDIAINFOEXT, (intptr_t)&dkmext, 311 FKIOCTL, kcred, NULL) != 0) 312 dkmext.dki_pbsize = DEV_BSIZE; 313 314 *ashift = highbit(MAX(dkmext.dki_pbsize, SPA_MINBLOCKSIZE)) - 1; 315 316 if (vd->vdev_wholedisk == 1) { 317 uint64_t capacity = dkmext.dki_capacity - 1; 318 uint64_t blksz = dkmext.dki_lbsize; 319 int wce = 1; 320 321 /* 322 * If we own the whole disk, try to enable disk write caching. 323 * We ignore errors because it's OK if we can't do it. 324 */ 325 (void) ldi_ioctl(dvd->vd_lh, DKIOCSETWCE, (intptr_t)&wce, 326 FKIOCTL, kcred, NULL); 327 328 *max_psize = *psize + vdev_disk_get_space(vd, capacity, blksz); 329 zfs_dbgmsg("capacity change: vdev %s, psize %llu, " 330 "max_psize %llu", vd->vdev_path, *psize, *max_psize); 331 } else { 332 *max_psize = *psize; 333 } 334 335 /* 336 * Clear the nowritecache bit, so that on a vdev_reopen() we will 337 * try again. 338 */ 339 vd->vdev_nowritecache = B_FALSE; 340 341 return (0); 342 } 343 344 static void 345 vdev_disk_close(vdev_t *vd) 346 { 347 vdev_disk_t *dvd = vd->vdev_tsd; 348 349 if (vd->vdev_reopening || dvd == NULL) 350 return; 351 352 if (dvd->vd_minor != NULL) 353 ddi_devid_str_free(dvd->vd_minor); 354 355 if (dvd->vd_devid != NULL) 356 ddi_devid_free(dvd->vd_devid); 357 358 if (dvd->vd_lh != NULL) 359 (void) ldi_close(dvd->vd_lh, spa_mode(vd->vdev_spa), kcred); 360 361 vd->vdev_delayed_close = B_FALSE; 362 kmem_free(dvd, sizeof (vdev_disk_t)); 363 vd->vdev_tsd = NULL; 364 } 365 366 int 367 vdev_disk_physio(vdev_t *vd, caddr_t data, 368 size_t size, uint64_t offset, int flags) 369 { 370 vdev_disk_t *dvd = vd->vdev_tsd; 371 372 /* 373 * If the vdev is closed, it's likely in the REMOVED or FAULTED state. 374 * Nothing to be done here but return failure. 375 */ 376 if (dvd == NULL) 377 return (EIO); 378 379 ASSERT(vd->vdev_ops == &vdev_disk_ops); 380 return (vdev_disk_ldi_physio(dvd->vd_lh, data, size, offset, flags)); 381 } 382 383 int 384 vdev_disk_ldi_physio(ldi_handle_t vd_lh, caddr_t data, 385 size_t size, uint64_t offset, int flags) 386 { 387 buf_t *bp; 388 int error = 0; 389 390 if (vd_lh == NULL) 391 return (EINVAL); 392 393 ASSERT(flags & B_READ || flags & B_WRITE); 394 395 bp = getrbuf(KM_SLEEP); 396 bp->b_flags = flags | B_BUSY | B_NOCACHE | B_FAILFAST; 397 bp->b_bcount = size; 398 bp->b_un.b_addr = (void *)data; 399 bp->b_lblkno = lbtodb(offset); 400 bp->b_bufsize = size; 401 402 error = ldi_strategy(vd_lh, bp); 403 ASSERT(error == 0); 404 if ((error = biowait(bp)) == 0 && bp->b_resid != 0) 405 error = EIO; 406 freerbuf(bp); 407 408 return (error); 409 } 410 411 static void 412 vdev_disk_io_intr(buf_t *bp) 413 { 414 vdev_buf_t *vb = (vdev_buf_t *)bp; 415 zio_t *zio = vb->vb_io; 416 417 /* 418 * The rest of the zio stack only deals with EIO, ECKSUM, and ENXIO. 419 * Rather than teach the rest of the stack about other error 420 * possibilities (EFAULT, etc), we normalize the error value here. 421 */ 422 zio->io_error = (geterror(bp) != 0 ? EIO : 0); 423 424 if (zio->io_error == 0 && bp->b_resid != 0) 425 zio->io_error = EIO; 426 427 kmem_free(vb, sizeof (vdev_buf_t)); 428 429 zio_interrupt(zio); 430 } 431 432 static void 433 vdev_disk_ioctl_free(zio_t *zio) 434 { 435 kmem_free(zio->io_vsd, sizeof (struct dk_callback)); 436 } 437 438 static const zio_vsd_ops_t vdev_disk_vsd_ops = { 439 vdev_disk_ioctl_free, 440 zio_vsd_default_cksum_report 441 }; 442 443 static void 444 vdev_disk_ioctl_done(void *zio_arg, int error) 445 { 446 zio_t *zio = zio_arg; 447 448 zio->io_error = error; 449 450 zio_interrupt(zio); 451 } 452 453 static int 454 vdev_disk_io_start(zio_t *zio) 455 { 456 vdev_t *vd = zio->io_vd; 457 vdev_disk_t *dvd = vd->vdev_tsd; 458 vdev_buf_t *vb; 459 struct dk_callback *dkc; 460 buf_t *bp; 461 int error; 462 463 if (zio->io_type == ZIO_TYPE_IOCTL) { 464 /* XXPOLICY */ 465 if (!vdev_readable(vd)) { 466 zio->io_error = ENXIO; 467 return (ZIO_PIPELINE_CONTINUE); 468 } 469 470 switch (zio->io_cmd) { 471 472 case DKIOCFLUSHWRITECACHE: 473 474 if (zfs_nocacheflush) 475 break; 476 477 if (vd->vdev_nowritecache) { 478 zio->io_error = ENOTSUP; 479 break; 480 } 481 482 zio->io_vsd = dkc = kmem_alloc(sizeof (*dkc), KM_SLEEP); 483 zio->io_vsd_ops = &vdev_disk_vsd_ops; 484 485 dkc->dkc_callback = vdev_disk_ioctl_done; 486 dkc->dkc_flag = FLUSH_VOLATILE; 487 dkc->dkc_cookie = zio; 488 489 error = ldi_ioctl(dvd->vd_lh, zio->io_cmd, 490 (uintptr_t)dkc, FKIOCTL, kcred, NULL); 491 492 if (error == 0) { 493 /* 494 * The ioctl will be done asychronously, 495 * and will call vdev_disk_ioctl_done() 496 * upon completion. 497 */ 498 return (ZIO_PIPELINE_STOP); 499 } 500 501 if (error == ENOTSUP || error == ENOTTY) { 502 /* 503 * If we get ENOTSUP or ENOTTY, we know that 504 * no future attempts will ever succeed. 505 * In this case we set a persistent bit so 506 * that we don't bother with the ioctl in the 507 * future. 508 */ 509 vd->vdev_nowritecache = B_TRUE; 510 } 511 zio->io_error = error; 512 513 break; 514 515 default: 516 zio->io_error = ENOTSUP; 517 } 518 519 return (ZIO_PIPELINE_CONTINUE); 520 } 521 522 vb = kmem_alloc(sizeof (vdev_buf_t), KM_SLEEP); 523 524 vb->vb_io = zio; 525 bp = &vb->vb_buf; 526 527 bioinit(bp); 528 bp->b_flags = B_BUSY | B_NOCACHE | 529 (zio->io_type == ZIO_TYPE_READ ? B_READ : B_WRITE); 530 if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD))) 531 bp->b_flags |= B_FAILFAST; 532 bp->b_bcount = zio->io_size; 533 bp->b_un.b_addr = zio->io_data; 534 bp->b_lblkno = lbtodb(zio->io_offset); 535 bp->b_bufsize = zio->io_size; 536 bp->b_iodone = (int (*)())vdev_disk_io_intr; 537 538 zfs_zone_zio_start(zio); 539 540 /* ldi_strategy() will return non-zero only on programming errors */ 541 VERIFY(ldi_strategy(dvd->vd_lh, bp) == 0); 542 543 return (ZIO_PIPELINE_STOP); 544 } 545 546 static void 547 vdev_disk_io_done(zio_t *zio) 548 { 549 vdev_t *vd = zio->io_vd; 550 551 zfs_zone_zio_done(zio); 552 553 /* 554 * If the device returned EIO, then attempt a DKIOCSTATE ioctl to see if 555 * the device has been removed. If this is the case, then we trigger an 556 * asynchronous removal of the device. Otherwise, probe the device and 557 * make sure it's still accessible. 558 */ 559 if (zio->io_error == EIO && !vd->vdev_remove_wanted) { 560 vdev_disk_t *dvd = vd->vdev_tsd; 561 int state = DKIO_NONE; 562 563 if (ldi_ioctl(dvd->vd_lh, DKIOCSTATE, (intptr_t)&state, 564 FKIOCTL, kcred, NULL) == 0 && state != DKIO_INSERTED) { 565 /* 566 * We post the resource as soon as possible, instead of 567 * when the async removal actually happens, because the 568 * DE is using this information to discard previous I/O 569 * errors. 570 */ 571 zfs_post_remove(zio->io_spa, vd); 572 vd->vdev_remove_wanted = B_TRUE; 573 spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE); 574 } else if (!vd->vdev_delayed_close) { 575 vd->vdev_delayed_close = B_TRUE; 576 } 577 } 578 } 579 580 vdev_ops_t vdev_disk_ops = { 581 vdev_disk_open, 582 vdev_disk_close, 583 vdev_default_asize, 584 vdev_disk_io_start, 585 vdev_disk_io_done, 586 NULL, 587 vdev_disk_hold, 588 vdev_disk_rele, 589 VDEV_TYPE_DISK, /* name of this vdev type */ 590 B_TRUE /* leaf vdev */ 591 }; 592 593 /* 594 * Given the root disk device devid or pathname, read the label from 595 * the device, and construct a configuration nvlist. 596 */ 597 int 598 vdev_disk_read_rootlabel(char *devpath, char *devid, nvlist_t **config) 599 { 600 ldi_handle_t vd_lh; 601 vdev_label_t *label; 602 uint64_t s, size; 603 int l; 604 ddi_devid_t tmpdevid; 605 int error = -1; 606 char *minor_name; 607 608 /* 609 * Read the device label and build the nvlist. 610 */ 611 if (devid != NULL && ddi_devid_str_decode(devid, &tmpdevid, 612 &minor_name) == 0) { 613 error = ldi_open_by_devid(tmpdevid, minor_name, 614 FREAD, kcred, &vd_lh, zfs_li); 615 ddi_devid_free(tmpdevid); 616 ddi_devid_str_free(minor_name); 617 } 618 619 if (error && (error = ldi_open_by_name(devpath, FREAD, kcred, &vd_lh, 620 zfs_li))) 621 return (error); 622 623 if (ldi_get_size(vd_lh, &s)) { 624 (void) ldi_close(vd_lh, FREAD, kcred); 625 return (EIO); 626 } 627 628 size = P2ALIGN_TYPED(s, sizeof (vdev_label_t), uint64_t); 629 label = kmem_alloc(sizeof (vdev_label_t), KM_SLEEP); 630 631 *config = NULL; 632 for (l = 0; l < VDEV_LABELS; l++) { 633 uint64_t offset, state, txg = 0; 634 635 /* read vdev label */ 636 offset = vdev_label_offset(size, l, 0); 637 if (vdev_disk_ldi_physio(vd_lh, (caddr_t)label, 638 VDEV_SKIP_SIZE + VDEV_PHYS_SIZE, offset, B_READ) != 0) 639 continue; 640 641 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist, 642 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) { 643 *config = NULL; 644 continue; 645 } 646 647 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, 648 &state) != 0 || state >= POOL_STATE_DESTROYED) { 649 nvlist_free(*config); 650 *config = NULL; 651 continue; 652 } 653 654 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, 655 &txg) != 0 || txg == 0) { 656 nvlist_free(*config); 657 *config = NULL; 658 continue; 659 } 660 661 break; 662 } 663 664 kmem_free(label, sizeof (vdev_label_t)); 665 (void) ldi_close(vd_lh, FREAD, kcred); 666 if (*config == NULL) 667 error = EIDRM; 668 669 return (error); 670 }