1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved. 23 * 24 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 25 * All rights reserved. 26 */ 27 28 /* 29 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 30 */ 31 32 #include <sys/param.h> 33 #include <sys/types.h> 34 #include <sys/systm.h> 35 #include <sys/cred.h> 36 #include <sys/time.h> 37 #include <sys/vnode.h> 38 #include <sys/vfs.h> 39 #include <sys/vfs_opreg.h> 40 #include <sys/file.h> 41 #include <sys/filio.h> 42 #include <sys/uio.h> 43 #include <sys/buf.h> 44 #include <sys/mman.h> 45 #include <sys/pathname.h> 46 #include <sys/dirent.h> 47 #include <sys/debug.h> 48 #include <sys/vmsystm.h> 49 #include <sys/fcntl.h> 50 #include <sys/flock.h> 51 #include <sys/swap.h> 52 #include <sys/errno.h> 53 #include <sys/strsubr.h> 54 #include <sys/sysmacros.h> 55 #include <sys/kmem.h> 56 #include <sys/cmn_err.h> 57 #include <sys/pathconf.h> 58 #include <sys/utsname.h> 59 #include <sys/dnlc.h> 60 #include <sys/acl.h> 61 #include <sys/atomic.h> 62 #include <sys/policy.h> 63 #include <sys/sdt.h> 64 65 #include <rpc/types.h> 66 #include <rpc/auth.h> 67 #include <rpc/clnt.h> 68 69 #include <nfs/nfs.h> 70 #include <nfs/nfs_clnt.h> 71 #include <nfs/rnode.h> 72 #include <nfs/nfs_acl.h> 73 #include <nfs/lm.h> 74 75 #include <vm/hat.h> 76 #include <vm/as.h> 77 #include <vm/page.h> 78 #include <vm/pvn.h> 79 #include <vm/seg.h> 80 #include <vm/seg_map.h> 81 #include <vm/seg_kpm.h> 82 #include <vm/seg_vn.h> 83 84 #include <fs/fs_subr.h> 85 86 #include <sys/ddi.h> 87 88 static int nfs_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 89 cred_t *); 90 static int nfswrite(vnode_t *, caddr_t, uint_t, int, cred_t *); 91 static int nfsread(vnode_t *, caddr_t, uint_t, int, size_t *, cred_t *); 92 static int nfssetattr(vnode_t *, struct vattr *, int, cred_t *); 93 static int nfslookup_dnlc(vnode_t *, char *, vnode_t **, cred_t *); 94 static int nfslookup_otw(vnode_t *, char *, vnode_t **, cred_t *, int); 95 static int nfsrename(vnode_t *, char *, vnode_t *, char *, cred_t *, 96 caller_context_t *); 97 static int nfsreaddir(vnode_t *, rddir_cache *, cred_t *); 98 static int nfs_bio(struct buf *, cred_t *); 99 static int nfs_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 100 page_t *[], size_t, struct seg *, caddr_t, 101 enum seg_rw, cred_t *); 102 static void nfs_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 103 cred_t *); 104 static int nfs_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 105 int, cred_t *); 106 static int nfs_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 107 int, cred_t *); 108 static void nfs_delmap_callback(struct as *, void *, uint_t); 109 110 /* 111 * Error flags used to pass information about certain special errors 112 * which need to be handled specially. 113 */ 114 #define NFS_EOF -98 115 116 /* 117 * These are the vnode ops routines which implement the vnode interface to 118 * the networked file system. These routines just take their parameters, 119 * make them look networkish by putting the right info into interface structs, 120 * and then calling the appropriate remote routine(s) to do the work. 121 * 122 * Note on directory name lookup cacheing: If we detect a stale fhandle, 123 * we purge the directory cache relative to that vnode. This way, the 124 * user won't get burned by the cache repeatedly. See <nfs/rnode.h> for 125 * more details on rnode locking. 126 */ 127 128 static int nfs_open(vnode_t **, int, cred_t *, caller_context_t *); 129 static int nfs_close(vnode_t *, int, int, offset_t, cred_t *, 130 caller_context_t *); 131 static int nfs_read(vnode_t *, struct uio *, int, cred_t *, 132 caller_context_t *); 133 static int nfs_write(vnode_t *, struct uio *, int, cred_t *, 134 caller_context_t *); 135 static int nfs_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *, 136 caller_context_t *); 137 static int nfs_getattr(vnode_t *, struct vattr *, int, cred_t *, 138 caller_context_t *); 139 static int nfs_setattr(vnode_t *, struct vattr *, int, cred_t *, 140 caller_context_t *); 141 static int nfs_access(vnode_t *, int, int, cred_t *, caller_context_t *); 142 static int nfs_accessx(void *, int, cred_t *); 143 static int nfs_readlink(vnode_t *, struct uio *, cred_t *, 144 caller_context_t *); 145 static int nfs_fsync(vnode_t *, int, cred_t *, caller_context_t *); 146 static void nfs_inactive(vnode_t *, cred_t *, caller_context_t *); 147 static int nfs_lookup(vnode_t *, char *, vnode_t **, struct pathname *, 148 int, vnode_t *, cred_t *, caller_context_t *, 149 int *, pathname_t *); 150 static int nfs_create(vnode_t *, char *, struct vattr *, enum vcexcl, 151 int, vnode_t **, cred_t *, int, caller_context_t *, 152 vsecattr_t *); 153 static int nfs_remove(vnode_t *, char *, cred_t *, caller_context_t *, 154 int); 155 static int nfs_link(vnode_t *, vnode_t *, char *, cred_t *, 156 caller_context_t *, int); 157 static int nfs_rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 158 caller_context_t *, int); 159 static int nfs_mkdir(vnode_t *, char *, struct vattr *, vnode_t **, 160 cred_t *, caller_context_t *, int, vsecattr_t *); 161 static int nfs_rmdir(vnode_t *, char *, vnode_t *, cred_t *, 162 caller_context_t *, int); 163 static int nfs_symlink(vnode_t *, char *, struct vattr *, char *, 164 cred_t *, caller_context_t *, int); 165 static int nfs_readdir(vnode_t *, struct uio *, cred_t *, int *, 166 caller_context_t *, int); 167 static int nfs_fid(vnode_t *, fid_t *, caller_context_t *); 168 static int nfs_rwlock(vnode_t *, int, caller_context_t *); 169 static void nfs_rwunlock(vnode_t *, int, caller_context_t *); 170 static int nfs_seek(vnode_t *, offset_t, offset_t *, caller_context_t *); 171 static int nfs_getpage(vnode_t *, offset_t, size_t, uint_t *, 172 page_t *[], size_t, struct seg *, caddr_t, 173 enum seg_rw, cred_t *, caller_context_t *); 174 static int nfs_putpage(vnode_t *, offset_t, size_t, int, cred_t *, 175 caller_context_t *); 176 static int nfs_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t, 177 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 178 static int nfs_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 179 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 180 static int nfs_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 181 struct flk_callback *, cred_t *, caller_context_t *); 182 static int nfs_space(vnode_t *, int, struct flock64 *, int, offset_t, 183 cred_t *, caller_context_t *); 184 static int nfs_realvp(vnode_t *, vnode_t **, caller_context_t *); 185 static int nfs_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 186 uint_t, uint_t, uint_t, cred_t *, caller_context_t *); 187 static int nfs_pathconf(vnode_t *, int, ulong_t *, cred_t *, 188 caller_context_t *); 189 static int nfs_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 190 cred_t *, caller_context_t *); 191 static int nfs_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 192 caller_context_t *); 193 static int nfs_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 194 caller_context_t *); 195 static int nfs_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *, 196 caller_context_t *); 197 198 struct vnodeops *nfs_vnodeops; 199 200 const fs_operation_def_t nfs_vnodeops_template[] = { 201 VOPNAME_OPEN, { .vop_open = nfs_open }, 202 VOPNAME_CLOSE, { .vop_close = nfs_close }, 203 VOPNAME_READ, { .vop_read = nfs_read }, 204 VOPNAME_WRITE, { .vop_write = nfs_write }, 205 VOPNAME_IOCTL, { .vop_ioctl = nfs_ioctl }, 206 VOPNAME_GETATTR, { .vop_getattr = nfs_getattr }, 207 VOPNAME_SETATTR, { .vop_setattr = nfs_setattr }, 208 VOPNAME_ACCESS, { .vop_access = nfs_access }, 209 VOPNAME_LOOKUP, { .vop_lookup = nfs_lookup }, 210 VOPNAME_CREATE, { .vop_create = nfs_create }, 211 VOPNAME_REMOVE, { .vop_remove = nfs_remove }, 212 VOPNAME_LINK, { .vop_link = nfs_link }, 213 VOPNAME_RENAME, { .vop_rename = nfs_rename }, 214 VOPNAME_MKDIR, { .vop_mkdir = nfs_mkdir }, 215 VOPNAME_RMDIR, { .vop_rmdir = nfs_rmdir }, 216 VOPNAME_READDIR, { .vop_readdir = nfs_readdir }, 217 VOPNAME_SYMLINK, { .vop_symlink = nfs_symlink }, 218 VOPNAME_READLINK, { .vop_readlink = nfs_readlink }, 219 VOPNAME_FSYNC, { .vop_fsync = nfs_fsync }, 220 VOPNAME_INACTIVE, { .vop_inactive = nfs_inactive }, 221 VOPNAME_FID, { .vop_fid = nfs_fid }, 222 VOPNAME_RWLOCK, { .vop_rwlock = nfs_rwlock }, 223 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs_rwunlock }, 224 VOPNAME_SEEK, { .vop_seek = nfs_seek }, 225 VOPNAME_FRLOCK, { .vop_frlock = nfs_frlock }, 226 VOPNAME_SPACE, { .vop_space = nfs_space }, 227 VOPNAME_REALVP, { .vop_realvp = nfs_realvp }, 228 VOPNAME_GETPAGE, { .vop_getpage = nfs_getpage }, 229 VOPNAME_PUTPAGE, { .vop_putpage = nfs_putpage }, 230 VOPNAME_MAP, { .vop_map = nfs_map }, 231 VOPNAME_ADDMAP, { .vop_addmap = nfs_addmap }, 232 VOPNAME_DELMAP, { .vop_delmap = nfs_delmap }, 233 VOPNAME_DUMP, { .vop_dump = nfs_dump }, 234 VOPNAME_PATHCONF, { .vop_pathconf = nfs_pathconf }, 235 VOPNAME_PAGEIO, { .vop_pageio = nfs_pageio }, 236 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs_setsecattr }, 237 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs_getsecattr }, 238 VOPNAME_SHRLOCK, { .vop_shrlock = nfs_shrlock }, 239 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 240 NULL, NULL 241 }; 242 243 /* 244 * XXX: This is referenced in modstubs.s 245 */ 246 struct vnodeops * 247 nfs_getvnodeops(void) 248 { 249 return (nfs_vnodeops); 250 } 251 252 /* ARGSUSED */ 253 static int 254 nfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 255 { 256 int error; 257 struct vattr va; 258 rnode_t *rp; 259 vnode_t *vp; 260 261 vp = *vpp; 262 rp = VTOR(vp); 263 if (nfs_zone() != VTOMI(vp)->mi_zone) 264 return (EIO); 265 mutex_enter(&rp->r_statelock); 266 if (rp->r_cred == NULL) { 267 crhold(cr); 268 rp->r_cred = cr; 269 } 270 mutex_exit(&rp->r_statelock); 271 272 /* 273 * If there is no cached data or if close-to-open 274 * consistency checking is turned off, we can avoid 275 * the over the wire getattr. Otherwise, if the 276 * file system is mounted readonly, then just verify 277 * the caches are up to date using the normal mechanism. 278 * Else, if the file is not mmap'd, then just mark 279 * the attributes as timed out. They will be refreshed 280 * and the caches validated prior to being used. 281 * Else, the file system is mounted writeable so 282 * force an over the wire GETATTR in order to ensure 283 * that all cached data is valid. 284 */ 285 if (vp->v_count > 1 || 286 ((vn_has_cached_data(vp) || HAVE_RDDIR_CACHE(rp)) && 287 !(VTOMI(vp)->mi_flags & MI_NOCTO))) { 288 if (vn_is_readonly(vp)) 289 error = nfs_validate_caches(vp, cr); 290 else if (rp->r_mapcnt == 0 && vp->v_count == 1) { 291 PURGE_ATTRCACHE(vp); 292 error = 0; 293 } else { 294 va.va_mask = AT_ALL; 295 error = nfs_getattr_otw(vp, &va, cr); 296 } 297 } else 298 error = 0; 299 300 return (error); 301 } 302 303 /* ARGSUSED */ 304 static int 305 nfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 306 caller_context_t *ct) 307 { 308 rnode_t *rp; 309 int error; 310 struct vattr va; 311 312 /* 313 * zone_enter(2) prevents processes from changing zones with NFS files 314 * open; if we happen to get here from the wrong zone we can't do 315 * anything over the wire. 316 */ 317 if (VTOMI(vp)->mi_zone != nfs_zone()) { 318 /* 319 * We could attempt to clean up locks, except we're sure 320 * that the current process didn't acquire any locks on 321 * the file: any attempt to lock a file belong to another zone 322 * will fail, and one can't lock an NFS file and then change 323 * zones, as that fails too. 324 * 325 * Returning an error here is the sane thing to do. A 326 * subsequent call to VN_RELE() which translates to a 327 * nfs_inactive() will clean up state: if the zone of the 328 * vnode's origin is still alive and kicking, an async worker 329 * thread will handle the request (from the correct zone), and 330 * everything (minus the final nfs_getattr_otw() call) should 331 * be OK. If the zone is going away nfs_async_inactive() will 332 * throw away cached pages inline. 333 */ 334 return (EIO); 335 } 336 337 /* 338 * If we are using local locking for this filesystem, then 339 * release all of the SYSV style record locks. Otherwise, 340 * we are doing network locking and we need to release all 341 * of the network locks. All of the locks held by this 342 * process on this file are released no matter what the 343 * incoming reference count is. 344 */ 345 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 346 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 347 cleanshares(vp, ttoproc(curthread)->p_pid); 348 } else 349 nfs_lockrelease(vp, flag, offset, cr); 350 351 if (count > 1) 352 return (0); 353 354 /* 355 * If the file has been `unlinked', then purge the 356 * DNLC so that this vnode will get reycled quicker 357 * and the .nfs* file on the server will get removed. 358 */ 359 rp = VTOR(vp); 360 if (rp->r_unldvp != NULL) 361 dnlc_purge_vp(vp); 362 363 /* 364 * If the file was open for write and there are pages, 365 * then if the file system was mounted using the "no-close- 366 * to-open" semantics, then start an asynchronous flush 367 * of the all of the pages in the file. 368 * else the file system was not mounted using the "no-close- 369 * to-open" semantics, then do a synchronous flush and 370 * commit of all of the dirty and uncommitted pages. 371 * 372 * The asynchronous flush of the pages in the "nocto" path 373 * mostly just associates a cred pointer with the rnode so 374 * writes which happen later will have a better chance of 375 * working. It also starts the data being written to the 376 * server, but without unnecessarily delaying the application. 377 */ 378 if ((flag & FWRITE) && vn_has_cached_data(vp)) { 379 if ((VTOMI(vp)->mi_flags & MI_NOCTO)) { 380 error = nfs_putpage(vp, (offset_t)0, 0, B_ASYNC, 381 cr, ct); 382 if (error == EAGAIN) 383 error = 0; 384 } else 385 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct); 386 if (!error) { 387 mutex_enter(&rp->r_statelock); 388 error = rp->r_error; 389 rp->r_error = 0; 390 mutex_exit(&rp->r_statelock); 391 } 392 } else { 393 mutex_enter(&rp->r_statelock); 394 error = rp->r_error; 395 rp->r_error = 0; 396 mutex_exit(&rp->r_statelock); 397 } 398 399 /* 400 * If RWRITEATTR is set, then issue an over the wire GETATTR to 401 * refresh the attribute cache with a set of attributes which 402 * weren't returned from a WRITE. This will enable the close- 403 * to-open processing to work. 404 */ 405 if (rp->r_flags & RWRITEATTR) 406 (void) nfs_getattr_otw(vp, &va, cr); 407 408 return (error); 409 } 410 411 /* ARGSUSED */ 412 static int 413 nfs_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 414 caller_context_t *ct) 415 { 416 rnode_t *rp; 417 u_offset_t off; 418 offset_t diff; 419 int on; 420 size_t n; 421 caddr_t base; 422 uint_t flags; 423 int error; 424 mntinfo_t *mi; 425 426 rp = VTOR(vp); 427 mi = VTOMI(vp); 428 429 if (nfs_zone() != mi->mi_zone) 430 return (EIO); 431 432 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 433 434 if (vp->v_type != VREG) 435 return (EISDIR); 436 437 if (uiop->uio_resid == 0) 438 return (0); 439 440 if (uiop->uio_loffset > MAXOFF32_T) 441 return (EFBIG); 442 443 if (uiop->uio_loffset < 0 || 444 uiop->uio_loffset + uiop->uio_resid > MAXOFF32_T) 445 return (EINVAL); 446 447 /* 448 * Bypass VM if caching has been disabled (e.g., locking) or if 449 * using client-side direct I/O and the file is not mmap'd and 450 * there are no cached pages. 451 */ 452 if ((vp->v_flag & VNOCACHE) || 453 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 454 rp->r_mapcnt == 0 && rp->r_inmap == 0 && 455 !vn_has_cached_data(vp))) { 456 size_t bufsize; 457 size_t resid = 0; 458 459 /* 460 * Let's try to do read in as large a chunk as we can 461 * (Filesystem (NFS client) bsize if possible/needed). 462 * For V3, this is 32K and for V2, this is 8K. 463 */ 464 bufsize = MIN(uiop->uio_resid, VTOMI(vp)->mi_curread); 465 base = kmem_alloc(bufsize, KM_SLEEP); 466 do { 467 n = MIN(uiop->uio_resid, bufsize); 468 error = nfsread(vp, base, uiop->uio_offset, n, 469 &resid, cr); 470 if (!error) { 471 n -= resid; 472 error = uiomove(base, n, UIO_READ, uiop); 473 } 474 } while (!error && uiop->uio_resid > 0 && n > 0); 475 kmem_free(base, bufsize); 476 return (error); 477 } 478 479 error = 0; 480 481 do { 482 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 483 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 484 n = MIN(MAXBSIZE - on, uiop->uio_resid); 485 486 error = nfs_validate_caches(vp, cr); 487 if (error) 488 break; 489 490 mutex_enter(&rp->r_statelock); 491 while (rp->r_flags & RINCACHEPURGE) { 492 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 493 mutex_exit(&rp->r_statelock); 494 return (EINTR); 495 } 496 } 497 diff = rp->r_size - uiop->uio_loffset; 498 mutex_exit(&rp->r_statelock); 499 if (diff <= 0) 500 break; 501 if (diff < n) 502 n = (size_t)diff; 503 504 if (vpm_enable) { 505 /* 506 * Copy data. 507 */ 508 error = vpm_data_copy(vp, off + on, n, uiop, 509 1, NULL, 0, S_READ); 510 } else { 511 base = segmap_getmapflt(segkmap, vp, off + on, n, 512 1, S_READ); 513 error = uiomove(base + on, n, UIO_READ, uiop); 514 } 515 516 if (!error) { 517 /* 518 * If read a whole block or read to eof, 519 * won't need this buffer again soon. 520 */ 521 mutex_enter(&rp->r_statelock); 522 if (n + on == MAXBSIZE || 523 uiop->uio_loffset == rp->r_size) 524 flags = SM_DONTNEED; 525 else 526 flags = 0; 527 mutex_exit(&rp->r_statelock); 528 if (vpm_enable) { 529 error = vpm_sync_pages(vp, off, n, flags); 530 } else { 531 error = segmap_release(segkmap, base, flags); 532 } 533 } else { 534 if (vpm_enable) { 535 (void) vpm_sync_pages(vp, off, n, 0); 536 } else { 537 (void) segmap_release(segkmap, base, 0); 538 } 539 } 540 } while (!error && uiop->uio_resid > 0); 541 542 return (error); 543 } 544 545 /* ARGSUSED */ 546 static int 547 nfs_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 548 caller_context_t *ct) 549 { 550 rnode_t *rp; 551 u_offset_t off; 552 caddr_t base; 553 uint_t flags; 554 int remainder; 555 size_t n; 556 int on; 557 int error; 558 int resid; 559 offset_t offset; 560 rlim_t limit; 561 mntinfo_t *mi; 562 563 rp = VTOR(vp); 564 565 mi = VTOMI(vp); 566 if (nfs_zone() != mi->mi_zone) 567 return (EIO); 568 if (vp->v_type != VREG) 569 return (EISDIR); 570 571 if (uiop->uio_resid == 0) 572 return (0); 573 574 if (ioflag & FAPPEND) { 575 struct vattr va; 576 577 /* 578 * Must serialize if appending. 579 */ 580 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 581 nfs_rw_exit(&rp->r_rwlock); 582 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 583 INTR(vp))) 584 return (EINTR); 585 } 586 587 va.va_mask = AT_SIZE; 588 error = nfsgetattr(vp, &va, cr); 589 if (error) 590 return (error); 591 uiop->uio_loffset = va.va_size; 592 } 593 594 if (uiop->uio_loffset > MAXOFF32_T) 595 return (EFBIG); 596 597 offset = uiop->uio_loffset + uiop->uio_resid; 598 599 if (uiop->uio_loffset < 0 || offset > MAXOFF32_T) 600 return (EINVAL); 601 602 if (uiop->uio_llimit > (rlim64_t)MAXOFF32_T) { 603 limit = MAXOFF32_T; 604 } else { 605 limit = (rlim_t)uiop->uio_llimit; 606 } 607 608 /* 609 * Check to make sure that the process will not exceed 610 * its limit on file size. It is okay to write up to 611 * the limit, but not beyond. Thus, the write which 612 * reaches the limit will be short and the next write 613 * will return an error. 614 */ 615 remainder = 0; 616 if (offset > limit) { 617 remainder = offset - limit; 618 uiop->uio_resid = limit - uiop->uio_offset; 619 if (uiop->uio_resid <= 0) { 620 proc_t *p = ttoproc(curthread); 621 622 uiop->uio_resid += remainder; 623 mutex_enter(&p->p_lock); 624 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 625 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 626 mutex_exit(&p->p_lock); 627 return (EFBIG); 628 } 629 } 630 631 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) 632 return (EINTR); 633 634 /* 635 * Bypass VM if caching has been disabled (e.g., locking) or if 636 * using client-side direct I/O and the file is not mmap'd and 637 * there are no cached pages. 638 */ 639 if ((vp->v_flag & VNOCACHE) || 640 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 641 rp->r_mapcnt == 0 && rp->r_inmap == 0 && 642 !vn_has_cached_data(vp))) { 643 size_t bufsize; 644 int count; 645 uint_t org_offset; 646 647 nfs_fwrite: 648 if (rp->r_flags & RSTALE) { 649 resid = uiop->uio_resid; 650 offset = uiop->uio_loffset; 651 error = rp->r_error; 652 /* 653 * A close may have cleared r_error, if so, 654 * propagate ESTALE error return properly 655 */ 656 if (error == 0) 657 error = ESTALE; 658 goto bottom; 659 } 660 bufsize = MIN(uiop->uio_resid, mi->mi_curwrite); 661 base = kmem_alloc(bufsize, KM_SLEEP); 662 do { 663 resid = uiop->uio_resid; 664 offset = uiop->uio_loffset; 665 count = MIN(uiop->uio_resid, bufsize); 666 org_offset = uiop->uio_offset; 667 error = uiomove(base, count, UIO_WRITE, uiop); 668 if (!error) { 669 error = nfswrite(vp, base, org_offset, 670 count, cr); 671 } 672 } while (!error && uiop->uio_resid > 0); 673 kmem_free(base, bufsize); 674 goto bottom; 675 } 676 677 do { 678 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 679 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 680 n = MIN(MAXBSIZE - on, uiop->uio_resid); 681 682 resid = uiop->uio_resid; 683 offset = uiop->uio_loffset; 684 685 if (rp->r_flags & RSTALE) { 686 error = rp->r_error; 687 /* 688 * A close may have cleared r_error, if so, 689 * propagate ESTALE error return properly 690 */ 691 if (error == 0) 692 error = ESTALE; 693 break; 694 } 695 696 /* 697 * Don't create dirty pages faster than they 698 * can be cleaned so that the system doesn't 699 * get imbalanced. If the async queue is 700 * maxed out, then wait for it to drain before 701 * creating more dirty pages. Also, wait for 702 * any threads doing pagewalks in the vop_getattr 703 * entry points so that they don't block for 704 * long periods. 705 */ 706 mutex_enter(&rp->r_statelock); 707 while ((mi->mi_max_threads != 0 && 708 rp->r_awcount > 2 * mi->mi_max_threads) || 709 rp->r_gcount > 0) { 710 if (INTR(vp)) { 711 klwp_t *lwp = ttolwp(curthread); 712 713 if (lwp != NULL) 714 lwp->lwp_nostop++; 715 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 716 mutex_exit(&rp->r_statelock); 717 if (lwp != NULL) 718 lwp->lwp_nostop--; 719 error = EINTR; 720 goto bottom; 721 } 722 if (lwp != NULL) 723 lwp->lwp_nostop--; 724 } else 725 cv_wait(&rp->r_cv, &rp->r_statelock); 726 } 727 mutex_exit(&rp->r_statelock); 728 729 /* 730 * Touch the page and fault it in if it is not in core 731 * before segmap_getmapflt or vpm_data_copy can lock it. 732 * This is to avoid the deadlock if the buffer is mapped 733 * to the same file through mmap which we want to write. 734 */ 735 uio_prefaultpages((long)n, uiop); 736 737 if (vpm_enable) { 738 /* 739 * It will use kpm mappings, so no need to 740 * pass an address. 741 */ 742 error = writerp(rp, NULL, n, uiop, 0); 743 } else { 744 if (segmap_kpm) { 745 int pon = uiop->uio_loffset & PAGEOFFSET; 746 size_t pn = MIN(PAGESIZE - pon, 747 uiop->uio_resid); 748 int pagecreate; 749 750 mutex_enter(&rp->r_statelock); 751 pagecreate = (pon == 0) && (pn == PAGESIZE || 752 uiop->uio_loffset + pn >= rp->r_size); 753 mutex_exit(&rp->r_statelock); 754 755 base = segmap_getmapflt(segkmap, vp, off + on, 756 pn, !pagecreate, S_WRITE); 757 758 error = writerp(rp, base + pon, n, uiop, 759 pagecreate); 760 761 } else { 762 base = segmap_getmapflt(segkmap, vp, off + on, 763 n, 0, S_READ); 764 error = writerp(rp, base + on, n, uiop, 0); 765 } 766 } 767 768 if (!error) { 769 if (mi->mi_flags & MI_NOAC) 770 flags = SM_WRITE; 771 else if (n + on == MAXBSIZE || IS_SWAPVP(vp)) { 772 /* 773 * Have written a whole block. 774 * Start an asynchronous write 775 * and mark the buffer to 776 * indicate that it won't be 777 * needed again soon. 778 */ 779 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 780 } else 781 flags = 0; 782 if ((ioflag & (FSYNC|FDSYNC)) || 783 (rp->r_flags & ROUTOFSPACE)) { 784 flags &= ~SM_ASYNC; 785 flags |= SM_WRITE; 786 } 787 if (vpm_enable) { 788 error = vpm_sync_pages(vp, off, n, flags); 789 } else { 790 error = segmap_release(segkmap, base, flags); 791 } 792 } else { 793 if (vpm_enable) { 794 (void) vpm_sync_pages(vp, off, n, 0); 795 } else { 796 (void) segmap_release(segkmap, base, 0); 797 } 798 /* 799 * In the event that we got an access error while 800 * faulting in a page for a write-only file just 801 * force a write. 802 */ 803 if (error == EACCES) 804 goto nfs_fwrite; 805 } 806 } while (!error && uiop->uio_resid > 0); 807 808 bottom: 809 if (error) { 810 uiop->uio_resid = resid + remainder; 811 uiop->uio_loffset = offset; 812 } else 813 uiop->uio_resid += remainder; 814 815 nfs_rw_exit(&rp->r_lkserlock); 816 817 return (error); 818 } 819 820 /* 821 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 822 */ 823 static int 824 nfs_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 825 int flags, cred_t *cr) 826 { 827 struct buf *bp; 828 int error; 829 830 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 831 bp = pageio_setup(pp, len, vp, flags); 832 ASSERT(bp != NULL); 833 834 /* 835 * pageio_setup should have set b_addr to 0. This 836 * is correct since we want to do I/O on a page 837 * boundary. bp_mapin will use this addr to calculate 838 * an offset, and then set b_addr to the kernel virtual 839 * address it allocated for us. 840 */ 841 ASSERT(bp->b_un.b_addr == 0); 842 843 bp->b_edev = 0; 844 bp->b_dev = 0; 845 bp->b_lblkno = lbtodb(off); 846 bp->b_file = vp; 847 bp->b_offset = (offset_t)off; 848 bp_mapin(bp); 849 850 error = nfs_bio(bp, cr); 851 852 bp_mapout(bp); 853 pageio_done(bp); 854 855 return (error); 856 } 857 858 /* 859 * Write to file. Writes to remote server in largest size 860 * chunks that the server can handle. Write is synchronous. 861 */ 862 static int 863 nfswrite(vnode_t *vp, caddr_t base, uint_t offset, int count, cred_t *cr) 864 { 865 rnode_t *rp; 866 mntinfo_t *mi; 867 struct nfswriteargs wa; 868 struct nfsattrstat ns; 869 int error; 870 int tsize; 871 int douprintf; 872 873 douprintf = 1; 874 875 rp = VTOR(vp); 876 mi = VTOMI(vp); 877 878 ASSERT(nfs_zone() == mi->mi_zone); 879 880 wa.wa_args = &wa.wa_args_buf; 881 wa.wa_fhandle = *VTOFH(vp); 882 883 do { 884 tsize = MIN(mi->mi_curwrite, count); 885 wa.wa_data = base; 886 wa.wa_begoff = offset; 887 wa.wa_totcount = tsize; 888 wa.wa_count = tsize; 889 wa.wa_offset = offset; 890 891 if (mi->mi_io_kstats) { 892 mutex_enter(&mi->mi_lock); 893 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 894 mutex_exit(&mi->mi_lock); 895 } 896 wa.wa_mblk = NULL; 897 do { 898 error = rfs2call(mi, RFS_WRITE, 899 xdr_writeargs, (caddr_t)&wa, 900 xdr_attrstat, (caddr_t)&ns, cr, 901 &douprintf, &ns.ns_status, 0, NULL); 902 } while (error == ENFS_TRYAGAIN); 903 if (mi->mi_io_kstats) { 904 mutex_enter(&mi->mi_lock); 905 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 906 mutex_exit(&mi->mi_lock); 907 } 908 909 if (!error) { 910 error = geterrno(ns.ns_status); 911 /* 912 * Can't check for stale fhandle and purge caches 913 * here because pages are held by nfs_getpage. 914 * Just mark the attribute cache as timed out 915 * and set RWRITEATTR to indicate that the file 916 * was modified with a WRITE operation. 917 */ 918 if (!error) { 919 count -= tsize; 920 base += tsize; 921 offset += tsize; 922 if (mi->mi_io_kstats) { 923 mutex_enter(&mi->mi_lock); 924 KSTAT_IO_PTR(mi->mi_io_kstats)-> 925 writes++; 926 KSTAT_IO_PTR(mi->mi_io_kstats)-> 927 nwritten += tsize; 928 mutex_exit(&mi->mi_lock); 929 } 930 lwp_stat_update(LWP_STAT_OUBLK, 1); 931 mutex_enter(&rp->r_statelock); 932 PURGE_ATTRCACHE_LOCKED(rp); 933 rp->r_flags |= RWRITEATTR; 934 mutex_exit(&rp->r_statelock); 935 } 936 } 937 } while (!error && count); 938 939 return (error); 940 } 941 942 /* 943 * Read from a file. Reads data in largest chunks our interface can handle. 944 */ 945 static int 946 nfsread(vnode_t *vp, caddr_t base, uint_t offset, 947 int count, size_t *residp, cred_t *cr) 948 { 949 mntinfo_t *mi; 950 struct nfsreadargs ra; 951 struct nfsrdresult rr; 952 int tsize; 953 int error; 954 int douprintf; 955 failinfo_t fi; 956 rnode_t *rp; 957 struct vattr va; 958 hrtime_t t; 959 960 rp = VTOR(vp); 961 mi = VTOMI(vp); 962 963 ASSERT(nfs_zone() == mi->mi_zone); 964 965 douprintf = 1; 966 967 ra.ra_fhandle = *VTOFH(vp); 968 969 fi.vp = vp; 970 fi.fhp = (caddr_t)&ra.ra_fhandle; 971 fi.copyproc = nfscopyfh; 972 fi.lookupproc = nfslookup; 973 fi.xattrdirproc = acl_getxattrdir2; 974 975 do { 976 if (mi->mi_io_kstats) { 977 mutex_enter(&mi->mi_lock); 978 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 979 mutex_exit(&mi->mi_lock); 980 } 981 982 do { 983 tsize = MIN(mi->mi_curread, count); 984 rr.rr_data = base; 985 ra.ra_offset = offset; 986 ra.ra_totcount = tsize; 987 ra.ra_count = tsize; 988 ra.ra_data = base; 989 t = gethrtime(); 990 error = rfs2call(mi, RFS_READ, 991 xdr_readargs, (caddr_t)&ra, 992 xdr_rdresult, (caddr_t)&rr, cr, 993 &douprintf, &rr.rr_status, 0, &fi); 994 } while (error == ENFS_TRYAGAIN); 995 996 if (mi->mi_io_kstats) { 997 mutex_enter(&mi->mi_lock); 998 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 999 mutex_exit(&mi->mi_lock); 1000 } 1001 1002 if (!error) { 1003 error = geterrno(rr.rr_status); 1004 if (!error) { 1005 count -= rr.rr_count; 1006 base += rr.rr_count; 1007 offset += rr.rr_count; 1008 if (mi->mi_io_kstats) { 1009 mutex_enter(&mi->mi_lock); 1010 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 1011 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += 1012 rr.rr_count; 1013 mutex_exit(&mi->mi_lock); 1014 } 1015 lwp_stat_update(LWP_STAT_INBLK, 1); 1016 } 1017 } 1018 } while (!error && count && rr.rr_count == tsize); 1019 1020 *residp = count; 1021 1022 if (!error) { 1023 /* 1024 * Since no error occurred, we have the current 1025 * attributes and we need to do a cache check and then 1026 * potentially update the cached attributes. We can't 1027 * use the normal attribute check and cache mechanisms 1028 * because they might cause a cache flush which would 1029 * deadlock. Instead, we just check the cache to see 1030 * if the attributes have changed. If it is, then we 1031 * just mark the attributes as out of date. The next 1032 * time that the attributes are checked, they will be 1033 * out of date, new attributes will be fetched, and 1034 * the page cache will be flushed. If the attributes 1035 * weren't changed, then we just update the cached 1036 * attributes with these attributes. 1037 */ 1038 /* 1039 * If NFS_ACL is supported on the server, then the 1040 * attributes returned by server may have minimal 1041 * permissions sometimes denying access to users having 1042 * proper access. To get the proper attributes, mark 1043 * the attributes as expired so that they will be 1044 * regotten via the NFS_ACL GETATTR2 procedure. 1045 */ 1046 error = nattr_to_vattr(vp, &rr.rr_attr, &va); 1047 mutex_enter(&rp->r_statelock); 1048 if (error || !CACHE_VALID(rp, va.va_mtime, va.va_size) || 1049 (mi->mi_flags & MI_ACL)) { 1050 mutex_exit(&rp->r_statelock); 1051 PURGE_ATTRCACHE(vp); 1052 } else { 1053 if (rp->r_mtime <= t) { 1054 nfs_attrcache_va(vp, &va); 1055 } 1056 mutex_exit(&rp->r_statelock); 1057 } 1058 } 1059 1060 return (error); 1061 } 1062 1063 /* ARGSUSED */ 1064 static int 1065 nfs_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp, 1066 caller_context_t *ct) 1067 { 1068 1069 if (nfs_zone() != VTOMI(vp)->mi_zone) 1070 return (EIO); 1071 switch (cmd) { 1072 case _FIODIRECTIO: 1073 return (nfs_directio(vp, (int)arg, cr)); 1074 default: 1075 return (ENOTTY); 1076 } 1077 } 1078 1079 /* ARGSUSED */ 1080 static int 1081 nfs_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 1082 caller_context_t *ct) 1083 { 1084 int error; 1085 rnode_t *rp; 1086 1087 if (nfs_zone() != VTOMI(vp)->mi_zone) 1088 return (EIO); 1089 /* 1090 * If it has been specified that the return value will 1091 * just be used as a hint, and we are only being asked 1092 * for size, fsid or rdevid, then return the client's 1093 * notion of these values without checking to make sure 1094 * that the attribute cache is up to date. 1095 * The whole point is to avoid an over the wire GETATTR 1096 * call. 1097 */ 1098 rp = VTOR(vp); 1099 if (flags & ATTR_HINT) { 1100 if (vap->va_mask == 1101 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) { 1102 mutex_enter(&rp->r_statelock); 1103 if (vap->va_mask | AT_SIZE) 1104 vap->va_size = rp->r_size; 1105 if (vap->va_mask | AT_FSID) 1106 vap->va_fsid = rp->r_attr.va_fsid; 1107 if (vap->va_mask | AT_RDEV) 1108 vap->va_rdev = rp->r_attr.va_rdev; 1109 mutex_exit(&rp->r_statelock); 1110 return (0); 1111 } 1112 } 1113 1114 /* 1115 * Only need to flush pages if asking for the mtime 1116 * and if there any dirty pages or any outstanding 1117 * asynchronous (write) requests for this file. 1118 */ 1119 if (vap->va_mask & AT_MTIME) { 1120 if (vn_has_cached_data(vp) && 1121 ((rp->r_flags & RDIRTY) || rp->r_awcount > 0)) { 1122 mutex_enter(&rp->r_statelock); 1123 rp->r_gcount++; 1124 mutex_exit(&rp->r_statelock); 1125 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct); 1126 mutex_enter(&rp->r_statelock); 1127 if (error && (error == ENOSPC || error == EDQUOT)) { 1128 if (!rp->r_error) 1129 rp->r_error = error; 1130 } 1131 if (--rp->r_gcount == 0) 1132 cv_broadcast(&rp->r_cv); 1133 mutex_exit(&rp->r_statelock); 1134 } 1135 } 1136 1137 return (nfsgetattr(vp, vap, cr)); 1138 } 1139 1140 /*ARGSUSED4*/ 1141 static int 1142 nfs_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 1143 caller_context_t *ct) 1144 { 1145 int error; 1146 uint_t mask; 1147 struct vattr va; 1148 1149 mask = vap->va_mask; 1150 1151 if (mask & AT_NOSET) 1152 return (EINVAL); 1153 1154 if ((mask & AT_SIZE) && 1155 vap->va_type == VREG && 1156 vap->va_size > MAXOFF32_T) 1157 return (EFBIG); 1158 1159 if (nfs_zone() != VTOMI(vp)->mi_zone) 1160 return (EIO); 1161 1162 va.va_mask = AT_UID | AT_MODE; 1163 1164 error = nfsgetattr(vp, &va, cr); 1165 if (error) 1166 return (error); 1167 1168 error = secpolicy_vnode_setattr(cr, vp, vap, &va, flags, nfs_accessx, 1169 vp); 1170 1171 if (error) 1172 return (error); 1173 1174 return (nfssetattr(vp, vap, flags, cr)); 1175 } 1176 1177 static int 1178 nfssetattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr) 1179 { 1180 int error; 1181 uint_t mask; 1182 struct nfssaargs args; 1183 struct nfsattrstat ns; 1184 int douprintf; 1185 rnode_t *rp; 1186 struct vattr va; 1187 mode_t omode; 1188 mntinfo_t *mi; 1189 vsecattr_t *vsp; 1190 hrtime_t t; 1191 1192 mask = vap->va_mask; 1193 1194 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 1195 1196 rp = VTOR(vp); 1197 1198 /* 1199 * Only need to flush pages if there are any pages and 1200 * if the file is marked as dirty in some fashion. The 1201 * file must be flushed so that we can accurately 1202 * determine the size of the file and the cached data 1203 * after the SETATTR returns. A file is considered to 1204 * be dirty if it is either marked with RDIRTY, has 1205 * outstanding i/o's active, or is mmap'd. In this 1206 * last case, we can't tell whether there are dirty 1207 * pages, so we flush just to be sure. 1208 */ 1209 if (vn_has_cached_data(vp) && 1210 ((rp->r_flags & RDIRTY) || 1211 rp->r_count > 0 || 1212 rp->r_mapcnt > 0)) { 1213 ASSERT(vp->v_type != VCHR); 1214 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, NULL); 1215 if (error && (error == ENOSPC || error == EDQUOT)) { 1216 mutex_enter(&rp->r_statelock); 1217 if (!rp->r_error) 1218 rp->r_error = error; 1219 mutex_exit(&rp->r_statelock); 1220 } 1221 } 1222 1223 /* 1224 * If the system call was utime(2) or utimes(2) and the 1225 * application did not specify the times, then set the 1226 * mtime nanosecond field to 1 billion. This will get 1227 * translated from 1 billion nanoseconds to 1 million 1228 * microseconds in the over the wire request. The 1229 * server will use 1 million in the microsecond field 1230 * to tell whether both the mtime and atime should be 1231 * set to the server's current time. 1232 * 1233 * This is an overload of the protocol and should be 1234 * documented in the NFS Version 2 protocol specification. 1235 */ 1236 if ((mask & AT_MTIME) && !(flags & ATTR_UTIME)) { 1237 vap->va_mtime.tv_nsec = 1000000000; 1238 if (NFS_TIME_T_OK(vap->va_mtime.tv_sec) && 1239 NFS_TIME_T_OK(vap->va_atime.tv_sec)) { 1240 error = vattr_to_sattr(vap, &args.saa_sa); 1241 } else { 1242 /* 1243 * Use server times. vap time values will not be used. 1244 * To ensure no time overflow, make sure vap has 1245 * valid values, but retain the original values. 1246 */ 1247 timestruc_t mtime = vap->va_mtime; 1248 timestruc_t atime = vap->va_atime; 1249 time_t now; 1250 1251 now = gethrestime_sec(); 1252 if (NFS_TIME_T_OK(now)) { 1253 /* Just in case server does not know of this */ 1254 vap->va_mtime.tv_sec = now; 1255 vap->va_atime.tv_sec = now; 1256 } else { 1257 vap->va_mtime.tv_sec = 0; 1258 vap->va_atime.tv_sec = 0; 1259 } 1260 error = vattr_to_sattr(vap, &args.saa_sa); 1261 /* set vap times back on */ 1262 vap->va_mtime = mtime; 1263 vap->va_atime = atime; 1264 } 1265 } else { 1266 /* Either do not set times or use the client specified times */ 1267 error = vattr_to_sattr(vap, &args.saa_sa); 1268 } 1269 if (error) { 1270 /* req time field(s) overflow - return immediately */ 1271 return (error); 1272 } 1273 args.saa_fh = *VTOFH(vp); 1274 1275 va.va_mask = AT_MODE; 1276 error = nfsgetattr(vp, &va, cr); 1277 if (error) 1278 return (error); 1279 omode = va.va_mode; 1280 1281 mi = VTOMI(vp); 1282 1283 douprintf = 1; 1284 1285 t = gethrtime(); 1286 1287 error = rfs2call(mi, RFS_SETATTR, 1288 xdr_saargs, (caddr_t)&args, 1289 xdr_attrstat, (caddr_t)&ns, cr, 1290 &douprintf, &ns.ns_status, 0, NULL); 1291 1292 /* 1293 * Purge the access cache and ACL cache if changing either the 1294 * owner of the file, the group owner, or the mode. These may 1295 * change the access permissions of the file, so purge old 1296 * information and start over again. 1297 */ 1298 if ((mask & (AT_UID | AT_GID | AT_MODE)) && (mi->mi_flags & MI_ACL)) { 1299 (void) nfs_access_purge_rp(rp); 1300 if (rp->r_secattr != NULL) { 1301 mutex_enter(&rp->r_statelock); 1302 vsp = rp->r_secattr; 1303 rp->r_secattr = NULL; 1304 mutex_exit(&rp->r_statelock); 1305 if (vsp != NULL) 1306 nfs_acl_free(vsp); 1307 } 1308 } 1309 1310 if (!error) { 1311 error = geterrno(ns.ns_status); 1312 if (!error) { 1313 /* 1314 * If changing the size of the file, invalidate 1315 * any local cached data which is no longer part 1316 * of the file. We also possibly invalidate the 1317 * last page in the file. We could use 1318 * pvn_vpzero(), but this would mark the page as 1319 * modified and require it to be written back to 1320 * the server for no particularly good reason. 1321 * This way, if we access it, then we bring it 1322 * back in. A read should be cheaper than a 1323 * write. 1324 */ 1325 if (mask & AT_SIZE) { 1326 nfs_invalidate_pages(vp, 1327 (vap->va_size & PAGEMASK), cr); 1328 } 1329 (void) nfs_cache_fattr(vp, &ns.ns_attr, &va, t, cr); 1330 /* 1331 * If NFS_ACL is supported on the server, then the 1332 * attributes returned by server may have minimal 1333 * permissions sometimes denying access to users having 1334 * proper access. To get the proper attributes, mark 1335 * the attributes as expired so that they will be 1336 * regotten via the NFS_ACL GETATTR2 procedure. 1337 */ 1338 if (mi->mi_flags & MI_ACL) { 1339 PURGE_ATTRCACHE(vp); 1340 } 1341 /* 1342 * This next check attempts to deal with NFS 1343 * servers which can not handle increasing 1344 * the size of the file via setattr. Most 1345 * of these servers do not return an error, 1346 * but do not change the size of the file. 1347 * Hence, this check and then attempt to set 1348 * the file size by writing 1 byte at the 1349 * offset of the end of the file that we need. 1350 */ 1351 if ((mask & AT_SIZE) && 1352 ns.ns_attr.na_size < (uint32_t)vap->va_size) { 1353 char zb = '\0'; 1354 1355 error = nfswrite(vp, &zb, 1356 vap->va_size - sizeof (zb), 1357 sizeof (zb), cr); 1358 } 1359 /* 1360 * Some servers will change the mode to clear the setuid 1361 * and setgid bits when changing the uid or gid. The 1362 * client needs to compensate appropriately. 1363 */ 1364 if (mask & (AT_UID | AT_GID)) { 1365 int terror; 1366 1367 va.va_mask = AT_MODE; 1368 terror = nfsgetattr(vp, &va, cr); 1369 if (!terror && 1370 (((mask & AT_MODE) && 1371 va.va_mode != vap->va_mode) || 1372 (!(mask & AT_MODE) && 1373 va.va_mode != omode))) { 1374 va.va_mask = AT_MODE; 1375 if (mask & AT_MODE) 1376 va.va_mode = vap->va_mode; 1377 else 1378 va.va_mode = omode; 1379 (void) nfssetattr(vp, &va, 0, cr); 1380 } 1381 } 1382 } else { 1383 PURGE_ATTRCACHE(vp); 1384 PURGE_STALE_FH(error, vp, cr); 1385 } 1386 } else { 1387 PURGE_ATTRCACHE(vp); 1388 } 1389 1390 return (error); 1391 } 1392 1393 static int 1394 nfs_accessx(void *vp, int mode, cred_t *cr) 1395 { 1396 ASSERT(nfs_zone() == VTOMI((vnode_t *)vp)->mi_zone); 1397 return (nfs_access(vp, mode, 0, cr, NULL)); 1398 } 1399 1400 /* ARGSUSED */ 1401 static int 1402 nfs_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct) 1403 { 1404 struct vattr va; 1405 int error; 1406 mntinfo_t *mi; 1407 int shift = 0; 1408 1409 mi = VTOMI(vp); 1410 1411 if (nfs_zone() != mi->mi_zone) 1412 return (EIO); 1413 if (mi->mi_flags & MI_ACL) { 1414 error = acl_access2(vp, mode, flags, cr); 1415 if (mi->mi_flags & MI_ACL) 1416 return (error); 1417 } 1418 1419 va.va_mask = AT_MODE | AT_UID | AT_GID; 1420 error = nfsgetattr(vp, &va, cr); 1421 if (error) 1422 return (error); 1423 1424 /* 1425 * Disallow write attempts on read-only 1426 * file systems, unless the file is a 1427 * device node. 1428 */ 1429 if ((mode & VWRITE) && vn_is_readonly(vp) && !IS_DEVVP(vp)) 1430 return (EROFS); 1431 1432 /* 1433 * Disallow attempts to access mandatory lock files. 1434 */ 1435 if ((mode & (VWRITE | VREAD | VEXEC)) && 1436 MANDLOCK(vp, va.va_mode)) 1437 return (EACCES); 1438 1439 /* 1440 * Access check is based on only 1441 * one of owner, group, public. 1442 * If not owner, then check group. 1443 * If not a member of the group, 1444 * then check public access. 1445 */ 1446 if (crgetuid(cr) != va.va_uid) { 1447 shift += 3; 1448 if (!groupmember(va.va_gid, cr)) 1449 shift += 3; 1450 } 1451 1452 return (secpolicy_vnode_access2(cr, vp, va.va_uid, 1453 va.va_mode << shift, mode)); 1454 } 1455 1456 static int nfs_do_symlink_cache = 1; 1457 1458 /* ARGSUSED */ 1459 static int 1460 nfs_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct) 1461 { 1462 int error; 1463 struct nfsrdlnres rl; 1464 rnode_t *rp; 1465 int douprintf; 1466 failinfo_t fi; 1467 1468 /* 1469 * We want to be consistent with UFS semantics so we will return 1470 * EINVAL instead of ENXIO. This violates the XNFS spec and 1471 * the RFC 1094, which are wrong any way. BUGID 1138002. 1472 */ 1473 if (vp->v_type != VLNK) 1474 return (EINVAL); 1475 1476 if (nfs_zone() != VTOMI(vp)->mi_zone) 1477 return (EIO); 1478 1479 rp = VTOR(vp); 1480 if (nfs_do_symlink_cache && rp->r_symlink.contents != NULL) { 1481 error = nfs_validate_caches(vp, cr); 1482 if (error) 1483 return (error); 1484 mutex_enter(&rp->r_statelock); 1485 if (rp->r_symlink.contents != NULL) { 1486 error = uiomove(rp->r_symlink.contents, 1487 rp->r_symlink.len, UIO_READ, uiop); 1488 mutex_exit(&rp->r_statelock); 1489 return (error); 1490 } 1491 mutex_exit(&rp->r_statelock); 1492 } 1493 1494 1495 rl.rl_data = kmem_alloc(NFS_MAXPATHLEN, KM_SLEEP); 1496 1497 fi.vp = vp; 1498 fi.fhp = NULL; /* no need to update, filehandle not copied */ 1499 fi.copyproc = nfscopyfh; 1500 fi.lookupproc = nfslookup; 1501 fi.xattrdirproc = acl_getxattrdir2; 1502 1503 douprintf = 1; 1504 1505 error = rfs2call(VTOMI(vp), RFS_READLINK, 1506 xdr_readlink, (caddr_t)VTOFH(vp), 1507 xdr_rdlnres, (caddr_t)&rl, cr, 1508 &douprintf, &rl.rl_status, 0, &fi); 1509 1510 if (error) { 1511 1512 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN); 1513 return (error); 1514 } 1515 1516 error = geterrno(rl.rl_status); 1517 if (!error) { 1518 error = uiomove(rl.rl_data, (int)rl.rl_count, UIO_READ, uiop); 1519 if (nfs_do_symlink_cache && rp->r_symlink.contents == NULL) { 1520 mutex_enter(&rp->r_statelock); 1521 if (rp->r_symlink.contents == NULL) { 1522 rp->r_symlink.contents = rl.rl_data; 1523 rp->r_symlink.len = (int)rl.rl_count; 1524 rp->r_symlink.size = NFS_MAXPATHLEN; 1525 mutex_exit(&rp->r_statelock); 1526 } else { 1527 mutex_exit(&rp->r_statelock); 1528 1529 kmem_free((void *)rl.rl_data, 1530 NFS_MAXPATHLEN); 1531 } 1532 } else { 1533 1534 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN); 1535 } 1536 } else { 1537 PURGE_STALE_FH(error, vp, cr); 1538 1539 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN); 1540 } 1541 1542 /* 1543 * Conform to UFS semantics (see comment above) 1544 */ 1545 return (error == ENXIO ? EINVAL : error); 1546 } 1547 1548 /* 1549 * Flush local dirty pages to stable storage on the server. 1550 * 1551 * If FNODSYNC is specified, then there is nothing to do because 1552 * metadata changes are not cached on the client before being 1553 * sent to the server. 1554 */ 1555 /* ARGSUSED */ 1556 static int 1557 nfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 1558 { 1559 int error; 1560 1561 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 1562 return (0); 1563 1564 if (nfs_zone() != VTOMI(vp)->mi_zone) 1565 return (EIO); 1566 1567 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct); 1568 if (!error) 1569 error = VTOR(vp)->r_error; 1570 return (error); 1571 } 1572 1573 1574 /* 1575 * Weirdness: if the file was removed or the target of a rename 1576 * operation while it was open, it got renamed instead. Here we 1577 * remove the renamed file. 1578 */ 1579 /* ARGSUSED */ 1580 static void 1581 nfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 1582 { 1583 rnode_t *rp; 1584 1585 ASSERT(vp != DNLC_NO_VNODE); 1586 1587 /* 1588 * If this is coming from the wrong zone, we let someone in the right 1589 * zone take care of it asynchronously. We can get here due to 1590 * VN_RELE() being called from pageout() or fsflush(). This call may 1591 * potentially turn into an expensive no-op if, for instance, v_count 1592 * gets incremented in the meantime, but it's still correct. 1593 */ 1594 if (nfs_zone() != VTOMI(vp)->mi_zone) { 1595 nfs_async_inactive(vp, cr, nfs_inactive); 1596 return; 1597 } 1598 1599 rp = VTOR(vp); 1600 redo: 1601 if (rp->r_unldvp != NULL) { 1602 /* 1603 * Save the vnode pointer for the directory where the 1604 * unlinked-open file got renamed, then set it to NULL 1605 * to prevent another thread from getting here before 1606 * we're done with the remove. While we have the 1607 * statelock, make local copies of the pertinent rnode 1608 * fields. If we weren't to do this in an atomic way, the 1609 * the unl* fields could become inconsistent with respect 1610 * to each other due to a race condition between this 1611 * code and nfs_remove(). See bug report 1034328. 1612 */ 1613 mutex_enter(&rp->r_statelock); 1614 if (rp->r_unldvp != NULL) { 1615 vnode_t *unldvp; 1616 char *unlname; 1617 cred_t *unlcred; 1618 struct nfsdiropargs da; 1619 enum nfsstat status; 1620 int douprintf; 1621 int error; 1622 1623 unldvp = rp->r_unldvp; 1624 rp->r_unldvp = NULL; 1625 unlname = rp->r_unlname; 1626 rp->r_unlname = NULL; 1627 unlcred = rp->r_unlcred; 1628 rp->r_unlcred = NULL; 1629 mutex_exit(&rp->r_statelock); 1630 1631 /* 1632 * If there are any dirty pages left, then flush 1633 * them. This is unfortunate because they just 1634 * may get thrown away during the remove operation, 1635 * but we have to do this for correctness. 1636 */ 1637 if (vn_has_cached_data(vp) && 1638 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 1639 ASSERT(vp->v_type != VCHR); 1640 error = nfs_putpage(vp, (offset_t)0, 0, 0, 1641 cr, ct); 1642 if (error) { 1643 mutex_enter(&rp->r_statelock); 1644 if (!rp->r_error) 1645 rp->r_error = error; 1646 mutex_exit(&rp->r_statelock); 1647 } 1648 } 1649 1650 /* 1651 * Do the remove operation on the renamed file 1652 */ 1653 setdiropargs(&da, unlname, unldvp); 1654 1655 douprintf = 1; 1656 1657 (void) rfs2call(VTOMI(unldvp), RFS_REMOVE, 1658 xdr_diropargs, (caddr_t)&da, 1659 xdr_enum, (caddr_t)&status, unlcred, 1660 &douprintf, &status, 0, NULL); 1661 1662 if (HAVE_RDDIR_CACHE(VTOR(unldvp))) 1663 nfs_purge_rddir_cache(unldvp); 1664 PURGE_ATTRCACHE(unldvp); 1665 1666 /* 1667 * Release stuff held for the remove 1668 */ 1669 VN_RELE(unldvp); 1670 kmem_free(unlname, MAXNAMELEN); 1671 crfree(unlcred); 1672 goto redo; 1673 } 1674 mutex_exit(&rp->r_statelock); 1675 } 1676 1677 rp_addfree(rp, cr); 1678 } 1679 1680 /* 1681 * Remote file system operations having to do with directory manipulation. 1682 */ 1683 1684 /* ARGSUSED */ 1685 static int 1686 nfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1687 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1688 int *direntflags, pathname_t *realpnp) 1689 { 1690 int error; 1691 vnode_t *vp; 1692 vnode_t *avp = NULL; 1693 rnode_t *drp; 1694 1695 if (nfs_zone() != VTOMI(dvp)->mi_zone) 1696 return (EPERM); 1697 1698 drp = VTOR(dvp); 1699 1700 /* 1701 * Are we looking up extended attributes? If so, "dvp" is 1702 * the file or directory for which we want attributes, and 1703 * we need a lookup of the hidden attribute directory 1704 * before we lookup the rest of the path. 1705 */ 1706 if (flags & LOOKUP_XATTR) { 1707 bool_t cflag = ((flags & CREATE_XATTR_DIR) != 0); 1708 mntinfo_t *mi; 1709 1710 mi = VTOMI(dvp); 1711 if (!(mi->mi_flags & MI_EXTATTR)) 1712 return (EINVAL); 1713 1714 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) 1715 return (EINTR); 1716 1717 (void) nfslookup_dnlc(dvp, XATTR_DIR_NAME, &avp, cr); 1718 if (avp == NULL) 1719 error = acl_getxattrdir2(dvp, &avp, cflag, cr, 0); 1720 else 1721 error = 0; 1722 1723 nfs_rw_exit(&drp->r_rwlock); 1724 1725 if (error) { 1726 if (mi->mi_flags & MI_EXTATTR) 1727 return (error); 1728 return (EINVAL); 1729 } 1730 dvp = avp; 1731 drp = VTOR(dvp); 1732 } 1733 1734 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) { 1735 error = EINTR; 1736 goto out; 1737 } 1738 1739 error = nfslookup(dvp, nm, vpp, pnp, flags, rdir, cr, 0); 1740 1741 nfs_rw_exit(&drp->r_rwlock); 1742 1743 /* 1744 * If vnode is a device, create special vnode. 1745 */ 1746 if (!error && IS_DEVVP(*vpp)) { 1747 vp = *vpp; 1748 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 1749 VN_RELE(vp); 1750 } 1751 1752 out: 1753 if (avp != NULL) 1754 VN_RELE(avp); 1755 1756 return (error); 1757 } 1758 1759 static int nfs_lookup_neg_cache = 1; 1760 1761 #ifdef DEBUG 1762 static int nfs_lookup_dnlc_hits = 0; 1763 static int nfs_lookup_dnlc_misses = 0; 1764 static int nfs_lookup_dnlc_neg_hits = 0; 1765 static int nfs_lookup_dnlc_disappears = 0; 1766 static int nfs_lookup_dnlc_lookups = 0; 1767 #endif 1768 1769 /* ARGSUSED */ 1770 int 1771 nfslookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1772 int flags, vnode_t *rdir, cred_t *cr, int rfscall_flags) 1773 { 1774 int error; 1775 1776 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1777 1778 /* 1779 * If lookup is for "", just return dvp. Don't need 1780 * to send it over the wire, look it up in the dnlc, 1781 * or perform any access checks. 1782 */ 1783 if (*nm == '\0') { 1784 VN_HOLD(dvp); 1785 *vpp = dvp; 1786 return (0); 1787 } 1788 1789 /* 1790 * Can't do lookups in non-directories. 1791 */ 1792 if (dvp->v_type != VDIR) 1793 return (ENOTDIR); 1794 1795 /* 1796 * If we're called with RFSCALL_SOFT, it's important that 1797 * the only rfscall is one we make directly; if we permit 1798 * an access call because we're looking up "." or validating 1799 * a dnlc hit, we'll deadlock because that rfscall will not 1800 * have the RFSCALL_SOFT set. 1801 */ 1802 if (rfscall_flags & RFSCALL_SOFT) 1803 goto callit; 1804 1805 /* 1806 * If lookup is for ".", just return dvp. Don't need 1807 * to send it over the wire or look it up in the dnlc, 1808 * just need to check access. 1809 */ 1810 if (strcmp(nm, ".") == 0) { 1811 error = nfs_access(dvp, VEXEC, 0, cr, NULL); 1812 if (error) 1813 return (error); 1814 VN_HOLD(dvp); 1815 *vpp = dvp; 1816 return (0); 1817 } 1818 1819 /* 1820 * Lookup this name in the DNLC. If there was a valid entry, 1821 * then return the results of the lookup. 1822 */ 1823 error = nfslookup_dnlc(dvp, nm, vpp, cr); 1824 if (error || *vpp != NULL) 1825 return (error); 1826 1827 callit: 1828 error = nfslookup_otw(dvp, nm, vpp, cr, rfscall_flags); 1829 1830 return (error); 1831 } 1832 1833 static int 1834 nfslookup_dnlc(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 1835 { 1836 int error; 1837 vnode_t *vp; 1838 1839 ASSERT(*nm != '\0'); 1840 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1841 1842 /* 1843 * Lookup this name in the DNLC. If successful, then validate 1844 * the caches and then recheck the DNLC. The DNLC is rechecked 1845 * just in case this entry got invalidated during the call 1846 * to nfs_validate_caches. 1847 * 1848 * An assumption is being made that it is safe to say that a 1849 * file exists which may not on the server. Any operations to 1850 * the server will fail with ESTALE. 1851 */ 1852 #ifdef DEBUG 1853 nfs_lookup_dnlc_lookups++; 1854 #endif 1855 vp = dnlc_lookup(dvp, nm); 1856 if (vp != NULL) { 1857 VN_RELE(vp); 1858 if (vp == DNLC_NO_VNODE && !vn_is_readonly(dvp)) { 1859 PURGE_ATTRCACHE(dvp); 1860 } 1861 error = nfs_validate_caches(dvp, cr); 1862 if (error) 1863 return (error); 1864 vp = dnlc_lookup(dvp, nm); 1865 if (vp != NULL) { 1866 error = nfs_access(dvp, VEXEC, 0, cr, NULL); 1867 if (error) { 1868 VN_RELE(vp); 1869 return (error); 1870 } 1871 if (vp == DNLC_NO_VNODE) { 1872 VN_RELE(vp); 1873 #ifdef DEBUG 1874 nfs_lookup_dnlc_neg_hits++; 1875 #endif 1876 return (ENOENT); 1877 } 1878 *vpp = vp; 1879 #ifdef DEBUG 1880 nfs_lookup_dnlc_hits++; 1881 #endif 1882 return (0); 1883 } 1884 #ifdef DEBUG 1885 nfs_lookup_dnlc_disappears++; 1886 #endif 1887 } 1888 #ifdef DEBUG 1889 else 1890 nfs_lookup_dnlc_misses++; 1891 #endif 1892 1893 *vpp = NULL; 1894 1895 return (0); 1896 } 1897 1898 static int 1899 nfslookup_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, 1900 int rfscall_flags) 1901 { 1902 int error; 1903 struct nfsdiropargs da; 1904 struct nfsdiropres dr; 1905 int douprintf; 1906 failinfo_t fi; 1907 hrtime_t t; 1908 1909 ASSERT(*nm != '\0'); 1910 ASSERT(dvp->v_type == VDIR); 1911 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1912 1913 setdiropargs(&da, nm, dvp); 1914 1915 fi.vp = dvp; 1916 fi.fhp = NULL; /* no need to update, filehandle not copied */ 1917 fi.copyproc = nfscopyfh; 1918 fi.lookupproc = nfslookup; 1919 fi.xattrdirproc = acl_getxattrdir2; 1920 1921 douprintf = 1; 1922 1923 t = gethrtime(); 1924 1925 error = rfs2call(VTOMI(dvp), RFS_LOOKUP, 1926 xdr_diropargs, (caddr_t)&da, 1927 xdr_diropres, (caddr_t)&dr, cr, 1928 &douprintf, &dr.dr_status, rfscall_flags, &fi); 1929 1930 if (!error) { 1931 error = geterrno(dr.dr_status); 1932 if (!error) { 1933 *vpp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr, 1934 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm); 1935 /* 1936 * If NFS_ACL is supported on the server, then the 1937 * attributes returned by server may have minimal 1938 * permissions sometimes denying access to users having 1939 * proper access. To get the proper attributes, mark 1940 * the attributes as expired so that they will be 1941 * regotten via the NFS_ACL GETATTR2 procedure. 1942 */ 1943 if (VTOMI(*vpp)->mi_flags & MI_ACL) { 1944 PURGE_ATTRCACHE(*vpp); 1945 } 1946 if (!(rfscall_flags & RFSCALL_SOFT)) 1947 dnlc_update(dvp, nm, *vpp); 1948 } else { 1949 PURGE_STALE_FH(error, dvp, cr); 1950 if (error == ENOENT && nfs_lookup_neg_cache) 1951 dnlc_enter(dvp, nm, DNLC_NO_VNODE); 1952 } 1953 } 1954 1955 return (error); 1956 } 1957 1958 /* ARGSUSED */ 1959 static int 1960 nfs_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 1961 int mode, vnode_t **vpp, cred_t *cr, int lfaware, caller_context_t *ct, 1962 vsecattr_t *vsecp) 1963 { 1964 int error; 1965 struct nfscreatargs args; 1966 struct nfsdiropres dr; 1967 int douprintf; 1968 vnode_t *vp; 1969 rnode_t *rp; 1970 struct vattr vattr; 1971 rnode_t *drp; 1972 vnode_t *tempvp; 1973 hrtime_t t; 1974 1975 drp = VTOR(dvp); 1976 1977 if (nfs_zone() != VTOMI(dvp)->mi_zone) 1978 return (EPERM); 1979 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 1980 return (EINTR); 1981 1982 /* 1983 * We make a copy of the attributes because the caller does not 1984 * expect us to change what va points to. 1985 */ 1986 vattr = *va; 1987 1988 /* 1989 * If the pathname is "", just use dvp. Don't need 1990 * to send it over the wire, look it up in the dnlc, 1991 * or perform any access checks. 1992 */ 1993 if (*nm == '\0') { 1994 error = 0; 1995 VN_HOLD(dvp); 1996 vp = dvp; 1997 /* 1998 * If the pathname is ".", just use dvp. Don't need 1999 * to send it over the wire or look it up in the dnlc, 2000 * just need to check access. 2001 */ 2002 } else if (strcmp(nm, ".") == 0) { 2003 error = nfs_access(dvp, VEXEC, 0, cr, ct); 2004 if (error) { 2005 nfs_rw_exit(&drp->r_rwlock); 2006 return (error); 2007 } 2008 VN_HOLD(dvp); 2009 vp = dvp; 2010 /* 2011 * We need to go over the wire, just to be sure whether the 2012 * file exists or not. Using the DNLC can be dangerous in 2013 * this case when making a decision regarding existence. 2014 */ 2015 } else { 2016 error = nfslookup_otw(dvp, nm, &vp, cr, 0); 2017 } 2018 if (!error) { 2019 if (exclusive == EXCL) 2020 error = EEXIST; 2021 else if (vp->v_type == VDIR && (mode & VWRITE)) 2022 error = EISDIR; 2023 else { 2024 /* 2025 * If vnode is a device, create special vnode. 2026 */ 2027 if (IS_DEVVP(vp)) { 2028 tempvp = vp; 2029 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2030 VN_RELE(tempvp); 2031 } 2032 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) { 2033 if ((vattr.va_mask & AT_SIZE) && 2034 vp->v_type == VREG) { 2035 vattr.va_mask = AT_SIZE; 2036 error = nfssetattr(vp, &vattr, 0, cr); 2037 2038 if (!error) { 2039 /* 2040 * Existing file was truncated; 2041 * emit a create event. 2042 */ 2043 vnevent_create(vp, ct); 2044 } 2045 } 2046 } 2047 } 2048 nfs_rw_exit(&drp->r_rwlock); 2049 if (error) { 2050 VN_RELE(vp); 2051 } else { 2052 *vpp = vp; 2053 } 2054 return (error); 2055 } 2056 2057 ASSERT(vattr.va_mask & AT_TYPE); 2058 if (vattr.va_type == VREG) { 2059 ASSERT(vattr.va_mask & AT_MODE); 2060 if (MANDMODE(vattr.va_mode)) { 2061 nfs_rw_exit(&drp->r_rwlock); 2062 return (EACCES); 2063 } 2064 } 2065 2066 dnlc_remove(dvp, nm); 2067 2068 setdiropargs(&args.ca_da, nm, dvp); 2069 2070 /* 2071 * Decide what the group-id of the created file should be. 2072 * Set it in attribute list as advisory...then do a setattr 2073 * if the server didn't get it right the first time. 2074 */ 2075 error = setdirgid(dvp, &vattr.va_gid, cr); 2076 if (error) { 2077 nfs_rw_exit(&drp->r_rwlock); 2078 return (error); 2079 } 2080 vattr.va_mask |= AT_GID; 2081 2082 /* 2083 * This is a completely gross hack to make mknod 2084 * work over the wire until we can wack the protocol 2085 */ 2086 #define IFCHR 0020000 /* character special */ 2087 #define IFBLK 0060000 /* block special */ 2088 #define IFSOCK 0140000 /* socket */ 2089 2090 /* 2091 * dev_t is uint_t in 5.x and short in 4.x. Both 4.x 2092 * supports 8 bit majors. 5.x supports 14 bit majors. 5.x supports 18 2093 * bits in the minor number where 4.x supports 8 bits. If the 5.x 2094 * minor/major numbers <= 8 bits long, compress the device 2095 * number before sending it. Otherwise, the 4.x server will not 2096 * create the device with the correct device number and nothing can be 2097 * done about this. 2098 */ 2099 if (vattr.va_type == VCHR || vattr.va_type == VBLK) { 2100 dev_t d = vattr.va_rdev; 2101 dev32_t dev32; 2102 2103 if (vattr.va_type == VCHR) 2104 vattr.va_mode |= IFCHR; 2105 else 2106 vattr.va_mode |= IFBLK; 2107 2108 (void) cmpldev(&dev32, d); 2109 if (dev32 & ~((SO4_MAXMAJ << L_BITSMINOR32) | SO4_MAXMIN)) 2110 vattr.va_size = (u_offset_t)dev32; 2111 else 2112 vattr.va_size = (u_offset_t)nfsv2_cmpdev(d); 2113 2114 vattr.va_mask |= AT_MODE|AT_SIZE; 2115 } else if (vattr.va_type == VFIFO) { 2116 vattr.va_mode |= IFCHR; /* xtra kludge for namedpipe */ 2117 vattr.va_size = (u_offset_t)NFS_FIFO_DEV; /* blech */ 2118 vattr.va_mask |= AT_MODE|AT_SIZE; 2119 } else if (vattr.va_type == VSOCK) { 2120 vattr.va_mode |= IFSOCK; 2121 /* 2122 * To avoid triggering bugs in the servers set AT_SIZE 2123 * (all other RFS_CREATE calls set this). 2124 */ 2125 vattr.va_size = 0; 2126 vattr.va_mask |= AT_MODE|AT_SIZE; 2127 } 2128 2129 args.ca_sa = &args.ca_sa_buf; 2130 error = vattr_to_sattr(&vattr, args.ca_sa); 2131 if (error) { 2132 /* req time field(s) overflow - return immediately */ 2133 nfs_rw_exit(&drp->r_rwlock); 2134 return (error); 2135 } 2136 2137 douprintf = 1; 2138 2139 t = gethrtime(); 2140 2141 error = rfs2call(VTOMI(dvp), RFS_CREATE, 2142 xdr_creatargs, (caddr_t)&args, 2143 xdr_diropres, (caddr_t)&dr, cr, 2144 &douprintf, &dr.dr_status, 0, NULL); 2145 2146 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2147 2148 if (!error) { 2149 error = geterrno(dr.dr_status); 2150 if (!error) { 2151 if (HAVE_RDDIR_CACHE(drp)) 2152 nfs_purge_rddir_cache(dvp); 2153 vp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr, 2154 dvp->v_vfsp, t, cr, NULL, NULL); 2155 /* 2156 * If NFS_ACL is supported on the server, then the 2157 * attributes returned by server may have minimal 2158 * permissions sometimes denying access to users having 2159 * proper access. To get the proper attributes, mark 2160 * the attributes as expired so that they will be 2161 * regotten via the NFS_ACL GETATTR2 procedure. 2162 */ 2163 if (VTOMI(vp)->mi_flags & MI_ACL) { 2164 PURGE_ATTRCACHE(vp); 2165 } 2166 dnlc_update(dvp, nm, vp); 2167 rp = VTOR(vp); 2168 if (vattr.va_size == 0) { 2169 mutex_enter(&rp->r_statelock); 2170 rp->r_size = 0; 2171 mutex_exit(&rp->r_statelock); 2172 if (vn_has_cached_data(vp)) { 2173 ASSERT(vp->v_type != VCHR); 2174 nfs_invalidate_pages(vp, 2175 (u_offset_t)0, cr); 2176 } 2177 } 2178 2179 /* 2180 * Make sure the gid was set correctly. 2181 * If not, try to set it (but don't lose 2182 * any sleep over it). 2183 */ 2184 if (vattr.va_gid != rp->r_attr.va_gid) { 2185 vattr.va_mask = AT_GID; 2186 (void) nfssetattr(vp, &vattr, 0, cr); 2187 } 2188 2189 /* 2190 * If vnode is a device create special vnode 2191 */ 2192 if (IS_DEVVP(vp)) { 2193 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2194 VN_RELE(vp); 2195 } else 2196 *vpp = vp; 2197 } else { 2198 PURGE_STALE_FH(error, dvp, cr); 2199 } 2200 } 2201 2202 nfs_rw_exit(&drp->r_rwlock); 2203 2204 return (error); 2205 } 2206 2207 /* 2208 * Weirdness: if the vnode to be removed is open 2209 * we rename it instead of removing it and nfs_inactive 2210 * will remove the new name. 2211 */ 2212 /* ARGSUSED */ 2213 static int 2214 nfs_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags) 2215 { 2216 int error; 2217 struct nfsdiropargs da; 2218 enum nfsstat status; 2219 vnode_t *vp; 2220 char *tmpname; 2221 int douprintf; 2222 rnode_t *rp; 2223 rnode_t *drp; 2224 2225 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2226 return (EPERM); 2227 drp = VTOR(dvp); 2228 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2229 return (EINTR); 2230 2231 error = nfslookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2232 if (error) { 2233 nfs_rw_exit(&drp->r_rwlock); 2234 return (error); 2235 } 2236 2237 if (vp->v_type == VDIR && secpolicy_fs_linkdir(cr, dvp->v_vfsp)) { 2238 VN_RELE(vp); 2239 nfs_rw_exit(&drp->r_rwlock); 2240 return (EPERM); 2241 } 2242 2243 /* 2244 * First just remove the entry from the name cache, as it 2245 * is most likely the only entry for this vp. 2246 */ 2247 dnlc_remove(dvp, nm); 2248 2249 /* 2250 * If the file has a v_count > 1 then there may be more than one 2251 * entry in the name cache due multiple links or an open file, 2252 * but we don't have the real reference count so flush all 2253 * possible entries. 2254 */ 2255 if (vp->v_count > 1) 2256 dnlc_purge_vp(vp); 2257 2258 /* 2259 * Now we have the real reference count on the vnode 2260 */ 2261 rp = VTOR(vp); 2262 mutex_enter(&rp->r_statelock); 2263 if (vp->v_count > 1 && 2264 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 2265 mutex_exit(&rp->r_statelock); 2266 tmpname = newname(); 2267 error = nfsrename(dvp, nm, dvp, tmpname, cr, ct); 2268 if (error) 2269 kmem_free(tmpname, MAXNAMELEN); 2270 else { 2271 mutex_enter(&rp->r_statelock); 2272 if (rp->r_unldvp == NULL) { 2273 VN_HOLD(dvp); 2274 rp->r_unldvp = dvp; 2275 if (rp->r_unlcred != NULL) 2276 crfree(rp->r_unlcred); 2277 crhold(cr); 2278 rp->r_unlcred = cr; 2279 rp->r_unlname = tmpname; 2280 } else { 2281 kmem_free(rp->r_unlname, MAXNAMELEN); 2282 rp->r_unlname = tmpname; 2283 } 2284 mutex_exit(&rp->r_statelock); 2285 } 2286 } else { 2287 mutex_exit(&rp->r_statelock); 2288 /* 2289 * We need to flush any dirty pages which happen to 2290 * be hanging around before removing the file. This 2291 * shouldn't happen very often and mostly on file 2292 * systems mounted "nocto". 2293 */ 2294 if (vn_has_cached_data(vp) && 2295 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 2296 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct); 2297 if (error && (error == ENOSPC || error == EDQUOT)) { 2298 mutex_enter(&rp->r_statelock); 2299 if (!rp->r_error) 2300 rp->r_error = error; 2301 mutex_exit(&rp->r_statelock); 2302 } 2303 } 2304 2305 setdiropargs(&da, nm, dvp); 2306 2307 douprintf = 1; 2308 2309 error = rfs2call(VTOMI(dvp), RFS_REMOVE, 2310 xdr_diropargs, (caddr_t)&da, 2311 xdr_enum, (caddr_t)&status, cr, 2312 &douprintf, &status, 0, NULL); 2313 2314 /* 2315 * The xattr dir may be gone after last attr is removed, 2316 * so flush it from dnlc. 2317 */ 2318 if (dvp->v_flag & V_XATTRDIR) 2319 dnlc_purge_vp(dvp); 2320 2321 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2322 PURGE_ATTRCACHE(vp); /* link count changed */ 2323 2324 if (!error) { 2325 error = geterrno(status); 2326 if (!error) { 2327 if (HAVE_RDDIR_CACHE(drp)) 2328 nfs_purge_rddir_cache(dvp); 2329 } else { 2330 PURGE_STALE_FH(error, dvp, cr); 2331 } 2332 } 2333 } 2334 2335 if (error == 0) { 2336 vnevent_remove(vp, dvp, nm, ct); 2337 } 2338 VN_RELE(vp); 2339 2340 nfs_rw_exit(&drp->r_rwlock); 2341 2342 return (error); 2343 } 2344 2345 /* ARGSUSED */ 2346 static int 2347 nfs_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr, 2348 caller_context_t *ct, int flags) 2349 { 2350 int error; 2351 struct nfslinkargs args; 2352 enum nfsstat status; 2353 vnode_t *realvp; 2354 int douprintf; 2355 rnode_t *tdrp; 2356 2357 if (nfs_zone() != VTOMI(tdvp)->mi_zone) 2358 return (EPERM); 2359 if (VOP_REALVP(svp, &realvp, ct) == 0) 2360 svp = realvp; 2361 2362 args.la_from = VTOFH(svp); 2363 setdiropargs(&args.la_to, tnm, tdvp); 2364 2365 tdrp = VTOR(tdvp); 2366 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR(tdvp))) 2367 return (EINTR); 2368 2369 dnlc_remove(tdvp, tnm); 2370 2371 douprintf = 1; 2372 2373 error = rfs2call(VTOMI(svp), RFS_LINK, 2374 xdr_linkargs, (caddr_t)&args, 2375 xdr_enum, (caddr_t)&status, cr, 2376 &douprintf, &status, 0, NULL); 2377 2378 PURGE_ATTRCACHE(tdvp); /* mod time changed */ 2379 PURGE_ATTRCACHE(svp); /* link count changed */ 2380 2381 if (!error) { 2382 error = geterrno(status); 2383 if (!error) { 2384 if (HAVE_RDDIR_CACHE(tdrp)) 2385 nfs_purge_rddir_cache(tdvp); 2386 } 2387 } 2388 2389 nfs_rw_exit(&tdrp->r_rwlock); 2390 2391 if (!error) { 2392 /* 2393 * Notify the source file of this link operation. 2394 */ 2395 vnevent_link(svp, ct); 2396 } 2397 return (error); 2398 } 2399 2400 /* ARGSUSED */ 2401 static int 2402 nfs_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 2403 caller_context_t *ct, int flags) 2404 { 2405 vnode_t *realvp; 2406 2407 if (nfs_zone() != VTOMI(odvp)->mi_zone) 2408 return (EPERM); 2409 if (VOP_REALVP(ndvp, &realvp, ct) == 0) 2410 ndvp = realvp; 2411 2412 return (nfsrename(odvp, onm, ndvp, nnm, cr, ct)); 2413 } 2414 2415 /* 2416 * nfsrename does the real work of renaming in NFS Version 2. 2417 */ 2418 static int 2419 nfsrename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 2420 caller_context_t *ct) 2421 { 2422 int error; 2423 enum nfsstat status; 2424 struct nfsrnmargs args; 2425 int douprintf; 2426 vnode_t *nvp = NULL; 2427 vnode_t *ovp = NULL; 2428 char *tmpname; 2429 rnode_t *rp; 2430 rnode_t *odrp; 2431 rnode_t *ndrp; 2432 2433 ASSERT(nfs_zone() == VTOMI(odvp)->mi_zone); 2434 if (strcmp(onm, ".") == 0 || strcmp(onm, "..") == 0 || 2435 strcmp(nnm, ".") == 0 || strcmp(nnm, "..") == 0) 2436 return (EINVAL); 2437 2438 odrp = VTOR(odvp); 2439 ndrp = VTOR(ndvp); 2440 if ((intptr_t)odrp < (intptr_t)ndrp) { 2441 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) 2442 return (EINTR); 2443 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) { 2444 nfs_rw_exit(&odrp->r_rwlock); 2445 return (EINTR); 2446 } 2447 } else { 2448 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) 2449 return (EINTR); 2450 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) { 2451 nfs_rw_exit(&ndrp->r_rwlock); 2452 return (EINTR); 2453 } 2454 } 2455 2456 /* 2457 * Lookup the target file. If it exists, it needs to be 2458 * checked to see whether it is a mount point and whether 2459 * it is active (open). 2460 */ 2461 error = nfslookup(ndvp, nnm, &nvp, NULL, 0, NULL, cr, 0); 2462 if (!error) { 2463 /* 2464 * If this file has been mounted on, then just 2465 * return busy because renaming to it would remove 2466 * the mounted file system from the name space. 2467 */ 2468 if (vn_mountedvfs(nvp) != NULL) { 2469 VN_RELE(nvp); 2470 nfs_rw_exit(&odrp->r_rwlock); 2471 nfs_rw_exit(&ndrp->r_rwlock); 2472 return (EBUSY); 2473 } 2474 2475 /* 2476 * Purge the name cache of all references to this vnode 2477 * so that we can check the reference count to infer 2478 * whether it is active or not. 2479 */ 2480 /* 2481 * First just remove the entry from the name cache, as it 2482 * is most likely the only entry for this vp. 2483 */ 2484 dnlc_remove(ndvp, nnm); 2485 /* 2486 * If the file has a v_count > 1 then there may be more 2487 * than one entry in the name cache due multiple links 2488 * or an open file, but we don't have the real reference 2489 * count so flush all possible entries. 2490 */ 2491 if (nvp->v_count > 1) 2492 dnlc_purge_vp(nvp); 2493 2494 /* 2495 * If the vnode is active and is not a directory, 2496 * arrange to rename it to a 2497 * temporary file so that it will continue to be 2498 * accessible. This implements the "unlink-open-file" 2499 * semantics for the target of a rename operation. 2500 * Before doing this though, make sure that the 2501 * source and target files are not already the same. 2502 */ 2503 if (nvp->v_count > 1 && nvp->v_type != VDIR) { 2504 /* 2505 * Lookup the source name. 2506 */ 2507 error = nfslookup(odvp, onm, &ovp, NULL, 0, NULL, 2508 cr, 0); 2509 2510 /* 2511 * The source name *should* already exist. 2512 */ 2513 if (error) { 2514 VN_RELE(nvp); 2515 nfs_rw_exit(&odrp->r_rwlock); 2516 nfs_rw_exit(&ndrp->r_rwlock); 2517 return (error); 2518 } 2519 2520 /* 2521 * Compare the two vnodes. If they are the same, 2522 * just release all held vnodes and return success. 2523 */ 2524 if (ovp == nvp) { 2525 VN_RELE(ovp); 2526 VN_RELE(nvp); 2527 nfs_rw_exit(&odrp->r_rwlock); 2528 nfs_rw_exit(&ndrp->r_rwlock); 2529 return (0); 2530 } 2531 2532 /* 2533 * Can't mix and match directories and non- 2534 * directories in rename operations. We already 2535 * know that the target is not a directory. If 2536 * the source is a directory, return an error. 2537 */ 2538 if (ovp->v_type == VDIR) { 2539 VN_RELE(ovp); 2540 VN_RELE(nvp); 2541 nfs_rw_exit(&odrp->r_rwlock); 2542 nfs_rw_exit(&ndrp->r_rwlock); 2543 return (ENOTDIR); 2544 } 2545 2546 /* 2547 * The target file exists, is not the same as 2548 * the source file, and is active. Link it 2549 * to a temporary filename to avoid having 2550 * the server removing the file completely. 2551 */ 2552 tmpname = newname(); 2553 error = nfs_link(ndvp, nvp, tmpname, cr, NULL, 0); 2554 if (error == EOPNOTSUPP) { 2555 error = nfs_rename(ndvp, nnm, ndvp, tmpname, 2556 cr, NULL, 0); 2557 } 2558 if (error) { 2559 kmem_free(tmpname, MAXNAMELEN); 2560 VN_RELE(ovp); 2561 VN_RELE(nvp); 2562 nfs_rw_exit(&odrp->r_rwlock); 2563 nfs_rw_exit(&ndrp->r_rwlock); 2564 return (error); 2565 } 2566 rp = VTOR(nvp); 2567 mutex_enter(&rp->r_statelock); 2568 if (rp->r_unldvp == NULL) { 2569 VN_HOLD(ndvp); 2570 rp->r_unldvp = ndvp; 2571 if (rp->r_unlcred != NULL) 2572 crfree(rp->r_unlcred); 2573 crhold(cr); 2574 rp->r_unlcred = cr; 2575 rp->r_unlname = tmpname; 2576 } else { 2577 kmem_free(rp->r_unlname, MAXNAMELEN); 2578 rp->r_unlname = tmpname; 2579 } 2580 mutex_exit(&rp->r_statelock); 2581 } 2582 } 2583 2584 if (ovp == NULL) { 2585 /* 2586 * When renaming directories to be a subdirectory of a 2587 * different parent, the dnlc entry for ".." will no 2588 * longer be valid, so it must be removed. 2589 * 2590 * We do a lookup here to determine whether we are renaming 2591 * a directory and we need to check if we are renaming 2592 * an unlinked file. This might have already been done 2593 * in previous code, so we check ovp == NULL to avoid 2594 * doing it twice. 2595 */ 2596 2597 error = nfslookup(odvp, onm, &ovp, NULL, 0, NULL, cr, 0); 2598 2599 /* 2600 * The source name *should* already exist. 2601 */ 2602 if (error) { 2603 nfs_rw_exit(&odrp->r_rwlock); 2604 nfs_rw_exit(&ndrp->r_rwlock); 2605 if (nvp) { 2606 VN_RELE(nvp); 2607 } 2608 return (error); 2609 } 2610 ASSERT(ovp != NULL); 2611 } 2612 2613 dnlc_remove(odvp, onm); 2614 dnlc_remove(ndvp, nnm); 2615 2616 setdiropargs(&args.rna_from, onm, odvp); 2617 setdiropargs(&args.rna_to, nnm, ndvp); 2618 2619 douprintf = 1; 2620 2621 error = rfs2call(VTOMI(odvp), RFS_RENAME, 2622 xdr_rnmargs, (caddr_t)&args, 2623 xdr_enum, (caddr_t)&status, cr, 2624 &douprintf, &status, 0, NULL); 2625 2626 PURGE_ATTRCACHE(odvp); /* mod time changed */ 2627 PURGE_ATTRCACHE(ndvp); /* mod time changed */ 2628 2629 if (!error) { 2630 error = geterrno(status); 2631 if (!error) { 2632 if (HAVE_RDDIR_CACHE(odrp)) 2633 nfs_purge_rddir_cache(odvp); 2634 if (HAVE_RDDIR_CACHE(ndrp)) 2635 nfs_purge_rddir_cache(ndvp); 2636 /* 2637 * when renaming directories to be a subdirectory of a 2638 * different parent, the dnlc entry for ".." will no 2639 * longer be valid, so it must be removed 2640 */ 2641 rp = VTOR(ovp); 2642 if (ndvp != odvp) { 2643 if (ovp->v_type == VDIR) { 2644 dnlc_remove(ovp, ".."); 2645 if (HAVE_RDDIR_CACHE(rp)) 2646 nfs_purge_rddir_cache(ovp); 2647 } 2648 } 2649 2650 /* 2651 * If we are renaming the unlinked file, update the 2652 * r_unldvp and r_unlname as needed. 2653 */ 2654 mutex_enter(&rp->r_statelock); 2655 if (rp->r_unldvp != NULL) { 2656 if (strcmp(rp->r_unlname, onm) == 0) { 2657 (void) strncpy(rp->r_unlname, 2658 nnm, MAXNAMELEN); 2659 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 2660 2661 if (ndvp != rp->r_unldvp) { 2662 VN_RELE(rp->r_unldvp); 2663 rp->r_unldvp = ndvp; 2664 VN_HOLD(ndvp); 2665 } 2666 } 2667 } 2668 mutex_exit(&rp->r_statelock); 2669 } else { 2670 /* 2671 * System V defines rename to return EEXIST, not 2672 * ENOTEMPTY if the target directory is not empty. 2673 * Over the wire, the error is NFSERR_ENOTEMPTY 2674 * which geterrno maps to ENOTEMPTY. 2675 */ 2676 if (error == ENOTEMPTY) 2677 error = EEXIST; 2678 } 2679 } 2680 2681 if (error == 0) { 2682 if (nvp) 2683 vnevent_rename_dest(nvp, ndvp, nnm, ct); 2684 2685 if (odvp != ndvp) 2686 vnevent_rename_dest_dir(ndvp, ct); 2687 2688 ASSERT(ovp != NULL); 2689 vnevent_rename_src(ovp, odvp, onm, ct); 2690 } 2691 2692 if (nvp) { 2693 VN_RELE(nvp); 2694 } 2695 VN_RELE(ovp); 2696 2697 nfs_rw_exit(&odrp->r_rwlock); 2698 nfs_rw_exit(&ndrp->r_rwlock); 2699 2700 return (error); 2701 } 2702 2703 /* ARGSUSED */ 2704 static int 2705 nfs_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr, 2706 caller_context_t *ct, int flags, vsecattr_t *vsecp) 2707 { 2708 int error; 2709 struct nfscreatargs args; 2710 struct nfsdiropres dr; 2711 int douprintf; 2712 rnode_t *drp; 2713 hrtime_t t; 2714 2715 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2716 return (EPERM); 2717 2718 setdiropargs(&args.ca_da, nm, dvp); 2719 2720 /* 2721 * Decide what the group-id and set-gid bit of the created directory 2722 * should be. May have to do a setattr to get the gid right. 2723 */ 2724 error = setdirgid(dvp, &va->va_gid, cr); 2725 if (error) 2726 return (error); 2727 error = setdirmode(dvp, &va->va_mode, cr); 2728 if (error) 2729 return (error); 2730 va->va_mask |= AT_MODE|AT_GID; 2731 2732 args.ca_sa = &args.ca_sa_buf; 2733 error = vattr_to_sattr(va, args.ca_sa); 2734 if (error) { 2735 /* req time field(s) overflow - return immediately */ 2736 return (error); 2737 } 2738 2739 drp = VTOR(dvp); 2740 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2741 return (EINTR); 2742 2743 dnlc_remove(dvp, nm); 2744 2745 douprintf = 1; 2746 2747 t = gethrtime(); 2748 2749 error = rfs2call(VTOMI(dvp), RFS_MKDIR, 2750 xdr_creatargs, (caddr_t)&args, 2751 xdr_diropres, (caddr_t)&dr, cr, 2752 &douprintf, &dr.dr_status, 0, NULL); 2753 2754 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2755 2756 if (!error) { 2757 error = geterrno(dr.dr_status); 2758 if (!error) { 2759 if (HAVE_RDDIR_CACHE(drp)) 2760 nfs_purge_rddir_cache(dvp); 2761 /* 2762 * The attributes returned by RFS_MKDIR can not 2763 * be depended upon, so mark the attribute cache 2764 * as purged. A subsequent GETATTR will get the 2765 * correct attributes from the server. 2766 */ 2767 *vpp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr, 2768 dvp->v_vfsp, t, cr, NULL, NULL); 2769 PURGE_ATTRCACHE(*vpp); 2770 dnlc_update(dvp, nm, *vpp); 2771 2772 /* 2773 * Make sure the gid was set correctly. 2774 * If not, try to set it (but don't lose 2775 * any sleep over it). 2776 */ 2777 if (va->va_gid != VTOR(*vpp)->r_attr.va_gid) { 2778 va->va_mask = AT_GID; 2779 (void) nfssetattr(*vpp, va, 0, cr); 2780 } 2781 } else { 2782 PURGE_STALE_FH(error, dvp, cr); 2783 } 2784 } 2785 2786 nfs_rw_exit(&drp->r_rwlock); 2787 2788 return (error); 2789 } 2790 2791 /* ARGSUSED */ 2792 static int 2793 nfs_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr, 2794 caller_context_t *ct, int flags) 2795 { 2796 int error; 2797 enum nfsstat status; 2798 struct nfsdiropargs da; 2799 vnode_t *vp; 2800 int douprintf; 2801 rnode_t *drp; 2802 2803 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2804 return (EPERM); 2805 drp = VTOR(dvp); 2806 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2807 return (EINTR); 2808 2809 /* 2810 * Attempt to prevent a rmdir(".") from succeeding. 2811 */ 2812 error = nfslookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2813 if (error) { 2814 nfs_rw_exit(&drp->r_rwlock); 2815 return (error); 2816 } 2817 2818 if (vp == cdir) { 2819 VN_RELE(vp); 2820 nfs_rw_exit(&drp->r_rwlock); 2821 return (EINVAL); 2822 } 2823 2824 setdiropargs(&da, nm, dvp); 2825 2826 /* 2827 * First just remove the entry from the name cache, as it 2828 * is most likely an entry for this vp. 2829 */ 2830 dnlc_remove(dvp, nm); 2831 2832 /* 2833 * If there vnode reference count is greater than one, then 2834 * there may be additional references in the DNLC which will 2835 * need to be purged. First, trying removing the entry for 2836 * the parent directory and see if that removes the additional 2837 * reference(s). If that doesn't do it, then use dnlc_purge_vp 2838 * to completely remove any references to the directory which 2839 * might still exist in the DNLC. 2840 */ 2841 if (vp->v_count > 1) { 2842 dnlc_remove(vp, ".."); 2843 if (vp->v_count > 1) 2844 dnlc_purge_vp(vp); 2845 } 2846 2847 douprintf = 1; 2848 2849 error = rfs2call(VTOMI(dvp), RFS_RMDIR, 2850 xdr_diropargs, (caddr_t)&da, 2851 xdr_enum, (caddr_t)&status, cr, 2852 &douprintf, &status, 0, NULL); 2853 2854 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2855 2856 if (error) { 2857 VN_RELE(vp); 2858 nfs_rw_exit(&drp->r_rwlock); 2859 return (error); 2860 } 2861 2862 error = geterrno(status); 2863 if (!error) { 2864 if (HAVE_RDDIR_CACHE(drp)) 2865 nfs_purge_rddir_cache(dvp); 2866 if (HAVE_RDDIR_CACHE(VTOR(vp))) 2867 nfs_purge_rddir_cache(vp); 2868 } else { 2869 PURGE_STALE_FH(error, dvp, cr); 2870 /* 2871 * System V defines rmdir to return EEXIST, not 2872 * ENOTEMPTY if the directory is not empty. Over 2873 * the wire, the error is NFSERR_ENOTEMPTY which 2874 * geterrno maps to ENOTEMPTY. 2875 */ 2876 if (error == ENOTEMPTY) 2877 error = EEXIST; 2878 } 2879 2880 if (error == 0) { 2881 vnevent_rmdir(vp, dvp, nm, ct); 2882 } 2883 VN_RELE(vp); 2884 2885 nfs_rw_exit(&drp->r_rwlock); 2886 2887 return (error); 2888 } 2889 2890 /* ARGSUSED */ 2891 static int 2892 nfs_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr, 2893 caller_context_t *ct, int flags) 2894 { 2895 int error; 2896 struct nfsslargs args; 2897 enum nfsstat status; 2898 int douprintf; 2899 rnode_t *drp; 2900 2901 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2902 return (EPERM); 2903 setdiropargs(&args.sla_from, lnm, dvp); 2904 args.sla_sa = &args.sla_sa_buf; 2905 error = vattr_to_sattr(tva, args.sla_sa); 2906 if (error) { 2907 /* req time field(s) overflow - return immediately */ 2908 return (error); 2909 } 2910 args.sla_tnm = tnm; 2911 2912 drp = VTOR(dvp); 2913 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2914 return (EINTR); 2915 2916 dnlc_remove(dvp, lnm); 2917 2918 douprintf = 1; 2919 2920 error = rfs2call(VTOMI(dvp), RFS_SYMLINK, 2921 xdr_slargs, (caddr_t)&args, 2922 xdr_enum, (caddr_t)&status, cr, 2923 &douprintf, &status, 0, NULL); 2924 2925 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2926 2927 if (!error) { 2928 error = geterrno(status); 2929 if (!error) { 2930 if (HAVE_RDDIR_CACHE(drp)) 2931 nfs_purge_rddir_cache(dvp); 2932 } else { 2933 PURGE_STALE_FH(error, dvp, cr); 2934 } 2935 } 2936 2937 nfs_rw_exit(&drp->r_rwlock); 2938 2939 return (error); 2940 } 2941 2942 #ifdef DEBUG 2943 static int nfs_readdir_cache_hits = 0; 2944 static int nfs_readdir_cache_shorts = 0; 2945 static int nfs_readdir_cache_waits = 0; 2946 static int nfs_readdir_cache_misses = 0; 2947 static int nfs_readdir_readahead = 0; 2948 #endif 2949 2950 static int nfs_shrinkreaddir = 0; 2951 2952 /* 2953 * Read directory entries. 2954 * There are some weird things to look out for here. The uio_offset 2955 * field is either 0 or it is the offset returned from a previous 2956 * readdir. It is an opaque value used by the server to find the 2957 * correct directory block to read. The count field is the number 2958 * of blocks to read on the server. This is advisory only, the server 2959 * may return only one block's worth of entries. Entries may be compressed 2960 * on the server. 2961 */ 2962 /* ARGSUSED */ 2963 static int 2964 nfs_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp, 2965 caller_context_t *ct, int flags) 2966 { 2967 int error; 2968 size_t count; 2969 rnode_t *rp; 2970 rddir_cache *rdc; 2971 rddir_cache *nrdc; 2972 rddir_cache *rrdc; 2973 #ifdef DEBUG 2974 int missed; 2975 #endif 2976 rddir_cache srdc; 2977 avl_index_t where; 2978 2979 rp = VTOR(vp); 2980 2981 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 2982 if (nfs_zone() != VTOMI(vp)->mi_zone) 2983 return (EIO); 2984 /* 2985 * Make sure that the directory cache is valid. 2986 */ 2987 if (HAVE_RDDIR_CACHE(rp)) { 2988 if (nfs_disable_rddir_cache) { 2989 /* 2990 * Setting nfs_disable_rddir_cache in /etc/system 2991 * allows interoperability with servers that do not 2992 * properly update the attributes of directories. 2993 * Any cached information gets purged before an 2994 * access is made to it. 2995 */ 2996 nfs_purge_rddir_cache(vp); 2997 } else { 2998 error = nfs_validate_caches(vp, cr); 2999 if (error) 3000 return (error); 3001 } 3002 } 3003 3004 /* 3005 * UGLINESS: SunOS 3.2 servers apparently cannot always handle an 3006 * RFS_READDIR request with rda_count set to more than 0x400. So 3007 * we reduce the request size here purely for compatibility. 3008 * 3009 * In general, this is no longer required. However, if a server 3010 * is discovered which can not handle requests larger than 1024, 3011 * nfs_shrinkreaddir can be set to 1 to enable this backwards 3012 * compatibility. 3013 * 3014 * In any case, the request size is limited to NFS_MAXDATA bytes. 3015 */ 3016 count = MIN(uiop->uio_iov->iov_len, 3017 nfs_shrinkreaddir ? 0x400 : NFS_MAXDATA); 3018 3019 nrdc = NULL; 3020 #ifdef DEBUG 3021 missed = 0; 3022 #endif 3023 top: 3024 /* 3025 * Short circuit last readdir which always returns 0 bytes. 3026 * This can be done after the directory has been read through 3027 * completely at least once. This will set r_direof which 3028 * can be used to find the value of the last cookie. 3029 */ 3030 mutex_enter(&rp->r_statelock); 3031 if (rp->r_direof != NULL && 3032 uiop->uio_offset == rp->r_direof->nfs_ncookie) { 3033 mutex_exit(&rp->r_statelock); 3034 #ifdef DEBUG 3035 nfs_readdir_cache_shorts++; 3036 #endif 3037 if (eofp) 3038 *eofp = 1; 3039 if (nrdc != NULL) 3040 rddir_cache_rele(nrdc); 3041 return (0); 3042 } 3043 /* 3044 * Look for a cache entry. Cache entries are identified 3045 * by the NFS cookie value and the byte count requested. 3046 */ 3047 srdc.nfs_cookie = uiop->uio_offset; 3048 srdc.buflen = count; 3049 rdc = avl_find(&rp->r_dir, &srdc, &where); 3050 if (rdc != NULL) { 3051 rddir_cache_hold(rdc); 3052 /* 3053 * If the cache entry is in the process of being 3054 * filled in, wait until this completes. The 3055 * RDDIRWAIT bit is set to indicate that someone 3056 * is waiting and then the thread currently 3057 * filling the entry is done, it should do a 3058 * cv_broadcast to wakeup all of the threads 3059 * waiting for it to finish. 3060 */ 3061 if (rdc->flags & RDDIR) { 3062 nfs_rw_exit(&rp->r_rwlock); 3063 rdc->flags |= RDDIRWAIT; 3064 #ifdef DEBUG 3065 nfs_readdir_cache_waits++; 3066 #endif 3067 if (!cv_wait_sig(&rdc->cv, &rp->r_statelock)) { 3068 /* 3069 * We got interrupted, probably 3070 * the user typed ^C or an alarm 3071 * fired. We free the new entry 3072 * if we allocated one. 3073 */ 3074 mutex_exit(&rp->r_statelock); 3075 (void) nfs_rw_enter_sig(&rp->r_rwlock, 3076 RW_READER, FALSE); 3077 rddir_cache_rele(rdc); 3078 if (nrdc != NULL) 3079 rddir_cache_rele(nrdc); 3080 return (EINTR); 3081 } 3082 mutex_exit(&rp->r_statelock); 3083 (void) nfs_rw_enter_sig(&rp->r_rwlock, 3084 RW_READER, FALSE); 3085 rddir_cache_rele(rdc); 3086 goto top; 3087 } 3088 /* 3089 * Check to see if a readdir is required to 3090 * fill the entry. If so, mark this entry 3091 * as being filled, remove our reference, 3092 * and branch to the code to fill the entry. 3093 */ 3094 if (rdc->flags & RDDIRREQ) { 3095 rdc->flags &= ~RDDIRREQ; 3096 rdc->flags |= RDDIR; 3097 if (nrdc != NULL) 3098 rddir_cache_rele(nrdc); 3099 nrdc = rdc; 3100 mutex_exit(&rp->r_statelock); 3101 goto bottom; 3102 } 3103 #ifdef DEBUG 3104 if (!missed) 3105 nfs_readdir_cache_hits++; 3106 #endif 3107 /* 3108 * If an error occurred while attempting 3109 * to fill the cache entry, just return it. 3110 */ 3111 if (rdc->error) { 3112 error = rdc->error; 3113 mutex_exit(&rp->r_statelock); 3114 rddir_cache_rele(rdc); 3115 if (nrdc != NULL) 3116 rddir_cache_rele(nrdc); 3117 return (error); 3118 } 3119 3120 /* 3121 * The cache entry is complete and good, 3122 * copyout the dirent structs to the calling 3123 * thread. 3124 */ 3125 error = uiomove(rdc->entries, rdc->entlen, UIO_READ, uiop); 3126 3127 /* 3128 * If no error occurred during the copyout, 3129 * update the offset in the uio struct to 3130 * contain the value of the next cookie 3131 * and set the eof value appropriately. 3132 */ 3133 if (!error) { 3134 uiop->uio_offset = rdc->nfs_ncookie; 3135 if (eofp) 3136 *eofp = rdc->eof; 3137 } 3138 3139 /* 3140 * Decide whether to do readahead. Don't if 3141 * have already read to the end of directory. 3142 */ 3143 if (rdc->eof) { 3144 rp->r_direof = rdc; 3145 mutex_exit(&rp->r_statelock); 3146 rddir_cache_rele(rdc); 3147 if (nrdc != NULL) 3148 rddir_cache_rele(nrdc); 3149 return (error); 3150 } 3151 3152 /* 3153 * Check to see whether we found an entry 3154 * for the readahead. If so, we don't need 3155 * to do anything further, so free the new 3156 * entry if one was allocated. Otherwise, 3157 * allocate a new entry, add it to the cache, 3158 * and then initiate an asynchronous readdir 3159 * operation to fill it. 3160 */ 3161 srdc.nfs_cookie = rdc->nfs_ncookie; 3162 srdc.buflen = count; 3163 rrdc = avl_find(&rp->r_dir, &srdc, &where); 3164 if (rrdc != NULL) { 3165 if (nrdc != NULL) 3166 rddir_cache_rele(nrdc); 3167 } else { 3168 if (nrdc != NULL) 3169 rrdc = nrdc; 3170 else { 3171 rrdc = rddir_cache_alloc(KM_NOSLEEP); 3172 } 3173 if (rrdc != NULL) { 3174 rrdc->nfs_cookie = rdc->nfs_ncookie; 3175 rrdc->buflen = count; 3176 avl_insert(&rp->r_dir, rrdc, where); 3177 rddir_cache_hold(rrdc); 3178 mutex_exit(&rp->r_statelock); 3179 rddir_cache_rele(rdc); 3180 #ifdef DEBUG 3181 nfs_readdir_readahead++; 3182 #endif 3183 nfs_async_readdir(vp, rrdc, cr, nfsreaddir); 3184 return (error); 3185 } 3186 } 3187 3188 mutex_exit(&rp->r_statelock); 3189 rddir_cache_rele(rdc); 3190 return (error); 3191 } 3192 3193 /* 3194 * Didn't find an entry in the cache. Construct a new empty 3195 * entry and link it into the cache. Other processes attempting 3196 * to access this entry will need to wait until it is filled in. 3197 * 3198 * Since kmem_alloc may block, another pass through the cache 3199 * will need to be taken to make sure that another process 3200 * hasn't already added an entry to the cache for this request. 3201 */ 3202 if (nrdc == NULL) { 3203 mutex_exit(&rp->r_statelock); 3204 nrdc = rddir_cache_alloc(KM_SLEEP); 3205 nrdc->nfs_cookie = uiop->uio_offset; 3206 nrdc->buflen = count; 3207 goto top; 3208 } 3209 3210 /* 3211 * Add this entry to the cache. 3212 */ 3213 avl_insert(&rp->r_dir, nrdc, where); 3214 rddir_cache_hold(nrdc); 3215 mutex_exit(&rp->r_statelock); 3216 3217 bottom: 3218 #ifdef DEBUG 3219 missed = 1; 3220 nfs_readdir_cache_misses++; 3221 #endif 3222 /* 3223 * Do the readdir. 3224 */ 3225 error = nfsreaddir(vp, nrdc, cr); 3226 3227 /* 3228 * If this operation failed, just return the error which occurred. 3229 */ 3230 if (error != 0) 3231 return (error); 3232 3233 /* 3234 * Since the RPC operation will have taken sometime and blocked 3235 * this process, another pass through the cache will need to be 3236 * taken to find the correct cache entry. It is possible that 3237 * the correct cache entry will not be there (although one was 3238 * added) because the directory changed during the RPC operation 3239 * and the readdir cache was flushed. In this case, just start 3240 * over. It is hoped that this will not happen too often... :-) 3241 */ 3242 nrdc = NULL; 3243 goto top; 3244 /* NOTREACHED */ 3245 } 3246 3247 static int 3248 nfsreaddir(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 3249 { 3250 int error; 3251 struct nfsrddirargs rda; 3252 struct nfsrddirres rd; 3253 rnode_t *rp; 3254 mntinfo_t *mi; 3255 uint_t count; 3256 int douprintf; 3257 failinfo_t fi, *fip; 3258 3259 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 3260 count = rdc->buflen; 3261 3262 rp = VTOR(vp); 3263 mi = VTOMI(vp); 3264 3265 rda.rda_fh = *VTOFH(vp); 3266 rda.rda_offset = rdc->nfs_cookie; 3267 3268 /* 3269 * NFS client failover support 3270 * suppress failover unless we have a zero cookie 3271 */ 3272 if (rdc->nfs_cookie == (off_t)0) { 3273 fi.vp = vp; 3274 fi.fhp = (caddr_t)&rda.rda_fh; 3275 fi.copyproc = nfscopyfh; 3276 fi.lookupproc = nfslookup; 3277 fi.xattrdirproc = acl_getxattrdir2; 3278 fip = &fi; 3279 } else { 3280 fip = NULL; 3281 } 3282 3283 rd.rd_entries = kmem_alloc(rdc->buflen, KM_SLEEP); 3284 rd.rd_size = count; 3285 rd.rd_offset = rda.rda_offset; 3286 3287 douprintf = 1; 3288 3289 if (mi->mi_io_kstats) { 3290 mutex_enter(&mi->mi_lock); 3291 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3292 mutex_exit(&mi->mi_lock); 3293 } 3294 3295 do { 3296 rda.rda_count = MIN(count, mi->mi_curread); 3297 error = rfs2call(mi, RFS_READDIR, 3298 xdr_rddirargs, (caddr_t)&rda, 3299 xdr_getrddirres, (caddr_t)&rd, cr, 3300 &douprintf, &rd.rd_status, 0, fip); 3301 } while (error == ENFS_TRYAGAIN); 3302 3303 if (mi->mi_io_kstats) { 3304 mutex_enter(&mi->mi_lock); 3305 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3306 mutex_exit(&mi->mi_lock); 3307 } 3308 3309 /* 3310 * Since we are actually doing a READDIR RPC, we must have 3311 * exclusive access to the cache entry being filled. Thus, 3312 * it is safe to update all fields except for the flags 3313 * field. The r_statelock in the rnode must be held to 3314 * prevent two different threads from simultaneously 3315 * attempting to update the flags field. This can happen 3316 * if we are turning off RDDIR and the other thread is 3317 * trying to set RDDIRWAIT. 3318 */ 3319 ASSERT(rdc->flags & RDDIR); 3320 if (!error) { 3321 error = geterrno(rd.rd_status); 3322 if (!error) { 3323 rdc->nfs_ncookie = rd.rd_offset; 3324 rdc->eof = rd.rd_eof ? 1 : 0; 3325 rdc->entlen = rd.rd_size; 3326 ASSERT(rdc->entlen <= rdc->buflen); 3327 #ifdef DEBUG 3328 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, 3329 KM_SLEEP); 3330 #else 3331 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP); 3332 #endif 3333 bcopy(rd.rd_entries, rdc->entries, rdc->entlen); 3334 rdc->error = 0; 3335 if (mi->mi_io_kstats) { 3336 mutex_enter(&mi->mi_lock); 3337 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 3338 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += 3339 rd.rd_size; 3340 mutex_exit(&mi->mi_lock); 3341 } 3342 } else { 3343 PURGE_STALE_FH(error, vp, cr); 3344 } 3345 } 3346 if (error) { 3347 rdc->entries = NULL; 3348 rdc->error = error; 3349 } 3350 kmem_free(rd.rd_entries, rdc->buflen); 3351 3352 mutex_enter(&rp->r_statelock); 3353 rdc->flags &= ~RDDIR; 3354 if (rdc->flags & RDDIRWAIT) { 3355 rdc->flags &= ~RDDIRWAIT; 3356 cv_broadcast(&rdc->cv); 3357 } 3358 if (error) 3359 rdc->flags |= RDDIRREQ; 3360 mutex_exit(&rp->r_statelock); 3361 3362 rddir_cache_rele(rdc); 3363 3364 return (error); 3365 } 3366 3367 #ifdef DEBUG 3368 static int nfs_bio_do_stop = 0; 3369 #endif 3370 3371 static int 3372 nfs_bio(struct buf *bp, cred_t *cr) 3373 { 3374 rnode_t *rp = VTOR(bp->b_vp); 3375 int count; 3376 int error; 3377 cred_t *cred; 3378 uint_t offset; 3379 3380 DTRACE_IO1(start, struct buf *, bp); 3381 3382 ASSERT(nfs_zone() == VTOMI(bp->b_vp)->mi_zone); 3383 offset = dbtob(bp->b_blkno); 3384 3385 if (bp->b_flags & B_READ) { 3386 mutex_enter(&rp->r_statelock); 3387 if (rp->r_cred != NULL) { 3388 cred = rp->r_cred; 3389 crhold(cred); 3390 } else { 3391 rp->r_cred = cr; 3392 crhold(cr); 3393 cred = cr; 3394 crhold(cred); 3395 } 3396 mutex_exit(&rp->r_statelock); 3397 read_again: 3398 error = bp->b_error = nfsread(bp->b_vp, bp->b_un.b_addr, 3399 offset, bp->b_bcount, &bp->b_resid, cred); 3400 3401 crfree(cred); 3402 if (!error) { 3403 if (bp->b_resid) { 3404 /* 3405 * Didn't get it all because we hit EOF, 3406 * zero all the memory beyond the EOF. 3407 */ 3408 /* bzero(rdaddr + */ 3409 bzero(bp->b_un.b_addr + 3410 bp->b_bcount - bp->b_resid, bp->b_resid); 3411 } 3412 mutex_enter(&rp->r_statelock); 3413 if (bp->b_resid == bp->b_bcount && 3414 offset >= rp->r_size) { 3415 /* 3416 * We didn't read anything at all as we are 3417 * past EOF. Return an error indicator back 3418 * but don't destroy the pages (yet). 3419 */ 3420 error = NFS_EOF; 3421 } 3422 mutex_exit(&rp->r_statelock); 3423 } else if (error == EACCES) { 3424 mutex_enter(&rp->r_statelock); 3425 if (cred != cr) { 3426 if (rp->r_cred != NULL) 3427 crfree(rp->r_cred); 3428 rp->r_cred = cr; 3429 crhold(cr); 3430 cred = cr; 3431 crhold(cred); 3432 mutex_exit(&rp->r_statelock); 3433 goto read_again; 3434 } 3435 mutex_exit(&rp->r_statelock); 3436 } 3437 } else { 3438 if (!(rp->r_flags & RSTALE)) { 3439 mutex_enter(&rp->r_statelock); 3440 if (rp->r_cred != NULL) { 3441 cred = rp->r_cred; 3442 crhold(cred); 3443 } else { 3444 rp->r_cred = cr; 3445 crhold(cr); 3446 cred = cr; 3447 crhold(cred); 3448 } 3449 mutex_exit(&rp->r_statelock); 3450 write_again: 3451 mutex_enter(&rp->r_statelock); 3452 count = MIN(bp->b_bcount, rp->r_size - offset); 3453 mutex_exit(&rp->r_statelock); 3454 if (count < 0) 3455 cmn_err(CE_PANIC, "nfs_bio: write count < 0"); 3456 #ifdef DEBUG 3457 if (count == 0) { 3458 zcmn_err(getzoneid(), CE_WARN, 3459 "nfs_bio: zero length write at %d", 3460 offset); 3461 nfs_printfhandle(&rp->r_fh); 3462 if (nfs_bio_do_stop) 3463 debug_enter("nfs_bio"); 3464 } 3465 #endif 3466 error = nfswrite(bp->b_vp, bp->b_un.b_addr, offset, 3467 count, cred); 3468 if (error == EACCES) { 3469 mutex_enter(&rp->r_statelock); 3470 if (cred != cr) { 3471 if (rp->r_cred != NULL) 3472 crfree(rp->r_cred); 3473 rp->r_cred = cr; 3474 crhold(cr); 3475 crfree(cred); 3476 cred = cr; 3477 crhold(cred); 3478 mutex_exit(&rp->r_statelock); 3479 goto write_again; 3480 } 3481 mutex_exit(&rp->r_statelock); 3482 } 3483 bp->b_error = error; 3484 if (error && error != EINTR) { 3485 /* 3486 * Don't print EDQUOT errors on the console. 3487 * Don't print asynchronous EACCES errors. 3488 * Don't print EFBIG errors. 3489 * Print all other write errors. 3490 */ 3491 if (error != EDQUOT && error != EFBIG && 3492 (error != EACCES || 3493 !(bp->b_flags & B_ASYNC))) 3494 nfs_write_error(bp->b_vp, error, cred); 3495 /* 3496 * Update r_error and r_flags as appropriate. 3497 * If the error was ESTALE, then mark the 3498 * rnode as not being writeable and save 3499 * the error status. Otherwise, save any 3500 * errors which occur from asynchronous 3501 * page invalidations. Any errors occurring 3502 * from other operations should be saved 3503 * by the caller. 3504 */ 3505 mutex_enter(&rp->r_statelock); 3506 if (error == ESTALE) { 3507 rp->r_flags |= RSTALE; 3508 if (!rp->r_error) 3509 rp->r_error = error; 3510 } else if (!rp->r_error && 3511 (bp->b_flags & 3512 (B_INVAL|B_FORCE|B_ASYNC)) == 3513 (B_INVAL|B_FORCE|B_ASYNC)) { 3514 rp->r_error = error; 3515 } 3516 mutex_exit(&rp->r_statelock); 3517 } 3518 crfree(cred); 3519 } else { 3520 error = rp->r_error; 3521 /* 3522 * A close may have cleared r_error, if so, 3523 * propagate ESTALE error return properly 3524 */ 3525 if (error == 0) 3526 error = ESTALE; 3527 } 3528 } 3529 3530 if (error != 0 && error != NFS_EOF) 3531 bp->b_flags |= B_ERROR; 3532 3533 DTRACE_IO1(done, struct buf *, bp); 3534 3535 return (error); 3536 } 3537 3538 /* ARGSUSED */ 3539 static int 3540 nfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 3541 { 3542 struct nfs_fid *fp; 3543 rnode_t *rp; 3544 3545 rp = VTOR(vp); 3546 3547 if (fidp->fid_len < (sizeof (struct nfs_fid) - sizeof (short))) { 3548 fidp->fid_len = sizeof (struct nfs_fid) - sizeof (short); 3549 return (ENOSPC); 3550 } 3551 fp = (struct nfs_fid *)fidp; 3552 fp->nf_pad = 0; 3553 fp->nf_len = sizeof (struct nfs_fid) - sizeof (short); 3554 bcopy(rp->r_fh.fh_buf, fp->nf_data, NFS_FHSIZE); 3555 return (0); 3556 } 3557 3558 /* ARGSUSED2 */ 3559 static int 3560 nfs_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 3561 { 3562 rnode_t *rp = VTOR(vp); 3563 3564 if (!write_lock) { 3565 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 3566 return (V_WRITELOCK_FALSE); 3567 } 3568 3569 if ((rp->r_flags & RDIRECTIO) || (VTOMI(vp)->mi_flags & MI_DIRECTIO)) { 3570 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 3571 if (rp->r_mapcnt == 0 && !vn_has_cached_data(vp)) 3572 return (V_WRITELOCK_FALSE); 3573 nfs_rw_exit(&rp->r_rwlock); 3574 } 3575 3576 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 3577 return (V_WRITELOCK_TRUE); 3578 } 3579 3580 /* ARGSUSED */ 3581 static void 3582 nfs_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 3583 { 3584 rnode_t *rp = VTOR(vp); 3585 3586 nfs_rw_exit(&rp->r_rwlock); 3587 } 3588 3589 /* ARGSUSED */ 3590 static int 3591 nfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct) 3592 { 3593 3594 /* 3595 * Because we stuff the readdir cookie into the offset field 3596 * someone may attempt to do an lseek with the cookie which 3597 * we want to succeed. 3598 */ 3599 if (vp->v_type == VDIR) 3600 return (0); 3601 if (*noffp < 0 || *noffp > MAXOFF32_T) 3602 return (EINVAL); 3603 return (0); 3604 } 3605 3606 /* 3607 * number of NFS_MAXDATA blocks to read ahead 3608 * optimized for 100 base-T. 3609 */ 3610 static int nfs_nra = 4; 3611 3612 #ifdef DEBUG 3613 static int nfs_lostpage = 0; /* number of times we lost original page */ 3614 #endif 3615 3616 /* 3617 * Return all the pages from [off..off+len) in file 3618 */ 3619 /* ARGSUSED */ 3620 static int 3621 nfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 3622 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3623 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 3624 { 3625 rnode_t *rp; 3626 int error; 3627 mntinfo_t *mi; 3628 3629 if (vp->v_flag & VNOMAP) 3630 return (ENOSYS); 3631 3632 ASSERT(off <= MAXOFF32_T); 3633 if (nfs_zone() != VTOMI(vp)->mi_zone) 3634 return (EIO); 3635 if (protp != NULL) 3636 *protp = PROT_ALL; 3637 3638 /* 3639 * Now valididate that the caches are up to date. 3640 */ 3641 error = nfs_validate_caches(vp, cr); 3642 if (error) 3643 return (error); 3644 3645 rp = VTOR(vp); 3646 mi = VTOMI(vp); 3647 retry: 3648 mutex_enter(&rp->r_statelock); 3649 3650 /* 3651 * Don't create dirty pages faster than they 3652 * can be cleaned so that the system doesn't 3653 * get imbalanced. If the async queue is 3654 * maxed out, then wait for it to drain before 3655 * creating more dirty pages. Also, wait for 3656 * any threads doing pagewalks in the vop_getattr 3657 * entry points so that they don't block for 3658 * long periods. 3659 */ 3660 if (rw == S_CREATE) { 3661 while ((mi->mi_max_threads != 0 && 3662 rp->r_awcount > 2 * mi->mi_max_threads) || 3663 rp->r_gcount > 0) 3664 cv_wait(&rp->r_cv, &rp->r_statelock); 3665 } 3666 3667 /* 3668 * If we are getting called as a side effect of an nfs_write() 3669 * operation the local file size might not be extended yet. 3670 * In this case we want to be able to return pages of zeroes. 3671 */ 3672 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 3673 mutex_exit(&rp->r_statelock); 3674 return (EFAULT); /* beyond EOF */ 3675 } 3676 3677 mutex_exit(&rp->r_statelock); 3678 3679 if (len <= PAGESIZE) { 3680 error = nfs_getapage(vp, off, len, protp, pl, plsz, 3681 seg, addr, rw, cr); 3682 } else { 3683 error = pvn_getpages(nfs_getapage, vp, off, len, protp, 3684 pl, plsz, seg, addr, rw, cr); 3685 } 3686 3687 switch (error) { 3688 case NFS_EOF: 3689 nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr); 3690 goto retry; 3691 case ESTALE: 3692 PURGE_STALE_FH(error, vp, cr); 3693 } 3694 3695 return (error); 3696 } 3697 3698 /* 3699 * Called from pvn_getpages or nfs_getpage to get a particular page. 3700 */ 3701 /* ARGSUSED */ 3702 static int 3703 nfs_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 3704 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3705 enum seg_rw rw, cred_t *cr) 3706 { 3707 rnode_t *rp; 3708 uint_t bsize; 3709 struct buf *bp; 3710 page_t *pp; 3711 u_offset_t lbn; 3712 u_offset_t io_off; 3713 u_offset_t blkoff; 3714 u_offset_t rablkoff; 3715 size_t io_len; 3716 uint_t blksize; 3717 int error; 3718 int readahead; 3719 int readahead_issued = 0; 3720 int ra_window; /* readahead window */ 3721 page_t *pagefound; 3722 3723 if (nfs_zone() != VTOMI(vp)->mi_zone) 3724 return (EIO); 3725 rp = VTOR(vp); 3726 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 3727 3728 reread: 3729 bp = NULL; 3730 pp = NULL; 3731 pagefound = NULL; 3732 3733 if (pl != NULL) 3734 pl[0] = NULL; 3735 3736 error = 0; 3737 lbn = off / bsize; 3738 blkoff = lbn * bsize; 3739 3740 /* 3741 * Queueing up the readahead before doing the synchronous read 3742 * results in a significant increase in read throughput because 3743 * of the increased parallelism between the async threads and 3744 * the process context. 3745 */ 3746 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 3747 rw != S_CREATE && 3748 !(vp->v_flag & VNOCACHE)) { 3749 mutex_enter(&rp->r_statelock); 3750 3751 /* 3752 * Calculate the number of readaheads to do. 3753 * a) No readaheads at offset = 0. 3754 * b) Do maximum(nfs_nra) readaheads when the readahead 3755 * window is closed. 3756 * c) Do readaheads between 1 to (nfs_nra - 1) depending 3757 * upon how far the readahead window is open or close. 3758 * d) No readaheads if rp->r_nextr is not within the scope 3759 * of the readahead window (random i/o). 3760 */ 3761 3762 if (off == 0) 3763 readahead = 0; 3764 else if (blkoff == rp->r_nextr) 3765 readahead = nfs_nra; 3766 else if (rp->r_nextr > blkoff && 3767 ((ra_window = (rp->r_nextr - blkoff) / bsize) 3768 <= (nfs_nra - 1))) 3769 readahead = nfs_nra - ra_window; 3770 else 3771 readahead = 0; 3772 3773 rablkoff = rp->r_nextr; 3774 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 3775 mutex_exit(&rp->r_statelock); 3776 if (nfs_async_readahead(vp, rablkoff + bsize, 3777 addr + (rablkoff + bsize - off), seg, cr, 3778 nfs_readahead) < 0) { 3779 mutex_enter(&rp->r_statelock); 3780 break; 3781 } 3782 readahead--; 3783 rablkoff += bsize; 3784 /* 3785 * Indicate that we did a readahead so 3786 * readahead offset is not updated 3787 * by the synchronous read below. 3788 */ 3789 readahead_issued = 1; 3790 mutex_enter(&rp->r_statelock); 3791 /* 3792 * set readahead offset to 3793 * offset of last async readahead 3794 * request. 3795 */ 3796 rp->r_nextr = rablkoff; 3797 } 3798 mutex_exit(&rp->r_statelock); 3799 } 3800 3801 again: 3802 if ((pagefound = page_exists(vp, off)) == NULL) { 3803 if (pl == NULL) { 3804 (void) nfs_async_readahead(vp, blkoff, addr, seg, cr, 3805 nfs_readahead); 3806 } else if (rw == S_CREATE) { 3807 /* 3808 * Block for this page is not allocated, or the offset 3809 * is beyond the current allocation size, or we're 3810 * allocating a swap slot and the page was not found, 3811 * so allocate it and return a zero page. 3812 */ 3813 if ((pp = page_create_va(vp, off, 3814 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 3815 cmn_err(CE_PANIC, "nfs_getapage: page_create"); 3816 io_len = PAGESIZE; 3817 mutex_enter(&rp->r_statelock); 3818 rp->r_nextr = off + PAGESIZE; 3819 mutex_exit(&rp->r_statelock); 3820 } else { 3821 /* 3822 * Need to go to server to get a BLOCK, exception to 3823 * that being while reading at offset = 0 or doing 3824 * random i/o, in that case read only a PAGE. 3825 */ 3826 mutex_enter(&rp->r_statelock); 3827 if (blkoff < rp->r_size && 3828 blkoff + bsize >= rp->r_size) { 3829 /* 3830 * If only a block or less is left in 3831 * the file, read all that is remaining. 3832 */ 3833 if (rp->r_size <= off) { 3834 /* 3835 * Trying to access beyond EOF, 3836 * set up to get at least one page. 3837 */ 3838 blksize = off + PAGESIZE - blkoff; 3839 } else 3840 blksize = rp->r_size - blkoff; 3841 } else if ((off == 0) || 3842 (off != rp->r_nextr && !readahead_issued)) { 3843 blksize = PAGESIZE; 3844 blkoff = off; /* block = page here */ 3845 } else 3846 blksize = bsize; 3847 mutex_exit(&rp->r_statelock); 3848 3849 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 3850 &io_len, blkoff, blksize, 0); 3851 3852 /* 3853 * Some other thread has entered the page, 3854 * so just use it. 3855 */ 3856 if (pp == NULL) 3857 goto again; 3858 3859 /* 3860 * Now round the request size up to page boundaries. 3861 * This ensures that the entire page will be 3862 * initialized to zeroes if EOF is encountered. 3863 */ 3864 io_len = ptob(btopr(io_len)); 3865 3866 bp = pageio_setup(pp, io_len, vp, B_READ); 3867 ASSERT(bp != NULL); 3868 3869 /* 3870 * pageio_setup should have set b_addr to 0. This 3871 * is correct since we want to do I/O on a page 3872 * boundary. bp_mapin will use this addr to calculate 3873 * an offset, and then set b_addr to the kernel virtual 3874 * address it allocated for us. 3875 */ 3876 ASSERT(bp->b_un.b_addr == 0); 3877 3878 bp->b_edev = 0; 3879 bp->b_dev = 0; 3880 bp->b_lblkno = lbtodb(io_off); 3881 bp->b_file = vp; 3882 bp->b_offset = (offset_t)off; 3883 bp_mapin(bp); 3884 3885 /* 3886 * If doing a write beyond what we believe is EOF, 3887 * don't bother trying to read the pages from the 3888 * server, we'll just zero the pages here. We 3889 * don't check that the rw flag is S_WRITE here 3890 * because some implementations may attempt a 3891 * read access to the buffer before copying data. 3892 */ 3893 mutex_enter(&rp->r_statelock); 3894 if (io_off >= rp->r_size && seg == segkmap) { 3895 mutex_exit(&rp->r_statelock); 3896 bzero(bp->b_un.b_addr, io_len); 3897 } else { 3898 mutex_exit(&rp->r_statelock); 3899 error = nfs_bio(bp, cr); 3900 } 3901 3902 /* 3903 * Unmap the buffer before freeing it. 3904 */ 3905 bp_mapout(bp); 3906 pageio_done(bp); 3907 3908 if (error == NFS_EOF) { 3909 /* 3910 * If doing a write system call just return 3911 * zeroed pages, else user tried to get pages 3912 * beyond EOF, return error. We don't check 3913 * that the rw flag is S_WRITE here because 3914 * some implementations may attempt a read 3915 * access to the buffer before copying data. 3916 */ 3917 if (seg == segkmap) 3918 error = 0; 3919 else 3920 error = EFAULT; 3921 } 3922 3923 if (!readahead_issued && !error) { 3924 mutex_enter(&rp->r_statelock); 3925 rp->r_nextr = io_off + io_len; 3926 mutex_exit(&rp->r_statelock); 3927 } 3928 } 3929 } 3930 3931 out: 3932 if (pl == NULL) 3933 return (error); 3934 3935 if (error) { 3936 if (pp != NULL) 3937 pvn_read_done(pp, B_ERROR); 3938 return (error); 3939 } 3940 3941 if (pagefound) { 3942 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 3943 3944 /* 3945 * Page exists in the cache, acquire the appropriate lock. 3946 * If this fails, start all over again. 3947 */ 3948 if ((pp = page_lookup(vp, off, se)) == NULL) { 3949 #ifdef DEBUG 3950 nfs_lostpage++; 3951 #endif 3952 goto reread; 3953 } 3954 pl[0] = pp; 3955 pl[1] = NULL; 3956 return (0); 3957 } 3958 3959 if (pp != NULL) 3960 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 3961 3962 return (error); 3963 } 3964 3965 static void 3966 nfs_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 3967 cred_t *cr) 3968 { 3969 int error; 3970 page_t *pp; 3971 u_offset_t io_off; 3972 size_t io_len; 3973 struct buf *bp; 3974 uint_t bsize, blksize; 3975 rnode_t *rp = VTOR(vp); 3976 3977 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 3978 3979 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 3980 3981 mutex_enter(&rp->r_statelock); 3982 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 3983 /* 3984 * If less than a block left in file read less 3985 * than a block. 3986 */ 3987 blksize = rp->r_size - blkoff; 3988 } else 3989 blksize = bsize; 3990 mutex_exit(&rp->r_statelock); 3991 3992 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 3993 &io_off, &io_len, blkoff, blksize, 1); 3994 /* 3995 * The isra flag passed to the kluster function is 1, we may have 3996 * gotten a return value of NULL for a variety of reasons (# of free 3997 * pages < minfree, someone entered the page on the vnode etc). In all 3998 * cases, we want to punt on the readahead. 3999 */ 4000 if (pp == NULL) 4001 return; 4002 4003 /* 4004 * Now round the request size up to page boundaries. 4005 * This ensures that the entire page will be 4006 * initialized to zeroes if EOF is encountered. 4007 */ 4008 io_len = ptob(btopr(io_len)); 4009 4010 bp = pageio_setup(pp, io_len, vp, B_READ); 4011 ASSERT(bp != NULL); 4012 4013 /* 4014 * pageio_setup should have set b_addr to 0. This is correct since 4015 * we want to do I/O on a page boundary. bp_mapin() will use this addr 4016 * to calculate an offset, and then set b_addr to the kernel virtual 4017 * address it allocated for us. 4018 */ 4019 ASSERT(bp->b_un.b_addr == 0); 4020 4021 bp->b_edev = 0; 4022 bp->b_dev = 0; 4023 bp->b_lblkno = lbtodb(io_off); 4024 bp->b_file = vp; 4025 bp->b_offset = (offset_t)blkoff; 4026 bp_mapin(bp); 4027 4028 /* 4029 * If doing a write beyond what we believe is EOF, don't bother trying 4030 * to read the pages from the server, we'll just zero the pages here. 4031 * We don't check that the rw flag is S_WRITE here because some 4032 * implementations may attempt a read access to the buffer before 4033 * copying data. 4034 */ 4035 mutex_enter(&rp->r_statelock); 4036 if (io_off >= rp->r_size && seg == segkmap) { 4037 mutex_exit(&rp->r_statelock); 4038 bzero(bp->b_un.b_addr, io_len); 4039 error = 0; 4040 } else { 4041 mutex_exit(&rp->r_statelock); 4042 error = nfs_bio(bp, cr); 4043 if (error == NFS_EOF) 4044 error = 0; 4045 } 4046 4047 /* 4048 * Unmap the buffer before freeing it. 4049 */ 4050 bp_mapout(bp); 4051 pageio_done(bp); 4052 4053 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 4054 4055 /* 4056 * In case of error set readahead offset 4057 * to the lowest offset. 4058 * pvn_read_done() calls VN_DISPOSE to destroy the pages 4059 */ 4060 if (error && rp->r_nextr > io_off) { 4061 mutex_enter(&rp->r_statelock); 4062 if (rp->r_nextr > io_off) 4063 rp->r_nextr = io_off; 4064 mutex_exit(&rp->r_statelock); 4065 } 4066 } 4067 4068 /* 4069 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 4070 * If len == 0, do from off to EOF. 4071 * 4072 * The normal cases should be len == 0 && off == 0 (entire vp list), 4073 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 4074 * (from pageout). 4075 */ 4076 /* ARGSUSED */ 4077 static int 4078 nfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4079 caller_context_t *ct) 4080 { 4081 int error; 4082 rnode_t *rp; 4083 4084 ASSERT(cr != NULL); 4085 4086 /* 4087 * XXX - Why should this check be made here? 4088 */ 4089 if (vp->v_flag & VNOMAP) 4090 return (ENOSYS); 4091 4092 if (len == 0 && !(flags & B_INVAL) && vn_is_readonly(vp)) 4093 return (0); 4094 4095 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone) 4096 return (EIO); 4097 ASSERT(off <= MAXOFF32_T); 4098 4099 rp = VTOR(vp); 4100 mutex_enter(&rp->r_statelock); 4101 rp->r_count++; 4102 mutex_exit(&rp->r_statelock); 4103 error = nfs_putpages(vp, off, len, flags, cr); 4104 mutex_enter(&rp->r_statelock); 4105 rp->r_count--; 4106 cv_broadcast(&rp->r_cv); 4107 mutex_exit(&rp->r_statelock); 4108 4109 return (error); 4110 } 4111 4112 /* 4113 * Write out a single page, possibly klustering adjacent dirty pages. 4114 */ 4115 int 4116 nfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 4117 int flags, cred_t *cr) 4118 { 4119 u_offset_t io_off; 4120 u_offset_t lbn_off; 4121 u_offset_t lbn; 4122 size_t io_len; 4123 uint_t bsize; 4124 int error; 4125 rnode_t *rp; 4126 4127 ASSERT(!vn_is_readonly(vp)); 4128 ASSERT(pp != NULL); 4129 ASSERT(cr != NULL); 4130 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI(vp)->mi_zone); 4131 4132 rp = VTOR(vp); 4133 ASSERT(rp->r_count > 0); 4134 4135 ASSERT(pp->p_offset <= MAXOFF32_T); 4136 4137 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 4138 lbn = pp->p_offset / bsize; 4139 lbn_off = lbn * bsize; 4140 4141 /* 4142 * Find a kluster that fits in one block, or in 4143 * one page if pages are bigger than blocks. If 4144 * there is less file space allocated than a whole 4145 * page, we'll shorten the i/o request below. 4146 */ 4147 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 4148 roundup(bsize, PAGESIZE), flags); 4149 4150 /* 4151 * pvn_write_kluster shouldn't have returned a page with offset 4152 * behind the original page we were given. Verify that. 4153 */ 4154 ASSERT((pp->p_offset / bsize) >= lbn); 4155 4156 /* 4157 * Now pp will have the list of kept dirty pages marked for 4158 * write back. It will also handle invalidation and freeing 4159 * of pages that are not dirty. Check for page length rounding 4160 * problems. 4161 */ 4162 if (io_off + io_len > lbn_off + bsize) { 4163 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 4164 io_len = lbn_off + bsize - io_off; 4165 } 4166 /* 4167 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 4168 * consistent value of r_size. RMODINPROGRESS is set in writerp(). 4169 * When RMODINPROGRESS is set it indicates that a uiomove() is in 4170 * progress and the r_size has not been made consistent with the 4171 * new size of the file. When the uiomove() completes the r_size is 4172 * updated and the RMODINPROGRESS flag is cleared. 4173 * 4174 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 4175 * consistent value of r_size. Without this handshaking, it is 4176 * possible that nfs(3)_bio() picks up the old value of r_size 4177 * before the uiomove() in writerp() completes. This will result 4178 * in the write through nfs(3)_bio() being dropped. 4179 * 4180 * More precisely, there is a window between the time the uiomove() 4181 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 4182 * operation intervenes in this window, the page will be picked up, 4183 * because it is dirty (it will be unlocked, unless it was 4184 * pagecreate'd). When the page is picked up as dirty, the dirty 4185 * bit is reset (pvn_getdirty()). In nfs(3)write(), r_size is 4186 * checked. This will still be the old size. Therefore the page will 4187 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 4188 * the page will be found to be clean and the write will be dropped. 4189 */ 4190 if (rp->r_flags & RMODINPROGRESS) { 4191 mutex_enter(&rp->r_statelock); 4192 if ((rp->r_flags & RMODINPROGRESS) && 4193 rp->r_modaddr + MAXBSIZE > io_off && 4194 rp->r_modaddr < io_off + io_len) { 4195 page_t *plist; 4196 /* 4197 * A write is in progress for this region of the file. 4198 * If we did not detect RMODINPROGRESS here then this 4199 * path through nfs_putapage() would eventually go to 4200 * nfs(3)_bio() and may not write out all of the data 4201 * in the pages. We end up losing data. So we decide 4202 * to set the modified bit on each page in the page 4203 * list and mark the rnode with RDIRTY. This write 4204 * will be restarted at some later time. 4205 */ 4206 plist = pp; 4207 while (plist != NULL) { 4208 pp = plist; 4209 page_sub(&plist, pp); 4210 hat_setmod(pp); 4211 page_io_unlock(pp); 4212 page_unlock(pp); 4213 } 4214 rp->r_flags |= RDIRTY; 4215 mutex_exit(&rp->r_statelock); 4216 if (offp) 4217 *offp = io_off; 4218 if (lenp) 4219 *lenp = io_len; 4220 return (0); 4221 } 4222 mutex_exit(&rp->r_statelock); 4223 } 4224 4225 if (flags & B_ASYNC) { 4226 error = nfs_async_putapage(vp, pp, io_off, io_len, flags, cr, 4227 nfs_sync_putapage); 4228 } else 4229 error = nfs_sync_putapage(vp, pp, io_off, io_len, flags, cr); 4230 4231 if (offp) 4232 *offp = io_off; 4233 if (lenp) 4234 *lenp = io_len; 4235 return (error); 4236 } 4237 4238 static int 4239 nfs_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 4240 int flags, cred_t *cr) 4241 { 4242 int error; 4243 rnode_t *rp; 4244 4245 flags |= B_WRITE; 4246 4247 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4248 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 4249 4250 rp = VTOR(vp); 4251 4252 if ((error == ENOSPC || error == EDQUOT || error == EACCES) && 4253 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 4254 if (!(rp->r_flags & ROUTOFSPACE)) { 4255 mutex_enter(&rp->r_statelock); 4256 rp->r_flags |= ROUTOFSPACE; 4257 mutex_exit(&rp->r_statelock); 4258 } 4259 flags |= B_ERROR; 4260 pvn_write_done(pp, flags); 4261 /* 4262 * If this was not an async thread, then try again to 4263 * write out the pages, but this time, also destroy 4264 * them whether or not the write is successful. This 4265 * will prevent memory from filling up with these 4266 * pages and destroying them is the only alternative 4267 * if they can't be written out. 4268 * 4269 * Don't do this if this is an async thread because 4270 * when the pages are unlocked in pvn_write_done, 4271 * some other thread could have come along, locked 4272 * them, and queued for an async thread. It would be 4273 * possible for all of the async threads to be tied 4274 * up waiting to lock the pages again and they would 4275 * all already be locked and waiting for an async 4276 * thread to handle them. Deadlock. 4277 */ 4278 if (!(flags & B_ASYNC)) { 4279 error = nfs_putpage(vp, io_off, io_len, 4280 B_INVAL | B_FORCE, cr, NULL); 4281 } 4282 } else { 4283 if (error) 4284 flags |= B_ERROR; 4285 else if (rp->r_flags & ROUTOFSPACE) { 4286 mutex_enter(&rp->r_statelock); 4287 rp->r_flags &= ~ROUTOFSPACE; 4288 mutex_exit(&rp->r_statelock); 4289 } 4290 pvn_write_done(pp, flags); 4291 } 4292 4293 return (error); 4294 } 4295 4296 /* ARGSUSED */ 4297 static int 4298 nfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4299 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4300 caller_context_t *ct) 4301 { 4302 struct segvn_crargs vn_a; 4303 int error; 4304 rnode_t *rp; 4305 struct vattr va; 4306 4307 if (nfs_zone() != VTOMI(vp)->mi_zone) 4308 return (EIO); 4309 4310 if (vp->v_flag & VNOMAP) 4311 return (ENOSYS); 4312 4313 if (off > MAXOFF32_T) 4314 return (EFBIG); 4315 4316 if (off < 0 || off + len < 0) 4317 return (ENXIO); 4318 4319 if (vp->v_type != VREG) 4320 return (ENODEV); 4321 4322 /* 4323 * If there is cached data and if close-to-open consistency 4324 * checking is not turned off and if the file system is not 4325 * mounted readonly, then force an over the wire getattr. 4326 * Otherwise, just invoke nfsgetattr to get a copy of the 4327 * attributes. The attribute cache will be used unless it 4328 * is timed out and if it is, then an over the wire getattr 4329 * will be issued. 4330 */ 4331 va.va_mask = AT_ALL; 4332 if (vn_has_cached_data(vp) && 4333 !(VTOMI(vp)->mi_flags & MI_NOCTO) && !vn_is_readonly(vp)) 4334 error = nfs_getattr_otw(vp, &va, cr); 4335 else 4336 error = nfsgetattr(vp, &va, cr); 4337 if (error) 4338 return (error); 4339 4340 /* 4341 * Check to see if the vnode is currently marked as not cachable. 4342 * This means portions of the file are locked (through VOP_FRLOCK). 4343 * In this case the map request must be refused. We use 4344 * rp->r_lkserlock to avoid a race with concurrent lock requests. 4345 */ 4346 rp = VTOR(vp); 4347 4348 /* 4349 * Atomically increment r_inmap after acquiring r_rwlock. The 4350 * idea here is to acquire r_rwlock to block read/write and 4351 * not to protect r_inmap. r_inmap will inform nfs_read/write() 4352 * that we are in nfs_map(). Now, r_rwlock is acquired in order 4353 * and we can prevent the deadlock that would have occurred 4354 * when nfs_addmap() would have acquired it out of order. 4355 * 4356 * Since we are not protecting r_inmap by any lock, we do not 4357 * hold any lock when we decrement it. We atomically decrement 4358 * r_inmap after we release r_lkserlock. 4359 */ 4360 4361 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp))) 4362 return (EINTR); 4363 atomic_add_int(&rp->r_inmap, 1); 4364 nfs_rw_exit(&rp->r_rwlock); 4365 4366 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) { 4367 atomic_add_int(&rp->r_inmap, -1); 4368 return (EINTR); 4369 } 4370 if (vp->v_flag & VNOCACHE) { 4371 error = EAGAIN; 4372 goto done; 4373 } 4374 4375 /* 4376 * Don't allow concurrent locks and mapping if mandatory locking is 4377 * enabled. 4378 */ 4379 if ((flk_has_remote_locks(vp) || lm_has_sleep(vp)) && 4380 MANDLOCK(vp, va.va_mode)) { 4381 error = EAGAIN; 4382 goto done; 4383 } 4384 4385 as_rangelock(as); 4386 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4387 if (error != 0) { 4388 as_rangeunlock(as); 4389 goto done; 4390 } 4391 4392 vn_a.vp = vp; 4393 vn_a.offset = off; 4394 vn_a.type = (flags & MAP_TYPE); 4395 vn_a.prot = (uchar_t)prot; 4396 vn_a.maxprot = (uchar_t)maxprot; 4397 vn_a.flags = (flags & ~MAP_TYPE); 4398 vn_a.cred = cr; 4399 vn_a.amp = NULL; 4400 vn_a.szc = 0; 4401 vn_a.lgrp_mem_policy_flags = 0; 4402 4403 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4404 as_rangeunlock(as); 4405 4406 done: 4407 nfs_rw_exit(&rp->r_lkserlock); 4408 atomic_add_int(&rp->r_inmap, -1); 4409 return (error); 4410 } 4411 4412 /* ARGSUSED */ 4413 static int 4414 nfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4415 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4416 caller_context_t *ct) 4417 { 4418 rnode_t *rp; 4419 4420 if (vp->v_flag & VNOMAP) 4421 return (ENOSYS); 4422 if (nfs_zone() != VTOMI(vp)->mi_zone) 4423 return (EIO); 4424 4425 rp = VTOR(vp); 4426 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 4427 4428 return (0); 4429 } 4430 4431 /* ARGSUSED */ 4432 static int 4433 nfs_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, offset_t offset, 4434 struct flk_callback *flk_cbp, cred_t *cr, caller_context_t *ct) 4435 { 4436 netobj lm_fh; 4437 int rc; 4438 u_offset_t start, end; 4439 rnode_t *rp; 4440 int error = 0, intr = INTR(vp); 4441 4442 /* check for valid cmd parameter */ 4443 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) 4444 return (EINVAL); 4445 if (nfs_zone() != VTOMI(vp)->mi_zone) 4446 return (EIO); 4447 4448 /* Verify l_type. */ 4449 switch (bfp->l_type) { 4450 case F_RDLCK: 4451 if (cmd != F_GETLK && !(flag & FREAD)) 4452 return (EBADF); 4453 break; 4454 case F_WRLCK: 4455 if (cmd != F_GETLK && !(flag & FWRITE)) 4456 return (EBADF); 4457 break; 4458 case F_UNLCK: 4459 intr = 0; 4460 break; 4461 4462 default: 4463 return (EINVAL); 4464 } 4465 4466 /* check the validity of the lock range */ 4467 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 4468 return (rc); 4469 if (rc = flk_check_lock_data(start, end, MAXOFF32_T)) 4470 return (rc); 4471 4472 /* 4473 * If the filesystem is mounted using local locking, pass the 4474 * request off to the local locking code. 4475 */ 4476 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 4477 if (offset > MAXOFF32_T) 4478 return (EFBIG); 4479 if (cmd == F_SETLK || cmd == F_SETLKW) { 4480 /* 4481 * For complete safety, we should be holding 4482 * r_lkserlock. However, we can't call 4483 * lm_safelock and then fs_frlock while 4484 * holding r_lkserlock, so just invoke 4485 * lm_safelock and expect that this will 4486 * catch enough of the cases. 4487 */ 4488 if (!lm_safelock(vp, bfp, cr)) 4489 return (EAGAIN); 4490 } 4491 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4492 } 4493 4494 rp = VTOR(vp); 4495 4496 /* 4497 * Check whether the given lock request can proceed, given the 4498 * current file mappings. 4499 */ 4500 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 4501 return (EINTR); 4502 if (cmd == F_SETLK || cmd == F_SETLKW) { 4503 if (!lm_safelock(vp, bfp, cr)) { 4504 rc = EAGAIN; 4505 goto done; 4506 } 4507 } 4508 4509 /* 4510 * Flush the cache after waiting for async I/O to finish. For new 4511 * locks, this is so that the process gets the latest bits from the 4512 * server. For unlocks, this is so that other clients see the 4513 * latest bits once the file has been unlocked. If currently dirty 4514 * pages can't be flushed, then don't allow a lock to be set. But 4515 * allow unlocks to succeed, to avoid having orphan locks on the 4516 * server. 4517 */ 4518 if (cmd != F_GETLK) { 4519 mutex_enter(&rp->r_statelock); 4520 while (rp->r_count > 0) { 4521 if (intr) { 4522 klwp_t *lwp = ttolwp(curthread); 4523 4524 if (lwp != NULL) 4525 lwp->lwp_nostop++; 4526 if (cv_wait_sig(&rp->r_cv, &rp->r_statelock) 4527 == 0) { 4528 if (lwp != NULL) 4529 lwp->lwp_nostop--; 4530 rc = EINTR; 4531 break; 4532 } 4533 if (lwp != NULL) 4534 lwp->lwp_nostop--; 4535 } else 4536 cv_wait(&rp->r_cv, &rp->r_statelock); 4537 } 4538 mutex_exit(&rp->r_statelock); 4539 if (rc != 0) 4540 goto done; 4541 error = nfs_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct); 4542 if (error) { 4543 if (error == ENOSPC || error == EDQUOT) { 4544 mutex_enter(&rp->r_statelock); 4545 if (!rp->r_error) 4546 rp->r_error = error; 4547 mutex_exit(&rp->r_statelock); 4548 } 4549 if (bfp->l_type != F_UNLCK) { 4550 rc = ENOLCK; 4551 goto done; 4552 } 4553 } 4554 } 4555 4556 lm_fh.n_len = sizeof (fhandle_t); 4557 lm_fh.n_bytes = (char *)VTOFH(vp); 4558 4559 /* 4560 * Call the lock manager to do the real work of contacting 4561 * the server and obtaining the lock. 4562 */ 4563 rc = lm_frlock(vp, cmd, bfp, flag, offset, cr, &lm_fh, flk_cbp); 4564 4565 if (rc == 0) 4566 nfs_lockcompletion(vp, cmd); 4567 4568 done: 4569 nfs_rw_exit(&rp->r_lkserlock); 4570 return (rc); 4571 } 4572 4573 /* 4574 * Free storage space associated with the specified vnode. The portion 4575 * to be freed is specified by bfp->l_start and bfp->l_len (already 4576 * normalized to a "whence" of 0). 4577 * 4578 * This is an experimental facility whose continued existence is not 4579 * guaranteed. Currently, we only support the special case 4580 * of l_len == 0, meaning free to end of file. 4581 */ 4582 /* ARGSUSED */ 4583 static int 4584 nfs_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 4585 offset_t offset, cred_t *cr, caller_context_t *ct) 4586 { 4587 int error; 4588 4589 ASSERT(vp->v_type == VREG); 4590 if (cmd != F_FREESP) 4591 return (EINVAL); 4592 4593 if (offset > MAXOFF32_T) 4594 return (EFBIG); 4595 4596 if ((bfp->l_start > MAXOFF32_T) || (bfp->l_end > MAXOFF32_T) || 4597 (bfp->l_len > MAXOFF32_T)) 4598 return (EFBIG); 4599 4600 if (nfs_zone() != VTOMI(vp)->mi_zone) 4601 return (EIO); 4602 4603 error = convoff(vp, bfp, 0, offset); 4604 if (!error) { 4605 ASSERT(bfp->l_start >= 0); 4606 if (bfp->l_len == 0) { 4607 struct vattr va; 4608 4609 /* 4610 * ftruncate should not change the ctime and 4611 * mtime if we truncate the file to its 4612 * previous size. 4613 */ 4614 va.va_mask = AT_SIZE; 4615 error = nfsgetattr(vp, &va, cr); 4616 if (error || va.va_size == bfp->l_start) 4617 return (error); 4618 va.va_mask = AT_SIZE; 4619 va.va_size = bfp->l_start; 4620 error = nfssetattr(vp, &va, 0, cr); 4621 } else 4622 error = EINVAL; 4623 } 4624 4625 return (error); 4626 } 4627 4628 /* ARGSUSED */ 4629 static int 4630 nfs_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct) 4631 { 4632 4633 return (EINVAL); 4634 } 4635 4636 /* 4637 * Setup and add an address space callback to do the work of the delmap call. 4638 * The callback will (and must be) deleted in the actual callback function. 4639 * 4640 * This is done in order to take care of the problem that we have with holding 4641 * the address space's a_lock for a long period of time (e.g. if the NFS server 4642 * is down). Callbacks will be executed in the address space code while the 4643 * a_lock is not held. Holding the address space's a_lock causes things such 4644 * as ps and fork to hang because they are trying to acquire this lock as well. 4645 */ 4646 /* ARGSUSED */ 4647 static int 4648 nfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4649 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4650 caller_context_t *ct) 4651 { 4652 int caller_found; 4653 int error; 4654 rnode_t *rp; 4655 nfs_delmap_args_t *dmapp; 4656 nfs_delmapcall_t *delmap_call; 4657 4658 if (vp->v_flag & VNOMAP) 4659 return (ENOSYS); 4660 /* 4661 * A process may not change zones if it has NFS pages mmap'ed 4662 * in, so we can't legitimately get here from the wrong zone. 4663 */ 4664 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4665 4666 rp = VTOR(vp); 4667 4668 /* 4669 * The way that the address space of this process deletes its mapping 4670 * of this file is via the following call chains: 4671 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs_delmap() 4672 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs_delmap() 4673 * 4674 * With the use of address space callbacks we are allowed to drop the 4675 * address space lock, a_lock, while executing the NFS operations that 4676 * need to go over the wire. Returning EAGAIN to the caller of this 4677 * function is what drives the execution of the callback that we add 4678 * below. The callback will be executed by the address space code 4679 * after dropping the a_lock. When the callback is finished, since 4680 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 4681 * is called again on the same segment to finish the rest of the work 4682 * that needs to happen during unmapping. 4683 * 4684 * This action of calling back into the segment driver causes 4685 * nfs_delmap() to get called again, but since the callback was 4686 * already executed at this point, it already did the work and there 4687 * is nothing left for us to do. 4688 * 4689 * To Summarize: 4690 * - The first time nfs_delmap is called by the current thread is when 4691 * we add the caller associated with this delmap to the delmap caller 4692 * list, add the callback, and return EAGAIN. 4693 * - The second time in this call chain when nfs_delmap is called we 4694 * will find this caller in the delmap caller list and realize there 4695 * is no more work to do thus removing this caller from the list and 4696 * returning the error that was set in the callback execution. 4697 */ 4698 caller_found = nfs_find_and_delete_delmapcall(rp, &error); 4699 if (caller_found) { 4700 /* 4701 * 'error' is from the actual delmap operations. To avoid 4702 * hangs, we need to handle the return of EAGAIN differently 4703 * since this is what drives the callback execution. 4704 * In this case, we don't want to return EAGAIN and do the 4705 * callback execution because there are none to execute. 4706 */ 4707 if (error == EAGAIN) 4708 return (0); 4709 else 4710 return (error); 4711 } 4712 4713 /* current caller was not in the list */ 4714 delmap_call = nfs_init_delmapcall(); 4715 4716 mutex_enter(&rp->r_statelock); 4717 list_insert_tail(&rp->r_indelmap, delmap_call); 4718 mutex_exit(&rp->r_statelock); 4719 4720 dmapp = kmem_alloc(sizeof (nfs_delmap_args_t), KM_SLEEP); 4721 4722 dmapp->vp = vp; 4723 dmapp->off = off; 4724 dmapp->addr = addr; 4725 dmapp->len = len; 4726 dmapp->prot = prot; 4727 dmapp->maxprot = maxprot; 4728 dmapp->flags = flags; 4729 dmapp->cr = cr; 4730 dmapp->caller = delmap_call; 4731 4732 error = as_add_callback(as, nfs_delmap_callback, dmapp, 4733 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 4734 4735 return (error ? error : EAGAIN); 4736 } 4737 4738 /* 4739 * Remove some pages from an mmap'd vnode. Just update the 4740 * count of pages. If doing close-to-open, then flush all 4741 * of the pages associated with this file. Otherwise, start 4742 * an asynchronous page flush to write out any dirty pages. 4743 * This will also associate a credential with the rnode which 4744 * can be used to write the pages. 4745 */ 4746 /* ARGSUSED */ 4747 static void 4748 nfs_delmap_callback(struct as *as, void *arg, uint_t event) 4749 { 4750 int error; 4751 rnode_t *rp; 4752 mntinfo_t *mi; 4753 nfs_delmap_args_t *dmapp = (nfs_delmap_args_t *)arg; 4754 4755 rp = VTOR(dmapp->vp); 4756 mi = VTOMI(dmapp->vp); 4757 4758 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 4759 ASSERT(rp->r_mapcnt >= 0); 4760 4761 /* 4762 * Initiate a page flush if there are pages, the file system 4763 * was not mounted readonly, the segment was mapped shared, and 4764 * the pages themselves were writeable. 4765 */ 4766 if (vn_has_cached_data(dmapp->vp) && !vn_is_readonly(dmapp->vp) && 4767 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 4768 mutex_enter(&rp->r_statelock); 4769 rp->r_flags |= RDIRTY; 4770 mutex_exit(&rp->r_statelock); 4771 /* 4772 * If this is a cross-zone access a sync putpage won't work, so 4773 * the best we can do is try an async putpage. That seems 4774 * better than something more draconian such as discarding the 4775 * dirty pages. 4776 */ 4777 if ((mi->mi_flags & MI_NOCTO) || 4778 nfs_zone() != mi->mi_zone) 4779 error = nfs_putpage(dmapp->vp, dmapp->off, dmapp->len, 4780 B_ASYNC, dmapp->cr, NULL); 4781 else 4782 error = nfs_putpage(dmapp->vp, dmapp->off, dmapp->len, 4783 0, dmapp->cr, NULL); 4784 if (!error) { 4785 mutex_enter(&rp->r_statelock); 4786 error = rp->r_error; 4787 rp->r_error = 0; 4788 mutex_exit(&rp->r_statelock); 4789 } 4790 } else 4791 error = 0; 4792 4793 if ((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) 4794 (void) nfs_putpage(dmapp->vp, dmapp->off, dmapp->len, 4795 B_INVAL, dmapp->cr, NULL); 4796 4797 dmapp->caller->error = error; 4798 (void) as_delete_callback(as, arg); 4799 kmem_free(dmapp, sizeof (nfs_delmap_args_t)); 4800 } 4801 4802 /* ARGSUSED */ 4803 static int 4804 nfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4805 caller_context_t *ct) 4806 { 4807 int error = 0; 4808 4809 if (nfs_zone() != VTOMI(vp)->mi_zone) 4810 return (EIO); 4811 /* 4812 * This looks a little weird because it's written in a general 4813 * manner but we make little use of cases. If cntl() ever gets 4814 * widely used, the outer switch will make more sense. 4815 */ 4816 4817 switch (cmd) { 4818 4819 /* 4820 * Large file spec - need to base answer new query with 4821 * hardcoded constant based on the protocol. 4822 */ 4823 case _PC_FILESIZEBITS: 4824 *valp = 32; 4825 return (0); 4826 4827 case _PC_LINK_MAX: 4828 case _PC_NAME_MAX: 4829 case _PC_PATH_MAX: 4830 case _PC_SYMLINK_MAX: 4831 case _PC_CHOWN_RESTRICTED: 4832 case _PC_NO_TRUNC: { 4833 mntinfo_t *mi; 4834 struct pathcnf *pc; 4835 4836 if ((mi = VTOMI(vp)) == NULL || (pc = mi->mi_pathconf) == NULL) 4837 return (EINVAL); 4838 error = _PC_ISSET(cmd, pc->pc_mask); /* error or bool */ 4839 switch (cmd) { 4840 case _PC_LINK_MAX: 4841 *valp = pc->pc_link_max; 4842 break; 4843 case _PC_NAME_MAX: 4844 *valp = pc->pc_name_max; 4845 break; 4846 case _PC_PATH_MAX: 4847 case _PC_SYMLINK_MAX: 4848 *valp = pc->pc_path_max; 4849 break; 4850 case _PC_CHOWN_RESTRICTED: 4851 /* 4852 * if we got here, error is really a boolean which 4853 * indicates whether cmd is set or not. 4854 */ 4855 *valp = error ? 1 : 0; /* see above */ 4856 error = 0; 4857 break; 4858 case _PC_NO_TRUNC: 4859 /* 4860 * if we got here, error is really a boolean which 4861 * indicates whether cmd is set or not. 4862 */ 4863 *valp = error ? 1 : 0; /* see above */ 4864 error = 0; 4865 break; 4866 } 4867 return (error ? EINVAL : 0); 4868 } 4869 4870 case _PC_XATTR_EXISTS: 4871 *valp = 0; 4872 if (vp->v_vfsp->vfs_flag & VFS_XATTR) { 4873 vnode_t *avp; 4874 rnode_t *rp; 4875 mntinfo_t *mi = VTOMI(vp); 4876 4877 if (!(mi->mi_flags & MI_EXTATTR)) 4878 return (0); 4879 4880 rp = VTOR(vp); 4881 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, 4882 INTR(vp))) 4883 return (EINTR); 4884 4885 error = nfslookup_dnlc(vp, XATTR_DIR_NAME, &avp, cr); 4886 if (error || avp == NULL) 4887 error = acl_getxattrdir2(vp, &avp, 0, cr, 0); 4888 4889 nfs_rw_exit(&rp->r_rwlock); 4890 4891 if (error == 0 && avp != NULL) { 4892 error = do_xattr_exists_check(avp, valp, cr); 4893 VN_RELE(avp); 4894 } 4895 } 4896 return (error ? EINVAL : 0); 4897 4898 case _PC_ACL_ENABLED: 4899 *valp = _ACL_ACLENT_ENABLED; 4900 return (0); 4901 4902 default: 4903 return (EINVAL); 4904 } 4905 } 4906 4907 /* 4908 * Called by async thread to do synchronous pageio. Do the i/o, wait 4909 * for it to complete, and cleanup the page list when done. 4910 */ 4911 static int 4912 nfs_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 4913 int flags, cred_t *cr) 4914 { 4915 int error; 4916 4917 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4918 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 4919 if (flags & B_READ) 4920 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 4921 else 4922 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 4923 return (error); 4924 } 4925 4926 /* ARGSUSED */ 4927 static int 4928 nfs_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 4929 int flags, cred_t *cr, caller_context_t *ct) 4930 { 4931 int error; 4932 rnode_t *rp; 4933 4934 if (pp == NULL) 4935 return (EINVAL); 4936 4937 if (io_off > MAXOFF32_T) 4938 return (EFBIG); 4939 if (nfs_zone() != VTOMI(vp)->mi_zone) 4940 return (EIO); 4941 rp = VTOR(vp); 4942 mutex_enter(&rp->r_statelock); 4943 rp->r_count++; 4944 mutex_exit(&rp->r_statelock); 4945 4946 if (flags & B_ASYNC) { 4947 error = nfs_async_pageio(vp, pp, io_off, io_len, flags, cr, 4948 nfs_sync_pageio); 4949 } else 4950 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 4951 mutex_enter(&rp->r_statelock); 4952 rp->r_count--; 4953 cv_broadcast(&rp->r_cv); 4954 mutex_exit(&rp->r_statelock); 4955 return (error); 4956 } 4957 4958 /* ARGSUSED */ 4959 static int 4960 nfs_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 4961 caller_context_t *ct) 4962 { 4963 int error; 4964 mntinfo_t *mi; 4965 4966 mi = VTOMI(vp); 4967 4968 if (nfs_zone() != mi->mi_zone) 4969 return (EIO); 4970 if (mi->mi_flags & MI_ACL) { 4971 error = acl_setacl2(vp, vsecattr, flag, cr); 4972 if (mi->mi_flags & MI_ACL) 4973 return (error); 4974 } 4975 4976 return (ENOSYS); 4977 } 4978 4979 /* ARGSUSED */ 4980 static int 4981 nfs_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 4982 caller_context_t *ct) 4983 { 4984 int error; 4985 mntinfo_t *mi; 4986 4987 mi = VTOMI(vp); 4988 4989 if (nfs_zone() != mi->mi_zone) 4990 return (EIO); 4991 if (mi->mi_flags & MI_ACL) { 4992 error = acl_getacl2(vp, vsecattr, flag, cr); 4993 if (mi->mi_flags & MI_ACL) 4994 return (error); 4995 } 4996 4997 return (fs_fab_acl(vp, vsecattr, flag, cr, ct)); 4998 } 4999 5000 /* ARGSUSED */ 5001 static int 5002 nfs_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr, 5003 caller_context_t *ct) 5004 { 5005 int error; 5006 struct shrlock nshr; 5007 struct nfs_owner nfs_owner; 5008 netobj lm_fh; 5009 5010 if (nfs_zone() != VTOMI(vp)->mi_zone) 5011 return (EIO); 5012 5013 /* 5014 * check for valid cmd parameter 5015 */ 5016 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 5017 return (EINVAL); 5018 5019 /* 5020 * Check access permissions 5021 */ 5022 if (cmd == F_SHARE && 5023 (((shr->s_access & F_RDACC) && !(flag & FREAD)) || 5024 ((shr->s_access & F_WRACC) && !(flag & FWRITE)))) 5025 return (EBADF); 5026 5027 /* 5028 * If the filesystem is mounted using local locking, pass the 5029 * request off to the local share code. 5030 */ 5031 if (VTOMI(vp)->mi_flags & MI_LLOCK) 5032 return (fs_shrlock(vp, cmd, shr, flag, cr, ct)); 5033 5034 switch (cmd) { 5035 case F_SHARE: 5036 case F_UNSHARE: 5037 lm_fh.n_len = sizeof (fhandle_t); 5038 lm_fh.n_bytes = (char *)VTOFH(vp); 5039 5040 /* 5041 * If passed an owner that is too large to fit in an 5042 * nfs_owner it is likely a recursive call from the 5043 * lock manager client and pass it straight through. If 5044 * it is not a nfs_owner then simply return an error. 5045 */ 5046 if (shr->s_own_len > sizeof (nfs_owner.lowner)) { 5047 if (((struct nfs_owner *)shr->s_owner)->magic != 5048 NFS_OWNER_MAGIC) 5049 return (EINVAL); 5050 5051 if (error = lm_shrlock(vp, cmd, shr, flag, &lm_fh)) { 5052 error = set_errno(error); 5053 } 5054 return (error); 5055 } 5056 /* 5057 * Remote share reservations owner is a combination of 5058 * a magic number, hostname, and the local owner 5059 */ 5060 bzero(&nfs_owner, sizeof (nfs_owner)); 5061 nfs_owner.magic = NFS_OWNER_MAGIC; 5062 (void) strncpy(nfs_owner.hname, uts_nodename(), 5063 sizeof (nfs_owner.hname)); 5064 bcopy(shr->s_owner, nfs_owner.lowner, shr->s_own_len); 5065 nshr.s_access = shr->s_access; 5066 nshr.s_deny = shr->s_deny; 5067 nshr.s_sysid = 0; 5068 nshr.s_pid = ttoproc(curthread)->p_pid; 5069 nshr.s_own_len = sizeof (nfs_owner); 5070 nshr.s_owner = (caddr_t)&nfs_owner; 5071 5072 if (error = lm_shrlock(vp, cmd, &nshr, flag, &lm_fh)) { 5073 error = set_errno(error); 5074 } 5075 5076 break; 5077 5078 case F_HASREMOTELOCKS: 5079 /* 5080 * NFS client can't store remote locks itself 5081 */ 5082 shr->s_access = 0; 5083 error = 0; 5084 break; 5085 5086 default: 5087 error = EINVAL; 5088 break; 5089 } 5090 5091 return (error); 5092 }