1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 28 * All rights reserved. 29 */ 30 31 #include <sys/param.h> 32 #include <sys/types.h> 33 #include <sys/systm.h> 34 #include <sys/cred.h> 35 #include <sys/time.h> 36 #include <sys/vnode.h> 37 #include <sys/vfs.h> 38 #include <sys/vfs_opreg.h> 39 #include <sys/file.h> 40 #include <sys/filio.h> 41 #include <sys/uio.h> 42 #include <sys/buf.h> 43 #include <sys/mman.h> 44 #include <sys/pathname.h> 45 #include <sys/dirent.h> 46 #include <sys/debug.h> 47 #include <sys/vmsystm.h> 48 #include <sys/fcntl.h> 49 #include <sys/flock.h> 50 #include <sys/swap.h> 51 #include <sys/errno.h> 52 #include <sys/strsubr.h> 53 #include <sys/sysmacros.h> 54 #include <sys/kmem.h> 55 #include <sys/cmn_err.h> 56 #include <sys/pathconf.h> 57 #include <sys/utsname.h> 58 #include <sys/dnlc.h> 59 #include <sys/acl.h> 60 #include <sys/systeminfo.h> 61 #include <sys/atomic.h> 62 #include <sys/policy.h> 63 #include <sys/sdt.h> 64 #include <sys/zone.h> 65 66 #include <rpc/types.h> 67 #include <rpc/auth.h> 68 #include <rpc/clnt.h> 69 #include <rpc/rpc_rdma.h> 70 71 #include <nfs/nfs.h> 72 #include <nfs/nfs_clnt.h> 73 #include <nfs/rnode.h> 74 #include <nfs/nfs_acl.h> 75 #include <nfs/lm.h> 76 77 #include <vm/hat.h> 78 #include <vm/as.h> 79 #include <vm/page.h> 80 #include <vm/pvn.h> 81 #include <vm/seg.h> 82 #include <vm/seg_map.h> 83 #include <vm/seg_kpm.h> 84 #include <vm/seg_vn.h> 85 86 #include <fs/fs_subr.h> 87 88 #include <sys/ddi.h> 89 90 static int nfs3_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 91 cred_t *); 92 static int nfs3write(vnode_t *, caddr_t, u_offset_t, int, cred_t *, 93 stable_how *); 94 static int nfs3read(vnode_t *, caddr_t, offset_t, int, size_t *, cred_t *); 95 static int nfs3setattr(vnode_t *, struct vattr *, int, cred_t *); 96 static int nfs3_accessx(void *, int, cred_t *); 97 static int nfs3lookup_dnlc(vnode_t *, char *, vnode_t **, cred_t *); 98 static int nfs3lookup_otw(vnode_t *, char *, vnode_t **, cred_t *, int); 99 static int nfs3create(vnode_t *, char *, struct vattr *, enum vcexcl, 100 int, vnode_t **, cred_t *, int); 101 static int nfs3excl_create_settimes(vnode_t *, struct vattr *, cred_t *); 102 static int nfs3mknod(vnode_t *, char *, struct vattr *, enum vcexcl, 103 int, vnode_t **, cred_t *); 104 static int nfs3rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 105 caller_context_t *); 106 static int do_nfs3readdir(vnode_t *, rddir_cache *, cred_t *); 107 static void nfs3readdir(vnode_t *, rddir_cache *, cred_t *); 108 static void nfs3readdirplus(vnode_t *, rddir_cache *, cred_t *); 109 static int nfs3_bio(struct buf *, stable_how *, cred_t *); 110 static int nfs3_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 111 page_t *[], size_t, struct seg *, caddr_t, 112 enum seg_rw, cred_t *); 113 static void nfs3_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 114 cred_t *); 115 static int nfs3_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 116 int, cred_t *); 117 static int nfs3_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 118 int, cred_t *); 119 static int nfs3_commit(vnode_t *, offset3, count3, cred_t *); 120 static void nfs3_set_mod(vnode_t *); 121 static void nfs3_get_commit(vnode_t *); 122 static void nfs3_get_commit_range(vnode_t *, u_offset_t, size_t); 123 static int nfs3_putpage_commit(vnode_t *, offset_t, size_t, cred_t *); 124 static int nfs3_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *); 125 static int nfs3_sync_commit(vnode_t *, page_t *, offset3, count3, 126 cred_t *); 127 static void nfs3_async_commit(vnode_t *, page_t *, offset3, count3, 128 cred_t *); 129 static void nfs3_delmap_callback(struct as *, void *, uint_t); 130 131 /* 132 * Error flags used to pass information about certain special errors 133 * which need to be handled specially. 134 */ 135 #define NFS_EOF -98 136 #define NFS_VERF_MISMATCH -97 137 138 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */ 139 #define ALIGN64(x, ptr, sz) \ 140 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \ 141 if (x) { \ 142 x = sizeof (uint64_t) - (x); \ 143 sz -= (x); \ 144 ptr += (x); \ 145 } 146 147 /* 148 * These are the vnode ops routines which implement the vnode interface to 149 * the networked file system. These routines just take their parameters, 150 * make them look networkish by putting the right info into interface structs, 151 * and then calling the appropriate remote routine(s) to do the work. 152 * 153 * Note on directory name lookup cacheing: If we detect a stale fhandle, 154 * we purge the directory cache relative to that vnode. This way, the 155 * user won't get burned by the cache repeatedly. See <nfs/rnode.h> for 156 * more details on rnode locking. 157 */ 158 159 static int nfs3_open(vnode_t **, int, cred_t *, caller_context_t *); 160 static int nfs3_close(vnode_t *, int, int, offset_t, cred_t *, 161 caller_context_t *); 162 static int nfs3_read(vnode_t *, struct uio *, int, cred_t *, 163 caller_context_t *); 164 static int nfs3_write(vnode_t *, struct uio *, int, cred_t *, 165 caller_context_t *); 166 static int nfs3_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *, 167 caller_context_t *); 168 static int nfs3_getattr(vnode_t *, struct vattr *, int, cred_t *, 169 caller_context_t *); 170 static int nfs3_setattr(vnode_t *, struct vattr *, int, cred_t *, 171 caller_context_t *); 172 static int nfs3_access(vnode_t *, int, int, cred_t *, caller_context_t *); 173 static int nfs3_readlink(vnode_t *, struct uio *, cred_t *, 174 caller_context_t *); 175 static int nfs3_fsync(vnode_t *, int, cred_t *, caller_context_t *); 176 static void nfs3_inactive(vnode_t *, cred_t *, caller_context_t *); 177 static int nfs3_lookup(vnode_t *, char *, vnode_t **, 178 struct pathname *, int, vnode_t *, cred_t *, 179 caller_context_t *, int *, pathname_t *); 180 static int nfs3_create(vnode_t *, char *, struct vattr *, enum vcexcl, 181 int, vnode_t **, cred_t *, int, caller_context_t *, 182 vsecattr_t *); 183 static int nfs3_remove(vnode_t *, char *, cred_t *, caller_context_t *, 184 int); 185 static int nfs3_link(vnode_t *, vnode_t *, char *, cred_t *, 186 caller_context_t *, int); 187 static int nfs3_rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 188 caller_context_t *, int); 189 static int nfs3_mkdir(vnode_t *, char *, struct vattr *, vnode_t **, 190 cred_t *, caller_context_t *, int, vsecattr_t *); 191 static int nfs3_rmdir(vnode_t *, char *, vnode_t *, cred_t *, 192 caller_context_t *, int); 193 static int nfs3_symlink(vnode_t *, char *, struct vattr *, char *, 194 cred_t *, caller_context_t *, int); 195 static int nfs3_readdir(vnode_t *, struct uio *, cred_t *, int *, 196 caller_context_t *, int); 197 static int nfs3_fid(vnode_t *, fid_t *, caller_context_t *); 198 static int nfs3_rwlock(vnode_t *, int, caller_context_t *); 199 static void nfs3_rwunlock(vnode_t *, int, caller_context_t *); 200 static int nfs3_seek(vnode_t *, offset_t, offset_t *, caller_context_t *); 201 static int nfs3_getpage(vnode_t *, offset_t, size_t, uint_t *, 202 page_t *[], size_t, struct seg *, caddr_t, 203 enum seg_rw, cred_t *, caller_context_t *); 204 static int nfs3_putpage(vnode_t *, offset_t, size_t, int, cred_t *, 205 caller_context_t *); 206 static int nfs3_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t, 207 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 208 static int nfs3_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 209 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 210 static int nfs3_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 211 struct flk_callback *, cred_t *, caller_context_t *); 212 static int nfs3_space(vnode_t *, int, struct flock64 *, int, offset_t, 213 cred_t *, caller_context_t *); 214 static int nfs3_realvp(vnode_t *, vnode_t **, caller_context_t *); 215 static int nfs3_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 216 uint_t, uint_t, uint_t, cred_t *, caller_context_t *); 217 static int nfs3_pathconf(vnode_t *, int, ulong_t *, cred_t *, 218 caller_context_t *); 219 static int nfs3_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 220 cred_t *, caller_context_t *); 221 static void nfs3_dispose(vnode_t *, page_t *, int, int, cred_t *, 222 caller_context_t *); 223 static int nfs3_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 224 caller_context_t *); 225 static int nfs3_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 226 caller_context_t *); 227 static int nfs3_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *, 228 caller_context_t *); 229 230 struct vnodeops *nfs3_vnodeops; 231 232 const fs_operation_def_t nfs3_vnodeops_template[] = { 233 VOPNAME_OPEN, { .vop_open = nfs3_open }, 234 VOPNAME_CLOSE, { .vop_close = nfs3_close }, 235 VOPNAME_READ, { .vop_read = nfs3_read }, 236 VOPNAME_WRITE, { .vop_write = nfs3_write }, 237 VOPNAME_IOCTL, { .vop_ioctl = nfs3_ioctl }, 238 VOPNAME_GETATTR, { .vop_getattr = nfs3_getattr }, 239 VOPNAME_SETATTR, { .vop_setattr = nfs3_setattr }, 240 VOPNAME_ACCESS, { .vop_access = nfs3_access }, 241 VOPNAME_LOOKUP, { .vop_lookup = nfs3_lookup }, 242 VOPNAME_CREATE, { .vop_create = nfs3_create }, 243 VOPNAME_REMOVE, { .vop_remove = nfs3_remove }, 244 VOPNAME_LINK, { .vop_link = nfs3_link }, 245 VOPNAME_RENAME, { .vop_rename = nfs3_rename }, 246 VOPNAME_MKDIR, { .vop_mkdir = nfs3_mkdir }, 247 VOPNAME_RMDIR, { .vop_rmdir = nfs3_rmdir }, 248 VOPNAME_READDIR, { .vop_readdir = nfs3_readdir }, 249 VOPNAME_SYMLINK, { .vop_symlink = nfs3_symlink }, 250 VOPNAME_READLINK, { .vop_readlink = nfs3_readlink }, 251 VOPNAME_FSYNC, { .vop_fsync = nfs3_fsync }, 252 VOPNAME_INACTIVE, { .vop_inactive = nfs3_inactive }, 253 VOPNAME_FID, { .vop_fid = nfs3_fid }, 254 VOPNAME_RWLOCK, { .vop_rwlock = nfs3_rwlock }, 255 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs3_rwunlock }, 256 VOPNAME_SEEK, { .vop_seek = nfs3_seek }, 257 VOPNAME_FRLOCK, { .vop_frlock = nfs3_frlock }, 258 VOPNAME_SPACE, { .vop_space = nfs3_space }, 259 VOPNAME_REALVP, { .vop_realvp = nfs3_realvp }, 260 VOPNAME_GETPAGE, { .vop_getpage = nfs3_getpage }, 261 VOPNAME_PUTPAGE, { .vop_putpage = nfs3_putpage }, 262 VOPNAME_MAP, { .vop_map = nfs3_map }, 263 VOPNAME_ADDMAP, { .vop_addmap = nfs3_addmap }, 264 VOPNAME_DELMAP, { .vop_delmap = nfs3_delmap }, 265 /* no separate nfs3_dump */ 266 VOPNAME_DUMP, { .vop_dump = nfs_dump }, 267 VOPNAME_PATHCONF, { .vop_pathconf = nfs3_pathconf }, 268 VOPNAME_PAGEIO, { .vop_pageio = nfs3_pageio }, 269 VOPNAME_DISPOSE, { .vop_dispose = nfs3_dispose }, 270 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs3_setsecattr }, 271 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs3_getsecattr }, 272 VOPNAME_SHRLOCK, { .vop_shrlock = nfs3_shrlock }, 273 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 274 NULL, NULL 275 }; 276 277 /* 278 * XXX: This is referenced in modstubs.s 279 */ 280 struct vnodeops * 281 nfs3_getvnodeops(void) 282 { 283 return (nfs3_vnodeops); 284 } 285 286 /* ARGSUSED */ 287 static int 288 nfs3_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 289 { 290 int error; 291 struct vattr va; 292 rnode_t *rp; 293 vnode_t *vp; 294 295 vp = *vpp; 296 if (nfs_zone() != VTOMI(vp)->mi_zone) 297 return (EIO); 298 rp = VTOR(vp); 299 mutex_enter(&rp->r_statelock); 300 if (rp->r_cred == NULL) { 301 crhold(cr); 302 rp->r_cred = cr; 303 } 304 mutex_exit(&rp->r_statelock); 305 306 /* 307 * If there is no cached data or if close-to-open 308 * consistency checking is turned off, we can avoid 309 * the over the wire getattr. Otherwise, if the 310 * file system is mounted readonly, then just verify 311 * the caches are up to date using the normal mechanism. 312 * Else, if the file is not mmap'd, then just mark 313 * the attributes as timed out. They will be refreshed 314 * and the caches validated prior to being used. 315 * Else, the file system is mounted writeable so 316 * force an over the wire GETATTR in order to ensure 317 * that all cached data is valid. 318 */ 319 if (vp->v_count > 1 || 320 ((vn_has_cached_data(vp) || HAVE_RDDIR_CACHE(rp)) && 321 !(VTOMI(vp)->mi_flags & MI_NOCTO))) { 322 if (vn_is_readonly(vp)) 323 error = nfs3_validate_caches(vp, cr); 324 else if (rp->r_mapcnt == 0 && vp->v_count == 1) { 325 PURGE_ATTRCACHE(vp); 326 error = 0; 327 } else { 328 va.va_mask = AT_ALL; 329 error = nfs3_getattr_otw(vp, &va, cr); 330 } 331 } else 332 error = 0; 333 334 return (error); 335 } 336 337 /* ARGSUSED */ 338 static int 339 nfs3_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 340 caller_context_t *ct) 341 { 342 rnode_t *rp; 343 int error; 344 struct vattr va; 345 346 /* 347 * zone_enter(2) prevents processes from changing zones with NFS files 348 * open; if we happen to get here from the wrong zone we can't do 349 * anything over the wire. 350 */ 351 if (VTOMI(vp)->mi_zone != nfs_zone()) { 352 /* 353 * We could attempt to clean up locks, except we're sure 354 * that the current process didn't acquire any locks on 355 * the file: any attempt to lock a file belong to another zone 356 * will fail, and one can't lock an NFS file and then change 357 * zones, as that fails too. 358 * 359 * Returning an error here is the sane thing to do. A 360 * subsequent call to VN_RELE() which translates to a 361 * nfs3_inactive() will clean up state: if the zone of the 362 * vnode's origin is still alive and kicking, an async worker 363 * thread will handle the request (from the correct zone), and 364 * everything (minus the commit and final nfs3_getattr_otw() 365 * call) should be OK. If the zone is going away 366 * nfs_async_inactive() will throw away cached pages inline. 367 */ 368 return (EIO); 369 } 370 371 /* 372 * If we are using local locking for this filesystem, then 373 * release all of the SYSV style record locks. Otherwise, 374 * we are doing network locking and we need to release all 375 * of the network locks. All of the locks held by this 376 * process on this file are released no matter what the 377 * incoming reference count is. 378 */ 379 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 380 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 381 cleanshares(vp, ttoproc(curthread)->p_pid); 382 } else 383 nfs_lockrelease(vp, flag, offset, cr); 384 385 if (count > 1) 386 return (0); 387 388 /* 389 * If the file has been `unlinked', then purge the 390 * DNLC so that this vnode will get reycled quicker 391 * and the .nfs* file on the server will get removed. 392 */ 393 rp = VTOR(vp); 394 if (rp->r_unldvp != NULL) 395 dnlc_purge_vp(vp); 396 397 /* 398 * If the file was open for write and there are pages, 399 * then if the file system was mounted using the "no-close- 400 * to-open" semantics, then start an asynchronous flush 401 * of the all of the pages in the file. 402 * else the file system was not mounted using the "no-close- 403 * to-open" semantics, then do a synchronous flush and 404 * commit of all of the dirty and uncommitted pages. 405 * 406 * The asynchronous flush of the pages in the "nocto" path 407 * mostly just associates a cred pointer with the rnode so 408 * writes which happen later will have a better chance of 409 * working. It also starts the data being written to the 410 * server, but without unnecessarily delaying the application. 411 */ 412 if ((flag & FWRITE) && vn_has_cached_data(vp)) { 413 if (VTOMI(vp)->mi_flags & MI_NOCTO) { 414 error = nfs3_putpage(vp, (offset_t)0, 0, B_ASYNC, 415 cr, ct); 416 if (error == EAGAIN) 417 error = 0; 418 } else 419 error = nfs3_putpage_commit(vp, (offset_t)0, 0, cr); 420 if (!error) { 421 mutex_enter(&rp->r_statelock); 422 error = rp->r_error; 423 rp->r_error = 0; 424 mutex_exit(&rp->r_statelock); 425 } 426 } else { 427 mutex_enter(&rp->r_statelock); 428 error = rp->r_error; 429 rp->r_error = 0; 430 mutex_exit(&rp->r_statelock); 431 } 432 433 /* 434 * If RWRITEATTR is set, then issue an over the wire GETATTR to 435 * refresh the attribute cache with a set of attributes which 436 * weren't returned from a WRITE. This will enable the close- 437 * to-open processing to work. 438 */ 439 if (rp->r_flags & RWRITEATTR) 440 (void) nfs3_getattr_otw(vp, &va, cr); 441 442 return (error); 443 } 444 445 /* ARGSUSED */ 446 static int 447 nfs3_directio_read(vnode_t *vp, struct uio *uiop, cred_t *cr) 448 { 449 mntinfo_t *mi; 450 READ3args args; 451 READ3uiores res; 452 int tsize; 453 offset_t offset; 454 ssize_t count; 455 int error; 456 int douprintf; 457 failinfo_t fi; 458 char *sv_hostname; 459 460 mi = VTOMI(vp); 461 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 462 sv_hostname = VTOR(vp)->r_server->sv_hostname; 463 464 douprintf = 1; 465 args.file = *VTOFH3(vp); 466 fi.vp = vp; 467 fi.fhp = (caddr_t)&args.file; 468 fi.copyproc = nfs3copyfh; 469 fi.lookupproc = nfs3lookup; 470 fi.xattrdirproc = acl_getxattrdir3; 471 472 res.uiop = uiop; 473 474 res.wlist = NULL; 475 476 offset = uiop->uio_loffset; 477 count = uiop->uio_resid; 478 479 do { 480 if (mi->mi_io_kstats) { 481 mutex_enter(&mi->mi_lock); 482 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 483 mutex_exit(&mi->mi_lock); 484 } 485 486 do { 487 tsize = MIN(mi->mi_tsize, count); 488 args.offset = (offset3)offset; 489 args.count = (count3)tsize; 490 res.size = (uint_t)tsize; 491 args.res_uiop = uiop; 492 args.res_data_val_alt = NULL; 493 494 error = rfs3call(mi, NFSPROC3_READ, 495 xdr_READ3args, (caddr_t)&args, 496 xdr_READ3uiores, (caddr_t)&res, cr, 497 &douprintf, &res.status, 0, &fi); 498 } while (error == ENFS_TRYAGAIN); 499 500 if (mi->mi_io_kstats) { 501 mutex_enter(&mi->mi_lock); 502 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 503 mutex_exit(&mi->mi_lock); 504 } 505 506 if (error) 507 return (error); 508 509 error = geterrno3(res.status); 510 if (error) 511 return (error); 512 513 if (res.count != res.size) { 514 zcmn_err(getzoneid(), CE_WARN, 515 "nfs3_directio_read: server %s returned incorrect amount", 516 sv_hostname); 517 return (EIO); 518 } 519 count -= res.count; 520 offset += res.count; 521 if (mi->mi_io_kstats) { 522 mutex_enter(&mi->mi_lock); 523 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 524 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.count; 525 mutex_exit(&mi->mi_lock); 526 } 527 lwp_stat_update(LWP_STAT_INBLK, 1); 528 } while (count && !res.eof); 529 530 return (0); 531 } 532 533 /* ARGSUSED */ 534 static int 535 nfs3_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 536 caller_context_t *ct) 537 { 538 rnode_t *rp; 539 u_offset_t off; 540 offset_t diff; 541 int on; 542 size_t n; 543 caddr_t base; 544 uint_t flags; 545 int error = 0; 546 mntinfo_t *mi; 547 548 rp = VTOR(vp); 549 mi = VTOMI(vp); 550 551 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 552 553 if (nfs_zone() != mi->mi_zone) 554 return (EIO); 555 556 if (vp->v_type != VREG) 557 return (EISDIR); 558 559 if (uiop->uio_resid == 0) 560 return (0); 561 562 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0) 563 return (EINVAL); 564 565 /* 566 * Bypass VM if caching has been disabled (e.g., locking) or if 567 * using client-side direct I/O and the file is not mmap'd and 568 * there are no cached pages. 569 */ 570 if ((vp->v_flag & VNOCACHE) || 571 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 572 rp->r_mapcnt == 0 && rp->r_inmap == 0 && 573 !vn_has_cached_data(vp))) { 574 return (nfs3_directio_read(vp, uiop, cr)); 575 } 576 577 do { 578 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 579 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 580 n = MIN(MAXBSIZE - on, uiop->uio_resid); 581 582 error = nfs3_validate_caches(vp, cr); 583 if (error) 584 break; 585 586 mutex_enter(&rp->r_statelock); 587 while (rp->r_flags & RINCACHEPURGE) { 588 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 589 mutex_exit(&rp->r_statelock); 590 return (EINTR); 591 } 592 } 593 diff = rp->r_size - uiop->uio_loffset; 594 mutex_exit(&rp->r_statelock); 595 if (diff <= 0) 596 break; 597 if (diff < n) 598 n = (size_t)diff; 599 600 if (vpm_enable) { 601 /* 602 * Copy data. 603 */ 604 error = vpm_data_copy(vp, off + on, n, uiop, 605 1, NULL, 0, S_READ); 606 } else { 607 base = segmap_getmapflt(segkmap, vp, off + on, n, 1, 608 S_READ); 609 610 error = uiomove(base + on, n, UIO_READ, uiop); 611 } 612 613 if (!error) { 614 /* 615 * If read a whole block or read to eof, 616 * won't need this buffer again soon. 617 */ 618 mutex_enter(&rp->r_statelock); 619 if (n + on == MAXBSIZE || 620 uiop->uio_loffset == rp->r_size) 621 flags = SM_DONTNEED; 622 else 623 flags = 0; 624 mutex_exit(&rp->r_statelock); 625 if (vpm_enable) { 626 error = vpm_sync_pages(vp, off, n, flags); 627 } else { 628 error = segmap_release(segkmap, base, flags); 629 } 630 } else { 631 if (vpm_enable) { 632 (void) vpm_sync_pages(vp, off, n, 0); 633 } else { 634 (void) segmap_release(segkmap, base, 0); 635 } 636 } 637 } while (!error && uiop->uio_resid > 0); 638 639 return (error); 640 } 641 642 /* ARGSUSED */ 643 static int 644 nfs3_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 645 caller_context_t *ct) 646 { 647 rlim64_t limit = uiop->uio_llimit; 648 rnode_t *rp; 649 u_offset_t off; 650 caddr_t base; 651 uint_t flags; 652 int remainder; 653 size_t n; 654 int on; 655 int error; 656 int resid; 657 offset_t offset; 658 mntinfo_t *mi; 659 uint_t bsize; 660 661 rp = VTOR(vp); 662 663 if (vp->v_type != VREG) 664 return (EISDIR); 665 666 mi = VTOMI(vp); 667 if (nfs_zone() != mi->mi_zone) 668 return (EIO); 669 if (uiop->uio_resid == 0) 670 return (0); 671 672 if (ioflag & FAPPEND) { 673 struct vattr va; 674 675 /* 676 * Must serialize if appending. 677 */ 678 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 679 nfs_rw_exit(&rp->r_rwlock); 680 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 681 INTR(vp))) 682 return (EINTR); 683 } 684 685 va.va_mask = AT_SIZE; 686 error = nfs3getattr(vp, &va, cr); 687 if (error) 688 return (error); 689 uiop->uio_loffset = va.va_size; 690 } 691 692 offset = uiop->uio_loffset + uiop->uio_resid; 693 694 if (uiop->uio_loffset < 0 || offset < 0) 695 return (EINVAL); 696 697 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 698 limit = MAXOFFSET_T; 699 700 /* 701 * Check to make sure that the process will not exceed 702 * its limit on file size. It is okay to write up to 703 * the limit, but not beyond. Thus, the write which 704 * reaches the limit will be short and the next write 705 * will return an error. 706 */ 707 remainder = 0; 708 if (offset > limit) { 709 remainder = offset - limit; 710 uiop->uio_resid = limit - uiop->uio_loffset; 711 if (uiop->uio_resid <= 0) { 712 proc_t *p = ttoproc(curthread); 713 714 uiop->uio_resid += remainder; 715 mutex_enter(&p->p_lock); 716 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 717 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 718 mutex_exit(&p->p_lock); 719 return (EFBIG); 720 } 721 } 722 723 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) 724 return (EINTR); 725 726 /* 727 * Bypass VM if caching has been disabled (e.g., locking) or if 728 * using client-side direct I/O and the file is not mmap'd and 729 * there are no cached pages. 730 */ 731 if ((vp->v_flag & VNOCACHE) || 732 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 733 rp->r_mapcnt == 0 && rp->r_inmap == 0 && 734 !vn_has_cached_data(vp))) { 735 size_t bufsize; 736 int count; 737 u_offset_t org_offset; 738 stable_how stab_comm; 739 740 nfs3_fwrite: 741 if (rp->r_flags & RSTALE) { 742 resid = uiop->uio_resid; 743 offset = uiop->uio_loffset; 744 error = rp->r_error; 745 /* 746 * A close may have cleared r_error, if so, 747 * propagate ESTALE error return properly 748 */ 749 if (error == 0) 750 error = ESTALE; 751 goto bottom; 752 } 753 bufsize = MIN(uiop->uio_resid, mi->mi_stsize); 754 base = kmem_alloc(bufsize, KM_SLEEP); 755 do { 756 if (ioflag & FDSYNC) 757 stab_comm = DATA_SYNC; 758 else 759 stab_comm = FILE_SYNC; 760 resid = uiop->uio_resid; 761 offset = uiop->uio_loffset; 762 count = MIN(uiop->uio_resid, bufsize); 763 org_offset = uiop->uio_loffset; 764 error = uiomove(base, count, UIO_WRITE, uiop); 765 if (!error) { 766 error = nfs3write(vp, base, org_offset, 767 count, cr, &stab_comm); 768 } 769 } while (!error && uiop->uio_resid > 0); 770 kmem_free(base, bufsize); 771 goto bottom; 772 } 773 774 775 bsize = vp->v_vfsp->vfs_bsize; 776 777 do { 778 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 779 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 780 n = MIN(MAXBSIZE - on, uiop->uio_resid); 781 782 resid = uiop->uio_resid; 783 offset = uiop->uio_loffset; 784 785 if (rp->r_flags & RSTALE) { 786 error = rp->r_error; 787 /* 788 * A close may have cleared r_error, if so, 789 * propagate ESTALE error return properly 790 */ 791 if (error == 0) 792 error = ESTALE; 793 break; 794 } 795 796 /* 797 * Don't create dirty pages faster than they 798 * can be cleaned so that the system doesn't 799 * get imbalanced. If the async queue is 800 * maxed out, then wait for it to drain before 801 * creating more dirty pages. Also, wait for 802 * any threads doing pagewalks in the vop_getattr 803 * entry points so that they don't block for 804 * long periods. 805 */ 806 mutex_enter(&rp->r_statelock); 807 while ((mi->mi_max_threads != 0 && 808 rp->r_awcount > 2 * mi->mi_max_threads) || 809 rp->r_gcount > 0) { 810 if (INTR(vp)) { 811 klwp_t *lwp = ttolwp(curthread); 812 813 if (lwp != NULL) 814 lwp->lwp_nostop++; 815 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 816 mutex_exit(&rp->r_statelock); 817 if (lwp != NULL) 818 lwp->lwp_nostop--; 819 error = EINTR; 820 goto bottom; 821 } 822 if (lwp != NULL) 823 lwp->lwp_nostop--; 824 } else 825 cv_wait(&rp->r_cv, &rp->r_statelock); 826 } 827 mutex_exit(&rp->r_statelock); 828 829 /* 830 * Touch the page and fault it in if it is not in core 831 * before segmap_getmapflt or vpm_data_copy can lock it. 832 * This is to avoid the deadlock if the buffer is mapped 833 * to the same file through mmap which we want to write. 834 */ 835 uio_prefaultpages((long)n, uiop); 836 837 if (vpm_enable) { 838 /* 839 * It will use kpm mappings, so no need to 840 * pass an address. 841 */ 842 error = writerp(rp, NULL, n, uiop, 0); 843 } else { 844 if (segmap_kpm) { 845 int pon = uiop->uio_loffset & PAGEOFFSET; 846 size_t pn = MIN(PAGESIZE - pon, 847 uiop->uio_resid); 848 int pagecreate; 849 850 mutex_enter(&rp->r_statelock); 851 pagecreate = (pon == 0) && (pn == PAGESIZE || 852 uiop->uio_loffset + pn >= rp->r_size); 853 mutex_exit(&rp->r_statelock); 854 855 base = segmap_getmapflt(segkmap, vp, off + on, 856 pn, !pagecreate, S_WRITE); 857 858 error = writerp(rp, base + pon, n, uiop, 859 pagecreate); 860 861 } else { 862 base = segmap_getmapflt(segkmap, vp, off + on, 863 n, 0, S_READ); 864 error = writerp(rp, base + on, n, uiop, 0); 865 } 866 } 867 868 if (!error) { 869 if (mi->mi_flags & MI_NOAC) 870 flags = SM_WRITE; 871 else if ((uiop->uio_loffset % bsize) == 0 || 872 IS_SWAPVP(vp)) { 873 /* 874 * Have written a whole block. 875 * Start an asynchronous write 876 * and mark the buffer to 877 * indicate that it won't be 878 * needed again soon. 879 */ 880 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 881 } else 882 flags = 0; 883 if ((ioflag & (FSYNC|FDSYNC)) || 884 (rp->r_flags & ROUTOFSPACE)) { 885 flags &= ~SM_ASYNC; 886 flags |= SM_WRITE; 887 } 888 if (vpm_enable) { 889 error = vpm_sync_pages(vp, off, n, flags); 890 } else { 891 error = segmap_release(segkmap, base, flags); 892 } 893 } else { 894 if (vpm_enable) { 895 (void) vpm_sync_pages(vp, off, n, 0); 896 } else { 897 (void) segmap_release(segkmap, base, 0); 898 } 899 /* 900 * In the event that we got an access error while 901 * faulting in a page for a write-only file just 902 * force a write. 903 */ 904 if (error == EACCES) 905 goto nfs3_fwrite; 906 } 907 } while (!error && uiop->uio_resid > 0); 908 909 bottom: 910 if (error) { 911 uiop->uio_resid = resid + remainder; 912 uiop->uio_loffset = offset; 913 } else 914 uiop->uio_resid += remainder; 915 916 nfs_rw_exit(&rp->r_lkserlock); 917 918 return (error); 919 } 920 921 /* 922 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 923 */ 924 static int 925 nfs3_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 926 int flags, cred_t *cr) 927 { 928 struct buf *bp; 929 int error; 930 page_t *savepp; 931 uchar_t fsdata; 932 stable_how stab_comm; 933 934 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 935 bp = pageio_setup(pp, len, vp, flags); 936 ASSERT(bp != NULL); 937 938 /* 939 * pageio_setup should have set b_addr to 0. This 940 * is correct since we want to do I/O on a page 941 * boundary. bp_mapin will use this addr to calculate 942 * an offset, and then set b_addr to the kernel virtual 943 * address it allocated for us. 944 */ 945 ASSERT(bp->b_un.b_addr == 0); 946 947 bp->b_edev = 0; 948 bp->b_dev = 0; 949 bp->b_lblkno = lbtodb(off); 950 bp->b_file = vp; 951 bp->b_offset = (offset_t)off; 952 bp_mapin(bp); 953 954 /* 955 * Calculate the desired level of stability to write data 956 * on the server and then mark all of the pages to reflect 957 * this. 958 */ 959 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) && 960 freemem > desfree) { 961 stab_comm = UNSTABLE; 962 fsdata = C_DELAYCOMMIT; 963 } else { 964 stab_comm = FILE_SYNC; 965 fsdata = C_NOCOMMIT; 966 } 967 968 savepp = pp; 969 do { 970 pp->p_fsdata = fsdata; 971 } while ((pp = pp->p_next) != savepp); 972 973 error = nfs3_bio(bp, &stab_comm, cr); 974 975 bp_mapout(bp); 976 pageio_done(bp); 977 978 /* 979 * If the server wrote pages in a more stable fashion than 980 * was requested, then clear all of the marks in the pages 981 * indicating that COMMIT operations were required. 982 */ 983 if (stab_comm != UNSTABLE && fsdata == C_DELAYCOMMIT) { 984 do { 985 pp->p_fsdata = C_NOCOMMIT; 986 } while ((pp = pp->p_next) != savepp); 987 } 988 989 return (error); 990 } 991 992 /* 993 * Write to file. Writes to remote server in largest size 994 * chunks that the server can handle. Write is synchronous. 995 */ 996 static int 997 nfs3write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr, 998 stable_how *stab_comm) 999 { 1000 mntinfo_t *mi; 1001 WRITE3args args; 1002 WRITE3res res; 1003 int error; 1004 int tsize; 1005 rnode_t *rp; 1006 int douprintf; 1007 1008 rp = VTOR(vp); 1009 mi = VTOMI(vp); 1010 1011 ASSERT(nfs_zone() == mi->mi_zone); 1012 1013 args.file = *VTOFH3(vp); 1014 args.stable = *stab_comm; 1015 1016 *stab_comm = FILE_SYNC; 1017 1018 douprintf = 1; 1019 1020 do { 1021 if ((vp->v_flag & VNOCACHE) || 1022 (rp->r_flags & RDIRECTIO) || 1023 (mi->mi_flags & MI_DIRECTIO)) 1024 tsize = MIN(mi->mi_stsize, count); 1025 else 1026 tsize = MIN(mi->mi_curwrite, count); 1027 args.offset = (offset3)offset; 1028 args.count = (count3)tsize; 1029 args.data.data_len = (uint_t)tsize; 1030 args.data.data_val = base; 1031 1032 if (mi->mi_io_kstats) { 1033 mutex_enter(&mi->mi_lock); 1034 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 1035 mutex_exit(&mi->mi_lock); 1036 } 1037 args.mblk = NULL; 1038 do { 1039 error = rfs3call(mi, NFSPROC3_WRITE, 1040 xdr_WRITE3args, (caddr_t)&args, 1041 xdr_WRITE3res, (caddr_t)&res, cr, 1042 &douprintf, &res.status, 0, NULL); 1043 } while (error == ENFS_TRYAGAIN); 1044 if (mi->mi_io_kstats) { 1045 mutex_enter(&mi->mi_lock); 1046 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 1047 mutex_exit(&mi->mi_lock); 1048 } 1049 1050 if (error) 1051 return (error); 1052 error = geterrno3(res.status); 1053 if (!error) { 1054 if (res.resok.count > args.count) { 1055 zcmn_err(getzoneid(), CE_WARN, 1056 "nfs3write: server %s wrote %u, " 1057 "requested was %u", 1058 rp->r_server->sv_hostname, 1059 res.resok.count, args.count); 1060 return (EIO); 1061 } 1062 if (res.resok.committed == UNSTABLE) { 1063 *stab_comm = UNSTABLE; 1064 if (args.stable == DATA_SYNC || 1065 args.stable == FILE_SYNC) { 1066 zcmn_err(getzoneid(), CE_WARN, 1067 "nfs3write: server %s did not commit to stable storage", 1068 rp->r_server->sv_hostname); 1069 return (EIO); 1070 } 1071 } 1072 tsize = (int)res.resok.count; 1073 count -= tsize; 1074 base += tsize; 1075 offset += tsize; 1076 if (mi->mi_io_kstats) { 1077 mutex_enter(&mi->mi_lock); 1078 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++; 1079 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten += 1080 tsize; 1081 mutex_exit(&mi->mi_lock); 1082 } 1083 lwp_stat_update(LWP_STAT_OUBLK, 1); 1084 mutex_enter(&rp->r_statelock); 1085 if (rp->r_flags & RHAVEVERF) { 1086 if (rp->r_verf != res.resok.verf) { 1087 nfs3_set_mod(vp); 1088 rp->r_verf = res.resok.verf; 1089 /* 1090 * If the data was written UNSTABLE, 1091 * then might as well stop because 1092 * the whole block will have to get 1093 * rewritten anyway. 1094 */ 1095 if (*stab_comm == UNSTABLE) { 1096 mutex_exit(&rp->r_statelock); 1097 break; 1098 } 1099 } 1100 } else { 1101 rp->r_verf = res.resok.verf; 1102 rp->r_flags |= RHAVEVERF; 1103 } 1104 /* 1105 * Mark the attribute cache as timed out and 1106 * set RWRITEATTR to indicate that the file 1107 * was modified with a WRITE operation and 1108 * that the attributes can not be trusted. 1109 */ 1110 PURGE_ATTRCACHE_LOCKED(rp); 1111 rp->r_flags |= RWRITEATTR; 1112 mutex_exit(&rp->r_statelock); 1113 } 1114 } while (!error && count); 1115 1116 return (error); 1117 } 1118 1119 /* 1120 * Read from a file. Reads data in largest chunks our interface can handle. 1121 */ 1122 static int 1123 nfs3read(vnode_t *vp, caddr_t base, offset_t offset, int count, 1124 size_t *residp, cred_t *cr) 1125 { 1126 mntinfo_t *mi; 1127 READ3args args; 1128 READ3vres res; 1129 int tsize; 1130 int error; 1131 int douprintf; 1132 failinfo_t fi; 1133 rnode_t *rp; 1134 struct vattr va; 1135 hrtime_t t; 1136 1137 rp = VTOR(vp); 1138 mi = VTOMI(vp); 1139 ASSERT(nfs_zone() == mi->mi_zone); 1140 douprintf = 1; 1141 1142 args.file = *VTOFH3(vp); 1143 fi.vp = vp; 1144 fi.fhp = (caddr_t)&args.file; 1145 fi.copyproc = nfs3copyfh; 1146 fi.lookupproc = nfs3lookup; 1147 fi.xattrdirproc = acl_getxattrdir3; 1148 1149 res.pov.fres.vp = vp; 1150 res.pov.fres.vap = &va; 1151 1152 res.wlist = NULL; 1153 *residp = count; 1154 do { 1155 if (mi->mi_io_kstats) { 1156 mutex_enter(&mi->mi_lock); 1157 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 1158 mutex_exit(&mi->mi_lock); 1159 } 1160 1161 do { 1162 if ((vp->v_flag & VNOCACHE) || 1163 (rp->r_flags & RDIRECTIO) || 1164 (mi->mi_flags & MI_DIRECTIO)) 1165 tsize = MIN(mi->mi_tsize, count); 1166 else 1167 tsize = MIN(mi->mi_curread, count); 1168 res.data.data_val = base; 1169 res.data.data_len = tsize; 1170 args.offset = (offset3)offset; 1171 args.count = (count3)tsize; 1172 args.res_uiop = NULL; 1173 args.res_data_val_alt = base; 1174 1175 t = gethrtime(); 1176 error = rfs3call(mi, NFSPROC3_READ, 1177 xdr_READ3args, (caddr_t)&args, 1178 xdr_READ3vres, (caddr_t)&res, cr, 1179 &douprintf, &res.status, 0, &fi); 1180 } while (error == ENFS_TRYAGAIN); 1181 1182 if (mi->mi_io_kstats) { 1183 mutex_enter(&mi->mi_lock); 1184 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 1185 mutex_exit(&mi->mi_lock); 1186 } 1187 1188 if (error) 1189 return (error); 1190 1191 error = geterrno3(res.status); 1192 if (error) 1193 return (error); 1194 1195 if (res.count != res.data.data_len) { 1196 zcmn_err(getzoneid(), CE_WARN, 1197 "nfs3read: server %s returned incorrect amount", 1198 rp->r_server->sv_hostname); 1199 return (EIO); 1200 } 1201 1202 count -= res.count; 1203 *residp = count; 1204 base += res.count; 1205 offset += res.count; 1206 if (mi->mi_io_kstats) { 1207 mutex_enter(&mi->mi_lock); 1208 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 1209 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.count; 1210 mutex_exit(&mi->mi_lock); 1211 } 1212 lwp_stat_update(LWP_STAT_INBLK, 1); 1213 } while (count && !res.eof); 1214 1215 if (res.pov.attributes) { 1216 mutex_enter(&rp->r_statelock); 1217 if (!CACHE_VALID(rp, va.va_mtime, va.va_size)) { 1218 mutex_exit(&rp->r_statelock); 1219 PURGE_ATTRCACHE(vp); 1220 } else { 1221 if (rp->r_mtime <= t) 1222 nfs_attrcache_va(vp, &va); 1223 mutex_exit(&rp->r_statelock); 1224 } 1225 } 1226 1227 return (0); 1228 } 1229 1230 /* ARGSUSED */ 1231 static int 1232 nfs3_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp, 1233 caller_context_t *ct) 1234 { 1235 1236 if (nfs_zone() != VTOMI(vp)->mi_zone) 1237 return (EIO); 1238 switch (cmd) { 1239 case _FIODIRECTIO: 1240 return (nfs_directio(vp, (int)arg, cr)); 1241 default: 1242 return (ENOTTY); 1243 } 1244 } 1245 1246 /* ARGSUSED */ 1247 static int 1248 nfs3_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 1249 caller_context_t *ct) 1250 { 1251 int error; 1252 rnode_t *rp; 1253 1254 if (nfs_zone() != VTOMI(vp)->mi_zone) 1255 return (EIO); 1256 /* 1257 * If it has been specified that the return value will 1258 * just be used as a hint, and we are only being asked 1259 * for size, fsid or rdevid, then return the client's 1260 * notion of these values without checking to make sure 1261 * that the attribute cache is up to date. 1262 * The whole point is to avoid an over the wire GETATTR 1263 * call. 1264 */ 1265 rp = VTOR(vp); 1266 if (flags & ATTR_HINT) { 1267 if (vap->va_mask == 1268 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) { 1269 mutex_enter(&rp->r_statelock); 1270 if (vap->va_mask | AT_SIZE) 1271 vap->va_size = rp->r_size; 1272 if (vap->va_mask | AT_FSID) 1273 vap->va_fsid = rp->r_attr.va_fsid; 1274 if (vap->va_mask | AT_RDEV) 1275 vap->va_rdev = rp->r_attr.va_rdev; 1276 mutex_exit(&rp->r_statelock); 1277 return (0); 1278 } 1279 } 1280 1281 /* 1282 * Only need to flush pages if asking for the mtime 1283 * and if there any dirty pages or any outstanding 1284 * asynchronous (write) requests for this file. 1285 */ 1286 if (vap->va_mask & AT_MTIME) { 1287 if (vn_has_cached_data(vp) && 1288 ((rp->r_flags & RDIRTY) || rp->r_awcount > 0)) { 1289 mutex_enter(&rp->r_statelock); 1290 rp->r_gcount++; 1291 mutex_exit(&rp->r_statelock); 1292 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, ct); 1293 mutex_enter(&rp->r_statelock); 1294 if (error && (error == ENOSPC || error == EDQUOT)) { 1295 if (!rp->r_error) 1296 rp->r_error = error; 1297 } 1298 if (--rp->r_gcount == 0) 1299 cv_broadcast(&rp->r_cv); 1300 mutex_exit(&rp->r_statelock); 1301 } 1302 } 1303 1304 return (nfs3getattr(vp, vap, cr)); 1305 } 1306 1307 /*ARGSUSED4*/ 1308 static int 1309 nfs3_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 1310 caller_context_t *ct) 1311 { 1312 int error; 1313 struct vattr va; 1314 1315 if (vap->va_mask & AT_NOSET) 1316 return (EINVAL); 1317 if (nfs_zone() != VTOMI(vp)->mi_zone) 1318 return (EIO); 1319 1320 va.va_mask = AT_UID | AT_MODE; 1321 error = nfs3getattr(vp, &va, cr); 1322 if (error) 1323 return (error); 1324 1325 error = secpolicy_vnode_setattr(cr, vp, vap, &va, flags, nfs3_accessx, 1326 vp); 1327 if (error) 1328 return (error); 1329 1330 return (nfs3setattr(vp, vap, flags, cr)); 1331 } 1332 1333 static int 1334 nfs3setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr) 1335 { 1336 int error; 1337 uint_t mask; 1338 SETATTR3args args; 1339 SETATTR3res res; 1340 int douprintf; 1341 rnode_t *rp; 1342 struct vattr va; 1343 mode_t omode; 1344 vsecattr_t *vsp; 1345 hrtime_t t; 1346 1347 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 1348 mask = vap->va_mask; 1349 1350 rp = VTOR(vp); 1351 1352 /* 1353 * Only need to flush pages if there are any pages and 1354 * if the file is marked as dirty in some fashion. The 1355 * file must be flushed so that we can accurately 1356 * determine the size of the file and the cached data 1357 * after the SETATTR returns. A file is considered to 1358 * be dirty if it is either marked with RDIRTY, has 1359 * outstanding i/o's active, or is mmap'd. In this 1360 * last case, we can't tell whether there are dirty 1361 * pages, so we flush just to be sure. 1362 */ 1363 if (vn_has_cached_data(vp) && 1364 ((rp->r_flags & RDIRTY) || 1365 rp->r_count > 0 || 1366 rp->r_mapcnt > 0)) { 1367 ASSERT(vp->v_type != VCHR); 1368 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, NULL); 1369 if (error && (error == ENOSPC || error == EDQUOT)) { 1370 mutex_enter(&rp->r_statelock); 1371 if (!rp->r_error) 1372 rp->r_error = error; 1373 mutex_exit(&rp->r_statelock); 1374 } 1375 } 1376 1377 args.object = *RTOFH3(rp); 1378 /* 1379 * If the intent is for the server to set the times, 1380 * there is no point in have the mask indicating set mtime or 1381 * atime, because the vap values may be junk, and so result 1382 * in an overflow error. Remove these flags from the vap mask 1383 * before calling in this case, and restore them afterwards. 1384 */ 1385 if ((mask & (AT_ATIME | AT_MTIME)) && !(flags & ATTR_UTIME)) { 1386 /* Use server times, so don't set the args time fields */ 1387 vap->va_mask &= ~(AT_ATIME | AT_MTIME); 1388 error = vattr_to_sattr3(vap, &args.new_attributes); 1389 vap->va_mask |= (mask & (AT_ATIME | AT_MTIME)); 1390 if (mask & AT_ATIME) { 1391 args.new_attributes.atime.set_it = SET_TO_SERVER_TIME; 1392 } 1393 if (mask & AT_MTIME) { 1394 args.new_attributes.mtime.set_it = SET_TO_SERVER_TIME; 1395 } 1396 } else { 1397 /* Either do not set times or use the client specified times */ 1398 error = vattr_to_sattr3(vap, &args.new_attributes); 1399 } 1400 1401 if (error) { 1402 /* req time field(s) overflow - return immediately */ 1403 return (error); 1404 } 1405 1406 va.va_mask = AT_MODE | AT_CTIME; 1407 error = nfs3getattr(vp, &va, cr); 1408 if (error) 1409 return (error); 1410 omode = va.va_mode; 1411 1412 tryagain: 1413 if (mask & AT_SIZE) { 1414 args.guard.check = TRUE; 1415 args.guard.obj_ctime.seconds = va.va_ctime.tv_sec; 1416 args.guard.obj_ctime.nseconds = va.va_ctime.tv_nsec; 1417 } else 1418 args.guard.check = FALSE; 1419 1420 douprintf = 1; 1421 1422 t = gethrtime(); 1423 1424 error = rfs3call(VTOMI(vp), NFSPROC3_SETATTR, 1425 xdr_SETATTR3args, (caddr_t)&args, 1426 xdr_SETATTR3res, (caddr_t)&res, cr, 1427 &douprintf, &res.status, 0, NULL); 1428 1429 /* 1430 * Purge the access cache and ACL cache if changing either the 1431 * owner of the file, the group owner, or the mode. These may 1432 * change the access permissions of the file, so purge old 1433 * information and start over again. 1434 */ 1435 if (mask & (AT_UID | AT_GID | AT_MODE)) { 1436 (void) nfs_access_purge_rp(rp); 1437 if (rp->r_secattr != NULL) { 1438 mutex_enter(&rp->r_statelock); 1439 vsp = rp->r_secattr; 1440 rp->r_secattr = NULL; 1441 mutex_exit(&rp->r_statelock); 1442 if (vsp != NULL) 1443 nfs_acl_free(vsp); 1444 } 1445 } 1446 1447 if (error) { 1448 PURGE_ATTRCACHE(vp); 1449 return (error); 1450 } 1451 1452 error = geterrno3(res.status); 1453 if (!error) { 1454 /* 1455 * If changing the size of the file, invalidate 1456 * any local cached data which is no longer part 1457 * of the file. We also possibly invalidate the 1458 * last page in the file. We could use 1459 * pvn_vpzero(), but this would mark the page as 1460 * modified and require it to be written back to 1461 * the server for no particularly good reason. 1462 * This way, if we access it, then we bring it 1463 * back in. A read should be cheaper than a 1464 * write. 1465 */ 1466 if (mask & AT_SIZE) { 1467 nfs_invalidate_pages(vp, 1468 (vap->va_size & PAGEMASK), cr); 1469 } 1470 nfs3_cache_wcc_data(vp, &res.resok.obj_wcc, t, cr); 1471 /* 1472 * Some servers will change the mode to clear the setuid 1473 * and setgid bits when changing the uid or gid. The 1474 * client needs to compensate appropriately. 1475 */ 1476 if (mask & (AT_UID | AT_GID)) { 1477 int terror; 1478 1479 va.va_mask = AT_MODE; 1480 terror = nfs3getattr(vp, &va, cr); 1481 if (!terror && 1482 (((mask & AT_MODE) && va.va_mode != vap->va_mode) || 1483 (!(mask & AT_MODE) && va.va_mode != omode))) { 1484 va.va_mask = AT_MODE; 1485 if (mask & AT_MODE) 1486 va.va_mode = vap->va_mode; 1487 else 1488 va.va_mode = omode; 1489 (void) nfs3setattr(vp, &va, 0, cr); 1490 } 1491 } 1492 } else { 1493 nfs3_cache_wcc_data(vp, &res.resfail.obj_wcc, t, cr); 1494 /* 1495 * If we got back a "not synchronized" error, then 1496 * we need to retry with a new guard value. The 1497 * guard value used is the change time. If the 1498 * server returned post_op_attr, then we can just 1499 * retry because we have the latest attributes. 1500 * Otherwise, we issue a GETATTR to get the latest 1501 * attributes and then retry. If we couldn't get 1502 * the attributes this way either, then we give 1503 * up because we can't complete the operation as 1504 * required. 1505 */ 1506 if (res.status == NFS3ERR_NOT_SYNC) { 1507 va.va_mask = AT_CTIME; 1508 if (nfs3getattr(vp, &va, cr) == 0) 1509 goto tryagain; 1510 } 1511 PURGE_STALE_FH(error, vp, cr); 1512 } 1513 1514 return (error); 1515 } 1516 1517 static int 1518 nfs3_accessx(void *vp, int mode, cred_t *cr) 1519 { 1520 ASSERT(nfs_zone() == VTOMI((vnode_t *)vp)->mi_zone); 1521 return (nfs3_access(vp, mode, 0, cr, NULL)); 1522 } 1523 1524 /* ARGSUSED */ 1525 static int 1526 nfs3_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct) 1527 { 1528 int error; 1529 ACCESS3args args; 1530 ACCESS3res res; 1531 int douprintf; 1532 uint32 acc; 1533 rnode_t *rp; 1534 cred_t *cred, *ncr, *ncrfree = NULL; 1535 failinfo_t fi; 1536 nfs_access_type_t cacc; 1537 hrtime_t t; 1538 1539 acc = 0; 1540 if (nfs_zone() != VTOMI(vp)->mi_zone) 1541 return (EIO); 1542 if (mode & VREAD) 1543 acc |= ACCESS3_READ; 1544 if (mode & VWRITE) { 1545 if (vn_is_readonly(vp) && !IS_DEVVP(vp)) 1546 return (EROFS); 1547 if (vp->v_type == VDIR) 1548 acc |= ACCESS3_DELETE; 1549 acc |= ACCESS3_MODIFY | ACCESS3_EXTEND; 1550 } 1551 if (mode & VEXEC) { 1552 if (vp->v_type == VDIR) 1553 acc |= ACCESS3_LOOKUP; 1554 else 1555 acc |= ACCESS3_EXECUTE; 1556 } 1557 1558 rp = VTOR(vp); 1559 args.object = *VTOFH3(vp); 1560 if (vp->v_type == VDIR) { 1561 args.access = ACCESS3_READ | ACCESS3_DELETE | ACCESS3_MODIFY | 1562 ACCESS3_EXTEND | ACCESS3_LOOKUP; 1563 } else { 1564 args.access = ACCESS3_READ | ACCESS3_MODIFY | ACCESS3_EXTEND | 1565 ACCESS3_EXECUTE; 1566 } 1567 fi.vp = vp; 1568 fi.fhp = (caddr_t)&args.object; 1569 fi.copyproc = nfs3copyfh; 1570 fi.lookupproc = nfs3lookup; 1571 fi.xattrdirproc = acl_getxattrdir3; 1572 1573 cred = cr; 1574 /* 1575 * ncr and ncrfree both initially 1576 * point to the memory area returned 1577 * by crnetadjust(); 1578 * ncrfree not NULL when exiting means 1579 * that we need to release it 1580 */ 1581 ncr = crnetadjust(cred); 1582 ncrfree = ncr; 1583 tryagain: 1584 if (rp->r_acache != NULL) { 1585 cacc = nfs_access_check(rp, acc, cred); 1586 if (cacc == NFS_ACCESS_ALLOWED) { 1587 if (ncrfree != NULL) 1588 crfree(ncrfree); 1589 return (0); 1590 } 1591 if (cacc == NFS_ACCESS_DENIED) { 1592 /* 1593 * If the cred can be adjusted, try again 1594 * with the new cred. 1595 */ 1596 if (ncr != NULL) { 1597 cred = ncr; 1598 ncr = NULL; 1599 goto tryagain; 1600 } 1601 if (ncrfree != NULL) 1602 crfree(ncrfree); 1603 return (EACCES); 1604 } 1605 } 1606 1607 douprintf = 1; 1608 1609 t = gethrtime(); 1610 1611 error = rfs3call(VTOMI(vp), NFSPROC3_ACCESS, 1612 xdr_ACCESS3args, (caddr_t)&args, 1613 xdr_ACCESS3res, (caddr_t)&res, cred, 1614 &douprintf, &res.status, 0, &fi); 1615 1616 if (error) { 1617 if (ncrfree != NULL) 1618 crfree(ncrfree); 1619 return (error); 1620 } 1621 1622 error = geterrno3(res.status); 1623 if (!error) { 1624 nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr); 1625 nfs_access_cache(rp, args.access, res.resok.access, cred); 1626 /* 1627 * we just cached results with cred; if cred is the 1628 * adjusted credentials from crnetadjust, we do not want 1629 * to release them before exiting: hence setting ncrfree 1630 * to NULL 1631 */ 1632 if (cred != cr) 1633 ncrfree = NULL; 1634 if ((acc & res.resok.access) != acc) { 1635 /* 1636 * If the cred can be adjusted, try again 1637 * with the new cred. 1638 */ 1639 if (ncr != NULL) { 1640 cred = ncr; 1641 ncr = NULL; 1642 goto tryagain; 1643 } 1644 error = EACCES; 1645 } 1646 } else { 1647 nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr); 1648 PURGE_STALE_FH(error, vp, cr); 1649 } 1650 1651 if (ncrfree != NULL) 1652 crfree(ncrfree); 1653 1654 return (error); 1655 } 1656 1657 static int nfs3_do_symlink_cache = 1; 1658 1659 /* ARGSUSED */ 1660 static int 1661 nfs3_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct) 1662 { 1663 int error; 1664 READLINK3args args; 1665 READLINK3res res; 1666 nfspath3 resdata_backup; 1667 rnode_t *rp; 1668 int douprintf; 1669 int len; 1670 failinfo_t fi; 1671 hrtime_t t; 1672 1673 /* 1674 * Can't readlink anything other than a symbolic link. 1675 */ 1676 if (vp->v_type != VLNK) 1677 return (EINVAL); 1678 if (nfs_zone() != VTOMI(vp)->mi_zone) 1679 return (EIO); 1680 1681 rp = VTOR(vp); 1682 if (nfs3_do_symlink_cache && rp->r_symlink.contents != NULL) { 1683 error = nfs3_validate_caches(vp, cr); 1684 if (error) 1685 return (error); 1686 mutex_enter(&rp->r_statelock); 1687 if (rp->r_symlink.contents != NULL) { 1688 error = uiomove(rp->r_symlink.contents, 1689 rp->r_symlink.len, UIO_READ, uiop); 1690 mutex_exit(&rp->r_statelock); 1691 return (error); 1692 } 1693 mutex_exit(&rp->r_statelock); 1694 } 1695 1696 args.symlink = *VTOFH3(vp); 1697 fi.vp = vp; 1698 fi.fhp = (caddr_t)&args.symlink; 1699 fi.copyproc = nfs3copyfh; 1700 fi.lookupproc = nfs3lookup; 1701 fi.xattrdirproc = acl_getxattrdir3; 1702 1703 res.resok.data = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1704 1705 resdata_backup = res.resok.data; 1706 1707 douprintf = 1; 1708 1709 t = gethrtime(); 1710 1711 error = rfs3call(VTOMI(vp), NFSPROC3_READLINK, 1712 xdr_READLINK3args, (caddr_t)&args, 1713 xdr_READLINK3res, (caddr_t)&res, cr, 1714 &douprintf, &res.status, 0, &fi); 1715 1716 if (res.resok.data == nfs3nametoolong) 1717 error = EINVAL; 1718 1719 if (error) { 1720 kmem_free(resdata_backup, MAXPATHLEN); 1721 return (error); 1722 } 1723 1724 error = geterrno3(res.status); 1725 if (!error) { 1726 nfs3_cache_post_op_attr(vp, &res.resok.symlink_attributes, t, 1727 cr); 1728 len = strlen(res.resok.data); 1729 error = uiomove(res.resok.data, len, UIO_READ, uiop); 1730 if (nfs3_do_symlink_cache && rp->r_symlink.contents == NULL) { 1731 mutex_enter(&rp->r_statelock); 1732 if (rp->r_symlink.contents == NULL) { 1733 rp->r_symlink.contents = res.resok.data; 1734 rp->r_symlink.len = len; 1735 rp->r_symlink.size = MAXPATHLEN; 1736 mutex_exit(&rp->r_statelock); 1737 } else { 1738 mutex_exit(&rp->r_statelock); 1739 1740 kmem_free((void *)res.resok.data, MAXPATHLEN); 1741 } 1742 } else { 1743 kmem_free((void *)res.resok.data, MAXPATHLEN); 1744 } 1745 } else { 1746 nfs3_cache_post_op_attr(vp, 1747 &res.resfail.symlink_attributes, t, cr); 1748 PURGE_STALE_FH(error, vp, cr); 1749 1750 kmem_free((void *)res.resok.data, MAXPATHLEN); 1751 1752 } 1753 1754 /* 1755 * The over the wire error for attempting to readlink something 1756 * other than a symbolic link is ENXIO. However, we need to 1757 * return EINVAL instead of ENXIO, so we map it here. 1758 */ 1759 return (error == ENXIO ? EINVAL : error); 1760 } 1761 1762 /* 1763 * Flush local dirty pages to stable storage on the server. 1764 * 1765 * If FNODSYNC is specified, then there is nothing to do because 1766 * metadata changes are not cached on the client before being 1767 * sent to the server. 1768 */ 1769 /* ARGSUSED */ 1770 static int 1771 nfs3_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 1772 { 1773 int error; 1774 1775 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 1776 return (0); 1777 if (nfs_zone() != VTOMI(vp)->mi_zone) 1778 return (EIO); 1779 1780 error = nfs3_putpage_commit(vp, (offset_t)0, 0, cr); 1781 if (!error) 1782 error = VTOR(vp)->r_error; 1783 return (error); 1784 } 1785 1786 /* 1787 * Weirdness: if the file was removed or the target of a rename 1788 * operation while it was open, it got renamed instead. Here we 1789 * remove the renamed file. 1790 */ 1791 /* ARGSUSED */ 1792 static void 1793 nfs3_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 1794 { 1795 rnode_t *rp; 1796 1797 ASSERT(vp != DNLC_NO_VNODE); 1798 1799 /* 1800 * If this is coming from the wrong zone, we let someone in the right 1801 * zone take care of it asynchronously. We can get here due to 1802 * VN_RELE() being called from pageout() or fsflush(). This call may 1803 * potentially turn into an expensive no-op if, for instance, v_count 1804 * gets incremented in the meantime, but it's still correct. 1805 */ 1806 if (nfs_zone() != VTOMI(vp)->mi_zone) { 1807 nfs_async_inactive(vp, cr, nfs3_inactive); 1808 return; 1809 } 1810 1811 rp = VTOR(vp); 1812 redo: 1813 if (rp->r_unldvp != NULL) { 1814 /* 1815 * Save the vnode pointer for the directory where the 1816 * unlinked-open file got renamed, then set it to NULL 1817 * to prevent another thread from getting here before 1818 * we're done with the remove. While we have the 1819 * statelock, make local copies of the pertinent rnode 1820 * fields. If we weren't to do this in an atomic way, the 1821 * the unl* fields could become inconsistent with respect 1822 * to each other due to a race condition between this 1823 * code and nfs_remove(). See bug report 1034328. 1824 */ 1825 mutex_enter(&rp->r_statelock); 1826 if (rp->r_unldvp != NULL) { 1827 vnode_t *unldvp; 1828 char *unlname; 1829 cred_t *unlcred; 1830 REMOVE3args args; 1831 REMOVE3res res; 1832 int douprintf; 1833 int error; 1834 hrtime_t t; 1835 1836 unldvp = rp->r_unldvp; 1837 rp->r_unldvp = NULL; 1838 unlname = rp->r_unlname; 1839 rp->r_unlname = NULL; 1840 unlcred = rp->r_unlcred; 1841 rp->r_unlcred = NULL; 1842 mutex_exit(&rp->r_statelock); 1843 1844 /* 1845 * If there are any dirty pages left, then flush 1846 * them. This is unfortunate because they just 1847 * may get thrown away during the remove operation, 1848 * but we have to do this for correctness. 1849 */ 1850 if (vn_has_cached_data(vp) && 1851 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 1852 ASSERT(vp->v_type != VCHR); 1853 error = nfs3_putpage(vp, (offset_t)0, 0, 0, 1854 cr, ct); 1855 if (error) { 1856 mutex_enter(&rp->r_statelock); 1857 if (!rp->r_error) 1858 rp->r_error = error; 1859 mutex_exit(&rp->r_statelock); 1860 } 1861 } 1862 1863 /* 1864 * Do the remove operation on the renamed file 1865 */ 1866 setdiropargs3(&args.object, unlname, unldvp); 1867 1868 douprintf = 1; 1869 1870 t = gethrtime(); 1871 1872 error = rfs3call(VTOMI(unldvp), NFSPROC3_REMOVE, 1873 xdr_diropargs3, (caddr_t)&args, 1874 xdr_REMOVE3res, (caddr_t)&res, unlcred, 1875 &douprintf, &res.status, 0, NULL); 1876 1877 if (error) { 1878 PURGE_ATTRCACHE(unldvp); 1879 } else { 1880 error = geterrno3(res.status); 1881 if (!error) { 1882 nfs3_cache_wcc_data(unldvp, 1883 &res.resok.dir_wcc, t, cr); 1884 if (HAVE_RDDIR_CACHE(VTOR(unldvp))) 1885 nfs_purge_rddir_cache(unldvp); 1886 } else { 1887 nfs3_cache_wcc_data(unldvp, 1888 &res.resfail.dir_wcc, t, cr); 1889 PURGE_STALE_FH(error, unldvp, cr); 1890 } 1891 } 1892 1893 /* 1894 * Release stuff held for the remove 1895 */ 1896 VN_RELE(unldvp); 1897 kmem_free(unlname, MAXNAMELEN); 1898 crfree(unlcred); 1899 goto redo; 1900 } 1901 mutex_exit(&rp->r_statelock); 1902 } 1903 1904 rp_addfree(rp, cr); 1905 } 1906 1907 /* 1908 * Remote file system operations having to do with directory manipulation. 1909 */ 1910 1911 /* ARGSUSED */ 1912 static int 1913 nfs3_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1914 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1915 int *direntflags, pathname_t *realpnp) 1916 { 1917 int error; 1918 vnode_t *vp; 1919 vnode_t *avp = NULL; 1920 rnode_t *drp; 1921 1922 if (nfs_zone() != VTOMI(dvp)->mi_zone) 1923 return (EPERM); 1924 1925 drp = VTOR(dvp); 1926 1927 /* 1928 * Are we looking up extended attributes? If so, "dvp" is 1929 * the file or directory for which we want attributes, and 1930 * we need a lookup of the hidden attribute directory 1931 * before we lookup the rest of the path. 1932 */ 1933 if (flags & LOOKUP_XATTR) { 1934 bool_t cflag = ((flags & CREATE_XATTR_DIR) != 0); 1935 mntinfo_t *mi; 1936 1937 mi = VTOMI(dvp); 1938 if (!(mi->mi_flags & MI_EXTATTR)) 1939 return (EINVAL); 1940 1941 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) 1942 return (EINTR); 1943 1944 (void) nfs3lookup_dnlc(dvp, XATTR_DIR_NAME, &avp, cr); 1945 if (avp == NULL) 1946 error = acl_getxattrdir3(dvp, &avp, cflag, cr, 0); 1947 else 1948 error = 0; 1949 1950 nfs_rw_exit(&drp->r_rwlock); 1951 1952 if (error) { 1953 if (mi->mi_flags & MI_EXTATTR) 1954 return (error); 1955 return (EINVAL); 1956 } 1957 dvp = avp; 1958 drp = VTOR(dvp); 1959 } 1960 1961 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) { 1962 error = EINTR; 1963 goto out; 1964 } 1965 1966 error = nfs3lookup(dvp, nm, vpp, pnp, flags, rdir, cr, 0); 1967 1968 nfs_rw_exit(&drp->r_rwlock); 1969 1970 /* 1971 * If vnode is a device, create special vnode. 1972 */ 1973 if (!error && IS_DEVVP(*vpp)) { 1974 vp = *vpp; 1975 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 1976 VN_RELE(vp); 1977 } 1978 1979 out: 1980 if (avp != NULL) 1981 VN_RELE(avp); 1982 1983 return (error); 1984 } 1985 1986 static int nfs3_lookup_neg_cache = 1; 1987 1988 #ifdef DEBUG 1989 static int nfs3_lookup_dnlc_hits = 0; 1990 static int nfs3_lookup_dnlc_misses = 0; 1991 static int nfs3_lookup_dnlc_neg_hits = 0; 1992 static int nfs3_lookup_dnlc_disappears = 0; 1993 static int nfs3_lookup_dnlc_lookups = 0; 1994 #endif 1995 1996 /* ARGSUSED */ 1997 int 1998 nfs3lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1999 int flags, vnode_t *rdir, cred_t *cr, int rfscall_flags) 2000 { 2001 int error; 2002 rnode_t *drp; 2003 2004 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2005 /* 2006 * If lookup is for "", just return dvp. Don't need 2007 * to send it over the wire, look it up in the dnlc, 2008 * or perform any access checks. 2009 */ 2010 if (*nm == '\0') { 2011 VN_HOLD(dvp); 2012 *vpp = dvp; 2013 return (0); 2014 } 2015 2016 /* 2017 * Can't do lookups in non-directories. 2018 */ 2019 if (dvp->v_type != VDIR) 2020 return (ENOTDIR); 2021 2022 /* 2023 * If we're called with RFSCALL_SOFT, it's important that 2024 * the only rfscall is one we make directly; if we permit 2025 * an access call because we're looking up "." or validating 2026 * a dnlc hit, we'll deadlock because that rfscall will not 2027 * have the RFSCALL_SOFT set. 2028 */ 2029 if (rfscall_flags & RFSCALL_SOFT) 2030 goto callit; 2031 2032 /* 2033 * If lookup is for ".", just return dvp. Don't need 2034 * to send it over the wire or look it up in the dnlc, 2035 * just need to check access. 2036 */ 2037 if (strcmp(nm, ".") == 0) { 2038 error = nfs3_access(dvp, VEXEC, 0, cr, NULL); 2039 if (error) 2040 return (error); 2041 VN_HOLD(dvp); 2042 *vpp = dvp; 2043 return (0); 2044 } 2045 2046 drp = VTOR(dvp); 2047 if (!(drp->r_flags & RLOOKUP)) { 2048 mutex_enter(&drp->r_statelock); 2049 drp->r_flags |= RLOOKUP; 2050 mutex_exit(&drp->r_statelock); 2051 } 2052 2053 /* 2054 * Lookup this name in the DNLC. If there was a valid entry, 2055 * then return the results of the lookup. 2056 */ 2057 error = nfs3lookup_dnlc(dvp, nm, vpp, cr); 2058 if (error || *vpp != NULL) 2059 return (error); 2060 2061 callit: 2062 error = nfs3lookup_otw(dvp, nm, vpp, cr, rfscall_flags); 2063 2064 return (error); 2065 } 2066 2067 static int 2068 nfs3lookup_dnlc(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 2069 { 2070 int error; 2071 vnode_t *vp; 2072 2073 ASSERT(*nm != '\0'); 2074 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2075 /* 2076 * Lookup this name in the DNLC. If successful, then validate 2077 * the caches and then recheck the DNLC. The DNLC is rechecked 2078 * just in case this entry got invalidated during the call 2079 * to nfs3_validate_caches. 2080 * 2081 * An assumption is being made that it is safe to say that a 2082 * file exists which may not on the server. Any operations to 2083 * the server will fail with ESTALE. 2084 */ 2085 #ifdef DEBUG 2086 nfs3_lookup_dnlc_lookups++; 2087 #endif 2088 vp = dnlc_lookup(dvp, nm); 2089 if (vp != NULL) { 2090 VN_RELE(vp); 2091 if (vp == DNLC_NO_VNODE && !vn_is_readonly(dvp)) { 2092 PURGE_ATTRCACHE(dvp); 2093 } 2094 error = nfs3_validate_caches(dvp, cr); 2095 if (error) 2096 return (error); 2097 vp = dnlc_lookup(dvp, nm); 2098 if (vp != NULL) { 2099 error = nfs3_access(dvp, VEXEC, 0, cr, NULL); 2100 if (error) { 2101 VN_RELE(vp); 2102 return (error); 2103 } 2104 if (vp == DNLC_NO_VNODE) { 2105 VN_RELE(vp); 2106 #ifdef DEBUG 2107 nfs3_lookup_dnlc_neg_hits++; 2108 #endif 2109 return (ENOENT); 2110 } 2111 *vpp = vp; 2112 #ifdef DEBUG 2113 nfs3_lookup_dnlc_hits++; 2114 #endif 2115 return (0); 2116 } 2117 #ifdef DEBUG 2118 nfs3_lookup_dnlc_disappears++; 2119 #endif 2120 } 2121 #ifdef DEBUG 2122 else 2123 nfs3_lookup_dnlc_misses++; 2124 #endif 2125 2126 *vpp = NULL; 2127 2128 return (0); 2129 } 2130 2131 static int 2132 nfs3lookup_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, 2133 int rfscall_flags) 2134 { 2135 int error; 2136 LOOKUP3args args; 2137 LOOKUP3vres res; 2138 int douprintf; 2139 struct vattr vattr; 2140 struct vattr dvattr; 2141 vnode_t *vp; 2142 failinfo_t fi; 2143 hrtime_t t; 2144 2145 ASSERT(*nm != '\0'); 2146 ASSERT(dvp->v_type == VDIR); 2147 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2148 2149 setdiropargs3(&args.what, nm, dvp); 2150 2151 fi.vp = dvp; 2152 fi.fhp = (caddr_t)&args.what.dir; 2153 fi.copyproc = nfs3copyfh; 2154 fi.lookupproc = nfs3lookup; 2155 fi.xattrdirproc = acl_getxattrdir3; 2156 res.obj_attributes.fres.vp = dvp; 2157 res.obj_attributes.fres.vap = &vattr; 2158 res.dir_attributes.fres.vp = dvp; 2159 res.dir_attributes.fres.vap = &dvattr; 2160 2161 douprintf = 1; 2162 2163 t = gethrtime(); 2164 2165 error = rfs3call(VTOMI(dvp), NFSPROC3_LOOKUP, 2166 xdr_diropargs3, (caddr_t)&args, 2167 xdr_LOOKUP3vres, (caddr_t)&res, cr, 2168 &douprintf, &res.status, rfscall_flags, &fi); 2169 2170 if (error) 2171 return (error); 2172 2173 nfs3_cache_post_op_vattr(dvp, &res.dir_attributes, t, cr); 2174 2175 error = geterrno3(res.status); 2176 if (error) { 2177 PURGE_STALE_FH(error, dvp, cr); 2178 if (error == ENOENT && nfs3_lookup_neg_cache) 2179 dnlc_enter(dvp, nm, DNLC_NO_VNODE); 2180 return (error); 2181 } 2182 2183 if (res.obj_attributes.attributes) { 2184 vp = makenfs3node_va(&res.object, res.obj_attributes.fres.vap, 2185 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm); 2186 } else { 2187 vp = makenfs3node_va(&res.object, NULL, 2188 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm); 2189 if (vp->v_type == VNON) { 2190 vattr.va_mask = AT_TYPE; 2191 error = nfs3getattr(vp, &vattr, cr); 2192 if (error) { 2193 VN_RELE(vp); 2194 return (error); 2195 } 2196 vp->v_type = vattr.va_type; 2197 } 2198 } 2199 2200 if (!(rfscall_flags & RFSCALL_SOFT)) 2201 dnlc_update(dvp, nm, vp); 2202 2203 *vpp = vp; 2204 2205 return (error); 2206 } 2207 2208 #ifdef DEBUG 2209 static int nfs3_create_misses = 0; 2210 #endif 2211 2212 /* ARGSUSED */ 2213 static int 2214 nfs3_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 2215 int mode, vnode_t **vpp, cred_t *cr, int lfaware, caller_context_t *ct, 2216 vsecattr_t *vsecp) 2217 { 2218 int error; 2219 vnode_t *vp; 2220 rnode_t *rp; 2221 struct vattr vattr; 2222 rnode_t *drp; 2223 vnode_t *tempvp; 2224 2225 drp = VTOR(dvp); 2226 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2227 return (EPERM); 2228 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2229 return (EINTR); 2230 2231 top: 2232 /* 2233 * We make a copy of the attributes because the caller does not 2234 * expect us to change what va points to. 2235 */ 2236 vattr = *va; 2237 2238 /* 2239 * If the pathname is "", just use dvp. Don't need 2240 * to send it over the wire, look it up in the dnlc, 2241 * or perform any access checks. 2242 */ 2243 if (*nm == '\0') { 2244 error = 0; 2245 VN_HOLD(dvp); 2246 vp = dvp; 2247 /* 2248 * If the pathname is ".", just use dvp. Don't need 2249 * to send it over the wire or look it up in the dnlc, 2250 * just need to check access. 2251 */ 2252 } else if (strcmp(nm, ".") == 0) { 2253 error = nfs3_access(dvp, VEXEC, 0, cr, ct); 2254 if (error) { 2255 nfs_rw_exit(&drp->r_rwlock); 2256 return (error); 2257 } 2258 VN_HOLD(dvp); 2259 vp = dvp; 2260 /* 2261 * We need to go over the wire, just to be sure whether the 2262 * file exists or not. Using the DNLC can be dangerous in 2263 * this case when making a decision regarding existence. 2264 */ 2265 } else { 2266 error = nfs3lookup_otw(dvp, nm, &vp, cr, 0); 2267 } 2268 if (!error) { 2269 if (exclusive == EXCL) 2270 error = EEXIST; 2271 else if (vp->v_type == VDIR && (mode & VWRITE)) 2272 error = EISDIR; 2273 else { 2274 /* 2275 * If vnode is a device, create special vnode. 2276 */ 2277 if (IS_DEVVP(vp)) { 2278 tempvp = vp; 2279 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2280 VN_RELE(tempvp); 2281 } 2282 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) { 2283 if ((vattr.va_mask & AT_SIZE) && 2284 vp->v_type == VREG) { 2285 rp = VTOR(vp); 2286 /* 2287 * Check here for large file handled 2288 * by LF-unaware process (as 2289 * ufs_create() does) 2290 */ 2291 if (!(lfaware & FOFFMAX)) { 2292 mutex_enter(&rp->r_statelock); 2293 if (rp->r_size > MAXOFF32_T) 2294 error = EOVERFLOW; 2295 mutex_exit(&rp->r_statelock); 2296 } 2297 if (!error) { 2298 vattr.va_mask = AT_SIZE; 2299 error = nfs3setattr(vp, 2300 &vattr, 0, cr); 2301 } 2302 } 2303 } 2304 } 2305 nfs_rw_exit(&drp->r_rwlock); 2306 if (error) { 2307 VN_RELE(vp); 2308 } else { 2309 /* 2310 * existing file got truncated, notify. 2311 */ 2312 vnevent_create(vp, ct); 2313 *vpp = vp; 2314 } 2315 return (error); 2316 } 2317 2318 dnlc_remove(dvp, nm); 2319 2320 /* 2321 * Decide what the group-id of the created file should be. 2322 * Set it in attribute list as advisory... 2323 */ 2324 error = setdirgid(dvp, &vattr.va_gid, cr); 2325 if (error) { 2326 nfs_rw_exit(&drp->r_rwlock); 2327 return (error); 2328 } 2329 vattr.va_mask |= AT_GID; 2330 2331 ASSERT(vattr.va_mask & AT_TYPE); 2332 if (vattr.va_type == VREG) { 2333 ASSERT(vattr.va_mask & AT_MODE); 2334 if (MANDMODE(vattr.va_mode)) { 2335 nfs_rw_exit(&drp->r_rwlock); 2336 return (EACCES); 2337 } 2338 error = nfs3create(dvp, nm, &vattr, exclusive, mode, vpp, cr, 2339 lfaware); 2340 /* 2341 * If this is not an exclusive create, then the CREATE 2342 * request will be made with the GUARDED mode set. This 2343 * means that the server will return EEXIST if the file 2344 * exists. The file could exist because of a retransmitted 2345 * request. In this case, we recover by starting over and 2346 * checking to see whether the file exists. This second 2347 * time through it should and a CREATE request will not be 2348 * sent. 2349 * 2350 * This handles the problem of a dangling CREATE request 2351 * which contains attributes which indicate that the file 2352 * should be truncated. This retransmitted request could 2353 * possibly truncate valid data in the file if not caught 2354 * by the duplicate request mechanism on the server or if 2355 * not caught by other means. The scenario is: 2356 * 2357 * Client transmits CREATE request with size = 0 2358 * Client times out, retransmits request. 2359 * Response to the first request arrives from the server 2360 * and the client proceeds on. 2361 * Client writes data to the file. 2362 * The server now processes retransmitted CREATE request 2363 * and truncates file. 2364 * 2365 * The use of the GUARDED CREATE request prevents this from 2366 * happening because the retransmitted CREATE would fail 2367 * with EEXIST and would not truncate the file. 2368 */ 2369 if (error == EEXIST && exclusive == NONEXCL) { 2370 #ifdef DEBUG 2371 nfs3_create_misses++; 2372 #endif 2373 goto top; 2374 } 2375 nfs_rw_exit(&drp->r_rwlock); 2376 return (error); 2377 } 2378 error = nfs3mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr); 2379 nfs_rw_exit(&drp->r_rwlock); 2380 return (error); 2381 } 2382 2383 /* ARGSUSED */ 2384 static int 2385 nfs3create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 2386 int mode, vnode_t **vpp, cred_t *cr, int lfaware) 2387 { 2388 int error; 2389 CREATE3args args; 2390 CREATE3res res; 2391 int douprintf; 2392 vnode_t *vp; 2393 struct vattr vattr; 2394 nfstime3 *verfp; 2395 rnode_t *rp; 2396 timestruc_t now; 2397 hrtime_t t; 2398 2399 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2400 setdiropargs3(&args.where, nm, dvp); 2401 if (exclusive == EXCL) { 2402 args.how.mode = EXCLUSIVE; 2403 /* 2404 * Construct the create verifier. This verifier needs 2405 * to be unique between different clients. It also needs 2406 * to vary for each exclusive create request generated 2407 * from the client to the server. 2408 * 2409 * The first attempt is made to use the hostid and a 2410 * unique number on the client. If the hostid has not 2411 * been set, the high resolution time that the exclusive 2412 * create request is being made is used. This will work 2413 * unless two different clients, both with the hostid 2414 * not set, attempt an exclusive create request on the 2415 * same file, at exactly the same clock time. The 2416 * chances of this happening seem small enough to be 2417 * reasonable. 2418 */ 2419 verfp = (nfstime3 *)&args.how.createhow3_u.verf; 2420 verfp->seconds = zone_get_hostid(NULL); 2421 if (verfp->seconds != 0) 2422 verfp->nseconds = newnum(); 2423 else { 2424 gethrestime(&now); 2425 verfp->seconds = now.tv_sec; 2426 verfp->nseconds = now.tv_nsec; 2427 } 2428 /* 2429 * Since the server will use this value for the mtime, 2430 * make sure that it can't overflow. Zero out the MSB. 2431 * The actual value does not matter here, only its uniqeness. 2432 */ 2433 verfp->seconds %= INT32_MAX; 2434 } else { 2435 /* 2436 * Issue the non-exclusive create in guarded mode. This 2437 * may result in some false EEXIST responses for 2438 * retransmitted requests, but these will be handled at 2439 * a higher level. By using GUARDED, duplicate requests 2440 * to do file truncation and possible access problems 2441 * can be avoided. 2442 */ 2443 args.how.mode = GUARDED; 2444 error = vattr_to_sattr3(va, 2445 &args.how.createhow3_u.obj_attributes); 2446 if (error) { 2447 /* req time field(s) overflow - return immediately */ 2448 return (error); 2449 } 2450 } 2451 2452 douprintf = 1; 2453 2454 t = gethrtime(); 2455 2456 error = rfs3call(VTOMI(dvp), NFSPROC3_CREATE, 2457 xdr_CREATE3args, (caddr_t)&args, 2458 xdr_CREATE3res, (caddr_t)&res, cr, 2459 &douprintf, &res.status, 0, NULL); 2460 2461 if (error) { 2462 PURGE_ATTRCACHE(dvp); 2463 return (error); 2464 } 2465 2466 error = geterrno3(res.status); 2467 if (!error) { 2468 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 2469 if (HAVE_RDDIR_CACHE(VTOR(dvp))) 2470 nfs_purge_rddir_cache(dvp); 2471 2472 /* 2473 * On exclusive create the times need to be explicitly 2474 * set to clear any potential verifier that may be stored 2475 * in one of these fields (see comment below). This 2476 * is done here to cover the case where no post op attrs 2477 * were returned or a 'invalid' time was returned in 2478 * the attributes. 2479 */ 2480 if (exclusive == EXCL) 2481 va->va_mask |= (AT_MTIME | AT_ATIME); 2482 2483 if (!res.resok.obj.handle_follows) { 2484 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2485 if (error) 2486 return (error); 2487 } else { 2488 if (res.resok.obj_attributes.attributes) { 2489 vp = makenfs3node(&res.resok.obj.handle, 2490 &res.resok.obj_attributes.attr, 2491 dvp->v_vfsp, t, cr, NULL, NULL); 2492 } else { 2493 vp = makenfs3node(&res.resok.obj.handle, NULL, 2494 dvp->v_vfsp, t, cr, NULL, NULL); 2495 2496 /* 2497 * On an exclusive create, it is possible 2498 * that attributes were returned but those 2499 * postop attributes failed to decode 2500 * properly. If this is the case, 2501 * then most likely the atime or mtime 2502 * were invalid for our client; this 2503 * is caused by the server storing the 2504 * create verifier in one of the time 2505 * fields(most likely mtime). 2506 * So... we are going to setattr just the 2507 * atime/mtime to clear things up. 2508 */ 2509 if (exclusive == EXCL) { 2510 if (error = 2511 nfs3excl_create_settimes(vp, 2512 va, cr)) { 2513 /* 2514 * Setting the times failed. 2515 * Remove the file and return 2516 * the error. 2517 */ 2518 VN_RELE(vp); 2519 (void) nfs3_remove(dvp, 2520 nm, cr, NULL, 0); 2521 return (error); 2522 } 2523 } 2524 2525 /* 2526 * This handles the non-exclusive case 2527 * and the exclusive case where no post op 2528 * attrs were returned. 2529 */ 2530 if (vp->v_type == VNON) { 2531 vattr.va_mask = AT_TYPE; 2532 error = nfs3getattr(vp, &vattr, cr); 2533 if (error) { 2534 VN_RELE(vp); 2535 return (error); 2536 } 2537 vp->v_type = vattr.va_type; 2538 } 2539 } 2540 dnlc_update(dvp, nm, vp); 2541 } 2542 2543 rp = VTOR(vp); 2544 2545 /* 2546 * Check here for large file handled by 2547 * LF-unaware process (as ufs_create() does) 2548 */ 2549 if ((va->va_mask & AT_SIZE) && vp->v_type == VREG && 2550 !(lfaware & FOFFMAX)) { 2551 mutex_enter(&rp->r_statelock); 2552 if (rp->r_size > MAXOFF32_T) { 2553 mutex_exit(&rp->r_statelock); 2554 VN_RELE(vp); 2555 return (EOVERFLOW); 2556 } 2557 mutex_exit(&rp->r_statelock); 2558 } 2559 2560 if (exclusive == EXCL && 2561 (va->va_mask & ~(AT_GID | AT_SIZE))) { 2562 /* 2563 * If doing an exclusive create, then generate 2564 * a SETATTR to set the initial attributes. 2565 * Try to set the mtime and the atime to the 2566 * server's current time. It is somewhat 2567 * expected that these fields will be used to 2568 * store the exclusive create cookie. If not, 2569 * server implementors will need to know that 2570 * a SETATTR will follow an exclusive create 2571 * and the cookie should be destroyed if 2572 * appropriate. This work may have been done 2573 * earlier in this function if post op attrs 2574 * were not available. 2575 * 2576 * The AT_GID and AT_SIZE bits are turned off 2577 * so that the SETATTR request will not attempt 2578 * to process these. The gid will be set 2579 * separately if appropriate. The size is turned 2580 * off because it is assumed that a new file will 2581 * be created empty and if the file wasn't empty, 2582 * then the exclusive create will have failed 2583 * because the file must have existed already. 2584 * Therefore, no truncate operation is needed. 2585 */ 2586 va->va_mask &= ~(AT_GID | AT_SIZE); 2587 error = nfs3setattr(vp, va, 0, cr); 2588 if (error) { 2589 /* 2590 * Couldn't correct the attributes of 2591 * the newly created file and the 2592 * attributes are wrong. Remove the 2593 * file and return an error to the 2594 * application. 2595 */ 2596 VN_RELE(vp); 2597 (void) nfs3_remove(dvp, nm, cr, NULL, 0); 2598 return (error); 2599 } 2600 } 2601 2602 if (va->va_gid != rp->r_attr.va_gid) { 2603 /* 2604 * If the gid on the file isn't right, then 2605 * generate a SETATTR to attempt to change 2606 * it. This may or may not work, depending 2607 * upon the server's semantics for allowing 2608 * file ownership changes. 2609 */ 2610 va->va_mask = AT_GID; 2611 (void) nfs3setattr(vp, va, 0, cr); 2612 } 2613 2614 /* 2615 * If vnode is a device create special vnode 2616 */ 2617 if (IS_DEVVP(vp)) { 2618 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2619 VN_RELE(vp); 2620 } else 2621 *vpp = vp; 2622 } else { 2623 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 2624 PURGE_STALE_FH(error, dvp, cr); 2625 } 2626 2627 return (error); 2628 } 2629 2630 /* 2631 * Special setattr function to take care of rest of atime/mtime 2632 * after successful exclusive create. This function exists to avoid 2633 * handling attributes from the server; exclusive the atime/mtime fields 2634 * may be 'invalid' in client's view and therefore can not be trusted. 2635 */ 2636 static int 2637 nfs3excl_create_settimes(vnode_t *vp, struct vattr *vap, cred_t *cr) 2638 { 2639 int error; 2640 uint_t mask; 2641 SETATTR3args args; 2642 SETATTR3res res; 2643 int douprintf; 2644 rnode_t *rp; 2645 hrtime_t t; 2646 2647 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 2648 /* save the caller's mask so that it can be reset later */ 2649 mask = vap->va_mask; 2650 2651 rp = VTOR(vp); 2652 2653 args.object = *RTOFH3(rp); 2654 args.guard.check = FALSE; 2655 2656 /* Use the mask to initialize the arguments */ 2657 vap->va_mask = 0; 2658 error = vattr_to_sattr3(vap, &args.new_attributes); 2659 2660 /* We want to set just atime/mtime on this request */ 2661 args.new_attributes.atime.set_it = SET_TO_SERVER_TIME; 2662 args.new_attributes.mtime.set_it = SET_TO_SERVER_TIME; 2663 2664 douprintf = 1; 2665 2666 t = gethrtime(); 2667 2668 error = rfs3call(VTOMI(vp), NFSPROC3_SETATTR, 2669 xdr_SETATTR3args, (caddr_t)&args, 2670 xdr_SETATTR3res, (caddr_t)&res, cr, 2671 &douprintf, &res.status, 0, NULL); 2672 2673 if (error) { 2674 vap->va_mask = mask; 2675 return (error); 2676 } 2677 2678 error = geterrno3(res.status); 2679 if (!error) { 2680 /* 2681 * It is important to pick up the attributes. 2682 * Since this is the exclusive create path, the 2683 * attributes on the initial create were ignored 2684 * and we need these to have the correct info. 2685 */ 2686 nfs3_cache_wcc_data(vp, &res.resok.obj_wcc, t, cr); 2687 /* 2688 * No need to do the atime/mtime work again so clear 2689 * the bits. 2690 */ 2691 mask &= ~(AT_ATIME | AT_MTIME); 2692 } else { 2693 nfs3_cache_wcc_data(vp, &res.resfail.obj_wcc, t, cr); 2694 } 2695 2696 vap->va_mask = mask; 2697 2698 return (error); 2699 } 2700 2701 /* ARGSUSED */ 2702 static int 2703 nfs3mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 2704 int mode, vnode_t **vpp, cred_t *cr) 2705 { 2706 int error; 2707 MKNOD3args args; 2708 MKNOD3res res; 2709 int douprintf; 2710 vnode_t *vp; 2711 struct vattr vattr; 2712 hrtime_t t; 2713 2714 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2715 switch (va->va_type) { 2716 case VCHR: 2717 case VBLK: 2718 setdiropargs3(&args.where, nm, dvp); 2719 args.what.type = (va->va_type == VCHR) ? NF3CHR : NF3BLK; 2720 error = vattr_to_sattr3(va, 2721 &args.what.mknoddata3_u.device.dev_attributes); 2722 if (error) { 2723 /* req time field(s) overflow - return immediately */ 2724 return (error); 2725 } 2726 args.what.mknoddata3_u.device.spec.specdata1 = 2727 getmajor(va->va_rdev); 2728 args.what.mknoddata3_u.device.spec.specdata2 = 2729 getminor(va->va_rdev); 2730 break; 2731 2732 case VFIFO: 2733 case VSOCK: 2734 setdiropargs3(&args.where, nm, dvp); 2735 args.what.type = (va->va_type == VFIFO) ? NF3FIFO : NF3SOCK; 2736 error = vattr_to_sattr3(va, 2737 &args.what.mknoddata3_u.pipe_attributes); 2738 if (error) { 2739 /* req time field(s) overflow - return immediately */ 2740 return (error); 2741 } 2742 break; 2743 2744 default: 2745 return (EINVAL); 2746 } 2747 2748 douprintf = 1; 2749 2750 t = gethrtime(); 2751 2752 error = rfs3call(VTOMI(dvp), NFSPROC3_MKNOD, 2753 xdr_MKNOD3args, (caddr_t)&args, 2754 xdr_MKNOD3res, (caddr_t)&res, cr, 2755 &douprintf, &res.status, 0, NULL); 2756 2757 if (error) { 2758 PURGE_ATTRCACHE(dvp); 2759 return (error); 2760 } 2761 2762 error = geterrno3(res.status); 2763 if (!error) { 2764 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 2765 if (HAVE_RDDIR_CACHE(VTOR(dvp))) 2766 nfs_purge_rddir_cache(dvp); 2767 2768 if (!res.resok.obj.handle_follows) { 2769 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2770 if (error) 2771 return (error); 2772 } else { 2773 if (res.resok.obj_attributes.attributes) { 2774 vp = makenfs3node(&res.resok.obj.handle, 2775 &res.resok.obj_attributes.attr, 2776 dvp->v_vfsp, t, cr, NULL, NULL); 2777 } else { 2778 vp = makenfs3node(&res.resok.obj.handle, NULL, 2779 dvp->v_vfsp, t, cr, NULL, NULL); 2780 if (vp->v_type == VNON) { 2781 vattr.va_mask = AT_TYPE; 2782 error = nfs3getattr(vp, &vattr, cr); 2783 if (error) { 2784 VN_RELE(vp); 2785 return (error); 2786 } 2787 vp->v_type = vattr.va_type; 2788 } 2789 2790 } 2791 dnlc_update(dvp, nm, vp); 2792 } 2793 2794 if (va->va_gid != VTOR(vp)->r_attr.va_gid) { 2795 va->va_mask = AT_GID; 2796 (void) nfs3setattr(vp, va, 0, cr); 2797 } 2798 2799 /* 2800 * If vnode is a device create special vnode 2801 */ 2802 if (IS_DEVVP(vp)) { 2803 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2804 VN_RELE(vp); 2805 } else 2806 *vpp = vp; 2807 } else { 2808 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 2809 PURGE_STALE_FH(error, dvp, cr); 2810 } 2811 return (error); 2812 } 2813 2814 /* 2815 * Weirdness: if the vnode to be removed is open 2816 * we rename it instead of removing it and nfs_inactive 2817 * will remove the new name. 2818 */ 2819 /* ARGSUSED */ 2820 static int 2821 nfs3_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags) 2822 { 2823 int error; 2824 REMOVE3args args; 2825 REMOVE3res res; 2826 vnode_t *vp; 2827 char *tmpname; 2828 int douprintf; 2829 rnode_t *rp; 2830 rnode_t *drp; 2831 hrtime_t t; 2832 2833 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2834 return (EPERM); 2835 drp = VTOR(dvp); 2836 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2837 return (EINTR); 2838 2839 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2840 if (error) { 2841 nfs_rw_exit(&drp->r_rwlock); 2842 return (error); 2843 } 2844 2845 if (vp->v_type == VDIR && secpolicy_fs_linkdir(cr, dvp->v_vfsp)) { 2846 VN_RELE(vp); 2847 nfs_rw_exit(&drp->r_rwlock); 2848 return (EPERM); 2849 } 2850 2851 /* 2852 * First just remove the entry from the name cache, as it 2853 * is most likely the only entry for this vp. 2854 */ 2855 dnlc_remove(dvp, nm); 2856 2857 /* 2858 * If the file has a v_count > 1 then there may be more than one 2859 * entry in the name cache due multiple links or an open file, 2860 * but we don't have the real reference count so flush all 2861 * possible entries. 2862 */ 2863 if (vp->v_count > 1) 2864 dnlc_purge_vp(vp); 2865 2866 /* 2867 * Now we have the real reference count on the vnode 2868 */ 2869 rp = VTOR(vp); 2870 mutex_enter(&rp->r_statelock); 2871 if (vp->v_count > 1 && 2872 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 2873 mutex_exit(&rp->r_statelock); 2874 tmpname = newname(); 2875 error = nfs3rename(dvp, nm, dvp, tmpname, cr, ct); 2876 if (error) 2877 kmem_free(tmpname, MAXNAMELEN); 2878 else { 2879 mutex_enter(&rp->r_statelock); 2880 if (rp->r_unldvp == NULL) { 2881 VN_HOLD(dvp); 2882 rp->r_unldvp = dvp; 2883 if (rp->r_unlcred != NULL) 2884 crfree(rp->r_unlcred); 2885 crhold(cr); 2886 rp->r_unlcred = cr; 2887 rp->r_unlname = tmpname; 2888 } else { 2889 kmem_free(rp->r_unlname, MAXNAMELEN); 2890 rp->r_unlname = tmpname; 2891 } 2892 mutex_exit(&rp->r_statelock); 2893 } 2894 } else { 2895 mutex_exit(&rp->r_statelock); 2896 /* 2897 * We need to flush any dirty pages which happen to 2898 * be hanging around before removing the file. This 2899 * shouldn't happen very often and mostly on file 2900 * systems mounted "nocto". 2901 */ 2902 if (vn_has_cached_data(vp) && 2903 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 2904 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, ct); 2905 if (error && (error == ENOSPC || error == EDQUOT)) { 2906 mutex_enter(&rp->r_statelock); 2907 if (!rp->r_error) 2908 rp->r_error = error; 2909 mutex_exit(&rp->r_statelock); 2910 } 2911 } 2912 2913 setdiropargs3(&args.object, nm, dvp); 2914 2915 douprintf = 1; 2916 2917 t = gethrtime(); 2918 2919 error = rfs3call(VTOMI(dvp), NFSPROC3_REMOVE, 2920 xdr_diropargs3, (caddr_t)&args, 2921 xdr_REMOVE3res, (caddr_t)&res, cr, 2922 &douprintf, &res.status, 0, NULL); 2923 2924 /* 2925 * The xattr dir may be gone after last attr is removed, 2926 * so flush it from dnlc. 2927 */ 2928 if (dvp->v_flag & V_XATTRDIR) 2929 dnlc_purge_vp(dvp); 2930 2931 PURGE_ATTRCACHE(vp); 2932 2933 if (error) { 2934 PURGE_ATTRCACHE(dvp); 2935 } else { 2936 error = geterrno3(res.status); 2937 if (!error) { 2938 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, 2939 cr); 2940 if (HAVE_RDDIR_CACHE(drp)) 2941 nfs_purge_rddir_cache(dvp); 2942 } else { 2943 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, 2944 t, cr); 2945 PURGE_STALE_FH(error, dvp, cr); 2946 } 2947 } 2948 } 2949 2950 if (error == 0) { 2951 vnevent_remove(vp, dvp, nm, ct); 2952 } 2953 VN_RELE(vp); 2954 2955 nfs_rw_exit(&drp->r_rwlock); 2956 2957 return (error); 2958 } 2959 2960 /* ARGSUSED */ 2961 static int 2962 nfs3_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr, 2963 caller_context_t *ct, int flags) 2964 { 2965 int error; 2966 LINK3args args; 2967 LINK3res res; 2968 vnode_t *realvp; 2969 int douprintf; 2970 mntinfo_t *mi; 2971 rnode_t *tdrp; 2972 hrtime_t t; 2973 2974 if (nfs_zone() != VTOMI(tdvp)->mi_zone) 2975 return (EPERM); 2976 if (VOP_REALVP(svp, &realvp, ct) == 0) 2977 svp = realvp; 2978 2979 mi = VTOMI(svp); 2980 2981 if (!(mi->mi_flags & MI_LINK)) 2982 return (EOPNOTSUPP); 2983 2984 args.file = *VTOFH3(svp); 2985 setdiropargs3(&args.link, tnm, tdvp); 2986 2987 tdrp = VTOR(tdvp); 2988 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR(tdvp))) 2989 return (EINTR); 2990 2991 dnlc_remove(tdvp, tnm); 2992 2993 douprintf = 1; 2994 2995 t = gethrtime(); 2996 2997 error = rfs3call(mi, NFSPROC3_LINK, 2998 xdr_LINK3args, (caddr_t)&args, 2999 xdr_LINK3res, (caddr_t)&res, cr, 3000 &douprintf, &res.status, 0, NULL); 3001 3002 if (error) { 3003 PURGE_ATTRCACHE(tdvp); 3004 PURGE_ATTRCACHE(svp); 3005 nfs_rw_exit(&tdrp->r_rwlock); 3006 return (error); 3007 } 3008 3009 error = geterrno3(res.status); 3010 3011 if (!error) { 3012 nfs3_cache_post_op_attr(svp, &res.resok.file_attributes, t, cr); 3013 nfs3_cache_wcc_data(tdvp, &res.resok.linkdir_wcc, t, cr); 3014 if (HAVE_RDDIR_CACHE(tdrp)) 3015 nfs_purge_rddir_cache(tdvp); 3016 dnlc_update(tdvp, tnm, svp); 3017 } else { 3018 nfs3_cache_post_op_attr(svp, &res.resfail.file_attributes, t, 3019 cr); 3020 nfs3_cache_wcc_data(tdvp, &res.resfail.linkdir_wcc, t, cr); 3021 if (error == EOPNOTSUPP) { 3022 mutex_enter(&mi->mi_lock); 3023 mi->mi_flags &= ~MI_LINK; 3024 mutex_exit(&mi->mi_lock); 3025 } 3026 } 3027 3028 nfs_rw_exit(&tdrp->r_rwlock); 3029 3030 if (!error) { 3031 /* 3032 * Notify the source file of this link operation. 3033 */ 3034 vnevent_link(svp, ct); 3035 } 3036 return (error); 3037 } 3038 3039 /* ARGSUSED */ 3040 static int 3041 nfs3_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 3042 caller_context_t *ct, int flags) 3043 { 3044 vnode_t *realvp; 3045 3046 if (nfs_zone() != VTOMI(odvp)->mi_zone) 3047 return (EPERM); 3048 if (VOP_REALVP(ndvp, &realvp, ct) == 0) 3049 ndvp = realvp; 3050 3051 return (nfs3rename(odvp, onm, ndvp, nnm, cr, ct)); 3052 } 3053 3054 /* 3055 * nfs3rename does the real work of renaming in NFS Version 3. 3056 */ 3057 static int 3058 nfs3rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 3059 caller_context_t *ct) 3060 { 3061 int error; 3062 RENAME3args args; 3063 RENAME3res res; 3064 int douprintf; 3065 vnode_t *nvp = NULL; 3066 vnode_t *ovp = NULL; 3067 char *tmpname; 3068 rnode_t *rp; 3069 rnode_t *odrp; 3070 rnode_t *ndrp; 3071 hrtime_t t; 3072 3073 ASSERT(nfs_zone() == VTOMI(odvp)->mi_zone); 3074 3075 if (strcmp(onm, ".") == 0 || strcmp(onm, "..") == 0 || 3076 strcmp(nnm, ".") == 0 || strcmp(nnm, "..") == 0) 3077 return (EINVAL); 3078 3079 odrp = VTOR(odvp); 3080 ndrp = VTOR(ndvp); 3081 if ((intptr_t)odrp < (intptr_t)ndrp) { 3082 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) 3083 return (EINTR); 3084 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) { 3085 nfs_rw_exit(&odrp->r_rwlock); 3086 return (EINTR); 3087 } 3088 } else { 3089 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) 3090 return (EINTR); 3091 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) { 3092 nfs_rw_exit(&ndrp->r_rwlock); 3093 return (EINTR); 3094 } 3095 } 3096 3097 /* 3098 * Lookup the target file. If it exists, it needs to be 3099 * checked to see whether it is a mount point and whether 3100 * it is active (open). 3101 */ 3102 error = nfs3lookup(ndvp, nnm, &nvp, NULL, 0, NULL, cr, 0); 3103 if (!error) { 3104 /* 3105 * If this file has been mounted on, then just 3106 * return busy because renaming to it would remove 3107 * the mounted file system from the name space. 3108 */ 3109 if (vn_mountedvfs(nvp) != NULL) { 3110 VN_RELE(nvp); 3111 nfs_rw_exit(&odrp->r_rwlock); 3112 nfs_rw_exit(&ndrp->r_rwlock); 3113 return (EBUSY); 3114 } 3115 3116 /* 3117 * Purge the name cache of all references to this vnode 3118 * so that we can check the reference count to infer 3119 * whether it is active or not. 3120 */ 3121 /* 3122 * First just remove the entry from the name cache, as it 3123 * is most likely the only entry for this vp. 3124 */ 3125 dnlc_remove(ndvp, nnm); 3126 /* 3127 * If the file has a v_count > 1 then there may be more 3128 * than one entry in the name cache due multiple links 3129 * or an open file, but we don't have the real reference 3130 * count so flush all possible entries. 3131 */ 3132 if (nvp->v_count > 1) 3133 dnlc_purge_vp(nvp); 3134 3135 /* 3136 * If the vnode is active and is not a directory, 3137 * arrange to rename it to a 3138 * temporary file so that it will continue to be 3139 * accessible. This implements the "unlink-open-file" 3140 * semantics for the target of a rename operation. 3141 * Before doing this though, make sure that the 3142 * source and target files are not already the same. 3143 */ 3144 if (nvp->v_count > 1 && nvp->v_type != VDIR) { 3145 /* 3146 * Lookup the source name. 3147 */ 3148 error = nfs3lookup(odvp, onm, &ovp, NULL, 0, NULL, 3149 cr, 0); 3150 3151 /* 3152 * The source name *should* already exist. 3153 */ 3154 if (error) { 3155 VN_RELE(nvp); 3156 nfs_rw_exit(&odrp->r_rwlock); 3157 nfs_rw_exit(&ndrp->r_rwlock); 3158 return (error); 3159 } 3160 3161 /* 3162 * Compare the two vnodes. If they are the same, 3163 * just release all held vnodes and return success. 3164 */ 3165 if (ovp == nvp) { 3166 VN_RELE(ovp); 3167 VN_RELE(nvp); 3168 nfs_rw_exit(&odrp->r_rwlock); 3169 nfs_rw_exit(&ndrp->r_rwlock); 3170 return (0); 3171 } 3172 3173 /* 3174 * Can't mix and match directories and non- 3175 * directories in rename operations. We already 3176 * know that the target is not a directory. If 3177 * the source is a directory, return an error. 3178 */ 3179 if (ovp->v_type == VDIR) { 3180 VN_RELE(ovp); 3181 VN_RELE(nvp); 3182 nfs_rw_exit(&odrp->r_rwlock); 3183 nfs_rw_exit(&ndrp->r_rwlock); 3184 return (ENOTDIR); 3185 } 3186 3187 /* 3188 * The target file exists, is not the same as 3189 * the source file, and is active. Link it 3190 * to a temporary filename to avoid having 3191 * the server removing the file completely. 3192 */ 3193 tmpname = newname(); 3194 error = nfs3_link(ndvp, nvp, tmpname, cr, NULL, 0); 3195 if (error == EOPNOTSUPP) { 3196 error = nfs3_rename(ndvp, nnm, ndvp, tmpname, 3197 cr, NULL, 0); 3198 } 3199 if (error) { 3200 kmem_free(tmpname, MAXNAMELEN); 3201 VN_RELE(ovp); 3202 VN_RELE(nvp); 3203 nfs_rw_exit(&odrp->r_rwlock); 3204 nfs_rw_exit(&ndrp->r_rwlock); 3205 return (error); 3206 } 3207 rp = VTOR(nvp); 3208 mutex_enter(&rp->r_statelock); 3209 if (rp->r_unldvp == NULL) { 3210 VN_HOLD(ndvp); 3211 rp->r_unldvp = ndvp; 3212 if (rp->r_unlcred != NULL) 3213 crfree(rp->r_unlcred); 3214 crhold(cr); 3215 rp->r_unlcred = cr; 3216 rp->r_unlname = tmpname; 3217 } else { 3218 kmem_free(rp->r_unlname, MAXNAMELEN); 3219 rp->r_unlname = tmpname; 3220 } 3221 mutex_exit(&rp->r_statelock); 3222 } 3223 } 3224 3225 if (ovp == NULL) { 3226 /* 3227 * When renaming directories to be a subdirectory of a 3228 * different parent, the dnlc entry for ".." will no 3229 * longer be valid, so it must be removed. 3230 * 3231 * We do a lookup here to determine whether we are renaming 3232 * a directory and we need to check if we are renaming 3233 * an unlinked file. This might have already been done 3234 * in previous code, so we check ovp == NULL to avoid 3235 * doing it twice. 3236 */ 3237 3238 error = nfs3lookup(odvp, onm, &ovp, NULL, 0, NULL, cr, 0); 3239 /* 3240 * The source name *should* already exist. 3241 */ 3242 if (error) { 3243 nfs_rw_exit(&odrp->r_rwlock); 3244 nfs_rw_exit(&ndrp->r_rwlock); 3245 if (nvp) { 3246 VN_RELE(nvp); 3247 } 3248 return (error); 3249 } 3250 ASSERT(ovp != NULL); 3251 } 3252 3253 dnlc_remove(odvp, onm); 3254 dnlc_remove(ndvp, nnm); 3255 3256 setdiropargs3(&args.from, onm, odvp); 3257 setdiropargs3(&args.to, nnm, ndvp); 3258 3259 douprintf = 1; 3260 3261 t = gethrtime(); 3262 3263 error = rfs3call(VTOMI(odvp), NFSPROC3_RENAME, 3264 xdr_RENAME3args, (caddr_t)&args, 3265 xdr_RENAME3res, (caddr_t)&res, cr, 3266 &douprintf, &res.status, 0, NULL); 3267 3268 if (error) { 3269 PURGE_ATTRCACHE(odvp); 3270 PURGE_ATTRCACHE(ndvp); 3271 VN_RELE(ovp); 3272 nfs_rw_exit(&odrp->r_rwlock); 3273 nfs_rw_exit(&ndrp->r_rwlock); 3274 if (nvp) { 3275 VN_RELE(nvp); 3276 } 3277 return (error); 3278 } 3279 3280 error = geterrno3(res.status); 3281 3282 if (!error) { 3283 nfs3_cache_wcc_data(odvp, &res.resok.fromdir_wcc, t, cr); 3284 if (HAVE_RDDIR_CACHE(odrp)) 3285 nfs_purge_rddir_cache(odvp); 3286 if (ndvp != odvp) { 3287 nfs3_cache_wcc_data(ndvp, &res.resok.todir_wcc, t, cr); 3288 if (HAVE_RDDIR_CACHE(ndrp)) 3289 nfs_purge_rddir_cache(ndvp); 3290 } 3291 /* 3292 * when renaming directories to be a subdirectory of a 3293 * different parent, the dnlc entry for ".." will no 3294 * longer be valid, so it must be removed 3295 */ 3296 rp = VTOR(ovp); 3297 if (ndvp != odvp) { 3298 if (ovp->v_type == VDIR) { 3299 dnlc_remove(ovp, ".."); 3300 if (HAVE_RDDIR_CACHE(rp)) 3301 nfs_purge_rddir_cache(ovp); 3302 } 3303 } 3304 3305 /* 3306 * If we are renaming the unlinked file, update the 3307 * r_unldvp and r_unlname as needed. 3308 */ 3309 mutex_enter(&rp->r_statelock); 3310 if (rp->r_unldvp != NULL) { 3311 if (strcmp(rp->r_unlname, onm) == 0) { 3312 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN); 3313 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 3314 3315 if (ndvp != rp->r_unldvp) { 3316 VN_RELE(rp->r_unldvp); 3317 rp->r_unldvp = ndvp; 3318 VN_HOLD(ndvp); 3319 } 3320 } 3321 } 3322 mutex_exit(&rp->r_statelock); 3323 } else { 3324 nfs3_cache_wcc_data(odvp, &res.resfail.fromdir_wcc, t, cr); 3325 if (ndvp != odvp) { 3326 nfs3_cache_wcc_data(ndvp, &res.resfail.todir_wcc, t, 3327 cr); 3328 } 3329 /* 3330 * System V defines rename to return EEXIST, not 3331 * ENOTEMPTY if the target directory is not empty. 3332 * Over the wire, the error is NFSERR_ENOTEMPTY 3333 * which geterrno maps to ENOTEMPTY. 3334 */ 3335 if (error == ENOTEMPTY) 3336 error = EEXIST; 3337 } 3338 3339 if (error == 0) { 3340 if (nvp) 3341 vnevent_rename_dest(nvp, ndvp, nnm, ct); 3342 3343 if (odvp != ndvp) 3344 vnevent_rename_dest_dir(ndvp, ct); 3345 ASSERT(ovp != NULL); 3346 vnevent_rename_src(ovp, odvp, onm, ct); 3347 } 3348 3349 if (nvp) { 3350 VN_RELE(nvp); 3351 } 3352 VN_RELE(ovp); 3353 3354 nfs_rw_exit(&odrp->r_rwlock); 3355 nfs_rw_exit(&ndrp->r_rwlock); 3356 3357 return (error); 3358 } 3359 3360 /* ARGSUSED */ 3361 static int 3362 nfs3_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr, 3363 caller_context_t *ct, int flags, vsecattr_t *vsecp) 3364 { 3365 int error; 3366 MKDIR3args args; 3367 MKDIR3res res; 3368 int douprintf; 3369 struct vattr vattr; 3370 vnode_t *vp; 3371 rnode_t *drp; 3372 hrtime_t t; 3373 3374 if (nfs_zone() != VTOMI(dvp)->mi_zone) 3375 return (EPERM); 3376 setdiropargs3(&args.where, nm, dvp); 3377 3378 /* 3379 * Decide what the group-id and set-gid bit of the created directory 3380 * should be. May have to do a setattr to get the gid right. 3381 */ 3382 error = setdirgid(dvp, &va->va_gid, cr); 3383 if (error) 3384 return (error); 3385 error = setdirmode(dvp, &va->va_mode, cr); 3386 if (error) 3387 return (error); 3388 va->va_mask |= AT_MODE|AT_GID; 3389 3390 error = vattr_to_sattr3(va, &args.attributes); 3391 if (error) { 3392 /* req time field(s) overflow - return immediately */ 3393 return (error); 3394 } 3395 3396 drp = VTOR(dvp); 3397 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 3398 return (EINTR); 3399 3400 dnlc_remove(dvp, nm); 3401 3402 douprintf = 1; 3403 3404 t = gethrtime(); 3405 3406 error = rfs3call(VTOMI(dvp), NFSPROC3_MKDIR, 3407 xdr_MKDIR3args, (caddr_t)&args, 3408 xdr_MKDIR3res, (caddr_t)&res, cr, 3409 &douprintf, &res.status, 0, NULL); 3410 3411 if (error) { 3412 PURGE_ATTRCACHE(dvp); 3413 nfs_rw_exit(&drp->r_rwlock); 3414 return (error); 3415 } 3416 3417 error = geterrno3(res.status); 3418 if (!error) { 3419 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 3420 if (HAVE_RDDIR_CACHE(drp)) 3421 nfs_purge_rddir_cache(dvp); 3422 3423 if (!res.resok.obj.handle_follows) { 3424 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 3425 if (error) { 3426 nfs_rw_exit(&drp->r_rwlock); 3427 return (error); 3428 } 3429 } else { 3430 if (res.resok.obj_attributes.attributes) { 3431 vp = makenfs3node(&res.resok.obj.handle, 3432 &res.resok.obj_attributes.attr, 3433 dvp->v_vfsp, t, cr, NULL, NULL); 3434 } else { 3435 vp = makenfs3node(&res.resok.obj.handle, NULL, 3436 dvp->v_vfsp, t, cr, NULL, NULL); 3437 if (vp->v_type == VNON) { 3438 vattr.va_mask = AT_TYPE; 3439 error = nfs3getattr(vp, &vattr, cr); 3440 if (error) { 3441 VN_RELE(vp); 3442 nfs_rw_exit(&drp->r_rwlock); 3443 return (error); 3444 } 3445 vp->v_type = vattr.va_type; 3446 } 3447 } 3448 dnlc_update(dvp, nm, vp); 3449 } 3450 if (va->va_gid != VTOR(vp)->r_attr.va_gid) { 3451 va->va_mask = AT_GID; 3452 (void) nfs3setattr(vp, va, 0, cr); 3453 } 3454 *vpp = vp; 3455 } else { 3456 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 3457 PURGE_STALE_FH(error, dvp, cr); 3458 } 3459 3460 nfs_rw_exit(&drp->r_rwlock); 3461 3462 return (error); 3463 } 3464 3465 /* ARGSUSED */ 3466 static int 3467 nfs3_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr, 3468 caller_context_t *ct, int flags) 3469 { 3470 int error; 3471 RMDIR3args args; 3472 RMDIR3res res; 3473 vnode_t *vp; 3474 int douprintf; 3475 rnode_t *drp; 3476 hrtime_t t; 3477 3478 if (nfs_zone() != VTOMI(dvp)->mi_zone) 3479 return (EPERM); 3480 drp = VTOR(dvp); 3481 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 3482 return (EINTR); 3483 3484 /* 3485 * Attempt to prevent a rmdir(".") from succeeding. 3486 */ 3487 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 3488 if (error) { 3489 nfs_rw_exit(&drp->r_rwlock); 3490 return (error); 3491 } 3492 3493 if (vp == cdir) { 3494 VN_RELE(vp); 3495 nfs_rw_exit(&drp->r_rwlock); 3496 return (EINVAL); 3497 } 3498 3499 setdiropargs3(&args.object, nm, dvp); 3500 3501 /* 3502 * First just remove the entry from the name cache, as it 3503 * is most likely an entry for this vp. 3504 */ 3505 dnlc_remove(dvp, nm); 3506 3507 /* 3508 * If there vnode reference count is greater than one, then 3509 * there may be additional references in the DNLC which will 3510 * need to be purged. First, trying removing the entry for 3511 * the parent directory and see if that removes the additional 3512 * reference(s). If that doesn't do it, then use dnlc_purge_vp 3513 * to completely remove any references to the directory which 3514 * might still exist in the DNLC. 3515 */ 3516 if (vp->v_count > 1) { 3517 dnlc_remove(vp, ".."); 3518 if (vp->v_count > 1) 3519 dnlc_purge_vp(vp); 3520 } 3521 3522 douprintf = 1; 3523 3524 t = gethrtime(); 3525 3526 error = rfs3call(VTOMI(dvp), NFSPROC3_RMDIR, 3527 xdr_diropargs3, (caddr_t)&args, 3528 xdr_RMDIR3res, (caddr_t)&res, cr, 3529 &douprintf, &res.status, 0, NULL); 3530 3531 PURGE_ATTRCACHE(vp); 3532 3533 if (error) { 3534 PURGE_ATTRCACHE(dvp); 3535 VN_RELE(vp); 3536 nfs_rw_exit(&drp->r_rwlock); 3537 return (error); 3538 } 3539 3540 error = geterrno3(res.status); 3541 if (!error) { 3542 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 3543 if (HAVE_RDDIR_CACHE(drp)) 3544 nfs_purge_rddir_cache(dvp); 3545 if (HAVE_RDDIR_CACHE(VTOR(vp))) 3546 nfs_purge_rddir_cache(vp); 3547 } else { 3548 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 3549 PURGE_STALE_FH(error, dvp, cr); 3550 /* 3551 * System V defines rmdir to return EEXIST, not 3552 * ENOTEMPTY if the directory is not empty. Over 3553 * the wire, the error is NFSERR_ENOTEMPTY which 3554 * geterrno maps to ENOTEMPTY. 3555 */ 3556 if (error == ENOTEMPTY) 3557 error = EEXIST; 3558 } 3559 3560 if (error == 0) { 3561 vnevent_rmdir(vp, dvp, nm, ct); 3562 } 3563 VN_RELE(vp); 3564 3565 nfs_rw_exit(&drp->r_rwlock); 3566 3567 return (error); 3568 } 3569 3570 /* ARGSUSED */ 3571 static int 3572 nfs3_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr, 3573 caller_context_t *ct, int flags) 3574 { 3575 int error; 3576 SYMLINK3args args; 3577 SYMLINK3res res; 3578 int douprintf; 3579 mntinfo_t *mi; 3580 vnode_t *vp; 3581 rnode_t *rp; 3582 char *contents; 3583 rnode_t *drp; 3584 hrtime_t t; 3585 3586 mi = VTOMI(dvp); 3587 3588 if (nfs_zone() != mi->mi_zone) 3589 return (EPERM); 3590 if (!(mi->mi_flags & MI_SYMLINK)) 3591 return (EOPNOTSUPP); 3592 3593 setdiropargs3(&args.where, lnm, dvp); 3594 error = vattr_to_sattr3(tva, &args.symlink.symlink_attributes); 3595 if (error) { 3596 /* req time field(s) overflow - return immediately */ 3597 return (error); 3598 } 3599 args.symlink.symlink_data = tnm; 3600 3601 drp = VTOR(dvp); 3602 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 3603 return (EINTR); 3604 3605 dnlc_remove(dvp, lnm); 3606 3607 douprintf = 1; 3608 3609 t = gethrtime(); 3610 3611 error = rfs3call(mi, NFSPROC3_SYMLINK, 3612 xdr_SYMLINK3args, (caddr_t)&args, 3613 xdr_SYMLINK3res, (caddr_t)&res, cr, 3614 &douprintf, &res.status, 0, NULL); 3615 3616 if (error) { 3617 PURGE_ATTRCACHE(dvp); 3618 nfs_rw_exit(&drp->r_rwlock); 3619 return (error); 3620 } 3621 3622 error = geterrno3(res.status); 3623 if (!error) { 3624 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 3625 if (HAVE_RDDIR_CACHE(drp)) 3626 nfs_purge_rddir_cache(dvp); 3627 3628 if (res.resok.obj.handle_follows) { 3629 if (res.resok.obj_attributes.attributes) { 3630 vp = makenfs3node(&res.resok.obj.handle, 3631 &res.resok.obj_attributes.attr, 3632 dvp->v_vfsp, t, cr, NULL, NULL); 3633 } else { 3634 vp = makenfs3node(&res.resok.obj.handle, NULL, 3635 dvp->v_vfsp, t, cr, NULL, NULL); 3636 vp->v_type = VLNK; 3637 vp->v_rdev = 0; 3638 } 3639 dnlc_update(dvp, lnm, vp); 3640 rp = VTOR(vp); 3641 if (nfs3_do_symlink_cache && 3642 rp->r_symlink.contents == NULL) { 3643 3644 contents = kmem_alloc(MAXPATHLEN, 3645 KM_NOSLEEP); 3646 3647 if (contents != NULL) { 3648 mutex_enter(&rp->r_statelock); 3649 if (rp->r_symlink.contents == NULL) { 3650 rp->r_symlink.len = strlen(tnm); 3651 bcopy(tnm, contents, 3652 rp->r_symlink.len); 3653 rp->r_symlink.contents = 3654 contents; 3655 rp->r_symlink.size = MAXPATHLEN; 3656 mutex_exit(&rp->r_statelock); 3657 } else { 3658 mutex_exit(&rp->r_statelock); 3659 kmem_free((void *)contents, 3660 MAXPATHLEN); 3661 } 3662 } 3663 } 3664 VN_RELE(vp); 3665 } 3666 } else { 3667 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 3668 PURGE_STALE_FH(error, dvp, cr); 3669 if (error == EOPNOTSUPP) { 3670 mutex_enter(&mi->mi_lock); 3671 mi->mi_flags &= ~MI_SYMLINK; 3672 mutex_exit(&mi->mi_lock); 3673 } 3674 } 3675 3676 nfs_rw_exit(&drp->r_rwlock); 3677 3678 return (error); 3679 } 3680 3681 #ifdef DEBUG 3682 static int nfs3_readdir_cache_hits = 0; 3683 static int nfs3_readdir_cache_shorts = 0; 3684 static int nfs3_readdir_cache_waits = 0; 3685 static int nfs3_readdir_cache_misses = 0; 3686 static int nfs3_readdir_readahead = 0; 3687 #endif 3688 3689 static int nfs3_shrinkreaddir = 0; 3690 3691 /* 3692 * Read directory entries. 3693 * There are some weird things to look out for here. The uio_loffset 3694 * field is either 0 or it is the offset returned from a previous 3695 * readdir. It is an opaque value used by the server to find the 3696 * correct directory block to read. The count field is the number 3697 * of blocks to read on the server. This is advisory only, the server 3698 * may return only one block's worth of entries. Entries may be compressed 3699 * on the server. 3700 */ 3701 /* ARGSUSED */ 3702 static int 3703 nfs3_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp, 3704 caller_context_t *ct, int flags) 3705 { 3706 int error; 3707 size_t count; 3708 rnode_t *rp; 3709 rddir_cache *rdc; 3710 rddir_cache *nrdc; 3711 rddir_cache *rrdc; 3712 #ifdef DEBUG 3713 int missed; 3714 #endif 3715 int doreadahead; 3716 rddir_cache srdc; 3717 avl_index_t where; 3718 3719 if (nfs_zone() != VTOMI(vp)->mi_zone) 3720 return (EIO); 3721 rp = VTOR(vp); 3722 3723 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 3724 3725 /* 3726 * Make sure that the directory cache is valid. 3727 */ 3728 if (HAVE_RDDIR_CACHE(rp)) { 3729 if (nfs_disable_rddir_cache) { 3730 /* 3731 * Setting nfs_disable_rddir_cache in /etc/system 3732 * allows interoperability with servers that do not 3733 * properly update the attributes of directories. 3734 * Any cached information gets purged before an 3735 * access is made to it. 3736 */ 3737 nfs_purge_rddir_cache(vp); 3738 } else { 3739 error = nfs3_validate_caches(vp, cr); 3740 if (error) 3741 return (error); 3742 } 3743 } 3744 3745 /* 3746 * It is possible that some servers may not be able to correctly 3747 * handle a large READDIR or READDIRPLUS request due to bugs in 3748 * their implementation. In order to continue to interoperate 3749 * with them, this workaround is provided to limit the maximum 3750 * size of a READDIRPLUS request to 1024. In any case, the request 3751 * size is limited to MAXBSIZE. 3752 */ 3753 count = MIN(uiop->uio_iov->iov_len, 3754 nfs3_shrinkreaddir ? 1024 : MAXBSIZE); 3755 3756 nrdc = NULL; 3757 #ifdef DEBUG 3758 missed = 0; 3759 #endif 3760 top: 3761 /* 3762 * Short circuit last readdir which always returns 0 bytes. 3763 * This can be done after the directory has been read through 3764 * completely at least once. This will set r_direof which 3765 * can be used to find the value of the last cookie. 3766 */ 3767 mutex_enter(&rp->r_statelock); 3768 if (rp->r_direof != NULL && 3769 uiop->uio_loffset == rp->r_direof->nfs3_ncookie) { 3770 mutex_exit(&rp->r_statelock); 3771 #ifdef DEBUG 3772 nfs3_readdir_cache_shorts++; 3773 #endif 3774 if (eofp) 3775 *eofp = 1; 3776 if (nrdc != NULL) 3777 rddir_cache_rele(nrdc); 3778 return (0); 3779 } 3780 /* 3781 * Look for a cache entry. Cache entries are identified 3782 * by the NFS cookie value and the byte count requested. 3783 */ 3784 srdc.nfs3_cookie = uiop->uio_loffset; 3785 srdc.buflen = count; 3786 rdc = avl_find(&rp->r_dir, &srdc, &where); 3787 if (rdc != NULL) { 3788 rddir_cache_hold(rdc); 3789 /* 3790 * If the cache entry is in the process of being 3791 * filled in, wait until this completes. The 3792 * RDDIRWAIT bit is set to indicate that someone 3793 * is waiting and then the thread currently 3794 * filling the entry is done, it should do a 3795 * cv_broadcast to wakeup all of the threads 3796 * waiting for it to finish. 3797 */ 3798 if (rdc->flags & RDDIR) { 3799 nfs_rw_exit(&rp->r_rwlock); 3800 rdc->flags |= RDDIRWAIT; 3801 #ifdef DEBUG 3802 nfs3_readdir_cache_waits++; 3803 #endif 3804 if (!cv_wait_sig(&rdc->cv, &rp->r_statelock)) { 3805 /* 3806 * We got interrupted, probably 3807 * the user typed ^C or an alarm 3808 * fired. We free the new entry 3809 * if we allocated one. 3810 */ 3811 mutex_exit(&rp->r_statelock); 3812 (void) nfs_rw_enter_sig(&rp->r_rwlock, 3813 RW_READER, FALSE); 3814 rddir_cache_rele(rdc); 3815 if (nrdc != NULL) 3816 rddir_cache_rele(nrdc); 3817 return (EINTR); 3818 } 3819 mutex_exit(&rp->r_statelock); 3820 (void) nfs_rw_enter_sig(&rp->r_rwlock, 3821 RW_READER, FALSE); 3822 rddir_cache_rele(rdc); 3823 goto top; 3824 } 3825 /* 3826 * Check to see if a readdir is required to 3827 * fill the entry. If so, mark this entry 3828 * as being filled, remove our reference, 3829 * and branch to the code to fill the entry. 3830 */ 3831 if (rdc->flags & RDDIRREQ) { 3832 rdc->flags &= ~RDDIRREQ; 3833 rdc->flags |= RDDIR; 3834 if (nrdc != NULL) 3835 rddir_cache_rele(nrdc); 3836 nrdc = rdc; 3837 mutex_exit(&rp->r_statelock); 3838 goto bottom; 3839 } 3840 #ifdef DEBUG 3841 if (!missed) 3842 nfs3_readdir_cache_hits++; 3843 #endif 3844 /* 3845 * If an error occurred while attempting 3846 * to fill the cache entry, just return it. 3847 */ 3848 if (rdc->error) { 3849 error = rdc->error; 3850 mutex_exit(&rp->r_statelock); 3851 rddir_cache_rele(rdc); 3852 if (nrdc != NULL) 3853 rddir_cache_rele(nrdc); 3854 return (error); 3855 } 3856 3857 /* 3858 * The cache entry is complete and good, 3859 * copyout the dirent structs to the calling 3860 * thread. 3861 */ 3862 error = uiomove(rdc->entries, rdc->entlen, UIO_READ, uiop); 3863 3864 /* 3865 * If no error occurred during the copyout, 3866 * update the offset in the uio struct to 3867 * contain the value of the next cookie 3868 * and set the eof value appropriately. 3869 */ 3870 if (!error) { 3871 uiop->uio_loffset = rdc->nfs3_ncookie; 3872 if (eofp) 3873 *eofp = rdc->eof; 3874 } 3875 3876 /* 3877 * Decide whether to do readahead. 3878 * 3879 * Don't if have already read to the end of 3880 * directory. There is nothing more to read. 3881 * 3882 * Don't if the application is not doing 3883 * lookups in the directory. The readahead 3884 * is only effective if the application can 3885 * be doing work while an async thread is 3886 * handling the over the wire request. 3887 */ 3888 if (rdc->eof) { 3889 rp->r_direof = rdc; 3890 doreadahead = FALSE; 3891 } else if (!(rp->r_flags & RLOOKUP)) 3892 doreadahead = FALSE; 3893 else 3894 doreadahead = TRUE; 3895 3896 if (!doreadahead) { 3897 mutex_exit(&rp->r_statelock); 3898 rddir_cache_rele(rdc); 3899 if (nrdc != NULL) 3900 rddir_cache_rele(nrdc); 3901 return (error); 3902 } 3903 3904 /* 3905 * Check to see whether we found an entry 3906 * for the readahead. If so, we don't need 3907 * to do anything further, so free the new 3908 * entry if one was allocated. Otherwise, 3909 * allocate a new entry, add it to the cache, 3910 * and then initiate an asynchronous readdir 3911 * operation to fill it. 3912 */ 3913 srdc.nfs3_cookie = rdc->nfs3_ncookie; 3914 srdc.buflen = count; 3915 rrdc = avl_find(&rp->r_dir, &srdc, &where); 3916 if (rrdc != NULL) { 3917 if (nrdc != NULL) 3918 rddir_cache_rele(nrdc); 3919 } else { 3920 if (nrdc != NULL) 3921 rrdc = nrdc; 3922 else { 3923 rrdc = rddir_cache_alloc(KM_NOSLEEP); 3924 } 3925 if (rrdc != NULL) { 3926 rrdc->nfs3_cookie = rdc->nfs3_ncookie; 3927 rrdc->buflen = count; 3928 avl_insert(&rp->r_dir, rrdc, where); 3929 rddir_cache_hold(rrdc); 3930 mutex_exit(&rp->r_statelock); 3931 rddir_cache_rele(rdc); 3932 #ifdef DEBUG 3933 nfs3_readdir_readahead++; 3934 #endif 3935 nfs_async_readdir(vp, rrdc, cr, do_nfs3readdir); 3936 return (error); 3937 } 3938 } 3939 3940 mutex_exit(&rp->r_statelock); 3941 rddir_cache_rele(rdc); 3942 return (error); 3943 } 3944 3945 /* 3946 * Didn't find an entry in the cache. Construct a new empty 3947 * entry and link it into the cache. Other processes attempting 3948 * to access this entry will need to wait until it is filled in. 3949 * 3950 * Since kmem_alloc may block, another pass through the cache 3951 * will need to be taken to make sure that another process 3952 * hasn't already added an entry to the cache for this request. 3953 */ 3954 if (nrdc == NULL) { 3955 mutex_exit(&rp->r_statelock); 3956 nrdc = rddir_cache_alloc(KM_SLEEP); 3957 nrdc->nfs3_cookie = uiop->uio_loffset; 3958 nrdc->buflen = count; 3959 goto top; 3960 } 3961 3962 /* 3963 * Add this entry to the cache. 3964 */ 3965 avl_insert(&rp->r_dir, nrdc, where); 3966 rddir_cache_hold(nrdc); 3967 mutex_exit(&rp->r_statelock); 3968 3969 bottom: 3970 #ifdef DEBUG 3971 missed = 1; 3972 nfs3_readdir_cache_misses++; 3973 #endif 3974 /* 3975 * Do the readdir. This routine decides whether to use 3976 * READDIR or READDIRPLUS. 3977 */ 3978 error = do_nfs3readdir(vp, nrdc, cr); 3979 3980 /* 3981 * If this operation failed, just return the error which occurred. 3982 */ 3983 if (error != 0) 3984 return (error); 3985 3986 /* 3987 * Since the RPC operation will have taken sometime and blocked 3988 * this process, another pass through the cache will need to be 3989 * taken to find the correct cache entry. It is possible that 3990 * the correct cache entry will not be there (although one was 3991 * added) because the directory changed during the RPC operation 3992 * and the readdir cache was flushed. In this case, just start 3993 * over. It is hoped that this will not happen too often... :-) 3994 */ 3995 nrdc = NULL; 3996 goto top; 3997 /* NOTREACHED */ 3998 } 3999 4000 static int 4001 do_nfs3readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 4002 { 4003 int error; 4004 rnode_t *rp; 4005 mntinfo_t *mi; 4006 4007 rp = VTOR(vp); 4008 mi = VTOMI(vp); 4009 ASSERT(nfs_zone() == mi->mi_zone); 4010 /* 4011 * Issue the proper request. 4012 * 4013 * If the server does not support READDIRPLUS, then use READDIR. 4014 * 4015 * Otherwise -- 4016 * Issue a READDIRPLUS if reading to fill an empty cache or if 4017 * an application has performed a lookup in the directory which 4018 * required an over the wire lookup. The use of READDIRPLUS 4019 * will help to (re)populate the DNLC. 4020 */ 4021 if (!(mi->mi_flags & MI_READDIRONLY) && 4022 (rp->r_flags & (RLOOKUP | RREADDIRPLUS))) { 4023 if (rp->r_flags & RREADDIRPLUS) { 4024 mutex_enter(&rp->r_statelock); 4025 rp->r_flags &= ~RREADDIRPLUS; 4026 mutex_exit(&rp->r_statelock); 4027 } 4028 nfs3readdirplus(vp, rdc, cr); 4029 if (rdc->error == EOPNOTSUPP) 4030 nfs3readdir(vp, rdc, cr); 4031 } else 4032 nfs3readdir(vp, rdc, cr); 4033 4034 mutex_enter(&rp->r_statelock); 4035 rdc->flags &= ~RDDIR; 4036 if (rdc->flags & RDDIRWAIT) { 4037 rdc->flags &= ~RDDIRWAIT; 4038 cv_broadcast(&rdc->cv); 4039 } 4040 error = rdc->error; 4041 if (error) 4042 rdc->flags |= RDDIRREQ; 4043 mutex_exit(&rp->r_statelock); 4044 4045 rddir_cache_rele(rdc); 4046 4047 return (error); 4048 } 4049 4050 static void 4051 nfs3readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 4052 { 4053 int error; 4054 READDIR3args args; 4055 READDIR3vres res; 4056 vattr_t dva; 4057 rnode_t *rp; 4058 int douprintf; 4059 failinfo_t fi, *fip = NULL; 4060 mntinfo_t *mi; 4061 hrtime_t t; 4062 4063 rp = VTOR(vp); 4064 mi = VTOMI(vp); 4065 ASSERT(nfs_zone() == mi->mi_zone); 4066 4067 args.dir = *RTOFH3(rp); 4068 args.cookie = (cookie3)rdc->nfs3_cookie; 4069 args.cookieverf = rp->r_cookieverf; 4070 args.count = rdc->buflen; 4071 4072 /* 4073 * NFS client failover support 4074 * suppress failover unless we have a zero cookie 4075 */ 4076 if (args.cookie == (cookie3) 0) { 4077 fi.vp = vp; 4078 fi.fhp = (caddr_t)&args.dir; 4079 fi.copyproc = nfs3copyfh; 4080 fi.lookupproc = nfs3lookup; 4081 fi.xattrdirproc = acl_getxattrdir3; 4082 fip = &fi; 4083 } 4084 4085 #ifdef DEBUG 4086 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, KM_SLEEP); 4087 #else 4088 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP); 4089 #endif 4090 4091 res.entries = (dirent64_t *)rdc->entries; 4092 res.entries_size = rdc->buflen; 4093 res.dir_attributes.fres.vap = &dva; 4094 res.dir_attributes.fres.vp = vp; 4095 res.loff = rdc->nfs3_cookie; 4096 4097 douprintf = 1; 4098 4099 if (mi->mi_io_kstats) { 4100 mutex_enter(&mi->mi_lock); 4101 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 4102 mutex_exit(&mi->mi_lock); 4103 } 4104 4105 t = gethrtime(); 4106 4107 error = rfs3call(VTOMI(vp), NFSPROC3_READDIR, 4108 xdr_READDIR3args, (caddr_t)&args, 4109 xdr_READDIR3vres, (caddr_t)&res, cr, 4110 &douprintf, &res.status, 0, fip); 4111 4112 if (mi->mi_io_kstats) { 4113 mutex_enter(&mi->mi_lock); 4114 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 4115 mutex_exit(&mi->mi_lock); 4116 } 4117 4118 if (error) 4119 goto err; 4120 4121 nfs3_cache_post_op_vattr(vp, &res.dir_attributes, t, cr); 4122 4123 error = geterrno3(res.status); 4124 if (error) { 4125 PURGE_STALE_FH(error, vp, cr); 4126 goto err; 4127 } 4128 4129 if (mi->mi_io_kstats) { 4130 mutex_enter(&mi->mi_lock); 4131 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 4132 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.size; 4133 mutex_exit(&mi->mi_lock); 4134 } 4135 4136 rdc->nfs3_ncookie = res.loff; 4137 rp->r_cookieverf = res.cookieverf; 4138 rdc->eof = res.eof ? 1 : 0; 4139 rdc->entlen = res.size; 4140 ASSERT(rdc->entlen <= rdc->buflen); 4141 rdc->error = 0; 4142 return; 4143 4144 err: 4145 kmem_free(rdc->entries, rdc->buflen); 4146 rdc->entries = NULL; 4147 rdc->error = error; 4148 } 4149 4150 /* 4151 * Read directory entries. 4152 * There are some weird things to look out for here. The uio_loffset 4153 * field is either 0 or it is the offset returned from a previous 4154 * readdir. It is an opaque value used by the server to find the 4155 * correct directory block to read. The count field is the number 4156 * of blocks to read on the server. This is advisory only, the server 4157 * may return only one block's worth of entries. Entries may be compressed 4158 * on the server. 4159 */ 4160 static void 4161 nfs3readdirplus(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 4162 { 4163 int error; 4164 READDIRPLUS3args args; 4165 READDIRPLUS3vres res; 4166 vattr_t dva; 4167 rnode_t *rp; 4168 mntinfo_t *mi; 4169 int douprintf; 4170 failinfo_t fi, *fip = NULL; 4171 4172 rp = VTOR(vp); 4173 mi = VTOMI(vp); 4174 ASSERT(nfs_zone() == mi->mi_zone); 4175 4176 args.dir = *RTOFH3(rp); 4177 args.cookie = (cookie3)rdc->nfs3_cookie; 4178 args.cookieverf = rp->r_cookieverf; 4179 args.dircount = rdc->buflen; 4180 args.maxcount = mi->mi_tsize; 4181 4182 /* 4183 * NFS client failover support 4184 * suppress failover unless we have a zero cookie 4185 */ 4186 if (args.cookie == (cookie3)0) { 4187 fi.vp = vp; 4188 fi.fhp = (caddr_t)&args.dir; 4189 fi.copyproc = nfs3copyfh; 4190 fi.lookupproc = nfs3lookup; 4191 fi.xattrdirproc = acl_getxattrdir3; 4192 fip = &fi; 4193 } 4194 4195 #ifdef DEBUG 4196 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, KM_SLEEP); 4197 #else 4198 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP); 4199 #endif 4200 4201 res.entries = (dirent64_t *)rdc->entries; 4202 res.entries_size = rdc->buflen; 4203 res.dir_attributes.fres.vap = &dva; 4204 res.dir_attributes.fres.vp = vp; 4205 res.loff = rdc->nfs3_cookie; 4206 res.credentials = cr; 4207 4208 douprintf = 1; 4209 4210 if (mi->mi_io_kstats) { 4211 mutex_enter(&mi->mi_lock); 4212 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 4213 mutex_exit(&mi->mi_lock); 4214 } 4215 4216 res.time = gethrtime(); 4217 4218 error = rfs3call(mi, NFSPROC3_READDIRPLUS, 4219 xdr_READDIRPLUS3args, (caddr_t)&args, 4220 xdr_READDIRPLUS3vres, (caddr_t)&res, cr, 4221 &douprintf, &res.status, 0, fip); 4222 4223 if (mi->mi_io_kstats) { 4224 mutex_enter(&mi->mi_lock); 4225 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 4226 mutex_exit(&mi->mi_lock); 4227 } 4228 4229 if (error) { 4230 goto err; 4231 } 4232 4233 nfs3_cache_post_op_vattr(vp, &res.dir_attributes, res.time, cr); 4234 4235 error = geterrno3(res.status); 4236 if (error) { 4237 PURGE_STALE_FH(error, vp, cr); 4238 if (error == EOPNOTSUPP) { 4239 mutex_enter(&mi->mi_lock); 4240 mi->mi_flags |= MI_READDIRONLY; 4241 mutex_exit(&mi->mi_lock); 4242 } 4243 goto err; 4244 } 4245 4246 if (mi->mi_io_kstats) { 4247 mutex_enter(&mi->mi_lock); 4248 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 4249 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.size; 4250 mutex_exit(&mi->mi_lock); 4251 } 4252 4253 rdc->nfs3_ncookie = res.loff; 4254 rp->r_cookieverf = res.cookieverf; 4255 rdc->eof = res.eof ? 1 : 0; 4256 rdc->entlen = res.size; 4257 ASSERT(rdc->entlen <= rdc->buflen); 4258 rdc->error = 0; 4259 4260 return; 4261 4262 err: 4263 kmem_free(rdc->entries, rdc->buflen); 4264 rdc->entries = NULL; 4265 rdc->error = error; 4266 } 4267 4268 #ifdef DEBUG 4269 static int nfs3_bio_do_stop = 0; 4270 #endif 4271 4272 static int 4273 nfs3_bio(struct buf *bp, stable_how *stab_comm, cred_t *cr) 4274 { 4275 rnode_t *rp = VTOR(bp->b_vp); 4276 int count; 4277 int error; 4278 cred_t *cred; 4279 offset_t offset; 4280 4281 ASSERT(nfs_zone() == VTOMI(bp->b_vp)->mi_zone); 4282 offset = ldbtob(bp->b_lblkno); 4283 4284 DTRACE_IO1(start, struct buf *, bp); 4285 4286 if (bp->b_flags & B_READ) { 4287 mutex_enter(&rp->r_statelock); 4288 if (rp->r_cred != NULL) { 4289 cred = rp->r_cred; 4290 crhold(cred); 4291 } else { 4292 rp->r_cred = cr; 4293 crhold(cr); 4294 cred = cr; 4295 crhold(cred); 4296 } 4297 mutex_exit(&rp->r_statelock); 4298 read_again: 4299 error = bp->b_error = nfs3read(bp->b_vp, bp->b_un.b_addr, 4300 offset, bp->b_bcount, &bp->b_resid, cred); 4301 crfree(cred); 4302 if (!error) { 4303 if (bp->b_resid) { 4304 /* 4305 * Didn't get it all because we hit EOF, 4306 * zero all the memory beyond the EOF. 4307 */ 4308 /* bzero(rdaddr + */ 4309 bzero(bp->b_un.b_addr + 4310 bp->b_bcount - bp->b_resid, bp->b_resid); 4311 } 4312 mutex_enter(&rp->r_statelock); 4313 if (bp->b_resid == bp->b_bcount && 4314 offset >= rp->r_size) { 4315 /* 4316 * We didn't read anything at all as we are 4317 * past EOF. Return an error indicator back 4318 * but don't destroy the pages (yet). 4319 */ 4320 error = NFS_EOF; 4321 } 4322 mutex_exit(&rp->r_statelock); 4323 } else if (error == EACCES) { 4324 mutex_enter(&rp->r_statelock); 4325 if (cred != cr) { 4326 if (rp->r_cred != NULL) 4327 crfree(rp->r_cred); 4328 rp->r_cred = cr; 4329 crhold(cr); 4330 cred = cr; 4331 crhold(cred); 4332 mutex_exit(&rp->r_statelock); 4333 goto read_again; 4334 } 4335 mutex_exit(&rp->r_statelock); 4336 } 4337 } else { 4338 if (!(rp->r_flags & RSTALE)) { 4339 mutex_enter(&rp->r_statelock); 4340 if (rp->r_cred != NULL) { 4341 cred = rp->r_cred; 4342 crhold(cred); 4343 } else { 4344 rp->r_cred = cr; 4345 crhold(cr); 4346 cred = cr; 4347 crhold(cred); 4348 } 4349 mutex_exit(&rp->r_statelock); 4350 write_again: 4351 mutex_enter(&rp->r_statelock); 4352 count = MIN(bp->b_bcount, rp->r_size - offset); 4353 mutex_exit(&rp->r_statelock); 4354 if (count < 0) 4355 cmn_err(CE_PANIC, "nfs3_bio: write count < 0"); 4356 #ifdef DEBUG 4357 if (count == 0) { 4358 zcmn_err(getzoneid(), CE_WARN, 4359 "nfs3_bio: zero length write at %lld", 4360 offset); 4361 nfs_printfhandle(&rp->r_fh); 4362 if (nfs3_bio_do_stop) 4363 debug_enter("nfs3_bio"); 4364 } 4365 #endif 4366 error = nfs3write(bp->b_vp, bp->b_un.b_addr, offset, 4367 count, cred, stab_comm); 4368 if (error == EACCES) { 4369 mutex_enter(&rp->r_statelock); 4370 if (cred != cr) { 4371 if (rp->r_cred != NULL) 4372 crfree(rp->r_cred); 4373 rp->r_cred = cr; 4374 crhold(cr); 4375 crfree(cred); 4376 cred = cr; 4377 crhold(cred); 4378 mutex_exit(&rp->r_statelock); 4379 goto write_again; 4380 } 4381 mutex_exit(&rp->r_statelock); 4382 } 4383 bp->b_error = error; 4384 if (error && error != EINTR) { 4385 /* 4386 * Don't print EDQUOT errors on the console. 4387 * Don't print asynchronous EACCES errors. 4388 * Don't print EFBIG errors. 4389 * Print all other write errors. 4390 */ 4391 if (error != EDQUOT && error != EFBIG && 4392 (error != EACCES || 4393 !(bp->b_flags & B_ASYNC))) 4394 nfs_write_error(bp->b_vp, error, cred); 4395 /* 4396 * Update r_error and r_flags as appropriate. 4397 * If the error was ESTALE, then mark the 4398 * rnode as not being writeable and save 4399 * the error status. Otherwise, save any 4400 * errors which occur from asynchronous 4401 * page invalidations. Any errors occurring 4402 * from other operations should be saved 4403 * by the caller. 4404 */ 4405 mutex_enter(&rp->r_statelock); 4406 if (error == ESTALE) { 4407 rp->r_flags |= RSTALE; 4408 if (!rp->r_error) 4409 rp->r_error = error; 4410 } else if (!rp->r_error && 4411 (bp->b_flags & 4412 (B_INVAL|B_FORCE|B_ASYNC)) == 4413 (B_INVAL|B_FORCE|B_ASYNC)) { 4414 rp->r_error = error; 4415 } 4416 mutex_exit(&rp->r_statelock); 4417 } 4418 crfree(cred); 4419 } else { 4420 error = rp->r_error; 4421 /* 4422 * A close may have cleared r_error, if so, 4423 * propagate ESTALE error return properly 4424 */ 4425 if (error == 0) 4426 error = ESTALE; 4427 } 4428 } 4429 4430 if (error != 0 && error != NFS_EOF) 4431 bp->b_flags |= B_ERROR; 4432 4433 DTRACE_IO1(done, struct buf *, bp); 4434 4435 return (error); 4436 } 4437 4438 /* ARGSUSED */ 4439 static int 4440 nfs3_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4441 { 4442 rnode_t *rp; 4443 4444 if (nfs_zone() != VTOMI(vp)->mi_zone) 4445 return (EIO); 4446 rp = VTOR(vp); 4447 4448 if (fidp->fid_len < (ushort_t)rp->r_fh.fh_len) { 4449 fidp->fid_len = rp->r_fh.fh_len; 4450 return (ENOSPC); 4451 } 4452 fidp->fid_len = rp->r_fh.fh_len; 4453 bcopy(rp->r_fh.fh_buf, fidp->fid_data, fidp->fid_len); 4454 return (0); 4455 } 4456 4457 /* ARGSUSED2 */ 4458 static int 4459 nfs3_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 4460 { 4461 rnode_t *rp = VTOR(vp); 4462 4463 if (!write_lock) { 4464 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 4465 return (V_WRITELOCK_FALSE); 4466 } 4467 4468 if ((rp->r_flags & RDIRECTIO) || (VTOMI(vp)->mi_flags & MI_DIRECTIO)) { 4469 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 4470 if (rp->r_mapcnt == 0 && !vn_has_cached_data(vp)) 4471 return (V_WRITELOCK_FALSE); 4472 nfs_rw_exit(&rp->r_rwlock); 4473 } 4474 4475 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 4476 return (V_WRITELOCK_TRUE); 4477 } 4478 4479 /* ARGSUSED */ 4480 static void 4481 nfs3_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 4482 { 4483 rnode_t *rp = VTOR(vp); 4484 4485 nfs_rw_exit(&rp->r_rwlock); 4486 } 4487 4488 /* ARGSUSED */ 4489 static int 4490 nfs3_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct) 4491 { 4492 4493 /* 4494 * Because we stuff the readdir cookie into the offset field 4495 * someone may attempt to do an lseek with the cookie which 4496 * we want to succeed. 4497 */ 4498 if (vp->v_type == VDIR) 4499 return (0); 4500 if (*noffp < 0) 4501 return (EINVAL); 4502 return (0); 4503 } 4504 4505 /* 4506 * number of nfs3_bsize blocks to read ahead. 4507 */ 4508 static int nfs3_nra = 4; 4509 4510 #ifdef DEBUG 4511 static int nfs3_lostpage = 0; /* number of times we lost original page */ 4512 #endif 4513 4514 /* 4515 * Return all the pages from [off..off+len) in file 4516 */ 4517 /* ARGSUSED */ 4518 static int 4519 nfs3_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4520 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4521 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4522 { 4523 rnode_t *rp; 4524 int error; 4525 mntinfo_t *mi; 4526 4527 if (vp->v_flag & VNOMAP) 4528 return (ENOSYS); 4529 4530 if (nfs_zone() != VTOMI(vp)->mi_zone) 4531 return (EIO); 4532 if (protp != NULL) 4533 *protp = PROT_ALL; 4534 4535 /* 4536 * Now valididate that the caches are up to date. 4537 */ 4538 error = nfs3_validate_caches(vp, cr); 4539 if (error) 4540 return (error); 4541 4542 rp = VTOR(vp); 4543 mi = VTOMI(vp); 4544 retry: 4545 mutex_enter(&rp->r_statelock); 4546 4547 /* 4548 * Don't create dirty pages faster than they 4549 * can be cleaned so that the system doesn't 4550 * get imbalanced. If the async queue is 4551 * maxed out, then wait for it to drain before 4552 * creating more dirty pages. Also, wait for 4553 * any threads doing pagewalks in the vop_getattr 4554 * entry points so that they don't block for 4555 * long periods. 4556 */ 4557 if (rw == S_CREATE) { 4558 while ((mi->mi_max_threads != 0 && 4559 rp->r_awcount > 2 * mi->mi_max_threads) || 4560 rp->r_gcount > 0) 4561 cv_wait(&rp->r_cv, &rp->r_statelock); 4562 } 4563 4564 /* 4565 * If we are getting called as a side effect of an nfs_write() 4566 * operation the local file size might not be extended yet. 4567 * In this case we want to be able to return pages of zeroes. 4568 */ 4569 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 4570 mutex_exit(&rp->r_statelock); 4571 return (EFAULT); /* beyond EOF */ 4572 } 4573 4574 mutex_exit(&rp->r_statelock); 4575 4576 if (len <= PAGESIZE) { 4577 error = nfs3_getapage(vp, off, len, protp, pl, plsz, 4578 seg, addr, rw, cr); 4579 } else { 4580 error = pvn_getpages(nfs3_getapage, vp, off, len, protp, 4581 pl, plsz, seg, addr, rw, cr); 4582 } 4583 4584 switch (error) { 4585 case NFS_EOF: 4586 nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr); 4587 goto retry; 4588 case ESTALE: 4589 PURGE_STALE_FH(error, vp, cr); 4590 } 4591 4592 return (error); 4593 } 4594 4595 /* 4596 * Called from pvn_getpages or nfs3_getpage to get a particular page. 4597 */ 4598 /* ARGSUSED */ 4599 static int 4600 nfs3_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 4601 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4602 enum seg_rw rw, cred_t *cr) 4603 { 4604 rnode_t *rp; 4605 uint_t bsize; 4606 struct buf *bp; 4607 page_t *pp; 4608 u_offset_t lbn; 4609 u_offset_t io_off; 4610 u_offset_t blkoff; 4611 u_offset_t rablkoff; 4612 size_t io_len; 4613 uint_t blksize; 4614 int error; 4615 int readahead; 4616 int readahead_issued = 0; 4617 int ra_window; /* readahead window */ 4618 page_t *pagefound; 4619 page_t *savepp; 4620 4621 if (nfs_zone() != VTOMI(vp)->mi_zone) 4622 return (EIO); 4623 rp = VTOR(vp); 4624 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 4625 4626 reread: 4627 bp = NULL; 4628 pp = NULL; 4629 pagefound = NULL; 4630 4631 if (pl != NULL) 4632 pl[0] = NULL; 4633 4634 error = 0; 4635 lbn = off / bsize; 4636 blkoff = lbn * bsize; 4637 4638 /* 4639 * Queueing up the readahead before doing the synchronous read 4640 * results in a significant increase in read throughput because 4641 * of the increased parallelism between the async threads and 4642 * the process context. 4643 */ 4644 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 4645 rw != S_CREATE && 4646 !(vp->v_flag & VNOCACHE)) { 4647 mutex_enter(&rp->r_statelock); 4648 4649 /* 4650 * Calculate the number of readaheads to do. 4651 * a) No readaheads at offset = 0. 4652 * b) Do maximum(nfs3_nra) readaheads when the readahead 4653 * window is closed. 4654 * c) Do readaheads between 1 to (nfs3_nra - 1) depending 4655 * upon how far the readahead window is open or close. 4656 * d) No readaheads if rp->r_nextr is not within the scope 4657 * of the readahead window (random i/o). 4658 */ 4659 4660 if (off == 0) 4661 readahead = 0; 4662 else if (blkoff == rp->r_nextr) 4663 readahead = nfs3_nra; 4664 else if (rp->r_nextr > blkoff && 4665 ((ra_window = (rp->r_nextr - blkoff) / bsize) 4666 <= (nfs3_nra - 1))) 4667 readahead = nfs3_nra - ra_window; 4668 else 4669 readahead = 0; 4670 4671 rablkoff = rp->r_nextr; 4672 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 4673 mutex_exit(&rp->r_statelock); 4674 if (nfs_async_readahead(vp, rablkoff + bsize, 4675 addr + (rablkoff + bsize - off), seg, cr, 4676 nfs3_readahead) < 0) { 4677 mutex_enter(&rp->r_statelock); 4678 break; 4679 } 4680 readahead--; 4681 rablkoff += bsize; 4682 /* 4683 * Indicate that we did a readahead so 4684 * readahead offset is not updated 4685 * by the synchronous read below. 4686 */ 4687 readahead_issued = 1; 4688 mutex_enter(&rp->r_statelock); 4689 /* 4690 * set readahead offset to 4691 * offset of last async readahead 4692 * request. 4693 */ 4694 rp->r_nextr = rablkoff; 4695 } 4696 mutex_exit(&rp->r_statelock); 4697 } 4698 4699 again: 4700 if ((pagefound = page_exists(vp, off)) == NULL) { 4701 if (pl == NULL) { 4702 (void) nfs_async_readahead(vp, blkoff, addr, seg, cr, 4703 nfs3_readahead); 4704 } else if (rw == S_CREATE) { 4705 /* 4706 * Block for this page is not allocated, or the offset 4707 * is beyond the current allocation size, or we're 4708 * allocating a swap slot and the page was not found, 4709 * so allocate it and return a zero page. 4710 */ 4711 if ((pp = page_create_va(vp, off, 4712 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 4713 cmn_err(CE_PANIC, "nfs3_getapage: page_create"); 4714 io_len = PAGESIZE; 4715 mutex_enter(&rp->r_statelock); 4716 rp->r_nextr = off + PAGESIZE; 4717 mutex_exit(&rp->r_statelock); 4718 } else { 4719 /* 4720 * Need to go to server to get a BLOCK, exception to 4721 * that being while reading at offset = 0 or doing 4722 * random i/o, in that case read only a PAGE. 4723 */ 4724 mutex_enter(&rp->r_statelock); 4725 if (blkoff < rp->r_size && 4726 blkoff + bsize >= rp->r_size) { 4727 /* 4728 * If only a block or less is left in 4729 * the file, read all that is remaining. 4730 */ 4731 if (rp->r_size <= off) { 4732 /* 4733 * Trying to access beyond EOF, 4734 * set up to get at least one page. 4735 */ 4736 blksize = off + PAGESIZE - blkoff; 4737 } else 4738 blksize = rp->r_size - blkoff; 4739 } else if ((off == 0) || 4740 (off != rp->r_nextr && !readahead_issued)) { 4741 blksize = PAGESIZE; 4742 blkoff = off; /* block = page here */ 4743 } else 4744 blksize = bsize; 4745 mutex_exit(&rp->r_statelock); 4746 4747 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4748 &io_len, blkoff, blksize, 0); 4749 4750 /* 4751 * Some other thread has entered the page, 4752 * so just use it. 4753 */ 4754 if (pp == NULL) 4755 goto again; 4756 4757 /* 4758 * Now round the request size up to page boundaries. 4759 * This ensures that the entire page will be 4760 * initialized to zeroes if EOF is encountered. 4761 */ 4762 io_len = ptob(btopr(io_len)); 4763 4764 bp = pageio_setup(pp, io_len, vp, B_READ); 4765 ASSERT(bp != NULL); 4766 4767 /* 4768 * pageio_setup should have set b_addr to 0. This 4769 * is correct since we want to do I/O on a page 4770 * boundary. bp_mapin will use this addr to calculate 4771 * an offset, and then set b_addr to the kernel virtual 4772 * address it allocated for us. 4773 */ 4774 ASSERT(bp->b_un.b_addr == 0); 4775 4776 bp->b_edev = 0; 4777 bp->b_dev = 0; 4778 bp->b_lblkno = lbtodb(io_off); 4779 bp->b_file = vp; 4780 bp->b_offset = (offset_t)off; 4781 bp_mapin(bp); 4782 4783 /* 4784 * If doing a write beyond what we believe is EOF, 4785 * don't bother trying to read the pages from the 4786 * server, we'll just zero the pages here. We 4787 * don't check that the rw flag is S_WRITE here 4788 * because some implementations may attempt a 4789 * read access to the buffer before copying data. 4790 */ 4791 mutex_enter(&rp->r_statelock); 4792 if (io_off >= rp->r_size && seg == segkmap) { 4793 mutex_exit(&rp->r_statelock); 4794 bzero(bp->b_un.b_addr, io_len); 4795 } else { 4796 mutex_exit(&rp->r_statelock); 4797 error = nfs3_bio(bp, NULL, cr); 4798 } 4799 4800 /* 4801 * Unmap the buffer before freeing it. 4802 */ 4803 bp_mapout(bp); 4804 pageio_done(bp); 4805 4806 savepp = pp; 4807 do { 4808 pp->p_fsdata = C_NOCOMMIT; 4809 } while ((pp = pp->p_next) != savepp); 4810 4811 if (error == NFS_EOF) { 4812 /* 4813 * If doing a write system call just return 4814 * zeroed pages, else user tried to get pages 4815 * beyond EOF, return error. We don't check 4816 * that the rw flag is S_WRITE here because 4817 * some implementations may attempt a read 4818 * access to the buffer before copying data. 4819 */ 4820 if (seg == segkmap) 4821 error = 0; 4822 else 4823 error = EFAULT; 4824 } 4825 4826 if (!readahead_issued && !error) { 4827 mutex_enter(&rp->r_statelock); 4828 rp->r_nextr = io_off + io_len; 4829 mutex_exit(&rp->r_statelock); 4830 } 4831 } 4832 } 4833 4834 out: 4835 if (pl == NULL) 4836 return (error); 4837 4838 if (error) { 4839 if (pp != NULL) 4840 pvn_read_done(pp, B_ERROR); 4841 return (error); 4842 } 4843 4844 if (pagefound) { 4845 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 4846 4847 /* 4848 * Page exists in the cache, acquire the appropriate lock. 4849 * If this fails, start all over again. 4850 */ 4851 if ((pp = page_lookup(vp, off, se)) == NULL) { 4852 #ifdef DEBUG 4853 nfs3_lostpage++; 4854 #endif 4855 goto reread; 4856 } 4857 pl[0] = pp; 4858 pl[1] = NULL; 4859 return (0); 4860 } 4861 4862 if (pp != NULL) 4863 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4864 4865 return (error); 4866 } 4867 4868 static void 4869 nfs3_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 4870 cred_t *cr) 4871 { 4872 int error; 4873 page_t *pp; 4874 u_offset_t io_off; 4875 size_t io_len; 4876 struct buf *bp; 4877 uint_t bsize, blksize; 4878 rnode_t *rp = VTOR(vp); 4879 page_t *savepp; 4880 4881 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4882 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 4883 4884 mutex_enter(&rp->r_statelock); 4885 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 4886 /* 4887 * If less than a block left in file read less 4888 * than a block. 4889 */ 4890 blksize = rp->r_size - blkoff; 4891 } else 4892 blksize = bsize; 4893 mutex_exit(&rp->r_statelock); 4894 4895 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 4896 &io_off, &io_len, blkoff, blksize, 1); 4897 /* 4898 * The isra flag passed to the kluster function is 1, we may have 4899 * gotten a return value of NULL for a variety of reasons (# of free 4900 * pages < minfree, someone entered the page on the vnode etc). In all 4901 * cases, we want to punt on the readahead. 4902 */ 4903 if (pp == NULL) 4904 return; 4905 4906 /* 4907 * Now round the request size up to page boundaries. 4908 * This ensures that the entire page will be 4909 * initialized to zeroes if EOF is encountered. 4910 */ 4911 io_len = ptob(btopr(io_len)); 4912 4913 bp = pageio_setup(pp, io_len, vp, B_READ); 4914 ASSERT(bp != NULL); 4915 4916 /* 4917 * pageio_setup should have set b_addr to 0. This is correct since 4918 * we want to do I/O on a page boundary. bp_mapin() will use this addr 4919 * to calculate an offset, and then set b_addr to the kernel virtual 4920 * address it allocated for us. 4921 */ 4922 ASSERT(bp->b_un.b_addr == 0); 4923 4924 bp->b_edev = 0; 4925 bp->b_dev = 0; 4926 bp->b_lblkno = lbtodb(io_off); 4927 bp->b_file = vp; 4928 bp->b_offset = (offset_t)blkoff; 4929 bp_mapin(bp); 4930 4931 /* 4932 * If doing a write beyond what we believe is EOF, don't bother trying 4933 * to read the pages from the server, we'll just zero the pages here. 4934 * We don't check that the rw flag is S_WRITE here because some 4935 * implementations may attempt a read access to the buffer before 4936 * copying data. 4937 */ 4938 mutex_enter(&rp->r_statelock); 4939 if (io_off >= rp->r_size && seg == segkmap) { 4940 mutex_exit(&rp->r_statelock); 4941 bzero(bp->b_un.b_addr, io_len); 4942 error = 0; 4943 } else { 4944 mutex_exit(&rp->r_statelock); 4945 error = nfs3_bio(bp, NULL, cr); 4946 if (error == NFS_EOF) 4947 error = 0; 4948 } 4949 4950 /* 4951 * Unmap the buffer before freeing it. 4952 */ 4953 bp_mapout(bp); 4954 pageio_done(bp); 4955 4956 savepp = pp; 4957 do { 4958 pp->p_fsdata = C_NOCOMMIT; 4959 } while ((pp = pp->p_next) != savepp); 4960 4961 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 4962 4963 /* 4964 * In case of error set readahead offset 4965 * to the lowest offset. 4966 * pvn_read_done() calls VN_DISPOSE to destroy the pages 4967 */ 4968 if (error && rp->r_nextr > io_off) { 4969 mutex_enter(&rp->r_statelock); 4970 if (rp->r_nextr > io_off) 4971 rp->r_nextr = io_off; 4972 mutex_exit(&rp->r_statelock); 4973 } 4974 } 4975 4976 /* 4977 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 4978 * If len == 0, do from off to EOF. 4979 * 4980 * The normal cases should be len == 0 && off == 0 (entire vp list), 4981 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 4982 * (from pageout). 4983 */ 4984 /* ARGSUSED */ 4985 static int 4986 nfs3_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4987 caller_context_t *ct) 4988 { 4989 int error; 4990 rnode_t *rp; 4991 4992 ASSERT(cr != NULL); 4993 4994 /* 4995 * XXX - Why should this check be made here? 4996 */ 4997 if (vp->v_flag & VNOMAP) 4998 return (ENOSYS); 4999 if (len == 0 && !(flags & B_INVAL) && vn_is_readonly(vp)) 5000 return (0); 5001 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone) 5002 return (EIO); 5003 5004 rp = VTOR(vp); 5005 mutex_enter(&rp->r_statelock); 5006 rp->r_count++; 5007 mutex_exit(&rp->r_statelock); 5008 error = nfs_putpages(vp, off, len, flags, cr); 5009 mutex_enter(&rp->r_statelock); 5010 rp->r_count--; 5011 cv_broadcast(&rp->r_cv); 5012 mutex_exit(&rp->r_statelock); 5013 5014 return (error); 5015 } 5016 5017 /* 5018 * Write out a single page, possibly klustering adjacent dirty pages. 5019 */ 5020 int 5021 nfs3_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 5022 int flags, cred_t *cr) 5023 { 5024 u_offset_t io_off; 5025 u_offset_t lbn_off; 5026 u_offset_t lbn; 5027 size_t io_len; 5028 uint_t bsize; 5029 int error; 5030 rnode_t *rp; 5031 5032 ASSERT(!vn_is_readonly(vp)); 5033 ASSERT(pp != NULL); 5034 ASSERT(cr != NULL); 5035 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI(vp)->mi_zone); 5036 5037 rp = VTOR(vp); 5038 ASSERT(rp->r_count > 0); 5039 5040 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 5041 lbn = pp->p_offset / bsize; 5042 lbn_off = lbn * bsize; 5043 5044 /* 5045 * Find a kluster that fits in one block, or in 5046 * one page if pages are bigger than blocks. If 5047 * there is less file space allocated than a whole 5048 * page, we'll shorten the i/o request below. 5049 */ 5050 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 5051 roundup(bsize, PAGESIZE), flags); 5052 5053 /* 5054 * pvn_write_kluster shouldn't have returned a page with offset 5055 * behind the original page we were given. Verify that. 5056 */ 5057 ASSERT((pp->p_offset / bsize) >= lbn); 5058 5059 /* 5060 * Now pp will have the list of kept dirty pages marked for 5061 * write back. It will also handle invalidation and freeing 5062 * of pages that are not dirty. Check for page length rounding 5063 * problems. 5064 */ 5065 if (io_off + io_len > lbn_off + bsize) { 5066 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 5067 io_len = lbn_off + bsize - io_off; 5068 } 5069 /* 5070 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 5071 * consistent value of r_size. RMODINPROGRESS is set in writerp(). 5072 * When RMODINPROGRESS is set it indicates that a uiomove() is in 5073 * progress and the r_size has not been made consistent with the 5074 * new size of the file. When the uiomove() completes the r_size is 5075 * updated and the RMODINPROGRESS flag is cleared. 5076 * 5077 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 5078 * consistent value of r_size. Without this handshaking, it is 5079 * possible that nfs(3)_bio() picks up the old value of r_size 5080 * before the uiomove() in writerp() completes. This will result 5081 * in the write through nfs(3)_bio() being dropped. 5082 * 5083 * More precisely, there is a window between the time the uiomove() 5084 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 5085 * operation intervenes in this window, the page will be picked up, 5086 * because it is dirty (it will be unlocked, unless it was 5087 * pagecreate'd). When the page is picked up as dirty, the dirty 5088 * bit is reset (pvn_getdirty()). In nfs(3)write(), r_size is 5089 * checked. This will still be the old size. Therefore the page will 5090 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 5091 * the page will be found to be clean and the write will be dropped. 5092 */ 5093 if (rp->r_flags & RMODINPROGRESS) { 5094 mutex_enter(&rp->r_statelock); 5095 if ((rp->r_flags & RMODINPROGRESS) && 5096 rp->r_modaddr + MAXBSIZE > io_off && 5097 rp->r_modaddr < io_off + io_len) { 5098 page_t *plist; 5099 /* 5100 * A write is in progress for this region of the file. 5101 * If we did not detect RMODINPROGRESS here then this 5102 * path through nfs_putapage() would eventually go to 5103 * nfs(3)_bio() and may not write out all of the data 5104 * in the pages. We end up losing data. So we decide 5105 * to set the modified bit on each page in the page 5106 * list and mark the rnode with RDIRTY. This write 5107 * will be restarted at some later time. 5108 */ 5109 plist = pp; 5110 while (plist != NULL) { 5111 pp = plist; 5112 page_sub(&plist, pp); 5113 hat_setmod(pp); 5114 page_io_unlock(pp); 5115 page_unlock(pp); 5116 } 5117 rp->r_flags |= RDIRTY; 5118 mutex_exit(&rp->r_statelock); 5119 if (offp) 5120 *offp = io_off; 5121 if (lenp) 5122 *lenp = io_len; 5123 return (0); 5124 } 5125 mutex_exit(&rp->r_statelock); 5126 } 5127 5128 if (flags & B_ASYNC) { 5129 error = nfs_async_putapage(vp, pp, io_off, io_len, flags, cr, 5130 nfs3_sync_putapage); 5131 } else 5132 error = nfs3_sync_putapage(vp, pp, io_off, io_len, flags, cr); 5133 5134 if (offp) 5135 *offp = io_off; 5136 if (lenp) 5137 *lenp = io_len; 5138 return (error); 5139 } 5140 5141 static int 5142 nfs3_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 5143 int flags, cred_t *cr) 5144 { 5145 int error; 5146 rnode_t *rp; 5147 5148 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 5149 5150 flags |= B_WRITE; 5151 5152 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 5153 5154 rp = VTOR(vp); 5155 5156 if ((error == ENOSPC || error == EDQUOT || error == EFBIG || 5157 error == EACCES) && 5158 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 5159 if (!(rp->r_flags & ROUTOFSPACE)) { 5160 mutex_enter(&rp->r_statelock); 5161 rp->r_flags |= ROUTOFSPACE; 5162 mutex_exit(&rp->r_statelock); 5163 } 5164 flags |= B_ERROR; 5165 pvn_write_done(pp, flags); 5166 /* 5167 * If this was not an async thread, then try again to 5168 * write out the pages, but this time, also destroy 5169 * them whether or not the write is successful. This 5170 * will prevent memory from filling up with these 5171 * pages and destroying them is the only alternative 5172 * if they can't be written out. 5173 * 5174 * Don't do this if this is an async thread because 5175 * when the pages are unlocked in pvn_write_done, 5176 * some other thread could have come along, locked 5177 * them, and queued for an async thread. It would be 5178 * possible for all of the async threads to be tied 5179 * up waiting to lock the pages again and they would 5180 * all already be locked and waiting for an async 5181 * thread to handle them. Deadlock. 5182 */ 5183 if (!(flags & B_ASYNC)) { 5184 error = nfs3_putpage(vp, io_off, io_len, 5185 B_INVAL | B_FORCE, cr, NULL); 5186 } 5187 } else { 5188 if (error) 5189 flags |= B_ERROR; 5190 else if (rp->r_flags & ROUTOFSPACE) { 5191 mutex_enter(&rp->r_statelock); 5192 rp->r_flags &= ~ROUTOFSPACE; 5193 mutex_exit(&rp->r_statelock); 5194 } 5195 pvn_write_done(pp, flags); 5196 if (freemem < desfree) 5197 (void) nfs3_commit_vp(vp, (u_offset_t)0, 0, cr); 5198 } 5199 5200 return (error); 5201 } 5202 5203 /* ARGSUSED */ 5204 static int 5205 nfs3_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 5206 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, 5207 cred_t *cr, caller_context_t *ct) 5208 { 5209 struct segvn_crargs vn_a; 5210 int error; 5211 rnode_t *rp; 5212 struct vattr va; 5213 5214 if (nfs_zone() != VTOMI(vp)->mi_zone) 5215 return (EIO); 5216 5217 if (vp->v_flag & VNOMAP) 5218 return (ENOSYS); 5219 5220 if (off < 0 || off + len < 0) 5221 return (ENXIO); 5222 5223 if (vp->v_type != VREG) 5224 return (ENODEV); 5225 5226 /* 5227 * If there is cached data and if close-to-open consistency 5228 * checking is not turned off and if the file system is not 5229 * mounted readonly, then force an over the wire getattr. 5230 * Otherwise, just invoke nfs3getattr to get a copy of the 5231 * attributes. The attribute cache will be used unless it 5232 * is timed out and if it is, then an over the wire getattr 5233 * will be issued. 5234 */ 5235 va.va_mask = AT_ALL; 5236 if (vn_has_cached_data(vp) && 5237 !(VTOMI(vp)->mi_flags & MI_NOCTO) && !vn_is_readonly(vp)) 5238 error = nfs3_getattr_otw(vp, &va, cr); 5239 else 5240 error = nfs3getattr(vp, &va, cr); 5241 if (error) 5242 return (error); 5243 5244 /* 5245 * Check to see if the vnode is currently marked as not cachable. 5246 * This means portions of the file are locked (through VOP_FRLOCK). 5247 * In this case the map request must be refused. We use 5248 * rp->r_lkserlock to avoid a race with concurrent lock requests. 5249 */ 5250 rp = VTOR(vp); 5251 5252 /* 5253 * Atomically increment r_inmap after acquiring r_rwlock. The 5254 * idea here is to acquire r_rwlock to block read/write and 5255 * not to protect r_inmap. r_inmap will inform nfs3_read/write() 5256 * that we are in nfs3_map(). Now, r_rwlock is acquired in order 5257 * and we can prevent the deadlock that would have occurred 5258 * when nfs3_addmap() would have acquired it out of order. 5259 * 5260 * Since we are not protecting r_inmap by any lock, we do not 5261 * hold any lock when we decrement it. We atomically decrement 5262 * r_inmap after we release r_lkserlock. 5263 */ 5264 5265 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp))) 5266 return (EINTR); 5267 atomic_add_int(&rp->r_inmap, 1); 5268 nfs_rw_exit(&rp->r_rwlock); 5269 5270 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) { 5271 atomic_add_int(&rp->r_inmap, -1); 5272 return (EINTR); 5273 } 5274 5275 if (vp->v_flag & VNOCACHE) { 5276 error = EAGAIN; 5277 goto done; 5278 } 5279 5280 /* 5281 * Don't allow concurrent locks and mapping if mandatory locking is 5282 * enabled. 5283 */ 5284 if ((flk_has_remote_locks(vp) || lm_has_sleep(vp)) && 5285 MANDLOCK(vp, va.va_mode)) { 5286 error = EAGAIN; 5287 goto done; 5288 } 5289 5290 as_rangelock(as); 5291 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 5292 if (error != 0) { 5293 as_rangeunlock(as); 5294 goto done; 5295 } 5296 5297 vn_a.vp = vp; 5298 vn_a.offset = off; 5299 vn_a.type = (flags & MAP_TYPE); 5300 vn_a.prot = (uchar_t)prot; 5301 vn_a.maxprot = (uchar_t)maxprot; 5302 vn_a.flags = (flags & ~MAP_TYPE); 5303 vn_a.cred = cr; 5304 vn_a.amp = NULL; 5305 vn_a.szc = 0; 5306 vn_a.lgrp_mem_policy_flags = 0; 5307 5308 error = as_map(as, *addrp, len, segvn_create, &vn_a); 5309 as_rangeunlock(as); 5310 5311 done: 5312 nfs_rw_exit(&rp->r_lkserlock); 5313 atomic_add_int(&rp->r_inmap, -1); 5314 return (error); 5315 } 5316 5317 /* ARGSUSED */ 5318 static int 5319 nfs3_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 5320 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, 5321 cred_t *cr, caller_context_t *ct) 5322 { 5323 rnode_t *rp; 5324 5325 if (vp->v_flag & VNOMAP) 5326 return (ENOSYS); 5327 if (nfs_zone() != VTOMI(vp)->mi_zone) 5328 return (EIO); 5329 5330 rp = VTOR(vp); 5331 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 5332 5333 return (0); 5334 } 5335 5336 /* ARGSUSED */ 5337 static int 5338 nfs3_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 5339 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr, 5340 caller_context_t *ct) 5341 { 5342 netobj lm_fh3; 5343 int rc; 5344 u_offset_t start, end; 5345 rnode_t *rp; 5346 int error = 0, intr = INTR(vp); 5347 5348 if (nfs_zone() != VTOMI(vp)->mi_zone) 5349 return (EIO); 5350 /* check for valid cmd parameter */ 5351 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) 5352 return (EINVAL); 5353 5354 /* Verify l_type. */ 5355 switch (bfp->l_type) { 5356 case F_RDLCK: 5357 if (cmd != F_GETLK && !(flag & FREAD)) 5358 return (EBADF); 5359 break; 5360 case F_WRLCK: 5361 if (cmd != F_GETLK && !(flag & FWRITE)) 5362 return (EBADF); 5363 break; 5364 case F_UNLCK: 5365 intr = 0; 5366 break; 5367 5368 default: 5369 return (EINVAL); 5370 } 5371 5372 /* check the validity of the lock range */ 5373 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 5374 return (rc); 5375 if (rc = flk_check_lock_data(start, end, MAXEND)) 5376 return (rc); 5377 5378 /* 5379 * If the filesystem is mounted using local locking, pass the 5380 * request off to the local locking code. 5381 */ 5382 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 5383 if (cmd == F_SETLK || cmd == F_SETLKW) { 5384 /* 5385 * For complete safety, we should be holding 5386 * r_lkserlock. However, we can't call 5387 * lm_safelock and then fs_frlock while 5388 * holding r_lkserlock, so just invoke 5389 * lm_safelock and expect that this will 5390 * catch enough of the cases. 5391 */ 5392 if (!lm_safelock(vp, bfp, cr)) 5393 return (EAGAIN); 5394 } 5395 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 5396 } 5397 5398 rp = VTOR(vp); 5399 5400 /* 5401 * Check whether the given lock request can proceed, given the 5402 * current file mappings. 5403 */ 5404 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 5405 return (EINTR); 5406 if (cmd == F_SETLK || cmd == F_SETLKW) { 5407 if (!lm_safelock(vp, bfp, cr)) { 5408 rc = EAGAIN; 5409 goto done; 5410 } 5411 } 5412 5413 /* 5414 * Flush the cache after waiting for async I/O to finish. For new 5415 * locks, this is so that the process gets the latest bits from the 5416 * server. For unlocks, this is so that other clients see the 5417 * latest bits once the file has been unlocked. If currently dirty 5418 * pages can't be flushed, then don't allow a lock to be set. But 5419 * allow unlocks to succeed, to avoid having orphan locks on the 5420 * server. 5421 */ 5422 if (cmd != F_GETLK) { 5423 mutex_enter(&rp->r_statelock); 5424 while (rp->r_count > 0) { 5425 if (intr) { 5426 klwp_t *lwp = ttolwp(curthread); 5427 5428 if (lwp != NULL) 5429 lwp->lwp_nostop++; 5430 if (cv_wait_sig(&rp->r_cv, 5431 &rp->r_statelock) == 0) { 5432 if (lwp != NULL) 5433 lwp->lwp_nostop--; 5434 rc = EINTR; 5435 break; 5436 } 5437 if (lwp != NULL) 5438 lwp->lwp_nostop--; 5439 } else 5440 cv_wait(&rp->r_cv, &rp->r_statelock); 5441 } 5442 mutex_exit(&rp->r_statelock); 5443 if (rc != 0) 5444 goto done; 5445 error = nfs3_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct); 5446 if (error) { 5447 if (error == ENOSPC || error == EDQUOT) { 5448 mutex_enter(&rp->r_statelock); 5449 if (!rp->r_error) 5450 rp->r_error = error; 5451 mutex_exit(&rp->r_statelock); 5452 } 5453 if (bfp->l_type != F_UNLCK) { 5454 rc = ENOLCK; 5455 goto done; 5456 } 5457 } 5458 } 5459 5460 lm_fh3.n_len = VTOFH3(vp)->fh3_length; 5461 lm_fh3.n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data); 5462 5463 /* 5464 * Call the lock manager to do the real work of contacting 5465 * the server and obtaining the lock. 5466 */ 5467 rc = lm4_frlock(vp, cmd, bfp, flag, offset, cr, &lm_fh3, flk_cbp); 5468 5469 if (rc == 0) 5470 nfs_lockcompletion(vp, cmd); 5471 5472 done: 5473 nfs_rw_exit(&rp->r_lkserlock); 5474 return (rc); 5475 } 5476 5477 /* 5478 * Free storage space associated with the specified vnode. The portion 5479 * to be freed is specified by bfp->l_start and bfp->l_len (already 5480 * normalized to a "whence" of 0). 5481 * 5482 * This is an experimental facility whose continued existence is not 5483 * guaranteed. Currently, we only support the special case 5484 * of l_len == 0, meaning free to end of file. 5485 */ 5486 /* ARGSUSED */ 5487 static int 5488 nfs3_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 5489 offset_t offset, cred_t *cr, caller_context_t *ct) 5490 { 5491 int error; 5492 5493 ASSERT(vp->v_type == VREG); 5494 if (cmd != F_FREESP) 5495 return (EINVAL); 5496 if (nfs_zone() != VTOMI(vp)->mi_zone) 5497 return (EIO); 5498 5499 error = convoff(vp, bfp, 0, offset); 5500 if (!error) { 5501 ASSERT(bfp->l_start >= 0); 5502 if (bfp->l_len == 0) { 5503 struct vattr va; 5504 5505 /* 5506 * ftruncate should not change the ctime and 5507 * mtime if we truncate the file to its 5508 * previous size. 5509 */ 5510 va.va_mask = AT_SIZE; 5511 error = nfs3getattr(vp, &va, cr); 5512 if (error || va.va_size == bfp->l_start) 5513 return (error); 5514 va.va_mask = AT_SIZE; 5515 va.va_size = bfp->l_start; 5516 error = nfs3setattr(vp, &va, 0, cr); 5517 } else 5518 error = EINVAL; 5519 } 5520 5521 return (error); 5522 } 5523 5524 /* ARGSUSED */ 5525 static int 5526 nfs3_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct) 5527 { 5528 5529 return (EINVAL); 5530 } 5531 5532 /* 5533 * Setup and add an address space callback to do the work of the delmap call. 5534 * The callback will (and must be) deleted in the actual callback function. 5535 * 5536 * This is done in order to take care of the problem that we have with holding 5537 * the address space's a_lock for a long period of time (e.g. if the NFS server 5538 * is down). Callbacks will be executed in the address space code while the 5539 * a_lock is not held. Holding the address space's a_lock causes things such 5540 * as ps and fork to hang because they are trying to acquire this lock as well. 5541 */ 5542 /* ARGSUSED */ 5543 static int 5544 nfs3_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 5545 size_t len, uint_t prot, uint_t maxprot, uint_t flags, 5546 cred_t *cr, caller_context_t *ct) 5547 { 5548 int caller_found; 5549 int error; 5550 rnode_t *rp; 5551 nfs_delmap_args_t *dmapp; 5552 nfs_delmapcall_t *delmap_call; 5553 5554 if (vp->v_flag & VNOMAP) 5555 return (ENOSYS); 5556 /* 5557 * A process may not change zones if it has NFS pages mmap'ed 5558 * in, so we can't legitimately get here from the wrong zone. 5559 */ 5560 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 5561 5562 rp = VTOR(vp); 5563 5564 /* 5565 * The way that the address space of this process deletes its mapping 5566 * of this file is via the following call chains: 5567 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs3_delmap() 5568 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs3_delmap() 5569 * 5570 * With the use of address space callbacks we are allowed to drop the 5571 * address space lock, a_lock, while executing the NFS operations that 5572 * need to go over the wire. Returning EAGAIN to the caller of this 5573 * function is what drives the execution of the callback that we add 5574 * below. The callback will be executed by the address space code 5575 * after dropping the a_lock. When the callback is finished, since 5576 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 5577 * is called again on the same segment to finish the rest of the work 5578 * that needs to happen during unmapping. 5579 * 5580 * This action of calling back into the segment driver causes 5581 * nfs3_delmap() to get called again, but since the callback was 5582 * already executed at this point, it already did the work and there 5583 * is nothing left for us to do. 5584 * 5585 * To Summarize: 5586 * - The first time nfs3_delmap is called by the current thread is when 5587 * we add the caller associated with this delmap to the delmap caller 5588 * list, add the callback, and return EAGAIN. 5589 * - The second time in this call chain when nfs3_delmap is called we 5590 * will find this caller in the delmap caller list and realize there 5591 * is no more work to do thus removing this caller from the list and 5592 * returning the error that was set in the callback execution. 5593 */ 5594 caller_found = nfs_find_and_delete_delmapcall(rp, &error); 5595 if (caller_found) { 5596 /* 5597 * 'error' is from the actual delmap operations. To avoid 5598 * hangs, we need to handle the return of EAGAIN differently 5599 * since this is what drives the callback execution. 5600 * In this case, we don't want to return EAGAIN and do the 5601 * callback execution because there are none to execute. 5602 */ 5603 if (error == EAGAIN) 5604 return (0); 5605 else 5606 return (error); 5607 } 5608 5609 /* current caller was not in the list */ 5610 delmap_call = nfs_init_delmapcall(); 5611 5612 mutex_enter(&rp->r_statelock); 5613 list_insert_tail(&rp->r_indelmap, delmap_call); 5614 mutex_exit(&rp->r_statelock); 5615 5616 dmapp = kmem_alloc(sizeof (nfs_delmap_args_t), KM_SLEEP); 5617 5618 dmapp->vp = vp; 5619 dmapp->off = off; 5620 dmapp->addr = addr; 5621 dmapp->len = len; 5622 dmapp->prot = prot; 5623 dmapp->maxprot = maxprot; 5624 dmapp->flags = flags; 5625 dmapp->cr = cr; 5626 dmapp->caller = delmap_call; 5627 5628 error = as_add_callback(as, nfs3_delmap_callback, dmapp, 5629 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 5630 5631 return (error ? error : EAGAIN); 5632 } 5633 5634 /* 5635 * Remove some pages from an mmap'd vnode. Just update the 5636 * count of pages. If doing close-to-open, then flush and 5637 * commit all of the pages associated with this file. 5638 * Otherwise, start an asynchronous page flush to write out 5639 * any dirty pages. This will also associate a credential 5640 * with the rnode which can be used to write the pages. 5641 */ 5642 /* ARGSUSED */ 5643 static void 5644 nfs3_delmap_callback(struct as *as, void *arg, uint_t event) 5645 { 5646 int error; 5647 rnode_t *rp; 5648 mntinfo_t *mi; 5649 nfs_delmap_args_t *dmapp = (nfs_delmap_args_t *)arg; 5650 5651 rp = VTOR(dmapp->vp); 5652 mi = VTOMI(dmapp->vp); 5653 5654 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 5655 ASSERT(rp->r_mapcnt >= 0); 5656 5657 /* 5658 * Initiate a page flush and potential commit if there are 5659 * pages, the file system was not mounted readonly, the segment 5660 * was mapped shared, and the pages themselves were writeable. 5661 */ 5662 if (vn_has_cached_data(dmapp->vp) && !vn_is_readonly(dmapp->vp) && 5663 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 5664 mutex_enter(&rp->r_statelock); 5665 rp->r_flags |= RDIRTY; 5666 mutex_exit(&rp->r_statelock); 5667 /* 5668 * If this is a cross-zone access a sync putpage won't work, so 5669 * the best we can do is try an async putpage. That seems 5670 * better than something more draconian such as discarding the 5671 * dirty pages. 5672 */ 5673 if ((mi->mi_flags & MI_NOCTO) || 5674 nfs_zone() != mi->mi_zone) 5675 error = nfs3_putpage(dmapp->vp, dmapp->off, dmapp->len, 5676 B_ASYNC, dmapp->cr, NULL); 5677 else 5678 error = nfs3_putpage_commit(dmapp->vp, dmapp->off, 5679 dmapp->len, dmapp->cr); 5680 if (!error) { 5681 mutex_enter(&rp->r_statelock); 5682 error = rp->r_error; 5683 rp->r_error = 0; 5684 mutex_exit(&rp->r_statelock); 5685 } 5686 } else 5687 error = 0; 5688 5689 if ((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) 5690 (void) nfs3_putpage(dmapp->vp, dmapp->off, dmapp->len, 5691 B_INVAL, dmapp->cr, NULL); 5692 5693 dmapp->caller->error = error; 5694 (void) as_delete_callback(as, arg); 5695 kmem_free(dmapp, sizeof (nfs_delmap_args_t)); 5696 } 5697 5698 static int nfs3_pathconf_disable_cache = 0; 5699 5700 #ifdef DEBUG 5701 static int nfs3_pathconf_cache_hits = 0; 5702 static int nfs3_pathconf_cache_misses = 0; 5703 #endif 5704 5705 /* ARGSUSED */ 5706 static int 5707 nfs3_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 5708 caller_context_t *ct) 5709 { 5710 int error; 5711 PATHCONF3args args; 5712 PATHCONF3res res; 5713 int douprintf; 5714 failinfo_t fi; 5715 rnode_t *rp; 5716 hrtime_t t; 5717 5718 if (nfs_zone() != VTOMI(vp)->mi_zone) 5719 return (EIO); 5720 /* 5721 * Large file spec - need to base answer on info stored 5722 * on original FSINFO response. 5723 */ 5724 if (cmd == _PC_FILESIZEBITS) { 5725 unsigned long long ll; 5726 long l = 1; 5727 5728 ll = VTOMI(vp)->mi_maxfilesize; 5729 5730 if (ll == 0) { 5731 *valp = 0; 5732 return (0); 5733 } 5734 5735 if (ll & 0xffffffff00000000) { 5736 l += 32; ll >>= 32; 5737 } 5738 if (ll & 0xffff0000) { 5739 l += 16; ll >>= 16; 5740 } 5741 if (ll & 0xff00) { 5742 l += 8; ll >>= 8; 5743 } 5744 if (ll & 0xf0) { 5745 l += 4; ll >>= 4; 5746 } 5747 if (ll & 0xc) { 5748 l += 2; ll >>= 2; 5749 } 5750 if (ll & 0x2) 5751 l += 2; 5752 else if (ll & 0x1) 5753 l += 1; 5754 *valp = l; 5755 return (0); 5756 } 5757 5758 if (cmd == _PC_ACL_ENABLED) { 5759 *valp = _ACL_ACLENT_ENABLED; 5760 return (0); 5761 } 5762 5763 if (cmd == _PC_XATTR_EXISTS) { 5764 error = 0; 5765 *valp = 0; 5766 if (vp->v_vfsp->vfs_flag & VFS_XATTR) { 5767 vnode_t *avp; 5768 rnode_t *rp; 5769 int error = 0; 5770 mntinfo_t *mi = VTOMI(vp); 5771 5772 if (!(mi->mi_flags & MI_EXTATTR)) 5773 return (0); 5774 5775 rp = VTOR(vp); 5776 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, 5777 INTR(vp))) 5778 return (EINTR); 5779 5780 error = nfs3lookup_dnlc(vp, XATTR_DIR_NAME, &avp, cr); 5781 if (error || avp == NULL) 5782 error = acl_getxattrdir3(vp, &avp, 0, cr, 0); 5783 5784 nfs_rw_exit(&rp->r_rwlock); 5785 5786 if (error == 0 && avp != NULL) { 5787 error = do_xattr_exists_check(avp, valp, cr); 5788 VN_RELE(avp); 5789 } else if (error == ENOENT) { 5790 error = 0; 5791 *valp = 0; 5792 } 5793 } 5794 return (error); 5795 } 5796 5797 rp = VTOR(vp); 5798 if (rp->r_pathconf != NULL) { 5799 mutex_enter(&rp->r_statelock); 5800 if (rp->r_pathconf != NULL && nfs3_pathconf_disable_cache) { 5801 kmem_free(rp->r_pathconf, sizeof (*rp->r_pathconf)); 5802 rp->r_pathconf = NULL; 5803 } 5804 if (rp->r_pathconf != NULL) { 5805 error = 0; 5806 switch (cmd) { 5807 case _PC_LINK_MAX: 5808 *valp = rp->r_pathconf->link_max; 5809 break; 5810 case _PC_NAME_MAX: 5811 *valp = rp->r_pathconf->name_max; 5812 break; 5813 case _PC_PATH_MAX: 5814 case _PC_SYMLINK_MAX: 5815 *valp = MAXPATHLEN; 5816 break; 5817 case _PC_CHOWN_RESTRICTED: 5818 *valp = rp->r_pathconf->chown_restricted; 5819 break; 5820 case _PC_NO_TRUNC: 5821 *valp = rp->r_pathconf->no_trunc; 5822 break; 5823 default: 5824 error = EINVAL; 5825 break; 5826 } 5827 mutex_exit(&rp->r_statelock); 5828 #ifdef DEBUG 5829 nfs3_pathconf_cache_hits++; 5830 #endif 5831 return (error); 5832 } 5833 mutex_exit(&rp->r_statelock); 5834 } 5835 #ifdef DEBUG 5836 nfs3_pathconf_cache_misses++; 5837 #endif 5838 5839 args.object = *VTOFH3(vp); 5840 fi.vp = vp; 5841 fi.fhp = (caddr_t)&args.object; 5842 fi.copyproc = nfs3copyfh; 5843 fi.lookupproc = nfs3lookup; 5844 fi.xattrdirproc = acl_getxattrdir3; 5845 5846 douprintf = 1; 5847 5848 t = gethrtime(); 5849 5850 error = rfs3call(VTOMI(vp), NFSPROC3_PATHCONF, 5851 xdr_nfs_fh3, (caddr_t)&args, 5852 xdr_PATHCONF3res, (caddr_t)&res, cr, 5853 &douprintf, &res.status, 0, &fi); 5854 5855 if (error) 5856 return (error); 5857 5858 error = geterrno3(res.status); 5859 5860 if (!error) { 5861 nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr); 5862 if (!nfs3_pathconf_disable_cache) { 5863 mutex_enter(&rp->r_statelock); 5864 if (rp->r_pathconf == NULL) { 5865 rp->r_pathconf = kmem_alloc( 5866 sizeof (*rp->r_pathconf), KM_NOSLEEP); 5867 if (rp->r_pathconf != NULL) 5868 *rp->r_pathconf = res.resok.info; 5869 } 5870 mutex_exit(&rp->r_statelock); 5871 } 5872 switch (cmd) { 5873 case _PC_LINK_MAX: 5874 *valp = res.resok.info.link_max; 5875 break; 5876 case _PC_NAME_MAX: 5877 *valp = res.resok.info.name_max; 5878 break; 5879 case _PC_PATH_MAX: 5880 case _PC_SYMLINK_MAX: 5881 *valp = MAXPATHLEN; 5882 break; 5883 case _PC_CHOWN_RESTRICTED: 5884 *valp = res.resok.info.chown_restricted; 5885 break; 5886 case _PC_NO_TRUNC: 5887 *valp = res.resok.info.no_trunc; 5888 break; 5889 default: 5890 return (EINVAL); 5891 } 5892 } else { 5893 nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr); 5894 PURGE_STALE_FH(error, vp, cr); 5895 } 5896 5897 return (error); 5898 } 5899 5900 /* 5901 * Called by async thread to do synchronous pageio. Do the i/o, wait 5902 * for it to complete, and cleanup the page list when done. 5903 */ 5904 static int 5905 nfs3_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 5906 int flags, cred_t *cr) 5907 { 5908 int error; 5909 5910 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 5911 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 5912 if (flags & B_READ) 5913 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 5914 else 5915 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 5916 return (error); 5917 } 5918 5919 /* ARGSUSED */ 5920 static int 5921 nfs3_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 5922 int flags, cred_t *cr, caller_context_t *ct) 5923 { 5924 int error; 5925 rnode_t *rp; 5926 5927 if (pp == NULL) 5928 return (EINVAL); 5929 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone) 5930 return (EIO); 5931 5932 rp = VTOR(vp); 5933 mutex_enter(&rp->r_statelock); 5934 rp->r_count++; 5935 mutex_exit(&rp->r_statelock); 5936 5937 if (flags & B_ASYNC) { 5938 error = nfs_async_pageio(vp, pp, io_off, io_len, flags, cr, 5939 nfs3_sync_pageio); 5940 } else 5941 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 5942 mutex_enter(&rp->r_statelock); 5943 rp->r_count--; 5944 cv_broadcast(&rp->r_cv); 5945 mutex_exit(&rp->r_statelock); 5946 return (error); 5947 } 5948 5949 /* ARGSUSED */ 5950 static void 5951 nfs3_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr, 5952 caller_context_t *ct) 5953 { 5954 int error; 5955 rnode_t *rp; 5956 page_t *plist; 5957 page_t *pptr; 5958 offset3 offset; 5959 count3 len; 5960 k_sigset_t smask; 5961 5962 /* 5963 * We should get called with fl equal to either B_FREE or 5964 * B_INVAL. Any other value is illegal. 5965 * 5966 * The page that we are either supposed to free or destroy 5967 * should be exclusive locked and its io lock should not 5968 * be held. 5969 */ 5970 ASSERT(fl == B_FREE || fl == B_INVAL); 5971 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr); 5972 rp = VTOR(vp); 5973 5974 /* 5975 * If the page doesn't need to be committed or we shouldn't 5976 * even bother attempting to commit it, then just make sure 5977 * that the p_fsdata byte is clear and then either free or 5978 * destroy the page as appropriate. 5979 */ 5980 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & RSTALE)) { 5981 pp->p_fsdata = C_NOCOMMIT; 5982 if (fl == B_FREE) 5983 page_free(pp, dn); 5984 else 5985 page_destroy(pp, dn); 5986 return; 5987 } 5988 5989 /* 5990 * If there is a page invalidation operation going on, then 5991 * if this is one of the pages being destroyed, then just 5992 * clear the p_fsdata byte and then either free or destroy 5993 * the page as appropriate. 5994 */ 5995 mutex_enter(&rp->r_statelock); 5996 if ((rp->r_flags & RTRUNCATE) && pp->p_offset >= rp->r_truncaddr) { 5997 mutex_exit(&rp->r_statelock); 5998 pp->p_fsdata = C_NOCOMMIT; 5999 if (fl == B_FREE) 6000 page_free(pp, dn); 6001 else 6002 page_destroy(pp, dn); 6003 return; 6004 } 6005 6006 /* 6007 * If we are freeing this page and someone else is already 6008 * waiting to do a commit, then just unlock the page and 6009 * return. That other thread will take care of commiting 6010 * this page. The page can be freed sometime after the 6011 * commit has finished. Otherwise, if the page is marked 6012 * as delay commit, then we may be getting called from 6013 * pvn_write_done, one page at a time. This could result 6014 * in one commit per page, so we end up doing lots of small 6015 * commits instead of fewer larger commits. This is bad, 6016 * we want do as few commits as possible. 6017 */ 6018 if (fl == B_FREE) { 6019 if (rp->r_flags & RCOMMITWAIT) { 6020 page_unlock(pp); 6021 mutex_exit(&rp->r_statelock); 6022 return; 6023 } 6024 if (pp->p_fsdata == C_DELAYCOMMIT) { 6025 pp->p_fsdata = C_COMMIT; 6026 page_unlock(pp); 6027 mutex_exit(&rp->r_statelock); 6028 return; 6029 } 6030 } 6031 6032 /* 6033 * Check to see if there is a signal which would prevent an 6034 * attempt to commit the pages from being successful. If so, 6035 * then don't bother with all of the work to gather pages and 6036 * generate the unsuccessful RPC. Just return from here and 6037 * let the page be committed at some later time. 6038 */ 6039 sigintr(&smask, VTOMI(vp)->mi_flags & MI_INT); 6040 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) { 6041 sigunintr(&smask); 6042 page_unlock(pp); 6043 mutex_exit(&rp->r_statelock); 6044 return; 6045 } 6046 sigunintr(&smask); 6047 6048 /* 6049 * We are starting to need to commit pages, so let's try 6050 * to commit as many as possible at once to reduce the 6051 * overhead. 6052 * 6053 * Set the `commit inprogress' state bit. We must 6054 * first wait until any current one finishes. Then 6055 * we initialize the c_pages list with this page. 6056 */ 6057 while (rp->r_flags & RCOMMIT) { 6058 rp->r_flags |= RCOMMITWAIT; 6059 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 6060 rp->r_flags &= ~RCOMMITWAIT; 6061 } 6062 rp->r_flags |= RCOMMIT; 6063 mutex_exit(&rp->r_statelock); 6064 ASSERT(rp->r_commit.c_pages == NULL); 6065 rp->r_commit.c_pages = pp; 6066 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6067 rp->r_commit.c_commlen = PAGESIZE; 6068 6069 /* 6070 * Gather together all other pages which can be committed. 6071 * They will all be chained off r_commit.c_pages. 6072 */ 6073 nfs3_get_commit(vp); 6074 6075 /* 6076 * Clear the `commit inprogress' status and disconnect 6077 * the list of pages to be committed from the rnode. 6078 * At this same time, we also save the starting offset 6079 * and length of data to be committed on the server. 6080 */ 6081 plist = rp->r_commit.c_pages; 6082 rp->r_commit.c_pages = NULL; 6083 offset = rp->r_commit.c_commbase; 6084 len = rp->r_commit.c_commlen; 6085 mutex_enter(&rp->r_statelock); 6086 rp->r_flags &= ~RCOMMIT; 6087 cv_broadcast(&rp->r_commit.c_cv); 6088 mutex_exit(&rp->r_statelock); 6089 6090 if (curproc == proc_pageout || curproc == proc_fsflush || 6091 nfs_zone() != VTOMI(vp)->mi_zone) { 6092 nfs_async_commit(vp, plist, offset, len, cr, nfs3_async_commit); 6093 return; 6094 } 6095 6096 /* 6097 * Actually generate the COMMIT3 over the wire operation. 6098 */ 6099 error = nfs3_commit(vp, offset, len, cr); 6100 6101 /* 6102 * If we got an error during the commit, just unlock all 6103 * of the pages. The pages will get retransmitted to the 6104 * server during a putpage operation. 6105 */ 6106 if (error) { 6107 while (plist != NULL) { 6108 pptr = plist; 6109 page_sub(&plist, pptr); 6110 page_unlock(pptr); 6111 } 6112 return; 6113 } 6114 6115 /* 6116 * We've tried as hard as we can to commit the data to stable 6117 * storage on the server. We release the rest of the pages 6118 * and clear the commit required state. They will be put 6119 * onto the tail of the cachelist if they are nolonger 6120 * mapped. 6121 */ 6122 while (plist != pp) { 6123 pptr = plist; 6124 page_sub(&plist, pptr); 6125 pptr->p_fsdata = C_NOCOMMIT; 6126 (void) page_release(pptr, 1); 6127 } 6128 6129 /* 6130 * It is possible that nfs3_commit didn't return error but 6131 * some other thread has modified the page we are going 6132 * to free/destroy. 6133 * In this case we need to rewrite the page. Do an explicit check 6134 * before attempting to free/destroy the page. If modified, needs to 6135 * be rewritten so unlock the page and return. 6136 */ 6137 if (hat_ismod(pp)) { 6138 pp->p_fsdata = C_NOCOMMIT; 6139 page_unlock(pp); 6140 return; 6141 } 6142 6143 /* 6144 * Now, as appropriate, either free or destroy the page 6145 * that we were called with. 6146 */ 6147 pp->p_fsdata = C_NOCOMMIT; 6148 if (fl == B_FREE) 6149 page_free(pp, dn); 6150 else 6151 page_destroy(pp, dn); 6152 } 6153 6154 static int 6155 nfs3_commit(vnode_t *vp, offset3 offset, count3 count, cred_t *cr) 6156 { 6157 int error; 6158 rnode_t *rp; 6159 COMMIT3args args; 6160 COMMIT3res res; 6161 int douprintf; 6162 cred_t *cred; 6163 6164 rp = VTOR(vp); 6165 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6166 6167 mutex_enter(&rp->r_statelock); 6168 if (rp->r_cred != NULL) { 6169 cred = rp->r_cred; 6170 crhold(cred); 6171 } else { 6172 rp->r_cred = cr; 6173 crhold(cr); 6174 cred = cr; 6175 crhold(cred); 6176 } 6177 mutex_exit(&rp->r_statelock); 6178 6179 args.file = *VTOFH3(vp); 6180 args.offset = offset; 6181 args.count = count; 6182 6183 doitagain: 6184 douprintf = 1; 6185 error = rfs3call(VTOMI(vp), NFSPROC3_COMMIT, 6186 xdr_COMMIT3args, (caddr_t)&args, 6187 xdr_COMMIT3res, (caddr_t)&res, cred, 6188 &douprintf, &res.status, 0, NULL); 6189 6190 crfree(cred); 6191 6192 if (error) 6193 return (error); 6194 6195 error = geterrno3(res.status); 6196 if (!error) { 6197 ASSERT(rp->r_flags & RHAVEVERF); 6198 mutex_enter(&rp->r_statelock); 6199 if (rp->r_verf == res.resok.verf) { 6200 mutex_exit(&rp->r_statelock); 6201 return (0); 6202 } 6203 nfs3_set_mod(vp); 6204 rp->r_verf = res.resok.verf; 6205 mutex_exit(&rp->r_statelock); 6206 error = NFS_VERF_MISMATCH; 6207 } else { 6208 if (error == EACCES) { 6209 mutex_enter(&rp->r_statelock); 6210 if (cred != cr) { 6211 if (rp->r_cred != NULL) 6212 crfree(rp->r_cred); 6213 rp->r_cred = cr; 6214 crhold(cr); 6215 cred = cr; 6216 crhold(cred); 6217 mutex_exit(&rp->r_statelock); 6218 goto doitagain; 6219 } 6220 mutex_exit(&rp->r_statelock); 6221 } 6222 /* 6223 * Can't do a PURGE_STALE_FH here because this 6224 * can cause a deadlock. nfs3_commit can 6225 * be called from nfs3_dispose which can be called 6226 * indirectly via pvn_vplist_dirty. PURGE_STALE_FH 6227 * can call back to pvn_vplist_dirty. 6228 */ 6229 if (error == ESTALE) { 6230 mutex_enter(&rp->r_statelock); 6231 rp->r_flags |= RSTALE; 6232 if (!rp->r_error) 6233 rp->r_error = error; 6234 mutex_exit(&rp->r_statelock); 6235 PURGE_ATTRCACHE(vp); 6236 } else { 6237 mutex_enter(&rp->r_statelock); 6238 if (!rp->r_error) 6239 rp->r_error = error; 6240 mutex_exit(&rp->r_statelock); 6241 } 6242 } 6243 6244 return (error); 6245 } 6246 6247 static void 6248 nfs3_set_mod(vnode_t *vp) 6249 { 6250 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6251 6252 pvn_vplist_setdirty(vp, nfs_setmod_check); 6253 } 6254 6255 /* 6256 * This routine is used to gather together a page list of the pages 6257 * which are to be committed on the server. This routine must not 6258 * be called if the calling thread holds any locked pages. 6259 * 6260 * The calling thread must have set RCOMMIT. This bit is used to 6261 * serialize access to the commit structure in the rnode. As long 6262 * as the thread has set RCOMMIT, then it can manipulate the commit 6263 * structure without requiring any other locks. 6264 */ 6265 static void 6266 nfs3_get_commit(vnode_t *vp) 6267 { 6268 rnode_t *rp; 6269 page_t *pp; 6270 kmutex_t *vphm; 6271 6272 rp = VTOR(vp); 6273 6274 ASSERT(rp->r_flags & RCOMMIT); 6275 6276 vphm = page_vnode_mutex(vp); 6277 mutex_enter(vphm); 6278 6279 /* 6280 * If there are no pages associated with this vnode, then 6281 * just return. 6282 */ 6283 if ((pp = vp->v_pages) == NULL) { 6284 mutex_exit(vphm); 6285 return; 6286 } 6287 6288 /* 6289 * Step through all of the pages associated with this vnode 6290 * looking for pages which need to be committed. 6291 */ 6292 do { 6293 /* Skip marker pages. */ 6294 if (pp->p_hash == PVN_VPLIST_HASH_TAG) 6295 continue; 6296 6297 /* 6298 * If this page does not need to be committed or is 6299 * modified, then just skip it. 6300 */ 6301 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) 6302 continue; 6303 6304 /* 6305 * Attempt to lock the page. If we can't, then 6306 * someone else is messing with it and we will 6307 * just skip it. 6308 */ 6309 if (!page_trylock(pp, SE_EXCL)) 6310 continue; 6311 6312 /* 6313 * If this page does not need to be committed or is 6314 * modified, then just skip it. Recheck now that 6315 * the page is locked. 6316 */ 6317 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 6318 page_unlock(pp); 6319 continue; 6320 } 6321 6322 if (PP_ISFREE(pp)) { 6323 cmn_err(CE_PANIC, "nfs3_get_commit: %p is free", 6324 (void *)pp); 6325 } 6326 6327 /* 6328 * The page needs to be committed and we locked it. 6329 * Update the base and length parameters and add it 6330 * to r_pages. 6331 */ 6332 if (rp->r_commit.c_pages == NULL) { 6333 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6334 rp->r_commit.c_commlen = PAGESIZE; 6335 } else if (pp->p_offset < rp->r_commit.c_commbase) { 6336 rp->r_commit.c_commlen = rp->r_commit.c_commbase - 6337 (offset3)pp->p_offset + rp->r_commit.c_commlen; 6338 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6339 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen) 6340 <= pp->p_offset) { 6341 rp->r_commit.c_commlen = (offset3)pp->p_offset - 6342 rp->r_commit.c_commbase + PAGESIZE; 6343 } 6344 page_add(&rp->r_commit.c_pages, pp); 6345 } while ((pp = pp->p_vpnext) != vp->v_pages); 6346 6347 mutex_exit(vphm); 6348 } 6349 6350 /* 6351 * This routine is used to gather together a page list of the pages 6352 * which are to be committed on the server. This routine must not 6353 * be called if the calling thread holds any locked pages. 6354 * 6355 * The calling thread must have set RCOMMIT. This bit is used to 6356 * serialize access to the commit structure in the rnode. As long 6357 * as the thread has set RCOMMIT, then it can manipulate the commit 6358 * structure without requiring any other locks. 6359 */ 6360 static void 6361 nfs3_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len) 6362 { 6363 6364 rnode_t *rp; 6365 page_t *pp; 6366 u_offset_t end; 6367 u_offset_t off; 6368 6369 ASSERT(len != 0); 6370 6371 rp = VTOR(vp); 6372 6373 ASSERT(rp->r_flags & RCOMMIT); 6374 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6375 6376 /* 6377 * If there are no pages associated with this vnode, then 6378 * just return. 6379 */ 6380 if ((pp = vp->v_pages) == NULL) 6381 return; 6382 6383 /* 6384 * Calculate the ending offset. 6385 */ 6386 end = soff + len; 6387 6388 for (off = soff; off < end; off += PAGESIZE) { 6389 /* 6390 * Lookup each page by vp, offset. 6391 */ 6392 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL) 6393 continue; 6394 6395 /* 6396 * If this page does not need to be committed or is 6397 * modified, then just skip it. 6398 */ 6399 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 6400 page_unlock(pp); 6401 continue; 6402 } 6403 6404 ASSERT(PP_ISFREE(pp) == 0); 6405 6406 /* 6407 * The page needs to be committed and we locked it. 6408 * Update the base and length parameters and add it 6409 * to r_pages. 6410 */ 6411 if (rp->r_commit.c_pages == NULL) { 6412 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6413 rp->r_commit.c_commlen = PAGESIZE; 6414 } else { 6415 rp->r_commit.c_commlen = (offset3)pp->p_offset - 6416 rp->r_commit.c_commbase + PAGESIZE; 6417 } 6418 page_add(&rp->r_commit.c_pages, pp); 6419 } 6420 } 6421 6422 static int 6423 nfs3_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr) 6424 { 6425 int error; 6426 writeverf3 write_verf; 6427 rnode_t *rp = VTOR(vp); 6428 6429 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6430 /* 6431 * Flush the data portion of the file and then commit any 6432 * portions which need to be committed. This may need to 6433 * be done twice if the server has changed state since 6434 * data was last written. The data will need to be 6435 * rewritten to the server and then a new commit done. 6436 * 6437 * In fact, this may need to be done several times if the 6438 * server is having problems and crashing while we are 6439 * attempting to do this. 6440 */ 6441 6442 top: 6443 /* 6444 * Do a flush based on the poff and plen arguments. This 6445 * will asynchronously write out any modified pages in the 6446 * range specified by (poff, plen). This starts all of the 6447 * i/o operations which will be waited for in the next 6448 * call to nfs3_putpage 6449 */ 6450 6451 mutex_enter(&rp->r_statelock); 6452 write_verf = rp->r_verf; 6453 mutex_exit(&rp->r_statelock); 6454 6455 error = nfs3_putpage(vp, poff, plen, B_ASYNC, cr, NULL); 6456 if (error == EAGAIN) 6457 error = 0; 6458 6459 /* 6460 * Do a flush based on the poff and plen arguments. This 6461 * will synchronously write out any modified pages in the 6462 * range specified by (poff, plen) and wait until all of 6463 * the asynchronous i/o's in that range are done as well. 6464 */ 6465 if (!error) 6466 error = nfs3_putpage(vp, poff, plen, 0, cr, NULL); 6467 6468 if (error) 6469 return (error); 6470 6471 mutex_enter(&rp->r_statelock); 6472 if (rp->r_verf != write_verf) { 6473 mutex_exit(&rp->r_statelock); 6474 goto top; 6475 } 6476 mutex_exit(&rp->r_statelock); 6477 6478 /* 6479 * Now commit any pages which might need to be committed. 6480 * If the error, NFS_VERF_MISMATCH, is returned, then 6481 * start over with the flush operation. 6482 */ 6483 6484 error = nfs3_commit_vp(vp, poff, plen, cr); 6485 6486 if (error == NFS_VERF_MISMATCH) 6487 goto top; 6488 6489 return (error); 6490 } 6491 6492 static int 6493 nfs3_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, cred_t *cr) 6494 { 6495 rnode_t *rp; 6496 page_t *plist; 6497 offset3 offset; 6498 count3 len; 6499 6500 6501 rp = VTOR(vp); 6502 6503 if (nfs_zone() != VTOMI(vp)->mi_zone) 6504 return (EIO); 6505 /* 6506 * Set the `commit inprogress' state bit. We must 6507 * first wait until any current one finishes. 6508 */ 6509 mutex_enter(&rp->r_statelock); 6510 while (rp->r_flags & RCOMMIT) { 6511 rp->r_flags |= RCOMMITWAIT; 6512 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 6513 rp->r_flags &= ~RCOMMITWAIT; 6514 } 6515 rp->r_flags |= RCOMMIT; 6516 mutex_exit(&rp->r_statelock); 6517 6518 /* 6519 * Gather together all of the pages which need to be 6520 * committed. 6521 */ 6522 if (plen == 0) 6523 nfs3_get_commit(vp); 6524 else 6525 nfs3_get_commit_range(vp, poff, plen); 6526 6527 /* 6528 * Clear the `commit inprogress' bit and disconnect the 6529 * page list which was gathered together in nfs3_get_commit. 6530 */ 6531 plist = rp->r_commit.c_pages; 6532 rp->r_commit.c_pages = NULL; 6533 offset = rp->r_commit.c_commbase; 6534 len = rp->r_commit.c_commlen; 6535 mutex_enter(&rp->r_statelock); 6536 rp->r_flags &= ~RCOMMIT; 6537 cv_broadcast(&rp->r_commit.c_cv); 6538 mutex_exit(&rp->r_statelock); 6539 6540 /* 6541 * If any pages need to be committed, commit them and 6542 * then unlock them so that they can be freed some 6543 * time later. 6544 */ 6545 if (plist != NULL) { 6546 /* 6547 * No error occurred during the flush portion 6548 * of this operation, so now attempt to commit 6549 * the data to stable storage on the server. 6550 * 6551 * This will unlock all of the pages on the list. 6552 */ 6553 return (nfs3_sync_commit(vp, plist, offset, len, cr)); 6554 } 6555 return (0); 6556 } 6557 6558 static int 6559 nfs3_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 6560 cred_t *cr) 6561 { 6562 int error; 6563 page_t *pp; 6564 6565 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6566 error = nfs3_commit(vp, offset, count, cr); 6567 6568 /* 6569 * If we got an error, then just unlock all of the pages 6570 * on the list. 6571 */ 6572 if (error) { 6573 while (plist != NULL) { 6574 pp = plist; 6575 page_sub(&plist, pp); 6576 page_unlock(pp); 6577 } 6578 return (error); 6579 } 6580 /* 6581 * We've tried as hard as we can to commit the data to stable 6582 * storage on the server. We just unlock the pages and clear 6583 * the commit required state. They will get freed later. 6584 */ 6585 while (plist != NULL) { 6586 pp = plist; 6587 page_sub(&plist, pp); 6588 pp->p_fsdata = C_NOCOMMIT; 6589 page_unlock(pp); 6590 } 6591 6592 return (error); 6593 } 6594 6595 static void 6596 nfs3_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 6597 cred_t *cr) 6598 { 6599 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6600 (void) nfs3_sync_commit(vp, plist, offset, count, cr); 6601 } 6602 6603 /* ARGSUSED */ 6604 static int 6605 nfs3_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 6606 caller_context_t *ct) 6607 { 6608 int error; 6609 mntinfo_t *mi; 6610 6611 mi = VTOMI(vp); 6612 6613 if (nfs_zone() != mi->mi_zone) 6614 return (EIO); 6615 6616 if (mi->mi_flags & MI_ACL) { 6617 error = acl_setacl3(vp, vsecattr, flag, cr); 6618 if (mi->mi_flags & MI_ACL) 6619 return (error); 6620 } 6621 6622 return (ENOSYS); 6623 } 6624 6625 /* ARGSUSED */ 6626 static int 6627 nfs3_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 6628 caller_context_t *ct) 6629 { 6630 int error; 6631 mntinfo_t *mi; 6632 6633 mi = VTOMI(vp); 6634 6635 if (nfs_zone() != mi->mi_zone) 6636 return (EIO); 6637 6638 if (mi->mi_flags & MI_ACL) { 6639 error = acl_getacl3(vp, vsecattr, flag, cr); 6640 if (mi->mi_flags & MI_ACL) 6641 return (error); 6642 } 6643 6644 return (fs_fab_acl(vp, vsecattr, flag, cr, ct)); 6645 } 6646 6647 /* ARGSUSED */ 6648 static int 6649 nfs3_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr, 6650 caller_context_t *ct) 6651 { 6652 int error; 6653 struct shrlock nshr; 6654 struct nfs_owner nfs_owner; 6655 netobj lm_fh3; 6656 6657 if (nfs_zone() != VTOMI(vp)->mi_zone) 6658 return (EIO); 6659 6660 /* 6661 * check for valid cmd parameter 6662 */ 6663 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 6664 return (EINVAL); 6665 6666 /* 6667 * Check access permissions 6668 */ 6669 if (cmd == F_SHARE && 6670 (((shr->s_access & F_RDACC) && !(flag & FREAD)) || 6671 ((shr->s_access & F_WRACC) && !(flag & FWRITE)))) 6672 return (EBADF); 6673 6674 /* 6675 * If the filesystem is mounted using local locking, pass the 6676 * request off to the local share code. 6677 */ 6678 if (VTOMI(vp)->mi_flags & MI_LLOCK) 6679 return (fs_shrlock(vp, cmd, shr, flag, cr, ct)); 6680 6681 switch (cmd) { 6682 case F_SHARE: 6683 case F_UNSHARE: 6684 lm_fh3.n_len = VTOFH3(vp)->fh3_length; 6685 lm_fh3.n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data); 6686 6687 /* 6688 * If passed an owner that is too large to fit in an 6689 * nfs_owner it is likely a recursive call from the 6690 * lock manager client and pass it straight through. If 6691 * it is not a nfs_owner then simply return an error. 6692 */ 6693 if (shr->s_own_len > sizeof (nfs_owner.lowner)) { 6694 if (((struct nfs_owner *)shr->s_owner)->magic != 6695 NFS_OWNER_MAGIC) 6696 return (EINVAL); 6697 6698 if (error = lm4_shrlock(vp, cmd, shr, flag, &lm_fh3)) { 6699 error = set_errno(error); 6700 } 6701 return (error); 6702 } 6703 /* 6704 * Remote share reservations owner is a combination of 6705 * a magic number, hostname, and the local owner 6706 */ 6707 bzero(&nfs_owner, sizeof (nfs_owner)); 6708 nfs_owner.magic = NFS_OWNER_MAGIC; 6709 (void) strncpy(nfs_owner.hname, uts_nodename(), 6710 sizeof (nfs_owner.hname)); 6711 bcopy(shr->s_owner, nfs_owner.lowner, shr->s_own_len); 6712 nshr.s_access = shr->s_access; 6713 nshr.s_deny = shr->s_deny; 6714 nshr.s_sysid = 0; 6715 nshr.s_pid = ttoproc(curthread)->p_pid; 6716 nshr.s_own_len = sizeof (nfs_owner); 6717 nshr.s_owner = (caddr_t)&nfs_owner; 6718 6719 if (error = lm4_shrlock(vp, cmd, &nshr, flag, &lm_fh3)) { 6720 error = set_errno(error); 6721 } 6722 6723 break; 6724 6725 case F_HASREMOTELOCKS: 6726 /* 6727 * NFS client can't store remote locks itself 6728 */ 6729 shr->s_access = 0; 6730 error = 0; 6731 break; 6732 6733 default: 6734 error = EINVAL; 6735 break; 6736 } 6737 6738 return (error); 6739 }