Print this page
2917 DTrace in a zone should have limited provider access
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/common/sys/dtrace.h
+++ new/usr/src/uts/common/sys/dtrace.h
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
↓ open down ↓ |
17 lines elided |
↑ open up ↑ |
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 24 * Use is subject to license terms.
25 25 */
26 26
27 27 /*
28 - * Copyright (c) 2011, Joyent, Inc. All rights reserved.
28 + * Copyright (c) 2012, Joyent, Inc. All rights reserved.
29 29 */
30 30
31 31 #ifndef _SYS_DTRACE_H
32 32 #define _SYS_DTRACE_H
33 33
34 34 #ifdef __cplusplus
35 35 extern "C" {
36 36 #endif
37 37
38 38 /*
39 39 * DTrace Dynamic Tracing Software: Kernel Interfaces
40 40 *
41 41 * Note: The contents of this file are private to the implementation of the
42 42 * Solaris system and DTrace subsystem and are subject to change at any time
43 43 * without notice. Applications and drivers using these interfaces will fail
44 44 * to run on future releases. These interfaces should not be used for any
45 45 * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
46 46 * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
47 47 */
48 48
49 49 #ifndef _ASM
50 50
51 51 #include <sys/types.h>
52 52 #include <sys/modctl.h>
53 53 #include <sys/processor.h>
54 54 #include <sys/systm.h>
55 55 #include <sys/ctf_api.h>
56 56 #include <sys/cyclic.h>
57 57 #include <sys/int_limits.h>
58 58
59 59 /*
60 60 * DTrace Universal Constants and Typedefs
61 61 */
62 62 #define DTRACE_CPUALL -1 /* all CPUs */
63 63 #define DTRACE_IDNONE 0 /* invalid probe identifier */
64 64 #define DTRACE_EPIDNONE 0 /* invalid enabled probe identifier */
65 65 #define DTRACE_AGGIDNONE 0 /* invalid aggregation identifier */
66 66 #define DTRACE_AGGVARIDNONE 0 /* invalid aggregation variable ID */
67 67 #define DTRACE_CACHEIDNONE 0 /* invalid predicate cache */
68 68 #define DTRACE_PROVNONE 0 /* invalid provider identifier */
69 69 #define DTRACE_METAPROVNONE 0 /* invalid meta-provider identifier */
70 70 #define DTRACE_ARGNONE -1 /* invalid argument index */
71 71
72 72 #define DTRACE_PROVNAMELEN 64
73 73 #define DTRACE_MODNAMELEN 64
74 74 #define DTRACE_FUNCNAMELEN 128
75 75 #define DTRACE_NAMELEN 64
76 76 #define DTRACE_FULLNAMELEN (DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \
77 77 DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4)
78 78 #define DTRACE_ARGTYPELEN 128
79 79
80 80 typedef uint32_t dtrace_id_t; /* probe identifier */
81 81 typedef uint32_t dtrace_epid_t; /* enabled probe identifier */
82 82 typedef uint32_t dtrace_aggid_t; /* aggregation identifier */
83 83 typedef int64_t dtrace_aggvarid_t; /* aggregation variable identifier */
84 84 typedef uint16_t dtrace_actkind_t; /* action kind */
85 85 typedef int64_t dtrace_optval_t; /* option value */
86 86 typedef uint32_t dtrace_cacheid_t; /* predicate cache identifier */
87 87
88 88 typedef enum dtrace_probespec {
89 89 DTRACE_PROBESPEC_NONE = -1,
90 90 DTRACE_PROBESPEC_PROVIDER = 0,
91 91 DTRACE_PROBESPEC_MOD,
92 92 DTRACE_PROBESPEC_FUNC,
93 93 DTRACE_PROBESPEC_NAME
94 94 } dtrace_probespec_t;
95 95
96 96 /*
97 97 * DTrace Intermediate Format (DIF)
98 98 *
99 99 * The following definitions describe the DTrace Intermediate Format (DIF), a
100 100 * a RISC-like instruction set and program encoding used to represent
101 101 * predicates and actions that can be bound to DTrace probes. The constants
102 102 * below defining the number of available registers are suggested minimums; the
103 103 * compiler should use DTRACEIOC_CONF to dynamically obtain the number of
104 104 * registers provided by the current DTrace implementation.
105 105 */
106 106 #define DIF_VERSION_1 1 /* DIF version 1: Solaris 10 Beta */
107 107 #define DIF_VERSION_2 2 /* DIF version 2: Solaris 10 FCS */
108 108 #define DIF_VERSION DIF_VERSION_2 /* latest DIF instruction set version */
109 109 #define DIF_DIR_NREGS 8 /* number of DIF integer registers */
110 110 #define DIF_DTR_NREGS 8 /* number of DIF tuple registers */
111 111
112 112 #define DIF_OP_OR 1 /* or r1, r2, rd */
113 113 #define DIF_OP_XOR 2 /* xor r1, r2, rd */
114 114 #define DIF_OP_AND 3 /* and r1, r2, rd */
115 115 #define DIF_OP_SLL 4 /* sll r1, r2, rd */
116 116 #define DIF_OP_SRL 5 /* srl r1, r2, rd */
117 117 #define DIF_OP_SUB 6 /* sub r1, r2, rd */
118 118 #define DIF_OP_ADD 7 /* add r1, r2, rd */
119 119 #define DIF_OP_MUL 8 /* mul r1, r2, rd */
120 120 #define DIF_OP_SDIV 9 /* sdiv r1, r2, rd */
121 121 #define DIF_OP_UDIV 10 /* udiv r1, r2, rd */
122 122 #define DIF_OP_SREM 11 /* srem r1, r2, rd */
123 123 #define DIF_OP_UREM 12 /* urem r1, r2, rd */
124 124 #define DIF_OP_NOT 13 /* not r1, rd */
125 125 #define DIF_OP_MOV 14 /* mov r1, rd */
126 126 #define DIF_OP_CMP 15 /* cmp r1, r2 */
127 127 #define DIF_OP_TST 16 /* tst r1 */
128 128 #define DIF_OP_BA 17 /* ba label */
129 129 #define DIF_OP_BE 18 /* be label */
130 130 #define DIF_OP_BNE 19 /* bne label */
131 131 #define DIF_OP_BG 20 /* bg label */
132 132 #define DIF_OP_BGU 21 /* bgu label */
133 133 #define DIF_OP_BGE 22 /* bge label */
134 134 #define DIF_OP_BGEU 23 /* bgeu label */
135 135 #define DIF_OP_BL 24 /* bl label */
136 136 #define DIF_OP_BLU 25 /* blu label */
137 137 #define DIF_OP_BLE 26 /* ble label */
138 138 #define DIF_OP_BLEU 27 /* bleu label */
139 139 #define DIF_OP_LDSB 28 /* ldsb [r1], rd */
140 140 #define DIF_OP_LDSH 29 /* ldsh [r1], rd */
141 141 #define DIF_OP_LDSW 30 /* ldsw [r1], rd */
142 142 #define DIF_OP_LDUB 31 /* ldub [r1], rd */
143 143 #define DIF_OP_LDUH 32 /* lduh [r1], rd */
144 144 #define DIF_OP_LDUW 33 /* lduw [r1], rd */
145 145 #define DIF_OP_LDX 34 /* ldx [r1], rd */
146 146 #define DIF_OP_RET 35 /* ret rd */
147 147 #define DIF_OP_NOP 36 /* nop */
148 148 #define DIF_OP_SETX 37 /* setx intindex, rd */
149 149 #define DIF_OP_SETS 38 /* sets strindex, rd */
150 150 #define DIF_OP_SCMP 39 /* scmp r1, r2 */
151 151 #define DIF_OP_LDGA 40 /* ldga var, ri, rd */
152 152 #define DIF_OP_LDGS 41 /* ldgs var, rd */
153 153 #define DIF_OP_STGS 42 /* stgs var, rs */
154 154 #define DIF_OP_LDTA 43 /* ldta var, ri, rd */
155 155 #define DIF_OP_LDTS 44 /* ldts var, rd */
156 156 #define DIF_OP_STTS 45 /* stts var, rs */
157 157 #define DIF_OP_SRA 46 /* sra r1, r2, rd */
158 158 #define DIF_OP_CALL 47 /* call subr, rd */
159 159 #define DIF_OP_PUSHTR 48 /* pushtr type, rs, rr */
160 160 #define DIF_OP_PUSHTV 49 /* pushtv type, rs, rv */
161 161 #define DIF_OP_POPTS 50 /* popts */
162 162 #define DIF_OP_FLUSHTS 51 /* flushts */
163 163 #define DIF_OP_LDGAA 52 /* ldgaa var, rd */
164 164 #define DIF_OP_LDTAA 53 /* ldtaa var, rd */
165 165 #define DIF_OP_STGAA 54 /* stgaa var, rs */
166 166 #define DIF_OP_STTAA 55 /* sttaa var, rs */
167 167 #define DIF_OP_LDLS 56 /* ldls var, rd */
168 168 #define DIF_OP_STLS 57 /* stls var, rs */
169 169 #define DIF_OP_ALLOCS 58 /* allocs r1, rd */
170 170 #define DIF_OP_COPYS 59 /* copys r1, r2, rd */
171 171 #define DIF_OP_STB 60 /* stb r1, [rd] */
172 172 #define DIF_OP_STH 61 /* sth r1, [rd] */
173 173 #define DIF_OP_STW 62 /* stw r1, [rd] */
174 174 #define DIF_OP_STX 63 /* stx r1, [rd] */
175 175 #define DIF_OP_ULDSB 64 /* uldsb [r1], rd */
176 176 #define DIF_OP_ULDSH 65 /* uldsh [r1], rd */
177 177 #define DIF_OP_ULDSW 66 /* uldsw [r1], rd */
178 178 #define DIF_OP_ULDUB 67 /* uldub [r1], rd */
179 179 #define DIF_OP_ULDUH 68 /* ulduh [r1], rd */
180 180 #define DIF_OP_ULDUW 69 /* ulduw [r1], rd */
181 181 #define DIF_OP_ULDX 70 /* uldx [r1], rd */
182 182 #define DIF_OP_RLDSB 71 /* rldsb [r1], rd */
183 183 #define DIF_OP_RLDSH 72 /* rldsh [r1], rd */
184 184 #define DIF_OP_RLDSW 73 /* rldsw [r1], rd */
185 185 #define DIF_OP_RLDUB 74 /* rldub [r1], rd */
186 186 #define DIF_OP_RLDUH 75 /* rlduh [r1], rd */
187 187 #define DIF_OP_RLDUW 76 /* rlduw [r1], rd */
188 188 #define DIF_OP_RLDX 77 /* rldx [r1], rd */
189 189 #define DIF_OP_XLATE 78 /* xlate xlrindex, rd */
190 190 #define DIF_OP_XLARG 79 /* xlarg xlrindex, rd */
191 191
192 192 #define DIF_INTOFF_MAX 0xffff /* highest integer table offset */
193 193 #define DIF_STROFF_MAX 0xffff /* highest string table offset */
194 194 #define DIF_REGISTER_MAX 0xff /* highest register number */
195 195 #define DIF_VARIABLE_MAX 0xffff /* highest variable identifier */
196 196 #define DIF_SUBROUTINE_MAX 0xffff /* highest subroutine code */
197 197
198 198 #define DIF_VAR_ARRAY_MIN 0x0000 /* lowest numbered array variable */
199 199 #define DIF_VAR_ARRAY_UBASE 0x0080 /* lowest user-defined array */
200 200 #define DIF_VAR_ARRAY_MAX 0x00ff /* highest numbered array variable */
201 201
202 202 #define DIF_VAR_OTHER_MIN 0x0100 /* lowest numbered scalar or assc */
203 203 #define DIF_VAR_OTHER_UBASE 0x0500 /* lowest user-defined scalar or assc */
204 204 #define DIF_VAR_OTHER_MAX 0xffff /* highest numbered scalar or assc */
205 205
206 206 #define DIF_VAR_ARGS 0x0000 /* arguments array */
207 207 #define DIF_VAR_REGS 0x0001 /* registers array */
208 208 #define DIF_VAR_UREGS 0x0002 /* user registers array */
209 209 #define DIF_VAR_VMREGS 0x0003 /* virtual machine registers array */
210 210 #define DIF_VAR_CURTHREAD 0x0100 /* thread pointer */
211 211 #define DIF_VAR_TIMESTAMP 0x0101 /* timestamp */
212 212 #define DIF_VAR_VTIMESTAMP 0x0102 /* virtual timestamp */
213 213 #define DIF_VAR_IPL 0x0103 /* interrupt priority level */
214 214 #define DIF_VAR_EPID 0x0104 /* enabled probe ID */
215 215 #define DIF_VAR_ID 0x0105 /* probe ID */
216 216 #define DIF_VAR_ARG0 0x0106 /* first argument */
217 217 #define DIF_VAR_ARG1 0x0107 /* second argument */
218 218 #define DIF_VAR_ARG2 0x0108 /* third argument */
219 219 #define DIF_VAR_ARG3 0x0109 /* fourth argument */
220 220 #define DIF_VAR_ARG4 0x010a /* fifth argument */
221 221 #define DIF_VAR_ARG5 0x010b /* sixth argument */
222 222 #define DIF_VAR_ARG6 0x010c /* seventh argument */
223 223 #define DIF_VAR_ARG7 0x010d /* eighth argument */
224 224 #define DIF_VAR_ARG8 0x010e /* ninth argument */
225 225 #define DIF_VAR_ARG9 0x010f /* tenth argument */
226 226 #define DIF_VAR_STACKDEPTH 0x0110 /* stack depth */
227 227 #define DIF_VAR_CALLER 0x0111 /* caller */
228 228 #define DIF_VAR_PROBEPROV 0x0112 /* probe provider */
229 229 #define DIF_VAR_PROBEMOD 0x0113 /* probe module */
230 230 #define DIF_VAR_PROBEFUNC 0x0114 /* probe function */
231 231 #define DIF_VAR_PROBENAME 0x0115 /* probe name */
232 232 #define DIF_VAR_PID 0x0116 /* process ID */
233 233 #define DIF_VAR_TID 0x0117 /* (per-process) thread ID */
234 234 #define DIF_VAR_EXECNAME 0x0118 /* name of executable */
235 235 #define DIF_VAR_ZONENAME 0x0119 /* zone name associated with process */
236 236 #define DIF_VAR_WALLTIMESTAMP 0x011a /* wall-clock timestamp */
237 237 #define DIF_VAR_USTACKDEPTH 0x011b /* user-land stack depth */
238 238 #define DIF_VAR_UCALLER 0x011c /* user-level caller */
239 239 #define DIF_VAR_PPID 0x011d /* parent process ID */
240 240 #define DIF_VAR_UID 0x011e /* process user ID */
241 241 #define DIF_VAR_GID 0x011f /* process group ID */
242 242 #define DIF_VAR_ERRNO 0x0120 /* thread errno */
243 243
244 244 #define DIF_SUBR_RAND 0
245 245 #define DIF_SUBR_MUTEX_OWNED 1
246 246 #define DIF_SUBR_MUTEX_OWNER 2
247 247 #define DIF_SUBR_MUTEX_TYPE_ADAPTIVE 3
248 248 #define DIF_SUBR_MUTEX_TYPE_SPIN 4
249 249 #define DIF_SUBR_RW_READ_HELD 5
250 250 #define DIF_SUBR_RW_WRITE_HELD 6
251 251 #define DIF_SUBR_RW_ISWRITER 7
252 252 #define DIF_SUBR_COPYIN 8
253 253 #define DIF_SUBR_COPYINSTR 9
254 254 #define DIF_SUBR_SPECULATION 10
255 255 #define DIF_SUBR_PROGENYOF 11
256 256 #define DIF_SUBR_STRLEN 12
257 257 #define DIF_SUBR_COPYOUT 13
258 258 #define DIF_SUBR_COPYOUTSTR 14
259 259 #define DIF_SUBR_ALLOCA 15
260 260 #define DIF_SUBR_BCOPY 16
261 261 #define DIF_SUBR_COPYINTO 17
262 262 #define DIF_SUBR_MSGDSIZE 18
263 263 #define DIF_SUBR_MSGSIZE 19
264 264 #define DIF_SUBR_GETMAJOR 20
265 265 #define DIF_SUBR_GETMINOR 21
266 266 #define DIF_SUBR_DDI_PATHNAME 22
267 267 #define DIF_SUBR_STRJOIN 23
268 268 #define DIF_SUBR_LLTOSTR 24
269 269 #define DIF_SUBR_BASENAME 25
270 270 #define DIF_SUBR_DIRNAME 26
271 271 #define DIF_SUBR_CLEANPATH 27
272 272 #define DIF_SUBR_STRCHR 28
273 273 #define DIF_SUBR_STRRCHR 29
274 274 #define DIF_SUBR_STRSTR 30
275 275 #define DIF_SUBR_STRTOK 31
276 276 #define DIF_SUBR_SUBSTR 32
277 277 #define DIF_SUBR_INDEX 33
278 278 #define DIF_SUBR_RINDEX 34
279 279 #define DIF_SUBR_HTONS 35
280 280 #define DIF_SUBR_HTONL 36
281 281 #define DIF_SUBR_HTONLL 37
282 282 #define DIF_SUBR_NTOHS 38
283 283 #define DIF_SUBR_NTOHL 39
284 284 #define DIF_SUBR_NTOHLL 40
285 285 #define DIF_SUBR_INET_NTOP 41
286 286 #define DIF_SUBR_INET_NTOA 42
287 287 #define DIF_SUBR_INET_NTOA6 43
288 288 #define DIF_SUBR_TOUPPER 44
289 289 #define DIF_SUBR_TOLOWER 45
290 290 #define DIF_SUBR_GETF 46
291 291
292 292 #define DIF_SUBR_MAX 46 /* max subroutine value */
293 293
294 294 typedef uint32_t dif_instr_t;
295 295
296 296 #define DIF_INSTR_OP(i) (((i) >> 24) & 0xff)
297 297 #define DIF_INSTR_R1(i) (((i) >> 16) & 0xff)
298 298 #define DIF_INSTR_R2(i) (((i) >> 8) & 0xff)
299 299 #define DIF_INSTR_RD(i) ((i) & 0xff)
300 300 #define DIF_INSTR_RS(i) ((i) & 0xff)
301 301 #define DIF_INSTR_LABEL(i) ((i) & 0xffffff)
302 302 #define DIF_INSTR_VAR(i) (((i) >> 8) & 0xffff)
303 303 #define DIF_INSTR_INTEGER(i) (((i) >> 8) & 0xffff)
304 304 #define DIF_INSTR_STRING(i) (((i) >> 8) & 0xffff)
305 305 #define DIF_INSTR_SUBR(i) (((i) >> 8) & 0xffff)
306 306 #define DIF_INSTR_TYPE(i) (((i) >> 16) & 0xff)
307 307 #define DIF_INSTR_XLREF(i) (((i) >> 8) & 0xffff)
308 308
309 309 #define DIF_INSTR_FMT(op, r1, r2, d) \
310 310 (((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d))
311 311
312 312 #define DIF_INSTR_NOT(r1, d) (DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d))
313 313 #define DIF_INSTR_MOV(r1, d) (DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d))
314 314 #define DIF_INSTR_CMP(op, r1, r2) (DIF_INSTR_FMT(op, r1, r2, 0))
315 315 #define DIF_INSTR_TST(r1) (DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0))
316 316 #define DIF_INSTR_BRANCH(op, label) (((op) << 24) | (label))
317 317 #define DIF_INSTR_LOAD(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))
318 318 #define DIF_INSTR_STORE(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))
319 319 #define DIF_INSTR_SETX(i, d) ((DIF_OP_SETX << 24) | ((i) << 8) | (d))
320 320 #define DIF_INSTR_SETS(s, d) ((DIF_OP_SETS << 24) | ((s) << 8) | (d))
321 321 #define DIF_INSTR_RET(d) (DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d))
322 322 #define DIF_INSTR_NOP (DIF_OP_NOP << 24)
323 323 #define DIF_INSTR_LDA(op, v, r, d) (DIF_INSTR_FMT(op, v, r, d))
324 324 #define DIF_INSTR_LDV(op, v, d) (((op) << 24) | ((v) << 8) | (d))
325 325 #define DIF_INSTR_STV(op, v, rs) (((op) << 24) | ((v) << 8) | (rs))
326 326 #define DIF_INSTR_CALL(s, d) ((DIF_OP_CALL << 24) | ((s) << 8) | (d))
327 327 #define DIF_INSTR_PUSHTS(op, t, r2, rs) (DIF_INSTR_FMT(op, t, r2, rs))
328 328 #define DIF_INSTR_POPTS (DIF_OP_POPTS << 24)
329 329 #define DIF_INSTR_FLUSHTS (DIF_OP_FLUSHTS << 24)
330 330 #define DIF_INSTR_ALLOCS(r1, d) (DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d))
331 331 #define DIF_INSTR_COPYS(r1, r2, d) (DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d))
332 332 #define DIF_INSTR_XLATE(op, r, d) (((op) << 24) | ((r) << 8) | (d))
333 333
334 334 #define DIF_REG_R0 0 /* %r0 is always set to zero */
335 335
336 336 /*
337 337 * A DTrace Intermediate Format Type (DIF Type) is used to represent the types
338 338 * of variables, function and associative array arguments, and the return type
339 339 * for each DIF object (shown below). It contains a description of the type,
340 340 * its size in bytes, and a module identifier.
341 341 */
342 342 typedef struct dtrace_diftype {
343 343 uint8_t dtdt_kind; /* type kind (see below) */
344 344 uint8_t dtdt_ckind; /* type kind in CTF */
345 345 uint8_t dtdt_flags; /* type flags (see below) */
346 346 uint8_t dtdt_pad; /* reserved for future use */
347 347 uint32_t dtdt_size; /* type size in bytes (unless string) */
348 348 } dtrace_diftype_t;
349 349
350 350 #define DIF_TYPE_CTF 0 /* type is a CTF type */
351 351 #define DIF_TYPE_STRING 1 /* type is a D string */
352 352
353 353 #define DIF_TF_BYREF 0x1 /* type is passed by reference */
354 354
355 355 /*
356 356 * A DTrace Intermediate Format variable record is used to describe each of the
357 357 * variables referenced by a given DIF object. It contains an integer variable
358 358 * identifier along with variable scope and properties, as shown below. The
359 359 * size of this structure must be sizeof (int) aligned.
360 360 */
361 361 typedef struct dtrace_difv {
362 362 uint32_t dtdv_name; /* variable name index in dtdo_strtab */
363 363 uint32_t dtdv_id; /* variable reference identifier */
364 364 uint8_t dtdv_kind; /* variable kind (see below) */
365 365 uint8_t dtdv_scope; /* variable scope (see below) */
366 366 uint16_t dtdv_flags; /* variable flags (see below) */
367 367 dtrace_diftype_t dtdv_type; /* variable type (see above) */
368 368 } dtrace_difv_t;
369 369
370 370 #define DIFV_KIND_ARRAY 0 /* variable is an array of quantities */
371 371 #define DIFV_KIND_SCALAR 1 /* variable is a scalar quantity */
372 372
373 373 #define DIFV_SCOPE_GLOBAL 0 /* variable has global scope */
374 374 #define DIFV_SCOPE_THREAD 1 /* variable has thread scope */
375 375 #define DIFV_SCOPE_LOCAL 2 /* variable has local scope */
376 376
377 377 #define DIFV_F_REF 0x1 /* variable is referenced by DIFO */
378 378 #define DIFV_F_MOD 0x2 /* variable is written by DIFO */
379 379
380 380 /*
381 381 * DTrace Actions
382 382 *
383 383 * The upper byte determines the class of the action; the low bytes determines
384 384 * the specific action within that class. The classes of actions are as
385 385 * follows:
386 386 *
387 387 * [ no class ] <= May record process- or kernel-related data
388 388 * DTRACEACT_PROC <= Only records process-related data
389 389 * DTRACEACT_PROC_DESTRUCTIVE <= Potentially destructive to processes
390 390 * DTRACEACT_KERNEL <= Only records kernel-related data
391 391 * DTRACEACT_KERNEL_DESTRUCTIVE <= Potentially destructive to the kernel
392 392 * DTRACEACT_SPECULATIVE <= Speculation-related action
393 393 * DTRACEACT_AGGREGATION <= Aggregating action
394 394 */
395 395 #define DTRACEACT_NONE 0 /* no action */
396 396 #define DTRACEACT_DIFEXPR 1 /* action is DIF expression */
397 397 #define DTRACEACT_EXIT 2 /* exit() action */
398 398 #define DTRACEACT_PRINTF 3 /* printf() action */
399 399 #define DTRACEACT_PRINTA 4 /* printa() action */
400 400 #define DTRACEACT_LIBACT 5 /* library-controlled action */
401 401 #define DTRACEACT_TRACEMEM 6 /* tracemem() action */
402 402 #define DTRACEACT_TRACEMEM_DYNSIZE 7 /* dynamic tracemem() size */
403 403
404 404 #define DTRACEACT_PROC 0x0100
405 405 #define DTRACEACT_USTACK (DTRACEACT_PROC + 1)
406 406 #define DTRACEACT_JSTACK (DTRACEACT_PROC + 2)
407 407 #define DTRACEACT_USYM (DTRACEACT_PROC + 3)
408 408 #define DTRACEACT_UMOD (DTRACEACT_PROC + 4)
409 409 #define DTRACEACT_UADDR (DTRACEACT_PROC + 5)
410 410
411 411 #define DTRACEACT_PROC_DESTRUCTIVE 0x0200
412 412 #define DTRACEACT_STOP (DTRACEACT_PROC_DESTRUCTIVE + 1)
413 413 #define DTRACEACT_RAISE (DTRACEACT_PROC_DESTRUCTIVE + 2)
414 414 #define DTRACEACT_SYSTEM (DTRACEACT_PROC_DESTRUCTIVE + 3)
415 415 #define DTRACEACT_FREOPEN (DTRACEACT_PROC_DESTRUCTIVE + 4)
416 416
417 417 #define DTRACEACT_PROC_CONTROL 0x0300
418 418
419 419 #define DTRACEACT_KERNEL 0x0400
420 420 #define DTRACEACT_STACK (DTRACEACT_KERNEL + 1)
421 421 #define DTRACEACT_SYM (DTRACEACT_KERNEL + 2)
422 422 #define DTRACEACT_MOD (DTRACEACT_KERNEL + 3)
423 423
424 424 #define DTRACEACT_KERNEL_DESTRUCTIVE 0x0500
425 425 #define DTRACEACT_BREAKPOINT (DTRACEACT_KERNEL_DESTRUCTIVE + 1)
426 426 #define DTRACEACT_PANIC (DTRACEACT_KERNEL_DESTRUCTIVE + 2)
427 427 #define DTRACEACT_CHILL (DTRACEACT_KERNEL_DESTRUCTIVE + 3)
428 428
429 429 #define DTRACEACT_SPECULATIVE 0x0600
430 430 #define DTRACEACT_SPECULATE (DTRACEACT_SPECULATIVE + 1)
431 431 #define DTRACEACT_COMMIT (DTRACEACT_SPECULATIVE + 2)
432 432 #define DTRACEACT_DISCARD (DTRACEACT_SPECULATIVE + 3)
433 433
434 434 #define DTRACEACT_CLASS(x) ((x) & 0xff00)
435 435
436 436 #define DTRACEACT_ISDESTRUCTIVE(x) \
437 437 (DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \
438 438 DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE)
439 439
440 440 #define DTRACEACT_ISSPECULATIVE(x) \
441 441 (DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE)
442 442
443 443 #define DTRACEACT_ISPRINTFLIKE(x) \
444 444 ((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \
445 445 (x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN)
446 446
447 447 /*
448 448 * DTrace Aggregating Actions
449 449 *
450 450 * These are functions f(x) for which the following is true:
451 451 *
452 452 * f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n)
453 453 *
454 454 * where x_n is a set of arbitrary data. Aggregating actions are in their own
455 455 * DTrace action class, DTTRACEACT_AGGREGATION. The macros provided here allow
456 456 * for easier processing of the aggregation argument and data payload for a few
457 457 * aggregating actions (notably: quantize(), lquantize(), and ustack()).
458 458 */
459 459 #define DTRACEACT_AGGREGATION 0x0700
460 460 #define DTRACEAGG_COUNT (DTRACEACT_AGGREGATION + 1)
461 461 #define DTRACEAGG_MIN (DTRACEACT_AGGREGATION + 2)
462 462 #define DTRACEAGG_MAX (DTRACEACT_AGGREGATION + 3)
463 463 #define DTRACEAGG_AVG (DTRACEACT_AGGREGATION + 4)
464 464 #define DTRACEAGG_SUM (DTRACEACT_AGGREGATION + 5)
465 465 #define DTRACEAGG_STDDEV (DTRACEACT_AGGREGATION + 6)
466 466 #define DTRACEAGG_QUANTIZE (DTRACEACT_AGGREGATION + 7)
467 467 #define DTRACEAGG_LQUANTIZE (DTRACEACT_AGGREGATION + 8)
468 468 #define DTRACEAGG_LLQUANTIZE (DTRACEACT_AGGREGATION + 9)
469 469
470 470 #define DTRACEACT_ISAGG(x) \
471 471 (DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION)
472 472
473 473 #define DTRACE_QUANTIZE_NBUCKETS \
474 474 (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1)
475 475
476 476 #define DTRACE_QUANTIZE_ZEROBUCKET ((sizeof (uint64_t) * NBBY) - 1)
477 477
478 478 #define DTRACE_QUANTIZE_BUCKETVAL(buck) \
479 479 (int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ? \
480 480 -(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) : \
481 481 (buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 : \
482 482 1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1))
483 483
484 484 #define DTRACE_LQUANTIZE_STEPSHIFT 48
485 485 #define DTRACE_LQUANTIZE_STEPMASK ((uint64_t)UINT16_MAX << 48)
486 486 #define DTRACE_LQUANTIZE_LEVELSHIFT 32
487 487 #define DTRACE_LQUANTIZE_LEVELMASK ((uint64_t)UINT16_MAX << 32)
488 488 #define DTRACE_LQUANTIZE_BASESHIFT 0
489 489 #define DTRACE_LQUANTIZE_BASEMASK UINT32_MAX
490 490
491 491 #define DTRACE_LQUANTIZE_STEP(x) \
492 492 (uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \
493 493 DTRACE_LQUANTIZE_STEPSHIFT)
494 494
495 495 #define DTRACE_LQUANTIZE_LEVELS(x) \
496 496 (uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \
497 497 DTRACE_LQUANTIZE_LEVELSHIFT)
498 498
499 499 #define DTRACE_LQUANTIZE_BASE(x) \
500 500 (int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \
501 501 DTRACE_LQUANTIZE_BASESHIFT)
502 502
503 503 #define DTRACE_LLQUANTIZE_FACTORSHIFT 48
504 504 #define DTRACE_LLQUANTIZE_FACTORMASK ((uint64_t)UINT16_MAX << 48)
505 505 #define DTRACE_LLQUANTIZE_LOWSHIFT 32
506 506 #define DTRACE_LLQUANTIZE_LOWMASK ((uint64_t)UINT16_MAX << 32)
507 507 #define DTRACE_LLQUANTIZE_HIGHSHIFT 16
508 508 #define DTRACE_LLQUANTIZE_HIGHMASK ((uint64_t)UINT16_MAX << 16)
509 509 #define DTRACE_LLQUANTIZE_NSTEPSHIFT 0
510 510 #define DTRACE_LLQUANTIZE_NSTEPMASK UINT16_MAX
511 511
512 512 #define DTRACE_LLQUANTIZE_FACTOR(x) \
513 513 (uint16_t)(((x) & DTRACE_LLQUANTIZE_FACTORMASK) >> \
514 514 DTRACE_LLQUANTIZE_FACTORSHIFT)
515 515
516 516 #define DTRACE_LLQUANTIZE_LOW(x) \
517 517 (uint16_t)(((x) & DTRACE_LLQUANTIZE_LOWMASK) >> \
518 518 DTRACE_LLQUANTIZE_LOWSHIFT)
519 519
520 520 #define DTRACE_LLQUANTIZE_HIGH(x) \
521 521 (uint16_t)(((x) & DTRACE_LLQUANTIZE_HIGHMASK) >> \
522 522 DTRACE_LLQUANTIZE_HIGHSHIFT)
523 523
524 524 #define DTRACE_LLQUANTIZE_NSTEP(x) \
525 525 (uint16_t)(((x) & DTRACE_LLQUANTIZE_NSTEPMASK) >> \
526 526 DTRACE_LLQUANTIZE_NSTEPSHIFT)
527 527
528 528 #define DTRACE_USTACK_NFRAMES(x) (uint32_t)((x) & UINT32_MAX)
529 529 #define DTRACE_USTACK_STRSIZE(x) (uint32_t)((x) >> 32)
530 530 #define DTRACE_USTACK_ARG(x, y) \
531 531 ((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX))
532 532
533 533 #ifndef _LP64
534 534 #ifndef _LITTLE_ENDIAN
535 535 #define DTRACE_PTR(type, name) uint32_t name##pad; type *name
536 536 #else
537 537 #define DTRACE_PTR(type, name) type *name; uint32_t name##pad
538 538 #endif
539 539 #else
540 540 #define DTRACE_PTR(type, name) type *name
541 541 #endif
542 542
543 543 /*
544 544 * DTrace Object Format (DOF)
545 545 *
546 546 * DTrace programs can be persistently encoded in the DOF format so that they
547 547 * may be embedded in other programs (for example, in an ELF file) or in the
548 548 * dtrace driver configuration file for use in anonymous tracing. The DOF
549 549 * format is versioned and extensible so that it can be revised and so that
550 550 * internal data structures can be modified or extended compatibly. All DOF
551 551 * structures use fixed-size types, so the 32-bit and 64-bit representations
552 552 * are identical and consumers can use either data model transparently.
553 553 *
554 554 * The file layout is structured as follows:
555 555 *
556 556 * +---------------+-------------------+----- ... ----+---- ... ------+
557 557 * | dof_hdr_t | dof_sec_t[ ... ] | loadable | non-loadable |
558 558 * | (file header) | (section headers) | section data | section data |
559 559 * +---------------+-------------------+----- ... ----+---- ... ------+
560 560 * |<------------ dof_hdr.dofh_loadsz --------------->| |
561 561 * |<------------ dof_hdr.dofh_filesz ------------------------------->|
562 562 *
563 563 * The file header stores meta-data including a magic number, data model for
564 564 * the instrumentation, data encoding, and properties of the DIF code within.
565 565 * The header describes its own size and the size of the section headers. By
566 566 * convention, an array of section headers follows the file header, and then
567 567 * the data for all loadable sections and unloadable sections. This permits
568 568 * consumer code to easily download the headers and all loadable data into the
569 569 * DTrace driver in one contiguous chunk, omitting other extraneous sections.
570 570 *
571 571 * The section headers describe the size, offset, alignment, and section type
572 572 * for each section. Sections are described using a set of #defines that tell
573 573 * the consumer what kind of data is expected. Sections can contain links to
574 574 * other sections by storing a dof_secidx_t, an index into the section header
575 575 * array, inside of the section data structures. The section header includes
576 576 * an entry size so that sections with data arrays can grow their structures.
577 577 *
578 578 * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which
579 579 * are represented themselves as a collection of related DOF sections. This
580 580 * permits us to change the set of sections associated with a DIFO over time,
581 581 * and also permits us to encode DIFOs that contain different sets of sections.
582 582 * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a
583 583 * section of type DOF_SECT_DIFOHDR. This section's data is then an array of
584 584 * dof_secidx_t's which in turn denote the sections associated with this DIFO.
585 585 *
586 586 * This loose coupling of the file structure (header and sections) to the
587 587 * structure of the DTrace program itself (ECB descriptions, action
588 588 * descriptions, and DIFOs) permits activities such as relocation processing
589 589 * to occur in a single pass without having to understand D program structure.
590 590 *
591 591 * Finally, strings are always stored in ELF-style string tables along with a
592 592 * string table section index and string table offset. Therefore strings in
593 593 * DOF are always arbitrary-length and not bound to the current implementation.
594 594 */
595 595
596 596 #define DOF_ID_SIZE 16 /* total size of dofh_ident[] in bytes */
597 597
598 598 typedef struct dof_hdr {
599 599 uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */
600 600 uint32_t dofh_flags; /* file attribute flags (if any) */
601 601 uint32_t dofh_hdrsize; /* size of file header in bytes */
602 602 uint32_t dofh_secsize; /* size of section header in bytes */
603 603 uint32_t dofh_secnum; /* number of section headers */
604 604 uint64_t dofh_secoff; /* file offset of section headers */
605 605 uint64_t dofh_loadsz; /* file size of loadable portion */
606 606 uint64_t dofh_filesz; /* file size of entire DOF file */
607 607 uint64_t dofh_pad; /* reserved for future use */
608 608 } dof_hdr_t;
609 609
610 610 #define DOF_ID_MAG0 0 /* first byte of magic number */
611 611 #define DOF_ID_MAG1 1 /* second byte of magic number */
612 612 #define DOF_ID_MAG2 2 /* third byte of magic number */
613 613 #define DOF_ID_MAG3 3 /* fourth byte of magic number */
614 614 #define DOF_ID_MODEL 4 /* DOF data model (see below) */
615 615 #define DOF_ID_ENCODING 5 /* DOF data encoding (see below) */
616 616 #define DOF_ID_VERSION 6 /* DOF file format major version (see below) */
617 617 #define DOF_ID_DIFVERS 7 /* DIF instruction set version */
618 618 #define DOF_ID_DIFIREG 8 /* DIF integer registers used by compiler */
619 619 #define DOF_ID_DIFTREG 9 /* DIF tuple registers used by compiler */
620 620 #define DOF_ID_PAD 10 /* start of padding bytes (all zeroes) */
621 621
622 622 #define DOF_MAG_MAG0 0x7F /* DOF_ID_MAG[0-3] */
623 623 #define DOF_MAG_MAG1 'D'
624 624 #define DOF_MAG_MAG2 'O'
625 625 #define DOF_MAG_MAG3 'F'
626 626
627 627 #define DOF_MAG_STRING "\177DOF"
628 628 #define DOF_MAG_STRLEN 4
629 629
630 630 #define DOF_MODEL_NONE 0 /* DOF_ID_MODEL */
631 631 #define DOF_MODEL_ILP32 1
632 632 #define DOF_MODEL_LP64 2
633 633
634 634 #ifdef _LP64
635 635 #define DOF_MODEL_NATIVE DOF_MODEL_LP64
636 636 #else
637 637 #define DOF_MODEL_NATIVE DOF_MODEL_ILP32
638 638 #endif
639 639
640 640 #define DOF_ENCODE_NONE 0 /* DOF_ID_ENCODING */
641 641 #define DOF_ENCODE_LSB 1
642 642 #define DOF_ENCODE_MSB 2
643 643
644 644 #ifdef _BIG_ENDIAN
645 645 #define DOF_ENCODE_NATIVE DOF_ENCODE_MSB
646 646 #else
647 647 #define DOF_ENCODE_NATIVE DOF_ENCODE_LSB
648 648 #endif
649 649
650 650 #define DOF_VERSION_1 1 /* DOF version 1: Solaris 10 FCS */
651 651 #define DOF_VERSION_2 2 /* DOF version 2: Solaris Express 6/06 */
652 652 #define DOF_VERSION DOF_VERSION_2 /* Latest DOF version */
653 653
654 654 #define DOF_FL_VALID 0 /* mask of all valid dofh_flags bits */
655 655
656 656 typedef uint32_t dof_secidx_t; /* section header table index type */
657 657 typedef uint32_t dof_stridx_t; /* string table index type */
658 658
659 659 #define DOF_SECIDX_NONE (-1U) /* null value for section indices */
660 660 #define DOF_STRIDX_NONE (-1U) /* null value for string indices */
661 661
662 662 typedef struct dof_sec {
663 663 uint32_t dofs_type; /* section type (see below) */
664 664 uint32_t dofs_align; /* section data memory alignment */
665 665 uint32_t dofs_flags; /* section flags (if any) */
666 666 uint32_t dofs_entsize; /* size of section entry (if table) */
667 667 uint64_t dofs_offset; /* offset of section data within file */
668 668 uint64_t dofs_size; /* size of section data in bytes */
669 669 } dof_sec_t;
670 670
671 671 #define DOF_SECT_NONE 0 /* null section */
672 672 #define DOF_SECT_COMMENTS 1 /* compiler comments */
673 673 #define DOF_SECT_SOURCE 2 /* D program source code */
674 674 #define DOF_SECT_ECBDESC 3 /* dof_ecbdesc_t */
675 675 #define DOF_SECT_PROBEDESC 4 /* dof_probedesc_t */
676 676 #define DOF_SECT_ACTDESC 5 /* dof_actdesc_t array */
677 677 #define DOF_SECT_DIFOHDR 6 /* dof_difohdr_t (variable length) */
678 678 #define DOF_SECT_DIF 7 /* uint32_t array of byte code */
679 679 #define DOF_SECT_STRTAB 8 /* string table */
680 680 #define DOF_SECT_VARTAB 9 /* dtrace_difv_t array */
681 681 #define DOF_SECT_RELTAB 10 /* dof_relodesc_t array */
682 682 #define DOF_SECT_TYPTAB 11 /* dtrace_diftype_t array */
683 683 #define DOF_SECT_URELHDR 12 /* dof_relohdr_t (user relocations) */
684 684 #define DOF_SECT_KRELHDR 13 /* dof_relohdr_t (kernel relocations) */
685 685 #define DOF_SECT_OPTDESC 14 /* dof_optdesc_t array */
686 686 #define DOF_SECT_PROVIDER 15 /* dof_provider_t */
687 687 #define DOF_SECT_PROBES 16 /* dof_probe_t array */
688 688 #define DOF_SECT_PRARGS 17 /* uint8_t array (probe arg mappings) */
689 689 #define DOF_SECT_PROFFS 18 /* uint32_t array (probe arg offsets) */
690 690 #define DOF_SECT_INTTAB 19 /* uint64_t array */
691 691 #define DOF_SECT_UTSNAME 20 /* struct utsname */
692 692 #define DOF_SECT_XLTAB 21 /* dof_xlref_t array */
693 693 #define DOF_SECT_XLMEMBERS 22 /* dof_xlmember_t array */
694 694 #define DOF_SECT_XLIMPORT 23 /* dof_xlator_t */
695 695 #define DOF_SECT_XLEXPORT 24 /* dof_xlator_t */
696 696 #define DOF_SECT_PREXPORT 25 /* dof_secidx_t array (exported objs) */
697 697 #define DOF_SECT_PRENOFFS 26 /* uint32_t array (enabled offsets) */
698 698
699 699 #define DOF_SECF_LOAD 1 /* section should be loaded */
700 700
701 701 #define DOF_SEC_ISLOADABLE(x) \
702 702 (((x) == DOF_SECT_ECBDESC) || ((x) == DOF_SECT_PROBEDESC) || \
703 703 ((x) == DOF_SECT_ACTDESC) || ((x) == DOF_SECT_DIFOHDR) || \
704 704 ((x) == DOF_SECT_DIF) || ((x) == DOF_SECT_STRTAB) || \
705 705 ((x) == DOF_SECT_VARTAB) || ((x) == DOF_SECT_RELTAB) || \
706 706 ((x) == DOF_SECT_TYPTAB) || ((x) == DOF_SECT_URELHDR) || \
707 707 ((x) == DOF_SECT_KRELHDR) || ((x) == DOF_SECT_OPTDESC) || \
708 708 ((x) == DOF_SECT_PROVIDER) || ((x) == DOF_SECT_PROBES) || \
709 709 ((x) == DOF_SECT_PRARGS) || ((x) == DOF_SECT_PROFFS) || \
710 710 ((x) == DOF_SECT_INTTAB) || ((x) == DOF_SECT_XLTAB) || \
711 711 ((x) == DOF_SECT_XLMEMBERS) || ((x) == DOF_SECT_XLIMPORT) || \
712 712 ((x) == DOF_SECT_XLIMPORT) || ((x) == DOF_SECT_XLEXPORT) || \
713 713 ((x) == DOF_SECT_PREXPORT) || ((x) == DOF_SECT_PRENOFFS))
714 714
715 715 typedef struct dof_ecbdesc {
716 716 dof_secidx_t dofe_probes; /* link to DOF_SECT_PROBEDESC */
717 717 dof_secidx_t dofe_pred; /* link to DOF_SECT_DIFOHDR */
718 718 dof_secidx_t dofe_actions; /* link to DOF_SECT_ACTDESC */
719 719 uint32_t dofe_pad; /* reserved for future use */
720 720 uint64_t dofe_uarg; /* user-supplied library argument */
721 721 } dof_ecbdesc_t;
722 722
723 723 typedef struct dof_probedesc {
724 724 dof_secidx_t dofp_strtab; /* link to DOF_SECT_STRTAB section */
725 725 dof_stridx_t dofp_provider; /* provider string */
726 726 dof_stridx_t dofp_mod; /* module string */
727 727 dof_stridx_t dofp_func; /* function string */
728 728 dof_stridx_t dofp_name; /* name string */
729 729 uint32_t dofp_id; /* probe identifier (or zero) */
730 730 } dof_probedesc_t;
731 731
732 732 typedef struct dof_actdesc {
733 733 dof_secidx_t dofa_difo; /* link to DOF_SECT_DIFOHDR */
734 734 dof_secidx_t dofa_strtab; /* link to DOF_SECT_STRTAB section */
735 735 uint32_t dofa_kind; /* action kind (DTRACEACT_* constant) */
736 736 uint32_t dofa_ntuple; /* number of subsequent tuple actions */
737 737 uint64_t dofa_arg; /* kind-specific argument */
738 738 uint64_t dofa_uarg; /* user-supplied argument */
739 739 } dof_actdesc_t;
740 740
741 741 typedef struct dof_difohdr {
742 742 dtrace_diftype_t dofd_rtype; /* return type for this fragment */
743 743 dof_secidx_t dofd_links[1]; /* variable length array of indices */
744 744 } dof_difohdr_t;
745 745
746 746 typedef struct dof_relohdr {
747 747 dof_secidx_t dofr_strtab; /* link to DOF_SECT_STRTAB for names */
748 748 dof_secidx_t dofr_relsec; /* link to DOF_SECT_RELTAB for relos */
749 749 dof_secidx_t dofr_tgtsec; /* link to section we are relocating */
750 750 } dof_relohdr_t;
751 751
752 752 typedef struct dof_relodesc {
753 753 dof_stridx_t dofr_name; /* string name of relocation symbol */
754 754 uint32_t dofr_type; /* relo type (DOF_RELO_* constant) */
755 755 uint64_t dofr_offset; /* byte offset for relocation */
756 756 uint64_t dofr_data; /* additional type-specific data */
757 757 } dof_relodesc_t;
758 758
759 759 #define DOF_RELO_NONE 0 /* empty relocation entry */
760 760 #define DOF_RELO_SETX 1 /* relocate setx value */
761 761
762 762 typedef struct dof_optdesc {
763 763 uint32_t dofo_option; /* option identifier */
764 764 dof_secidx_t dofo_strtab; /* string table, if string option */
765 765 uint64_t dofo_value; /* option value or string index */
766 766 } dof_optdesc_t;
767 767
768 768 typedef uint32_t dof_attr_t; /* encoded stability attributes */
769 769
770 770 #define DOF_ATTR(n, d, c) (((n) << 24) | ((d) << 16) | ((c) << 8))
771 771 #define DOF_ATTR_NAME(a) (((a) >> 24) & 0xff)
772 772 #define DOF_ATTR_DATA(a) (((a) >> 16) & 0xff)
773 773 #define DOF_ATTR_CLASS(a) (((a) >> 8) & 0xff)
774 774
775 775 typedef struct dof_provider {
776 776 dof_secidx_t dofpv_strtab; /* link to DOF_SECT_STRTAB section */
777 777 dof_secidx_t dofpv_probes; /* link to DOF_SECT_PROBES section */
778 778 dof_secidx_t dofpv_prargs; /* link to DOF_SECT_PRARGS section */
779 779 dof_secidx_t dofpv_proffs; /* link to DOF_SECT_PROFFS section */
780 780 dof_stridx_t dofpv_name; /* provider name string */
781 781 dof_attr_t dofpv_provattr; /* provider attributes */
782 782 dof_attr_t dofpv_modattr; /* module attributes */
783 783 dof_attr_t dofpv_funcattr; /* function attributes */
784 784 dof_attr_t dofpv_nameattr; /* name attributes */
785 785 dof_attr_t dofpv_argsattr; /* args attributes */
786 786 dof_secidx_t dofpv_prenoffs; /* link to DOF_SECT_PRENOFFS section */
787 787 } dof_provider_t;
788 788
789 789 typedef struct dof_probe {
790 790 uint64_t dofpr_addr; /* probe base address or offset */
791 791 dof_stridx_t dofpr_func; /* probe function string */
792 792 dof_stridx_t dofpr_name; /* probe name string */
793 793 dof_stridx_t dofpr_nargv; /* native argument type strings */
794 794 dof_stridx_t dofpr_xargv; /* translated argument type strings */
795 795 uint32_t dofpr_argidx; /* index of first argument mapping */
796 796 uint32_t dofpr_offidx; /* index of first offset entry */
797 797 uint8_t dofpr_nargc; /* native argument count */
798 798 uint8_t dofpr_xargc; /* translated argument count */
799 799 uint16_t dofpr_noffs; /* number of offset entries for probe */
800 800 uint32_t dofpr_enoffidx; /* index of first is-enabled offset */
801 801 uint16_t dofpr_nenoffs; /* number of is-enabled offsets */
802 802 uint16_t dofpr_pad1; /* reserved for future use */
803 803 uint32_t dofpr_pad2; /* reserved for future use */
804 804 } dof_probe_t;
805 805
806 806 typedef struct dof_xlator {
807 807 dof_secidx_t dofxl_members; /* link to DOF_SECT_XLMEMBERS section */
808 808 dof_secidx_t dofxl_strtab; /* link to DOF_SECT_STRTAB section */
809 809 dof_stridx_t dofxl_argv; /* input parameter type strings */
810 810 uint32_t dofxl_argc; /* input parameter list length */
811 811 dof_stridx_t dofxl_type; /* output type string name */
812 812 dof_attr_t dofxl_attr; /* output stability attributes */
813 813 } dof_xlator_t;
814 814
815 815 typedef struct dof_xlmember {
816 816 dof_secidx_t dofxm_difo; /* member link to DOF_SECT_DIFOHDR */
817 817 dof_stridx_t dofxm_name; /* member name */
818 818 dtrace_diftype_t dofxm_type; /* member type */
819 819 } dof_xlmember_t;
820 820
821 821 typedef struct dof_xlref {
822 822 dof_secidx_t dofxr_xlator; /* link to DOF_SECT_XLATORS section */
823 823 uint32_t dofxr_member; /* index of referenced dof_xlmember */
824 824 uint32_t dofxr_argn; /* index of argument for DIF_OP_XLARG */
825 825 } dof_xlref_t;
826 826
827 827 /*
828 828 * DTrace Intermediate Format Object (DIFO)
829 829 *
830 830 * A DIFO is used to store the compiled DIF for a D expression, its return
831 831 * type, and its string and variable tables. The string table is a single
832 832 * buffer of character data into which sets instructions and variable
833 833 * references can reference strings using a byte offset. The variable table
834 834 * is an array of dtrace_difv_t structures that describe the name and type of
835 835 * each variable and the id used in the DIF code. This structure is described
836 836 * above in the DIF section of this header file. The DIFO is used at both
837 837 * user-level (in the library) and in the kernel, but the structure is never
838 838 * passed between the two: the DOF structures form the only interface. As a
839 839 * result, the definition can change depending on the presence of _KERNEL.
840 840 */
841 841 typedef struct dtrace_difo {
842 842 dif_instr_t *dtdo_buf; /* instruction buffer */
843 843 uint64_t *dtdo_inttab; /* integer table (optional) */
844 844 char *dtdo_strtab; /* string table (optional) */
845 845 dtrace_difv_t *dtdo_vartab; /* variable table (optional) */
846 846 uint_t dtdo_len; /* length of instruction buffer */
847 847 uint_t dtdo_intlen; /* length of integer table */
848 848 uint_t dtdo_strlen; /* length of string table */
849 849 uint_t dtdo_varlen; /* length of variable table */
850 850 dtrace_diftype_t dtdo_rtype; /* return type */
851 851 uint_t dtdo_refcnt; /* owner reference count */
852 852 uint_t dtdo_destructive; /* invokes destructive subroutines */
853 853 #ifndef _KERNEL
854 854 dof_relodesc_t *dtdo_kreltab; /* kernel relocations */
855 855 dof_relodesc_t *dtdo_ureltab; /* user relocations */
856 856 struct dt_node **dtdo_xlmtab; /* translator references */
857 857 uint_t dtdo_krelen; /* length of krelo table */
858 858 uint_t dtdo_urelen; /* length of urelo table */
859 859 uint_t dtdo_xlmlen; /* length of translator table */
860 860 #endif
861 861 } dtrace_difo_t;
862 862
863 863 /*
864 864 * DTrace Enabling Description Structures
865 865 *
866 866 * When DTrace is tracking the description of a DTrace enabling entity (probe,
867 867 * predicate, action, ECB, record, etc.), it does so in a description
868 868 * structure. These structures all end in "desc", and are used at both
869 869 * user-level and in the kernel -- but (with the exception of
870 870 * dtrace_probedesc_t) they are never passed between them. Typically,
871 871 * user-level will use the description structures when assembling an enabling.
872 872 * It will then distill those description structures into a DOF object (see
873 873 * above), and send it into the kernel. The kernel will again use the
874 874 * description structures to create a description of the enabling as it reads
875 875 * the DOF. When the description is complete, the enabling will be actually
876 876 * created -- turning it into the structures that represent the enabling
877 877 * instead of merely describing it. Not surprisingly, the description
878 878 * structures bear a strong resemblance to the DOF structures that act as their
879 879 * conduit.
880 880 */
881 881 struct dtrace_predicate;
882 882
883 883 typedef struct dtrace_probedesc {
884 884 dtrace_id_t dtpd_id; /* probe identifier */
885 885 char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */
886 886 char dtpd_mod[DTRACE_MODNAMELEN]; /* probe module name */
887 887 char dtpd_func[DTRACE_FUNCNAMELEN]; /* probe function name */
888 888 char dtpd_name[DTRACE_NAMELEN]; /* probe name */
889 889 } dtrace_probedesc_t;
890 890
891 891 typedef struct dtrace_repldesc {
892 892 dtrace_probedesc_t dtrpd_match; /* probe descr. to match */
893 893 dtrace_probedesc_t dtrpd_create; /* probe descr. to create */
894 894 } dtrace_repldesc_t;
895 895
896 896 typedef struct dtrace_preddesc {
897 897 dtrace_difo_t *dtpdd_difo; /* pointer to DIF object */
898 898 struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */
899 899 } dtrace_preddesc_t;
900 900
901 901 typedef struct dtrace_actdesc {
902 902 dtrace_difo_t *dtad_difo; /* pointer to DIF object */
903 903 struct dtrace_actdesc *dtad_next; /* next action */
904 904 dtrace_actkind_t dtad_kind; /* kind of action */
905 905 uint32_t dtad_ntuple; /* number in tuple */
906 906 uint64_t dtad_arg; /* action argument */
907 907 uint64_t dtad_uarg; /* user argument */
908 908 int dtad_refcnt; /* reference count */
909 909 } dtrace_actdesc_t;
910 910
911 911 typedef struct dtrace_ecbdesc {
912 912 dtrace_actdesc_t *dted_action; /* action description(s) */
913 913 dtrace_preddesc_t dted_pred; /* predicate description */
914 914 dtrace_probedesc_t dted_probe; /* probe description */
915 915 uint64_t dted_uarg; /* library argument */
916 916 int dted_refcnt; /* reference count */
917 917 } dtrace_ecbdesc_t;
918 918
919 919 /*
920 920 * DTrace Metadata Description Structures
921 921 *
922 922 * DTrace separates the trace data stream from the metadata stream. The only
923 923 * metadata tokens placed in the data stream are enabled probe identifiers
924 924 * (EPIDs) or (in the case of aggregations) aggregation identifiers. In order
925 925 * to determine the structure of the data, DTrace consumers pass the token to
926 926 * the kernel, and receive in return a corresponding description of the enabled
927 927 * probe (via the dtrace_eprobedesc structure) or the aggregation (via the
928 928 * dtrace_aggdesc structure). Both of these structures are expressed in terms
929 929 * of record descriptions (via the dtrace_recdesc structure) that describe the
930 930 * exact structure of the data. Some record descriptions may also contain a
931 931 * format identifier; this additional bit of metadata can be retrieved from the
932 932 * kernel, for which a format description is returned via the dtrace_fmtdesc
933 933 * structure. Note that all four of these structures must be bitness-neutral
934 934 * to allow for a 32-bit DTrace consumer on a 64-bit kernel.
935 935 */
936 936 typedef struct dtrace_recdesc {
937 937 dtrace_actkind_t dtrd_action; /* kind of action */
938 938 uint32_t dtrd_size; /* size of record */
939 939 uint32_t dtrd_offset; /* offset in ECB's data */
940 940 uint16_t dtrd_alignment; /* required alignment */
941 941 uint16_t dtrd_format; /* format, if any */
942 942 uint64_t dtrd_arg; /* action argument */
943 943 uint64_t dtrd_uarg; /* user argument */
944 944 } dtrace_recdesc_t;
945 945
946 946 typedef struct dtrace_eprobedesc {
947 947 dtrace_epid_t dtepd_epid; /* enabled probe ID */
948 948 dtrace_id_t dtepd_probeid; /* probe ID */
949 949 uint64_t dtepd_uarg; /* library argument */
950 950 uint32_t dtepd_size; /* total size */
951 951 int dtepd_nrecs; /* number of records */
952 952 dtrace_recdesc_t dtepd_rec[1]; /* records themselves */
953 953 } dtrace_eprobedesc_t;
954 954
955 955 typedef struct dtrace_aggdesc {
956 956 DTRACE_PTR(char, dtagd_name); /* not filled in by kernel */
957 957 dtrace_aggvarid_t dtagd_varid; /* not filled in by kernel */
958 958 int dtagd_flags; /* not filled in by kernel */
959 959 dtrace_aggid_t dtagd_id; /* aggregation ID */
960 960 dtrace_epid_t dtagd_epid; /* enabled probe ID */
961 961 uint32_t dtagd_size; /* size in bytes */
962 962 int dtagd_nrecs; /* number of records */
963 963 uint32_t dtagd_pad; /* explicit padding */
964 964 dtrace_recdesc_t dtagd_rec[1]; /* record descriptions */
965 965 } dtrace_aggdesc_t;
966 966
967 967 typedef struct dtrace_fmtdesc {
968 968 DTRACE_PTR(char, dtfd_string); /* format string */
969 969 int dtfd_length; /* length of format string */
970 970 uint16_t dtfd_format; /* format identifier */
971 971 } dtrace_fmtdesc_t;
972 972
973 973 #define DTRACE_SIZEOF_EPROBEDESC(desc) \
974 974 (sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ? \
975 975 (((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
976 976
977 977 #define DTRACE_SIZEOF_AGGDESC(desc) \
978 978 (sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ? \
979 979 (((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
980 980
981 981 /*
982 982 * DTrace Option Interface
983 983 *
984 984 * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections
985 985 * in a DOF image. The dof_optdesc structure contains an option identifier and
986 986 * an option value. The valid option identifiers are found below; the mapping
987 987 * between option identifiers and option identifying strings is maintained at
988 988 * user-level. Note that the value of DTRACEOPT_UNSET is such that all of the
989 989 * following are potentially valid option values: all positive integers, zero
990 990 * and negative one. Some options (notably "bufpolicy" and "bufresize") take
991 991 * predefined tokens as their values; these are defined with
992 992 * DTRACEOPT_{option}_{token}.
993 993 */
994 994 #define DTRACEOPT_BUFSIZE 0 /* buffer size */
995 995 #define DTRACEOPT_BUFPOLICY 1 /* buffer policy */
996 996 #define DTRACEOPT_DYNVARSIZE 2 /* dynamic variable size */
997 997 #define DTRACEOPT_AGGSIZE 3 /* aggregation size */
998 998 #define DTRACEOPT_SPECSIZE 4 /* speculation size */
999 999 #define DTRACEOPT_NSPEC 5 /* number of speculations */
1000 1000 #define DTRACEOPT_STRSIZE 6 /* string size */
1001 1001 #define DTRACEOPT_CLEANRATE 7 /* dynvar cleaning rate */
1002 1002 #define DTRACEOPT_CPU 8 /* CPU to trace */
1003 1003 #define DTRACEOPT_BUFRESIZE 9 /* buffer resizing policy */
1004 1004 #define DTRACEOPT_GRABANON 10 /* grab anonymous state, if any */
1005 1005 #define DTRACEOPT_FLOWINDENT 11 /* indent function entry/return */
1006 1006 #define DTRACEOPT_QUIET 12 /* only output explicitly traced data */
1007 1007 #define DTRACEOPT_STACKFRAMES 13 /* number of stack frames */
1008 1008 #define DTRACEOPT_USTACKFRAMES 14 /* number of user stack frames */
1009 1009 #define DTRACEOPT_AGGRATE 15 /* aggregation snapshot rate */
1010 1010 #define DTRACEOPT_SWITCHRATE 16 /* buffer switching rate */
1011 1011 #define DTRACEOPT_STATUSRATE 17 /* status rate */
1012 1012 #define DTRACEOPT_DESTRUCTIVE 18 /* destructive actions allowed */
1013 1013 #define DTRACEOPT_STACKINDENT 19 /* output indent for stack traces */
1014 1014 #define DTRACEOPT_RAWBYTES 20 /* always print bytes in raw form */
1015 1015 #define DTRACEOPT_JSTACKFRAMES 21 /* number of jstack() frames */
1016 1016 #define DTRACEOPT_JSTACKSTRSIZE 22 /* size of jstack() string table */
1017 1017 #define DTRACEOPT_AGGSORTKEY 23 /* sort aggregations by key */
1018 1018 #define DTRACEOPT_AGGSORTREV 24 /* reverse-sort aggregations */
1019 1019 #define DTRACEOPT_AGGSORTPOS 25 /* agg. position to sort on */
1020 1020 #define DTRACEOPT_AGGSORTKEYPOS 26 /* agg. key position to sort on */
1021 1021 #define DTRACEOPT_MAX 27 /* number of options */
1022 1022
1023 1023 #define DTRACEOPT_UNSET (dtrace_optval_t)-2 /* unset option */
1024 1024
1025 1025 #define DTRACEOPT_BUFPOLICY_RING 0 /* ring buffer */
1026 1026 #define DTRACEOPT_BUFPOLICY_FILL 1 /* fill buffer, then stop */
1027 1027 #define DTRACEOPT_BUFPOLICY_SWITCH 2 /* switch buffers */
1028 1028
1029 1029 #define DTRACEOPT_BUFRESIZE_AUTO 0 /* automatic resizing */
1030 1030 #define DTRACEOPT_BUFRESIZE_MANUAL 1 /* manual resizing */
1031 1031
1032 1032 /*
1033 1033 * DTrace Buffer Interface
1034 1034 *
1035 1035 * In order to get a snapshot of the principal or aggregation buffer,
1036 1036 * user-level passes a buffer description to the kernel with the dtrace_bufdesc
1037 1037 * structure. This describes which CPU user-level is interested in, and
1038 1038 * where user-level wishes the kernel to snapshot the buffer to (the
1039 1039 * dtbd_data field). The kernel uses the same structure to pass back some
1040 1040 * information regarding the buffer: the size of data actually copied out, the
1041 1041 * number of drops, the number of errors, and the offset of the oldest record.
1042 1042 * If the buffer policy is a "switch" policy, taking a snapshot of the
1043 1043 * principal buffer has the additional effect of switching the active and
1044 1044 * inactive buffers. Taking a snapshot of the aggregation buffer _always_ has
1045 1045 * the additional effect of switching the active and inactive buffers.
1046 1046 */
1047 1047 typedef struct dtrace_bufdesc {
1048 1048 uint64_t dtbd_size; /* size of buffer */
1049 1049 uint32_t dtbd_cpu; /* CPU or DTRACE_CPUALL */
1050 1050 uint32_t dtbd_errors; /* number of errors */
1051 1051 uint64_t dtbd_drops; /* number of drops */
1052 1052 DTRACE_PTR(char, dtbd_data); /* data */
1053 1053 uint64_t dtbd_oldest; /* offset of oldest record */
1054 1054 } dtrace_bufdesc_t;
1055 1055
1056 1056 /*
1057 1057 * DTrace Status
1058 1058 *
1059 1059 * The status of DTrace is relayed via the dtrace_status structure. This
1060 1060 * structure contains members to count drops other than the capacity drops
1061 1061 * available via the buffer interface (see above). This consists of dynamic
1062 1062 * drops (including capacity dynamic drops, rinsing drops and dirty drops), and
1063 1063 * speculative drops (including capacity speculative drops, drops due to busy
1064 1064 * speculative buffers and drops due to unavailable speculative buffers).
1065 1065 * Additionally, the status structure contains a field to indicate the number
1066 1066 * of "fill"-policy buffers have been filled and a boolean field to indicate
1067 1067 * that exit() has been called. If the dtst_exiting field is non-zero, no
1068 1068 * further data will be generated until tracing is stopped (at which time any
1069 1069 * enablings of the END action will be processed); if user-level sees that
1070 1070 * this field is non-zero, tracing should be stopped as soon as possible.
1071 1071 */
1072 1072 typedef struct dtrace_status {
1073 1073 uint64_t dtst_dyndrops; /* dynamic drops */
1074 1074 uint64_t dtst_dyndrops_rinsing; /* dyn drops due to rinsing */
1075 1075 uint64_t dtst_dyndrops_dirty; /* dyn drops due to dirty */
1076 1076 uint64_t dtst_specdrops; /* speculative drops */
1077 1077 uint64_t dtst_specdrops_busy; /* spec drops due to busy */
1078 1078 uint64_t dtst_specdrops_unavail; /* spec drops due to unavail */
1079 1079 uint64_t dtst_errors; /* total errors */
1080 1080 uint64_t dtst_filled; /* number of filled bufs */
1081 1081 uint64_t dtst_stkstroverflows; /* stack string tab overflows */
1082 1082 uint64_t dtst_dblerrors; /* errors in ERROR probes */
1083 1083 char dtst_killed; /* non-zero if killed */
1084 1084 char dtst_exiting; /* non-zero if exit() called */
1085 1085 char dtst_pad[6]; /* pad out to 64-bit align */
1086 1086 } dtrace_status_t;
1087 1087
1088 1088 /*
1089 1089 * DTrace Configuration
1090 1090 *
1091 1091 * User-level may need to understand some elements of the kernel DTrace
1092 1092 * configuration in order to generate correct DIF. This information is
1093 1093 * conveyed via the dtrace_conf structure.
1094 1094 */
1095 1095 typedef struct dtrace_conf {
1096 1096 uint_t dtc_difversion; /* supported DIF version */
1097 1097 uint_t dtc_difintregs; /* # of DIF integer registers */
1098 1098 uint_t dtc_diftupregs; /* # of DIF tuple registers */
1099 1099 uint_t dtc_ctfmodel; /* CTF data model */
1100 1100 uint_t dtc_pad[8]; /* reserved for future use */
1101 1101 } dtrace_conf_t;
1102 1102
1103 1103 /*
1104 1104 * DTrace Faults
1105 1105 *
1106 1106 * The constants below DTRACEFLT_LIBRARY indicate probe processing faults;
1107 1107 * constants at or above DTRACEFLT_LIBRARY indicate faults in probe
1108 1108 * postprocessing at user-level. Probe processing faults induce an ERROR
1109 1109 * probe and are replicated in unistd.d to allow users' ERROR probes to decode
1110 1110 * the error condition using thse symbolic labels.
1111 1111 */
1112 1112 #define DTRACEFLT_UNKNOWN 0 /* Unknown fault */
1113 1113 #define DTRACEFLT_BADADDR 1 /* Bad address */
1114 1114 #define DTRACEFLT_BADALIGN 2 /* Bad alignment */
1115 1115 #define DTRACEFLT_ILLOP 3 /* Illegal operation */
1116 1116 #define DTRACEFLT_DIVZERO 4 /* Divide-by-zero */
1117 1117 #define DTRACEFLT_NOSCRATCH 5 /* Out of scratch space */
1118 1118 #define DTRACEFLT_KPRIV 6 /* Illegal kernel access */
1119 1119 #define DTRACEFLT_UPRIV 7 /* Illegal user access */
1120 1120 #define DTRACEFLT_TUPOFLOW 8 /* Tuple stack overflow */
1121 1121 #define DTRACEFLT_BADSTACK 9 /* Bad stack */
1122 1122
1123 1123 #define DTRACEFLT_LIBRARY 1000 /* Library-level fault */
1124 1124
1125 1125 /*
1126 1126 * DTrace Argument Types
1127 1127 *
1128 1128 * Because it would waste both space and time, argument types do not reside
1129 1129 * with the probe. In order to determine argument types for args[X]
1130 1130 * variables, the D compiler queries for argument types on a probe-by-probe
1131 1131 * basis. (This optimizes for the common case that arguments are either not
1132 1132 * used or used in an untyped fashion.) Typed arguments are specified with a
1133 1133 * string of the type name in the dtragd_native member of the argument
1134 1134 * description structure. Typed arguments may be further translated to types
1135 1135 * of greater stability; the provider indicates such a translated argument by
1136 1136 * filling in the dtargd_xlate member with the string of the translated type.
1137 1137 * Finally, the provider may indicate which argument value a given argument
1138 1138 * maps to by setting the dtargd_mapping member -- allowing a single argument
1139 1139 * to map to multiple args[X] variables.
1140 1140 */
1141 1141 typedef struct dtrace_argdesc {
1142 1142 dtrace_id_t dtargd_id; /* probe identifier */
1143 1143 int dtargd_ndx; /* arg number (-1 iff none) */
1144 1144 int dtargd_mapping; /* value mapping */
1145 1145 char dtargd_native[DTRACE_ARGTYPELEN]; /* native type name */
1146 1146 char dtargd_xlate[DTRACE_ARGTYPELEN]; /* translated type name */
1147 1147 } dtrace_argdesc_t;
1148 1148
1149 1149 /*
1150 1150 * DTrace Stability Attributes
1151 1151 *
1152 1152 * Each DTrace provider advertises the name and data stability of each of its
1153 1153 * probe description components, as well as its architectural dependencies.
1154 1154 * The D compiler can query the provider attributes (dtrace_pattr_t below) in
1155 1155 * order to compute the properties of an input program and report them.
1156 1156 */
1157 1157 typedef uint8_t dtrace_stability_t; /* stability code (see attributes(5)) */
1158 1158 typedef uint8_t dtrace_class_t; /* architectural dependency class */
1159 1159
1160 1160 #define DTRACE_STABILITY_INTERNAL 0 /* private to DTrace itself */
1161 1161 #define DTRACE_STABILITY_PRIVATE 1 /* private to Sun (see docs) */
1162 1162 #define DTRACE_STABILITY_OBSOLETE 2 /* scheduled for removal */
1163 1163 #define DTRACE_STABILITY_EXTERNAL 3 /* not controlled by Sun */
1164 1164 #define DTRACE_STABILITY_UNSTABLE 4 /* new or rapidly changing */
1165 1165 #define DTRACE_STABILITY_EVOLVING 5 /* less rapidly changing */
1166 1166 #define DTRACE_STABILITY_STABLE 6 /* mature interface from Sun */
1167 1167 #define DTRACE_STABILITY_STANDARD 7 /* industry standard */
1168 1168 #define DTRACE_STABILITY_MAX 7 /* maximum valid stability */
1169 1169
1170 1170 #define DTRACE_CLASS_UNKNOWN 0 /* unknown architectural dependency */
1171 1171 #define DTRACE_CLASS_CPU 1 /* CPU-module-specific */
1172 1172 #define DTRACE_CLASS_PLATFORM 2 /* platform-specific (uname -i) */
1173 1173 #define DTRACE_CLASS_GROUP 3 /* hardware-group-specific (uname -m) */
1174 1174 #define DTRACE_CLASS_ISA 4 /* ISA-specific (uname -p) */
1175 1175 #define DTRACE_CLASS_COMMON 5 /* common to all systems */
1176 1176 #define DTRACE_CLASS_MAX 5 /* maximum valid class */
1177 1177
1178 1178 #define DTRACE_PRIV_NONE 0x0000
1179 1179 #define DTRACE_PRIV_KERNEL 0x0001
1180 1180 #define DTRACE_PRIV_USER 0x0002
1181 1181 #define DTRACE_PRIV_PROC 0x0004
1182 1182 #define DTRACE_PRIV_OWNER 0x0008
1183 1183 #define DTRACE_PRIV_ZONEOWNER 0x0010
1184 1184
1185 1185 #define DTRACE_PRIV_ALL \
1186 1186 (DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \
1187 1187 DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER)
1188 1188
1189 1189 typedef struct dtrace_ppriv {
1190 1190 uint32_t dtpp_flags; /* privilege flags */
1191 1191 uid_t dtpp_uid; /* user ID */
1192 1192 zoneid_t dtpp_zoneid; /* zone ID */
1193 1193 } dtrace_ppriv_t;
1194 1194
1195 1195 typedef struct dtrace_attribute {
1196 1196 dtrace_stability_t dtat_name; /* entity name stability */
1197 1197 dtrace_stability_t dtat_data; /* entity data stability */
1198 1198 dtrace_class_t dtat_class; /* entity data dependency */
1199 1199 } dtrace_attribute_t;
1200 1200
1201 1201 typedef struct dtrace_pattr {
1202 1202 dtrace_attribute_t dtpa_provider; /* provider attributes */
1203 1203 dtrace_attribute_t dtpa_mod; /* module attributes */
1204 1204 dtrace_attribute_t dtpa_func; /* function attributes */
1205 1205 dtrace_attribute_t dtpa_name; /* name attributes */
1206 1206 dtrace_attribute_t dtpa_args; /* args[] attributes */
1207 1207 } dtrace_pattr_t;
1208 1208
1209 1209 typedef struct dtrace_providerdesc {
1210 1210 char dtvd_name[DTRACE_PROVNAMELEN]; /* provider name */
1211 1211 dtrace_pattr_t dtvd_attr; /* stability attributes */
1212 1212 dtrace_ppriv_t dtvd_priv; /* privileges required */
1213 1213 } dtrace_providerdesc_t;
1214 1214
1215 1215 /*
1216 1216 * DTrace Pseudodevice Interface
1217 1217 *
1218 1218 * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace
1219 1219 * pseudodevice driver. These ioctls comprise the user-kernel interface to
1220 1220 * DTrace.
1221 1221 */
1222 1222 #define DTRACEIOC (('d' << 24) | ('t' << 16) | ('r' << 8))
1223 1223 #define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */
1224 1224 #define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */
1225 1225 #define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */
1226 1226 #define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */
1227 1227 #define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */
1228 1228 #define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */
1229 1229 #define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */
1230 1230 #define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */
1231 1231 #define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */
1232 1232 #define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */
1233 1233 #define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */
1234 1234 #define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */
1235 1235 #define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */
1236 1236 #define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */
1237 1237 #define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */
1238 1238 #define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */
1239 1239
1240 1240 /*
1241 1241 * DTrace Helpers
1242 1242 *
1243 1243 * In general, DTrace establishes probes in processes and takes actions on
1244 1244 * processes without knowing their specific user-level structures. Instead of
1245 1245 * existing in the framework, process-specific knowledge is contained by the
1246 1246 * enabling D program -- which can apply process-specific knowledge by making
1247 1247 * appropriate use of DTrace primitives like copyin() and copyinstr() to
1248 1248 * operate on user-level data. However, there may exist some specific probes
1249 1249 * of particular semantic relevance that the application developer may wish to
1250 1250 * explicitly export. For example, an application may wish to export a probe
1251 1251 * at the point that it begins and ends certain well-defined transactions. In
1252 1252 * addition to providing probes, programs may wish to offer assistance for
1253 1253 * certain actions. For example, in highly dynamic environments (e.g., Java),
1254 1254 * it may be difficult to obtain a stack trace in terms of meaningful symbol
1255 1255 * names (the translation from instruction addresses to corresponding symbol
1256 1256 * names may only be possible in situ); these environments may wish to define
1257 1257 * a series of actions to be applied in situ to obtain a meaningful stack
1258 1258 * trace.
1259 1259 *
1260 1260 * These two mechanisms -- user-level statically defined tracing and assisting
1261 1261 * DTrace actions -- are provided via DTrace _helpers_. Helpers are specified
1262 1262 * via DOF, but unlike enabling DOF, helper DOF may contain definitions of
1263 1263 * providers, probes and their arguments. If a helper wishes to provide
1264 1264 * action assistance, probe descriptions and corresponding DIF actions may be
1265 1265 * specified in the helper DOF. For such helper actions, however, the probe
1266 1266 * description describes the specific helper: all DTrace helpers have the
1267 1267 * provider name "dtrace" and the module name "helper", and the name of the
1268 1268 * helper is contained in the function name (for example, the ustack() helper
1269 1269 * is named "ustack"). Any helper-specific name may be contained in the name
1270 1270 * (for example, if a helper were to have a constructor, it might be named
1271 1271 * "dtrace:helper:<helper>:init"). Helper actions are only called when the
1272 1272 * action that they are helping is taken. Helper actions may only return DIF
1273 1273 * expressions, and may only call the following subroutines:
1274 1274 *
1275 1275 * alloca() <= Allocates memory out of the consumer's scratch space
1276 1276 * bcopy() <= Copies memory to scratch space
1277 1277 * copyin() <= Copies memory from user-level into consumer's scratch
1278 1278 * copyinto() <= Copies memory into a specific location in scratch
1279 1279 * copyinstr() <= Copies a string into a specific location in scratch
1280 1280 *
1281 1281 * Helper actions may only access the following built-in variables:
1282 1282 *
1283 1283 * curthread <= Current kthread_t pointer
1284 1284 * tid <= Current thread identifier
1285 1285 * pid <= Current process identifier
1286 1286 * ppid <= Parent process identifier
1287 1287 * uid <= Current user ID
1288 1288 * gid <= Current group ID
1289 1289 * execname <= Current executable name
1290 1290 * zonename <= Current zone name
1291 1291 *
1292 1292 * Helper actions may not manipulate or allocate dynamic variables, but they
1293 1293 * may have clause-local and statically-allocated global variables. The
1294 1294 * helper action variable state is specific to the helper action -- variables
1295 1295 * used by the helper action may not be accessed outside of the helper
1296 1296 * action, and the helper action may not access variables that like outside
1297 1297 * of it. Helper actions may not load from kernel memory at-large; they are
1298 1298 * restricting to loading current user state (via copyin() and variants) and
1299 1299 * scratch space. As with probe enablings, helper actions are executed in
1300 1300 * program order. The result of the helper action is the result of the last
1301 1301 * executing helper expression.
1302 1302 *
1303 1303 * Helpers -- composed of either providers/probes or probes/actions (or both)
1304 1304 * -- are added by opening the "helper" minor node, and issuing an ioctl(2)
1305 1305 * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This
1306 1306 * encapsulates the name and base address of the user-level library or
1307 1307 * executable publishing the helpers and probes as well as the DOF that
1308 1308 * contains the definitions of those helpers and probes.
1309 1309 *
1310 1310 * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy
1311 1311 * helpers and should no longer be used. No other ioctls are valid on the
1312 1312 * helper minor node.
1313 1313 */
1314 1314 #define DTRACEHIOC (('d' << 24) | ('t' << 16) | ('h' << 8))
1315 1315 #define DTRACEHIOC_ADD (DTRACEHIOC | 1) /* add helper */
1316 1316 #define DTRACEHIOC_REMOVE (DTRACEHIOC | 2) /* remove helper */
1317 1317 #define DTRACEHIOC_ADDDOF (DTRACEHIOC | 3) /* add helper DOF */
1318 1318
1319 1319 typedef struct dof_helper {
1320 1320 char dofhp_mod[DTRACE_MODNAMELEN]; /* executable or library name */
1321 1321 uint64_t dofhp_addr; /* base address of object */
1322 1322 uint64_t dofhp_dof; /* address of helper DOF */
1323 1323 } dof_helper_t;
1324 1324
1325 1325 #define DTRACEMNR_DTRACE "dtrace" /* node for DTrace ops */
1326 1326 #define DTRACEMNR_HELPER "helper" /* node for helpers */
1327 1327 #define DTRACEMNRN_DTRACE 0 /* minor for DTrace ops */
1328 1328 #define DTRACEMNRN_HELPER 1 /* minor for helpers */
1329 1329 #define DTRACEMNRN_CLONE 2 /* first clone minor */
1330 1330
1331 1331 #ifdef _KERNEL
1332 1332
1333 1333 /*
1334 1334 * DTrace Provider API
1335 1335 *
1336 1336 * The following functions are implemented by the DTrace framework and are
1337 1337 * used to implement separate in-kernel DTrace providers. Common functions
1338 1338 * are provided in uts/common/os/dtrace.c. ISA-dependent subroutines are
1339 1339 * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c.
1340 1340 *
1341 1341 * The provider API has two halves: the API that the providers consume from
1342 1342 * DTrace, and the API that providers make available to DTrace.
1343 1343 *
1344 1344 * 1 Framework-to-Provider API
1345 1345 *
1346 1346 * 1.1 Overview
1347 1347 *
1348 1348 * The Framework-to-Provider API is represented by the dtrace_pops structure
1349 1349 * that the provider passes to the framework when registering itself. This
1350 1350 * structure consists of the following members:
1351 1351 *
1352 1352 * dtps_provide() <-- Provide all probes, all modules
1353 1353 * dtps_provide_module() <-- Provide all probes in specified module
1354 1354 * dtps_enable() <-- Enable specified probe
1355 1355 * dtps_disable() <-- Disable specified probe
1356 1356 * dtps_suspend() <-- Suspend specified probe
1357 1357 * dtps_resume() <-- Resume specified probe
1358 1358 * dtps_getargdesc() <-- Get the argument description for args[X]
1359 1359 * dtps_getargval() <-- Get the value for an argX or args[X] variable
1360 1360 * dtps_mode() <-- Return the mode of the fired probe
1361 1361 * dtps_destroy() <-- Destroy all state associated with this probe
1362 1362 *
1363 1363 * 1.2 void dtps_provide(void *arg, const dtrace_probedesc_t *spec)
1364 1364 *
1365 1365 * 1.2.1 Overview
1366 1366 *
1367 1367 * Called to indicate that the provider should provide all probes. If the
1368 1368 * specified description is non-NULL, dtps_provide() is being called because
1369 1369 * no probe matched a specified probe -- if the provider has the ability to
1370 1370 * create custom probes, it may wish to create a probe that matches the
1371 1371 * specified description.
1372 1372 *
1373 1373 * 1.2.2 Arguments and notes
1374 1374 *
1375 1375 * The first argument is the cookie as passed to dtrace_register(). The
1376 1376 * second argument is a pointer to a probe description that the provider may
1377 1377 * wish to consider when creating custom probes. The provider is expected to
1378 1378 * call back into the DTrace framework via dtrace_probe_create() to create
1379 1379 * any necessary probes. dtps_provide() may be called even if the provider
1380 1380 * has made available all probes; the provider should check the return value
1381 1381 * of dtrace_probe_create() to handle this case. Note that the provider need
1382 1382 * not implement both dtps_provide() and dtps_provide_module(); see
1383 1383 * "Arguments and Notes" for dtrace_register(), below.
1384 1384 *
1385 1385 * 1.2.3 Return value
1386 1386 *
1387 1387 * None.
1388 1388 *
1389 1389 * 1.2.4 Caller's context
1390 1390 *
1391 1391 * dtps_provide() is typically called from open() or ioctl() context, but may
1392 1392 * be called from other contexts as well. The DTrace framework is locked in
1393 1393 * such a way that providers may not register or unregister. This means that
1394 1394 * the provider may not call any DTrace API that affects its registration with
1395 1395 * the framework, including dtrace_register(), dtrace_unregister(),
1396 1396 * dtrace_invalidate(), and dtrace_condense(). However, the context is such
1397 1397 * that the provider may (and indeed, is expected to) call probe-related
1398 1398 * DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(),
1399 1399 * and dtrace_probe_arg().
1400 1400 *
1401 1401 * 1.3 void dtps_provide_module(void *arg, struct modctl *mp)
1402 1402 *
1403 1403 * 1.3.1 Overview
1404 1404 *
1405 1405 * Called to indicate that the provider should provide all probes in the
1406 1406 * specified module.
1407 1407 *
1408 1408 * 1.3.2 Arguments and notes
1409 1409 *
1410 1410 * The first argument is the cookie as passed to dtrace_register(). The
1411 1411 * second argument is a pointer to a modctl structure that indicates the
1412 1412 * module for which probes should be created.
1413 1413 *
1414 1414 * 1.3.3 Return value
1415 1415 *
1416 1416 * None.
1417 1417 *
1418 1418 * 1.3.4 Caller's context
1419 1419 *
1420 1420 * dtps_provide_module() may be called from open() or ioctl() context, but
1421 1421 * may also be called from a module loading context. mod_lock is held, and
1422 1422 * the DTrace framework is locked in such a way that providers may not
1423 1423 * register or unregister. This means that the provider may not call any
1424 1424 * DTrace API that affects its registration with the framework, including
1425 1425 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1426 1426 * dtrace_condense(). However, the context is such that the provider may (and
1427 1427 * indeed, is expected to) call probe-related DTrace routines, including
1428 1428 * dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg(). Note
1429 1429 * that the provider need not implement both dtps_provide() and
1430 1430 * dtps_provide_module(); see "Arguments and Notes" for dtrace_register(),
1431 1431 * below.
1432 1432 *
1433 1433 * 1.4 int dtps_enable(void *arg, dtrace_id_t id, void *parg)
1434 1434 *
1435 1435 * 1.4.1 Overview
1436 1436 *
1437 1437 * Called to enable the specified probe.
1438 1438 *
1439 1439 * 1.4.2 Arguments and notes
1440 1440 *
1441 1441 * The first argument is the cookie as passed to dtrace_register(). The
1442 1442 * second argument is the identifier of the probe to be enabled. The third
1443 1443 * argument is the probe argument as passed to dtrace_probe_create().
1444 1444 * dtps_enable() will be called when a probe transitions from not being
1445 1445 * enabled at all to having one or more ECB. The number of ECBs associated
1446 1446 * with the probe may change without subsequent calls into the provider.
1447 1447 * When the number of ECBs drops to zero, the provider will be explicitly
1448 1448 * told to disable the probe via dtps_disable(). dtrace_probe() should never
1449 1449 * be called for a probe identifier that hasn't been explicitly enabled via
1450 1450 * dtps_enable().
1451 1451 *
1452 1452 * 1.4.3 Return value
1453 1453 *
1454 1454 * On success, dtps_enable() should return 0. On failure, -1 should be
1455 1455 * returned.
1456 1456 *
1457 1457 * 1.4.4 Caller's context
1458 1458 *
1459 1459 * The DTrace framework is locked in such a way that it may not be called
1460 1460 * back into at all. cpu_lock is held. mod_lock is not held and may not
1461 1461 * be acquired.
1462 1462 *
1463 1463 * 1.5 void dtps_disable(void *arg, dtrace_id_t id, void *parg)
1464 1464 *
1465 1465 * 1.5.1 Overview
1466 1466 *
1467 1467 * Called to disable the specified probe.
1468 1468 *
1469 1469 * 1.5.2 Arguments and notes
1470 1470 *
1471 1471 * The first argument is the cookie as passed to dtrace_register(). The
1472 1472 * second argument is the identifier of the probe to be disabled. The third
1473 1473 * argument is the probe argument as passed to dtrace_probe_create().
1474 1474 * dtps_disable() will be called when a probe transitions from being enabled
1475 1475 * to having zero ECBs. dtrace_probe() should never be called for a probe
1476 1476 * identifier that has been explicitly enabled via dtps_disable().
1477 1477 *
1478 1478 * 1.5.3 Return value
1479 1479 *
1480 1480 * None.
1481 1481 *
1482 1482 * 1.5.4 Caller's context
1483 1483 *
1484 1484 * The DTrace framework is locked in such a way that it may not be called
1485 1485 * back into at all. cpu_lock is held. mod_lock is not held and may not
1486 1486 * be acquired.
1487 1487 *
1488 1488 * 1.6 void dtps_suspend(void *arg, dtrace_id_t id, void *parg)
1489 1489 *
1490 1490 * 1.6.1 Overview
1491 1491 *
1492 1492 * Called to suspend the specified enabled probe. This entry point is for
1493 1493 * providers that may need to suspend some or all of their probes when CPUs
1494 1494 * are being powered on or when the boot monitor is being entered for a
1495 1495 * prolonged period of time.
1496 1496 *
1497 1497 * 1.6.2 Arguments and notes
1498 1498 *
1499 1499 * The first argument is the cookie as passed to dtrace_register(). The
1500 1500 * second argument is the identifier of the probe to be suspended. The
1501 1501 * third argument is the probe argument as passed to dtrace_probe_create().
1502 1502 * dtps_suspend will only be called on an enabled probe. Providers that
1503 1503 * provide a dtps_suspend entry point will want to take roughly the action
1504 1504 * that it takes for dtps_disable.
1505 1505 *
1506 1506 * 1.6.3 Return value
1507 1507 *
1508 1508 * None.
1509 1509 *
1510 1510 * 1.6.4 Caller's context
1511 1511 *
1512 1512 * Interrupts are disabled. The DTrace framework is in a state such that the
1513 1513 * specified probe cannot be disabled or destroyed for the duration of
1514 1514 * dtps_suspend(). As interrupts are disabled, the provider is afforded
1515 1515 * little latitude; the provider is expected to do no more than a store to
1516 1516 * memory.
1517 1517 *
1518 1518 * 1.7 void dtps_resume(void *arg, dtrace_id_t id, void *parg)
1519 1519 *
1520 1520 * 1.7.1 Overview
1521 1521 *
1522 1522 * Called to resume the specified enabled probe. This entry point is for
1523 1523 * providers that may need to resume some or all of their probes after the
1524 1524 * completion of an event that induced a call to dtps_suspend().
1525 1525 *
1526 1526 * 1.7.2 Arguments and notes
1527 1527 *
1528 1528 * The first argument is the cookie as passed to dtrace_register(). The
1529 1529 * second argument is the identifier of the probe to be resumed. The
1530 1530 * third argument is the probe argument as passed to dtrace_probe_create().
1531 1531 * dtps_resume will only be called on an enabled probe. Providers that
1532 1532 * provide a dtps_resume entry point will want to take roughly the action
1533 1533 * that it takes for dtps_enable.
1534 1534 *
1535 1535 * 1.7.3 Return value
1536 1536 *
1537 1537 * None.
1538 1538 *
1539 1539 * 1.7.4 Caller's context
1540 1540 *
1541 1541 * Interrupts are disabled. The DTrace framework is in a state such that the
1542 1542 * specified probe cannot be disabled or destroyed for the duration of
1543 1543 * dtps_resume(). As interrupts are disabled, the provider is afforded
1544 1544 * little latitude; the provider is expected to do no more than a store to
1545 1545 * memory.
1546 1546 *
1547 1547 * 1.8 void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg,
1548 1548 * dtrace_argdesc_t *desc)
1549 1549 *
1550 1550 * 1.8.1 Overview
1551 1551 *
1552 1552 * Called to retrieve the argument description for an args[X] variable.
1553 1553 *
1554 1554 * 1.8.2 Arguments and notes
1555 1555 *
1556 1556 * The first argument is the cookie as passed to dtrace_register(). The
1557 1557 * second argument is the identifier of the current probe. The third
1558 1558 * argument is the probe argument as passed to dtrace_probe_create(). The
1559 1559 * fourth argument is a pointer to the argument description. This
1560 1560 * description is both an input and output parameter: it contains the
1561 1561 * index of the desired argument in the dtargd_ndx field, and expects
1562 1562 * the other fields to be filled in upon return. If there is no argument
1563 1563 * corresponding to the specified index, the dtargd_ndx field should be set
1564 1564 * to DTRACE_ARGNONE.
1565 1565 *
1566 1566 * 1.8.3 Return value
1567 1567 *
1568 1568 * None. The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping
1569 1569 * members of the dtrace_argdesc_t structure are all output values.
1570 1570 *
1571 1571 * 1.8.4 Caller's context
1572 1572 *
1573 1573 * dtps_getargdesc() is called from ioctl() context. mod_lock is held, and
1574 1574 * the DTrace framework is locked in such a way that providers may not
1575 1575 * register or unregister. This means that the provider may not call any
1576 1576 * DTrace API that affects its registration with the framework, including
1577 1577 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1578 1578 * dtrace_condense().
1579 1579 *
1580 1580 * 1.9 uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg,
1581 1581 * int argno, int aframes)
1582 1582 *
1583 1583 * 1.9.1 Overview
1584 1584 *
1585 1585 * Called to retrieve a value for an argX or args[X] variable.
1586 1586 *
1587 1587 * 1.9.2 Arguments and notes
1588 1588 *
1589 1589 * The first argument is the cookie as passed to dtrace_register(). The
1590 1590 * second argument is the identifier of the current probe. The third
1591 1591 * argument is the probe argument as passed to dtrace_probe_create(). The
1592 1592 * fourth argument is the number of the argument (the X in the example in
1593 1593 * 1.9.1). The fifth argument is the number of stack frames that were used
1594 1594 * to get from the actual place in the code that fired the probe to
1595 1595 * dtrace_probe() itself, the so-called artificial frames. This argument may
1596 1596 * be used to descend an appropriate number of frames to find the correct
1597 1597 * values. If this entry point is left NULL, the dtrace_getarg() built-in
1598 1598 * function is used.
1599 1599 *
1600 1600 * 1.9.3 Return value
1601 1601 *
1602 1602 * The value of the argument.
1603 1603 *
1604 1604 * 1.9.4 Caller's context
1605 1605 *
1606 1606 * This is called from within dtrace_probe() meaning that interrupts
1607 1607 * are disabled. No locks should be taken within this entry point.
1608 1608 *
1609 1609 * 1.10 int dtps_mode(void *arg, dtrace_id_t id, void *parg)
1610 1610 *
1611 1611 * 1.10.1 Overview
1612 1612 *
1613 1613 * Called to determine the mode of a fired probe.
1614 1614 *
1615 1615 * 1.10.2 Arguments and notes
1616 1616 *
1617 1617 * The first argument is the cookie as passed to dtrace_register(). The
↓ open down ↓ |
1579 lines elided |
↑ open up ↑ |
1618 1618 * second argument is the identifier of the current probe. The third
1619 1619 * argument is the probe argument as passed to dtrace_probe_create(). This
1620 1620 * entry point must not be left NULL for providers whose probes allow for
1621 1621 * mixed mode tracing, that is to say those unanchored probes that can fire
1622 1622 * during kernel- or user-mode execution.
1623 1623 *
1624 1624 * 1.10.3 Return value
1625 1625 *
1626 1626 * A bitwise OR that encapsulates both the mode (either DTRACE_MODE_KERNEL
1627 1627 * or DTRACE_MODE_USER) and the policy when the privilege of the enabling
1628 - * is insufficient for that mode (either DTRACE_MODE_NOPRIV_DROP or
1629 - * DTRACE_MODE_NOPRIV_RESTRICT). If the policy is DTRACE_MODE_NOPRIV_DROP,
1630 - * insufficient privilege will result in the probe firing being silently
1631 - * ignored for the enabling; if the policy is DTRACE_NODE_NOPRIV_RESTRICT,
1632 - * insufficient privilege will not prevent probe processing for the
1633 - * enabling, but restrictions will be in place that induce a UPRIV fault
1634 - * upon attempt to examine probe arguments or current process state.
1628 + * is insufficient for that mode (a combination of DTRACE_MODE_NOPRIV_DROP,
1629 + * DTRACE_MODE_NOPRIV_RESTRICT, and DTRACE_MODE_LIMITEDPRIV_RESTRICT). If
1630 + * DTRACE_MODE_NOPRIV_DROP bit is set, insufficient privilege will result
1631 + * in the probe firing being silently ignored for the enabling; if the
1632 + * DTRACE_NODE_NOPRIV_RESTRICT bit is set, insufficient privilege will not
1633 + * prevent probe processing for the enabling, but restrictions will be in
1634 + * place that induce a UPRIV fault upon attempt to examine probe arguments
1635 + * or current process state. If the DTRACE_MODE_LIMITEDPRIV_RESTRICT bit
1636 + * is set, similar restrictions will be placed upon operation if the
1637 + * privilege is sufficient to process the enabling, but does not otherwise
1638 + * entitle the enabling to all zones. The DTRACE_MODE_NOPRIV_DROP and
1639 + * DTRACE_MODE_NOPRIV_RESTRICT are mutually exclusive (and one of these
1640 + * two policies must be specified), but either may be combined (or not)
1641 + * with DTRACE_MODE_LIMITEDPRIV_RESTRICT.
1635 1642 *
1636 1643 * 1.10.4 Caller's context
1637 1644 *
1638 1645 * This is called from within dtrace_probe() meaning that interrupts
1639 1646 * are disabled. No locks should be taken within this entry point.
1640 1647 *
1641 1648 * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg)
1642 1649 *
1643 1650 * 1.11.1 Overview
1644 1651 *
1645 1652 * Called to destroy the specified probe.
1646 1653 *
1647 1654 * 1.11.2 Arguments and notes
1648 1655 *
1649 1656 * The first argument is the cookie as passed to dtrace_register(). The
1650 1657 * second argument is the identifier of the probe to be destroyed. The third
1651 1658 * argument is the probe argument as passed to dtrace_probe_create(). The
1652 1659 * provider should free all state associated with the probe. The framework
1653 1660 * guarantees that dtps_destroy() is only called for probes that have either
1654 1661 * been disabled via dtps_disable() or were never enabled via dtps_enable().
1655 1662 * Once dtps_disable() has been called for a probe, no further call will be
1656 1663 * made specifying the probe.
1657 1664 *
1658 1665 * 1.11.3 Return value
1659 1666 *
1660 1667 * None.
1661 1668 *
1662 1669 * 1.11.4 Caller's context
1663 1670 *
1664 1671 * The DTrace framework is locked in such a way that it may not be called
1665 1672 * back into at all. mod_lock is held. cpu_lock is not held, and may not be
1666 1673 * acquired.
1667 1674 *
1668 1675 *
1669 1676 * 2 Provider-to-Framework API
1670 1677 *
1671 1678 * 2.1 Overview
1672 1679 *
1673 1680 * The Provider-to-Framework API provides the mechanism for the provider to
1674 1681 * register itself with the DTrace framework, to create probes, to lookup
1675 1682 * probes and (most importantly) to fire probes. The Provider-to-Framework
1676 1683 * consists of:
1677 1684 *
1678 1685 * dtrace_register() <-- Register a provider with the DTrace framework
1679 1686 * dtrace_unregister() <-- Remove a provider's DTrace registration
1680 1687 * dtrace_invalidate() <-- Invalidate the specified provider
1681 1688 * dtrace_condense() <-- Remove a provider's unenabled probes
1682 1689 * dtrace_attached() <-- Indicates whether or not DTrace has attached
1683 1690 * dtrace_probe_create() <-- Create a DTrace probe
1684 1691 * dtrace_probe_lookup() <-- Lookup a DTrace probe based on its name
1685 1692 * dtrace_probe_arg() <-- Return the probe argument for a specific probe
1686 1693 * dtrace_probe() <-- Fire the specified probe
1687 1694 *
1688 1695 * 2.2 int dtrace_register(const char *name, const dtrace_pattr_t *pap,
1689 1696 * uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg,
1690 1697 * dtrace_provider_id_t *idp)
1691 1698 *
1692 1699 * 2.2.1 Overview
1693 1700 *
1694 1701 * dtrace_register() registers the calling provider with the DTrace
1695 1702 * framework. It should generally be called by DTrace providers in their
1696 1703 * attach(9E) entry point.
1697 1704 *
1698 1705 * 2.2.2 Arguments and Notes
1699 1706 *
1700 1707 * The first argument is the name of the provider. The second argument is a
1701 1708 * pointer to the stability attributes for the provider. The third argument
1702 1709 * is the privilege flags for the provider, and must be some combination of:
1703 1710 *
1704 1711 * DTRACE_PRIV_NONE <= All users may enable probes from this provider
1705 1712 *
1706 1713 * DTRACE_PRIV_PROC <= Any user with privilege of PRIV_DTRACE_PROC may
1707 1714 * enable probes from this provider
1708 1715 *
1709 1716 * DTRACE_PRIV_USER <= Any user with privilege of PRIV_DTRACE_USER may
1710 1717 * enable probes from this provider
1711 1718 *
1712 1719 * DTRACE_PRIV_KERNEL <= Any user with privilege of PRIV_DTRACE_KERNEL
1713 1720 * may enable probes from this provider
1714 1721 *
1715 1722 * DTRACE_PRIV_OWNER <= This flag places an additional constraint on
1716 1723 * the privilege requirements above. These probes
1717 1724 * require either (a) a user ID matching the user
1718 1725 * ID of the cred passed in the fourth argument
1719 1726 * or (b) the PRIV_PROC_OWNER privilege.
1720 1727 *
1721 1728 * DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on
1722 1729 * the privilege requirements above. These probes
1723 1730 * require either (a) a zone ID matching the zone
1724 1731 * ID of the cred passed in the fourth argument
1725 1732 * or (b) the PRIV_PROC_ZONE privilege.
1726 1733 *
1727 1734 * Note that these flags designate the _visibility_ of the probes, not
1728 1735 * the conditions under which they may or may not fire.
1729 1736 *
1730 1737 * The fourth argument is the credential that is associated with the
1731 1738 * provider. This argument should be NULL if the privilege flags don't
1732 1739 * include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER. If non-NULL, the
1733 1740 * framework stashes the uid and zoneid represented by this credential
1734 1741 * for use at probe-time, in implicit predicates. These limit visibility
1735 1742 * of the probes to users and/or zones which have sufficient privilege to
1736 1743 * access them.
1737 1744 *
1738 1745 * The fifth argument is a DTrace provider operations vector, which provides
1739 1746 * the implementation for the Framework-to-Provider API. (See Section 1,
1740 1747 * above.) This must be non-NULL, and each member must be non-NULL. The
1741 1748 * exceptions to this are (1) the dtps_provide() and dtps_provide_module()
1742 1749 * members (if the provider so desires, _one_ of these members may be left
1743 1750 * NULL -- denoting that the provider only implements the other) and (2)
1744 1751 * the dtps_suspend() and dtps_resume() members, which must either both be
1745 1752 * NULL or both be non-NULL.
1746 1753 *
1747 1754 * The sixth argument is a cookie to be specified as the first argument for
1748 1755 * each function in the Framework-to-Provider API. This argument may have
1749 1756 * any value.
1750 1757 *
1751 1758 * The final argument is a pointer to dtrace_provider_id_t. If
1752 1759 * dtrace_register() successfully completes, the provider identifier will be
1753 1760 * stored in the memory pointed to be this argument. This argument must be
1754 1761 * non-NULL.
1755 1762 *
1756 1763 * 2.2.3 Return value
1757 1764 *
1758 1765 * On success, dtrace_register() returns 0 and stores the new provider's
1759 1766 * identifier into the memory pointed to by the idp argument. On failure,
1760 1767 * dtrace_register() returns an errno:
1761 1768 *
1762 1769 * EINVAL The arguments passed to dtrace_register() were somehow invalid.
1763 1770 * This may because a parameter that must be non-NULL was NULL,
1764 1771 * because the name was invalid (either empty or an illegal
1765 1772 * provider name) or because the attributes were invalid.
1766 1773 *
1767 1774 * No other failure code is returned.
1768 1775 *
1769 1776 * 2.2.4 Caller's context
1770 1777 *
1771 1778 * dtrace_register() may induce calls to dtrace_provide(); the provider must
1772 1779 * hold no locks across dtrace_register() that may also be acquired by
1773 1780 * dtrace_provide(). cpu_lock and mod_lock must not be held.
1774 1781 *
1775 1782 * 2.3 int dtrace_unregister(dtrace_provider_t id)
1776 1783 *
1777 1784 * 2.3.1 Overview
1778 1785 *
1779 1786 * Unregisters the specified provider from the DTrace framework. It should
1780 1787 * generally be called by DTrace providers in their detach(9E) entry point.
1781 1788 *
1782 1789 * 2.3.2 Arguments and Notes
1783 1790 *
1784 1791 * The only argument is the provider identifier, as returned from a
1785 1792 * successful call to dtrace_register(). As a result of calling
1786 1793 * dtrace_unregister(), the DTrace framework will call back into the provider
1787 1794 * via the dtps_destroy() entry point. Once dtrace_unregister() successfully
1788 1795 * completes, however, the DTrace framework will no longer make calls through
1789 1796 * the Framework-to-Provider API.
1790 1797 *
1791 1798 * 2.3.3 Return value
1792 1799 *
1793 1800 * On success, dtrace_unregister returns 0. On failure, dtrace_unregister()
1794 1801 * returns an errno:
1795 1802 *
1796 1803 * EBUSY There are currently processes that have the DTrace pseudodevice
1797 1804 * open, or there exists an anonymous enabling that hasn't yet
1798 1805 * been claimed.
1799 1806 *
1800 1807 * No other failure code is returned.
1801 1808 *
1802 1809 * 2.3.4 Caller's context
1803 1810 *
1804 1811 * Because a call to dtrace_unregister() may induce calls through the
1805 1812 * Framework-to-Provider API, the caller may not hold any lock across
1806 1813 * dtrace_register() that is also acquired in any of the Framework-to-
1807 1814 * Provider API functions. Additionally, mod_lock may not be held.
1808 1815 *
1809 1816 * 2.4 void dtrace_invalidate(dtrace_provider_id_t id)
1810 1817 *
1811 1818 * 2.4.1 Overview
1812 1819 *
1813 1820 * Invalidates the specified provider. All subsequent probe lookups for the
1814 1821 * specified provider will fail, but its probes will not be removed.
1815 1822 *
1816 1823 * 2.4.2 Arguments and note
1817 1824 *
1818 1825 * The only argument is the provider identifier, as returned from a
1819 1826 * successful call to dtrace_register(). In general, a provider's probes
1820 1827 * always remain valid; dtrace_invalidate() is a mechanism for invalidating
1821 1828 * an entire provider, regardless of whether or not probes are enabled or
1822 1829 * not. Note that dtrace_invalidate() will _not_ prevent already enabled
1823 1830 * probes from firing -- it will merely prevent any new enablings of the
1824 1831 * provider's probes.
1825 1832 *
1826 1833 * 2.5 int dtrace_condense(dtrace_provider_id_t id)
1827 1834 *
1828 1835 * 2.5.1 Overview
1829 1836 *
1830 1837 * Removes all the unenabled probes for the given provider. This function is
1831 1838 * not unlike dtrace_unregister(), except that it doesn't remove the
1832 1839 * provider just as many of its associated probes as it can.
1833 1840 *
1834 1841 * 2.5.2 Arguments and Notes
1835 1842 *
1836 1843 * As with dtrace_unregister(), the sole argument is the provider identifier
1837 1844 * as returned from a successful call to dtrace_register(). As a result of
1838 1845 * calling dtrace_condense(), the DTrace framework will call back into the
1839 1846 * given provider's dtps_destroy() entry point for each of the provider's
1840 1847 * unenabled probes.
1841 1848 *
1842 1849 * 2.5.3 Return value
1843 1850 *
1844 1851 * Currently, dtrace_condense() always returns 0. However, consumers of this
1845 1852 * function should check the return value as appropriate; its behavior may
1846 1853 * change in the future.
1847 1854 *
1848 1855 * 2.5.4 Caller's context
1849 1856 *
1850 1857 * As with dtrace_unregister(), the caller may not hold any lock across
1851 1858 * dtrace_condense() that is also acquired in the provider's entry points.
1852 1859 * Also, mod_lock may not be held.
1853 1860 *
1854 1861 * 2.6 int dtrace_attached()
1855 1862 *
1856 1863 * 2.6.1 Overview
1857 1864 *
1858 1865 * Indicates whether or not DTrace has attached.
1859 1866 *
1860 1867 * 2.6.2 Arguments and Notes
1861 1868 *
1862 1869 * For most providers, DTrace makes initial contact beyond registration.
1863 1870 * That is, once a provider has registered with DTrace, it waits to hear
1864 1871 * from DTrace to create probes. However, some providers may wish to
1865 1872 * proactively create probes without first being told by DTrace to do so.
1866 1873 * If providers wish to do this, they must first call dtrace_attached() to
1867 1874 * determine if DTrace itself has attached. If dtrace_attached() returns 0,
1868 1875 * the provider must not make any other Provider-to-Framework API call.
1869 1876 *
1870 1877 * 2.6.3 Return value
1871 1878 *
1872 1879 * dtrace_attached() returns 1 if DTrace has attached, 0 otherwise.
1873 1880 *
1874 1881 * 2.7 int dtrace_probe_create(dtrace_provider_t id, const char *mod,
1875 1882 * const char *func, const char *name, int aframes, void *arg)
1876 1883 *
1877 1884 * 2.7.1 Overview
1878 1885 *
1879 1886 * Creates a probe with specified module name, function name, and name.
1880 1887 *
1881 1888 * 2.7.2 Arguments and Notes
1882 1889 *
1883 1890 * The first argument is the provider identifier, as returned from a
1884 1891 * successful call to dtrace_register(). The second, third, and fourth
1885 1892 * arguments are the module name, function name, and probe name,
1886 1893 * respectively. Of these, module name and function name may both be NULL
1887 1894 * (in which case the probe is considered to be unanchored), or they may both
1888 1895 * be non-NULL. The name must be non-NULL, and must point to a non-empty
1889 1896 * string.
1890 1897 *
1891 1898 * The fifth argument is the number of artificial stack frames that will be
1892 1899 * found on the stack when dtrace_probe() is called for the new probe. These
1893 1900 * artificial frames will be automatically be pruned should the stack() or
1894 1901 * stackdepth() functions be called as part of one of the probe's ECBs. If
1895 1902 * the parameter doesn't add an artificial frame, this parameter should be
1896 1903 * zero.
1897 1904 *
1898 1905 * The final argument is a probe argument that will be passed back to the
1899 1906 * provider when a probe-specific operation is called. (e.g., via
1900 1907 * dtps_enable(), dtps_disable(), etc.)
1901 1908 *
1902 1909 * Note that it is up to the provider to be sure that the probe that it
1903 1910 * creates does not already exist -- if the provider is unsure of the probe's
1904 1911 * existence, it should assure its absence with dtrace_probe_lookup() before
1905 1912 * calling dtrace_probe_create().
1906 1913 *
1907 1914 * 2.7.3 Return value
1908 1915 *
1909 1916 * dtrace_probe_create() always succeeds, and always returns the identifier
1910 1917 * of the newly-created probe.
1911 1918 *
1912 1919 * 2.7.4 Caller's context
1913 1920 *
1914 1921 * While dtrace_probe_create() is generally expected to be called from
1915 1922 * dtps_provide() and/or dtps_provide_module(), it may be called from other
1916 1923 * non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
1917 1924 *
1918 1925 * 2.8 dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod,
1919 1926 * const char *func, const char *name)
1920 1927 *
1921 1928 * 2.8.1 Overview
1922 1929 *
1923 1930 * Looks up a probe based on provdider and one or more of module name,
1924 1931 * function name and probe name.
1925 1932 *
1926 1933 * 2.8.2 Arguments and Notes
1927 1934 *
1928 1935 * The first argument is the provider identifier, as returned from a
1929 1936 * successful call to dtrace_register(). The second, third, and fourth
1930 1937 * arguments are the module name, function name, and probe name,
1931 1938 * respectively. Any of these may be NULL; dtrace_probe_lookup() will return
1932 1939 * the identifier of the first probe that is provided by the specified
1933 1940 * provider and matches all of the non-NULL matching criteria.
1934 1941 * dtrace_probe_lookup() is generally used by a provider to be check the
1935 1942 * existence of a probe before creating it with dtrace_probe_create().
1936 1943 *
1937 1944 * 2.8.3 Return value
1938 1945 *
1939 1946 * If the probe exists, returns its identifier. If the probe does not exist,
1940 1947 * return DTRACE_IDNONE.
1941 1948 *
1942 1949 * 2.8.4 Caller's context
1943 1950 *
1944 1951 * While dtrace_probe_lookup() is generally expected to be called from
1945 1952 * dtps_provide() and/or dtps_provide_module(), it may also be called from
1946 1953 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
1947 1954 *
1948 1955 * 2.9 void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe)
1949 1956 *
1950 1957 * 2.9.1 Overview
1951 1958 *
1952 1959 * Returns the probe argument associated with the specified probe.
1953 1960 *
1954 1961 * 2.9.2 Arguments and Notes
1955 1962 *
1956 1963 * The first argument is the provider identifier, as returned from a
1957 1964 * successful call to dtrace_register(). The second argument is a probe
1958 1965 * identifier, as returned from dtrace_probe_lookup() or
1959 1966 * dtrace_probe_create(). This is useful if a probe has multiple
1960 1967 * provider-specific components to it: the provider can create the probe
1961 1968 * once with provider-specific state, and then add to the state by looking
1962 1969 * up the probe based on probe identifier.
1963 1970 *
1964 1971 * 2.9.3 Return value
1965 1972 *
1966 1973 * Returns the argument associated with the specified probe. If the
1967 1974 * specified probe does not exist, or if the specified probe is not provided
1968 1975 * by the specified provider, NULL is returned.
1969 1976 *
1970 1977 * 2.9.4 Caller's context
1971 1978 *
1972 1979 * While dtrace_probe_arg() is generally expected to be called from
1973 1980 * dtps_provide() and/or dtps_provide_module(), it may also be called from
1974 1981 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
1975 1982 *
1976 1983 * 2.10 void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1,
1977 1984 * uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
1978 1985 *
1979 1986 * 2.10.1 Overview
1980 1987 *
1981 1988 * The epicenter of DTrace: fires the specified probes with the specified
1982 1989 * arguments.
1983 1990 *
1984 1991 * 2.10.2 Arguments and Notes
1985 1992 *
1986 1993 * The first argument is a probe identifier as returned by
1987 1994 * dtrace_probe_create() or dtrace_probe_lookup(). The second through sixth
1988 1995 * arguments are the values to which the D variables "arg0" through "arg4"
1989 1996 * will be mapped.
1990 1997 *
1991 1998 * dtrace_probe() should be called whenever the specified probe has fired --
1992 1999 * however the provider defines it.
1993 2000 *
1994 2001 * 2.10.3 Return value
1995 2002 *
1996 2003 * None.
1997 2004 *
1998 2005 * 2.10.4 Caller's context
1999 2006 *
2000 2007 * dtrace_probe() may be called in virtually any context: kernel, user,
2001 2008 * interrupt, high-level interrupt, with arbitrary adaptive locks held, with
2002 2009 * dispatcher locks held, with interrupts disabled, etc. The only latitude
2003 2010 * that must be afforded to DTrace is the ability to make calls within
2004 2011 * itself (and to its in-kernel subroutines) and the ability to access
2005 2012 * arbitrary (but mapped) memory. On some platforms, this constrains
2006 2013 * context. For example, on UltraSPARC, dtrace_probe() cannot be called
2007 2014 * from any context in which TL is greater than zero. dtrace_probe() may
2008 2015 * also not be called from any routine which may be called by dtrace_probe()
2009 2016 * -- which includes functions in the DTrace framework and some in-kernel
2010 2017 * DTrace subroutines. All such functions "dtrace_"; providers that
2011 2018 * instrument the kernel arbitrarily should be sure to not instrument these
2012 2019 * routines.
2013 2020 */
2014 2021 typedef struct dtrace_pops {
2015 2022 void (*dtps_provide)(void *arg, const dtrace_probedesc_t *spec);
2016 2023 void (*dtps_provide_module)(void *arg, struct modctl *mp);
2017 2024 int (*dtps_enable)(void *arg, dtrace_id_t id, void *parg);
2018 2025 void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg);
2019 2026 void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg);
2020 2027 void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg);
2021 2028 void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg,
2022 2029 dtrace_argdesc_t *desc);
↓ open down ↓ |
378 lines elided |
↑ open up ↑ |
2023 2030 uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg,
2024 2031 int argno, int aframes);
2025 2032 int (*dtps_mode)(void *arg, dtrace_id_t id, void *parg);
2026 2033 void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg);
2027 2034 } dtrace_pops_t;
2028 2035
2029 2036 #define DTRACE_MODE_KERNEL 0x01
2030 2037 #define DTRACE_MODE_USER 0x02
2031 2038 #define DTRACE_MODE_NOPRIV_DROP 0x10
2032 2039 #define DTRACE_MODE_NOPRIV_RESTRICT 0x20
2040 +#define DTRACE_MODE_LIMITEDPRIV_RESTRICT 0x40
2033 2041
2034 2042 typedef uintptr_t dtrace_provider_id_t;
2035 2043
2036 2044 extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t,
2037 2045 cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *);
2038 2046 extern int dtrace_unregister(dtrace_provider_id_t);
2039 2047 extern int dtrace_condense(dtrace_provider_id_t);
2040 2048 extern void dtrace_invalidate(dtrace_provider_id_t);
2041 2049 extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, const char *,
2042 2050 const char *, const char *);
2043 2051 extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *,
2044 2052 const char *, const char *, int, void *);
2045 2053 extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t);
2046 2054 extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1,
2047 2055 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4);
2048 2056
2049 2057 /*
2050 2058 * DTrace Meta Provider API
2051 2059 *
2052 2060 * The following functions are implemented by the DTrace framework and are
2053 2061 * used to implement meta providers. Meta providers plug into the DTrace
2054 2062 * framework and are used to instantiate new providers on the fly. At
2055 2063 * present, there is only one type of meta provider and only one meta
2056 2064 * provider may be registered with the DTrace framework at a time. The
2057 2065 * sole meta provider type provides user-land static tracing facilities
2058 2066 * by taking meta probe descriptions and adding a corresponding provider
2059 2067 * into the DTrace framework.
2060 2068 *
2061 2069 * 1 Framework-to-Provider
2062 2070 *
2063 2071 * 1.1 Overview
2064 2072 *
2065 2073 * The Framework-to-Provider API is represented by the dtrace_mops structure
2066 2074 * that the meta provider passes to the framework when registering itself as
2067 2075 * a meta provider. This structure consists of the following members:
2068 2076 *
2069 2077 * dtms_create_probe() <-- Add a new probe to a created provider
2070 2078 * dtms_provide_pid() <-- Create a new provider for a given process
2071 2079 * dtms_remove_pid() <-- Remove a previously created provider
2072 2080 *
2073 2081 * 1.2 void dtms_create_probe(void *arg, void *parg,
2074 2082 * dtrace_helper_probedesc_t *probedesc);
2075 2083 *
2076 2084 * 1.2.1 Overview
2077 2085 *
2078 2086 * Called by the DTrace framework to create a new probe in a provider
2079 2087 * created by this meta provider.
2080 2088 *
2081 2089 * 1.2.2 Arguments and notes
2082 2090 *
2083 2091 * The first argument is the cookie as passed to dtrace_meta_register().
2084 2092 * The second argument is the provider cookie for the associated provider;
2085 2093 * this is obtained from the return value of dtms_provide_pid(). The third
2086 2094 * argument is the helper probe description.
2087 2095 *
2088 2096 * 1.2.3 Return value
2089 2097 *
2090 2098 * None
2091 2099 *
2092 2100 * 1.2.4 Caller's context
2093 2101 *
2094 2102 * dtms_create_probe() is called from either ioctl() or module load context.
2095 2103 * The DTrace framework is locked in such a way that meta providers may not
2096 2104 * register or unregister. This means that the meta provider cannot call
2097 2105 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context is
2098 2106 * such that the provider may (and is expected to) call provider-related
2099 2107 * DTrace provider APIs including dtrace_probe_create().
2100 2108 *
2101 2109 * 1.3 void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov,
2102 2110 * pid_t pid)
2103 2111 *
2104 2112 * 1.3.1 Overview
2105 2113 *
2106 2114 * Called by the DTrace framework to instantiate a new provider given the
2107 2115 * description of the provider and probes in the mprov argument. The
2108 2116 * meta provider should call dtrace_register() to insert the new provider
2109 2117 * into the DTrace framework.
2110 2118 *
2111 2119 * 1.3.2 Arguments and notes
2112 2120 *
2113 2121 * The first argument is the cookie as passed to dtrace_meta_register().
2114 2122 * The second argument is a pointer to a structure describing the new
2115 2123 * helper provider. The third argument is the process identifier for
2116 2124 * process associated with this new provider. Note that the name of the
2117 2125 * provider as passed to dtrace_register() should be the contatenation of
2118 2126 * the dtmpb_provname member of the mprov argument and the processs
2119 2127 * identifier as a string.
2120 2128 *
2121 2129 * 1.3.3 Return value
2122 2130 *
2123 2131 * The cookie for the provider that the meta provider creates. This is
2124 2132 * the same value that it passed to dtrace_register().
2125 2133 *
2126 2134 * 1.3.4 Caller's context
2127 2135 *
2128 2136 * dtms_provide_pid() is called from either ioctl() or module load context.
2129 2137 * The DTrace framework is locked in such a way that meta providers may not
2130 2138 * register or unregister. This means that the meta provider cannot call
2131 2139 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2132 2140 * is such that the provider may -- and is expected to -- call
2133 2141 * provider-related DTrace provider APIs including dtrace_register().
2134 2142 *
2135 2143 * 1.4 void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov,
2136 2144 * pid_t pid)
2137 2145 *
2138 2146 * 1.4.1 Overview
2139 2147 *
2140 2148 * Called by the DTrace framework to remove a provider that had previously
2141 2149 * been instantiated via the dtms_provide_pid() entry point. The meta
2142 2150 * provider need not remove the provider immediately, but this entry
2143 2151 * point indicates that the provider should be removed as soon as possible
2144 2152 * using the dtrace_unregister() API.
2145 2153 *
2146 2154 * 1.4.2 Arguments and notes
2147 2155 *
2148 2156 * The first argument is the cookie as passed to dtrace_meta_register().
2149 2157 * The second argument is a pointer to a structure describing the helper
2150 2158 * provider. The third argument is the process identifier for process
2151 2159 * associated with this new provider.
2152 2160 *
2153 2161 * 1.4.3 Return value
2154 2162 *
2155 2163 * None
2156 2164 *
2157 2165 * 1.4.4 Caller's context
2158 2166 *
2159 2167 * dtms_remove_pid() is called from either ioctl() or exit() context.
2160 2168 * The DTrace framework is locked in such a way that meta providers may not
2161 2169 * register or unregister. This means that the meta provider cannot call
2162 2170 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2163 2171 * is such that the provider may -- and is expected to -- call
2164 2172 * provider-related DTrace provider APIs including dtrace_unregister().
2165 2173 */
2166 2174 typedef struct dtrace_helper_probedesc {
2167 2175 char *dthpb_mod; /* probe module */
2168 2176 char *dthpb_func; /* probe function */
2169 2177 char *dthpb_name; /* probe name */
2170 2178 uint64_t dthpb_base; /* base address */
2171 2179 uint32_t *dthpb_offs; /* offsets array */
2172 2180 uint32_t *dthpb_enoffs; /* is-enabled offsets array */
2173 2181 uint32_t dthpb_noffs; /* offsets count */
2174 2182 uint32_t dthpb_nenoffs; /* is-enabled offsets count */
2175 2183 uint8_t *dthpb_args; /* argument mapping array */
2176 2184 uint8_t dthpb_xargc; /* translated argument count */
2177 2185 uint8_t dthpb_nargc; /* native argument count */
2178 2186 char *dthpb_xtypes; /* translated types strings */
2179 2187 char *dthpb_ntypes; /* native types strings */
2180 2188 } dtrace_helper_probedesc_t;
2181 2189
2182 2190 typedef struct dtrace_helper_provdesc {
2183 2191 char *dthpv_provname; /* provider name */
2184 2192 dtrace_pattr_t dthpv_pattr; /* stability attributes */
2185 2193 } dtrace_helper_provdesc_t;
2186 2194
2187 2195 typedef struct dtrace_mops {
2188 2196 void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *);
2189 2197 void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2190 2198 void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2191 2199 } dtrace_mops_t;
2192 2200
2193 2201 typedef uintptr_t dtrace_meta_provider_id_t;
2194 2202
2195 2203 extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *,
2196 2204 dtrace_meta_provider_id_t *);
2197 2205 extern int dtrace_meta_unregister(dtrace_meta_provider_id_t);
2198 2206
2199 2207 /*
2200 2208 * DTrace Kernel Hooks
2201 2209 *
2202 2210 * The following functions are implemented by the base kernel and form a set of
2203 2211 * hooks used by the DTrace framework. DTrace hooks are implemented in either
2204 2212 * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a
2205 2213 * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform.
2206 2214 */
2207 2215
2208 2216 typedef enum dtrace_vtime_state {
2209 2217 DTRACE_VTIME_INACTIVE = 0, /* No DTrace, no TNF */
2210 2218 DTRACE_VTIME_ACTIVE, /* DTrace virtual time, no TNF */
2211 2219 DTRACE_VTIME_INACTIVE_TNF, /* No DTrace, TNF active */
2212 2220 DTRACE_VTIME_ACTIVE_TNF /* DTrace virtual time _and_ TNF */
2213 2221 } dtrace_vtime_state_t;
2214 2222
2215 2223 extern dtrace_vtime_state_t dtrace_vtime_active;
2216 2224 extern void dtrace_vtime_switch(kthread_t *next);
2217 2225 extern void dtrace_vtime_enable_tnf(void);
2218 2226 extern void dtrace_vtime_disable_tnf(void);
2219 2227 extern void dtrace_vtime_enable(void);
2220 2228 extern void dtrace_vtime_disable(void);
2221 2229
2222 2230 struct regs;
2223 2231
2224 2232 extern int (*dtrace_pid_probe_ptr)(struct regs *);
2225 2233 extern int (*dtrace_return_probe_ptr)(struct regs *);
2226 2234 extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *);
2227 2235 extern void (*dtrace_fasttrap_exec_ptr)(proc_t *);
2228 2236 extern void (*dtrace_fasttrap_exit_ptr)(proc_t *);
2229 2237 extern void dtrace_fasttrap_fork(proc_t *, proc_t *);
2230 2238
2231 2239 typedef uintptr_t dtrace_icookie_t;
2232 2240 typedef void (*dtrace_xcall_t)(void *);
2233 2241
2234 2242 extern dtrace_icookie_t dtrace_interrupt_disable(void);
2235 2243 extern void dtrace_interrupt_enable(dtrace_icookie_t);
2236 2244
2237 2245 extern void dtrace_membar_producer(void);
2238 2246 extern void dtrace_membar_consumer(void);
2239 2247
2240 2248 extern void (*dtrace_cpu_init)(processorid_t);
2241 2249 extern void (*dtrace_modload)(struct modctl *);
2242 2250 extern void (*dtrace_modunload)(struct modctl *);
2243 2251 extern void (*dtrace_helpers_cleanup)();
2244 2252 extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child);
2245 2253 extern void (*dtrace_cpustart_init)();
2246 2254 extern void (*dtrace_cpustart_fini)();
2247 2255 extern void (*dtrace_closef)();
2248 2256
2249 2257 extern void (*dtrace_debugger_init)();
2250 2258 extern void (*dtrace_debugger_fini)();
2251 2259 extern dtrace_cacheid_t dtrace_predcache_id;
2252 2260
2253 2261 extern hrtime_t dtrace_gethrtime(void);
2254 2262 extern void dtrace_sync(void);
2255 2263 extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t));
2256 2264 extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *);
2257 2265 extern void dtrace_vpanic(const char *, __va_list);
2258 2266 extern void dtrace_panic(const char *, ...);
2259 2267
2260 2268 extern int dtrace_safe_defer_signal(void);
2261 2269 extern void dtrace_safe_synchronous_signal(void);
2262 2270
2263 2271 extern int dtrace_mach_aframes(void);
2264 2272
2265 2273 #if defined(__i386) || defined(__amd64)
2266 2274 extern int dtrace_instr_size(uchar_t *instr);
2267 2275 extern int dtrace_instr_size_isa(uchar_t *, model_t, int *);
2268 2276 extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2269 2277 extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2270 2278 extern void dtrace_invop_callsite(void);
2271 2279 #endif
2272 2280
2273 2281 #ifdef __sparc
2274 2282 extern int dtrace_blksuword32(uintptr_t, uint32_t *, int);
2275 2283 extern void dtrace_getfsr(uint64_t *);
2276 2284 #endif
2277 2285
2278 2286 #define DTRACE_CPUFLAG_ISSET(flag) \
2279 2287 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags & (flag))
2280 2288
2281 2289 #define DTRACE_CPUFLAG_SET(flag) \
2282 2290 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= (flag))
2283 2291
2284 2292 #define DTRACE_CPUFLAG_CLEAR(flag) \
2285 2293 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags &= ~(flag))
2286 2294
2287 2295 #endif /* _KERNEL */
2288 2296
2289 2297 #endif /* _ASM */
2290 2298
2291 2299 #if defined(__i386) || defined(__amd64)
2292 2300
2293 2301 #define DTRACE_INVOP_PUSHL_EBP 1
2294 2302 #define DTRACE_INVOP_POPL_EBP 2
2295 2303 #define DTRACE_INVOP_LEAVE 3
2296 2304 #define DTRACE_INVOP_NOP 4
2297 2305 #define DTRACE_INVOP_RET 5
2298 2306
2299 2307 #endif
2300 2308
2301 2309 #ifdef __cplusplus
2302 2310 }
2303 2311 #endif
2304 2312
2305 2313 #endif /* _SYS_DTRACE_H */
↓ open down ↓ |
263 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX