1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright (c) 2012, Joyent, Inc. All rights reserved.
  25  */
  26 
  27 /*
  28  * DTrace - Dynamic Tracing for Solaris
  29  *
  30  * This is the implementation of the Solaris Dynamic Tracing framework
  31  * (DTrace).  The user-visible interface to DTrace is described at length in
  32  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
  33  * library, the in-kernel DTrace framework, and the DTrace providers are
  34  * described in the block comments in the <sys/dtrace.h> header file.  The
  35  * internal architecture of DTrace is described in the block comments in the
  36  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
  37  * implementation very much assume mastery of all of these sources; if one has
  38  * an unanswered question about the implementation, one should consult them
  39  * first.
  40  *
  41  * The functions here are ordered roughly as follows:
  42  *
  43  *   - Probe context functions
  44  *   - Probe hashing functions
  45  *   - Non-probe context utility functions
  46  *   - Matching functions
  47  *   - Provider-to-Framework API functions
  48  *   - Probe management functions
  49  *   - DIF object functions
  50  *   - Format functions
  51  *   - Predicate functions
  52  *   - ECB functions
  53  *   - Buffer functions
  54  *   - Enabling functions
  55  *   - DOF functions
  56  *   - Anonymous enabling functions
  57  *   - Consumer state functions
  58  *   - Helper functions
  59  *   - Hook functions
  60  *   - Driver cookbook functions
  61  *
  62  * Each group of functions begins with a block comment labelled the "DTrace
  63  * [Group] Functions", allowing one to find each block by searching forward
  64  * on capital-f functions.
  65  */
  66 #include <sys/errno.h>
  67 #include <sys/stat.h>
  68 #include <sys/modctl.h>
  69 #include <sys/conf.h>
  70 #include <sys/systm.h>
  71 #include <sys/ddi.h>
  72 #include <sys/sunddi.h>
  73 #include <sys/cpuvar.h>
  74 #include <sys/kmem.h>
  75 #include <sys/strsubr.h>
  76 #include <sys/sysmacros.h>
  77 #include <sys/dtrace_impl.h>
  78 #include <sys/atomic.h>
  79 #include <sys/cmn_err.h>
  80 #include <sys/mutex_impl.h>
  81 #include <sys/rwlock_impl.h>
  82 #include <sys/ctf_api.h>
  83 #include <sys/panic.h>
  84 #include <sys/priv_impl.h>
  85 #include <sys/policy.h>
  86 #include <sys/cred_impl.h>
  87 #include <sys/procfs_isa.h>
  88 #include <sys/taskq.h>
  89 #include <sys/mkdev.h>
  90 #include <sys/kdi.h>
  91 #include <sys/zone.h>
  92 #include <sys/socket.h>
  93 #include <netinet/in.h>
  94 
  95 /*
  96  * DTrace Tunable Variables
  97  *
  98  * The following variables may be tuned by adding a line to /etc/system that
  99  * includes both the name of the DTrace module ("dtrace") and the name of the
 100  * variable.  For example:
 101  *
 102  *   set dtrace:dtrace_destructive_disallow = 1
 103  *
 104  * In general, the only variables that one should be tuning this way are those
 105  * that affect system-wide DTrace behavior, and for which the default behavior
 106  * is undesirable.  Most of these variables are tunable on a per-consumer
 107  * basis using DTrace options, and need not be tuned on a system-wide basis.
 108  * When tuning these variables, avoid pathological values; while some attempt
 109  * is made to verify the integrity of these variables, they are not considered
 110  * part of the supported interface to DTrace, and they are therefore not
 111  * checked comprehensively.  Further, these variables should not be tuned
 112  * dynamically via "mdb -kw" or other means; they should only be tuned via
 113  * /etc/system.
 114  */
 115 int             dtrace_destructive_disallow = 0;
 116 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024);
 117 size_t          dtrace_difo_maxsize = (256 * 1024);
 118 dtrace_optval_t dtrace_dof_maxsize = (256 * 1024);
 119 size_t          dtrace_global_maxsize = (16 * 1024);
 120 size_t          dtrace_actions_max = (16 * 1024);
 121 size_t          dtrace_retain_max = 1024;
 122 dtrace_optval_t dtrace_helper_actions_max = 1024;
 123 dtrace_optval_t dtrace_helper_providers_max = 32;
 124 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024);
 125 size_t          dtrace_strsize_default = 256;
 126 dtrace_optval_t dtrace_cleanrate_default = 9900990;             /* 101 hz */
 127 dtrace_optval_t dtrace_cleanrate_min = 200000;                  /* 5000 hz */
 128 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;  /* 1/minute */
 129 dtrace_optval_t dtrace_aggrate_default = NANOSEC;               /* 1 hz */
 130 dtrace_optval_t dtrace_statusrate_default = NANOSEC;            /* 1 hz */
 131 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;  /* 6/minute */
 132 dtrace_optval_t dtrace_switchrate_default = NANOSEC;            /* 1 hz */
 133 dtrace_optval_t dtrace_nspec_default = 1;
 134 dtrace_optval_t dtrace_specsize_default = 32 * 1024;
 135 dtrace_optval_t dtrace_stackframes_default = 20;
 136 dtrace_optval_t dtrace_ustackframes_default = 20;
 137 dtrace_optval_t dtrace_jstackframes_default = 50;
 138 dtrace_optval_t dtrace_jstackstrsize_default = 512;
 139 int             dtrace_msgdsize_max = 128;
 140 hrtime_t        dtrace_chill_max = 500 * (NANOSEC / MILLISEC);  /* 500 ms */
 141 hrtime_t        dtrace_chill_interval = NANOSEC;                /* 1000 ms */
 142 int             dtrace_devdepth_max = 32;
 143 int             dtrace_err_verbose;
 144 hrtime_t        dtrace_deadman_interval = NANOSEC;
 145 hrtime_t        dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
 146 hrtime_t        dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
 147 hrtime_t        dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
 148 
 149 /*
 150  * DTrace External Variables
 151  *
 152  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
 153  * available to DTrace consumers via the backtick (`) syntax.  One of these,
 154  * dtrace_zero, is made deliberately so:  it is provided as a source of
 155  * well-known, zero-filled memory.  While this variable is not documented,
 156  * it is used by some translators as an implementation detail.
 157  */
 158 const char      dtrace_zero[256] = { 0 };       /* zero-filled memory */
 159 
 160 /*
 161  * DTrace Internal Variables
 162  */
 163 static dev_info_t       *dtrace_devi;           /* device info */
 164 static vmem_t           *dtrace_arena;          /* probe ID arena */
 165 static vmem_t           *dtrace_minor;          /* minor number arena */
 166 static taskq_t          *dtrace_taskq;          /* task queue */
 167 static dtrace_probe_t   **dtrace_probes;        /* array of all probes */
 168 static int              dtrace_nprobes;         /* number of probes */
 169 static dtrace_provider_t *dtrace_provider;      /* provider list */
 170 static dtrace_meta_t    *dtrace_meta_pid;       /* user-land meta provider */
 171 static int              dtrace_opens;           /* number of opens */
 172 static int              dtrace_helpers;         /* number of helpers */
 173 static int              dtrace_getf;            /* number of unpriv getf()s */
 174 static void             *dtrace_softstate;      /* softstate pointer */
 175 static dtrace_hash_t    *dtrace_bymod;          /* probes hashed by module */
 176 static dtrace_hash_t    *dtrace_byfunc;         /* probes hashed by function */
 177 static dtrace_hash_t    *dtrace_byname;         /* probes hashed by name */
 178 static dtrace_toxrange_t *dtrace_toxrange;      /* toxic range array */
 179 static int              dtrace_toxranges;       /* number of toxic ranges */
 180 static int              dtrace_toxranges_max;   /* size of toxic range array */
 181 static dtrace_anon_t    dtrace_anon;            /* anonymous enabling */
 182 static kmem_cache_t     *dtrace_state_cache;    /* cache for dynamic state */
 183 static uint64_t         dtrace_vtime_references; /* number of vtimestamp refs */
 184 static kthread_t        *dtrace_panicked;       /* panicking thread */
 185 static dtrace_ecb_t     *dtrace_ecb_create_cache; /* cached created ECB */
 186 static dtrace_genid_t   dtrace_probegen;        /* current probe generation */
 187 static dtrace_helpers_t *dtrace_deferred_pid;   /* deferred helper list */
 188 static dtrace_enabling_t *dtrace_retained;      /* list of retained enablings */
 189 static dtrace_genid_t   dtrace_retained_gen;    /* current retained enab gen */
 190 static dtrace_dynvar_t  dtrace_dynhash_sink;    /* end of dynamic hash chains */
 191 static int              dtrace_dynvar_failclean; /* dynvars failed to clean */
 192 
 193 /*
 194  * DTrace Locking
 195  * DTrace is protected by three (relatively coarse-grained) locks:
 196  *
 197  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
 198  *     including enabling state, probes, ECBs, consumer state, helper state,
 199  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
 200  *     probe context is lock-free -- synchronization is handled via the
 201  *     dtrace_sync() cross call mechanism.
 202  *
 203  * (2) dtrace_provider_lock is required when manipulating provider state, or
 204  *     when provider state must be held constant.
 205  *
 206  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
 207  *     when meta provider state must be held constant.
 208  *
 209  * The lock ordering between these three locks is dtrace_meta_lock before
 210  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
 211  * several places where dtrace_provider_lock is held by the framework as it
 212  * calls into the providers -- which then call back into the framework,
 213  * grabbing dtrace_lock.)
 214  *
 215  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
 216  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
 217  * role as a coarse-grained lock; it is acquired before both of these locks.
 218  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
 219  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
 220  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
 221  * acquired _between_ dtrace_provider_lock and dtrace_lock.
 222  */
 223 static kmutex_t         dtrace_lock;            /* probe state lock */
 224 static kmutex_t         dtrace_provider_lock;   /* provider state lock */
 225 static kmutex_t         dtrace_meta_lock;       /* meta-provider state lock */
 226 
 227 /*
 228  * DTrace Provider Variables
 229  *
 230  * These are the variables relating to DTrace as a provider (that is, the
 231  * provider of the BEGIN, END, and ERROR probes).
 232  */
 233 static dtrace_pattr_t   dtrace_provider_attr = {
 234 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
 235 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
 236 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
 237 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
 238 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
 239 };
 240 
 241 static void
 242 dtrace_nullop(void)
 243 {}
 244 
 245 static int
 246 dtrace_enable_nullop(void)
 247 {
 248         return (0);
 249 }
 250 
 251 static dtrace_pops_t    dtrace_provider_ops = {
 252         (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop,
 253         (void (*)(void *, struct modctl *))dtrace_nullop,
 254         (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop,
 255         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
 256         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
 257         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
 258         NULL,
 259         NULL,
 260         NULL,
 261         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop
 262 };
 263 
 264 static dtrace_id_t      dtrace_probeid_begin;   /* special BEGIN probe */
 265 static dtrace_id_t      dtrace_probeid_end;     /* special END probe */
 266 dtrace_id_t             dtrace_probeid_error;   /* special ERROR probe */
 267 
 268 /*
 269  * DTrace Helper Tracing Variables
 270  */
 271 uint32_t dtrace_helptrace_next = 0;
 272 uint32_t dtrace_helptrace_nlocals;
 273 char    *dtrace_helptrace_buffer;
 274 int     dtrace_helptrace_bufsize = 512 * 1024;
 275 
 276 #ifdef DEBUG
 277 int     dtrace_helptrace_enabled = 1;
 278 #else
 279 int     dtrace_helptrace_enabled = 0;
 280 #endif
 281 
 282 /*
 283  * DTrace Error Hashing
 284  *
 285  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
 286  * table.  This is very useful for checking coverage of tests that are
 287  * expected to induce DIF or DOF processing errors, and may be useful for
 288  * debugging problems in the DIF code generator or in DOF generation .  The
 289  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
 290  */
 291 #ifdef DEBUG
 292 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ];
 293 static const char *dtrace_errlast;
 294 static kthread_t *dtrace_errthread;
 295 static kmutex_t dtrace_errlock;
 296 #endif
 297 
 298 /*
 299  * DTrace Macros and Constants
 300  *
 301  * These are various macros that are useful in various spots in the
 302  * implementation, along with a few random constants that have no meaning
 303  * outside of the implementation.  There is no real structure to this cpp
 304  * mishmash -- but is there ever?
 305  */
 306 #define DTRACE_HASHSTR(hash, probe)     \
 307         dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
 308 
 309 #define DTRACE_HASHNEXT(hash, probe)    \
 310         (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
 311 
 312 #define DTRACE_HASHPREV(hash, probe)    \
 313         (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
 314 
 315 #define DTRACE_HASHEQ(hash, lhs, rhs)   \
 316         (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
 317             *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
 318 
 319 #define DTRACE_AGGHASHSIZE_SLEW         17
 320 
 321 #define DTRACE_V4MAPPED_OFFSET          (sizeof (uint32_t) * 3)
 322 
 323 /*
 324  * The key for a thread-local variable consists of the lower 61 bits of the
 325  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
 326  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
 327  * equal to a variable identifier.  This is necessary (but not sufficient) to
 328  * assure that global associative arrays never collide with thread-local
 329  * variables.  To guarantee that they cannot collide, we must also define the
 330  * order for keying dynamic variables.  That order is:
 331  *
 332  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
 333  *
 334  * Because the variable-key and the tls-key are in orthogonal spaces, there is
 335  * no way for a global variable key signature to match a thread-local key
 336  * signature.
 337  */
 338 #define DTRACE_TLS_THRKEY(where) { \
 339         uint_t intr = 0; \
 340         uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
 341         for (; actv; actv >>= 1) \
 342                 intr++; \
 343         ASSERT(intr < (1 << 3)); \
 344         (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
 345             (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
 346 }
 347 
 348 #define DT_BSWAP_8(x)   ((x) & 0xff)
 349 #define DT_BSWAP_16(x)  ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
 350 #define DT_BSWAP_32(x)  ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
 351 #define DT_BSWAP_64(x)  ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
 352 
 353 #define DT_MASK_LO 0x00000000FFFFFFFFULL
 354 
 355 #define DTRACE_STORE(type, tomax, offset, what) \
 356         *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
 357 
 358 #ifndef __i386
 359 #define DTRACE_ALIGNCHECK(addr, size, flags)                            \
 360         if (addr & (size - 1)) {                                    \
 361                 *flags |= CPU_DTRACE_BADALIGN;                          \
 362                 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;     \
 363                 return (0);                                             \
 364         }
 365 #else
 366 #define DTRACE_ALIGNCHECK(addr, size, flags)
 367 #endif
 368 
 369 /*
 370  * Test whether a range of memory starting at testaddr of size testsz falls
 371  * within the range of memory described by addr, sz.  We take care to avoid
 372  * problems with overflow and underflow of the unsigned quantities, and
 373  * disallow all negative sizes.  Ranges of size 0 are allowed.
 374  */
 375 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
 376         ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \
 377         (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \
 378         (testaddr) + (testsz) >= (testaddr))
 379 
 380 /*
 381  * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
 382  * alloc_sz on the righthand side of the comparison in order to avoid overflow
 383  * or underflow in the comparison with it.  This is simpler than the INRANGE
 384  * check above, because we know that the dtms_scratch_ptr is valid in the
 385  * range.  Allocations of size zero are allowed.
 386  */
 387 #define DTRACE_INSCRATCH(mstate, alloc_sz) \
 388         ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
 389         (mstate)->dtms_scratch_ptr >= (alloc_sz))
 390 
 391 #define DTRACE_LOADFUNC(bits)                                           \
 392 /*CSTYLED*/                                                             \
 393 uint##bits##_t                                                          \
 394 dtrace_load##bits(uintptr_t addr)                                       \
 395 {                                                                       \
 396         size_t size = bits / NBBY;                                      \
 397         /*CSTYLED*/                                                     \
 398         uint##bits##_t rval;                                            \
 399         int i;                                                          \
 400         volatile uint16_t *flags = (volatile uint16_t *)                \
 401             &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;                    \
 402                                                                         \
 403         DTRACE_ALIGNCHECK(addr, size, flags);                           \
 404                                                                         \
 405         for (i = 0; i < dtrace_toxranges; i++) {                     \
 406                 if (addr >= dtrace_toxrange[i].dtt_limit)            \
 407                         continue;                                       \
 408                                                                         \
 409                 if (addr + size <= dtrace_toxrange[i].dtt_base)              \
 410                         continue;                                       \
 411                                                                         \
 412                 /*                                                      \
 413                  * This address falls within a toxic region; return 0.  \
 414                  */                                                     \
 415                 *flags |= CPU_DTRACE_BADADDR;                           \
 416                 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;     \
 417                 return (0);                                             \
 418         }                                                               \
 419                                                                         \
 420         *flags |= CPU_DTRACE_NOFAULT;                                   \
 421         /*CSTYLED*/                                                     \
 422         rval = *((volatile uint##bits##_t *)addr);                      \
 423         *flags &= ~CPU_DTRACE_NOFAULT;                                      \
 424                                                                         \
 425         return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);           \
 426 }
 427 
 428 #ifdef _LP64
 429 #define dtrace_loadptr  dtrace_load64
 430 #else
 431 #define dtrace_loadptr  dtrace_load32
 432 #endif
 433 
 434 #define DTRACE_DYNHASH_FREE     0
 435 #define DTRACE_DYNHASH_SINK     1
 436 #define DTRACE_DYNHASH_VALID    2
 437 
 438 #define DTRACE_MATCH_FAIL       -1
 439 #define DTRACE_MATCH_NEXT       0
 440 #define DTRACE_MATCH_DONE       1
 441 #define DTRACE_ANCHORED(probe)  ((probe)->dtpr_func[0] != '\0')
 442 #define DTRACE_STATE_ALIGN      64
 443 
 444 #define DTRACE_FLAGS2FLT(flags)                                         \
 445         (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :               \
 446         ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :            \
 447         ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :                \
 448         ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :            \
 449         ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :            \
 450         ((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :             \
 451         ((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :             \
 452         ((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :   \
 453         ((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :             \
 454         DTRACEFLT_UNKNOWN)
 455 
 456 #define DTRACEACT_ISSTRING(act)                                         \
 457         ((act)->dta_kind == DTRACEACT_DIFEXPR &&                     \
 458         (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
 459 
 460 static size_t dtrace_strlen(const char *, size_t);
 461 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
 462 static void dtrace_enabling_provide(dtrace_provider_t *);
 463 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
 464 static void dtrace_enabling_matchall(void);
 465 static void dtrace_enabling_reap(void);
 466 static dtrace_state_t *dtrace_anon_grab(void);
 467 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
 468     dtrace_state_t *, uint64_t, uint64_t);
 469 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
 470 static void dtrace_buffer_drop(dtrace_buffer_t *);
 471 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
 472 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
 473     dtrace_state_t *, dtrace_mstate_t *);
 474 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
 475     dtrace_optval_t);
 476 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
 477 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
 478 static int dtrace_priv_proc(dtrace_state_t *, dtrace_mstate_t *);
 479 static void dtrace_getf_barrier(void);
 480 
 481 /*
 482  * DTrace Probe Context Functions
 483  *
 484  * These functions are called from probe context.  Because probe context is
 485  * any context in which C may be called, arbitrarily locks may be held,
 486  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
 487  * As a result, functions called from probe context may only call other DTrace
 488  * support functions -- they may not interact at all with the system at large.
 489  * (Note that the ASSERT macro is made probe-context safe by redefining it in
 490  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
 491  * loads are to be performed from probe context, they _must_ be in terms of
 492  * the safe dtrace_load*() variants.
 493  *
 494  * Some functions in this block are not actually called from probe context;
 495  * for these functions, there will be a comment above the function reading
 496  * "Note:  not called from probe context."
 497  */
 498 void
 499 dtrace_panic(const char *format, ...)
 500 {
 501         va_list alist;
 502 
 503         va_start(alist, format);
 504         dtrace_vpanic(format, alist);
 505         va_end(alist);
 506 }
 507 
 508 int
 509 dtrace_assfail(const char *a, const char *f, int l)
 510 {
 511         dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
 512 
 513         /*
 514          * We just need something here that even the most clever compiler
 515          * cannot optimize away.
 516          */
 517         return (a[(uintptr_t)f]);
 518 }
 519 
 520 /*
 521  * Atomically increment a specified error counter from probe context.
 522  */
 523 static void
 524 dtrace_error(uint32_t *counter)
 525 {
 526         /*
 527          * Most counters stored to in probe context are per-CPU counters.
 528          * However, there are some error conditions that are sufficiently
 529          * arcane that they don't merit per-CPU storage.  If these counters
 530          * are incremented concurrently on different CPUs, scalability will be
 531          * adversely affected -- but we don't expect them to be white-hot in a
 532          * correctly constructed enabling...
 533          */
 534         uint32_t oval, nval;
 535 
 536         do {
 537                 oval = *counter;
 538 
 539                 if ((nval = oval + 1) == 0) {
 540                         /*
 541                          * If the counter would wrap, set it to 1 -- assuring
 542                          * that the counter is never zero when we have seen
 543                          * errors.  (The counter must be 32-bits because we
 544                          * aren't guaranteed a 64-bit compare&swap operation.)
 545                          * To save this code both the infamy of being fingered
 546                          * by a priggish news story and the indignity of being
 547                          * the target of a neo-puritan witch trial, we're
 548                          * carefully avoiding any colorful description of the
 549                          * likelihood of this condition -- but suffice it to
 550                          * say that it is only slightly more likely than the
 551                          * overflow of predicate cache IDs, as discussed in
 552                          * dtrace_predicate_create().
 553                          */
 554                         nval = 1;
 555                 }
 556         } while (dtrace_cas32(counter, oval, nval) != oval);
 557 }
 558 
 559 /*
 560  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
 561  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
 562  */
 563 DTRACE_LOADFUNC(8)
 564 DTRACE_LOADFUNC(16)
 565 DTRACE_LOADFUNC(32)
 566 DTRACE_LOADFUNC(64)
 567 
 568 static int
 569 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
 570 {
 571         if (dest < mstate->dtms_scratch_base)
 572                 return (0);
 573 
 574         if (dest + size < dest)
 575                 return (0);
 576 
 577         if (dest + size > mstate->dtms_scratch_ptr)
 578                 return (0);
 579 
 580         return (1);
 581 }
 582 
 583 static int
 584 dtrace_canstore_statvar(uint64_t addr, size_t sz,
 585     dtrace_statvar_t **svars, int nsvars)
 586 {
 587         int i;
 588 
 589         for (i = 0; i < nsvars; i++) {
 590                 dtrace_statvar_t *svar = svars[i];
 591 
 592                 if (svar == NULL || svar->dtsv_size == 0)
 593                         continue;
 594 
 595                 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
 596                         return (1);
 597         }
 598 
 599         return (0);
 600 }
 601 
 602 /*
 603  * Check to see if the address is within a memory region to which a store may
 604  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
 605  * region.  The caller of dtrace_canstore() is responsible for performing any
 606  * alignment checks that are needed before stores are actually executed.
 607  */
 608 static int
 609 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
 610     dtrace_vstate_t *vstate)
 611 {
 612         /*
 613          * First, check to see if the address is in scratch space...
 614          */
 615         if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
 616             mstate->dtms_scratch_size))
 617                 return (1);
 618 
 619         /*
 620          * Now check to see if it's a dynamic variable.  This check will pick
 621          * up both thread-local variables and any global dynamically-allocated
 622          * variables.
 623          */
 624         if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base,
 625             vstate->dtvs_dynvars.dtds_size)) {
 626                 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
 627                 uintptr_t base = (uintptr_t)dstate->dtds_base +
 628                     (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
 629                 uintptr_t chunkoffs;
 630 
 631                 /*
 632                  * Before we assume that we can store here, we need to make
 633                  * sure that it isn't in our metadata -- storing to our
 634                  * dynamic variable metadata would corrupt our state.  For
 635                  * the range to not include any dynamic variable metadata,
 636                  * it must:
 637                  *
 638                  *      (1) Start above the hash table that is at the base of
 639                  *      the dynamic variable space
 640                  *
 641                  *      (2) Have a starting chunk offset that is beyond the
 642                  *      dtrace_dynvar_t that is at the base of every chunk
 643                  *
 644                  *      (3) Not span a chunk boundary
 645                  *
 646                  */
 647                 if (addr < base)
 648                         return (0);
 649 
 650                 chunkoffs = (addr - base) % dstate->dtds_chunksize;
 651 
 652                 if (chunkoffs < sizeof (dtrace_dynvar_t))
 653                         return (0);
 654 
 655                 if (chunkoffs + sz > dstate->dtds_chunksize)
 656                         return (0);
 657 
 658                 return (1);
 659         }
 660 
 661         /*
 662          * Finally, check the static local and global variables.  These checks
 663          * take the longest, so we perform them last.
 664          */
 665         if (dtrace_canstore_statvar(addr, sz,
 666             vstate->dtvs_locals, vstate->dtvs_nlocals))
 667                 return (1);
 668 
 669         if (dtrace_canstore_statvar(addr, sz,
 670             vstate->dtvs_globals, vstate->dtvs_nglobals))
 671                 return (1);
 672 
 673         return (0);
 674 }
 675 
 676 
 677 /*
 678  * Convenience routine to check to see if the address is within a memory
 679  * region in which a load may be issued given the user's privilege level;
 680  * if not, it sets the appropriate error flags and loads 'addr' into the
 681  * illegal value slot.
 682  *
 683  * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
 684  * appropriate memory access protection.
 685  */
 686 static int
 687 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
 688     dtrace_vstate_t *vstate)
 689 {
 690         volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
 691         file_t *fp;
 692 
 693         /*
 694          * If we hold the privilege to read from kernel memory, then
 695          * everything is readable.
 696          */
 697         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
 698                 return (1);
 699 
 700         /*
 701          * You can obviously read that which you can store.
 702          */
 703         if (dtrace_canstore(addr, sz, mstate, vstate))
 704                 return (1);
 705 
 706         /*
 707          * We're allowed to read from our own string table.
 708          */
 709         if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab,
 710             mstate->dtms_difo->dtdo_strlen))
 711                 return (1);
 712 
 713         if (vstate->dtvs_state != NULL &&
 714             dtrace_priv_proc(vstate->dtvs_state, mstate)) {
 715                 proc_t *p;
 716 
 717                 /*
 718                  * When we have privileges to the current process, there are
 719                  * several context-related kernel structures that are safe to
 720                  * read, even absent the privilege to read from kernel memory.
 721                  * These reads are safe because these structures contain only
 722                  * state that (1) we're permitted to read, (2) is harmless or
 723                  * (3) contains pointers to additional kernel state that we're
 724                  * not permitted to read (and as such, do not present an
 725                  * opportunity for privilege escalation).  Finally (and
 726                  * critically), because of the nature of their relation with
 727                  * the current thread context, the memory associated with these
 728                  * structures cannot change over the duration of probe context,
 729                  * and it is therefore impossible for this memory to be
 730                  * deallocated and reallocated as something else while it's
 731                  * being operated upon.
 732                  */
 733                 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t)))
 734                         return (1);
 735 
 736                 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr,
 737                     sz, curthread->t_procp, sizeof (proc_t))) {
 738                         return (1);
 739                 }
 740 
 741                 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz,
 742                     curthread->t_cred, sizeof (cred_t))) {
 743                         return (1);
 744                 }
 745 
 746                 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz,
 747                     &(p->p_pidp->pid_id), sizeof (pid_t))) {
 748                         return (1);
 749                 }
 750 
 751                 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz,
 752                     curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) {
 753                         return (1);
 754                 }
 755         }
 756 
 757         if ((fp = mstate->dtms_getf) != NULL) {
 758                 uintptr_t psz = sizeof (void *);
 759                 vnode_t *vp;
 760                 vnodeops_t *op;
 761 
 762                 /*
 763                  * When getf() returns a file_t, the enabling is implicitly
 764                  * granted the (transient) right to read the returned file_t
 765                  * as well as the v_path and v_op->vnop_name of the underlying
 766                  * vnode.  These accesses are allowed after a successful
 767                  * getf() because the members that they refer to cannot change
 768                  * once set -- and the barrier logic in the kernel's closef()
 769                  * path assures that the file_t and its referenced vode_t
 770                  * cannot themselves be stale (that is, it impossible for
 771                  * either dtms_getf itself or its f_vnode member to reference
 772                  * freed memory).
 773                  */
 774                 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t)))
 775                         return (1);
 776 
 777                 if ((vp = fp->f_vnode) != NULL) {
 778                         if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz))
 779                                 return (1);
 780 
 781                         if (vp->v_path != NULL && DTRACE_INRANGE(addr, sz,
 782                             vp->v_path, strlen(vp->v_path) + 1)) {
 783                                 return (1);
 784                         }
 785 
 786                         if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz))
 787                                 return (1);
 788 
 789                         if ((op = vp->v_op) != NULL &&
 790                             DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) {
 791                                 return (1);
 792                         }
 793 
 794                         if (op != NULL && op->vnop_name != NULL &&
 795                             DTRACE_INRANGE(addr, sz, op->vnop_name,
 796                             strlen(op->vnop_name) + 1)) {
 797                                 return (1);
 798                         }
 799                 }
 800         }
 801 
 802         DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
 803         *illval = addr;
 804         return (0);
 805 }
 806 
 807 /*
 808  * Convenience routine to check to see if a given string is within a memory
 809  * region in which a load may be issued given the user's privilege level;
 810  * this exists so that we don't need to issue unnecessary dtrace_strlen()
 811  * calls in the event that the user has all privileges.
 812  */
 813 static int
 814 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
 815     dtrace_vstate_t *vstate)
 816 {
 817         size_t strsz;
 818 
 819         /*
 820          * If we hold the privilege to read from kernel memory, then
 821          * everything is readable.
 822          */
 823         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
 824                 return (1);
 825 
 826         strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
 827         if (dtrace_canload(addr, strsz, mstate, vstate))
 828                 return (1);
 829 
 830         return (0);
 831 }
 832 
 833 /*
 834  * Convenience routine to check to see if a given variable is within a memory
 835  * region in which a load may be issued given the user's privilege level.
 836  */
 837 static int
 838 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
 839     dtrace_vstate_t *vstate)
 840 {
 841         size_t sz;
 842         ASSERT(type->dtdt_flags & DIF_TF_BYREF);
 843 
 844         /*
 845          * If we hold the privilege to read from kernel memory, then
 846          * everything is readable.
 847          */
 848         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
 849                 return (1);
 850 
 851         if (type->dtdt_kind == DIF_TYPE_STRING)
 852                 sz = dtrace_strlen(src,
 853                     vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
 854         else
 855                 sz = type->dtdt_size;
 856 
 857         return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
 858 }
 859 
 860 /*
 861  * Compare two strings using safe loads.
 862  */
 863 static int
 864 dtrace_strncmp(char *s1, char *s2, size_t limit)
 865 {
 866         uint8_t c1, c2;
 867         volatile uint16_t *flags;
 868 
 869         if (s1 == s2 || limit == 0)
 870                 return (0);
 871 
 872         flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
 873 
 874         do {
 875                 if (s1 == NULL) {
 876                         c1 = '\0';
 877                 } else {
 878                         c1 = dtrace_load8((uintptr_t)s1++);
 879                 }
 880 
 881                 if (s2 == NULL) {
 882                         c2 = '\0';
 883                 } else {
 884                         c2 = dtrace_load8((uintptr_t)s2++);
 885                 }
 886 
 887                 if (c1 != c2)
 888                         return (c1 - c2);
 889         } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
 890 
 891         return (0);
 892 }
 893 
 894 /*
 895  * Compute strlen(s) for a string using safe memory accesses.  The additional
 896  * len parameter is used to specify a maximum length to ensure completion.
 897  */
 898 static size_t
 899 dtrace_strlen(const char *s, size_t lim)
 900 {
 901         uint_t len;
 902 
 903         for (len = 0; len != lim; len++) {
 904                 if (dtrace_load8((uintptr_t)s++) == '\0')
 905                         break;
 906         }
 907 
 908         return (len);
 909 }
 910 
 911 /*
 912  * Check if an address falls within a toxic region.
 913  */
 914 static int
 915 dtrace_istoxic(uintptr_t kaddr, size_t size)
 916 {
 917         uintptr_t taddr, tsize;
 918         int i;
 919 
 920         for (i = 0; i < dtrace_toxranges; i++) {
 921                 taddr = dtrace_toxrange[i].dtt_base;
 922                 tsize = dtrace_toxrange[i].dtt_limit - taddr;
 923 
 924                 if (kaddr - taddr < tsize) {
 925                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
 926                         cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr;
 927                         return (1);
 928                 }
 929 
 930                 if (taddr - kaddr < size) {
 931                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
 932                         cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr;
 933                         return (1);
 934                 }
 935         }
 936 
 937         return (0);
 938 }
 939 
 940 /*
 941  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
 942  * memory specified by the DIF program.  The dst is assumed to be safe memory
 943  * that we can store to directly because it is managed by DTrace.  As with
 944  * standard bcopy, overlapping copies are handled properly.
 945  */
 946 static void
 947 dtrace_bcopy(const void *src, void *dst, size_t len)
 948 {
 949         if (len != 0) {
 950                 uint8_t *s1 = dst;
 951                 const uint8_t *s2 = src;
 952 
 953                 if (s1 <= s2) {
 954                         do {
 955                                 *s1++ = dtrace_load8((uintptr_t)s2++);
 956                         } while (--len != 0);
 957                 } else {
 958                         s2 += len;
 959                         s1 += len;
 960 
 961                         do {
 962                                 *--s1 = dtrace_load8((uintptr_t)--s2);
 963                         } while (--len != 0);
 964                 }
 965         }
 966 }
 967 
 968 /*
 969  * Copy src to dst using safe memory accesses, up to either the specified
 970  * length, or the point that a nul byte is encountered.  The src is assumed to
 971  * be unsafe memory specified by the DIF program.  The dst is assumed to be
 972  * safe memory that we can store to directly because it is managed by DTrace.
 973  * Unlike dtrace_bcopy(), overlapping regions are not handled.
 974  */
 975 static void
 976 dtrace_strcpy(const void *src, void *dst, size_t len)
 977 {
 978         if (len != 0) {
 979                 uint8_t *s1 = dst, c;
 980                 const uint8_t *s2 = src;
 981 
 982                 do {
 983                         *s1++ = c = dtrace_load8((uintptr_t)s2++);
 984                 } while (--len != 0 && c != '\0');
 985         }
 986 }
 987 
 988 /*
 989  * Copy src to dst, deriving the size and type from the specified (BYREF)
 990  * variable type.  The src is assumed to be unsafe memory specified by the DIF
 991  * program.  The dst is assumed to be DTrace variable memory that is of the
 992  * specified type; we assume that we can store to directly.
 993  */
 994 static void
 995 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
 996 {
 997         ASSERT(type->dtdt_flags & DIF_TF_BYREF);
 998 
 999         if (type->dtdt_kind == DIF_TYPE_STRING) {
1000                 dtrace_strcpy(src, dst, type->dtdt_size);
1001         } else {
1002                 dtrace_bcopy(src, dst, type->dtdt_size);
1003         }
1004 }
1005 
1006 /*
1007  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1008  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1009  * safe memory that we can access directly because it is managed by DTrace.
1010  */
1011 static int
1012 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1013 {
1014         volatile uint16_t *flags;
1015 
1016         flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
1017 
1018         if (s1 == s2)
1019                 return (0);
1020 
1021         if (s1 == NULL || s2 == NULL)
1022                 return (1);
1023 
1024         if (s1 != s2 && len != 0) {
1025                 const uint8_t *ps1 = s1;
1026                 const uint8_t *ps2 = s2;
1027 
1028                 do {
1029                         if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1030                                 return (1);
1031                 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1032         }
1033         return (0);
1034 }
1035 
1036 /*
1037  * Zero the specified region using a simple byte-by-byte loop.  Note that this
1038  * is for safe DTrace-managed memory only.
1039  */
1040 static void
1041 dtrace_bzero(void *dst, size_t len)
1042 {
1043         uchar_t *cp;
1044 
1045         for (cp = dst; len != 0; len--)
1046                 *cp++ = 0;
1047 }
1048 
1049 static void
1050 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1051 {
1052         uint64_t result[2];
1053 
1054         result[0] = addend1[0] + addend2[0];
1055         result[1] = addend1[1] + addend2[1] +
1056             (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1057 
1058         sum[0] = result[0];
1059         sum[1] = result[1];
1060 }
1061 
1062 /*
1063  * Shift the 128-bit value in a by b. If b is positive, shift left.
1064  * If b is negative, shift right.
1065  */
1066 static void
1067 dtrace_shift_128(uint64_t *a, int b)
1068 {
1069         uint64_t mask;
1070 
1071         if (b == 0)
1072                 return;
1073 
1074         if (b < 0) {
1075                 b = -b;
1076                 if (b >= 64) {
1077                         a[0] = a[1] >> (b - 64);
1078                         a[1] = 0;
1079                 } else {
1080                         a[0] >>= b;
1081                         mask = 1LL << (64 - b);
1082                         mask -= 1;
1083                         a[0] |= ((a[1] & mask) << (64 - b));
1084                         a[1] >>= b;
1085                 }
1086         } else {
1087                 if (b >= 64) {
1088                         a[1] = a[0] << (b - 64);
1089                         a[0] = 0;
1090                 } else {
1091                         a[1] <<= b;
1092                         mask = a[0] >> (64 - b);
1093                         a[1] |= mask;
1094                         a[0] <<= b;
1095                 }
1096         }
1097 }
1098 
1099 /*
1100  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1101  * use native multiplication on those, and then re-combine into the
1102  * resulting 128-bit value.
1103  *
1104  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1105  *     hi1 * hi2 << 64 +
1106  *     hi1 * lo2 << 32 +
1107  *     hi2 * lo1 << 32 +
1108  *     lo1 * lo2
1109  */
1110 static void
1111 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1112 {
1113         uint64_t hi1, hi2, lo1, lo2;
1114         uint64_t tmp[2];
1115 
1116         hi1 = factor1 >> 32;
1117         hi2 = factor2 >> 32;
1118 
1119         lo1 = factor1 & DT_MASK_LO;
1120         lo2 = factor2 & DT_MASK_LO;
1121 
1122         product[0] = lo1 * lo2;
1123         product[1] = hi1 * hi2;
1124 
1125         tmp[0] = hi1 * lo2;
1126         tmp[1] = 0;
1127         dtrace_shift_128(tmp, 32);
1128         dtrace_add_128(product, tmp, product);
1129 
1130         tmp[0] = hi2 * lo1;
1131         tmp[1] = 0;
1132         dtrace_shift_128(tmp, 32);
1133         dtrace_add_128(product, tmp, product);
1134 }
1135 
1136 /*
1137  * This privilege check should be used by actions and subroutines to
1138  * verify that the user credentials of the process that enabled the
1139  * invoking ECB match the target credentials
1140  */
1141 static int
1142 dtrace_priv_proc_common_user(dtrace_state_t *state)
1143 {
1144         cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1145 
1146         /*
1147          * We should always have a non-NULL state cred here, since if cred
1148          * is null (anonymous tracing), we fast-path bypass this routine.
1149          */
1150         ASSERT(s_cr != NULL);
1151 
1152         if ((cr = CRED()) != NULL &&
1153             s_cr->cr_uid == cr->cr_uid &&
1154             s_cr->cr_uid == cr->cr_ruid &&
1155             s_cr->cr_uid == cr->cr_suid &&
1156             s_cr->cr_gid == cr->cr_gid &&
1157             s_cr->cr_gid == cr->cr_rgid &&
1158             s_cr->cr_gid == cr->cr_sgid)
1159                 return (1);
1160 
1161         return (0);
1162 }
1163 
1164 /*
1165  * This privilege check should be used by actions and subroutines to
1166  * verify that the zone of the process that enabled the invoking ECB
1167  * matches the target credentials
1168  */
1169 static int
1170 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1171 {
1172         cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1173 
1174         /*
1175          * We should always have a non-NULL state cred here, since if cred
1176          * is null (anonymous tracing), we fast-path bypass this routine.
1177          */
1178         ASSERT(s_cr != NULL);
1179 
1180         if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone)
1181                 return (1);
1182 
1183         return (0);
1184 }
1185 
1186 /*
1187  * This privilege check should be used by actions and subroutines to
1188  * verify that the process has not setuid or changed credentials.
1189  */
1190 static int
1191 dtrace_priv_proc_common_nocd()
1192 {
1193         proc_t *proc;
1194 
1195         if ((proc = ttoproc(curthread)) != NULL &&
1196             !(proc->p_flag & SNOCD))
1197                 return (1);
1198 
1199         return (0);
1200 }
1201 
1202 static int
1203 dtrace_priv_proc_destructive(dtrace_state_t *state, dtrace_mstate_t *mstate)
1204 {
1205         int action = state->dts_cred.dcr_action;
1206 
1207         if (!(mstate->dtms_access & DTRACE_ACCESS_PROC))
1208                 goto bad;
1209 
1210         if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1211             dtrace_priv_proc_common_zone(state) == 0)
1212                 goto bad;
1213 
1214         if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1215             dtrace_priv_proc_common_user(state) == 0)
1216                 goto bad;
1217 
1218         if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1219             dtrace_priv_proc_common_nocd() == 0)
1220                 goto bad;
1221 
1222         return (1);
1223 
1224 bad:
1225         cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1226 
1227         return (0);
1228 }
1229 
1230 static int
1231 dtrace_priv_proc_control(dtrace_state_t *state, dtrace_mstate_t *mstate)
1232 {
1233         if (mstate->dtms_access & DTRACE_ACCESS_PROC) {
1234                 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1235                         return (1);
1236 
1237                 if (dtrace_priv_proc_common_zone(state) &&
1238                     dtrace_priv_proc_common_user(state) &&
1239                     dtrace_priv_proc_common_nocd())
1240                         return (1);
1241         }
1242 
1243         cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1244 
1245         return (0);
1246 }
1247 
1248 static int
1249 dtrace_priv_proc(dtrace_state_t *state, dtrace_mstate_t *mstate)
1250 {
1251         if ((mstate->dtms_access & DTRACE_ACCESS_PROC) &&
1252             (state->dts_cred.dcr_action & DTRACE_CRA_PROC))
1253                 return (1);
1254 
1255         cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1256 
1257         return (0);
1258 }
1259 
1260 static int
1261 dtrace_priv_kernel(dtrace_state_t *state)
1262 {
1263         if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1264                 return (1);
1265 
1266         cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1267 
1268         return (0);
1269 }
1270 
1271 static int
1272 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1273 {
1274         if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1275                 return (1);
1276 
1277         cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1278 
1279         return (0);
1280 }
1281 
1282 /*
1283  * Determine if the dte_cond of the specified ECB allows for processing of
1284  * the current probe to continue.  Note that this routine may allow continued
1285  * processing, but with access(es) stripped from the mstate's dtms_access
1286  * field.
1287  */
1288 static int
1289 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate,
1290     dtrace_ecb_t *ecb)
1291 {
1292         dtrace_probe_t *probe = ecb->dte_probe;
1293         dtrace_provider_t *prov = probe->dtpr_provider;
1294         dtrace_pops_t *pops = &prov->dtpv_pops;
1295         int mode = DTRACE_MODE_NOPRIV_DROP;
1296 
1297         ASSERT(ecb->dte_cond);
1298 
1299         if (pops->dtps_mode != NULL) {
1300                 mode = pops->dtps_mode(prov->dtpv_arg,
1301                     probe->dtpr_id, probe->dtpr_arg);
1302 
1303                 ASSERT(mode & (DTRACE_MODE_USER | DTRACE_MODE_KERNEL));
1304                 ASSERT(mode & (DTRACE_MODE_NOPRIV_RESTRICT |
1305                     DTRACE_MODE_NOPRIV_DROP));
1306         }
1307 
1308         /*
1309          * If the dte_cond bits indicate that this consumer is only allowed to
1310          * see user-mode firings of this probe, check that the probe was fired
1311          * while in a user context.  If that's not the case, use the policy
1312          * specified by the provider to determine if we drop the probe or
1313          * merely restrict operation.
1314          */
1315         if (ecb->dte_cond & DTRACE_COND_USERMODE) {
1316                 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP);
1317 
1318                 if (!(mode & DTRACE_MODE_USER)) {
1319                         if (mode & DTRACE_MODE_NOPRIV_DROP)
1320                                 return (0);
1321 
1322                         mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1323                 }
1324         }
1325 
1326         /*
1327          * This is more subtle than it looks. We have to be absolutely certain
1328          * that CRED() isn't going to change out from under us so it's only
1329          * legit to examine that structure if we're in constrained situations.
1330          * Currently, the only times we'll this check is if a non-super-user
1331          * has enabled the profile or syscall providers -- providers that
1332          * allow visibility of all processes. For the profile case, the check
1333          * above will ensure that we're examining a user context.
1334          */
1335         if (ecb->dte_cond & DTRACE_COND_OWNER) {
1336                 cred_t *cr;
1337                 cred_t *s_cr = state->dts_cred.dcr_cred;
1338                 proc_t *proc;
1339 
1340                 ASSERT(s_cr != NULL);
1341 
1342                 if ((cr = CRED()) == NULL ||
1343                     s_cr->cr_uid != cr->cr_uid ||
1344                     s_cr->cr_uid != cr->cr_ruid ||
1345                     s_cr->cr_uid != cr->cr_suid ||
1346                     s_cr->cr_gid != cr->cr_gid ||
1347                     s_cr->cr_gid != cr->cr_rgid ||
1348                     s_cr->cr_gid != cr->cr_sgid ||
1349                     (proc = ttoproc(curthread)) == NULL ||
1350                     (proc->p_flag & SNOCD)) {
1351                         if (mode & DTRACE_MODE_NOPRIV_DROP)
1352                                 return (0);
1353 
1354                         mstate->dtms_access &= ~DTRACE_ACCESS_PROC;
1355                 }
1356         }
1357 
1358         /*
1359          * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not
1360          * in our zone, check to see if our mode policy is to restrict rather
1361          * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC
1362          * and DTRACE_ACCESS_ARGS
1363          */
1364         if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
1365                 cred_t *cr;
1366                 cred_t *s_cr = state->dts_cred.dcr_cred;
1367 
1368                 ASSERT(s_cr != NULL);
1369 
1370                 if ((cr = CRED()) == NULL ||
1371                     s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) {
1372                         if (mode & DTRACE_MODE_NOPRIV_DROP)
1373                                 return (0);
1374 
1375                         mstate->dtms_access &=
1376                             ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS);
1377                 }
1378         }
1379 
1380         /*
1381          * By merits of being in this code path at all, we have limited
1382          * privileges.  If the provider has indicated that limited privileges
1383          * are to denote restricted operation, strip off the ability to access
1384          * arguments.
1385          */
1386         if (mode & DTRACE_MODE_LIMITEDPRIV_RESTRICT)
1387                 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1388 
1389         return (1);
1390 }
1391 
1392 /*
1393  * Note:  not called from probe context.  This function is called
1394  * asynchronously (and at a regular interval) from outside of probe context to
1395  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1396  * cleaning is explained in detail in <sys/dtrace_impl.h>.
1397  */
1398 void
1399 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1400 {
1401         dtrace_dynvar_t *dirty;
1402         dtrace_dstate_percpu_t *dcpu;
1403         dtrace_dynvar_t **rinsep;
1404         int i, j, work = 0;
1405 
1406         for (i = 0; i < NCPU; i++) {
1407                 dcpu = &dstate->dtds_percpu[i];
1408                 rinsep = &dcpu->dtdsc_rinsing;
1409 
1410                 /*
1411                  * If the dirty list is NULL, there is no dirty work to do.
1412                  */
1413                 if (dcpu->dtdsc_dirty == NULL)
1414                         continue;
1415 
1416                 if (dcpu->dtdsc_rinsing != NULL) {
1417                         /*
1418                          * If the rinsing list is non-NULL, then it is because
1419                          * this CPU was selected to accept another CPU's
1420                          * dirty list -- and since that time, dirty buffers
1421                          * have accumulated.  This is a highly unlikely
1422                          * condition, but we choose to ignore the dirty
1423                          * buffers -- they'll be picked up a future cleanse.
1424                          */
1425                         continue;
1426                 }
1427 
1428                 if (dcpu->dtdsc_clean != NULL) {
1429                         /*
1430                          * If the clean list is non-NULL, then we're in a
1431                          * situation where a CPU has done deallocations (we
1432                          * have a non-NULL dirty list) but no allocations (we
1433                          * also have a non-NULL clean list).  We can't simply
1434                          * move the dirty list into the clean list on this
1435                          * CPU, yet we also don't want to allow this condition
1436                          * to persist, lest a short clean list prevent a
1437                          * massive dirty list from being cleaned (which in
1438                          * turn could lead to otherwise avoidable dynamic
1439                          * drops).  To deal with this, we look for some CPU
1440                          * with a NULL clean list, NULL dirty list, and NULL
1441                          * rinsing list -- and then we borrow this CPU to
1442                          * rinse our dirty list.
1443                          */
1444                         for (j = 0; j < NCPU; j++) {
1445                                 dtrace_dstate_percpu_t *rinser;
1446 
1447                                 rinser = &dstate->dtds_percpu[j];
1448 
1449                                 if (rinser->dtdsc_rinsing != NULL)
1450                                         continue;
1451 
1452                                 if (rinser->dtdsc_dirty != NULL)
1453                                         continue;
1454 
1455                                 if (rinser->dtdsc_clean != NULL)
1456                                         continue;
1457 
1458                                 rinsep = &rinser->dtdsc_rinsing;
1459                                 break;
1460                         }
1461 
1462                         if (j == NCPU) {
1463                                 /*
1464                                  * We were unable to find another CPU that
1465                                  * could accept this dirty list -- we are
1466                                  * therefore unable to clean it now.
1467                                  */
1468                                 dtrace_dynvar_failclean++;
1469                                 continue;
1470                         }
1471                 }
1472 
1473                 work = 1;
1474 
1475                 /*
1476                  * Atomically move the dirty list aside.
1477                  */
1478                 do {
1479                         dirty = dcpu->dtdsc_dirty;
1480 
1481                         /*
1482                          * Before we zap the dirty list, set the rinsing list.
1483                          * (This allows for a potential assertion in
1484                          * dtrace_dynvar():  if a free dynamic variable appears
1485                          * on a hash chain, either the dirty list or the
1486                          * rinsing list for some CPU must be non-NULL.)
1487                          */
1488                         *rinsep = dirty;
1489                         dtrace_membar_producer();
1490                 } while (dtrace_casptr(&dcpu->dtdsc_dirty,
1491                     dirty, NULL) != dirty);
1492         }
1493 
1494         if (!work) {
1495                 /*
1496                  * We have no work to do; we can simply return.
1497                  */
1498                 return;
1499         }
1500 
1501         dtrace_sync();
1502 
1503         for (i = 0; i < NCPU; i++) {
1504                 dcpu = &dstate->dtds_percpu[i];
1505 
1506                 if (dcpu->dtdsc_rinsing == NULL)
1507                         continue;
1508 
1509                 /*
1510                  * We are now guaranteed that no hash chain contains a pointer
1511                  * into this dirty list; we can make it clean.
1512                  */
1513                 ASSERT(dcpu->dtdsc_clean == NULL);
1514                 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1515                 dcpu->dtdsc_rinsing = NULL;
1516         }
1517 
1518         /*
1519          * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1520          * sure that all CPUs have seen all of the dtdsc_clean pointers.
1521          * This prevents a race whereby a CPU incorrectly decides that
1522          * the state should be something other than DTRACE_DSTATE_CLEAN
1523          * after dtrace_dynvar_clean() has completed.
1524          */
1525         dtrace_sync();
1526 
1527         dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1528 }
1529 
1530 /*
1531  * Depending on the value of the op parameter, this function looks-up,
1532  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1533  * allocation is requested, this function will return a pointer to a
1534  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1535  * variable can be allocated.  If NULL is returned, the appropriate counter
1536  * will be incremented.
1537  */
1538 dtrace_dynvar_t *
1539 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1540     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1541     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1542 {
1543         uint64_t hashval = DTRACE_DYNHASH_VALID;
1544         dtrace_dynhash_t *hash = dstate->dtds_hash;
1545         dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1546         processorid_t me = CPU->cpu_id, cpu = me;
1547         dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1548         size_t bucket, ksize;
1549         size_t chunksize = dstate->dtds_chunksize;
1550         uintptr_t kdata, lock, nstate;
1551         uint_t i;
1552 
1553         ASSERT(nkeys != 0);
1554 
1555         /*
1556          * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1557          * algorithm.  For the by-value portions, we perform the algorithm in
1558          * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1559          * bit, and seems to have only a minute effect on distribution.  For
1560          * the by-reference data, we perform "One-at-a-time" iterating (safely)
1561          * over each referenced byte.  It's painful to do this, but it's much
1562          * better than pathological hash distribution.  The efficacy of the
1563          * hashing algorithm (and a comparison with other algorithms) may be
1564          * found by running the ::dtrace_dynstat MDB dcmd.
1565          */
1566         for (i = 0; i < nkeys; i++) {
1567                 if (key[i].dttk_size == 0) {
1568                         uint64_t val = key[i].dttk_value;
1569 
1570                         hashval += (val >> 48) & 0xffff;
1571                         hashval += (hashval << 10);
1572                         hashval ^= (hashval >> 6);
1573 
1574                         hashval += (val >> 32) & 0xffff;
1575                         hashval += (hashval << 10);
1576                         hashval ^= (hashval >> 6);
1577 
1578                         hashval += (val >> 16) & 0xffff;
1579                         hashval += (hashval << 10);
1580                         hashval ^= (hashval >> 6);
1581 
1582                         hashval += val & 0xffff;
1583                         hashval += (hashval << 10);
1584                         hashval ^= (hashval >> 6);
1585                 } else {
1586                         /*
1587                          * This is incredibly painful, but it beats the hell
1588                          * out of the alternative.
1589                          */
1590                         uint64_t j, size = key[i].dttk_size;
1591                         uintptr_t base = (uintptr_t)key[i].dttk_value;
1592 
1593                         if (!dtrace_canload(base, size, mstate, vstate))
1594                                 break;
1595 
1596                         for (j = 0; j < size; j++) {
1597                                 hashval += dtrace_load8(base + j);
1598                                 hashval += (hashval << 10);
1599                                 hashval ^= (hashval >> 6);
1600                         }
1601                 }
1602         }
1603 
1604         if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1605                 return (NULL);
1606 
1607         hashval += (hashval << 3);
1608         hashval ^= (hashval >> 11);
1609         hashval += (hashval << 15);
1610 
1611         /*
1612          * There is a remote chance (ideally, 1 in 2^31) that our hashval
1613          * comes out to be one of our two sentinel hash values.  If this
1614          * actually happens, we set the hashval to be a value known to be a
1615          * non-sentinel value.
1616          */
1617         if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1618                 hashval = DTRACE_DYNHASH_VALID;
1619 
1620         /*
1621          * Yes, it's painful to do a divide here.  If the cycle count becomes
1622          * important here, tricks can be pulled to reduce it.  (However, it's
1623          * critical that hash collisions be kept to an absolute minimum;
1624          * they're much more painful than a divide.)  It's better to have a
1625          * solution that generates few collisions and still keeps things
1626          * relatively simple.
1627          */
1628         bucket = hashval % dstate->dtds_hashsize;
1629 
1630         if (op == DTRACE_DYNVAR_DEALLOC) {
1631                 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1632 
1633                 for (;;) {
1634                         while ((lock = *lockp) & 1)
1635                                 continue;
1636 
1637                         if (dtrace_casptr((void *)lockp,
1638                             (void *)lock, (void *)(lock + 1)) == (void *)lock)
1639                                 break;
1640                 }
1641 
1642                 dtrace_membar_producer();
1643         }
1644 
1645 top:
1646         prev = NULL;
1647         lock = hash[bucket].dtdh_lock;
1648 
1649         dtrace_membar_consumer();
1650 
1651         start = hash[bucket].dtdh_chain;
1652         ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1653             start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1654             op != DTRACE_DYNVAR_DEALLOC));
1655 
1656         for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1657                 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1658                 dtrace_key_t *dkey = &dtuple->dtt_key[0];
1659 
1660                 if (dvar->dtdv_hashval != hashval) {
1661                         if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1662                                 /*
1663                                  * We've reached the sink, and therefore the
1664                                  * end of the hash chain; we can kick out of
1665                                  * the loop knowing that we have seen a valid
1666                                  * snapshot of state.
1667                                  */
1668                                 ASSERT(dvar->dtdv_next == NULL);
1669                                 ASSERT(dvar == &dtrace_dynhash_sink);
1670                                 break;
1671                         }
1672 
1673                         if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1674                                 /*
1675                                  * We've gone off the rails:  somewhere along
1676                                  * the line, one of the members of this hash
1677                                  * chain was deleted.  Note that we could also
1678                                  * detect this by simply letting this loop run
1679                                  * to completion, as we would eventually hit
1680                                  * the end of the dirty list.  However, we
1681                                  * want to avoid running the length of the
1682                                  * dirty list unnecessarily (it might be quite
1683                                  * long), so we catch this as early as
1684                                  * possible by detecting the hash marker.  In
1685                                  * this case, we simply set dvar to NULL and
1686                                  * break; the conditional after the loop will
1687                                  * send us back to top.
1688                                  */
1689                                 dvar = NULL;
1690                                 break;
1691                         }
1692 
1693                         goto next;
1694                 }
1695 
1696                 if (dtuple->dtt_nkeys != nkeys)
1697                         goto next;
1698 
1699                 for (i = 0; i < nkeys; i++, dkey++) {
1700                         if (dkey->dttk_size != key[i].dttk_size)
1701                                 goto next; /* size or type mismatch */
1702 
1703                         if (dkey->dttk_size != 0) {
1704                                 if (dtrace_bcmp(
1705                                     (void *)(uintptr_t)key[i].dttk_value,
1706                                     (void *)(uintptr_t)dkey->dttk_value,
1707                                     dkey->dttk_size))
1708                                         goto next;
1709                         } else {
1710                                 if (dkey->dttk_value != key[i].dttk_value)
1711                                         goto next;
1712                         }
1713                 }
1714 
1715                 if (op != DTRACE_DYNVAR_DEALLOC)
1716                         return (dvar);
1717 
1718                 ASSERT(dvar->dtdv_next == NULL ||
1719                     dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1720 
1721                 if (prev != NULL) {
1722                         ASSERT(hash[bucket].dtdh_chain != dvar);
1723                         ASSERT(start != dvar);
1724                         ASSERT(prev->dtdv_next == dvar);
1725                         prev->dtdv_next = dvar->dtdv_next;
1726                 } else {
1727                         if (dtrace_casptr(&hash[bucket].dtdh_chain,
1728                             start, dvar->dtdv_next) != start) {
1729                                 /*
1730                                  * We have failed to atomically swing the
1731                                  * hash table head pointer, presumably because
1732                                  * of a conflicting allocation on another CPU.
1733                                  * We need to reread the hash chain and try
1734                                  * again.
1735                                  */
1736                                 goto top;
1737                         }
1738                 }
1739 
1740                 dtrace_membar_producer();
1741 
1742                 /*
1743                  * Now set the hash value to indicate that it's free.
1744                  */
1745                 ASSERT(hash[bucket].dtdh_chain != dvar);
1746                 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1747 
1748                 dtrace_membar_producer();
1749 
1750                 /*
1751                  * Set the next pointer to point at the dirty list, and
1752                  * atomically swing the dirty pointer to the newly freed dvar.
1753                  */
1754                 do {
1755                         next = dcpu->dtdsc_dirty;
1756                         dvar->dtdv_next = next;
1757                 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1758 
1759                 /*
1760                  * Finally, unlock this hash bucket.
1761                  */
1762                 ASSERT(hash[bucket].dtdh_lock == lock);
1763                 ASSERT(lock & 1);
1764                 hash[bucket].dtdh_lock++;
1765 
1766                 return (NULL);
1767 next:
1768                 prev = dvar;
1769                 continue;
1770         }
1771 
1772         if (dvar == NULL) {
1773                 /*
1774                  * If dvar is NULL, it is because we went off the rails:
1775                  * one of the elements that we traversed in the hash chain
1776                  * was deleted while we were traversing it.  In this case,
1777                  * we assert that we aren't doing a dealloc (deallocs lock
1778                  * the hash bucket to prevent themselves from racing with
1779                  * one another), and retry the hash chain traversal.
1780                  */
1781                 ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1782                 goto top;
1783         }
1784 
1785         if (op != DTRACE_DYNVAR_ALLOC) {
1786                 /*
1787                  * If we are not to allocate a new variable, we want to
1788                  * return NULL now.  Before we return, check that the value
1789                  * of the lock word hasn't changed.  If it has, we may have
1790                  * seen an inconsistent snapshot.
1791                  */
1792                 if (op == DTRACE_DYNVAR_NOALLOC) {
1793                         if (hash[bucket].dtdh_lock != lock)
1794                                 goto top;
1795                 } else {
1796                         ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1797                         ASSERT(hash[bucket].dtdh_lock == lock);
1798                         ASSERT(lock & 1);
1799                         hash[bucket].dtdh_lock++;
1800                 }
1801 
1802                 return (NULL);
1803         }
1804 
1805         /*
1806          * We need to allocate a new dynamic variable.  The size we need is the
1807          * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1808          * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1809          * the size of any referred-to data (dsize).  We then round the final
1810          * size up to the chunksize for allocation.
1811          */
1812         for (ksize = 0, i = 0; i < nkeys; i++)
1813                 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1814 
1815         /*
1816          * This should be pretty much impossible, but could happen if, say,
1817          * strange DIF specified the tuple.  Ideally, this should be an
1818          * assertion and not an error condition -- but that requires that the
1819          * chunksize calculation in dtrace_difo_chunksize() be absolutely
1820          * bullet-proof.  (That is, it must not be able to be fooled by
1821          * malicious DIF.)  Given the lack of backwards branches in DIF,
1822          * solving this would presumably not amount to solving the Halting
1823          * Problem -- but it still seems awfully hard.
1824          */
1825         if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1826             ksize + dsize > chunksize) {
1827                 dcpu->dtdsc_drops++;
1828                 return (NULL);
1829         }
1830 
1831         nstate = DTRACE_DSTATE_EMPTY;
1832 
1833         do {
1834 retry:
1835                 free = dcpu->dtdsc_free;
1836 
1837                 if (free == NULL) {
1838                         dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1839                         void *rval;
1840 
1841                         if (clean == NULL) {
1842                                 /*
1843                                  * We're out of dynamic variable space on
1844                                  * this CPU.  Unless we have tried all CPUs,
1845                                  * we'll try to allocate from a different
1846                                  * CPU.
1847                                  */
1848                                 switch (dstate->dtds_state) {
1849                                 case DTRACE_DSTATE_CLEAN: {
1850                                         void *sp = &dstate->dtds_state;
1851 
1852                                         if (++cpu >= NCPU)
1853                                                 cpu = 0;
1854 
1855                                         if (dcpu->dtdsc_dirty != NULL &&
1856                                             nstate == DTRACE_DSTATE_EMPTY)
1857                                                 nstate = DTRACE_DSTATE_DIRTY;
1858 
1859                                         if (dcpu->dtdsc_rinsing != NULL)
1860                                                 nstate = DTRACE_DSTATE_RINSING;
1861 
1862                                         dcpu = &dstate->dtds_percpu[cpu];
1863 
1864                                         if (cpu != me)
1865                                                 goto retry;
1866 
1867                                         (void) dtrace_cas32(sp,
1868                                             DTRACE_DSTATE_CLEAN, nstate);
1869 
1870                                         /*
1871                                          * To increment the correct bean
1872                                          * counter, take another lap.
1873                                          */
1874                                         goto retry;
1875                                 }
1876 
1877                                 case DTRACE_DSTATE_DIRTY:
1878                                         dcpu->dtdsc_dirty_drops++;
1879                                         break;
1880 
1881                                 case DTRACE_DSTATE_RINSING:
1882                                         dcpu->dtdsc_rinsing_drops++;
1883                                         break;
1884 
1885                                 case DTRACE_DSTATE_EMPTY:
1886                                         dcpu->dtdsc_drops++;
1887                                         break;
1888                                 }
1889 
1890                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1891                                 return (NULL);
1892                         }
1893 
1894                         /*
1895                          * The clean list appears to be non-empty.  We want to
1896                          * move the clean list to the free list; we start by
1897                          * moving the clean pointer aside.
1898                          */
1899                         if (dtrace_casptr(&dcpu->dtdsc_clean,
1900                             clean, NULL) != clean) {
1901                                 /*
1902                                  * We are in one of two situations:
1903                                  *
1904                                  *  (a) The clean list was switched to the
1905                                  *      free list by another CPU.
1906                                  *
1907                                  *  (b) The clean list was added to by the
1908                                  *      cleansing cyclic.
1909                                  *
1910                                  * In either of these situations, we can
1911                                  * just reattempt the free list allocation.
1912                                  */
1913                                 goto retry;
1914                         }
1915 
1916                         ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1917 
1918                         /*
1919                          * Now we'll move the clean list to our free list.
1920                          * It's impossible for this to fail:  the only way
1921                          * the free list can be updated is through this
1922                          * code path, and only one CPU can own the clean list.
1923                          * Thus, it would only be possible for this to fail if
1924                          * this code were racing with dtrace_dynvar_clean().
1925                          * (That is, if dtrace_dynvar_clean() updated the clean
1926                          * list, and we ended up racing to update the free
1927                          * list.)  This race is prevented by the dtrace_sync()
1928                          * in dtrace_dynvar_clean() -- which flushes the
1929                          * owners of the clean lists out before resetting
1930                          * the clean lists.
1931                          */
1932                         dcpu = &dstate->dtds_percpu[me];
1933                         rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1934                         ASSERT(rval == NULL);
1935                         goto retry;
1936                 }
1937 
1938                 dvar = free;
1939                 new_free = dvar->dtdv_next;
1940         } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1941 
1942         /*
1943          * We have now allocated a new chunk.  We copy the tuple keys into the
1944          * tuple array and copy any referenced key data into the data space
1945          * following the tuple array.  As we do this, we relocate dttk_value
1946          * in the final tuple to point to the key data address in the chunk.
1947          */
1948         kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1949         dvar->dtdv_data = (void *)(kdata + ksize);
1950         dvar->dtdv_tuple.dtt_nkeys = nkeys;
1951 
1952         for (i = 0; i < nkeys; i++) {
1953                 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1954                 size_t kesize = key[i].dttk_size;
1955 
1956                 if (kesize != 0) {
1957                         dtrace_bcopy(
1958                             (const void *)(uintptr_t)key[i].dttk_value,
1959                             (void *)kdata, kesize);
1960                         dkey->dttk_value = kdata;
1961                         kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1962                 } else {
1963                         dkey->dttk_value = key[i].dttk_value;
1964                 }
1965 
1966                 dkey->dttk_size = kesize;
1967         }
1968 
1969         ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1970         dvar->dtdv_hashval = hashval;
1971         dvar->dtdv_next = start;
1972 
1973         if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1974                 return (dvar);
1975 
1976         /*
1977          * The cas has failed.  Either another CPU is adding an element to
1978          * this hash chain, or another CPU is deleting an element from this
1979          * hash chain.  The simplest way to deal with both of these cases
1980          * (though not necessarily the most efficient) is to free our
1981          * allocated block and tail-call ourselves.  Note that the free is
1982          * to the dirty list and _not_ to the free list.  This is to prevent
1983          * races with allocators, above.
1984          */
1985         dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1986 
1987         dtrace_membar_producer();
1988 
1989         do {
1990                 free = dcpu->dtdsc_dirty;
1991                 dvar->dtdv_next = free;
1992         } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1993 
1994         return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
1995 }
1996 
1997 /*ARGSUSED*/
1998 static void
1999 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
2000 {
2001         if ((int64_t)nval < (int64_t)*oval)
2002                 *oval = nval;
2003 }
2004 
2005 /*ARGSUSED*/
2006 static void
2007 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
2008 {
2009         if ((int64_t)nval > (int64_t)*oval)
2010                 *oval = nval;
2011 }
2012 
2013 static void
2014 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
2015 {
2016         int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
2017         int64_t val = (int64_t)nval;
2018 
2019         if (val < 0) {
2020                 for (i = 0; i < zero; i++) {
2021                         if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
2022                                 quanta[i] += incr;
2023                                 return;
2024                         }
2025                 }
2026         } else {
2027                 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
2028                         if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
2029                                 quanta[i - 1] += incr;
2030                                 return;
2031                         }
2032                 }
2033 
2034                 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
2035                 return;
2036         }
2037 
2038         ASSERT(0);
2039 }
2040 
2041 static void
2042 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
2043 {
2044         uint64_t arg = *lquanta++;
2045         int32_t base = DTRACE_LQUANTIZE_BASE(arg);
2046         uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
2047         uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
2048         int32_t val = (int32_t)nval, level;
2049 
2050         ASSERT(step != 0);
2051         ASSERT(levels != 0);
2052 
2053         if (val < base) {
2054                 /*
2055                  * This is an underflow.
2056                  */
2057                 lquanta[0] += incr;
2058                 return;
2059         }
2060 
2061         level = (val - base) / step;
2062 
2063         if (level < levels) {
2064                 lquanta[level + 1] += incr;
2065                 return;
2066         }
2067 
2068         /*
2069          * This is an overflow.
2070          */
2071         lquanta[levels + 1] += incr;
2072 }
2073 
2074 static int
2075 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
2076     uint16_t high, uint16_t nsteps, int64_t value)
2077 {
2078         int64_t this = 1, last, next;
2079         int base = 1, order;
2080 
2081         ASSERT(factor <= nsteps);
2082         ASSERT(nsteps % factor == 0);
2083 
2084         for (order = 0; order < low; order++)
2085                 this *= factor;
2086 
2087         /*
2088          * If our value is less than our factor taken to the power of the
2089          * low order of magnitude, it goes into the zeroth bucket.
2090          */
2091         if (value < (last = this))
2092                 return (0);
2093 
2094         for (this *= factor; order <= high; order++) {
2095                 int nbuckets = this > nsteps ? nsteps : this;
2096 
2097                 if ((next = this * factor) < this) {
2098                         /*
2099                          * We should not generally get log/linear quantizations
2100                          * with a high magnitude that allows 64-bits to
2101                          * overflow, but we nonetheless protect against this
2102                          * by explicitly checking for overflow, and clamping
2103                          * our value accordingly.
2104                          */
2105                         value = this - 1;
2106                 }
2107 
2108                 if (value < this) {
2109                         /*
2110                          * If our value lies within this order of magnitude,
2111                          * determine its position by taking the offset within
2112                          * the order of magnitude, dividing by the bucket
2113                          * width, and adding to our (accumulated) base.
2114                          */
2115                         return (base + (value - last) / (this / nbuckets));
2116                 }
2117 
2118                 base += nbuckets - (nbuckets / factor);
2119                 last = this;
2120                 this = next;
2121         }
2122 
2123         /*
2124          * Our value is greater than or equal to our factor taken to the
2125          * power of one plus the high magnitude -- return the top bucket.
2126          */
2127         return (base);
2128 }
2129 
2130 static void
2131 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
2132 {
2133         uint64_t arg = *llquanta++;
2134         uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
2135         uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
2136         uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
2137         uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
2138 
2139         llquanta[dtrace_aggregate_llquantize_bucket(factor,
2140             low, high, nsteps, nval)] += incr;
2141 }
2142 
2143 /*ARGSUSED*/
2144 static void
2145 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
2146 {
2147         data[0]++;
2148         data[1] += nval;
2149 }
2150 
2151 /*ARGSUSED*/
2152 static void
2153 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2154 {
2155         int64_t snval = (int64_t)nval;
2156         uint64_t tmp[2];
2157 
2158         data[0]++;
2159         data[1] += nval;
2160 
2161         /*
2162          * What we want to say here is:
2163          *
2164          * data[2] += nval * nval;
2165          *
2166          * But given that nval is 64-bit, we could easily overflow, so
2167          * we do this as 128-bit arithmetic.
2168          */
2169         if (snval < 0)
2170                 snval = -snval;
2171 
2172         dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2173         dtrace_add_128(data + 2, tmp, data + 2);
2174 }
2175 
2176 /*ARGSUSED*/
2177 static void
2178 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2179 {
2180         *oval = *oval + 1;
2181 }
2182 
2183 /*ARGSUSED*/
2184 static void
2185 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2186 {
2187         *oval += nval;
2188 }
2189 
2190 /*
2191  * Aggregate given the tuple in the principal data buffer, and the aggregating
2192  * action denoted by the specified dtrace_aggregation_t.  The aggregation
2193  * buffer is specified as the buf parameter.  This routine does not return
2194  * failure; if there is no space in the aggregation buffer, the data will be
2195  * dropped, and a corresponding counter incremented.
2196  */
2197 static void
2198 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2199     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2200 {
2201         dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2202         uint32_t i, ndx, size, fsize;
2203         uint32_t align = sizeof (uint64_t) - 1;
2204         dtrace_aggbuffer_t *agb;
2205         dtrace_aggkey_t *key;
2206         uint32_t hashval = 0, limit, isstr;
2207         caddr_t tomax, data, kdata;
2208         dtrace_actkind_t action;
2209         dtrace_action_t *act;
2210         uintptr_t offs;
2211 
2212         if (buf == NULL)
2213                 return;
2214 
2215         if (!agg->dtag_hasarg) {
2216                 /*
2217                  * Currently, only quantize() and lquantize() take additional
2218                  * arguments, and they have the same semantics:  an increment
2219                  * value that defaults to 1 when not present.  If additional
2220                  * aggregating actions take arguments, the setting of the
2221                  * default argument value will presumably have to become more
2222                  * sophisticated...
2223                  */
2224                 arg = 1;
2225         }
2226 
2227         action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2228         size = rec->dtrd_offset - agg->dtag_base;
2229         fsize = size + rec->dtrd_size;
2230 
2231         ASSERT(dbuf->dtb_tomax != NULL);
2232         data = dbuf->dtb_tomax + offset + agg->dtag_base;
2233 
2234         if ((tomax = buf->dtb_tomax) == NULL) {
2235                 dtrace_buffer_drop(buf);
2236                 return;
2237         }
2238 
2239         /*
2240          * The metastructure is always at the bottom of the buffer.
2241          */
2242         agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2243             sizeof (dtrace_aggbuffer_t));
2244 
2245         if (buf->dtb_offset == 0) {
2246                 /*
2247                  * We just kludge up approximately 1/8th of the size to be
2248                  * buckets.  If this guess ends up being routinely
2249                  * off-the-mark, we may need to dynamically readjust this
2250                  * based on past performance.
2251                  */
2252                 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2253 
2254                 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2255                     (uintptr_t)tomax || hashsize == 0) {
2256                         /*
2257                          * We've been given a ludicrously small buffer;
2258                          * increment our drop count and leave.
2259                          */
2260                         dtrace_buffer_drop(buf);
2261                         return;
2262                 }
2263 
2264                 /*
2265                  * And now, a pathetic attempt to try to get a an odd (or
2266                  * perchance, a prime) hash size for better hash distribution.
2267                  */
2268                 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2269                         hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2270 
2271                 agb->dtagb_hashsize = hashsize;
2272                 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2273                     agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2274                 agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2275 
2276                 for (i = 0; i < agb->dtagb_hashsize; i++)
2277                         agb->dtagb_hash[i] = NULL;
2278         }
2279 
2280         ASSERT(agg->dtag_first != NULL);
2281         ASSERT(agg->dtag_first->dta_intuple);
2282 
2283         /*
2284          * Calculate the hash value based on the key.  Note that we _don't_
2285          * include the aggid in the hashing (but we will store it as part of
2286          * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2287          * algorithm: a simple, quick algorithm that has no known funnels, and
2288          * gets good distribution in practice.  The efficacy of the hashing
2289          * algorithm (and a comparison with other algorithms) may be found by
2290          * running the ::dtrace_aggstat MDB dcmd.
2291          */
2292         for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2293                 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2294                 limit = i + act->dta_rec.dtrd_size;
2295                 ASSERT(limit <= size);
2296                 isstr = DTRACEACT_ISSTRING(act);
2297 
2298                 for (; i < limit; i++) {
2299                         hashval += data[i];
2300                         hashval += (hashval << 10);
2301                         hashval ^= (hashval >> 6);
2302 
2303                         if (isstr && data[i] == '\0')
2304                                 break;
2305                 }
2306         }
2307 
2308         hashval += (hashval << 3);
2309         hashval ^= (hashval >> 11);
2310         hashval += (hashval << 15);
2311 
2312         /*
2313          * Yes, the divide here is expensive -- but it's generally the least
2314          * of the performance issues given the amount of data that we iterate
2315          * over to compute hash values, compare data, etc.
2316          */
2317         ndx = hashval % agb->dtagb_hashsize;
2318 
2319         for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2320                 ASSERT((caddr_t)key >= tomax);
2321                 ASSERT((caddr_t)key < tomax + buf->dtb_size);
2322 
2323                 if (hashval != key->dtak_hashval || key->dtak_size != size)
2324                         continue;
2325 
2326                 kdata = key->dtak_data;
2327                 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2328 
2329                 for (act = agg->dtag_first; act->dta_intuple;
2330                     act = act->dta_next) {
2331                         i = act->dta_rec.dtrd_offset - agg->dtag_base;
2332                         limit = i + act->dta_rec.dtrd_size;
2333                         ASSERT(limit <= size);
2334                         isstr = DTRACEACT_ISSTRING(act);
2335 
2336                         for (; i < limit; i++) {
2337                                 if (kdata[i] != data[i])
2338                                         goto next;
2339 
2340                                 if (isstr && data[i] == '\0')
2341                                         break;
2342                         }
2343                 }
2344 
2345                 if (action != key->dtak_action) {
2346                         /*
2347                          * We are aggregating on the same value in the same
2348                          * aggregation with two different aggregating actions.
2349                          * (This should have been picked up in the compiler,
2350                          * so we may be dealing with errant or devious DIF.)
2351                          * This is an error condition; we indicate as much,
2352                          * and return.
2353                          */
2354                         DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2355                         return;
2356                 }
2357 
2358                 /*
2359                  * This is a hit:  we need to apply the aggregator to
2360                  * the value at this key.
2361                  */
2362                 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2363                 return;
2364 next:
2365                 continue;
2366         }
2367 
2368         /*
2369          * We didn't find it.  We need to allocate some zero-filled space,
2370          * link it into the hash table appropriately, and apply the aggregator
2371          * to the (zero-filled) value.
2372          */
2373         offs = buf->dtb_offset;
2374         while (offs & (align - 1))
2375                 offs += sizeof (uint32_t);
2376 
2377         /*
2378          * If we don't have enough room to both allocate a new key _and_
2379          * its associated data, increment the drop count and return.
2380          */
2381         if ((uintptr_t)tomax + offs + fsize >
2382             agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2383                 dtrace_buffer_drop(buf);
2384                 return;
2385         }
2386 
2387         /*CONSTCOND*/
2388         ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2389         key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2390         agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2391 
2392         key->dtak_data = kdata = tomax + offs;
2393         buf->dtb_offset = offs + fsize;
2394 
2395         /*
2396          * Now copy the data across.
2397          */
2398         *((dtrace_aggid_t *)kdata) = agg->dtag_id;
2399 
2400         for (i = sizeof (dtrace_aggid_t); i < size; i++)
2401                 kdata[i] = data[i];
2402 
2403         /*
2404          * Because strings are not zeroed out by default, we need to iterate
2405          * looking for actions that store strings, and we need to explicitly
2406          * pad these strings out with zeroes.
2407          */
2408         for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2409                 int nul;
2410 
2411                 if (!DTRACEACT_ISSTRING(act))
2412                         continue;
2413 
2414                 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2415                 limit = i + act->dta_rec.dtrd_size;
2416                 ASSERT(limit <= size);
2417 
2418                 for (nul = 0; i < limit; i++) {
2419                         if (nul) {
2420                                 kdata[i] = '\0';
2421                                 continue;
2422                         }
2423 
2424                         if (data[i] != '\0')
2425                                 continue;
2426 
2427                         nul = 1;
2428                 }
2429         }
2430 
2431         for (i = size; i < fsize; i++)
2432                 kdata[i] = 0;
2433 
2434         key->dtak_hashval = hashval;
2435         key->dtak_size = size;
2436         key->dtak_action = action;
2437         key->dtak_next = agb->dtagb_hash[ndx];
2438         agb->dtagb_hash[ndx] = key;
2439 
2440         /*
2441          * Finally, apply the aggregator.
2442          */
2443         *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2444         agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2445 }
2446 
2447 /*
2448  * Given consumer state, this routine finds a speculation in the INACTIVE
2449  * state and transitions it into the ACTIVE state.  If there is no speculation
2450  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2451  * incremented -- it is up to the caller to take appropriate action.
2452  */
2453 static int
2454 dtrace_speculation(dtrace_state_t *state)
2455 {
2456         int i = 0;
2457         dtrace_speculation_state_t current;
2458         uint32_t *stat = &state->dts_speculations_unavail, count;
2459 
2460         while (i < state->dts_nspeculations) {
2461                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2462 
2463                 current = spec->dtsp_state;
2464 
2465                 if (current != DTRACESPEC_INACTIVE) {
2466                         if (current == DTRACESPEC_COMMITTINGMANY ||
2467                             current == DTRACESPEC_COMMITTING ||
2468                             current == DTRACESPEC_DISCARDING)
2469                                 stat = &state->dts_speculations_busy;
2470                         i++;
2471                         continue;
2472                 }
2473 
2474                 if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2475                     current, DTRACESPEC_ACTIVE) == current)
2476                         return (i + 1);
2477         }
2478 
2479         /*
2480          * We couldn't find a speculation.  If we found as much as a single
2481          * busy speculation buffer, we'll attribute this failure as "busy"
2482          * instead of "unavail".
2483          */
2484         do {
2485                 count = *stat;
2486         } while (dtrace_cas32(stat, count, count + 1) != count);
2487 
2488         return (0);
2489 }
2490 
2491 /*
2492  * This routine commits an active speculation.  If the specified speculation
2493  * is not in a valid state to perform a commit(), this routine will silently do
2494  * nothing.  The state of the specified speculation is transitioned according
2495  * to the state transition diagram outlined in <sys/dtrace_impl.h>
2496  */
2497 static void
2498 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2499     dtrace_specid_t which)
2500 {
2501         dtrace_speculation_t *spec;
2502         dtrace_buffer_t *src, *dest;
2503         uintptr_t daddr, saddr, dlimit;
2504         dtrace_speculation_state_t current, new;
2505         intptr_t offs;
2506 
2507         if (which == 0)
2508                 return;
2509 
2510         if (which > state->dts_nspeculations) {
2511                 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2512                 return;
2513         }
2514 
2515         spec = &state->dts_speculations[which - 1];
2516         src = &spec->dtsp_buffer[cpu];
2517         dest = &state->dts_buffer[cpu];
2518 
2519         do {
2520                 current = spec->dtsp_state;
2521 
2522                 if (current == DTRACESPEC_COMMITTINGMANY)
2523                         break;
2524 
2525                 switch (current) {
2526                 case DTRACESPEC_INACTIVE:
2527                 case DTRACESPEC_DISCARDING:
2528                         return;
2529 
2530                 case DTRACESPEC_COMMITTING:
2531                         /*
2532                          * This is only possible if we are (a) commit()'ing
2533                          * without having done a prior speculate() on this CPU
2534                          * and (b) racing with another commit() on a different
2535                          * CPU.  There's nothing to do -- we just assert that
2536                          * our offset is 0.
2537                          */
2538                         ASSERT(src->dtb_offset == 0);
2539                         return;
2540 
2541                 case DTRACESPEC_ACTIVE:
2542                         new = DTRACESPEC_COMMITTING;
2543                         break;
2544 
2545                 case DTRACESPEC_ACTIVEONE:
2546                         /*
2547                          * This speculation is active on one CPU.  If our
2548                          * buffer offset is non-zero, we know that the one CPU
2549                          * must be us.  Otherwise, we are committing on a
2550                          * different CPU from the speculate(), and we must
2551                          * rely on being asynchronously cleaned.
2552                          */
2553                         if (src->dtb_offset != 0) {
2554                                 new = DTRACESPEC_COMMITTING;
2555                                 break;
2556                         }
2557                         /*FALLTHROUGH*/
2558 
2559                 case DTRACESPEC_ACTIVEMANY:
2560                         new = DTRACESPEC_COMMITTINGMANY;
2561                         break;
2562 
2563                 default:
2564                         ASSERT(0);
2565                 }
2566         } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2567             current, new) != current);
2568 
2569         /*
2570          * We have set the state to indicate that we are committing this
2571          * speculation.  Now reserve the necessary space in the destination
2572          * buffer.
2573          */
2574         if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2575             sizeof (uint64_t), state, NULL)) < 0) {
2576                 dtrace_buffer_drop(dest);
2577                 goto out;
2578         }
2579 
2580         /*
2581          * We have the space; copy the buffer across.  (Note that this is a
2582          * highly subobtimal bcopy(); in the unlikely event that this becomes
2583          * a serious performance issue, a high-performance DTrace-specific
2584          * bcopy() should obviously be invented.)
2585          */
2586         daddr = (uintptr_t)dest->dtb_tomax + offs;
2587         dlimit = daddr + src->dtb_offset;
2588         saddr = (uintptr_t)src->dtb_tomax;
2589 
2590         /*
2591          * First, the aligned portion.
2592          */
2593         while (dlimit - daddr >= sizeof (uint64_t)) {
2594                 *((uint64_t *)daddr) = *((uint64_t *)saddr);
2595 
2596                 daddr += sizeof (uint64_t);
2597                 saddr += sizeof (uint64_t);
2598         }
2599 
2600         /*
2601          * Now any left-over bit...
2602          */
2603         while (dlimit - daddr)
2604                 *((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2605 
2606         /*
2607          * Finally, commit the reserved space in the destination buffer.
2608          */
2609         dest->dtb_offset = offs + src->dtb_offset;
2610 
2611 out:
2612         /*
2613          * If we're lucky enough to be the only active CPU on this speculation
2614          * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2615          */
2616         if (current == DTRACESPEC_ACTIVE ||
2617             (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2618                 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2619                     DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2620 
2621                 ASSERT(rval == DTRACESPEC_COMMITTING);
2622         }
2623 
2624         src->dtb_offset = 0;
2625         src->dtb_xamot_drops += src->dtb_drops;
2626         src->dtb_drops = 0;
2627 }
2628 
2629 /*
2630  * This routine discards an active speculation.  If the specified speculation
2631  * is not in a valid state to perform a discard(), this routine will silently
2632  * do nothing.  The state of the specified speculation is transitioned
2633  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2634  */
2635 static void
2636 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2637     dtrace_specid_t which)
2638 {
2639         dtrace_speculation_t *spec;
2640         dtrace_speculation_state_t current, new;
2641         dtrace_buffer_t *buf;
2642 
2643         if (which == 0)
2644                 return;
2645 
2646         if (which > state->dts_nspeculations) {
2647                 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2648                 return;
2649         }
2650 
2651         spec = &state->dts_speculations[which - 1];
2652         buf = &spec->dtsp_buffer[cpu];
2653 
2654         do {
2655                 current = spec->dtsp_state;
2656 
2657                 switch (current) {
2658                 case DTRACESPEC_INACTIVE:
2659                 case DTRACESPEC_COMMITTINGMANY:
2660                 case DTRACESPEC_COMMITTING:
2661                 case DTRACESPEC_DISCARDING:
2662                         return;
2663 
2664                 case DTRACESPEC_ACTIVE:
2665                 case DTRACESPEC_ACTIVEMANY:
2666                         new = DTRACESPEC_DISCARDING;
2667                         break;
2668 
2669                 case DTRACESPEC_ACTIVEONE:
2670                         if (buf->dtb_offset != 0) {
2671                                 new = DTRACESPEC_INACTIVE;
2672                         } else {
2673                                 new = DTRACESPEC_DISCARDING;
2674                         }
2675                         break;
2676 
2677                 default:
2678                         ASSERT(0);
2679                 }
2680         } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2681             current, new) != current);
2682 
2683         buf->dtb_offset = 0;
2684         buf->dtb_drops = 0;
2685 }
2686 
2687 /*
2688  * Note:  not called from probe context.  This function is called
2689  * asynchronously from cross call context to clean any speculations that are
2690  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2691  * transitioned back to the INACTIVE state until all CPUs have cleaned the
2692  * speculation.
2693  */
2694 static void
2695 dtrace_speculation_clean_here(dtrace_state_t *state)
2696 {
2697         dtrace_icookie_t cookie;
2698         processorid_t cpu = CPU->cpu_id;
2699         dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2700         dtrace_specid_t i;
2701 
2702         cookie = dtrace_interrupt_disable();
2703 
2704         if (dest->dtb_tomax == NULL) {
2705                 dtrace_interrupt_enable(cookie);
2706                 return;
2707         }
2708 
2709         for (i = 0; i < state->dts_nspeculations; i++) {
2710                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2711                 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2712 
2713                 if (src->dtb_tomax == NULL)
2714                         continue;
2715 
2716                 if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2717                         src->dtb_offset = 0;
2718                         continue;
2719                 }
2720 
2721                 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2722                         continue;
2723 
2724                 if (src->dtb_offset == 0)
2725                         continue;
2726 
2727                 dtrace_speculation_commit(state, cpu, i + 1);
2728         }
2729 
2730         dtrace_interrupt_enable(cookie);
2731 }
2732 
2733 /*
2734  * Note:  not called from probe context.  This function is called
2735  * asynchronously (and at a regular interval) to clean any speculations that
2736  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2737  * is work to be done, it cross calls all CPUs to perform that work;
2738  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2739  * INACTIVE state until they have been cleaned by all CPUs.
2740  */
2741 static void
2742 dtrace_speculation_clean(dtrace_state_t *state)
2743 {
2744         int work = 0, rv;
2745         dtrace_specid_t i;
2746 
2747         for (i = 0; i < state->dts_nspeculations; i++) {
2748                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2749 
2750                 ASSERT(!spec->dtsp_cleaning);
2751 
2752                 if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2753                     spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2754                         continue;
2755 
2756                 work++;
2757                 spec->dtsp_cleaning = 1;
2758         }
2759 
2760         if (!work)
2761                 return;
2762 
2763         dtrace_xcall(DTRACE_CPUALL,
2764             (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2765 
2766         /*
2767          * We now know that all CPUs have committed or discarded their
2768          * speculation buffers, as appropriate.  We can now set the state
2769          * to inactive.
2770          */
2771         for (i = 0; i < state->dts_nspeculations; i++) {
2772                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2773                 dtrace_speculation_state_t current, new;
2774 
2775                 if (!spec->dtsp_cleaning)
2776                         continue;
2777 
2778                 current = spec->dtsp_state;
2779                 ASSERT(current == DTRACESPEC_DISCARDING ||
2780                     current == DTRACESPEC_COMMITTINGMANY);
2781 
2782                 new = DTRACESPEC_INACTIVE;
2783 
2784                 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2785                 ASSERT(rv == current);
2786                 spec->dtsp_cleaning = 0;
2787         }
2788 }
2789 
2790 /*
2791  * Called as part of a speculate() to get the speculative buffer associated
2792  * with a given speculation.  Returns NULL if the specified speculation is not
2793  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2794  * the active CPU is not the specified CPU -- the speculation will be
2795  * atomically transitioned into the ACTIVEMANY state.
2796  */
2797 static dtrace_buffer_t *
2798 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2799     dtrace_specid_t which)
2800 {
2801         dtrace_speculation_t *spec;
2802         dtrace_speculation_state_t current, new;
2803         dtrace_buffer_t *buf;
2804 
2805         if (which == 0)
2806                 return (NULL);
2807 
2808         if (which > state->dts_nspeculations) {
2809                 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2810                 return (NULL);
2811         }
2812 
2813         spec = &state->dts_speculations[which - 1];
2814         buf = &spec->dtsp_buffer[cpuid];
2815 
2816         do {
2817                 current = spec->dtsp_state;
2818 
2819                 switch (current) {
2820                 case DTRACESPEC_INACTIVE:
2821                 case DTRACESPEC_COMMITTINGMANY:
2822                 case DTRACESPEC_DISCARDING:
2823                         return (NULL);
2824 
2825                 case DTRACESPEC_COMMITTING:
2826                         ASSERT(buf->dtb_offset == 0);
2827                         return (NULL);
2828 
2829                 case DTRACESPEC_ACTIVEONE:
2830                         /*
2831                          * This speculation is currently active on one CPU.
2832                          * Check the offset in the buffer; if it's non-zero,
2833                          * that CPU must be us (and we leave the state alone).
2834                          * If it's zero, assume that we're starting on a new
2835                          * CPU -- and change the state to indicate that the
2836                          * speculation is active on more than one CPU.
2837                          */
2838                         if (buf->dtb_offset != 0)
2839                                 return (buf);
2840 
2841                         new = DTRACESPEC_ACTIVEMANY;
2842                         break;
2843 
2844                 case DTRACESPEC_ACTIVEMANY:
2845                         return (buf);
2846 
2847                 case DTRACESPEC_ACTIVE:
2848                         new = DTRACESPEC_ACTIVEONE;
2849                         break;
2850 
2851                 default:
2852                         ASSERT(0);
2853                 }
2854         } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2855             current, new) != current);
2856 
2857         ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2858         return (buf);
2859 }
2860 
2861 /*
2862  * Return a string.  In the event that the user lacks the privilege to access
2863  * arbitrary kernel memory, we copy the string out to scratch memory so that we
2864  * don't fail access checking.
2865  *
2866  * dtrace_dif_variable() uses this routine as a helper for various
2867  * builtin values such as 'execname' and 'probefunc.'
2868  */
2869 uintptr_t
2870 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2871     dtrace_mstate_t *mstate)
2872 {
2873         uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2874         uintptr_t ret;
2875         size_t strsz;
2876 
2877         /*
2878          * The easy case: this probe is allowed to read all of memory, so
2879          * we can just return this as a vanilla pointer.
2880          */
2881         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2882                 return (addr);
2883 
2884         /*
2885          * This is the tougher case: we copy the string in question from
2886          * kernel memory into scratch memory and return it that way: this
2887          * ensures that we won't trip up when access checking tests the
2888          * BYREF return value.
2889          */
2890         strsz = dtrace_strlen((char *)addr, size) + 1;
2891 
2892         if (mstate->dtms_scratch_ptr + strsz >
2893             mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2894                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2895                 return (NULL);
2896         }
2897 
2898         dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2899             strsz);
2900         ret = mstate->dtms_scratch_ptr;
2901         mstate->dtms_scratch_ptr += strsz;
2902         return (ret);
2903 }
2904 
2905 /*
2906  * This function implements the DIF emulator's variable lookups.  The emulator
2907  * passes a reserved variable identifier and optional built-in array index.
2908  */
2909 static uint64_t
2910 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2911     uint64_t ndx)
2912 {
2913         /*
2914          * If we're accessing one of the uncached arguments, we'll turn this
2915          * into a reference in the args array.
2916          */
2917         if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2918                 ndx = v - DIF_VAR_ARG0;
2919                 v = DIF_VAR_ARGS;
2920         }
2921 
2922         switch (v) {
2923         case DIF_VAR_ARGS:
2924                 if (!(mstate->dtms_access & DTRACE_ACCESS_ARGS)) {
2925                         cpu_core[CPU->cpu_id].cpuc_dtrace_flags |=
2926                             CPU_DTRACE_KPRIV;
2927                         return (0);
2928                 }
2929 
2930                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2931                 if (ndx >= sizeof (mstate->dtms_arg) /
2932                     sizeof (mstate->dtms_arg[0])) {
2933                         int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2934                         dtrace_provider_t *pv;
2935                         uint64_t val;
2936 
2937                         pv = mstate->dtms_probe->dtpr_provider;
2938                         if (pv->dtpv_pops.dtps_getargval != NULL)
2939                                 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2940                                     mstate->dtms_probe->dtpr_id,
2941                                     mstate->dtms_probe->dtpr_arg, ndx, aframes);
2942                         else
2943                                 val = dtrace_getarg(ndx, aframes);
2944 
2945                         /*
2946                          * This is regrettably required to keep the compiler
2947                          * from tail-optimizing the call to dtrace_getarg().
2948                          * The condition always evaluates to true, but the
2949                          * compiler has no way of figuring that out a priori.
2950                          * (None of this would be necessary if the compiler
2951                          * could be relied upon to _always_ tail-optimize
2952                          * the call to dtrace_getarg() -- but it can't.)
2953                          */
2954                         if (mstate->dtms_probe != NULL)
2955                                 return (val);
2956 
2957                         ASSERT(0);
2958                 }
2959 
2960                 return (mstate->dtms_arg[ndx]);
2961 
2962         case DIF_VAR_UREGS: {
2963                 klwp_t *lwp;
2964 
2965                 if (!dtrace_priv_proc(state, mstate))
2966                         return (0);
2967 
2968                 if ((lwp = curthread->t_lwp) == NULL) {
2969                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2970                         cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL;
2971                         return (0);
2972                 }
2973 
2974                 return (dtrace_getreg(lwp->lwp_regs, ndx));
2975         }
2976 
2977         case DIF_VAR_VMREGS: {
2978                 uint64_t rval;
2979 
2980                 if (!dtrace_priv_kernel(state))
2981                         return (0);
2982 
2983                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2984 
2985                 rval = dtrace_getvmreg(ndx,
2986                     &cpu_core[CPU->cpu_id].cpuc_dtrace_flags);
2987 
2988                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2989 
2990                 return (rval);
2991         }
2992 
2993         case DIF_VAR_CURTHREAD:
2994                 if (!dtrace_priv_proc(state, mstate))
2995                         return (0);
2996                 return ((uint64_t)(uintptr_t)curthread);
2997 
2998         case DIF_VAR_TIMESTAMP:
2999                 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
3000                         mstate->dtms_timestamp = dtrace_gethrtime();
3001                         mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
3002                 }
3003                 return (mstate->dtms_timestamp);
3004 
3005         case DIF_VAR_VTIMESTAMP:
3006                 ASSERT(dtrace_vtime_references != 0);
3007                 return (curthread->t_dtrace_vtime);
3008 
3009         case DIF_VAR_WALLTIMESTAMP:
3010                 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
3011                         mstate->dtms_walltimestamp = dtrace_gethrestime();
3012                         mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
3013                 }
3014                 return (mstate->dtms_walltimestamp);
3015 
3016         case DIF_VAR_IPL:
3017                 if (!dtrace_priv_kernel(state))
3018                         return (0);
3019                 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
3020                         mstate->dtms_ipl = dtrace_getipl();
3021                         mstate->dtms_present |= DTRACE_MSTATE_IPL;
3022                 }
3023                 return (mstate->dtms_ipl);
3024 
3025         case DIF_VAR_EPID:
3026                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
3027                 return (mstate->dtms_epid);
3028 
3029         case DIF_VAR_ID:
3030                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3031                 return (mstate->dtms_probe->dtpr_id);
3032 
3033         case DIF_VAR_STACKDEPTH:
3034                 if (!dtrace_priv_kernel(state))
3035                         return (0);
3036                 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
3037                         int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3038 
3039                         mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
3040                         mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
3041                 }
3042                 return (mstate->dtms_stackdepth);
3043 
3044         case DIF_VAR_USTACKDEPTH:
3045                 if (!dtrace_priv_proc(state, mstate))
3046                         return (0);
3047                 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
3048                         /*
3049                          * See comment in DIF_VAR_PID.
3050                          */
3051                         if (DTRACE_ANCHORED(mstate->dtms_probe) &&
3052                             CPU_ON_INTR(CPU)) {
3053                                 mstate->dtms_ustackdepth = 0;
3054                         } else {
3055                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3056                                 mstate->dtms_ustackdepth =
3057                                     dtrace_getustackdepth();
3058                                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3059                         }
3060                         mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
3061                 }
3062                 return (mstate->dtms_ustackdepth);
3063 
3064         case DIF_VAR_CALLER:
3065                 if (!dtrace_priv_kernel(state))
3066                         return (0);
3067                 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
3068                         int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3069 
3070                         if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
3071                                 /*
3072                                  * If this is an unanchored probe, we are
3073                                  * required to go through the slow path:
3074                                  * dtrace_caller() only guarantees correct
3075                                  * results for anchored probes.
3076                                  */
3077                                 pc_t caller[2];
3078 
3079                                 dtrace_getpcstack(caller, 2, aframes,
3080                                     (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
3081                                 mstate->dtms_caller = caller[1];
3082                         } else if ((mstate->dtms_caller =
3083                             dtrace_caller(aframes)) == -1) {
3084                                 /*
3085                                  * We have failed to do this the quick way;
3086                                  * we must resort to the slower approach of
3087                                  * calling dtrace_getpcstack().
3088                                  */
3089                                 pc_t caller;
3090 
3091                                 dtrace_getpcstack(&caller, 1, aframes, NULL);
3092                                 mstate->dtms_caller = caller;
3093                         }
3094 
3095                         mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3096                 }
3097                 return (mstate->dtms_caller);
3098 
3099         case DIF_VAR_UCALLER:
3100                 if (!dtrace_priv_proc(state, mstate))
3101                         return (0);
3102 
3103                 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3104                         uint64_t ustack[3];
3105 
3106                         /*
3107                          * dtrace_getupcstack() fills in the first uint64_t
3108                          * with the current PID.  The second uint64_t will
3109                          * be the program counter at user-level.  The third
3110                          * uint64_t will contain the caller, which is what
3111                          * we're after.
3112                          */
3113                         ustack[2] = NULL;
3114                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3115                         dtrace_getupcstack(ustack, 3);
3116                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3117                         mstate->dtms_ucaller = ustack[2];
3118                         mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3119                 }
3120 
3121                 return (mstate->dtms_ucaller);
3122 
3123         case DIF_VAR_PROBEPROV:
3124                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3125                 return (dtrace_dif_varstr(
3126                     (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3127                     state, mstate));
3128 
3129         case DIF_VAR_PROBEMOD:
3130                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3131                 return (dtrace_dif_varstr(
3132                     (uintptr_t)mstate->dtms_probe->dtpr_mod,
3133                     state, mstate));
3134 
3135         case DIF_VAR_PROBEFUNC:
3136                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3137                 return (dtrace_dif_varstr(
3138                     (uintptr_t)mstate->dtms_probe->dtpr_func,
3139                     state, mstate));
3140 
3141         case DIF_VAR_PROBENAME:
3142                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3143                 return (dtrace_dif_varstr(
3144                     (uintptr_t)mstate->dtms_probe->dtpr_name,
3145                     state, mstate));
3146 
3147         case DIF_VAR_PID:
3148                 if (!dtrace_priv_proc(state, mstate))
3149                         return (0);
3150 
3151                 /*
3152                  * Note that we are assuming that an unanchored probe is
3153                  * always due to a high-level interrupt.  (And we're assuming
3154                  * that there is only a single high level interrupt.)
3155                  */
3156                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3157                         return (pid0.pid_id);
3158 
3159                 /*
3160                  * It is always safe to dereference one's own t_procp pointer:
3161                  * it always points to a valid, allocated proc structure.
3162                  * Further, it is always safe to dereference the p_pidp member
3163                  * of one's own proc structure.  (These are truisms becuase
3164                  * threads and processes don't clean up their own state --
3165                  * they leave that task to whomever reaps them.)
3166                  */
3167                 return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3168 
3169         case DIF_VAR_PPID:
3170                 if (!dtrace_priv_proc(state, mstate))
3171                         return (0);
3172 
3173                 /*
3174                  * See comment in DIF_VAR_PID.
3175                  */
3176                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3177                         return (pid0.pid_id);
3178 
3179                 /*
3180                  * It is always safe to dereference one's own t_procp pointer:
3181                  * it always points to a valid, allocated proc structure.
3182                  * (This is true because threads don't clean up their own
3183                  * state -- they leave that task to whomever reaps them.)
3184                  */
3185                 return ((uint64_t)curthread->t_procp->p_ppid);
3186 
3187         case DIF_VAR_TID:
3188                 /*
3189                  * See comment in DIF_VAR_PID.
3190                  */
3191                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3192                         return (0);
3193 
3194                 return ((uint64_t)curthread->t_tid);
3195 
3196         case DIF_VAR_EXECNAME:
3197                 if (!dtrace_priv_proc(state, mstate))
3198                         return (0);
3199 
3200                 /*
3201                  * See comment in DIF_VAR_PID.
3202                  */
3203                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3204                         return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3205 
3206                 /*
3207                  * It is always safe to dereference one's own t_procp pointer:
3208                  * it always points to a valid, allocated proc structure.
3209                  * (This is true because threads don't clean up their own
3210                  * state -- they leave that task to whomever reaps them.)
3211                  */
3212                 return (dtrace_dif_varstr(
3213                     (uintptr_t)curthread->t_procp->p_user.u_comm,
3214                     state, mstate));
3215 
3216         case DIF_VAR_ZONENAME:
3217                 if (!dtrace_priv_proc(state, mstate))
3218                         return (0);
3219 
3220                 /*
3221                  * See comment in DIF_VAR_PID.
3222                  */
3223                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3224                         return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3225 
3226                 /*
3227                  * It is always safe to dereference one's own t_procp pointer:
3228                  * it always points to a valid, allocated proc structure.
3229                  * (This is true because threads don't clean up their own
3230                  * state -- they leave that task to whomever reaps them.)
3231                  */
3232                 return (dtrace_dif_varstr(
3233                     (uintptr_t)curthread->t_procp->p_zone->zone_name,
3234                     state, mstate));
3235 
3236         case DIF_VAR_UID:
3237                 if (!dtrace_priv_proc(state, mstate))
3238                         return (0);
3239 
3240                 /*
3241                  * See comment in DIF_VAR_PID.
3242                  */
3243                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3244                         return ((uint64_t)p0.p_cred->cr_uid);
3245 
3246                 /*
3247                  * It is always safe to dereference one's own t_procp pointer:
3248                  * it always points to a valid, allocated proc structure.
3249                  * (This is true because threads don't clean up their own
3250                  * state -- they leave that task to whomever reaps them.)
3251                  *
3252                  * Additionally, it is safe to dereference one's own process
3253                  * credential, since this is never NULL after process birth.
3254                  */
3255                 return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3256 
3257         case DIF_VAR_GID:
3258                 if (!dtrace_priv_proc(state, mstate))
3259                         return (0);
3260 
3261                 /*
3262                  * See comment in DIF_VAR_PID.
3263                  */
3264                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3265                         return ((uint64_t)p0.p_cred->cr_gid);
3266 
3267                 /*
3268                  * It is always safe to dereference one's own t_procp pointer:
3269                  * it always points to a valid, allocated proc structure.
3270                  * (This is true because threads don't clean up their own
3271                  * state -- they leave that task to whomever reaps them.)
3272                  *
3273                  * Additionally, it is safe to dereference one's own process
3274                  * credential, since this is never NULL after process birth.
3275                  */
3276                 return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3277 
3278         case DIF_VAR_ERRNO: {
3279                 klwp_t *lwp;
3280                 if (!dtrace_priv_proc(state, mstate))
3281                         return (0);
3282 
3283                 /*
3284                  * See comment in DIF_VAR_PID.
3285                  */
3286                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3287                         return (0);
3288 
3289                 /*
3290                  * It is always safe to dereference one's own t_lwp pointer in
3291                  * the event that this pointer is non-NULL.  (This is true
3292                  * because threads and lwps don't clean up their own state --
3293                  * they leave that task to whomever reaps them.)
3294                  */
3295                 if ((lwp = curthread->t_lwp) == NULL)
3296                         return (0);
3297 
3298                 return ((uint64_t)lwp->lwp_errno);
3299         }
3300         default:
3301                 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3302                 return (0);
3303         }
3304 }
3305 
3306 /*
3307  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3308  * Notice that we don't bother validating the proper number of arguments or
3309  * their types in the tuple stack.  This isn't needed because all argument
3310  * interpretation is safe because of our load safety -- the worst that can
3311  * happen is that a bogus program can obtain bogus results.
3312  */
3313 static void
3314 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3315     dtrace_key_t *tupregs, int nargs,
3316     dtrace_mstate_t *mstate, dtrace_state_t *state)
3317 {
3318         volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
3319         volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
3320         dtrace_vstate_t *vstate = &state->dts_vstate;
3321 
3322         union {
3323                 mutex_impl_t mi;
3324                 uint64_t mx;
3325         } m;
3326 
3327         union {
3328                 krwlock_t ri;
3329                 uintptr_t rw;
3330         } r;
3331 
3332         switch (subr) {
3333         case DIF_SUBR_RAND:
3334                 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3335                 break;
3336 
3337         case DIF_SUBR_MUTEX_OWNED:
3338                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3339                     mstate, vstate)) {
3340                         regs[rd] = NULL;
3341                         break;
3342                 }
3343 
3344                 m.mx = dtrace_load64(tupregs[0].dttk_value);
3345                 if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3346                         regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3347                 else
3348                         regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3349                 break;
3350 
3351         case DIF_SUBR_MUTEX_OWNER:
3352                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3353                     mstate, vstate)) {
3354                         regs[rd] = NULL;
3355                         break;
3356                 }
3357 
3358                 m.mx = dtrace_load64(tupregs[0].dttk_value);
3359                 if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3360                     MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3361                         regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3362                 else
3363                         regs[rd] = 0;
3364                 break;
3365 
3366         case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3367                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3368                     mstate, vstate)) {
3369                         regs[rd] = NULL;
3370                         break;
3371                 }
3372 
3373                 m.mx = dtrace_load64(tupregs[0].dttk_value);
3374                 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3375                 break;
3376 
3377         case DIF_SUBR_MUTEX_TYPE_SPIN:
3378                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3379                     mstate, vstate)) {
3380                         regs[rd] = NULL;
3381                         break;
3382                 }
3383 
3384                 m.mx = dtrace_load64(tupregs[0].dttk_value);
3385                 regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3386                 break;
3387 
3388         case DIF_SUBR_RW_READ_HELD: {
3389                 uintptr_t tmp;
3390 
3391                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3392                     mstate, vstate)) {
3393                         regs[rd] = NULL;
3394                         break;
3395                 }
3396 
3397                 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3398                 regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3399                 break;
3400         }
3401 
3402         case DIF_SUBR_RW_WRITE_HELD:
3403                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3404                     mstate, vstate)) {
3405                         regs[rd] = NULL;
3406                         break;
3407                 }
3408 
3409                 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3410                 regs[rd] = _RW_WRITE_HELD(&r.ri);
3411                 break;
3412 
3413         case DIF_SUBR_RW_ISWRITER:
3414                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3415                     mstate, vstate)) {
3416                         regs[rd] = NULL;
3417                         break;
3418                 }
3419 
3420                 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3421                 regs[rd] = _RW_ISWRITER(&r.ri);
3422                 break;
3423 
3424         case DIF_SUBR_BCOPY: {
3425                 /*
3426                  * We need to be sure that the destination is in the scratch
3427                  * region -- no other region is allowed.
3428                  */
3429                 uintptr_t src = tupregs[0].dttk_value;
3430                 uintptr_t dest = tupregs[1].dttk_value;
3431                 size_t size = tupregs[2].dttk_value;
3432 
3433                 if (!dtrace_inscratch(dest, size, mstate)) {
3434                         *flags |= CPU_DTRACE_BADADDR;
3435                         *illval = regs[rd];
3436                         break;
3437                 }
3438 
3439                 if (!dtrace_canload(src, size, mstate, vstate)) {
3440                         regs[rd] = NULL;
3441                         break;
3442                 }
3443 
3444                 dtrace_bcopy((void *)src, (void *)dest, size);
3445                 break;
3446         }
3447 
3448         case DIF_SUBR_ALLOCA:
3449         case DIF_SUBR_COPYIN: {
3450                 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3451                 uint64_t size =
3452                     tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3453                 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
3454 
3455                 /*
3456                  * This action doesn't require any credential checks since
3457                  * probes will not activate in user contexts to which the
3458                  * enabling user does not have permissions.
3459                  */
3460 
3461                 /*
3462                  * Rounding up the user allocation size could have overflowed
3463                  * a large, bogus allocation (like -1ULL) to 0.
3464                  */
3465                 if (scratch_size < size ||
3466                     !DTRACE_INSCRATCH(mstate, scratch_size)) {
3467                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3468                         regs[rd] = NULL;
3469                         break;
3470                 }
3471 
3472                 if (subr == DIF_SUBR_COPYIN) {
3473                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3474                         dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3475                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3476                 }
3477 
3478                 mstate->dtms_scratch_ptr += scratch_size;
3479                 regs[rd] = dest;
3480                 break;
3481         }
3482 
3483         case DIF_SUBR_COPYINTO: {
3484                 uint64_t size = tupregs[1].dttk_value;
3485                 uintptr_t dest = tupregs[2].dttk_value;
3486 
3487                 /*
3488                  * This action doesn't require any credential checks since
3489                  * probes will not activate in user contexts to which the
3490                  * enabling user does not have permissions.
3491                  */
3492                 if (!dtrace_inscratch(dest, size, mstate)) {
3493                         *flags |= CPU_DTRACE_BADADDR;
3494                         *illval = regs[rd];
3495                         break;
3496                 }
3497 
3498                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3499                 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3500                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3501                 break;
3502         }
3503 
3504         case DIF_SUBR_COPYINSTR: {
3505                 uintptr_t dest = mstate->dtms_scratch_ptr;
3506                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3507 
3508                 if (nargs > 1 && tupregs[1].dttk_value < size)
3509                         size = tupregs[1].dttk_value + 1;
3510 
3511                 /*
3512                  * This action doesn't require any credential checks since
3513                  * probes will not activate in user contexts to which the
3514                  * enabling user does not have permissions.
3515                  */
3516                 if (!DTRACE_INSCRATCH(mstate, size)) {
3517                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3518                         regs[rd] = NULL;
3519                         break;
3520                 }
3521 
3522                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3523                 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
3524                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3525 
3526                 ((char *)dest)[size - 1] = '\0';
3527                 mstate->dtms_scratch_ptr += size;
3528                 regs[rd] = dest;
3529                 break;
3530         }
3531 
3532         case DIF_SUBR_MSGSIZE:
3533         case DIF_SUBR_MSGDSIZE: {
3534                 uintptr_t baddr = tupregs[0].dttk_value, daddr;
3535                 uintptr_t wptr, rptr;
3536                 size_t count = 0;
3537                 int cont = 0;
3538 
3539                 while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
3540 
3541                         if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
3542                             vstate)) {
3543                                 regs[rd] = NULL;
3544                                 break;
3545                         }
3546 
3547                         wptr = dtrace_loadptr(baddr +
3548                             offsetof(mblk_t, b_wptr));
3549 
3550                         rptr = dtrace_loadptr(baddr +
3551                             offsetof(mblk_t, b_rptr));
3552 
3553                         if (wptr < rptr) {
3554                                 *flags |= CPU_DTRACE_BADADDR;
3555                                 *illval = tupregs[0].dttk_value;
3556                                 break;
3557                         }
3558 
3559                         daddr = dtrace_loadptr(baddr +
3560                             offsetof(mblk_t, b_datap));
3561 
3562                         baddr = dtrace_loadptr(baddr +
3563                             offsetof(mblk_t, b_cont));
3564 
3565                         /*
3566                          * We want to prevent against denial-of-service here,
3567                          * so we're only going to search the list for
3568                          * dtrace_msgdsize_max mblks.
3569                          */
3570                         if (cont++ > dtrace_msgdsize_max) {
3571                                 *flags |= CPU_DTRACE_ILLOP;
3572                                 break;
3573                         }
3574 
3575                         if (subr == DIF_SUBR_MSGDSIZE) {
3576                                 if (dtrace_load8(daddr +
3577                                     offsetof(dblk_t, db_type)) != M_DATA)
3578                                         continue;
3579                         }
3580 
3581                         count += wptr - rptr;
3582                 }
3583 
3584                 if (!(*flags & CPU_DTRACE_FAULT))
3585                         regs[rd] = count;
3586 
3587                 break;
3588         }
3589 
3590         case DIF_SUBR_PROGENYOF: {
3591                 pid_t pid = tupregs[0].dttk_value;
3592                 proc_t *p;
3593                 int rval = 0;
3594 
3595                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3596 
3597                 for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
3598                         if (p->p_pidp->pid_id == pid) {
3599                                 rval = 1;
3600                                 break;
3601                         }
3602                 }
3603 
3604                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3605 
3606                 regs[rd] = rval;
3607                 break;
3608         }
3609 
3610         case DIF_SUBR_SPECULATION:
3611                 regs[rd] = dtrace_speculation(state);
3612                 break;
3613 
3614         case DIF_SUBR_COPYOUT: {
3615                 uintptr_t kaddr = tupregs[0].dttk_value;
3616                 uintptr_t uaddr = tupregs[1].dttk_value;
3617                 uint64_t size = tupregs[2].dttk_value;
3618 
3619                 if (!dtrace_destructive_disallow &&
3620                     dtrace_priv_proc_control(state, mstate) &&
3621                     !dtrace_istoxic(kaddr, size)) {
3622                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3623                         dtrace_copyout(kaddr, uaddr, size, flags);
3624                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3625                 }
3626                 break;
3627         }
3628 
3629         case DIF_SUBR_COPYOUTSTR: {
3630                 uintptr_t kaddr = tupregs[0].dttk_value;
3631                 uintptr_t uaddr = tupregs[1].dttk_value;
3632                 uint64_t size = tupregs[2].dttk_value;
3633 
3634                 if (!dtrace_destructive_disallow &&
3635                     dtrace_priv_proc_control(state, mstate) &&
3636                     !dtrace_istoxic(kaddr, size)) {
3637                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3638                         dtrace_copyoutstr(kaddr, uaddr, size, flags);
3639                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3640                 }
3641                 break;
3642         }
3643 
3644         case DIF_SUBR_STRLEN: {
3645                 size_t sz;
3646                 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3647                 sz = dtrace_strlen((char *)addr,
3648                     state->dts_options[DTRACEOPT_STRSIZE]);
3649 
3650                 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3651                         regs[rd] = NULL;
3652                         break;
3653                 }
3654 
3655                 regs[rd] = sz;
3656 
3657                 break;
3658         }
3659 
3660         case DIF_SUBR_STRCHR:
3661         case DIF_SUBR_STRRCHR: {
3662                 /*
3663                  * We're going to iterate over the string looking for the
3664                  * specified character.  We will iterate until we have reached
3665                  * the string length or we have found the character.  If this
3666                  * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3667                  * of the specified character instead of the first.
3668                  */
3669                 uintptr_t saddr = tupregs[0].dttk_value;
3670                 uintptr_t addr = tupregs[0].dttk_value;
3671                 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3672                 char c, target = (char)tupregs[1].dttk_value;
3673 
3674                 for (regs[rd] = NULL; addr < limit; addr++) {
3675                         if ((c = dtrace_load8(addr)) == target) {
3676                                 regs[rd] = addr;
3677 
3678                                 if (subr == DIF_SUBR_STRCHR)
3679                                         break;
3680                         }
3681 
3682                         if (c == '\0')
3683                                 break;
3684                 }
3685 
3686                 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3687                         regs[rd] = NULL;
3688                         break;
3689                 }
3690 
3691                 break;
3692         }
3693 
3694         case DIF_SUBR_STRSTR:
3695         case DIF_SUBR_INDEX:
3696         case DIF_SUBR_RINDEX: {
3697                 /*
3698                  * We're going to iterate over the string looking for the
3699                  * specified string.  We will iterate until we have reached
3700                  * the string length or we have found the string.  (Yes, this
3701                  * is done in the most naive way possible -- but considering
3702                  * that the string we're searching for is likely to be
3703                  * relatively short, the complexity of Rabin-Karp or similar
3704                  * hardly seems merited.)
3705                  */
3706                 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3707                 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3708                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3709                 size_t len = dtrace_strlen(addr, size);
3710                 size_t sublen = dtrace_strlen(substr, size);
3711                 char *limit = addr + len, *orig = addr;
3712                 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3713                 int inc = 1;
3714 
3715                 regs[rd] = notfound;
3716 
3717                 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3718                         regs[rd] = NULL;
3719                         break;
3720                 }
3721 
3722                 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3723                     vstate)) {
3724                         regs[rd] = NULL;
3725                         break;
3726                 }
3727 
3728                 /*
3729                  * strstr() and index()/rindex() have similar semantics if
3730                  * both strings are the empty string: strstr() returns a
3731                  * pointer to the (empty) string, and index() and rindex()
3732                  * both return index 0 (regardless of any position argument).
3733                  */
3734                 if (sublen == 0 && len == 0) {
3735                         if (subr == DIF_SUBR_STRSTR)
3736                                 regs[rd] = (uintptr_t)addr;
3737                         else
3738                                 regs[rd] = 0;
3739                         break;
3740                 }
3741 
3742                 if (subr != DIF_SUBR_STRSTR) {
3743                         if (subr == DIF_SUBR_RINDEX) {
3744                                 limit = orig - 1;
3745                                 addr += len;
3746                                 inc = -1;
3747                         }
3748 
3749                         /*
3750                          * Both index() and rindex() take an optional position
3751                          * argument that denotes the starting position.
3752                          */
3753                         if (nargs == 3) {
3754                                 int64_t pos = (int64_t)tupregs[2].dttk_value;
3755 
3756                                 /*
3757                                  * If the position argument to index() is
3758                                  * negative, Perl implicitly clamps it at
3759                                  * zero.  This semantic is a little surprising
3760                                  * given the special meaning of negative
3761                                  * positions to similar Perl functions like
3762                                  * substr(), but it appears to reflect a
3763                                  * notion that index() can start from a
3764                                  * negative index and increment its way up to
3765                                  * the string.  Given this notion, Perl's
3766                                  * rindex() is at least self-consistent in
3767                                  * that it implicitly clamps positions greater
3768                                  * than the string length to be the string
3769                                  * length.  Where Perl completely loses
3770                                  * coherence, however, is when the specified
3771                                  * substring is the empty string ("").  In
3772                                  * this case, even if the position is
3773                                  * negative, rindex() returns 0 -- and even if
3774                                  * the position is greater than the length,
3775                                  * index() returns the string length.  These
3776                                  * semantics violate the notion that index()
3777                                  * should never return a value less than the
3778                                  * specified position and that rindex() should
3779                                  * never return a value greater than the
3780                                  * specified position.  (One assumes that
3781                                  * these semantics are artifacts of Perl's
3782                                  * implementation and not the results of
3783                                  * deliberate design -- it beggars belief that
3784                                  * even Larry Wall could desire such oddness.)
3785                                  * While in the abstract one would wish for
3786                                  * consistent position semantics across
3787                                  * substr(), index() and rindex() -- or at the
3788                                  * very least self-consistent position
3789                                  * semantics for index() and rindex() -- we
3790                                  * instead opt to keep with the extant Perl
3791                                  * semantics, in all their broken glory.  (Do
3792                                  * we have more desire to maintain Perl's
3793                                  * semantics than Perl does?  Probably.)
3794                                  */
3795                                 if (subr == DIF_SUBR_RINDEX) {
3796                                         if (pos < 0) {
3797                                                 if (sublen == 0)
3798                                                         regs[rd] = 0;
3799                                                 break;
3800                                         }
3801 
3802                                         if (pos > len)
3803                                                 pos = len;
3804                                 } else {
3805                                         if (pos < 0)
3806                                                 pos = 0;
3807 
3808                                         if (pos >= len) {
3809                                                 if (sublen == 0)
3810                                                         regs[rd] = len;
3811                                                 break;
3812                                         }
3813                                 }
3814 
3815                                 addr = orig + pos;
3816                         }
3817                 }
3818 
3819                 for (regs[rd] = notfound; addr != limit; addr += inc) {
3820                         if (dtrace_strncmp(addr, substr, sublen) == 0) {
3821                                 if (subr != DIF_SUBR_STRSTR) {
3822                                         /*
3823                                          * As D index() and rindex() are
3824                                          * modeled on Perl (and not on awk),
3825                                          * we return a zero-based (and not a
3826                                          * one-based) index.  (For you Perl
3827                                          * weenies: no, we're not going to add
3828                                          * $[ -- and shouldn't you be at a con
3829                                          * or something?)
3830                                          */
3831                                         regs[rd] = (uintptr_t)(addr - orig);
3832                                         break;
3833                                 }
3834 
3835                                 ASSERT(subr == DIF_SUBR_STRSTR);
3836                                 regs[rd] = (uintptr_t)addr;
3837                                 break;
3838                         }
3839                 }
3840 
3841                 break;
3842         }
3843 
3844         case DIF_SUBR_STRTOK: {
3845                 uintptr_t addr = tupregs[0].dttk_value;
3846                 uintptr_t tokaddr = tupregs[1].dttk_value;
3847                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3848                 uintptr_t limit, toklimit = tokaddr + size;
3849                 uint8_t c, tokmap[32];   /* 256 / 8 */
3850                 char *dest = (char *)mstate->dtms_scratch_ptr;
3851                 int i;
3852 
3853                 /*
3854                  * Check both the token buffer and (later) the input buffer,
3855                  * since both could be non-scratch addresses.
3856                  */
3857                 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3858                         regs[rd] = NULL;
3859                         break;
3860                 }
3861 
3862                 if (!DTRACE_INSCRATCH(mstate, size)) {
3863                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3864                         regs[rd] = NULL;
3865                         break;
3866                 }
3867 
3868                 if (addr == NULL) {
3869                         /*
3870                          * If the address specified is NULL, we use our saved
3871                          * strtok pointer from the mstate.  Note that this
3872                          * means that the saved strtok pointer is _only_
3873                          * valid within multiple enablings of the same probe --
3874                          * it behaves like an implicit clause-local variable.
3875                          */
3876                         addr = mstate->dtms_strtok;
3877                 } else {
3878                         /*
3879                          * If the user-specified address is non-NULL we must
3880                          * access check it.  This is the only time we have
3881                          * a chance to do so, since this address may reside
3882                          * in the string table of this clause-- future calls
3883                          * (when we fetch addr from mstate->dtms_strtok)
3884                          * would fail this access check.
3885                          */
3886                         if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3887                                 regs[rd] = NULL;
3888                                 break;
3889                         }
3890                 }
3891 
3892                 /*
3893                  * First, zero the token map, and then process the token
3894                  * string -- setting a bit in the map for every character
3895                  * found in the token string.
3896                  */
3897                 for (i = 0; i < sizeof (tokmap); i++)
3898                         tokmap[i] = 0;
3899 
3900                 for (; tokaddr < toklimit; tokaddr++) {
3901                         if ((c = dtrace_load8(tokaddr)) == '\0')
3902                                 break;
3903 
3904                         ASSERT((c >> 3) < sizeof (tokmap));
3905                         tokmap[c >> 3] |= (1 << (c & 0x7));
3906                 }
3907 
3908                 for (limit = addr + size; addr < limit; addr++) {
3909                         /*
3910                          * We're looking for a character that is _not_ contained
3911                          * in the token string.
3912                          */
3913                         if ((c = dtrace_load8(addr)) == '\0')
3914                                 break;
3915 
3916                         if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3917                                 break;
3918                 }
3919 
3920                 if (c == '\0') {
3921                         /*
3922                          * We reached the end of the string without finding
3923                          * any character that was not in the token string.
3924                          * We return NULL in this case, and we set the saved
3925                          * address to NULL as well.
3926                          */
3927                         regs[rd] = NULL;
3928                         mstate->dtms_strtok = NULL;
3929                         break;
3930                 }
3931 
3932                 /*
3933                  * From here on, we're copying into the destination string.
3934                  */
3935                 for (i = 0; addr < limit && i < size - 1; addr++) {
3936                         if ((c = dtrace_load8(addr)) == '\0')
3937                                 break;
3938 
3939                         if (tokmap[c >> 3] & (1 << (c & 0x7)))
3940                                 break;
3941 
3942                         ASSERT(i < size);
3943                         dest[i++] = c;
3944                 }
3945 
3946                 ASSERT(i < size);
3947                 dest[i] = '\0';
3948                 regs[rd] = (uintptr_t)dest;
3949                 mstate->dtms_scratch_ptr += size;
3950                 mstate->dtms_strtok = addr;
3951                 break;
3952         }
3953 
3954         case DIF_SUBR_SUBSTR: {
3955                 uintptr_t s = tupregs[0].dttk_value;
3956                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3957                 char *d = (char *)mstate->dtms_scratch_ptr;
3958                 int64_t index = (int64_t)tupregs[1].dttk_value;
3959                 int64_t remaining = (int64_t)tupregs[2].dttk_value;
3960                 size_t len = dtrace_strlen((char *)s, size);
3961                 int64_t i;
3962 
3963                 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
3964                         regs[rd] = NULL;
3965                         break;
3966                 }
3967 
3968                 if (!DTRACE_INSCRATCH(mstate, size)) {
3969                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3970                         regs[rd] = NULL;
3971                         break;
3972                 }
3973 
3974                 if (nargs <= 2)
3975                         remaining = (int64_t)size;
3976 
3977                 if (index < 0) {
3978                         index += len;
3979 
3980                         if (index < 0 && index + remaining > 0) {
3981                                 remaining += index;
3982                                 index = 0;
3983                         }
3984                 }
3985 
3986                 if (index >= len || index < 0) {
3987                         remaining = 0;
3988                 } else if (remaining < 0) {
3989                         remaining += len - index;
3990                 } else if (index + remaining > size) {
3991                         remaining = size - index;
3992                 }
3993 
3994                 for (i = 0; i < remaining; i++) {
3995                         if ((d[i] = dtrace_load8(s + index + i)) == '\0')
3996                                 break;
3997                 }
3998 
3999                 d[i] = '\0';
4000 
4001                 mstate->dtms_scratch_ptr += size;
4002                 regs[rd] = (uintptr_t)d;
4003                 break;
4004         }
4005 
4006         case DIF_SUBR_TOUPPER:
4007         case DIF_SUBR_TOLOWER: {
4008                 uintptr_t s = tupregs[0].dttk_value;
4009                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4010                 char *dest = (char *)mstate->dtms_scratch_ptr, c;
4011                 size_t len = dtrace_strlen((char *)s, size);
4012                 char lower, upper, convert;
4013                 int64_t i;
4014 
4015                 if (subr == DIF_SUBR_TOUPPER) {
4016                         lower = 'a';
4017                         upper = 'z';
4018                         convert = 'A';
4019                 } else {
4020                         lower = 'A';
4021                         upper = 'Z';
4022                         convert = 'a';
4023                 }
4024 
4025                 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4026                         regs[rd] = NULL;
4027                         break;
4028                 }
4029 
4030                 if (!DTRACE_INSCRATCH(mstate, size)) {
4031                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4032                         regs[rd] = NULL;
4033                         break;
4034                 }
4035 
4036                 for (i = 0; i < size - 1; i++) {
4037                         if ((c = dtrace_load8(s + i)) == '\0')
4038                                 break;
4039 
4040                         if (c >= lower && c <= upper)
4041                                 c = convert + (c - lower);
4042 
4043                         dest[i] = c;
4044                 }
4045 
4046                 ASSERT(i < size);
4047                 dest[i] = '\0';
4048                 regs[rd] = (uintptr_t)dest;
4049                 mstate->dtms_scratch_ptr += size;
4050                 break;
4051         }
4052 
4053 case DIF_SUBR_GETMAJOR:
4054 #ifdef _LP64
4055                 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4056 #else
4057                 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4058 #endif
4059                 break;
4060 
4061         case DIF_SUBR_GETMINOR:
4062 #ifdef _LP64
4063                 regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4064 #else
4065                 regs[rd] = tupregs[0].dttk_value & MAXMIN;
4066 #endif
4067                 break;
4068 
4069         case DIF_SUBR_DDI_PATHNAME: {
4070                 /*
4071                  * This one is a galactic mess.  We are going to roughly
4072                  * emulate ddi_pathname(), but it's made more complicated
4073                  * by the fact that we (a) want to include the minor name and
4074                  * (b) must proceed iteratively instead of recursively.
4075                  */
4076                 uintptr_t dest = mstate->dtms_scratch_ptr;
4077                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4078                 char *start = (char *)dest, *end = start + size - 1;
4079                 uintptr_t daddr = tupregs[0].dttk_value;
4080                 int64_t minor = (int64_t)tupregs[1].dttk_value;
4081                 char *s;
4082                 int i, len, depth = 0;
4083 
4084                 /*
4085                  * Due to all the pointer jumping we do and context we must
4086                  * rely upon, we just mandate that the user must have kernel
4087                  * read privileges to use this routine.
4088                  */
4089                 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
4090                         *flags |= CPU_DTRACE_KPRIV;
4091                         *illval = daddr;
4092                         regs[rd] = NULL;
4093                 }
4094 
4095                 if (!DTRACE_INSCRATCH(mstate, size)) {
4096                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4097                         regs[rd] = NULL;
4098                         break;
4099                 }
4100 
4101                 *end = '\0';
4102 
4103                 /*
4104                  * We want to have a name for the minor.  In order to do this,
4105                  * we need to walk the minor list from the devinfo.  We want
4106                  * to be sure that we don't infinitely walk a circular list,
4107                  * so we check for circularity by sending a scout pointer
4108                  * ahead two elements for every element that we iterate over;
4109                  * if the list is circular, these will ultimately point to the
4110                  * same element.  You may recognize this little trick as the
4111                  * answer to a stupid interview question -- one that always
4112                  * seems to be asked by those who had to have it laboriously
4113                  * explained to them, and who can't even concisely describe
4114                  * the conditions under which one would be forced to resort to
4115                  * this technique.  Needless to say, those conditions are
4116                  * found here -- and probably only here.  Is this the only use
4117                  * of this infamous trick in shipping, production code?  If it
4118                  * isn't, it probably should be...
4119                  */
4120                 if (minor != -1) {
4121                         uintptr_t maddr = dtrace_loadptr(daddr +
4122                             offsetof(struct dev_info, devi_minor));
4123 
4124                         uintptr_t next = offsetof(struct ddi_minor_data, next);
4125                         uintptr_t name = offsetof(struct ddi_minor_data,
4126                             d_minor) + offsetof(struct ddi_minor, name);
4127                         uintptr_t dev = offsetof(struct ddi_minor_data,
4128                             d_minor) + offsetof(struct ddi_minor, dev);
4129                         uintptr_t scout;
4130 
4131                         if (maddr != NULL)
4132                                 scout = dtrace_loadptr(maddr + next);
4133 
4134                         while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4135                                 uint64_t m;
4136 #ifdef _LP64
4137                                 m = dtrace_load64(maddr + dev) & MAXMIN64;
4138 #else
4139                                 m = dtrace_load32(maddr + dev) & MAXMIN;
4140 #endif
4141                                 if (m != minor) {
4142                                         maddr = dtrace_loadptr(maddr + next);
4143 
4144                                         if (scout == NULL)
4145                                                 continue;
4146 
4147                                         scout = dtrace_loadptr(scout + next);
4148 
4149                                         if (scout == NULL)
4150                                                 continue;
4151 
4152                                         scout = dtrace_loadptr(scout + next);
4153 
4154                                         if (scout == NULL)
4155                                                 continue;
4156 
4157                                         if (scout == maddr) {
4158                                                 *flags |= CPU_DTRACE_ILLOP;
4159                                                 break;
4160                                         }
4161 
4162                                         continue;
4163                                 }
4164 
4165                                 /*
4166                                  * We have the minor data.  Now we need to
4167                                  * copy the minor's name into the end of the
4168                                  * pathname.
4169                                  */
4170                                 s = (char *)dtrace_loadptr(maddr + name);
4171                                 len = dtrace_strlen(s, size);
4172 
4173                                 if (*flags & CPU_DTRACE_FAULT)
4174                                         break;
4175 
4176                                 if (len != 0) {
4177                                         if ((end -= (len + 1)) < start)
4178                                                 break;
4179 
4180                                         *end = ':';
4181                                 }
4182 
4183                                 for (i = 1; i <= len; i++)
4184                                         end[i] = dtrace_load8((uintptr_t)s++);
4185                                 break;
4186                         }
4187                 }
4188 
4189                 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4190                         ddi_node_state_t devi_state;
4191 
4192                         devi_state = dtrace_load32(daddr +
4193                             offsetof(struct dev_info, devi_node_state));
4194 
4195                         if (*flags & CPU_DTRACE_FAULT)
4196                                 break;
4197 
4198                         if (devi_state >= DS_INITIALIZED) {
4199                                 s = (char *)dtrace_loadptr(daddr +
4200                                     offsetof(struct dev_info, devi_addr));
4201                                 len = dtrace_strlen(s, size);
4202 
4203                                 if (*flags & CPU_DTRACE_FAULT)
4204                                         break;
4205 
4206                                 if (len != 0) {
4207                                         if ((end -= (len + 1)) < start)
4208                                                 break;
4209 
4210                                         *end = '@';
4211                                 }
4212 
4213                                 for (i = 1; i <= len; i++)
4214                                         end[i] = dtrace_load8((uintptr_t)s++);
4215                         }
4216 
4217                         /*
4218                          * Now for the node name...
4219                          */
4220                         s = (char *)dtrace_loadptr(daddr +
4221                             offsetof(struct dev_info, devi_node_name));
4222 
4223                         daddr = dtrace_loadptr(daddr +
4224                             offsetof(struct dev_info, devi_parent));
4225 
4226                         /*
4227                          * If our parent is NULL (that is, if we're the root
4228                          * node), we're going to use the special path
4229                          * "devices".
4230                          */
4231                         if (daddr == NULL)
4232                                 s = "devices";
4233 
4234                         len = dtrace_strlen(s, size);
4235                         if (*flags & CPU_DTRACE_FAULT)
4236                                 break;
4237 
4238                         if ((end -= (len + 1)) < start)
4239                                 break;
4240 
4241                         for (i = 1; i <= len; i++)
4242                                 end[i] = dtrace_load8((uintptr_t)s++);
4243                         *end = '/';
4244 
4245                         if (depth++ > dtrace_devdepth_max) {
4246                                 *flags |= CPU_DTRACE_ILLOP;
4247                                 break;
4248                         }
4249                 }
4250 
4251                 if (end < start)
4252                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4253 
4254                 if (daddr == NULL) {
4255                         regs[rd] = (uintptr_t)end;
4256                         mstate->dtms_scratch_ptr += size;
4257                 }
4258 
4259                 break;
4260         }
4261 
4262         case DIF_SUBR_STRJOIN: {
4263                 char *d = (char *)mstate->dtms_scratch_ptr;
4264                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4265                 uintptr_t s1 = tupregs[0].dttk_value;
4266                 uintptr_t s2 = tupregs[1].dttk_value;
4267                 int i = 0;
4268 
4269                 if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4270                     !dtrace_strcanload(s2, size, mstate, vstate)) {
4271                         regs[rd] = NULL;
4272                         break;
4273                 }
4274 
4275                 if (!DTRACE_INSCRATCH(mstate, size)) {
4276                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4277                         regs[rd] = NULL;
4278                         break;
4279                 }
4280 
4281                 for (;;) {
4282                         if (i >= size) {
4283                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4284                                 regs[rd] = NULL;
4285                                 break;
4286                         }
4287 
4288                         if ((d[i++] = dtrace_load8(s1++)) == '\0') {
4289                                 i--;
4290                                 break;
4291                         }
4292                 }
4293 
4294                 for (;;) {
4295                         if (i >= size) {
4296                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4297                                 regs[rd] = NULL;
4298                                 break;
4299                         }
4300 
4301                         if ((d[i++] = dtrace_load8(s2++)) == '\0')
4302                                 break;
4303                 }
4304 
4305                 if (i < size) {
4306                         mstate->dtms_scratch_ptr += i;
4307                         regs[rd] = (uintptr_t)d;
4308                 }
4309 
4310                 break;
4311         }
4312 
4313         case DIF_SUBR_LLTOSTR: {
4314                 int64_t i = (int64_t)tupregs[0].dttk_value;
4315                 uint64_t val, digit;
4316                 uint64_t size = 65;     /* enough room for 2^64 in binary */
4317                 char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4318                 int base = 10;
4319 
4320                 if (nargs > 1) {
4321                         if ((base = tupregs[1].dttk_value) <= 1 ||
4322                             base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
4323                                 *flags |= CPU_DTRACE_ILLOP;
4324                                 break;
4325                         }
4326                 }
4327 
4328                 val = (base == 10 && i < 0) ? i * -1 : i;
4329 
4330                 if (!DTRACE_INSCRATCH(mstate, size)) {
4331                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4332                         regs[rd] = NULL;
4333                         break;
4334                 }
4335 
4336                 for (*end-- = '\0'; val; val /= base) {
4337                         if ((digit = val % base) <= '9' - '0') {
4338                                 *end-- = '0' + digit;
4339                         } else {
4340                                 *end-- = 'a' + (digit - ('9' - '0') - 1);
4341                         }
4342                 }
4343 
4344                 if (i == 0 && base == 16)
4345                         *end-- = '0';
4346 
4347                 if (base == 16)
4348                         *end-- = 'x';
4349 
4350                 if (i == 0 || base == 8 || base == 16)
4351                         *end-- = '0';
4352 
4353                 if (i < 0 && base == 10)
4354                         *end-- = '-';
4355 
4356                 regs[rd] = (uintptr_t)end + 1;
4357                 mstate->dtms_scratch_ptr += size;
4358                 break;
4359         }
4360 
4361         case DIF_SUBR_HTONS:
4362         case DIF_SUBR_NTOHS:
4363 #ifdef _BIG_ENDIAN
4364                 regs[rd] = (uint16_t)tupregs[0].dttk_value;
4365 #else
4366                 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4367 #endif
4368                 break;
4369 
4370 
4371         case DIF_SUBR_HTONL:
4372         case DIF_SUBR_NTOHL:
4373 #ifdef _BIG_ENDIAN
4374                 regs[rd] = (uint32_t)tupregs[0].dttk_value;
4375 #else
4376                 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
4377 #endif
4378                 break;
4379 
4380 
4381         case DIF_SUBR_HTONLL:
4382         case DIF_SUBR_NTOHLL:
4383 #ifdef _BIG_ENDIAN
4384                 regs[rd] = (uint64_t)tupregs[0].dttk_value;
4385 #else
4386                 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
4387 #endif
4388                 break;
4389 
4390 
4391         case DIF_SUBR_DIRNAME:
4392         case DIF_SUBR_BASENAME: {
4393                 char *dest = (char *)mstate->dtms_scratch_ptr;
4394                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4395                 uintptr_t src = tupregs[0].dttk_value;
4396                 int i, j, len = dtrace_strlen((char *)src, size);
4397                 int lastbase = -1, firstbase = -1, lastdir = -1;
4398                 int start, end;
4399 
4400                 if (!dtrace_canload(src, len + 1, mstate, vstate)) {
4401                         regs[rd] = NULL;
4402                         break;
4403                 }
4404 
4405                 if (!DTRACE_INSCRATCH(mstate, size)) {
4406                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4407                         regs[rd] = NULL;
4408                         break;
4409                 }
4410 
4411                 /*
4412                  * The basename and dirname for a zero-length string is
4413                  * defined to be "."
4414                  */
4415                 if (len == 0) {
4416                         len = 1;
4417                         src = (uintptr_t)".";
4418                 }
4419 
4420                 /*
4421                  * Start from the back of the string, moving back toward the
4422                  * front until we see a character that isn't a slash.  That
4423                  * character is the last character in the basename.
4424                  */
4425                 for (i = len - 1; i >= 0; i--) {
4426                         if (dtrace_load8(src + i) != '/')
4427                                 break;
4428                 }
4429 
4430                 if (i >= 0)
4431                         lastbase = i;
4432 
4433                 /*
4434                  * Starting from the last character in the basename, move
4435                  * towards the front until we find a slash.  The character
4436                  * that we processed immediately before that is the first
4437                  * character in the basename.
4438                  */
4439                 for (; i >= 0; i--) {
4440                         if (dtrace_load8(src + i) == '/')
4441                                 break;
4442                 }
4443 
4444                 if (i >= 0)
4445                         firstbase = i + 1;
4446 
4447                 /*
4448                  * Now keep going until we find a non-slash character.  That
4449                  * character is the last character in the dirname.
4450                  */
4451                 for (; i >= 0; i--) {
4452                         if (dtrace_load8(src + i) != '/')
4453                                 break;
4454                 }
4455 
4456                 if (i >= 0)
4457                         lastdir = i;
4458 
4459                 ASSERT(!(lastbase == -1 && firstbase != -1));
4460                 ASSERT(!(firstbase == -1 && lastdir != -1));
4461 
4462                 if (lastbase == -1) {
4463                         /*
4464                          * We didn't find a non-slash character.  We know that
4465                          * the length is non-zero, so the whole string must be
4466                          * slashes.  In either the dirname or the basename
4467                          * case, we return '/'.
4468                          */
4469                         ASSERT(firstbase == -1);
4470                         firstbase = lastbase = lastdir = 0;
4471                 }
4472 
4473                 if (firstbase == -1) {
4474                         /*
4475                          * The entire string consists only of a basename
4476                          * component.  If we're looking for dirname, we need
4477                          * to change our string to be just "."; if we're
4478                          * looking for a basename, we'll just set the first
4479                          * character of the basename to be 0.
4480                          */
4481                         if (subr == DIF_SUBR_DIRNAME) {
4482                                 ASSERT(lastdir == -1);
4483                                 src = (uintptr_t)".";
4484                                 lastdir = 0;
4485                         } else {
4486                                 firstbase = 0;
4487                         }
4488                 }
4489 
4490                 if (subr == DIF_SUBR_DIRNAME) {
4491                         if (lastdir == -1) {
4492                                 /*
4493                                  * We know that we have a slash in the name --
4494                                  * or lastdir would be set to 0, above.  And
4495                                  * because lastdir is -1, we know that this
4496                                  * slash must be the first character.  (That
4497                                  * is, the full string must be of the form
4498                                  * "/basename".)  In this case, the last
4499                                  * character of the directory name is 0.
4500                                  */
4501                                 lastdir = 0;
4502                         }
4503 
4504                         start = 0;
4505                         end = lastdir;
4506                 } else {
4507                         ASSERT(subr == DIF_SUBR_BASENAME);
4508                         ASSERT(firstbase != -1 && lastbase != -1);
4509                         start = firstbase;
4510                         end = lastbase;
4511                 }
4512 
4513                 for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
4514                         dest[j] = dtrace_load8(src + i);
4515 
4516                 dest[j] = '\0';
4517                 regs[rd] = (uintptr_t)dest;
4518                 mstate->dtms_scratch_ptr += size;
4519                 break;
4520         }
4521 
4522         case DIF_SUBR_GETF: {
4523                 uintptr_t fd = tupregs[0].dttk_value;
4524                 uf_info_t *finfo = &curthread->t_procp->p_user.u_finfo;
4525                 file_t *fp;
4526 
4527                 if (!dtrace_priv_proc(state, mstate)) {
4528                         regs[rd] = NULL;
4529                         break;
4530                 }
4531 
4532                 /*
4533                  * This is safe because fi_nfiles only increases, and the
4534                  * fi_list array is not freed when the array size doubles.
4535                  * (See the comment in flist_grow() for details on the
4536                  * management of the u_finfo structure.)
4537                  */
4538                 fp = fd < finfo->fi_nfiles ? finfo->fi_list[fd].uf_file : NULL;
4539 
4540                 mstate->dtms_getf = fp;
4541                 regs[rd] = (uintptr_t)fp;
4542                 break;
4543         }
4544 
4545         case DIF_SUBR_CLEANPATH: {
4546                 char *dest = (char *)mstate->dtms_scratch_ptr, c;
4547                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4548                 uintptr_t src = tupregs[0].dttk_value;
4549                 int i = 0, j = 0;
4550                 zone_t *z;
4551 
4552                 if (!dtrace_strcanload(src, size, mstate, vstate)) {
4553                         regs[rd] = NULL;
4554                         break;
4555                 }
4556 
4557                 if (!DTRACE_INSCRATCH(mstate, size)) {
4558                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4559                         regs[rd] = NULL;
4560                         break;
4561                 }
4562 
4563                 /*
4564                  * Move forward, loading each character.
4565                  */
4566                 do {
4567                         c = dtrace_load8(src + i++);
4568 next:
4569                         if (j + 5 >= size)   /* 5 = strlen("/..c\0") */
4570                                 break;
4571 
4572                         if (c != '/') {
4573                                 dest[j++] = c;
4574                                 continue;
4575                         }
4576 
4577                         c = dtrace_load8(src + i++);
4578 
4579                         if (c == '/') {
4580                                 /*
4581                                  * We have two slashes -- we can just advance
4582                                  * to the next character.
4583                                  */
4584                                 goto next;
4585                         }
4586 
4587                         if (c != '.') {
4588                                 /*
4589                                  * This is not "." and it's not ".." -- we can
4590                                  * just store the "/" and this character and
4591                                  * drive on.
4592                                  */
4593                                 dest[j++] = '/';
4594                                 dest[j++] = c;
4595                                 continue;
4596                         }
4597 
4598                         c = dtrace_load8(src + i++);
4599 
4600                         if (c == '/') {
4601                                 /*
4602                                  * This is a "/./" component.  We're not going
4603                                  * to store anything in the destination buffer;
4604                                  * we're just going to go to the next component.
4605                                  */
4606                                 goto next;
4607                         }
4608 
4609                         if (c != '.') {
4610                                 /*
4611                                  * This is not ".." -- we can just store the
4612                                  * "/." and this character and continue
4613                                  * processing.
4614                                  */
4615                                 dest[j++] = '/';
4616                                 dest[j++] = '.';
4617                                 dest[j++] = c;
4618                                 continue;
4619                         }
4620 
4621                         c = dtrace_load8(src + i++);
4622 
4623                         if (c != '/' && c != '\0') {
4624                                 /*
4625                                  * This is not ".." -- it's "..[mumble]".
4626                                  * We'll store the "/.." and this character
4627                                  * and continue processing.
4628                                  */
4629                                 dest[j++] = '/';
4630                                 dest[j++] = '.';
4631                                 dest[j++] = '.';
4632                                 dest[j++] = c;
4633                                 continue;
4634                         }
4635 
4636                         /*
4637                          * This is "/../" or "/..\0".  We need to back up
4638                          * our destination pointer until we find a "/".
4639                          */
4640                         i--;
4641                         while (j != 0 && dest[--j] != '/')
4642                                 continue;
4643 
4644                         if (c == '\0')
4645                                 dest[++j] = '/';
4646                 } while (c != '\0');
4647 
4648                 dest[j] = '\0';
4649 
4650                 if (mstate->dtms_getf != NULL &&
4651                     !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) &&
4652                     (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) {
4653                         /*
4654                          * If we've done a getf() as a part of this ECB and we
4655                          * don't have kernel access (and we're not in the global
4656                          * zone), check if the path we cleaned up begins with
4657                          * the zone's root path, and trim it off if so.  Note
4658                          * that this is an output cleanliness issue, not a
4659                          * security issue: knowing one's zone root path does
4660                          * not enable privilege escalation.
4661                          */
4662                         if (strstr(dest, z->zone_rootpath) == dest)
4663                                 dest += strlen(z->zone_rootpath) - 1;
4664                 }
4665 
4666                 regs[rd] = (uintptr_t)dest;
4667                 mstate->dtms_scratch_ptr += size;
4668                 break;
4669         }
4670 
4671         case DIF_SUBR_INET_NTOA:
4672         case DIF_SUBR_INET_NTOA6:
4673         case DIF_SUBR_INET_NTOP: {
4674                 size_t size;
4675                 int af, argi, i;
4676                 char *base, *end;
4677 
4678                 if (subr == DIF_SUBR_INET_NTOP) {
4679                         af = (int)tupregs[0].dttk_value;
4680                         argi = 1;
4681                 } else {
4682                         af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
4683                         argi = 0;
4684                 }
4685 
4686                 if (af == AF_INET) {
4687                         ipaddr_t ip4;
4688                         uint8_t *ptr8, val;
4689 
4690                         /*
4691                          * Safely load the IPv4 address.
4692                          */
4693                         ip4 = dtrace_load32(tupregs[argi].dttk_value);
4694 
4695                         /*
4696                          * Check an IPv4 string will fit in scratch.
4697                          */
4698                         size = INET_ADDRSTRLEN;
4699                         if (!DTRACE_INSCRATCH(mstate, size)) {
4700                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4701                                 regs[rd] = NULL;
4702                                 break;
4703                         }
4704                         base = (char *)mstate->dtms_scratch_ptr;
4705                         end = (char *)mstate->dtms_scratch_ptr + size - 1;
4706 
4707                         /*
4708                          * Stringify as a dotted decimal quad.
4709                          */
4710                         *end-- = '\0';
4711                         ptr8 = (uint8_t *)&ip4;
4712                         for (i = 3; i >= 0; i--) {
4713                                 val = ptr8[i];
4714 
4715                                 if (val == 0) {
4716                                         *end-- = '0';
4717                                 } else {
4718                                         for (; val; val /= 10) {
4719                                                 *end-- = '0' + (val % 10);
4720                                         }
4721                                 }
4722 
4723                                 if (i > 0)
4724                                         *end-- = '.';
4725                         }
4726                         ASSERT(end + 1 >= base);
4727 
4728                 } else if (af == AF_INET6) {
4729                         struct in6_addr ip6;
4730                         int firstzero, tryzero, numzero, v6end;
4731                         uint16_t val;
4732                         const char digits[] = "0123456789abcdef";
4733 
4734                         /*
4735                          * Stringify using RFC 1884 convention 2 - 16 bit
4736                          * hexadecimal values with a zero-run compression.
4737                          * Lower case hexadecimal digits are used.
4738                          *      eg, fe80::214:4fff:fe0b:76c8.
4739                          * The IPv4 embedded form is returned for inet_ntop,
4740                          * just the IPv4 string is returned for inet_ntoa6.
4741                          */
4742 
4743                         /*
4744                          * Safely load the IPv6 address.
4745                          */
4746                         dtrace_bcopy(
4747                             (void *)(uintptr_t)tupregs[argi].dttk_value,
4748                             (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
4749 
4750                         /*
4751                          * Check an IPv6 string will fit in scratch.
4752                          */
4753                         size = INET6_ADDRSTRLEN;
4754                         if (!DTRACE_INSCRATCH(mstate, size)) {
4755                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4756                                 regs[rd] = NULL;
4757                                 break;
4758                         }
4759                         base = (char *)mstate->dtms_scratch_ptr;
4760                         end = (char *)mstate->dtms_scratch_ptr + size - 1;
4761                         *end-- = '\0';
4762 
4763                         /*
4764                          * Find the longest run of 16 bit zero values
4765                          * for the single allowed zero compression - "::".
4766                          */
4767                         firstzero = -1;
4768                         tryzero = -1;
4769                         numzero = 1;
4770                         for (i = 0; i < sizeof (struct in6_addr); i++) {
4771                                 if (ip6._S6_un._S6_u8[i] == 0 &&
4772                                     tryzero == -1 && i % 2 == 0) {
4773                                         tryzero = i;
4774                                         continue;
4775                                 }
4776 
4777                                 if (tryzero != -1 &&
4778                                     (ip6._S6_un._S6_u8[i] != 0 ||
4779                                     i == sizeof (struct in6_addr) - 1)) {
4780 
4781                                         if (i - tryzero <= numzero) {
4782                                                 tryzero = -1;
4783                                                 continue;
4784                                         }
4785 
4786                                         firstzero = tryzero;
4787                                         numzero = i - i % 2 - tryzero;
4788                                         tryzero = -1;
4789 
4790                                         if (ip6._S6_un._S6_u8[i] == 0 &&
4791                                             i == sizeof (struct in6_addr) - 1)
4792                                                 numzero += 2;
4793                                 }
4794                         }
4795                         ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
4796 
4797                         /*
4798                          * Check for an IPv4 embedded address.
4799                          */
4800                         v6end = sizeof (struct in6_addr) - 2;
4801                         if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
4802                             IN6_IS_ADDR_V4COMPAT(&ip6)) {
4803                                 for (i = sizeof (struct in6_addr) - 1;
4804                                     i >= DTRACE_V4MAPPED_OFFSET; i--) {
4805                                         ASSERT(end >= base);
4806 
4807                                         val = ip6._S6_un._S6_u8[i];
4808 
4809                                         if (val == 0) {
4810                                                 *end-- = '0';
4811                                         } else {
4812                                                 for (; val; val /= 10) {
4813                                                         *end-- = '0' + val % 10;
4814                                                 }
4815                                         }
4816 
4817                                         if (i > DTRACE_V4MAPPED_OFFSET)
4818                                                 *end-- = '.';
4819                                 }
4820 
4821                                 if (subr == DIF_SUBR_INET_NTOA6)
4822                                         goto inetout;
4823 
4824                                 /*
4825                                  * Set v6end to skip the IPv4 address that
4826                                  * we have already stringified.
4827                                  */
4828                                 v6end = 10;
4829                         }
4830 
4831                         /*
4832                          * Build the IPv6 string by working through the
4833                          * address in reverse.
4834                          */
4835                         for (i = v6end; i >= 0; i -= 2) {
4836                                 ASSERT(end >= base);
4837 
4838                                 if (i == firstzero + numzero - 2) {
4839                                         *end-- = ':';
4840                                         *end-- = ':';
4841                                         i -= numzero - 2;
4842                                         continue;
4843                                 }
4844 
4845                                 if (i < 14 && i != firstzero - 2)
4846                                         *end-- = ':';
4847 
4848                                 val = (ip6._S6_un._S6_u8[i] << 8) +
4849                                     ip6._S6_un._S6_u8[i + 1];
4850 
4851                                 if (val == 0) {
4852                                         *end-- = '0';
4853                                 } else {
4854                                         for (; val; val /= 16) {
4855                                                 *end-- = digits[val % 16];
4856                                         }
4857                                 }
4858                         }
4859                         ASSERT(end + 1 >= base);
4860 
4861                 } else {
4862                         /*
4863                          * The user didn't use AH_INET or AH_INET6.
4864                          */
4865                         DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4866                         regs[rd] = NULL;
4867                         break;
4868                 }
4869 
4870 inetout:        regs[rd] = (uintptr_t)end + 1;
4871                 mstate->dtms_scratch_ptr += size;
4872                 break;
4873         }
4874 
4875         }
4876 }
4877 
4878 /*
4879  * Emulate the execution of DTrace IR instructions specified by the given
4880  * DIF object.  This function is deliberately void of assertions as all of
4881  * the necessary checks are handled by a call to dtrace_difo_validate().
4882  */
4883 static uint64_t
4884 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4885     dtrace_vstate_t *vstate, dtrace_state_t *state)
4886 {
4887         const dif_instr_t *text = difo->dtdo_buf;
4888         const uint_t textlen = difo->dtdo_len;
4889         const char *strtab = difo->dtdo_strtab;
4890         const uint64_t *inttab = difo->dtdo_inttab;
4891 
4892         uint64_t rval = 0;
4893         dtrace_statvar_t *svar;
4894         dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
4895         dtrace_difv_t *v;
4896         volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
4897         volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
4898 
4899         dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
4900         uint64_t regs[DIF_DIR_NREGS];
4901         uint64_t *tmp;
4902 
4903         uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
4904         int64_t cc_r;
4905         uint_t pc = 0, id, opc;
4906         uint8_t ttop = 0;
4907         dif_instr_t instr;
4908         uint_t r1, r2, rd;
4909 
4910         /*
4911          * We stash the current DIF object into the machine state: we need it
4912          * for subsequent access checking.
4913          */
4914         mstate->dtms_difo = difo;
4915 
4916         regs[DIF_REG_R0] = 0;           /* %r0 is fixed at zero */
4917 
4918         while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
4919                 opc = pc;
4920 
4921                 instr = text[pc++];
4922                 r1 = DIF_INSTR_R1(instr);
4923                 r2 = DIF_INSTR_R2(instr);
4924                 rd = DIF_INSTR_RD(instr);
4925 
4926                 switch (DIF_INSTR_OP(instr)) {
4927                 case DIF_OP_OR:
4928                         regs[rd] = regs[r1] | regs[r2];
4929                         break;
4930                 case DIF_OP_XOR:
4931                         regs[rd] = regs[r1] ^ regs[r2];
4932                         break;
4933                 case DIF_OP_AND:
4934                         regs[rd] = regs[r1] & regs[r2];
4935                         break;
4936                 case DIF_OP_SLL:
4937                         regs[rd] = regs[r1] << regs[r2];
4938                         break;
4939                 case DIF_OP_SRL:
4940                         regs[rd] = regs[r1] >> regs[r2];
4941                         break;
4942                 case DIF_OP_SUB:
4943                         regs[rd] = regs[r1] - regs[r2];
4944                         break;
4945                 case DIF_OP_ADD:
4946                         regs[rd] = regs[r1] + regs[r2];
4947                         break;
4948                 case DIF_OP_MUL:
4949                         regs[rd] = regs[r1] * regs[r2];
4950                         break;
4951                 case DIF_OP_SDIV:
4952                         if (regs[r2] == 0) {
4953                                 regs[rd] = 0;
4954                                 *flags |= CPU_DTRACE_DIVZERO;
4955                         } else {
4956                                 regs[rd] = (int64_t)regs[r1] /
4957                                     (int64_t)regs[r2];
4958                         }
4959                         break;
4960 
4961                 case DIF_OP_UDIV:
4962                         if (regs[r2] == 0) {
4963                                 regs[rd] = 0;
4964                                 *flags |= CPU_DTRACE_DIVZERO;
4965                         } else {
4966                                 regs[rd] = regs[r1] / regs[r2];
4967                         }
4968                         break;
4969 
4970                 case DIF_OP_SREM:
4971                         if (regs[r2] == 0) {
4972                                 regs[rd] = 0;
4973                                 *flags |= CPU_DTRACE_DIVZERO;
4974                         } else {
4975                                 regs[rd] = (int64_t)regs[r1] %
4976                                     (int64_t)regs[r2];
4977                         }
4978                         break;
4979 
4980                 case DIF_OP_UREM:
4981                         if (regs[r2] == 0) {
4982                                 regs[rd] = 0;
4983                                 *flags |= CPU_DTRACE_DIVZERO;
4984                         } else {
4985                                 regs[rd] = regs[r1] % regs[r2];
4986                         }
4987                         break;
4988 
4989                 case DIF_OP_NOT:
4990                         regs[rd] = ~regs[r1];
4991                         break;
4992                 case DIF_OP_MOV:
4993                         regs[rd] = regs[r1];
4994                         break;
4995                 case DIF_OP_CMP:
4996                         cc_r = regs[r1] - regs[r2];
4997                         cc_n = cc_r < 0;
4998                         cc_z = cc_r == 0;
4999                         cc_v = 0;
5000                         cc_c = regs[r1] < regs[r2];
5001                         break;
5002                 case DIF_OP_TST:
5003                         cc_n = cc_v = cc_c = 0;
5004                         cc_z = regs[r1] == 0;
5005                         break;
5006                 case DIF_OP_BA:
5007                         pc = DIF_INSTR_LABEL(instr);
5008                         break;
5009                 case DIF_OP_BE:
5010                         if (cc_z)
5011                                 pc = DIF_INSTR_LABEL(instr);
5012                         break;
5013                 case DIF_OP_BNE:
5014                         if (cc_z == 0)
5015                                 pc = DIF_INSTR_LABEL(instr);
5016                         break;
5017                 case DIF_OP_BG:
5018                         if ((cc_z | (cc_n ^ cc_v)) == 0)
5019                                 pc = DIF_INSTR_LABEL(instr);
5020                         break;
5021                 case DIF_OP_BGU:
5022                         if ((cc_c | cc_z) == 0)
5023                                 pc = DIF_INSTR_LABEL(instr);
5024                         break;
5025                 case DIF_OP_BGE:
5026                         if ((cc_n ^ cc_v) == 0)
5027                                 pc = DIF_INSTR_LABEL(instr);
5028                         break;
5029                 case DIF_OP_BGEU:
5030                         if (cc_c == 0)
5031                                 pc = DIF_INSTR_LABEL(instr);
5032                         break;
5033                 case DIF_OP_BL:
5034                         if (cc_n ^ cc_v)
5035                                 pc = DIF_INSTR_LABEL(instr);
5036                         break;
5037                 case DIF_OP_BLU:
5038                         if (cc_c)
5039                                 pc = DIF_INSTR_LABEL(instr);
5040                         break;
5041                 case DIF_OP_BLE:
5042                         if (cc_z | (cc_n ^ cc_v))
5043                                 pc = DIF_INSTR_LABEL(instr);
5044                         break;
5045                 case DIF_OP_BLEU:
5046                         if (cc_c | cc_z)
5047                                 pc = DIF_INSTR_LABEL(instr);
5048                         break;
5049                 case DIF_OP_RLDSB:
5050                         if (!dtrace_canload(regs[r1], 1, mstate, vstate))
5051                                 break;
5052                         /*FALLTHROUGH*/
5053                 case DIF_OP_LDSB:
5054                         regs[rd] = (int8_t)dtrace_load8(regs[r1]);
5055                         break;
5056                 case DIF_OP_RLDSH:
5057                         if (!dtrace_canload(regs[r1], 2, mstate, vstate))
5058                                 break;
5059                         /*FALLTHROUGH*/
5060                 case DIF_OP_LDSH:
5061                         regs[rd] = (int16_t)dtrace_load16(regs[r1]);
5062                         break;
5063                 case DIF_OP_RLDSW:
5064                         if (!dtrace_canload(regs[r1], 4, mstate, vstate))
5065                                 break;
5066                         /*FALLTHROUGH*/
5067                 case DIF_OP_LDSW:
5068                         regs[rd] = (int32_t)dtrace_load32(regs[r1]);
5069                         break;
5070                 case DIF_OP_RLDUB:
5071                         if (!dtrace_canload(regs[r1], 1, mstate, vstate))
5072                                 break;
5073                         /*FALLTHROUGH*/
5074                 case DIF_OP_LDUB:
5075                         regs[rd] = dtrace_load8(regs[r1]);
5076                         break;
5077                 case DIF_OP_RLDUH:
5078                         if (!dtrace_canload(regs[r1], 2, mstate, vstate))
5079                                 break;
5080                         /*FALLTHROUGH*/
5081                 case DIF_OP_LDUH:
5082                         regs[rd] = dtrace_load16(regs[r1]);
5083                         break;
5084                 case DIF_OP_RLDUW:
5085                         if (!dtrace_canload(regs[r1], 4, mstate, vstate))
5086                                 break;
5087                         /*FALLTHROUGH*/
5088                 case DIF_OP_LDUW:
5089                         regs[rd] = dtrace_load32(regs[r1]);
5090                         break;
5091                 case DIF_OP_RLDX:
5092                         if (!dtrace_canload(regs[r1], 8, mstate, vstate))
5093                                 break;
5094                         /*FALLTHROUGH*/
5095                 case DIF_OP_LDX:
5096                         regs[rd] = dtrace_load64(regs[r1]);
5097                         break;
5098                 case DIF_OP_ULDSB:
5099                         regs[rd] = (int8_t)
5100                             dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5101                         break;
5102                 case DIF_OP_ULDSH:
5103                         regs[rd] = (int16_t)
5104                             dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5105                         break;
5106                 case DIF_OP_ULDSW:
5107                         regs[rd] = (int32_t)
5108                             dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5109                         break;
5110                 case DIF_OP_ULDUB:
5111                         regs[rd] =
5112                             dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5113                         break;
5114                 case DIF_OP_ULDUH:
5115                         regs[rd] =
5116                             dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5117                         break;
5118                 case DIF_OP_ULDUW:
5119                         regs[rd] =
5120                             dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5121                         break;
5122                 case DIF_OP_ULDX:
5123                         regs[rd] =
5124                             dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5125                         break;
5126                 case DIF_OP_RET:
5127                         rval = regs[rd];
5128                         pc = textlen;
5129                         break;
5130                 case DIF_OP_NOP:
5131                         break;
5132                 case DIF_OP_SETX:
5133                         regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5134                         break;
5135                 case DIF_OP_SETS:
5136                         regs[rd] = (uint64_t)(uintptr_t)
5137                             (strtab + DIF_INSTR_STRING(instr));
5138                         break;
5139                 case DIF_OP_SCMP: {
5140                         size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5141                         uintptr_t s1 = regs[r1];
5142                         uintptr_t s2 = regs[r2];
5143 
5144                         if (s1 != NULL &&
5145                             !dtrace_strcanload(s1, sz, mstate, vstate))
5146                                 break;
5147                         if (s2 != NULL &&
5148                             !dtrace_strcanload(s2, sz, mstate, vstate))
5149                                 break;
5150 
5151                         cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
5152 
5153                         cc_n = cc_r < 0;
5154                         cc_z = cc_r == 0;
5155                         cc_v = cc_c = 0;
5156                         break;
5157                 }
5158                 case DIF_OP_LDGA:
5159                         regs[rd] = dtrace_dif_variable(mstate, state,
5160                             r1, regs[r2]);
5161                         break;
5162                 case DIF_OP_LDGS:
5163                         id = DIF_INSTR_VAR(instr);
5164 
5165                         if (id >= DIF_VAR_OTHER_UBASE) {
5166                                 uintptr_t a;
5167 
5168                                 id -= DIF_VAR_OTHER_UBASE;
5169                                 svar = vstate->dtvs_globals[id];
5170                                 ASSERT(svar != NULL);
5171                                 v = &svar->dtsv_var;
5172 
5173                                 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5174                                         regs[rd] = svar->dtsv_data;
5175                                         break;
5176                                 }
5177 
5178                                 a = (uintptr_t)svar->dtsv_data;
5179 
5180                                 if (*(uint8_t *)a == UINT8_MAX) {
5181                                         /*
5182                                          * If the 0th byte is set to UINT8_MAX
5183                                          * then this is to be treated as a
5184                                          * reference to a NULL variable.
5185                                          */
5186                                         regs[rd] = NULL;
5187                                 } else {
5188                                         regs[rd] = a + sizeof (uint64_t);
5189                                 }
5190 
5191                                 break;
5192                         }
5193 
5194                         regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5195                         break;
5196 
5197                 case DIF_OP_STGS:
5198                         id = DIF_INSTR_VAR(instr);
5199 
5200                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5201                         id -= DIF_VAR_OTHER_UBASE;
5202 
5203                         svar = vstate->dtvs_globals[id];
5204                         ASSERT(svar != NULL);
5205                         v = &svar->dtsv_var;
5206 
5207                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5208                                 uintptr_t a = (uintptr_t)svar->dtsv_data;
5209 
5210                                 ASSERT(a != NULL);
5211                                 ASSERT(svar->dtsv_size != 0);
5212 
5213                                 if (regs[rd] == NULL) {
5214                                         *(uint8_t *)a = UINT8_MAX;
5215                                         break;
5216                                 } else {
5217                                         *(uint8_t *)a = 0;
5218                                         a += sizeof (uint64_t);
5219                                 }
5220                                 if (!dtrace_vcanload(
5221                                     (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5222                                     mstate, vstate))
5223                                         break;
5224 
5225                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5226                                     (void *)a, &v->dtdv_type);
5227                                 break;
5228                         }
5229 
5230                         svar->dtsv_data = regs[rd];
5231                         break;
5232 
5233                 case DIF_OP_LDTA:
5234                         /*
5235                          * There are no DTrace built-in thread-local arrays at
5236                          * present.  This opcode is saved for future work.
5237                          */
5238                         *flags |= CPU_DTRACE_ILLOP;
5239                         regs[rd] = 0;
5240                         break;
5241 
5242                 case DIF_OP_LDLS:
5243                         id = DIF_INSTR_VAR(instr);
5244 
5245                         if (id < DIF_VAR_OTHER_UBASE) {
5246                                 /*
5247                                  * For now, this has no meaning.
5248                                  */
5249                                 regs[rd] = 0;
5250                                 break;
5251                         }
5252 
5253                         id -= DIF_VAR_OTHER_UBASE;
5254 
5255                         ASSERT(id < vstate->dtvs_nlocals);
5256                         ASSERT(vstate->dtvs_locals != NULL);
5257 
5258                         svar = vstate->dtvs_locals[id];
5259                         ASSERT(svar != NULL);
5260                         v = &svar->dtsv_var;
5261 
5262                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5263                                 uintptr_t a = (uintptr_t)svar->dtsv_data;
5264                                 size_t sz = v->dtdv_type.dtdt_size;
5265 
5266                                 sz += sizeof (uint64_t);
5267                                 ASSERT(svar->dtsv_size == NCPU * sz);
5268                                 a += CPU->cpu_id * sz;
5269 
5270                                 if (*(uint8_t *)a == UINT8_MAX) {
5271                                         /*
5272                                          * If the 0th byte is set to UINT8_MAX
5273                                          * then this is to be treated as a
5274                                          * reference to a NULL variable.
5275                                          */
5276                                         regs[rd] = NULL;
5277                                 } else {
5278                                         regs[rd] = a + sizeof (uint64_t);
5279                                 }
5280 
5281                                 break;
5282                         }
5283 
5284                         ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5285                         tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5286                         regs[rd] = tmp[CPU->cpu_id];
5287                         break;
5288 
5289                 case DIF_OP_STLS:
5290                         id = DIF_INSTR_VAR(instr);
5291 
5292                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5293                         id -= DIF_VAR_OTHER_UBASE;
5294                         ASSERT(id < vstate->dtvs_nlocals);
5295 
5296                         ASSERT(vstate->dtvs_locals != NULL);
5297                         svar = vstate->dtvs_locals[id];
5298                         ASSERT(svar != NULL);
5299                         v = &svar->dtsv_var;
5300 
5301                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5302                                 uintptr_t a = (uintptr_t)svar->dtsv_data;
5303                                 size_t sz = v->dtdv_type.dtdt_size;
5304 
5305                                 sz += sizeof (uint64_t);
5306                                 ASSERT(svar->dtsv_size == NCPU * sz);
5307                                 a += CPU->cpu_id * sz;
5308 
5309                                 if (regs[rd] == NULL) {
5310                                         *(uint8_t *)a = UINT8_MAX;
5311                                         break;
5312                                 } else {
5313                                         *(uint8_t *)a = 0;
5314                                         a += sizeof (uint64_t);
5315                                 }
5316 
5317                                 if (!dtrace_vcanload(
5318                                     (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5319                                     mstate, vstate))
5320                                         break;
5321 
5322                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5323                                     (void *)a, &v->dtdv_type);
5324                                 break;
5325                         }
5326 
5327                         ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5328                         tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5329                         tmp[CPU->cpu_id] = regs[rd];
5330                         break;
5331 
5332                 case DIF_OP_LDTS: {
5333                         dtrace_dynvar_t *dvar;
5334                         dtrace_key_t *key;
5335 
5336                         id = DIF_INSTR_VAR(instr);
5337                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5338                         id -= DIF_VAR_OTHER_UBASE;
5339                         v = &vstate->dtvs_tlocals[id];
5340 
5341                         key = &tupregs[DIF_DTR_NREGS];
5342                         key[0].dttk_value = (uint64_t)id;
5343                         key[0].dttk_size = 0;
5344                         DTRACE_TLS_THRKEY(key[1].dttk_value);
5345                         key[1].dttk_size = 0;
5346 
5347                         dvar = dtrace_dynvar(dstate, 2, key,
5348                             sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
5349                             mstate, vstate);
5350 
5351                         if (dvar == NULL) {
5352                                 regs[rd] = 0;
5353                                 break;
5354                         }
5355 
5356                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5357                                 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5358                         } else {
5359                                 regs[rd] = *((uint64_t *)dvar->dtdv_data);
5360                         }
5361 
5362                         break;
5363                 }
5364 
5365                 case DIF_OP_STTS: {
5366                         dtrace_dynvar_t *dvar;
5367                         dtrace_key_t *key;
5368 
5369                         id = DIF_INSTR_VAR(instr);
5370                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5371                         id -= DIF_VAR_OTHER_UBASE;
5372 
5373                         key = &tupregs[DIF_DTR_NREGS];
5374                         key[0].dttk_value = (uint64_t)id;
5375                         key[0].dttk_size = 0;
5376                         DTRACE_TLS_THRKEY(key[1].dttk_value);
5377                         key[1].dttk_size = 0;
5378                         v = &vstate->dtvs_tlocals[id];
5379 
5380                         dvar = dtrace_dynvar(dstate, 2, key,
5381                             v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5382                             v->dtdv_type.dtdt_size : sizeof (uint64_t),
5383                             regs[rd] ? DTRACE_DYNVAR_ALLOC :
5384                             DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5385 
5386                         /*
5387                          * Given that we're storing to thread-local data,
5388                          * we need to flush our predicate cache.
5389                          */
5390                         curthread->t_predcache = NULL;
5391 
5392                         if (dvar == NULL)
5393                                 break;
5394 
5395                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5396                                 if (!dtrace_vcanload(
5397                                     (void *)(uintptr_t)regs[rd],
5398                                     &v->dtdv_type, mstate, vstate))
5399                                         break;
5400 
5401                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5402                                     dvar->dtdv_data, &v->dtdv_type);
5403                         } else {
5404                                 *((uint64_t *)dvar->dtdv_data) = regs[rd];
5405                         }
5406 
5407                         break;
5408                 }
5409 
5410                 case DIF_OP_SRA:
5411                         regs[rd] = (int64_t)regs[r1] >> regs[r2];
5412                         break;
5413 
5414                 case DIF_OP_CALL:
5415                         dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
5416                             regs, tupregs, ttop, mstate, state);
5417                         break;
5418 
5419                 case DIF_OP_PUSHTR:
5420                         if (ttop == DIF_DTR_NREGS) {
5421                                 *flags |= CPU_DTRACE_TUPOFLOW;
5422                                 break;
5423                         }
5424 
5425                         if (r1 == DIF_TYPE_STRING) {
5426                                 /*
5427                                  * If this is a string type and the size is 0,
5428                                  * we'll use the system-wide default string
5429                                  * size.  Note that we are _not_ looking at
5430                                  * the value of the DTRACEOPT_STRSIZE option;
5431                                  * had this been set, we would expect to have
5432                                  * a non-zero size value in the "pushtr".
5433                                  */
5434                                 tupregs[ttop].dttk_size =
5435                                     dtrace_strlen((char *)(uintptr_t)regs[rd],
5436                                     regs[r2] ? regs[r2] :
5437                                     dtrace_strsize_default) + 1;
5438                         } else {
5439                                 tupregs[ttop].dttk_size = regs[r2];
5440                         }
5441 
5442                         tupregs[ttop++].dttk_value = regs[rd];
5443                         break;
5444 
5445                 case DIF_OP_PUSHTV:
5446                         if (ttop == DIF_DTR_NREGS) {
5447                                 *flags |= CPU_DTRACE_TUPOFLOW;
5448                                 break;
5449                         }
5450 
5451                         tupregs[ttop].dttk_value = regs[rd];
5452                         tupregs[ttop++].dttk_size = 0;
5453                         break;
5454 
5455                 case DIF_OP_POPTS:
5456                         if (ttop != 0)
5457                                 ttop--;
5458                         break;
5459 
5460                 case DIF_OP_FLUSHTS:
5461                         ttop = 0;
5462                         break;
5463 
5464                 case DIF_OP_LDGAA:
5465                 case DIF_OP_LDTAA: {
5466                         dtrace_dynvar_t *dvar;
5467                         dtrace_key_t *key = tupregs;
5468                         uint_t nkeys = ttop;
5469 
5470                         id = DIF_INSTR_VAR(instr);
5471                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5472                         id -= DIF_VAR_OTHER_UBASE;
5473 
5474                         key[nkeys].dttk_value = (uint64_t)id;
5475                         key[nkeys++].dttk_size = 0;
5476 
5477                         if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
5478                                 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5479                                 key[nkeys++].dttk_size = 0;
5480                                 v = &vstate->dtvs_tlocals[id];
5481                         } else {
5482                                 v = &vstate->dtvs_globals[id]->dtsv_var;
5483                         }
5484 
5485                         dvar = dtrace_dynvar(dstate, nkeys, key,
5486                             v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5487                             v->dtdv_type.dtdt_size : sizeof (uint64_t),
5488                             DTRACE_DYNVAR_NOALLOC, mstate, vstate);
5489 
5490                         if (dvar == NULL) {
5491                                 regs[rd] = 0;
5492                                 break;
5493                         }
5494 
5495                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5496                                 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5497                         } else {
5498                                 regs[rd] = *((uint64_t *)dvar->dtdv_data);
5499                         }
5500 
5501                         break;
5502                 }
5503 
5504                 case DIF_OP_STGAA:
5505                 case DIF_OP_STTAA: {
5506                         dtrace_dynvar_t *dvar;
5507                         dtrace_key_t *key = tupregs;
5508                         uint_t nkeys = ttop;
5509 
5510                         id = DIF_INSTR_VAR(instr);
5511                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5512                         id -= DIF_VAR_OTHER_UBASE;
5513 
5514                         key[nkeys].dttk_value = (uint64_t)id;
5515                         key[nkeys++].dttk_size = 0;
5516 
5517                         if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
5518                                 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5519                                 key[nkeys++].dttk_size = 0;
5520                                 v = &vstate->dtvs_tlocals[id];
5521                         } else {
5522                                 v = &vstate->dtvs_globals[id]->dtsv_var;
5523                         }
5524 
5525                         dvar = dtrace_dynvar(dstate, nkeys, key,
5526                             v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5527                             v->dtdv_type.dtdt_size : sizeof (uint64_t),
5528                             regs[rd] ? DTRACE_DYNVAR_ALLOC :
5529                             DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5530 
5531                         if (dvar == NULL)
5532                                 break;
5533 
5534                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5535                                 if (!dtrace_vcanload(
5536                                     (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5537                                     mstate, vstate))
5538                                         break;
5539 
5540                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5541                                     dvar->dtdv_data, &v->dtdv_type);
5542                         } else {
5543                                 *((uint64_t *)dvar->dtdv_data) = regs[rd];
5544                         }
5545 
5546                         break;
5547                 }
5548 
5549                 case DIF_OP_ALLOCS: {
5550                         uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5551                         size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
5552 
5553                         /*
5554                          * Rounding up the user allocation size could have
5555                          * overflowed large, bogus allocations (like -1ULL) to
5556                          * 0.
5557                          */
5558                         if (size < regs[r1] ||
5559                             !DTRACE_INSCRATCH(mstate, size)) {
5560                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5561                                 regs[rd] = NULL;
5562                                 break;
5563                         }
5564 
5565                         dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
5566                         mstate->dtms_scratch_ptr += size;
5567                         regs[rd] = ptr;
5568                         break;
5569                 }
5570 
5571                 case DIF_OP_COPYS:
5572                         if (!dtrace_canstore(regs[rd], regs[r2],
5573                             mstate, vstate)) {
5574                                 *flags |= CPU_DTRACE_BADADDR;
5575                                 *illval = regs[rd];
5576                                 break;
5577                         }
5578 
5579                         if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
5580                                 break;
5581 
5582                         dtrace_bcopy((void *)(uintptr_t)regs[r1],
5583                             (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
5584                         break;
5585 
5586                 case DIF_OP_STB:
5587                         if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
5588                                 *flags |= CPU_DTRACE_BADADDR;
5589                                 *illval = regs[rd];
5590                                 break;
5591                         }
5592                         *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
5593                         break;
5594 
5595                 case DIF_OP_STH:
5596                         if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
5597                                 *flags |= CPU_DTRACE_BADADDR;
5598                                 *illval = regs[rd];
5599                                 break;
5600                         }
5601                         if (regs[rd] & 1) {
5602                                 *flags |= CPU_DTRACE_BADALIGN;
5603                                 *illval = regs[rd];
5604                                 break;
5605                         }
5606                         *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
5607                         break;
5608 
5609                 case DIF_OP_STW:
5610                         if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
5611                                 *flags |= CPU_DTRACE_BADADDR;
5612                                 *illval = regs[rd];
5613                                 break;
5614                         }
5615                         if (regs[rd] & 3) {
5616                                 *flags |= CPU_DTRACE_BADALIGN;
5617                                 *illval = regs[rd];
5618                                 break;
5619                         }
5620                         *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
5621                         break;
5622 
5623                 case DIF_OP_STX:
5624                         if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
5625                                 *flags |= CPU_DTRACE_BADADDR;
5626                                 *illval = regs[rd];
5627                                 break;
5628                         }
5629                         if (regs[rd] & 7) {
5630                                 *flags |= CPU_DTRACE_BADALIGN;
5631                                 *illval = regs[rd];
5632                                 break;
5633                         }
5634                         *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
5635                         break;
5636                 }
5637         }
5638 
5639         if (!(*flags & CPU_DTRACE_FAULT))
5640                 return (rval);
5641 
5642         mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
5643         mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
5644 
5645         return (0);
5646 }
5647 
5648 static void
5649 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
5650 {
5651         dtrace_probe_t *probe = ecb->dte_probe;
5652         dtrace_provider_t *prov = probe->dtpr_provider;
5653         char c[DTRACE_FULLNAMELEN + 80], *str;
5654         char *msg = "dtrace: breakpoint action at probe ";
5655         char *ecbmsg = " (ecb ";
5656         uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
5657         uintptr_t val = (uintptr_t)ecb;
5658         int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
5659 
5660         if (dtrace_destructive_disallow)
5661                 return;
5662 
5663         /*
5664          * It's impossible to be taking action on the NULL probe.
5665          */
5666         ASSERT(probe != NULL);
5667 
5668         /*
5669          * This is a poor man's (destitute man's?) sprintf():  we want to
5670          * print the provider name, module name, function name and name of
5671          * the probe, along with the hex address of the ECB with the breakpoint
5672          * action -- all of which we must place in the character buffer by
5673          * hand.
5674          */
5675         while (*msg != '\0')
5676                 c[i++] = *msg++;
5677 
5678         for (str = prov->dtpv_name; *str != '\0'; str++)
5679                 c[i++] = *str;
5680         c[i++] = ':';
5681 
5682         for (str = probe->dtpr_mod; *str != '\0'; str++)
5683                 c[i++] = *str;
5684         c[i++] = ':';
5685 
5686         for (str = probe->dtpr_func; *str != '\0'; str++)
5687                 c[i++] = *str;
5688         c[i++] = ':';
5689 
5690         for (str = probe->dtpr_name; *str != '\0'; str++)
5691                 c[i++] = *str;
5692 
5693         while (*ecbmsg != '\0')
5694                 c[i++] = *ecbmsg++;
5695 
5696         while (shift >= 0) {
5697                 mask = (uintptr_t)0xf << shift;
5698 
5699                 if (val >= ((uintptr_t)1 << shift))
5700                         c[i++] = "0123456789abcdef"[(val & mask) >> shift];
5701                 shift -= 4;
5702         }
5703 
5704         c[i++] = ')';
5705         c[i] = '\0';
5706 
5707         debug_enter(c);
5708 }
5709 
5710 static void
5711 dtrace_action_panic(dtrace_ecb_t *ecb)
5712 {
5713         dtrace_probe_t *probe = ecb->dte_probe;
5714 
5715         /*
5716          * It's impossible to be taking action on the NULL probe.
5717          */
5718         ASSERT(probe != NULL);
5719 
5720         if (dtrace_destructive_disallow)
5721                 return;
5722 
5723         if (dtrace_panicked != NULL)
5724                 return;
5725 
5726         if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
5727                 return;
5728 
5729         /*
5730          * We won the right to panic.  (We want to be sure that only one
5731          * thread calls panic() from dtrace_probe(), and that panic() is
5732          * called exactly once.)
5733          */
5734         dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5735             probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
5736             probe->dtpr_func, probe->dtpr_name, (void *)ecb);
5737 }
5738 
5739 static void
5740 dtrace_action_raise(uint64_t sig)
5741 {
5742         if (dtrace_destructive_disallow)
5743                 return;
5744 
5745         if (sig >= NSIG) {
5746                 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5747                 return;
5748         }
5749 
5750         /*
5751          * raise() has a queue depth of 1 -- we ignore all subsequent
5752          * invocations of the raise() action.
5753          */
5754         if (curthread->t_dtrace_sig == 0)
5755                 curthread->t_dtrace_sig = (uint8_t)sig;
5756 
5757         curthread->t_sig_check = 1;
5758         aston(curthread);
5759 }
5760 
5761 static void
5762 dtrace_action_stop(void)
5763 {
5764         if (dtrace_destructive_disallow)
5765                 return;
5766 
5767         if (!curthread->t_dtrace_stop) {
5768                 curthread->t_dtrace_stop = 1;
5769                 curthread->t_sig_check = 1;
5770                 aston(curthread);
5771         }
5772 }
5773 
5774 static void
5775 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
5776 {
5777         hrtime_t now;
5778         volatile uint16_t *flags;
5779         cpu_t *cpu = CPU;
5780 
5781         if (dtrace_destructive_disallow)
5782                 return;
5783 
5784         flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
5785 
5786         now = dtrace_gethrtime();
5787 
5788         if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
5789                 /*
5790                  * We need to advance the mark to the current time.
5791                  */
5792                 cpu->cpu_dtrace_chillmark = now;
5793                 cpu->cpu_dtrace_chilled = 0;
5794         }
5795 
5796         /*
5797          * Now check to see if the requested chill time would take us over
5798          * the maximum amount of time allowed in the chill interval.  (Or
5799          * worse, if the calculation itself induces overflow.)
5800          */
5801         if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
5802             cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
5803                 *flags |= CPU_DTRACE_ILLOP;
5804                 return;
5805         }
5806 
5807         while (dtrace_gethrtime() - now < val)
5808                 continue;
5809 
5810         /*
5811          * Normally, we assure that the value of the variable "timestamp" does
5812          * not change within an ECB.  The presence of chill() represents an
5813          * exception to this rule, however.
5814          */
5815         mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
5816         cpu->cpu_dtrace_chilled += val;
5817 }
5818 
5819 static void
5820 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
5821     uint64_t *buf, uint64_t arg)
5822 {
5823         int nframes = DTRACE_USTACK_NFRAMES(arg);
5824         int strsize = DTRACE_USTACK_STRSIZE(arg);
5825         uint64_t *pcs = &buf[1], *fps;
5826         char *str = (char *)&pcs[nframes];
5827         int size, offs = 0, i, j;
5828         uintptr_t old = mstate->dtms_scratch_ptr, saved;
5829         uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
5830         char *sym;
5831 
5832         /*
5833          * Should be taking a faster path if string space has not been
5834          * allocated.
5835          */
5836         ASSERT(strsize != 0);
5837 
5838         /*
5839          * We will first allocate some temporary space for the frame pointers.
5840          */
5841         fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5842         size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5843             (nframes * sizeof (uint64_t));
5844 
5845         if (!DTRACE_INSCRATCH(mstate, size)) {
5846                 /*
5847                  * Not enough room for our frame pointers -- need to indicate
5848                  * that we ran out of scratch space.
5849                  */
5850                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5851                 return;
5852         }
5853 
5854         mstate->dtms_scratch_ptr += size;
5855         saved = mstate->dtms_scratch_ptr;
5856 
5857         /*
5858          * Now get a stack with both program counters and frame pointers.
5859          */
5860         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5861         dtrace_getufpstack(buf, fps, nframes + 1);
5862         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5863 
5864         /*
5865          * If that faulted, we're cooked.
5866          */
5867         if (*flags & CPU_DTRACE_FAULT)
5868                 goto out;
5869 
5870         /*
5871          * Now we want to walk up the stack, calling the USTACK helper.  For
5872          * each iteration, we restore the scratch pointer.
5873          */
5874         for (i = 0; i < nframes; i++) {
5875                 mstate->dtms_scratch_ptr = saved;
5876 
5877                 if (offs >= strsize)
5878                         break;
5879 
5880                 sym = (char *)(uintptr_t)dtrace_helper(
5881                     DTRACE_HELPER_ACTION_USTACK,
5882                     mstate, state, pcs[i], fps[i]);
5883 
5884                 /*
5885                  * If we faulted while running the helper, we're going to
5886                  * clear the fault and null out the corresponding string.
5887                  */
5888                 if (*flags & CPU_DTRACE_FAULT) {
5889                         *flags &= ~CPU_DTRACE_FAULT;
5890                         str[offs++] = '\0';
5891                         continue;
5892                 }
5893 
5894                 if (sym == NULL) {
5895                         str[offs++] = '\0';
5896                         continue;
5897                 }
5898 
5899                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5900 
5901                 /*
5902                  * Now copy in the string that the helper returned to us.
5903                  */
5904                 for (j = 0; offs + j < strsize; j++) {
5905                         if ((str[offs + j] = sym[j]) == '\0')
5906                                 break;
5907                 }
5908 
5909                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5910 
5911                 offs += j + 1;
5912         }
5913 
5914         if (offs >= strsize) {
5915                 /*
5916                  * If we didn't have room for all of the strings, we don't
5917                  * abort processing -- this needn't be a fatal error -- but we
5918                  * still want to increment a counter (dts_stkstroverflows) to
5919                  * allow this condition to be warned about.  (If this is from
5920                  * a jstack() action, it is easily tuned via jstackstrsize.)
5921                  */
5922                 dtrace_error(&state->dts_stkstroverflows);
5923         }
5924 
5925         while (offs < strsize)
5926                 str[offs++] = '\0';
5927 
5928 out:
5929         mstate->dtms_scratch_ptr = old;
5930 }
5931 
5932 /*
5933  * If you're looking for the epicenter of DTrace, you just found it.  This
5934  * is the function called by the provider to fire a probe -- from which all
5935  * subsequent probe-context DTrace activity emanates.
5936  */
5937 void
5938 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
5939     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
5940 {
5941         processorid_t cpuid;
5942         dtrace_icookie_t cookie;
5943         dtrace_probe_t *probe;
5944         dtrace_mstate_t mstate;
5945         dtrace_ecb_t *ecb;
5946         dtrace_action_t *act;
5947         intptr_t offs;
5948         size_t size;
5949         int vtime, onintr;
5950         volatile uint16_t *flags;
5951         hrtime_t now;
5952 
5953         /*
5954          * Kick out immediately if this CPU is still being born (in which case
5955          * curthread will be set to -1) or the current thread can't allow
5956          * probes in its current context.
5957          */
5958         if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
5959                 return;
5960 
5961         cookie = dtrace_interrupt_disable();
5962         probe = dtrace_probes[id - 1];
5963         cpuid = CPU->cpu_id;
5964         onintr = CPU_ON_INTR(CPU);
5965 
5966         if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
5967             probe->dtpr_predcache == curthread->t_predcache) {
5968                 /*
5969                  * We have hit in the predicate cache; we know that
5970                  * this predicate would evaluate to be false.
5971                  */
5972                 dtrace_interrupt_enable(cookie);
5973                 return;
5974         }
5975 
5976         if (panic_quiesce) {
5977                 /*
5978                  * We don't trace anything if we're panicking.
5979                  */
5980                 dtrace_interrupt_enable(cookie);
5981                 return;
5982         }
5983 
5984         now = dtrace_gethrtime();
5985         vtime = dtrace_vtime_references != 0;
5986 
5987         if (vtime && curthread->t_dtrace_start)
5988                 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
5989 
5990         mstate.dtms_difo = NULL;
5991         mstate.dtms_probe = probe;
5992         mstate.dtms_strtok = NULL;
5993         mstate.dtms_arg[0] = arg0;
5994         mstate.dtms_arg[1] = arg1;
5995         mstate.dtms_arg[2] = arg2;
5996         mstate.dtms_arg[3] = arg3;
5997         mstate.dtms_arg[4] = arg4;
5998 
5999         flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
6000 
6001         for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
6002                 dtrace_predicate_t *pred = ecb->dte_predicate;
6003                 dtrace_state_t *state = ecb->dte_state;
6004                 dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
6005                 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
6006                 dtrace_vstate_t *vstate = &state->dts_vstate;
6007                 dtrace_provider_t *prov = probe->dtpr_provider;
6008                 uint64_t tracememsize = 0;
6009                 int committed = 0;
6010                 caddr_t tomax;
6011 
6012                 /*
6013                  * A little subtlety with the following (seemingly innocuous)
6014                  * declaration of the automatic 'val':  by looking at the
6015                  * code, you might think that it could be declared in the
6016                  * action processing loop, below.  (That is, it's only used in
6017                  * the action processing loop.)  However, it must be declared
6018                  * out of that scope because in the case of DIF expression
6019                  * arguments to aggregating actions, one iteration of the
6020                  * action loop will use the last iteration's value.
6021                  */
6022 #ifdef lint
6023                 uint64_t val = 0;
6024 #else
6025                 uint64_t val;
6026 #endif
6027 
6028                 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
6029                 mstate.dtms_access = DTRACE_ACCESS_ARGS | DTRACE_ACCESS_PROC;
6030                 mstate.dtms_getf = NULL;
6031 
6032                 *flags &= ~CPU_DTRACE_ERROR;
6033 
6034                 if (prov == dtrace_provider) {
6035                         /*
6036                          * If dtrace itself is the provider of this probe,
6037                          * we're only going to continue processing the ECB if
6038                          * arg0 (the dtrace_state_t) is equal to the ECB's
6039                          * creating state.  (This prevents disjoint consumers
6040                          * from seeing one another's metaprobes.)
6041                          */
6042                         if (arg0 != (uint64_t)(uintptr_t)state)
6043                                 continue;
6044                 }
6045 
6046                 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
6047                         /*
6048                          * We're not currently active.  If our provider isn't
6049                          * the dtrace pseudo provider, we're not interested.
6050                          */
6051                         if (prov != dtrace_provider)
6052                                 continue;
6053 
6054                         /*
6055                          * Now we must further check if we are in the BEGIN
6056                          * probe.  If we are, we will only continue processing
6057                          * if we're still in WARMUP -- if one BEGIN enabling
6058                          * has invoked the exit() action, we don't want to
6059                          * evaluate subsequent BEGIN enablings.
6060                          */
6061                         if (probe->dtpr_id == dtrace_probeid_begin &&
6062                             state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
6063                                 ASSERT(state->dts_activity ==
6064                                     DTRACE_ACTIVITY_DRAINING);
6065                                 continue;
6066                         }
6067                 }
6068 
6069                 if (ecb->dte_cond && !dtrace_priv_probe(state, &mstate, ecb))
6070                         continue;
6071 
6072                 if (now - state->dts_alive > dtrace_deadman_timeout) {
6073                         /*
6074                          * We seem to be dead.  Unless we (a) have kernel
6075                          * destructive permissions (b) have expicitly enabled
6076                          * destructive actions and (c) destructive actions have
6077                          * not been disabled, we're going to transition into
6078                          * the KILLED state, from which no further processing
6079                          * on this state will be performed.
6080                          */
6081                         if (!dtrace_priv_kernel_destructive(state) ||
6082                             !state->dts_cred.dcr_destructive ||
6083                             dtrace_destructive_disallow) {
6084                                 void *activity = &state->dts_activity;
6085                                 dtrace_activity_t current;
6086 
6087                                 do {
6088                                         current = state->dts_activity;
6089                                 } while (dtrace_cas32(activity, current,
6090                                     DTRACE_ACTIVITY_KILLED) != current);
6091 
6092                                 continue;
6093                         }
6094                 }
6095 
6096                 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
6097                     ecb->dte_alignment, state, &mstate)) < 0)
6098                         continue;
6099 
6100                 tomax = buf->dtb_tomax;
6101                 ASSERT(tomax != NULL);
6102 
6103                 if (ecb->dte_size != 0)
6104                         DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid);
6105 
6106                 mstate.dtms_epid = ecb->dte_epid;
6107                 mstate.dtms_present |= DTRACE_MSTATE_EPID;
6108 
6109                 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
6110                         mstate.dtms_access |= DTRACE_ACCESS_KERNEL;
6111 
6112                 if (pred != NULL) {
6113                         dtrace_difo_t *dp = pred->dtp_difo;
6114                         int rval;
6115 
6116                         rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
6117 
6118                         if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
6119                                 dtrace_cacheid_t cid = probe->dtpr_predcache;
6120 
6121                                 if (cid != DTRACE_CACHEIDNONE && !onintr) {
6122                                         /*
6123                                          * Update the predicate cache...
6124                                          */
6125                                         ASSERT(cid == pred->dtp_cacheid);
6126                                         curthread->t_predcache = cid;
6127                                 }
6128 
6129                                 continue;
6130                         }
6131                 }
6132 
6133                 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6134                     act != NULL; act = act->dta_next) {
6135                         size_t valoffs;
6136                         dtrace_difo_t *dp;
6137                         dtrace_recdesc_t *rec = &act->dta_rec;
6138 
6139                         size = rec->dtrd_size;
6140                         valoffs = offs + rec->dtrd_offset;
6141 
6142                         if (DTRACEACT_ISAGG(act->dta_kind)) {
6143                                 uint64_t v = 0xbad;
6144                                 dtrace_aggregation_t *agg;
6145 
6146                                 agg = (dtrace_aggregation_t *)act;
6147 
6148                                 if ((dp = act->dta_difo) != NULL)
6149                                         v = dtrace_dif_emulate(dp,
6150                                             &mstate, vstate, state);
6151 
6152                                 if (*flags & CPU_DTRACE_ERROR)
6153                                         continue;
6154 
6155                                 /*
6156                                  * Note that we always pass the expression
6157                                  * value from the previous iteration of the
6158                                  * action loop.  This value will only be used
6159                                  * if there is an expression argument to the
6160                                  * aggregating action, denoted by the
6161                                  * dtag_hasarg field.
6162                                  */
6163                                 dtrace_aggregate(agg, buf,
6164                                     offs, aggbuf, v, val);
6165                                 continue;
6166                         }
6167 
6168                         switch (act->dta_kind) {
6169                         case DTRACEACT_STOP:
6170                                 if (dtrace_priv_proc_destructive(state,
6171                                     &mstate))
6172                                         dtrace_action_stop();
6173                                 continue;
6174 
6175                         case DTRACEACT_BREAKPOINT:
6176                                 if (dtrace_priv_kernel_destructive(state))
6177                                         dtrace_action_breakpoint(ecb);
6178                                 continue;
6179 
6180                         case DTRACEACT_PANIC:
6181                                 if (dtrace_priv_kernel_destructive(state))
6182                                         dtrace_action_panic(ecb);
6183                                 continue;
6184 
6185                         case DTRACEACT_STACK:
6186                                 if (!dtrace_priv_kernel(state))
6187                                         continue;
6188 
6189                                 dtrace_getpcstack((pc_t *)(tomax + valoffs),
6190                                     size / sizeof (pc_t), probe->dtpr_aframes,
6191                                     DTRACE_ANCHORED(probe) ? NULL :
6192                                     (uint32_t *)arg0);
6193 
6194                                 continue;
6195 
6196                         case DTRACEACT_JSTACK:
6197                         case DTRACEACT_USTACK:
6198                                 if (!dtrace_priv_proc(state, &mstate))
6199                                         continue;
6200 
6201                                 /*
6202                                  * See comment in DIF_VAR_PID.
6203                                  */
6204                                 if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6205                                     CPU_ON_INTR(CPU)) {
6206                                         int depth = DTRACE_USTACK_NFRAMES(
6207                                             rec->dtrd_arg) + 1;
6208 
6209                                         dtrace_bzero((void *)(tomax + valoffs),
6210                                             DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6211                                             + depth * sizeof (uint64_t));
6212 
6213                                         continue;
6214                                 }
6215 
6216                                 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6217                                     curproc->p_dtrace_helpers != NULL) {
6218                                         /*
6219                                          * This is the slow path -- we have
6220                                          * allocated string space, and we're
6221                                          * getting the stack of a process that
6222                                          * has helpers.  Call into a separate
6223                                          * routine to perform this processing.
6224                                          */
6225                                         dtrace_action_ustack(&mstate, state,
6226                                             (uint64_t *)(tomax + valoffs),
6227                                             rec->dtrd_arg);
6228                                         continue;
6229                                 }
6230 
6231                                 /*
6232                                  * Clear the string space, since there's no
6233                                  * helper to do it for us.
6234                                  */
6235                                 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0) {
6236                                         int depth = DTRACE_USTACK_NFRAMES(
6237                                             rec->dtrd_arg);
6238                                         size_t strsize = DTRACE_USTACK_STRSIZE(
6239                                             rec->dtrd_arg);
6240                                         uint64_t *buf = (uint64_t *)(tomax +
6241                                             valoffs);
6242                                         void *strspace = &buf[depth + 1];
6243 
6244                                         dtrace_bzero(strspace,
6245                                             MIN(depth, strsize));
6246                                 }
6247 
6248                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6249                                 dtrace_getupcstack((uint64_t *)
6250                                     (tomax + valoffs),
6251                                     DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6252                                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6253                                 continue;
6254 
6255                         default:
6256                                 break;
6257                         }
6258 
6259                         dp = act->dta_difo;
6260                         ASSERT(dp != NULL);
6261 
6262                         val = dtrace_dif_emulate(dp, &mstate, vstate, state);
6263 
6264                         if (*flags & CPU_DTRACE_ERROR)
6265                                 continue;
6266 
6267                         switch (act->dta_kind) {
6268                         case DTRACEACT_SPECULATE:
6269                                 ASSERT(buf == &state->dts_buffer[cpuid]);
6270                                 buf = dtrace_speculation_buffer(state,
6271                                     cpuid, val);
6272 
6273                                 if (buf == NULL) {
6274                                         *flags |= CPU_DTRACE_DROP;
6275                                         continue;
6276                                 }
6277 
6278                                 offs = dtrace_buffer_reserve(buf,
6279                                     ecb->dte_needed, ecb->dte_alignment,
6280                                     state, NULL);
6281 
6282                                 if (offs < 0) {
6283                                         *flags |= CPU_DTRACE_DROP;
6284                                         continue;
6285                                 }
6286 
6287                                 tomax = buf->dtb_tomax;
6288                                 ASSERT(tomax != NULL);
6289 
6290                                 if (ecb->dte_size != 0)
6291                                         DTRACE_STORE(uint32_t, tomax, offs,
6292                                             ecb->dte_epid);
6293                                 continue;
6294 
6295                         case DTRACEACT_CHILL:
6296                                 if (dtrace_priv_kernel_destructive(state))
6297                                         dtrace_action_chill(&mstate, val);
6298                                 continue;
6299 
6300                         case DTRACEACT_RAISE:
6301                                 if (dtrace_priv_proc_destructive(state,
6302                                     &mstate))
6303                                         dtrace_action_raise(val);
6304                                 continue;
6305 
6306                         case DTRACEACT_COMMIT:
6307                                 ASSERT(!committed);
6308 
6309                                 /*
6310                                  * We need to commit our buffer state.
6311                                  */
6312                                 if (ecb->dte_size)
6313                                         buf->dtb_offset = offs + ecb->dte_size;
6314                                 buf = &state->dts_buffer[cpuid];
6315                                 dtrace_speculation_commit(state, cpuid, val);
6316                                 committed = 1;
6317                                 continue;
6318 
6319                         case DTRACEACT_DISCARD:
6320                                 dtrace_speculation_discard(state, cpuid, val);
6321                                 continue;
6322 
6323                         case DTRACEACT_DIFEXPR:
6324                         case DTRACEACT_LIBACT:
6325                         case DTRACEACT_PRINTF:
6326                         case DTRACEACT_PRINTA:
6327                         case DTRACEACT_SYSTEM:
6328                         case DTRACEACT_FREOPEN:
6329                         case DTRACEACT_TRACEMEM:
6330                                 break;
6331 
6332                         case DTRACEACT_TRACEMEM_DYNSIZE:
6333                                 tracememsize = val;
6334                                 break;
6335 
6336                         case DTRACEACT_SYM:
6337                         case DTRACEACT_MOD:
6338                                 if (!dtrace_priv_kernel(state))
6339                                         continue;
6340                                 break;
6341 
6342                         case DTRACEACT_USYM:
6343                         case DTRACEACT_UMOD:
6344                         case DTRACEACT_UADDR: {
6345                                 struct pid *pid = curthread->t_procp->p_pidp;
6346 
6347                                 if (!dtrace_priv_proc(state, &mstate))
6348                                         continue;
6349 
6350                                 DTRACE_STORE(uint64_t, tomax,
6351                                     valoffs, (uint64_t)pid->pid_id);
6352                                 DTRACE_STORE(uint64_t, tomax,
6353                                     valoffs + sizeof (uint64_t), val);
6354 
6355                                 continue;
6356                         }
6357 
6358                         case DTRACEACT_EXIT: {
6359                                 /*
6360                                  * For the exit action, we are going to attempt
6361                                  * to atomically set our activity to be
6362                                  * draining.  If this fails (either because
6363                                  * another CPU has beat us to the exit action,
6364                                  * or because our current activity is something
6365                                  * other than ACTIVE or WARMUP), we will
6366                                  * continue.  This assures that the exit action
6367                                  * can be successfully recorded at most once
6368                                  * when we're in the ACTIVE state.  If we're
6369                                  * encountering the exit() action while in
6370                                  * COOLDOWN, however, we want to honor the new
6371                                  * status code.  (We know that we're the only
6372                                  * thread in COOLDOWN, so there is no race.)
6373                                  */
6374                                 void *activity = &state->dts_activity;
6375                                 dtrace_activity_t current = state->dts_activity;
6376 
6377                                 if (current == DTRACE_ACTIVITY_COOLDOWN)
6378                                         break;
6379 
6380                                 if (current != DTRACE_ACTIVITY_WARMUP)
6381                                         current = DTRACE_ACTIVITY_ACTIVE;
6382 
6383                                 if (dtrace_cas32(activity, current,
6384                                     DTRACE_ACTIVITY_DRAINING) != current) {
6385                                         *flags |= CPU_DTRACE_DROP;
6386                                         continue;
6387                                 }
6388 
6389                                 break;
6390                         }
6391 
6392                         default:
6393                                 ASSERT(0);
6394                         }
6395 
6396                         if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
6397                                 uintptr_t end = valoffs + size;
6398 
6399                                 if (tracememsize != 0 &&
6400                                     valoffs + tracememsize < end) {
6401                                         end = valoffs + tracememsize;
6402                                         tracememsize = 0;
6403                                 }
6404 
6405                                 if (!dtrace_vcanload((void *)(uintptr_t)val,
6406                                     &dp->dtdo_rtype, &mstate, vstate))
6407                                         continue;
6408 
6409                                 /*
6410                                  * If this is a string, we're going to only
6411                                  * load until we find the zero byte -- after
6412                                  * which we'll store zero bytes.
6413                                  */
6414                                 if (dp->dtdo_rtype.dtdt_kind ==
6415                                     DIF_TYPE_STRING) {
6416                                         char c = '\0' + 1;
6417                                         int intuple = act->dta_intuple;
6418                                         size_t s;
6419 
6420                                         for (s = 0; s < size; s++) {
6421                                                 if (c != '\0')
6422                                                         c = dtrace_load8(val++);
6423 
6424                                                 DTRACE_STORE(uint8_t, tomax,
6425                                                     valoffs++, c);
6426 
6427                                                 if (c == '\0' && intuple)
6428                                                         break;
6429                                         }
6430 
6431                                         continue;
6432                                 }
6433 
6434                                 while (valoffs < end) {
6435                                         DTRACE_STORE(uint8_t, tomax, valoffs++,
6436                                             dtrace_load8(val++));
6437                                 }
6438 
6439                                 continue;
6440                         }
6441 
6442                         switch (size) {
6443                         case 0:
6444                                 break;
6445 
6446                         case sizeof (uint8_t):
6447                                 DTRACE_STORE(uint8_t, tomax, valoffs, val);
6448                                 break;
6449                         case sizeof (uint16_t):
6450                                 DTRACE_STORE(uint16_t, tomax, valoffs, val);
6451                                 break;
6452                         case sizeof (uint32_t):
6453                                 DTRACE_STORE(uint32_t, tomax, valoffs, val);
6454                                 break;
6455                         case sizeof (uint64_t):
6456                                 DTRACE_STORE(uint64_t, tomax, valoffs, val);
6457                                 break;
6458                         default:
6459                                 /*
6460                                  * Any other size should have been returned by
6461                                  * reference, not by value.
6462                                  */
6463                                 ASSERT(0);
6464                                 break;
6465                         }
6466                 }
6467 
6468                 if (*flags & CPU_DTRACE_DROP)
6469                         continue;
6470 
6471                 if (*flags & CPU_DTRACE_FAULT) {
6472                         int ndx;
6473                         dtrace_action_t *err;
6474 
6475                         buf->dtb_errors++;
6476 
6477                         if (probe->dtpr_id == dtrace_probeid_error) {
6478                                 /*
6479                                  * There's nothing we can do -- we had an
6480                                  * error on the error probe.  We bump an
6481                                  * error counter to at least indicate that
6482                                  * this condition happened.
6483                                  */
6484                                 dtrace_error(&state->dts_dblerrors);
6485                                 continue;
6486                         }
6487 
6488                         if (vtime) {
6489                                 /*
6490                                  * Before recursing on dtrace_probe(), we
6491                                  * need to explicitly clear out our start
6492                                  * time to prevent it from being accumulated
6493                                  * into t_dtrace_vtime.
6494                                  */
6495                                 curthread->t_dtrace_start = 0;
6496                         }
6497 
6498                         /*
6499                          * Iterate over the actions to figure out which action
6500                          * we were processing when we experienced the error.
6501                          * Note that act points _past_ the faulting action; if
6502                          * act is ecb->dte_action, the fault was in the
6503                          * predicate, if it's ecb->dte_action->dta_next it's
6504                          * in action #1, and so on.
6505                          */
6506                         for (err = ecb->dte_action, ndx = 0;
6507                             err != act; err = err->dta_next, ndx++)
6508                                 continue;
6509 
6510                         dtrace_probe_error(state, ecb->dte_epid, ndx,
6511                             (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
6512                             mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
6513                             cpu_core[cpuid].cpuc_dtrace_illval);
6514 
6515                         continue;
6516                 }
6517 
6518                 if (!committed)
6519                         buf->dtb_offset = offs + ecb->dte_size;
6520         }
6521 
6522         if (vtime)
6523                 curthread->t_dtrace_start = dtrace_gethrtime();
6524 
6525         dtrace_interrupt_enable(cookie);
6526 }
6527 
6528 /*
6529  * DTrace Probe Hashing Functions
6530  *
6531  * The functions in this section (and indeed, the functions in remaining
6532  * sections) are not _called_ from probe context.  (Any exceptions to this are
6533  * marked with a "Note:".)  Rather, they are called from elsewhere in the
6534  * DTrace framework to look-up probes in, add probes to and remove probes from
6535  * the DTrace probe hashes.  (Each probe is hashed by each element of the
6536  * probe tuple -- allowing for fast lookups, regardless of what was
6537  * specified.)
6538  */
6539 static uint_t
6540 dtrace_hash_str(char *p)
6541 {
6542         unsigned int g;
6543         uint_t hval = 0;
6544 
6545         while (*p) {
6546                 hval = (hval << 4) + *p++;
6547                 if ((g = (hval & 0xf0000000)) != 0)
6548                         hval ^= g >> 24;
6549                 hval &= ~g;
6550         }
6551         return (hval);
6552 }
6553 
6554 static dtrace_hash_t *
6555 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
6556 {
6557         dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
6558 
6559         hash->dth_stroffs = stroffs;
6560         hash->dth_nextoffs = nextoffs;
6561         hash->dth_prevoffs = prevoffs;
6562 
6563         hash->dth_size = 1;
6564         hash->dth_mask = hash->dth_size - 1;
6565 
6566         hash->dth_tab = kmem_zalloc(hash->dth_size *
6567             sizeof (dtrace_hashbucket_t *), KM_SLEEP);
6568 
6569         return (hash);
6570 }
6571 
6572 static void
6573 dtrace_hash_destroy(dtrace_hash_t *hash)
6574 {
6575 #ifdef DEBUG
6576         int i;
6577 
6578         for (i = 0; i < hash->dth_size; i++)
6579                 ASSERT(hash->dth_tab[i] == NULL);
6580 #endif
6581 
6582         kmem_free(hash->dth_tab,
6583             hash->dth_size * sizeof (dtrace_hashbucket_t *));
6584         kmem_free(hash, sizeof (dtrace_hash_t));
6585 }
6586 
6587 static void
6588 dtrace_hash_resize(dtrace_hash_t *hash)
6589 {
6590         int size = hash->dth_size, i, ndx;
6591         int new_size = hash->dth_size << 1;
6592         int new_mask = new_size - 1;
6593         dtrace_hashbucket_t **new_tab, *bucket, *next;
6594 
6595         ASSERT((new_size & new_mask) == 0);
6596 
6597         new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
6598 
6599         for (i = 0; i < size; i++) {
6600                 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
6601                         dtrace_probe_t *probe = bucket->dthb_chain;
6602 
6603                         ASSERT(probe != NULL);
6604                         ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
6605 
6606                         next = bucket->dthb_next;
6607                         bucket->dthb_next = new_tab[ndx];
6608                         new_tab[ndx] = bucket;
6609                 }
6610         }
6611 
6612         kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
6613         hash->dth_tab = new_tab;
6614         hash->dth_size = new_size;
6615         hash->dth_mask = new_mask;
6616 }
6617 
6618 static void
6619 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
6620 {
6621         int hashval = DTRACE_HASHSTR(hash, new);
6622         int ndx = hashval & hash->dth_mask;
6623         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6624         dtrace_probe_t **nextp, **prevp;
6625 
6626         for (; bucket != NULL; bucket = bucket->dthb_next) {
6627                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
6628                         goto add;
6629         }
6630 
6631         if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
6632                 dtrace_hash_resize(hash);
6633                 dtrace_hash_add(hash, new);
6634                 return;
6635         }
6636 
6637         bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
6638         bucket->dthb_next = hash->dth_tab[ndx];
6639         hash->dth_tab[ndx] = bucket;
6640         hash->dth_nbuckets++;
6641 
6642 add:
6643         nextp = DTRACE_HASHNEXT(hash, new);
6644         ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
6645         *nextp = bucket->dthb_chain;
6646 
6647         if (bucket->dthb_chain != NULL) {
6648                 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
6649                 ASSERT(*prevp == NULL);
6650                 *prevp = new;
6651         }
6652 
6653         bucket->dthb_chain = new;
6654         bucket->dthb_len++;
6655 }
6656 
6657 static dtrace_probe_t *
6658 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
6659 {
6660         int hashval = DTRACE_HASHSTR(hash, template);
6661         int ndx = hashval & hash->dth_mask;
6662         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6663 
6664         for (; bucket != NULL; bucket = bucket->dthb_next) {
6665                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6666                         return (bucket->dthb_chain);
6667         }
6668 
6669         return (NULL);
6670 }
6671 
6672 static int
6673 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
6674 {
6675         int hashval = DTRACE_HASHSTR(hash, template);
6676         int ndx = hashval & hash->dth_mask;
6677         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6678 
6679         for (; bucket != NULL; bucket = bucket->dthb_next) {
6680                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6681                         return (bucket->dthb_len);
6682         }
6683 
6684         return (NULL);
6685 }
6686 
6687 static void
6688 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
6689 {
6690         int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
6691         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6692 
6693         dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
6694         dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
6695 
6696         /*
6697          * Find the bucket that we're removing this probe from.
6698          */
6699         for (; bucket != NULL; bucket = bucket->dthb_next) {
6700                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
6701                         break;
6702         }
6703 
6704         ASSERT(bucket != NULL);
6705 
6706         if (*prevp == NULL) {
6707                 if (*nextp == NULL) {
6708                         /*
6709                          * The removed probe was the only probe on this
6710                          * bucket; we need to remove the bucket.
6711                          */
6712                         dtrace_hashbucket_t *b = hash->dth_tab[ndx];
6713 
6714                         ASSERT(bucket->dthb_chain == probe);
6715                         ASSERT(b != NULL);
6716 
6717                         if (b == bucket) {
6718                                 hash->dth_tab[ndx] = bucket->dthb_next;
6719                         } else {
6720                                 while (b->dthb_next != bucket)
6721                                         b = b->dthb_next;
6722                                 b->dthb_next = bucket->dthb_next;
6723                         }
6724 
6725                         ASSERT(hash->dth_nbuckets > 0);
6726                         hash->dth_nbuckets--;
6727                         kmem_free(bucket, sizeof (dtrace_hashbucket_t));
6728                         return;
6729                 }
6730 
6731                 bucket->dthb_chain = *nextp;
6732         } else {
6733                 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
6734         }
6735 
6736         if (*nextp != NULL)
6737                 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
6738 }
6739 
6740 /*
6741  * DTrace Utility Functions
6742  *
6743  * These are random utility functions that are _not_ called from probe context.
6744  */
6745 static int
6746 dtrace_badattr(const dtrace_attribute_t *a)
6747 {
6748         return (a->dtat_name > DTRACE_STABILITY_MAX ||
6749             a->dtat_data > DTRACE_STABILITY_MAX ||
6750             a->dtat_class > DTRACE_CLASS_MAX);
6751 }
6752 
6753 /*
6754  * Return a duplicate copy of a string.  If the specified string is NULL,
6755  * this function returns a zero-length string.
6756  */
6757 static char *
6758 dtrace_strdup(const char *str)
6759 {
6760         char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
6761 
6762         if (str != NULL)
6763                 (void) strcpy(new, str);
6764 
6765         return (new);
6766 }
6767 
6768 #define DTRACE_ISALPHA(c)       \
6769         (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
6770 
6771 static int
6772 dtrace_badname(const char *s)
6773 {
6774         char c;
6775 
6776         if (s == NULL || (c = *s++) == '\0')
6777                 return (0);
6778 
6779         if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
6780                 return (1);
6781 
6782         while ((c = *s++) != '\0') {
6783                 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
6784                     c != '-' && c != '_' && c != '.' && c != '`')
6785                         return (1);
6786         }
6787 
6788         return (0);
6789 }
6790 
6791 static void
6792 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
6793 {
6794         uint32_t priv;
6795 
6796         if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
6797                 /*
6798                  * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
6799                  */
6800                 priv = DTRACE_PRIV_ALL;
6801         } else {
6802                 *uidp = crgetuid(cr);
6803                 *zoneidp = crgetzoneid(cr);
6804 
6805                 priv = 0;
6806                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
6807                         priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
6808                 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
6809                         priv |= DTRACE_PRIV_USER;
6810                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
6811                         priv |= DTRACE_PRIV_PROC;
6812                 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
6813                         priv |= DTRACE_PRIV_OWNER;
6814                 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
6815                         priv |= DTRACE_PRIV_ZONEOWNER;
6816         }
6817 
6818         *privp = priv;
6819 }
6820 
6821 #ifdef DTRACE_ERRDEBUG
6822 static void
6823 dtrace_errdebug(const char *str)
6824 {
6825         int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ;
6826         int occupied = 0;
6827 
6828         mutex_enter(&dtrace_errlock);
6829         dtrace_errlast = str;
6830         dtrace_errthread = curthread;
6831 
6832         while (occupied++ < DTRACE_ERRHASHSZ) {
6833                 if (dtrace_errhash[hval].dter_msg == str) {
6834                         dtrace_errhash[hval].dter_count++;
6835                         goto out;
6836                 }
6837 
6838                 if (dtrace_errhash[hval].dter_msg != NULL) {
6839                         hval = (hval + 1) % DTRACE_ERRHASHSZ;
6840                         continue;
6841                 }
6842 
6843                 dtrace_errhash[hval].dter_msg = str;
6844                 dtrace_errhash[hval].dter_count = 1;
6845                 goto out;
6846         }
6847 
6848         panic("dtrace: undersized error hash");
6849 out:
6850         mutex_exit(&dtrace_errlock);
6851 }
6852 #endif
6853 
6854 /*
6855  * DTrace Matching Functions
6856  *
6857  * These functions are used to match groups of probes, given some elements of
6858  * a probe tuple, or some globbed expressions for elements of a probe tuple.
6859  */
6860 static int
6861 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
6862     zoneid_t zoneid)
6863 {
6864         if (priv != DTRACE_PRIV_ALL) {
6865                 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
6866                 uint32_t match = priv & ppriv;
6867 
6868                 /*
6869                  * No PRIV_DTRACE_* privileges...
6870                  */
6871                 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
6872                     DTRACE_PRIV_KERNEL)) == 0)
6873                         return (0);
6874 
6875                 /*
6876                  * No matching bits, but there were bits to match...
6877                  */
6878                 if (match == 0 && ppriv != 0)
6879                         return (0);
6880 
6881                 /*
6882                  * Need to have permissions to the process, but don't...
6883                  */
6884                 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
6885                     uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
6886                         return (0);
6887                 }
6888 
6889                 /*
6890                  * Need to be in the same zone unless we possess the
6891                  * privilege to examine all zones.
6892                  */
6893                 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
6894                     zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
6895                         return (0);
6896                 }
6897         }
6898 
6899         return (1);
6900 }
6901 
6902 /*
6903  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
6904  * consists of input pattern strings and an ops-vector to evaluate them.
6905  * This function returns >0 for match, 0 for no match, and <0 for error.
6906  */
6907 static int
6908 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
6909     uint32_t priv, uid_t uid, zoneid_t zoneid)
6910 {
6911         dtrace_provider_t *pvp = prp->dtpr_provider;
6912         int rv;
6913 
6914         if (pvp->dtpv_defunct)
6915                 return (0);
6916 
6917         if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
6918                 return (rv);
6919 
6920         if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
6921                 return (rv);
6922 
6923         if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
6924                 return (rv);
6925 
6926         if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
6927                 return (rv);
6928 
6929         if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
6930                 return (0);
6931 
6932         return (rv);
6933 }
6934 
6935 /*
6936  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
6937  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
6938  * libc's version, the kernel version only applies to 8-bit ASCII strings.
6939  * In addition, all of the recursion cases except for '*' matching have been
6940  * unwound.  For '*', we still implement recursive evaluation, but a depth
6941  * counter is maintained and matching is aborted if we recurse too deep.
6942  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
6943  */
6944 static int
6945 dtrace_match_glob(const char *s, const char *p, int depth)
6946 {
6947         const char *olds;
6948         char s1, c;
6949         int gs;
6950 
6951         if (depth > DTRACE_PROBEKEY_MAXDEPTH)
6952                 return (-1);
6953 
6954         if (s == NULL)
6955                 s = ""; /* treat NULL as empty string */
6956 
6957 top:
6958         olds = s;
6959         s1 = *s++;
6960 
6961         if (p == NULL)
6962                 return (0);
6963 
6964         if ((c = *p++) == '\0')
6965                 return (s1 == '\0');
6966 
6967         switch (c) {
6968         case '[': {
6969                 int ok = 0, notflag = 0;
6970                 char lc = '\0';
6971 
6972                 if (s1 == '\0')
6973                         return (0);
6974 
6975                 if (*p == '!') {
6976                         notflag = 1;
6977                         p++;
6978                 }
6979 
6980                 if ((c = *p++) == '\0')
6981                         return (0);
6982 
6983                 do {
6984                         if (c == '-' && lc != '\0' && *p != ']') {
6985                                 if ((c = *p++) == '\0')
6986                                         return (0);
6987                                 if (c == '\\' && (c = *p++) == '\0')
6988                                         return (0);
6989 
6990                                 if (notflag) {
6991                                         if (s1 < lc || s1 > c)
6992                                                 ok++;
6993                                         else
6994                                                 return (0);
6995                                 } else if (lc <= s1 && s1 <= c)
6996                                         ok++;
6997 
6998                         } else if (c == '\\' && (c = *p++) == '\0')
6999                                 return (0);
7000 
7001                         lc = c; /* save left-hand 'c' for next iteration */
7002 
7003                         if (notflag) {
7004                                 if (s1 != c)
7005                                         ok++;
7006                                 else
7007                                         return (0);
7008                         } else if (s1 == c)
7009                                 ok++;
7010 
7011                         if ((c = *p++) == '\0')
7012                                 return (0);
7013 
7014                 } while (c != ']');
7015 
7016                 if (ok)
7017                         goto top;
7018 
7019                 return (0);
7020         }
7021 
7022         case '\\':
7023                 if ((c = *p++) == '\0')
7024                         return (0);
7025                 /*FALLTHRU*/
7026 
7027         default:
7028                 if (c != s1)
7029                         return (0);
7030                 /*FALLTHRU*/
7031 
7032         case '?':
7033                 if (s1 != '\0')
7034                         goto top;
7035                 return (0);
7036 
7037         case '*':
7038                 while (*p == '*')
7039                         p++; /* consecutive *'s are identical to a single one */
7040 
7041                 if (*p == '\0')
7042                         return (1);
7043 
7044                 for (s = olds; *s != '\0'; s++) {
7045                         if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7046                                 return (gs);
7047                 }
7048 
7049                 return (0);
7050         }
7051 }
7052 
7053 /*ARGSUSED*/
7054 static int
7055 dtrace_match_string(const char *s, const char *p, int depth)
7056 {
7057         return (s != NULL && strcmp(s, p) == 0);
7058 }
7059 
7060 /*ARGSUSED*/
7061 static int
7062 dtrace_match_nul(const char *s, const char *p, int depth)
7063 {
7064         return (1); /* always match the empty pattern */
7065 }
7066 
7067 /*ARGSUSED*/
7068 static int
7069 dtrace_match_nonzero(const char *s, const char *p, int depth)
7070 {
7071         return (s != NULL && s[0] != '\0');
7072 }
7073 
7074 static int
7075 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7076     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7077 {
7078         dtrace_probe_t template, *probe;
7079         dtrace_hash_t *hash = NULL;
7080         int len, rc, best = INT_MAX, nmatched = 0;
7081         dtrace_id_t i;
7082 
7083         ASSERT(MUTEX_HELD(&dtrace_lock));
7084 
7085         /*
7086          * If the probe ID is specified in the key, just lookup by ID and
7087          * invoke the match callback once if a matching probe is found.
7088          */
7089         if (pkp->dtpk_id != DTRACE_IDNONE) {
7090                 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
7091                     dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
7092                         if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL)
7093                                 return (DTRACE_MATCH_FAIL);
7094                         nmatched++;
7095                 }
7096                 return (nmatched);
7097         }
7098 
7099         template.dtpr_mod = (char *)pkp->dtpk_mod;
7100         template.dtpr_func = (char *)pkp->dtpk_func;
7101         template.dtpr_name = (char *)pkp->dtpk_name;
7102 
7103         /*
7104          * We want to find the most distinct of the module name, function
7105          * name, and name.  So for each one that is not a glob pattern or
7106          * empty string, we perform a lookup in the corresponding hash and
7107          * use the hash table with the fewest collisions to do our search.
7108          */
7109         if (pkp->dtpk_mmatch == &dtrace_match_string &&
7110             (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
7111                 best = len;
7112                 hash = dtrace_bymod;
7113         }
7114 
7115         if (pkp->dtpk_fmatch == &dtrace_match_string &&
7116             (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
7117                 best = len;
7118                 hash = dtrace_byfunc;
7119         }
7120 
7121         if (pkp->dtpk_nmatch == &dtrace_match_string &&
7122             (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
7123                 best = len;
7124                 hash = dtrace_byname;
7125         }
7126 
7127         /*
7128          * If we did not select a hash table, iterate over every probe and
7129          * invoke our callback for each one that matches our input probe key.
7130          */
7131         if (hash == NULL) {
7132                 for (i = 0; i < dtrace_nprobes; i++) {
7133                         if ((probe = dtrace_probes[i]) == NULL ||
7134                             dtrace_match_probe(probe, pkp, priv, uid,
7135                             zoneid) <= 0)
7136                                 continue;
7137 
7138                         nmatched++;
7139 
7140                         if ((rc = (*matched)(probe, arg)) !=
7141                             DTRACE_MATCH_NEXT) {
7142                                 if (rc == DTRACE_MATCH_FAIL)
7143                                         return (DTRACE_MATCH_FAIL);
7144                                 break;
7145                         }
7146                 }
7147 
7148                 return (nmatched);
7149         }
7150 
7151         /*
7152          * If we selected a hash table, iterate over each probe of the same key
7153          * name and invoke the callback for every probe that matches the other
7154          * attributes of our input probe key.
7155          */
7156         for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
7157             probe = *(DTRACE_HASHNEXT(hash, probe))) {
7158 
7159                 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
7160                         continue;
7161 
7162                 nmatched++;
7163 
7164                 if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) {
7165                         if (rc == DTRACE_MATCH_FAIL)
7166                                 return (DTRACE_MATCH_FAIL);
7167                         break;
7168                 }
7169         }
7170 
7171         return (nmatched);
7172 }
7173 
7174 /*
7175  * Return the function pointer dtrace_probecmp() should use to compare the
7176  * specified pattern with a string.  For NULL or empty patterns, we select
7177  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
7178  * For non-empty non-glob strings, we use dtrace_match_string().
7179  */
7180 static dtrace_probekey_f *
7181 dtrace_probekey_func(const char *p)
7182 {
7183         char c;
7184 
7185         if (p == NULL || *p == '\0')
7186                 return (&dtrace_match_nul);
7187 
7188         while ((c = *p++) != '\0') {
7189                 if (c == '[' || c == '?' || c == '*' || c == '\\')
7190                         return (&dtrace_match_glob);
7191         }
7192 
7193         return (&dtrace_match_string);
7194 }
7195 
7196 /*
7197  * Build a probe comparison key for use with dtrace_match_probe() from the
7198  * given probe description.  By convention, a null key only matches anchored
7199  * probes: if each field is the empty string, reset dtpk_fmatch to
7200  * dtrace_match_nonzero().
7201  */
7202 static void
7203 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7204 {
7205         pkp->dtpk_prov = pdp->dtpd_provider;
7206         pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
7207 
7208         pkp->dtpk_mod = pdp->dtpd_mod;
7209         pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
7210 
7211         pkp->dtpk_func = pdp->dtpd_func;
7212         pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
7213 
7214         pkp->dtpk_name = pdp->dtpd_name;
7215         pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
7216 
7217         pkp->dtpk_id = pdp->dtpd_id;
7218 
7219         if (pkp->dtpk_id == DTRACE_IDNONE &&
7220             pkp->dtpk_pmatch == &dtrace_match_nul &&
7221             pkp->dtpk_mmatch == &dtrace_match_nul &&
7222             pkp->dtpk_fmatch == &dtrace_match_nul &&
7223             pkp->dtpk_nmatch == &dtrace_match_nul)
7224                 pkp->dtpk_fmatch = &dtrace_match_nonzero;
7225 }
7226 
7227 /*
7228  * DTrace Provider-to-Framework API Functions
7229  *
7230  * These functions implement much of the Provider-to-Framework API, as
7231  * described in <sys/dtrace.h>.  The parts of the API not in this section are
7232  * the functions in the API for probe management (found below), and
7233  * dtrace_probe() itself (found above).
7234  */
7235 
7236 /*
7237  * Register the calling provider with the DTrace framework.  This should
7238  * generally be called by DTrace providers in their attach(9E) entry point.
7239  */
7240 int
7241 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
7242     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7243 {
7244         dtrace_provider_t *provider;
7245 
7246         if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7247                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7248                     "arguments", name ? name : "<NULL>");
7249                 return (EINVAL);
7250         }
7251 
7252         if (name[0] == '\0' || dtrace_badname(name)) {
7253                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7254                     "provider name", name);
7255                 return (EINVAL);
7256         }
7257 
7258         if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
7259             pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
7260             pops->dtps_destroy == NULL ||
7261             ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
7262                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7263                     "provider ops", name);
7264                 return (EINVAL);
7265         }
7266 
7267         if (dtrace_badattr(&pap->dtpa_provider) ||
7268             dtrace_badattr(&pap->dtpa_mod) ||
7269             dtrace_badattr(&pap->dtpa_func) ||
7270             dtrace_badattr(&pap->dtpa_name) ||
7271             dtrace_badattr(&pap->dtpa_args)) {
7272                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7273                     "provider attributes", name);
7274                 return (EINVAL);
7275         }
7276 
7277         if (priv & ~DTRACE_PRIV_ALL) {
7278                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7279                     "privilege attributes", name);
7280                 return (EINVAL);
7281         }
7282 
7283         if ((priv & DTRACE_PRIV_KERNEL) &&
7284             (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7285             pops->dtps_mode == NULL) {
7286                 cmn_err(CE_WARN, "failed to register provider '%s': need "
7287                     "dtps_mode() op for given privilege attributes", name);
7288                 return (EINVAL);
7289         }
7290 
7291         provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7292         provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7293         (void) strcpy(provider->dtpv_name, name);
7294 
7295         provider->dtpv_attr = *pap;
7296         provider->dtpv_priv.dtpp_flags = priv;
7297         if (cr != NULL) {
7298                 provider->dtpv_priv.dtpp_uid = crgetuid(cr);
7299                 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
7300         }
7301         provider->dtpv_pops = *pops;
7302 
7303         if (pops->dtps_provide == NULL) {
7304                 ASSERT(pops->dtps_provide_module != NULL);
7305                 provider->dtpv_pops.dtps_provide =
7306                     (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop;
7307         }
7308 
7309         if (pops->dtps_provide_module == NULL) {
7310                 ASSERT(pops->dtps_provide != NULL);
7311                 provider->dtpv_pops.dtps_provide_module =
7312                     (void (*)(void *, struct modctl *))dtrace_nullop;
7313         }
7314 
7315         if (pops->dtps_suspend == NULL) {
7316                 ASSERT(pops->dtps_resume == NULL);
7317                 provider->dtpv_pops.dtps_suspend =
7318                     (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7319                 provider->dtpv_pops.dtps_resume =
7320                     (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7321         }
7322 
7323         provider->dtpv_arg = arg;
7324         *idp = (dtrace_provider_id_t)provider;
7325 
7326         if (pops == &dtrace_provider_ops) {
7327                 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7328                 ASSERT(MUTEX_HELD(&dtrace_lock));
7329                 ASSERT(dtrace_anon.dta_enabling == NULL);
7330 
7331                 /*
7332                  * We make sure that the DTrace provider is at the head of
7333                  * the provider chain.
7334                  */
7335                 provider->dtpv_next = dtrace_provider;
7336                 dtrace_provider = provider;
7337                 return (0);
7338         }
7339 
7340         mutex_enter(&dtrace_provider_lock);
7341         mutex_enter(&dtrace_lock);
7342 
7343         /*
7344          * If there is at least one provider registered, we'll add this
7345          * provider after the first provider.
7346          */
7347         if (dtrace_provider != NULL) {
7348                 provider->dtpv_next = dtrace_provider->dtpv_next;
7349                 dtrace_provider->dtpv_next = provider;
7350         } else {
7351                 dtrace_provider = provider;
7352         }
7353 
7354         if (dtrace_retained != NULL) {
7355                 dtrace_enabling_provide(provider);
7356 
7357                 /*
7358                  * Now we need to call dtrace_enabling_matchall() -- which
7359                  * will acquire cpu_lock and dtrace_lock.  We therefore need
7360                  * to drop all of our locks before calling into it...
7361                  */
7362                 mutex_exit(&dtrace_lock);
7363                 mutex_exit(&dtrace_provider_lock);
7364                 dtrace_enabling_matchall();
7365 
7366                 return (0);
7367         }
7368 
7369         mutex_exit(&dtrace_lock);
7370         mutex_exit(&dtrace_provider_lock);
7371 
7372         return (0);
7373 }
7374 
7375 /*
7376  * Unregister the specified provider from the DTrace framework.  This should
7377  * generally be called by DTrace providers in their detach(9E) entry point.
7378  */
7379 int
7380 dtrace_unregister(dtrace_provider_id_t id)
7381 {
7382         dtrace_provider_t *old = (dtrace_provider_t *)id;
7383         dtrace_provider_t *prev = NULL;
7384         int i, self = 0, noreap = 0;
7385         dtrace_probe_t *probe, *first = NULL;
7386 
7387         if (old->dtpv_pops.dtps_enable ==
7388             (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) {
7389                 /*
7390                  * If DTrace itself is the provider, we're called with locks
7391                  * already held.
7392                  */
7393                 ASSERT(old == dtrace_provider);
7394                 ASSERT(dtrace_devi != NULL);
7395                 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7396                 ASSERT(MUTEX_HELD(&dtrace_lock));
7397                 self = 1;
7398 
7399                 if (dtrace_provider->dtpv_next != NULL) {
7400                         /*
7401                          * There's another provider here; return failure.
7402                          */
7403                         return (EBUSY);
7404                 }
7405         } else {
7406                 mutex_enter(&dtrace_provider_lock);
7407                 mutex_enter(&mod_lock);
7408                 mutex_enter(&dtrace_lock);
7409         }
7410 
7411         /*
7412          * If anyone has /dev/dtrace open, or if there are anonymous enabled
7413          * probes, we refuse to let providers slither away, unless this
7414          * provider has already been explicitly invalidated.
7415          */
7416         if (!old->dtpv_defunct &&
7417             (dtrace_opens || (dtrace_anon.dta_state != NULL &&
7418             dtrace_anon.dta_state->dts_necbs > 0))) {
7419                 if (!self) {
7420                         mutex_exit(&dtrace_lock);
7421                         mutex_exit(&mod_lock);
7422                         mutex_exit(&dtrace_provider_lock);
7423                 }
7424                 return (EBUSY);
7425         }
7426 
7427         /*
7428          * Attempt to destroy the probes associated with this provider.
7429          */
7430         for (i = 0; i < dtrace_nprobes; i++) {
7431                 if ((probe = dtrace_probes[i]) == NULL)
7432                         continue;
7433 
7434                 if (probe->dtpr_provider != old)
7435                         continue;
7436 
7437                 if (probe->dtpr_ecb == NULL)
7438                         continue;
7439 
7440                 /*
7441                  * If we are trying to unregister a defunct provider, and the
7442                  * provider was made defunct within the interval dictated by
7443                  * dtrace_unregister_defunct_reap, we'll (asynchronously)
7444                  * attempt to reap our enablings.  To denote that the provider
7445                  * should reattempt to unregister itself at some point in the
7446                  * future, we will return a differentiable error code (EAGAIN
7447                  * instead of EBUSY) in this case.
7448                  */
7449                 if (dtrace_gethrtime() - old->dtpv_defunct >
7450                     dtrace_unregister_defunct_reap)
7451                         noreap = 1;
7452 
7453                 if (!self) {
7454                         mutex_exit(&dtrace_lock);
7455                         mutex_exit(&mod_lock);
7456                         mutex_exit(&dtrace_provider_lock);
7457                 }
7458 
7459                 if (noreap)
7460                         return (EBUSY);
7461 
7462                 (void) taskq_dispatch(dtrace_taskq,
7463                     (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
7464 
7465                 return (EAGAIN);
7466         }
7467 
7468         /*
7469          * All of the probes for this provider are disabled; we can safely
7470          * remove all of them from their hash chains and from the probe array.
7471          */
7472         for (i = 0; i < dtrace_nprobes; i++) {
7473                 if ((probe = dtrace_probes[i]) == NULL)
7474                         continue;
7475 
7476                 if (probe->dtpr_provider != old)
7477                         continue;
7478 
7479                 dtrace_probes[i] = NULL;
7480 
7481                 dtrace_hash_remove(dtrace_bymod, probe);
7482                 dtrace_hash_remove(dtrace_byfunc, probe);
7483                 dtrace_hash_remove(dtrace_byname, probe);
7484 
7485                 if (first == NULL) {
7486                         first = probe;
7487                         probe->dtpr_nextmod = NULL;
7488                 } else {
7489                         probe->dtpr_nextmod = first;
7490                         first = probe;
7491                 }
7492         }
7493 
7494         /*
7495          * The provider's probes have been removed from the hash chains and
7496          * from the probe array.  Now issue a dtrace_sync() to be sure that
7497          * everyone has cleared out from any probe array processing.
7498          */
7499         dtrace_sync();
7500 
7501         for (probe = first; probe != NULL; probe = first) {
7502                 first = probe->dtpr_nextmod;
7503 
7504                 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
7505                     probe->dtpr_arg);
7506                 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7507                 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7508                 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7509                 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
7510                 kmem_free(probe, sizeof (dtrace_probe_t));
7511         }
7512 
7513         if ((prev = dtrace_provider) == old) {
7514                 ASSERT(self || dtrace_devi == NULL);
7515                 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
7516                 dtrace_provider = old->dtpv_next;
7517         } else {
7518                 while (prev != NULL && prev->dtpv_next != old)
7519                         prev = prev->dtpv_next;
7520 
7521                 if (prev == NULL) {
7522                         panic("attempt to unregister non-existent "
7523                             "dtrace provider %p\n", (void *)id);
7524                 }
7525 
7526                 prev->dtpv_next = old->dtpv_next;
7527         }
7528 
7529         if (!self) {
7530                 mutex_exit(&dtrace_lock);
7531                 mutex_exit(&mod_lock);
7532                 mutex_exit(&dtrace_provider_lock);
7533         }
7534 
7535         kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
7536         kmem_free(old, sizeof (dtrace_provider_t));
7537 
7538         return (0);
7539 }
7540 
7541 /*
7542  * Invalidate the specified provider.  All subsequent probe lookups for the
7543  * specified provider will fail, but its probes will not be removed.
7544  */
7545 void
7546 dtrace_invalidate(dtrace_provider_id_t id)
7547 {
7548         dtrace_provider_t *pvp = (dtrace_provider_t *)id;
7549 
7550         ASSERT(pvp->dtpv_pops.dtps_enable !=
7551             (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
7552 
7553         mutex_enter(&dtrace_provider_lock);
7554         mutex_enter(&dtrace_lock);
7555 
7556         pvp->dtpv_defunct = dtrace_gethrtime();
7557 
7558         mutex_exit(&dtrace_lock);
7559         mutex_exit(&dtrace_provider_lock);
7560 }
7561 
7562 /*
7563  * Indicate whether or not DTrace has attached.
7564  */
7565 int
7566 dtrace_attached(void)
7567 {
7568         /*
7569          * dtrace_provider will be non-NULL iff the DTrace driver has
7570          * attached.  (It's non-NULL because DTrace is always itself a
7571          * provider.)
7572          */
7573         return (dtrace_provider != NULL);
7574 }
7575 
7576 /*
7577  * Remove all the unenabled probes for the given provider.  This function is
7578  * not unlike dtrace_unregister(), except that it doesn't remove the provider
7579  * -- just as many of its associated probes as it can.
7580  */
7581 int
7582 dtrace_condense(dtrace_provider_id_t id)
7583 {
7584         dtrace_provider_t *prov = (dtrace_provider_t *)id;
7585         int i;
7586         dtrace_probe_t *probe;
7587 
7588         /*
7589          * Make sure this isn't the dtrace provider itself.
7590          */
7591         ASSERT(prov->dtpv_pops.dtps_enable !=
7592             (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
7593 
7594         mutex_enter(&dtrace_provider_lock);
7595         mutex_enter(&dtrace_lock);
7596 
7597         /*
7598          * Attempt to destroy the probes associated with this provider.
7599          */
7600         for (i = 0; i < dtrace_nprobes; i++) {
7601                 if ((probe = dtrace_probes[i]) == NULL)
7602                         continue;
7603 
7604                 if (probe->dtpr_provider != prov)
7605                         continue;
7606 
7607                 if (probe->dtpr_ecb != NULL)
7608                         continue;
7609 
7610                 dtrace_probes[i] = NULL;
7611 
7612                 dtrace_hash_remove(dtrace_bymod, probe);
7613                 dtrace_hash_remove(dtrace_byfunc, probe);
7614                 dtrace_hash_remove(dtrace_byname, probe);
7615 
7616                 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
7617                     probe->dtpr_arg);
7618                 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7619                 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7620                 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7621                 kmem_free(probe, sizeof (dtrace_probe_t));
7622                 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
7623         }
7624 
7625         mutex_exit(&dtrace_lock);
7626         mutex_exit(&dtrace_provider_lock);
7627 
7628         return (0);
7629 }
7630 
7631 /*
7632  * DTrace Probe Management Functions
7633  *
7634  * The functions in this section perform the DTrace probe management,
7635  * including functions to create probes, look-up probes, and call into the
7636  * providers to request that probes be provided.  Some of these functions are
7637  * in the Provider-to-Framework API; these functions can be identified by the
7638  * fact that they are not declared "static".
7639  */
7640 
7641 /*
7642  * Create a probe with the specified module name, function name, and name.
7643  */
7644 dtrace_id_t
7645 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
7646     const char *func, const char *name, int aframes, void *arg)
7647 {
7648         dtrace_probe_t *probe, **probes;
7649         dtrace_provider_t *provider = (dtrace_provider_t *)prov;
7650         dtrace_id_t id;
7651 
7652         if (provider == dtrace_provider) {
7653                 ASSERT(MUTEX_HELD(&dtrace_lock));
7654         } else {
7655                 mutex_enter(&dtrace_lock);
7656         }
7657 
7658         id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
7659             VM_BESTFIT | VM_SLEEP);
7660         probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
7661 
7662         probe->dtpr_id = id;
7663         probe->dtpr_gen = dtrace_probegen++;
7664         probe->dtpr_mod = dtrace_strdup(mod);
7665         probe->dtpr_func = dtrace_strdup(func);
7666         probe->dtpr_name = dtrace_strdup(name);
7667         probe->dtpr_arg = arg;
7668         probe->dtpr_aframes = aframes;
7669         probe->dtpr_provider = provider;
7670 
7671         dtrace_hash_add(dtrace_bymod, probe);
7672         dtrace_hash_add(dtrace_byfunc, probe);
7673         dtrace_hash_add(dtrace_byname, probe);
7674 
7675         if (id - 1 >= dtrace_nprobes) {
7676                 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
7677                 size_t nsize = osize << 1;
7678 
7679                 if (nsize == 0) {
7680                         ASSERT(osize == 0);
7681                         ASSERT(dtrace_probes == NULL);
7682                         nsize = sizeof (dtrace_probe_t *);
7683                 }
7684 
7685                 probes = kmem_zalloc(nsize, KM_SLEEP);
7686 
7687                 if (dtrace_probes == NULL) {
7688                         ASSERT(osize == 0);
7689                         dtrace_probes = probes;
7690                         dtrace_nprobes = 1;
7691                 } else {
7692                         dtrace_probe_t **oprobes = dtrace_probes;
7693 
7694                         bcopy(oprobes, probes, osize);
7695                         dtrace_membar_producer();
7696                         dtrace_probes = probes;
7697 
7698                         dtrace_sync();
7699 
7700                         /*
7701                          * All CPUs are now seeing the new probes array; we can
7702                          * safely free the old array.
7703                          */
7704                         kmem_free(oprobes, osize);
7705                         dtrace_nprobes <<= 1;
7706                 }
7707 
7708                 ASSERT(id - 1 < dtrace_nprobes);
7709         }
7710 
7711         ASSERT(dtrace_probes[id - 1] == NULL);
7712         dtrace_probes[id - 1] = probe;
7713 
7714         if (provider != dtrace_provider)
7715                 mutex_exit(&dtrace_lock);
7716 
7717         return (id);
7718 }
7719 
7720 static dtrace_probe_t *
7721 dtrace_probe_lookup_id(dtrace_id_t id)
7722 {
7723         ASSERT(MUTEX_HELD(&dtrace_lock));
7724 
7725         if (id == 0 || id > dtrace_nprobes)
7726                 return (NULL);
7727 
7728         return (dtrace_probes[id - 1]);
7729 }
7730 
7731 static int
7732 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
7733 {
7734         *((dtrace_id_t *)arg) = probe->dtpr_id;
7735 
7736         return (DTRACE_MATCH_DONE);
7737 }
7738 
7739 /*
7740  * Look up a probe based on provider and one or more of module name, function
7741  * name and probe name.
7742  */
7743 dtrace_id_t
7744 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod,
7745     const char *func, const char *name)
7746 {
7747         dtrace_probekey_t pkey;
7748         dtrace_id_t id;
7749         int match;
7750 
7751         pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
7752         pkey.dtpk_pmatch = &dtrace_match_string;
7753         pkey.dtpk_mod = mod;
7754         pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
7755         pkey.dtpk_func = func;
7756         pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
7757         pkey.dtpk_name = name;
7758         pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
7759         pkey.dtpk_id = DTRACE_IDNONE;
7760 
7761         mutex_enter(&dtrace_lock);
7762         match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
7763             dtrace_probe_lookup_match, &id);
7764         mutex_exit(&dtrace_lock);
7765 
7766         ASSERT(match == 1 || match == 0);
7767         return (match ? id : 0);
7768 }
7769 
7770 /*
7771  * Returns the probe argument associated with the specified probe.
7772  */
7773 void *
7774 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
7775 {
7776         dtrace_probe_t *probe;
7777         void *rval = NULL;
7778 
7779         mutex_enter(&dtrace_lock);
7780 
7781         if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
7782             probe->dtpr_provider == (dtrace_provider_t *)id)
7783                 rval = probe->dtpr_arg;
7784 
7785         mutex_exit(&dtrace_lock);
7786 
7787         return (rval);
7788 }
7789 
7790 /*
7791  * Copy a probe into a probe description.
7792  */
7793 static void
7794 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
7795 {
7796         bzero(pdp, sizeof (dtrace_probedesc_t));
7797         pdp->dtpd_id = prp->dtpr_id;
7798 
7799         (void) strncpy(pdp->dtpd_provider,
7800             prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
7801 
7802         (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
7803         (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
7804         (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
7805 }
7806 
7807 /*
7808  * Called to indicate that a probe -- or probes -- should be provided by a
7809  * specfied provider.  If the specified description is NULL, the provider will
7810  * be told to provide all of its probes.  (This is done whenever a new
7811  * consumer comes along, or whenever a retained enabling is to be matched.) If
7812  * the specified description is non-NULL, the provider is given the
7813  * opportunity to dynamically provide the specified probe, allowing providers
7814  * to support the creation of probes on-the-fly.  (So-called _autocreated_
7815  * probes.)  If the provider is NULL, the operations will be applied to all
7816  * providers; if the provider is non-NULL the operations will only be applied
7817  * to the specified provider.  The dtrace_provider_lock must be held, and the
7818  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
7819  * will need to grab the dtrace_lock when it reenters the framework through
7820  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
7821  */
7822 static void
7823 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
7824 {
7825         struct modctl *ctl;
7826         int all = 0;
7827 
7828         ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7829 
7830         if (prv == NULL) {
7831                 all = 1;
7832                 prv = dtrace_provider;
7833         }
7834 
7835         do {
7836                 /*
7837                  * First, call the blanket provide operation.
7838                  */
7839                 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
7840 
7841                 /*
7842                  * Now call the per-module provide operation.  We will grab
7843                  * mod_lock to prevent the list from being modified.  Note
7844                  * that this also prevents the mod_busy bits from changing.
7845                  * (mod_busy can only be changed with mod_lock held.)
7846                  */
7847                 mutex_enter(&mod_lock);
7848 
7849                 ctl = &modules;
7850                 do {
7851                         if (ctl->mod_busy || ctl->mod_mp == NULL)
7852                                 continue;
7853 
7854                         prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
7855 
7856                 } while ((ctl = ctl->mod_next) != &modules);
7857 
7858                 mutex_exit(&mod_lock);
7859         } while (all && (prv = prv->dtpv_next) != NULL);
7860 }
7861 
7862 /*
7863  * Iterate over each probe, and call the Framework-to-Provider API function
7864  * denoted by offs.
7865  */
7866 static void
7867 dtrace_probe_foreach(uintptr_t offs)
7868 {
7869         dtrace_provider_t *prov;
7870         void (*func)(void *, dtrace_id_t, void *);
7871         dtrace_probe_t *probe;
7872         dtrace_icookie_t cookie;
7873         int i;
7874 
7875         /*
7876          * We disable interrupts to walk through the probe array.  This is
7877          * safe -- the dtrace_sync() in dtrace_unregister() assures that we
7878          * won't see stale data.
7879          */
7880         cookie = dtrace_interrupt_disable();
7881 
7882         for (i = 0; i < dtrace_nprobes; i++) {
7883                 if ((probe = dtrace_probes[i]) == NULL)
7884                         continue;
7885 
7886                 if (probe->dtpr_ecb == NULL) {
7887                         /*
7888                          * This probe isn't enabled -- don't call the function.
7889                          */
7890                         continue;
7891                 }
7892 
7893                 prov = probe->dtpr_provider;
7894                 func = *((void(**)(void *, dtrace_id_t, void *))
7895                     ((uintptr_t)&prov->dtpv_pops + offs));
7896 
7897                 func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
7898         }
7899 
7900         dtrace_interrupt_enable(cookie);
7901 }
7902 
7903 static int
7904 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
7905 {
7906         dtrace_probekey_t pkey;
7907         uint32_t priv;
7908         uid_t uid;
7909         zoneid_t zoneid;
7910 
7911         ASSERT(MUTEX_HELD(&dtrace_lock));
7912         dtrace_ecb_create_cache = NULL;
7913 
7914         if (desc == NULL) {
7915                 /*
7916                  * If we're passed a NULL description, we're being asked to
7917                  * create an ECB with a NULL probe.
7918                  */
7919                 (void) dtrace_ecb_create_enable(NULL, enab);
7920                 return (0);
7921         }
7922 
7923         dtrace_probekey(desc, &pkey);
7924         dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
7925             &priv, &uid, &zoneid);
7926 
7927         return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
7928             enab));
7929 }
7930 
7931 /*
7932  * DTrace Helper Provider Functions
7933  */
7934 static void
7935 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
7936 {
7937         attr->dtat_name = DOF_ATTR_NAME(dofattr);
7938         attr->dtat_data = DOF_ATTR_DATA(dofattr);
7939         attr->dtat_class = DOF_ATTR_CLASS(dofattr);
7940 }
7941 
7942 static void
7943 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
7944     const dof_provider_t *dofprov, char *strtab)
7945 {
7946         hprov->dthpv_provname = strtab + dofprov->dofpv_name;
7947         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
7948             dofprov->dofpv_provattr);
7949         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
7950             dofprov->dofpv_modattr);
7951         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
7952             dofprov->dofpv_funcattr);
7953         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
7954             dofprov->dofpv_nameattr);
7955         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
7956             dofprov->dofpv_argsattr);
7957 }
7958 
7959 static void
7960 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
7961 {
7962         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
7963         dof_hdr_t *dof = (dof_hdr_t *)daddr;
7964         dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
7965         dof_provider_t *provider;
7966         dof_probe_t *probe;
7967         uint32_t *off, *enoff;
7968         uint8_t *arg;
7969         char *strtab;
7970         uint_t i, nprobes;
7971         dtrace_helper_provdesc_t dhpv;
7972         dtrace_helper_probedesc_t dhpb;
7973         dtrace_meta_t *meta = dtrace_meta_pid;
7974         dtrace_mops_t *mops = &meta->dtm_mops;
7975         void *parg;
7976 
7977         provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
7978         str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7979             provider->dofpv_strtab * dof->dofh_secsize);
7980         prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7981             provider->dofpv_probes * dof->dofh_secsize);
7982         arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7983             provider->dofpv_prargs * dof->dofh_secsize);
7984         off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7985             provider->dofpv_proffs * dof->dofh_secsize);
7986 
7987         strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
7988         off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
7989         arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
7990         enoff = NULL;
7991 
7992         /*
7993          * See dtrace_helper_provider_validate().
7994          */
7995         if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
7996             provider->dofpv_prenoffs != DOF_SECT_NONE) {
7997                 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7998                     provider->dofpv_prenoffs * dof->dofh_secsize);
7999                 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8000         }
8001 
8002         nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8003 
8004         /*
8005          * Create the provider.
8006          */
8007         dtrace_dofprov2hprov(&dhpv, provider, strtab);
8008 
8009         if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8010                 return;
8011 
8012         meta->dtm_count++;
8013 
8014         /*
8015          * Create the probes.
8016          */
8017         for (i = 0; i < nprobes; i++) {
8018                 probe = (dof_probe_t *)(uintptr_t)(daddr +
8019                     prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8020 
8021                 dhpb.dthpb_mod = dhp->dofhp_mod;
8022                 dhpb.dthpb_func = strtab + probe->dofpr_func;
8023                 dhpb.dthpb_name = strtab + probe->dofpr_name;
8024                 dhpb.dthpb_base = probe->dofpr_addr;
8025                 dhpb.dthpb_offs = off + probe->dofpr_offidx;
8026                 dhpb.dthpb_noffs = probe->dofpr_noffs;
8027                 if (enoff != NULL) {
8028                         dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8029                         dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8030                 } else {
8031                         dhpb.dthpb_enoffs = NULL;
8032                         dhpb.dthpb_nenoffs = 0;
8033                 }
8034                 dhpb.dthpb_args = arg + probe->dofpr_argidx;
8035                 dhpb.dthpb_nargc = probe->dofpr_nargc;
8036                 dhpb.dthpb_xargc = probe->dofpr_xargc;
8037                 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8038                 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
8039 
8040                 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8041         }
8042 }
8043 
8044 static void
8045 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8046 {
8047         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8048         dof_hdr_t *dof = (dof_hdr_t *)daddr;
8049         int i;
8050 
8051         ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8052 
8053         for (i = 0; i < dof->dofh_secnum; i++) {
8054                 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8055                     dof->dofh_secoff + i * dof->dofh_secsize);
8056 
8057                 if (sec->dofs_type != DOF_SECT_PROVIDER)
8058                         continue;
8059 
8060                 dtrace_helper_provide_one(dhp, sec, pid);
8061         }
8062 
8063         /*
8064          * We may have just created probes, so we must now rematch against
8065          * any retained enablings.  Note that this call will acquire both
8066          * cpu_lock and dtrace_lock; the fact that we are holding
8067          * dtrace_meta_lock now is what defines the ordering with respect to
8068          * these three locks.
8069          */
8070         dtrace_enabling_matchall();
8071 }
8072 
8073 static void
8074 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8075 {
8076         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8077         dof_hdr_t *dof = (dof_hdr_t *)daddr;
8078         dof_sec_t *str_sec;
8079         dof_provider_t *provider;
8080         char *strtab;
8081         dtrace_helper_provdesc_t dhpv;
8082         dtrace_meta_t *meta = dtrace_meta_pid;
8083         dtrace_mops_t *mops = &meta->dtm_mops;
8084 
8085         provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8086         str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8087             provider->dofpv_strtab * dof->dofh_secsize);
8088 
8089         strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8090 
8091         /*
8092          * Create the provider.
8093          */
8094         dtrace_dofprov2hprov(&dhpv, provider, strtab);
8095 
8096         mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
8097 
8098         meta->dtm_count--;
8099 }
8100 
8101 static void
8102 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
8103 {
8104         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8105         dof_hdr_t *dof = (dof_hdr_t *)daddr;
8106         int i;
8107 
8108         ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8109 
8110         for (i = 0; i < dof->dofh_secnum; i++) {
8111                 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8112                     dof->dofh_secoff + i * dof->dofh_secsize);
8113 
8114                 if (sec->dofs_type != DOF_SECT_PROVIDER)
8115                         continue;
8116 
8117                 dtrace_helper_provider_remove_one(dhp, sec, pid);
8118         }
8119 }
8120 
8121 /*
8122  * DTrace Meta Provider-to-Framework API Functions
8123  *
8124  * These functions implement the Meta Provider-to-Framework API, as described
8125  * in <sys/dtrace.h>.
8126  */
8127 int
8128 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
8129     dtrace_meta_provider_id_t *idp)
8130 {
8131         dtrace_meta_t *meta;
8132         dtrace_helpers_t *help, *next;
8133         int i;
8134 
8135         *idp = DTRACE_METAPROVNONE;
8136 
8137         /*
8138          * We strictly don't need the name, but we hold onto it for
8139          * debuggability. All hail error queues!
8140          */
8141         if (name == NULL) {
8142                 cmn_err(CE_WARN, "failed to register meta-provider: "
8143                     "invalid name");
8144                 return (EINVAL);
8145         }
8146 
8147         if (mops == NULL ||
8148             mops->dtms_create_probe == NULL ||
8149             mops->dtms_provide_pid == NULL ||
8150             mops->dtms_remove_pid == NULL) {
8151                 cmn_err(CE_WARN, "failed to register meta-register %s: "
8152                     "invalid ops", name);
8153                 return (EINVAL);
8154         }
8155 
8156         meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
8157         meta->dtm_mops = *mops;
8158         meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8159         (void) strcpy(meta->dtm_name, name);
8160         meta->dtm_arg = arg;
8161 
8162         mutex_enter(&dtrace_meta_lock);
8163         mutex_enter(&dtrace_lock);
8164 
8165         if (dtrace_meta_pid != NULL) {
8166                 mutex_exit(&dtrace_lock);
8167                 mutex_exit(&dtrace_meta_lock);
8168                 cmn_err(CE_WARN, "failed to register meta-register %s: "
8169                     "user-land meta-provider exists", name);
8170                 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
8171                 kmem_free(meta, sizeof (dtrace_meta_t));
8172                 return (EINVAL);
8173         }
8174 
8175         dtrace_meta_pid = meta;
8176         *idp = (dtrace_meta_provider_id_t)meta;
8177 
8178         /*
8179          * If there are providers and probes ready to go, pass them
8180          * off to the new meta provider now.
8181          */
8182 
8183         help = dtrace_deferred_pid;
8184         dtrace_deferred_pid = NULL;
8185 
8186         mutex_exit(&dtrace_lock);
8187 
8188         while (help != NULL) {
8189                 for (i = 0; i < help->dthps_nprovs; i++) {
8190                         dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
8191                             help->dthps_pid);
8192                 }
8193 
8194                 next = help->dthps_next;
8195                 help->dthps_next = NULL;
8196                 help->dthps_prev = NULL;
8197                 help->dthps_deferred = 0;
8198                 help = next;
8199         }
8200 
8201         mutex_exit(&dtrace_meta_lock);
8202 
8203         return (0);
8204 }
8205 
8206 int
8207 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
8208 {
8209         dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
8210 
8211         mutex_enter(&dtrace_meta_lock);
8212         mutex_enter(&dtrace_lock);
8213 
8214         if (old == dtrace_meta_pid) {
8215                 pp = &dtrace_meta_pid;
8216         } else {
8217                 panic("attempt to unregister non-existent "
8218                     "dtrace meta-provider %p\n", (void *)old);
8219         }
8220 
8221         if (old->dtm_count != 0) {
8222                 mutex_exit(&dtrace_lock);
8223                 mutex_exit(&dtrace_meta_lock);
8224                 return (EBUSY);
8225         }
8226 
8227         *pp = NULL;
8228 
8229         mutex_exit(&dtrace_lock);
8230         mutex_exit(&dtrace_meta_lock);
8231 
8232         kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8233         kmem_free(old, sizeof (dtrace_meta_t));
8234 
8235         return (0);
8236 }
8237 
8238 
8239 /*
8240  * DTrace DIF Object Functions
8241  */
8242 static int
8243 dtrace_difo_err(uint_t pc, const char *format, ...)
8244 {
8245         if (dtrace_err_verbose) {
8246                 va_list alist;
8247 
8248                 (void) uprintf("dtrace DIF object error: [%u]: ", pc);
8249                 va_start(alist, format);
8250                 (void) vuprintf(format, alist);
8251                 va_end(alist);
8252         }
8253 
8254 #ifdef DTRACE_ERRDEBUG
8255         dtrace_errdebug(format);
8256 #endif
8257         return (1);
8258 }
8259 
8260 /*
8261  * Validate a DTrace DIF object by checking the IR instructions.  The following
8262  * rules are currently enforced by dtrace_difo_validate():
8263  *
8264  * 1. Each instruction must have a valid opcode
8265  * 2. Each register, string, variable, or subroutine reference must be valid
8266  * 3. No instruction can modify register %r0 (must be zero)
8267  * 4. All instruction reserved bits must be set to zero
8268  * 5. The last instruction must be a "ret" instruction
8269  * 6. All branch targets must reference a valid instruction _after_ the branch
8270  */
8271 static int
8272 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8273     cred_t *cr)
8274 {
8275         int err = 0, i;
8276         int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8277         int kcheckload;
8278         uint_t pc;
8279 
8280         kcheckload = cr == NULL ||
8281             (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
8282 
8283         dp->dtdo_destructive = 0;
8284 
8285         for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8286                 dif_instr_t instr = dp->dtdo_buf[pc];
8287 
8288                 uint_t r1 = DIF_INSTR_R1(instr);
8289                 uint_t r2 = DIF_INSTR_R2(instr);
8290                 uint_t rd = DIF_INSTR_RD(instr);
8291                 uint_t rs = DIF_INSTR_RS(instr);
8292                 uint_t label = DIF_INSTR_LABEL(instr);
8293                 uint_t v = DIF_INSTR_VAR(instr);
8294                 uint_t subr = DIF_INSTR_SUBR(instr);
8295                 uint_t type = DIF_INSTR_TYPE(instr);
8296                 uint_t op = DIF_INSTR_OP(instr);
8297 
8298                 switch (op) {
8299                 case DIF_OP_OR:
8300                 case DIF_OP_XOR:
8301                 case DIF_OP_AND:
8302                 case DIF_OP_SLL:
8303                 case DIF_OP_SRL:
8304                 case DIF_OP_SRA:
8305                 case DIF_OP_SUB:
8306                 case DIF_OP_ADD:
8307                 case DIF_OP_MUL:
8308                 case DIF_OP_SDIV:
8309                 case DIF_OP_UDIV:
8310                 case DIF_OP_SREM:
8311                 case DIF_OP_UREM:
8312                 case DIF_OP_COPYS:
8313                         if (r1 >= nregs)
8314                                 err += efunc(pc, "invalid register %u\n", r1);
8315                         if (r2 >= nregs)
8316                                 err += efunc(pc, "invalid register %u\n", r2);
8317                         if (rd >= nregs)
8318                                 err += efunc(pc, "invalid register %u\n", rd);
8319                         if (rd == 0)
8320                                 err += efunc(pc, "cannot write to %r0\n");
8321                         break;
8322                 case DIF_OP_NOT:
8323                 case DIF_OP_MOV:
8324                 case DIF_OP_ALLOCS:
8325                         if (r1 >= nregs)
8326                                 err += efunc(pc, "invalid register %u\n", r1);
8327                         if (r2 != 0)
8328                                 err += efunc(pc, "non-zero reserved bits\n");
8329                         if (rd >= nregs)
8330                                 err += efunc(pc, "invalid register %u\n", rd);
8331                         if (rd == 0)
8332                                 err += efunc(pc, "cannot write to %r0\n");
8333                         break;
8334                 case DIF_OP_LDSB:
8335                 case DIF_OP_LDSH:
8336                 case DIF_OP_LDSW:
8337                 case DIF_OP_LDUB:
8338                 case DIF_OP_LDUH:
8339                 case DIF_OP_LDUW:
8340                 case DIF_OP_LDX:
8341                         if (r1 >= nregs)
8342                                 err += efunc(pc, "invalid register %u\n", r1);
8343                         if (r2 != 0)
8344                                 err += efunc(pc, "non-zero reserved bits\n");
8345                         if (rd >= nregs)
8346                                 err += efunc(pc, "invalid register %u\n", rd);
8347                         if (rd == 0)
8348                                 err += efunc(pc, "cannot write to %r0\n");
8349                         if (kcheckload)
8350                                 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
8351                                     DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
8352                         break;
8353                 case DIF_OP_RLDSB:
8354                 case DIF_OP_RLDSH:
8355                 case DIF_OP_RLDSW:
8356                 case DIF_OP_RLDUB:
8357                 case DIF_OP_RLDUH:
8358                 case DIF_OP_RLDUW:
8359                 case DIF_OP_RLDX:
8360                         if (r1 >= nregs)
8361                                 err += efunc(pc, "invalid register %u\n", r1);
8362                         if (r2 != 0)
8363                                 err += efunc(pc, "non-zero reserved bits\n");
8364                         if (rd >= nregs)
8365                                 err += efunc(pc, "invalid register %u\n", rd);
8366                         if (rd == 0)
8367                                 err += efunc(pc, "cannot write to %r0\n");
8368                         break;
8369                 case DIF_OP_ULDSB:
8370                 case DIF_OP_ULDSH:
8371                 case DIF_OP_ULDSW:
8372                 case DIF_OP_ULDUB:
8373                 case DIF_OP_ULDUH:
8374                 case DIF_OP_ULDUW:
8375                 case DIF_OP_ULDX:
8376                         if (r1 >= nregs)
8377                                 err += efunc(pc, "invalid register %u\n", r1);
8378                         if (r2 != 0)
8379                                 err += efunc(pc, "non-zero reserved bits\n");
8380                         if (rd >= nregs)
8381                                 err += efunc(pc, "invalid register %u\n", rd);
8382                         if (rd == 0)
8383                                 err += efunc(pc, "cannot write to %r0\n");
8384                         break;
8385                 case DIF_OP_STB:
8386                 case DIF_OP_STH:
8387                 case DIF_OP_STW:
8388                 case DIF_OP_STX:
8389                         if (r1 >= nregs)
8390                                 err += efunc(pc, "invalid register %u\n", r1);
8391                         if (r2 != 0)
8392                                 err += efunc(pc, "non-zero reserved bits\n");
8393                         if (rd >= nregs)
8394                                 err += efunc(pc, "invalid register %u\n", rd);
8395                         if (rd == 0)
8396                                 err += efunc(pc, "cannot write to 0 address\n");
8397                         break;
8398                 case DIF_OP_CMP:
8399                 case DIF_OP_SCMP:
8400                         if (r1 >= nregs)
8401                                 err += efunc(pc, "invalid register %u\n", r1);
8402                         if (r2 >= nregs)
8403                                 err += efunc(pc, "invalid register %u\n", r2);
8404                         if (rd != 0)
8405                                 err += efunc(pc, "non-zero reserved bits\n");
8406                         break;
8407                 case DIF_OP_TST:
8408                         if (r1 >= nregs)
8409                                 err += efunc(pc, "invalid register %u\n", r1);
8410                         if (r2 != 0 || rd != 0)
8411                                 err += efunc(pc, "non-zero reserved bits\n");
8412                         break;
8413                 case DIF_OP_BA:
8414                 case DIF_OP_BE:
8415                 case DIF_OP_BNE:
8416                 case DIF_OP_BG:
8417                 case DIF_OP_BGU:
8418                 case DIF_OP_BGE:
8419                 case DIF_OP_BGEU:
8420                 case DIF_OP_BL:
8421                 case DIF_OP_BLU:
8422                 case DIF_OP_BLE:
8423                 case DIF_OP_BLEU:
8424                         if (label >= dp->dtdo_len) {
8425                                 err += efunc(pc, "invalid branch target %u\n",
8426                                     label);
8427                         }
8428                         if (label <= pc) {
8429                                 err += efunc(pc, "backward branch to %u\n",
8430                                     label);
8431                         }
8432                         break;
8433                 case DIF_OP_RET:
8434                         if (r1 != 0 || r2 != 0)
8435                                 err += efunc(pc, "non-zero reserved bits\n");
8436                         if (rd >= nregs)
8437                                 err += efunc(pc, "invalid register %u\n", rd);
8438                         break;
8439                 case DIF_OP_NOP:
8440                 case DIF_OP_POPTS:
8441                 case DIF_OP_FLUSHTS:
8442                         if (r1 != 0 || r2 != 0 || rd != 0)
8443                                 err += efunc(pc, "non-zero reserved bits\n");
8444                         break;
8445                 case DIF_OP_SETX:
8446                         if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
8447                                 err += efunc(pc, "invalid integer ref %u\n",
8448                                     DIF_INSTR_INTEGER(instr));
8449                         }
8450                         if (rd >= nregs)
8451                                 err += efunc(pc, "invalid register %u\n", rd);
8452                         if (rd == 0)
8453                                 err += efunc(pc, "cannot write to %r0\n");
8454                         break;
8455                 case DIF_OP_SETS:
8456                         if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
8457                                 err += efunc(pc, "invalid string ref %u\n",
8458                                     DIF_INSTR_STRING(instr));
8459                         }
8460                         if (rd >= nregs)
8461                                 err += efunc(pc, "invalid register %u\n", rd);
8462                         if (rd == 0)
8463                                 err += efunc(pc, "cannot write to %r0\n");
8464                         break;
8465                 case DIF_OP_LDGA:
8466                 case DIF_OP_LDTA:
8467                         if (r1 > DIF_VAR_ARRAY_MAX)
8468                                 err += efunc(pc, "invalid array %u\n", r1);
8469                         if (r2 >= nregs)
8470                                 err += efunc(pc, "invalid register %u\n", r2);
8471                         if (rd >= nregs)
8472                                 err += efunc(pc, "invalid register %u\n", rd);
8473                         if (rd == 0)
8474                                 err += efunc(pc, "cannot write to %r0\n");
8475                         break;
8476                 case DIF_OP_LDGS:
8477                 case DIF_OP_LDTS:
8478                 case DIF_OP_LDLS:
8479                 case DIF_OP_LDGAA:
8480                 case DIF_OP_LDTAA:
8481                         if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
8482                                 err += efunc(pc, "invalid variable %u\n", v);
8483                         if (rd >= nregs)
8484                                 err += efunc(pc, "invalid register %u\n", rd);
8485                         if (rd == 0)
8486                                 err += efunc(pc, "cannot write to %r0\n");
8487                         break;
8488                 case DIF_OP_STGS:
8489                 case DIF_OP_STTS:
8490                 case DIF_OP_STLS:
8491                 case DIF_OP_STGAA:
8492                 case DIF_OP_STTAA:
8493                         if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
8494                                 err += efunc(pc, "invalid variable %u\n", v);
8495                         if (rs >= nregs)
8496                                 err += efunc(pc, "invalid register %u\n", rd);
8497                         break;
8498                 case DIF_OP_CALL:
8499                         if (subr > DIF_SUBR_MAX)
8500                                 err += efunc(pc, "invalid subr %u\n", subr);
8501                         if (rd >= nregs)
8502                                 err += efunc(pc, "invalid register %u\n", rd);
8503                         if (rd == 0)
8504                                 err += efunc(pc, "cannot write to %r0\n");
8505 
8506                         if (subr == DIF_SUBR_COPYOUT ||
8507                             subr == DIF_SUBR_COPYOUTSTR) {
8508                                 dp->dtdo_destructive = 1;
8509                         }
8510 
8511                         if (subr == DIF_SUBR_GETF) {
8512                                 /*
8513                                  * If we have a getf() we need to record that
8514                                  * in our state.  Note that our state can be
8515                                  * NULL if this is a helper -- but in that
8516                                  * case, the call to getf() is itself illegal,
8517                                  * and will be caught (slightly later) when
8518                                  * the helper is validated.
8519                                  */
8520                                 if (vstate->dtvs_state != NULL)
8521                                         vstate->dtvs_state->dts_getf++;
8522                         }
8523 
8524                         break;
8525                 case DIF_OP_PUSHTR:
8526                         if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
8527                                 err += efunc(pc, "invalid ref type %u\n", type);
8528                         if (r2 >= nregs)
8529                                 err += efunc(pc, "invalid register %u\n", r2);
8530                         if (rs >= nregs)
8531                                 err += efunc(pc, "invalid register %u\n", rs);
8532                         break;
8533                 case DIF_OP_PUSHTV:
8534                         if (type != DIF_TYPE_CTF)
8535                                 err += efunc(pc, "invalid val type %u\n", type);
8536                         if (r2 >= nregs)
8537                                 err += efunc(pc, "invalid register %u\n", r2);
8538                         if (rs >= nregs)
8539                                 err += efunc(pc, "invalid register %u\n", rs);
8540                         break;
8541                 default:
8542                         err += efunc(pc, "invalid opcode %u\n",
8543                             DIF_INSTR_OP(instr));
8544                 }
8545         }
8546 
8547         if (dp->dtdo_len != 0 &&
8548             DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
8549                 err += efunc(dp->dtdo_len - 1,
8550                     "expected 'ret' as last DIF instruction\n");
8551         }
8552 
8553         if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
8554                 /*
8555                  * If we're not returning by reference, the size must be either
8556                  * 0 or the size of one of the base types.
8557                  */
8558                 switch (dp->dtdo_rtype.dtdt_size) {
8559                 case 0:
8560                 case sizeof (uint8_t):
8561                 case sizeof (uint16_t):
8562                 case sizeof (uint32_t):
8563                 case sizeof (uint64_t):
8564                         break;
8565 
8566                 default:
8567                         err += efunc(dp->dtdo_len - 1, "bad return size\n");
8568                 }
8569         }
8570 
8571         for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
8572                 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
8573                 dtrace_diftype_t *vt, *et;
8574                 uint_t id, ndx;
8575 
8576                 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
8577                     v->dtdv_scope != DIFV_SCOPE_THREAD &&
8578                     v->dtdv_scope != DIFV_SCOPE_LOCAL) {
8579                         err += efunc(i, "unrecognized variable scope %d\n",
8580                             v->dtdv_scope);
8581                         break;
8582                 }
8583 
8584                 if (v->dtdv_kind != DIFV_KIND_ARRAY &&
8585                     v->dtdv_kind != DIFV_KIND_SCALAR) {
8586                         err += efunc(i, "unrecognized variable type %d\n",
8587                             v->dtdv_kind);
8588                         break;
8589                 }
8590 
8591                 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
8592                         err += efunc(i, "%d exceeds variable id limit\n", id);
8593                         break;
8594                 }
8595 
8596                 if (id < DIF_VAR_OTHER_UBASE)
8597                         continue;
8598 
8599                 /*
8600                  * For user-defined variables, we need to check that this
8601                  * definition is identical to any previous definition that we
8602                  * encountered.
8603                  */
8604                 ndx = id - DIF_VAR_OTHER_UBASE;
8605 
8606                 switch (v->dtdv_scope) {
8607                 case DIFV_SCOPE_GLOBAL:
8608                         if (ndx < vstate->dtvs_nglobals) {
8609                                 dtrace_statvar_t *svar;
8610 
8611                                 if ((svar = vstate->dtvs_globals[ndx]) != NULL)
8612                                         existing = &svar->dtsv_var;
8613                         }
8614 
8615                         break;
8616 
8617                 case DIFV_SCOPE_THREAD:
8618                         if (ndx < vstate->dtvs_ntlocals)
8619                                 existing = &vstate->dtvs_tlocals[ndx];
8620                         break;
8621 
8622                 case DIFV_SCOPE_LOCAL:
8623                         if (ndx < vstate->dtvs_nlocals) {
8624                                 dtrace_statvar_t *svar;
8625 
8626                                 if ((svar = vstate->dtvs_locals[ndx]) != NULL)
8627                                         existing = &svar->dtsv_var;
8628                         }
8629 
8630                         break;
8631                 }
8632 
8633                 vt = &v->dtdv_type;
8634 
8635                 if (vt->dtdt_flags & DIF_TF_BYREF) {
8636                         if (vt->dtdt_size == 0) {
8637                                 err += efunc(i, "zero-sized variable\n");
8638                                 break;
8639                         }
8640 
8641                         if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
8642                             vt->dtdt_size > dtrace_global_maxsize) {
8643                                 err += efunc(i, "oversized by-ref global\n");
8644                                 break;
8645                         }
8646                 }
8647 
8648                 if (existing == NULL || existing->dtdv_id == 0)
8649                         continue;
8650 
8651                 ASSERT(existing->dtdv_id == v->dtdv_id);
8652                 ASSERT(existing->dtdv_scope == v->dtdv_scope);
8653 
8654                 if (existing->dtdv_kind != v->dtdv_kind)
8655                         err += efunc(i, "%d changed variable kind\n", id);
8656 
8657                 et = &existing->dtdv_type;
8658 
8659                 if (vt->dtdt_flags != et->dtdt_flags) {
8660                         err += efunc(i, "%d changed variable type flags\n", id);
8661                         break;
8662                 }
8663 
8664                 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
8665                         err += efunc(i, "%d changed variable type size\n", id);
8666                         break;
8667                 }
8668         }
8669 
8670         return (err);
8671 }
8672 
8673 /*
8674  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
8675  * are much more constrained than normal DIFOs.  Specifically, they may
8676  * not:
8677  *
8678  * 1. Make calls to subroutines other than copyin(), copyinstr() or
8679  *    miscellaneous string routines
8680  * 2. Access DTrace variables other than the args[] array, and the
8681  *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
8682  * 3. Have thread-local variables.
8683  * 4. Have dynamic variables.
8684  */
8685 static int
8686 dtrace_difo_validate_helper(dtrace_difo_t *dp)
8687 {
8688         int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8689         int err = 0;
8690         uint_t pc;
8691 
8692         for (pc = 0; pc < dp->dtdo_len; pc++) {
8693                 dif_instr_t instr = dp->dtdo_buf[pc];
8694 
8695                 uint_t v = DIF_INSTR_VAR(instr);
8696                 uint_t subr = DIF_INSTR_SUBR(instr);
8697                 uint_t op = DIF_INSTR_OP(instr);
8698 
8699                 switch (op) {
8700                 case DIF_OP_OR:
8701                 case DIF_OP_XOR:
8702                 case DIF_OP_AND:
8703                 case DIF_OP_SLL:
8704                 case DIF_OP_SRL:
8705                 case DIF_OP_SRA:
8706                 case DIF_OP_SUB:
8707                 case DIF_OP_ADD:
8708                 case DIF_OP_MUL:
8709                 case DIF_OP_SDIV:
8710                 case DIF_OP_UDIV:
8711                 case DIF_OP_SREM:
8712                 case DIF_OP_UREM:
8713                 case DIF_OP_COPYS:
8714                 case DIF_OP_NOT:
8715                 case DIF_OP_MOV:
8716                 case DIF_OP_RLDSB:
8717                 case DIF_OP_RLDSH:
8718                 case DIF_OP_RLDSW:
8719                 case DIF_OP_RLDUB:
8720                 case DIF_OP_RLDUH:
8721                 case DIF_OP_RLDUW:
8722                 case DIF_OP_RLDX:
8723                 case DIF_OP_ULDSB:
8724                 case DIF_OP_ULDSH:
8725                 case DIF_OP_ULDSW:
8726                 case DIF_OP_ULDUB:
8727                 case DIF_OP_ULDUH:
8728                 case DIF_OP_ULDUW:
8729                 case DIF_OP_ULDX:
8730                 case DIF_OP_STB:
8731                 case DIF_OP_STH:
8732                 case DIF_OP_STW:
8733                 case DIF_OP_STX:
8734                 case DIF_OP_ALLOCS:
8735                 case DIF_OP_CMP:
8736                 case DIF_OP_SCMP:
8737                 case DIF_OP_TST:
8738                 case DIF_OP_BA:
8739                 case DIF_OP_BE:
8740                 case DIF_OP_BNE:
8741                 case DIF_OP_BG:
8742                 case DIF_OP_BGU:
8743                 case DIF_OP_BGE:
8744                 case DIF_OP_BGEU:
8745                 case DIF_OP_BL:
8746                 case DIF_OP_BLU:
8747                 case DIF_OP_BLE:
8748                 case DIF_OP_BLEU:
8749                 case DIF_OP_RET:
8750                 case DIF_OP_NOP:
8751                 case DIF_OP_POPTS:
8752                 case DIF_OP_FLUSHTS:
8753                 case DIF_OP_SETX:
8754                 case DIF_OP_SETS:
8755                 case DIF_OP_LDGA:
8756                 case DIF_OP_LDLS:
8757                 case DIF_OP_STGS:
8758                 case DIF_OP_STLS:
8759                 case DIF_OP_PUSHTR:
8760                 case DIF_OP_PUSHTV:
8761                         break;
8762 
8763                 case DIF_OP_LDGS:
8764                         if (v >= DIF_VAR_OTHER_UBASE)
8765                                 break;
8766 
8767                         if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
8768                                 break;
8769 
8770                         if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
8771                             v == DIF_VAR_PPID || v == DIF_VAR_TID ||
8772                             v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
8773                             v == DIF_VAR_UID || v == DIF_VAR_GID)
8774                                 break;
8775 
8776                         err += efunc(pc, "illegal variable %u\n", v);
8777                         break;
8778 
8779                 case DIF_OP_LDTA:
8780                 case DIF_OP_LDTS:
8781                 case DIF_OP_LDGAA:
8782                 case DIF_OP_LDTAA:
8783                         err += efunc(pc, "illegal dynamic variable load\n");
8784                         break;
8785 
8786                 case DIF_OP_STTS:
8787                 case DIF_OP_STGAA:
8788                 case DIF_OP_STTAA:
8789                         err += efunc(pc, "illegal dynamic variable store\n");
8790                         break;
8791 
8792                 case DIF_OP_CALL:
8793                         if (subr == DIF_SUBR_ALLOCA ||
8794                             subr == DIF_SUBR_BCOPY ||
8795                             subr == DIF_SUBR_COPYIN ||
8796                             subr == DIF_SUBR_COPYINTO ||
8797                             subr == DIF_SUBR_COPYINSTR ||
8798                             subr == DIF_SUBR_INDEX ||
8799                             subr == DIF_SUBR_INET_NTOA ||
8800                             subr == DIF_SUBR_INET_NTOA6 ||
8801                             subr == DIF_SUBR_INET_NTOP ||
8802                             subr == DIF_SUBR_LLTOSTR ||
8803                             subr == DIF_SUBR_RINDEX ||
8804                             subr == DIF_SUBR_STRCHR ||
8805                             subr == DIF_SUBR_STRJOIN ||
8806                             subr == DIF_SUBR_STRRCHR ||
8807                             subr == DIF_SUBR_STRSTR ||
8808                             subr == DIF_SUBR_HTONS ||
8809                             subr == DIF_SUBR_HTONL ||
8810                             subr == DIF_SUBR_HTONLL ||
8811                             subr == DIF_SUBR_NTOHS ||
8812                             subr == DIF_SUBR_NTOHL ||
8813                             subr == DIF_SUBR_NTOHLL)
8814                                 break;
8815 
8816                         err += efunc(pc, "invalid subr %u\n", subr);
8817                         break;
8818 
8819                 default:
8820                         err += efunc(pc, "invalid opcode %u\n",
8821                             DIF_INSTR_OP(instr));
8822                 }
8823         }
8824 
8825         return (err);
8826 }
8827 
8828 /*
8829  * Returns 1 if the expression in the DIF object can be cached on a per-thread
8830  * basis; 0 if not.
8831  */
8832 static int
8833 dtrace_difo_cacheable(dtrace_difo_t *dp)
8834 {
8835         int i;
8836 
8837         if (dp == NULL)
8838                 return (0);
8839 
8840         for (i = 0; i < dp->dtdo_varlen; i++) {
8841                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
8842 
8843                 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
8844                         continue;
8845 
8846                 switch (v->dtdv_id) {
8847                 case DIF_VAR_CURTHREAD:
8848                 case DIF_VAR_PID:
8849                 case DIF_VAR_TID:
8850                 case DIF_VAR_EXECNAME:
8851                 case DIF_VAR_ZONENAME:
8852                         break;
8853 
8854                 default:
8855                         return (0);
8856                 }
8857         }
8858 
8859         /*
8860          * This DIF object may be cacheable.  Now we need to look for any
8861          * array loading instructions, any memory loading instructions, or
8862          * any stores to thread-local variables.
8863          */
8864         for (i = 0; i < dp->dtdo_len; i++) {
8865                 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
8866 
8867                 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
8868                     (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
8869                     (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
8870                     op == DIF_OP_LDGA || op == DIF_OP_STTS)
8871                         return (0);
8872         }
8873 
8874         return (1);
8875 }
8876 
8877 static void
8878 dtrace_difo_hold(dtrace_difo_t *dp)
8879 {
8880         int i;
8881 
8882         ASSERT(MUTEX_HELD(&dtrace_lock));
8883 
8884         dp->dtdo_refcnt++;
8885         ASSERT(dp->dtdo_refcnt != 0);
8886 
8887         /*
8888          * We need to check this DIF object for references to the variable
8889          * DIF_VAR_VTIMESTAMP.
8890          */
8891         for (i = 0; i < dp->dtdo_varlen; i++) {
8892                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
8893 
8894                 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
8895                         continue;
8896 
8897                 if (dtrace_vtime_references++ == 0)
8898                         dtrace_vtime_enable();
8899         }
8900 }
8901 
8902 /*
8903  * This routine calculates the dynamic variable chunksize for a given DIF
8904  * object.  The calculation is not fool-proof, and can probably be tricked by
8905  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
8906  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
8907  * if a dynamic variable size exceeds the chunksize.
8908  */
8909 static void
8910 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8911 {
8912         uint64_t sval;
8913         dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
8914         const dif_instr_t *text = dp->dtdo_buf;
8915         uint_t pc, srd = 0;
8916         uint_t ttop = 0;
8917         size_t size, ksize;
8918         uint_t id, i;
8919 
8920         for (pc = 0; pc < dp->dtdo_len; pc++) {
8921                 dif_instr_t instr = text[pc];
8922                 uint_t op = DIF_INSTR_OP(instr);
8923                 uint_t rd = DIF_INSTR_RD(instr);
8924                 uint_t r1 = DIF_INSTR_R1(instr);
8925                 uint_t nkeys = 0;
8926                 uchar_t scope;
8927 
8928                 dtrace_key_t *key = tupregs;
8929 
8930                 switch (op) {
8931                 case DIF_OP_SETX:
8932                         sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
8933                         srd = rd;
8934                         continue;
8935 
8936                 case DIF_OP_STTS:
8937                         key = &tupregs[DIF_DTR_NREGS];
8938                         key[0].dttk_size = 0;
8939                         key[1].dttk_size = 0;
8940                         nkeys = 2;
8941                         scope = DIFV_SCOPE_THREAD;
8942                         break;
8943 
8944                 case DIF_OP_STGAA:
8945                 case DIF_OP_STTAA:
8946                         nkeys = ttop;
8947 
8948                         if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
8949                                 key[nkeys++].dttk_size = 0;
8950 
8951                         key[nkeys++].dttk_size = 0;
8952 
8953                         if (op == DIF_OP_STTAA) {
8954                                 scope = DIFV_SCOPE_THREAD;
8955                         } else {
8956                                 scope = DIFV_SCOPE_GLOBAL;
8957                         }
8958 
8959                         break;
8960 
8961                 case DIF_OP_PUSHTR:
8962                         if (ttop == DIF_DTR_NREGS)
8963                                 return;
8964 
8965                         if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
8966                                 /*
8967                                  * If the register for the size of the "pushtr"
8968                                  * is %r0 (or the value is 0) and the type is
8969                                  * a string, we'll use the system-wide default
8970                                  * string size.
8971                                  */
8972                                 tupregs[ttop++].dttk_size =
8973                                     dtrace_strsize_default;
8974                         } else {
8975                                 if (srd == 0)
8976                                         return;
8977 
8978                                 tupregs[ttop++].dttk_size = sval;
8979                         }
8980 
8981                         break;
8982 
8983                 case DIF_OP_PUSHTV:
8984                         if (ttop == DIF_DTR_NREGS)
8985                                 return;
8986 
8987                         tupregs[ttop++].dttk_size = 0;
8988                         break;
8989 
8990                 case DIF_OP_FLUSHTS:
8991                         ttop = 0;
8992                         break;
8993 
8994                 case DIF_OP_POPTS:
8995                         if (ttop != 0)
8996                                 ttop--;
8997                         break;
8998                 }
8999 
9000                 sval = 0;
9001                 srd = 0;
9002 
9003                 if (nkeys == 0)
9004                         continue;
9005 
9006                 /*
9007                  * We have a dynamic variable allocation; calculate its size.
9008                  */
9009                 for (ksize = 0, i = 0; i < nkeys; i++)
9010                         ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
9011 
9012                 size = sizeof (dtrace_dynvar_t);
9013                 size += sizeof (dtrace_key_t) * (nkeys - 1);
9014                 size += ksize;
9015 
9016                 /*
9017                  * Now we need to determine the size of the stored data.
9018                  */
9019                 id = DIF_INSTR_VAR(instr);
9020 
9021                 for (i = 0; i < dp->dtdo_varlen; i++) {
9022                         dtrace_difv_t *v = &dp->dtdo_vartab[i];
9023 
9024                         if (v->dtdv_id == id && v->dtdv_scope == scope) {
9025                                 size += v->dtdv_type.dtdt_size;
9026                                 break;
9027                         }
9028                 }
9029 
9030                 if (i == dp->dtdo_varlen)
9031                         return;
9032 
9033                 /*
9034                  * We have the size.  If this is larger than the chunk size
9035                  * for our dynamic variable state, reset the chunk size.
9036                  */
9037                 size = P2ROUNDUP(size, sizeof (uint64_t));
9038 
9039                 if (size > vstate->dtvs_dynvars.dtds_chunksize)
9040                         vstate->dtvs_dynvars.dtds_chunksize = size;
9041         }
9042 }
9043 
9044 static void
9045 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9046 {
9047         int i, oldsvars, osz, nsz, otlocals, ntlocals;
9048         uint_t id;
9049 
9050         ASSERT(MUTEX_HELD(&dtrace_lock));
9051         ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
9052 
9053         for (i = 0; i < dp->dtdo_varlen; i++) {
9054                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9055                 dtrace_statvar_t *svar, ***svarp;
9056                 size_t dsize = 0;
9057                 uint8_t scope = v->dtdv_scope;
9058                 int *np;
9059 
9060                 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9061                         continue;
9062 
9063                 id -= DIF_VAR_OTHER_UBASE;
9064 
9065                 switch (scope) {
9066                 case DIFV_SCOPE_THREAD:
9067                         while (id >= (otlocals = vstate->dtvs_ntlocals)) {
9068                                 dtrace_difv_t *tlocals;
9069 
9070                                 if ((ntlocals = (otlocals << 1)) == 0)
9071                                         ntlocals = 1;
9072 
9073                                 osz = otlocals * sizeof (dtrace_difv_t);
9074                                 nsz = ntlocals * sizeof (dtrace_difv_t);
9075 
9076                                 tlocals = kmem_zalloc(nsz, KM_SLEEP);
9077 
9078                                 if (osz != 0) {
9079                                         bcopy(vstate->dtvs_tlocals,
9080                                             tlocals, osz);
9081                                         kmem_free(vstate->dtvs_tlocals, osz);
9082                                 }
9083 
9084                                 vstate->dtvs_tlocals = tlocals;
9085                                 vstate->dtvs_ntlocals = ntlocals;
9086                         }
9087 
9088                         vstate->dtvs_tlocals[id] = *v;
9089                         continue;
9090 
9091                 case DIFV_SCOPE_LOCAL:
9092                         np = &vstate->dtvs_nlocals;
9093                         svarp = &vstate->dtvs_locals;
9094 
9095                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9096                                 dsize = NCPU * (v->dtdv_type.dtdt_size +
9097                                     sizeof (uint64_t));
9098                         else
9099                                 dsize = NCPU * sizeof (uint64_t);
9100 
9101                         break;
9102 
9103                 case DIFV_SCOPE_GLOBAL:
9104                         np = &vstate->dtvs_nglobals;
9105                         svarp = &vstate->dtvs_globals;
9106 
9107                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9108                                 dsize = v->dtdv_type.dtdt_size +
9109                                     sizeof (uint64_t);
9110 
9111                         break;
9112 
9113                 default:
9114                         ASSERT(0);
9115                 }
9116 
9117                 while (id >= (oldsvars = *np)) {
9118                         dtrace_statvar_t **statics;
9119                         int newsvars, oldsize, newsize;
9120 
9121                         if ((newsvars = (oldsvars << 1)) == 0)
9122                                 newsvars = 1;
9123 
9124                         oldsize = oldsvars * sizeof (dtrace_statvar_t *);
9125                         newsize = newsvars * sizeof (dtrace_statvar_t *);
9126 
9127                         statics = kmem_zalloc(newsize, KM_SLEEP);
9128 
9129                         if (oldsize != 0) {
9130                                 bcopy(*svarp, statics, oldsize);
9131                                 kmem_free(*svarp, oldsize);
9132                         }
9133 
9134                         *svarp = statics;
9135                         *np = newsvars;
9136                 }
9137 
9138                 if ((svar = (*svarp)[id]) == NULL) {
9139                         svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
9140                         svar->dtsv_var = *v;
9141 
9142                         if ((svar->dtsv_size = dsize) != 0) {
9143                                 svar->dtsv_data = (uint64_t)(uintptr_t)
9144                                     kmem_zalloc(dsize, KM_SLEEP);
9145                         }
9146 
9147                         (*svarp)[id] = svar;
9148                 }
9149 
9150                 svar->dtsv_refcnt++;
9151         }
9152 
9153         dtrace_difo_chunksize(dp, vstate);
9154         dtrace_difo_hold(dp);
9155 }
9156 
9157 static dtrace_difo_t *
9158 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9159 {
9160         dtrace_difo_t *new;
9161         size_t sz;
9162 
9163         ASSERT(dp->dtdo_buf != NULL);
9164         ASSERT(dp->dtdo_refcnt != 0);
9165 
9166         new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
9167 
9168         ASSERT(dp->dtdo_buf != NULL);
9169         sz = dp->dtdo_len * sizeof (dif_instr_t);
9170         new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
9171         bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
9172         new->dtdo_len = dp->dtdo_len;
9173 
9174         if (dp->dtdo_strtab != NULL) {
9175                 ASSERT(dp->dtdo_strlen != 0);
9176                 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
9177                 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
9178                 new->dtdo_strlen = dp->dtdo_strlen;
9179         }
9180 
9181         if (dp->dtdo_inttab != NULL) {
9182                 ASSERT(dp->dtdo_intlen != 0);
9183                 sz = dp->dtdo_intlen * sizeof (uint64_t);
9184                 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
9185                 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
9186                 new->dtdo_intlen = dp->dtdo_intlen;
9187         }
9188 
9189         if (dp->dtdo_vartab != NULL) {
9190                 ASSERT(dp->dtdo_varlen != 0);
9191                 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9192                 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
9193                 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
9194                 new->dtdo_varlen = dp->dtdo_varlen;
9195         }
9196 
9197         dtrace_difo_init(new, vstate);
9198         return (new);
9199 }
9200 
9201 static void
9202 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9203 {
9204         int i;
9205 
9206         ASSERT(dp->dtdo_refcnt == 0);
9207 
9208         for (i = 0; i < dp->dtdo_varlen; i++) {
9209                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9210                 dtrace_statvar_t *svar, **svarp;
9211                 uint_t id;
9212                 uint8_t scope = v->dtdv_scope;
9213                 int *np;
9214 
9215                 switch (scope) {
9216                 case DIFV_SCOPE_THREAD:
9217                         continue;
9218 
9219                 case DIFV_SCOPE_LOCAL:
9220                         np = &vstate->dtvs_nlocals;
9221                         svarp = vstate->dtvs_locals;
9222                         break;
9223 
9224                 case DIFV_SCOPE_GLOBAL:
9225                         np = &vstate->dtvs_nglobals;
9226                         svarp = vstate->dtvs_globals;
9227                         break;
9228 
9229                 default:
9230                         ASSERT(0);
9231                 }
9232 
9233                 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9234                         continue;
9235 
9236                 id -= DIF_VAR_OTHER_UBASE;
9237                 ASSERT(id < *np);
9238 
9239                 svar = svarp[id];
9240                 ASSERT(svar != NULL);
9241                 ASSERT(svar->dtsv_refcnt > 0);
9242 
9243                 if (--svar->dtsv_refcnt > 0)
9244                         continue;
9245 
9246                 if (svar->dtsv_size != 0) {
9247                         ASSERT(svar->dtsv_data != NULL);
9248                         kmem_free((void *)(uintptr_t)svar->dtsv_data,
9249                             svar->dtsv_size);
9250                 }
9251 
9252                 kmem_free(svar, sizeof (dtrace_statvar_t));
9253                 svarp[id] = NULL;
9254         }
9255 
9256         kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
9257         kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
9258         kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
9259         kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
9260 
9261         kmem_free(dp, sizeof (dtrace_difo_t));
9262 }
9263 
9264 static void
9265 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9266 {
9267         int i;
9268 
9269         ASSERT(MUTEX_HELD(&dtrace_lock));
9270         ASSERT(dp->dtdo_refcnt != 0);
9271 
9272         for (i = 0; i < dp->dtdo_varlen; i++) {
9273                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9274 
9275                 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9276                         continue;
9277 
9278                 ASSERT(dtrace_vtime_references > 0);
9279                 if (--dtrace_vtime_references == 0)
9280                         dtrace_vtime_disable();
9281         }
9282 
9283         if (--dp->dtdo_refcnt == 0)
9284                 dtrace_difo_destroy(dp, vstate);
9285 }
9286 
9287 /*
9288  * DTrace Format Functions
9289  */
9290 static uint16_t
9291 dtrace_format_add(dtrace_state_t *state, char *str)
9292 {
9293         char *fmt, **new;
9294         uint16_t ndx, len = strlen(str) + 1;
9295 
9296         fmt = kmem_zalloc(len, KM_SLEEP);
9297         bcopy(str, fmt, len);
9298 
9299         for (ndx = 0; ndx < state->dts_nformats; ndx++) {
9300                 if (state->dts_formats[ndx] == NULL) {
9301                         state->dts_formats[ndx] = fmt;
9302                         return (ndx + 1);
9303                 }
9304         }
9305 
9306         if (state->dts_nformats == USHRT_MAX) {
9307                 /*
9308                  * This is only likely if a denial-of-service attack is being
9309                  * attempted.  As such, it's okay to fail silently here.
9310                  */
9311                 kmem_free(fmt, len);
9312                 return (0);
9313         }
9314 
9315         /*
9316          * For simplicity, we always resize the formats array to be exactly the
9317          * number of formats.
9318          */
9319         ndx = state->dts_nformats++;
9320         new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
9321 
9322         if (state->dts_formats != NULL) {
9323                 ASSERT(ndx != 0);
9324                 bcopy(state->dts_formats, new, ndx * sizeof (char *));
9325                 kmem_free(state->dts_formats, ndx * sizeof (char *));
9326         }
9327 
9328         state->dts_formats = new;
9329         state->dts_formats[ndx] = fmt;
9330 
9331         return (ndx + 1);
9332 }
9333 
9334 static void
9335 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
9336 {
9337         char *fmt;
9338 
9339         ASSERT(state->dts_formats != NULL);
9340         ASSERT(format <= state->dts_nformats);
9341         ASSERT(state->dts_formats[format - 1] != NULL);
9342 
9343         fmt = state->dts_formats[format - 1];
9344         kmem_free(fmt, strlen(fmt) + 1);
9345         state->dts_formats[format - 1] = NULL;
9346 }
9347 
9348 static void
9349 dtrace_format_destroy(dtrace_state_t *state)
9350 {
9351         int i;
9352 
9353         if (state->dts_nformats == 0) {
9354                 ASSERT(state->dts_formats == NULL);
9355                 return;
9356         }
9357 
9358         ASSERT(state->dts_formats != NULL);
9359 
9360         for (i = 0; i < state->dts_nformats; i++) {
9361                 char *fmt = state->dts_formats[i];
9362 
9363                 if (fmt == NULL)
9364                         continue;
9365 
9366                 kmem_free(fmt, strlen(fmt) + 1);
9367         }
9368 
9369         kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
9370         state->dts_nformats = 0;
9371         state->dts_formats = NULL;
9372 }
9373 
9374 /*
9375  * DTrace Predicate Functions
9376  */
9377 static dtrace_predicate_t *
9378 dtrace_predicate_create(dtrace_difo_t *dp)
9379 {
9380         dtrace_predicate_t *pred;
9381 
9382         ASSERT(MUTEX_HELD(&dtrace_lock));
9383         ASSERT(dp->dtdo_refcnt != 0);
9384 
9385         pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
9386         pred->dtp_difo = dp;
9387         pred->dtp_refcnt = 1;
9388 
9389         if (!dtrace_difo_cacheable(dp))
9390                 return (pred);
9391 
9392         if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
9393                 /*
9394                  * This is only theoretically possible -- we have had 2^32
9395                  * cacheable predicates on this machine.  We cannot allow any
9396                  * more predicates to become cacheable:  as unlikely as it is,
9397                  * there may be a thread caching a (now stale) predicate cache
9398                  * ID. (N.B.: the temptation is being successfully resisted to
9399                  * have this cmn_err() "Holy shit -- we executed this code!")
9400                  */
9401                 return (pred);
9402         }
9403 
9404         pred->dtp_cacheid = dtrace_predcache_id++;
9405 
9406         return (pred);
9407 }
9408 
9409 static void
9410 dtrace_predicate_hold(dtrace_predicate_t *pred)
9411 {
9412         ASSERT(MUTEX_HELD(&dtrace_lock));
9413         ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
9414         ASSERT(pred->dtp_refcnt > 0);
9415 
9416         pred->dtp_refcnt++;
9417 }
9418 
9419 static void
9420 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
9421 {
9422         dtrace_difo_t *dp = pred->dtp_difo;
9423 
9424         ASSERT(MUTEX_HELD(&dtrace_lock));
9425         ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
9426         ASSERT(pred->dtp_refcnt > 0);
9427 
9428         if (--pred->dtp_refcnt == 0) {
9429                 dtrace_difo_release(pred->dtp_difo, vstate);
9430                 kmem_free(pred, sizeof (dtrace_predicate_t));
9431         }
9432 }
9433 
9434 /*
9435  * DTrace Action Description Functions
9436  */
9437 static dtrace_actdesc_t *
9438 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
9439     uint64_t uarg, uint64_t arg)
9440 {
9441         dtrace_actdesc_t *act;
9442 
9443         ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
9444             arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
9445 
9446         act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
9447         act->dtad_kind = kind;
9448         act->dtad_ntuple = ntuple;
9449         act->dtad_uarg = uarg;
9450         act->dtad_arg = arg;
9451         act->dtad_refcnt = 1;
9452 
9453         return (act);
9454 }
9455 
9456 static void
9457 dtrace_actdesc_hold(dtrace_actdesc_t *act)
9458 {
9459         ASSERT(act->dtad_refcnt >= 1);
9460         act->dtad_refcnt++;
9461 }
9462 
9463 static void
9464 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
9465 {
9466         dtrace_actkind_t kind = act->dtad_kind;
9467         dtrace_difo_t *dp;
9468 
9469         ASSERT(act->dtad_refcnt >= 1);
9470 
9471         if (--act->dtad_refcnt != 0)
9472                 return;
9473 
9474         if ((dp = act->dtad_difo) != NULL)
9475                 dtrace_difo_release(dp, vstate);
9476 
9477         if (DTRACEACT_ISPRINTFLIKE(kind)) {
9478                 char *str = (char *)(uintptr_t)act->dtad_arg;
9479 
9480                 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
9481                     (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
9482 
9483                 if (str != NULL)
9484                         kmem_free(str, strlen(str) + 1);
9485         }
9486 
9487         kmem_free(act, sizeof (dtrace_actdesc_t));
9488 }
9489 
9490 /*
9491  * DTrace ECB Functions
9492  */
9493 static dtrace_ecb_t *
9494 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
9495 {
9496         dtrace_ecb_t *ecb;
9497         dtrace_epid_t epid;
9498 
9499         ASSERT(MUTEX_HELD(&dtrace_lock));
9500 
9501         ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
9502         ecb->dte_predicate = NULL;
9503         ecb->dte_probe = probe;
9504 
9505         /*
9506          * The default size is the size of the default action: recording
9507          * the epid.
9508          */
9509         ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9510         ecb->dte_alignment = sizeof (dtrace_epid_t);
9511 
9512         epid = state->dts_epid++;
9513 
9514         if (epid - 1 >= state->dts_necbs) {
9515                 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
9516                 int necbs = state->dts_necbs << 1;
9517 
9518                 ASSERT(epid == state->dts_necbs + 1);
9519 
9520                 if (necbs == 0) {
9521                         ASSERT(oecbs == NULL);
9522                         necbs = 1;
9523                 }
9524 
9525                 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
9526 
9527                 if (oecbs != NULL)
9528                         bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
9529 
9530                 dtrace_membar_producer();
9531                 state->dts_ecbs = ecbs;
9532 
9533                 if (oecbs != NULL) {
9534                         /*
9535                          * If this state is active, we must dtrace_sync()
9536                          * before we can free the old dts_ecbs array:  we're
9537                          * coming in hot, and there may be active ring
9538                          * buffer processing (which indexes into the dts_ecbs
9539                          * array) on another CPU.
9540                          */
9541                         if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
9542                                 dtrace_sync();
9543 
9544                         kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
9545                 }
9546 
9547                 dtrace_membar_producer();
9548                 state->dts_necbs = necbs;
9549         }
9550 
9551         ecb->dte_state = state;
9552 
9553         ASSERT(state->dts_ecbs[epid - 1] == NULL);
9554         dtrace_membar_producer();
9555         state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
9556 
9557         return (ecb);
9558 }
9559 
9560 static int
9561 dtrace_ecb_enable(dtrace_ecb_t *ecb)
9562 {
9563         dtrace_probe_t *probe = ecb->dte_probe;
9564 
9565         ASSERT(MUTEX_HELD(&cpu_lock));
9566         ASSERT(MUTEX_HELD(&dtrace_lock));
9567         ASSERT(ecb->dte_next == NULL);
9568 
9569         if (probe == NULL) {
9570                 /*
9571                  * This is the NULL probe -- there's nothing to do.
9572                  */
9573                 return (0);
9574         }
9575 
9576         if (probe->dtpr_ecb == NULL) {
9577                 dtrace_provider_t *prov = probe->dtpr_provider;
9578 
9579                 /*
9580                  * We're the first ECB on this probe.
9581                  */
9582                 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
9583 
9584                 if (ecb->dte_predicate != NULL)
9585                         probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
9586 
9587                 return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
9588                     probe->dtpr_id, probe->dtpr_arg));
9589         } else {
9590                 /*
9591                  * This probe is already active.  Swing the last pointer to
9592                  * point to the new ECB, and issue a dtrace_sync() to assure
9593                  * that all CPUs have seen the change.
9594                  */
9595                 ASSERT(probe->dtpr_ecb_last != NULL);
9596                 probe->dtpr_ecb_last->dte_next = ecb;
9597                 probe->dtpr_ecb_last = ecb;
9598                 probe->dtpr_predcache = 0;
9599 
9600                 dtrace_sync();
9601                 return (0);
9602         }
9603 }
9604 
9605 static void
9606 dtrace_ecb_resize(dtrace_ecb_t *ecb)
9607 {
9608         uint32_t maxalign = sizeof (dtrace_epid_t);
9609         uint32_t align = sizeof (uint8_t), offs, diff;
9610         dtrace_action_t *act;
9611         int wastuple = 0;
9612         uint32_t aggbase = UINT32_MAX;
9613         dtrace_state_t *state = ecb->dte_state;
9614 
9615         /*
9616          * If we record anything, we always record the epid.  (And we always
9617          * record it first.)
9618          */
9619         offs = sizeof (dtrace_epid_t);
9620         ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9621 
9622         for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9623                 dtrace_recdesc_t *rec = &act->dta_rec;
9624 
9625                 if ((align = rec->dtrd_alignment) > maxalign)
9626                         maxalign = align;
9627 
9628                 if (!wastuple && act->dta_intuple) {
9629                         /*
9630                          * This is the first record in a tuple.  Align the
9631                          * offset to be at offset 4 in an 8-byte aligned
9632                          * block.
9633                          */
9634                         diff = offs + sizeof (dtrace_aggid_t);
9635 
9636                         if (diff = (diff & (sizeof (uint64_t) - 1)))
9637                                 offs += sizeof (uint64_t) - diff;
9638 
9639                         aggbase = offs - sizeof (dtrace_aggid_t);
9640                         ASSERT(!(aggbase & (sizeof (uint64_t) - 1)));
9641                 }
9642 
9643                 /*LINTED*/
9644                 if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) {
9645                         /*
9646                          * The current offset is not properly aligned; align it.
9647                          */
9648                         offs += align - diff;
9649                 }
9650 
9651                 rec->dtrd_offset = offs;
9652 
9653                 if (offs + rec->dtrd_size > ecb->dte_needed) {
9654                         ecb->dte_needed = offs + rec->dtrd_size;
9655 
9656                         if (ecb->dte_needed > state->dts_needed)
9657                                 state->dts_needed = ecb->dte_needed;
9658                 }
9659 
9660                 if (DTRACEACT_ISAGG(act->dta_kind)) {
9661                         dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9662                         dtrace_action_t *first = agg->dtag_first, *prev;
9663 
9664                         ASSERT(rec->dtrd_size != 0 && first != NULL);
9665                         ASSERT(wastuple);
9666                         ASSERT(aggbase != UINT32_MAX);
9667 
9668                         agg->dtag_base = aggbase;
9669 
9670                         while ((prev = first->dta_prev) != NULL &&
9671                             DTRACEACT_ISAGG(prev->dta_kind)) {
9672                                 agg = (dtrace_aggregation_t *)prev;
9673                                 first = agg->dtag_first;
9674                         }
9675 
9676                         if (prev != NULL) {
9677                                 offs = prev->dta_rec.dtrd_offset +
9678                                     prev->dta_rec.dtrd_size;
9679                         } else {
9680                                 offs = sizeof (dtrace_epid_t);
9681                         }
9682                         wastuple = 0;
9683                 } else {
9684                         if (!act->dta_intuple)
9685                                 ecb->dte_size = offs + rec->dtrd_size;
9686 
9687                         offs += rec->dtrd_size;
9688                 }
9689 
9690                 wastuple = act->dta_intuple;
9691         }
9692 
9693         if ((act = ecb->dte_action) != NULL &&
9694             !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
9695             ecb->dte_size == sizeof (dtrace_epid_t)) {
9696                 /*
9697                  * If the size is still sizeof (dtrace_epid_t), then all
9698                  * actions store no data; set the size to 0.
9699                  */
9700                 ecb->dte_alignment = maxalign;
9701                 ecb->dte_size = 0;
9702 
9703                 /*
9704                  * If the needed space is still sizeof (dtrace_epid_t), then
9705                  * all actions need no additional space; set the needed
9706                  * size to 0.
9707                  */
9708                 if (ecb->dte_needed == sizeof (dtrace_epid_t))
9709                         ecb->dte_needed = 0;
9710 
9711                 return;
9712         }
9713 
9714         /*
9715          * Set our alignment, and make sure that the dte_size and dte_needed
9716          * are aligned to the size of an EPID.
9717          */
9718         ecb->dte_alignment = maxalign;
9719         ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) &
9720             ~(sizeof (dtrace_epid_t) - 1);
9721         ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) &
9722             ~(sizeof (dtrace_epid_t) - 1);
9723         ASSERT(ecb->dte_size <= ecb->dte_needed);
9724 }
9725 
9726 static dtrace_action_t *
9727 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9728 {
9729         dtrace_aggregation_t *agg;
9730         size_t size = sizeof (uint64_t);
9731         int ntuple = desc->dtad_ntuple;
9732         dtrace_action_t *act;
9733         dtrace_recdesc_t *frec;
9734         dtrace_aggid_t aggid;
9735         dtrace_state_t *state = ecb->dte_state;
9736 
9737         agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
9738         agg->dtag_ecb = ecb;
9739 
9740         ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
9741 
9742         switch (desc->dtad_kind) {
9743         case DTRACEAGG_MIN:
9744                 agg->dtag_initial = INT64_MAX;
9745                 agg->dtag_aggregate = dtrace_aggregate_min;
9746                 break;
9747 
9748         case DTRACEAGG_MAX:
9749                 agg->dtag_initial = INT64_MIN;
9750                 agg->dtag_aggregate = dtrace_aggregate_max;
9751                 break;
9752 
9753         case DTRACEAGG_COUNT:
9754                 agg->dtag_aggregate = dtrace_aggregate_count;
9755                 break;
9756 
9757         case DTRACEAGG_QUANTIZE:
9758                 agg->dtag_aggregate = dtrace_aggregate_quantize;
9759                 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
9760                     sizeof (uint64_t);
9761                 break;
9762 
9763         case DTRACEAGG_LQUANTIZE: {
9764                 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
9765                 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
9766 
9767                 agg->dtag_initial = desc->dtad_arg;
9768                 agg->dtag_aggregate = dtrace_aggregate_lquantize;
9769 
9770                 if (step == 0 || levels == 0)
9771                         goto err;
9772 
9773                 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
9774                 break;
9775         }
9776 
9777         case DTRACEAGG_LLQUANTIZE: {
9778                 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
9779                 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
9780                 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
9781                 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
9782                 int64_t v;
9783 
9784                 agg->dtag_initial = desc->dtad_arg;
9785                 agg->dtag_aggregate = dtrace_aggregate_llquantize;
9786 
9787                 if (factor < 2 || low >= high || nsteps < factor)
9788                         goto err;
9789 
9790                 /*
9791                  * Now check that the number of steps evenly divides a power
9792                  * of the factor.  (This assures both integer bucket size and
9793                  * linearity within each magnitude.)
9794                  */
9795                 for (v = factor; v < nsteps; v *= factor)
9796                         continue;
9797 
9798                 if ((v % nsteps) || (nsteps % factor))
9799                         goto err;
9800 
9801                 size = (dtrace_aggregate_llquantize_bucket(factor,
9802                     low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
9803                 break;
9804         }
9805 
9806         case DTRACEAGG_AVG:
9807                 agg->dtag_aggregate = dtrace_aggregate_avg;
9808                 size = sizeof (uint64_t) * 2;
9809                 break;
9810 
9811         case DTRACEAGG_STDDEV:
9812                 agg->dtag_aggregate = dtrace_aggregate_stddev;
9813                 size = sizeof (uint64_t) * 4;
9814                 break;
9815 
9816         case DTRACEAGG_SUM:
9817                 agg->dtag_aggregate = dtrace_aggregate_sum;
9818                 break;
9819 
9820         default:
9821                 goto err;
9822         }
9823 
9824         agg->dtag_action.dta_rec.dtrd_size = size;
9825 
9826         if (ntuple == 0)
9827                 goto err;
9828 
9829         /*
9830          * We must make sure that we have enough actions for the n-tuple.
9831          */
9832         for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
9833                 if (DTRACEACT_ISAGG(act->dta_kind))
9834                         break;
9835 
9836                 if (--ntuple == 0) {
9837                         /*
9838                          * This is the action with which our n-tuple begins.
9839                          */
9840                         agg->dtag_first = act;
9841                         goto success;
9842                 }
9843         }
9844 
9845         /*
9846          * This n-tuple is short by ntuple elements.  Return failure.
9847          */
9848         ASSERT(ntuple != 0);
9849 err:
9850         kmem_free(agg, sizeof (dtrace_aggregation_t));
9851         return (NULL);
9852 
9853 success:
9854         /*
9855          * If the last action in the tuple has a size of zero, it's actually
9856          * an expression argument for the aggregating action.
9857          */
9858         ASSERT(ecb->dte_action_last != NULL);
9859         act = ecb->dte_action_last;
9860 
9861         if (act->dta_kind == DTRACEACT_DIFEXPR) {
9862                 ASSERT(act->dta_difo != NULL);
9863 
9864                 if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
9865                         agg->dtag_hasarg = 1;
9866         }
9867 
9868         /*
9869          * We need to allocate an id for this aggregation.
9870          */
9871         aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
9872             VM_BESTFIT | VM_SLEEP);
9873 
9874         if (aggid - 1 >= state->dts_naggregations) {
9875                 dtrace_aggregation_t **oaggs = state->dts_aggregations;
9876                 dtrace_aggregation_t **aggs;
9877                 int naggs = state->dts_naggregations << 1;
9878                 int onaggs = state->dts_naggregations;
9879 
9880                 ASSERT(aggid == state->dts_naggregations + 1);
9881 
9882                 if (naggs == 0) {
9883                         ASSERT(oaggs == NULL);
9884                         naggs = 1;
9885                 }
9886 
9887                 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
9888 
9889                 if (oaggs != NULL) {
9890                         bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
9891                         kmem_free(oaggs, onaggs * sizeof (*aggs));
9892                 }
9893 
9894                 state->dts_aggregations = aggs;
9895                 state->dts_naggregations = naggs;
9896         }
9897 
9898         ASSERT(state->dts_aggregations[aggid - 1] == NULL);
9899         state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
9900 
9901         frec = &agg->dtag_first->dta_rec;
9902         if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
9903                 frec->dtrd_alignment = sizeof (dtrace_aggid_t);
9904 
9905         for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
9906                 ASSERT(!act->dta_intuple);
9907                 act->dta_intuple = 1;
9908         }
9909 
9910         return (&agg->dtag_action);
9911 }
9912 
9913 static void
9914 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
9915 {
9916         dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9917         dtrace_state_t *state = ecb->dte_state;
9918         dtrace_aggid_t aggid = agg->dtag_id;
9919 
9920         ASSERT(DTRACEACT_ISAGG(act->dta_kind));
9921         vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
9922 
9923         ASSERT(state->dts_aggregations[aggid - 1] == agg);
9924         state->dts_aggregations[aggid - 1] = NULL;
9925 
9926         kmem_free(agg, sizeof (dtrace_aggregation_t));
9927 }
9928 
9929 static int
9930 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9931 {
9932         dtrace_action_t *action, *last;
9933         dtrace_difo_t *dp = desc->dtad_difo;
9934         uint32_t size = 0, align = sizeof (uint8_t), mask;
9935         uint16_t format = 0;
9936         dtrace_recdesc_t *rec;
9937         dtrace_state_t *state = ecb->dte_state;
9938         dtrace_optval_t *opt = state->dts_options, nframes, strsize;
9939         uint64_t arg = desc->dtad_arg;
9940 
9941         ASSERT(MUTEX_HELD(&dtrace_lock));
9942         ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
9943 
9944         if (DTRACEACT_ISAGG(desc->dtad_kind)) {
9945                 /*
9946                  * If this is an aggregating action, there must be neither
9947                  * a speculate nor a commit on the action chain.
9948                  */
9949                 dtrace_action_t *act;
9950 
9951                 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9952                         if (act->dta_kind == DTRACEACT_COMMIT)
9953                                 return (EINVAL);
9954 
9955                         if (act->dta_kind == DTRACEACT_SPECULATE)
9956                                 return (EINVAL);
9957                 }
9958 
9959                 action = dtrace_ecb_aggregation_create(ecb, desc);
9960 
9961                 if (action == NULL)
9962                         return (EINVAL);
9963         } else {
9964                 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
9965                     (desc->dtad_kind == DTRACEACT_DIFEXPR &&
9966                     dp != NULL && dp->dtdo_destructive)) {
9967                         state->dts_destructive = 1;
9968                 }
9969 
9970                 switch (desc->dtad_kind) {
9971                 case DTRACEACT_PRINTF:
9972                 case DTRACEACT_PRINTA:
9973                 case DTRACEACT_SYSTEM:
9974                 case DTRACEACT_FREOPEN:
9975                 case DTRACEACT_DIFEXPR:
9976                         /*
9977                          * We know that our arg is a string -- turn it into a
9978                          * format.
9979                          */
9980                         if (arg == NULL) {
9981                                 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
9982                                     desc->dtad_kind == DTRACEACT_DIFEXPR);
9983                                 format = 0;
9984                         } else {
9985                                 ASSERT(arg != NULL);
9986                                 ASSERT(arg > KERNELBASE);
9987                                 format = dtrace_format_add(state,
9988                                     (char *)(uintptr_t)arg);
9989                         }
9990 
9991                         /*FALLTHROUGH*/
9992                 case DTRACEACT_LIBACT:
9993                 case DTRACEACT_TRACEMEM:
9994                 case DTRACEACT_TRACEMEM_DYNSIZE:
9995                         if (dp == NULL)
9996                                 return (EINVAL);
9997 
9998                         if ((size = dp->dtdo_rtype.dtdt_size) != 0)
9999                                 break;
10000 
10001                         if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10002                                 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10003                                         return (EINVAL);
10004 
10005                                 size = opt[DTRACEOPT_STRSIZE];
10006                         }
10007 
10008                         break;
10009 
10010                 case DTRACEACT_STACK:
10011                         if ((nframes = arg) == 0) {
10012                                 nframes = opt[DTRACEOPT_STACKFRAMES];
10013                                 ASSERT(nframes > 0);
10014                                 arg = nframes;
10015                         }
10016 
10017                         size = nframes * sizeof (pc_t);
10018                         break;
10019 
10020                 case DTRACEACT_JSTACK:
10021                         if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10022                                 strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
10023 
10024                         if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10025                                 nframes = opt[DTRACEOPT_JSTACKFRAMES];
10026 
10027                         arg = DTRACE_USTACK_ARG(nframes, strsize);
10028 
10029                         /*FALLTHROUGH*/
10030                 case DTRACEACT_USTACK:
10031                         if (desc->dtad_kind != DTRACEACT_JSTACK &&
10032                             (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10033                                 strsize = DTRACE_USTACK_STRSIZE(arg);
10034                                 nframes = opt[DTRACEOPT_USTACKFRAMES];
10035                                 ASSERT(nframes > 0);
10036                                 arg = DTRACE_USTACK_ARG(nframes, strsize);
10037                         }
10038 
10039                         /*
10040                          * Save a slot for the pid.
10041                          */
10042                         size = (nframes + 1) * sizeof (uint64_t);
10043                         size += DTRACE_USTACK_STRSIZE(arg);
10044                         size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
10045 
10046                         break;
10047 
10048                 case DTRACEACT_SYM:
10049                 case DTRACEACT_MOD:
10050                         if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
10051                             sizeof (uint64_t)) ||
10052                             (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10053                                 return (EINVAL);
10054                         break;
10055 
10056                 case DTRACEACT_USYM:
10057                 case DTRACEACT_UMOD:
10058                 case DTRACEACT_UADDR:
10059                         if (dp == NULL ||
10060                             (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
10061                             (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10062                                 return (EINVAL);
10063 
10064                         /*
10065                          * We have a slot for the pid, plus a slot for the
10066                          * argument.  To keep things simple (aligned with
10067                          * bitness-neutral sizing), we store each as a 64-bit
10068                          * quantity.
10069                          */
10070                         size = 2 * sizeof (uint64_t);
10071                         break;
10072 
10073                 case DTRACEACT_STOP:
10074                 case DTRACEACT_BREAKPOINT:
10075                 case DTRACEACT_PANIC:
10076                         break;
10077 
10078                 case DTRACEACT_CHILL:
10079                 case DTRACEACT_DISCARD:
10080                 case DTRACEACT_RAISE:
10081                         if (dp == NULL)
10082                                 return (EINVAL);
10083                         break;
10084 
10085                 case DTRACEACT_EXIT:
10086                         if (dp == NULL ||
10087                             (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
10088                             (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10089                                 return (EINVAL);
10090                         break;
10091 
10092                 case DTRACEACT_SPECULATE:
10093                         if (ecb->dte_size > sizeof (dtrace_epid_t))
10094                                 return (EINVAL);
10095 
10096                         if (dp == NULL)
10097                                 return (EINVAL);
10098 
10099                         state->dts_speculates = 1;
10100                         break;
10101 
10102                 case DTRACEACT_COMMIT: {
10103                         dtrace_action_t *act = ecb->dte_action;
10104 
10105                         for (; act != NULL; act = act->dta_next) {
10106                                 if (act->dta_kind == DTRACEACT_COMMIT)
10107                                         return (EINVAL);
10108                         }
10109 
10110                         if (dp == NULL)
10111                                 return (EINVAL);
10112                         break;
10113                 }
10114 
10115                 default:
10116                         return (EINVAL);
10117                 }
10118 
10119                 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
10120                         /*
10121                          * If this is a data-storing action or a speculate,
10122                          * we must be sure that there isn't a commit on the
10123                          * action chain.
10124                          */
10125                         dtrace_action_t *act = ecb->dte_action;
10126 
10127                         for (; act != NULL; act = act->dta_next) {
10128                                 if (act->dta_kind == DTRACEACT_COMMIT)
10129                                         return (EINVAL);
10130                         }
10131                 }
10132 
10133                 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
10134                 action->dta_rec.dtrd_size = size;
10135         }
10136 
10137         action->dta_refcnt = 1;
10138         rec = &action->dta_rec;
10139         size = rec->dtrd_size;
10140 
10141         for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
10142                 if (!(size & mask)) {
10143                         align = mask + 1;
10144                         break;
10145                 }
10146         }
10147 
10148         action->dta_kind = desc->dtad_kind;
10149 
10150         if ((action->dta_difo = dp) != NULL)
10151                 dtrace_difo_hold(dp);
10152 
10153         rec->dtrd_action = action->dta_kind;
10154         rec->dtrd_arg = arg;
10155         rec->dtrd_uarg = desc->dtad_uarg;
10156         rec->dtrd_alignment = (uint16_t)align;
10157         rec->dtrd_format = format;
10158 
10159         if ((last = ecb->dte_action_last) != NULL) {
10160                 ASSERT(ecb->dte_action != NULL);
10161                 action->dta_prev = last;
10162                 last->dta_next = action;
10163         } else {
10164                 ASSERT(ecb->dte_action == NULL);
10165                 ecb->dte_action = action;
10166         }
10167 
10168         ecb->dte_action_last = action;
10169 
10170         return (0);
10171 }
10172 
10173 static void
10174 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
10175 {
10176         dtrace_action_t *act = ecb->dte_action, *next;
10177         dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
10178         dtrace_difo_t *dp;
10179         uint16_t format;
10180 
10181         if (act != NULL && act->dta_refcnt > 1) {
10182                 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10183                 act->dta_refcnt--;
10184         } else {
10185                 for (; act != NULL; act = next) {
10186                         next = act->dta_next;
10187                         ASSERT(next != NULL || act == ecb->dte_action_last);
10188                         ASSERT(act->dta_refcnt == 1);
10189 
10190                         if ((format = act->dta_rec.dtrd_format) != 0)
10191                                 dtrace_format_remove(ecb->dte_state, format);
10192 
10193                         if ((dp = act->dta_difo) != NULL)
10194                                 dtrace_difo_release(dp, vstate);
10195 
10196                         if (DTRACEACT_ISAGG(act->dta_kind)) {
10197                                 dtrace_ecb_aggregation_destroy(ecb, act);
10198                         } else {
10199                                 kmem_free(act, sizeof (dtrace_action_t));
10200                         }
10201                 }
10202         }
10203 
10204         ecb->dte_action = NULL;
10205         ecb->dte_action_last = NULL;
10206         ecb->dte_size = sizeof (dtrace_epid_t);
10207 }
10208 
10209 static void
10210 dtrace_ecb_disable(dtrace_ecb_t *ecb)
10211 {
10212         /*
10213          * We disable the ECB by removing it from its probe.
10214          */
10215         dtrace_ecb_t *pecb, *prev = NULL;
10216         dtrace_probe_t *probe = ecb->dte_probe;
10217 
10218         ASSERT(MUTEX_HELD(&dtrace_lock));
10219 
10220         if (probe == NULL) {
10221                 /*
10222                  * This is the NULL probe; there is nothing to disable.
10223                  */
10224                 return;
10225         }
10226 
10227         for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
10228                 if (pecb == ecb)
10229                         break;
10230                 prev = pecb;
10231         }
10232 
10233         ASSERT(pecb != NULL);
10234 
10235         if (prev == NULL) {
10236                 probe->dtpr_ecb = ecb->dte_next;
10237         } else {
10238                 prev->dte_next = ecb->dte_next;
10239         }
10240 
10241         if (ecb == probe->dtpr_ecb_last) {
10242                 ASSERT(ecb->dte_next == NULL);
10243                 probe->dtpr_ecb_last = prev;
10244         }
10245 
10246         /*
10247          * The ECB has been disconnected from the probe; now sync to assure
10248          * that all CPUs have seen the change before returning.
10249          */
10250         dtrace_sync();
10251 
10252         if (probe->dtpr_ecb == NULL) {
10253                 /*
10254                  * That was the last ECB on the probe; clear the predicate
10255                  * cache ID for the probe, disable it and sync one more time
10256                  * to assure that we'll never hit it again.
10257                  */
10258                 dtrace_provider_t *prov = probe->dtpr_provider;
10259 
10260                 ASSERT(ecb->dte_next == NULL);
10261                 ASSERT(probe->dtpr_ecb_last == NULL);
10262                 probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10263                 prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
10264                     probe->dtpr_id, probe->dtpr_arg);
10265                 dtrace_sync();
10266         } else {
10267                 /*
10268                  * There is at least one ECB remaining on the probe.  If there
10269                  * is _exactly_ one, set the probe's predicate cache ID to be
10270                  * the predicate cache ID of the remaining ECB.
10271                  */
10272                 ASSERT(probe->dtpr_ecb_last != NULL);
10273                 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
10274 
10275                 if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
10276                         dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
10277 
10278                         ASSERT(probe->dtpr_ecb->dte_next == NULL);
10279 
10280                         if (p != NULL)
10281                                 probe->dtpr_predcache = p->dtp_cacheid;
10282                 }
10283 
10284                 ecb->dte_next = NULL;
10285         }
10286 }
10287 
10288 static void
10289 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
10290 {
10291         dtrace_state_t *state = ecb->dte_state;
10292         dtrace_vstate_t *vstate = &state->dts_vstate;
10293         dtrace_predicate_t *pred;
10294         dtrace_epid_t epid = ecb->dte_epid;
10295 
10296         ASSERT(MUTEX_HELD(&dtrace_lock));
10297         ASSERT(ecb->dte_next == NULL);
10298         ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
10299 
10300         if ((pred = ecb->dte_predicate) != NULL)
10301                 dtrace_predicate_release(pred, vstate);
10302 
10303         dtrace_ecb_action_remove(ecb);
10304 
10305         ASSERT(state->dts_ecbs[epid - 1] == ecb);
10306         state->dts_ecbs[epid - 1] = NULL;
10307 
10308         kmem_free(ecb, sizeof (dtrace_ecb_t));
10309 }
10310 
10311 static dtrace_ecb_t *
10312 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10313     dtrace_enabling_t *enab)
10314 {
10315         dtrace_ecb_t *ecb;
10316         dtrace_predicate_t *pred;
10317         dtrace_actdesc_t *act;
10318         dtrace_provider_t *prov;
10319         dtrace_ecbdesc_t *desc = enab->dten_current;
10320 
10321         ASSERT(MUTEX_HELD(&dtrace_lock));
10322         ASSERT(state != NULL);
10323 
10324         ecb = dtrace_ecb_add(state, probe);
10325         ecb->dte_uarg = desc->dted_uarg;
10326 
10327         if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
10328                 dtrace_predicate_hold(pred);
10329                 ecb->dte_predicate = pred;
10330         }
10331 
10332         if (probe != NULL) {
10333                 /*
10334                  * If the provider shows more leg than the consumer is old
10335                  * enough to see, we need to enable the appropriate implicit
10336                  * predicate bits to prevent the ecb from activating at
10337                  * revealing times.
10338                  *
10339                  * Providers specifying DTRACE_PRIV_USER at register time
10340                  * are stating that they need the /proc-style privilege
10341                  * model to be enforced, and this is what DTRACE_COND_OWNER
10342                  * and DTRACE_COND_ZONEOWNER will then do at probe time.
10343                  */
10344                 prov = probe->dtpr_provider;
10345                 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
10346                     (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10347                         ecb->dte_cond |= DTRACE_COND_OWNER;
10348 
10349                 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
10350                     (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10351                         ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
10352 
10353                 /*
10354                  * If the provider shows us kernel innards and the user
10355                  * is lacking sufficient privilege, enable the
10356                  * DTRACE_COND_USERMODE implicit predicate.
10357                  */
10358                 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
10359                     (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
10360                         ecb->dte_cond |= DTRACE_COND_USERMODE;
10361         }
10362 
10363         if (dtrace_ecb_create_cache != NULL) {
10364                 /*
10365                  * If we have a cached ecb, we'll use its action list instead
10366                  * of creating our own (saving both time and space).
10367                  */
10368                 dtrace_ecb_t *cached = dtrace_ecb_create_cache;
10369                 dtrace_action_t *act = cached->dte_action;
10370 
10371                 if (act != NULL) {
10372                         ASSERT(act->dta_refcnt > 0);
10373                         act->dta_refcnt++;
10374                         ecb->dte_action = act;
10375                         ecb->dte_action_last = cached->dte_action_last;
10376                         ecb->dte_needed = cached->dte_needed;
10377                         ecb->dte_size = cached->dte_size;
10378                         ecb->dte_alignment = cached->dte_alignment;
10379                 }
10380 
10381                 return (ecb);
10382         }
10383 
10384         for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
10385                 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
10386                         dtrace_ecb_destroy(ecb);
10387                         return (NULL);
10388                 }
10389         }
10390 
10391         dtrace_ecb_resize(ecb);
10392 
10393         return (dtrace_ecb_create_cache = ecb);
10394 }
10395 
10396 static int
10397 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
10398 {
10399         dtrace_ecb_t *ecb;
10400         dtrace_enabling_t *enab = arg;
10401         dtrace_state_t *state = enab->dten_vstate->dtvs_state;
10402 
10403         ASSERT(state != NULL);
10404 
10405         if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
10406                 /*
10407                  * This probe was created in a generation for which this
10408                  * enabling has previously created ECBs; we don't want to
10409                  * enable it again, so just kick out.
10410                  */
10411                 return (DTRACE_MATCH_NEXT);
10412         }
10413 
10414         if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
10415                 return (DTRACE_MATCH_DONE);
10416 
10417         if (dtrace_ecb_enable(ecb) < 0)
10418                 return (DTRACE_MATCH_FAIL);
10419 
10420         return (DTRACE_MATCH_NEXT);
10421 }
10422 
10423 static dtrace_ecb_t *
10424 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
10425 {
10426         dtrace_ecb_t *ecb;
10427 
10428         ASSERT(MUTEX_HELD(&dtrace_lock));
10429 
10430         if (id == 0 || id > state->dts_necbs)
10431                 return (NULL);
10432 
10433         ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
10434         ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
10435 
10436         return (state->dts_ecbs[id - 1]);
10437 }
10438 
10439 static dtrace_aggregation_t *
10440 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
10441 {
10442         dtrace_aggregation_t *agg;
10443 
10444         ASSERT(MUTEX_HELD(&dtrace_lock));
10445 
10446         if (id == 0 || id > state->dts_naggregations)
10447                 return (NULL);
10448 
10449         ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
10450         ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
10451             agg->dtag_id == id);
10452 
10453         return (state->dts_aggregations[id - 1]);
10454 }
10455 
10456 /*
10457  * DTrace Buffer Functions
10458  *
10459  * The following functions manipulate DTrace buffers.  Most of these functions
10460  * are called in the context of establishing or processing consumer state;
10461  * exceptions are explicitly noted.
10462  */
10463 
10464 /*
10465  * Note:  called from cross call context.  This function switches the two
10466  * buffers on a given CPU.  The atomicity of this operation is assured by
10467  * disabling interrupts while the actual switch takes place; the disabling of
10468  * interrupts serializes the execution with any execution of dtrace_probe() on
10469  * the same CPU.
10470  */
10471 static void
10472 dtrace_buffer_switch(dtrace_buffer_t *buf)
10473 {
10474         caddr_t tomax = buf->dtb_tomax;
10475         caddr_t xamot = buf->dtb_xamot;
10476         dtrace_icookie_t cookie;
10477         hrtime_t now = dtrace_gethrtime();
10478 
10479         ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10480         ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
10481 
10482         cookie = dtrace_interrupt_disable();
10483         buf->dtb_tomax = xamot;
10484         buf->dtb_xamot = tomax;
10485         buf->dtb_xamot_drops = buf->dtb_drops;
10486         buf->dtb_xamot_offset = buf->dtb_offset;
10487         buf->dtb_xamot_errors = buf->dtb_errors;
10488         buf->dtb_xamot_flags = buf->dtb_flags;
10489         buf->dtb_offset = 0;
10490         buf->dtb_drops = 0;
10491         buf->dtb_errors = 0;
10492         buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
10493         buf->dtb_interval = now - buf->dtb_switched;
10494         buf->dtb_switched = now;
10495         dtrace_interrupt_enable(cookie);
10496 }
10497 
10498 /*
10499  * Note:  called from cross call context.  This function activates a buffer
10500  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
10501  * is guaranteed by the disabling of interrupts.
10502  */
10503 static void
10504 dtrace_buffer_activate(dtrace_state_t *state)
10505 {
10506         dtrace_buffer_t *buf;
10507         dtrace_icookie_t cookie = dtrace_interrupt_disable();
10508 
10509         buf = &state->dts_buffer[CPU->cpu_id];
10510 
10511         if (buf->dtb_tomax != NULL) {
10512                 /*
10513                  * We might like to assert that the buffer is marked inactive,
10514                  * but this isn't necessarily true:  the buffer for the CPU
10515                  * that processes the BEGIN probe has its buffer activated
10516                  * manually.  In this case, we take the (harmless) action
10517                  * re-clearing the bit INACTIVE bit.
10518                  */
10519                 buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
10520         }
10521 
10522         dtrace_interrupt_enable(cookie);
10523 }
10524 
10525 static int
10526 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
10527     processorid_t cpu, int *factor)
10528 {
10529         cpu_t *cp;
10530         dtrace_buffer_t *buf;
10531         int allocated = 0, desired = 0;
10532 
10533         ASSERT(MUTEX_HELD(&cpu_lock));
10534         ASSERT(MUTEX_HELD(&dtrace_lock));
10535 
10536         *factor = 1;
10537 
10538         if (size > dtrace_nonroot_maxsize &&
10539             !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
10540                 return (EFBIG);
10541 
10542         cp = cpu_list;
10543 
10544         do {
10545                 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10546                         continue;
10547 
10548                 buf = &bufs[cp->cpu_id];
10549 
10550                 /*
10551                  * If there is already a buffer allocated for this CPU, it
10552                  * is only possible that this is a DR event.  In this case,
10553                  * the buffer size must match our specified size.
10554                  */
10555                 if (buf->dtb_tomax != NULL) {
10556                         ASSERT(buf->dtb_size == size);
10557                         continue;
10558                 }
10559 
10560                 ASSERT(buf->dtb_xamot == NULL);
10561 
10562                 if ((buf->dtb_tomax = kmem_zalloc(size,
10563                     KM_NOSLEEP | KM_NORMALPRI)) == NULL)
10564                         goto err;
10565 
10566                 buf->dtb_size = size;
10567                 buf->dtb_flags = flags;
10568                 buf->dtb_offset = 0;
10569                 buf->dtb_drops = 0;
10570 
10571                 if (flags & DTRACEBUF_NOSWITCH)
10572                         continue;
10573 
10574                 if ((buf->dtb_xamot = kmem_zalloc(size,
10575                     KM_NOSLEEP | KM_NORMALPRI)) == NULL)
10576                         goto err;
10577         } while ((cp = cp->cpu_next) != cpu_list);
10578 
10579         return (0);
10580 
10581 err:
10582         cp = cpu_list;
10583 
10584         do {
10585                 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10586                         continue;
10587 
10588                 buf = &bufs[cp->cpu_id];
10589                 desired += 2;
10590 
10591                 if (buf->dtb_xamot != NULL) {
10592                         ASSERT(buf->dtb_tomax != NULL);
10593                         ASSERT(buf->dtb_size == size);
10594                         kmem_free(buf->dtb_xamot, size);
10595                         allocated++;
10596                 }
10597 
10598                 if (buf->dtb_tomax != NULL) {
10599                         ASSERT(buf->dtb_size == size);
10600                         kmem_free(buf->dtb_tomax, size);
10601                         allocated++;
10602                 }
10603 
10604                 buf->dtb_tomax = NULL;
10605                 buf->dtb_xamot = NULL;
10606                 buf->dtb_size = 0;
10607         } while ((cp = cp->cpu_next) != cpu_list);
10608 
10609         *factor = desired / (allocated > 0 ? allocated : 1);
10610 
10611         return (ENOMEM);
10612 }
10613 
10614 /*
10615  * Note:  called from probe context.  This function just increments the drop
10616  * count on a buffer.  It has been made a function to allow for the
10617  * possibility of understanding the source of mysterious drop counts.  (A
10618  * problem for which one may be particularly disappointed that DTrace cannot
10619  * be used to understand DTrace.)
10620  */
10621 static void
10622 dtrace_buffer_drop(dtrace_buffer_t *buf)
10623 {
10624         buf->dtb_drops++;
10625 }
10626 
10627 /*
10628  * Note:  called from probe context.  This function is called to reserve space
10629  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
10630  * mstate.  Returns the new offset in the buffer, or a negative value if an
10631  * error has occurred.
10632  */
10633 static intptr_t
10634 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
10635     dtrace_state_t *state, dtrace_mstate_t *mstate)
10636 {
10637         intptr_t offs = buf->dtb_offset, soffs;
10638         intptr_t woffs;
10639         caddr_t tomax;
10640         size_t total;
10641 
10642         if (buf->dtb_flags & DTRACEBUF_INACTIVE)
10643                 return (-1);
10644 
10645         if ((tomax = buf->dtb_tomax) == NULL) {
10646                 dtrace_buffer_drop(buf);
10647                 return (-1);
10648         }
10649 
10650         if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
10651                 while (offs & (align - 1)) {
10652                         /*
10653                          * Assert that our alignment is off by a number which
10654                          * is itself sizeof (uint32_t) aligned.
10655                          */
10656                         ASSERT(!((align - (offs & (align - 1))) &
10657                             (sizeof (uint32_t) - 1)));
10658                         DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10659                         offs += sizeof (uint32_t);
10660                 }
10661 
10662                 if ((soffs = offs + needed) > buf->dtb_size) {
10663                         dtrace_buffer_drop(buf);
10664                         return (-1);
10665                 }
10666 
10667                 if (mstate == NULL)
10668                         return (offs);
10669 
10670                 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
10671                 mstate->dtms_scratch_size = buf->dtb_size - soffs;
10672                 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10673 
10674                 return (offs);
10675         }
10676 
10677         if (buf->dtb_flags & DTRACEBUF_FILL) {
10678                 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
10679                     (buf->dtb_flags & DTRACEBUF_FULL))
10680                         return (-1);
10681                 goto out;
10682         }
10683 
10684         total = needed + (offs & (align - 1));
10685 
10686         /*
10687          * For a ring buffer, life is quite a bit more complicated.  Before
10688          * we can store any padding, we need to adjust our wrapping offset.
10689          * (If we've never before wrapped or we're not about to, no adjustment
10690          * is required.)
10691          */
10692         if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
10693             offs + total > buf->dtb_size) {
10694                 woffs = buf->dtb_xamot_offset;
10695 
10696                 if (offs + total > buf->dtb_size) {
10697                         /*
10698                          * We can't fit in the end of the buffer.  First, a
10699                          * sanity check that we can fit in the buffer at all.
10700                          */
10701                         if (total > buf->dtb_size) {
10702                                 dtrace_buffer_drop(buf);
10703                                 return (-1);
10704                         }
10705 
10706                         /*
10707                          * We're going to be storing at the top of the buffer,
10708                          * so now we need to deal with the wrapped offset.  We
10709                          * only reset our wrapped offset to 0 if it is
10710                          * currently greater than the current offset.  If it
10711                          * is less than the current offset, it is because a
10712                          * previous allocation induced a wrap -- but the
10713                          * allocation didn't subsequently take the space due
10714                          * to an error or false predicate evaluation.  In this
10715                          * case, we'll just leave the wrapped offset alone: if
10716                          * the wrapped offset hasn't been advanced far enough
10717                          * for this allocation, it will be adjusted in the
10718                          * lower loop.
10719                          */
10720                         if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
10721                                 if (woffs >= offs)
10722                                         woffs = 0;
10723                         } else {
10724                                 woffs = 0;
10725                         }
10726 
10727                         /*
10728                          * Now we know that we're going to be storing to the
10729                          * top of the buffer and that there is room for us
10730                          * there.  We need to clear the buffer from the current
10731                          * offset to the end (there may be old gunk there).
10732                          */
10733                         while (offs < buf->dtb_size)
10734                                 tomax[offs++] = 0;
10735 
10736                         /*
10737                          * We need to set our offset to zero.  And because we
10738                          * are wrapping, we need to set the bit indicating as
10739                          * much.  We can also adjust our needed space back
10740                          * down to the space required by the ECB -- we know
10741                          * that the top of the buffer is aligned.
10742                          */
10743                         offs = 0;
10744                         total = needed;
10745                         buf->dtb_flags |= DTRACEBUF_WRAPPED;
10746                 } else {
10747                         /*
10748                          * There is room for us in the buffer, so we simply
10749                          * need to check the wrapped offset.
10750                          */
10751                         if (woffs < offs) {
10752                                 /*
10753                                  * The wrapped offset is less than the offset.
10754                                  * This can happen if we allocated buffer space
10755                                  * that induced a wrap, but then we didn't
10756                                  * subsequently take the space due to an error
10757                                  * or false predicate evaluation.  This is
10758                                  * okay; we know that _this_ allocation isn't
10759                                  * going to induce a wrap.  We still can't
10760                                  * reset the wrapped offset to be zero,
10761                                  * however: the space may have been trashed in
10762                                  * the previous failed probe attempt.  But at
10763                                  * least the wrapped offset doesn't need to
10764                                  * be adjusted at all...
10765                                  */
10766                                 goto out;
10767                         }
10768                 }
10769 
10770                 while (offs + total > woffs) {
10771                         dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
10772                         size_t size;
10773 
10774                         if (epid == DTRACE_EPIDNONE) {
10775                                 size = sizeof (uint32_t);
10776                         } else {
10777                                 ASSERT(epid <= state->dts_necbs);
10778                                 ASSERT(state->dts_ecbs[epid - 1] != NULL);
10779 
10780                                 size = state->dts_ecbs[epid - 1]->dte_size;
10781                         }
10782 
10783                         ASSERT(woffs + size <= buf->dtb_size);
10784                         ASSERT(size != 0);
10785 
10786                         if (woffs + size == buf->dtb_size) {
10787                                 /*
10788                                  * We've reached the end of the buffer; we want
10789                                  * to set the wrapped offset to 0 and break
10790                                  * out.  However, if the offs is 0, then we're
10791                                  * in a strange edge-condition:  the amount of
10792                                  * space that we want to reserve plus the size
10793                                  * of the record that we're overwriting is
10794                                  * greater than the size of the buffer.  This
10795                                  * is problematic because if we reserve the
10796                                  * space but subsequently don't consume it (due
10797                                  * to a failed predicate or error) the wrapped
10798                                  * offset will be 0 -- yet the EPID at offset 0
10799                                  * will not be committed.  This situation is
10800                                  * relatively easy to deal with:  if we're in
10801                                  * this case, the buffer is indistinguishable
10802                                  * from one that hasn't wrapped; we need only
10803                                  * finish the job by clearing the wrapped bit,
10804                                  * explicitly setting the offset to be 0, and
10805                                  * zero'ing out the old data in the buffer.
10806                                  */
10807                                 if (offs == 0) {
10808                                         buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
10809                                         buf->dtb_offset = 0;
10810                                         woffs = total;
10811 
10812                                         while (woffs < buf->dtb_size)
10813                                                 tomax[woffs++] = 0;
10814                                 }
10815 
10816                                 woffs = 0;
10817                                 break;
10818                         }
10819 
10820                         woffs += size;
10821                 }
10822 
10823                 /*
10824                  * We have a wrapped offset.  It may be that the wrapped offset
10825                  * has become zero -- that's okay.
10826                  */
10827                 buf->dtb_xamot_offset = woffs;
10828         }
10829 
10830 out:
10831         /*
10832          * Now we can plow the buffer with any necessary padding.
10833          */
10834         while (offs & (align - 1)) {
10835                 /*
10836                  * Assert that our alignment is off by a number which
10837                  * is itself sizeof (uint32_t) aligned.
10838                  */
10839                 ASSERT(!((align - (offs & (align - 1))) &
10840                     (sizeof (uint32_t) - 1)));
10841                 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10842                 offs += sizeof (uint32_t);
10843         }
10844 
10845         if (buf->dtb_flags & DTRACEBUF_FILL) {
10846                 if (offs + needed > buf->dtb_size - state->dts_reserve) {
10847                         buf->dtb_flags |= DTRACEBUF_FULL;
10848                         return (-1);
10849                 }
10850         }
10851 
10852         if (mstate == NULL)
10853                 return (offs);
10854 
10855         /*
10856          * For ring buffers and fill buffers, the scratch space is always
10857          * the inactive buffer.
10858          */
10859         mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
10860         mstate->dtms_scratch_size = buf->dtb_size;
10861         mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10862 
10863         return (offs);
10864 }
10865 
10866 static void
10867 dtrace_buffer_polish(dtrace_buffer_t *buf)
10868 {
10869         ASSERT(buf->dtb_flags & DTRACEBUF_RING);
10870         ASSERT(MUTEX_HELD(&dtrace_lock));
10871 
10872         if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
10873                 return;
10874 
10875         /*
10876          * We need to polish the ring buffer.  There are three cases:
10877          *
10878          * - The first (and presumably most common) is that there is no gap
10879          *   between the buffer offset and the wrapped offset.  In this case,
10880          *   there is nothing in the buffer that isn't valid data; we can
10881          *   mark the buffer as polished and return.
10882          *
10883          * - The second (less common than the first but still more common
10884          *   than the third) is that there is a gap between the buffer offset
10885          *   and the wrapped offset, and the wrapped offset is larger than the
10886          *   buffer offset.  This can happen because of an alignment issue, or
10887          *   can happen because of a call to dtrace_buffer_reserve() that
10888          *   didn't subsequently consume the buffer space.  In this case,
10889          *   we need to zero the data from the buffer offset to the wrapped
10890          *   offset.
10891          *
10892          * - The third (and least common) is that there is a gap between the
10893          *   buffer offset and the wrapped offset, but the wrapped offset is
10894          *   _less_ than the buffer offset.  This can only happen because a
10895          *   call to dtrace_buffer_reserve() induced a wrap, but the space
10896          *   was not subsequently consumed.  In this case, we need to zero the
10897          *   space from the offset to the end of the buffer _and_ from the
10898          *   top of the buffer to the wrapped offset.
10899          */
10900         if (buf->dtb_offset < buf->dtb_xamot_offset) {
10901                 bzero(buf->dtb_tomax + buf->dtb_offset,
10902                     buf->dtb_xamot_offset - buf->dtb_offset);
10903         }
10904 
10905         if (buf->dtb_offset > buf->dtb_xamot_offset) {
10906                 bzero(buf->dtb_tomax + buf->dtb_offset,
10907                     buf->dtb_size - buf->dtb_offset);
10908                 bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
10909         }
10910 }
10911 
10912 /*
10913  * This routine determines if data generated at the specified time has likely
10914  * been entirely consumed at user-level.  This routine is called to determine
10915  * if an ECB on a defunct probe (but for an active enabling) can be safely
10916  * disabled and destroyed.
10917  */
10918 static int
10919 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
10920 {
10921         int i;
10922 
10923         for (i = 0; i < NCPU; i++) {
10924                 dtrace_buffer_t *buf = &bufs[i];
10925 
10926                 if (buf->dtb_size == 0)
10927                         continue;
10928 
10929                 if (buf->dtb_flags & DTRACEBUF_RING)
10930                         return (0);
10931 
10932                 if (!buf->dtb_switched && buf->dtb_offset != 0)
10933                         return (0);
10934 
10935                 if (buf->dtb_switched - buf->dtb_interval < when)
10936                         return (0);
10937         }
10938 
10939         return (1);
10940 }
10941 
10942 static void
10943 dtrace_buffer_free(dtrace_buffer_t *bufs)
10944 {
10945         int i;
10946 
10947         for (i = 0; i < NCPU; i++) {
10948                 dtrace_buffer_t *buf = &bufs[i];
10949 
10950                 if (buf->dtb_tomax == NULL) {
10951                         ASSERT(buf->dtb_xamot == NULL);
10952                         ASSERT(buf->dtb_size == 0);
10953                         continue;
10954                 }
10955 
10956                 if (buf->dtb_xamot != NULL) {
10957                         ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10958                         kmem_free(buf->dtb_xamot, buf->dtb_size);
10959                 }
10960 
10961                 kmem_free(buf->dtb_tomax, buf->dtb_size);
10962                 buf->dtb_size = 0;
10963                 buf->dtb_tomax = NULL;
10964                 buf->dtb_xamot = NULL;
10965         }
10966 }
10967 
10968 /*
10969  * DTrace Enabling Functions
10970  */
10971 static dtrace_enabling_t *
10972 dtrace_enabling_create(dtrace_vstate_t *vstate)
10973 {
10974         dtrace_enabling_t *enab;
10975 
10976         enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
10977         enab->dten_vstate = vstate;
10978 
10979         return (enab);
10980 }
10981 
10982 static void
10983 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
10984 {
10985         dtrace_ecbdesc_t **ndesc;
10986         size_t osize, nsize;
10987 
10988         /*
10989          * We can't add to enablings after we've enabled them, or after we've
10990          * retained them.
10991          */
10992         ASSERT(enab->dten_probegen == 0);
10993         ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
10994 
10995         if (enab->dten_ndesc < enab->dten_maxdesc) {
10996                 enab->dten_desc[enab->dten_ndesc++] = ecb;
10997                 return;
10998         }
10999 
11000         osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11001 
11002         if (enab->dten_maxdesc == 0) {
11003                 enab->dten_maxdesc = 1;
11004         } else {
11005                 enab->dten_maxdesc <<= 1;
11006         }
11007 
11008         ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
11009 
11010         nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11011         ndesc = kmem_zalloc(nsize, KM_SLEEP);
11012         bcopy(enab->dten_desc, ndesc, osize);
11013         kmem_free(enab->dten_desc, osize);
11014 
11015         enab->dten_desc = ndesc;
11016         enab->dten_desc[enab->dten_ndesc++] = ecb;
11017 }
11018 
11019 static void
11020 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11021     dtrace_probedesc_t *pd)
11022 {
11023         dtrace_ecbdesc_t *new;
11024         dtrace_predicate_t *pred;
11025         dtrace_actdesc_t *act;
11026 
11027         /*
11028          * We're going to create a new ECB description that matches the
11029          * specified ECB in every way, but has the specified probe description.
11030          */
11031         new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11032 
11033         if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11034                 dtrace_predicate_hold(pred);
11035 
11036         for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11037                 dtrace_actdesc_hold(act);
11038 
11039         new->dted_action = ecb->dted_action;
11040         new->dted_pred = ecb->dted_pred;
11041         new->dted_probe = *pd;
11042         new->dted_uarg = ecb->dted_uarg;
11043 
11044         dtrace_enabling_add(enab, new);
11045 }
11046 
11047 static void
11048 dtrace_enabling_dump(dtrace_enabling_t *enab)
11049 {
11050         int i;
11051 
11052         for (i = 0; i < enab->dten_ndesc; i++) {
11053                 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
11054 
11055                 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
11056                     desc->dtpd_provider, desc->dtpd_mod,
11057                     desc->dtpd_func, desc->dtpd_name);
11058         }
11059 }
11060 
11061 static void
11062 dtrace_enabling_destroy(dtrace_enabling_t *enab)
11063 {
11064         int i;
11065         dtrace_ecbdesc_t *ep;
11066         dtrace_vstate_t *vstate = enab->dten_vstate;
11067 
11068         ASSERT(MUTEX_HELD(&dtrace_lock));
11069 
11070         for (i = 0; i < enab->dten_ndesc; i++) {
11071                 dtrace_actdesc_t *act, *next;
11072                 dtrace_predicate_t *pred;
11073 
11074                 ep = enab->dten_desc[i];
11075 
11076                 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
11077                         dtrace_predicate_release(pred, vstate);
11078 
11079                 for (act = ep->dted_action; act != NULL; act = next) {
11080                         next = act->dtad_next;
11081                         dtrace_actdesc_release(act, vstate);
11082                 }
11083 
11084                 kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11085         }
11086 
11087         kmem_free(enab->dten_desc,
11088             enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
11089 
11090         /*
11091          * If this was a retained enabling, decrement the dts_nretained count
11092          * and take it off of the dtrace_retained list.
11093          */
11094         if (enab->dten_prev != NULL || enab->dten_next != NULL ||
11095             dtrace_retained == enab) {
11096                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11097                 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
11098                 enab->dten_vstate->dtvs_state->dts_nretained--;
11099                 dtrace_retained_gen++;
11100         }
11101 
11102         if (enab->dten_prev == NULL) {
11103                 if (dtrace_retained == enab) {
11104                         dtrace_retained = enab->dten_next;
11105 
11106                         if (dtrace_retained != NULL)
11107                                 dtrace_retained->dten_prev = NULL;
11108                 }
11109         } else {
11110                 ASSERT(enab != dtrace_retained);
11111                 ASSERT(dtrace_retained != NULL);
11112                 enab->dten_prev->dten_next = enab->dten_next;
11113         }
11114 
11115         if (enab->dten_next != NULL) {
11116                 ASSERT(dtrace_retained != NULL);
11117                 enab->dten_next->dten_prev = enab->dten_prev;
11118         }
11119 
11120         kmem_free(enab, sizeof (dtrace_enabling_t));
11121 }
11122 
11123 static int
11124 dtrace_enabling_retain(dtrace_enabling_t *enab)
11125 {
11126         dtrace_state_t *state;
11127 
11128         ASSERT(MUTEX_HELD(&dtrace_lock));
11129         ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11130         ASSERT(enab->dten_vstate != NULL);
11131 
11132         state = enab->dten_vstate->dtvs_state;
11133         ASSERT(state != NULL);
11134 
11135         /*
11136          * We only allow each state to retain dtrace_retain_max enablings.
11137          */
11138         if (state->dts_nretained >= dtrace_retain_max)
11139                 return (ENOSPC);
11140 
11141         state->dts_nretained++;
11142         dtrace_retained_gen++;
11143 
11144         if (dtrace_retained == NULL) {
11145                 dtrace_retained = enab;
11146                 return (0);
11147         }
11148 
11149         enab->dten_next = dtrace_retained;
11150         dtrace_retained->dten_prev = enab;
11151         dtrace_retained = enab;
11152 
11153         return (0);
11154 }
11155 
11156 static int
11157 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11158     dtrace_probedesc_t *create)
11159 {
11160         dtrace_enabling_t *new, *enab;
11161         int found = 0, err = ENOENT;
11162 
11163         ASSERT(MUTEX_HELD(&dtrace_lock));
11164         ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
11165         ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
11166         ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
11167         ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
11168 
11169         new = dtrace_enabling_create(&state->dts_vstate);
11170 
11171         /*
11172          * Iterate over all retained enablings, looking for enablings that
11173          * match the specified state.
11174          */
11175         for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11176                 int i;
11177 
11178                 /*
11179                  * dtvs_state can only be NULL for helper enablings -- and
11180                  * helper enablings can't be retained.
11181                  */
11182                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11183 
11184                 if (enab->dten_vstate->dtvs_state != state)
11185                         continue;
11186 
11187                 /*
11188                  * Now iterate over each probe description; we're looking for
11189                  * an exact match to the specified probe description.
11190                  */
11191                 for (i = 0; i < enab->dten_ndesc; i++) {
11192                         dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11193                         dtrace_probedesc_t *pd = &ep->dted_probe;
11194 
11195                         if (strcmp(pd->dtpd_provider, match->dtpd_provider))
11196                                 continue;
11197 
11198                         if (strcmp(pd->dtpd_mod, match->dtpd_mod))
11199                                 continue;
11200 
11201                         if (strcmp(pd->dtpd_func, match->dtpd_func))
11202                                 continue;
11203 
11204                         if (strcmp(pd->dtpd_name, match->dtpd_name))
11205                                 continue;
11206 
11207                         /*
11208                          * We have a winning probe!  Add it to our growing
11209                          * enabling.
11210                          */
11211                         found = 1;
11212                         dtrace_enabling_addlike(new, ep, create);
11213                 }
11214         }
11215 
11216         if (!found || (err = dtrace_enabling_retain(new)) != 0) {
11217                 dtrace_enabling_destroy(new);
11218                 return (err);
11219         }
11220 
11221         return (0);
11222 }
11223 
11224 static void
11225 dtrace_enabling_retract(dtrace_state_t *state)
11226 {
11227         dtrace_enabling_t *enab, *next;
11228 
11229         ASSERT(MUTEX_HELD(&dtrace_lock));
11230 
11231         /*
11232          * Iterate over all retained enablings, destroy the enablings retained
11233          * for the specified state.
11234          */
11235         for (enab = dtrace_retained; enab != NULL; enab = next) {
11236                 next = enab->dten_next;
11237 
11238                 /*
11239                  * dtvs_state can only be NULL for helper enablings -- and
11240                  * helper enablings can't be retained.
11241                  */
11242                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11243 
11244                 if (enab->dten_vstate->dtvs_state == state) {
11245                         ASSERT(state->dts_nretained > 0);
11246                         dtrace_enabling_destroy(enab);
11247                 }
11248         }
11249 
11250         ASSERT(state->dts_nretained == 0);
11251 }
11252 
11253 static int
11254 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
11255 {
11256         int i = 0;
11257         int total_matched = 0, matched = 0;
11258 
11259         ASSERT(MUTEX_HELD(&cpu_lock));
11260         ASSERT(MUTEX_HELD(&dtrace_lock));
11261 
11262         for (i = 0; i < enab->dten_ndesc; i++) {
11263                 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11264 
11265                 enab->dten_current = ep;
11266                 enab->dten_error = 0;
11267 
11268                 /*
11269                  * If a provider failed to enable a probe then get out and
11270                  * let the consumer know we failed.
11271                  */
11272                 if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0)
11273                         return (EBUSY);
11274 
11275                 total_matched += matched;
11276 
11277                 if (enab->dten_error != 0) {
11278                         /*
11279                          * If we get an error half-way through enabling the
11280                          * probes, we kick out -- perhaps with some number of
11281                          * them enabled.  Leaving enabled probes enabled may
11282                          * be slightly confusing for user-level, but we expect
11283                          * that no one will attempt to actually drive on in
11284                          * the face of such errors.  If this is an anonymous
11285                          * enabling (indicated with a NULL nmatched pointer),
11286                          * we cmn_err() a message.  We aren't expecting to
11287                          * get such an error -- such as it can exist at all,
11288                          * it would be a result of corrupted DOF in the driver
11289                          * properties.
11290                          */
11291                         if (nmatched == NULL) {
11292                                 cmn_err(CE_WARN, "dtrace_enabling_match() "
11293                                     "error on %p: %d", (void *)ep,
11294                                     enab->dten_error);
11295                         }
11296 
11297                         return (enab->dten_error);
11298                 }
11299         }
11300 
11301         enab->dten_probegen = dtrace_probegen;
11302         if (nmatched != NULL)
11303                 *nmatched = total_matched;
11304 
11305         return (0);
11306 }
11307 
11308 static void
11309 dtrace_enabling_matchall(void)
11310 {
11311         dtrace_enabling_t *enab;
11312 
11313         mutex_enter(&cpu_lock);
11314         mutex_enter(&dtrace_lock);
11315 
11316         /*
11317          * Iterate over all retained enablings to see if any probes match
11318          * against them.  We only perform this operation on enablings for which
11319          * we have sufficient permissions by virtue of being in the global zone
11320          * or in the same zone as the DTrace client.  Because we can be called
11321          * after dtrace_detach() has been called, we cannot assert that there
11322          * are retained enablings.  We can safely load from dtrace_retained,
11323          * however:  the taskq_destroy() at the end of dtrace_detach() will
11324          * block pending our completion.
11325          */
11326         for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11327                 dtrace_cred_t *dcr = &enab->dten_vstate->dtvs_state->dts_cred;
11328                 cred_t *cr = dcr->dcr_cred;
11329                 zoneid_t zone = cr != NULL ? crgetzoneid(cr) : 0;
11330 
11331                 if ((dcr->dcr_visible & DTRACE_CRV_ALLZONE) || (cr != NULL &&
11332                     (zone == GLOBAL_ZONEID || getzoneid() == zone)))
11333                         (void) dtrace_enabling_match(enab, NULL);
11334         }
11335 
11336         mutex_exit(&dtrace_lock);
11337         mutex_exit(&cpu_lock);
11338 }
11339 
11340 /*
11341  * If an enabling is to be enabled without having matched probes (that is, if
11342  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11343  * enabling must be _primed_ by creating an ECB for every ECB description.
11344  * This must be done to assure that we know the number of speculations, the
11345  * number of aggregations, the minimum buffer size needed, etc. before we
11346  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
11347  * enabling any probes, we create ECBs for every ECB decription, but with a
11348  * NULL probe -- which is exactly what this function does.
11349  */
11350 static void
11351 dtrace_enabling_prime(dtrace_state_t *state)
11352 {
11353         dtrace_enabling_t *enab;
11354         int i;
11355 
11356         for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11357                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11358 
11359                 if (enab->dten_vstate->dtvs_state != state)
11360                         continue;
11361 
11362                 /*
11363                  * We don't want to prime an enabling more than once, lest
11364                  * we allow a malicious user to induce resource exhaustion.
11365                  * (The ECBs that result from priming an enabling aren't
11366                  * leaked -- but they also aren't deallocated until the
11367                  * consumer state is destroyed.)
11368                  */
11369                 if (enab->dten_primed)
11370                         continue;
11371 
11372                 for (i = 0; i < enab->dten_ndesc; i++) {
11373                         enab->dten_current = enab->dten_desc[i];
11374                         (void) dtrace_probe_enable(NULL, enab);
11375                 }
11376 
11377                 enab->dten_primed = 1;
11378         }
11379 }
11380 
11381 /*
11382  * Called to indicate that probes should be provided due to retained
11383  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
11384  * must take an initial lap through the enabling calling the dtps_provide()
11385  * entry point explicitly to allow for autocreated probes.
11386  */
11387 static void
11388 dtrace_enabling_provide(dtrace_provider_t *prv)
11389 {
11390         int i, all = 0;
11391         dtrace_probedesc_t desc;
11392         dtrace_genid_t gen;
11393 
11394         ASSERT(MUTEX_HELD(&dtrace_lock));
11395         ASSERT(MUTEX_HELD(&dtrace_provider_lock));
11396 
11397         if (prv == NULL) {
11398                 all = 1;
11399                 prv = dtrace_provider;
11400         }
11401 
11402         do {
11403                 dtrace_enabling_t *enab;
11404                 void *parg = prv->dtpv_arg;
11405 
11406 retry:
11407                 gen = dtrace_retained_gen;
11408                 for (enab = dtrace_retained; enab != NULL;
11409                     enab = enab->dten_next) {
11410                         for (i = 0; i < enab->dten_ndesc; i++) {
11411                                 desc = enab->dten_desc[i]->dted_probe;
11412                                 mutex_exit(&dtrace_lock);
11413                                 prv->dtpv_pops.dtps_provide(parg, &desc);
11414                                 mutex_enter(&dtrace_lock);
11415                                 /*
11416                                  * Process the retained enablings again if
11417                                  * they have changed while we weren't holding
11418                                  * dtrace_lock.
11419                                  */
11420                                 if (gen != dtrace_retained_gen)
11421                                         goto retry;
11422                         }
11423                 }
11424         } while (all && (prv = prv->dtpv_next) != NULL);
11425 
11426         mutex_exit(&dtrace_lock);
11427         dtrace_probe_provide(NULL, all ? NULL : prv);
11428         mutex_enter(&dtrace_lock);
11429 }
11430 
11431 /*
11432  * Called to reap ECBs that are attached to probes from defunct providers.
11433  */
11434 static void
11435 dtrace_enabling_reap(void)
11436 {
11437         dtrace_provider_t *prov;
11438         dtrace_probe_t *probe;
11439         dtrace_ecb_t *ecb;
11440         hrtime_t when;
11441         int i;
11442 
11443         mutex_enter(&cpu_lock);
11444         mutex_enter(&dtrace_lock);
11445 
11446         for (i = 0; i < dtrace_nprobes; i++) {
11447                 if ((probe = dtrace_probes[i]) == NULL)
11448                         continue;
11449 
11450                 if (probe->dtpr_ecb == NULL)
11451                         continue;
11452 
11453                 prov = probe->dtpr_provider;
11454 
11455                 if ((when = prov->dtpv_defunct) == 0)
11456                         continue;
11457 
11458                 /*
11459                  * We have ECBs on a defunct provider:  we want to reap these
11460                  * ECBs to allow the provider to unregister.  The destruction
11461                  * of these ECBs must be done carefully:  if we destroy the ECB
11462                  * and the consumer later wishes to consume an EPID that
11463                  * corresponds to the destroyed ECB (and if the EPID metadata
11464                  * has not been previously consumed), the consumer will abort
11465                  * processing on the unknown EPID.  To reduce (but not, sadly,
11466                  * eliminate) the possibility of this, we will only destroy an
11467                  * ECB for a defunct provider if, for the state that
11468                  * corresponds to the ECB:
11469                  *
11470                  *  (a) There is no speculative tracing (which can effectively
11471                  *      cache an EPID for an arbitrary amount of time).
11472                  *
11473                  *  (b) The principal buffers have been switched twice since the
11474                  *      provider became defunct.
11475                  *
11476                  *  (c) The aggregation buffers are of zero size or have been
11477                  *      switched twice since the provider became defunct.
11478                  *
11479                  * We use dts_speculates to determine (a) and call a function
11480                  * (dtrace_buffer_consumed()) to determine (b) and (c).  Note
11481                  * that as soon as we've been unable to destroy one of the ECBs
11482                  * associated with the probe, we quit trying -- reaping is only
11483                  * fruitful in as much as we can destroy all ECBs associated
11484                  * with the defunct provider's probes.
11485                  */
11486                 while ((ecb = probe->dtpr_ecb) != NULL) {
11487                         dtrace_state_t *state = ecb->dte_state;
11488                         dtrace_buffer_t *buf = state->dts_buffer;
11489                         dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
11490 
11491                         if (state->dts_speculates)
11492                                 break;
11493 
11494                         if (!dtrace_buffer_consumed(buf, when))
11495                                 break;
11496 
11497                         if (!dtrace_buffer_consumed(aggbuf, when))
11498                                 break;
11499 
11500                         dtrace_ecb_disable(ecb);
11501                         ASSERT(probe->dtpr_ecb != ecb);
11502                         dtrace_ecb_destroy(ecb);
11503                 }
11504         }
11505 
11506         mutex_exit(&dtrace_lock);
11507         mutex_exit(&cpu_lock);
11508 }
11509 
11510 /*
11511  * DTrace DOF Functions
11512  */
11513 /*ARGSUSED*/
11514 static void
11515 dtrace_dof_error(dof_hdr_t *dof, const char *str)
11516 {
11517         if (dtrace_err_verbose)
11518                 cmn_err(CE_WARN, "failed to process DOF: %s", str);
11519 
11520 #ifdef DTRACE_ERRDEBUG
11521         dtrace_errdebug(str);
11522 #endif
11523 }
11524 
11525 /*
11526  * Create DOF out of a currently enabled state.  Right now, we only create
11527  * DOF containing the run-time options -- but this could be expanded to create
11528  * complete DOF representing the enabled state.
11529  */
11530 static dof_hdr_t *
11531 dtrace_dof_create(dtrace_state_t *state)
11532 {
11533         dof_hdr_t *dof;
11534         dof_sec_t *sec;
11535         dof_optdesc_t *opt;
11536         int i, len = sizeof (dof_hdr_t) +
11537             roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
11538             sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11539 
11540         ASSERT(MUTEX_HELD(&dtrace_lock));
11541 
11542         dof = kmem_zalloc(len, KM_SLEEP);
11543         dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
11544         dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
11545         dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
11546         dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
11547 
11548         dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
11549         dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
11550         dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
11551         dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
11552         dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
11553         dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
11554 
11555         dof->dofh_flags = 0;
11556         dof->dofh_hdrsize = sizeof (dof_hdr_t);
11557         dof->dofh_secsize = sizeof (dof_sec_t);
11558         dof->dofh_secnum = 1;        /* only DOF_SECT_OPTDESC */
11559         dof->dofh_secoff = sizeof (dof_hdr_t);
11560         dof->dofh_loadsz = len;
11561         dof->dofh_filesz = len;
11562         dof->dofh_pad = 0;
11563 
11564         /*
11565          * Fill in the option section header...
11566          */
11567         sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
11568         sec->dofs_type = DOF_SECT_OPTDESC;
11569         sec->dofs_align = sizeof (uint64_t);
11570         sec->dofs_flags = DOF_SECF_LOAD;
11571         sec->dofs_entsize = sizeof (dof_optdesc_t);
11572 
11573         opt = (dof_optdesc_t *)((uintptr_t)sec +
11574             roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
11575 
11576         sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
11577         sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11578 
11579         for (i = 0; i < DTRACEOPT_MAX; i++) {
11580                 opt[i].dofo_option = i;
11581                 opt[i].dofo_strtab = DOF_SECIDX_NONE;
11582                 opt[i].dofo_value = state->dts_options[i];
11583         }
11584 
11585         return (dof);
11586 }
11587 
11588 static dof_hdr_t *
11589 dtrace_dof_copyin(uintptr_t uarg, int *errp)
11590 {
11591         dof_hdr_t hdr, *dof;
11592 
11593         ASSERT(!MUTEX_HELD(&dtrace_lock));
11594 
11595         /*
11596          * First, we're going to copyin() the sizeof (dof_hdr_t).
11597          */
11598         if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
11599                 dtrace_dof_error(NULL, "failed to copyin DOF header");
11600                 *errp = EFAULT;
11601                 return (NULL);
11602         }
11603 
11604         /*
11605          * Now we'll allocate the entire DOF and copy it in -- provided
11606          * that the length isn't outrageous.
11607          */
11608         if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
11609                 dtrace_dof_error(&hdr, "load size exceeds maximum");
11610                 *errp = E2BIG;
11611                 return (NULL);
11612         }
11613 
11614         if (hdr.dofh_loadsz < sizeof (hdr)) {
11615                 dtrace_dof_error(&hdr, "invalid load size");
11616                 *errp = EINVAL;
11617                 return (NULL);
11618         }
11619 
11620         dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
11621 
11622         if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
11623             dof->dofh_loadsz != hdr.dofh_loadsz) {
11624                 kmem_free(dof, hdr.dofh_loadsz);
11625                 *errp = EFAULT;
11626                 return (NULL);
11627         }
11628 
11629         return (dof);
11630 }
11631 
11632 static dof_hdr_t *
11633 dtrace_dof_property(const char *name)
11634 {
11635         uchar_t *buf;
11636         uint64_t loadsz;
11637         unsigned int len, i;
11638         dof_hdr_t *dof;
11639 
11640         /*
11641          * Unfortunately, array of values in .conf files are always (and
11642          * only) interpreted to be integer arrays.  We must read our DOF
11643          * as an integer array, and then squeeze it into a byte array.
11644          */
11645         if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
11646             (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
11647                 return (NULL);
11648 
11649         for (i = 0; i < len; i++)
11650                 buf[i] = (uchar_t)(((int *)buf)[i]);
11651 
11652         if (len < sizeof (dof_hdr_t)) {
11653                 ddi_prop_free(buf);
11654                 dtrace_dof_error(NULL, "truncated header");
11655                 return (NULL);
11656         }
11657 
11658         if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
11659                 ddi_prop_free(buf);
11660                 dtrace_dof_error(NULL, "truncated DOF");
11661                 return (NULL);
11662         }
11663 
11664         if (loadsz >= dtrace_dof_maxsize) {
11665                 ddi_prop_free(buf);
11666                 dtrace_dof_error(NULL, "oversized DOF");
11667                 return (NULL);
11668         }
11669 
11670         dof = kmem_alloc(loadsz, KM_SLEEP);
11671         bcopy(buf, dof, loadsz);
11672         ddi_prop_free(buf);
11673 
11674         return (dof);
11675 }
11676 
11677 static void
11678 dtrace_dof_destroy(dof_hdr_t *dof)
11679 {
11680         kmem_free(dof, dof->dofh_loadsz);
11681 }
11682 
11683 /*
11684  * Return the dof_sec_t pointer corresponding to a given section index.  If the
11685  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
11686  * a type other than DOF_SECT_NONE is specified, the header is checked against
11687  * this type and NULL is returned if the types do not match.
11688  */
11689 static dof_sec_t *
11690 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
11691 {
11692         dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
11693             ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
11694 
11695         if (i >= dof->dofh_secnum) {
11696                 dtrace_dof_error(dof, "referenced section index is invalid");
11697                 return (NULL);
11698         }
11699 
11700         if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
11701                 dtrace_dof_error(dof, "referenced section is not loadable");
11702                 return (NULL);
11703         }
11704 
11705         if (type != DOF_SECT_NONE && type != sec->dofs_type) {
11706                 dtrace_dof_error(dof, "referenced section is the wrong type");
11707                 return (NULL);
11708         }
11709 
11710         return (sec);
11711 }
11712 
11713 static dtrace_probedesc_t *
11714 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
11715 {
11716         dof_probedesc_t *probe;
11717         dof_sec_t *strtab;
11718         uintptr_t daddr = (uintptr_t)dof;
11719         uintptr_t str;
11720         size_t size;
11721 
11722         if (sec->dofs_type != DOF_SECT_PROBEDESC) {
11723                 dtrace_dof_error(dof, "invalid probe section");
11724                 return (NULL);
11725         }
11726 
11727         if (sec->dofs_align != sizeof (dof_secidx_t)) {
11728                 dtrace_dof_error(dof, "bad alignment in probe description");
11729                 return (NULL);
11730         }
11731 
11732         if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
11733                 dtrace_dof_error(dof, "truncated probe description");
11734                 return (NULL);
11735         }
11736 
11737         probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
11738         strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
11739 
11740         if (strtab == NULL)
11741                 return (NULL);
11742 
11743         str = daddr + strtab->dofs_offset;
11744         size = strtab->dofs_size;
11745 
11746         if (probe->dofp_provider >= strtab->dofs_size) {
11747                 dtrace_dof_error(dof, "corrupt probe provider");
11748                 return (NULL);
11749         }
11750 
11751         (void) strncpy(desc->dtpd_provider,
11752             (char *)(str + probe->dofp_provider),
11753             MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
11754 
11755         if (probe->dofp_mod >= strtab->dofs_size) {
11756                 dtrace_dof_error(dof, "corrupt probe module");
11757                 return (NULL);
11758         }
11759 
11760         (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
11761             MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
11762 
11763         if (probe->dofp_func >= strtab->dofs_size) {
11764                 dtrace_dof_error(dof, "corrupt probe function");
11765                 return (NULL);
11766         }
11767 
11768         (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
11769             MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
11770 
11771         if (probe->dofp_name >= strtab->dofs_size) {
11772                 dtrace_dof_error(dof, "corrupt probe name");
11773                 return (NULL);
11774         }
11775 
11776         (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
11777             MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
11778 
11779         return (desc);
11780 }
11781 
11782 static dtrace_difo_t *
11783 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11784     cred_t *cr)
11785 {
11786         dtrace_difo_t *dp;
11787         size_t ttl = 0;
11788         dof_difohdr_t *dofd;
11789         uintptr_t daddr = (uintptr_t)dof;
11790         size_t max = dtrace_difo_maxsize;
11791         int i, l, n;
11792 
11793         static const struct {
11794                 int section;
11795                 int bufoffs;
11796                 int lenoffs;
11797                 int entsize;
11798                 int align;
11799                 const char *msg;
11800         } difo[] = {
11801                 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
11802                 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
11803                 sizeof (dif_instr_t), "multiple DIF sections" },
11804 
11805                 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
11806                 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
11807                 sizeof (uint64_t), "multiple integer tables" },
11808 
11809                 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
11810                 offsetof(dtrace_difo_t, dtdo_strlen), 0,
11811                 sizeof (char), "multiple string tables" },
11812 
11813                 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
11814                 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
11815                 sizeof (uint_t), "multiple variable tables" },
11816 
11817                 { DOF_SECT_NONE, 0, 0, 0, NULL }
11818         };
11819 
11820         if (sec->dofs_type != DOF_SECT_DIFOHDR) {
11821                 dtrace_dof_error(dof, "invalid DIFO header section");
11822                 return (NULL);
11823         }
11824 
11825         if (sec->dofs_align != sizeof (dof_secidx_t)) {
11826                 dtrace_dof_error(dof, "bad alignment in DIFO header");
11827                 return (NULL);
11828         }
11829 
11830         if (sec->dofs_size < sizeof (dof_difohdr_t) ||
11831             sec->dofs_size % sizeof (dof_secidx_t)) {
11832                 dtrace_dof_error(dof, "bad size in DIFO header");
11833                 return (NULL);
11834         }
11835 
11836         dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
11837         n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
11838 
11839         dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
11840         dp->dtdo_rtype = dofd->dofd_rtype;
11841 
11842         for (l = 0; l < n; l++) {
11843                 dof_sec_t *subsec;
11844                 void **bufp;
11845                 uint32_t *lenp;
11846 
11847                 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
11848                     dofd->dofd_links[l])) == NULL)
11849                         goto err; /* invalid section link */
11850 
11851                 if (ttl + subsec->dofs_size > max) {
11852                         dtrace_dof_error(dof, "exceeds maximum size");
11853                         goto err;
11854                 }
11855 
11856                 ttl += subsec->dofs_size;
11857 
11858                 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
11859                         if (subsec->dofs_type != difo[i].section)
11860                                 continue;
11861 
11862                         if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
11863                                 dtrace_dof_error(dof, "section not loaded");
11864                                 goto err;
11865                         }
11866 
11867                         if (subsec->dofs_align != difo[i].align) {
11868                                 dtrace_dof_error(dof, "bad alignment");
11869                                 goto err;
11870                         }
11871 
11872                         bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
11873                         lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
11874 
11875                         if (*bufp != NULL) {
11876                                 dtrace_dof_error(dof, difo[i].msg);
11877                                 goto err;
11878                         }
11879 
11880                         if (difo[i].entsize != subsec->dofs_entsize) {
11881                                 dtrace_dof_error(dof, "entry size mismatch");
11882                                 goto err;
11883                         }
11884 
11885                         if (subsec->dofs_entsize != 0 &&
11886                             (subsec->dofs_size % subsec->dofs_entsize) != 0) {
11887                                 dtrace_dof_error(dof, "corrupt entry size");
11888                                 goto err;
11889                         }
11890 
11891                         *lenp = subsec->dofs_size;
11892                         *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
11893                         bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
11894                             *bufp, subsec->dofs_size);
11895 
11896                         if (subsec->dofs_entsize != 0)
11897                                 *lenp /= subsec->dofs_entsize;
11898 
11899                         break;
11900                 }
11901 
11902                 /*
11903                  * If we encounter a loadable DIFO sub-section that is not
11904                  * known to us, assume this is a broken program and fail.
11905                  */
11906                 if (difo[i].section == DOF_SECT_NONE &&
11907                     (subsec->dofs_flags & DOF_SECF_LOAD)) {
11908                         dtrace_dof_error(dof, "unrecognized DIFO subsection");
11909                         goto err;
11910                 }
11911         }
11912 
11913         if (dp->dtdo_buf == NULL) {
11914                 /*
11915                  * We can't have a DIF object without DIF text.
11916                  */
11917                 dtrace_dof_error(dof, "missing DIF text");
11918                 goto err;
11919         }
11920 
11921         /*
11922          * Before we validate the DIF object, run through the variable table
11923          * looking for the strings -- if any of their size are under, we'll set
11924          * their size to be the system-wide default string size.  Note that
11925          * this should _not_ happen if the "strsize" option has been set --
11926          * in this case, the compiler should have set the size to reflect the
11927          * setting of the option.
11928          */
11929         for (i = 0; i < dp->dtdo_varlen; i++) {
11930                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
11931                 dtrace_diftype_t *t = &v->dtdv_type;
11932 
11933                 if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
11934                         continue;
11935 
11936                 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
11937                         t->dtdt_size = dtrace_strsize_default;
11938         }
11939 
11940         if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
11941                 goto err;
11942 
11943         dtrace_difo_init(dp, vstate);
11944         return (dp);
11945 
11946 err:
11947         kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
11948         kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
11949         kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
11950         kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
11951 
11952         kmem_free(dp, sizeof (dtrace_difo_t));
11953         return (NULL);
11954 }
11955 
11956 static dtrace_predicate_t *
11957 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11958     cred_t *cr)
11959 {
11960         dtrace_difo_t *dp;
11961 
11962         if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
11963                 return (NULL);
11964 
11965         return (dtrace_predicate_create(dp));
11966 }
11967 
11968 static dtrace_actdesc_t *
11969 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11970     cred_t *cr)
11971 {
11972         dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
11973         dof_actdesc_t *desc;
11974         dof_sec_t *difosec;
11975         size_t offs;
11976         uintptr_t daddr = (uintptr_t)dof;
11977         uint64_t arg;
11978         dtrace_actkind_t kind;
11979 
11980         if (sec->dofs_type != DOF_SECT_ACTDESC) {
11981                 dtrace_dof_error(dof, "invalid action section");
11982                 return (NULL);
11983         }
11984 
11985         if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
11986                 dtrace_dof_error(dof, "truncated action description");
11987                 return (NULL);
11988         }
11989 
11990         if (sec->dofs_align != sizeof (uint64_t)) {
11991                 dtrace_dof_error(dof, "bad alignment in action description");
11992                 return (NULL);
11993         }
11994 
11995         if (sec->dofs_size < sec->dofs_entsize) {
11996                 dtrace_dof_error(dof, "section entry size exceeds total size");
11997                 return (NULL);
11998         }
11999 
12000         if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12001                 dtrace_dof_error(dof, "bad entry size in action description");
12002                 return (NULL);
12003         }
12004 
12005         if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12006                 dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12007                 return (NULL);
12008         }
12009 
12010         for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12011                 desc = (dof_actdesc_t *)(daddr +
12012                     (uintptr_t)sec->dofs_offset + offs);
12013                 kind = (dtrace_actkind_t)desc->dofa_kind;
12014 
12015                 if ((DTRACEACT_ISPRINTFLIKE(kind) &&
12016                     (kind != DTRACEACT_PRINTA ||
12017                     desc->dofa_strtab != DOF_SECIDX_NONE)) ||
12018                     (kind == DTRACEACT_DIFEXPR &&
12019                     desc->dofa_strtab != DOF_SECIDX_NONE)) {
12020                         dof_sec_t *strtab;
12021                         char *str, *fmt;
12022                         uint64_t i;
12023 
12024                         /*
12025                          * The argument to these actions is an index into the
12026                          * DOF string table.  For printf()-like actions, this
12027                          * is the format string.  For print(), this is the
12028                          * CTF type of the expression result.
12029                          */
12030                         if ((strtab = dtrace_dof_sect(dof,
12031                             DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12032                                 goto err;
12033 
12034                         str = (char *)((uintptr_t)dof +
12035                             (uintptr_t)strtab->dofs_offset);
12036 
12037                         for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12038                                 if (str[i] == '\0')
12039                                         break;
12040                         }
12041 
12042                         if (i >= strtab->dofs_size) {
12043                                 dtrace_dof_error(dof, "bogus format string");
12044                                 goto err;
12045                         }
12046 
12047                         if (i == desc->dofa_arg) {
12048                                 dtrace_dof_error(dof, "empty format string");
12049                                 goto err;
12050                         }
12051 
12052                         i -= desc->dofa_arg;
12053                         fmt = kmem_alloc(i + 1, KM_SLEEP);
12054                         bcopy(&str[desc->dofa_arg], fmt, i + 1);
12055                         arg = (uint64_t)(uintptr_t)fmt;
12056                 } else {
12057                         if (kind == DTRACEACT_PRINTA) {
12058                                 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
12059                                 arg = 0;
12060                         } else {
12061                                 arg = desc->dofa_arg;
12062                         }
12063                 }
12064 
12065                 act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
12066                     desc->dofa_uarg, arg);
12067 
12068                 if (last != NULL) {
12069                         last->dtad_next = act;
12070                 } else {
12071                         first = act;
12072                 }
12073 
12074                 last = act;
12075 
12076                 if (desc->dofa_difo == DOF_SECIDX_NONE)
12077                         continue;
12078 
12079                 if ((difosec = dtrace_dof_sect(dof,
12080                     DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
12081                         goto err;
12082 
12083                 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
12084 
12085                 if (act->dtad_difo == NULL)
12086                         goto err;
12087         }
12088 
12089         ASSERT(first != NULL);
12090         return (first);
12091 
12092 err:
12093         for (act = first; act != NULL; act = next) {
12094                 next = act->dtad_next;
12095                 dtrace_actdesc_release(act, vstate);
12096         }
12097 
12098         return (NULL);
12099 }
12100 
12101 static dtrace_ecbdesc_t *
12102 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12103     cred_t *cr)
12104 {
12105         dtrace_ecbdesc_t *ep;
12106         dof_ecbdesc_t *ecb;
12107         dtrace_probedesc_t *desc;
12108         dtrace_predicate_t *pred = NULL;
12109 
12110         if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
12111                 dtrace_dof_error(dof, "truncated ECB description");
12112                 return (NULL);
12113         }
12114 
12115         if (sec->dofs_align != sizeof (uint64_t)) {
12116                 dtrace_dof_error(dof, "bad alignment in ECB description");
12117                 return (NULL);
12118         }
12119 
12120         ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
12121         sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
12122 
12123         if (sec == NULL)
12124                 return (NULL);
12125 
12126         ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12127         ep->dted_uarg = ecb->dofe_uarg;
12128         desc = &ep->dted_probe;
12129 
12130         if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
12131                 goto err;
12132 
12133         if (ecb->dofe_pred != DOF_SECIDX_NONE) {
12134                 if ((sec = dtrace_dof_sect(dof,
12135                     DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
12136                         goto err;
12137 
12138                 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
12139                         goto err;
12140 
12141                 ep->dted_pred.dtpdd_predicate = pred;
12142         }
12143 
12144         if (ecb->dofe_actions != DOF_SECIDX_NONE) {
12145                 if ((sec = dtrace_dof_sect(dof,
12146                     DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
12147                         goto err;
12148 
12149                 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
12150 
12151                 if (ep->dted_action == NULL)
12152                         goto err;
12153         }
12154 
12155         return (ep);
12156 
12157 err:
12158         if (pred != NULL)
12159                 dtrace_predicate_release(pred, vstate);
12160         kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12161         return (NULL);
12162 }
12163 
12164 /*
12165  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
12166  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
12167  * site of any user SETX relocations to account for load object base address.
12168  * In the future, if we need other relocations, this function can be extended.
12169  */
12170 static int
12171 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
12172 {
12173         uintptr_t daddr = (uintptr_t)dof;
12174         dof_relohdr_t *dofr =
12175             (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12176         dof_sec_t *ss, *rs, *ts;
12177         dof_relodesc_t *r;
12178         uint_t i, n;
12179 
12180         if (sec->dofs_size < sizeof (dof_relohdr_t) ||
12181             sec->dofs_align != sizeof (dof_secidx_t)) {
12182                 dtrace_dof_error(dof, "invalid relocation header");
12183                 return (-1);
12184         }
12185 
12186         ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
12187         rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
12188         ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
12189 
12190         if (ss == NULL || rs == NULL || ts == NULL)
12191                 return (-1); /* dtrace_dof_error() has been called already */
12192 
12193         if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
12194             rs->dofs_align != sizeof (uint64_t)) {
12195                 dtrace_dof_error(dof, "invalid relocation section");
12196                 return (-1);
12197         }
12198 
12199         r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
12200         n = rs->dofs_size / rs->dofs_entsize;
12201 
12202         for (i = 0; i < n; i++) {
12203                 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
12204 
12205                 switch (r->dofr_type) {
12206                 case DOF_RELO_NONE:
12207                         break;
12208                 case DOF_RELO_SETX:
12209                         if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
12210                             sizeof (uint64_t) > ts->dofs_size) {
12211                                 dtrace_dof_error(dof, "bad relocation offset");
12212                                 return (-1);
12213                         }
12214 
12215                         if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
12216                                 dtrace_dof_error(dof, "misaligned setx relo");
12217                                 return (-1);
12218                         }
12219 
12220                         *(uint64_t *)taddr += ubase;
12221                         break;
12222                 default:
12223                         dtrace_dof_error(dof, "invalid relocation type");
12224                         return (-1);
12225                 }
12226 
12227                 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
12228         }
12229 
12230         return (0);
12231 }
12232 
12233 /*
12234  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12235  * header:  it should be at the front of a memory region that is at least
12236  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12237  * size.  It need not be validated in any other way.
12238  */
12239 static int
12240 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12241     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12242 {
12243         uint64_t len = dof->dofh_loadsz, seclen;
12244         uintptr_t daddr = (uintptr_t)dof;
12245         dtrace_ecbdesc_t *ep;
12246         dtrace_enabling_t *enab;
12247         uint_t i;
12248 
12249         ASSERT(MUTEX_HELD(&dtrace_lock));
12250         ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
12251 
12252         /*
12253          * Check the DOF header identification bytes.  In addition to checking
12254          * valid settings, we also verify that unused bits/bytes are zeroed so
12255          * we can use them later without fear of regressing existing binaries.
12256          */
12257         if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
12258             DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
12259                 dtrace_dof_error(dof, "DOF magic string mismatch");
12260                 return (-1);
12261         }
12262 
12263         if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
12264             dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
12265                 dtrace_dof_error(dof, "DOF has invalid data model");
12266                 return (-1);
12267         }
12268 
12269         if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
12270                 dtrace_dof_error(dof, "DOF encoding mismatch");
12271                 return (-1);
12272         }
12273 
12274         if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
12275             dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
12276                 dtrace_dof_error(dof, "DOF version mismatch");
12277                 return (-1);
12278         }
12279 
12280         if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
12281                 dtrace_dof_error(dof, "DOF uses unsupported instruction set");
12282                 return (-1);
12283         }
12284 
12285         if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
12286                 dtrace_dof_error(dof, "DOF uses too many integer registers");
12287                 return (-1);
12288         }
12289 
12290         if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
12291                 dtrace_dof_error(dof, "DOF uses too many tuple registers");
12292                 return (-1);
12293         }
12294 
12295         for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
12296                 if (dof->dofh_ident[i] != 0) {
12297                         dtrace_dof_error(dof, "DOF has invalid ident byte set");
12298                         return (-1);
12299                 }
12300         }
12301 
12302         if (dof->dofh_flags & ~DOF_FL_VALID) {
12303                 dtrace_dof_error(dof, "DOF has invalid flag bits set");
12304                 return (-1);
12305         }
12306 
12307         if (dof->dofh_secsize == 0) {
12308                 dtrace_dof_error(dof, "zero section header size");
12309                 return (-1);
12310         }
12311 
12312         /*
12313          * Check that the section headers don't exceed the amount of DOF
12314          * data.  Note that we cast the section size and number of sections
12315          * to uint64_t's to prevent possible overflow in the multiplication.
12316          */
12317         seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
12318 
12319         if (dof->dofh_secoff > len || seclen > len ||
12320             dof->dofh_secoff + seclen > len) {
12321                 dtrace_dof_error(dof, "truncated section headers");
12322                 return (-1);
12323         }
12324 
12325         if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
12326                 dtrace_dof_error(dof, "misaligned section headers");
12327                 return (-1);
12328         }
12329 
12330         if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
12331                 dtrace_dof_error(dof, "misaligned section size");
12332                 return (-1);
12333         }
12334 
12335         /*
12336          * Take an initial pass through the section headers to be sure that
12337          * the headers don't have stray offsets.  If the 'noprobes' flag is
12338          * set, do not permit sections relating to providers, probes, or args.
12339          */
12340         for (i = 0; i < dof->dofh_secnum; i++) {
12341                 dof_sec_t *sec = (dof_sec_t *)(daddr +
12342                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12343 
12344                 if (noprobes) {
12345                         switch (sec->dofs_type) {
12346                         case DOF_SECT_PROVIDER:
12347                         case DOF_SECT_PROBES:
12348                         case DOF_SECT_PRARGS:
12349                         case DOF_SECT_PROFFS:
12350                                 dtrace_dof_error(dof, "illegal sections "
12351                                     "for enabling");
12352                                 return (-1);
12353                         }
12354                 }
12355 
12356                 if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
12357                     !(sec->dofs_flags & DOF_SECF_LOAD)) {
12358                         dtrace_dof_error(dof, "loadable section with load "
12359                             "flag unset");
12360                         return (-1);
12361                 }
12362 
12363                 if (!(sec->dofs_flags & DOF_SECF_LOAD))
12364                         continue; /* just ignore non-loadable sections */
12365 
12366                 if (sec->dofs_align & (sec->dofs_align - 1)) {
12367                         dtrace_dof_error(dof, "bad section alignment");
12368                         return (-1);
12369                 }
12370 
12371                 if (sec->dofs_offset & (sec->dofs_align - 1)) {
12372                         dtrace_dof_error(dof, "misaligned section");
12373                         return (-1);
12374                 }
12375 
12376                 if (sec->dofs_offset > len || sec->dofs_size > len ||
12377                     sec->dofs_offset + sec->dofs_size > len) {
12378                         dtrace_dof_error(dof, "corrupt section header");
12379                         return (-1);
12380                 }
12381 
12382                 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
12383                     sec->dofs_offset + sec->dofs_size - 1) != '\0') {
12384                         dtrace_dof_error(dof, "non-terminating string table");
12385                         return (-1);
12386                 }
12387         }
12388 
12389         /*
12390          * Take a second pass through the sections and locate and perform any
12391          * relocations that are present.  We do this after the first pass to
12392          * be sure that all sections have had their headers validated.
12393          */
12394         for (i = 0; i < dof->dofh_secnum; i++) {
12395                 dof_sec_t *sec = (dof_sec_t *)(daddr +
12396                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12397 
12398                 if (!(sec->dofs_flags & DOF_SECF_LOAD))
12399                         continue; /* skip sections that are not loadable */
12400 
12401                 switch (sec->dofs_type) {
12402                 case DOF_SECT_URELHDR:
12403                         if (dtrace_dof_relocate(dof, sec, ubase) != 0)
12404                                 return (-1);
12405                         break;
12406                 }
12407         }
12408 
12409         if ((enab = *enabp) == NULL)
12410                 enab = *enabp = dtrace_enabling_create(vstate);
12411 
12412         for (i = 0; i < dof->dofh_secnum; i++) {
12413                 dof_sec_t *sec = (dof_sec_t *)(daddr +
12414                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12415 
12416                 if (sec->dofs_type != DOF_SECT_ECBDESC)
12417                         continue;
12418 
12419                 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
12420                         dtrace_enabling_destroy(enab);
12421                         *enabp = NULL;
12422                         return (-1);
12423                 }
12424 
12425                 dtrace_enabling_add(enab, ep);
12426         }
12427 
12428         return (0);
12429 }
12430 
12431 /*
12432  * Process DOF for any options.  This routine assumes that the DOF has been
12433  * at least processed by dtrace_dof_slurp().
12434  */
12435 static int
12436 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
12437 {
12438         int i, rval;
12439         uint32_t entsize;
12440         size_t offs;
12441         dof_optdesc_t *desc;
12442 
12443         for (i = 0; i < dof->dofh_secnum; i++) {
12444                 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
12445                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12446 
12447                 if (sec->dofs_type != DOF_SECT_OPTDESC)
12448                         continue;
12449 
12450                 if (sec->dofs_align != sizeof (uint64_t)) {
12451                         dtrace_dof_error(dof, "bad alignment in "
12452                             "option description");
12453                         return (EINVAL);
12454                 }
12455 
12456                 if ((entsize = sec->dofs_entsize) == 0) {
12457                         dtrace_dof_error(dof, "zeroed option entry size");
12458                         return (EINVAL);
12459                 }
12460 
12461                 if (entsize < sizeof (dof_optdesc_t)) {
12462                         dtrace_dof_error(dof, "bad option entry size");
12463                         return (EINVAL);
12464                 }
12465 
12466                 for (offs = 0; offs < sec->dofs_size; offs += entsize) {
12467                         desc = (dof_optdesc_t *)((uintptr_t)dof +
12468                             (uintptr_t)sec->dofs_offset + offs);
12469 
12470                         if (desc->dofo_strtab != DOF_SECIDX_NONE) {
12471                                 dtrace_dof_error(dof, "non-zero option string");
12472                                 return (EINVAL);
12473                         }
12474 
12475                         if (desc->dofo_value == DTRACEOPT_UNSET) {
12476                                 dtrace_dof_error(dof, "unset option");
12477                                 return (EINVAL);
12478                         }
12479 
12480                         if ((rval = dtrace_state_option(state,
12481                             desc->dofo_option, desc->dofo_value)) != 0) {
12482                                 dtrace_dof_error(dof, "rejected option");
12483                                 return (rval);
12484                         }
12485                 }
12486         }
12487 
12488         return (0);
12489 }
12490 
12491 /*
12492  * DTrace Consumer State Functions
12493  */
12494 int
12495 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
12496 {
12497         size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
12498         void *base;
12499         uintptr_t limit;
12500         dtrace_dynvar_t *dvar, *next, *start;
12501         int i;
12502 
12503         ASSERT(MUTEX_HELD(&dtrace_lock));
12504         ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
12505 
12506         bzero(dstate, sizeof (dtrace_dstate_t));
12507 
12508         if ((dstate->dtds_chunksize = chunksize) == 0)
12509                 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
12510 
12511         if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
12512                 size = min;
12513 
12514         if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12515                 return (ENOMEM);
12516 
12517         dstate->dtds_size = size;
12518         dstate->dtds_base = base;
12519         dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
12520         bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
12521 
12522         hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
12523 
12524         if (hashsize != 1 && (hashsize & 1))
12525                 hashsize--;
12526 
12527         dstate->dtds_hashsize = hashsize;
12528         dstate->dtds_hash = dstate->dtds_base;
12529 
12530         /*
12531          * Set all of our hash buckets to point to the single sink, and (if
12532          * it hasn't already been set), set the sink's hash value to be the
12533          * sink sentinel value.  The sink is needed for dynamic variable
12534          * lookups to know that they have iterated over an entire, valid hash
12535          * chain.
12536          */
12537         for (i = 0; i < hashsize; i++)
12538                 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
12539 
12540         if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
12541                 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
12542 
12543         /*
12544          * Determine number of active CPUs.  Divide free list evenly among
12545          * active CPUs.
12546          */
12547         start = (dtrace_dynvar_t *)
12548             ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
12549         limit = (uintptr_t)base + size;
12550 
12551         maxper = (limit - (uintptr_t)start) / NCPU;
12552         maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
12553 
12554         for (i = 0; i < NCPU; i++) {
12555                 dstate->dtds_percpu[i].dtdsc_free = dvar = start;
12556 
12557                 /*
12558                  * If we don't even have enough chunks to make it once through
12559                  * NCPUs, we're just going to allocate everything to the first
12560                  * CPU.  And if we're on the last CPU, we're going to allocate
12561                  * whatever is left over.  In either case, we set the limit to
12562                  * be the limit of the dynamic variable space.
12563                  */
12564                 if (maxper == 0 || i == NCPU - 1) {
12565                         limit = (uintptr_t)base + size;
12566                         start = NULL;
12567                 } else {
12568                         limit = (uintptr_t)start + maxper;
12569                         start = (dtrace_dynvar_t *)limit;
12570                 }
12571 
12572                 ASSERT(limit <= (uintptr_t)base + size);
12573 
12574                 for (;;) {
12575                         next = (dtrace_dynvar_t *)((uintptr_t)dvar +
12576                             dstate->dtds_chunksize);
12577 
12578                         if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
12579                                 break;
12580 
12581                         dvar->dtdv_next = next;
12582                         dvar = next;
12583                 }
12584 
12585                 if (maxper == 0)
12586                         break;
12587         }
12588 
12589         return (0);
12590 }
12591 
12592 void
12593 dtrace_dstate_fini(dtrace_dstate_t *dstate)
12594 {
12595         ASSERT(MUTEX_HELD(&cpu_lock));
12596 
12597         if (dstate->dtds_base == NULL)
12598                 return;
12599 
12600         kmem_free(dstate->dtds_base, dstate->dtds_size);
12601         kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
12602 }
12603 
12604 static void
12605 dtrace_vstate_fini(dtrace_vstate_t *vstate)
12606 {
12607         /*
12608          * Logical XOR, where are you?
12609          */
12610         ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
12611 
12612         if (vstate->dtvs_nglobals > 0) {
12613                 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
12614                     sizeof (dtrace_statvar_t *));
12615         }
12616 
12617         if (vstate->dtvs_ntlocals > 0) {
12618                 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
12619                     sizeof (dtrace_difv_t));
12620         }
12621 
12622         ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
12623 
12624         if (vstate->dtvs_nlocals > 0) {
12625                 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
12626                     sizeof (dtrace_statvar_t *));
12627         }
12628 }
12629 
12630 static void
12631 dtrace_state_clean(dtrace_state_t *state)
12632 {
12633         if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
12634                 return;
12635 
12636         dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
12637         dtrace_speculation_clean(state);
12638 }
12639 
12640 static void
12641 dtrace_state_deadman(dtrace_state_t *state)
12642 {
12643         hrtime_t now;
12644 
12645         dtrace_sync();
12646 
12647         now = dtrace_gethrtime();
12648 
12649         if (state != dtrace_anon.dta_state &&
12650             now - state->dts_laststatus >= dtrace_deadman_user)
12651                 return;
12652 
12653         /*
12654          * We must be sure that dts_alive never appears to be less than the
12655          * value upon entry to dtrace_state_deadman(), and because we lack a
12656          * dtrace_cas64(), we cannot store to it atomically.  We thus instead
12657          * store INT64_MAX to it, followed by a memory barrier, followed by
12658          * the new value.  This assures that dts_alive never appears to be
12659          * less than its true value, regardless of the order in which the
12660          * stores to the underlying storage are issued.
12661          */
12662         state->dts_alive = INT64_MAX;
12663         dtrace_membar_producer();
12664         state->dts_alive = now;
12665 }
12666 
12667 dtrace_state_t *
12668 dtrace_state_create(dev_t *devp, cred_t *cr)
12669 {
12670         minor_t minor;
12671         major_t major;
12672         char c[30];
12673         dtrace_state_t *state;
12674         dtrace_optval_t *opt;
12675         int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
12676 
12677         ASSERT(MUTEX_HELD(&dtrace_lock));
12678         ASSERT(MUTEX_HELD(&cpu_lock));
12679 
12680         minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
12681             VM_BESTFIT | VM_SLEEP);
12682 
12683         if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
12684                 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
12685                 return (NULL);
12686         }
12687 
12688         state = ddi_get_soft_state(dtrace_softstate, minor);
12689         state->dts_epid = DTRACE_EPIDNONE + 1;
12690 
12691         (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor);
12692         state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
12693             NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
12694 
12695         if (devp != NULL) {
12696                 major = getemajor(*devp);
12697         } else {
12698                 major = ddi_driver_major(dtrace_devi);
12699         }
12700 
12701         state->dts_dev = makedevice(major, minor);
12702 
12703         if (devp != NULL)
12704                 *devp = state->dts_dev;
12705 
12706         /*
12707          * We allocate NCPU buffers.  On the one hand, this can be quite
12708          * a bit of memory per instance (nearly 36K on a Starcat).  On the
12709          * other hand, it saves an additional memory reference in the probe
12710          * path.
12711          */
12712         state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
12713         state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
12714         state->dts_cleaner = CYCLIC_NONE;
12715         state->dts_deadman = CYCLIC_NONE;
12716         state->dts_vstate.dtvs_state = state;
12717 
12718         for (i = 0; i < DTRACEOPT_MAX; i++)
12719                 state->dts_options[i] = DTRACEOPT_UNSET;
12720 
12721         /*
12722          * Set the default options.
12723          */
12724         opt = state->dts_options;
12725         opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
12726         opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
12727         opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
12728         opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
12729         opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
12730         opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
12731         opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
12732         opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
12733         opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
12734         opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
12735         opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
12736         opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
12737         opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
12738         opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
12739 
12740         state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
12741 
12742         /*
12743          * Depending on the user credentials, we set flag bits which alter probe
12744          * visibility or the amount of destructiveness allowed.  In the case of
12745          * actual anonymous tracing, or the possession of all privileges, all of
12746          * the normal checks are bypassed.
12747          */
12748         if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
12749                 state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
12750                 state->dts_cred.dcr_action = DTRACE_CRA_ALL;
12751         } else {
12752                 /*
12753                  * Set up the credentials for this instantiation.  We take a
12754                  * hold on the credential to prevent it from disappearing on
12755                  * us; this in turn prevents the zone_t referenced by this
12756                  * credential from disappearing.  This means that we can
12757                  * examine the credential and the zone from probe context.
12758                  */
12759                 crhold(cr);
12760                 state->dts_cred.dcr_cred = cr;
12761 
12762                 /*
12763                  * CRA_PROC means "we have *some* privilege for dtrace" and
12764                  * unlocks the use of variables like pid, zonename, etc.
12765                  */
12766                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
12767                     PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
12768                         state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
12769                 }
12770 
12771                 /*
12772                  * dtrace_user allows use of syscall and profile providers.
12773                  * If the user also has proc_owner and/or proc_zone, we
12774                  * extend the scope to include additional visibility and
12775                  * destructive power.
12776                  */
12777                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
12778                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
12779                                 state->dts_cred.dcr_visible |=
12780                                     DTRACE_CRV_ALLPROC;
12781 
12782                                 state->dts_cred.dcr_action |=
12783                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12784                         }
12785 
12786                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
12787                                 state->dts_cred.dcr_visible |=
12788                                     DTRACE_CRV_ALLZONE;
12789 
12790                                 state->dts_cred.dcr_action |=
12791                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12792                         }
12793 
12794                         /*
12795                          * If we have all privs in whatever zone this is,
12796                          * we can do destructive things to processes which
12797                          * have altered credentials.
12798                          */
12799                         if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
12800                             cr->cr_zone->zone_privset)) {
12801                                 state->dts_cred.dcr_action |=
12802                                     DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
12803                         }
12804                 }
12805 
12806                 /*
12807                  * Holding the dtrace_kernel privilege also implies that
12808                  * the user has the dtrace_user privilege from a visibility
12809                  * perspective.  But without further privileges, some
12810                  * destructive actions are not available.
12811                  */
12812                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
12813                         /*
12814                          * Make all probes in all zones visible.  However,
12815                          * this doesn't mean that all actions become available
12816                          * to all zones.
12817                          */
12818                         state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
12819                             DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
12820 
12821                         state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
12822                             DTRACE_CRA_PROC;
12823                         /*
12824                          * Holding proc_owner means that destructive actions
12825                          * for *this* zone are allowed.
12826                          */
12827                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
12828                                 state->dts_cred.dcr_action |=
12829                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12830 
12831                         /*
12832                          * Holding proc_zone means that destructive actions
12833                          * for this user/group ID in all zones is allowed.
12834                          */
12835                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
12836                                 state->dts_cred.dcr_action |=
12837                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12838 
12839                         /*
12840                          * If we have all privs in whatever zone this is,
12841                          * we can do destructive things to processes which
12842                          * have altered credentials.
12843                          */
12844                         if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
12845                             cr->cr_zone->zone_privset)) {
12846                                 state->dts_cred.dcr_action |=
12847                                     DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
12848                         }
12849                 }
12850 
12851                 /*
12852                  * Holding the dtrace_proc privilege gives control over fasttrap
12853                  * and pid providers.  We need to grant wider destructive
12854                  * privileges in the event that the user has proc_owner and/or
12855                  * proc_zone.
12856                  */
12857                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
12858                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
12859                                 state->dts_cred.dcr_action |=
12860                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12861 
12862                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
12863                                 state->dts_cred.dcr_action |=
12864                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12865                 }
12866         }
12867 
12868         return (state);
12869 }
12870 
12871 static int
12872 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
12873 {
12874         dtrace_optval_t *opt = state->dts_options, size;
12875         processorid_t cpu;
12876         int flags = 0, rval, factor, divisor = 1;
12877 
12878         ASSERT(MUTEX_HELD(&dtrace_lock));
12879         ASSERT(MUTEX_HELD(&cpu_lock));
12880         ASSERT(which < DTRACEOPT_MAX);
12881         ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
12882             (state == dtrace_anon.dta_state &&
12883             state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
12884 
12885         if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
12886                 return (0);
12887 
12888         if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
12889                 cpu = opt[DTRACEOPT_CPU];
12890 
12891         if (which == DTRACEOPT_SPECSIZE)
12892                 flags |= DTRACEBUF_NOSWITCH;
12893 
12894         if (which == DTRACEOPT_BUFSIZE) {
12895                 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
12896                         flags |= DTRACEBUF_RING;
12897 
12898                 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
12899                         flags |= DTRACEBUF_FILL;
12900 
12901                 if (state != dtrace_anon.dta_state ||
12902                     state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
12903                         flags |= DTRACEBUF_INACTIVE;
12904         }
12905 
12906         for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
12907                 /*
12908                  * The size must be 8-byte aligned.  If the size is not 8-byte
12909                  * aligned, drop it down by the difference.
12910                  */
12911                 if (size & (sizeof (uint64_t) - 1))
12912                         size -= size & (sizeof (uint64_t) - 1);
12913 
12914                 if (size < state->dts_reserve) {
12915                         /*
12916                          * Buffers always must be large enough to accommodate
12917                          * their prereserved space.  We return E2BIG instead
12918                          * of ENOMEM in this case to allow for user-level
12919                          * software to differentiate the cases.
12920                          */
12921                         return (E2BIG);
12922                 }
12923 
12924                 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);
12925 
12926                 if (rval != ENOMEM) {
12927                         opt[which] = size;
12928                         return (rval);
12929                 }
12930 
12931                 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
12932                         return (rval);
12933 
12934                 for (divisor = 2; divisor < factor; divisor <<= 1)
12935                         continue;
12936         }
12937 
12938         return (ENOMEM);
12939 }
12940 
12941 static int
12942 dtrace_state_buffers(dtrace_state_t *state)
12943 {
12944         dtrace_speculation_t *spec = state->dts_speculations;
12945         int rval, i;
12946 
12947         if ((rval = dtrace_state_buffer(state, state->dts_buffer,
12948             DTRACEOPT_BUFSIZE)) != 0)
12949                 return (rval);
12950 
12951         if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
12952             DTRACEOPT_AGGSIZE)) != 0)
12953                 return (rval);
12954 
12955         for (i = 0; i < state->dts_nspeculations; i++) {
12956                 if ((rval = dtrace_state_buffer(state,
12957                     spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
12958                         return (rval);
12959         }
12960 
12961         return (0);
12962 }
12963 
12964 static void
12965 dtrace_state_prereserve(dtrace_state_t *state)
12966 {
12967         dtrace_ecb_t *ecb;
12968         dtrace_probe_t *probe;
12969 
12970         state->dts_reserve = 0;
12971 
12972         if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
12973                 return;
12974 
12975         /*
12976          * If our buffer policy is a "fill" buffer policy, we need to set the
12977          * prereserved space to be the space required by the END probes.
12978          */
12979         probe = dtrace_probes[dtrace_probeid_end - 1];
12980         ASSERT(probe != NULL);
12981 
12982         for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
12983                 if (ecb->dte_state != state)
12984                         continue;
12985 
12986                 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
12987         }
12988 }
12989 
12990 static int
12991 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
12992 {
12993         dtrace_optval_t *opt = state->dts_options, sz, nspec;
12994         dtrace_speculation_t *spec;
12995         dtrace_buffer_t *buf;
12996         cyc_handler_t hdlr;
12997         cyc_time_t when;
12998         int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
12999         dtrace_icookie_t cookie;
13000 
13001         mutex_enter(&cpu_lock);
13002         mutex_enter(&dtrace_lock);
13003 
13004         if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13005                 rval = EBUSY;
13006                 goto out;
13007         }
13008 
13009         /*
13010          * Before we can perform any checks, we must prime all of the
13011          * retained enablings that correspond to this state.
13012          */
13013         dtrace_enabling_prime(state);
13014 
13015         if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
13016                 rval = EACCES;
13017                 goto out;
13018         }
13019 
13020         dtrace_state_prereserve(state);
13021 
13022         /*
13023          * Now we want to do is try to allocate our speculations.
13024          * We do not automatically resize the number of speculations; if
13025          * this fails, we will fail the operation.
13026          */
13027         nspec = opt[DTRACEOPT_NSPEC];
13028         ASSERT(nspec != DTRACEOPT_UNSET);
13029 
13030         if (nspec > INT_MAX) {
13031                 rval = ENOMEM;
13032                 goto out;
13033         }
13034 
13035         spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
13036             KM_NOSLEEP | KM_NORMALPRI);
13037 
13038         if (spec == NULL) {
13039                 rval = ENOMEM;
13040                 goto out;
13041         }
13042 
13043         state->dts_speculations = spec;
13044         state->dts_nspeculations = (int)nspec;
13045 
13046         for (i = 0; i < nspec; i++) {
13047                 if ((buf = kmem_zalloc(bufsize,
13048                     KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
13049                         rval = ENOMEM;
13050                         goto err;
13051                 }
13052 
13053                 spec[i].dtsp_buffer = buf;
13054         }
13055 
13056         if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
13057                 if (dtrace_anon.dta_state == NULL) {
13058                         rval = ENOENT;
13059                         goto out;
13060                 }
13061 
13062                 if (state->dts_necbs != 0) {
13063                         rval = EALREADY;
13064                         goto out;
13065                 }
13066 
13067                 state->dts_anon = dtrace_anon_grab();
13068                 ASSERT(state->dts_anon != NULL);
13069                 state = state->dts_anon;
13070 
13071                 /*
13072                  * We want "grabanon" to be set in the grabbed state, so we'll
13073                  * copy that option value from the grabbing state into the
13074                  * grabbed state.
13075                  */
13076                 state->dts_options[DTRACEOPT_GRABANON] =
13077                     opt[DTRACEOPT_GRABANON];
13078 
13079                 *cpu = dtrace_anon.dta_beganon;
13080 
13081                 /*
13082                  * If the anonymous state is active (as it almost certainly
13083                  * is if the anonymous enabling ultimately matched anything),
13084                  * we don't allow any further option processing -- but we
13085                  * don't return failure.
13086                  */
13087                 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13088                         goto out;
13089         }
13090 
13091         if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
13092             opt[DTRACEOPT_AGGSIZE] != 0) {
13093                 if (state->dts_aggregations == NULL) {
13094                         /*
13095                          * We're not going to create an aggregation buffer
13096                          * because we don't have any ECBs that contain
13097                          * aggregations -- set this option to 0.
13098                          */
13099                         opt[DTRACEOPT_AGGSIZE] = 0;
13100                 } else {
13101                         /*
13102                          * If we have an aggregation buffer, we must also have
13103                          * a buffer to use as scratch.
13104                          */
13105                         if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
13106                             opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
13107                                 opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
13108                         }
13109                 }
13110         }
13111 
13112         if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
13113             opt[DTRACEOPT_SPECSIZE] != 0) {
13114                 if (!state->dts_speculates) {
13115                         /*
13116                          * We're not going to create speculation buffers
13117                          * because we don't have any ECBs that actually
13118                          * speculate -- set the speculation size to 0.
13119                          */
13120                         opt[DTRACEOPT_SPECSIZE] = 0;
13121                 }
13122         }
13123 
13124         /*
13125          * The bare minimum size for any buffer that we're actually going to
13126          * do anything to is sizeof (uint64_t).
13127          */
13128         sz = sizeof (uint64_t);
13129 
13130         if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
13131             (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
13132             (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
13133                 /*
13134                  * A buffer size has been explicitly set to 0 (or to a size
13135                  * that will be adjusted to 0) and we need the space -- we
13136                  * need to return failure.  We return ENOSPC to differentiate
13137                  * it from failing to allocate a buffer due to failure to meet
13138                  * the reserve (for which we return E2BIG).
13139                  */
13140                 rval = ENOSPC;
13141                 goto out;
13142         }
13143 
13144         if ((rval = dtrace_state_buffers(state)) != 0)
13145                 goto err;
13146 
13147         if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
13148                 sz = dtrace_dstate_defsize;
13149 
13150         do {
13151                 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
13152 
13153                 if (rval == 0)
13154                         break;
13155 
13156                 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13157                         goto err;
13158         } while (sz >>= 1);
13159 
13160         opt[DTRACEOPT_DYNVARSIZE] = sz;
13161 
13162         if (rval != 0)
13163                 goto err;
13164 
13165         if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
13166                 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
13167 
13168         if (opt[DTRACEOPT_CLEANRATE] == 0)
13169                 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13170 
13171         if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
13172                 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
13173 
13174         if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
13175                 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13176 
13177         hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
13178         hdlr.cyh_arg = state;
13179         hdlr.cyh_level = CY_LOW_LEVEL;
13180 
13181         when.cyt_when = 0;
13182         when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
13183 
13184         state->dts_cleaner = cyclic_add(&hdlr, &when);
13185 
13186         hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
13187         hdlr.cyh_arg = state;
13188         hdlr.cyh_level = CY_LOW_LEVEL;
13189 
13190         when.cyt_when = 0;
13191         when.cyt_interval = dtrace_deadman_interval;
13192 
13193         state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
13194         state->dts_deadman = cyclic_add(&hdlr, &when);
13195 
13196         state->dts_activity = DTRACE_ACTIVITY_WARMUP;
13197 
13198         if (state->dts_getf != 0 &&
13199             !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
13200                 /*
13201                  * We don't have kernel privs but we have at least one call
13202                  * to getf(); we need to bump our zone's count, and (if
13203                  * this is the first enabling to have an unprivileged call
13204                  * to getf()) we need to hook into closef().
13205                  */
13206                 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++;
13207 
13208                 if (dtrace_getf++ == 0) {
13209                         ASSERT(dtrace_closef == NULL);
13210                         dtrace_closef = dtrace_getf_barrier;
13211                 }
13212         }
13213 
13214         /*
13215          * Now it's time to actually fire the BEGIN probe.  We need to disable
13216          * interrupts here both to record the CPU on which we fired the BEGIN
13217          * probe (the data from this CPU will be processed first at user
13218          * level) and to manually activate the buffer for this CPU.
13219          */
13220         cookie = dtrace_interrupt_disable();
13221         *cpu = CPU->cpu_id;
13222         ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
13223         state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
13224 
13225         dtrace_probe(dtrace_probeid_begin,
13226             (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13227         dtrace_interrupt_enable(cookie);
13228         /*
13229          * We may have had an exit action from a BEGIN probe; only change our
13230          * state to ACTIVE if we're still in WARMUP.
13231          */
13232         ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
13233             state->dts_activity == DTRACE_ACTIVITY_DRAINING);
13234 
13235         if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
13236                 state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
13237 
13238         /*
13239          * Regardless of whether or not now we're in ACTIVE or DRAINING, we
13240          * want each CPU to transition its principal buffer out of the
13241          * INACTIVE state.  Doing this assures that no CPU will suddenly begin
13242          * processing an ECB halfway down a probe's ECB chain; all CPUs will
13243          * atomically transition from processing none of a state's ECBs to
13244          * processing all of them.
13245          */
13246         dtrace_xcall(DTRACE_CPUALL,
13247             (dtrace_xcall_t)dtrace_buffer_activate, state);
13248         goto out;
13249 
13250 err:
13251         dtrace_buffer_free(state->dts_buffer);
13252         dtrace_buffer_free(state->dts_aggbuffer);
13253 
13254         if ((nspec = state->dts_nspeculations) == 0) {
13255                 ASSERT(state->dts_speculations == NULL);
13256                 goto out;
13257         }
13258 
13259         spec = state->dts_speculations;
13260         ASSERT(spec != NULL);
13261 
13262         for (i = 0; i < state->dts_nspeculations; i++) {
13263                 if ((buf = spec[i].dtsp_buffer) == NULL)
13264                         break;
13265 
13266                 dtrace_buffer_free(buf);
13267                 kmem_free(buf, bufsize);
13268         }
13269 
13270         kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13271         state->dts_nspeculations = 0;
13272         state->dts_speculations = NULL;
13273 
13274 out:
13275         mutex_exit(&dtrace_lock);
13276         mutex_exit(&cpu_lock);
13277 
13278         return (rval);
13279 }
13280 
13281 static int
13282 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
13283 {
13284         dtrace_icookie_t cookie;
13285 
13286         ASSERT(MUTEX_HELD(&dtrace_lock));
13287 
13288         if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
13289             state->dts_activity != DTRACE_ACTIVITY_DRAINING)
13290                 return (EINVAL);
13291 
13292         /*
13293          * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13294          * to be sure that every CPU has seen it.  See below for the details
13295          * on why this is done.
13296          */
13297         state->dts_activity = DTRACE_ACTIVITY_DRAINING;
13298         dtrace_sync();
13299 
13300         /*
13301          * By this point, it is impossible for any CPU to be still processing
13302          * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
13303          * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13304          * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
13305          * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13306          * iff we're in the END probe.
13307          */
13308         state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
13309         dtrace_sync();
13310         ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
13311 
13312         /*
13313          * Finally, we can release the reserve and call the END probe.  We
13314          * disable interrupts across calling the END probe to allow us to
13315          * return the CPU on which we actually called the END probe.  This
13316          * allows user-land to be sure that this CPU's principal buffer is
13317          * processed last.
13318          */
13319         state->dts_reserve = 0;
13320 
13321         cookie = dtrace_interrupt_disable();
13322         *cpu = CPU->cpu_id;
13323         dtrace_probe(dtrace_probeid_end,
13324             (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13325         dtrace_interrupt_enable(cookie);
13326 
13327         state->dts_activity = DTRACE_ACTIVITY_STOPPED;
13328         dtrace_sync();
13329 
13330         if (state->dts_getf != 0 &&
13331             !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
13332                 /*
13333                  * We don't have kernel privs but we have at least one call
13334                  * to getf(); we need to lower our zone's count, and (if
13335                  * this is the last enabling to have an unprivileged call
13336                  * to getf()) we need to clear the closef() hook.
13337                  */
13338                 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0);
13339                 ASSERT(dtrace_closef == dtrace_getf_barrier);
13340                 ASSERT(dtrace_getf > 0);
13341 
13342                 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--;
13343 
13344                 if (--dtrace_getf == 0)
13345                         dtrace_closef = NULL;
13346         }
13347 
13348         return (0);
13349 }
13350 
13351 static int
13352 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
13353     dtrace_optval_t val)
13354 {
13355         ASSERT(MUTEX_HELD(&dtrace_lock));
13356 
13357         if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13358                 return (EBUSY);
13359 
13360         if (option >= DTRACEOPT_MAX)
13361                 return (EINVAL);
13362 
13363         if (option != DTRACEOPT_CPU && val < 0)
13364                 return (EINVAL);
13365 
13366         switch (option) {
13367         case DTRACEOPT_DESTRUCTIVE:
13368                 if (dtrace_destructive_disallow)
13369                         return (EACCES);
13370 
13371                 state->dts_cred.dcr_destructive = 1;
13372                 break;
13373 
13374         case DTRACEOPT_BUFSIZE:
13375         case DTRACEOPT_DYNVARSIZE:
13376         case DTRACEOPT_AGGSIZE:
13377         case DTRACEOPT_SPECSIZE:
13378         case DTRACEOPT_STRSIZE:
13379                 if (val < 0)
13380                         return (EINVAL);
13381 
13382                 if (val >= LONG_MAX) {
13383                         /*
13384                          * If this is an otherwise negative value, set it to
13385                          * the highest multiple of 128m less than LONG_MAX.
13386                          * Technically, we're adjusting the size without
13387                          * regard to the buffer resizing policy, but in fact,
13388                          * this has no effect -- if we set the buffer size to
13389                          * ~LONG_MAX and the buffer policy is ultimately set to
13390                          * be "manual", the buffer allocation is guaranteed to
13391                          * fail, if only because the allocation requires two
13392                          * buffers.  (We set the the size to the highest
13393                          * multiple of 128m because it ensures that the size
13394                          * will remain a multiple of a megabyte when
13395                          * repeatedly halved -- all the way down to 15m.)
13396                          */
13397                         val = LONG_MAX - (1 << 27) + 1;
13398                 }
13399         }
13400 
13401         state->dts_options[option] = val;
13402 
13403         return (0);
13404 }
13405 
13406 static void
13407 dtrace_state_destroy(dtrace_state_t *state)
13408 {
13409         dtrace_ecb_t *ecb;
13410         dtrace_vstate_t *vstate = &state->dts_vstate;
13411         minor_t minor = getminor(state->dts_dev);
13412         int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13413         dtrace_speculation_t *spec = state->dts_speculations;
13414         int nspec = state->dts_nspeculations;
13415         uint32_t match;
13416 
13417         ASSERT(MUTEX_HELD(&dtrace_lock));
13418         ASSERT(MUTEX_HELD(&cpu_lock));
13419 
13420         /*
13421          * First, retract any retained enablings for this state.
13422          */
13423         dtrace_enabling_retract(state);
13424         ASSERT(state->dts_nretained == 0);
13425 
13426         if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
13427             state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
13428                 /*
13429                  * We have managed to come into dtrace_state_destroy() on a
13430                  * hot enabling -- almost certainly because of a disorderly
13431                  * shutdown of a consumer.  (That is, a consumer that is
13432                  * exiting without having called dtrace_stop().) In this case,
13433                  * we're going to set our activity to be KILLED, and then
13434                  * issue a sync to be sure that everyone is out of probe
13435                  * context before we start blowing away ECBs.
13436                  */
13437                 state->dts_activity = DTRACE_ACTIVITY_KILLED;
13438                 dtrace_sync();
13439         }
13440 
13441         /*
13442          * Release the credential hold we took in dtrace_state_create().
13443          */
13444         if (state->dts_cred.dcr_cred != NULL)
13445                 crfree(state->dts_cred.dcr_cred);
13446 
13447         /*
13448          * Now we can safely disable and destroy any enabled probes.  Because
13449          * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
13450          * (especially if they're all enabled), we take two passes through the
13451          * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
13452          * in the second we disable whatever is left over.
13453          */
13454         for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
13455                 for (i = 0; i < state->dts_necbs; i++) {
13456                         if ((ecb = state->dts_ecbs[i]) == NULL)
13457                                 continue;
13458 
13459                         if (match && ecb->dte_probe != NULL) {
13460                                 dtrace_probe_t *probe = ecb->dte_probe;
13461                                 dtrace_provider_t *prov = probe->dtpr_provider;
13462 
13463                                 if (!(prov->dtpv_priv.dtpp_flags & match))
13464                                         continue;
13465                         }
13466 
13467                         dtrace_ecb_disable(ecb);
13468                         dtrace_ecb_destroy(ecb);
13469                 }
13470 
13471                 if (!match)
13472                         break;
13473         }
13474 
13475         /*
13476          * Before we free the buffers, perform one more sync to assure that
13477          * every CPU is out of probe context.
13478          */
13479         dtrace_sync();
13480 
13481         dtrace_buffer_free(state->dts_buffer);
13482         dtrace_buffer_free(state->dts_aggbuffer);
13483 
13484         for (i = 0; i < nspec; i++)
13485                 dtrace_buffer_free(spec[i].dtsp_buffer);
13486 
13487         if (state->dts_cleaner != CYCLIC_NONE)
13488                 cyclic_remove(state->dts_cleaner);
13489 
13490         if (state->dts_deadman != CYCLIC_NONE)
13491                 cyclic_remove(state->dts_deadman);
13492 
13493         dtrace_dstate_fini(&vstate->dtvs_dynvars);
13494         dtrace_vstate_fini(vstate);
13495         kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
13496 
13497         if (state->dts_aggregations != NULL) {
13498 #ifdef DEBUG
13499                 for (i = 0; i < state->dts_naggregations; i++)
13500                         ASSERT(state->dts_aggregations[i] == NULL);
13501 #endif
13502                 ASSERT(state->dts_naggregations > 0);
13503                 kmem_free(state->dts_aggregations,
13504                     state->dts_naggregations * sizeof (dtrace_aggregation_t *));
13505         }
13506 
13507         kmem_free(state->dts_buffer, bufsize);
13508         kmem_free(state->dts_aggbuffer, bufsize);
13509 
13510         for (i = 0; i < nspec; i++)
13511                 kmem_free(spec[i].dtsp_buffer, bufsize);
13512 
13513         kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13514 
13515         dtrace_format_destroy(state);
13516 
13517         vmem_destroy(state->dts_aggid_arena);
13518         ddi_soft_state_free(dtrace_softstate, minor);
13519         vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13520 }
13521 
13522 /*
13523  * DTrace Anonymous Enabling Functions
13524  */
13525 static dtrace_state_t *
13526 dtrace_anon_grab(void)
13527 {
13528         dtrace_state_t *state;
13529 
13530         ASSERT(MUTEX_HELD(&dtrace_lock));
13531 
13532         if ((state = dtrace_anon.dta_state) == NULL) {
13533                 ASSERT(dtrace_anon.dta_enabling == NULL);
13534                 return (NULL);
13535         }
13536 
13537         ASSERT(dtrace_anon.dta_enabling != NULL);
13538         ASSERT(dtrace_retained != NULL);
13539 
13540         dtrace_enabling_destroy(dtrace_anon.dta_enabling);
13541         dtrace_anon.dta_enabling = NULL;
13542         dtrace_anon.dta_state = NULL;
13543 
13544         return (state);
13545 }
13546 
13547 static void
13548 dtrace_anon_property(void)
13549 {
13550         int i, rv;
13551         dtrace_state_t *state;
13552         dof_hdr_t *dof;
13553         char c[32];             /* enough for "dof-data-" + digits */
13554 
13555         ASSERT(MUTEX_HELD(&dtrace_lock));
13556         ASSERT(MUTEX_HELD(&cpu_lock));
13557 
13558         for (i = 0; ; i++) {
13559                 (void) snprintf(c, sizeof (c), "dof-data-%d", i);
13560 
13561                 dtrace_err_verbose = 1;
13562 
13563                 if ((dof = dtrace_dof_property(c)) == NULL) {
13564                         dtrace_err_verbose = 0;
13565                         break;
13566                 }
13567 
13568                 /*
13569                  * We want to create anonymous state, so we need to transition
13570                  * the kernel debugger to indicate that DTrace is active.  If
13571                  * this fails (e.g. because the debugger has modified text in
13572                  * some way), we won't continue with the processing.
13573                  */
13574                 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
13575                         cmn_err(CE_NOTE, "kernel debugger active; anonymous "
13576                             "enabling ignored.");
13577                         dtrace_dof_destroy(dof);
13578                         break;
13579                 }
13580 
13581                 /*
13582                  * If we haven't allocated an anonymous state, we'll do so now.
13583                  */
13584                 if ((state = dtrace_anon.dta_state) == NULL) {
13585                         state = dtrace_state_create(NULL, NULL);
13586                         dtrace_anon.dta_state = state;
13587 
13588                         if (state == NULL) {
13589                                 /*
13590                                  * This basically shouldn't happen:  the only
13591                                  * failure mode from dtrace_state_create() is a
13592                                  * failure of ddi_soft_state_zalloc() that
13593                                  * itself should never happen.  Still, the
13594                                  * interface allows for a failure mode, and
13595                                  * we want to fail as gracefully as possible:
13596                                  * we'll emit an error message and cease
13597                                  * processing anonymous state in this case.
13598                                  */
13599                                 cmn_err(CE_WARN, "failed to create "
13600                                     "anonymous state");
13601                                 dtrace_dof_destroy(dof);
13602                                 break;
13603                         }
13604                 }
13605 
13606                 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
13607                     &dtrace_anon.dta_enabling, 0, B_TRUE);
13608 
13609                 if (rv == 0)
13610                         rv = dtrace_dof_options(dof, state);
13611 
13612                 dtrace_err_verbose = 0;
13613                 dtrace_dof_destroy(dof);
13614 
13615                 if (rv != 0) {
13616                         /*
13617                          * This is malformed DOF; chuck any anonymous state
13618                          * that we created.
13619                          */
13620                         ASSERT(dtrace_anon.dta_enabling == NULL);
13621                         dtrace_state_destroy(state);
13622                         dtrace_anon.dta_state = NULL;
13623                         break;
13624                 }
13625 
13626                 ASSERT(dtrace_anon.dta_enabling != NULL);
13627         }
13628 
13629         if (dtrace_anon.dta_enabling != NULL) {
13630                 int rval;
13631 
13632                 /*
13633                  * dtrace_enabling_retain() can only fail because we are
13634                  * trying to retain more enablings than are allowed -- but
13635                  * we only have one anonymous enabling, and we are guaranteed
13636                  * to be allowed at least one retained enabling; we assert
13637                  * that dtrace_enabling_retain() returns success.
13638                  */
13639                 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
13640                 ASSERT(rval == 0);
13641 
13642                 dtrace_enabling_dump(dtrace_anon.dta_enabling);
13643         }
13644 }
13645 
13646 /*
13647  * DTrace Helper Functions
13648  */
13649 static void
13650 dtrace_helper_trace(dtrace_helper_action_t *helper,
13651     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
13652 {
13653         uint32_t size, next, nnext, i;
13654         dtrace_helptrace_t *ent;
13655         uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
13656 
13657         if (!dtrace_helptrace_enabled)
13658                 return;
13659 
13660         ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
13661 
13662         /*
13663          * What would a tracing framework be without its own tracing
13664          * framework?  (Well, a hell of a lot simpler, for starters...)
13665          */
13666         size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
13667             sizeof (uint64_t) - sizeof (uint64_t);
13668 
13669         /*
13670          * Iterate until we can allocate a slot in the trace buffer.
13671          */
13672         do {
13673                 next = dtrace_helptrace_next;
13674 
13675                 if (next + size < dtrace_helptrace_bufsize) {
13676                         nnext = next + size;
13677                 } else {
13678                         nnext = size;
13679                 }
13680         } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
13681 
13682         /*
13683          * We have our slot; fill it in.
13684          */
13685         if (nnext == size)
13686                 next = 0;
13687 
13688         ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
13689         ent->dtht_helper = helper;
13690         ent->dtht_where = where;
13691         ent->dtht_nlocals = vstate->dtvs_nlocals;
13692 
13693         ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
13694             mstate->dtms_fltoffs : -1;
13695         ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
13696         ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
13697 
13698         for (i = 0; i < vstate->dtvs_nlocals; i++) {
13699                 dtrace_statvar_t *svar;
13700 
13701                 if ((svar = vstate->dtvs_locals[i]) == NULL)
13702                         continue;
13703 
13704                 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
13705                 ent->dtht_locals[i] =
13706                     ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id];
13707         }
13708 }
13709 
13710 static uint64_t
13711 dtrace_helper(int which, dtrace_mstate_t *mstate,
13712     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
13713 {
13714         uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
13715         uint64_t sarg0 = mstate->dtms_arg[0];
13716         uint64_t sarg1 = mstate->dtms_arg[1];
13717         uint64_t rval;
13718         dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
13719         dtrace_helper_action_t *helper;
13720         dtrace_vstate_t *vstate;
13721         dtrace_difo_t *pred;
13722         int i, trace = dtrace_helptrace_enabled;
13723 
13724         ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
13725 
13726         if (helpers == NULL)
13727                 return (0);
13728 
13729         if ((helper = helpers->dthps_actions[which]) == NULL)
13730                 return (0);
13731 
13732         vstate = &helpers->dthps_vstate;
13733         mstate->dtms_arg[0] = arg0;
13734         mstate->dtms_arg[1] = arg1;
13735 
13736         /*
13737          * Now iterate over each helper.  If its predicate evaluates to 'true',
13738          * we'll call the corresponding actions.  Note that the below calls
13739          * to dtrace_dif_emulate() may set faults in machine state.  This is
13740          * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
13741          * the stored DIF offset with its own (which is the desired behavior).
13742          * Also, note the calls to dtrace_dif_emulate() may allocate scratch
13743          * from machine state; this is okay, too.
13744          */
13745         for (; helper != NULL; helper = helper->dtha_next) {
13746                 if ((pred = helper->dtha_predicate) != NULL) {
13747                         if (trace)
13748                                 dtrace_helper_trace(helper, mstate, vstate, 0);
13749 
13750                         if (!dtrace_dif_emulate(pred, mstate, vstate, state))
13751                                 goto next;
13752 
13753                         if (*flags & CPU_DTRACE_FAULT)
13754                                 goto err;
13755                 }
13756 
13757                 for (i = 0; i < helper->dtha_nactions; i++) {
13758                         if (trace)
13759                                 dtrace_helper_trace(helper,
13760                                     mstate, vstate, i + 1);
13761 
13762                         rval = dtrace_dif_emulate(helper->dtha_actions[i],
13763                             mstate, vstate, state);
13764 
13765                         if (*flags & CPU_DTRACE_FAULT)
13766                                 goto err;
13767                 }
13768 
13769 next:
13770                 if (trace)
13771                         dtrace_helper_trace(helper, mstate, vstate,
13772                             DTRACE_HELPTRACE_NEXT);
13773         }
13774 
13775         if (trace)
13776                 dtrace_helper_trace(helper, mstate, vstate,
13777                     DTRACE_HELPTRACE_DONE);
13778 
13779         /*
13780          * Restore the arg0 that we saved upon entry.
13781          */
13782         mstate->dtms_arg[0] = sarg0;
13783         mstate->dtms_arg[1] = sarg1;
13784 
13785         return (rval);
13786 
13787 err:
13788         if (trace)
13789                 dtrace_helper_trace(helper, mstate, vstate,
13790                     DTRACE_HELPTRACE_ERR);
13791 
13792         /*
13793          * Restore the arg0 that we saved upon entry.
13794          */
13795         mstate->dtms_arg[0] = sarg0;
13796         mstate->dtms_arg[1] = sarg1;
13797 
13798         return (NULL);
13799 }
13800 
13801 static void
13802 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
13803     dtrace_vstate_t *vstate)
13804 {
13805         int i;
13806 
13807         if (helper->dtha_predicate != NULL)
13808                 dtrace_difo_release(helper->dtha_predicate, vstate);
13809 
13810         for (i = 0; i < helper->dtha_nactions; i++) {
13811                 ASSERT(helper->dtha_actions[i] != NULL);
13812                 dtrace_difo_release(helper->dtha_actions[i], vstate);
13813         }
13814 
13815         kmem_free(helper->dtha_actions,
13816             helper->dtha_nactions * sizeof (dtrace_difo_t *));
13817         kmem_free(helper, sizeof (dtrace_helper_action_t));
13818 }
13819 
13820 static int
13821 dtrace_helper_destroygen(int gen)
13822 {
13823         proc_t *p = curproc;
13824         dtrace_helpers_t *help = p->p_dtrace_helpers;
13825         dtrace_vstate_t *vstate;
13826         int i;
13827 
13828         ASSERT(MUTEX_HELD(&dtrace_lock));
13829 
13830         if (help == NULL || gen > help->dthps_generation)
13831                 return (EINVAL);
13832 
13833         vstate = &help->dthps_vstate;
13834 
13835         for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
13836                 dtrace_helper_action_t *last = NULL, *h, *next;
13837 
13838                 for (h = help->dthps_actions[i]; h != NULL; h = next) {
13839                         next = h->dtha_next;
13840 
13841                         if (h->dtha_generation == gen) {
13842                                 if (last != NULL) {
13843                                         last->dtha_next = next;
13844                                 } else {
13845                                         help->dthps_actions[i] = next;
13846                                 }
13847 
13848                                 dtrace_helper_action_destroy(h, vstate);
13849                         } else {
13850                                 last = h;
13851                         }
13852                 }
13853         }
13854 
13855         /*
13856          * Interate until we've cleared out all helper providers with the
13857          * given generation number.
13858          */
13859         for (;;) {
13860                 dtrace_helper_provider_t *prov;
13861 
13862                 /*
13863                  * Look for a helper provider with the right generation. We
13864                  * have to start back at the beginning of the list each time
13865                  * because we drop dtrace_lock. It's unlikely that we'll make
13866                  * more than two passes.
13867                  */
13868                 for (i = 0; i < help->dthps_nprovs; i++) {
13869                         prov = help->dthps_provs[i];
13870 
13871                         if (prov->dthp_generation == gen)
13872                                 break;
13873                 }
13874 
13875                 /*
13876                  * If there were no matches, we're done.
13877                  */
13878                 if (i == help->dthps_nprovs)
13879                         break;
13880 
13881                 /*
13882                  * Move the last helper provider into this slot.
13883                  */
13884                 help->dthps_nprovs--;
13885                 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
13886                 help->dthps_provs[help->dthps_nprovs] = NULL;
13887 
13888                 mutex_exit(&dtrace_lock);
13889 
13890                 /*
13891                  * If we have a meta provider, remove this helper provider.
13892                  */
13893                 mutex_enter(&dtrace_meta_lock);
13894                 if (dtrace_meta_pid != NULL) {
13895                         ASSERT(dtrace_deferred_pid == NULL);
13896                         dtrace_helper_provider_remove(&prov->dthp_prov,
13897                             p->p_pid);
13898                 }
13899                 mutex_exit(&dtrace_meta_lock);
13900 
13901                 dtrace_helper_provider_destroy(prov);
13902 
13903                 mutex_enter(&dtrace_lock);
13904         }
13905 
13906         return (0);
13907 }
13908 
13909 static int
13910 dtrace_helper_validate(dtrace_helper_action_t *helper)
13911 {
13912         int err = 0, i;
13913         dtrace_difo_t *dp;
13914 
13915         if ((dp = helper->dtha_predicate) != NULL)
13916                 err += dtrace_difo_validate_helper(dp);
13917 
13918         for (i = 0; i < helper->dtha_nactions; i++)
13919                 err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
13920 
13921         return (err == 0);
13922 }
13923 
13924 static int
13925 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
13926 {
13927         dtrace_helpers_t *help;
13928         dtrace_helper_action_t *helper, *last;
13929         dtrace_actdesc_t *act;
13930         dtrace_vstate_t *vstate;
13931         dtrace_predicate_t *pred;
13932         int count = 0, nactions = 0, i;
13933 
13934         if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
13935                 return (EINVAL);
13936 
13937         help = curproc->p_dtrace_helpers;
13938         last = help->dthps_actions[which];
13939         vstate = &help->dthps_vstate;
13940 
13941         for (count = 0; last != NULL; last = last->dtha_next) {
13942                 count++;
13943                 if (last->dtha_next == NULL)
13944                         break;
13945         }
13946 
13947         /*
13948          * If we already have dtrace_helper_actions_max helper actions for this
13949          * helper action type, we'll refuse to add a new one.
13950          */
13951         if (count >= dtrace_helper_actions_max)
13952                 return (ENOSPC);
13953 
13954         helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
13955         helper->dtha_generation = help->dthps_generation;
13956 
13957         if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
13958                 ASSERT(pred->dtp_difo != NULL);
13959                 dtrace_difo_hold(pred->dtp_difo);
13960                 helper->dtha_predicate = pred->dtp_difo;
13961         }
13962 
13963         for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
13964                 if (act->dtad_kind != DTRACEACT_DIFEXPR)
13965                         goto err;
13966 
13967                 if (act->dtad_difo == NULL)
13968                         goto err;
13969 
13970                 nactions++;
13971         }
13972 
13973         helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
13974             (helper->dtha_nactions = nactions), KM_SLEEP);
13975 
13976         for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
13977                 dtrace_difo_hold(act->dtad_difo);
13978                 helper->dtha_actions[i++] = act->dtad_difo;
13979         }
13980 
13981         if (!dtrace_helper_validate(helper))
13982                 goto err;
13983 
13984         if (last == NULL) {
13985                 help->dthps_actions[which] = helper;
13986         } else {
13987                 last->dtha_next = helper;
13988         }
13989 
13990         if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
13991                 dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
13992                 dtrace_helptrace_next = 0;
13993         }
13994 
13995         return (0);
13996 err:
13997         dtrace_helper_action_destroy(helper, vstate);
13998         return (EINVAL);
13999 }
14000 
14001 static void
14002 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
14003     dof_helper_t *dofhp)
14004 {
14005         ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
14006 
14007         mutex_enter(&dtrace_meta_lock);
14008         mutex_enter(&dtrace_lock);
14009 
14010         if (!dtrace_attached() || dtrace_meta_pid == NULL) {
14011                 /*
14012                  * If the dtrace module is loaded but not attached, or if
14013                  * there aren't isn't a meta provider registered to deal with
14014                  * these provider descriptions, we need to postpone creating
14015                  * the actual providers until later.
14016                  */
14017 
14018                 if (help->dthps_next == NULL && help->dthps_prev == NULL &&
14019                     dtrace_deferred_pid != help) {
14020                         help->dthps_deferred = 1;
14021                         help->dthps_pid = p->p_pid;
14022                         help->dthps_next = dtrace_deferred_pid;
14023                         help->dthps_prev = NULL;
14024                         if (dtrace_deferred_pid != NULL)
14025                                 dtrace_deferred_pid->dthps_prev = help;
14026                         dtrace_deferred_pid = help;
14027                 }
14028 
14029                 mutex_exit(&dtrace_lock);
14030 
14031         } else if (dofhp != NULL) {
14032                 /*
14033                  * If the dtrace module is loaded and we have a particular
14034                  * helper provider description, pass that off to the
14035                  * meta provider.
14036                  */
14037 
14038                 mutex_exit(&dtrace_lock);
14039 
14040                 dtrace_helper_provide(dofhp, p->p_pid);
14041 
14042         } else {
14043                 /*
14044                  * Otherwise, just pass all the helper provider descriptions
14045                  * off to the meta provider.
14046                  */
14047 
14048                 int i;
14049                 mutex_exit(&dtrace_lock);
14050 
14051                 for (i = 0; i < help->dthps_nprovs; i++) {
14052                         dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
14053                             p->p_pid);
14054                 }
14055         }
14056 
14057         mutex_exit(&dtrace_meta_lock);
14058 }
14059 
14060 static int
14061 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
14062 {
14063         dtrace_helpers_t *help;
14064         dtrace_helper_provider_t *hprov, **tmp_provs;
14065         uint_t tmp_maxprovs, i;
14066 
14067         ASSERT(MUTEX_HELD(&dtrace_lock));
14068 
14069         help = curproc->p_dtrace_helpers;
14070         ASSERT(help != NULL);
14071 
14072         /*
14073          * If we already have dtrace_helper_providers_max helper providers,
14074          * we're refuse to add a new one.
14075          */
14076         if (help->dthps_nprovs >= dtrace_helper_providers_max)
14077                 return (ENOSPC);
14078 
14079         /*
14080          * Check to make sure this isn't a duplicate.
14081          */
14082         for (i = 0; i < help->dthps_nprovs; i++) {
14083                 if (dofhp->dofhp_addr ==
14084                     help->dthps_provs[i]->dthp_prov.dofhp_addr)
14085                         return (EALREADY);
14086         }
14087 
14088         hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
14089         hprov->dthp_prov = *dofhp;
14090         hprov->dthp_ref = 1;
14091         hprov->dthp_generation = gen;
14092 
14093         /*
14094          * Allocate a bigger table for helper providers if it's already full.
14095          */
14096         if (help->dthps_maxprovs == help->dthps_nprovs) {
14097                 tmp_maxprovs = help->dthps_maxprovs;
14098                 tmp_provs = help->dthps_provs;
14099 
14100                 if (help->dthps_maxprovs == 0)
14101                         help->dthps_maxprovs = 2;
14102                 else
14103                         help->dthps_maxprovs *= 2;
14104                 if (help->dthps_maxprovs > dtrace_helper_providers_max)
14105                         help->dthps_maxprovs = dtrace_helper_providers_max;
14106 
14107                 ASSERT(tmp_maxprovs < help->dthps_maxprovs);
14108 
14109                 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
14110                     sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14111 
14112                 if (tmp_provs != NULL) {
14113                         bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
14114                             sizeof (dtrace_helper_provider_t *));
14115                         kmem_free(tmp_provs, tmp_maxprovs *
14116                             sizeof (dtrace_helper_provider_t *));
14117                 }
14118         }
14119 
14120         help->dthps_provs[help->dthps_nprovs] = hprov;
14121         help->dthps_nprovs++;
14122 
14123         return (0);
14124 }
14125 
14126 static void
14127 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
14128 {
14129         mutex_enter(&dtrace_lock);
14130 
14131         if (--hprov->dthp_ref == 0) {
14132                 dof_hdr_t *dof;
14133                 mutex_exit(&dtrace_lock);
14134                 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
14135                 dtrace_dof_destroy(dof);
14136                 kmem_free(hprov, sizeof (dtrace_helper_provider_t));
14137         } else {
14138                 mutex_exit(&dtrace_lock);
14139         }
14140 }
14141 
14142 static int
14143 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
14144 {
14145         uintptr_t daddr = (uintptr_t)dof;
14146         dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
14147         dof_provider_t *provider;
14148         dof_probe_t *probe;
14149         uint8_t *arg;
14150         char *strtab, *typestr;
14151         dof_stridx_t typeidx;
14152         size_t typesz;
14153         uint_t nprobes, j, k;
14154 
14155         ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
14156 
14157         if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
14158                 dtrace_dof_error(dof, "misaligned section offset");
14159                 return (-1);
14160         }
14161 
14162         /*
14163          * The section needs to be large enough to contain the DOF provider
14164          * structure appropriate for the given version.
14165          */
14166         if (sec->dofs_size <
14167             ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
14168             offsetof(dof_provider_t, dofpv_prenoffs) :
14169             sizeof (dof_provider_t))) {
14170                 dtrace_dof_error(dof, "provider section too small");
14171                 return (-1);
14172         }
14173 
14174         provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
14175         str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
14176         prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
14177         arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
14178         off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
14179 
14180         if (str_sec == NULL || prb_sec == NULL ||
14181             arg_sec == NULL || off_sec == NULL)
14182                 return (-1);
14183 
14184         enoff_sec = NULL;
14185 
14186         if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14187             provider->dofpv_prenoffs != DOF_SECT_NONE &&
14188             (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
14189             provider->dofpv_prenoffs)) == NULL)
14190                 return (-1);
14191 
14192         strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
14193 
14194         if (provider->dofpv_name >= str_sec->dofs_size ||
14195             strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
14196                 dtrace_dof_error(dof, "invalid provider name");
14197                 return (-1);
14198         }
14199 
14200         if (prb_sec->dofs_entsize == 0 ||
14201             prb_sec->dofs_entsize > prb_sec->dofs_size) {
14202                 dtrace_dof_error(dof, "invalid entry size");
14203                 return (-1);
14204         }
14205 
14206         if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
14207                 dtrace_dof_error(dof, "misaligned entry size");
14208                 return (-1);
14209         }
14210 
14211         if (off_sec->dofs_entsize != sizeof (uint32_t)) {
14212                 dtrace_dof_error(dof, "invalid entry size");
14213                 return (-1);
14214         }
14215 
14216         if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
14217                 dtrace_dof_error(dof, "misaligned section offset");
14218                 return (-1);
14219         }
14220 
14221         if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
14222                 dtrace_dof_error(dof, "invalid entry size");
14223                 return (-1);
14224         }
14225 
14226         arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
14227 
14228         nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
14229 
14230         /*
14231          * Take a pass through the probes to check for errors.
14232          */
14233         for (j = 0; j < nprobes; j++) {
14234                 probe = (dof_probe_t *)(uintptr_t)(daddr +
14235                     prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
14236 
14237                 if (probe->dofpr_func >= str_sec->dofs_size) {
14238                         dtrace_dof_error(dof, "invalid function name");
14239                         return (-1);
14240                 }
14241 
14242                 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
14243                         dtrace_dof_error(dof, "function name too long");
14244                         return (-1);
14245                 }
14246 
14247                 if (probe->dofpr_name >= str_sec->dofs_size ||
14248                     strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
14249                         dtrace_dof_error(dof, "invalid probe name");
14250                         return (-1);
14251                 }
14252 
14253                 /*
14254                  * The offset count must not wrap the index, and the offsets
14255                  * must also not overflow the section's data.
14256                  */
14257                 if (probe->dofpr_offidx + probe->dofpr_noffs <
14258                     probe->dofpr_offidx ||
14259                     (probe->dofpr_offidx + probe->dofpr_noffs) *
14260                     off_sec->dofs_entsize > off_sec->dofs_size) {
14261                         dtrace_dof_error(dof, "invalid probe offset");
14262                         return (-1);
14263                 }
14264 
14265                 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
14266                         /*
14267                          * If there's no is-enabled offset section, make sure
14268                          * there aren't any is-enabled offsets. Otherwise
14269                          * perform the same checks as for probe offsets
14270                          * (immediately above).
14271                          */
14272                         if (enoff_sec == NULL) {
14273                                 if (probe->dofpr_enoffidx != 0 ||
14274                                     probe->dofpr_nenoffs != 0) {
14275                                         dtrace_dof_error(dof, "is-enabled "
14276                                             "offsets with null section");
14277                                         return (-1);
14278                                 }
14279                         } else if (probe->dofpr_enoffidx +
14280                             probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
14281                             (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
14282                             enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
14283                                 dtrace_dof_error(dof, "invalid is-enabled "
14284                                     "offset");
14285                                 return (-1);
14286                         }
14287 
14288                         if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
14289                                 dtrace_dof_error(dof, "zero probe and "
14290                                     "is-enabled offsets");
14291                                 return (-1);
14292                         }
14293                 } else if (probe->dofpr_noffs == 0) {
14294                         dtrace_dof_error(dof, "zero probe offsets");
14295                         return (-1);
14296                 }
14297 
14298                 if (probe->dofpr_argidx + probe->dofpr_xargc <
14299                     probe->dofpr_argidx ||
14300                     (probe->dofpr_argidx + probe->dofpr_xargc) *
14301                     arg_sec->dofs_entsize > arg_sec->dofs_size) {
14302                         dtrace_dof_error(dof, "invalid args");
14303                         return (-1);
14304                 }
14305 
14306                 typeidx = probe->dofpr_nargv;
14307                 typestr = strtab + probe->dofpr_nargv;
14308                 for (k = 0; k < probe->dofpr_nargc; k++) {
14309                         if (typeidx >= str_sec->dofs_size) {
14310                                 dtrace_dof_error(dof, "bad "
14311                                     "native argument type");
14312                                 return (-1);
14313                         }
14314 
14315                         typesz = strlen(typestr) + 1;
14316                         if (typesz > DTRACE_ARGTYPELEN) {
14317                                 dtrace_dof_error(dof, "native "
14318                                     "argument type too long");
14319                                 return (-1);
14320                         }
14321                         typeidx += typesz;
14322                         typestr += typesz;
14323                 }
14324 
14325                 typeidx = probe->dofpr_xargv;
14326                 typestr = strtab + probe->dofpr_xargv;
14327                 for (k = 0; k < probe->dofpr_xargc; k++) {
14328                         if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
14329                                 dtrace_dof_error(dof, "bad "
14330                                     "native argument index");
14331                                 return (-1);
14332                         }
14333 
14334                         if (typeidx >= str_sec->dofs_size) {
14335                                 dtrace_dof_error(dof, "bad "
14336                                     "translated argument type");
14337                                 return (-1);
14338                         }
14339 
14340                         typesz = strlen(typestr) + 1;
14341                         if (typesz > DTRACE_ARGTYPELEN) {
14342                                 dtrace_dof_error(dof, "translated argument "
14343                                     "type too long");
14344                                 return (-1);
14345                         }
14346 
14347                         typeidx += typesz;
14348                         typestr += typesz;
14349                 }
14350         }
14351 
14352         return (0);
14353 }
14354 
14355 static int
14356 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
14357 {
14358         dtrace_helpers_t *help;
14359         dtrace_vstate_t *vstate;
14360         dtrace_enabling_t *enab = NULL;
14361         int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
14362         uintptr_t daddr = (uintptr_t)dof;
14363 
14364         ASSERT(MUTEX_HELD(&dtrace_lock));
14365 
14366         if ((help = curproc->p_dtrace_helpers) == NULL)
14367                 help = dtrace_helpers_create(curproc);
14368 
14369         vstate = &help->dthps_vstate;
14370 
14371         if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
14372             dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
14373                 dtrace_dof_destroy(dof);
14374                 return (rv);
14375         }
14376 
14377         /*
14378          * Look for helper providers and validate their descriptions.
14379          */
14380         if (dhp != NULL) {
14381                 for (i = 0; i < dof->dofh_secnum; i++) {
14382                         dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
14383                             dof->dofh_secoff + i * dof->dofh_secsize);
14384 
14385                         if (sec->dofs_type != DOF_SECT_PROVIDER)
14386                                 continue;
14387 
14388                         if (dtrace_helper_provider_validate(dof, sec) != 0) {
14389                                 dtrace_enabling_destroy(enab);
14390                                 dtrace_dof_destroy(dof);
14391                                 return (-1);
14392                         }
14393 
14394                         nprovs++;
14395                 }
14396         }
14397 
14398         /*
14399          * Now we need to walk through the ECB descriptions in the enabling.
14400          */
14401         for (i = 0; i < enab->dten_ndesc; i++) {
14402                 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
14403                 dtrace_probedesc_t *desc = &ep->dted_probe;
14404 
14405                 if (strcmp(desc->dtpd_provider, "dtrace") != 0)
14406                         continue;
14407 
14408                 if (strcmp(desc->dtpd_mod, "helper") != 0)
14409                         continue;
14410 
14411                 if (strcmp(desc->dtpd_func, "ustack") != 0)
14412                         continue;
14413 
14414                 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
14415                     ep)) != 0) {
14416                         /*
14417                          * Adding this helper action failed -- we are now going
14418                          * to rip out the entire generation and return failure.
14419                          */
14420                         (void) dtrace_helper_destroygen(help->dthps_generation);
14421                         dtrace_enabling_destroy(enab);
14422                         dtrace_dof_destroy(dof);
14423                         return (-1);
14424                 }
14425 
14426                 nhelpers++;
14427         }
14428 
14429         if (nhelpers < enab->dten_ndesc)
14430                 dtrace_dof_error(dof, "unmatched helpers");
14431 
14432         gen = help->dthps_generation++;
14433         dtrace_enabling_destroy(enab);
14434 
14435         if (dhp != NULL && nprovs > 0) {
14436                 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
14437                 if (dtrace_helper_provider_add(dhp, gen) == 0) {
14438                         mutex_exit(&dtrace_lock);
14439                         dtrace_helper_provider_register(curproc, help, dhp);
14440                         mutex_enter(&dtrace_lock);
14441 
14442                         destroy = 0;
14443                 }
14444         }
14445 
14446         if (destroy)
14447                 dtrace_dof_destroy(dof);
14448 
14449         return (gen);
14450 }
14451 
14452 static dtrace_helpers_t *
14453 dtrace_helpers_create(proc_t *p)
14454 {
14455         dtrace_helpers_t *help;
14456 
14457         ASSERT(MUTEX_HELD(&dtrace_lock));
14458         ASSERT(p->p_dtrace_helpers == NULL);
14459 
14460         help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
14461         help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
14462             DTRACE_NHELPER_ACTIONS, KM_SLEEP);
14463 
14464         p->p_dtrace_helpers = help;
14465         dtrace_helpers++;
14466 
14467         return (help);
14468 }
14469 
14470 static void
14471 dtrace_helpers_destroy(void)
14472 {
14473         dtrace_helpers_t *help;
14474         dtrace_vstate_t *vstate;
14475         proc_t *p = curproc;
14476         int i;
14477 
14478         mutex_enter(&dtrace_lock);
14479 
14480         ASSERT(p->p_dtrace_helpers != NULL);
14481         ASSERT(dtrace_helpers > 0);
14482 
14483         help = p->p_dtrace_helpers;
14484         vstate = &help->dthps_vstate;
14485 
14486         /*
14487          * We're now going to lose the help from this process.
14488          */
14489         p->p_dtrace_helpers = NULL;
14490         dtrace_sync();
14491 
14492         /*
14493          * Destory the helper actions.
14494          */
14495         for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14496                 dtrace_helper_action_t *h, *next;
14497 
14498                 for (h = help->dthps_actions[i]; h != NULL; h = next) {
14499                         next = h->dtha_next;
14500                         dtrace_helper_action_destroy(h, vstate);
14501                         h = next;
14502                 }
14503         }
14504 
14505         mutex_exit(&dtrace_lock);
14506 
14507         /*
14508          * Destroy the helper providers.
14509          */
14510         if (help->dthps_maxprovs > 0) {
14511                 mutex_enter(&dtrace_meta_lock);
14512                 if (dtrace_meta_pid != NULL) {
14513                         ASSERT(dtrace_deferred_pid == NULL);
14514 
14515                         for (i = 0; i < help->dthps_nprovs; i++) {
14516                                 dtrace_helper_provider_remove(
14517                                     &help->dthps_provs[i]->dthp_prov, p->p_pid);
14518                         }
14519                 } else {
14520                         mutex_enter(&dtrace_lock);
14521                         ASSERT(help->dthps_deferred == 0 ||
14522                             help->dthps_next != NULL ||
14523                             help->dthps_prev != NULL ||
14524                             help == dtrace_deferred_pid);
14525 
14526                         /*
14527                          * Remove the helper from the deferred list.
14528                          */
14529                         if (help->dthps_next != NULL)
14530                                 help->dthps_next->dthps_prev = help->dthps_prev;
14531                         if (help->dthps_prev != NULL)
14532                                 help->dthps_prev->dthps_next = help->dthps_next;
14533                         if (dtrace_deferred_pid == help) {
14534                                 dtrace_deferred_pid = help->dthps_next;
14535                                 ASSERT(help->dthps_prev == NULL);
14536                         }
14537 
14538                         mutex_exit(&dtrace_lock);
14539                 }
14540 
14541                 mutex_exit(&dtrace_meta_lock);
14542 
14543                 for (i = 0; i < help->dthps_nprovs; i++) {
14544                         dtrace_helper_provider_destroy(help->dthps_provs[i]);
14545                 }
14546 
14547                 kmem_free(help->dthps_provs, help->dthps_maxprovs *
14548                     sizeof (dtrace_helper_provider_t *));
14549         }
14550 
14551         mutex_enter(&dtrace_lock);
14552 
14553         dtrace_vstate_fini(&help->dthps_vstate);
14554         kmem_free(help->dthps_actions,
14555             sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
14556         kmem_free(help, sizeof (dtrace_helpers_t));
14557 
14558         --dtrace_helpers;
14559         mutex_exit(&dtrace_lock);
14560 }
14561 
14562 static void
14563 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
14564 {
14565         dtrace_helpers_t *help, *newhelp;
14566         dtrace_helper_action_t *helper, *new, *last;
14567         dtrace_difo_t *dp;
14568         dtrace_vstate_t *vstate;
14569         int i, j, sz, hasprovs = 0;
14570 
14571         mutex_enter(&dtrace_lock);
14572         ASSERT(from->p_dtrace_helpers != NULL);
14573         ASSERT(dtrace_helpers > 0);
14574 
14575         help = from->p_dtrace_helpers;
14576         newhelp = dtrace_helpers_create(to);
14577         ASSERT(to->p_dtrace_helpers != NULL);
14578 
14579         newhelp->dthps_generation = help->dthps_generation;
14580         vstate = &newhelp->dthps_vstate;
14581 
14582         /*
14583          * Duplicate the helper actions.
14584          */
14585         for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14586                 if ((helper = help->dthps_actions[i]) == NULL)
14587                         continue;
14588 
14589                 for (last = NULL; helper != NULL; helper = helper->dtha_next) {
14590                         new = kmem_zalloc(sizeof (dtrace_helper_action_t),
14591                             KM_SLEEP);
14592                         new->dtha_generation = helper->dtha_generation;
14593 
14594                         if ((dp = helper->dtha_predicate) != NULL) {
14595                                 dp = dtrace_difo_duplicate(dp, vstate);
14596                                 new->dtha_predicate = dp;
14597                         }
14598 
14599                         new->dtha_nactions = helper->dtha_nactions;
14600                         sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
14601                         new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
14602 
14603                         for (j = 0; j < new->dtha_nactions; j++) {
14604                                 dtrace_difo_t *dp = helper->dtha_actions[j];
14605 
14606                                 ASSERT(dp != NULL);
14607                                 dp = dtrace_difo_duplicate(dp, vstate);
14608                                 new->dtha_actions[j] = dp;
14609                         }
14610 
14611                         if (last != NULL) {
14612                                 last->dtha_next = new;
14613                         } else {
14614                                 newhelp->dthps_actions[i] = new;
14615                         }
14616 
14617                         last = new;
14618                 }
14619         }
14620 
14621         /*
14622          * Duplicate the helper providers and register them with the
14623          * DTrace framework.
14624          */
14625         if (help->dthps_nprovs > 0) {
14626                 newhelp->dthps_nprovs = help->dthps_nprovs;
14627                 newhelp->dthps_maxprovs = help->dthps_nprovs;
14628                 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
14629                     sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14630                 for (i = 0; i < newhelp->dthps_nprovs; i++) {
14631                         newhelp->dthps_provs[i] = help->dthps_provs[i];
14632                         newhelp->dthps_provs[i]->dthp_ref++;
14633                 }
14634 
14635                 hasprovs = 1;
14636         }
14637 
14638         mutex_exit(&dtrace_lock);
14639 
14640         if (hasprovs)
14641                 dtrace_helper_provider_register(to, newhelp, NULL);
14642 }
14643 
14644 /*
14645  * DTrace Hook Functions
14646  */
14647 static void
14648 dtrace_module_loaded(struct modctl *ctl)
14649 {
14650         dtrace_provider_t *prv;
14651 
14652         mutex_enter(&dtrace_provider_lock);
14653         mutex_enter(&mod_lock);
14654 
14655         ASSERT(ctl->mod_busy);
14656 
14657         /*
14658          * We're going to call each providers per-module provide operation
14659          * specifying only this module.
14660          */
14661         for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
14662                 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
14663 
14664         mutex_exit(&mod_lock);
14665         mutex_exit(&dtrace_provider_lock);
14666 
14667         /*
14668          * If we have any retained enablings, we need to match against them.
14669          * Enabling probes requires that cpu_lock be held, and we cannot hold
14670          * cpu_lock here -- it is legal for cpu_lock to be held when loading a
14671          * module.  (In particular, this happens when loading scheduling
14672          * classes.)  So if we have any retained enablings, we need to dispatch
14673          * our task queue to do the match for us.
14674          */
14675         mutex_enter(&dtrace_lock);
14676 
14677         if (dtrace_retained == NULL) {
14678                 mutex_exit(&dtrace_lock);
14679                 return;
14680         }
14681 
14682         (void) taskq_dispatch(dtrace_taskq,
14683             (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
14684 
14685         mutex_exit(&dtrace_lock);
14686 
14687         /*
14688          * And now, for a little heuristic sleaze:  in general, we want to
14689          * match modules as soon as they load.  However, we cannot guarantee
14690          * this, because it would lead us to the lock ordering violation
14691          * outlined above.  The common case, of course, is that cpu_lock is
14692          * _not_ held -- so we delay here for a clock tick, hoping that that's
14693          * long enough for the task queue to do its work.  If it's not, it's
14694          * not a serious problem -- it just means that the module that we
14695          * just loaded may not be immediately instrumentable.
14696          */
14697         delay(1);
14698 }
14699 
14700 static void
14701 dtrace_module_unloaded(struct modctl *ctl)
14702 {
14703         dtrace_probe_t template, *probe, *first, *next;
14704         dtrace_provider_t *prov;
14705 
14706         template.dtpr_mod = ctl->mod_modname;
14707 
14708         mutex_enter(&dtrace_provider_lock);
14709         mutex_enter(&mod_lock);
14710         mutex_enter(&dtrace_lock);
14711 
14712         if (dtrace_bymod == NULL) {
14713                 /*
14714                  * The DTrace module is loaded (obviously) but not attached;
14715                  * we don't have any work to do.
14716                  */
14717                 mutex_exit(&dtrace_provider_lock);
14718                 mutex_exit(&mod_lock);
14719                 mutex_exit(&dtrace_lock);
14720                 return;
14721         }
14722 
14723         for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
14724             probe != NULL; probe = probe->dtpr_nextmod) {
14725                 if (probe->dtpr_ecb != NULL) {
14726                         mutex_exit(&dtrace_provider_lock);
14727                         mutex_exit(&mod_lock);
14728                         mutex_exit(&dtrace_lock);
14729 
14730                         /*
14731                          * This shouldn't _actually_ be possible -- we're
14732                          * unloading a module that has an enabled probe in it.
14733                          * (It's normally up to the provider to make sure that
14734                          * this can't happen.)  However, because dtps_enable()
14735                          * doesn't have a failure mode, there can be an
14736                          * enable/unload race.  Upshot:  we don't want to
14737                          * assert, but we're not going to disable the
14738                          * probe, either.
14739                          */
14740                         if (dtrace_err_verbose) {
14741                                 cmn_err(CE_WARN, "unloaded module '%s' had "
14742                                     "enabled probes", ctl->mod_modname);
14743                         }
14744 
14745                         return;
14746                 }
14747         }
14748 
14749         probe = first;
14750 
14751         for (first = NULL; probe != NULL; probe = next) {
14752                 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
14753 
14754                 dtrace_probes[probe->dtpr_id - 1] = NULL;
14755 
14756                 next = probe->dtpr_nextmod;
14757                 dtrace_hash_remove(dtrace_bymod, probe);
14758                 dtrace_hash_remove(dtrace_byfunc, probe);
14759                 dtrace_hash_remove(dtrace_byname, probe);
14760 
14761                 if (first == NULL) {
14762                         first = probe;
14763                         probe->dtpr_nextmod = NULL;
14764                 } else {
14765                         probe->dtpr_nextmod = first;
14766                         first = probe;
14767                 }
14768         }
14769 
14770         /*
14771          * We've removed all of the module's probes from the hash chains and
14772          * from the probe array.  Now issue a dtrace_sync() to be sure that
14773          * everyone has cleared out from any probe array processing.
14774          */
14775         dtrace_sync();
14776 
14777         for (probe = first; probe != NULL; probe = first) {
14778                 first = probe->dtpr_nextmod;
14779                 prov = probe->dtpr_provider;
14780                 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
14781                     probe->dtpr_arg);
14782                 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
14783                 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
14784                 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
14785                 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
14786                 kmem_free(probe, sizeof (dtrace_probe_t));
14787         }
14788 
14789         mutex_exit(&dtrace_lock);
14790         mutex_exit(&mod_lock);
14791         mutex_exit(&dtrace_provider_lock);
14792 }
14793 
14794 void
14795 dtrace_suspend(void)
14796 {
14797         dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
14798 }
14799 
14800 void
14801 dtrace_resume(void)
14802 {
14803         dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
14804 }
14805 
14806 static int
14807 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
14808 {
14809         ASSERT(MUTEX_HELD(&cpu_lock));
14810         mutex_enter(&dtrace_lock);
14811 
14812         switch (what) {
14813         case CPU_CONFIG: {
14814                 dtrace_state_t *state;
14815                 dtrace_optval_t *opt, rs, c;
14816 
14817                 /*
14818                  * For now, we only allocate a new buffer for anonymous state.
14819                  */
14820                 if ((state = dtrace_anon.dta_state) == NULL)
14821                         break;
14822 
14823                 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
14824                         break;
14825 
14826                 opt = state->dts_options;
14827                 c = opt[DTRACEOPT_CPU];
14828 
14829                 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
14830                         break;
14831 
14832                 /*
14833                  * Regardless of what the actual policy is, we're going to
14834                  * temporarily set our resize policy to be manual.  We're
14835                  * also going to temporarily set our CPU option to denote
14836                  * the newly configured CPU.
14837                  */
14838                 rs = opt[DTRACEOPT_BUFRESIZE];
14839                 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
14840                 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
14841 
14842                 (void) dtrace_state_buffers(state);
14843 
14844                 opt[DTRACEOPT_BUFRESIZE] = rs;
14845                 opt[DTRACEOPT_CPU] = c;
14846 
14847                 break;
14848         }
14849 
14850         case CPU_UNCONFIG:
14851                 /*
14852                  * We don't free the buffer in the CPU_UNCONFIG case.  (The
14853                  * buffer will be freed when the consumer exits.)
14854                  */
14855                 break;
14856 
14857         default:
14858                 break;
14859         }
14860 
14861         mutex_exit(&dtrace_lock);
14862         return (0);
14863 }
14864 
14865 static void
14866 dtrace_cpu_setup_initial(processorid_t cpu)
14867 {
14868         (void) dtrace_cpu_setup(CPU_CONFIG, cpu);
14869 }
14870 
14871 static void
14872 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
14873 {
14874         if (dtrace_toxranges >= dtrace_toxranges_max) {
14875                 int osize, nsize;
14876                 dtrace_toxrange_t *range;
14877 
14878                 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
14879 
14880                 if (osize == 0) {
14881                         ASSERT(dtrace_toxrange == NULL);
14882                         ASSERT(dtrace_toxranges_max == 0);
14883                         dtrace_toxranges_max = 1;
14884                 } else {
14885                         dtrace_toxranges_max <<= 1;
14886                 }
14887 
14888                 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
14889                 range = kmem_zalloc(nsize, KM_SLEEP);
14890 
14891                 if (dtrace_toxrange != NULL) {
14892                         ASSERT(osize != 0);
14893                         bcopy(dtrace_toxrange, range, osize);
14894                         kmem_free(dtrace_toxrange, osize);
14895                 }
14896 
14897                 dtrace_toxrange = range;
14898         }
14899 
14900         ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL);
14901         ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL);
14902 
14903         dtrace_toxrange[dtrace_toxranges].dtt_base = base;
14904         dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
14905         dtrace_toxranges++;
14906 }
14907 
14908 static void
14909 dtrace_getf_barrier()
14910 {
14911         /*
14912          * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings
14913          * that contain calls to getf(), this routine will be called on every
14914          * closef() before either the underlying vnode is released or the
14915          * file_t itself is freed.  By the time we are here, it is essential
14916          * that the file_t can no longer be accessed from a call to getf()
14917          * in probe context -- that assures that a dtrace_sync() can be used
14918          * to clear out any enablings referring to the old structures.
14919          */
14920         if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 ||
14921             kcred->cr_zone->zone_dtrace_getf != 0)
14922                 dtrace_sync();
14923 }
14924 
14925 /*
14926  * DTrace Driver Cookbook Functions
14927  */
14928 /*ARGSUSED*/
14929 static int
14930 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
14931 {
14932         dtrace_provider_id_t id;
14933         dtrace_state_t *state = NULL;
14934         dtrace_enabling_t *enab;
14935 
14936         mutex_enter(&cpu_lock);
14937         mutex_enter(&dtrace_provider_lock);
14938         mutex_enter(&dtrace_lock);
14939 
14940         if (ddi_soft_state_init(&dtrace_softstate,
14941             sizeof (dtrace_state_t), 0) != 0) {
14942                 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
14943                 mutex_exit(&cpu_lock);
14944                 mutex_exit(&dtrace_provider_lock);
14945                 mutex_exit(&dtrace_lock);
14946                 return (DDI_FAILURE);
14947         }
14948 
14949         if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
14950             DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
14951             ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
14952             DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
14953                 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
14954                 ddi_remove_minor_node(devi, NULL);
14955                 ddi_soft_state_fini(&dtrace_softstate);
14956                 mutex_exit(&cpu_lock);
14957                 mutex_exit(&dtrace_provider_lock);
14958                 mutex_exit(&dtrace_lock);
14959                 return (DDI_FAILURE);
14960         }
14961 
14962         ddi_report_dev(devi);
14963         dtrace_devi = devi;
14964 
14965         dtrace_modload = dtrace_module_loaded;
14966         dtrace_modunload = dtrace_module_unloaded;
14967         dtrace_cpu_init = dtrace_cpu_setup_initial;
14968         dtrace_helpers_cleanup = dtrace_helpers_destroy;
14969         dtrace_helpers_fork = dtrace_helpers_duplicate;
14970         dtrace_cpustart_init = dtrace_suspend;
14971         dtrace_cpustart_fini = dtrace_resume;
14972         dtrace_debugger_init = dtrace_suspend;
14973         dtrace_debugger_fini = dtrace_resume;
14974 
14975         register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
14976 
14977         ASSERT(MUTEX_HELD(&cpu_lock));
14978 
14979         dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
14980             NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
14981         dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
14982             UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
14983             VM_SLEEP | VMC_IDENTIFIER);
14984         dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
14985             1, INT_MAX, 0);
14986 
14987         dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
14988             sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
14989             NULL, NULL, NULL, NULL, NULL, 0);
14990 
14991         ASSERT(MUTEX_HELD(&cpu_lock));
14992         dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
14993             offsetof(dtrace_probe_t, dtpr_nextmod),
14994             offsetof(dtrace_probe_t, dtpr_prevmod));
14995 
14996         dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
14997             offsetof(dtrace_probe_t, dtpr_nextfunc),
14998             offsetof(dtrace_probe_t, dtpr_prevfunc));
14999 
15000         dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
15001             offsetof(dtrace_probe_t, dtpr_nextname),
15002             offsetof(dtrace_probe_t, dtpr_prevname));
15003 
15004         if (dtrace_retain_max < 1) {
15005                 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15006                     "setting to 1", dtrace_retain_max);
15007                 dtrace_retain_max = 1;
15008         }
15009 
15010         /*
15011          * Now discover our toxic ranges.
15012          */
15013         dtrace_toxic_ranges(dtrace_toxrange_add);
15014 
15015         /*
15016          * Before we register ourselves as a provider to our own framework,
15017          * we would like to assert that dtrace_provider is NULL -- but that's
15018          * not true if we were loaded as a dependency of a DTrace provider.
15019          * Once we've registered, we can assert that dtrace_provider is our
15020          * pseudo provider.
15021          */
15022         (void) dtrace_register("dtrace", &dtrace_provider_attr,
15023             DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
15024 
15025         ASSERT(dtrace_provider != NULL);
15026         ASSERT((dtrace_provider_id_t)dtrace_provider == id);
15027 
15028         dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
15029             dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
15030         dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
15031             dtrace_provider, NULL, NULL, "END", 0, NULL);
15032         dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
15033             dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
15034 
15035         dtrace_anon_property();
15036         mutex_exit(&cpu_lock);
15037 
15038         /*
15039          * If DTrace helper tracing is enabled, we need to allocate the
15040          * trace buffer and initialize the values.
15041          */
15042         if (dtrace_helptrace_enabled) {
15043                 ASSERT(dtrace_helptrace_buffer == NULL);
15044                 dtrace_helptrace_buffer =
15045                     kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
15046                 dtrace_helptrace_next = 0;
15047         }
15048 
15049         /*
15050          * If there are already providers, we must ask them to provide their
15051          * probes, and then match any anonymous enabling against them.  Note
15052          * that there should be no other retained enablings at this time:
15053          * the only retained enablings at this time should be the anonymous
15054          * enabling.
15055          */
15056         if (dtrace_anon.dta_enabling != NULL) {
15057                 ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
15058 
15059                 dtrace_enabling_provide(NULL);
15060                 state = dtrace_anon.dta_state;
15061 
15062                 /*
15063                  * We couldn't hold cpu_lock across the above call to
15064                  * dtrace_enabling_provide(), but we must hold it to actually
15065                  * enable the probes.  We have to drop all of our locks, pick
15066                  * up cpu_lock, and regain our locks before matching the
15067                  * retained anonymous enabling.
15068                  */
15069                 mutex_exit(&dtrace_lock);
15070                 mutex_exit(&dtrace_provider_lock);
15071 
15072                 mutex_enter(&cpu_lock);
15073                 mutex_enter(&dtrace_provider_lock);
15074                 mutex_enter(&dtrace_lock);
15075 
15076                 if ((enab = dtrace_anon.dta_enabling) != NULL)
15077                         (void) dtrace_enabling_match(enab, NULL);
15078 
15079                 mutex_exit(&cpu_lock);
15080         }
15081 
15082         mutex_exit(&dtrace_lock);
15083         mutex_exit(&dtrace_provider_lock);
15084 
15085         if (state != NULL) {
15086                 /*
15087                  * If we created any anonymous state, set it going now.
15088                  */
15089                 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
15090         }
15091 
15092         return (DDI_SUCCESS);
15093 }
15094 
15095 /*ARGSUSED*/
15096 static int
15097 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
15098 {
15099         dtrace_state_t *state;
15100         uint32_t priv;
15101         uid_t uid;
15102         zoneid_t zoneid;
15103 
15104         if (getminor(*devp) == DTRACEMNRN_HELPER)
15105                 return (0);
15106 
15107         /*
15108          * If this wasn't an open with the "helper" minor, then it must be
15109          * the "dtrace" minor.
15110          */
15111         if (getminor(*devp) != DTRACEMNRN_DTRACE)
15112                 return (ENXIO);
15113 
15114         /*
15115          * If no DTRACE_PRIV_* bits are set in the credential, then the
15116          * caller lacks sufficient permission to do anything with DTrace.
15117          */
15118         dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
15119         if (priv == DTRACE_PRIV_NONE)
15120                 return (EACCES);
15121 
15122         /*
15123          * Ask all providers to provide all their probes.
15124          */
15125         mutex_enter(&dtrace_provider_lock);
15126         dtrace_probe_provide(NULL, NULL);
15127         mutex_exit(&dtrace_provider_lock);
15128 
15129         mutex_enter(&cpu_lock);
15130         mutex_enter(&dtrace_lock);
15131         dtrace_opens++;
15132         dtrace_membar_producer();
15133 
15134         /*
15135          * If the kernel debugger is active (that is, if the kernel debugger
15136          * modified text in some way), we won't allow the open.
15137          */
15138         if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15139                 dtrace_opens--;
15140                 mutex_exit(&cpu_lock);
15141                 mutex_exit(&dtrace_lock);
15142                 return (EBUSY);
15143         }
15144 
15145         state = dtrace_state_create(devp, cred_p);
15146         mutex_exit(&cpu_lock);
15147 
15148         if (state == NULL) {
15149                 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
15150                         (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15151                 mutex_exit(&dtrace_lock);
15152                 return (EAGAIN);
15153         }
15154 
15155         mutex_exit(&dtrace_lock);
15156 
15157         return (0);
15158 }
15159 
15160 /*ARGSUSED*/
15161 static int
15162 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
15163 {
15164         minor_t minor = getminor(dev);
15165         dtrace_state_t *state;
15166 
15167         if (minor == DTRACEMNRN_HELPER)
15168                 return (0);
15169 
15170         state = ddi_get_soft_state(dtrace_softstate, minor);
15171 
15172         mutex_enter(&cpu_lock);
15173         mutex_enter(&dtrace_lock);
15174 
15175         if (state->dts_anon) {
15176                 /*
15177                  * There is anonymous state. Destroy that first.
15178                  */
15179                 ASSERT(dtrace_anon.dta_state == NULL);
15180                 dtrace_state_destroy(state->dts_anon);
15181         }
15182 
15183         dtrace_state_destroy(state);
15184         ASSERT(dtrace_opens > 0);
15185 
15186         /*
15187          * Only relinquish control of the kernel debugger interface when there
15188          * are no consumers and no anonymous enablings.
15189          */
15190         if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
15191                 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15192 
15193         mutex_exit(&dtrace_lock);
15194         mutex_exit(&cpu_lock);
15195 
15196         return (0);
15197 }
15198 
15199 /*ARGSUSED*/
15200 static int
15201 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
15202 {
15203         int rval;
15204         dof_helper_t help, *dhp = NULL;
15205 
15206         switch (cmd) {
15207         case DTRACEHIOC_ADDDOF:
15208                 if (copyin((void *)arg, &help, sizeof (help)) != 0) {
15209                         dtrace_dof_error(NULL, "failed to copyin DOF helper");
15210                         return (EFAULT);
15211                 }
15212 
15213                 dhp = &help;
15214                 arg = (intptr_t)help.dofhp_dof;
15215                 /*FALLTHROUGH*/
15216 
15217         case DTRACEHIOC_ADD: {
15218                 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
15219 
15220                 if (dof == NULL)
15221                         return (rval);
15222 
15223                 mutex_enter(&dtrace_lock);
15224 
15225                 /*
15226                  * dtrace_helper_slurp() takes responsibility for the dof --
15227                  * it may free it now or it may save it and free it later.
15228                  */
15229                 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
15230                         *rv = rval;
15231                         rval = 0;
15232                 } else {
15233                         rval = EINVAL;
15234                 }
15235 
15236                 mutex_exit(&dtrace_lock);
15237                 return (rval);
15238         }
15239 
15240         case DTRACEHIOC_REMOVE: {
15241                 mutex_enter(&dtrace_lock);
15242                 rval = dtrace_helper_destroygen(arg);
15243                 mutex_exit(&dtrace_lock);
15244 
15245                 return (rval);
15246         }
15247 
15248         default:
15249                 break;
15250         }
15251 
15252         return (ENOTTY);
15253 }
15254 
15255 /*ARGSUSED*/
15256 static int
15257 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
15258 {
15259         minor_t minor = getminor(dev);
15260         dtrace_state_t *state;
15261         int rval;
15262 
15263         if (minor == DTRACEMNRN_HELPER)
15264                 return (dtrace_ioctl_helper(cmd, arg, rv));
15265 
15266         state = ddi_get_soft_state(dtrace_softstate, minor);
15267 
15268         if (state->dts_anon) {
15269                 ASSERT(dtrace_anon.dta_state == NULL);
15270                 state = state->dts_anon;
15271         }
15272 
15273         switch (cmd) {
15274         case DTRACEIOC_PROVIDER: {
15275                 dtrace_providerdesc_t pvd;
15276                 dtrace_provider_t *pvp;
15277 
15278                 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
15279                         return (EFAULT);
15280 
15281                 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
15282                 mutex_enter(&dtrace_provider_lock);
15283 
15284                 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
15285                         if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
15286                                 break;
15287                 }
15288 
15289                 mutex_exit(&dtrace_provider_lock);
15290 
15291                 if (pvp == NULL)
15292                         return (ESRCH);
15293 
15294                 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
15295                 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
15296                 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
15297                         return (EFAULT);
15298 
15299                 return (0);
15300         }
15301 
15302         case DTRACEIOC_EPROBE: {
15303                 dtrace_eprobedesc_t epdesc;
15304                 dtrace_ecb_t *ecb;
15305                 dtrace_action_t *act;
15306                 void *buf;
15307                 size_t size;
15308                 uintptr_t dest;
15309                 int nrecs;
15310 
15311                 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
15312                         return (EFAULT);
15313 
15314                 mutex_enter(&dtrace_lock);
15315 
15316                 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
15317                         mutex_exit(&dtrace_lock);
15318                         return (EINVAL);
15319                 }
15320 
15321                 if (ecb->dte_probe == NULL) {
15322                         mutex_exit(&dtrace_lock);
15323                         return (EINVAL);
15324                 }
15325 
15326                 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
15327                 epdesc.dtepd_uarg = ecb->dte_uarg;
15328                 epdesc.dtepd_size = ecb->dte_size;
15329 
15330                 nrecs = epdesc.dtepd_nrecs;
15331                 epdesc.dtepd_nrecs = 0;
15332                 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15333                         if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15334                                 continue;
15335 
15336                         epdesc.dtepd_nrecs++;
15337                 }
15338 
15339                 /*
15340                  * Now that we have the size, we need to allocate a temporary
15341                  * buffer in which to store the complete description.  We need
15342                  * the temporary buffer to be able to drop dtrace_lock()
15343                  * across the copyout(), below.
15344                  */
15345                 size = sizeof (dtrace_eprobedesc_t) +
15346                     (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
15347 
15348                 buf = kmem_alloc(size, KM_SLEEP);
15349                 dest = (uintptr_t)buf;
15350 
15351                 bcopy(&epdesc, (void *)dest, sizeof (epdesc));
15352                 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
15353 
15354                 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15355                         if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15356                                 continue;
15357 
15358                         if (nrecs-- == 0)
15359                                 break;
15360 
15361                         bcopy(&act->dta_rec, (void *)dest,
15362                             sizeof (dtrace_recdesc_t));
15363                         dest += sizeof (dtrace_recdesc_t);
15364                 }
15365 
15366                 mutex_exit(&dtrace_lock);
15367 
15368                 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15369                         kmem_free(buf, size);
15370                         return (EFAULT);
15371                 }
15372 
15373                 kmem_free(buf, size);
15374                 return (0);
15375         }
15376 
15377         case DTRACEIOC_AGGDESC: {
15378                 dtrace_aggdesc_t aggdesc;
15379                 dtrace_action_t *act;
15380                 dtrace_aggregation_t *agg;
15381                 int nrecs;
15382                 uint32_t offs;
15383                 dtrace_recdesc_t *lrec;
15384                 void *buf;
15385                 size_t size;
15386                 uintptr_t dest;
15387 
15388                 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
15389                         return (EFAULT);
15390 
15391                 mutex_enter(&dtrace_lock);
15392 
15393                 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
15394                         mutex_exit(&dtrace_lock);
15395                         return (EINVAL);
15396                 }
15397 
15398                 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
15399 
15400                 nrecs = aggdesc.dtagd_nrecs;
15401                 aggdesc.dtagd_nrecs = 0;
15402 
15403                 offs = agg->dtag_base;
15404                 lrec = &agg->dtag_action.dta_rec;
15405                 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
15406 
15407                 for (act = agg->dtag_first; ; act = act->dta_next) {
15408                         ASSERT(act->dta_intuple ||
15409                             DTRACEACT_ISAGG(act->dta_kind));
15410 
15411                         /*
15412                          * If this action has a record size of zero, it
15413                          * denotes an argument to the aggregating action.
15414                          * Because the presence of this record doesn't (or
15415                          * shouldn't) affect the way the data is interpreted,
15416                          * we don't copy it out to save user-level the
15417                          * confusion of dealing with a zero-length record.
15418                          */
15419                         if (act->dta_rec.dtrd_size == 0) {
15420                                 ASSERT(agg->dtag_hasarg);
15421                                 continue;
15422                         }
15423 
15424                         aggdesc.dtagd_nrecs++;
15425 
15426                         if (act == &agg->dtag_action)
15427                                 break;
15428                 }
15429 
15430                 /*
15431                  * Now that we have the size, we need to allocate a temporary
15432                  * buffer in which to store the complete description.  We need
15433                  * the temporary buffer to be able to drop dtrace_lock()
15434                  * across the copyout(), below.
15435                  */
15436                 size = sizeof (dtrace_aggdesc_t) +
15437                     (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
15438 
15439                 buf = kmem_alloc(size, KM_SLEEP);
15440                 dest = (uintptr_t)buf;
15441 
15442                 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
15443                 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
15444 
15445                 for (act = agg->dtag_first; ; act = act->dta_next) {
15446                         dtrace_recdesc_t rec = act->dta_rec;
15447 
15448                         /*
15449                          * See the comment in the above loop for why we pass
15450                          * over zero-length records.
15451                          */
15452                         if (rec.dtrd_size == 0) {
15453                                 ASSERT(agg->dtag_hasarg);
15454                                 continue;
15455                         }
15456 
15457                         if (nrecs-- == 0)
15458                                 break;
15459 
15460                         rec.dtrd_offset -= offs;
15461                         bcopy(&rec, (void *)dest, sizeof (rec));
15462                         dest += sizeof (dtrace_recdesc_t);
15463 
15464                         if (act == &agg->dtag_action)
15465                                 break;
15466                 }
15467 
15468                 mutex_exit(&dtrace_lock);
15469 
15470                 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15471                         kmem_free(buf, size);
15472                         return (EFAULT);
15473                 }
15474 
15475                 kmem_free(buf, size);
15476                 return (0);
15477         }
15478 
15479         case DTRACEIOC_ENABLE: {
15480                 dof_hdr_t *dof;
15481                 dtrace_enabling_t *enab = NULL;
15482                 dtrace_vstate_t *vstate;
15483                 int err = 0;
15484 
15485                 *rv = 0;
15486 
15487                 /*
15488                  * If a NULL argument has been passed, we take this as our
15489                  * cue to reevaluate our enablings.
15490                  */
15491                 if (arg == NULL) {
15492                         dtrace_enabling_matchall();
15493 
15494                         return (0);
15495                 }
15496 
15497                 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
15498                         return (rval);
15499 
15500                 mutex_enter(&cpu_lock);
15501                 mutex_enter(&dtrace_lock);
15502                 vstate = &state->dts_vstate;
15503 
15504                 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
15505                         mutex_exit(&dtrace_lock);
15506                         mutex_exit(&cpu_lock);
15507                         dtrace_dof_destroy(dof);
15508                         return (EBUSY);
15509                 }
15510 
15511                 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
15512                         mutex_exit(&dtrace_lock);
15513                         mutex_exit(&cpu_lock);
15514                         dtrace_dof_destroy(dof);
15515                         return (EINVAL);
15516                 }
15517 
15518                 if ((rval = dtrace_dof_options(dof, state)) != 0) {
15519                         dtrace_enabling_destroy(enab);
15520                         mutex_exit(&dtrace_lock);
15521                         mutex_exit(&cpu_lock);
15522                         dtrace_dof_destroy(dof);
15523                         return (rval);
15524                 }
15525 
15526                 if ((err = dtrace_enabling_match(enab, rv)) == 0) {
15527                         err = dtrace_enabling_retain(enab);
15528                 } else {
15529                         dtrace_enabling_destroy(enab);
15530                 }
15531 
15532                 mutex_exit(&cpu_lock);
15533                 mutex_exit(&dtrace_lock);
15534                 dtrace_dof_destroy(dof);
15535 
15536                 return (err);
15537         }
15538 
15539         case DTRACEIOC_REPLICATE: {
15540                 dtrace_repldesc_t desc;
15541                 dtrace_probedesc_t *match = &desc.dtrpd_match;
15542                 dtrace_probedesc_t *create = &desc.dtrpd_create;
15543                 int err;
15544 
15545                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15546                         return (EFAULT);
15547 
15548                 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15549                 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15550                 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15551                 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15552 
15553                 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15554                 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15555                 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15556                 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15557 
15558                 mutex_enter(&dtrace_lock);
15559                 err = dtrace_enabling_replicate(state, match, create);
15560                 mutex_exit(&dtrace_lock);
15561 
15562                 return (err);
15563         }
15564 
15565         case DTRACEIOC_PROBEMATCH:
15566         case DTRACEIOC_PROBES: {
15567                 dtrace_probe_t *probe = NULL;
15568                 dtrace_probedesc_t desc;
15569                 dtrace_probekey_t pkey;
15570                 dtrace_id_t i;
15571                 int m = 0;
15572                 uint32_t priv;
15573                 uid_t uid;
15574                 zoneid_t zoneid;
15575 
15576                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15577                         return (EFAULT);
15578 
15579                 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15580                 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15581                 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15582                 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15583 
15584                 /*
15585                  * Before we attempt to match this probe, we want to give
15586                  * all providers the opportunity to provide it.
15587                  */
15588                 if (desc.dtpd_id == DTRACE_IDNONE) {
15589                         mutex_enter(&dtrace_provider_lock);
15590                         dtrace_probe_provide(&desc, NULL);
15591                         mutex_exit(&dtrace_provider_lock);
15592                         desc.dtpd_id++;
15593                 }
15594 
15595                 if (cmd == DTRACEIOC_PROBEMATCH)  {
15596                         dtrace_probekey(&desc, &pkey);
15597                         pkey.dtpk_id = DTRACE_IDNONE;
15598                 }
15599 
15600                 dtrace_cred2priv(cr, &priv, &uid, &zoneid);
15601 
15602                 mutex_enter(&dtrace_lock);
15603 
15604                 if (cmd == DTRACEIOC_PROBEMATCH) {
15605                         for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15606                                 if ((probe = dtrace_probes[i - 1]) != NULL &&
15607                                     (m = dtrace_match_probe(probe, &pkey,
15608                                     priv, uid, zoneid)) != 0)
15609                                         break;
15610                         }
15611 
15612                         if (m < 0) {
15613                                 mutex_exit(&dtrace_lock);
15614                                 return (EINVAL);
15615                         }
15616 
15617                 } else {
15618                         for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15619                                 if ((probe = dtrace_probes[i - 1]) != NULL &&
15620                                     dtrace_match_priv(probe, priv, uid, zoneid))
15621                                         break;
15622                         }
15623                 }
15624 
15625                 if (probe == NULL) {
15626                         mutex_exit(&dtrace_lock);
15627                         return (ESRCH);
15628                 }
15629 
15630                 dtrace_probe_description(probe, &desc);
15631                 mutex_exit(&dtrace_lock);
15632 
15633                 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15634                         return (EFAULT);
15635 
15636                 return (0);
15637         }
15638 
15639         case DTRACEIOC_PROBEARG: {
15640                 dtrace_argdesc_t desc;
15641                 dtrace_probe_t *probe;
15642                 dtrace_provider_t *prov;
15643 
15644                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15645                         return (EFAULT);
15646 
15647                 if (desc.dtargd_id == DTRACE_IDNONE)
15648                         return (EINVAL);
15649 
15650                 if (desc.dtargd_ndx == DTRACE_ARGNONE)
15651                         return (EINVAL);
15652 
15653                 mutex_enter(&dtrace_provider_lock);
15654                 mutex_enter(&mod_lock);
15655                 mutex_enter(&dtrace_lock);
15656 
15657                 if (desc.dtargd_id > dtrace_nprobes) {
15658                         mutex_exit(&dtrace_lock);
15659                         mutex_exit(&mod_lock);
15660                         mutex_exit(&dtrace_provider_lock);
15661                         return (EINVAL);
15662                 }
15663 
15664                 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
15665                         mutex_exit(&dtrace_lock);
15666                         mutex_exit(&mod_lock);
15667                         mutex_exit(&dtrace_provider_lock);
15668                         return (EINVAL);
15669                 }
15670 
15671                 mutex_exit(&dtrace_lock);
15672 
15673                 prov = probe->dtpr_provider;
15674 
15675                 if (prov->dtpv_pops.dtps_getargdesc == NULL) {
15676                         /*
15677                          * There isn't any typed information for this probe.
15678                          * Set the argument number to DTRACE_ARGNONE.
15679                          */
15680                         desc.dtargd_ndx = DTRACE_ARGNONE;
15681                 } else {
15682                         desc.dtargd_native[0] = '\0';
15683                         desc.dtargd_xlate[0] = '\0';
15684                         desc.dtargd_mapping = desc.dtargd_ndx;
15685 
15686                         prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
15687                             probe->dtpr_id, probe->dtpr_arg, &desc);
15688                 }
15689 
15690                 mutex_exit(&mod_lock);
15691                 mutex_exit(&dtrace_provider_lock);
15692 
15693                 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15694                         return (EFAULT);
15695 
15696                 return (0);
15697         }
15698 
15699         case DTRACEIOC_GO: {
15700                 processorid_t cpuid;
15701                 rval = dtrace_state_go(state, &cpuid);
15702 
15703                 if (rval != 0)
15704                         return (rval);
15705 
15706                 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
15707                         return (EFAULT);
15708 
15709                 return (0);
15710         }
15711 
15712         case DTRACEIOC_STOP: {
15713                 processorid_t cpuid;
15714 
15715                 mutex_enter(&dtrace_lock);
15716                 rval = dtrace_state_stop(state, &cpuid);
15717                 mutex_exit(&dtrace_lock);
15718 
15719                 if (rval != 0)
15720                         return (rval);
15721 
15722                 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
15723                         return (EFAULT);
15724 
15725                 return (0);
15726         }
15727 
15728         case DTRACEIOC_DOFGET: {
15729                 dof_hdr_t hdr, *dof;
15730                 uint64_t len;
15731 
15732                 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
15733                         return (EFAULT);
15734 
15735                 mutex_enter(&dtrace_lock);
15736                 dof = dtrace_dof_create(state);
15737                 mutex_exit(&dtrace_lock);
15738 
15739                 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
15740                 rval = copyout(dof, (void *)arg, len);
15741                 dtrace_dof_destroy(dof);
15742 
15743                 return (rval == 0 ? 0 : EFAULT);
15744         }
15745 
15746         case DTRACEIOC_AGGSNAP:
15747         case DTRACEIOC_BUFSNAP: {
15748                 dtrace_bufdesc_t desc;
15749                 caddr_t cached;
15750                 dtrace_buffer_t *buf;
15751 
15752                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15753                         return (EFAULT);
15754 
15755                 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
15756                         return (EINVAL);
15757 
15758                 mutex_enter(&dtrace_lock);
15759 
15760                 if (cmd == DTRACEIOC_BUFSNAP) {
15761                         buf = &state->dts_buffer[desc.dtbd_cpu];
15762                 } else {
15763                         buf = &state->dts_aggbuffer[desc.dtbd_cpu];
15764                 }
15765 
15766                 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
15767                         size_t sz = buf->dtb_offset;
15768 
15769                         if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
15770                                 mutex_exit(&dtrace_lock);
15771                                 return (EBUSY);
15772                         }
15773 
15774                         /*
15775                          * If this buffer has already been consumed, we're
15776                          * going to indicate that there's nothing left here
15777                          * to consume.
15778                          */
15779                         if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
15780                                 mutex_exit(&dtrace_lock);
15781 
15782                                 desc.dtbd_size = 0;
15783                                 desc.dtbd_drops = 0;
15784                                 desc.dtbd_errors = 0;
15785                                 desc.dtbd_oldest = 0;
15786                                 sz = sizeof (desc);
15787 
15788                                 if (copyout(&desc, (void *)arg, sz) != 0)
15789                                         return (EFAULT);
15790 
15791                                 return (0);
15792                         }
15793 
15794                         /*
15795                          * If this is a ring buffer that has wrapped, we want
15796                          * to copy the whole thing out.
15797                          */
15798                         if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
15799                                 dtrace_buffer_polish(buf);
15800                                 sz = buf->dtb_size;
15801                         }
15802 
15803                         if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
15804                                 mutex_exit(&dtrace_lock);
15805                                 return (EFAULT);
15806                         }
15807 
15808                         desc.dtbd_size = sz;
15809                         desc.dtbd_drops = buf->dtb_drops;
15810                         desc.dtbd_errors = buf->dtb_errors;
15811                         desc.dtbd_oldest = buf->dtb_xamot_offset;
15812 
15813                         mutex_exit(&dtrace_lock);
15814 
15815                         if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15816                                 return (EFAULT);
15817 
15818                         buf->dtb_flags |= DTRACEBUF_CONSUMED;
15819 
15820                         return (0);
15821                 }
15822 
15823                 if (buf->dtb_tomax == NULL) {
15824                         ASSERT(buf->dtb_xamot == NULL);
15825                         mutex_exit(&dtrace_lock);
15826                         return (ENOENT);
15827                 }
15828 
15829                 cached = buf->dtb_tomax;
15830                 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
15831 
15832                 dtrace_xcall(desc.dtbd_cpu,
15833                     (dtrace_xcall_t)dtrace_buffer_switch, buf);
15834 
15835                 state->dts_errors += buf->dtb_xamot_errors;
15836 
15837                 /*
15838                  * If the buffers did not actually switch, then the cross call
15839                  * did not take place -- presumably because the given CPU is
15840                  * not in the ready set.  If this is the case, we'll return
15841                  * ENOENT.
15842                  */
15843                 if (buf->dtb_tomax == cached) {
15844                         ASSERT(buf->dtb_xamot != cached);
15845                         mutex_exit(&dtrace_lock);
15846                         return (ENOENT);
15847                 }
15848 
15849                 ASSERT(cached == buf->dtb_xamot);
15850 
15851                 /*
15852                  * We have our snapshot; now copy it out.
15853                  */
15854                 if (copyout(buf->dtb_xamot, desc.dtbd_data,
15855                     buf->dtb_xamot_offset) != 0) {
15856                         mutex_exit(&dtrace_lock);
15857                         return (EFAULT);
15858                 }
15859 
15860                 desc.dtbd_size = buf->dtb_xamot_offset;
15861                 desc.dtbd_drops = buf->dtb_xamot_drops;
15862                 desc.dtbd_errors = buf->dtb_xamot_errors;
15863                 desc.dtbd_oldest = 0;
15864 
15865                 mutex_exit(&dtrace_lock);
15866 
15867                 /*
15868                  * Finally, copy out the buffer description.
15869                  */
15870                 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15871                         return (EFAULT);
15872 
15873                 return (0);
15874         }
15875 
15876         case DTRACEIOC_CONF: {
15877                 dtrace_conf_t conf;
15878 
15879                 bzero(&conf, sizeof (conf));
15880                 conf.dtc_difversion = DIF_VERSION;
15881                 conf.dtc_difintregs = DIF_DIR_NREGS;
15882                 conf.dtc_diftupregs = DIF_DTR_NREGS;
15883                 conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
15884 
15885                 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
15886                         return (EFAULT);
15887 
15888                 return (0);
15889         }
15890 
15891         case DTRACEIOC_STATUS: {
15892                 dtrace_status_t stat;
15893                 dtrace_dstate_t *dstate;
15894                 int i, j;
15895                 uint64_t nerrs;
15896 
15897                 /*
15898                  * See the comment in dtrace_state_deadman() for the reason
15899                  * for setting dts_laststatus to INT64_MAX before setting
15900                  * it to the correct value.
15901                  */
15902                 state->dts_laststatus = INT64_MAX;
15903                 dtrace_membar_producer();
15904                 state->dts_laststatus = dtrace_gethrtime();
15905 
15906                 bzero(&stat, sizeof (stat));
15907 
15908                 mutex_enter(&dtrace_lock);
15909 
15910                 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
15911                         mutex_exit(&dtrace_lock);
15912                         return (ENOENT);
15913                 }
15914 
15915                 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
15916                         stat.dtst_exiting = 1;
15917 
15918                 nerrs = state->dts_errors;
15919                 dstate = &state->dts_vstate.dtvs_dynvars;
15920 
15921                 for (i = 0; i < NCPU; i++) {
15922                         dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
15923 
15924                         stat.dtst_dyndrops += dcpu->dtdsc_drops;
15925                         stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
15926                         stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
15927 
15928                         if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
15929                                 stat.dtst_filled++;
15930 
15931                         nerrs += state->dts_buffer[i].dtb_errors;
15932 
15933                         for (j = 0; j < state->dts_nspeculations; j++) {
15934                                 dtrace_speculation_t *spec;
15935                                 dtrace_buffer_t *buf;
15936 
15937                                 spec = &state->dts_speculations[j];
15938                                 buf = &spec->dtsp_buffer[i];
15939                                 stat.dtst_specdrops += buf->dtb_xamot_drops;
15940                         }
15941                 }
15942 
15943                 stat.dtst_specdrops_busy = state->dts_speculations_busy;
15944                 stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
15945                 stat.dtst_stkstroverflows = state->dts_stkstroverflows;
15946                 stat.dtst_dblerrors = state->dts_dblerrors;
15947                 stat.dtst_killed =
15948                     (state->dts_activity == DTRACE_ACTIVITY_KILLED);
15949                 stat.dtst_errors = nerrs;
15950 
15951                 mutex_exit(&dtrace_lock);
15952 
15953                 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
15954                         return (EFAULT);
15955 
15956                 return (0);
15957         }
15958 
15959         case DTRACEIOC_FORMAT: {
15960                 dtrace_fmtdesc_t fmt;
15961                 char *str;
15962                 int len;
15963 
15964                 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
15965                         return (EFAULT);
15966 
15967                 mutex_enter(&dtrace_lock);
15968 
15969                 if (fmt.dtfd_format == 0 ||
15970                     fmt.dtfd_format > state->dts_nformats) {
15971                         mutex_exit(&dtrace_lock);
15972                         return (EINVAL);
15973                 }
15974 
15975                 /*
15976                  * Format strings are allocated contiguously and they are
15977                  * never freed; if a format index is less than the number
15978                  * of formats, we can assert that the format map is non-NULL
15979                  * and that the format for the specified index is non-NULL.
15980                  */
15981                 ASSERT(state->dts_formats != NULL);
15982                 str = state->dts_formats[fmt.dtfd_format - 1];
15983                 ASSERT(str != NULL);
15984 
15985                 len = strlen(str) + 1;
15986 
15987                 if (len > fmt.dtfd_length) {
15988                         fmt.dtfd_length = len;
15989 
15990                         if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
15991                                 mutex_exit(&dtrace_lock);
15992                                 return (EINVAL);
15993                         }
15994                 } else {
15995                         if (copyout(str, fmt.dtfd_string, len) != 0) {
15996                                 mutex_exit(&dtrace_lock);
15997                                 return (EINVAL);
15998                         }
15999                 }
16000 
16001                 mutex_exit(&dtrace_lock);
16002                 return (0);
16003         }
16004 
16005         default:
16006                 break;
16007         }
16008 
16009         return (ENOTTY);
16010 }
16011 
16012 /*ARGSUSED*/
16013 static int
16014 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
16015 {
16016         dtrace_state_t *state;
16017 
16018         switch (cmd) {
16019         case DDI_DETACH:
16020                 break;
16021 
16022         case DDI_SUSPEND:
16023                 return (DDI_SUCCESS);
16024 
16025         default:
16026                 return (DDI_FAILURE);
16027         }
16028 
16029         mutex_enter(&cpu_lock);
16030         mutex_enter(&dtrace_provider_lock);
16031         mutex_enter(&dtrace_lock);
16032 
16033         ASSERT(dtrace_opens == 0);
16034 
16035         if (dtrace_helpers > 0) {
16036                 mutex_exit(&dtrace_provider_lock);
16037                 mutex_exit(&dtrace_lock);
16038                 mutex_exit(&cpu_lock);
16039                 return (DDI_FAILURE);
16040         }
16041 
16042         if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
16043                 mutex_exit(&dtrace_provider_lock);
16044                 mutex_exit(&dtrace_lock);
16045                 mutex_exit(&cpu_lock);
16046                 return (DDI_FAILURE);
16047         }
16048 
16049         dtrace_provider = NULL;
16050 
16051         if ((state = dtrace_anon_grab()) != NULL) {
16052                 /*
16053                  * If there were ECBs on this state, the provider should
16054                  * have not been allowed to detach; assert that there is
16055                  * none.
16056                  */
16057                 ASSERT(state->dts_necbs == 0);
16058                 dtrace_state_destroy(state);
16059 
16060                 /*
16061                  * If we're being detached with anonymous state, we need to
16062                  * indicate to the kernel debugger that DTrace is now inactive.
16063                  */
16064                 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16065         }
16066 
16067         bzero(&dtrace_anon, sizeof (dtrace_anon_t));
16068         unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16069         dtrace_cpu_init = NULL;
16070         dtrace_helpers_cleanup = NULL;
16071         dtrace_helpers_fork = NULL;
16072         dtrace_cpustart_init = NULL;
16073         dtrace_cpustart_fini = NULL;
16074         dtrace_debugger_init = NULL;
16075         dtrace_debugger_fini = NULL;
16076         dtrace_modload = NULL;
16077         dtrace_modunload = NULL;
16078 
16079         ASSERT(dtrace_getf == 0);
16080         ASSERT(dtrace_closef == NULL);
16081 
16082         mutex_exit(&cpu_lock);
16083 
16084         if (dtrace_helptrace_enabled) {
16085                 kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
16086                 dtrace_helptrace_buffer = NULL;
16087         }
16088 
16089         kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
16090         dtrace_probes = NULL;
16091         dtrace_nprobes = 0;
16092 
16093         dtrace_hash_destroy(dtrace_bymod);
16094         dtrace_hash_destroy(dtrace_byfunc);
16095         dtrace_hash_destroy(dtrace_byname);
16096         dtrace_bymod = NULL;
16097         dtrace_byfunc = NULL;
16098         dtrace_byname = NULL;
16099 
16100         kmem_cache_destroy(dtrace_state_cache);
16101         vmem_destroy(dtrace_minor);
16102         vmem_destroy(dtrace_arena);
16103 
16104         if (dtrace_toxrange != NULL) {
16105                 kmem_free(dtrace_toxrange,
16106                     dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
16107                 dtrace_toxrange = NULL;
16108                 dtrace_toxranges = 0;
16109                 dtrace_toxranges_max = 0;
16110         }
16111 
16112         ddi_remove_minor_node(dtrace_devi, NULL);
16113         dtrace_devi = NULL;
16114 
16115         ddi_soft_state_fini(&dtrace_softstate);
16116 
16117         ASSERT(dtrace_vtime_references == 0);
16118         ASSERT(dtrace_opens == 0);
16119         ASSERT(dtrace_retained == NULL);
16120 
16121         mutex_exit(&dtrace_lock);
16122         mutex_exit(&dtrace_provider_lock);
16123 
16124         /*
16125          * We don't destroy the task queue until after we have dropped our
16126          * locks (taskq_destroy() may block on running tasks).  To prevent
16127          * attempting to do work after we have effectively detached but before
16128          * the task queue has been destroyed, all tasks dispatched via the
16129          * task queue must check that DTrace is still attached before
16130          * performing any operation.
16131          */
16132         taskq_destroy(dtrace_taskq);
16133         dtrace_taskq = NULL;
16134 
16135         return (DDI_SUCCESS);
16136 }
16137 
16138 /*ARGSUSED*/
16139 static int
16140 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
16141 {
16142         int error;
16143 
16144         switch (infocmd) {
16145         case DDI_INFO_DEVT2DEVINFO:
16146                 *result = (void *)dtrace_devi;
16147                 error = DDI_SUCCESS;
16148                 break;
16149         case DDI_INFO_DEVT2INSTANCE:
16150                 *result = (void *)0;
16151                 error = DDI_SUCCESS;
16152                 break;
16153         default:
16154                 error = DDI_FAILURE;
16155         }
16156         return (error);
16157 }
16158 
16159 static struct cb_ops dtrace_cb_ops = {
16160         dtrace_open,            /* open */
16161         dtrace_close,           /* close */
16162         nulldev,                /* strategy */
16163         nulldev,                /* print */
16164         nodev,                  /* dump */
16165         nodev,                  /* read */
16166         nodev,                  /* write */
16167         dtrace_ioctl,           /* ioctl */
16168         nodev,                  /* devmap */
16169         nodev,                  /* mmap */
16170         nodev,                  /* segmap */
16171         nochpoll,               /* poll */
16172         ddi_prop_op,            /* cb_prop_op */
16173         0,                      /* streamtab  */
16174         D_NEW | D_MP            /* Driver compatibility flag */
16175 };
16176 
16177 static struct dev_ops dtrace_ops = {
16178         DEVO_REV,               /* devo_rev */
16179         0,                      /* refcnt */
16180         dtrace_info,            /* get_dev_info */
16181         nulldev,                /* identify */
16182         nulldev,                /* probe */
16183         dtrace_attach,          /* attach */
16184         dtrace_detach,          /* detach */
16185         nodev,                  /* reset */
16186         &dtrace_cb_ops,             /* driver operations */
16187         NULL,                   /* bus operations */
16188         nodev,                  /* dev power */
16189         ddi_quiesce_not_needed,         /* quiesce */
16190 };
16191 
16192 static struct modldrv modldrv = {
16193         &mod_driverops,             /* module type (this is a pseudo driver) */
16194         "Dynamic Tracing",      /* name of module */
16195         &dtrace_ops,                /* driver ops */
16196 };
16197 
16198 static struct modlinkage modlinkage = {
16199         MODREV_1,
16200         (void *)&modldrv,
16201         NULL
16202 };
16203 
16204 int
16205 _init(void)
16206 {
16207         return (mod_install(&modlinkage));
16208 }
16209 
16210 int
16211 _info(struct modinfo *modinfop)
16212 {
16213         return (mod_info(&modlinkage, modinfop));
16214 }
16215 
16216 int
16217 _fini(void)
16218 {
16219         return (mod_remove(&modlinkage));
16220 }