1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, Joyent Inc. All rights reserved. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 #include <sys/types.h> 31 #include <sys/sysmacros.h> 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/errno.h> 35 #include <sys/signal.h> 36 #include <sys/cred.h> 37 #include <sys/user.h> 38 #include <sys/conf.h> 39 #include <sys/vfs.h> 40 #include <sys/vnode.h> 41 #include <sys/pathname.h> 42 #include <sys/file.h> 43 #include <sys/proc.h> 44 #include <sys/var.h> 45 #include <sys/cpuvar.h> 46 #include <sys/open.h> 47 #include <sys/cmn_err.h> 48 #include <sys/priocntl.h> 49 #include <sys/procset.h> 50 #include <sys/prsystm.h> 51 #include <sys/debug.h> 52 #include <sys/kmem.h> 53 #include <sys/atomic.h> 54 #include <sys/fcntl.h> 55 #include <sys/poll.h> 56 #include <sys/rctl.h> 57 #include <sys/port_impl.h> 58 #include <sys/dtrace.h> 59 60 #include <c2/audit.h> 61 #include <sys/nbmlock.h> 62 63 #ifdef DEBUG 64 65 static uint32_t afd_maxfd; /* # of entries in maximum allocated array */ 66 static uint32_t afd_alloc; /* count of kmem_alloc()s */ 67 static uint32_t afd_free; /* count of kmem_free()s */ 68 static uint32_t afd_wait; /* count of waits on non-zero ref count */ 69 #define MAXFD(x) (afd_maxfd = ((afd_maxfd >= (x))? afd_maxfd : (x))) 70 #define COUNT(x) atomic_add_32(&x, 1) 71 72 #else /* DEBUG */ 73 74 #define MAXFD(x) 75 #define COUNT(x) 76 77 #endif /* DEBUG */ 78 79 kmem_cache_t *file_cache; 80 81 static void port_close_fd(portfd_t *); 82 83 /* 84 * File descriptor allocation. 85 * 86 * fd_find(fip, minfd) finds the first available descriptor >= minfd. 87 * The most common case is open(2), in which minfd = 0, but we must also 88 * support fcntl(fd, F_DUPFD, minfd). 89 * 90 * The algorithm is as follows: we keep all file descriptors in an infix 91 * binary tree in which each node records the number of descriptors 92 * allocated in its right subtree, including itself. Starting at minfd, 93 * we ascend the tree until we find a non-fully allocated right subtree. 94 * We then descend that subtree in a binary search for the smallest fd. 95 * Finally, we ascend the tree again to increment the allocation count 96 * of every subtree containing the newly-allocated fd. Freeing an fd 97 * requires only the last step: we ascend the tree to decrement allocation 98 * counts. Each of these three steps (ascent to find non-full subtree, 99 * descent to find lowest fd, ascent to update allocation counts) is 100 * O(log n), thus the algorithm as a whole is O(log n). 101 * 102 * We don't implement the fd tree using the customary left/right/parent 103 * pointers, but instead take advantage of the glorious mathematics of 104 * full infix binary trees. For reference, here's an illustration of the 105 * logical structure of such a tree, rooted at 4 (binary 100), covering 106 * the range 1-7 (binary 001-111). Our canonical trees do not include 107 * fd 0; we'll deal with that later. 108 * 109 * 100 110 * / \ 111 * / \ 112 * 010 110 113 * / \ / \ 114 * 001 011 101 111 115 * 116 * We make the following observations, all of which are easily proven by 117 * induction on the depth of the tree: 118 * 119 * (T1) The least-significant bit (LSB) of any node is equal to its level 120 * in the tree. In our example, nodes 001, 011, 101 and 111 are at 121 * level 0; nodes 010 and 110 are at level 1; and node 100 is at level 2. 122 * 123 * (T2) The child size (CSIZE) of node N -- that is, the total number of 124 * right-branch descendants in a child of node N, including itself -- is 125 * given by clearing all but the least significant bit of N. This 126 * follows immediately from (T1). Applying this rule to our example, we 127 * see that CSIZE(100) = 100, CSIZE(x10) = 10, and CSIZE(xx1) = 1. 128 * 129 * (T3) The nearest left ancestor (LPARENT) of node N -- that is, the nearest 130 * ancestor containing node N in its right child -- is given by clearing 131 * the LSB of N. For example, LPARENT(111) = 110 and LPARENT(110) = 100. 132 * Clearing the LSB of nodes 001, 010 or 100 yields zero, reflecting 133 * the fact that these are leftmost nodes. Note that this algorithm 134 * automatically skips generations as necessary. For example, the parent 135 * of node 101 is 110, which is a *right* ancestor (not what we want); 136 * but its grandparent is 100, which is a left ancestor. Clearing the LSB 137 * of 101 gets us to 100 directly, skipping right past the uninteresting 138 * generation (110). 139 * 140 * Note that since LPARENT clears the LSB, whereas CSIZE clears all *but* 141 * the LSB, we can express LPARENT() nicely in terms of CSIZE(): 142 * 143 * LPARENT(N) = N - CSIZE(N) 144 * 145 * (T4) The nearest right ancestor (RPARENT) of node N is given by: 146 * 147 * RPARENT(N) = N + CSIZE(N) 148 * 149 * (T5) For every interior node, the children differ from their parent by 150 * CSIZE(parent) / 2. In our example, CSIZE(100) / 2 = 2 = 10 binary, 151 * and indeed, the children of 100 are 100 +/- 10 = 010 and 110. 152 * 153 * Next, we'll need a few two's-complement math tricks. Suppose a number, 154 * N, has the following form: 155 * 156 * N = xxxx10...0 157 * 158 * That is, the binary representation of N consists of some string of bits, 159 * then a 1, then all zeroes. This amounts to nothing more than saying that 160 * N has a least-significant bit, which is true for any N != 0. If we look 161 * at N and N - 1 together, we see that we can combine them in useful ways: 162 * 163 * N = xxxx10...0 164 * N - 1 = xxxx01...1 165 * ------------------------ 166 * N & (N - 1) = xxxx000000 167 * N | (N - 1) = xxxx111111 168 * N ^ (N - 1) = 111111 169 * 170 * In particular, this suggests several easy ways to clear all but the LSB, 171 * which by (T2) is exactly what we need to determine CSIZE(N) = 10...0. 172 * We'll opt for this formulation: 173 * 174 * (C1) CSIZE(N) = (N - 1) ^ (N | (N - 1)) 175 * 176 * Similarly, we have an easy way to determine LPARENT(N), which requires 177 * that we clear the LSB of N: 178 * 179 * (L1) LPARENT(N) = N & (N - 1) 180 * 181 * We note in the above relations that (N | (N - 1)) - N = CSIZE(N) - 1. 182 * When combined with (T4), this yields an easy way to compute RPARENT(N): 183 * 184 * (R1) RPARENT(N) = (N | (N - 1)) + 1 185 * 186 * Finally, to accommodate fd 0 we must adjust all of our results by +/-1 to 187 * move the fd range from [1, 2^n) to [0, 2^n - 1). This is straightforward, 188 * so there's no need to belabor the algebra; the revised relations become: 189 * 190 * (C1a) CSIZE(N) = N ^ (N | (N + 1)) 191 * 192 * (L1a) LPARENT(N) = (N & (N + 1)) - 1 193 * 194 * (R1a) RPARENT(N) = N | (N + 1) 195 * 196 * This completes the mathematical framework. We now have all the tools 197 * we need to implement fd_find() and fd_reserve(). 198 * 199 * fd_find(fip, minfd) finds the smallest available file descriptor >= minfd. 200 * It does not actually allocate the descriptor; that's done by fd_reserve(). 201 * fd_find() proceeds in two steps: 202 * 203 * (1) Find the leftmost subtree that contains a descriptor >= minfd. 204 * We start at the right subtree rooted at minfd. If this subtree is 205 * not full -- if fip->fi_list[minfd].uf_alloc != CSIZE(minfd) -- then 206 * step 1 is done. Otherwise, we know that all fds in this subtree 207 * are taken, so we ascend to RPARENT(minfd) using (R1a). We repeat 208 * this process until we either find a candidate subtree or exceed 209 * fip->fi_nfiles. We use (C1a) to compute CSIZE(). 210 * 211 * (2) Find the smallest fd in the subtree discovered by step 1. 212 * Starting at the root of this subtree, we descend to find the 213 * smallest available fd. Since the left children have the smaller 214 * fds, we will descend rightward only when the left child is full. 215 * 216 * We begin by comparing the number of allocated fds in the root 217 * to the number of allocated fds in its right child; if they differ 218 * by exactly CSIZE(child), we know the left subtree is full, so we 219 * descend right; that is, the right child becomes the search root. 220 * Otherwise we leave the root alone and start following the right 221 * child's left children. As fortune would have it, this is very 222 * simple computationally: by (T5), the right child of fd is just 223 * fd + size, where size = CSIZE(fd) / 2. Applying (T5) again, 224 * we find that the right child's left child is fd + size - (size / 2) = 225 * fd + (size / 2); *its* left child is fd + (size / 2) - (size / 4) = 226 * fd + (size / 4), and so on. In general, fd's right child's 227 * leftmost nth descendant is fd + (size >> n). Thus, to follow 228 * the right child's left descendants, we just halve the size in 229 * each iteration of the search. 230 * 231 * When we descend leftward, we must keep track of the number of fds 232 * that were allocated in all the right subtrees we rejected, so we 233 * know how many of the root fd's allocations are in the remaining 234 * (as yet unexplored) leftmost part of its right subtree. When we 235 * encounter a fully-allocated left child -- that is, when we find 236 * that fip->fi_list[fd].uf_alloc == ralloc + size -- we descend right 237 * (as described earlier), resetting ralloc to zero. 238 * 239 * fd_reserve(fip, fd, incr) either allocates or frees fd, depending 240 * on whether incr is 1 or -1. Starting at fd, fd_reserve() ascends 241 * the leftmost ancestors (see (T3)) and updates the allocation counts. 242 * At each step we use (L1a) to compute LPARENT(), the next left ancestor. 243 * 244 * flist_minsize() finds the minimal tree that still covers all 245 * used fds; as long as the allocation count of a root node is zero, we 246 * don't need that node or its right subtree. 247 * 248 * flist_nalloc() counts the number of allocated fds in the tree, by starting 249 * at the top of the tree and summing the right-subtree allocation counts as 250 * it descends leftwards. 251 * 252 * Note: we assume that flist_grow() will keep fip->fi_nfiles of the form 253 * 2^n - 1. This ensures that the fd trees are always full, which saves 254 * quite a bit of boundary checking. 255 */ 256 static int 257 fd_find(uf_info_t *fip, int minfd) 258 { 259 int size, ralloc, fd; 260 261 ASSERT(MUTEX_HELD(&fip->fi_lock)); 262 ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0); 263 264 for (fd = minfd; (uint_t)fd < fip->fi_nfiles; fd |= fd + 1) { 265 size = fd ^ (fd | (fd + 1)); 266 if (fip->fi_list[fd].uf_alloc == size) 267 continue; 268 for (ralloc = 0, size >>= 1; size != 0; size >>= 1) { 269 ralloc += fip->fi_list[fd + size].uf_alloc; 270 if (fip->fi_list[fd].uf_alloc == ralloc + size) { 271 fd += size; 272 ralloc = 0; 273 } 274 } 275 return (fd); 276 } 277 return (-1); 278 } 279 280 static void 281 fd_reserve(uf_info_t *fip, int fd, int incr) 282 { 283 int pfd; 284 uf_entry_t *ufp = &fip->fi_list[fd]; 285 286 ASSERT((uint_t)fd < fip->fi_nfiles); 287 ASSERT((ufp->uf_busy == 0 && incr == 1) || 288 (ufp->uf_busy == 1 && incr == -1)); 289 ASSERT(MUTEX_HELD(&ufp->uf_lock)); 290 ASSERT(MUTEX_HELD(&fip->fi_lock)); 291 292 for (pfd = fd; pfd >= 0; pfd = (pfd & (pfd + 1)) - 1) 293 fip->fi_list[pfd].uf_alloc += incr; 294 295 ufp->uf_busy += incr; 296 } 297 298 static int 299 flist_minsize(uf_info_t *fip) 300 { 301 int fd; 302 303 /* 304 * We'd like to ASSERT(MUTEX_HELD(&fip->fi_lock)), but we're called 305 * by flist_fork(), which relies on other mechanisms for mutual 306 * exclusion. 307 */ 308 ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0); 309 310 for (fd = fip->fi_nfiles; fd != 0; fd >>= 1) 311 if (fip->fi_list[fd >> 1].uf_alloc != 0) 312 break; 313 314 return (fd); 315 } 316 317 static int 318 flist_nalloc(uf_info_t *fip) 319 { 320 int fd; 321 int nalloc = 0; 322 323 ASSERT(MUTEX_HELD(&fip->fi_lock)); 324 ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0); 325 326 for (fd = fip->fi_nfiles; fd != 0; fd >>= 1) 327 nalloc += fip->fi_list[fd >> 1].uf_alloc; 328 329 return (nalloc); 330 } 331 332 /* 333 * Increase size of the fi_list array to accommodate at least maxfd. 334 * We keep the size of the form 2^n - 1 for benefit of fd_find(). 335 */ 336 static void 337 flist_grow(int maxfd) 338 { 339 uf_info_t *fip = P_FINFO(curproc); 340 int newcnt, oldcnt; 341 uf_entry_t *src, *dst, *newlist, *oldlist, *newend, *oldend; 342 uf_rlist_t *urp; 343 344 for (newcnt = 1; newcnt <= maxfd; newcnt = (newcnt << 1) | 1) 345 continue; 346 347 newlist = kmem_zalloc(newcnt * sizeof (uf_entry_t), KM_SLEEP); 348 349 mutex_enter(&fip->fi_lock); 350 oldcnt = fip->fi_nfiles; 351 if (newcnt <= oldcnt) { 352 mutex_exit(&fip->fi_lock); 353 kmem_free(newlist, newcnt * sizeof (uf_entry_t)); 354 return; 355 } 356 ASSERT((newcnt & (newcnt + 1)) == 0); 357 oldlist = fip->fi_list; 358 oldend = oldlist + oldcnt; 359 newend = newlist + oldcnt; /* no need to lock beyond old end */ 360 361 /* 362 * fi_list and fi_nfiles cannot change while any uf_lock is held, 363 * so we must grab all the old locks *and* the new locks up to oldcnt. 364 * (Locks beyond the end of oldcnt aren't visible until we store 365 * the new fi_nfiles, which is the last thing we do before dropping 366 * all the locks, so there's no need to acquire these locks). 367 * Holding the new locks is necessary because when fi_list changes 368 * to point to the new list, fi_nfiles won't have been stored yet. 369 * If we *didn't* hold the new locks, someone doing a UF_ENTER() 370 * could see the new fi_list, grab the new uf_lock, and then see 371 * fi_nfiles change while the lock is held -- in violation of 372 * UF_ENTER() semantics. 373 */ 374 for (src = oldlist; src < oldend; src++) 375 mutex_enter(&src->uf_lock); 376 377 for (dst = newlist; dst < newend; dst++) 378 mutex_enter(&dst->uf_lock); 379 380 for (src = oldlist, dst = newlist; src < oldend; src++, dst++) { 381 dst->uf_file = src->uf_file; 382 dst->uf_fpollinfo = src->uf_fpollinfo; 383 dst->uf_refcnt = src->uf_refcnt; 384 dst->uf_alloc = src->uf_alloc; 385 dst->uf_flag = src->uf_flag; 386 dst->uf_busy = src->uf_busy; 387 dst->uf_portfd = src->uf_portfd; 388 } 389 390 /* 391 * As soon as we store the new flist, future locking operations 392 * will use it. Therefore, we must ensure that all the state 393 * we've just established reaches global visibility before the 394 * new flist does. 395 */ 396 membar_producer(); 397 fip->fi_list = newlist; 398 399 /* 400 * Routines like getf() make an optimistic check on the validity 401 * of the supplied file descriptor: if it's less than the current 402 * value of fi_nfiles -- examined without any locks -- then it's 403 * safe to attempt a UF_ENTER() on that fd (which is a valid 404 * assumption because fi_nfiles only increases). Therefore, it 405 * is critical that the new value of fi_nfiles not reach global 406 * visibility until after the new fi_list: if it happened the 407 * other way around, getf() could see the new fi_nfiles and attempt 408 * a UF_ENTER() on the old fi_list, which would write beyond its 409 * end if the fd exceeded the old fi_nfiles. 410 */ 411 membar_producer(); 412 fip->fi_nfiles = newcnt; 413 414 /* 415 * The new state is consistent now, so we can drop all the locks. 416 */ 417 for (dst = newlist; dst < newend; dst++) 418 mutex_exit(&dst->uf_lock); 419 420 for (src = oldlist; src < oldend; src++) { 421 /* 422 * If any threads are blocked on the old cvs, wake them. 423 * This will force them to wake up, discover that fi_list 424 * has changed, and go back to sleep on the new cvs. 425 */ 426 cv_broadcast(&src->uf_wanted_cv); 427 cv_broadcast(&src->uf_closing_cv); 428 mutex_exit(&src->uf_lock); 429 } 430 431 mutex_exit(&fip->fi_lock); 432 433 /* 434 * Retire the old flist. We can't actually kmem_free() it now 435 * because someone may still have a pointer to it. Instead, 436 * we link it onto a list of retired flists. The new flist 437 * is at least double the size of the previous flist, so the 438 * total size of all retired flists will be less than the size 439 * of the current one (to prove, consider the sum of a geometric 440 * series in powers of 2). exit() frees the retired flists. 441 */ 442 urp = kmem_zalloc(sizeof (uf_rlist_t), KM_SLEEP); 443 urp->ur_list = oldlist; 444 urp->ur_nfiles = oldcnt; 445 446 mutex_enter(&fip->fi_lock); 447 urp->ur_next = fip->fi_rlist; 448 fip->fi_rlist = urp; 449 mutex_exit(&fip->fi_lock); 450 } 451 452 /* 453 * Utility functions for keeping track of the active file descriptors. 454 */ 455 void 456 clear_stale_fd() /* called from post_syscall() */ 457 { 458 afd_t *afd = &curthread->t_activefd; 459 int i; 460 461 /* uninitialized is ok here, a_nfd is then zero */ 462 for (i = 0; i < afd->a_nfd; i++) { 463 /* assert that this should not be necessary */ 464 ASSERT(afd->a_fd[i] == -1); 465 afd->a_fd[i] = -1; 466 } 467 afd->a_stale = 0; 468 } 469 470 void 471 free_afd(afd_t *afd) /* called below and from thread_free() */ 472 { 473 int i; 474 475 /* free the buffer if it was kmem_alloc()ed */ 476 if (afd->a_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) { 477 COUNT(afd_free); 478 kmem_free(afd->a_fd, afd->a_nfd * sizeof (afd->a_fd[0])); 479 } 480 481 /* (re)initialize the structure */ 482 afd->a_fd = &afd->a_buf[0]; 483 afd->a_nfd = sizeof (afd->a_buf) / sizeof (afd->a_buf[0]); 484 afd->a_stale = 0; 485 for (i = 0; i < afd->a_nfd; i++) 486 afd->a_fd[i] = -1; 487 } 488 489 static void 490 set_active_fd(int fd) 491 { 492 afd_t *afd = &curthread->t_activefd; 493 int i; 494 int *old_fd; 495 int old_nfd; 496 int *new_fd; 497 int new_nfd; 498 499 if (afd->a_nfd == 0) { /* first time initialization */ 500 ASSERT(fd == -1); 501 mutex_enter(&afd->a_fdlock); 502 free_afd(afd); 503 mutex_exit(&afd->a_fdlock); 504 } 505 506 /* insert fd into vacant slot, if any */ 507 for (i = 0; i < afd->a_nfd; i++) { 508 if (afd->a_fd[i] == -1) { 509 afd->a_fd[i] = fd; 510 return; 511 } 512 } 513 514 /* 515 * Reallocate the a_fd[] array to add one more slot. 516 */ 517 ASSERT(fd == -1); 518 old_nfd = afd->a_nfd; 519 old_fd = afd->a_fd; 520 new_nfd = old_nfd + 1; 521 new_fd = kmem_alloc(new_nfd * sizeof (afd->a_fd[0]), KM_SLEEP); 522 MAXFD(new_nfd); 523 COUNT(afd_alloc); 524 525 mutex_enter(&afd->a_fdlock); 526 afd->a_fd = new_fd; 527 afd->a_nfd = new_nfd; 528 for (i = 0; i < old_nfd; i++) 529 afd->a_fd[i] = old_fd[i]; 530 afd->a_fd[i] = fd; 531 mutex_exit(&afd->a_fdlock); 532 533 if (old_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) { 534 COUNT(afd_free); 535 kmem_free(old_fd, old_nfd * sizeof (afd->a_fd[0])); 536 } 537 } 538 539 void 540 clear_active_fd(int fd) /* called below and from aio.c */ 541 { 542 afd_t *afd = &curthread->t_activefd; 543 int i; 544 545 for (i = 0; i < afd->a_nfd; i++) { 546 if (afd->a_fd[i] == fd) { 547 afd->a_fd[i] = -1; 548 break; 549 } 550 } 551 ASSERT(i < afd->a_nfd); /* not found is not ok */ 552 } 553 554 /* 555 * Does this thread have this fd active? 556 */ 557 static int 558 is_active_fd(kthread_t *t, int fd) 559 { 560 afd_t *afd = &t->t_activefd; 561 int i; 562 563 ASSERT(t != curthread); 564 mutex_enter(&afd->a_fdlock); 565 /* uninitialized is ok here, a_nfd is then zero */ 566 for (i = 0; i < afd->a_nfd; i++) { 567 if (afd->a_fd[i] == fd) { 568 mutex_exit(&afd->a_fdlock); 569 return (1); 570 } 571 } 572 mutex_exit(&afd->a_fdlock); 573 return (0); 574 } 575 576 /* 577 * Convert a user supplied file descriptor into a pointer to a file 578 * structure. Only task is to check range of the descriptor (soft 579 * resource limit was enforced at open time and shouldn't be checked 580 * here). 581 */ 582 file_t * 583 getf(int fd) 584 { 585 uf_info_t *fip = P_FINFO(curproc); 586 uf_entry_t *ufp; 587 file_t *fp; 588 589 if ((uint_t)fd >= fip->fi_nfiles) 590 return (NULL); 591 592 /* 593 * Reserve a slot in the active fd array now so we can call 594 * set_active_fd(fd) for real below, while still inside UF_ENTER(). 595 */ 596 set_active_fd(-1); 597 598 UF_ENTER(ufp, fip, fd); 599 600 if ((fp = ufp->uf_file) == NULL) { 601 UF_EXIT(ufp); 602 603 if (fd == fip->fi_badfd && fip->fi_action > 0) 604 tsignal(curthread, fip->fi_action); 605 606 return (NULL); 607 } 608 ufp->uf_refcnt++; 609 610 set_active_fd(fd); /* record the active file descriptor */ 611 612 UF_EXIT(ufp); 613 614 return (fp); 615 } 616 617 /* 618 * Close whatever file currently occupies the file descriptor slot 619 * and install the new file, usually NULL, in the file descriptor slot. 620 * The close must complete before we release the file descriptor slot. 621 * If newfp != NULL we only return an error if we can't allocate the 622 * slot so the caller knows that it needs to free the filep; 623 * in the other cases we return the error number from closef(). 624 */ 625 int 626 closeandsetf(int fd, file_t *newfp) 627 { 628 proc_t *p = curproc; 629 uf_info_t *fip = P_FINFO(p); 630 uf_entry_t *ufp; 631 file_t *fp; 632 fpollinfo_t *fpip; 633 portfd_t *pfd; 634 int error; 635 636 if ((uint_t)fd >= fip->fi_nfiles) { 637 if (newfp == NULL) 638 return (EBADF); 639 flist_grow(fd); 640 } 641 642 if (newfp != NULL) { 643 /* 644 * If ufp is reserved but has no file pointer, it's in the 645 * transition between ufalloc() and setf(). We must wait 646 * for this transition to complete before assigning the 647 * new non-NULL file pointer. 648 */ 649 mutex_enter(&fip->fi_lock); 650 if (fd == fip->fi_badfd) { 651 mutex_exit(&fip->fi_lock); 652 if (fip->fi_action > 0) 653 tsignal(curthread, fip->fi_action); 654 return (EBADF); 655 } 656 UF_ENTER(ufp, fip, fd); 657 while (ufp->uf_busy && ufp->uf_file == NULL) { 658 mutex_exit(&fip->fi_lock); 659 cv_wait_stop(&ufp->uf_wanted_cv, &ufp->uf_lock, 250); 660 UF_EXIT(ufp); 661 mutex_enter(&fip->fi_lock); 662 UF_ENTER(ufp, fip, fd); 663 } 664 if ((fp = ufp->uf_file) == NULL) { 665 ASSERT(ufp->uf_fpollinfo == NULL); 666 ASSERT(ufp->uf_flag == 0); 667 fd_reserve(fip, fd, 1); 668 ufp->uf_file = newfp; 669 UF_EXIT(ufp); 670 mutex_exit(&fip->fi_lock); 671 return (0); 672 } 673 mutex_exit(&fip->fi_lock); 674 } else { 675 UF_ENTER(ufp, fip, fd); 676 if ((fp = ufp->uf_file) == NULL) { 677 UF_EXIT(ufp); 678 return (EBADF); 679 } 680 } 681 682 ASSERT(ufp->uf_busy); 683 ufp->uf_file = NULL; 684 ufp->uf_flag = 0; 685 686 /* 687 * If the file descriptor reference count is non-zero, then 688 * some other lwp in the process is performing system call 689 * activity on the file. To avoid blocking here for a long 690 * time (the other lwp might be in a long term sleep in its 691 * system call), we scan all other lwps in the process to 692 * find the ones with this fd as one of their active fds, 693 * set their a_stale flag, and set them running if they 694 * are in an interruptible sleep so they will emerge from 695 * their system calls immediately. post_syscall() will 696 * test the a_stale flag and set errno to EBADF. 697 */ 698 ASSERT(ufp->uf_refcnt == 0 || p->p_lwpcnt > 1); 699 if (ufp->uf_refcnt > 0) { 700 kthread_t *t; 701 702 /* 703 * We call sprlock_proc(p) to ensure that the thread 704 * list will not change while we are scanning it. 705 * To do this, we must drop ufp->uf_lock and then 706 * reacquire it (so we are not holding both p->p_lock 707 * and ufp->uf_lock at the same time). ufp->uf_lock 708 * must be held for is_active_fd() to be correct 709 * (set_active_fd() is called while holding ufp->uf_lock). 710 * 711 * This is a convoluted dance, but it is better than 712 * the old brute-force method of stopping every thread 713 * in the process by calling holdlwps(SHOLDFORK1). 714 */ 715 716 UF_EXIT(ufp); 717 COUNT(afd_wait); 718 719 mutex_enter(&p->p_lock); 720 sprlock_proc(p); 721 mutex_exit(&p->p_lock); 722 723 UF_ENTER(ufp, fip, fd); 724 ASSERT(ufp->uf_file == NULL); 725 726 if (ufp->uf_refcnt > 0) { 727 for (t = curthread->t_forw; 728 t != curthread; 729 t = t->t_forw) { 730 if (is_active_fd(t, fd)) { 731 thread_lock(t); 732 t->t_activefd.a_stale = 1; 733 t->t_post_sys = 1; 734 if (ISWAKEABLE(t)) 735 setrun_locked(t); 736 thread_unlock(t); 737 } 738 } 739 } 740 741 UF_EXIT(ufp); 742 743 mutex_enter(&p->p_lock); 744 sprunlock(p); 745 746 UF_ENTER(ufp, fip, fd); 747 ASSERT(ufp->uf_file == NULL); 748 } 749 750 /* 751 * Wait for other lwps to stop using this file descriptor. 752 */ 753 while (ufp->uf_refcnt > 0) { 754 cv_wait_stop(&ufp->uf_closing_cv, &ufp->uf_lock, 250); 755 /* 756 * cv_wait_stop() drops ufp->uf_lock, so the file list 757 * can change. Drop the lock on our (possibly) stale 758 * ufp and let UF_ENTER() find and lock the current ufp. 759 */ 760 UF_EXIT(ufp); 761 UF_ENTER(ufp, fip, fd); 762 } 763 764 #ifdef DEBUG 765 /* 766 * catch a watchfd on device's pollhead list but not on fpollinfo list 767 */ 768 if (ufp->uf_fpollinfo != NULL) 769 checkwfdlist(fp->f_vnode, ufp->uf_fpollinfo); 770 #endif /* DEBUG */ 771 772 /* 773 * We may need to cleanup some cached poll states in t_pollstate 774 * before the fd can be reused. It is important that we don't 775 * access a stale thread structure. We will do the cleanup in two 776 * phases to avoid deadlock and holding uf_lock for too long. 777 * In phase 1, hold the uf_lock and call pollblockexit() to set 778 * state in t_pollstate struct so that a thread does not exit on 779 * us. In phase 2, we drop the uf_lock and call pollcacheclean(). 780 */ 781 pfd = ufp->uf_portfd; 782 ufp->uf_portfd = NULL; 783 fpip = ufp->uf_fpollinfo; 784 ufp->uf_fpollinfo = NULL; 785 if (fpip != NULL) 786 pollblockexit(fpip); 787 UF_EXIT(ufp); 788 if (fpip != NULL) 789 pollcacheclean(fpip, fd); 790 if (pfd) 791 port_close_fd(pfd); 792 793 /* 794 * Keep the file descriptor entry reserved across the closef(). 795 */ 796 error = closef(fp); 797 798 setf(fd, newfp); 799 800 /* Only return closef() error when closing is all we do */ 801 return (newfp == NULL ? error : 0); 802 } 803 804 /* 805 * Decrement uf_refcnt; wakeup anyone waiting to close the file. 806 */ 807 void 808 releasef(int fd) 809 { 810 uf_info_t *fip = P_FINFO(curproc); 811 uf_entry_t *ufp; 812 813 UF_ENTER(ufp, fip, fd); 814 ASSERT(ufp->uf_refcnt > 0); 815 clear_active_fd(fd); /* clear the active file descriptor */ 816 if (--ufp->uf_refcnt == 0) 817 cv_broadcast(&ufp->uf_closing_cv); 818 UF_EXIT(ufp); 819 } 820 821 /* 822 * Identical to releasef() but can be called from another process. 823 */ 824 void 825 areleasef(int fd, uf_info_t *fip) 826 { 827 uf_entry_t *ufp; 828 829 UF_ENTER(ufp, fip, fd); 830 ASSERT(ufp->uf_refcnt > 0); 831 if (--ufp->uf_refcnt == 0) 832 cv_broadcast(&ufp->uf_closing_cv); 833 UF_EXIT(ufp); 834 } 835 836 /* 837 * Duplicate all file descriptors across a fork. 838 */ 839 void 840 flist_fork(uf_info_t *pfip, uf_info_t *cfip) 841 { 842 int fd, nfiles; 843 uf_entry_t *pufp, *cufp; 844 845 mutex_init(&cfip->fi_lock, NULL, MUTEX_DEFAULT, NULL); 846 cfip->fi_rlist = NULL; 847 848 /* 849 * We don't need to hold fi_lock because all other lwp's in the 850 * parent have been held. 851 */ 852 cfip->fi_nfiles = nfiles = flist_minsize(pfip); 853 854 cfip->fi_list = kmem_zalloc(nfiles * sizeof (uf_entry_t), KM_SLEEP); 855 856 for (fd = 0, pufp = pfip->fi_list, cufp = cfip->fi_list; fd < nfiles; 857 fd++, pufp++, cufp++) { 858 cufp->uf_file = pufp->uf_file; 859 cufp->uf_alloc = pufp->uf_alloc; 860 cufp->uf_flag = pufp->uf_flag; 861 cufp->uf_busy = pufp->uf_busy; 862 if (pufp->uf_file == NULL) { 863 ASSERT(pufp->uf_flag == 0); 864 if (pufp->uf_busy) { 865 /* 866 * Grab locks to appease ASSERTs in fd_reserve 867 */ 868 mutex_enter(&cfip->fi_lock); 869 mutex_enter(&cufp->uf_lock); 870 fd_reserve(cfip, fd, -1); 871 mutex_exit(&cufp->uf_lock); 872 mutex_exit(&cfip->fi_lock); 873 } 874 } 875 } 876 } 877 878 /* 879 * Close all open file descriptors for the current process. 880 * This is only called from exit(), which is single-threaded, 881 * so we don't need any locking. 882 */ 883 void 884 closeall(uf_info_t *fip) 885 { 886 int fd; 887 file_t *fp; 888 uf_entry_t *ufp; 889 890 ufp = fip->fi_list; 891 for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) { 892 if ((fp = ufp->uf_file) != NULL) { 893 ufp->uf_file = NULL; 894 if (ufp->uf_portfd != NULL) { 895 portfd_t *pfd; 896 /* remove event port association */ 897 pfd = ufp->uf_portfd; 898 ufp->uf_portfd = NULL; 899 port_close_fd(pfd); 900 } 901 ASSERT(ufp->uf_fpollinfo == NULL); 902 (void) closef(fp); 903 } 904 } 905 906 kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t)); 907 fip->fi_list = NULL; 908 fip->fi_nfiles = 0; 909 while (fip->fi_rlist != NULL) { 910 uf_rlist_t *urp = fip->fi_rlist; 911 fip->fi_rlist = urp->ur_next; 912 kmem_free(urp->ur_list, urp->ur_nfiles * sizeof (uf_entry_t)); 913 kmem_free(urp, sizeof (uf_rlist_t)); 914 } 915 } 916 917 /* 918 * Internal form of close. Decrement reference count on file 919 * structure. Decrement reference count on the vnode following 920 * removal of the referencing file structure. 921 */ 922 int 923 closef(file_t *fp) 924 { 925 vnode_t *vp; 926 int error; 927 int count; 928 int flag; 929 offset_t offset; 930 931 /* 932 * audit close of file (may be exit) 933 */ 934 if (AU_AUDITING()) 935 audit_closef(fp); 936 ASSERT(MUTEX_NOT_HELD(&P_FINFO(curproc)->fi_lock)); 937 938 mutex_enter(&fp->f_tlock); 939 940 ASSERT(fp->f_count > 0); 941 942 count = fp->f_count--; 943 flag = fp->f_flag; 944 offset = fp->f_offset; 945 946 vp = fp->f_vnode; 947 948 error = VOP_CLOSE(vp, flag, count, offset, fp->f_cred, NULL); 949 950 if (count > 1) { 951 mutex_exit(&fp->f_tlock); 952 return (error); 953 } 954 ASSERT(fp->f_count == 0); 955 mutex_exit(&fp->f_tlock); 956 957 /* 958 * If DTrace has getf() subroutines active, it will set dtrace_closef 959 * to point to code that implements a barrier with respect to probe 960 * context. This must be called before the file_t is freed (and the 961 * vnode that it refers to is released) -- but it must be after the 962 * file_t has been removed from the uf_entry_t. That is, there must 963 * be no way for a racing getf() in probe context to yield the fp that 964 * we're operating upon. 965 */ 966 if (dtrace_closef != NULL) 967 (*dtrace_closef)(); 968 969 VN_RELE(vp); 970 /* 971 * deallocate resources to audit_data 972 */ 973 if (audit_active) 974 audit_unfalloc(fp); 975 crfree(fp->f_cred); 976 kmem_cache_free(file_cache, fp); 977 return (error); 978 } 979 980 /* 981 * This is a combination of ufalloc() and setf(). 982 */ 983 int 984 ufalloc_file(int start, file_t *fp) 985 { 986 proc_t *p = curproc; 987 uf_info_t *fip = P_FINFO(p); 988 int filelimit; 989 uf_entry_t *ufp; 990 int nfiles; 991 int fd; 992 993 /* 994 * Assertion is to convince the correctness of the following 995 * assignment for filelimit after casting to int. 996 */ 997 ASSERT(p->p_fno_ctl <= INT_MAX); 998 filelimit = (int)p->p_fno_ctl; 999 1000 for (;;) { 1001 mutex_enter(&fip->fi_lock); 1002 fd = fd_find(fip, start); 1003 if (fd >= 0 && fd == fip->fi_badfd) { 1004 start = fd + 1; 1005 mutex_exit(&fip->fi_lock); 1006 continue; 1007 } 1008 if ((uint_t)fd < filelimit) 1009 break; 1010 if (fd >= filelimit) { 1011 mutex_exit(&fip->fi_lock); 1012 mutex_enter(&p->p_lock); 1013 (void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE], 1014 p->p_rctls, p, RCA_SAFE); 1015 mutex_exit(&p->p_lock); 1016 return (-1); 1017 } 1018 /* fd_find() returned -1 */ 1019 nfiles = fip->fi_nfiles; 1020 mutex_exit(&fip->fi_lock); 1021 flist_grow(MAX(start, nfiles)); 1022 } 1023 1024 UF_ENTER(ufp, fip, fd); 1025 fd_reserve(fip, fd, 1); 1026 ASSERT(ufp->uf_file == NULL); 1027 ufp->uf_file = fp; 1028 UF_EXIT(ufp); 1029 mutex_exit(&fip->fi_lock); 1030 return (fd); 1031 } 1032 1033 /* 1034 * Allocate a user file descriptor greater than or equal to "start". 1035 */ 1036 int 1037 ufalloc(int start) 1038 { 1039 return (ufalloc_file(start, NULL)); 1040 } 1041 1042 /* 1043 * Check that a future allocation of count fds on proc p has a good 1044 * chance of succeeding. If not, do rctl processing as if we'd failed 1045 * the allocation. 1046 * 1047 * Our caller must guarantee that p cannot disappear underneath us. 1048 */ 1049 int 1050 ufcanalloc(proc_t *p, uint_t count) 1051 { 1052 uf_info_t *fip = P_FINFO(p); 1053 int filelimit; 1054 int current; 1055 1056 if (count == 0) 1057 return (1); 1058 1059 ASSERT(p->p_fno_ctl <= INT_MAX); 1060 filelimit = (int)p->p_fno_ctl; 1061 1062 mutex_enter(&fip->fi_lock); 1063 current = flist_nalloc(fip); /* # of in-use descriptors */ 1064 mutex_exit(&fip->fi_lock); 1065 1066 /* 1067 * If count is a positive integer, the worst that can happen is 1068 * an overflow to a negative value, which is caught by the >= 0 check. 1069 */ 1070 current += count; 1071 if (count <= INT_MAX && current >= 0 && current <= filelimit) 1072 return (1); 1073 1074 mutex_enter(&p->p_lock); 1075 (void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE], 1076 p->p_rctls, p, RCA_SAFE); 1077 mutex_exit(&p->p_lock); 1078 return (0); 1079 } 1080 1081 /* 1082 * Allocate a user file descriptor and a file structure. 1083 * Initialize the descriptor to point at the file structure. 1084 * If fdp is NULL, the user file descriptor will not be allocated. 1085 */ 1086 int 1087 falloc(vnode_t *vp, int flag, file_t **fpp, int *fdp) 1088 { 1089 file_t *fp; 1090 int fd; 1091 1092 if (fdp) { 1093 if ((fd = ufalloc(0)) == -1) 1094 return (EMFILE); 1095 } 1096 fp = kmem_cache_alloc(file_cache, KM_SLEEP); 1097 /* 1098 * Note: falloc returns the fp locked 1099 */ 1100 mutex_enter(&fp->f_tlock); 1101 fp->f_count = 1; 1102 fp->f_flag = (ushort_t)flag; 1103 fp->f_flag2 = (flag & (FSEARCH|FEXEC)) >> 16; 1104 fp->f_vnode = vp; 1105 fp->f_offset = 0; 1106 fp->f_audit_data = 0; 1107 crhold(fp->f_cred = CRED()); 1108 /* 1109 * allocate resources to audit_data 1110 */ 1111 if (audit_active) 1112 audit_falloc(fp); 1113 *fpp = fp; 1114 if (fdp) 1115 *fdp = fd; 1116 return (0); 1117 } 1118 1119 /*ARGSUSED*/ 1120 static int 1121 file_cache_constructor(void *buf, void *cdrarg, int kmflags) 1122 { 1123 file_t *fp = buf; 1124 1125 mutex_init(&fp->f_tlock, NULL, MUTEX_DEFAULT, NULL); 1126 return (0); 1127 } 1128 1129 /*ARGSUSED*/ 1130 static void 1131 file_cache_destructor(void *buf, void *cdrarg) 1132 { 1133 file_t *fp = buf; 1134 1135 mutex_destroy(&fp->f_tlock); 1136 } 1137 1138 void 1139 finit() 1140 { 1141 file_cache = kmem_cache_create("file_cache", sizeof (file_t), 0, 1142 file_cache_constructor, file_cache_destructor, NULL, NULL, NULL, 0); 1143 } 1144 1145 void 1146 unfalloc(file_t *fp) 1147 { 1148 ASSERT(MUTEX_HELD(&fp->f_tlock)); 1149 if (--fp->f_count <= 0) { 1150 /* 1151 * deallocate resources to audit_data 1152 */ 1153 if (audit_active) 1154 audit_unfalloc(fp); 1155 crfree(fp->f_cred); 1156 mutex_exit(&fp->f_tlock); 1157 kmem_cache_free(file_cache, fp); 1158 } else 1159 mutex_exit(&fp->f_tlock); 1160 } 1161 1162 /* 1163 * Given a file descriptor, set the user's 1164 * file pointer to the given parameter. 1165 */ 1166 void 1167 setf(int fd, file_t *fp) 1168 { 1169 uf_info_t *fip = P_FINFO(curproc); 1170 uf_entry_t *ufp; 1171 1172 if (AU_AUDITING()) 1173 audit_setf(fp, fd); 1174 1175 if (fp == NULL) { 1176 mutex_enter(&fip->fi_lock); 1177 UF_ENTER(ufp, fip, fd); 1178 fd_reserve(fip, fd, -1); 1179 mutex_exit(&fip->fi_lock); 1180 } else { 1181 UF_ENTER(ufp, fip, fd); 1182 ASSERT(ufp->uf_busy); 1183 } 1184 ASSERT(ufp->uf_fpollinfo == NULL); 1185 ASSERT(ufp->uf_flag == 0); 1186 ufp->uf_file = fp; 1187 cv_broadcast(&ufp->uf_wanted_cv); 1188 UF_EXIT(ufp); 1189 } 1190 1191 /* 1192 * Given a file descriptor, return the file table flags, plus, 1193 * if this is a socket in asynchronous mode, the FASYNC flag. 1194 * getf() may or may not have been called before calling f_getfl(). 1195 */ 1196 int 1197 f_getfl(int fd, int *flagp) 1198 { 1199 uf_info_t *fip = P_FINFO(curproc); 1200 uf_entry_t *ufp; 1201 file_t *fp; 1202 int error; 1203 1204 if ((uint_t)fd >= fip->fi_nfiles) 1205 error = EBADF; 1206 else { 1207 UF_ENTER(ufp, fip, fd); 1208 if ((fp = ufp->uf_file) == NULL) 1209 error = EBADF; 1210 else { 1211 vnode_t *vp = fp->f_vnode; 1212 int flag = fp->f_flag | (fp->f_flag2 << 16); 1213 1214 /* 1215 * BSD fcntl() FASYNC compatibility. 1216 */ 1217 if (vp->v_type == VSOCK) 1218 flag |= sock_getfasync(vp); 1219 *flagp = flag; 1220 error = 0; 1221 } 1222 UF_EXIT(ufp); 1223 } 1224 1225 return (error); 1226 } 1227 1228 /* 1229 * Given a file descriptor, return the user's file flags. 1230 * Force the FD_CLOEXEC flag for writable self-open /proc files. 1231 * getf() may or may not have been called before calling f_getfd_error(). 1232 */ 1233 int 1234 f_getfd_error(int fd, int *flagp) 1235 { 1236 uf_info_t *fip = P_FINFO(curproc); 1237 uf_entry_t *ufp; 1238 file_t *fp; 1239 int flag; 1240 int error; 1241 1242 if ((uint_t)fd >= fip->fi_nfiles) 1243 error = EBADF; 1244 else { 1245 UF_ENTER(ufp, fip, fd); 1246 if ((fp = ufp->uf_file) == NULL) 1247 error = EBADF; 1248 else { 1249 flag = ufp->uf_flag; 1250 if ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode)) 1251 flag |= FD_CLOEXEC; 1252 *flagp = flag; 1253 error = 0; 1254 } 1255 UF_EXIT(ufp); 1256 } 1257 1258 return (error); 1259 } 1260 1261 /* 1262 * getf() must have been called before calling f_getfd(). 1263 */ 1264 char 1265 f_getfd(int fd) 1266 { 1267 int flag = 0; 1268 (void) f_getfd_error(fd, &flag); 1269 return ((char)flag); 1270 } 1271 1272 /* 1273 * Given a file descriptor and file flags, set the user's file flags. 1274 * At present, the only valid flag is FD_CLOEXEC. 1275 * getf() may or may not have been called before calling f_setfd_error(). 1276 */ 1277 int 1278 f_setfd_error(int fd, int flags) 1279 { 1280 uf_info_t *fip = P_FINFO(curproc); 1281 uf_entry_t *ufp; 1282 int error; 1283 1284 if ((uint_t)fd >= fip->fi_nfiles) 1285 error = EBADF; 1286 else { 1287 UF_ENTER(ufp, fip, fd); 1288 if (ufp->uf_file == NULL) 1289 error = EBADF; 1290 else { 1291 ufp->uf_flag = flags & FD_CLOEXEC; 1292 error = 0; 1293 } 1294 UF_EXIT(ufp); 1295 } 1296 return (error); 1297 } 1298 1299 void 1300 f_setfd(int fd, char flags) 1301 { 1302 (void) f_setfd_error(fd, flags); 1303 } 1304 1305 #define BADFD_MIN 3 1306 #define BADFD_MAX 255 1307 1308 /* 1309 * Attempt to allocate a file descriptor which is bad and which 1310 * is "poison" to the application. It cannot be closed (except 1311 * on exec), allocated for a different use, etc. 1312 */ 1313 int 1314 f_badfd(int start, int *fdp, int action) 1315 { 1316 int fdr; 1317 int badfd; 1318 uf_info_t *fip = P_FINFO(curproc); 1319 1320 #ifdef _LP64 1321 /* No restrictions on 64 bit _file */ 1322 if (get_udatamodel() != DATAMODEL_ILP32) 1323 return (EINVAL); 1324 #endif 1325 1326 if (start > BADFD_MAX || start < BADFD_MIN) 1327 return (EINVAL); 1328 1329 if (action >= NSIG || action < 0) 1330 return (EINVAL); 1331 1332 mutex_enter(&fip->fi_lock); 1333 badfd = fip->fi_badfd; 1334 mutex_exit(&fip->fi_lock); 1335 1336 if (badfd != -1) 1337 return (EAGAIN); 1338 1339 fdr = ufalloc(start); 1340 1341 if (fdr > BADFD_MAX) { 1342 setf(fdr, NULL); 1343 return (EMFILE); 1344 } 1345 if (fdr < 0) 1346 return (EMFILE); 1347 1348 mutex_enter(&fip->fi_lock); 1349 if (fip->fi_badfd != -1) { 1350 /* Lost race */ 1351 mutex_exit(&fip->fi_lock); 1352 setf(fdr, NULL); 1353 return (EAGAIN); 1354 } 1355 fip->fi_action = action; 1356 fip->fi_badfd = fdr; 1357 mutex_exit(&fip->fi_lock); 1358 setf(fdr, NULL); 1359 1360 *fdp = fdr; 1361 1362 return (0); 1363 } 1364 1365 /* 1366 * Allocate a file descriptor and assign it to the vnode "*vpp", 1367 * performing the usual open protocol upon it and returning the 1368 * file descriptor allocated. It is the responsibility of the 1369 * caller to dispose of "*vpp" if any error occurs. 1370 */ 1371 int 1372 fassign(vnode_t **vpp, int mode, int *fdp) 1373 { 1374 file_t *fp; 1375 int error; 1376 int fd; 1377 1378 if (error = falloc((vnode_t *)NULL, mode, &fp, &fd)) 1379 return (error); 1380 if (error = VOP_OPEN(vpp, mode, fp->f_cred, NULL)) { 1381 setf(fd, NULL); 1382 unfalloc(fp); 1383 return (error); 1384 } 1385 fp->f_vnode = *vpp; 1386 mutex_exit(&fp->f_tlock); 1387 /* 1388 * Fill in the slot falloc reserved. 1389 */ 1390 setf(fd, fp); 1391 *fdp = fd; 1392 return (0); 1393 } 1394 1395 /* 1396 * When a process forks it must increment the f_count of all file pointers 1397 * since there is a new process pointing at them. fcnt_add(fip, 1) does this. 1398 * Since we are called when there is only 1 active lwp we don't need to 1399 * hold fi_lock or any uf_lock. If the fork fails, fork_fail() calls 1400 * fcnt_add(fip, -1) to restore the counts. 1401 */ 1402 void 1403 fcnt_add(uf_info_t *fip, int incr) 1404 { 1405 int i; 1406 uf_entry_t *ufp; 1407 file_t *fp; 1408 1409 ufp = fip->fi_list; 1410 for (i = 0; i < fip->fi_nfiles; i++, ufp++) { 1411 if ((fp = ufp->uf_file) != NULL) { 1412 mutex_enter(&fp->f_tlock); 1413 ASSERT((incr == 1 && fp->f_count >= 1) || 1414 (incr == -1 && fp->f_count >= 2)); 1415 fp->f_count += incr; 1416 mutex_exit(&fp->f_tlock); 1417 } 1418 } 1419 } 1420 1421 /* 1422 * This is called from exec to close all fd's that have the FD_CLOEXEC flag 1423 * set and also to close all self-open for write /proc file descriptors. 1424 */ 1425 void 1426 close_exec(uf_info_t *fip) 1427 { 1428 int fd; 1429 file_t *fp; 1430 fpollinfo_t *fpip; 1431 uf_entry_t *ufp; 1432 portfd_t *pfd; 1433 1434 ufp = fip->fi_list; 1435 for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) { 1436 if ((fp = ufp->uf_file) != NULL && 1437 ((ufp->uf_flag & FD_CLOEXEC) || 1438 ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode)))) { 1439 fpip = ufp->uf_fpollinfo; 1440 mutex_enter(&fip->fi_lock); 1441 mutex_enter(&ufp->uf_lock); 1442 fd_reserve(fip, fd, -1); 1443 mutex_exit(&fip->fi_lock); 1444 ufp->uf_file = NULL; 1445 ufp->uf_fpollinfo = NULL; 1446 ufp->uf_flag = 0; 1447 /* 1448 * We may need to cleanup some cached poll states 1449 * in t_pollstate before the fd can be reused. It 1450 * is important that we don't access a stale thread 1451 * structure. We will do the cleanup in two 1452 * phases to avoid deadlock and holding uf_lock for 1453 * too long. In phase 1, hold the uf_lock and call 1454 * pollblockexit() to set state in t_pollstate struct 1455 * so that a thread does not exit on us. In phase 2, 1456 * we drop the uf_lock and call pollcacheclean(). 1457 */ 1458 pfd = ufp->uf_portfd; 1459 ufp->uf_portfd = NULL; 1460 if (fpip != NULL) 1461 pollblockexit(fpip); 1462 mutex_exit(&ufp->uf_lock); 1463 if (fpip != NULL) 1464 pollcacheclean(fpip, fd); 1465 if (pfd) 1466 port_close_fd(pfd); 1467 (void) closef(fp); 1468 } 1469 } 1470 1471 /* Reset bad fd */ 1472 fip->fi_badfd = -1; 1473 fip->fi_action = -1; 1474 } 1475 1476 /* 1477 * Utility function called by most of the *at() system call interfaces. 1478 * 1479 * Generate a starting vnode pointer for an (fd, path) pair where 'fd' 1480 * is an open file descriptor for a directory to be used as the starting 1481 * point for the lookup of the relative pathname 'path' (or, if path is 1482 * NULL, generate a vnode pointer for the direct target of the operation). 1483 * 1484 * If we successfully return a non-NULL startvp, it has been the target 1485 * of VN_HOLD() and the caller must call VN_RELE() on it. 1486 */ 1487 int 1488 fgetstartvp(int fd, char *path, vnode_t **startvpp) 1489 { 1490 vnode_t *startvp; 1491 file_t *startfp; 1492 char startchar; 1493 1494 if (fd == AT_FDCWD && path == NULL) 1495 return (EFAULT); 1496 1497 if (fd == AT_FDCWD) { 1498 /* 1499 * Start from the current working directory. 1500 */ 1501 startvp = NULL; 1502 } else { 1503 if (path == NULL) 1504 startchar = '\0'; 1505 else if (copyin(path, &startchar, sizeof (char))) 1506 return (EFAULT); 1507 1508 if (startchar == '/') { 1509 /* 1510 * 'path' is an absolute pathname. 1511 */ 1512 startvp = NULL; 1513 } else { 1514 /* 1515 * 'path' is a relative pathname or we will 1516 * be applying the operation to 'fd' itself. 1517 */ 1518 if ((startfp = getf(fd)) == NULL) 1519 return (EBADF); 1520 startvp = startfp->f_vnode; 1521 VN_HOLD(startvp); 1522 releasef(fd); 1523 } 1524 } 1525 *startvpp = startvp; 1526 return (0); 1527 } 1528 1529 /* 1530 * Called from fchownat() and fchmodat() to set ownership and mode. 1531 * The contents of *vap must be set before calling here. 1532 */ 1533 int 1534 fsetattrat(int fd, char *path, int flags, struct vattr *vap) 1535 { 1536 vnode_t *startvp; 1537 vnode_t *vp; 1538 int error; 1539 1540 /* 1541 * Since we are never called to set the size of a file, we don't 1542 * need to check for non-blocking locks (via nbl_need_check(vp)). 1543 */ 1544 ASSERT(!(vap->va_mask & AT_SIZE)); 1545 1546 if ((error = fgetstartvp(fd, path, &startvp)) != 0) 1547 return (error); 1548 if (AU_AUDITING() && startvp != NULL) 1549 audit_setfsat_path(1); 1550 1551 /* 1552 * Do lookup for fchownat/fchmodat when path not NULL 1553 */ 1554 if (path != NULL) { 1555 if (error = lookupnameat(path, UIO_USERSPACE, 1556 (flags == AT_SYMLINK_NOFOLLOW) ? 1557 NO_FOLLOW : FOLLOW, 1558 NULLVPP, &vp, startvp)) { 1559 if (startvp != NULL) 1560 VN_RELE(startvp); 1561 return (error); 1562 } 1563 } else { 1564 vp = startvp; 1565 ASSERT(vp); 1566 VN_HOLD(vp); 1567 } 1568 1569 if (vn_is_readonly(vp)) { 1570 error = EROFS; 1571 } else { 1572 error = VOP_SETATTR(vp, vap, 0, CRED(), NULL); 1573 } 1574 1575 if (startvp != NULL) 1576 VN_RELE(startvp); 1577 VN_RELE(vp); 1578 1579 return (error); 1580 } 1581 1582 /* 1583 * Return true if the given vnode is referenced by any 1584 * entry in the current process's file descriptor table. 1585 */ 1586 int 1587 fisopen(vnode_t *vp) 1588 { 1589 int fd; 1590 file_t *fp; 1591 vnode_t *ovp; 1592 uf_info_t *fip = P_FINFO(curproc); 1593 uf_entry_t *ufp; 1594 1595 mutex_enter(&fip->fi_lock); 1596 for (fd = 0; fd < fip->fi_nfiles; fd++) { 1597 UF_ENTER(ufp, fip, fd); 1598 if ((fp = ufp->uf_file) != NULL && 1599 (ovp = fp->f_vnode) != NULL && VN_CMP(vp, ovp)) { 1600 UF_EXIT(ufp); 1601 mutex_exit(&fip->fi_lock); 1602 return (1); 1603 } 1604 UF_EXIT(ufp); 1605 } 1606 mutex_exit(&fip->fi_lock); 1607 return (0); 1608 } 1609 1610 /* 1611 * Return zero if at least one file currently open (by curproc) shouldn't be 1612 * allowed to change zones. 1613 */ 1614 int 1615 files_can_change_zones(void) 1616 { 1617 int fd; 1618 file_t *fp; 1619 uf_info_t *fip = P_FINFO(curproc); 1620 uf_entry_t *ufp; 1621 1622 mutex_enter(&fip->fi_lock); 1623 for (fd = 0; fd < fip->fi_nfiles; fd++) { 1624 UF_ENTER(ufp, fip, fd); 1625 if ((fp = ufp->uf_file) != NULL && 1626 !vn_can_change_zones(fp->f_vnode)) { 1627 UF_EXIT(ufp); 1628 mutex_exit(&fip->fi_lock); 1629 return (0); 1630 } 1631 UF_EXIT(ufp); 1632 } 1633 mutex_exit(&fip->fi_lock); 1634 return (1); 1635 } 1636 1637 #ifdef DEBUG 1638 1639 /* 1640 * The following functions are only used in ASSERT()s elsewhere. 1641 * They do not modify the state of the system. 1642 */ 1643 1644 /* 1645 * Return true (1) if the current thread is in the fpollinfo 1646 * list for this file descriptor, else false (0). 1647 */ 1648 static int 1649 curthread_in_plist(uf_entry_t *ufp) 1650 { 1651 fpollinfo_t *fpip; 1652 1653 ASSERT(MUTEX_HELD(&ufp->uf_lock)); 1654 for (fpip = ufp->uf_fpollinfo; fpip; fpip = fpip->fp_next) 1655 if (fpip->fp_thread == curthread) 1656 return (1); 1657 return (0); 1658 } 1659 1660 /* 1661 * Sanity check to make sure that after lwp_exit(), 1662 * curthread does not appear on any fd's fpollinfo list. 1663 */ 1664 void 1665 checkfpollinfo(void) 1666 { 1667 int fd; 1668 uf_info_t *fip = P_FINFO(curproc); 1669 uf_entry_t *ufp; 1670 1671 mutex_enter(&fip->fi_lock); 1672 for (fd = 0; fd < fip->fi_nfiles; fd++) { 1673 UF_ENTER(ufp, fip, fd); 1674 ASSERT(!curthread_in_plist(ufp)); 1675 UF_EXIT(ufp); 1676 } 1677 mutex_exit(&fip->fi_lock); 1678 } 1679 1680 /* 1681 * Return true (1) if the current thread is in the fpollinfo 1682 * list for this file descriptor, else false (0). 1683 * This is the same as curthread_in_plist(), 1684 * but is called w/o holding uf_lock. 1685 */ 1686 int 1687 infpollinfo(int fd) 1688 { 1689 uf_info_t *fip = P_FINFO(curproc); 1690 uf_entry_t *ufp; 1691 int rc; 1692 1693 UF_ENTER(ufp, fip, fd); 1694 rc = curthread_in_plist(ufp); 1695 UF_EXIT(ufp); 1696 return (rc); 1697 } 1698 1699 #endif /* DEBUG */ 1700 1701 /* 1702 * Add the curthread to fpollinfo list, meaning this fd is currently in the 1703 * thread's poll cache. Each lwp polling this file descriptor should call 1704 * this routine once. 1705 */ 1706 void 1707 addfpollinfo(int fd) 1708 { 1709 struct uf_entry *ufp; 1710 fpollinfo_t *fpip; 1711 uf_info_t *fip = P_FINFO(curproc); 1712 1713 fpip = kmem_zalloc(sizeof (fpollinfo_t), KM_SLEEP); 1714 fpip->fp_thread = curthread; 1715 UF_ENTER(ufp, fip, fd); 1716 /* 1717 * Assert we are not already on the list, that is, that 1718 * this lwp did not call addfpollinfo twice for the same fd. 1719 */ 1720 ASSERT(!curthread_in_plist(ufp)); 1721 /* 1722 * addfpollinfo is always done inside the getf/releasef pair. 1723 */ 1724 ASSERT(ufp->uf_refcnt >= 1); 1725 fpip->fp_next = ufp->uf_fpollinfo; 1726 ufp->uf_fpollinfo = fpip; 1727 UF_EXIT(ufp); 1728 } 1729 1730 /* 1731 * Delete curthread from fpollinfo list if it is there. 1732 */ 1733 void 1734 delfpollinfo(int fd) 1735 { 1736 struct uf_entry *ufp; 1737 struct fpollinfo *fpip; 1738 struct fpollinfo **fpipp; 1739 uf_info_t *fip = P_FINFO(curproc); 1740 1741 UF_ENTER(ufp, fip, fd); 1742 for (fpipp = &ufp->uf_fpollinfo; 1743 (fpip = *fpipp) != NULL; 1744 fpipp = &fpip->fp_next) { 1745 if (fpip->fp_thread == curthread) { 1746 *fpipp = fpip->fp_next; 1747 kmem_free(fpip, sizeof (fpollinfo_t)); 1748 break; 1749 } 1750 } 1751 /* 1752 * Assert that we are not still on the list, that is, that 1753 * this lwp did not call addfpollinfo twice for the same fd. 1754 */ 1755 ASSERT(!curthread_in_plist(ufp)); 1756 UF_EXIT(ufp); 1757 } 1758 1759 /* 1760 * fd is associated with a port. pfd is a pointer to the fd entry in the 1761 * cache of the port. 1762 */ 1763 1764 void 1765 addfd_port(int fd, portfd_t *pfd) 1766 { 1767 struct uf_entry *ufp; 1768 uf_info_t *fip = P_FINFO(curproc); 1769 1770 UF_ENTER(ufp, fip, fd); 1771 /* 1772 * addfd_port is always done inside the getf/releasef pair. 1773 */ 1774 ASSERT(ufp->uf_refcnt >= 1); 1775 if (ufp->uf_portfd == NULL) { 1776 /* first entry */ 1777 ufp->uf_portfd = pfd; 1778 pfd->pfd_next = NULL; 1779 } else { 1780 pfd->pfd_next = ufp->uf_portfd; 1781 ufp->uf_portfd = pfd; 1782 pfd->pfd_next->pfd_prev = pfd; 1783 } 1784 UF_EXIT(ufp); 1785 } 1786 1787 void 1788 delfd_port(int fd, portfd_t *pfd) 1789 { 1790 struct uf_entry *ufp; 1791 uf_info_t *fip = P_FINFO(curproc); 1792 1793 UF_ENTER(ufp, fip, fd); 1794 /* 1795 * delfd_port is always done inside the getf/releasef pair. 1796 */ 1797 ASSERT(ufp->uf_refcnt >= 1); 1798 if (ufp->uf_portfd == pfd) { 1799 /* remove first entry */ 1800 ufp->uf_portfd = pfd->pfd_next; 1801 } else { 1802 pfd->pfd_prev->pfd_next = pfd->pfd_next; 1803 if (pfd->pfd_next != NULL) 1804 pfd->pfd_next->pfd_prev = pfd->pfd_prev; 1805 } 1806 UF_EXIT(ufp); 1807 } 1808 1809 static void 1810 port_close_fd(portfd_t *pfd) 1811 { 1812 portfd_t *pfdn; 1813 1814 /* 1815 * At this point, no other thread should access 1816 * the portfd_t list for this fd. The uf_file, uf_portfd 1817 * pointers in the uf_entry_t struct for this fd would 1818 * be set to NULL. 1819 */ 1820 for (; pfd != NULL; pfd = pfdn) { 1821 pfdn = pfd->pfd_next; 1822 port_close_pfd(pfd); 1823 } 1824 }