1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright (c) 2011, Joyent, Inc. All rights reserved.
  25  */
  26 
  27 /*
  28  * DTrace - Dynamic Tracing for Solaris
  29  *
  30  * This is the implementation of the Solaris Dynamic Tracing framework
  31  * (DTrace).  The user-visible interface to DTrace is described at length in
  32  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
  33  * library, the in-kernel DTrace framework, and the DTrace providers are
  34  * described in the block comments in the <sys/dtrace.h> header file.  The
  35  * internal architecture of DTrace is described in the block comments in the
  36  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
  37  * implementation very much assume mastery of all of these sources; if one has
  38  * an unanswered question about the implementation, one should consult them
  39  * first.
  40  *
  41  * The functions here are ordered roughly as follows:
  42  *
  43  *   - Probe context functions
  44  *   - Probe hashing functions
  45  *   - Non-probe context utility functions
  46  *   - Matching functions
  47  *   - Provider-to-Framework API functions
  48  *   - Probe management functions
  49  *   - DIF object functions
  50  *   - Format functions
  51  *   - Predicate functions
  52  *   - ECB functions
  53  *   - Buffer functions
  54  *   - Enabling functions
  55  *   - DOF functions
  56  *   - Anonymous enabling functions
  57  *   - Consumer state functions
  58  *   - Helper functions
  59  *   - Hook functions
  60  *   - Driver cookbook functions
  61  *
  62  * Each group of functions begins with a block comment labelled the "DTrace
  63  * [Group] Functions", allowing one to find each block by searching forward
  64  * on capital-f functions.
  65  */
  66 #include <sys/errno.h>
  67 #include <sys/stat.h>
  68 #include <sys/modctl.h>
  69 #include <sys/conf.h>
  70 #include <sys/systm.h>
  71 #include <sys/ddi.h>
  72 #include <sys/sunddi.h>
  73 #include <sys/cpuvar.h>
  74 #include <sys/kmem.h>
  75 #include <sys/strsubr.h>
  76 #include <sys/sysmacros.h>
  77 #include <sys/dtrace_impl.h>
  78 #include <sys/atomic.h>
  79 #include <sys/cmn_err.h>
  80 #include <sys/mutex_impl.h>
  81 #include <sys/rwlock_impl.h>
  82 #include <sys/ctf_api.h>
  83 #include <sys/panic.h>
  84 #include <sys/priv_impl.h>
  85 #include <sys/policy.h>
  86 #include <sys/cred_impl.h>
  87 #include <sys/procfs_isa.h>
  88 #include <sys/taskq.h>
  89 #include <sys/mkdev.h>
  90 #include <sys/kdi.h>
  91 #include <sys/zone.h>
  92 #include <sys/socket.h>
  93 #include <netinet/in.h>
  94 
  95 /*
  96  * DTrace Tunable Variables
  97  *
  98  * The following variables may be tuned by adding a line to /etc/system that
  99  * includes both the name of the DTrace module ("dtrace") and the name of the
 100  * variable.  For example:
 101  *
 102  *   set dtrace:dtrace_destructive_disallow = 1
 103  *
 104  * In general, the only variables that one should be tuning this way are those
 105  * that affect system-wide DTrace behavior, and for which the default behavior
 106  * is undesirable.  Most of these variables are tunable on a per-consumer
 107  * basis using DTrace options, and need not be tuned on a system-wide basis.
 108  * When tuning these variables, avoid pathological values; while some attempt
 109  * is made to verify the integrity of these variables, they are not considered
 110  * part of the supported interface to DTrace, and they are therefore not
 111  * checked comprehensively.  Further, these variables should not be tuned
 112  * dynamically via "mdb -kw" or other means; they should only be tuned via
 113  * /etc/system.
 114  */
 115 int             dtrace_destructive_disallow = 0;
 116 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024);
 117 size_t          dtrace_difo_maxsize = (256 * 1024);
 118 dtrace_optval_t dtrace_dof_maxsize = (256 * 1024);
 119 size_t          dtrace_global_maxsize = (16 * 1024);
 120 size_t          dtrace_actions_max = (16 * 1024);
 121 size_t          dtrace_retain_max = 1024;
 122 dtrace_optval_t dtrace_helper_actions_max = 1024;
 123 dtrace_optval_t dtrace_helper_providers_max = 32;
 124 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024);
 125 size_t          dtrace_strsize_default = 256;
 126 dtrace_optval_t dtrace_cleanrate_default = 9900990;             /* 101 hz */
 127 dtrace_optval_t dtrace_cleanrate_min = 200000;                  /* 5000 hz */
 128 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;  /* 1/minute */
 129 dtrace_optval_t dtrace_aggrate_default = NANOSEC;               /* 1 hz */
 130 dtrace_optval_t dtrace_statusrate_default = NANOSEC;            /* 1 hz */
 131 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;  /* 6/minute */
 132 dtrace_optval_t dtrace_switchrate_default = NANOSEC;            /* 1 hz */
 133 dtrace_optval_t dtrace_nspec_default = 1;
 134 dtrace_optval_t dtrace_specsize_default = 32 * 1024;
 135 dtrace_optval_t dtrace_stackframes_default = 20;
 136 dtrace_optval_t dtrace_ustackframes_default = 20;
 137 dtrace_optval_t dtrace_jstackframes_default = 50;
 138 dtrace_optval_t dtrace_jstackstrsize_default = 512;
 139 int             dtrace_msgdsize_max = 128;
 140 hrtime_t        dtrace_chill_max = 500 * (NANOSEC / MILLISEC);  /* 500 ms */
 141 hrtime_t        dtrace_chill_interval = NANOSEC;                /* 1000 ms */
 142 int             dtrace_devdepth_max = 32;
 143 int             dtrace_err_verbose;
 144 hrtime_t        dtrace_deadman_interval = NANOSEC;
 145 hrtime_t        dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
 146 hrtime_t        dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
 147 hrtime_t        dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
 148 
 149 /*
 150  * DTrace External Variables
 151  *
 152  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
 153  * available to DTrace consumers via the backtick (`) syntax.  One of these,
 154  * dtrace_zero, is made deliberately so:  it is provided as a source of
 155  * well-known, zero-filled memory.  While this variable is not documented,
 156  * it is used by some translators as an implementation detail.
 157  */
 158 const char      dtrace_zero[256] = { 0 };       /* zero-filled memory */
 159 
 160 /*
 161  * DTrace Internal Variables
 162  */
 163 static dev_info_t       *dtrace_devi;           /* device info */
 164 static vmem_t           *dtrace_arena;          /* probe ID arena */
 165 static vmem_t           *dtrace_minor;          /* minor number arena */
 166 static taskq_t          *dtrace_taskq;          /* task queue */
 167 static dtrace_probe_t   **dtrace_probes;        /* array of all probes */
 168 static int              dtrace_nprobes;         /* number of probes */
 169 static dtrace_provider_t *dtrace_provider;      /* provider list */
 170 static dtrace_meta_t    *dtrace_meta_pid;       /* user-land meta provider */
 171 static int              dtrace_opens;           /* number of opens */
 172 static int              dtrace_helpers;         /* number of helpers */
 173 static void             *dtrace_softstate;      /* softstate pointer */
 174 static dtrace_hash_t    *dtrace_bymod;          /* probes hashed by module */
 175 static dtrace_hash_t    *dtrace_byfunc;         /* probes hashed by function */
 176 static dtrace_hash_t    *dtrace_byname;         /* probes hashed by name */
 177 static dtrace_toxrange_t *dtrace_toxrange;      /* toxic range array */
 178 static int              dtrace_toxranges;       /* number of toxic ranges */
 179 static int              dtrace_toxranges_max;   /* size of toxic range array */
 180 static dtrace_anon_t    dtrace_anon;            /* anonymous enabling */
 181 static kmem_cache_t     *dtrace_state_cache;    /* cache for dynamic state */
 182 static uint64_t         dtrace_vtime_references; /* number of vtimestamp refs */
 183 static kthread_t        *dtrace_panicked;       /* panicking thread */
 184 static dtrace_ecb_t     *dtrace_ecb_create_cache; /* cached created ECB */
 185 static dtrace_genid_t   dtrace_probegen;        /* current probe generation */
 186 static dtrace_helpers_t *dtrace_deferred_pid;   /* deferred helper list */
 187 static dtrace_enabling_t *dtrace_retained;      /* list of retained enablings */
 188 static dtrace_genid_t   dtrace_retained_gen;    /* current retained enab gen */
 189 static dtrace_dynvar_t  dtrace_dynhash_sink;    /* end of dynamic hash chains */
 190 static int              dtrace_dynvar_failclean; /* dynvars failed to clean */
 191 
 192 /*
 193  * DTrace Locking
 194  * DTrace is protected by three (relatively coarse-grained) locks:
 195  *
 196  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
 197  *     including enabling state, probes, ECBs, consumer state, helper state,
 198  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
 199  *     probe context is lock-free -- synchronization is handled via the
 200  *     dtrace_sync() cross call mechanism.
 201  *
 202  * (2) dtrace_provider_lock is required when manipulating provider state, or
 203  *     when provider state must be held constant.
 204  *
 205  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
 206  *     when meta provider state must be held constant.
 207  *
 208  * The lock ordering between these three locks is dtrace_meta_lock before
 209  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
 210  * several places where dtrace_provider_lock is held by the framework as it
 211  * calls into the providers -- which then call back into the framework,
 212  * grabbing dtrace_lock.)
 213  *
 214  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
 215  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
 216  * role as a coarse-grained lock; it is acquired before both of these locks.
 217  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
 218  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
 219  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
 220  * acquired _between_ dtrace_provider_lock and dtrace_lock.
 221  */
 222 static kmutex_t         dtrace_lock;            /* probe state lock */
 223 static kmutex_t         dtrace_provider_lock;   /* provider state lock */
 224 static kmutex_t         dtrace_meta_lock;       /* meta-provider state lock */
 225 
 226 /*
 227  * DTrace Provider Variables
 228  *
 229  * These are the variables relating to DTrace as a provider (that is, the
 230  * provider of the BEGIN, END, and ERROR probes).
 231  */
 232 static dtrace_pattr_t   dtrace_provider_attr = {
 233 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
 234 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
 235 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
 236 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
 237 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
 238 };
 239 
 240 static void
 241 dtrace_nullop(void)
 242 {}
 243 
 244 static int
 245 dtrace_enable_nullop(void)
 246 {
 247         return (0);
 248 }
 249 
 250 static dtrace_pops_t    dtrace_provider_ops = {
 251         (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop,
 252         (void (*)(void *, struct modctl *))dtrace_nullop,
 253         (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop,
 254         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
 255         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
 256         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
 257         NULL,
 258         NULL,
 259         NULL,
 260         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop
 261 };
 262 
 263 static dtrace_id_t      dtrace_probeid_begin;   /* special BEGIN probe */
 264 static dtrace_id_t      dtrace_probeid_end;     /* special END probe */
 265 dtrace_id_t             dtrace_probeid_error;   /* special ERROR probe */
 266 
 267 /*
 268  * DTrace Helper Tracing Variables
 269  */
 270 uint32_t dtrace_helptrace_next = 0;
 271 uint32_t dtrace_helptrace_nlocals;
 272 char    *dtrace_helptrace_buffer;
 273 int     dtrace_helptrace_bufsize = 512 * 1024;
 274 
 275 #ifdef DEBUG
 276 int     dtrace_helptrace_enabled = 1;
 277 #else
 278 int     dtrace_helptrace_enabled = 0;
 279 #endif
 280 
 281 /*
 282  * DTrace Error Hashing
 283  *
 284  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
 285  * table.  This is very useful for checking coverage of tests that are
 286  * expected to induce DIF or DOF processing errors, and may be useful for
 287  * debugging problems in the DIF code generator or in DOF generation .  The
 288  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
 289  */
 290 #ifdef DEBUG
 291 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ];
 292 static const char *dtrace_errlast;
 293 static kthread_t *dtrace_errthread;
 294 static kmutex_t dtrace_errlock;
 295 #endif
 296 
 297 /*
 298  * DTrace Macros and Constants
 299  *
 300  * These are various macros that are useful in various spots in the
 301  * implementation, along with a few random constants that have no meaning
 302  * outside of the implementation.  There is no real structure to this cpp
 303  * mishmash -- but is there ever?
 304  */
 305 #define DTRACE_HASHSTR(hash, probe)     \
 306         dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
 307 
 308 #define DTRACE_HASHNEXT(hash, probe)    \
 309         (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
 310 
 311 #define DTRACE_HASHPREV(hash, probe)    \
 312         (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
 313 
 314 #define DTRACE_HASHEQ(hash, lhs, rhs)   \
 315         (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
 316             *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
 317 
 318 #define DTRACE_AGGHASHSIZE_SLEW         17
 319 
 320 #define DTRACE_V4MAPPED_OFFSET          (sizeof (uint32_t) * 3)
 321 
 322 /*
 323  * The key for a thread-local variable consists of the lower 61 bits of the
 324  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
 325  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
 326  * equal to a variable identifier.  This is necessary (but not sufficient) to
 327  * assure that global associative arrays never collide with thread-local
 328  * variables.  To guarantee that they cannot collide, we must also define the
 329  * order for keying dynamic variables.  That order is:
 330  *
 331  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
 332  *
 333  * Because the variable-key and the tls-key are in orthogonal spaces, there is
 334  * no way for a global variable key signature to match a thread-local key
 335  * signature.
 336  */
 337 #define DTRACE_TLS_THRKEY(where) { \
 338         uint_t intr = 0; \
 339         uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
 340         for (; actv; actv >>= 1) \
 341                 intr++; \
 342         ASSERT(intr < (1 << 3)); \
 343         (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
 344             (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
 345 }
 346 
 347 #define DT_BSWAP_8(x)   ((x) & 0xff)
 348 #define DT_BSWAP_16(x)  ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
 349 #define DT_BSWAP_32(x)  ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
 350 #define DT_BSWAP_64(x)  ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
 351 
 352 #define DT_MASK_LO 0x00000000FFFFFFFFULL
 353 
 354 #define DTRACE_STORE(type, tomax, offset, what) \
 355         *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
 356 
 357 #ifndef __i386
 358 #define DTRACE_ALIGNCHECK(addr, size, flags)                            \
 359         if (addr & (size - 1)) {                                    \
 360                 *flags |= CPU_DTRACE_BADALIGN;                          \
 361                 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;     \
 362                 return (0);                                             \
 363         }
 364 #else
 365 #define DTRACE_ALIGNCHECK(addr, size, flags)
 366 #endif
 367 
 368 /*
 369  * Test whether a range of memory starting at testaddr of size testsz falls
 370  * within the range of memory described by addr, sz.  We take care to avoid
 371  * problems with overflow and underflow of the unsigned quantities, and
 372  * disallow all negative sizes.  Ranges of size 0 are allowed.
 373  */
 374 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
 375         ((testaddr) - (baseaddr) < (basesz) && \
 376         (testaddr) + (testsz) - (baseaddr) <= (basesz) && \
 377         (testaddr) + (testsz) >= (testaddr))
 378 
 379 /*
 380  * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
 381  * alloc_sz on the righthand side of the comparison in order to avoid overflow
 382  * or underflow in the comparison with it.  This is simpler than the INRANGE
 383  * check above, because we know that the dtms_scratch_ptr is valid in the
 384  * range.  Allocations of size zero are allowed.
 385  */
 386 #define DTRACE_INSCRATCH(mstate, alloc_sz) \
 387         ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
 388         (mstate)->dtms_scratch_ptr >= (alloc_sz))
 389 
 390 #define DTRACE_LOADFUNC(bits)                                           \
 391 /*CSTYLED*/                                                             \
 392 uint##bits##_t                                                          \
 393 dtrace_load##bits(uintptr_t addr)                                       \
 394 {                                                                       \
 395         size_t size = bits / NBBY;                                      \
 396         /*CSTYLED*/                                                     \
 397         uint##bits##_t rval;                                            \
 398         int i;                                                          \
 399         volatile uint16_t *flags = (volatile uint16_t *)                \
 400             &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;                    \
 401                                                                         \
 402         DTRACE_ALIGNCHECK(addr, size, flags);                           \
 403                                                                         \
 404         for (i = 0; i < dtrace_toxranges; i++) {                     \
 405                 if (addr >= dtrace_toxrange[i].dtt_limit)            \
 406                         continue;                                       \
 407                                                                         \
 408                 if (addr + size <= dtrace_toxrange[i].dtt_base)              \
 409                         continue;                                       \
 410                                                                         \
 411                 /*                                                      \
 412                  * This address falls within a toxic region; return 0.  \
 413                  */                                                     \
 414                 *flags |= CPU_DTRACE_BADADDR;                           \
 415                 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;     \
 416                 return (0);                                             \
 417         }                                                               \
 418                                                                         \
 419         *flags |= CPU_DTRACE_NOFAULT;                                   \
 420         /*CSTYLED*/                                                     \
 421         rval = *((volatile uint##bits##_t *)addr);                      \
 422         *flags &= ~CPU_DTRACE_NOFAULT;                                      \
 423                                                                         \
 424         return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);           \
 425 }
 426 
 427 #ifdef _LP64
 428 #define dtrace_loadptr  dtrace_load64
 429 #else
 430 #define dtrace_loadptr  dtrace_load32
 431 #endif
 432 
 433 #define DTRACE_DYNHASH_FREE     0
 434 #define DTRACE_DYNHASH_SINK     1
 435 #define DTRACE_DYNHASH_VALID    2
 436 
 437 #define DTRACE_MATCH_FAIL       -1
 438 #define DTRACE_MATCH_NEXT       0
 439 #define DTRACE_MATCH_DONE       1
 440 #define DTRACE_ANCHORED(probe)  ((probe)->dtpr_func[0] != '\0')
 441 #define DTRACE_STATE_ALIGN      64
 442 
 443 #define DTRACE_FLAGS2FLT(flags)                                         \
 444         (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :               \
 445         ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :            \
 446         ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :                \
 447         ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :            \
 448         ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :            \
 449         ((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :             \
 450         ((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :             \
 451         ((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :   \
 452         ((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :             \
 453         DTRACEFLT_UNKNOWN)
 454 
 455 #define DTRACEACT_ISSTRING(act)                                         \
 456         ((act)->dta_kind == DTRACEACT_DIFEXPR &&                     \
 457         (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
 458 
 459 static size_t dtrace_strlen(const char *, size_t);
 460 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
 461 static void dtrace_enabling_provide(dtrace_provider_t *);
 462 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
 463 static void dtrace_enabling_matchall(void);
 464 static void dtrace_enabling_reap(void);
 465 static dtrace_state_t *dtrace_anon_grab(void);
 466 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
 467     dtrace_state_t *, uint64_t, uint64_t);
 468 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
 469 static void dtrace_buffer_drop(dtrace_buffer_t *);
 470 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
 471 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
 472     dtrace_state_t *, dtrace_mstate_t *);
 473 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
 474     dtrace_optval_t);
 475 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
 476 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
 477 
 478 /*
 479  * DTrace Probe Context Functions
 480  *
 481  * These functions are called from probe context.  Because probe context is
 482  * any context in which C may be called, arbitrarily locks may be held,
 483  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
 484  * As a result, functions called from probe context may only call other DTrace
 485  * support functions -- they may not interact at all with the system at large.
 486  * (Note that the ASSERT macro is made probe-context safe by redefining it in
 487  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
 488  * loads are to be performed from probe context, they _must_ be in terms of
 489  * the safe dtrace_load*() variants.
 490  *
 491  * Some functions in this block are not actually called from probe context;
 492  * for these functions, there will be a comment above the function reading
 493  * "Note:  not called from probe context."
 494  */
 495 void
 496 dtrace_panic(const char *format, ...)
 497 {
 498         va_list alist;
 499 
 500         va_start(alist, format);
 501         dtrace_vpanic(format, alist);
 502         va_end(alist);
 503 }
 504 
 505 int
 506 dtrace_assfail(const char *a, const char *f, int l)
 507 {
 508         dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
 509 
 510         /*
 511          * We just need something here that even the most clever compiler
 512          * cannot optimize away.
 513          */
 514         return (a[(uintptr_t)f]);
 515 }
 516 
 517 /*
 518  * Atomically increment a specified error counter from probe context.
 519  */
 520 static void
 521 dtrace_error(uint32_t *counter)
 522 {
 523         /*
 524          * Most counters stored to in probe context are per-CPU counters.
 525          * However, there are some error conditions that are sufficiently
 526          * arcane that they don't merit per-CPU storage.  If these counters
 527          * are incremented concurrently on different CPUs, scalability will be
 528          * adversely affected -- but we don't expect them to be white-hot in a
 529          * correctly constructed enabling...
 530          */
 531         uint32_t oval, nval;
 532 
 533         do {
 534                 oval = *counter;
 535 
 536                 if ((nval = oval + 1) == 0) {
 537                         /*
 538                          * If the counter would wrap, set it to 1 -- assuring
 539                          * that the counter is never zero when we have seen
 540                          * errors.  (The counter must be 32-bits because we
 541                          * aren't guaranteed a 64-bit compare&swap operation.)
 542                          * To save this code both the infamy of being fingered
 543                          * by a priggish news story and the indignity of being
 544                          * the target of a neo-puritan witch trial, we're
 545                          * carefully avoiding any colorful description of the
 546                          * likelihood of this condition -- but suffice it to
 547                          * say that it is only slightly more likely than the
 548                          * overflow of predicate cache IDs, as discussed in
 549                          * dtrace_predicate_create().
 550                          */
 551                         nval = 1;
 552                 }
 553         } while (dtrace_cas32(counter, oval, nval) != oval);
 554 }
 555 
 556 /*
 557  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
 558  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
 559  */
 560 DTRACE_LOADFUNC(8)
 561 DTRACE_LOADFUNC(16)
 562 DTRACE_LOADFUNC(32)
 563 DTRACE_LOADFUNC(64)
 564 
 565 static int
 566 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
 567 {
 568         if (dest < mstate->dtms_scratch_base)
 569                 return (0);
 570 
 571         if (dest + size < dest)
 572                 return (0);
 573 
 574         if (dest + size > mstate->dtms_scratch_ptr)
 575                 return (0);
 576 
 577         return (1);
 578 }
 579 
 580 static int
 581 dtrace_canstore_statvar(uint64_t addr, size_t sz,
 582     dtrace_statvar_t **svars, int nsvars)
 583 {
 584         int i;
 585 
 586         for (i = 0; i < nsvars; i++) {
 587                 dtrace_statvar_t *svar = svars[i];
 588 
 589                 if (svar == NULL || svar->dtsv_size == 0)
 590                         continue;
 591 
 592                 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
 593                         return (1);
 594         }
 595 
 596         return (0);
 597 }
 598 
 599 /*
 600  * Check to see if the address is within a memory region to which a store may
 601  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
 602  * region.  The caller of dtrace_canstore() is responsible for performing any
 603  * alignment checks that are needed before stores are actually executed.
 604  */
 605 static int
 606 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
 607     dtrace_vstate_t *vstate)
 608 {
 609         /*
 610          * First, check to see if the address is in scratch space...
 611          */
 612         if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
 613             mstate->dtms_scratch_size))
 614                 return (1);
 615 
 616         /*
 617          * Now check to see if it's a dynamic variable.  This check will pick
 618          * up both thread-local variables and any global dynamically-allocated
 619          * variables.
 620          */
 621         if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base,
 622             vstate->dtvs_dynvars.dtds_size)) {
 623                 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
 624                 uintptr_t base = (uintptr_t)dstate->dtds_base +
 625                     (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
 626                 uintptr_t chunkoffs;
 627 
 628                 /*
 629                  * Before we assume that we can store here, we need to make
 630                  * sure that it isn't in our metadata -- storing to our
 631                  * dynamic variable metadata would corrupt our state.  For
 632                  * the range to not include any dynamic variable metadata,
 633                  * it must:
 634                  *
 635                  *      (1) Start above the hash table that is at the base of
 636                  *      the dynamic variable space
 637                  *
 638                  *      (2) Have a starting chunk offset that is beyond the
 639                  *      dtrace_dynvar_t that is at the base of every chunk
 640                  *
 641                  *      (3) Not span a chunk boundary
 642                  *
 643                  */
 644                 if (addr < base)
 645                         return (0);
 646 
 647                 chunkoffs = (addr - base) % dstate->dtds_chunksize;
 648 
 649                 if (chunkoffs < sizeof (dtrace_dynvar_t))
 650                         return (0);
 651 
 652                 if (chunkoffs + sz > dstate->dtds_chunksize)
 653                         return (0);
 654 
 655                 return (1);
 656         }
 657 
 658         /*
 659          * Finally, check the static local and global variables.  These checks
 660          * take the longest, so we perform them last.
 661          */
 662         if (dtrace_canstore_statvar(addr, sz,
 663             vstate->dtvs_locals, vstate->dtvs_nlocals))
 664                 return (1);
 665 
 666         if (dtrace_canstore_statvar(addr, sz,
 667             vstate->dtvs_globals, vstate->dtvs_nglobals))
 668                 return (1);
 669 
 670         return (0);
 671 }
 672 
 673 
 674 /*
 675  * Convenience routine to check to see if the address is within a memory
 676  * region in which a load may be issued given the user's privilege level;
 677  * if not, it sets the appropriate error flags and loads 'addr' into the
 678  * illegal value slot.
 679  *
 680  * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
 681  * appropriate memory access protection.
 682  */
 683 static int
 684 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
 685     dtrace_vstate_t *vstate)
 686 {
 687         volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
 688 
 689         /*
 690          * If we hold the privilege to read from kernel memory, then
 691          * everything is readable.
 692          */
 693         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
 694                 return (1);
 695 
 696         /*
 697          * You can obviously read that which you can store.
 698          */
 699         if (dtrace_canstore(addr, sz, mstate, vstate))
 700                 return (1);
 701 
 702         /*
 703          * We're allowed to read from our own string table.
 704          */
 705         if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab,
 706             mstate->dtms_difo->dtdo_strlen))
 707                 return (1);
 708 
 709         DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
 710         *illval = addr;
 711         return (0);
 712 }
 713 
 714 /*
 715  * Convenience routine to check to see if a given string is within a memory
 716  * region in which a load may be issued given the user's privilege level;
 717  * this exists so that we don't need to issue unnecessary dtrace_strlen()
 718  * calls in the event that the user has all privileges.
 719  */
 720 static int
 721 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
 722     dtrace_vstate_t *vstate)
 723 {
 724         size_t strsz;
 725 
 726         /*
 727          * If we hold the privilege to read from kernel memory, then
 728          * everything is readable.
 729          */
 730         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
 731                 return (1);
 732 
 733         strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
 734         if (dtrace_canload(addr, strsz, mstate, vstate))
 735                 return (1);
 736 
 737         return (0);
 738 }
 739 
 740 /*
 741  * Convenience routine to check to see if a given variable is within a memory
 742  * region in which a load may be issued given the user's privilege level.
 743  */
 744 static int
 745 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
 746     dtrace_vstate_t *vstate)
 747 {
 748         size_t sz;
 749         ASSERT(type->dtdt_flags & DIF_TF_BYREF);
 750 
 751         /*
 752          * If we hold the privilege to read from kernel memory, then
 753          * everything is readable.
 754          */
 755         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
 756                 return (1);
 757 
 758         if (type->dtdt_kind == DIF_TYPE_STRING)
 759                 sz = dtrace_strlen(src,
 760                     vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
 761         else
 762                 sz = type->dtdt_size;
 763 
 764         return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
 765 }
 766 
 767 /*
 768  * Compare two strings using safe loads.
 769  */
 770 static int
 771 dtrace_strncmp(char *s1, char *s2, size_t limit)
 772 {
 773         uint8_t c1, c2;
 774         volatile uint16_t *flags;
 775 
 776         if (s1 == s2 || limit == 0)
 777                 return (0);
 778 
 779         flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
 780 
 781         do {
 782                 if (s1 == NULL) {
 783                         c1 = '\0';
 784                 } else {
 785                         c1 = dtrace_load8((uintptr_t)s1++);
 786                 }
 787 
 788                 if (s2 == NULL) {
 789                         c2 = '\0';
 790                 } else {
 791                         c2 = dtrace_load8((uintptr_t)s2++);
 792                 }
 793 
 794                 if (c1 != c2)
 795                         return (c1 - c2);
 796         } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
 797 
 798         return (0);
 799 }
 800 
 801 /*
 802  * Compute strlen(s) for a string using safe memory accesses.  The additional
 803  * len parameter is used to specify a maximum length to ensure completion.
 804  */
 805 static size_t
 806 dtrace_strlen(const char *s, size_t lim)
 807 {
 808         uint_t len;
 809 
 810         for (len = 0; len != lim; len++) {
 811                 if (dtrace_load8((uintptr_t)s++) == '\0')
 812                         break;
 813         }
 814 
 815         return (len);
 816 }
 817 
 818 /*
 819  * Check if an address falls within a toxic region.
 820  */
 821 static int
 822 dtrace_istoxic(uintptr_t kaddr, size_t size)
 823 {
 824         uintptr_t taddr, tsize;
 825         int i;
 826 
 827         for (i = 0; i < dtrace_toxranges; i++) {
 828                 taddr = dtrace_toxrange[i].dtt_base;
 829                 tsize = dtrace_toxrange[i].dtt_limit - taddr;
 830 
 831                 if (kaddr - taddr < tsize) {
 832                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
 833                         cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr;
 834                         return (1);
 835                 }
 836 
 837                 if (taddr - kaddr < size) {
 838                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
 839                         cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr;
 840                         return (1);
 841                 }
 842         }
 843 
 844         return (0);
 845 }
 846 
 847 /*
 848  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
 849  * memory specified by the DIF program.  The dst is assumed to be safe memory
 850  * that we can store to directly because it is managed by DTrace.  As with
 851  * standard bcopy, overlapping copies are handled properly.
 852  */
 853 static void
 854 dtrace_bcopy(const void *src, void *dst, size_t len)
 855 {
 856         if (len != 0) {
 857                 uint8_t *s1 = dst;
 858                 const uint8_t *s2 = src;
 859 
 860                 if (s1 <= s2) {
 861                         do {
 862                                 *s1++ = dtrace_load8((uintptr_t)s2++);
 863                         } while (--len != 0);
 864                 } else {
 865                         s2 += len;
 866                         s1 += len;
 867 
 868                         do {
 869                                 *--s1 = dtrace_load8((uintptr_t)--s2);
 870                         } while (--len != 0);
 871                 }
 872         }
 873 }
 874 
 875 /*
 876  * Copy src to dst using safe memory accesses, up to either the specified
 877  * length, or the point that a nul byte is encountered.  The src is assumed to
 878  * be unsafe memory specified by the DIF program.  The dst is assumed to be
 879  * safe memory that we can store to directly because it is managed by DTrace.
 880  * Unlike dtrace_bcopy(), overlapping regions are not handled.
 881  */
 882 static void
 883 dtrace_strcpy(const void *src, void *dst, size_t len)
 884 {
 885         if (len != 0) {
 886                 uint8_t *s1 = dst, c;
 887                 const uint8_t *s2 = src;
 888 
 889                 do {
 890                         *s1++ = c = dtrace_load8((uintptr_t)s2++);
 891                 } while (--len != 0 && c != '\0');
 892         }
 893 }
 894 
 895 /*
 896  * Copy src to dst, deriving the size and type from the specified (BYREF)
 897  * variable type.  The src is assumed to be unsafe memory specified by the DIF
 898  * program.  The dst is assumed to be DTrace variable memory that is of the
 899  * specified type; we assume that we can store to directly.
 900  */
 901 static void
 902 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
 903 {
 904         ASSERT(type->dtdt_flags & DIF_TF_BYREF);
 905 
 906         if (type->dtdt_kind == DIF_TYPE_STRING) {
 907                 dtrace_strcpy(src, dst, type->dtdt_size);
 908         } else {
 909                 dtrace_bcopy(src, dst, type->dtdt_size);
 910         }
 911 }
 912 
 913 /*
 914  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
 915  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
 916  * safe memory that we can access directly because it is managed by DTrace.
 917  */
 918 static int
 919 dtrace_bcmp(const void *s1, const void *s2, size_t len)
 920 {
 921         volatile uint16_t *flags;
 922 
 923         flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
 924 
 925         if (s1 == s2)
 926                 return (0);
 927 
 928         if (s1 == NULL || s2 == NULL)
 929                 return (1);
 930 
 931         if (s1 != s2 && len != 0) {
 932                 const uint8_t *ps1 = s1;
 933                 const uint8_t *ps2 = s2;
 934 
 935                 do {
 936                         if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
 937                                 return (1);
 938                 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
 939         }
 940         return (0);
 941 }
 942 
 943 /*
 944  * Zero the specified region using a simple byte-by-byte loop.  Note that this
 945  * is for safe DTrace-managed memory only.
 946  */
 947 static void
 948 dtrace_bzero(void *dst, size_t len)
 949 {
 950         uchar_t *cp;
 951 
 952         for (cp = dst; len != 0; len--)
 953                 *cp++ = 0;
 954 }
 955 
 956 static void
 957 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
 958 {
 959         uint64_t result[2];
 960 
 961         result[0] = addend1[0] + addend2[0];
 962         result[1] = addend1[1] + addend2[1] +
 963             (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
 964 
 965         sum[0] = result[0];
 966         sum[1] = result[1];
 967 }
 968 
 969 /*
 970  * Shift the 128-bit value in a by b. If b is positive, shift left.
 971  * If b is negative, shift right.
 972  */
 973 static void
 974 dtrace_shift_128(uint64_t *a, int b)
 975 {
 976         uint64_t mask;
 977 
 978         if (b == 0)
 979                 return;
 980 
 981         if (b < 0) {
 982                 b = -b;
 983                 if (b >= 64) {
 984                         a[0] = a[1] >> (b - 64);
 985                         a[1] = 0;
 986                 } else {
 987                         a[0] >>= b;
 988                         mask = 1LL << (64 - b);
 989                         mask -= 1;
 990                         a[0] |= ((a[1] & mask) << (64 - b));
 991                         a[1] >>= b;
 992                 }
 993         } else {
 994                 if (b >= 64) {
 995                         a[1] = a[0] << (b - 64);
 996                         a[0] = 0;
 997                 } else {
 998                         a[1] <<= b;
 999                         mask = a[0] >> (64 - b);
1000                         a[1] |= mask;
1001                         a[0] <<= b;
1002                 }
1003         }
1004 }
1005 
1006 /*
1007  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1008  * use native multiplication on those, and then re-combine into the
1009  * resulting 128-bit value.
1010  *
1011  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1012  *     hi1 * hi2 << 64 +
1013  *     hi1 * lo2 << 32 +
1014  *     hi2 * lo1 << 32 +
1015  *     lo1 * lo2
1016  */
1017 static void
1018 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1019 {
1020         uint64_t hi1, hi2, lo1, lo2;
1021         uint64_t tmp[2];
1022 
1023         hi1 = factor1 >> 32;
1024         hi2 = factor2 >> 32;
1025 
1026         lo1 = factor1 & DT_MASK_LO;
1027         lo2 = factor2 & DT_MASK_LO;
1028 
1029         product[0] = lo1 * lo2;
1030         product[1] = hi1 * hi2;
1031 
1032         tmp[0] = hi1 * lo2;
1033         tmp[1] = 0;
1034         dtrace_shift_128(tmp, 32);
1035         dtrace_add_128(product, tmp, product);
1036 
1037         tmp[0] = hi2 * lo1;
1038         tmp[1] = 0;
1039         dtrace_shift_128(tmp, 32);
1040         dtrace_add_128(product, tmp, product);
1041 }
1042 
1043 /*
1044  * This privilege check should be used by actions and subroutines to
1045  * verify that the user credentials of the process that enabled the
1046  * invoking ECB match the target credentials
1047  */
1048 static int
1049 dtrace_priv_proc_common_user(dtrace_state_t *state)
1050 {
1051         cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1052 
1053         /*
1054          * We should always have a non-NULL state cred here, since if cred
1055          * is null (anonymous tracing), we fast-path bypass this routine.
1056          */
1057         ASSERT(s_cr != NULL);
1058 
1059         if ((cr = CRED()) != NULL &&
1060             s_cr->cr_uid == cr->cr_uid &&
1061             s_cr->cr_uid == cr->cr_ruid &&
1062             s_cr->cr_uid == cr->cr_suid &&
1063             s_cr->cr_gid == cr->cr_gid &&
1064             s_cr->cr_gid == cr->cr_rgid &&
1065             s_cr->cr_gid == cr->cr_sgid)
1066                 return (1);
1067 
1068         return (0);
1069 }
1070 
1071 /*
1072  * This privilege check should be used by actions and subroutines to
1073  * verify that the zone of the process that enabled the invoking ECB
1074  * matches the target credentials
1075  */
1076 static int
1077 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1078 {
1079         cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1080 
1081         /*
1082          * We should always have a non-NULL state cred here, since if cred
1083          * is null (anonymous tracing), we fast-path bypass this routine.
1084          */
1085         ASSERT(s_cr != NULL);
1086 
1087         if ((cr = CRED()) != NULL &&
1088             s_cr->cr_zone == cr->cr_zone)
1089                 return (1);
1090 
1091         return (0);
1092 }
1093 
1094 /*
1095  * This privilege check should be used by actions and subroutines to
1096  * verify that the process has not setuid or changed credentials.
1097  */
1098 static int
1099 dtrace_priv_proc_common_nocd()
1100 {
1101         proc_t *proc;
1102 
1103         if ((proc = ttoproc(curthread)) != NULL &&
1104             !(proc->p_flag & SNOCD))
1105                 return (1);
1106 
1107         return (0);
1108 }
1109 
1110 static int
1111 dtrace_priv_proc_destructive(dtrace_state_t *state, dtrace_mstate_t *mstate)
1112 {
1113         int action = state->dts_cred.dcr_action;
1114 
1115         if (!(mstate->dtms_access & DTRACE_ACCESS_PROC))
1116                 goto bad;
1117 
1118         if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1119             dtrace_priv_proc_common_zone(state) == 0)
1120                 goto bad;
1121 
1122         if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1123             dtrace_priv_proc_common_user(state) == 0)
1124                 goto bad;
1125 
1126         if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1127             dtrace_priv_proc_common_nocd() == 0)
1128                 goto bad;
1129 
1130         return (1);
1131 
1132 bad:
1133         cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1134 
1135         return (0);
1136 }
1137 
1138 static int
1139 dtrace_priv_proc_control(dtrace_state_t *state, dtrace_mstate_t *mstate)
1140 {
1141         if (mstate->dtms_access & DTRACE_ACCESS_PROC) {
1142                 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1143                         return (1);
1144 
1145                 if (dtrace_priv_proc_common_zone(state) &&
1146                     dtrace_priv_proc_common_user(state) &&
1147                     dtrace_priv_proc_common_nocd())
1148                         return (1);
1149         }
1150 
1151         cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1152 
1153         return (0);
1154 }
1155 
1156 static int
1157 dtrace_priv_proc(dtrace_state_t *state, dtrace_mstate_t *mstate)
1158 {
1159         if ((mstate->dtms_access & DTRACE_ACCESS_PROC) &&
1160             (state->dts_cred.dcr_action & DTRACE_CRA_PROC))
1161                 return (1);
1162 
1163         cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1164 
1165         return (0);
1166 }
1167 
1168 static int
1169 dtrace_priv_kernel(dtrace_state_t *state)
1170 {
1171         if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1172                 return (1);
1173 
1174         cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1175 
1176         return (0);
1177 }
1178 
1179 static int
1180 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1181 {
1182         if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1183                 return (1);
1184 
1185         cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1186 
1187         return (0);
1188 }
1189 
1190 /*
1191  * Determine if the dte_cond of the specified ECB allows for processing of
1192  * the current probe to continue.  Note that this routine may allow continued
1193  * processing, but with access(es) stripped from the mstate's dtms_access
1194  * field.
1195  */
1196 static int
1197 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate,
1198     dtrace_ecb_t *ecb)
1199 {
1200         dtrace_probe_t *probe = ecb->dte_probe;
1201         dtrace_provider_t *prov = probe->dtpr_provider;
1202         dtrace_pops_t *pops = &prov->dtpv_pops;
1203         int mode = DTRACE_MODE_NOPRIV_DROP;
1204 
1205         ASSERT(ecb->dte_cond);
1206 
1207         if (pops->dtps_mode != NULL) {
1208                 mode = pops->dtps_mode(prov->dtpv_arg,
1209                     probe->dtpr_id, probe->dtpr_arg);
1210 
1211                 ASSERT((mode & DTRACE_MODE_USER) ||
1212                     (mode & DTRACE_MODE_KERNEL));
1213                 ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) ||
1214                     (mode & DTRACE_MODE_NOPRIV_DROP));
1215         }
1216 
1217         /*
1218          * If the dte_cond bits indicate that this consumer is only allowed to
1219          * see user-mode firings of this probe, call the provider's dtps_mode()
1220          * entry point to check that the probe was fired while in a user
1221          * context.  If that's not the case, use the policy specified by the
1222          * provider to determine if we drop the probe or merely restrict
1223          * operation.
1224          */
1225         if (ecb->dte_cond & DTRACE_COND_USERMODE) {
1226                 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP);
1227 
1228                 if (!(mode & DTRACE_MODE_USER)) {
1229                         if (mode & DTRACE_MODE_NOPRIV_DROP)
1230                                 return (0);
1231 
1232                         mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1233                 }
1234         }
1235 
1236         /*
1237          * This is more subtle than it looks. We have to be absolutely certain
1238          * that CRED() isn't going to change out from under us so it's only
1239          * legit to examine that structure if we're in constrained situations.
1240          * Currently, the only times we'll this check is if a non-super-user
1241          * has enabled the profile or syscall providers -- providers that
1242          * allow visibility of all processes. For the profile case, the check
1243          * above will ensure that we're examining a user context.
1244          */
1245         if (ecb->dte_cond & DTRACE_COND_OWNER) {
1246                 cred_t *cr;
1247                 cred_t *s_cr = state->dts_cred.dcr_cred;
1248                 proc_t *proc;
1249 
1250                 ASSERT(s_cr != NULL);
1251 
1252                 if ((cr = CRED()) == NULL ||
1253                     s_cr->cr_uid != cr->cr_uid ||
1254                     s_cr->cr_uid != cr->cr_ruid ||
1255                     s_cr->cr_uid != cr->cr_suid ||
1256                     s_cr->cr_gid != cr->cr_gid ||
1257                     s_cr->cr_gid != cr->cr_rgid ||
1258                     s_cr->cr_gid != cr->cr_sgid ||
1259                     (proc = ttoproc(curthread)) == NULL ||
1260                     (proc->p_flag & SNOCD)) {
1261                         if (mode & DTRACE_MODE_NOPRIV_DROP)
1262                                 return (0);
1263 
1264                         mstate->dtms_access &= ~DTRACE_ACCESS_PROC;
1265                 }
1266         }
1267 
1268         /*
1269          * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not
1270          * in our zone, check to see if our mode policy is to restrict rather
1271          * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC
1272          * and DTRACE_ACCESS_ARGS
1273          */
1274         if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
1275                 cred_t *cr;
1276                 cred_t *s_cr = state->dts_cred.dcr_cred;
1277 
1278                 ASSERT(s_cr != NULL);
1279 
1280                 if ((cr = CRED()) == NULL ||
1281                     s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) {
1282                         if (mode & DTRACE_MODE_NOPRIV_DROP)
1283                                 return (0);
1284 
1285                         mstate->dtms_access &=
1286                             ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS);
1287                 }
1288         }
1289 
1290         return (1);
1291 }
1292 
1293 /*
1294  * Note:  not called from probe context.  This function is called
1295  * asynchronously (and at a regular interval) from outside of probe context to
1296  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1297  * cleaning is explained in detail in <sys/dtrace_impl.h>.
1298  */
1299 void
1300 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1301 {
1302         dtrace_dynvar_t *dirty;
1303         dtrace_dstate_percpu_t *dcpu;
1304         dtrace_dynvar_t **rinsep;
1305         int i, j, work = 0;
1306 
1307         for (i = 0; i < NCPU; i++) {
1308                 dcpu = &dstate->dtds_percpu[i];
1309                 rinsep = &dcpu->dtdsc_rinsing;
1310 
1311                 /*
1312                  * If the dirty list is NULL, there is no dirty work to do.
1313                  */
1314                 if (dcpu->dtdsc_dirty == NULL)
1315                         continue;
1316 
1317                 if (dcpu->dtdsc_rinsing != NULL) {
1318                         /*
1319                          * If the rinsing list is non-NULL, then it is because
1320                          * this CPU was selected to accept another CPU's
1321                          * dirty list -- and since that time, dirty buffers
1322                          * have accumulated.  This is a highly unlikely
1323                          * condition, but we choose to ignore the dirty
1324                          * buffers -- they'll be picked up a future cleanse.
1325                          */
1326                         continue;
1327                 }
1328 
1329                 if (dcpu->dtdsc_clean != NULL) {
1330                         /*
1331                          * If the clean list is non-NULL, then we're in a
1332                          * situation where a CPU has done deallocations (we
1333                          * have a non-NULL dirty list) but no allocations (we
1334                          * also have a non-NULL clean list).  We can't simply
1335                          * move the dirty list into the clean list on this
1336                          * CPU, yet we also don't want to allow this condition
1337                          * to persist, lest a short clean list prevent a
1338                          * massive dirty list from being cleaned (which in
1339                          * turn could lead to otherwise avoidable dynamic
1340                          * drops).  To deal with this, we look for some CPU
1341                          * with a NULL clean list, NULL dirty list, and NULL
1342                          * rinsing list -- and then we borrow this CPU to
1343                          * rinse our dirty list.
1344                          */
1345                         for (j = 0; j < NCPU; j++) {
1346                                 dtrace_dstate_percpu_t *rinser;
1347 
1348                                 rinser = &dstate->dtds_percpu[j];
1349 
1350                                 if (rinser->dtdsc_rinsing != NULL)
1351                                         continue;
1352 
1353                                 if (rinser->dtdsc_dirty != NULL)
1354                                         continue;
1355 
1356                                 if (rinser->dtdsc_clean != NULL)
1357                                         continue;
1358 
1359                                 rinsep = &rinser->dtdsc_rinsing;
1360                                 break;
1361                         }
1362 
1363                         if (j == NCPU) {
1364                                 /*
1365                                  * We were unable to find another CPU that
1366                                  * could accept this dirty list -- we are
1367                                  * therefore unable to clean it now.
1368                                  */
1369                                 dtrace_dynvar_failclean++;
1370                                 continue;
1371                         }
1372                 }
1373 
1374                 work = 1;
1375 
1376                 /*
1377                  * Atomically move the dirty list aside.
1378                  */
1379                 do {
1380                         dirty = dcpu->dtdsc_dirty;
1381 
1382                         /*
1383                          * Before we zap the dirty list, set the rinsing list.
1384                          * (This allows for a potential assertion in
1385                          * dtrace_dynvar():  if a free dynamic variable appears
1386                          * on a hash chain, either the dirty list or the
1387                          * rinsing list for some CPU must be non-NULL.)
1388                          */
1389                         *rinsep = dirty;
1390                         dtrace_membar_producer();
1391                 } while (dtrace_casptr(&dcpu->dtdsc_dirty,
1392                     dirty, NULL) != dirty);
1393         }
1394 
1395         if (!work) {
1396                 /*
1397                  * We have no work to do; we can simply return.
1398                  */
1399                 return;
1400         }
1401 
1402         dtrace_sync();
1403 
1404         for (i = 0; i < NCPU; i++) {
1405                 dcpu = &dstate->dtds_percpu[i];
1406 
1407                 if (dcpu->dtdsc_rinsing == NULL)
1408                         continue;
1409 
1410                 /*
1411                  * We are now guaranteed that no hash chain contains a pointer
1412                  * into this dirty list; we can make it clean.
1413                  */
1414                 ASSERT(dcpu->dtdsc_clean == NULL);
1415                 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1416                 dcpu->dtdsc_rinsing = NULL;
1417         }
1418 
1419         /*
1420          * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1421          * sure that all CPUs have seen all of the dtdsc_clean pointers.
1422          * This prevents a race whereby a CPU incorrectly decides that
1423          * the state should be something other than DTRACE_DSTATE_CLEAN
1424          * after dtrace_dynvar_clean() has completed.
1425          */
1426         dtrace_sync();
1427 
1428         dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1429 }
1430 
1431 /*
1432  * Depending on the value of the op parameter, this function looks-up,
1433  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1434  * allocation is requested, this function will return a pointer to a
1435  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1436  * variable can be allocated.  If NULL is returned, the appropriate counter
1437  * will be incremented.
1438  */
1439 dtrace_dynvar_t *
1440 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1441     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1442     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1443 {
1444         uint64_t hashval = DTRACE_DYNHASH_VALID;
1445         dtrace_dynhash_t *hash = dstate->dtds_hash;
1446         dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1447         processorid_t me = CPU->cpu_id, cpu = me;
1448         dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1449         size_t bucket, ksize;
1450         size_t chunksize = dstate->dtds_chunksize;
1451         uintptr_t kdata, lock, nstate;
1452         uint_t i;
1453 
1454         ASSERT(nkeys != 0);
1455 
1456         /*
1457          * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1458          * algorithm.  For the by-value portions, we perform the algorithm in
1459          * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1460          * bit, and seems to have only a minute effect on distribution.  For
1461          * the by-reference data, we perform "One-at-a-time" iterating (safely)
1462          * over each referenced byte.  It's painful to do this, but it's much
1463          * better than pathological hash distribution.  The efficacy of the
1464          * hashing algorithm (and a comparison with other algorithms) may be
1465          * found by running the ::dtrace_dynstat MDB dcmd.
1466          */
1467         for (i = 0; i < nkeys; i++) {
1468                 if (key[i].dttk_size == 0) {
1469                         uint64_t val = key[i].dttk_value;
1470 
1471                         hashval += (val >> 48) & 0xffff;
1472                         hashval += (hashval << 10);
1473                         hashval ^= (hashval >> 6);
1474 
1475                         hashval += (val >> 32) & 0xffff;
1476                         hashval += (hashval << 10);
1477                         hashval ^= (hashval >> 6);
1478 
1479                         hashval += (val >> 16) & 0xffff;
1480                         hashval += (hashval << 10);
1481                         hashval ^= (hashval >> 6);
1482 
1483                         hashval += val & 0xffff;
1484                         hashval += (hashval << 10);
1485                         hashval ^= (hashval >> 6);
1486                 } else {
1487                         /*
1488                          * This is incredibly painful, but it beats the hell
1489                          * out of the alternative.
1490                          */
1491                         uint64_t j, size = key[i].dttk_size;
1492                         uintptr_t base = (uintptr_t)key[i].dttk_value;
1493 
1494                         if (!dtrace_canload(base, size, mstate, vstate))
1495                                 break;
1496 
1497                         for (j = 0; j < size; j++) {
1498                                 hashval += dtrace_load8(base + j);
1499                                 hashval += (hashval << 10);
1500                                 hashval ^= (hashval >> 6);
1501                         }
1502                 }
1503         }
1504 
1505         if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1506                 return (NULL);
1507 
1508         hashval += (hashval << 3);
1509         hashval ^= (hashval >> 11);
1510         hashval += (hashval << 15);
1511 
1512         /*
1513          * There is a remote chance (ideally, 1 in 2^31) that our hashval
1514          * comes out to be one of our two sentinel hash values.  If this
1515          * actually happens, we set the hashval to be a value known to be a
1516          * non-sentinel value.
1517          */
1518         if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1519                 hashval = DTRACE_DYNHASH_VALID;
1520 
1521         /*
1522          * Yes, it's painful to do a divide here.  If the cycle count becomes
1523          * important here, tricks can be pulled to reduce it.  (However, it's
1524          * critical that hash collisions be kept to an absolute minimum;
1525          * they're much more painful than a divide.)  It's better to have a
1526          * solution that generates few collisions and still keeps things
1527          * relatively simple.
1528          */
1529         bucket = hashval % dstate->dtds_hashsize;
1530 
1531         if (op == DTRACE_DYNVAR_DEALLOC) {
1532                 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1533 
1534                 for (;;) {
1535                         while ((lock = *lockp) & 1)
1536                                 continue;
1537 
1538                         if (dtrace_casptr((void *)lockp,
1539                             (void *)lock, (void *)(lock + 1)) == (void *)lock)
1540                                 break;
1541                 }
1542 
1543                 dtrace_membar_producer();
1544         }
1545 
1546 top:
1547         prev = NULL;
1548         lock = hash[bucket].dtdh_lock;
1549 
1550         dtrace_membar_consumer();
1551 
1552         start = hash[bucket].dtdh_chain;
1553         ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1554             start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1555             op != DTRACE_DYNVAR_DEALLOC));
1556 
1557         for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1558                 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1559                 dtrace_key_t *dkey = &dtuple->dtt_key[0];
1560 
1561                 if (dvar->dtdv_hashval != hashval) {
1562                         if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1563                                 /*
1564                                  * We've reached the sink, and therefore the
1565                                  * end of the hash chain; we can kick out of
1566                                  * the loop knowing that we have seen a valid
1567                                  * snapshot of state.
1568                                  */
1569                                 ASSERT(dvar->dtdv_next == NULL);
1570                                 ASSERT(dvar == &dtrace_dynhash_sink);
1571                                 break;
1572                         }
1573 
1574                         if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1575                                 /*
1576                                  * We've gone off the rails:  somewhere along
1577                                  * the line, one of the members of this hash
1578                                  * chain was deleted.  Note that we could also
1579                                  * detect this by simply letting this loop run
1580                                  * to completion, as we would eventually hit
1581                                  * the end of the dirty list.  However, we
1582                                  * want to avoid running the length of the
1583                                  * dirty list unnecessarily (it might be quite
1584                                  * long), so we catch this as early as
1585                                  * possible by detecting the hash marker.  In
1586                                  * this case, we simply set dvar to NULL and
1587                                  * break; the conditional after the loop will
1588                                  * send us back to top.
1589                                  */
1590                                 dvar = NULL;
1591                                 break;
1592                         }
1593 
1594                         goto next;
1595                 }
1596 
1597                 if (dtuple->dtt_nkeys != nkeys)
1598                         goto next;
1599 
1600                 for (i = 0; i < nkeys; i++, dkey++) {
1601                         if (dkey->dttk_size != key[i].dttk_size)
1602                                 goto next; /* size or type mismatch */
1603 
1604                         if (dkey->dttk_size != 0) {
1605                                 if (dtrace_bcmp(
1606                                     (void *)(uintptr_t)key[i].dttk_value,
1607                                     (void *)(uintptr_t)dkey->dttk_value,
1608                                     dkey->dttk_size))
1609                                         goto next;
1610                         } else {
1611                                 if (dkey->dttk_value != key[i].dttk_value)
1612                                         goto next;
1613                         }
1614                 }
1615 
1616                 if (op != DTRACE_DYNVAR_DEALLOC)
1617                         return (dvar);
1618 
1619                 ASSERT(dvar->dtdv_next == NULL ||
1620                     dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1621 
1622                 if (prev != NULL) {
1623                         ASSERT(hash[bucket].dtdh_chain != dvar);
1624                         ASSERT(start != dvar);
1625                         ASSERT(prev->dtdv_next == dvar);
1626                         prev->dtdv_next = dvar->dtdv_next;
1627                 } else {
1628                         if (dtrace_casptr(&hash[bucket].dtdh_chain,
1629                             start, dvar->dtdv_next) != start) {
1630                                 /*
1631                                  * We have failed to atomically swing the
1632                                  * hash table head pointer, presumably because
1633                                  * of a conflicting allocation on another CPU.
1634                                  * We need to reread the hash chain and try
1635                                  * again.
1636                                  */
1637                                 goto top;
1638                         }
1639                 }
1640 
1641                 dtrace_membar_producer();
1642 
1643                 /*
1644                  * Now set the hash value to indicate that it's free.
1645                  */
1646                 ASSERT(hash[bucket].dtdh_chain != dvar);
1647                 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1648 
1649                 dtrace_membar_producer();
1650 
1651                 /*
1652                  * Set the next pointer to point at the dirty list, and
1653                  * atomically swing the dirty pointer to the newly freed dvar.
1654                  */
1655                 do {
1656                         next = dcpu->dtdsc_dirty;
1657                         dvar->dtdv_next = next;
1658                 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1659 
1660                 /*
1661                  * Finally, unlock this hash bucket.
1662                  */
1663                 ASSERT(hash[bucket].dtdh_lock == lock);
1664                 ASSERT(lock & 1);
1665                 hash[bucket].dtdh_lock++;
1666 
1667                 return (NULL);
1668 next:
1669                 prev = dvar;
1670                 continue;
1671         }
1672 
1673         if (dvar == NULL) {
1674                 /*
1675                  * If dvar is NULL, it is because we went off the rails:
1676                  * one of the elements that we traversed in the hash chain
1677                  * was deleted while we were traversing it.  In this case,
1678                  * we assert that we aren't doing a dealloc (deallocs lock
1679                  * the hash bucket to prevent themselves from racing with
1680                  * one another), and retry the hash chain traversal.
1681                  */
1682                 ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1683                 goto top;
1684         }
1685 
1686         if (op != DTRACE_DYNVAR_ALLOC) {
1687                 /*
1688                  * If we are not to allocate a new variable, we want to
1689                  * return NULL now.  Before we return, check that the value
1690                  * of the lock word hasn't changed.  If it has, we may have
1691                  * seen an inconsistent snapshot.
1692                  */
1693                 if (op == DTRACE_DYNVAR_NOALLOC) {
1694                         if (hash[bucket].dtdh_lock != lock)
1695                                 goto top;
1696                 } else {
1697                         ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1698                         ASSERT(hash[bucket].dtdh_lock == lock);
1699                         ASSERT(lock & 1);
1700                         hash[bucket].dtdh_lock++;
1701                 }
1702 
1703                 return (NULL);
1704         }
1705 
1706         /*
1707          * We need to allocate a new dynamic variable.  The size we need is the
1708          * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1709          * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1710          * the size of any referred-to data (dsize).  We then round the final
1711          * size up to the chunksize for allocation.
1712          */
1713         for (ksize = 0, i = 0; i < nkeys; i++)
1714                 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1715 
1716         /*
1717          * This should be pretty much impossible, but could happen if, say,
1718          * strange DIF specified the tuple.  Ideally, this should be an
1719          * assertion and not an error condition -- but that requires that the
1720          * chunksize calculation in dtrace_difo_chunksize() be absolutely
1721          * bullet-proof.  (That is, it must not be able to be fooled by
1722          * malicious DIF.)  Given the lack of backwards branches in DIF,
1723          * solving this would presumably not amount to solving the Halting
1724          * Problem -- but it still seems awfully hard.
1725          */
1726         if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1727             ksize + dsize > chunksize) {
1728                 dcpu->dtdsc_drops++;
1729                 return (NULL);
1730         }
1731 
1732         nstate = DTRACE_DSTATE_EMPTY;
1733 
1734         do {
1735 retry:
1736                 free = dcpu->dtdsc_free;
1737 
1738                 if (free == NULL) {
1739                         dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1740                         void *rval;
1741 
1742                         if (clean == NULL) {
1743                                 /*
1744                                  * We're out of dynamic variable space on
1745                                  * this CPU.  Unless we have tried all CPUs,
1746                                  * we'll try to allocate from a different
1747                                  * CPU.
1748                                  */
1749                                 switch (dstate->dtds_state) {
1750                                 case DTRACE_DSTATE_CLEAN: {
1751                                         void *sp = &dstate->dtds_state;
1752 
1753                                         if (++cpu >= NCPU)
1754                                                 cpu = 0;
1755 
1756                                         if (dcpu->dtdsc_dirty != NULL &&
1757                                             nstate == DTRACE_DSTATE_EMPTY)
1758                                                 nstate = DTRACE_DSTATE_DIRTY;
1759 
1760                                         if (dcpu->dtdsc_rinsing != NULL)
1761                                                 nstate = DTRACE_DSTATE_RINSING;
1762 
1763                                         dcpu = &dstate->dtds_percpu[cpu];
1764 
1765                                         if (cpu != me)
1766                                                 goto retry;
1767 
1768                                         (void) dtrace_cas32(sp,
1769                                             DTRACE_DSTATE_CLEAN, nstate);
1770 
1771                                         /*
1772                                          * To increment the correct bean
1773                                          * counter, take another lap.
1774                                          */
1775                                         goto retry;
1776                                 }
1777 
1778                                 case DTRACE_DSTATE_DIRTY:
1779                                         dcpu->dtdsc_dirty_drops++;
1780                                         break;
1781 
1782                                 case DTRACE_DSTATE_RINSING:
1783                                         dcpu->dtdsc_rinsing_drops++;
1784                                         break;
1785 
1786                                 case DTRACE_DSTATE_EMPTY:
1787                                         dcpu->dtdsc_drops++;
1788                                         break;
1789                                 }
1790 
1791                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1792                                 return (NULL);
1793                         }
1794 
1795                         /*
1796                          * The clean list appears to be non-empty.  We want to
1797                          * move the clean list to the free list; we start by
1798                          * moving the clean pointer aside.
1799                          */
1800                         if (dtrace_casptr(&dcpu->dtdsc_clean,
1801                             clean, NULL) != clean) {
1802                                 /*
1803                                  * We are in one of two situations:
1804                                  *
1805                                  *  (a) The clean list was switched to the
1806                                  *      free list by another CPU.
1807                                  *
1808                                  *  (b) The clean list was added to by the
1809                                  *      cleansing cyclic.
1810                                  *
1811                                  * In either of these situations, we can
1812                                  * just reattempt the free list allocation.
1813                                  */
1814                                 goto retry;
1815                         }
1816 
1817                         ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1818 
1819                         /*
1820                          * Now we'll move the clean list to our free list.
1821                          * It's impossible for this to fail:  the only way
1822                          * the free list can be updated is through this
1823                          * code path, and only one CPU can own the clean list.
1824                          * Thus, it would only be possible for this to fail if
1825                          * this code were racing with dtrace_dynvar_clean().
1826                          * (That is, if dtrace_dynvar_clean() updated the clean
1827                          * list, and we ended up racing to update the free
1828                          * list.)  This race is prevented by the dtrace_sync()
1829                          * in dtrace_dynvar_clean() -- which flushes the
1830                          * owners of the clean lists out before resetting
1831                          * the clean lists.
1832                          */
1833                         dcpu = &dstate->dtds_percpu[me];
1834                         rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1835                         ASSERT(rval == NULL);
1836                         goto retry;
1837                 }
1838 
1839                 dvar = free;
1840                 new_free = dvar->dtdv_next;
1841         } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1842 
1843         /*
1844          * We have now allocated a new chunk.  We copy the tuple keys into the
1845          * tuple array and copy any referenced key data into the data space
1846          * following the tuple array.  As we do this, we relocate dttk_value
1847          * in the final tuple to point to the key data address in the chunk.
1848          */
1849         kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1850         dvar->dtdv_data = (void *)(kdata + ksize);
1851         dvar->dtdv_tuple.dtt_nkeys = nkeys;
1852 
1853         for (i = 0; i < nkeys; i++) {
1854                 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1855                 size_t kesize = key[i].dttk_size;
1856 
1857                 if (kesize != 0) {
1858                         dtrace_bcopy(
1859                             (const void *)(uintptr_t)key[i].dttk_value,
1860                             (void *)kdata, kesize);
1861                         dkey->dttk_value = kdata;
1862                         kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1863                 } else {
1864                         dkey->dttk_value = key[i].dttk_value;
1865                 }
1866 
1867                 dkey->dttk_size = kesize;
1868         }
1869 
1870         ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1871         dvar->dtdv_hashval = hashval;
1872         dvar->dtdv_next = start;
1873 
1874         if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1875                 return (dvar);
1876 
1877         /*
1878          * The cas has failed.  Either another CPU is adding an element to
1879          * this hash chain, or another CPU is deleting an element from this
1880          * hash chain.  The simplest way to deal with both of these cases
1881          * (though not necessarily the most efficient) is to free our
1882          * allocated block and tail-call ourselves.  Note that the free is
1883          * to the dirty list and _not_ to the free list.  This is to prevent
1884          * races with allocators, above.
1885          */
1886         dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1887 
1888         dtrace_membar_producer();
1889 
1890         do {
1891                 free = dcpu->dtdsc_dirty;
1892                 dvar->dtdv_next = free;
1893         } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1894 
1895         return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
1896 }
1897 
1898 /*ARGSUSED*/
1899 static void
1900 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
1901 {
1902         if ((int64_t)nval < (int64_t)*oval)
1903                 *oval = nval;
1904 }
1905 
1906 /*ARGSUSED*/
1907 static void
1908 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
1909 {
1910         if ((int64_t)nval > (int64_t)*oval)
1911                 *oval = nval;
1912 }
1913 
1914 static void
1915 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
1916 {
1917         int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1918         int64_t val = (int64_t)nval;
1919 
1920         if (val < 0) {
1921                 for (i = 0; i < zero; i++) {
1922                         if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1923                                 quanta[i] += incr;
1924                                 return;
1925                         }
1926                 }
1927         } else {
1928                 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1929                         if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1930                                 quanta[i - 1] += incr;
1931                                 return;
1932                         }
1933                 }
1934 
1935                 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
1936                 return;
1937         }
1938 
1939         ASSERT(0);
1940 }
1941 
1942 static void
1943 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
1944 {
1945         uint64_t arg = *lquanta++;
1946         int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1947         uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1948         uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1949         int32_t val = (int32_t)nval, level;
1950 
1951         ASSERT(step != 0);
1952         ASSERT(levels != 0);
1953 
1954         if (val < base) {
1955                 /*
1956                  * This is an underflow.
1957                  */
1958                 lquanta[0] += incr;
1959                 return;
1960         }
1961 
1962         level = (val - base) / step;
1963 
1964         if (level < levels) {
1965                 lquanta[level + 1] += incr;
1966                 return;
1967         }
1968 
1969         /*
1970          * This is an overflow.
1971          */
1972         lquanta[levels + 1] += incr;
1973 }
1974 
1975 static int
1976 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
1977     uint16_t high, uint16_t nsteps, int64_t value)
1978 {
1979         int64_t this = 1, last, next;
1980         int base = 1, order;
1981 
1982         ASSERT(factor <= nsteps);
1983         ASSERT(nsteps % factor == 0);
1984 
1985         for (order = 0; order < low; order++)
1986                 this *= factor;
1987 
1988         /*
1989          * If our value is less than our factor taken to the power of the
1990          * low order of magnitude, it goes into the zeroth bucket.
1991          */
1992         if (value < (last = this))
1993                 return (0);
1994 
1995         for (this *= factor; order <= high; order++) {
1996                 int nbuckets = this > nsteps ? nsteps : this;
1997 
1998                 if ((next = this * factor) < this) {
1999                         /*
2000                          * We should not generally get log/linear quantizations
2001                          * with a high magnitude that allows 64-bits to
2002                          * overflow, but we nonetheless protect against this
2003                          * by explicitly checking for overflow, and clamping
2004                          * our value accordingly.
2005                          */
2006                         value = this - 1;
2007                 }
2008 
2009                 if (value < this) {
2010                         /*
2011                          * If our value lies within this order of magnitude,
2012                          * determine its position by taking the offset within
2013                          * the order of magnitude, dividing by the bucket
2014                          * width, and adding to our (accumulated) base.
2015                          */
2016                         return (base + (value - last) / (this / nbuckets));
2017                 }
2018 
2019                 base += nbuckets - (nbuckets / factor);
2020                 last = this;
2021                 this = next;
2022         }
2023 
2024         /*
2025          * Our value is greater than or equal to our factor taken to the
2026          * power of one plus the high magnitude -- return the top bucket.
2027          */
2028         return (base);
2029 }
2030 
2031 static void
2032 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
2033 {
2034         uint64_t arg = *llquanta++;
2035         uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
2036         uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
2037         uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
2038         uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
2039 
2040         llquanta[dtrace_aggregate_llquantize_bucket(factor,
2041             low, high, nsteps, nval)] += incr;
2042 }
2043 
2044 /*ARGSUSED*/
2045 static void
2046 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
2047 {
2048         data[0]++;
2049         data[1] += nval;
2050 }
2051 
2052 /*ARGSUSED*/
2053 static void
2054 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2055 {
2056         int64_t snval = (int64_t)nval;
2057         uint64_t tmp[2];
2058 
2059         data[0]++;
2060         data[1] += nval;
2061 
2062         /*
2063          * What we want to say here is:
2064          *
2065          * data[2] += nval * nval;
2066          *
2067          * But given that nval is 64-bit, we could easily overflow, so
2068          * we do this as 128-bit arithmetic.
2069          */
2070         if (snval < 0)
2071                 snval = -snval;
2072 
2073         dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2074         dtrace_add_128(data + 2, tmp, data + 2);
2075 }
2076 
2077 /*ARGSUSED*/
2078 static void
2079 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2080 {
2081         *oval = *oval + 1;
2082 }
2083 
2084 /*ARGSUSED*/
2085 static void
2086 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2087 {
2088         *oval += nval;
2089 }
2090 
2091 /*
2092  * Aggregate given the tuple in the principal data buffer, and the aggregating
2093  * action denoted by the specified dtrace_aggregation_t.  The aggregation
2094  * buffer is specified as the buf parameter.  This routine does not return
2095  * failure; if there is no space in the aggregation buffer, the data will be
2096  * dropped, and a corresponding counter incremented.
2097  */
2098 static void
2099 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2100     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2101 {
2102         dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2103         uint32_t i, ndx, size, fsize;
2104         uint32_t align = sizeof (uint64_t) - 1;
2105         dtrace_aggbuffer_t *agb;
2106         dtrace_aggkey_t *key;
2107         uint32_t hashval = 0, limit, isstr;
2108         caddr_t tomax, data, kdata;
2109         dtrace_actkind_t action;
2110         dtrace_action_t *act;
2111         uintptr_t offs;
2112 
2113         if (buf == NULL)
2114                 return;
2115 
2116         if (!agg->dtag_hasarg) {
2117                 /*
2118                  * Currently, only quantize() and lquantize() take additional
2119                  * arguments, and they have the same semantics:  an increment
2120                  * value that defaults to 1 when not present.  If additional
2121                  * aggregating actions take arguments, the setting of the
2122                  * default argument value will presumably have to become more
2123                  * sophisticated...
2124                  */
2125                 arg = 1;
2126         }
2127 
2128         action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2129         size = rec->dtrd_offset - agg->dtag_base;
2130         fsize = size + rec->dtrd_size;
2131 
2132         ASSERT(dbuf->dtb_tomax != NULL);
2133         data = dbuf->dtb_tomax + offset + agg->dtag_base;
2134 
2135         if ((tomax = buf->dtb_tomax) == NULL) {
2136                 dtrace_buffer_drop(buf);
2137                 return;
2138         }
2139 
2140         /*
2141          * The metastructure is always at the bottom of the buffer.
2142          */
2143         agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2144             sizeof (dtrace_aggbuffer_t));
2145 
2146         if (buf->dtb_offset == 0) {
2147                 /*
2148                  * We just kludge up approximately 1/8th of the size to be
2149                  * buckets.  If this guess ends up being routinely
2150                  * off-the-mark, we may need to dynamically readjust this
2151                  * based on past performance.
2152                  */
2153                 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2154 
2155                 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2156                     (uintptr_t)tomax || hashsize == 0) {
2157                         /*
2158                          * We've been given a ludicrously small buffer;
2159                          * increment our drop count and leave.
2160                          */
2161                         dtrace_buffer_drop(buf);
2162                         return;
2163                 }
2164 
2165                 /*
2166                  * And now, a pathetic attempt to try to get a an odd (or
2167                  * perchance, a prime) hash size for better hash distribution.
2168                  */
2169                 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2170                         hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2171 
2172                 agb->dtagb_hashsize = hashsize;
2173                 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2174                     agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2175                 agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2176 
2177                 for (i = 0; i < agb->dtagb_hashsize; i++)
2178                         agb->dtagb_hash[i] = NULL;
2179         }
2180 
2181         ASSERT(agg->dtag_first != NULL);
2182         ASSERT(agg->dtag_first->dta_intuple);
2183 
2184         /*
2185          * Calculate the hash value based on the key.  Note that we _don't_
2186          * include the aggid in the hashing (but we will store it as part of
2187          * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2188          * algorithm: a simple, quick algorithm that has no known funnels, and
2189          * gets good distribution in practice.  The efficacy of the hashing
2190          * algorithm (and a comparison with other algorithms) may be found by
2191          * running the ::dtrace_aggstat MDB dcmd.
2192          */
2193         for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2194                 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2195                 limit = i + act->dta_rec.dtrd_size;
2196                 ASSERT(limit <= size);
2197                 isstr = DTRACEACT_ISSTRING(act);
2198 
2199                 for (; i < limit; i++) {
2200                         hashval += data[i];
2201                         hashval += (hashval << 10);
2202                         hashval ^= (hashval >> 6);
2203 
2204                         if (isstr && data[i] == '\0')
2205                                 break;
2206                 }
2207         }
2208 
2209         hashval += (hashval << 3);
2210         hashval ^= (hashval >> 11);
2211         hashval += (hashval << 15);
2212 
2213         /*
2214          * Yes, the divide here is expensive -- but it's generally the least
2215          * of the performance issues given the amount of data that we iterate
2216          * over to compute hash values, compare data, etc.
2217          */
2218         ndx = hashval % agb->dtagb_hashsize;
2219 
2220         for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2221                 ASSERT((caddr_t)key >= tomax);
2222                 ASSERT((caddr_t)key < tomax + buf->dtb_size);
2223 
2224                 if (hashval != key->dtak_hashval || key->dtak_size != size)
2225                         continue;
2226 
2227                 kdata = key->dtak_data;
2228                 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2229 
2230                 for (act = agg->dtag_first; act->dta_intuple;
2231                     act = act->dta_next) {
2232                         i = act->dta_rec.dtrd_offset - agg->dtag_base;
2233                         limit = i + act->dta_rec.dtrd_size;
2234                         ASSERT(limit <= size);
2235                         isstr = DTRACEACT_ISSTRING(act);
2236 
2237                         for (; i < limit; i++) {
2238                                 if (kdata[i] != data[i])
2239                                         goto next;
2240 
2241                                 if (isstr && data[i] == '\0')
2242                                         break;
2243                         }
2244                 }
2245 
2246                 if (action != key->dtak_action) {
2247                         /*
2248                          * We are aggregating on the same value in the same
2249                          * aggregation with two different aggregating actions.
2250                          * (This should have been picked up in the compiler,
2251                          * so we may be dealing with errant or devious DIF.)
2252                          * This is an error condition; we indicate as much,
2253                          * and return.
2254                          */
2255                         DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2256                         return;
2257                 }
2258 
2259                 /*
2260                  * This is a hit:  we need to apply the aggregator to
2261                  * the value at this key.
2262                  */
2263                 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2264                 return;
2265 next:
2266                 continue;
2267         }
2268 
2269         /*
2270          * We didn't find it.  We need to allocate some zero-filled space,
2271          * link it into the hash table appropriately, and apply the aggregator
2272          * to the (zero-filled) value.
2273          */
2274         offs = buf->dtb_offset;
2275         while (offs & (align - 1))
2276                 offs += sizeof (uint32_t);
2277 
2278         /*
2279          * If we don't have enough room to both allocate a new key _and_
2280          * its associated data, increment the drop count and return.
2281          */
2282         if ((uintptr_t)tomax + offs + fsize >
2283             agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2284                 dtrace_buffer_drop(buf);
2285                 return;
2286         }
2287 
2288         /*CONSTCOND*/
2289         ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2290         key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2291         agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2292 
2293         key->dtak_data = kdata = tomax + offs;
2294         buf->dtb_offset = offs + fsize;
2295 
2296         /*
2297          * Now copy the data across.
2298          */
2299         *((dtrace_aggid_t *)kdata) = agg->dtag_id;
2300 
2301         for (i = sizeof (dtrace_aggid_t); i < size; i++)
2302                 kdata[i] = data[i];
2303 
2304         /*
2305          * Because strings are not zeroed out by default, we need to iterate
2306          * looking for actions that store strings, and we need to explicitly
2307          * pad these strings out with zeroes.
2308          */
2309         for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2310                 int nul;
2311 
2312                 if (!DTRACEACT_ISSTRING(act))
2313                         continue;
2314 
2315                 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2316                 limit = i + act->dta_rec.dtrd_size;
2317                 ASSERT(limit <= size);
2318 
2319                 for (nul = 0; i < limit; i++) {
2320                         if (nul) {
2321                                 kdata[i] = '\0';
2322                                 continue;
2323                         }
2324 
2325                         if (data[i] != '\0')
2326                                 continue;
2327 
2328                         nul = 1;
2329                 }
2330         }
2331 
2332         for (i = size; i < fsize; i++)
2333                 kdata[i] = 0;
2334 
2335         key->dtak_hashval = hashval;
2336         key->dtak_size = size;
2337         key->dtak_action = action;
2338         key->dtak_next = agb->dtagb_hash[ndx];
2339         agb->dtagb_hash[ndx] = key;
2340 
2341         /*
2342          * Finally, apply the aggregator.
2343          */
2344         *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2345         agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2346 }
2347 
2348 /*
2349  * Given consumer state, this routine finds a speculation in the INACTIVE
2350  * state and transitions it into the ACTIVE state.  If there is no speculation
2351  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2352  * incremented -- it is up to the caller to take appropriate action.
2353  */
2354 static int
2355 dtrace_speculation(dtrace_state_t *state)
2356 {
2357         int i = 0;
2358         dtrace_speculation_state_t current;
2359         uint32_t *stat = &state->dts_speculations_unavail, count;
2360 
2361         while (i < state->dts_nspeculations) {
2362                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2363 
2364                 current = spec->dtsp_state;
2365 
2366                 if (current != DTRACESPEC_INACTIVE) {
2367                         if (current == DTRACESPEC_COMMITTINGMANY ||
2368                             current == DTRACESPEC_COMMITTING ||
2369                             current == DTRACESPEC_DISCARDING)
2370                                 stat = &state->dts_speculations_busy;
2371                         i++;
2372                         continue;
2373                 }
2374 
2375                 if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2376                     current, DTRACESPEC_ACTIVE) == current)
2377                         return (i + 1);
2378         }
2379 
2380         /*
2381          * We couldn't find a speculation.  If we found as much as a single
2382          * busy speculation buffer, we'll attribute this failure as "busy"
2383          * instead of "unavail".
2384          */
2385         do {
2386                 count = *stat;
2387         } while (dtrace_cas32(stat, count, count + 1) != count);
2388 
2389         return (0);
2390 }
2391 
2392 /*
2393  * This routine commits an active speculation.  If the specified speculation
2394  * is not in a valid state to perform a commit(), this routine will silently do
2395  * nothing.  The state of the specified speculation is transitioned according
2396  * to the state transition diagram outlined in <sys/dtrace_impl.h>
2397  */
2398 static void
2399 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2400     dtrace_specid_t which)
2401 {
2402         dtrace_speculation_t *spec;
2403         dtrace_buffer_t *src, *dest;
2404         uintptr_t daddr, saddr, dlimit;
2405         dtrace_speculation_state_t current, new;
2406         intptr_t offs;
2407 
2408         if (which == 0)
2409                 return;
2410 
2411         if (which > state->dts_nspeculations) {
2412                 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2413                 return;
2414         }
2415 
2416         spec = &state->dts_speculations[which - 1];
2417         src = &spec->dtsp_buffer[cpu];
2418         dest = &state->dts_buffer[cpu];
2419 
2420         do {
2421                 current = spec->dtsp_state;
2422 
2423                 if (current == DTRACESPEC_COMMITTINGMANY)
2424                         break;
2425 
2426                 switch (current) {
2427                 case DTRACESPEC_INACTIVE:
2428                 case DTRACESPEC_DISCARDING:
2429                         return;
2430 
2431                 case DTRACESPEC_COMMITTING:
2432                         /*
2433                          * This is only possible if we are (a) commit()'ing
2434                          * without having done a prior speculate() on this CPU
2435                          * and (b) racing with another commit() on a different
2436                          * CPU.  There's nothing to do -- we just assert that
2437                          * our offset is 0.
2438                          */
2439                         ASSERT(src->dtb_offset == 0);
2440                         return;
2441 
2442                 case DTRACESPEC_ACTIVE:
2443                         new = DTRACESPEC_COMMITTING;
2444                         break;
2445 
2446                 case DTRACESPEC_ACTIVEONE:
2447                         /*
2448                          * This speculation is active on one CPU.  If our
2449                          * buffer offset is non-zero, we know that the one CPU
2450                          * must be us.  Otherwise, we are committing on a
2451                          * different CPU from the speculate(), and we must
2452                          * rely on being asynchronously cleaned.
2453                          */
2454                         if (src->dtb_offset != 0) {
2455                                 new = DTRACESPEC_COMMITTING;
2456                                 break;
2457                         }
2458                         /*FALLTHROUGH*/
2459 
2460                 case DTRACESPEC_ACTIVEMANY:
2461                         new = DTRACESPEC_COMMITTINGMANY;
2462                         break;
2463 
2464                 default:
2465                         ASSERT(0);
2466                 }
2467         } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2468             current, new) != current);
2469 
2470         /*
2471          * We have set the state to indicate that we are committing this
2472          * speculation.  Now reserve the necessary space in the destination
2473          * buffer.
2474          */
2475         if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2476             sizeof (uint64_t), state, NULL)) < 0) {
2477                 dtrace_buffer_drop(dest);
2478                 goto out;
2479         }
2480 
2481         /*
2482          * We have the space; copy the buffer across.  (Note that this is a
2483          * highly subobtimal bcopy(); in the unlikely event that this becomes
2484          * a serious performance issue, a high-performance DTrace-specific
2485          * bcopy() should obviously be invented.)
2486          */
2487         daddr = (uintptr_t)dest->dtb_tomax + offs;
2488         dlimit = daddr + src->dtb_offset;
2489         saddr = (uintptr_t)src->dtb_tomax;
2490 
2491         /*
2492          * First, the aligned portion.
2493          */
2494         while (dlimit - daddr >= sizeof (uint64_t)) {
2495                 *((uint64_t *)daddr) = *((uint64_t *)saddr);
2496 
2497                 daddr += sizeof (uint64_t);
2498                 saddr += sizeof (uint64_t);
2499         }
2500 
2501         /*
2502          * Now any left-over bit...
2503          */
2504         while (dlimit - daddr)
2505                 *((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2506 
2507         /*
2508          * Finally, commit the reserved space in the destination buffer.
2509          */
2510         dest->dtb_offset = offs + src->dtb_offset;
2511 
2512 out:
2513         /*
2514          * If we're lucky enough to be the only active CPU on this speculation
2515          * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2516          */
2517         if (current == DTRACESPEC_ACTIVE ||
2518             (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2519                 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2520                     DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2521 
2522                 ASSERT(rval == DTRACESPEC_COMMITTING);
2523         }
2524 
2525         src->dtb_offset = 0;
2526         src->dtb_xamot_drops += src->dtb_drops;
2527         src->dtb_drops = 0;
2528 }
2529 
2530 /*
2531  * This routine discards an active speculation.  If the specified speculation
2532  * is not in a valid state to perform a discard(), this routine will silently
2533  * do nothing.  The state of the specified speculation is transitioned
2534  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2535  */
2536 static void
2537 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2538     dtrace_specid_t which)
2539 {
2540         dtrace_speculation_t *spec;
2541         dtrace_speculation_state_t current, new;
2542         dtrace_buffer_t *buf;
2543 
2544         if (which == 0)
2545                 return;
2546 
2547         if (which > state->dts_nspeculations) {
2548                 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2549                 return;
2550         }
2551 
2552         spec = &state->dts_speculations[which - 1];
2553         buf = &spec->dtsp_buffer[cpu];
2554 
2555         do {
2556                 current = spec->dtsp_state;
2557 
2558                 switch (current) {
2559                 case DTRACESPEC_INACTIVE:
2560                 case DTRACESPEC_COMMITTINGMANY:
2561                 case DTRACESPEC_COMMITTING:
2562                 case DTRACESPEC_DISCARDING:
2563                         return;
2564 
2565                 case DTRACESPEC_ACTIVE:
2566                 case DTRACESPEC_ACTIVEMANY:
2567                         new = DTRACESPEC_DISCARDING;
2568                         break;
2569 
2570                 case DTRACESPEC_ACTIVEONE:
2571                         if (buf->dtb_offset != 0) {
2572                                 new = DTRACESPEC_INACTIVE;
2573                         } else {
2574                                 new = DTRACESPEC_DISCARDING;
2575                         }
2576                         break;
2577 
2578                 default:
2579                         ASSERT(0);
2580                 }
2581         } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2582             current, new) != current);
2583 
2584         buf->dtb_offset = 0;
2585         buf->dtb_drops = 0;
2586 }
2587 
2588 /*
2589  * Note:  not called from probe context.  This function is called
2590  * asynchronously from cross call context to clean any speculations that are
2591  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2592  * transitioned back to the INACTIVE state until all CPUs have cleaned the
2593  * speculation.
2594  */
2595 static void
2596 dtrace_speculation_clean_here(dtrace_state_t *state)
2597 {
2598         dtrace_icookie_t cookie;
2599         processorid_t cpu = CPU->cpu_id;
2600         dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2601         dtrace_specid_t i;
2602 
2603         cookie = dtrace_interrupt_disable();
2604 
2605         if (dest->dtb_tomax == NULL) {
2606                 dtrace_interrupt_enable(cookie);
2607                 return;
2608         }
2609 
2610         for (i = 0; i < state->dts_nspeculations; i++) {
2611                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2612                 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2613 
2614                 if (src->dtb_tomax == NULL)
2615                         continue;
2616 
2617                 if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2618                         src->dtb_offset = 0;
2619                         continue;
2620                 }
2621 
2622                 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2623                         continue;
2624 
2625                 if (src->dtb_offset == 0)
2626                         continue;
2627 
2628                 dtrace_speculation_commit(state, cpu, i + 1);
2629         }
2630 
2631         dtrace_interrupt_enable(cookie);
2632 }
2633 
2634 /*
2635  * Note:  not called from probe context.  This function is called
2636  * asynchronously (and at a regular interval) to clean any speculations that
2637  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2638  * is work to be done, it cross calls all CPUs to perform that work;
2639  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2640  * INACTIVE state until they have been cleaned by all CPUs.
2641  */
2642 static void
2643 dtrace_speculation_clean(dtrace_state_t *state)
2644 {
2645         int work = 0, rv;
2646         dtrace_specid_t i;
2647 
2648         for (i = 0; i < state->dts_nspeculations; i++) {
2649                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2650 
2651                 ASSERT(!spec->dtsp_cleaning);
2652 
2653                 if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2654                     spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2655                         continue;
2656 
2657                 work++;
2658                 spec->dtsp_cleaning = 1;
2659         }
2660 
2661         if (!work)
2662                 return;
2663 
2664         dtrace_xcall(DTRACE_CPUALL,
2665             (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2666 
2667         /*
2668          * We now know that all CPUs have committed or discarded their
2669          * speculation buffers, as appropriate.  We can now set the state
2670          * to inactive.
2671          */
2672         for (i = 0; i < state->dts_nspeculations; i++) {
2673                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2674                 dtrace_speculation_state_t current, new;
2675 
2676                 if (!spec->dtsp_cleaning)
2677                         continue;
2678 
2679                 current = spec->dtsp_state;
2680                 ASSERT(current == DTRACESPEC_DISCARDING ||
2681                     current == DTRACESPEC_COMMITTINGMANY);
2682 
2683                 new = DTRACESPEC_INACTIVE;
2684 
2685                 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2686                 ASSERT(rv == current);
2687                 spec->dtsp_cleaning = 0;
2688         }
2689 }
2690 
2691 /*
2692  * Called as part of a speculate() to get the speculative buffer associated
2693  * with a given speculation.  Returns NULL if the specified speculation is not
2694  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2695  * the active CPU is not the specified CPU -- the speculation will be
2696  * atomically transitioned into the ACTIVEMANY state.
2697  */
2698 static dtrace_buffer_t *
2699 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2700     dtrace_specid_t which)
2701 {
2702         dtrace_speculation_t *spec;
2703         dtrace_speculation_state_t current, new;
2704         dtrace_buffer_t *buf;
2705 
2706         if (which == 0)
2707                 return (NULL);
2708 
2709         if (which > state->dts_nspeculations) {
2710                 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2711                 return (NULL);
2712         }
2713 
2714         spec = &state->dts_speculations[which - 1];
2715         buf = &spec->dtsp_buffer[cpuid];
2716 
2717         do {
2718                 current = spec->dtsp_state;
2719 
2720                 switch (current) {
2721                 case DTRACESPEC_INACTIVE:
2722                 case DTRACESPEC_COMMITTINGMANY:
2723                 case DTRACESPEC_DISCARDING:
2724                         return (NULL);
2725 
2726                 case DTRACESPEC_COMMITTING:
2727                         ASSERT(buf->dtb_offset == 0);
2728                         return (NULL);
2729 
2730                 case DTRACESPEC_ACTIVEONE:
2731                         /*
2732                          * This speculation is currently active on one CPU.
2733                          * Check the offset in the buffer; if it's non-zero,
2734                          * that CPU must be us (and we leave the state alone).
2735                          * If it's zero, assume that we're starting on a new
2736                          * CPU -- and change the state to indicate that the
2737                          * speculation is active on more than one CPU.
2738                          */
2739                         if (buf->dtb_offset != 0)
2740                                 return (buf);
2741 
2742                         new = DTRACESPEC_ACTIVEMANY;
2743                         break;
2744 
2745                 case DTRACESPEC_ACTIVEMANY:
2746                         return (buf);
2747 
2748                 case DTRACESPEC_ACTIVE:
2749                         new = DTRACESPEC_ACTIVEONE;
2750                         break;
2751 
2752                 default:
2753                         ASSERT(0);
2754                 }
2755         } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2756             current, new) != current);
2757 
2758         ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2759         return (buf);
2760 }
2761 
2762 /*
2763  * Return a string.  In the event that the user lacks the privilege to access
2764  * arbitrary kernel memory, we copy the string out to scratch memory so that we
2765  * don't fail access checking.
2766  *
2767  * dtrace_dif_variable() uses this routine as a helper for various
2768  * builtin values such as 'execname' and 'probefunc.'
2769  */
2770 uintptr_t
2771 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2772     dtrace_mstate_t *mstate)
2773 {
2774         uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2775         uintptr_t ret;
2776         size_t strsz;
2777 
2778         /*
2779          * The easy case: this probe is allowed to read all of memory, so
2780          * we can just return this as a vanilla pointer.
2781          */
2782         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2783                 return (addr);
2784 
2785         /*
2786          * This is the tougher case: we copy the string in question from
2787          * kernel memory into scratch memory and return it that way: this
2788          * ensures that we won't trip up when access checking tests the
2789          * BYREF return value.
2790          */
2791         strsz = dtrace_strlen((char *)addr, size) + 1;
2792 
2793         if (mstate->dtms_scratch_ptr + strsz >
2794             mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2795                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2796                 return (NULL);
2797         }
2798 
2799         dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2800             strsz);
2801         ret = mstate->dtms_scratch_ptr;
2802         mstate->dtms_scratch_ptr += strsz;
2803         return (ret);
2804 }
2805 
2806 /*
2807  * This function implements the DIF emulator's variable lookups.  The emulator
2808  * passes a reserved variable identifier and optional built-in array index.
2809  */
2810 static uint64_t
2811 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2812     uint64_t ndx)
2813 {
2814         /*
2815          * If we're accessing one of the uncached arguments, we'll turn this
2816          * into a reference in the args array.
2817          */
2818         if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2819                 ndx = v - DIF_VAR_ARG0;
2820                 v = DIF_VAR_ARGS;
2821         }
2822 
2823         switch (v) {
2824         case DIF_VAR_ARGS:
2825                 if (!(mstate->dtms_access & DTRACE_ACCESS_ARGS)) {
2826                         cpu_core[CPU->cpu_id].cpuc_dtrace_flags |=
2827                             CPU_DTRACE_KPRIV;
2828                         return (0);
2829                 }
2830 
2831                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2832                 if (ndx >= sizeof (mstate->dtms_arg) /
2833                     sizeof (mstate->dtms_arg[0])) {
2834                         int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2835                         dtrace_provider_t *pv;
2836                         uint64_t val;
2837 
2838                         pv = mstate->dtms_probe->dtpr_provider;
2839                         if (pv->dtpv_pops.dtps_getargval != NULL)
2840                                 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2841                                     mstate->dtms_probe->dtpr_id,
2842                                     mstate->dtms_probe->dtpr_arg, ndx, aframes);
2843                         else
2844                                 val = dtrace_getarg(ndx, aframes);
2845 
2846                         /*
2847                          * This is regrettably required to keep the compiler
2848                          * from tail-optimizing the call to dtrace_getarg().
2849                          * The condition always evaluates to true, but the
2850                          * compiler has no way of figuring that out a priori.
2851                          * (None of this would be necessary if the compiler
2852                          * could be relied upon to _always_ tail-optimize
2853                          * the call to dtrace_getarg() -- but it can't.)
2854                          */
2855                         if (mstate->dtms_probe != NULL)
2856                                 return (val);
2857 
2858                         ASSERT(0);
2859                 }
2860 
2861                 return (mstate->dtms_arg[ndx]);
2862 
2863         case DIF_VAR_UREGS: {
2864                 klwp_t *lwp;
2865 
2866                 if (!dtrace_priv_proc(state, mstate))
2867                         return (0);
2868 
2869                 if ((lwp = curthread->t_lwp) == NULL) {
2870                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2871                         cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL;
2872                         return (0);
2873                 }
2874 
2875                 return (dtrace_getreg(lwp->lwp_regs, ndx));
2876         }
2877 
2878         case DIF_VAR_VMREGS: {
2879                 uint64_t rval;
2880 
2881                 if (!dtrace_priv_kernel(state))
2882                         return (0);
2883 
2884                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2885 
2886                 rval = dtrace_getvmreg(ndx,
2887                     &cpu_core[CPU->cpu_id].cpuc_dtrace_flags);
2888 
2889                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2890 
2891                 return (rval);
2892         }
2893 
2894         case DIF_VAR_CURTHREAD:
2895                 if (!dtrace_priv_kernel(state))
2896                         return (0);
2897                 return ((uint64_t)(uintptr_t)curthread);
2898 
2899         case DIF_VAR_TIMESTAMP:
2900                 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2901                         mstate->dtms_timestamp = dtrace_gethrtime();
2902                         mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2903                 }
2904                 return (mstate->dtms_timestamp);
2905 
2906         case DIF_VAR_VTIMESTAMP:
2907                 ASSERT(dtrace_vtime_references != 0);
2908                 return (curthread->t_dtrace_vtime);
2909 
2910         case DIF_VAR_WALLTIMESTAMP:
2911                 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2912                         mstate->dtms_walltimestamp = dtrace_gethrestime();
2913                         mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2914                 }
2915                 return (mstate->dtms_walltimestamp);
2916 
2917         case DIF_VAR_IPL:
2918                 if (!dtrace_priv_kernel(state))
2919                         return (0);
2920                 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2921                         mstate->dtms_ipl = dtrace_getipl();
2922                         mstate->dtms_present |= DTRACE_MSTATE_IPL;
2923                 }
2924                 return (mstate->dtms_ipl);
2925 
2926         case DIF_VAR_EPID:
2927                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2928                 return (mstate->dtms_epid);
2929 
2930         case DIF_VAR_ID:
2931                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2932                 return (mstate->dtms_probe->dtpr_id);
2933 
2934         case DIF_VAR_STACKDEPTH:
2935                 if (!dtrace_priv_kernel(state))
2936                         return (0);
2937                 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2938                         int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2939 
2940                         mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2941                         mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2942                 }
2943                 return (mstate->dtms_stackdepth);
2944 
2945         case DIF_VAR_USTACKDEPTH:
2946                 if (!dtrace_priv_proc(state, mstate))
2947                         return (0);
2948                 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2949                         /*
2950                          * See comment in DIF_VAR_PID.
2951                          */
2952                         if (DTRACE_ANCHORED(mstate->dtms_probe) &&
2953                             CPU_ON_INTR(CPU)) {
2954                                 mstate->dtms_ustackdepth = 0;
2955                         } else {
2956                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2957                                 mstate->dtms_ustackdepth =
2958                                     dtrace_getustackdepth();
2959                                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2960                         }
2961                         mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2962                 }
2963                 return (mstate->dtms_ustackdepth);
2964 
2965         case DIF_VAR_CALLER:
2966                 if (!dtrace_priv_kernel(state))
2967                         return (0);
2968                 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2969                         int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2970 
2971                         if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2972                                 /*
2973                                  * If this is an unanchored probe, we are
2974                                  * required to go through the slow path:
2975                                  * dtrace_caller() only guarantees correct
2976                                  * results for anchored probes.
2977                                  */
2978                                 pc_t caller[2];
2979 
2980                                 dtrace_getpcstack(caller, 2, aframes,
2981                                     (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2982                                 mstate->dtms_caller = caller[1];
2983                         } else if ((mstate->dtms_caller =
2984                             dtrace_caller(aframes)) == -1) {
2985                                 /*
2986                                  * We have failed to do this the quick way;
2987                                  * we must resort to the slower approach of
2988                                  * calling dtrace_getpcstack().
2989                                  */
2990                                 pc_t caller;
2991 
2992                                 dtrace_getpcstack(&caller, 1, aframes, NULL);
2993                                 mstate->dtms_caller = caller;
2994                         }
2995 
2996                         mstate->dtms_present |= DTRACE_MSTATE_CALLER;
2997                 }
2998                 return (mstate->dtms_caller);
2999 
3000         case DIF_VAR_UCALLER:
3001                 if (!dtrace_priv_proc(state, mstate))
3002                         return (0);
3003 
3004                 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3005                         uint64_t ustack[3];
3006 
3007                         /*
3008                          * dtrace_getupcstack() fills in the first uint64_t
3009                          * with the current PID.  The second uint64_t will
3010                          * be the program counter at user-level.  The third
3011                          * uint64_t will contain the caller, which is what
3012                          * we're after.
3013                          */
3014                         ustack[2] = NULL;
3015                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3016                         dtrace_getupcstack(ustack, 3);
3017                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3018                         mstate->dtms_ucaller = ustack[2];
3019                         mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3020                 }
3021 
3022                 return (mstate->dtms_ucaller);
3023 
3024         case DIF_VAR_PROBEPROV:
3025                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3026                 return (dtrace_dif_varstr(
3027                     (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3028                     state, mstate));
3029 
3030         case DIF_VAR_PROBEMOD:
3031                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3032                 return (dtrace_dif_varstr(
3033                     (uintptr_t)mstate->dtms_probe->dtpr_mod,
3034                     state, mstate));
3035 
3036         case DIF_VAR_PROBEFUNC:
3037                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3038                 return (dtrace_dif_varstr(
3039                     (uintptr_t)mstate->dtms_probe->dtpr_func,
3040                     state, mstate));
3041 
3042         case DIF_VAR_PROBENAME:
3043                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3044                 return (dtrace_dif_varstr(
3045                     (uintptr_t)mstate->dtms_probe->dtpr_name,
3046                     state, mstate));
3047 
3048         case DIF_VAR_PID:
3049                 if (!dtrace_priv_proc(state, mstate))
3050                         return (0);
3051 
3052                 /*
3053                  * Note that we are assuming that an unanchored probe is
3054                  * always due to a high-level interrupt.  (And we're assuming
3055                  * that there is only a single high level interrupt.)
3056                  */
3057                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3058                         return (pid0.pid_id);
3059 
3060                 /*
3061                  * It is always safe to dereference one's own t_procp pointer:
3062                  * it always points to a valid, allocated proc structure.
3063                  * Further, it is always safe to dereference the p_pidp member
3064                  * of one's own proc structure.  (These are truisms becuase
3065                  * threads and processes don't clean up their own state --
3066                  * they leave that task to whomever reaps them.)
3067                  */
3068                 return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3069 
3070         case DIF_VAR_PPID:
3071                 if (!dtrace_priv_proc(state, mstate))
3072                         return (0);
3073 
3074                 /*
3075                  * See comment in DIF_VAR_PID.
3076                  */
3077                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3078                         return (pid0.pid_id);
3079 
3080                 /*
3081                  * It is always safe to dereference one's own t_procp pointer:
3082                  * it always points to a valid, allocated proc structure.
3083                  * (This is true because threads don't clean up their own
3084                  * state -- they leave that task to whomever reaps them.)
3085                  */
3086                 return ((uint64_t)curthread->t_procp->p_ppid);
3087 
3088         case DIF_VAR_TID:
3089                 /*
3090                  * See comment in DIF_VAR_PID.
3091                  */
3092                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3093                         return (0);
3094 
3095                 return ((uint64_t)curthread->t_tid);
3096 
3097         case DIF_VAR_EXECNAME:
3098                 if (!dtrace_priv_proc(state, mstate))
3099                         return (0);
3100 
3101                 /*
3102                  * See comment in DIF_VAR_PID.
3103                  */
3104                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3105                         return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3106 
3107                 /*
3108                  * It is always safe to dereference one's own t_procp pointer:
3109                  * it always points to a valid, allocated proc structure.
3110                  * (This is true because threads don't clean up their own
3111                  * state -- they leave that task to whomever reaps them.)
3112                  */
3113                 return (dtrace_dif_varstr(
3114                     (uintptr_t)curthread->t_procp->p_user.u_comm,
3115                     state, mstate));
3116 
3117         case DIF_VAR_ZONENAME:
3118                 if (!dtrace_priv_proc(state, mstate))
3119                         return (0);
3120 
3121                 /*
3122                  * See comment in DIF_VAR_PID.
3123                  */
3124                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3125                         return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3126 
3127                 /*
3128                  * It is always safe to dereference one's own t_procp pointer:
3129                  * it always points to a valid, allocated proc structure.
3130                  * (This is true because threads don't clean up their own
3131                  * state -- they leave that task to whomever reaps them.)
3132                  */
3133                 return (dtrace_dif_varstr(
3134                     (uintptr_t)curthread->t_procp->p_zone->zone_name,
3135                     state, mstate));
3136 
3137         case DIF_VAR_UID:
3138                 if (!dtrace_priv_proc(state, mstate))
3139                         return (0);
3140 
3141                 /*
3142                  * See comment in DIF_VAR_PID.
3143                  */
3144                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3145                         return ((uint64_t)p0.p_cred->cr_uid);
3146 
3147                 /*
3148                  * It is always safe to dereference one's own t_procp pointer:
3149                  * it always points to a valid, allocated proc structure.
3150                  * (This is true because threads don't clean up their own
3151                  * state -- they leave that task to whomever reaps them.)
3152                  *
3153                  * Additionally, it is safe to dereference one's own process
3154                  * credential, since this is never NULL after process birth.
3155                  */
3156                 return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3157 
3158         case DIF_VAR_GID:
3159                 if (!dtrace_priv_proc(state, mstate))
3160                         return (0);
3161 
3162                 /*
3163                  * See comment in DIF_VAR_PID.
3164                  */
3165                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3166                         return ((uint64_t)p0.p_cred->cr_gid);
3167 
3168                 /*
3169                  * It is always safe to dereference one's own t_procp pointer:
3170                  * it always points to a valid, allocated proc structure.
3171                  * (This is true because threads don't clean up their own
3172                  * state -- they leave that task to whomever reaps them.)
3173                  *
3174                  * Additionally, it is safe to dereference one's own process
3175                  * credential, since this is never NULL after process birth.
3176                  */
3177                 return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3178 
3179         case DIF_VAR_ERRNO: {
3180                 klwp_t *lwp;
3181                 if (!dtrace_priv_proc(state, mstate))
3182                         return (0);
3183 
3184                 /*
3185                  * See comment in DIF_VAR_PID.
3186                  */
3187                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3188                         return (0);
3189 
3190                 /*
3191                  * It is always safe to dereference one's own t_lwp pointer in
3192                  * the event that this pointer is non-NULL.  (This is true
3193                  * because threads and lwps don't clean up their own state --
3194                  * they leave that task to whomever reaps them.)
3195                  */
3196                 if ((lwp = curthread->t_lwp) == NULL)
3197                         return (0);
3198 
3199                 return ((uint64_t)lwp->lwp_errno);
3200         }
3201         default:
3202                 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3203                 return (0);
3204         }
3205 }
3206 
3207 /*
3208  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3209  * Notice that we don't bother validating the proper number of arguments or
3210  * their types in the tuple stack.  This isn't needed because all argument
3211  * interpretation is safe because of our load safety -- the worst that can
3212  * happen is that a bogus program can obtain bogus results.
3213  */
3214 static void
3215 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3216     dtrace_key_t *tupregs, int nargs,
3217     dtrace_mstate_t *mstate, dtrace_state_t *state)
3218 {
3219         volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
3220         volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
3221         dtrace_vstate_t *vstate = &state->dts_vstate;
3222 
3223         union {
3224                 mutex_impl_t mi;
3225                 uint64_t mx;
3226         } m;
3227 
3228         union {
3229                 krwlock_t ri;
3230                 uintptr_t rw;
3231         } r;
3232 
3233         switch (subr) {
3234         case DIF_SUBR_RAND:
3235                 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3236                 break;
3237 
3238         case DIF_SUBR_MUTEX_OWNED:
3239                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3240                     mstate, vstate)) {
3241                         regs[rd] = NULL;
3242                         break;
3243                 }
3244 
3245                 m.mx = dtrace_load64(tupregs[0].dttk_value);
3246                 if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3247                         regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3248                 else
3249                         regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3250                 break;
3251 
3252         case DIF_SUBR_MUTEX_OWNER:
3253                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3254                     mstate, vstate)) {
3255                         regs[rd] = NULL;
3256                         break;
3257                 }
3258 
3259                 m.mx = dtrace_load64(tupregs[0].dttk_value);
3260                 if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3261                     MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3262                         regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3263                 else
3264                         regs[rd] = 0;
3265                 break;
3266 
3267         case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3268                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3269                     mstate, vstate)) {
3270                         regs[rd] = NULL;
3271                         break;
3272                 }
3273 
3274                 m.mx = dtrace_load64(tupregs[0].dttk_value);
3275                 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3276                 break;
3277 
3278         case DIF_SUBR_MUTEX_TYPE_SPIN:
3279                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3280                     mstate, vstate)) {
3281                         regs[rd] = NULL;
3282                         break;
3283                 }
3284 
3285                 m.mx = dtrace_load64(tupregs[0].dttk_value);
3286                 regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3287                 break;
3288 
3289         case DIF_SUBR_RW_READ_HELD: {
3290                 uintptr_t tmp;
3291 
3292                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3293                     mstate, vstate)) {
3294                         regs[rd] = NULL;
3295                         break;
3296                 }
3297 
3298                 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3299                 regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3300                 break;
3301         }
3302 
3303         case DIF_SUBR_RW_WRITE_HELD:
3304                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3305                     mstate, vstate)) {
3306                         regs[rd] = NULL;
3307                         break;
3308                 }
3309 
3310                 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3311                 regs[rd] = _RW_WRITE_HELD(&r.ri);
3312                 break;
3313 
3314         case DIF_SUBR_RW_ISWRITER:
3315                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3316                     mstate, vstate)) {
3317                         regs[rd] = NULL;
3318                         break;
3319                 }
3320 
3321                 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3322                 regs[rd] = _RW_ISWRITER(&r.ri);
3323                 break;
3324 
3325         case DIF_SUBR_BCOPY: {
3326                 /*
3327                  * We need to be sure that the destination is in the scratch
3328                  * region -- no other region is allowed.
3329                  */
3330                 uintptr_t src = tupregs[0].dttk_value;
3331                 uintptr_t dest = tupregs[1].dttk_value;
3332                 size_t size = tupregs[2].dttk_value;
3333 
3334                 if (!dtrace_inscratch(dest, size, mstate)) {
3335                         *flags |= CPU_DTRACE_BADADDR;
3336                         *illval = regs[rd];
3337                         break;
3338                 }
3339 
3340                 if (!dtrace_canload(src, size, mstate, vstate)) {
3341                         regs[rd] = NULL;
3342                         break;
3343                 }
3344 
3345                 dtrace_bcopy((void *)src, (void *)dest, size);
3346                 break;
3347         }
3348 
3349         case DIF_SUBR_ALLOCA:
3350         case DIF_SUBR_COPYIN: {
3351                 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3352                 uint64_t size =
3353                     tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3354                 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
3355 
3356                 /*
3357                  * This action doesn't require any credential checks since
3358                  * probes will not activate in user contexts to which the
3359                  * enabling user does not have permissions.
3360                  */
3361 
3362                 /*
3363                  * Rounding up the user allocation size could have overflowed
3364                  * a large, bogus allocation (like -1ULL) to 0.
3365                  */
3366                 if (scratch_size < size ||
3367                     !DTRACE_INSCRATCH(mstate, scratch_size)) {
3368                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3369                         regs[rd] = NULL;
3370                         break;
3371                 }
3372 
3373                 if (subr == DIF_SUBR_COPYIN) {
3374                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3375                         dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3376                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3377                 }
3378 
3379                 mstate->dtms_scratch_ptr += scratch_size;
3380                 regs[rd] = dest;
3381                 break;
3382         }
3383 
3384         case DIF_SUBR_COPYINTO: {
3385                 uint64_t size = tupregs[1].dttk_value;
3386                 uintptr_t dest = tupregs[2].dttk_value;
3387 
3388                 /*
3389                  * This action doesn't require any credential checks since
3390                  * probes will not activate in user contexts to which the
3391                  * enabling user does not have permissions.
3392                  */
3393                 if (!dtrace_inscratch(dest, size, mstate)) {
3394                         *flags |= CPU_DTRACE_BADADDR;
3395                         *illval = regs[rd];
3396                         break;
3397                 }
3398 
3399                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3400                 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3401                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3402                 break;
3403         }
3404 
3405         case DIF_SUBR_COPYINSTR: {
3406                 uintptr_t dest = mstate->dtms_scratch_ptr;
3407                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3408 
3409                 if (nargs > 1 && tupregs[1].dttk_value < size)
3410                         size = tupregs[1].dttk_value + 1;
3411 
3412                 /*
3413                  * This action doesn't require any credential checks since
3414                  * probes will not activate in user contexts to which the
3415                  * enabling user does not have permissions.
3416                  */
3417                 if (!DTRACE_INSCRATCH(mstate, size)) {
3418                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3419                         regs[rd] = NULL;
3420                         break;
3421                 }
3422 
3423                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3424                 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
3425                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3426 
3427                 ((char *)dest)[size - 1] = '\0';
3428                 mstate->dtms_scratch_ptr += size;
3429                 regs[rd] = dest;
3430                 break;
3431         }
3432 
3433         case DIF_SUBR_MSGSIZE:
3434         case DIF_SUBR_MSGDSIZE: {
3435                 uintptr_t baddr = tupregs[0].dttk_value, daddr;
3436                 uintptr_t wptr, rptr;
3437                 size_t count = 0;
3438                 int cont = 0;
3439 
3440                 while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
3441 
3442                         if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
3443                             vstate)) {
3444                                 regs[rd] = NULL;
3445                                 break;
3446                         }
3447 
3448                         wptr = dtrace_loadptr(baddr +
3449                             offsetof(mblk_t, b_wptr));
3450 
3451                         rptr = dtrace_loadptr(baddr +
3452                             offsetof(mblk_t, b_rptr));
3453 
3454                         if (wptr < rptr) {
3455                                 *flags |= CPU_DTRACE_BADADDR;
3456                                 *illval = tupregs[0].dttk_value;
3457                                 break;
3458                         }
3459 
3460                         daddr = dtrace_loadptr(baddr +
3461                             offsetof(mblk_t, b_datap));
3462 
3463                         baddr = dtrace_loadptr(baddr +
3464                             offsetof(mblk_t, b_cont));
3465 
3466                         /*
3467                          * We want to prevent against denial-of-service here,
3468                          * so we're only going to search the list for
3469                          * dtrace_msgdsize_max mblks.
3470                          */
3471                         if (cont++ > dtrace_msgdsize_max) {
3472                                 *flags |= CPU_DTRACE_ILLOP;
3473                                 break;
3474                         }
3475 
3476                         if (subr == DIF_SUBR_MSGDSIZE) {
3477                                 if (dtrace_load8(daddr +
3478                                     offsetof(dblk_t, db_type)) != M_DATA)
3479                                         continue;
3480                         }
3481 
3482                         count += wptr - rptr;
3483                 }
3484 
3485                 if (!(*flags & CPU_DTRACE_FAULT))
3486                         regs[rd] = count;
3487 
3488                 break;
3489         }
3490 
3491         case DIF_SUBR_PROGENYOF: {
3492                 pid_t pid = tupregs[0].dttk_value;
3493                 proc_t *p;
3494                 int rval = 0;
3495 
3496                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3497 
3498                 for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
3499                         if (p->p_pidp->pid_id == pid) {
3500                                 rval = 1;
3501                                 break;
3502                         }
3503                 }
3504 
3505                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3506 
3507                 regs[rd] = rval;
3508                 break;
3509         }
3510 
3511         case DIF_SUBR_SPECULATION:
3512                 regs[rd] = dtrace_speculation(state);
3513                 break;
3514 
3515         case DIF_SUBR_COPYOUT: {
3516                 uintptr_t kaddr = tupregs[0].dttk_value;
3517                 uintptr_t uaddr = tupregs[1].dttk_value;
3518                 uint64_t size = tupregs[2].dttk_value;
3519 
3520                 if (!dtrace_destructive_disallow &&
3521                     dtrace_priv_proc_control(state, mstate) &&
3522                     !dtrace_istoxic(kaddr, size)) {
3523                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3524                         dtrace_copyout(kaddr, uaddr, size, flags);
3525                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3526                 }
3527                 break;
3528         }
3529 
3530         case DIF_SUBR_COPYOUTSTR: {
3531                 uintptr_t kaddr = tupregs[0].dttk_value;
3532                 uintptr_t uaddr = tupregs[1].dttk_value;
3533                 uint64_t size = tupregs[2].dttk_value;
3534 
3535                 if (!dtrace_destructive_disallow &&
3536                     dtrace_priv_proc_control(state, mstate) &&
3537                     !dtrace_istoxic(kaddr, size)) {
3538                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3539                         dtrace_copyoutstr(kaddr, uaddr, size, flags);
3540                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3541                 }
3542                 break;
3543         }
3544 
3545         case DIF_SUBR_STRLEN: {
3546                 size_t sz;
3547                 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3548                 sz = dtrace_strlen((char *)addr,
3549                     state->dts_options[DTRACEOPT_STRSIZE]);
3550 
3551                 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3552                         regs[rd] = NULL;
3553                         break;
3554                 }
3555 
3556                 regs[rd] = sz;
3557 
3558                 break;
3559         }
3560 
3561         case DIF_SUBR_STRCHR:
3562         case DIF_SUBR_STRRCHR: {
3563                 /*
3564                  * We're going to iterate over the string looking for the
3565                  * specified character.  We will iterate until we have reached
3566                  * the string length or we have found the character.  If this
3567                  * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3568                  * of the specified character instead of the first.
3569                  */
3570                 uintptr_t saddr = tupregs[0].dttk_value;
3571                 uintptr_t addr = tupregs[0].dttk_value;
3572                 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3573                 char c, target = (char)tupregs[1].dttk_value;
3574 
3575                 for (regs[rd] = NULL; addr < limit; addr++) {
3576                         if ((c = dtrace_load8(addr)) == target) {
3577                                 regs[rd] = addr;
3578 
3579                                 if (subr == DIF_SUBR_STRCHR)
3580                                         break;
3581                         }
3582 
3583                         if (c == '\0')
3584                                 break;
3585                 }
3586 
3587                 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3588                         regs[rd] = NULL;
3589                         break;
3590                 }
3591 
3592                 break;
3593         }
3594 
3595         case DIF_SUBR_STRSTR:
3596         case DIF_SUBR_INDEX:
3597         case DIF_SUBR_RINDEX: {
3598                 /*
3599                  * We're going to iterate over the string looking for the
3600                  * specified string.  We will iterate until we have reached
3601                  * the string length or we have found the string.  (Yes, this
3602                  * is done in the most naive way possible -- but considering
3603                  * that the string we're searching for is likely to be
3604                  * relatively short, the complexity of Rabin-Karp or similar
3605                  * hardly seems merited.)
3606                  */
3607                 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3608                 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3609                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3610                 size_t len = dtrace_strlen(addr, size);
3611                 size_t sublen = dtrace_strlen(substr, size);
3612                 char *limit = addr + len, *orig = addr;
3613                 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3614                 int inc = 1;
3615 
3616                 regs[rd] = notfound;
3617 
3618                 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3619                         regs[rd] = NULL;
3620                         break;
3621                 }
3622 
3623                 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3624                     vstate)) {
3625                         regs[rd] = NULL;
3626                         break;
3627                 }
3628 
3629                 /*
3630                  * strstr() and index()/rindex() have similar semantics if
3631                  * both strings are the empty string: strstr() returns a
3632                  * pointer to the (empty) string, and index() and rindex()
3633                  * both return index 0 (regardless of any position argument).
3634                  */
3635                 if (sublen == 0 && len == 0) {
3636                         if (subr == DIF_SUBR_STRSTR)
3637                                 regs[rd] = (uintptr_t)addr;
3638                         else
3639                                 regs[rd] = 0;
3640                         break;
3641                 }
3642 
3643                 if (subr != DIF_SUBR_STRSTR) {
3644                         if (subr == DIF_SUBR_RINDEX) {
3645                                 limit = orig - 1;
3646                                 addr += len;
3647                                 inc = -1;
3648                         }
3649 
3650                         /*
3651                          * Both index() and rindex() take an optional position
3652                          * argument that denotes the starting position.
3653                          */
3654                         if (nargs == 3) {
3655                                 int64_t pos = (int64_t)tupregs[2].dttk_value;
3656 
3657                                 /*
3658                                  * If the position argument to index() is
3659                                  * negative, Perl implicitly clamps it at
3660                                  * zero.  This semantic is a little surprising
3661                                  * given the special meaning of negative
3662                                  * positions to similar Perl functions like
3663                                  * substr(), but it appears to reflect a
3664                                  * notion that index() can start from a
3665                                  * negative index and increment its way up to
3666                                  * the string.  Given this notion, Perl's
3667                                  * rindex() is at least self-consistent in
3668                                  * that it implicitly clamps positions greater
3669                                  * than the string length to be the string
3670                                  * length.  Where Perl completely loses
3671                                  * coherence, however, is when the specified
3672                                  * substring is the empty string ("").  In
3673                                  * this case, even if the position is
3674                                  * negative, rindex() returns 0 -- and even if
3675                                  * the position is greater than the length,
3676                                  * index() returns the string length.  These
3677                                  * semantics violate the notion that index()
3678                                  * should never return a value less than the
3679                                  * specified position and that rindex() should
3680                                  * never return a value greater than the
3681                                  * specified position.  (One assumes that
3682                                  * these semantics are artifacts of Perl's
3683                                  * implementation and not the results of
3684                                  * deliberate design -- it beggars belief that
3685                                  * even Larry Wall could desire such oddness.)
3686                                  * While in the abstract one would wish for
3687                                  * consistent position semantics across
3688                                  * substr(), index() and rindex() -- or at the
3689                                  * very least self-consistent position
3690                                  * semantics for index() and rindex() -- we
3691                                  * instead opt to keep with the extant Perl
3692                                  * semantics, in all their broken glory.  (Do
3693                                  * we have more desire to maintain Perl's
3694                                  * semantics than Perl does?  Probably.)
3695                                  */
3696                                 if (subr == DIF_SUBR_RINDEX) {
3697                                         if (pos < 0) {
3698                                                 if (sublen == 0)
3699                                                         regs[rd] = 0;
3700                                                 break;
3701                                         }
3702 
3703                                         if (pos > len)
3704                                                 pos = len;
3705                                 } else {
3706                                         if (pos < 0)
3707                                                 pos = 0;
3708 
3709                                         if (pos >= len) {
3710                                                 if (sublen == 0)
3711                                                         regs[rd] = len;
3712                                                 break;
3713                                         }
3714                                 }
3715 
3716                                 addr = orig + pos;
3717                         }
3718                 }
3719 
3720                 for (regs[rd] = notfound; addr != limit; addr += inc) {
3721                         if (dtrace_strncmp(addr, substr, sublen) == 0) {
3722                                 if (subr != DIF_SUBR_STRSTR) {
3723                                         /*
3724                                          * As D index() and rindex() are
3725                                          * modeled on Perl (and not on awk),
3726                                          * we return a zero-based (and not a
3727                                          * one-based) index.  (For you Perl
3728                                          * weenies: no, we're not going to add
3729                                          * $[ -- and shouldn't you be at a con
3730                                          * or something?)
3731                                          */
3732                                         regs[rd] = (uintptr_t)(addr - orig);
3733                                         break;
3734                                 }
3735 
3736                                 ASSERT(subr == DIF_SUBR_STRSTR);
3737                                 regs[rd] = (uintptr_t)addr;
3738                                 break;
3739                         }
3740                 }
3741 
3742                 break;
3743         }
3744 
3745         case DIF_SUBR_STRTOK: {
3746                 uintptr_t addr = tupregs[0].dttk_value;
3747                 uintptr_t tokaddr = tupregs[1].dttk_value;
3748                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3749                 uintptr_t limit, toklimit = tokaddr + size;
3750                 uint8_t c, tokmap[32];   /* 256 / 8 */
3751                 char *dest = (char *)mstate->dtms_scratch_ptr;
3752                 int i;
3753 
3754                 /*
3755                  * Check both the token buffer and (later) the input buffer,
3756                  * since both could be non-scratch addresses.
3757                  */
3758                 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3759                         regs[rd] = NULL;
3760                         break;
3761                 }
3762 
3763                 if (!DTRACE_INSCRATCH(mstate, size)) {
3764                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3765                         regs[rd] = NULL;
3766                         break;
3767                 }
3768 
3769                 if (addr == NULL) {
3770                         /*
3771                          * If the address specified is NULL, we use our saved
3772                          * strtok pointer from the mstate.  Note that this
3773                          * means that the saved strtok pointer is _only_
3774                          * valid within multiple enablings of the same probe --
3775                          * it behaves like an implicit clause-local variable.
3776                          */
3777                         addr = mstate->dtms_strtok;
3778                 } else {
3779                         /*
3780                          * If the user-specified address is non-NULL we must
3781                          * access check it.  This is the only time we have
3782                          * a chance to do so, since this address may reside
3783                          * in the string table of this clause-- future calls
3784                          * (when we fetch addr from mstate->dtms_strtok)
3785                          * would fail this access check.
3786                          */
3787                         if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3788                                 regs[rd] = NULL;
3789                                 break;
3790                         }
3791                 }
3792 
3793                 /*
3794                  * First, zero the token map, and then process the token
3795                  * string -- setting a bit in the map for every character
3796                  * found in the token string.
3797                  */
3798                 for (i = 0; i < sizeof (tokmap); i++)
3799                         tokmap[i] = 0;
3800 
3801                 for (; tokaddr < toklimit; tokaddr++) {
3802                         if ((c = dtrace_load8(tokaddr)) == '\0')
3803                                 break;
3804 
3805                         ASSERT((c >> 3) < sizeof (tokmap));
3806                         tokmap[c >> 3] |= (1 << (c & 0x7));
3807                 }
3808 
3809                 for (limit = addr + size; addr < limit; addr++) {
3810                         /*
3811                          * We're looking for a character that is _not_ contained
3812                          * in the token string.
3813                          */
3814                         if ((c = dtrace_load8(addr)) == '\0')
3815                                 break;
3816 
3817                         if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3818                                 break;
3819                 }
3820 
3821                 if (c == '\0') {
3822                         /*
3823                          * We reached the end of the string without finding
3824                          * any character that was not in the token string.
3825                          * We return NULL in this case, and we set the saved
3826                          * address to NULL as well.
3827                          */
3828                         regs[rd] = NULL;
3829                         mstate->dtms_strtok = NULL;
3830                         break;
3831                 }
3832 
3833                 /*
3834                  * From here on, we're copying into the destination string.
3835                  */
3836                 for (i = 0; addr < limit && i < size - 1; addr++) {
3837                         if ((c = dtrace_load8(addr)) == '\0')
3838                                 break;
3839 
3840                         if (tokmap[c >> 3] & (1 << (c & 0x7)))
3841                                 break;
3842 
3843                         ASSERT(i < size);
3844                         dest[i++] = c;
3845                 }
3846 
3847                 ASSERT(i < size);
3848                 dest[i] = '\0';
3849                 regs[rd] = (uintptr_t)dest;
3850                 mstate->dtms_scratch_ptr += size;
3851                 mstate->dtms_strtok = addr;
3852                 break;
3853         }
3854 
3855         case DIF_SUBR_SUBSTR: {
3856                 uintptr_t s = tupregs[0].dttk_value;
3857                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3858                 char *d = (char *)mstate->dtms_scratch_ptr;
3859                 int64_t index = (int64_t)tupregs[1].dttk_value;
3860                 int64_t remaining = (int64_t)tupregs[2].dttk_value;
3861                 size_t len = dtrace_strlen((char *)s, size);
3862                 int64_t i;
3863 
3864                 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
3865                         regs[rd] = NULL;
3866                         break;
3867                 }
3868 
3869                 if (!DTRACE_INSCRATCH(mstate, size)) {
3870                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3871                         regs[rd] = NULL;
3872                         break;
3873                 }
3874 
3875                 if (nargs <= 2)
3876                         remaining = (int64_t)size;
3877 
3878                 if (index < 0) {
3879                         index += len;
3880 
3881                         if (index < 0 && index + remaining > 0) {
3882                                 remaining += index;
3883                                 index = 0;
3884                         }
3885                 }
3886 
3887                 if (index >= len || index < 0) {
3888                         remaining = 0;
3889                 } else if (remaining < 0) {
3890                         remaining += len - index;
3891                 } else if (index + remaining > size) {
3892                         remaining = size - index;
3893                 }
3894 
3895                 for (i = 0; i < remaining; i++) {
3896                         if ((d[i] = dtrace_load8(s + index + i)) == '\0')
3897                                 break;
3898                 }
3899 
3900                 d[i] = '\0';
3901 
3902                 mstate->dtms_scratch_ptr += size;
3903                 regs[rd] = (uintptr_t)d;
3904                 break;
3905         }
3906 
3907         case DIF_SUBR_TOUPPER:
3908         case DIF_SUBR_TOLOWER: {
3909                 uintptr_t s = tupregs[0].dttk_value;
3910                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3911                 char *dest = (char *)mstate->dtms_scratch_ptr, c;
3912                 size_t len = dtrace_strlen((char *)s, size);
3913                 char lower, upper, convert;
3914                 int64_t i;
3915 
3916                 if (subr == DIF_SUBR_TOUPPER) {
3917                         lower = 'a';
3918                         upper = 'z';
3919                         convert = 'A';
3920                 } else {
3921                         lower = 'A';
3922                         upper = 'Z';
3923                         convert = 'a';
3924                 }
3925 
3926                 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
3927                         regs[rd] = NULL;
3928                         break;
3929                 }
3930 
3931                 if (!DTRACE_INSCRATCH(mstate, size)) {
3932                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3933                         regs[rd] = NULL;
3934                         break;
3935                 }
3936 
3937                 for (i = 0; i < size - 1; i++) {
3938                         if ((c = dtrace_load8(s + i)) == '\0')
3939                                 break;
3940 
3941                         if (c >= lower && c <= upper)
3942                                 c = convert + (c - lower);
3943 
3944                         dest[i] = c;
3945                 }
3946 
3947                 ASSERT(i < size);
3948                 dest[i] = '\0';
3949                 regs[rd] = (uintptr_t)dest;
3950                 mstate->dtms_scratch_ptr += size;
3951                 break;
3952         }
3953 
3954 case DIF_SUBR_GETMAJOR:
3955 #ifdef _LP64
3956                 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
3957 #else
3958                 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
3959 #endif
3960                 break;
3961 
3962         case DIF_SUBR_GETMINOR:
3963 #ifdef _LP64
3964                 regs[rd] = tupregs[0].dttk_value & MAXMIN64;
3965 #else
3966                 regs[rd] = tupregs[0].dttk_value & MAXMIN;
3967 #endif
3968                 break;
3969 
3970         case DIF_SUBR_DDI_PATHNAME: {
3971                 /*
3972                  * This one is a galactic mess.  We are going to roughly
3973                  * emulate ddi_pathname(), but it's made more complicated
3974                  * by the fact that we (a) want to include the minor name and
3975                  * (b) must proceed iteratively instead of recursively.
3976                  */
3977                 uintptr_t dest = mstate->dtms_scratch_ptr;
3978                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3979                 char *start = (char *)dest, *end = start + size - 1;
3980                 uintptr_t daddr = tupregs[0].dttk_value;
3981                 int64_t minor = (int64_t)tupregs[1].dttk_value;
3982                 char *s;
3983                 int i, len, depth = 0;
3984 
3985                 /*
3986                  * Due to all the pointer jumping we do and context we must
3987                  * rely upon, we just mandate that the user must have kernel
3988                  * read privileges to use this routine.
3989                  */
3990                 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
3991                         *flags |= CPU_DTRACE_KPRIV;
3992                         *illval = daddr;
3993                         regs[rd] = NULL;
3994                 }
3995 
3996                 if (!DTRACE_INSCRATCH(mstate, size)) {
3997                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3998                         regs[rd] = NULL;
3999                         break;
4000                 }
4001 
4002                 *end = '\0';
4003 
4004                 /*
4005                  * We want to have a name for the minor.  In order to do this,
4006                  * we need to walk the minor list from the devinfo.  We want
4007                  * to be sure that we don't infinitely walk a circular list,
4008                  * so we check for circularity by sending a scout pointer
4009                  * ahead two elements for every element that we iterate over;
4010                  * if the list is circular, these will ultimately point to the
4011                  * same element.  You may recognize this little trick as the
4012                  * answer to a stupid interview question -- one that always
4013                  * seems to be asked by those who had to have it laboriously
4014                  * explained to them, and who can't even concisely describe
4015                  * the conditions under which one would be forced to resort to
4016                  * this technique.  Needless to say, those conditions are
4017                  * found here -- and probably only here.  Is this the only use
4018                  * of this infamous trick in shipping, production code?  If it
4019                  * isn't, it probably should be...
4020                  */
4021                 if (minor != -1) {
4022                         uintptr_t maddr = dtrace_loadptr(daddr +
4023                             offsetof(struct dev_info, devi_minor));
4024 
4025                         uintptr_t next = offsetof(struct ddi_minor_data, next);
4026                         uintptr_t name = offsetof(struct ddi_minor_data,
4027                             d_minor) + offsetof(struct ddi_minor, name);
4028                         uintptr_t dev = offsetof(struct ddi_minor_data,
4029                             d_minor) + offsetof(struct ddi_minor, dev);
4030                         uintptr_t scout;
4031 
4032                         if (maddr != NULL)
4033                                 scout = dtrace_loadptr(maddr + next);
4034 
4035                         while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4036                                 uint64_t m;
4037 #ifdef _LP64
4038                                 m = dtrace_load64(maddr + dev) & MAXMIN64;
4039 #else
4040                                 m = dtrace_load32(maddr + dev) & MAXMIN;
4041 #endif
4042                                 if (m != minor) {
4043                                         maddr = dtrace_loadptr(maddr + next);
4044 
4045                                         if (scout == NULL)
4046                                                 continue;
4047 
4048                                         scout = dtrace_loadptr(scout + next);
4049 
4050                                         if (scout == NULL)
4051                                                 continue;
4052 
4053                                         scout = dtrace_loadptr(scout + next);
4054 
4055                                         if (scout == NULL)
4056                                                 continue;
4057 
4058                                         if (scout == maddr) {
4059                                                 *flags |= CPU_DTRACE_ILLOP;
4060                                                 break;
4061                                         }
4062 
4063                                         continue;
4064                                 }
4065 
4066                                 /*
4067                                  * We have the minor data.  Now we need to
4068                                  * copy the minor's name into the end of the
4069                                  * pathname.
4070                                  */
4071                                 s = (char *)dtrace_loadptr(maddr + name);
4072                                 len = dtrace_strlen(s, size);
4073 
4074                                 if (*flags & CPU_DTRACE_FAULT)
4075                                         break;
4076 
4077                                 if (len != 0) {
4078                                         if ((end -= (len + 1)) < start)
4079                                                 break;
4080 
4081                                         *end = ':';
4082                                 }
4083 
4084                                 for (i = 1; i <= len; i++)
4085                                         end[i] = dtrace_load8((uintptr_t)s++);
4086                                 break;
4087                         }
4088                 }
4089 
4090                 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4091                         ddi_node_state_t devi_state;
4092 
4093                         devi_state = dtrace_load32(daddr +
4094                             offsetof(struct dev_info, devi_node_state));
4095 
4096                         if (*flags & CPU_DTRACE_FAULT)
4097                                 break;
4098 
4099                         if (devi_state >= DS_INITIALIZED) {
4100                                 s = (char *)dtrace_loadptr(daddr +
4101                                     offsetof(struct dev_info, devi_addr));
4102                                 len = dtrace_strlen(s, size);
4103 
4104                                 if (*flags & CPU_DTRACE_FAULT)
4105                                         break;
4106 
4107                                 if (len != 0) {
4108                                         if ((end -= (len + 1)) < start)
4109                                                 break;
4110 
4111                                         *end = '@';
4112                                 }
4113 
4114                                 for (i = 1; i <= len; i++)
4115                                         end[i] = dtrace_load8((uintptr_t)s++);
4116                         }
4117 
4118                         /*
4119                          * Now for the node name...
4120                          */
4121                         s = (char *)dtrace_loadptr(daddr +
4122                             offsetof(struct dev_info, devi_node_name));
4123 
4124                         daddr = dtrace_loadptr(daddr +
4125                             offsetof(struct dev_info, devi_parent));
4126 
4127                         /*
4128                          * If our parent is NULL (that is, if we're the root
4129                          * node), we're going to use the special path
4130                          * "devices".
4131                          */
4132                         if (daddr == NULL)
4133                                 s = "devices";
4134 
4135                         len = dtrace_strlen(s, size);
4136                         if (*flags & CPU_DTRACE_FAULT)
4137                                 break;
4138 
4139                         if ((end -= (len + 1)) < start)
4140                                 break;
4141 
4142                         for (i = 1; i <= len; i++)
4143                                 end[i] = dtrace_load8((uintptr_t)s++);
4144                         *end = '/';
4145 
4146                         if (depth++ > dtrace_devdepth_max) {
4147                                 *flags |= CPU_DTRACE_ILLOP;
4148                                 break;
4149                         }
4150                 }
4151 
4152                 if (end < start)
4153                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4154 
4155                 if (daddr == NULL) {
4156                         regs[rd] = (uintptr_t)end;
4157                         mstate->dtms_scratch_ptr += size;
4158                 }
4159 
4160                 break;
4161         }
4162 
4163         case DIF_SUBR_STRJOIN: {
4164                 char *d = (char *)mstate->dtms_scratch_ptr;
4165                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4166                 uintptr_t s1 = tupregs[0].dttk_value;
4167                 uintptr_t s2 = tupregs[1].dttk_value;
4168                 int i = 0;
4169 
4170                 if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4171                     !dtrace_strcanload(s2, size, mstate, vstate)) {
4172                         regs[rd] = NULL;
4173                         break;
4174                 }
4175 
4176                 if (!DTRACE_INSCRATCH(mstate, size)) {
4177                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4178                         regs[rd] = NULL;
4179                         break;
4180                 }
4181 
4182                 for (;;) {
4183                         if (i >= size) {
4184                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4185                                 regs[rd] = NULL;
4186                                 break;
4187                         }
4188 
4189                         if ((d[i++] = dtrace_load8(s1++)) == '\0') {
4190                                 i--;
4191                                 break;
4192                         }
4193                 }
4194 
4195                 for (;;) {
4196                         if (i >= size) {
4197                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4198                                 regs[rd] = NULL;
4199                                 break;
4200                         }
4201 
4202                         if ((d[i++] = dtrace_load8(s2++)) == '\0')
4203                                 break;
4204                 }
4205 
4206                 if (i < size) {
4207                         mstate->dtms_scratch_ptr += i;
4208                         regs[rd] = (uintptr_t)d;
4209                 }
4210 
4211                 break;
4212         }
4213 
4214         case DIF_SUBR_LLTOSTR: {
4215                 int64_t i = (int64_t)tupregs[0].dttk_value;
4216                 uint64_t val, digit;
4217                 uint64_t size = 65;     /* enough room for 2^64 in binary */
4218                 char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4219                 int base = 10;
4220 
4221                 if (nargs > 1) {
4222                         if ((base = tupregs[1].dttk_value) <= 1 ||
4223                             base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
4224                                 *flags |= CPU_DTRACE_ILLOP;
4225                                 break;
4226                         }
4227                 }
4228 
4229                 val = (base == 10 && i < 0) ? i * -1 : i;
4230 
4231                 if (!DTRACE_INSCRATCH(mstate, size)) {
4232                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4233                         regs[rd] = NULL;
4234                         break;
4235                 }
4236 
4237                 for (*end-- = '\0'; val; val /= base) {
4238                         if ((digit = val % base) <= '9' - '0') {
4239                                 *end-- = '0' + digit;
4240                         } else {
4241                                 *end-- = 'a' + (digit - ('9' - '0') - 1);
4242                         }
4243                 }
4244 
4245                 if (i == 0 && base == 16)
4246                         *end-- = '0';
4247 
4248                 if (base == 16)
4249                         *end-- = 'x';
4250 
4251                 if (i == 0 || base == 8 || base == 16)
4252                         *end-- = '0';
4253 
4254                 if (i < 0 && base == 10)
4255                         *end-- = '-';
4256 
4257                 regs[rd] = (uintptr_t)end + 1;
4258                 mstate->dtms_scratch_ptr += size;
4259                 break;
4260         }
4261 
4262         case DIF_SUBR_HTONS:
4263         case DIF_SUBR_NTOHS:
4264 #ifdef _BIG_ENDIAN
4265                 regs[rd] = (uint16_t)tupregs[0].dttk_value;
4266 #else
4267                 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4268 #endif
4269                 break;
4270 
4271 
4272         case DIF_SUBR_HTONL:
4273         case DIF_SUBR_NTOHL:
4274 #ifdef _BIG_ENDIAN
4275                 regs[rd] = (uint32_t)tupregs[0].dttk_value;
4276 #else
4277                 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
4278 #endif
4279                 break;
4280 
4281 
4282         case DIF_SUBR_HTONLL:
4283         case DIF_SUBR_NTOHLL:
4284 #ifdef _BIG_ENDIAN
4285                 regs[rd] = (uint64_t)tupregs[0].dttk_value;
4286 #else
4287                 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
4288 #endif
4289                 break;
4290 
4291 
4292         case DIF_SUBR_DIRNAME:
4293         case DIF_SUBR_BASENAME: {
4294                 char *dest = (char *)mstate->dtms_scratch_ptr;
4295                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4296                 uintptr_t src = tupregs[0].dttk_value;
4297                 int i, j, len = dtrace_strlen((char *)src, size);
4298                 int lastbase = -1, firstbase = -1, lastdir = -1;
4299                 int start, end;
4300 
4301                 if (!dtrace_canload(src, len + 1, mstate, vstate)) {
4302                         regs[rd] = NULL;
4303                         break;
4304                 }
4305 
4306                 if (!DTRACE_INSCRATCH(mstate, size)) {
4307                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4308                         regs[rd] = NULL;
4309                         break;
4310                 }
4311 
4312                 /*
4313                  * The basename and dirname for a zero-length string is
4314                  * defined to be "."
4315                  */
4316                 if (len == 0) {
4317                         len = 1;
4318                         src = (uintptr_t)".";
4319                 }
4320 
4321                 /*
4322                  * Start from the back of the string, moving back toward the
4323                  * front until we see a character that isn't a slash.  That
4324                  * character is the last character in the basename.
4325                  */
4326                 for (i = len - 1; i >= 0; i--) {
4327                         if (dtrace_load8(src + i) != '/')
4328                                 break;
4329                 }
4330 
4331                 if (i >= 0)
4332                         lastbase = i;
4333 
4334                 /*
4335                  * Starting from the last character in the basename, move
4336                  * towards the front until we find a slash.  The character
4337                  * that we processed immediately before that is the first
4338                  * character in the basename.
4339                  */
4340                 for (; i >= 0; i--) {
4341                         if (dtrace_load8(src + i) == '/')
4342                                 break;
4343                 }
4344 
4345                 if (i >= 0)
4346                         firstbase = i + 1;
4347 
4348                 /*
4349                  * Now keep going until we find a non-slash character.  That
4350                  * character is the last character in the dirname.
4351                  */
4352                 for (; i >= 0; i--) {
4353                         if (dtrace_load8(src + i) != '/')
4354                                 break;
4355                 }
4356 
4357                 if (i >= 0)
4358                         lastdir = i;
4359 
4360                 ASSERT(!(lastbase == -1 && firstbase != -1));
4361                 ASSERT(!(firstbase == -1 && lastdir != -1));
4362 
4363                 if (lastbase == -1) {
4364                         /*
4365                          * We didn't find a non-slash character.  We know that
4366                          * the length is non-zero, so the whole string must be
4367                          * slashes.  In either the dirname or the basename
4368                          * case, we return '/'.
4369                          */
4370                         ASSERT(firstbase == -1);
4371                         firstbase = lastbase = lastdir = 0;
4372                 }
4373 
4374                 if (firstbase == -1) {
4375                         /*
4376                          * The entire string consists only of a basename
4377                          * component.  If we're looking for dirname, we need
4378                          * to change our string to be just "."; if we're
4379                          * looking for a basename, we'll just set the first
4380                          * character of the basename to be 0.
4381                          */
4382                         if (subr == DIF_SUBR_DIRNAME) {
4383                                 ASSERT(lastdir == -1);
4384                                 src = (uintptr_t)".";
4385                                 lastdir = 0;
4386                         } else {
4387                                 firstbase = 0;
4388                         }
4389                 }
4390 
4391                 if (subr == DIF_SUBR_DIRNAME) {
4392                         if (lastdir == -1) {
4393                                 /*
4394                                  * We know that we have a slash in the name --
4395                                  * or lastdir would be set to 0, above.  And
4396                                  * because lastdir is -1, we know that this
4397                                  * slash must be the first character.  (That
4398                                  * is, the full string must be of the form
4399                                  * "/basename".)  In this case, the last
4400                                  * character of the directory name is 0.
4401                                  */
4402                                 lastdir = 0;
4403                         }
4404 
4405                         start = 0;
4406                         end = lastdir;
4407                 } else {
4408                         ASSERT(subr == DIF_SUBR_BASENAME);
4409                         ASSERT(firstbase != -1 && lastbase != -1);
4410                         start = firstbase;
4411                         end = lastbase;
4412                 }
4413 
4414                 for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
4415                         dest[j] = dtrace_load8(src + i);
4416 
4417                 dest[j] = '\0';
4418                 regs[rd] = (uintptr_t)dest;
4419                 mstate->dtms_scratch_ptr += size;
4420                 break;
4421         }
4422 
4423         case DIF_SUBR_CLEANPATH: {
4424                 char *dest = (char *)mstate->dtms_scratch_ptr, c;
4425                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4426                 uintptr_t src = tupregs[0].dttk_value;
4427                 int i = 0, j = 0;
4428 
4429                 if (!dtrace_strcanload(src, size, mstate, vstate)) {
4430                         regs[rd] = NULL;
4431                         break;
4432                 }
4433 
4434                 if (!DTRACE_INSCRATCH(mstate, size)) {
4435                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4436                         regs[rd] = NULL;
4437                         break;
4438                 }
4439 
4440                 /*
4441                  * Move forward, loading each character.
4442                  */
4443                 do {
4444                         c = dtrace_load8(src + i++);
4445 next:
4446                         if (j + 5 >= size)   /* 5 = strlen("/..c\0") */
4447                                 break;
4448 
4449                         if (c != '/') {
4450                                 dest[j++] = c;
4451                                 continue;
4452                         }
4453 
4454                         c = dtrace_load8(src + i++);
4455 
4456                         if (c == '/') {
4457                                 /*
4458                                  * We have two slashes -- we can just advance
4459                                  * to the next character.
4460                                  */
4461                                 goto next;
4462                         }
4463 
4464                         if (c != '.') {
4465                                 /*
4466                                  * This is not "." and it's not ".." -- we can
4467                                  * just store the "/" and this character and
4468                                  * drive on.
4469                                  */
4470                                 dest[j++] = '/';
4471                                 dest[j++] = c;
4472                                 continue;
4473                         }
4474 
4475                         c = dtrace_load8(src + i++);
4476 
4477                         if (c == '/') {
4478                                 /*
4479                                  * This is a "/./" component.  We're not going
4480                                  * to store anything in the destination buffer;
4481                                  * we're just going to go to the next component.
4482                                  */
4483                                 goto next;
4484                         }
4485 
4486                         if (c != '.') {
4487                                 /*
4488                                  * This is not ".." -- we can just store the
4489                                  * "/." and this character and continue
4490                                  * processing.
4491                                  */
4492                                 dest[j++] = '/';
4493                                 dest[j++] = '.';
4494                                 dest[j++] = c;
4495                                 continue;
4496                         }
4497 
4498                         c = dtrace_load8(src + i++);
4499 
4500                         if (c != '/' && c != '\0') {
4501                                 /*
4502                                  * This is not ".." -- it's "..[mumble]".
4503                                  * We'll store the "/.." and this character
4504                                  * and continue processing.
4505                                  */
4506                                 dest[j++] = '/';
4507                                 dest[j++] = '.';
4508                                 dest[j++] = '.';
4509                                 dest[j++] = c;
4510                                 continue;
4511                         }
4512 
4513                         /*
4514                          * This is "/../" or "/..\0".  We need to back up
4515                          * our destination pointer until we find a "/".
4516                          */
4517                         i--;
4518                         while (j != 0 && dest[--j] != '/')
4519                                 continue;
4520 
4521                         if (c == '\0')
4522                                 dest[++j] = '/';
4523                 } while (c != '\0');
4524 
4525                 dest[j] = '\0';
4526                 regs[rd] = (uintptr_t)dest;
4527                 mstate->dtms_scratch_ptr += size;
4528                 break;
4529         }
4530 
4531         case DIF_SUBR_INET_NTOA:
4532         case DIF_SUBR_INET_NTOA6:
4533         case DIF_SUBR_INET_NTOP: {
4534                 size_t size;
4535                 int af, argi, i;
4536                 char *base, *end;
4537 
4538                 if (subr == DIF_SUBR_INET_NTOP) {
4539                         af = (int)tupregs[0].dttk_value;
4540                         argi = 1;
4541                 } else {
4542                         af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
4543                         argi = 0;
4544                 }
4545 
4546                 if (af == AF_INET) {
4547                         ipaddr_t ip4;
4548                         uint8_t *ptr8, val;
4549 
4550                         /*
4551                          * Safely load the IPv4 address.
4552                          */
4553                         ip4 = dtrace_load32(tupregs[argi].dttk_value);
4554 
4555                         /*
4556                          * Check an IPv4 string will fit in scratch.
4557                          */
4558                         size = INET_ADDRSTRLEN;
4559                         if (!DTRACE_INSCRATCH(mstate, size)) {
4560                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4561                                 regs[rd] = NULL;
4562                                 break;
4563                         }
4564                         base = (char *)mstate->dtms_scratch_ptr;
4565                         end = (char *)mstate->dtms_scratch_ptr + size - 1;
4566 
4567                         /*
4568                          * Stringify as a dotted decimal quad.
4569                          */
4570                         *end-- = '\0';
4571                         ptr8 = (uint8_t *)&ip4;
4572                         for (i = 3; i >= 0; i--) {
4573                                 val = ptr8[i];
4574 
4575                                 if (val == 0) {
4576                                         *end-- = '0';
4577                                 } else {
4578                                         for (; val; val /= 10) {
4579                                                 *end-- = '0' + (val % 10);
4580                                         }
4581                                 }
4582 
4583                                 if (i > 0)
4584                                         *end-- = '.';
4585                         }
4586                         ASSERT(end + 1 >= base);
4587 
4588                 } else if (af == AF_INET6) {
4589                         struct in6_addr ip6;
4590                         int firstzero, tryzero, numzero, v6end;
4591                         uint16_t val;
4592                         const char digits[] = "0123456789abcdef";
4593 
4594                         /*
4595                          * Stringify using RFC 1884 convention 2 - 16 bit
4596                          * hexadecimal values with a zero-run compression.
4597                          * Lower case hexadecimal digits are used.
4598                          *      eg, fe80::214:4fff:fe0b:76c8.
4599                          * The IPv4 embedded form is returned for inet_ntop,
4600                          * just the IPv4 string is returned for inet_ntoa6.
4601                          */
4602 
4603                         /*
4604                          * Safely load the IPv6 address.
4605                          */
4606                         dtrace_bcopy(
4607                             (void *)(uintptr_t)tupregs[argi].dttk_value,
4608                             (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
4609 
4610                         /*
4611                          * Check an IPv6 string will fit in scratch.
4612                          */
4613                         size = INET6_ADDRSTRLEN;
4614                         if (!DTRACE_INSCRATCH(mstate, size)) {
4615                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4616                                 regs[rd] = NULL;
4617                                 break;
4618                         }
4619                         base = (char *)mstate->dtms_scratch_ptr;
4620                         end = (char *)mstate->dtms_scratch_ptr + size - 1;
4621                         *end-- = '\0';
4622 
4623                         /*
4624                          * Find the longest run of 16 bit zero values
4625                          * for the single allowed zero compression - "::".
4626                          */
4627                         firstzero = -1;
4628                         tryzero = -1;
4629                         numzero = 1;
4630                         for (i = 0; i < sizeof (struct in6_addr); i++) {
4631                                 if (ip6._S6_un._S6_u8[i] == 0 &&
4632                                     tryzero == -1 && i % 2 == 0) {
4633                                         tryzero = i;
4634                                         continue;
4635                                 }
4636 
4637                                 if (tryzero != -1 &&
4638                                     (ip6._S6_un._S6_u8[i] != 0 ||
4639                                     i == sizeof (struct in6_addr) - 1)) {
4640 
4641                                         if (i - tryzero <= numzero) {
4642                                                 tryzero = -1;
4643                                                 continue;
4644                                         }
4645 
4646                                         firstzero = tryzero;
4647                                         numzero = i - i % 2 - tryzero;
4648                                         tryzero = -1;
4649 
4650                                         if (ip6._S6_un._S6_u8[i] == 0 &&
4651                                             i == sizeof (struct in6_addr) - 1)
4652                                                 numzero += 2;
4653                                 }
4654                         }
4655                         ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
4656 
4657                         /*
4658                          * Check for an IPv4 embedded address.
4659                          */
4660                         v6end = sizeof (struct in6_addr) - 2;
4661                         if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
4662                             IN6_IS_ADDR_V4COMPAT(&ip6)) {
4663                                 for (i = sizeof (struct in6_addr) - 1;
4664                                     i >= DTRACE_V4MAPPED_OFFSET; i--) {
4665                                         ASSERT(end >= base);
4666 
4667                                         val = ip6._S6_un._S6_u8[i];
4668 
4669                                         if (val == 0) {
4670                                                 *end-- = '0';
4671                                         } else {
4672                                                 for (; val; val /= 10) {
4673                                                         *end-- = '0' + val % 10;
4674                                                 }
4675                                         }
4676 
4677                                         if (i > DTRACE_V4MAPPED_OFFSET)
4678                                                 *end-- = '.';
4679                                 }
4680 
4681                                 if (subr == DIF_SUBR_INET_NTOA6)
4682                                         goto inetout;
4683 
4684                                 /*
4685                                  * Set v6end to skip the IPv4 address that
4686                                  * we have already stringified.
4687                                  */
4688                                 v6end = 10;
4689                         }
4690 
4691                         /*
4692                          * Build the IPv6 string by working through the
4693                          * address in reverse.
4694                          */
4695                         for (i = v6end; i >= 0; i -= 2) {
4696                                 ASSERT(end >= base);
4697 
4698                                 if (i == firstzero + numzero - 2) {
4699                                         *end-- = ':';
4700                                         *end-- = ':';
4701                                         i -= numzero - 2;
4702                                         continue;
4703                                 }
4704 
4705                                 if (i < 14 && i != firstzero - 2)
4706                                         *end-- = ':';
4707 
4708                                 val = (ip6._S6_un._S6_u8[i] << 8) +
4709                                     ip6._S6_un._S6_u8[i + 1];
4710 
4711                                 if (val == 0) {
4712                                         *end-- = '0';
4713                                 } else {
4714                                         for (; val; val /= 16) {
4715                                                 *end-- = digits[val % 16];
4716                                         }
4717                                 }
4718                         }
4719                         ASSERT(end + 1 >= base);
4720 
4721                 } else {
4722                         /*
4723                          * The user didn't use AH_INET or AH_INET6.
4724                          */
4725                         DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4726                         regs[rd] = NULL;
4727                         break;
4728                 }
4729 
4730 inetout:        regs[rd] = (uintptr_t)end + 1;
4731                 mstate->dtms_scratch_ptr += size;
4732                 break;
4733         }
4734 
4735         }
4736 }
4737 
4738 /*
4739  * Emulate the execution of DTrace IR instructions specified by the given
4740  * DIF object.  This function is deliberately void of assertions as all of
4741  * the necessary checks are handled by a call to dtrace_difo_validate().
4742  */
4743 static uint64_t
4744 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4745     dtrace_vstate_t *vstate, dtrace_state_t *state)
4746 {
4747         const dif_instr_t *text = difo->dtdo_buf;
4748         const uint_t textlen = difo->dtdo_len;
4749         const char *strtab = difo->dtdo_strtab;
4750         const uint64_t *inttab = difo->dtdo_inttab;
4751 
4752         uint64_t rval = 0;
4753         dtrace_statvar_t *svar;
4754         dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
4755         dtrace_difv_t *v;
4756         volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
4757         volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
4758 
4759         dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
4760         uint64_t regs[DIF_DIR_NREGS];
4761         uint64_t *tmp;
4762 
4763         uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
4764         int64_t cc_r;
4765         uint_t pc = 0, id, opc;
4766         uint8_t ttop = 0;
4767         dif_instr_t instr;
4768         uint_t r1, r2, rd;
4769 
4770         /*
4771          * We stash the current DIF object into the machine state: we need it
4772          * for subsequent access checking.
4773          */
4774         mstate->dtms_difo = difo;
4775 
4776         regs[DIF_REG_R0] = 0;           /* %r0 is fixed at zero */
4777 
4778         while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
4779                 opc = pc;
4780 
4781                 instr = text[pc++];
4782                 r1 = DIF_INSTR_R1(instr);
4783                 r2 = DIF_INSTR_R2(instr);
4784                 rd = DIF_INSTR_RD(instr);
4785 
4786                 switch (DIF_INSTR_OP(instr)) {
4787                 case DIF_OP_OR:
4788                         regs[rd] = regs[r1] | regs[r2];
4789                         break;
4790                 case DIF_OP_XOR:
4791                         regs[rd] = regs[r1] ^ regs[r2];
4792                         break;
4793                 case DIF_OP_AND:
4794                         regs[rd] = regs[r1] & regs[r2];
4795                         break;
4796                 case DIF_OP_SLL:
4797                         regs[rd] = regs[r1] << regs[r2];
4798                         break;
4799                 case DIF_OP_SRL:
4800                         regs[rd] = regs[r1] >> regs[r2];
4801                         break;
4802                 case DIF_OP_SUB:
4803                         regs[rd] = regs[r1] - regs[r2];
4804                         break;
4805                 case DIF_OP_ADD:
4806                         regs[rd] = regs[r1] + regs[r2];
4807                         break;
4808                 case DIF_OP_MUL:
4809                         regs[rd] = regs[r1] * regs[r2];
4810                         break;
4811                 case DIF_OP_SDIV:
4812                         if (regs[r2] == 0) {
4813                                 regs[rd] = 0;
4814                                 *flags |= CPU_DTRACE_DIVZERO;
4815                         } else {
4816                                 regs[rd] = (int64_t)regs[r1] /
4817                                     (int64_t)regs[r2];
4818                         }
4819                         break;
4820 
4821                 case DIF_OP_UDIV:
4822                         if (regs[r2] == 0) {
4823                                 regs[rd] = 0;
4824                                 *flags |= CPU_DTRACE_DIVZERO;
4825                         } else {
4826                                 regs[rd] = regs[r1] / regs[r2];
4827                         }
4828                         break;
4829 
4830                 case DIF_OP_SREM:
4831                         if (regs[r2] == 0) {
4832                                 regs[rd] = 0;
4833                                 *flags |= CPU_DTRACE_DIVZERO;
4834                         } else {
4835                                 regs[rd] = (int64_t)regs[r1] %
4836                                     (int64_t)regs[r2];
4837                         }
4838                         break;
4839 
4840                 case DIF_OP_UREM:
4841                         if (regs[r2] == 0) {
4842                                 regs[rd] = 0;
4843                                 *flags |= CPU_DTRACE_DIVZERO;
4844                         } else {
4845                                 regs[rd] = regs[r1] % regs[r2];
4846                         }
4847                         break;
4848 
4849                 case DIF_OP_NOT:
4850                         regs[rd] = ~regs[r1];
4851                         break;
4852                 case DIF_OP_MOV:
4853                         regs[rd] = regs[r1];
4854                         break;
4855                 case DIF_OP_CMP:
4856                         cc_r = regs[r1] - regs[r2];
4857                         cc_n = cc_r < 0;
4858                         cc_z = cc_r == 0;
4859                         cc_v = 0;
4860                         cc_c = regs[r1] < regs[r2];
4861                         break;
4862                 case DIF_OP_TST:
4863                         cc_n = cc_v = cc_c = 0;
4864                         cc_z = regs[r1] == 0;
4865                         break;
4866                 case DIF_OP_BA:
4867                         pc = DIF_INSTR_LABEL(instr);
4868                         break;
4869                 case DIF_OP_BE:
4870                         if (cc_z)
4871                                 pc = DIF_INSTR_LABEL(instr);
4872                         break;
4873                 case DIF_OP_BNE:
4874                         if (cc_z == 0)
4875                                 pc = DIF_INSTR_LABEL(instr);
4876                         break;
4877                 case DIF_OP_BG:
4878                         if ((cc_z | (cc_n ^ cc_v)) == 0)
4879                                 pc = DIF_INSTR_LABEL(instr);
4880                         break;
4881                 case DIF_OP_BGU:
4882                         if ((cc_c | cc_z) == 0)
4883                                 pc = DIF_INSTR_LABEL(instr);
4884                         break;
4885                 case DIF_OP_BGE:
4886                         if ((cc_n ^ cc_v) == 0)
4887                                 pc = DIF_INSTR_LABEL(instr);
4888                         break;
4889                 case DIF_OP_BGEU:
4890                         if (cc_c == 0)
4891                                 pc = DIF_INSTR_LABEL(instr);
4892                         break;
4893                 case DIF_OP_BL:
4894                         if (cc_n ^ cc_v)
4895                                 pc = DIF_INSTR_LABEL(instr);
4896                         break;
4897                 case DIF_OP_BLU:
4898                         if (cc_c)
4899                                 pc = DIF_INSTR_LABEL(instr);
4900                         break;
4901                 case DIF_OP_BLE:
4902                         if (cc_z | (cc_n ^ cc_v))
4903                                 pc = DIF_INSTR_LABEL(instr);
4904                         break;
4905                 case DIF_OP_BLEU:
4906                         if (cc_c | cc_z)
4907                                 pc = DIF_INSTR_LABEL(instr);
4908                         break;
4909                 case DIF_OP_RLDSB:
4910                         if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
4911                                 *flags |= CPU_DTRACE_KPRIV;
4912                                 *illval = regs[r1];
4913                                 break;
4914                         }
4915                         /*FALLTHROUGH*/
4916                 case DIF_OP_LDSB:
4917                         regs[rd] = (int8_t)dtrace_load8(regs[r1]);
4918                         break;
4919                 case DIF_OP_RLDSH:
4920                         if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
4921                                 *flags |= CPU_DTRACE_KPRIV;
4922                                 *illval = regs[r1];
4923                                 break;
4924                         }
4925                         /*FALLTHROUGH*/
4926                 case DIF_OP_LDSH:
4927                         regs[rd] = (int16_t)dtrace_load16(regs[r1]);
4928                         break;
4929                 case DIF_OP_RLDSW:
4930                         if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
4931                                 *flags |= CPU_DTRACE_KPRIV;
4932                                 *illval = regs[r1];
4933                                 break;
4934                         }
4935                         /*FALLTHROUGH*/
4936                 case DIF_OP_LDSW:
4937                         regs[rd] = (int32_t)dtrace_load32(regs[r1]);
4938                         break;
4939                 case DIF_OP_RLDUB:
4940                         if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
4941                                 *flags |= CPU_DTRACE_KPRIV;
4942                                 *illval = regs[r1];
4943                                 break;
4944                         }
4945                         /*FALLTHROUGH*/
4946                 case DIF_OP_LDUB:
4947                         regs[rd] = dtrace_load8(regs[r1]);
4948                         break;
4949                 case DIF_OP_RLDUH:
4950                         if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
4951                                 *flags |= CPU_DTRACE_KPRIV;
4952                                 *illval = regs[r1];
4953                                 break;
4954                         }
4955                         /*FALLTHROUGH*/
4956                 case DIF_OP_LDUH:
4957                         regs[rd] = dtrace_load16(regs[r1]);
4958                         break;
4959                 case DIF_OP_RLDUW:
4960                         if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
4961                                 *flags |= CPU_DTRACE_KPRIV;
4962                                 *illval = regs[r1];
4963                                 break;
4964                         }
4965                         /*FALLTHROUGH*/
4966                 case DIF_OP_LDUW:
4967                         regs[rd] = dtrace_load32(regs[r1]);
4968                         break;
4969                 case DIF_OP_RLDX:
4970                         if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
4971                                 *flags |= CPU_DTRACE_KPRIV;
4972                                 *illval = regs[r1];
4973                                 break;
4974                         }
4975                         /*FALLTHROUGH*/
4976                 case DIF_OP_LDX:
4977                         regs[rd] = dtrace_load64(regs[r1]);
4978                         break;
4979                 case DIF_OP_ULDSB:
4980                         regs[rd] = (int8_t)
4981                             dtrace_fuword8((void *)(uintptr_t)regs[r1]);
4982                         break;
4983                 case DIF_OP_ULDSH:
4984                         regs[rd] = (int16_t)
4985                             dtrace_fuword16((void *)(uintptr_t)regs[r1]);
4986                         break;
4987                 case DIF_OP_ULDSW:
4988                         regs[rd] = (int32_t)
4989                             dtrace_fuword32((void *)(uintptr_t)regs[r1]);
4990                         break;
4991                 case DIF_OP_ULDUB:
4992                         regs[rd] =
4993                             dtrace_fuword8((void *)(uintptr_t)regs[r1]);
4994                         break;
4995                 case DIF_OP_ULDUH:
4996                         regs[rd] =
4997                             dtrace_fuword16((void *)(uintptr_t)regs[r1]);
4998                         break;
4999                 case DIF_OP_ULDUW:
5000                         regs[rd] =
5001                             dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5002                         break;
5003                 case DIF_OP_ULDX:
5004                         regs[rd] =
5005                             dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5006                         break;
5007                 case DIF_OP_RET:
5008                         rval = regs[rd];
5009                         pc = textlen;
5010                         break;
5011                 case DIF_OP_NOP:
5012                         break;
5013                 case DIF_OP_SETX:
5014                         regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5015                         break;
5016                 case DIF_OP_SETS:
5017                         regs[rd] = (uint64_t)(uintptr_t)
5018                             (strtab + DIF_INSTR_STRING(instr));
5019                         break;
5020                 case DIF_OP_SCMP: {
5021                         size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5022                         uintptr_t s1 = regs[r1];
5023                         uintptr_t s2 = regs[r2];
5024 
5025                         if (s1 != NULL &&
5026                             !dtrace_strcanload(s1, sz, mstate, vstate))
5027                                 break;
5028                         if (s2 != NULL &&
5029                             !dtrace_strcanload(s2, sz, mstate, vstate))
5030                                 break;
5031 
5032                         cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
5033 
5034                         cc_n = cc_r < 0;
5035                         cc_z = cc_r == 0;
5036                         cc_v = cc_c = 0;
5037                         break;
5038                 }
5039                 case DIF_OP_LDGA:
5040                         regs[rd] = dtrace_dif_variable(mstate, state,
5041                             r1, regs[r2]);
5042                         break;
5043                 case DIF_OP_LDGS:
5044                         id = DIF_INSTR_VAR(instr);
5045 
5046                         if (id >= DIF_VAR_OTHER_UBASE) {
5047                                 uintptr_t a;
5048 
5049                                 id -= DIF_VAR_OTHER_UBASE;
5050                                 svar = vstate->dtvs_globals[id];
5051                                 ASSERT(svar != NULL);
5052                                 v = &svar->dtsv_var;
5053 
5054                                 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5055                                         regs[rd] = svar->dtsv_data;
5056                                         break;
5057                                 }
5058 
5059                                 a = (uintptr_t)svar->dtsv_data;
5060 
5061                                 if (*(uint8_t *)a == UINT8_MAX) {
5062                                         /*
5063                                          * If the 0th byte is set to UINT8_MAX
5064                                          * then this is to be treated as a
5065                                          * reference to a NULL variable.
5066                                          */
5067                                         regs[rd] = NULL;
5068                                 } else {
5069                                         regs[rd] = a + sizeof (uint64_t);
5070                                 }
5071 
5072                                 break;
5073                         }
5074 
5075                         regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5076                         break;
5077 
5078                 case DIF_OP_STGS:
5079                         id = DIF_INSTR_VAR(instr);
5080 
5081                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5082                         id -= DIF_VAR_OTHER_UBASE;
5083 
5084                         svar = vstate->dtvs_globals[id];
5085                         ASSERT(svar != NULL);
5086                         v = &svar->dtsv_var;
5087 
5088                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5089                                 uintptr_t a = (uintptr_t)svar->dtsv_data;
5090 
5091                                 ASSERT(a != NULL);
5092                                 ASSERT(svar->dtsv_size != 0);
5093 
5094                                 if (regs[rd] == NULL) {
5095                                         *(uint8_t *)a = UINT8_MAX;
5096                                         break;
5097                                 } else {
5098                                         *(uint8_t *)a = 0;
5099                                         a += sizeof (uint64_t);
5100                                 }
5101                                 if (!dtrace_vcanload(
5102                                     (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5103                                     mstate, vstate))
5104                                         break;
5105 
5106                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5107                                     (void *)a, &v->dtdv_type);
5108                                 break;
5109                         }
5110 
5111                         svar->dtsv_data = regs[rd];
5112                         break;
5113 
5114                 case DIF_OP_LDTA:
5115                         /*
5116                          * There are no DTrace built-in thread-local arrays at
5117                          * present.  This opcode is saved for future work.
5118                          */
5119                         *flags |= CPU_DTRACE_ILLOP;
5120                         regs[rd] = 0;
5121                         break;
5122 
5123                 case DIF_OP_LDLS:
5124                         id = DIF_INSTR_VAR(instr);
5125 
5126                         if (id < DIF_VAR_OTHER_UBASE) {
5127                                 /*
5128                                  * For now, this has no meaning.
5129                                  */
5130                                 regs[rd] = 0;
5131                                 break;
5132                         }
5133 
5134                         id -= DIF_VAR_OTHER_UBASE;
5135 
5136                         ASSERT(id < vstate->dtvs_nlocals);
5137                         ASSERT(vstate->dtvs_locals != NULL);
5138 
5139                         svar = vstate->dtvs_locals[id];
5140                         ASSERT(svar != NULL);
5141                         v = &svar->dtsv_var;
5142 
5143                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5144                                 uintptr_t a = (uintptr_t)svar->dtsv_data;
5145                                 size_t sz = v->dtdv_type.dtdt_size;
5146 
5147                                 sz += sizeof (uint64_t);
5148                                 ASSERT(svar->dtsv_size == NCPU * sz);
5149                                 a += CPU->cpu_id * sz;
5150 
5151                                 if (*(uint8_t *)a == UINT8_MAX) {
5152                                         /*
5153                                          * If the 0th byte is set to UINT8_MAX
5154                                          * then this is to be treated as a
5155                                          * reference to a NULL variable.
5156                                          */
5157                                         regs[rd] = NULL;
5158                                 } else {
5159                                         regs[rd] = a + sizeof (uint64_t);
5160                                 }
5161 
5162                                 break;
5163                         }
5164 
5165                         ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5166                         tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5167                         regs[rd] = tmp[CPU->cpu_id];
5168                         break;
5169 
5170                 case DIF_OP_STLS:
5171                         id = DIF_INSTR_VAR(instr);
5172 
5173                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5174                         id -= DIF_VAR_OTHER_UBASE;
5175                         ASSERT(id < vstate->dtvs_nlocals);
5176 
5177                         ASSERT(vstate->dtvs_locals != NULL);
5178                         svar = vstate->dtvs_locals[id];
5179                         ASSERT(svar != NULL);
5180                         v = &svar->dtsv_var;
5181 
5182                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5183                                 uintptr_t a = (uintptr_t)svar->dtsv_data;
5184                                 size_t sz = v->dtdv_type.dtdt_size;
5185 
5186                                 sz += sizeof (uint64_t);
5187                                 ASSERT(svar->dtsv_size == NCPU * sz);
5188                                 a += CPU->cpu_id * sz;
5189 
5190                                 if (regs[rd] == NULL) {
5191                                         *(uint8_t *)a = UINT8_MAX;
5192                                         break;
5193                                 } else {
5194                                         *(uint8_t *)a = 0;
5195                                         a += sizeof (uint64_t);
5196                                 }
5197 
5198                                 if (!dtrace_vcanload(
5199                                     (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5200                                     mstate, vstate))
5201                                         break;
5202 
5203                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5204                                     (void *)a, &v->dtdv_type);
5205                                 break;
5206                         }
5207 
5208                         ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5209                         tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5210                         tmp[CPU->cpu_id] = regs[rd];
5211                         break;
5212 
5213                 case DIF_OP_LDTS: {
5214                         dtrace_dynvar_t *dvar;
5215                         dtrace_key_t *key;
5216 
5217                         id = DIF_INSTR_VAR(instr);
5218                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5219                         id -= DIF_VAR_OTHER_UBASE;
5220                         v = &vstate->dtvs_tlocals[id];
5221 
5222                         key = &tupregs[DIF_DTR_NREGS];
5223                         key[0].dttk_value = (uint64_t)id;
5224                         key[0].dttk_size = 0;
5225                         DTRACE_TLS_THRKEY(key[1].dttk_value);
5226                         key[1].dttk_size = 0;
5227 
5228                         dvar = dtrace_dynvar(dstate, 2, key,
5229                             sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
5230                             mstate, vstate);
5231 
5232                         if (dvar == NULL) {
5233                                 regs[rd] = 0;
5234                                 break;
5235                         }
5236 
5237                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5238                                 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5239                         } else {
5240                                 regs[rd] = *((uint64_t *)dvar->dtdv_data);
5241                         }
5242 
5243                         break;
5244                 }
5245 
5246                 case DIF_OP_STTS: {
5247                         dtrace_dynvar_t *dvar;
5248                         dtrace_key_t *key;
5249 
5250                         id = DIF_INSTR_VAR(instr);
5251                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5252                         id -= DIF_VAR_OTHER_UBASE;
5253 
5254                         key = &tupregs[DIF_DTR_NREGS];
5255                         key[0].dttk_value = (uint64_t)id;
5256                         key[0].dttk_size = 0;
5257                         DTRACE_TLS_THRKEY(key[1].dttk_value);
5258                         key[1].dttk_size = 0;
5259                         v = &vstate->dtvs_tlocals[id];
5260 
5261                         dvar = dtrace_dynvar(dstate, 2, key,
5262                             v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5263                             v->dtdv_type.dtdt_size : sizeof (uint64_t),
5264                             regs[rd] ? DTRACE_DYNVAR_ALLOC :
5265                             DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5266 
5267                         /*
5268                          * Given that we're storing to thread-local data,
5269                          * we need to flush our predicate cache.
5270                          */
5271                         curthread->t_predcache = NULL;
5272 
5273                         if (dvar == NULL)
5274                                 break;
5275 
5276                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5277                                 if (!dtrace_vcanload(
5278                                     (void *)(uintptr_t)regs[rd],
5279                                     &v->dtdv_type, mstate, vstate))
5280                                         break;
5281 
5282                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5283                                     dvar->dtdv_data, &v->dtdv_type);
5284                         } else {
5285                                 *((uint64_t *)dvar->dtdv_data) = regs[rd];
5286                         }
5287 
5288                         break;
5289                 }
5290 
5291                 case DIF_OP_SRA:
5292                         regs[rd] = (int64_t)regs[r1] >> regs[r2];
5293                         break;
5294 
5295                 case DIF_OP_CALL:
5296                         dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
5297                             regs, tupregs, ttop, mstate, state);
5298                         break;
5299 
5300                 case DIF_OP_PUSHTR:
5301                         if (ttop == DIF_DTR_NREGS) {
5302                                 *flags |= CPU_DTRACE_TUPOFLOW;
5303                                 break;
5304                         }
5305 
5306                         if (r1 == DIF_TYPE_STRING) {
5307                                 /*
5308                                  * If this is a string type and the size is 0,
5309                                  * we'll use the system-wide default string
5310                                  * size.  Note that we are _not_ looking at
5311                                  * the value of the DTRACEOPT_STRSIZE option;
5312                                  * had this been set, we would expect to have
5313                                  * a non-zero size value in the "pushtr".
5314                                  */
5315                                 tupregs[ttop].dttk_size =
5316                                     dtrace_strlen((char *)(uintptr_t)regs[rd],
5317                                     regs[r2] ? regs[r2] :
5318                                     dtrace_strsize_default) + 1;
5319                         } else {
5320                                 tupregs[ttop].dttk_size = regs[r2];
5321                         }
5322 
5323                         tupregs[ttop++].dttk_value = regs[rd];
5324                         break;
5325 
5326                 case DIF_OP_PUSHTV:
5327                         if (ttop == DIF_DTR_NREGS) {
5328                                 *flags |= CPU_DTRACE_TUPOFLOW;
5329                                 break;
5330                         }
5331 
5332                         tupregs[ttop].dttk_value = regs[rd];
5333                         tupregs[ttop++].dttk_size = 0;
5334                         break;
5335 
5336                 case DIF_OP_POPTS:
5337                         if (ttop != 0)
5338                                 ttop--;
5339                         break;
5340 
5341                 case DIF_OP_FLUSHTS:
5342                         ttop = 0;
5343                         break;
5344 
5345                 case DIF_OP_LDGAA:
5346                 case DIF_OP_LDTAA: {
5347                         dtrace_dynvar_t *dvar;
5348                         dtrace_key_t *key = tupregs;
5349                         uint_t nkeys = ttop;
5350 
5351                         id = DIF_INSTR_VAR(instr);
5352                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5353                         id -= DIF_VAR_OTHER_UBASE;
5354 
5355                         key[nkeys].dttk_value = (uint64_t)id;
5356                         key[nkeys++].dttk_size = 0;
5357 
5358                         if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
5359                                 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5360                                 key[nkeys++].dttk_size = 0;
5361                                 v = &vstate->dtvs_tlocals[id];
5362                         } else {
5363                                 v = &vstate->dtvs_globals[id]->dtsv_var;
5364                         }
5365 
5366                         dvar = dtrace_dynvar(dstate, nkeys, key,
5367                             v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5368                             v->dtdv_type.dtdt_size : sizeof (uint64_t),
5369                             DTRACE_DYNVAR_NOALLOC, mstate, vstate);
5370 
5371                         if (dvar == NULL) {
5372                                 regs[rd] = 0;
5373                                 break;
5374                         }
5375 
5376                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5377                                 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5378                         } else {
5379                                 regs[rd] = *((uint64_t *)dvar->dtdv_data);
5380                         }
5381 
5382                         break;
5383                 }
5384 
5385                 case DIF_OP_STGAA:
5386                 case DIF_OP_STTAA: {
5387                         dtrace_dynvar_t *dvar;
5388                         dtrace_key_t *key = tupregs;
5389                         uint_t nkeys = ttop;
5390 
5391                         id = DIF_INSTR_VAR(instr);
5392                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5393                         id -= DIF_VAR_OTHER_UBASE;
5394 
5395                         key[nkeys].dttk_value = (uint64_t)id;
5396                         key[nkeys++].dttk_size = 0;
5397 
5398                         if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
5399                                 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5400                                 key[nkeys++].dttk_size = 0;
5401                                 v = &vstate->dtvs_tlocals[id];
5402                         } else {
5403                                 v = &vstate->dtvs_globals[id]->dtsv_var;
5404                         }
5405 
5406                         dvar = dtrace_dynvar(dstate, nkeys, key,
5407                             v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5408                             v->dtdv_type.dtdt_size : sizeof (uint64_t),
5409                             regs[rd] ? DTRACE_DYNVAR_ALLOC :
5410                             DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5411 
5412                         if (dvar == NULL)
5413                                 break;
5414 
5415                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5416                                 if (!dtrace_vcanload(
5417                                     (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5418                                     mstate, vstate))
5419                                         break;
5420 
5421                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5422                                     dvar->dtdv_data, &v->dtdv_type);
5423                         } else {
5424                                 *((uint64_t *)dvar->dtdv_data) = regs[rd];
5425                         }
5426 
5427                         break;
5428                 }
5429 
5430                 case DIF_OP_ALLOCS: {
5431                         uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5432                         size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
5433 
5434                         /*
5435                          * Rounding up the user allocation size could have
5436                          * overflowed large, bogus allocations (like -1ULL) to
5437                          * 0.
5438                          */
5439                         if (size < regs[r1] ||
5440                             !DTRACE_INSCRATCH(mstate, size)) {
5441                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5442                                 regs[rd] = NULL;
5443                                 break;
5444                         }
5445 
5446                         dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
5447                         mstate->dtms_scratch_ptr += size;
5448                         regs[rd] = ptr;
5449                         break;
5450                 }
5451 
5452                 case DIF_OP_COPYS:
5453                         if (!dtrace_canstore(regs[rd], regs[r2],
5454                             mstate, vstate)) {
5455                                 *flags |= CPU_DTRACE_BADADDR;
5456                                 *illval = regs[rd];
5457                                 break;
5458                         }
5459 
5460                         if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
5461                                 break;
5462 
5463                         dtrace_bcopy((void *)(uintptr_t)regs[r1],
5464                             (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
5465                         break;
5466 
5467                 case DIF_OP_STB:
5468                         if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
5469                                 *flags |= CPU_DTRACE_BADADDR;
5470                                 *illval = regs[rd];
5471                                 break;
5472                         }
5473                         *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
5474                         break;
5475 
5476                 case DIF_OP_STH:
5477                         if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
5478                                 *flags |= CPU_DTRACE_BADADDR;
5479                                 *illval = regs[rd];
5480                                 break;
5481                         }
5482                         if (regs[rd] & 1) {
5483                                 *flags |= CPU_DTRACE_BADALIGN;
5484                                 *illval = regs[rd];
5485                                 break;
5486                         }
5487                         *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
5488                         break;
5489 
5490                 case DIF_OP_STW:
5491                         if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
5492                                 *flags |= CPU_DTRACE_BADADDR;
5493                                 *illval = regs[rd];
5494                                 break;
5495                         }
5496                         if (regs[rd] & 3) {
5497                                 *flags |= CPU_DTRACE_BADALIGN;
5498                                 *illval = regs[rd];
5499                                 break;
5500                         }
5501                         *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
5502                         break;
5503 
5504                 case DIF_OP_STX:
5505                         if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
5506                                 *flags |= CPU_DTRACE_BADADDR;
5507                                 *illval = regs[rd];
5508                                 break;
5509                         }
5510                         if (regs[rd] & 7) {
5511                                 *flags |= CPU_DTRACE_BADALIGN;
5512                                 *illval = regs[rd];
5513                                 break;
5514                         }
5515                         *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
5516                         break;
5517                 }
5518         }
5519 
5520         if (!(*flags & CPU_DTRACE_FAULT))
5521                 return (rval);
5522 
5523         mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
5524         mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
5525 
5526         return (0);
5527 }
5528 
5529 static void
5530 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
5531 {
5532         dtrace_probe_t *probe = ecb->dte_probe;
5533         dtrace_provider_t *prov = probe->dtpr_provider;
5534         char c[DTRACE_FULLNAMELEN + 80], *str;
5535         char *msg = "dtrace: breakpoint action at probe ";
5536         char *ecbmsg = " (ecb ";
5537         uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
5538         uintptr_t val = (uintptr_t)ecb;
5539         int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
5540 
5541         if (dtrace_destructive_disallow)
5542                 return;
5543 
5544         /*
5545          * It's impossible to be taking action on the NULL probe.
5546          */
5547         ASSERT(probe != NULL);
5548 
5549         /*
5550          * This is a poor man's (destitute man's?) sprintf():  we want to
5551          * print the provider name, module name, function name and name of
5552          * the probe, along with the hex address of the ECB with the breakpoint
5553          * action -- all of which we must place in the character buffer by
5554          * hand.
5555          */
5556         while (*msg != '\0')
5557                 c[i++] = *msg++;
5558 
5559         for (str = prov->dtpv_name; *str != '\0'; str++)
5560                 c[i++] = *str;
5561         c[i++] = ':';
5562 
5563         for (str = probe->dtpr_mod; *str != '\0'; str++)
5564                 c[i++] = *str;
5565         c[i++] = ':';
5566 
5567         for (str = probe->dtpr_func; *str != '\0'; str++)
5568                 c[i++] = *str;
5569         c[i++] = ':';
5570 
5571         for (str = probe->dtpr_name; *str != '\0'; str++)
5572                 c[i++] = *str;
5573 
5574         while (*ecbmsg != '\0')
5575                 c[i++] = *ecbmsg++;
5576 
5577         while (shift >= 0) {
5578                 mask = (uintptr_t)0xf << shift;
5579 
5580                 if (val >= ((uintptr_t)1 << shift))
5581                         c[i++] = "0123456789abcdef"[(val & mask) >> shift];
5582                 shift -= 4;
5583         }
5584 
5585         c[i++] = ')';
5586         c[i] = '\0';
5587 
5588         debug_enter(c);
5589 }
5590 
5591 static void
5592 dtrace_action_panic(dtrace_ecb_t *ecb)
5593 {
5594         dtrace_probe_t *probe = ecb->dte_probe;
5595 
5596         /*
5597          * It's impossible to be taking action on the NULL probe.
5598          */
5599         ASSERT(probe != NULL);
5600 
5601         if (dtrace_destructive_disallow)
5602                 return;
5603 
5604         if (dtrace_panicked != NULL)
5605                 return;
5606 
5607         if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
5608                 return;
5609 
5610         /*
5611          * We won the right to panic.  (We want to be sure that only one
5612          * thread calls panic() from dtrace_probe(), and that panic() is
5613          * called exactly once.)
5614          */
5615         dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5616             probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
5617             probe->dtpr_func, probe->dtpr_name, (void *)ecb);
5618 }
5619 
5620 static void
5621 dtrace_action_raise(uint64_t sig)
5622 {
5623         if (dtrace_destructive_disallow)
5624                 return;
5625 
5626         if (sig >= NSIG) {
5627                 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5628                 return;
5629         }
5630 
5631         /*
5632          * raise() has a queue depth of 1 -- we ignore all subsequent
5633          * invocations of the raise() action.
5634          */
5635         if (curthread->t_dtrace_sig == 0)
5636                 curthread->t_dtrace_sig = (uint8_t)sig;
5637 
5638         curthread->t_sig_check = 1;
5639         aston(curthread);
5640 }
5641 
5642 static void
5643 dtrace_action_stop(void)
5644 {
5645         if (dtrace_destructive_disallow)
5646                 return;
5647 
5648         if (!curthread->t_dtrace_stop) {
5649                 curthread->t_dtrace_stop = 1;
5650                 curthread->t_sig_check = 1;
5651                 aston(curthread);
5652         }
5653 }
5654 
5655 static void
5656 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
5657 {
5658         hrtime_t now;
5659         volatile uint16_t *flags;
5660         cpu_t *cpu = CPU;
5661 
5662         if (dtrace_destructive_disallow)
5663                 return;
5664 
5665         flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
5666 
5667         now = dtrace_gethrtime();
5668 
5669         if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
5670                 /*
5671                  * We need to advance the mark to the current time.
5672                  */
5673                 cpu->cpu_dtrace_chillmark = now;
5674                 cpu->cpu_dtrace_chilled = 0;
5675         }
5676 
5677         /*
5678          * Now check to see if the requested chill time would take us over
5679          * the maximum amount of time allowed in the chill interval.  (Or
5680          * worse, if the calculation itself induces overflow.)
5681          */
5682         if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
5683             cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
5684                 *flags |= CPU_DTRACE_ILLOP;
5685                 return;
5686         }
5687 
5688         while (dtrace_gethrtime() - now < val)
5689                 continue;
5690 
5691         /*
5692          * Normally, we assure that the value of the variable "timestamp" does
5693          * not change within an ECB.  The presence of chill() represents an
5694          * exception to this rule, however.
5695          */
5696         mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
5697         cpu->cpu_dtrace_chilled += val;
5698 }
5699 
5700 static void
5701 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
5702     uint64_t *buf, uint64_t arg)
5703 {
5704         int nframes = DTRACE_USTACK_NFRAMES(arg);
5705         int strsize = DTRACE_USTACK_STRSIZE(arg);
5706         uint64_t *pcs = &buf[1], *fps;
5707         char *str = (char *)&pcs[nframes];
5708         int size, offs = 0, i, j;
5709         uintptr_t old = mstate->dtms_scratch_ptr, saved;
5710         uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
5711         char *sym;
5712 
5713         /*
5714          * Should be taking a faster path if string space has not been
5715          * allocated.
5716          */
5717         ASSERT(strsize != 0);
5718 
5719         /*
5720          * We will first allocate some temporary space for the frame pointers.
5721          */
5722         fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5723         size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5724             (nframes * sizeof (uint64_t));
5725 
5726         if (!DTRACE_INSCRATCH(mstate, size)) {
5727                 /*
5728                  * Not enough room for our frame pointers -- need to indicate
5729                  * that we ran out of scratch space.
5730                  */
5731                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5732                 return;
5733         }
5734 
5735         mstate->dtms_scratch_ptr += size;
5736         saved = mstate->dtms_scratch_ptr;
5737 
5738         /*
5739          * Now get a stack with both program counters and frame pointers.
5740          */
5741         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5742         dtrace_getufpstack(buf, fps, nframes + 1);
5743         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5744 
5745         /*
5746          * If that faulted, we're cooked.
5747          */
5748         if (*flags & CPU_DTRACE_FAULT)
5749                 goto out;
5750 
5751         /*
5752          * Now we want to walk up the stack, calling the USTACK helper.  For
5753          * each iteration, we restore the scratch pointer.
5754          */
5755         for (i = 0; i < nframes; i++) {
5756                 mstate->dtms_scratch_ptr = saved;
5757 
5758                 if (offs >= strsize)
5759                         break;
5760 
5761                 sym = (char *)(uintptr_t)dtrace_helper(
5762                     DTRACE_HELPER_ACTION_USTACK,
5763                     mstate, state, pcs[i], fps[i]);
5764 
5765                 /*
5766                  * If we faulted while running the helper, we're going to
5767                  * clear the fault and null out the corresponding string.
5768                  */
5769                 if (*flags & CPU_DTRACE_FAULT) {
5770                         *flags &= ~CPU_DTRACE_FAULT;
5771                         str[offs++] = '\0';
5772                         continue;
5773                 }
5774 
5775                 if (sym == NULL) {
5776                         str[offs++] = '\0';
5777                         continue;
5778                 }
5779 
5780                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5781 
5782                 /*
5783                  * Now copy in the string that the helper returned to us.
5784                  */
5785                 for (j = 0; offs + j < strsize; j++) {
5786                         if ((str[offs + j] = sym[j]) == '\0')
5787                                 break;
5788                 }
5789 
5790                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5791 
5792                 offs += j + 1;
5793         }
5794 
5795         if (offs >= strsize) {
5796                 /*
5797                  * If we didn't have room for all of the strings, we don't
5798                  * abort processing -- this needn't be a fatal error -- but we
5799                  * still want to increment a counter (dts_stkstroverflows) to
5800                  * allow this condition to be warned about.  (If this is from
5801                  * a jstack() action, it is easily tuned via jstackstrsize.)
5802                  */
5803                 dtrace_error(&state->dts_stkstroverflows);
5804         }
5805 
5806         while (offs < strsize)
5807                 str[offs++] = '\0';
5808 
5809 out:
5810         mstate->dtms_scratch_ptr = old;
5811 }
5812 
5813 /*
5814  * If you're looking for the epicenter of DTrace, you just found it.  This
5815  * is the function called by the provider to fire a probe -- from which all
5816  * subsequent probe-context DTrace activity emanates.
5817  */
5818 void
5819 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
5820     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
5821 {
5822         processorid_t cpuid;
5823         dtrace_icookie_t cookie;
5824         dtrace_probe_t *probe;
5825         dtrace_mstate_t mstate;
5826         dtrace_ecb_t *ecb;
5827         dtrace_action_t *act;
5828         intptr_t offs;
5829         size_t size;
5830         int vtime, onintr;
5831         volatile uint16_t *flags;
5832         hrtime_t now;
5833 
5834         /*
5835          * Kick out immediately if this CPU is still being born (in which case
5836          * curthread will be set to -1) or the current thread can't allow
5837          * probes in its current context.
5838          */
5839         if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
5840                 return;
5841 
5842         cookie = dtrace_interrupt_disable();
5843         probe = dtrace_probes[id - 1];
5844         cpuid = CPU->cpu_id;
5845         onintr = CPU_ON_INTR(CPU);
5846 
5847         if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
5848             probe->dtpr_predcache == curthread->t_predcache) {
5849                 /*
5850                  * We have hit in the predicate cache; we know that
5851                  * this predicate would evaluate to be false.
5852                  */
5853                 dtrace_interrupt_enable(cookie);
5854                 return;
5855         }
5856 
5857         if (panic_quiesce) {
5858                 /*
5859                  * We don't trace anything if we're panicking.
5860                  */
5861                 dtrace_interrupt_enable(cookie);
5862                 return;
5863         }
5864 
5865         now = dtrace_gethrtime();
5866         vtime = dtrace_vtime_references != 0;
5867 
5868         if (vtime && curthread->t_dtrace_start)
5869                 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
5870 
5871         mstate.dtms_difo = NULL;
5872         mstate.dtms_probe = probe;
5873         mstate.dtms_strtok = NULL;
5874         mstate.dtms_arg[0] = arg0;
5875         mstate.dtms_arg[1] = arg1;
5876         mstate.dtms_arg[2] = arg2;
5877         mstate.dtms_arg[3] = arg3;
5878         mstate.dtms_arg[4] = arg4;
5879 
5880         flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
5881 
5882         for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
5883                 dtrace_predicate_t *pred = ecb->dte_predicate;
5884                 dtrace_state_t *state = ecb->dte_state;
5885                 dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
5886                 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
5887                 dtrace_vstate_t *vstate = &state->dts_vstate;
5888                 dtrace_provider_t *prov = probe->dtpr_provider;
5889                 uint64_t tracememsize = 0;
5890                 int committed = 0;
5891                 caddr_t tomax;
5892 
5893                 /*
5894                  * A little subtlety with the following (seemingly innocuous)
5895                  * declaration of the automatic 'val':  by looking at the
5896                  * code, you might think that it could be declared in the
5897                  * action processing loop, below.  (That is, it's only used in
5898                  * the action processing loop.)  However, it must be declared
5899                  * out of that scope because in the case of DIF expression
5900                  * arguments to aggregating actions, one iteration of the
5901                  * action loop will use the last iteration's value.
5902                  */
5903 #ifdef lint
5904                 uint64_t val = 0;
5905 #else
5906                 uint64_t val;
5907 #endif
5908 
5909                 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
5910                 mstate.dtms_access = DTRACE_ACCESS_ARGS | DTRACE_ACCESS_PROC;
5911                 *flags &= ~CPU_DTRACE_ERROR;
5912 
5913                 if (prov == dtrace_provider) {
5914                         /*
5915                          * If dtrace itself is the provider of this probe,
5916                          * we're only going to continue processing the ECB if
5917                          * arg0 (the dtrace_state_t) is equal to the ECB's
5918                          * creating state.  (This prevents disjoint consumers
5919                          * from seeing one another's metaprobes.)
5920                          */
5921                         if (arg0 != (uint64_t)(uintptr_t)state)
5922                                 continue;
5923                 }
5924 
5925                 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
5926                         /*
5927                          * We're not currently active.  If our provider isn't
5928                          * the dtrace pseudo provider, we're not interested.
5929                          */
5930                         if (prov != dtrace_provider)
5931                                 continue;
5932 
5933                         /*
5934                          * Now we must further check if we are in the BEGIN
5935                          * probe.  If we are, we will only continue processing
5936                          * if we're still in WARMUP -- if one BEGIN enabling
5937                          * has invoked the exit() action, we don't want to
5938                          * evaluate subsequent BEGIN enablings.
5939                          */
5940                         if (probe->dtpr_id == dtrace_probeid_begin &&
5941                             state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
5942                                 ASSERT(state->dts_activity ==
5943                                     DTRACE_ACTIVITY_DRAINING);
5944                                 continue;
5945                         }
5946                 }
5947 
5948                 if (ecb->dte_cond && !dtrace_priv_probe(state, &mstate, ecb))
5949                         continue;
5950 
5951                 if (now - state->dts_alive > dtrace_deadman_timeout) {
5952                         /*
5953                          * We seem to be dead.  Unless we (a) have kernel
5954                          * destructive permissions (b) have expicitly enabled
5955                          * destructive actions and (c) destructive actions have
5956                          * not been disabled, we're going to transition into
5957                          * the KILLED state, from which no further processing
5958                          * on this state will be performed.
5959                          */
5960                         if (!dtrace_priv_kernel_destructive(state) ||
5961                             !state->dts_cred.dcr_destructive ||
5962                             dtrace_destructive_disallow) {
5963                                 void *activity = &state->dts_activity;
5964                                 dtrace_activity_t current;
5965 
5966                                 do {
5967                                         current = state->dts_activity;
5968                                 } while (dtrace_cas32(activity, current,
5969                                     DTRACE_ACTIVITY_KILLED) != current);
5970 
5971                                 continue;
5972                         }
5973                 }
5974 
5975                 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
5976                     ecb->dte_alignment, state, &mstate)) < 0)
5977                         continue;
5978 
5979                 tomax = buf->dtb_tomax;
5980                 ASSERT(tomax != NULL);
5981 
5982                 if (ecb->dte_size != 0)
5983                         DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid);
5984 
5985                 mstate.dtms_epid = ecb->dte_epid;
5986                 mstate.dtms_present |= DTRACE_MSTATE_EPID;
5987 
5988                 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
5989                         mstate.dtms_access |= DTRACE_ACCESS_KERNEL;
5990 
5991                 if (pred != NULL) {
5992                         dtrace_difo_t *dp = pred->dtp_difo;
5993                         int rval;
5994 
5995                         rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
5996 
5997                         if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
5998                                 dtrace_cacheid_t cid = probe->dtpr_predcache;
5999 
6000                                 if (cid != DTRACE_CACHEIDNONE && !onintr) {
6001                                         /*
6002                                          * Update the predicate cache...
6003                                          */
6004                                         ASSERT(cid == pred->dtp_cacheid);
6005                                         curthread->t_predcache = cid;
6006                                 }
6007 
6008                                 continue;
6009                         }
6010                 }
6011 
6012                 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6013                     act != NULL; act = act->dta_next) {
6014                         size_t valoffs;
6015                         dtrace_difo_t *dp;
6016                         dtrace_recdesc_t *rec = &act->dta_rec;
6017 
6018                         size = rec->dtrd_size;
6019                         valoffs = offs + rec->dtrd_offset;
6020 
6021                         if (DTRACEACT_ISAGG(act->dta_kind)) {
6022                                 uint64_t v = 0xbad;
6023                                 dtrace_aggregation_t *agg;
6024 
6025                                 agg = (dtrace_aggregation_t *)act;
6026 
6027                                 if ((dp = act->dta_difo) != NULL)
6028                                         v = dtrace_dif_emulate(dp,
6029                                             &mstate, vstate, state);
6030 
6031                                 if (*flags & CPU_DTRACE_ERROR)
6032                                         continue;
6033 
6034                                 /*
6035                                  * Note that we always pass the expression
6036                                  * value from the previous iteration of the
6037                                  * action loop.  This value will only be used
6038                                  * if there is an expression argument to the
6039                                  * aggregating action, denoted by the
6040                                  * dtag_hasarg field.
6041                                  */
6042                                 dtrace_aggregate(agg, buf,
6043                                     offs, aggbuf, v, val);
6044                                 continue;
6045                         }
6046 
6047                         switch (act->dta_kind) {
6048                         case DTRACEACT_STOP:
6049                                 if (dtrace_priv_proc_destructive(state,
6050                                     &mstate))
6051                                         dtrace_action_stop();
6052                                 continue;
6053 
6054                         case DTRACEACT_BREAKPOINT:
6055                                 if (dtrace_priv_kernel_destructive(state))
6056                                         dtrace_action_breakpoint(ecb);
6057                                 continue;
6058 
6059                         case DTRACEACT_PANIC:
6060                                 if (dtrace_priv_kernel_destructive(state))
6061                                         dtrace_action_panic(ecb);
6062                                 continue;
6063 
6064                         case DTRACEACT_STACK:
6065                                 if (!dtrace_priv_kernel(state))
6066                                         continue;
6067 
6068                                 dtrace_getpcstack((pc_t *)(tomax + valoffs),
6069                                     size / sizeof (pc_t), probe->dtpr_aframes,
6070                                     DTRACE_ANCHORED(probe) ? NULL :
6071                                     (uint32_t *)arg0);
6072 
6073                                 continue;
6074 
6075                         case DTRACEACT_JSTACK:
6076                         case DTRACEACT_USTACK:
6077                                 if (!dtrace_priv_proc(state, &mstate))
6078                                         continue;
6079 
6080                                 /*
6081                                  * See comment in DIF_VAR_PID.
6082                                  */
6083                                 if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6084                                     CPU_ON_INTR(CPU)) {
6085                                         int depth = DTRACE_USTACK_NFRAMES(
6086                                             rec->dtrd_arg) + 1;
6087 
6088                                         dtrace_bzero((void *)(tomax + valoffs),
6089                                             DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6090                                             + depth * sizeof (uint64_t));
6091 
6092                                         continue;
6093                                 }
6094 
6095                                 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6096                                     curproc->p_dtrace_helpers != NULL) {
6097                                         /*
6098                                          * This is the slow path -- we have
6099                                          * allocated string space, and we're
6100                                          * getting the stack of a process that
6101                                          * has helpers.  Call into a separate
6102                                          * routine to perform this processing.
6103                                          */
6104                                         dtrace_action_ustack(&mstate, state,
6105                                             (uint64_t *)(tomax + valoffs),
6106                                             rec->dtrd_arg);
6107                                         continue;
6108                                 }
6109 
6110                                 /*
6111                                  * Clear the string space, since there's no
6112                                  * helper to do it for us.
6113                                  */
6114                                 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0) {
6115                                         int depth = DTRACE_USTACK_NFRAMES(
6116                                             rec->dtrd_arg);
6117                                         size_t strsize = DTRACE_USTACK_STRSIZE(
6118                                             rec->dtrd_arg);
6119                                         uint64_t *buf = (uint64_t *)(tomax +
6120                                             valoffs);
6121                                         void *strspace = &buf[depth + 1];
6122 
6123                                         dtrace_bzero(strspace,
6124                                             MIN(depth, strsize));
6125                                 }
6126 
6127                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6128                                 dtrace_getupcstack((uint64_t *)
6129                                     (tomax + valoffs),
6130                                     DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6131                                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6132                                 continue;
6133 
6134                         default:
6135                                 break;
6136                         }
6137 
6138                         dp = act->dta_difo;
6139                         ASSERT(dp != NULL);
6140 
6141                         val = dtrace_dif_emulate(dp, &mstate, vstate, state);
6142 
6143                         if (*flags & CPU_DTRACE_ERROR)
6144                                 continue;
6145 
6146                         switch (act->dta_kind) {
6147                         case DTRACEACT_SPECULATE:
6148                                 ASSERT(buf == &state->dts_buffer[cpuid]);
6149                                 buf = dtrace_speculation_buffer(state,
6150                                     cpuid, val);
6151 
6152                                 if (buf == NULL) {
6153                                         *flags |= CPU_DTRACE_DROP;
6154                                         continue;
6155                                 }
6156 
6157                                 offs = dtrace_buffer_reserve(buf,
6158                                     ecb->dte_needed, ecb->dte_alignment,
6159                                     state, NULL);
6160 
6161                                 if (offs < 0) {
6162                                         *flags |= CPU_DTRACE_DROP;
6163                                         continue;
6164                                 }
6165 
6166                                 tomax = buf->dtb_tomax;
6167                                 ASSERT(tomax != NULL);
6168 
6169                                 if (ecb->dte_size != 0)
6170                                         DTRACE_STORE(uint32_t, tomax, offs,
6171                                             ecb->dte_epid);
6172                                 continue;
6173 
6174                         case DTRACEACT_CHILL:
6175                                 if (dtrace_priv_kernel_destructive(state))
6176                                         dtrace_action_chill(&mstate, val);
6177                                 continue;
6178 
6179                         case DTRACEACT_RAISE:
6180                                 if (dtrace_priv_proc_destructive(state,
6181                                     &mstate))
6182                                         dtrace_action_raise(val);
6183                                 continue;
6184 
6185                         case DTRACEACT_COMMIT:
6186                                 ASSERT(!committed);
6187 
6188                                 /*
6189                                  * We need to commit our buffer state.
6190                                  */
6191                                 if (ecb->dte_size)
6192                                         buf->dtb_offset = offs + ecb->dte_size;
6193                                 buf = &state->dts_buffer[cpuid];
6194                                 dtrace_speculation_commit(state, cpuid, val);
6195                                 committed = 1;
6196                                 continue;
6197 
6198                         case DTRACEACT_DISCARD:
6199                                 dtrace_speculation_discard(state, cpuid, val);
6200                                 continue;
6201 
6202                         case DTRACEACT_DIFEXPR:
6203                         case DTRACEACT_LIBACT:
6204                         case DTRACEACT_PRINTF:
6205                         case DTRACEACT_PRINTA:
6206                         case DTRACEACT_SYSTEM:
6207                         case DTRACEACT_FREOPEN:
6208                         case DTRACEACT_TRACEMEM:
6209                                 break;
6210 
6211                         case DTRACEACT_TRACEMEM_DYNSIZE:
6212                                 tracememsize = val;
6213                                 break;
6214 
6215                         case DTRACEACT_SYM:
6216                         case DTRACEACT_MOD:
6217                                 if (!dtrace_priv_kernel(state))
6218                                         continue;
6219                                 break;
6220 
6221                         case DTRACEACT_USYM:
6222                         case DTRACEACT_UMOD:
6223                         case DTRACEACT_UADDR: {
6224                                 struct pid *pid = curthread->t_procp->p_pidp;
6225 
6226                                 if (!dtrace_priv_proc(state, &mstate))
6227                                         continue;
6228 
6229                                 DTRACE_STORE(uint64_t, tomax,
6230                                     valoffs, (uint64_t)pid->pid_id);
6231                                 DTRACE_STORE(uint64_t, tomax,
6232                                     valoffs + sizeof (uint64_t), val);
6233 
6234                                 continue;
6235                         }
6236 
6237                         case DTRACEACT_EXIT: {
6238                                 /*
6239                                  * For the exit action, we are going to attempt
6240                                  * to atomically set our activity to be
6241                                  * draining.  If this fails (either because
6242                                  * another CPU has beat us to the exit action,
6243                                  * or because our current activity is something
6244                                  * other than ACTIVE or WARMUP), we will
6245                                  * continue.  This assures that the exit action
6246                                  * can be successfully recorded at most once
6247                                  * when we're in the ACTIVE state.  If we're
6248                                  * encountering the exit() action while in
6249                                  * COOLDOWN, however, we want to honor the new
6250                                  * status code.  (We know that we're the only
6251                                  * thread in COOLDOWN, so there is no race.)
6252                                  */
6253                                 void *activity = &state->dts_activity;
6254                                 dtrace_activity_t current = state->dts_activity;
6255 
6256                                 if (current == DTRACE_ACTIVITY_COOLDOWN)
6257                                         break;
6258 
6259                                 if (current != DTRACE_ACTIVITY_WARMUP)
6260                                         current = DTRACE_ACTIVITY_ACTIVE;
6261 
6262                                 if (dtrace_cas32(activity, current,
6263                                     DTRACE_ACTIVITY_DRAINING) != current) {
6264                                         *flags |= CPU_DTRACE_DROP;
6265                                         continue;
6266                                 }
6267 
6268                                 break;
6269                         }
6270 
6271                         default:
6272                                 ASSERT(0);
6273                         }
6274 
6275                         if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
6276                                 uintptr_t end = valoffs + size;
6277 
6278                                 if (tracememsize != 0 &&
6279                                     valoffs + tracememsize < end) {
6280                                         end = valoffs + tracememsize;
6281                                         tracememsize = 0;
6282                                 }
6283 
6284                                 if (!dtrace_vcanload((void *)(uintptr_t)val,
6285                                     &dp->dtdo_rtype, &mstate, vstate))
6286                                         continue;
6287 
6288                                 /*
6289                                  * If this is a string, we're going to only
6290                                  * load until we find the zero byte -- after
6291                                  * which we'll store zero bytes.
6292                                  */
6293                                 if (dp->dtdo_rtype.dtdt_kind ==
6294                                     DIF_TYPE_STRING) {
6295                                         char c = '\0' + 1;
6296                                         int intuple = act->dta_intuple;
6297                                         size_t s;
6298 
6299                                         for (s = 0; s < size; s++) {
6300                                                 if (c != '\0')
6301                                                         c = dtrace_load8(val++);
6302 
6303                                                 DTRACE_STORE(uint8_t, tomax,
6304                                                     valoffs++, c);
6305 
6306                                                 if (c == '\0' && intuple)
6307                                                         break;
6308                                         }
6309 
6310                                         continue;
6311                                 }
6312 
6313                                 while (valoffs < end) {
6314                                         DTRACE_STORE(uint8_t, tomax, valoffs++,
6315                                             dtrace_load8(val++));
6316                                 }
6317 
6318                                 continue;
6319                         }
6320 
6321                         switch (size) {
6322                         case 0:
6323                                 break;
6324 
6325                         case sizeof (uint8_t):
6326                                 DTRACE_STORE(uint8_t, tomax, valoffs, val);
6327                                 break;
6328                         case sizeof (uint16_t):
6329                                 DTRACE_STORE(uint16_t, tomax, valoffs, val);
6330                                 break;
6331                         case sizeof (uint32_t):
6332                                 DTRACE_STORE(uint32_t, tomax, valoffs, val);
6333                                 break;
6334                         case sizeof (uint64_t):
6335                                 DTRACE_STORE(uint64_t, tomax, valoffs, val);
6336                                 break;
6337                         default:
6338                                 /*
6339                                  * Any other size should have been returned by
6340                                  * reference, not by value.
6341                                  */
6342                                 ASSERT(0);
6343                                 break;
6344                         }
6345                 }
6346 
6347                 if (*flags & CPU_DTRACE_DROP)
6348                         continue;
6349 
6350                 if (*flags & CPU_DTRACE_FAULT) {
6351                         int ndx;
6352                         dtrace_action_t *err;
6353 
6354                         buf->dtb_errors++;
6355 
6356                         if (probe->dtpr_id == dtrace_probeid_error) {
6357                                 /*
6358                                  * There's nothing we can do -- we had an
6359                                  * error on the error probe.  We bump an
6360                                  * error counter to at least indicate that
6361                                  * this condition happened.
6362                                  */
6363                                 dtrace_error(&state->dts_dblerrors);
6364                                 continue;
6365                         }
6366 
6367                         if (vtime) {
6368                                 /*
6369                                  * Before recursing on dtrace_probe(), we
6370                                  * need to explicitly clear out our start
6371                                  * time to prevent it from being accumulated
6372                                  * into t_dtrace_vtime.
6373                                  */
6374                                 curthread->t_dtrace_start = 0;
6375                         }
6376 
6377                         /*
6378                          * Iterate over the actions to figure out which action
6379                          * we were processing when we experienced the error.
6380                          * Note that act points _past_ the faulting action; if
6381                          * act is ecb->dte_action, the fault was in the
6382                          * predicate, if it's ecb->dte_action->dta_next it's
6383                          * in action #1, and so on.
6384                          */
6385                         for (err = ecb->dte_action, ndx = 0;
6386                             err != act; err = err->dta_next, ndx++)
6387                                 continue;
6388 
6389                         dtrace_probe_error(state, ecb->dte_epid, ndx,
6390                             (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
6391                             mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
6392                             cpu_core[cpuid].cpuc_dtrace_illval);
6393 
6394                         continue;
6395                 }
6396 
6397                 if (!committed)
6398                         buf->dtb_offset = offs + ecb->dte_size;
6399         }
6400 
6401         if (vtime)
6402                 curthread->t_dtrace_start = dtrace_gethrtime();
6403 
6404         dtrace_interrupt_enable(cookie);
6405 }
6406 
6407 /*
6408  * DTrace Probe Hashing Functions
6409  *
6410  * The functions in this section (and indeed, the functions in remaining
6411  * sections) are not _called_ from probe context.  (Any exceptions to this are
6412  * marked with a "Note:".)  Rather, they are called from elsewhere in the
6413  * DTrace framework to look-up probes in, add probes to and remove probes from
6414  * the DTrace probe hashes.  (Each probe is hashed by each element of the
6415  * probe tuple -- allowing for fast lookups, regardless of what was
6416  * specified.)
6417  */
6418 static uint_t
6419 dtrace_hash_str(char *p)
6420 {
6421         unsigned int g;
6422         uint_t hval = 0;
6423 
6424         while (*p) {
6425                 hval = (hval << 4) + *p++;
6426                 if ((g = (hval & 0xf0000000)) != 0)
6427                         hval ^= g >> 24;
6428                 hval &= ~g;
6429         }
6430         return (hval);
6431 }
6432 
6433 static dtrace_hash_t *
6434 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
6435 {
6436         dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
6437 
6438         hash->dth_stroffs = stroffs;
6439         hash->dth_nextoffs = nextoffs;
6440         hash->dth_prevoffs = prevoffs;
6441 
6442         hash->dth_size = 1;
6443         hash->dth_mask = hash->dth_size - 1;
6444 
6445         hash->dth_tab = kmem_zalloc(hash->dth_size *
6446             sizeof (dtrace_hashbucket_t *), KM_SLEEP);
6447 
6448         return (hash);
6449 }
6450 
6451 static void
6452 dtrace_hash_destroy(dtrace_hash_t *hash)
6453 {
6454 #ifdef DEBUG
6455         int i;
6456 
6457         for (i = 0; i < hash->dth_size; i++)
6458                 ASSERT(hash->dth_tab[i] == NULL);
6459 #endif
6460 
6461         kmem_free(hash->dth_tab,
6462             hash->dth_size * sizeof (dtrace_hashbucket_t *));
6463         kmem_free(hash, sizeof (dtrace_hash_t));
6464 }
6465 
6466 static void
6467 dtrace_hash_resize(dtrace_hash_t *hash)
6468 {
6469         int size = hash->dth_size, i, ndx;
6470         int new_size = hash->dth_size << 1;
6471         int new_mask = new_size - 1;
6472         dtrace_hashbucket_t **new_tab, *bucket, *next;
6473 
6474         ASSERT((new_size & new_mask) == 0);
6475 
6476         new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
6477 
6478         for (i = 0; i < size; i++) {
6479                 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
6480                         dtrace_probe_t *probe = bucket->dthb_chain;
6481 
6482                         ASSERT(probe != NULL);
6483                         ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
6484 
6485                         next = bucket->dthb_next;
6486                         bucket->dthb_next = new_tab[ndx];
6487                         new_tab[ndx] = bucket;
6488                 }
6489         }
6490 
6491         kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
6492         hash->dth_tab = new_tab;
6493         hash->dth_size = new_size;
6494         hash->dth_mask = new_mask;
6495 }
6496 
6497 static void
6498 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
6499 {
6500         int hashval = DTRACE_HASHSTR(hash, new);
6501         int ndx = hashval & hash->dth_mask;
6502         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6503         dtrace_probe_t **nextp, **prevp;
6504 
6505         for (; bucket != NULL; bucket = bucket->dthb_next) {
6506                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
6507                         goto add;
6508         }
6509 
6510         if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
6511                 dtrace_hash_resize(hash);
6512                 dtrace_hash_add(hash, new);
6513                 return;
6514         }
6515 
6516         bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
6517         bucket->dthb_next = hash->dth_tab[ndx];
6518         hash->dth_tab[ndx] = bucket;
6519         hash->dth_nbuckets++;
6520 
6521 add:
6522         nextp = DTRACE_HASHNEXT(hash, new);
6523         ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
6524         *nextp = bucket->dthb_chain;
6525 
6526         if (bucket->dthb_chain != NULL) {
6527                 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
6528                 ASSERT(*prevp == NULL);
6529                 *prevp = new;
6530         }
6531 
6532         bucket->dthb_chain = new;
6533         bucket->dthb_len++;
6534 }
6535 
6536 static dtrace_probe_t *
6537 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
6538 {
6539         int hashval = DTRACE_HASHSTR(hash, template);
6540         int ndx = hashval & hash->dth_mask;
6541         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6542 
6543         for (; bucket != NULL; bucket = bucket->dthb_next) {
6544                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6545                         return (bucket->dthb_chain);
6546         }
6547 
6548         return (NULL);
6549 }
6550 
6551 static int
6552 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
6553 {
6554         int hashval = DTRACE_HASHSTR(hash, template);
6555         int ndx = hashval & hash->dth_mask;
6556         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6557 
6558         for (; bucket != NULL; bucket = bucket->dthb_next) {
6559                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6560                         return (bucket->dthb_len);
6561         }
6562 
6563         return (NULL);
6564 }
6565 
6566 static void
6567 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
6568 {
6569         int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
6570         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6571 
6572         dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
6573         dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
6574 
6575         /*
6576          * Find the bucket that we're removing this probe from.
6577          */
6578         for (; bucket != NULL; bucket = bucket->dthb_next) {
6579                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
6580                         break;
6581         }
6582 
6583         ASSERT(bucket != NULL);
6584 
6585         if (*prevp == NULL) {
6586                 if (*nextp == NULL) {
6587                         /*
6588                          * The removed probe was the only probe on this
6589                          * bucket; we need to remove the bucket.
6590                          */
6591                         dtrace_hashbucket_t *b = hash->dth_tab[ndx];
6592 
6593                         ASSERT(bucket->dthb_chain == probe);
6594                         ASSERT(b != NULL);
6595 
6596                         if (b == bucket) {
6597                                 hash->dth_tab[ndx] = bucket->dthb_next;
6598                         } else {
6599                                 while (b->dthb_next != bucket)
6600                                         b = b->dthb_next;
6601                                 b->dthb_next = bucket->dthb_next;
6602                         }
6603 
6604                         ASSERT(hash->dth_nbuckets > 0);
6605                         hash->dth_nbuckets--;
6606                         kmem_free(bucket, sizeof (dtrace_hashbucket_t));
6607                         return;
6608                 }
6609 
6610                 bucket->dthb_chain = *nextp;
6611         } else {
6612                 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
6613         }
6614 
6615         if (*nextp != NULL)
6616                 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
6617 }
6618 
6619 /*
6620  * DTrace Utility Functions
6621  *
6622  * These are random utility functions that are _not_ called from probe context.
6623  */
6624 static int
6625 dtrace_badattr(const dtrace_attribute_t *a)
6626 {
6627         return (a->dtat_name > DTRACE_STABILITY_MAX ||
6628             a->dtat_data > DTRACE_STABILITY_MAX ||
6629             a->dtat_class > DTRACE_CLASS_MAX);
6630 }
6631 
6632 /*
6633  * Return a duplicate copy of a string.  If the specified string is NULL,
6634  * this function returns a zero-length string.
6635  */
6636 static char *
6637 dtrace_strdup(const char *str)
6638 {
6639         char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
6640 
6641         if (str != NULL)
6642                 (void) strcpy(new, str);
6643 
6644         return (new);
6645 }
6646 
6647 #define DTRACE_ISALPHA(c)       \
6648         (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
6649 
6650 static int
6651 dtrace_badname(const char *s)
6652 {
6653         char c;
6654 
6655         if (s == NULL || (c = *s++) == '\0')
6656                 return (0);
6657 
6658         if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
6659                 return (1);
6660 
6661         while ((c = *s++) != '\0') {
6662                 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
6663                     c != '-' && c != '_' && c != '.' && c != '`')
6664                         return (1);
6665         }
6666 
6667         return (0);
6668 }
6669 
6670 static void
6671 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
6672 {
6673         uint32_t priv;
6674 
6675         if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
6676                 /*
6677                  * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
6678                  */
6679                 priv = DTRACE_PRIV_ALL;
6680         } else {
6681                 *uidp = crgetuid(cr);
6682                 *zoneidp = crgetzoneid(cr);
6683 
6684                 priv = 0;
6685                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
6686                         priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
6687                 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
6688                         priv |= DTRACE_PRIV_USER;
6689                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
6690                         priv |= DTRACE_PRIV_PROC;
6691                 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
6692                         priv |= DTRACE_PRIV_OWNER;
6693                 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
6694                         priv |= DTRACE_PRIV_ZONEOWNER;
6695         }
6696 
6697         *privp = priv;
6698 }
6699 
6700 #ifdef DTRACE_ERRDEBUG
6701 static void
6702 dtrace_errdebug(const char *str)
6703 {
6704         int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ;
6705         int occupied = 0;
6706 
6707         mutex_enter(&dtrace_errlock);
6708         dtrace_errlast = str;
6709         dtrace_errthread = curthread;
6710 
6711         while (occupied++ < DTRACE_ERRHASHSZ) {
6712                 if (dtrace_errhash[hval].dter_msg == str) {
6713                         dtrace_errhash[hval].dter_count++;
6714                         goto out;
6715                 }
6716 
6717                 if (dtrace_errhash[hval].dter_msg != NULL) {
6718                         hval = (hval + 1) % DTRACE_ERRHASHSZ;
6719                         continue;
6720                 }
6721 
6722                 dtrace_errhash[hval].dter_msg = str;
6723                 dtrace_errhash[hval].dter_count = 1;
6724                 goto out;
6725         }
6726 
6727         panic("dtrace: undersized error hash");
6728 out:
6729         mutex_exit(&dtrace_errlock);
6730 }
6731 #endif
6732 
6733 /*
6734  * DTrace Matching Functions
6735  *
6736  * These functions are used to match groups of probes, given some elements of
6737  * a probe tuple, or some globbed expressions for elements of a probe tuple.
6738  */
6739 static int
6740 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
6741     zoneid_t zoneid)
6742 {
6743         if (priv != DTRACE_PRIV_ALL) {
6744                 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
6745                 uint32_t match = priv & ppriv;
6746 
6747                 /*
6748                  * No PRIV_DTRACE_* privileges...
6749                  */
6750                 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
6751                     DTRACE_PRIV_KERNEL)) == 0)
6752                         return (0);
6753 
6754                 /*
6755                  * No matching bits, but there were bits to match...
6756                  */
6757                 if (match == 0 && ppriv != 0)
6758                         return (0);
6759 
6760                 /*
6761                  * Need to have permissions to the process, but don't...
6762                  */
6763                 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
6764                     uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
6765                         return (0);
6766                 }
6767 
6768                 /*
6769                  * Need to be in the same zone unless we possess the
6770                  * privilege to examine all zones.
6771                  */
6772                 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
6773                     zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
6774                         return (0);
6775                 }
6776         }
6777 
6778         return (1);
6779 }
6780 
6781 /*
6782  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
6783  * consists of input pattern strings and an ops-vector to evaluate them.
6784  * This function returns >0 for match, 0 for no match, and <0 for error.
6785  */
6786 static int
6787 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
6788     uint32_t priv, uid_t uid, zoneid_t zoneid)
6789 {
6790         dtrace_provider_t *pvp = prp->dtpr_provider;
6791         int rv;
6792 
6793         if (pvp->dtpv_defunct)
6794                 return (0);
6795 
6796         if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
6797                 return (rv);
6798 
6799         if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
6800                 return (rv);
6801 
6802         if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
6803                 return (rv);
6804 
6805         if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
6806                 return (rv);
6807 
6808         if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
6809                 return (0);
6810 
6811         return (rv);
6812 }
6813 
6814 /*
6815  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
6816  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
6817  * libc's version, the kernel version only applies to 8-bit ASCII strings.
6818  * In addition, all of the recursion cases except for '*' matching have been
6819  * unwound.  For '*', we still implement recursive evaluation, but a depth
6820  * counter is maintained and matching is aborted if we recurse too deep.
6821  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
6822  */
6823 static int
6824 dtrace_match_glob(const char *s, const char *p, int depth)
6825 {
6826         const char *olds;
6827         char s1, c;
6828         int gs;
6829 
6830         if (depth > DTRACE_PROBEKEY_MAXDEPTH)
6831                 return (-1);
6832 
6833         if (s == NULL)
6834                 s = ""; /* treat NULL as empty string */
6835 
6836 top:
6837         olds = s;
6838         s1 = *s++;
6839 
6840         if (p == NULL)
6841                 return (0);
6842 
6843         if ((c = *p++) == '\0')
6844                 return (s1 == '\0');
6845 
6846         switch (c) {
6847         case '[': {
6848                 int ok = 0, notflag = 0;
6849                 char lc = '\0';
6850 
6851                 if (s1 == '\0')
6852                         return (0);
6853 
6854                 if (*p == '!') {
6855                         notflag = 1;
6856                         p++;
6857                 }
6858 
6859                 if ((c = *p++) == '\0')
6860                         return (0);
6861 
6862                 do {
6863                         if (c == '-' && lc != '\0' && *p != ']') {
6864                                 if ((c = *p++) == '\0')
6865                                         return (0);
6866                                 if (c == '\\' && (c = *p++) == '\0')
6867                                         return (0);
6868 
6869                                 if (notflag) {
6870                                         if (s1 < lc || s1 > c)
6871                                                 ok++;
6872                                         else
6873                                                 return (0);
6874                                 } else if (lc <= s1 && s1 <= c)
6875                                         ok++;
6876 
6877                         } else if (c == '\\' && (c = *p++) == '\0')
6878                                 return (0);
6879 
6880                         lc = c; /* save left-hand 'c' for next iteration */
6881 
6882                         if (notflag) {
6883                                 if (s1 != c)
6884                                         ok++;
6885                                 else
6886                                         return (0);
6887                         } else if (s1 == c)
6888                                 ok++;
6889 
6890                         if ((c = *p++) == '\0')
6891                                 return (0);
6892 
6893                 } while (c != ']');
6894 
6895                 if (ok)
6896                         goto top;
6897 
6898                 return (0);
6899         }
6900 
6901         case '\\':
6902                 if ((c = *p++) == '\0')
6903                         return (0);
6904                 /*FALLTHRU*/
6905 
6906         default:
6907                 if (c != s1)
6908                         return (0);
6909                 /*FALLTHRU*/
6910 
6911         case '?':
6912                 if (s1 != '\0')
6913                         goto top;
6914                 return (0);
6915 
6916         case '*':
6917                 while (*p == '*')
6918                         p++; /* consecutive *'s are identical to a single one */
6919 
6920                 if (*p == '\0')
6921                         return (1);
6922 
6923                 for (s = olds; *s != '\0'; s++) {
6924                         if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
6925                                 return (gs);
6926                 }
6927 
6928                 return (0);
6929         }
6930 }
6931 
6932 /*ARGSUSED*/
6933 static int
6934 dtrace_match_string(const char *s, const char *p, int depth)
6935 {
6936         return (s != NULL && strcmp(s, p) == 0);
6937 }
6938 
6939 /*ARGSUSED*/
6940 static int
6941 dtrace_match_nul(const char *s, const char *p, int depth)
6942 {
6943         return (1); /* always match the empty pattern */
6944 }
6945 
6946 /*ARGSUSED*/
6947 static int
6948 dtrace_match_nonzero(const char *s, const char *p, int depth)
6949 {
6950         return (s != NULL && s[0] != '\0');
6951 }
6952 
6953 static int
6954 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
6955     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
6956 {
6957         dtrace_probe_t template, *probe;
6958         dtrace_hash_t *hash = NULL;
6959         int len, rc, best = INT_MAX, nmatched = 0;
6960         dtrace_id_t i;
6961 
6962         ASSERT(MUTEX_HELD(&dtrace_lock));
6963 
6964         /*
6965          * If the probe ID is specified in the key, just lookup by ID and
6966          * invoke the match callback once if a matching probe is found.
6967          */
6968         if (pkp->dtpk_id != DTRACE_IDNONE) {
6969                 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
6970                     dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
6971                         if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL)
6972                                 return (DTRACE_MATCH_FAIL);
6973                         nmatched++;
6974                 }
6975                 return (nmatched);
6976         }
6977 
6978         template.dtpr_mod = (char *)pkp->dtpk_mod;
6979         template.dtpr_func = (char *)pkp->dtpk_func;
6980         template.dtpr_name = (char *)pkp->dtpk_name;
6981 
6982         /*
6983          * We want to find the most distinct of the module name, function
6984          * name, and name.  So for each one that is not a glob pattern or
6985          * empty string, we perform a lookup in the corresponding hash and
6986          * use the hash table with the fewest collisions to do our search.
6987          */
6988         if (pkp->dtpk_mmatch == &dtrace_match_string &&
6989             (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
6990                 best = len;
6991                 hash = dtrace_bymod;
6992         }
6993 
6994         if (pkp->dtpk_fmatch == &dtrace_match_string &&
6995             (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
6996                 best = len;
6997                 hash = dtrace_byfunc;
6998         }
6999 
7000         if (pkp->dtpk_nmatch == &dtrace_match_string &&
7001             (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
7002                 best = len;
7003                 hash = dtrace_byname;
7004         }
7005 
7006         /*
7007          * If we did not select a hash table, iterate over every probe and
7008          * invoke our callback for each one that matches our input probe key.
7009          */
7010         if (hash == NULL) {
7011                 for (i = 0; i < dtrace_nprobes; i++) {
7012                         if ((probe = dtrace_probes[i]) == NULL ||
7013                             dtrace_match_probe(probe, pkp, priv, uid,
7014                             zoneid) <= 0)
7015                                 continue;
7016 
7017                         nmatched++;
7018 
7019                         if ((rc = (*matched)(probe, arg)) !=
7020                             DTRACE_MATCH_NEXT) {
7021                                 if (rc == DTRACE_MATCH_FAIL)
7022                                         return (DTRACE_MATCH_FAIL);
7023                                 break;
7024                         }
7025                 }
7026 
7027                 return (nmatched);
7028         }
7029 
7030         /*
7031          * If we selected a hash table, iterate over each probe of the same key
7032          * name and invoke the callback for every probe that matches the other
7033          * attributes of our input probe key.
7034          */
7035         for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
7036             probe = *(DTRACE_HASHNEXT(hash, probe))) {
7037 
7038                 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
7039                         continue;
7040 
7041                 nmatched++;
7042 
7043                 if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) {
7044                         if (rc == DTRACE_MATCH_FAIL)
7045                                 return (DTRACE_MATCH_FAIL);
7046                         break;
7047                 }
7048         }
7049 
7050         return (nmatched);
7051 }
7052 
7053 /*
7054  * Return the function pointer dtrace_probecmp() should use to compare the
7055  * specified pattern with a string.  For NULL or empty patterns, we select
7056  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
7057  * For non-empty non-glob strings, we use dtrace_match_string().
7058  */
7059 static dtrace_probekey_f *
7060 dtrace_probekey_func(const char *p)
7061 {
7062         char c;
7063 
7064         if (p == NULL || *p == '\0')
7065                 return (&dtrace_match_nul);
7066 
7067         while ((c = *p++) != '\0') {
7068                 if (c == '[' || c == '?' || c == '*' || c == '\\')
7069                         return (&dtrace_match_glob);
7070         }
7071 
7072         return (&dtrace_match_string);
7073 }
7074 
7075 /*
7076  * Build a probe comparison key for use with dtrace_match_probe() from the
7077  * given probe description.  By convention, a null key only matches anchored
7078  * probes: if each field is the empty string, reset dtpk_fmatch to
7079  * dtrace_match_nonzero().
7080  */
7081 static void
7082 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7083 {
7084         pkp->dtpk_prov = pdp->dtpd_provider;
7085         pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
7086 
7087         pkp->dtpk_mod = pdp->dtpd_mod;
7088         pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
7089 
7090         pkp->dtpk_func = pdp->dtpd_func;
7091         pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
7092 
7093         pkp->dtpk_name = pdp->dtpd_name;
7094         pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
7095 
7096         pkp->dtpk_id = pdp->dtpd_id;
7097 
7098         if (pkp->dtpk_id == DTRACE_IDNONE &&
7099             pkp->dtpk_pmatch == &dtrace_match_nul &&
7100             pkp->dtpk_mmatch == &dtrace_match_nul &&
7101             pkp->dtpk_fmatch == &dtrace_match_nul &&
7102             pkp->dtpk_nmatch == &dtrace_match_nul)
7103                 pkp->dtpk_fmatch = &dtrace_match_nonzero;
7104 }
7105 
7106 /*
7107  * DTrace Provider-to-Framework API Functions
7108  *
7109  * These functions implement much of the Provider-to-Framework API, as
7110  * described in <sys/dtrace.h>.  The parts of the API not in this section are
7111  * the functions in the API for probe management (found below), and
7112  * dtrace_probe() itself (found above).
7113  */
7114 
7115 /*
7116  * Register the calling provider with the DTrace framework.  This should
7117  * generally be called by DTrace providers in their attach(9E) entry point.
7118  */
7119 int
7120 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
7121     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7122 {
7123         dtrace_provider_t *provider;
7124 
7125         if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7126                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7127                     "arguments", name ? name : "<NULL>");
7128                 return (EINVAL);
7129         }
7130 
7131         if (name[0] == '\0' || dtrace_badname(name)) {
7132                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7133                     "provider name", name);
7134                 return (EINVAL);
7135         }
7136 
7137         if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
7138             pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
7139             pops->dtps_destroy == NULL ||
7140             ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
7141                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7142                     "provider ops", name);
7143                 return (EINVAL);
7144         }
7145 
7146         if (dtrace_badattr(&pap->dtpa_provider) ||
7147             dtrace_badattr(&pap->dtpa_mod) ||
7148             dtrace_badattr(&pap->dtpa_func) ||
7149             dtrace_badattr(&pap->dtpa_name) ||
7150             dtrace_badattr(&pap->dtpa_args)) {
7151                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7152                     "provider attributes", name);
7153                 return (EINVAL);
7154         }
7155 
7156         if (priv & ~DTRACE_PRIV_ALL) {
7157                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7158                     "privilege attributes", name);
7159                 return (EINVAL);
7160         }
7161 
7162         if ((priv & DTRACE_PRIV_KERNEL) &&
7163             (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7164             pops->dtps_mode == NULL) {
7165                 cmn_err(CE_WARN, "failed to register provider '%s': need "
7166                     "dtps_mode() op for given privilege attributes", name);
7167                 return (EINVAL);
7168         }
7169 
7170         provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7171         provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7172         (void) strcpy(provider->dtpv_name, name);
7173 
7174         provider->dtpv_attr = *pap;
7175         provider->dtpv_priv.dtpp_flags = priv;
7176         if (cr != NULL) {
7177                 provider->dtpv_priv.dtpp_uid = crgetuid(cr);
7178                 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
7179         }
7180         provider->dtpv_pops = *pops;
7181 
7182         if (pops->dtps_provide == NULL) {
7183                 ASSERT(pops->dtps_provide_module != NULL);
7184                 provider->dtpv_pops.dtps_provide =
7185                     (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop;
7186         }
7187 
7188         if (pops->dtps_provide_module == NULL) {
7189                 ASSERT(pops->dtps_provide != NULL);
7190                 provider->dtpv_pops.dtps_provide_module =
7191                     (void (*)(void *, struct modctl *))dtrace_nullop;
7192         }
7193 
7194         if (pops->dtps_suspend == NULL) {
7195                 ASSERT(pops->dtps_resume == NULL);
7196                 provider->dtpv_pops.dtps_suspend =
7197                     (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7198                 provider->dtpv_pops.dtps_resume =
7199                     (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7200         }
7201 
7202         provider->dtpv_arg = arg;
7203         *idp = (dtrace_provider_id_t)provider;
7204 
7205         if (pops == &dtrace_provider_ops) {
7206                 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7207                 ASSERT(MUTEX_HELD(&dtrace_lock));
7208                 ASSERT(dtrace_anon.dta_enabling == NULL);
7209 
7210                 /*
7211                  * We make sure that the DTrace provider is at the head of
7212                  * the provider chain.
7213                  */
7214                 provider->dtpv_next = dtrace_provider;
7215                 dtrace_provider = provider;
7216                 return (0);
7217         }
7218 
7219         mutex_enter(&dtrace_provider_lock);
7220         mutex_enter(&dtrace_lock);
7221 
7222         /*
7223          * If there is at least one provider registered, we'll add this
7224          * provider after the first provider.
7225          */
7226         if (dtrace_provider != NULL) {
7227                 provider->dtpv_next = dtrace_provider->dtpv_next;
7228                 dtrace_provider->dtpv_next = provider;
7229         } else {
7230                 dtrace_provider = provider;
7231         }
7232 
7233         if (dtrace_retained != NULL) {
7234                 dtrace_enabling_provide(provider);
7235 
7236                 /*
7237                  * Now we need to call dtrace_enabling_matchall() -- which
7238                  * will acquire cpu_lock and dtrace_lock.  We therefore need
7239                  * to drop all of our locks before calling into it...
7240                  */
7241                 mutex_exit(&dtrace_lock);
7242                 mutex_exit(&dtrace_provider_lock);
7243                 dtrace_enabling_matchall();
7244 
7245                 return (0);
7246         }
7247 
7248         mutex_exit(&dtrace_lock);
7249         mutex_exit(&dtrace_provider_lock);
7250 
7251         return (0);
7252 }
7253 
7254 /*
7255  * Unregister the specified provider from the DTrace framework.  This should
7256  * generally be called by DTrace providers in their detach(9E) entry point.
7257  */
7258 int
7259 dtrace_unregister(dtrace_provider_id_t id)
7260 {
7261         dtrace_provider_t *old = (dtrace_provider_t *)id;
7262         dtrace_provider_t *prev = NULL;
7263         int i, self = 0, noreap = 0;
7264         dtrace_probe_t *probe, *first = NULL;
7265 
7266         if (old->dtpv_pops.dtps_enable ==
7267             (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) {
7268                 /*
7269                  * If DTrace itself is the provider, we're called with locks
7270                  * already held.
7271                  */
7272                 ASSERT(old == dtrace_provider);
7273                 ASSERT(dtrace_devi != NULL);
7274                 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7275                 ASSERT(MUTEX_HELD(&dtrace_lock));
7276                 self = 1;
7277 
7278                 if (dtrace_provider->dtpv_next != NULL) {
7279                         /*
7280                          * There's another provider here; return failure.
7281                          */
7282                         return (EBUSY);
7283                 }
7284         } else {
7285                 mutex_enter(&dtrace_provider_lock);
7286                 mutex_enter(&mod_lock);
7287                 mutex_enter(&dtrace_lock);
7288         }
7289 
7290         /*
7291          * If anyone has /dev/dtrace open, or if there are anonymous enabled
7292          * probes, we refuse to let providers slither away, unless this
7293          * provider has already been explicitly invalidated.
7294          */
7295         if (!old->dtpv_defunct &&
7296             (dtrace_opens || (dtrace_anon.dta_state != NULL &&
7297             dtrace_anon.dta_state->dts_necbs > 0))) {
7298                 if (!self) {
7299                         mutex_exit(&dtrace_lock);
7300                         mutex_exit(&mod_lock);
7301                         mutex_exit(&dtrace_provider_lock);
7302                 }
7303                 return (EBUSY);
7304         }
7305 
7306         /*
7307          * Attempt to destroy the probes associated with this provider.
7308          */
7309         for (i = 0; i < dtrace_nprobes; i++) {
7310                 if ((probe = dtrace_probes[i]) == NULL)
7311                         continue;
7312 
7313                 if (probe->dtpr_provider != old)
7314                         continue;
7315 
7316                 if (probe->dtpr_ecb == NULL)
7317                         continue;
7318 
7319                 /*
7320                  * If we are trying to unregister a defunct provider, and the
7321                  * provider was made defunct within the interval dictated by
7322                  * dtrace_unregister_defunct_reap, we'll (asynchronously)
7323                  * attempt to reap our enablings.  To denote that the provider
7324                  * should reattempt to unregister itself at some point in the
7325                  * future, we will return a differentiable error code (EAGAIN
7326                  * instead of EBUSY) in this case.
7327                  */
7328                 if (dtrace_gethrtime() - old->dtpv_defunct >
7329                     dtrace_unregister_defunct_reap)
7330                         noreap = 1;
7331 
7332                 if (!self) {
7333                         mutex_exit(&dtrace_lock);
7334                         mutex_exit(&mod_lock);
7335                         mutex_exit(&dtrace_provider_lock);
7336                 }
7337 
7338                 if (noreap)
7339                         return (EBUSY);
7340 
7341                 (void) taskq_dispatch(dtrace_taskq,
7342                     (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
7343 
7344                 return (EAGAIN);
7345         }
7346 
7347         /*
7348          * All of the probes for this provider are disabled; we can safely
7349          * remove all of them from their hash chains and from the probe array.
7350          */
7351         for (i = 0; i < dtrace_nprobes; i++) {
7352                 if ((probe = dtrace_probes[i]) == NULL)
7353                         continue;
7354 
7355                 if (probe->dtpr_provider != old)
7356                         continue;
7357 
7358                 dtrace_probes[i] = NULL;
7359 
7360                 dtrace_hash_remove(dtrace_bymod, probe);
7361                 dtrace_hash_remove(dtrace_byfunc, probe);
7362                 dtrace_hash_remove(dtrace_byname, probe);
7363 
7364                 if (first == NULL) {
7365                         first = probe;
7366                         probe->dtpr_nextmod = NULL;
7367                 } else {
7368                         probe->dtpr_nextmod = first;
7369                         first = probe;
7370                 }
7371         }
7372 
7373         /*
7374          * The provider's probes have been removed from the hash chains and
7375          * from the probe array.  Now issue a dtrace_sync() to be sure that
7376          * everyone has cleared out from any probe array processing.
7377          */
7378         dtrace_sync();
7379 
7380         for (probe = first; probe != NULL; probe = first) {
7381                 first = probe->dtpr_nextmod;
7382 
7383                 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
7384                     probe->dtpr_arg);
7385                 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7386                 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7387                 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7388                 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
7389                 kmem_free(probe, sizeof (dtrace_probe_t));
7390         }
7391 
7392         if ((prev = dtrace_provider) == old) {
7393                 ASSERT(self || dtrace_devi == NULL);
7394                 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
7395                 dtrace_provider = old->dtpv_next;
7396         } else {
7397                 while (prev != NULL && prev->dtpv_next != old)
7398                         prev = prev->dtpv_next;
7399 
7400                 if (prev == NULL) {
7401                         panic("attempt to unregister non-existent "
7402                             "dtrace provider %p\n", (void *)id);
7403                 }
7404 
7405                 prev->dtpv_next = old->dtpv_next;
7406         }
7407 
7408         if (!self) {
7409                 mutex_exit(&dtrace_lock);
7410                 mutex_exit(&mod_lock);
7411                 mutex_exit(&dtrace_provider_lock);
7412         }
7413 
7414         kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
7415         kmem_free(old, sizeof (dtrace_provider_t));
7416 
7417         return (0);
7418 }
7419 
7420 /*
7421  * Invalidate the specified provider.  All subsequent probe lookups for the
7422  * specified provider will fail, but its probes will not be removed.
7423  */
7424 void
7425 dtrace_invalidate(dtrace_provider_id_t id)
7426 {
7427         dtrace_provider_t *pvp = (dtrace_provider_t *)id;
7428 
7429         ASSERT(pvp->dtpv_pops.dtps_enable !=
7430             (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
7431 
7432         mutex_enter(&dtrace_provider_lock);
7433         mutex_enter(&dtrace_lock);
7434 
7435         pvp->dtpv_defunct = dtrace_gethrtime();
7436 
7437         mutex_exit(&dtrace_lock);
7438         mutex_exit(&dtrace_provider_lock);
7439 }
7440 
7441 /*
7442  * Indicate whether or not DTrace has attached.
7443  */
7444 int
7445 dtrace_attached(void)
7446 {
7447         /*
7448          * dtrace_provider will be non-NULL iff the DTrace driver has
7449          * attached.  (It's non-NULL because DTrace is always itself a
7450          * provider.)
7451          */
7452         return (dtrace_provider != NULL);
7453 }
7454 
7455 /*
7456  * Remove all the unenabled probes for the given provider.  This function is
7457  * not unlike dtrace_unregister(), except that it doesn't remove the provider
7458  * -- just as many of its associated probes as it can.
7459  */
7460 int
7461 dtrace_condense(dtrace_provider_id_t id)
7462 {
7463         dtrace_provider_t *prov = (dtrace_provider_t *)id;
7464         int i;
7465         dtrace_probe_t *probe;
7466 
7467         /*
7468          * Make sure this isn't the dtrace provider itself.
7469          */
7470         ASSERT(prov->dtpv_pops.dtps_enable !=
7471             (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
7472 
7473         mutex_enter(&dtrace_provider_lock);
7474         mutex_enter(&dtrace_lock);
7475 
7476         /*
7477          * Attempt to destroy the probes associated with this provider.
7478          */
7479         for (i = 0; i < dtrace_nprobes; i++) {
7480                 if ((probe = dtrace_probes[i]) == NULL)
7481                         continue;
7482 
7483                 if (probe->dtpr_provider != prov)
7484                         continue;
7485 
7486                 if (probe->dtpr_ecb != NULL)
7487                         continue;
7488 
7489                 dtrace_probes[i] = NULL;
7490 
7491                 dtrace_hash_remove(dtrace_bymod, probe);
7492                 dtrace_hash_remove(dtrace_byfunc, probe);
7493                 dtrace_hash_remove(dtrace_byname, probe);
7494 
7495                 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
7496                     probe->dtpr_arg);
7497                 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7498                 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7499                 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7500                 kmem_free(probe, sizeof (dtrace_probe_t));
7501                 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
7502         }
7503 
7504         mutex_exit(&dtrace_lock);
7505         mutex_exit(&dtrace_provider_lock);
7506 
7507         return (0);
7508 }
7509 
7510 /*
7511  * DTrace Probe Management Functions
7512  *
7513  * The functions in this section perform the DTrace probe management,
7514  * including functions to create probes, look-up probes, and call into the
7515  * providers to request that probes be provided.  Some of these functions are
7516  * in the Provider-to-Framework API; these functions can be identified by the
7517  * fact that they are not declared "static".
7518  */
7519 
7520 /*
7521  * Create a probe with the specified module name, function name, and name.
7522  */
7523 dtrace_id_t
7524 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
7525     const char *func, const char *name, int aframes, void *arg)
7526 {
7527         dtrace_probe_t *probe, **probes;
7528         dtrace_provider_t *provider = (dtrace_provider_t *)prov;
7529         dtrace_id_t id;
7530 
7531         if (provider == dtrace_provider) {
7532                 ASSERT(MUTEX_HELD(&dtrace_lock));
7533         } else {
7534                 mutex_enter(&dtrace_lock);
7535         }
7536 
7537         id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
7538             VM_BESTFIT | VM_SLEEP);
7539         probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
7540 
7541         probe->dtpr_id = id;
7542         probe->dtpr_gen = dtrace_probegen++;
7543         probe->dtpr_mod = dtrace_strdup(mod);
7544         probe->dtpr_func = dtrace_strdup(func);
7545         probe->dtpr_name = dtrace_strdup(name);
7546         probe->dtpr_arg = arg;
7547         probe->dtpr_aframes = aframes;
7548         probe->dtpr_provider = provider;
7549 
7550         dtrace_hash_add(dtrace_bymod, probe);
7551         dtrace_hash_add(dtrace_byfunc, probe);
7552         dtrace_hash_add(dtrace_byname, probe);
7553 
7554         if (id - 1 >= dtrace_nprobes) {
7555                 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
7556                 size_t nsize = osize << 1;
7557 
7558                 if (nsize == 0) {
7559                         ASSERT(osize == 0);
7560                         ASSERT(dtrace_probes == NULL);
7561                         nsize = sizeof (dtrace_probe_t *);
7562                 }
7563 
7564                 probes = kmem_zalloc(nsize, KM_SLEEP);
7565 
7566                 if (dtrace_probes == NULL) {
7567                         ASSERT(osize == 0);
7568                         dtrace_probes = probes;
7569                         dtrace_nprobes = 1;
7570                 } else {
7571                         dtrace_probe_t **oprobes = dtrace_probes;
7572 
7573                         bcopy(oprobes, probes, osize);
7574                         dtrace_membar_producer();
7575                         dtrace_probes = probes;
7576 
7577                         dtrace_sync();
7578 
7579                         /*
7580                          * All CPUs are now seeing the new probes array; we can
7581                          * safely free the old array.
7582                          */
7583                         kmem_free(oprobes, osize);
7584                         dtrace_nprobes <<= 1;
7585                 }
7586 
7587                 ASSERT(id - 1 < dtrace_nprobes);
7588         }
7589 
7590         ASSERT(dtrace_probes[id - 1] == NULL);
7591         dtrace_probes[id - 1] = probe;
7592 
7593         if (provider != dtrace_provider)
7594                 mutex_exit(&dtrace_lock);
7595 
7596         return (id);
7597 }
7598 
7599 static dtrace_probe_t *
7600 dtrace_probe_lookup_id(dtrace_id_t id)
7601 {
7602         ASSERT(MUTEX_HELD(&dtrace_lock));
7603 
7604         if (id == 0 || id > dtrace_nprobes)
7605                 return (NULL);
7606 
7607         return (dtrace_probes[id - 1]);
7608 }
7609 
7610 static int
7611 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
7612 {
7613         *((dtrace_id_t *)arg) = probe->dtpr_id;
7614 
7615         return (DTRACE_MATCH_DONE);
7616 }
7617 
7618 /*
7619  * Look up a probe based on provider and one or more of module name, function
7620  * name and probe name.
7621  */
7622 dtrace_id_t
7623 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod,
7624     const char *func, const char *name)
7625 {
7626         dtrace_probekey_t pkey;
7627         dtrace_id_t id;
7628         int match;
7629 
7630         pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
7631         pkey.dtpk_pmatch = &dtrace_match_string;
7632         pkey.dtpk_mod = mod;
7633         pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
7634         pkey.dtpk_func = func;
7635         pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
7636         pkey.dtpk_name = name;
7637         pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
7638         pkey.dtpk_id = DTRACE_IDNONE;
7639 
7640         mutex_enter(&dtrace_lock);
7641         match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
7642             dtrace_probe_lookup_match, &id);
7643         mutex_exit(&dtrace_lock);
7644 
7645         ASSERT(match == 1 || match == 0);
7646         return (match ? id : 0);
7647 }
7648 
7649 /*
7650  * Returns the probe argument associated with the specified probe.
7651  */
7652 void *
7653 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
7654 {
7655         dtrace_probe_t *probe;
7656         void *rval = NULL;
7657 
7658         mutex_enter(&dtrace_lock);
7659 
7660         if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
7661             probe->dtpr_provider == (dtrace_provider_t *)id)
7662                 rval = probe->dtpr_arg;
7663 
7664         mutex_exit(&dtrace_lock);
7665 
7666         return (rval);
7667 }
7668 
7669 /*
7670  * Copy a probe into a probe description.
7671  */
7672 static void
7673 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
7674 {
7675         bzero(pdp, sizeof (dtrace_probedesc_t));
7676         pdp->dtpd_id = prp->dtpr_id;
7677 
7678         (void) strncpy(pdp->dtpd_provider,
7679             prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
7680 
7681         (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
7682         (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
7683         (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
7684 }
7685 
7686 /*
7687  * Called to indicate that a probe -- or probes -- should be provided by a
7688  * specfied provider.  If the specified description is NULL, the provider will
7689  * be told to provide all of its probes.  (This is done whenever a new
7690  * consumer comes along, or whenever a retained enabling is to be matched.) If
7691  * the specified description is non-NULL, the provider is given the
7692  * opportunity to dynamically provide the specified probe, allowing providers
7693  * to support the creation of probes on-the-fly.  (So-called _autocreated_
7694  * probes.)  If the provider is NULL, the operations will be applied to all
7695  * providers; if the provider is non-NULL the operations will only be applied
7696  * to the specified provider.  The dtrace_provider_lock must be held, and the
7697  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
7698  * will need to grab the dtrace_lock when it reenters the framework through
7699  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
7700  */
7701 static void
7702 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
7703 {
7704         struct modctl *ctl;
7705         int all = 0;
7706 
7707         ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7708 
7709         if (prv == NULL) {
7710                 all = 1;
7711                 prv = dtrace_provider;
7712         }
7713 
7714         do {
7715                 /*
7716                  * First, call the blanket provide operation.
7717                  */
7718                 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
7719 
7720                 /*
7721                  * Now call the per-module provide operation.  We will grab
7722                  * mod_lock to prevent the list from being modified.  Note
7723                  * that this also prevents the mod_busy bits from changing.
7724                  * (mod_busy can only be changed with mod_lock held.)
7725                  */
7726                 mutex_enter(&mod_lock);
7727 
7728                 ctl = &modules;
7729                 do {
7730                         if (ctl->mod_busy || ctl->mod_mp == NULL)
7731                                 continue;
7732 
7733                         prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
7734 
7735                 } while ((ctl = ctl->mod_next) != &modules);
7736 
7737                 mutex_exit(&mod_lock);
7738         } while (all && (prv = prv->dtpv_next) != NULL);
7739 }
7740 
7741 /*
7742  * Iterate over each probe, and call the Framework-to-Provider API function
7743  * denoted by offs.
7744  */
7745 static void
7746 dtrace_probe_foreach(uintptr_t offs)
7747 {
7748         dtrace_provider_t *prov;
7749         void (*func)(void *, dtrace_id_t, void *);
7750         dtrace_probe_t *probe;
7751         dtrace_icookie_t cookie;
7752         int i;
7753 
7754         /*
7755          * We disable interrupts to walk through the probe array.  This is
7756          * safe -- the dtrace_sync() in dtrace_unregister() assures that we
7757          * won't see stale data.
7758          */
7759         cookie = dtrace_interrupt_disable();
7760 
7761         for (i = 0; i < dtrace_nprobes; i++) {
7762                 if ((probe = dtrace_probes[i]) == NULL)
7763                         continue;
7764 
7765                 if (probe->dtpr_ecb == NULL) {
7766                         /*
7767                          * This probe isn't enabled -- don't call the function.
7768                          */
7769                         continue;
7770                 }
7771 
7772                 prov = probe->dtpr_provider;
7773                 func = *((void(**)(void *, dtrace_id_t, void *))
7774                     ((uintptr_t)&prov->dtpv_pops + offs));
7775 
7776                 func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
7777         }
7778 
7779         dtrace_interrupt_enable(cookie);
7780 }
7781 
7782 static int
7783 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
7784 {
7785         dtrace_probekey_t pkey;
7786         uint32_t priv;
7787         uid_t uid;
7788         zoneid_t zoneid;
7789 
7790         ASSERT(MUTEX_HELD(&dtrace_lock));
7791         dtrace_ecb_create_cache = NULL;
7792 
7793         if (desc == NULL) {
7794                 /*
7795                  * If we're passed a NULL description, we're being asked to
7796                  * create an ECB with a NULL probe.
7797                  */
7798                 (void) dtrace_ecb_create_enable(NULL, enab);
7799                 return (0);
7800         }
7801 
7802         dtrace_probekey(desc, &pkey);
7803         dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
7804             &priv, &uid, &zoneid);
7805 
7806         return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
7807             enab));
7808 }
7809 
7810 /*
7811  * DTrace Helper Provider Functions
7812  */
7813 static void
7814 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
7815 {
7816         attr->dtat_name = DOF_ATTR_NAME(dofattr);
7817         attr->dtat_data = DOF_ATTR_DATA(dofattr);
7818         attr->dtat_class = DOF_ATTR_CLASS(dofattr);
7819 }
7820 
7821 static void
7822 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
7823     const dof_provider_t *dofprov, char *strtab)
7824 {
7825         hprov->dthpv_provname = strtab + dofprov->dofpv_name;
7826         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
7827             dofprov->dofpv_provattr);
7828         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
7829             dofprov->dofpv_modattr);
7830         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
7831             dofprov->dofpv_funcattr);
7832         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
7833             dofprov->dofpv_nameattr);
7834         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
7835             dofprov->dofpv_argsattr);
7836 }
7837 
7838 static void
7839 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
7840 {
7841         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
7842         dof_hdr_t *dof = (dof_hdr_t *)daddr;
7843         dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
7844         dof_provider_t *provider;
7845         dof_probe_t *probe;
7846         uint32_t *off, *enoff;
7847         uint8_t *arg;
7848         char *strtab;
7849         uint_t i, nprobes;
7850         dtrace_helper_provdesc_t dhpv;
7851         dtrace_helper_probedesc_t dhpb;
7852         dtrace_meta_t *meta = dtrace_meta_pid;
7853         dtrace_mops_t *mops = &meta->dtm_mops;
7854         void *parg;
7855 
7856         provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
7857         str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7858             provider->dofpv_strtab * dof->dofh_secsize);
7859         prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7860             provider->dofpv_probes * dof->dofh_secsize);
7861         arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7862             provider->dofpv_prargs * dof->dofh_secsize);
7863         off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7864             provider->dofpv_proffs * dof->dofh_secsize);
7865 
7866         strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
7867         off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
7868         arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
7869         enoff = NULL;
7870 
7871         /*
7872          * See dtrace_helper_provider_validate().
7873          */
7874         if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
7875             provider->dofpv_prenoffs != DOF_SECT_NONE) {
7876                 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7877                     provider->dofpv_prenoffs * dof->dofh_secsize);
7878                 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
7879         }
7880 
7881         nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
7882 
7883         /*
7884          * Create the provider.
7885          */
7886         dtrace_dofprov2hprov(&dhpv, provider, strtab);
7887 
7888         if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
7889                 return;
7890 
7891         meta->dtm_count++;
7892 
7893         /*
7894          * Create the probes.
7895          */
7896         for (i = 0; i < nprobes; i++) {
7897                 probe = (dof_probe_t *)(uintptr_t)(daddr +
7898                     prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
7899 
7900                 dhpb.dthpb_mod = dhp->dofhp_mod;
7901                 dhpb.dthpb_func = strtab + probe->dofpr_func;
7902                 dhpb.dthpb_name = strtab + probe->dofpr_name;
7903                 dhpb.dthpb_base = probe->dofpr_addr;
7904                 dhpb.dthpb_offs = off + probe->dofpr_offidx;
7905                 dhpb.dthpb_noffs = probe->dofpr_noffs;
7906                 if (enoff != NULL) {
7907                         dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
7908                         dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
7909                 } else {
7910                         dhpb.dthpb_enoffs = NULL;
7911                         dhpb.dthpb_nenoffs = 0;
7912                 }
7913                 dhpb.dthpb_args = arg + probe->dofpr_argidx;
7914                 dhpb.dthpb_nargc = probe->dofpr_nargc;
7915                 dhpb.dthpb_xargc = probe->dofpr_xargc;
7916                 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
7917                 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
7918 
7919                 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
7920         }
7921 }
7922 
7923 static void
7924 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
7925 {
7926         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
7927         dof_hdr_t *dof = (dof_hdr_t *)daddr;
7928         int i;
7929 
7930         ASSERT(MUTEX_HELD(&dtrace_meta_lock));
7931 
7932         for (i = 0; i < dof->dofh_secnum; i++) {
7933                 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
7934                     dof->dofh_secoff + i * dof->dofh_secsize);
7935 
7936                 if (sec->dofs_type != DOF_SECT_PROVIDER)
7937                         continue;
7938 
7939                 dtrace_helper_provide_one(dhp, sec, pid);
7940         }
7941 
7942         /*
7943          * We may have just created probes, so we must now rematch against
7944          * any retained enablings.  Note that this call will acquire both
7945          * cpu_lock and dtrace_lock; the fact that we are holding
7946          * dtrace_meta_lock now is what defines the ordering with respect to
7947          * these three locks.
7948          */
7949         dtrace_enabling_matchall();
7950 }
7951 
7952 static void
7953 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
7954 {
7955         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
7956         dof_hdr_t *dof = (dof_hdr_t *)daddr;
7957         dof_sec_t *str_sec;
7958         dof_provider_t *provider;
7959         char *strtab;
7960         dtrace_helper_provdesc_t dhpv;
7961         dtrace_meta_t *meta = dtrace_meta_pid;
7962         dtrace_mops_t *mops = &meta->dtm_mops;
7963 
7964         provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
7965         str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7966             provider->dofpv_strtab * dof->dofh_secsize);
7967 
7968         strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
7969 
7970         /*
7971          * Create the provider.
7972          */
7973         dtrace_dofprov2hprov(&dhpv, provider, strtab);
7974 
7975         mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
7976 
7977         meta->dtm_count--;
7978 }
7979 
7980 static void
7981 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
7982 {
7983         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
7984         dof_hdr_t *dof = (dof_hdr_t *)daddr;
7985         int i;
7986 
7987         ASSERT(MUTEX_HELD(&dtrace_meta_lock));
7988 
7989         for (i = 0; i < dof->dofh_secnum; i++) {
7990                 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
7991                     dof->dofh_secoff + i * dof->dofh_secsize);
7992 
7993                 if (sec->dofs_type != DOF_SECT_PROVIDER)
7994                         continue;
7995 
7996                 dtrace_helper_provider_remove_one(dhp, sec, pid);
7997         }
7998 }
7999 
8000 /*
8001  * DTrace Meta Provider-to-Framework API Functions
8002  *
8003  * These functions implement the Meta Provider-to-Framework API, as described
8004  * in <sys/dtrace.h>.
8005  */
8006 int
8007 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
8008     dtrace_meta_provider_id_t *idp)
8009 {
8010         dtrace_meta_t *meta;
8011         dtrace_helpers_t *help, *next;
8012         int i;
8013 
8014         *idp = DTRACE_METAPROVNONE;
8015 
8016         /*
8017          * We strictly don't need the name, but we hold onto it for
8018          * debuggability. All hail error queues!
8019          */
8020         if (name == NULL) {
8021                 cmn_err(CE_WARN, "failed to register meta-provider: "
8022                     "invalid name");
8023                 return (EINVAL);
8024         }
8025 
8026         if (mops == NULL ||
8027             mops->dtms_create_probe == NULL ||
8028             mops->dtms_provide_pid == NULL ||
8029             mops->dtms_remove_pid == NULL) {
8030                 cmn_err(CE_WARN, "failed to register meta-register %s: "
8031                     "invalid ops", name);
8032                 return (EINVAL);
8033         }
8034 
8035         meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
8036         meta->dtm_mops = *mops;
8037         meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8038         (void) strcpy(meta->dtm_name, name);
8039         meta->dtm_arg = arg;
8040 
8041         mutex_enter(&dtrace_meta_lock);
8042         mutex_enter(&dtrace_lock);
8043 
8044         if (dtrace_meta_pid != NULL) {
8045                 mutex_exit(&dtrace_lock);
8046                 mutex_exit(&dtrace_meta_lock);
8047                 cmn_err(CE_WARN, "failed to register meta-register %s: "
8048                     "user-land meta-provider exists", name);
8049                 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
8050                 kmem_free(meta, sizeof (dtrace_meta_t));
8051                 return (EINVAL);
8052         }
8053 
8054         dtrace_meta_pid = meta;
8055         *idp = (dtrace_meta_provider_id_t)meta;
8056 
8057         /*
8058          * If there are providers and probes ready to go, pass them
8059          * off to the new meta provider now.
8060          */
8061 
8062         help = dtrace_deferred_pid;
8063         dtrace_deferred_pid = NULL;
8064 
8065         mutex_exit(&dtrace_lock);
8066 
8067         while (help != NULL) {
8068                 for (i = 0; i < help->dthps_nprovs; i++) {
8069                         dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
8070                             help->dthps_pid);
8071                 }
8072 
8073                 next = help->dthps_next;
8074                 help->dthps_next = NULL;
8075                 help->dthps_prev = NULL;
8076                 help->dthps_deferred = 0;
8077                 help = next;
8078         }
8079 
8080         mutex_exit(&dtrace_meta_lock);
8081 
8082         return (0);
8083 }
8084 
8085 int
8086 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
8087 {
8088         dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
8089 
8090         mutex_enter(&dtrace_meta_lock);
8091         mutex_enter(&dtrace_lock);
8092 
8093         if (old == dtrace_meta_pid) {
8094                 pp = &dtrace_meta_pid;
8095         } else {
8096                 panic("attempt to unregister non-existent "
8097                     "dtrace meta-provider %p\n", (void *)old);
8098         }
8099 
8100         if (old->dtm_count != 0) {
8101                 mutex_exit(&dtrace_lock);
8102                 mutex_exit(&dtrace_meta_lock);
8103                 return (EBUSY);
8104         }
8105 
8106         *pp = NULL;
8107 
8108         mutex_exit(&dtrace_lock);
8109         mutex_exit(&dtrace_meta_lock);
8110 
8111         kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8112         kmem_free(old, sizeof (dtrace_meta_t));
8113 
8114         return (0);
8115 }
8116 
8117 
8118 /*
8119  * DTrace DIF Object Functions
8120  */
8121 static int
8122 dtrace_difo_err(uint_t pc, const char *format, ...)
8123 {
8124         if (dtrace_err_verbose) {
8125                 va_list alist;
8126 
8127                 (void) uprintf("dtrace DIF object error: [%u]: ", pc);
8128                 va_start(alist, format);
8129                 (void) vuprintf(format, alist);
8130                 va_end(alist);
8131         }
8132 
8133 #ifdef DTRACE_ERRDEBUG
8134         dtrace_errdebug(format);
8135 #endif
8136         return (1);
8137 }
8138 
8139 /*
8140  * Validate a DTrace DIF object by checking the IR instructions.  The following
8141  * rules are currently enforced by dtrace_difo_validate():
8142  *
8143  * 1. Each instruction must have a valid opcode
8144  * 2. Each register, string, variable, or subroutine reference must be valid
8145  * 3. No instruction can modify register %r0 (must be zero)
8146  * 4. All instruction reserved bits must be set to zero
8147  * 5. The last instruction must be a "ret" instruction
8148  * 6. All branch targets must reference a valid instruction _after_ the branch
8149  */
8150 static int
8151 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8152     cred_t *cr)
8153 {
8154         int err = 0, i;
8155         int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8156         int kcheckload;
8157         uint_t pc;
8158 
8159         kcheckload = cr == NULL ||
8160             (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
8161 
8162         dp->dtdo_destructive = 0;
8163 
8164         for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8165                 dif_instr_t instr = dp->dtdo_buf[pc];
8166 
8167                 uint_t r1 = DIF_INSTR_R1(instr);
8168                 uint_t r2 = DIF_INSTR_R2(instr);
8169                 uint_t rd = DIF_INSTR_RD(instr);
8170                 uint_t rs = DIF_INSTR_RS(instr);
8171                 uint_t label = DIF_INSTR_LABEL(instr);
8172                 uint_t v = DIF_INSTR_VAR(instr);
8173                 uint_t subr = DIF_INSTR_SUBR(instr);
8174                 uint_t type = DIF_INSTR_TYPE(instr);
8175                 uint_t op = DIF_INSTR_OP(instr);
8176 
8177                 switch (op) {
8178                 case DIF_OP_OR:
8179                 case DIF_OP_XOR:
8180                 case DIF_OP_AND:
8181                 case DIF_OP_SLL:
8182                 case DIF_OP_SRL:
8183                 case DIF_OP_SRA:
8184                 case DIF_OP_SUB:
8185                 case DIF_OP_ADD:
8186                 case DIF_OP_MUL:
8187                 case DIF_OP_SDIV:
8188                 case DIF_OP_UDIV:
8189                 case DIF_OP_SREM:
8190                 case DIF_OP_UREM:
8191                 case DIF_OP_COPYS:
8192                         if (r1 >= nregs)
8193                                 err += efunc(pc, "invalid register %u\n", r1);
8194                         if (r2 >= nregs)
8195                                 err += efunc(pc, "invalid register %u\n", r2);
8196                         if (rd >= nregs)
8197                                 err += efunc(pc, "invalid register %u\n", rd);
8198                         if (rd == 0)
8199                                 err += efunc(pc, "cannot write to %r0\n");
8200                         break;
8201                 case DIF_OP_NOT:
8202                 case DIF_OP_MOV:
8203                 case DIF_OP_ALLOCS:
8204                         if (r1 >= nregs)
8205                                 err += efunc(pc, "invalid register %u\n", r1);
8206                         if (r2 != 0)
8207                                 err += efunc(pc, "non-zero reserved bits\n");
8208                         if (rd >= nregs)
8209                                 err += efunc(pc, "invalid register %u\n", rd);
8210                         if (rd == 0)
8211                                 err += efunc(pc, "cannot write to %r0\n");
8212                         break;
8213                 case DIF_OP_LDSB:
8214                 case DIF_OP_LDSH:
8215                 case DIF_OP_LDSW:
8216                 case DIF_OP_LDUB:
8217                 case DIF_OP_LDUH:
8218                 case DIF_OP_LDUW:
8219                 case DIF_OP_LDX:
8220                         if (r1 >= nregs)
8221                                 err += efunc(pc, "invalid register %u\n", r1);
8222                         if (r2 != 0)
8223                                 err += efunc(pc, "non-zero reserved bits\n");
8224                         if (rd >= nregs)
8225                                 err += efunc(pc, "invalid register %u\n", rd);
8226                         if (rd == 0)
8227                                 err += efunc(pc, "cannot write to %r0\n");
8228                         if (kcheckload)
8229                                 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
8230                                     DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
8231                         break;
8232                 case DIF_OP_RLDSB:
8233                 case DIF_OP_RLDSH:
8234                 case DIF_OP_RLDSW:
8235                 case DIF_OP_RLDUB:
8236                 case DIF_OP_RLDUH:
8237                 case DIF_OP_RLDUW:
8238                 case DIF_OP_RLDX:
8239                         if (r1 >= nregs)
8240                                 err += efunc(pc, "invalid register %u\n", r1);
8241                         if (r2 != 0)
8242                                 err += efunc(pc, "non-zero reserved bits\n");
8243                         if (rd >= nregs)
8244                                 err += efunc(pc, "invalid register %u\n", rd);
8245                         if (rd == 0)
8246                                 err += efunc(pc, "cannot write to %r0\n");
8247                         break;
8248                 case DIF_OP_ULDSB:
8249                 case DIF_OP_ULDSH:
8250                 case DIF_OP_ULDSW:
8251                 case DIF_OP_ULDUB:
8252                 case DIF_OP_ULDUH:
8253                 case DIF_OP_ULDUW:
8254                 case DIF_OP_ULDX:
8255                         if (r1 >= nregs)
8256                                 err += efunc(pc, "invalid register %u\n", r1);
8257                         if (r2 != 0)
8258                                 err += efunc(pc, "non-zero reserved bits\n");
8259                         if (rd >= nregs)
8260                                 err += efunc(pc, "invalid register %u\n", rd);
8261                         if (rd == 0)
8262                                 err += efunc(pc, "cannot write to %r0\n");
8263                         break;
8264                 case DIF_OP_STB:
8265                 case DIF_OP_STH:
8266                 case DIF_OP_STW:
8267                 case DIF_OP_STX:
8268                         if (r1 >= nregs)
8269                                 err += efunc(pc, "invalid register %u\n", r1);
8270                         if (r2 != 0)
8271                                 err += efunc(pc, "non-zero reserved bits\n");
8272                         if (rd >= nregs)
8273                                 err += efunc(pc, "invalid register %u\n", rd);
8274                         if (rd == 0)
8275                                 err += efunc(pc, "cannot write to 0 address\n");
8276                         break;
8277                 case DIF_OP_CMP:
8278                 case DIF_OP_SCMP:
8279                         if (r1 >= nregs)
8280                                 err += efunc(pc, "invalid register %u\n", r1);
8281                         if (r2 >= nregs)
8282                                 err += efunc(pc, "invalid register %u\n", r2);
8283                         if (rd != 0)
8284                                 err += efunc(pc, "non-zero reserved bits\n");
8285                         break;
8286                 case DIF_OP_TST:
8287                         if (r1 >= nregs)
8288                                 err += efunc(pc, "invalid register %u\n", r1);
8289                         if (r2 != 0 || rd != 0)
8290                                 err += efunc(pc, "non-zero reserved bits\n");
8291                         break;
8292                 case DIF_OP_BA:
8293                 case DIF_OP_BE:
8294                 case DIF_OP_BNE:
8295                 case DIF_OP_BG:
8296                 case DIF_OP_BGU:
8297                 case DIF_OP_BGE:
8298                 case DIF_OP_BGEU:
8299                 case DIF_OP_BL:
8300                 case DIF_OP_BLU:
8301                 case DIF_OP_BLE:
8302                 case DIF_OP_BLEU:
8303                         if (label >= dp->dtdo_len) {
8304                                 err += efunc(pc, "invalid branch target %u\n",
8305                                     label);
8306                         }
8307                         if (label <= pc) {
8308                                 err += efunc(pc, "backward branch to %u\n",
8309                                     label);
8310                         }
8311                         break;
8312                 case DIF_OP_RET:
8313                         if (r1 != 0 || r2 != 0)
8314                                 err += efunc(pc, "non-zero reserved bits\n");
8315                         if (rd >= nregs)
8316                                 err += efunc(pc, "invalid register %u\n", rd);
8317                         break;
8318                 case DIF_OP_NOP:
8319                 case DIF_OP_POPTS:
8320                 case DIF_OP_FLUSHTS:
8321                         if (r1 != 0 || r2 != 0 || rd != 0)
8322                                 err += efunc(pc, "non-zero reserved bits\n");
8323                         break;
8324                 case DIF_OP_SETX:
8325                         if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
8326                                 err += efunc(pc, "invalid integer ref %u\n",
8327                                     DIF_INSTR_INTEGER(instr));
8328                         }
8329                         if (rd >= nregs)
8330                                 err += efunc(pc, "invalid register %u\n", rd);
8331                         if (rd == 0)
8332                                 err += efunc(pc, "cannot write to %r0\n");
8333                         break;
8334                 case DIF_OP_SETS:
8335                         if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
8336                                 err += efunc(pc, "invalid string ref %u\n",
8337                                     DIF_INSTR_STRING(instr));
8338                         }
8339                         if (rd >= nregs)
8340                                 err += efunc(pc, "invalid register %u\n", rd);
8341                         if (rd == 0)
8342                                 err += efunc(pc, "cannot write to %r0\n");
8343                         break;
8344                 case DIF_OP_LDGA:
8345                 case DIF_OP_LDTA:
8346                         if (r1 > DIF_VAR_ARRAY_MAX)
8347                                 err += efunc(pc, "invalid array %u\n", r1);
8348                         if (r2 >= nregs)
8349                                 err += efunc(pc, "invalid register %u\n", r2);
8350                         if (rd >= nregs)
8351                                 err += efunc(pc, "invalid register %u\n", rd);
8352                         if (rd == 0)
8353                                 err += efunc(pc, "cannot write to %r0\n");
8354                         break;
8355                 case DIF_OP_LDGS:
8356                 case DIF_OP_LDTS:
8357                 case DIF_OP_LDLS:
8358                 case DIF_OP_LDGAA:
8359                 case DIF_OP_LDTAA:
8360                         if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
8361                                 err += efunc(pc, "invalid variable %u\n", v);
8362                         if (rd >= nregs)
8363                                 err += efunc(pc, "invalid register %u\n", rd);
8364                         if (rd == 0)
8365                                 err += efunc(pc, "cannot write to %r0\n");
8366                         break;
8367                 case DIF_OP_STGS:
8368                 case DIF_OP_STTS:
8369                 case DIF_OP_STLS:
8370                 case DIF_OP_STGAA:
8371                 case DIF_OP_STTAA:
8372                         if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
8373                                 err += efunc(pc, "invalid variable %u\n", v);
8374                         if (rs >= nregs)
8375                                 err += efunc(pc, "invalid register %u\n", rd);
8376                         break;
8377                 case DIF_OP_CALL:
8378                         if (subr > DIF_SUBR_MAX)
8379                                 err += efunc(pc, "invalid subr %u\n", subr);
8380                         if (rd >= nregs)
8381                                 err += efunc(pc, "invalid register %u\n", rd);
8382                         if (rd == 0)
8383                                 err += efunc(pc, "cannot write to %r0\n");
8384 
8385                         if (subr == DIF_SUBR_COPYOUT ||
8386                             subr == DIF_SUBR_COPYOUTSTR) {
8387                                 dp->dtdo_destructive = 1;
8388                         }
8389                         break;
8390                 case DIF_OP_PUSHTR:
8391                         if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
8392                                 err += efunc(pc, "invalid ref type %u\n", type);
8393                         if (r2 >= nregs)
8394                                 err += efunc(pc, "invalid register %u\n", r2);
8395                         if (rs >= nregs)
8396                                 err += efunc(pc, "invalid register %u\n", rs);
8397                         break;
8398                 case DIF_OP_PUSHTV:
8399                         if (type != DIF_TYPE_CTF)
8400                                 err += efunc(pc, "invalid val type %u\n", type);
8401                         if (r2 >= nregs)
8402                                 err += efunc(pc, "invalid register %u\n", r2);
8403                         if (rs >= nregs)
8404                                 err += efunc(pc, "invalid register %u\n", rs);
8405                         break;
8406                 default:
8407                         err += efunc(pc, "invalid opcode %u\n",
8408                             DIF_INSTR_OP(instr));
8409                 }
8410         }
8411 
8412         if (dp->dtdo_len != 0 &&
8413             DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
8414                 err += efunc(dp->dtdo_len - 1,
8415                     "expected 'ret' as last DIF instruction\n");
8416         }
8417 
8418         if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
8419                 /*
8420                  * If we're not returning by reference, the size must be either
8421                  * 0 or the size of one of the base types.
8422                  */
8423                 switch (dp->dtdo_rtype.dtdt_size) {
8424                 case 0:
8425                 case sizeof (uint8_t):
8426                 case sizeof (uint16_t):
8427                 case sizeof (uint32_t):
8428                 case sizeof (uint64_t):
8429                         break;
8430 
8431                 default:
8432                         err += efunc(dp->dtdo_len - 1, "bad return size\n");
8433                 }
8434         }
8435 
8436         for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
8437                 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
8438                 dtrace_diftype_t *vt, *et;
8439                 uint_t id, ndx;
8440 
8441                 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
8442                     v->dtdv_scope != DIFV_SCOPE_THREAD &&
8443                     v->dtdv_scope != DIFV_SCOPE_LOCAL) {
8444                         err += efunc(i, "unrecognized variable scope %d\n",
8445                             v->dtdv_scope);
8446                         break;
8447                 }
8448 
8449                 if (v->dtdv_kind != DIFV_KIND_ARRAY &&
8450                     v->dtdv_kind != DIFV_KIND_SCALAR) {
8451                         err += efunc(i, "unrecognized variable type %d\n",
8452                             v->dtdv_kind);
8453                         break;
8454                 }
8455 
8456                 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
8457                         err += efunc(i, "%d exceeds variable id limit\n", id);
8458                         break;
8459                 }
8460 
8461                 if (id < DIF_VAR_OTHER_UBASE)
8462                         continue;
8463 
8464                 /*
8465                  * For user-defined variables, we need to check that this
8466                  * definition is identical to any previous definition that we
8467                  * encountered.
8468                  */
8469                 ndx = id - DIF_VAR_OTHER_UBASE;
8470 
8471                 switch (v->dtdv_scope) {
8472                 case DIFV_SCOPE_GLOBAL:
8473                         if (ndx < vstate->dtvs_nglobals) {
8474                                 dtrace_statvar_t *svar;
8475 
8476                                 if ((svar = vstate->dtvs_globals[ndx]) != NULL)
8477                                         existing = &svar->dtsv_var;
8478                         }
8479 
8480                         break;
8481 
8482                 case DIFV_SCOPE_THREAD:
8483                         if (ndx < vstate->dtvs_ntlocals)
8484                                 existing = &vstate->dtvs_tlocals[ndx];
8485                         break;
8486 
8487                 case DIFV_SCOPE_LOCAL:
8488                         if (ndx < vstate->dtvs_nlocals) {
8489                                 dtrace_statvar_t *svar;
8490 
8491                                 if ((svar = vstate->dtvs_locals[ndx]) != NULL)
8492                                         existing = &svar->dtsv_var;
8493                         }
8494 
8495                         break;
8496                 }
8497 
8498                 vt = &v->dtdv_type;
8499 
8500                 if (vt->dtdt_flags & DIF_TF_BYREF) {
8501                         if (vt->dtdt_size == 0) {
8502                                 err += efunc(i, "zero-sized variable\n");
8503                                 break;
8504                         }
8505 
8506                         if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
8507                             vt->dtdt_size > dtrace_global_maxsize) {
8508                                 err += efunc(i, "oversized by-ref global\n");
8509                                 break;
8510                         }
8511                 }
8512 
8513                 if (existing == NULL || existing->dtdv_id == 0)
8514                         continue;
8515 
8516                 ASSERT(existing->dtdv_id == v->dtdv_id);
8517                 ASSERT(existing->dtdv_scope == v->dtdv_scope);
8518 
8519                 if (existing->dtdv_kind != v->dtdv_kind)
8520                         err += efunc(i, "%d changed variable kind\n", id);
8521 
8522                 et = &existing->dtdv_type;
8523 
8524                 if (vt->dtdt_flags != et->dtdt_flags) {
8525                         err += efunc(i, "%d changed variable type flags\n", id);
8526                         break;
8527                 }
8528 
8529                 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
8530                         err += efunc(i, "%d changed variable type size\n", id);
8531                         break;
8532                 }
8533         }
8534 
8535         return (err);
8536 }
8537 
8538 /*
8539  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
8540  * are much more constrained than normal DIFOs.  Specifically, they may
8541  * not:
8542  *
8543  * 1. Make calls to subroutines other than copyin(), copyinstr() or
8544  *    miscellaneous string routines
8545  * 2. Access DTrace variables other than the args[] array, and the
8546  *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
8547  * 3. Have thread-local variables.
8548  * 4. Have dynamic variables.
8549  */
8550 static int
8551 dtrace_difo_validate_helper(dtrace_difo_t *dp)
8552 {
8553         int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8554         int err = 0;
8555         uint_t pc;
8556 
8557         for (pc = 0; pc < dp->dtdo_len; pc++) {
8558                 dif_instr_t instr = dp->dtdo_buf[pc];
8559 
8560                 uint_t v = DIF_INSTR_VAR(instr);
8561                 uint_t subr = DIF_INSTR_SUBR(instr);
8562                 uint_t op = DIF_INSTR_OP(instr);
8563 
8564                 switch (op) {
8565                 case DIF_OP_OR:
8566                 case DIF_OP_XOR:
8567                 case DIF_OP_AND:
8568                 case DIF_OP_SLL:
8569                 case DIF_OP_SRL:
8570                 case DIF_OP_SRA:
8571                 case DIF_OP_SUB:
8572                 case DIF_OP_ADD:
8573                 case DIF_OP_MUL:
8574                 case DIF_OP_SDIV:
8575                 case DIF_OP_UDIV:
8576                 case DIF_OP_SREM:
8577                 case DIF_OP_UREM:
8578                 case DIF_OP_COPYS:
8579                 case DIF_OP_NOT:
8580                 case DIF_OP_MOV:
8581                 case DIF_OP_RLDSB:
8582                 case DIF_OP_RLDSH:
8583                 case DIF_OP_RLDSW:
8584                 case DIF_OP_RLDUB:
8585                 case DIF_OP_RLDUH:
8586                 case DIF_OP_RLDUW:
8587                 case DIF_OP_RLDX:
8588                 case DIF_OP_ULDSB:
8589                 case DIF_OP_ULDSH:
8590                 case DIF_OP_ULDSW:
8591                 case DIF_OP_ULDUB:
8592                 case DIF_OP_ULDUH:
8593                 case DIF_OP_ULDUW:
8594                 case DIF_OP_ULDX:
8595                 case DIF_OP_STB:
8596                 case DIF_OP_STH:
8597                 case DIF_OP_STW:
8598                 case DIF_OP_STX:
8599                 case DIF_OP_ALLOCS:
8600                 case DIF_OP_CMP:
8601                 case DIF_OP_SCMP:
8602                 case DIF_OP_TST:
8603                 case DIF_OP_BA:
8604                 case DIF_OP_BE:
8605                 case DIF_OP_BNE:
8606                 case DIF_OP_BG:
8607                 case DIF_OP_BGU:
8608                 case DIF_OP_BGE:
8609                 case DIF_OP_BGEU:
8610                 case DIF_OP_BL:
8611                 case DIF_OP_BLU:
8612                 case DIF_OP_BLE:
8613                 case DIF_OP_BLEU:
8614                 case DIF_OP_RET:
8615                 case DIF_OP_NOP:
8616                 case DIF_OP_POPTS:
8617                 case DIF_OP_FLUSHTS:
8618                 case DIF_OP_SETX:
8619                 case DIF_OP_SETS:
8620                 case DIF_OP_LDGA:
8621                 case DIF_OP_LDLS:
8622                 case DIF_OP_STGS:
8623                 case DIF_OP_STLS:
8624                 case DIF_OP_PUSHTR:
8625                 case DIF_OP_PUSHTV:
8626                         break;
8627 
8628                 case DIF_OP_LDGS:
8629                         if (v >= DIF_VAR_OTHER_UBASE)
8630                                 break;
8631 
8632                         if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
8633                                 break;
8634 
8635                         if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
8636                             v == DIF_VAR_PPID || v == DIF_VAR_TID ||
8637                             v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
8638                             v == DIF_VAR_UID || v == DIF_VAR_GID)
8639                                 break;
8640 
8641                         err += efunc(pc, "illegal variable %u\n", v);
8642                         break;
8643 
8644                 case DIF_OP_LDTA:
8645                 case DIF_OP_LDTS:
8646                 case DIF_OP_LDGAA:
8647                 case DIF_OP_LDTAA:
8648                         err += efunc(pc, "illegal dynamic variable load\n");
8649                         break;
8650 
8651                 case DIF_OP_STTS:
8652                 case DIF_OP_STGAA:
8653                 case DIF_OP_STTAA:
8654                         err += efunc(pc, "illegal dynamic variable store\n");
8655                         break;
8656 
8657                 case DIF_OP_CALL:
8658                         if (subr == DIF_SUBR_ALLOCA ||
8659                             subr == DIF_SUBR_BCOPY ||
8660                             subr == DIF_SUBR_COPYIN ||
8661                             subr == DIF_SUBR_COPYINTO ||
8662                             subr == DIF_SUBR_COPYINSTR ||
8663                             subr == DIF_SUBR_INDEX ||
8664                             subr == DIF_SUBR_INET_NTOA ||
8665                             subr == DIF_SUBR_INET_NTOA6 ||
8666                             subr == DIF_SUBR_INET_NTOP ||
8667                             subr == DIF_SUBR_LLTOSTR ||
8668                             subr == DIF_SUBR_RINDEX ||
8669                             subr == DIF_SUBR_STRCHR ||
8670                             subr == DIF_SUBR_STRJOIN ||
8671                             subr == DIF_SUBR_STRRCHR ||
8672                             subr == DIF_SUBR_STRSTR ||
8673                             subr == DIF_SUBR_HTONS ||
8674                             subr == DIF_SUBR_HTONL ||
8675                             subr == DIF_SUBR_HTONLL ||
8676                             subr == DIF_SUBR_NTOHS ||
8677                             subr == DIF_SUBR_NTOHL ||
8678                             subr == DIF_SUBR_NTOHLL)
8679                                 break;
8680 
8681                         err += efunc(pc, "invalid subr %u\n", subr);
8682                         break;
8683 
8684                 default:
8685                         err += efunc(pc, "invalid opcode %u\n",
8686                             DIF_INSTR_OP(instr));
8687                 }
8688         }
8689 
8690         return (err);
8691 }
8692 
8693 /*
8694  * Returns 1 if the expression in the DIF object can be cached on a per-thread
8695  * basis; 0 if not.
8696  */
8697 static int
8698 dtrace_difo_cacheable(dtrace_difo_t *dp)
8699 {
8700         int i;
8701 
8702         if (dp == NULL)
8703                 return (0);
8704 
8705         for (i = 0; i < dp->dtdo_varlen; i++) {
8706                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
8707 
8708                 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
8709                         continue;
8710 
8711                 switch (v->dtdv_id) {
8712                 case DIF_VAR_CURTHREAD:
8713                 case DIF_VAR_PID:
8714                 case DIF_VAR_TID:
8715                 case DIF_VAR_EXECNAME:
8716                 case DIF_VAR_ZONENAME:
8717                         break;
8718 
8719                 default:
8720                         return (0);
8721                 }
8722         }
8723 
8724         /*
8725          * This DIF object may be cacheable.  Now we need to look for any
8726          * array loading instructions, any memory loading instructions, or
8727          * any stores to thread-local variables.
8728          */
8729         for (i = 0; i < dp->dtdo_len; i++) {
8730                 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
8731 
8732                 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
8733                     (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
8734                     (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
8735                     op == DIF_OP_LDGA || op == DIF_OP_STTS)
8736                         return (0);
8737         }
8738 
8739         return (1);
8740 }
8741 
8742 static void
8743 dtrace_difo_hold(dtrace_difo_t *dp)
8744 {
8745         int i;
8746 
8747         ASSERT(MUTEX_HELD(&dtrace_lock));
8748 
8749         dp->dtdo_refcnt++;
8750         ASSERT(dp->dtdo_refcnt != 0);
8751 
8752         /*
8753          * We need to check this DIF object for references to the variable
8754          * DIF_VAR_VTIMESTAMP.
8755          */
8756         for (i = 0; i < dp->dtdo_varlen; i++) {
8757                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
8758 
8759                 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
8760                         continue;
8761 
8762                 if (dtrace_vtime_references++ == 0)
8763                         dtrace_vtime_enable();
8764         }
8765 }
8766 
8767 /*
8768  * This routine calculates the dynamic variable chunksize for a given DIF
8769  * object.  The calculation is not fool-proof, and can probably be tricked by
8770  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
8771  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
8772  * if a dynamic variable size exceeds the chunksize.
8773  */
8774 static void
8775 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8776 {
8777         uint64_t sval;
8778         dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
8779         const dif_instr_t *text = dp->dtdo_buf;
8780         uint_t pc, srd = 0;
8781         uint_t ttop = 0;
8782         size_t size, ksize;
8783         uint_t id, i;
8784 
8785         for (pc = 0; pc < dp->dtdo_len; pc++) {
8786                 dif_instr_t instr = text[pc];
8787                 uint_t op = DIF_INSTR_OP(instr);
8788                 uint_t rd = DIF_INSTR_RD(instr);
8789                 uint_t r1 = DIF_INSTR_R1(instr);
8790                 uint_t nkeys = 0;
8791                 uchar_t scope;
8792 
8793                 dtrace_key_t *key = tupregs;
8794 
8795                 switch (op) {
8796                 case DIF_OP_SETX:
8797                         sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
8798                         srd = rd;
8799                         continue;
8800 
8801                 case DIF_OP_STTS:
8802                         key = &tupregs[DIF_DTR_NREGS];
8803                         key[0].dttk_size = 0;
8804                         key[1].dttk_size = 0;
8805                         nkeys = 2;
8806                         scope = DIFV_SCOPE_THREAD;
8807                         break;
8808 
8809                 case DIF_OP_STGAA:
8810                 case DIF_OP_STTAA:
8811                         nkeys = ttop;
8812 
8813                         if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
8814                                 key[nkeys++].dttk_size = 0;
8815 
8816                         key[nkeys++].dttk_size = 0;
8817 
8818                         if (op == DIF_OP_STTAA) {
8819                                 scope = DIFV_SCOPE_THREAD;
8820                         } else {
8821                                 scope = DIFV_SCOPE_GLOBAL;
8822                         }
8823 
8824                         break;
8825 
8826                 case DIF_OP_PUSHTR:
8827                         if (ttop == DIF_DTR_NREGS)
8828                                 return;
8829 
8830                         if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
8831                                 /*
8832                                  * If the register for the size of the "pushtr"
8833                                  * is %r0 (or the value is 0) and the type is
8834                                  * a string, we'll use the system-wide default
8835                                  * string size.
8836                                  */
8837                                 tupregs[ttop++].dttk_size =
8838                                     dtrace_strsize_default;
8839                         } else {
8840                                 if (srd == 0)
8841                                         return;
8842 
8843                                 tupregs[ttop++].dttk_size = sval;
8844                         }
8845 
8846                         break;
8847 
8848                 case DIF_OP_PUSHTV:
8849                         if (ttop == DIF_DTR_NREGS)
8850                                 return;
8851 
8852                         tupregs[ttop++].dttk_size = 0;
8853                         break;
8854 
8855                 case DIF_OP_FLUSHTS:
8856                         ttop = 0;
8857                         break;
8858 
8859                 case DIF_OP_POPTS:
8860                         if (ttop != 0)
8861                                 ttop--;
8862                         break;
8863                 }
8864 
8865                 sval = 0;
8866                 srd = 0;
8867 
8868                 if (nkeys == 0)
8869                         continue;
8870 
8871                 /*
8872                  * We have a dynamic variable allocation; calculate its size.
8873                  */
8874                 for (ksize = 0, i = 0; i < nkeys; i++)
8875                         ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
8876 
8877                 size = sizeof (dtrace_dynvar_t);
8878                 size += sizeof (dtrace_key_t) * (nkeys - 1);
8879                 size += ksize;
8880 
8881                 /*
8882                  * Now we need to determine the size of the stored data.
8883                  */
8884                 id = DIF_INSTR_VAR(instr);
8885 
8886                 for (i = 0; i < dp->dtdo_varlen; i++) {
8887                         dtrace_difv_t *v = &dp->dtdo_vartab[i];
8888 
8889                         if (v->dtdv_id == id && v->dtdv_scope == scope) {
8890                                 size += v->dtdv_type.dtdt_size;
8891                                 break;
8892                         }
8893                 }
8894 
8895                 if (i == dp->dtdo_varlen)
8896                         return;
8897 
8898                 /*
8899                  * We have the size.  If this is larger than the chunk size
8900                  * for our dynamic variable state, reset the chunk size.
8901                  */
8902                 size = P2ROUNDUP(size, sizeof (uint64_t));
8903 
8904                 if (size > vstate->dtvs_dynvars.dtds_chunksize)
8905                         vstate->dtvs_dynvars.dtds_chunksize = size;
8906         }
8907 }
8908 
8909 static void
8910 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8911 {
8912         int i, oldsvars, osz, nsz, otlocals, ntlocals;
8913         uint_t id;
8914 
8915         ASSERT(MUTEX_HELD(&dtrace_lock));
8916         ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
8917 
8918         for (i = 0; i < dp->dtdo_varlen; i++) {
8919                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
8920                 dtrace_statvar_t *svar, ***svarp;
8921                 size_t dsize = 0;
8922                 uint8_t scope = v->dtdv_scope;
8923                 int *np;
8924 
8925                 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
8926                         continue;
8927 
8928                 id -= DIF_VAR_OTHER_UBASE;
8929 
8930                 switch (scope) {
8931                 case DIFV_SCOPE_THREAD:
8932                         while (id >= (otlocals = vstate->dtvs_ntlocals)) {
8933                                 dtrace_difv_t *tlocals;
8934 
8935                                 if ((ntlocals = (otlocals << 1)) == 0)
8936                                         ntlocals = 1;
8937 
8938                                 osz = otlocals * sizeof (dtrace_difv_t);
8939                                 nsz = ntlocals * sizeof (dtrace_difv_t);
8940 
8941                                 tlocals = kmem_zalloc(nsz, KM_SLEEP);
8942 
8943                                 if (osz != 0) {
8944                                         bcopy(vstate->dtvs_tlocals,
8945                                             tlocals, osz);
8946                                         kmem_free(vstate->dtvs_tlocals, osz);
8947                                 }
8948 
8949                                 vstate->dtvs_tlocals = tlocals;
8950                                 vstate->dtvs_ntlocals = ntlocals;
8951                         }
8952 
8953                         vstate->dtvs_tlocals[id] = *v;
8954                         continue;
8955 
8956                 case DIFV_SCOPE_LOCAL:
8957                         np = &vstate->dtvs_nlocals;
8958                         svarp = &vstate->dtvs_locals;
8959 
8960                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
8961                                 dsize = NCPU * (v->dtdv_type.dtdt_size +
8962                                     sizeof (uint64_t));
8963                         else
8964                                 dsize = NCPU * sizeof (uint64_t);
8965 
8966                         break;
8967 
8968                 case DIFV_SCOPE_GLOBAL:
8969                         np = &vstate->dtvs_nglobals;
8970                         svarp = &vstate->dtvs_globals;
8971 
8972                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
8973                                 dsize = v->dtdv_type.dtdt_size +
8974                                     sizeof (uint64_t);
8975 
8976                         break;
8977 
8978                 default:
8979                         ASSERT(0);
8980                 }
8981 
8982                 while (id >= (oldsvars = *np)) {
8983                         dtrace_statvar_t **statics;
8984                         int newsvars, oldsize, newsize;
8985 
8986                         if ((newsvars = (oldsvars << 1)) == 0)
8987                                 newsvars = 1;
8988 
8989                         oldsize = oldsvars * sizeof (dtrace_statvar_t *);
8990                         newsize = newsvars * sizeof (dtrace_statvar_t *);
8991 
8992                         statics = kmem_zalloc(newsize, KM_SLEEP);
8993 
8994                         if (oldsize != 0) {
8995                                 bcopy(*svarp, statics, oldsize);
8996                                 kmem_free(*svarp, oldsize);
8997                         }
8998 
8999                         *svarp = statics;
9000                         *np = newsvars;
9001                 }
9002 
9003                 if ((svar = (*svarp)[id]) == NULL) {
9004                         svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
9005                         svar->dtsv_var = *v;
9006 
9007                         if ((svar->dtsv_size = dsize) != 0) {
9008                                 svar->dtsv_data = (uint64_t)(uintptr_t)
9009                                     kmem_zalloc(dsize, KM_SLEEP);
9010                         }
9011 
9012                         (*svarp)[id] = svar;
9013                 }
9014 
9015                 svar->dtsv_refcnt++;
9016         }
9017 
9018         dtrace_difo_chunksize(dp, vstate);
9019         dtrace_difo_hold(dp);
9020 }
9021 
9022 static dtrace_difo_t *
9023 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9024 {
9025         dtrace_difo_t *new;
9026         size_t sz;
9027 
9028         ASSERT(dp->dtdo_buf != NULL);
9029         ASSERT(dp->dtdo_refcnt != 0);
9030 
9031         new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
9032 
9033         ASSERT(dp->dtdo_buf != NULL);
9034         sz = dp->dtdo_len * sizeof (dif_instr_t);
9035         new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
9036         bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
9037         new->dtdo_len = dp->dtdo_len;
9038 
9039         if (dp->dtdo_strtab != NULL) {
9040                 ASSERT(dp->dtdo_strlen != 0);
9041                 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
9042                 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
9043                 new->dtdo_strlen = dp->dtdo_strlen;
9044         }
9045 
9046         if (dp->dtdo_inttab != NULL) {
9047                 ASSERT(dp->dtdo_intlen != 0);
9048                 sz = dp->dtdo_intlen * sizeof (uint64_t);
9049                 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
9050                 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
9051                 new->dtdo_intlen = dp->dtdo_intlen;
9052         }
9053 
9054         if (dp->dtdo_vartab != NULL) {
9055                 ASSERT(dp->dtdo_varlen != 0);
9056                 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9057                 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
9058                 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
9059                 new->dtdo_varlen = dp->dtdo_varlen;
9060         }
9061 
9062         dtrace_difo_init(new, vstate);
9063         return (new);
9064 }
9065 
9066 static void
9067 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9068 {
9069         int i;
9070 
9071         ASSERT(dp->dtdo_refcnt == 0);
9072 
9073         for (i = 0; i < dp->dtdo_varlen; i++) {
9074                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9075                 dtrace_statvar_t *svar, **svarp;
9076                 uint_t id;
9077                 uint8_t scope = v->dtdv_scope;
9078                 int *np;
9079 
9080                 switch (scope) {
9081                 case DIFV_SCOPE_THREAD:
9082                         continue;
9083 
9084                 case DIFV_SCOPE_LOCAL:
9085                         np = &vstate->dtvs_nlocals;
9086                         svarp = vstate->dtvs_locals;
9087                         break;
9088 
9089                 case DIFV_SCOPE_GLOBAL:
9090                         np = &vstate->dtvs_nglobals;
9091                         svarp = vstate->dtvs_globals;
9092                         break;
9093 
9094                 default:
9095                         ASSERT(0);
9096                 }
9097 
9098                 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9099                         continue;
9100 
9101                 id -= DIF_VAR_OTHER_UBASE;
9102                 ASSERT(id < *np);
9103 
9104                 svar = svarp[id];
9105                 ASSERT(svar != NULL);
9106                 ASSERT(svar->dtsv_refcnt > 0);
9107 
9108                 if (--svar->dtsv_refcnt > 0)
9109                         continue;
9110 
9111                 if (svar->dtsv_size != 0) {
9112                         ASSERT(svar->dtsv_data != NULL);
9113                         kmem_free((void *)(uintptr_t)svar->dtsv_data,
9114                             svar->dtsv_size);
9115                 }
9116 
9117                 kmem_free(svar, sizeof (dtrace_statvar_t));
9118                 svarp[id] = NULL;
9119         }
9120 
9121         kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
9122         kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
9123         kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
9124         kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
9125 
9126         kmem_free(dp, sizeof (dtrace_difo_t));
9127 }
9128 
9129 static void
9130 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9131 {
9132         int i;
9133 
9134         ASSERT(MUTEX_HELD(&dtrace_lock));
9135         ASSERT(dp->dtdo_refcnt != 0);
9136 
9137         for (i = 0; i < dp->dtdo_varlen; i++) {
9138                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9139 
9140                 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9141                         continue;
9142 
9143                 ASSERT(dtrace_vtime_references > 0);
9144                 if (--dtrace_vtime_references == 0)
9145                         dtrace_vtime_disable();
9146         }
9147 
9148         if (--dp->dtdo_refcnt == 0)
9149                 dtrace_difo_destroy(dp, vstate);
9150 }
9151 
9152 /*
9153  * DTrace Format Functions
9154  */
9155 static uint16_t
9156 dtrace_format_add(dtrace_state_t *state, char *str)
9157 {
9158         char *fmt, **new;
9159         uint16_t ndx, len = strlen(str) + 1;
9160 
9161         fmt = kmem_zalloc(len, KM_SLEEP);
9162         bcopy(str, fmt, len);
9163 
9164         for (ndx = 0; ndx < state->dts_nformats; ndx++) {
9165                 if (state->dts_formats[ndx] == NULL) {
9166                         state->dts_formats[ndx] = fmt;
9167                         return (ndx + 1);
9168                 }
9169         }
9170 
9171         if (state->dts_nformats == USHRT_MAX) {
9172                 /*
9173                  * This is only likely if a denial-of-service attack is being
9174                  * attempted.  As such, it's okay to fail silently here.
9175                  */
9176                 kmem_free(fmt, len);
9177                 return (0);
9178         }
9179 
9180         /*
9181          * For simplicity, we always resize the formats array to be exactly the
9182          * number of formats.
9183          */
9184         ndx = state->dts_nformats++;
9185         new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
9186 
9187         if (state->dts_formats != NULL) {
9188                 ASSERT(ndx != 0);
9189                 bcopy(state->dts_formats, new, ndx * sizeof (char *));
9190                 kmem_free(state->dts_formats, ndx * sizeof (char *));
9191         }
9192 
9193         state->dts_formats = new;
9194         state->dts_formats[ndx] = fmt;
9195 
9196         return (ndx + 1);
9197 }
9198 
9199 static void
9200 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
9201 {
9202         char *fmt;
9203 
9204         ASSERT(state->dts_formats != NULL);
9205         ASSERT(format <= state->dts_nformats);
9206         ASSERT(state->dts_formats[format - 1] != NULL);
9207 
9208         fmt = state->dts_formats[format - 1];
9209         kmem_free(fmt, strlen(fmt) + 1);
9210         state->dts_formats[format - 1] = NULL;
9211 }
9212 
9213 static void
9214 dtrace_format_destroy(dtrace_state_t *state)
9215 {
9216         int i;
9217 
9218         if (state->dts_nformats == 0) {
9219                 ASSERT(state->dts_formats == NULL);
9220                 return;
9221         }
9222 
9223         ASSERT(state->dts_formats != NULL);
9224 
9225         for (i = 0; i < state->dts_nformats; i++) {
9226                 char *fmt = state->dts_formats[i];
9227 
9228                 if (fmt == NULL)
9229                         continue;
9230 
9231                 kmem_free(fmt, strlen(fmt) + 1);
9232         }
9233 
9234         kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
9235         state->dts_nformats = 0;
9236         state->dts_formats = NULL;
9237 }
9238 
9239 /*
9240  * DTrace Predicate Functions
9241  */
9242 static dtrace_predicate_t *
9243 dtrace_predicate_create(dtrace_difo_t *dp)
9244 {
9245         dtrace_predicate_t *pred;
9246 
9247         ASSERT(MUTEX_HELD(&dtrace_lock));
9248         ASSERT(dp->dtdo_refcnt != 0);
9249 
9250         pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
9251         pred->dtp_difo = dp;
9252         pred->dtp_refcnt = 1;
9253 
9254         if (!dtrace_difo_cacheable(dp))
9255                 return (pred);
9256 
9257         if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
9258                 /*
9259                  * This is only theoretically possible -- we have had 2^32
9260                  * cacheable predicates on this machine.  We cannot allow any
9261                  * more predicates to become cacheable:  as unlikely as it is,
9262                  * there may be a thread caching a (now stale) predicate cache
9263                  * ID. (N.B.: the temptation is being successfully resisted to
9264                  * have this cmn_err() "Holy shit -- we executed this code!")
9265                  */
9266                 return (pred);
9267         }
9268 
9269         pred->dtp_cacheid = dtrace_predcache_id++;
9270 
9271         return (pred);
9272 }
9273 
9274 static void
9275 dtrace_predicate_hold(dtrace_predicate_t *pred)
9276 {
9277         ASSERT(MUTEX_HELD(&dtrace_lock));
9278         ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
9279         ASSERT(pred->dtp_refcnt > 0);
9280 
9281         pred->dtp_refcnt++;
9282 }
9283 
9284 static void
9285 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
9286 {
9287         dtrace_difo_t *dp = pred->dtp_difo;
9288 
9289         ASSERT(MUTEX_HELD(&dtrace_lock));
9290         ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
9291         ASSERT(pred->dtp_refcnt > 0);
9292 
9293         if (--pred->dtp_refcnt == 0) {
9294                 dtrace_difo_release(pred->dtp_difo, vstate);
9295                 kmem_free(pred, sizeof (dtrace_predicate_t));
9296         }
9297 }
9298 
9299 /*
9300  * DTrace Action Description Functions
9301  */
9302 static dtrace_actdesc_t *
9303 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
9304     uint64_t uarg, uint64_t arg)
9305 {
9306         dtrace_actdesc_t *act;
9307 
9308         ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
9309             arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
9310 
9311         act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
9312         act->dtad_kind = kind;
9313         act->dtad_ntuple = ntuple;
9314         act->dtad_uarg = uarg;
9315         act->dtad_arg = arg;
9316         act->dtad_refcnt = 1;
9317 
9318         return (act);
9319 }
9320 
9321 static void
9322 dtrace_actdesc_hold(dtrace_actdesc_t *act)
9323 {
9324         ASSERT(act->dtad_refcnt >= 1);
9325         act->dtad_refcnt++;
9326 }
9327 
9328 static void
9329 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
9330 {
9331         dtrace_actkind_t kind = act->dtad_kind;
9332         dtrace_difo_t *dp;
9333 
9334         ASSERT(act->dtad_refcnt >= 1);
9335 
9336         if (--act->dtad_refcnt != 0)
9337                 return;
9338 
9339         if ((dp = act->dtad_difo) != NULL)
9340                 dtrace_difo_release(dp, vstate);
9341 
9342         if (DTRACEACT_ISPRINTFLIKE(kind)) {
9343                 char *str = (char *)(uintptr_t)act->dtad_arg;
9344 
9345                 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
9346                     (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
9347 
9348                 if (str != NULL)
9349                         kmem_free(str, strlen(str) + 1);
9350         }
9351 
9352         kmem_free(act, sizeof (dtrace_actdesc_t));
9353 }
9354 
9355 /*
9356  * DTrace ECB Functions
9357  */
9358 static dtrace_ecb_t *
9359 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
9360 {
9361         dtrace_ecb_t *ecb;
9362         dtrace_epid_t epid;
9363 
9364         ASSERT(MUTEX_HELD(&dtrace_lock));
9365 
9366         ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
9367         ecb->dte_predicate = NULL;
9368         ecb->dte_probe = probe;
9369 
9370         /*
9371          * The default size is the size of the default action: recording
9372          * the epid.
9373          */
9374         ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9375         ecb->dte_alignment = sizeof (dtrace_epid_t);
9376 
9377         epid = state->dts_epid++;
9378 
9379         if (epid - 1 >= state->dts_necbs) {
9380                 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
9381                 int necbs = state->dts_necbs << 1;
9382 
9383                 ASSERT(epid == state->dts_necbs + 1);
9384 
9385                 if (necbs == 0) {
9386                         ASSERT(oecbs == NULL);
9387                         necbs = 1;
9388                 }
9389 
9390                 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
9391 
9392                 if (oecbs != NULL)
9393                         bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
9394 
9395                 dtrace_membar_producer();
9396                 state->dts_ecbs = ecbs;
9397 
9398                 if (oecbs != NULL) {
9399                         /*
9400                          * If this state is active, we must dtrace_sync()
9401                          * before we can free the old dts_ecbs array:  we're
9402                          * coming in hot, and there may be active ring
9403                          * buffer processing (which indexes into the dts_ecbs
9404                          * array) on another CPU.
9405                          */
9406                         if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
9407                                 dtrace_sync();
9408 
9409                         kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
9410                 }
9411 
9412                 dtrace_membar_producer();
9413                 state->dts_necbs = necbs;
9414         }
9415 
9416         ecb->dte_state = state;
9417 
9418         ASSERT(state->dts_ecbs[epid - 1] == NULL);
9419         dtrace_membar_producer();
9420         state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
9421 
9422         return (ecb);
9423 }
9424 
9425 static int
9426 dtrace_ecb_enable(dtrace_ecb_t *ecb)
9427 {
9428         dtrace_probe_t *probe = ecb->dte_probe;
9429 
9430         ASSERT(MUTEX_HELD(&cpu_lock));
9431         ASSERT(MUTEX_HELD(&dtrace_lock));
9432         ASSERT(ecb->dte_next == NULL);
9433 
9434         if (probe == NULL) {
9435                 /*
9436                  * This is the NULL probe -- there's nothing to do.
9437                  */
9438                 return (0);
9439         }
9440 
9441         if (probe->dtpr_ecb == NULL) {
9442                 dtrace_provider_t *prov = probe->dtpr_provider;
9443 
9444                 /*
9445                  * We're the first ECB on this probe.
9446                  */
9447                 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
9448 
9449                 if (ecb->dte_predicate != NULL)
9450                         probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
9451 
9452                 return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
9453                     probe->dtpr_id, probe->dtpr_arg));
9454         } else {
9455                 /*
9456                  * This probe is already active.  Swing the last pointer to
9457                  * point to the new ECB, and issue a dtrace_sync() to assure
9458                  * that all CPUs have seen the change.
9459                  */
9460                 ASSERT(probe->dtpr_ecb_last != NULL);
9461                 probe->dtpr_ecb_last->dte_next = ecb;
9462                 probe->dtpr_ecb_last = ecb;
9463                 probe->dtpr_predcache = 0;
9464 
9465                 dtrace_sync();
9466                 return (0);
9467         }
9468 }
9469 
9470 static void
9471 dtrace_ecb_resize(dtrace_ecb_t *ecb)
9472 {
9473         uint32_t maxalign = sizeof (dtrace_epid_t);
9474         uint32_t align = sizeof (uint8_t), offs, diff;
9475         dtrace_action_t *act;
9476         int wastuple = 0;
9477         uint32_t aggbase = UINT32_MAX;
9478         dtrace_state_t *state = ecb->dte_state;
9479 
9480         /*
9481          * If we record anything, we always record the epid.  (And we always
9482          * record it first.)
9483          */
9484         offs = sizeof (dtrace_epid_t);
9485         ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9486 
9487         for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9488                 dtrace_recdesc_t *rec = &act->dta_rec;
9489 
9490                 if ((align = rec->dtrd_alignment) > maxalign)
9491                         maxalign = align;
9492 
9493                 if (!wastuple && act->dta_intuple) {
9494                         /*
9495                          * This is the first record in a tuple.  Align the
9496                          * offset to be at offset 4 in an 8-byte aligned
9497                          * block.
9498                          */
9499                         diff = offs + sizeof (dtrace_aggid_t);
9500 
9501                         if (diff = (diff & (sizeof (uint64_t) - 1)))
9502                                 offs += sizeof (uint64_t) - diff;
9503 
9504                         aggbase = offs - sizeof (dtrace_aggid_t);
9505                         ASSERT(!(aggbase & (sizeof (uint64_t) - 1)));
9506                 }
9507 
9508                 /*LINTED*/
9509                 if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) {
9510                         /*
9511                          * The current offset is not properly aligned; align it.
9512                          */
9513                         offs += align - diff;
9514                 }
9515 
9516                 rec->dtrd_offset = offs;
9517 
9518                 if (offs + rec->dtrd_size > ecb->dte_needed) {
9519                         ecb->dte_needed = offs + rec->dtrd_size;
9520 
9521                         if (ecb->dte_needed > state->dts_needed)
9522                                 state->dts_needed = ecb->dte_needed;
9523                 }
9524 
9525                 if (DTRACEACT_ISAGG(act->dta_kind)) {
9526                         dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9527                         dtrace_action_t *first = agg->dtag_first, *prev;
9528 
9529                         ASSERT(rec->dtrd_size != 0 && first != NULL);
9530                         ASSERT(wastuple);
9531                         ASSERT(aggbase != UINT32_MAX);
9532 
9533                         agg->dtag_base = aggbase;
9534 
9535                         while ((prev = first->dta_prev) != NULL &&
9536                             DTRACEACT_ISAGG(prev->dta_kind)) {
9537                                 agg = (dtrace_aggregation_t *)prev;
9538                                 first = agg->dtag_first;
9539                         }
9540 
9541                         if (prev != NULL) {
9542                                 offs = prev->dta_rec.dtrd_offset +
9543                                     prev->dta_rec.dtrd_size;
9544                         } else {
9545                                 offs = sizeof (dtrace_epid_t);
9546                         }
9547                         wastuple = 0;
9548                 } else {
9549                         if (!act->dta_intuple)
9550                                 ecb->dte_size = offs + rec->dtrd_size;
9551 
9552                         offs += rec->dtrd_size;
9553                 }
9554 
9555                 wastuple = act->dta_intuple;
9556         }
9557 
9558         if ((act = ecb->dte_action) != NULL &&
9559             !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
9560             ecb->dte_size == sizeof (dtrace_epid_t)) {
9561                 /*
9562                  * If the size is still sizeof (dtrace_epid_t), then all
9563                  * actions store no data; set the size to 0.
9564                  */
9565                 ecb->dte_alignment = maxalign;
9566                 ecb->dte_size = 0;
9567 
9568                 /*
9569                  * If the needed space is still sizeof (dtrace_epid_t), then
9570                  * all actions need no additional space; set the needed
9571                  * size to 0.
9572                  */
9573                 if (ecb->dte_needed == sizeof (dtrace_epid_t))
9574                         ecb->dte_needed = 0;
9575 
9576                 return;
9577         }
9578 
9579         /*
9580          * Set our alignment, and make sure that the dte_size and dte_needed
9581          * are aligned to the size of an EPID.
9582          */
9583         ecb->dte_alignment = maxalign;
9584         ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) &
9585             ~(sizeof (dtrace_epid_t) - 1);
9586         ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) &
9587             ~(sizeof (dtrace_epid_t) - 1);
9588         ASSERT(ecb->dte_size <= ecb->dte_needed);
9589 }
9590 
9591 static dtrace_action_t *
9592 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9593 {
9594         dtrace_aggregation_t *agg;
9595         size_t size = sizeof (uint64_t);
9596         int ntuple = desc->dtad_ntuple;
9597         dtrace_action_t *act;
9598         dtrace_recdesc_t *frec;
9599         dtrace_aggid_t aggid;
9600         dtrace_state_t *state = ecb->dte_state;
9601 
9602         agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
9603         agg->dtag_ecb = ecb;
9604 
9605         ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
9606 
9607         switch (desc->dtad_kind) {
9608         case DTRACEAGG_MIN:
9609                 agg->dtag_initial = INT64_MAX;
9610                 agg->dtag_aggregate = dtrace_aggregate_min;
9611                 break;
9612 
9613         case DTRACEAGG_MAX:
9614                 agg->dtag_initial = INT64_MIN;
9615                 agg->dtag_aggregate = dtrace_aggregate_max;
9616                 break;
9617 
9618         case DTRACEAGG_COUNT:
9619                 agg->dtag_aggregate = dtrace_aggregate_count;
9620                 break;
9621 
9622         case DTRACEAGG_QUANTIZE:
9623                 agg->dtag_aggregate = dtrace_aggregate_quantize;
9624                 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
9625                     sizeof (uint64_t);
9626                 break;
9627 
9628         case DTRACEAGG_LQUANTIZE: {
9629                 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
9630                 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
9631 
9632                 agg->dtag_initial = desc->dtad_arg;
9633                 agg->dtag_aggregate = dtrace_aggregate_lquantize;
9634 
9635                 if (step == 0 || levels == 0)
9636                         goto err;
9637 
9638                 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
9639                 break;
9640         }
9641 
9642         case DTRACEAGG_LLQUANTIZE: {
9643                 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
9644                 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
9645                 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
9646                 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
9647                 int64_t v;
9648 
9649                 agg->dtag_initial = desc->dtad_arg;
9650                 agg->dtag_aggregate = dtrace_aggregate_llquantize;
9651 
9652                 if (factor < 2 || low >= high || nsteps < factor)
9653                         goto err;
9654 
9655                 /*
9656                  * Now check that the number of steps evenly divides a power
9657                  * of the factor.  (This assures both integer bucket size and
9658                  * linearity within each magnitude.)
9659                  */
9660                 for (v = factor; v < nsteps; v *= factor)
9661                         continue;
9662 
9663                 if ((v % nsteps) || (nsteps % factor))
9664                         goto err;
9665 
9666                 size = (dtrace_aggregate_llquantize_bucket(factor,
9667                     low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
9668                 break;
9669         }
9670 
9671         case DTRACEAGG_AVG:
9672                 agg->dtag_aggregate = dtrace_aggregate_avg;
9673                 size = sizeof (uint64_t) * 2;
9674                 break;
9675 
9676         case DTRACEAGG_STDDEV:
9677                 agg->dtag_aggregate = dtrace_aggregate_stddev;
9678                 size = sizeof (uint64_t) * 4;
9679                 break;
9680 
9681         case DTRACEAGG_SUM:
9682                 agg->dtag_aggregate = dtrace_aggregate_sum;
9683                 break;
9684 
9685         default:
9686                 goto err;
9687         }
9688 
9689         agg->dtag_action.dta_rec.dtrd_size = size;
9690 
9691         if (ntuple == 0)
9692                 goto err;
9693 
9694         /*
9695          * We must make sure that we have enough actions for the n-tuple.
9696          */
9697         for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
9698                 if (DTRACEACT_ISAGG(act->dta_kind))
9699                         break;
9700 
9701                 if (--ntuple == 0) {
9702                         /*
9703                          * This is the action with which our n-tuple begins.
9704                          */
9705                         agg->dtag_first = act;
9706                         goto success;
9707                 }
9708         }
9709 
9710         /*
9711          * This n-tuple is short by ntuple elements.  Return failure.
9712          */
9713         ASSERT(ntuple != 0);
9714 err:
9715         kmem_free(agg, sizeof (dtrace_aggregation_t));
9716         return (NULL);
9717 
9718 success:
9719         /*
9720          * If the last action in the tuple has a size of zero, it's actually
9721          * an expression argument for the aggregating action.
9722          */
9723         ASSERT(ecb->dte_action_last != NULL);
9724         act = ecb->dte_action_last;
9725 
9726         if (act->dta_kind == DTRACEACT_DIFEXPR) {
9727                 ASSERT(act->dta_difo != NULL);
9728 
9729                 if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
9730                         agg->dtag_hasarg = 1;
9731         }
9732 
9733         /*
9734          * We need to allocate an id for this aggregation.
9735          */
9736         aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
9737             VM_BESTFIT | VM_SLEEP);
9738 
9739         if (aggid - 1 >= state->dts_naggregations) {
9740                 dtrace_aggregation_t **oaggs = state->dts_aggregations;
9741                 dtrace_aggregation_t **aggs;
9742                 int naggs = state->dts_naggregations << 1;
9743                 int onaggs = state->dts_naggregations;
9744 
9745                 ASSERT(aggid == state->dts_naggregations + 1);
9746 
9747                 if (naggs == 0) {
9748                         ASSERT(oaggs == NULL);
9749                         naggs = 1;
9750                 }
9751 
9752                 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
9753 
9754                 if (oaggs != NULL) {
9755                         bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
9756                         kmem_free(oaggs, onaggs * sizeof (*aggs));
9757                 }
9758 
9759                 state->dts_aggregations = aggs;
9760                 state->dts_naggregations = naggs;
9761         }
9762 
9763         ASSERT(state->dts_aggregations[aggid - 1] == NULL);
9764         state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
9765 
9766         frec = &agg->dtag_first->dta_rec;
9767         if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
9768                 frec->dtrd_alignment = sizeof (dtrace_aggid_t);
9769 
9770         for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
9771                 ASSERT(!act->dta_intuple);
9772                 act->dta_intuple = 1;
9773         }
9774 
9775         return (&agg->dtag_action);
9776 }
9777 
9778 static void
9779 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
9780 {
9781         dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9782         dtrace_state_t *state = ecb->dte_state;
9783         dtrace_aggid_t aggid = agg->dtag_id;
9784 
9785         ASSERT(DTRACEACT_ISAGG(act->dta_kind));
9786         vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
9787 
9788         ASSERT(state->dts_aggregations[aggid - 1] == agg);
9789         state->dts_aggregations[aggid - 1] = NULL;
9790 
9791         kmem_free(agg, sizeof (dtrace_aggregation_t));
9792 }
9793 
9794 static int
9795 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9796 {
9797         dtrace_action_t *action, *last;
9798         dtrace_difo_t *dp = desc->dtad_difo;
9799         uint32_t size = 0, align = sizeof (uint8_t), mask;
9800         uint16_t format = 0;
9801         dtrace_recdesc_t *rec;
9802         dtrace_state_t *state = ecb->dte_state;
9803         dtrace_optval_t *opt = state->dts_options, nframes, strsize;
9804         uint64_t arg = desc->dtad_arg;
9805 
9806         ASSERT(MUTEX_HELD(&dtrace_lock));
9807         ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
9808 
9809         if (DTRACEACT_ISAGG(desc->dtad_kind)) {
9810                 /*
9811                  * If this is an aggregating action, there must be neither
9812                  * a speculate nor a commit on the action chain.
9813                  */
9814                 dtrace_action_t *act;
9815 
9816                 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9817                         if (act->dta_kind == DTRACEACT_COMMIT)
9818                                 return (EINVAL);
9819 
9820                         if (act->dta_kind == DTRACEACT_SPECULATE)
9821                                 return (EINVAL);
9822                 }
9823 
9824                 action = dtrace_ecb_aggregation_create(ecb, desc);
9825 
9826                 if (action == NULL)
9827                         return (EINVAL);
9828         } else {
9829                 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
9830                     (desc->dtad_kind == DTRACEACT_DIFEXPR &&
9831                     dp != NULL && dp->dtdo_destructive)) {
9832                         state->dts_destructive = 1;
9833                 }
9834 
9835                 switch (desc->dtad_kind) {
9836                 case DTRACEACT_PRINTF:
9837                 case DTRACEACT_PRINTA:
9838                 case DTRACEACT_SYSTEM:
9839                 case DTRACEACT_FREOPEN:
9840                 case DTRACEACT_DIFEXPR:
9841                         /*
9842                          * We know that our arg is a string -- turn it into a
9843                          * format.
9844                          */
9845                         if (arg == NULL) {
9846                                 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
9847                                     desc->dtad_kind == DTRACEACT_DIFEXPR);
9848                                 format = 0;
9849                         } else {
9850                                 ASSERT(arg != NULL);
9851                                 ASSERT(arg > KERNELBASE);
9852                                 format = dtrace_format_add(state,
9853                                     (char *)(uintptr_t)arg);
9854                         }
9855 
9856                         /*FALLTHROUGH*/
9857                 case DTRACEACT_LIBACT:
9858                 case DTRACEACT_TRACEMEM:
9859                 case DTRACEACT_TRACEMEM_DYNSIZE:
9860                         if (dp == NULL)
9861                                 return (EINVAL);
9862 
9863                         if ((size = dp->dtdo_rtype.dtdt_size) != 0)
9864                                 break;
9865 
9866                         if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
9867                                 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
9868                                         return (EINVAL);
9869 
9870                                 size = opt[DTRACEOPT_STRSIZE];
9871                         }
9872 
9873                         break;
9874 
9875                 case DTRACEACT_STACK:
9876                         if ((nframes = arg) == 0) {
9877                                 nframes = opt[DTRACEOPT_STACKFRAMES];
9878                                 ASSERT(nframes > 0);
9879                                 arg = nframes;
9880                         }
9881 
9882                         size = nframes * sizeof (pc_t);
9883                         break;
9884 
9885                 case DTRACEACT_JSTACK:
9886                         if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
9887                                 strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
9888 
9889                         if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
9890                                 nframes = opt[DTRACEOPT_JSTACKFRAMES];
9891 
9892                         arg = DTRACE_USTACK_ARG(nframes, strsize);
9893 
9894                         /*FALLTHROUGH*/
9895                 case DTRACEACT_USTACK:
9896                         if (desc->dtad_kind != DTRACEACT_JSTACK &&
9897                             (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
9898                                 strsize = DTRACE_USTACK_STRSIZE(arg);
9899                                 nframes = opt[DTRACEOPT_USTACKFRAMES];
9900                                 ASSERT(nframes > 0);
9901                                 arg = DTRACE_USTACK_ARG(nframes, strsize);
9902                         }
9903 
9904                         /*
9905                          * Save a slot for the pid.
9906                          */
9907                         size = (nframes + 1) * sizeof (uint64_t);
9908                         size += DTRACE_USTACK_STRSIZE(arg);
9909                         size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
9910 
9911                         break;
9912 
9913                 case DTRACEACT_SYM:
9914                 case DTRACEACT_MOD:
9915                         if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
9916                             sizeof (uint64_t)) ||
9917                             (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
9918                                 return (EINVAL);
9919                         break;
9920 
9921                 case DTRACEACT_USYM:
9922                 case DTRACEACT_UMOD:
9923                 case DTRACEACT_UADDR:
9924                         if (dp == NULL ||
9925                             (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
9926                             (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
9927                                 return (EINVAL);
9928 
9929                         /*
9930                          * We have a slot for the pid, plus a slot for the
9931                          * argument.  To keep things simple (aligned with
9932                          * bitness-neutral sizing), we store each as a 64-bit
9933                          * quantity.
9934                          */
9935                         size = 2 * sizeof (uint64_t);
9936                         break;
9937 
9938                 case DTRACEACT_STOP:
9939                 case DTRACEACT_BREAKPOINT:
9940                 case DTRACEACT_PANIC:
9941                         break;
9942 
9943                 case DTRACEACT_CHILL:
9944                 case DTRACEACT_DISCARD:
9945                 case DTRACEACT_RAISE:
9946                         if (dp == NULL)
9947                                 return (EINVAL);
9948                         break;
9949 
9950                 case DTRACEACT_EXIT:
9951                         if (dp == NULL ||
9952                             (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
9953                             (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
9954                                 return (EINVAL);
9955                         break;
9956 
9957                 case DTRACEACT_SPECULATE:
9958                         if (ecb->dte_size > sizeof (dtrace_epid_t))
9959                                 return (EINVAL);
9960 
9961                         if (dp == NULL)
9962                                 return (EINVAL);
9963 
9964                         state->dts_speculates = 1;
9965                         break;
9966 
9967                 case DTRACEACT_COMMIT: {
9968                         dtrace_action_t *act = ecb->dte_action;
9969 
9970                         for (; act != NULL; act = act->dta_next) {
9971                                 if (act->dta_kind == DTRACEACT_COMMIT)
9972                                         return (EINVAL);
9973                         }
9974 
9975                         if (dp == NULL)
9976                                 return (EINVAL);
9977                         break;
9978                 }
9979 
9980                 default:
9981                         return (EINVAL);
9982                 }
9983 
9984                 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
9985                         /*
9986                          * If this is a data-storing action or a speculate,
9987                          * we must be sure that there isn't a commit on the
9988                          * action chain.
9989                          */
9990                         dtrace_action_t *act = ecb->dte_action;
9991 
9992                         for (; act != NULL; act = act->dta_next) {
9993                                 if (act->dta_kind == DTRACEACT_COMMIT)
9994                                         return (EINVAL);
9995                         }
9996                 }
9997 
9998                 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
9999                 action->dta_rec.dtrd_size = size;
10000         }
10001 
10002         action->dta_refcnt = 1;
10003         rec = &action->dta_rec;
10004         size = rec->dtrd_size;
10005 
10006         for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
10007                 if (!(size & mask)) {
10008                         align = mask + 1;
10009                         break;
10010                 }
10011         }
10012 
10013         action->dta_kind = desc->dtad_kind;
10014 
10015         if ((action->dta_difo = dp) != NULL)
10016                 dtrace_difo_hold(dp);
10017 
10018         rec->dtrd_action = action->dta_kind;
10019         rec->dtrd_arg = arg;
10020         rec->dtrd_uarg = desc->dtad_uarg;
10021         rec->dtrd_alignment = (uint16_t)align;
10022         rec->dtrd_format = format;
10023 
10024         if ((last = ecb->dte_action_last) != NULL) {
10025                 ASSERT(ecb->dte_action != NULL);
10026                 action->dta_prev = last;
10027                 last->dta_next = action;
10028         } else {
10029                 ASSERT(ecb->dte_action == NULL);
10030                 ecb->dte_action = action;
10031         }
10032 
10033         ecb->dte_action_last = action;
10034 
10035         return (0);
10036 }
10037 
10038 static void
10039 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
10040 {
10041         dtrace_action_t *act = ecb->dte_action, *next;
10042         dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
10043         dtrace_difo_t *dp;
10044         uint16_t format;
10045 
10046         if (act != NULL && act->dta_refcnt > 1) {
10047                 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10048                 act->dta_refcnt--;
10049         } else {
10050                 for (; act != NULL; act = next) {
10051                         next = act->dta_next;
10052                         ASSERT(next != NULL || act == ecb->dte_action_last);
10053                         ASSERT(act->dta_refcnt == 1);
10054 
10055                         if ((format = act->dta_rec.dtrd_format) != 0)
10056                                 dtrace_format_remove(ecb->dte_state, format);
10057 
10058                         if ((dp = act->dta_difo) != NULL)
10059                                 dtrace_difo_release(dp, vstate);
10060 
10061                         if (DTRACEACT_ISAGG(act->dta_kind)) {
10062                                 dtrace_ecb_aggregation_destroy(ecb, act);
10063                         } else {
10064                                 kmem_free(act, sizeof (dtrace_action_t));
10065                         }
10066                 }
10067         }
10068 
10069         ecb->dte_action = NULL;
10070         ecb->dte_action_last = NULL;
10071         ecb->dte_size = sizeof (dtrace_epid_t);
10072 }
10073 
10074 static void
10075 dtrace_ecb_disable(dtrace_ecb_t *ecb)
10076 {
10077         /*
10078          * We disable the ECB by removing it from its probe.
10079          */
10080         dtrace_ecb_t *pecb, *prev = NULL;
10081         dtrace_probe_t *probe = ecb->dte_probe;
10082 
10083         ASSERT(MUTEX_HELD(&dtrace_lock));
10084 
10085         if (probe == NULL) {
10086                 /*
10087                  * This is the NULL probe; there is nothing to disable.
10088                  */
10089                 return;
10090         }
10091 
10092         for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
10093                 if (pecb == ecb)
10094                         break;
10095                 prev = pecb;
10096         }
10097 
10098         ASSERT(pecb != NULL);
10099 
10100         if (prev == NULL) {
10101                 probe->dtpr_ecb = ecb->dte_next;
10102         } else {
10103                 prev->dte_next = ecb->dte_next;
10104         }
10105 
10106         if (ecb == probe->dtpr_ecb_last) {
10107                 ASSERT(ecb->dte_next == NULL);
10108                 probe->dtpr_ecb_last = prev;
10109         }
10110 
10111         /*
10112          * The ECB has been disconnected from the probe; now sync to assure
10113          * that all CPUs have seen the change before returning.
10114          */
10115         dtrace_sync();
10116 
10117         if (probe->dtpr_ecb == NULL) {
10118                 /*
10119                  * That was the last ECB on the probe; clear the predicate
10120                  * cache ID for the probe, disable it and sync one more time
10121                  * to assure that we'll never hit it again.
10122                  */
10123                 dtrace_provider_t *prov = probe->dtpr_provider;
10124 
10125                 ASSERT(ecb->dte_next == NULL);
10126                 ASSERT(probe->dtpr_ecb_last == NULL);
10127                 probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10128                 prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
10129                     probe->dtpr_id, probe->dtpr_arg);
10130                 dtrace_sync();
10131         } else {
10132                 /*
10133                  * There is at least one ECB remaining on the probe.  If there
10134                  * is _exactly_ one, set the probe's predicate cache ID to be
10135                  * the predicate cache ID of the remaining ECB.
10136                  */
10137                 ASSERT(probe->dtpr_ecb_last != NULL);
10138                 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
10139 
10140                 if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
10141                         dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
10142 
10143                         ASSERT(probe->dtpr_ecb->dte_next == NULL);
10144 
10145                         if (p != NULL)
10146                                 probe->dtpr_predcache = p->dtp_cacheid;
10147                 }
10148 
10149                 ecb->dte_next = NULL;
10150         }
10151 }
10152 
10153 static void
10154 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
10155 {
10156         dtrace_state_t *state = ecb->dte_state;
10157         dtrace_vstate_t *vstate = &state->dts_vstate;
10158         dtrace_predicate_t *pred;
10159         dtrace_epid_t epid = ecb->dte_epid;
10160 
10161         ASSERT(MUTEX_HELD(&dtrace_lock));
10162         ASSERT(ecb->dte_next == NULL);
10163         ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
10164 
10165         if ((pred = ecb->dte_predicate) != NULL)
10166                 dtrace_predicate_release(pred, vstate);
10167 
10168         dtrace_ecb_action_remove(ecb);
10169 
10170         ASSERT(state->dts_ecbs[epid - 1] == ecb);
10171         state->dts_ecbs[epid - 1] = NULL;
10172 
10173         kmem_free(ecb, sizeof (dtrace_ecb_t));
10174 }
10175 
10176 static dtrace_ecb_t *
10177 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10178     dtrace_enabling_t *enab)
10179 {
10180         dtrace_ecb_t *ecb;
10181         dtrace_predicate_t *pred;
10182         dtrace_actdesc_t *act;
10183         dtrace_provider_t *prov;
10184         dtrace_ecbdesc_t *desc = enab->dten_current;
10185 
10186         ASSERT(MUTEX_HELD(&dtrace_lock));
10187         ASSERT(state != NULL);
10188 
10189         ecb = dtrace_ecb_add(state, probe);
10190         ecb->dte_uarg = desc->dted_uarg;
10191 
10192         if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
10193                 dtrace_predicate_hold(pred);
10194                 ecb->dte_predicate = pred;
10195         }
10196 
10197         if (probe != NULL) {
10198                 /*
10199                  * If the provider shows more leg than the consumer is old
10200                  * enough to see, we need to enable the appropriate implicit
10201                  * predicate bits to prevent the ecb from activating at
10202                  * revealing times.
10203                  *
10204                  * Providers specifying DTRACE_PRIV_USER at register time
10205                  * are stating that they need the /proc-style privilege
10206                  * model to be enforced, and this is what DTRACE_COND_OWNER
10207                  * and DTRACE_COND_ZONEOWNER will then do at probe time.
10208                  */
10209                 prov = probe->dtpr_provider;
10210                 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
10211                     (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10212                         ecb->dte_cond |= DTRACE_COND_OWNER;
10213 
10214                 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
10215                     (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10216                         ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
10217 
10218                 /*
10219                  * If the provider shows us kernel innards and the user
10220                  * is lacking sufficient privilege, enable the
10221                  * DTRACE_COND_USERMODE implicit predicate.
10222                  */
10223                 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
10224                     (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
10225                         ecb->dte_cond |= DTRACE_COND_USERMODE;
10226         }
10227 
10228         if (dtrace_ecb_create_cache != NULL) {
10229                 /*
10230                  * If we have a cached ecb, we'll use its action list instead
10231                  * of creating our own (saving both time and space).
10232                  */
10233                 dtrace_ecb_t *cached = dtrace_ecb_create_cache;
10234                 dtrace_action_t *act = cached->dte_action;
10235 
10236                 if (act != NULL) {
10237                         ASSERT(act->dta_refcnt > 0);
10238                         act->dta_refcnt++;
10239                         ecb->dte_action = act;
10240                         ecb->dte_action_last = cached->dte_action_last;
10241                         ecb->dte_needed = cached->dte_needed;
10242                         ecb->dte_size = cached->dte_size;
10243                         ecb->dte_alignment = cached->dte_alignment;
10244                 }
10245 
10246                 return (ecb);
10247         }
10248 
10249         for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
10250                 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
10251                         dtrace_ecb_destroy(ecb);
10252                         return (NULL);
10253                 }
10254         }
10255 
10256         dtrace_ecb_resize(ecb);
10257 
10258         return (dtrace_ecb_create_cache = ecb);
10259 }
10260 
10261 static int
10262 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
10263 {
10264         dtrace_ecb_t *ecb;
10265         dtrace_enabling_t *enab = arg;
10266         dtrace_state_t *state = enab->dten_vstate->dtvs_state;
10267 
10268         ASSERT(state != NULL);
10269 
10270         if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
10271                 /*
10272                  * This probe was created in a generation for which this
10273                  * enabling has previously created ECBs; we don't want to
10274                  * enable it again, so just kick out.
10275                  */
10276                 return (DTRACE_MATCH_NEXT);
10277         }
10278 
10279         if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
10280                 return (DTRACE_MATCH_DONE);
10281 
10282         if (dtrace_ecb_enable(ecb) < 0)
10283                 return (DTRACE_MATCH_FAIL);
10284 
10285         return (DTRACE_MATCH_NEXT);
10286 }
10287 
10288 static dtrace_ecb_t *
10289 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
10290 {
10291         dtrace_ecb_t *ecb;
10292 
10293         ASSERT(MUTEX_HELD(&dtrace_lock));
10294 
10295         if (id == 0 || id > state->dts_necbs)
10296                 return (NULL);
10297 
10298         ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
10299         ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
10300 
10301         return (state->dts_ecbs[id - 1]);
10302 }
10303 
10304 static dtrace_aggregation_t *
10305 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
10306 {
10307         dtrace_aggregation_t *agg;
10308 
10309         ASSERT(MUTEX_HELD(&dtrace_lock));
10310 
10311         if (id == 0 || id > state->dts_naggregations)
10312                 return (NULL);
10313 
10314         ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
10315         ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
10316             agg->dtag_id == id);
10317 
10318         return (state->dts_aggregations[id - 1]);
10319 }
10320 
10321 /*
10322  * DTrace Buffer Functions
10323  *
10324  * The following functions manipulate DTrace buffers.  Most of these functions
10325  * are called in the context of establishing or processing consumer state;
10326  * exceptions are explicitly noted.
10327  */
10328 
10329 /*
10330  * Note:  called from cross call context.  This function switches the two
10331  * buffers on a given CPU.  The atomicity of this operation is assured by
10332  * disabling interrupts while the actual switch takes place; the disabling of
10333  * interrupts serializes the execution with any execution of dtrace_probe() on
10334  * the same CPU.
10335  */
10336 static void
10337 dtrace_buffer_switch(dtrace_buffer_t *buf)
10338 {
10339         caddr_t tomax = buf->dtb_tomax;
10340         caddr_t xamot = buf->dtb_xamot;
10341         dtrace_icookie_t cookie;
10342         hrtime_t now = dtrace_gethrtime();
10343 
10344         ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10345         ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
10346 
10347         cookie = dtrace_interrupt_disable();
10348         buf->dtb_tomax = xamot;
10349         buf->dtb_xamot = tomax;
10350         buf->dtb_xamot_drops = buf->dtb_drops;
10351         buf->dtb_xamot_offset = buf->dtb_offset;
10352         buf->dtb_xamot_errors = buf->dtb_errors;
10353         buf->dtb_xamot_flags = buf->dtb_flags;
10354         buf->dtb_offset = 0;
10355         buf->dtb_drops = 0;
10356         buf->dtb_errors = 0;
10357         buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
10358         buf->dtb_interval = now - buf->dtb_switched;
10359         buf->dtb_switched = now;
10360         dtrace_interrupt_enable(cookie);
10361 }
10362 
10363 /*
10364  * Note:  called from cross call context.  This function activates a buffer
10365  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
10366  * is guaranteed by the disabling of interrupts.
10367  */
10368 static void
10369 dtrace_buffer_activate(dtrace_state_t *state)
10370 {
10371         dtrace_buffer_t *buf;
10372         dtrace_icookie_t cookie = dtrace_interrupt_disable();
10373 
10374         buf = &state->dts_buffer[CPU->cpu_id];
10375 
10376         if (buf->dtb_tomax != NULL) {
10377                 /*
10378                  * We might like to assert that the buffer is marked inactive,
10379                  * but this isn't necessarily true:  the buffer for the CPU
10380                  * that processes the BEGIN probe has its buffer activated
10381                  * manually.  In this case, we take the (harmless) action
10382                  * re-clearing the bit INACTIVE bit.
10383                  */
10384                 buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
10385         }
10386 
10387         dtrace_interrupt_enable(cookie);
10388 }
10389 
10390 static int
10391 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
10392     processorid_t cpu, int *factor)
10393 {
10394         cpu_t *cp;
10395         dtrace_buffer_t *buf;
10396         int allocated = 0, desired = 0;
10397 
10398         ASSERT(MUTEX_HELD(&cpu_lock));
10399         ASSERT(MUTEX_HELD(&dtrace_lock));
10400 
10401         *factor = 1;
10402 
10403         if (size > dtrace_nonroot_maxsize &&
10404             !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
10405                 return (EFBIG);
10406 
10407         cp = cpu_list;
10408 
10409         do {
10410                 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10411                         continue;
10412 
10413                 buf = &bufs[cp->cpu_id];
10414 
10415                 /*
10416                  * If there is already a buffer allocated for this CPU, it
10417                  * is only possible that this is a DR event.  In this case,
10418                  * the buffer size must match our specified size.
10419                  */
10420                 if (buf->dtb_tomax != NULL) {
10421                         ASSERT(buf->dtb_size == size);
10422                         continue;
10423                 }
10424 
10425                 ASSERT(buf->dtb_xamot == NULL);
10426 
10427                 if ((buf->dtb_tomax = kmem_zalloc(size,
10428                     KM_NOSLEEP | KM_NORMALPRI)) == NULL)
10429                         goto err;
10430 
10431                 buf->dtb_size = size;
10432                 buf->dtb_flags = flags;
10433                 buf->dtb_offset = 0;
10434                 buf->dtb_drops = 0;
10435 
10436                 if (flags & DTRACEBUF_NOSWITCH)
10437                         continue;
10438 
10439                 if ((buf->dtb_xamot = kmem_zalloc(size,
10440                     KM_NOSLEEP | KM_NORMALPRI)) == NULL)
10441                         goto err;
10442         } while ((cp = cp->cpu_next) != cpu_list);
10443 
10444         return (0);
10445 
10446 err:
10447         cp = cpu_list;
10448 
10449         do {
10450                 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10451                         continue;
10452 
10453                 buf = &bufs[cp->cpu_id];
10454                 desired += 2;
10455 
10456                 if (buf->dtb_xamot != NULL) {
10457                         ASSERT(buf->dtb_tomax != NULL);
10458                         ASSERT(buf->dtb_size == size);
10459                         kmem_free(buf->dtb_xamot, size);
10460                         allocated++;
10461                 }
10462 
10463                 if (buf->dtb_tomax != NULL) {
10464                         ASSERT(buf->dtb_size == size);
10465                         kmem_free(buf->dtb_tomax, size);
10466                         allocated++;
10467                 }
10468 
10469                 buf->dtb_tomax = NULL;
10470                 buf->dtb_xamot = NULL;
10471                 buf->dtb_size = 0;
10472         } while ((cp = cp->cpu_next) != cpu_list);
10473 
10474         *factor = desired / (allocated > 0 ? allocated : 1);
10475 
10476         return (ENOMEM);
10477 }
10478 
10479 /*
10480  * Note:  called from probe context.  This function just increments the drop
10481  * count on a buffer.  It has been made a function to allow for the
10482  * possibility of understanding the source of mysterious drop counts.  (A
10483  * problem for which one may be particularly disappointed that DTrace cannot
10484  * be used to understand DTrace.)
10485  */
10486 static void
10487 dtrace_buffer_drop(dtrace_buffer_t *buf)
10488 {
10489         buf->dtb_drops++;
10490 }
10491 
10492 /*
10493  * Note:  called from probe context.  This function is called to reserve space
10494  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
10495  * mstate.  Returns the new offset in the buffer, or a negative value if an
10496  * error has occurred.
10497  */
10498 static intptr_t
10499 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
10500     dtrace_state_t *state, dtrace_mstate_t *mstate)
10501 {
10502         intptr_t offs = buf->dtb_offset, soffs;
10503         intptr_t woffs;
10504         caddr_t tomax;
10505         size_t total;
10506 
10507         if (buf->dtb_flags & DTRACEBUF_INACTIVE)
10508                 return (-1);
10509 
10510         if ((tomax = buf->dtb_tomax) == NULL) {
10511                 dtrace_buffer_drop(buf);
10512                 return (-1);
10513         }
10514 
10515         if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
10516                 while (offs & (align - 1)) {
10517                         /*
10518                          * Assert that our alignment is off by a number which
10519                          * is itself sizeof (uint32_t) aligned.
10520                          */
10521                         ASSERT(!((align - (offs & (align - 1))) &
10522                             (sizeof (uint32_t) - 1)));
10523                         DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10524                         offs += sizeof (uint32_t);
10525                 }
10526 
10527                 if ((soffs = offs + needed) > buf->dtb_size) {
10528                         dtrace_buffer_drop(buf);
10529                         return (-1);
10530                 }
10531 
10532                 if (mstate == NULL)
10533                         return (offs);
10534 
10535                 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
10536                 mstate->dtms_scratch_size = buf->dtb_size - soffs;
10537                 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10538 
10539                 return (offs);
10540         }
10541 
10542         if (buf->dtb_flags & DTRACEBUF_FILL) {
10543                 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
10544                     (buf->dtb_flags & DTRACEBUF_FULL))
10545                         return (-1);
10546                 goto out;
10547         }
10548 
10549         total = needed + (offs & (align - 1));
10550 
10551         /*
10552          * For a ring buffer, life is quite a bit more complicated.  Before
10553          * we can store any padding, we need to adjust our wrapping offset.
10554          * (If we've never before wrapped or we're not about to, no adjustment
10555          * is required.)
10556          */
10557         if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
10558             offs + total > buf->dtb_size) {
10559                 woffs = buf->dtb_xamot_offset;
10560 
10561                 if (offs + total > buf->dtb_size) {
10562                         /*
10563                          * We can't fit in the end of the buffer.  First, a
10564                          * sanity check that we can fit in the buffer at all.
10565                          */
10566                         if (total > buf->dtb_size) {
10567                                 dtrace_buffer_drop(buf);
10568                                 return (-1);
10569                         }
10570 
10571                         /*
10572                          * We're going to be storing at the top of the buffer,
10573                          * so now we need to deal with the wrapped offset.  We
10574                          * only reset our wrapped offset to 0 if it is
10575                          * currently greater than the current offset.  If it
10576                          * is less than the current offset, it is because a
10577                          * previous allocation induced a wrap -- but the
10578                          * allocation didn't subsequently take the space due
10579                          * to an error or false predicate evaluation.  In this
10580                          * case, we'll just leave the wrapped offset alone: if
10581                          * the wrapped offset hasn't been advanced far enough
10582                          * for this allocation, it will be adjusted in the
10583                          * lower loop.
10584                          */
10585                         if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
10586                                 if (woffs >= offs)
10587                                         woffs = 0;
10588                         } else {
10589                                 woffs = 0;
10590                         }
10591 
10592                         /*
10593                          * Now we know that we're going to be storing to the
10594                          * top of the buffer and that there is room for us
10595                          * there.  We need to clear the buffer from the current
10596                          * offset to the end (there may be old gunk there).
10597                          */
10598                         while (offs < buf->dtb_size)
10599                                 tomax[offs++] = 0;
10600 
10601                         /*
10602                          * We need to set our offset to zero.  And because we
10603                          * are wrapping, we need to set the bit indicating as
10604                          * much.  We can also adjust our needed space back
10605                          * down to the space required by the ECB -- we know
10606                          * that the top of the buffer is aligned.
10607                          */
10608                         offs = 0;
10609                         total = needed;
10610                         buf->dtb_flags |= DTRACEBUF_WRAPPED;
10611                 } else {
10612                         /*
10613                          * There is room for us in the buffer, so we simply
10614                          * need to check the wrapped offset.
10615                          */
10616                         if (woffs < offs) {
10617                                 /*
10618                                  * The wrapped offset is less than the offset.
10619                                  * This can happen if we allocated buffer space
10620                                  * that induced a wrap, but then we didn't
10621                                  * subsequently take the space due to an error
10622                                  * or false predicate evaluation.  This is
10623                                  * okay; we know that _this_ allocation isn't
10624                                  * going to induce a wrap.  We still can't
10625                                  * reset the wrapped offset to be zero,
10626                                  * however: the space may have been trashed in
10627                                  * the previous failed probe attempt.  But at
10628                                  * least the wrapped offset doesn't need to
10629                                  * be adjusted at all...
10630                                  */
10631                                 goto out;
10632                         }
10633                 }
10634 
10635                 while (offs + total > woffs) {
10636                         dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
10637                         size_t size;
10638 
10639                         if (epid == DTRACE_EPIDNONE) {
10640                                 size = sizeof (uint32_t);
10641                         } else {
10642                                 ASSERT(epid <= state->dts_necbs);
10643                                 ASSERT(state->dts_ecbs[epid - 1] != NULL);
10644 
10645                                 size = state->dts_ecbs[epid - 1]->dte_size;
10646                         }
10647 
10648                         ASSERT(woffs + size <= buf->dtb_size);
10649                         ASSERT(size != 0);
10650 
10651                         if (woffs + size == buf->dtb_size) {
10652                                 /*
10653                                  * We've reached the end of the buffer; we want
10654                                  * to set the wrapped offset to 0 and break
10655                                  * out.  However, if the offs is 0, then we're
10656                                  * in a strange edge-condition:  the amount of
10657                                  * space that we want to reserve plus the size
10658                                  * of the record that we're overwriting is
10659                                  * greater than the size of the buffer.  This
10660                                  * is problematic because if we reserve the
10661                                  * space but subsequently don't consume it (due
10662                                  * to a failed predicate or error) the wrapped
10663                                  * offset will be 0 -- yet the EPID at offset 0
10664                                  * will not be committed.  This situation is
10665                                  * relatively easy to deal with:  if we're in
10666                                  * this case, the buffer is indistinguishable
10667                                  * from one that hasn't wrapped; we need only
10668                                  * finish the job by clearing the wrapped bit,
10669                                  * explicitly setting the offset to be 0, and
10670                                  * zero'ing out the old data in the buffer.
10671                                  */
10672                                 if (offs == 0) {
10673                                         buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
10674                                         buf->dtb_offset = 0;
10675                                         woffs = total;
10676 
10677                                         while (woffs < buf->dtb_size)
10678                                                 tomax[woffs++] = 0;
10679                                 }
10680 
10681                                 woffs = 0;
10682                                 break;
10683                         }
10684 
10685                         woffs += size;
10686                 }
10687 
10688                 /*
10689                  * We have a wrapped offset.  It may be that the wrapped offset
10690                  * has become zero -- that's okay.
10691                  */
10692                 buf->dtb_xamot_offset = woffs;
10693         }
10694 
10695 out:
10696         /*
10697          * Now we can plow the buffer with any necessary padding.
10698          */
10699         while (offs & (align - 1)) {
10700                 /*
10701                  * Assert that our alignment is off by a number which
10702                  * is itself sizeof (uint32_t) aligned.
10703                  */
10704                 ASSERT(!((align - (offs & (align - 1))) &
10705                     (sizeof (uint32_t) - 1)));
10706                 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10707                 offs += sizeof (uint32_t);
10708         }
10709 
10710         if (buf->dtb_flags & DTRACEBUF_FILL) {
10711                 if (offs + needed > buf->dtb_size - state->dts_reserve) {
10712                         buf->dtb_flags |= DTRACEBUF_FULL;
10713                         return (-1);
10714                 }
10715         }
10716 
10717         if (mstate == NULL)
10718                 return (offs);
10719 
10720         /*
10721          * For ring buffers and fill buffers, the scratch space is always
10722          * the inactive buffer.
10723          */
10724         mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
10725         mstate->dtms_scratch_size = buf->dtb_size;
10726         mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10727 
10728         return (offs);
10729 }
10730 
10731 static void
10732 dtrace_buffer_polish(dtrace_buffer_t *buf)
10733 {
10734         ASSERT(buf->dtb_flags & DTRACEBUF_RING);
10735         ASSERT(MUTEX_HELD(&dtrace_lock));
10736 
10737         if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
10738                 return;
10739 
10740         /*
10741          * We need to polish the ring buffer.  There are three cases:
10742          *
10743          * - The first (and presumably most common) is that there is no gap
10744          *   between the buffer offset and the wrapped offset.  In this case,
10745          *   there is nothing in the buffer that isn't valid data; we can
10746          *   mark the buffer as polished and return.
10747          *
10748          * - The second (less common than the first but still more common
10749          *   than the third) is that there is a gap between the buffer offset
10750          *   and the wrapped offset, and the wrapped offset is larger than the
10751          *   buffer offset.  This can happen because of an alignment issue, or
10752          *   can happen because of a call to dtrace_buffer_reserve() that
10753          *   didn't subsequently consume the buffer space.  In this case,
10754          *   we need to zero the data from the buffer offset to the wrapped
10755          *   offset.
10756          *
10757          * - The third (and least common) is that there is a gap between the
10758          *   buffer offset and the wrapped offset, but the wrapped offset is
10759          *   _less_ than the buffer offset.  This can only happen because a
10760          *   call to dtrace_buffer_reserve() induced a wrap, but the space
10761          *   was not subsequently consumed.  In this case, we need to zero the
10762          *   space from the offset to the end of the buffer _and_ from the
10763          *   top of the buffer to the wrapped offset.
10764          */
10765         if (buf->dtb_offset < buf->dtb_xamot_offset) {
10766                 bzero(buf->dtb_tomax + buf->dtb_offset,
10767                     buf->dtb_xamot_offset - buf->dtb_offset);
10768         }
10769 
10770         if (buf->dtb_offset > buf->dtb_xamot_offset) {
10771                 bzero(buf->dtb_tomax + buf->dtb_offset,
10772                     buf->dtb_size - buf->dtb_offset);
10773                 bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
10774         }
10775 }
10776 
10777 /*
10778  * This routine determines if data generated at the specified time has likely
10779  * been entirely consumed at user-level.  This routine is called to determine
10780  * if an ECB on a defunct probe (but for an active enabling) can be safely
10781  * disabled and destroyed.
10782  */
10783 static int
10784 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
10785 {
10786         int i;
10787 
10788         for (i = 0; i < NCPU; i++) {
10789                 dtrace_buffer_t *buf = &bufs[i];
10790 
10791                 if (buf->dtb_size == 0)
10792                         continue;
10793 
10794                 if (buf->dtb_flags & DTRACEBUF_RING)
10795                         return (0);
10796 
10797                 if (!buf->dtb_switched && buf->dtb_offset != 0)
10798                         return (0);
10799 
10800                 if (buf->dtb_switched - buf->dtb_interval < when)
10801                         return (0);
10802         }
10803 
10804         return (1);
10805 }
10806 
10807 static void
10808 dtrace_buffer_free(dtrace_buffer_t *bufs)
10809 {
10810         int i;
10811 
10812         for (i = 0; i < NCPU; i++) {
10813                 dtrace_buffer_t *buf = &bufs[i];
10814 
10815                 if (buf->dtb_tomax == NULL) {
10816                         ASSERT(buf->dtb_xamot == NULL);
10817                         ASSERT(buf->dtb_size == 0);
10818                         continue;
10819                 }
10820 
10821                 if (buf->dtb_xamot != NULL) {
10822                         ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10823                         kmem_free(buf->dtb_xamot, buf->dtb_size);
10824                 }
10825 
10826                 kmem_free(buf->dtb_tomax, buf->dtb_size);
10827                 buf->dtb_size = 0;
10828                 buf->dtb_tomax = NULL;
10829                 buf->dtb_xamot = NULL;
10830         }
10831 }
10832 
10833 /*
10834  * DTrace Enabling Functions
10835  */
10836 static dtrace_enabling_t *
10837 dtrace_enabling_create(dtrace_vstate_t *vstate)
10838 {
10839         dtrace_enabling_t *enab;
10840 
10841         enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
10842         enab->dten_vstate = vstate;
10843 
10844         return (enab);
10845 }
10846 
10847 static void
10848 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
10849 {
10850         dtrace_ecbdesc_t **ndesc;
10851         size_t osize, nsize;
10852 
10853         /*
10854          * We can't add to enablings after we've enabled them, or after we've
10855          * retained them.
10856          */
10857         ASSERT(enab->dten_probegen == 0);
10858         ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
10859 
10860         if (enab->dten_ndesc < enab->dten_maxdesc) {
10861                 enab->dten_desc[enab->dten_ndesc++] = ecb;
10862                 return;
10863         }
10864 
10865         osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
10866 
10867         if (enab->dten_maxdesc == 0) {
10868                 enab->dten_maxdesc = 1;
10869         } else {
10870                 enab->dten_maxdesc <<= 1;
10871         }
10872 
10873         ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
10874 
10875         nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
10876         ndesc = kmem_zalloc(nsize, KM_SLEEP);
10877         bcopy(enab->dten_desc, ndesc, osize);
10878         kmem_free(enab->dten_desc, osize);
10879 
10880         enab->dten_desc = ndesc;
10881         enab->dten_desc[enab->dten_ndesc++] = ecb;
10882 }
10883 
10884 static void
10885 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
10886     dtrace_probedesc_t *pd)
10887 {
10888         dtrace_ecbdesc_t *new;
10889         dtrace_predicate_t *pred;
10890         dtrace_actdesc_t *act;
10891 
10892         /*
10893          * We're going to create a new ECB description that matches the
10894          * specified ECB in every way, but has the specified probe description.
10895          */
10896         new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
10897 
10898         if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
10899                 dtrace_predicate_hold(pred);
10900 
10901         for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
10902                 dtrace_actdesc_hold(act);
10903 
10904         new->dted_action = ecb->dted_action;
10905         new->dted_pred = ecb->dted_pred;
10906         new->dted_probe = *pd;
10907         new->dted_uarg = ecb->dted_uarg;
10908 
10909         dtrace_enabling_add(enab, new);
10910 }
10911 
10912 static void
10913 dtrace_enabling_dump(dtrace_enabling_t *enab)
10914 {
10915         int i;
10916 
10917         for (i = 0; i < enab->dten_ndesc; i++) {
10918                 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
10919 
10920                 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
10921                     desc->dtpd_provider, desc->dtpd_mod,
10922                     desc->dtpd_func, desc->dtpd_name);
10923         }
10924 }
10925 
10926 static void
10927 dtrace_enabling_destroy(dtrace_enabling_t *enab)
10928 {
10929         int i;
10930         dtrace_ecbdesc_t *ep;
10931         dtrace_vstate_t *vstate = enab->dten_vstate;
10932 
10933         ASSERT(MUTEX_HELD(&dtrace_lock));
10934 
10935         for (i = 0; i < enab->dten_ndesc; i++) {
10936                 dtrace_actdesc_t *act, *next;
10937                 dtrace_predicate_t *pred;
10938 
10939                 ep = enab->dten_desc[i];
10940 
10941                 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
10942                         dtrace_predicate_release(pred, vstate);
10943 
10944                 for (act = ep->dted_action; act != NULL; act = next) {
10945                         next = act->dtad_next;
10946                         dtrace_actdesc_release(act, vstate);
10947                 }
10948 
10949                 kmem_free(ep, sizeof (dtrace_ecbdesc_t));
10950         }
10951 
10952         kmem_free(enab->dten_desc,
10953             enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
10954 
10955         /*
10956          * If this was a retained enabling, decrement the dts_nretained count
10957          * and take it off of the dtrace_retained list.
10958          */
10959         if (enab->dten_prev != NULL || enab->dten_next != NULL ||
10960             dtrace_retained == enab) {
10961                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
10962                 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
10963                 enab->dten_vstate->dtvs_state->dts_nretained--;
10964                 dtrace_retained_gen++;
10965         }
10966 
10967         if (enab->dten_prev == NULL) {
10968                 if (dtrace_retained == enab) {
10969                         dtrace_retained = enab->dten_next;
10970 
10971                         if (dtrace_retained != NULL)
10972                                 dtrace_retained->dten_prev = NULL;
10973                 }
10974         } else {
10975                 ASSERT(enab != dtrace_retained);
10976                 ASSERT(dtrace_retained != NULL);
10977                 enab->dten_prev->dten_next = enab->dten_next;
10978         }
10979 
10980         if (enab->dten_next != NULL) {
10981                 ASSERT(dtrace_retained != NULL);
10982                 enab->dten_next->dten_prev = enab->dten_prev;
10983         }
10984 
10985         kmem_free(enab, sizeof (dtrace_enabling_t));
10986 }
10987 
10988 static int
10989 dtrace_enabling_retain(dtrace_enabling_t *enab)
10990 {
10991         dtrace_state_t *state;
10992 
10993         ASSERT(MUTEX_HELD(&dtrace_lock));
10994         ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
10995         ASSERT(enab->dten_vstate != NULL);
10996 
10997         state = enab->dten_vstate->dtvs_state;
10998         ASSERT(state != NULL);
10999 
11000         /*
11001          * We only allow each state to retain dtrace_retain_max enablings.
11002          */
11003         if (state->dts_nretained >= dtrace_retain_max)
11004                 return (ENOSPC);
11005 
11006         state->dts_nretained++;
11007         dtrace_retained_gen++;
11008 
11009         if (dtrace_retained == NULL) {
11010                 dtrace_retained = enab;
11011                 return (0);
11012         }
11013 
11014         enab->dten_next = dtrace_retained;
11015         dtrace_retained->dten_prev = enab;
11016         dtrace_retained = enab;
11017 
11018         return (0);
11019 }
11020 
11021 static int
11022 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11023     dtrace_probedesc_t *create)
11024 {
11025         dtrace_enabling_t *new, *enab;
11026         int found = 0, err = ENOENT;
11027 
11028         ASSERT(MUTEX_HELD(&dtrace_lock));
11029         ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
11030         ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
11031         ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
11032         ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
11033 
11034         new = dtrace_enabling_create(&state->dts_vstate);
11035 
11036         /*
11037          * Iterate over all retained enablings, looking for enablings that
11038          * match the specified state.
11039          */
11040         for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11041                 int i;
11042 
11043                 /*
11044                  * dtvs_state can only be NULL for helper enablings -- and
11045                  * helper enablings can't be retained.
11046                  */
11047                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11048 
11049                 if (enab->dten_vstate->dtvs_state != state)
11050                         continue;
11051 
11052                 /*
11053                  * Now iterate over each probe description; we're looking for
11054                  * an exact match to the specified probe description.
11055                  */
11056                 for (i = 0; i < enab->dten_ndesc; i++) {
11057                         dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11058                         dtrace_probedesc_t *pd = &ep->dted_probe;
11059 
11060                         if (strcmp(pd->dtpd_provider, match->dtpd_provider))
11061                                 continue;
11062 
11063                         if (strcmp(pd->dtpd_mod, match->dtpd_mod))
11064                                 continue;
11065 
11066                         if (strcmp(pd->dtpd_func, match->dtpd_func))
11067                                 continue;
11068 
11069                         if (strcmp(pd->dtpd_name, match->dtpd_name))
11070                                 continue;
11071 
11072                         /*
11073                          * We have a winning probe!  Add it to our growing
11074                          * enabling.
11075                          */
11076                         found = 1;
11077                         dtrace_enabling_addlike(new, ep, create);
11078                 }
11079         }
11080 
11081         if (!found || (err = dtrace_enabling_retain(new)) != 0) {
11082                 dtrace_enabling_destroy(new);
11083                 return (err);
11084         }
11085 
11086         return (0);
11087 }
11088 
11089 static void
11090 dtrace_enabling_retract(dtrace_state_t *state)
11091 {
11092         dtrace_enabling_t *enab, *next;
11093 
11094         ASSERT(MUTEX_HELD(&dtrace_lock));
11095 
11096         /*
11097          * Iterate over all retained enablings, destroy the enablings retained
11098          * for the specified state.
11099          */
11100         for (enab = dtrace_retained; enab != NULL; enab = next) {
11101                 next = enab->dten_next;
11102 
11103                 /*
11104                  * dtvs_state can only be NULL for helper enablings -- and
11105                  * helper enablings can't be retained.
11106                  */
11107                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11108 
11109                 if (enab->dten_vstate->dtvs_state == state) {
11110                         ASSERT(state->dts_nretained > 0);
11111                         dtrace_enabling_destroy(enab);
11112                 }
11113         }
11114 
11115         ASSERT(state->dts_nretained == 0);
11116 }
11117 
11118 static int
11119 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
11120 {
11121         int i = 0;
11122         int total_matched = 0, matched = 0;
11123 
11124         ASSERT(MUTEX_HELD(&cpu_lock));
11125         ASSERT(MUTEX_HELD(&dtrace_lock));
11126 
11127         for (i = 0; i < enab->dten_ndesc; i++) {
11128                 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11129 
11130                 enab->dten_current = ep;
11131                 enab->dten_error = 0;
11132 
11133                 /*
11134                  * If a provider failed to enable a probe then get out and
11135                  * let the consumer know we failed.
11136                  */
11137                 if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0)
11138                         return (EBUSY);
11139 
11140                 total_matched += matched;
11141 
11142                 if (enab->dten_error != 0) {
11143                         /*
11144                          * If we get an error half-way through enabling the
11145                          * probes, we kick out -- perhaps with some number of
11146                          * them enabled.  Leaving enabled probes enabled may
11147                          * be slightly confusing for user-level, but we expect
11148                          * that no one will attempt to actually drive on in
11149                          * the face of such errors.  If this is an anonymous
11150                          * enabling (indicated with a NULL nmatched pointer),
11151                          * we cmn_err() a message.  We aren't expecting to
11152                          * get such an error -- such as it can exist at all,
11153                          * it would be a result of corrupted DOF in the driver
11154                          * properties.
11155                          */
11156                         if (nmatched == NULL) {
11157                                 cmn_err(CE_WARN, "dtrace_enabling_match() "
11158                                     "error on %p: %d", (void *)ep,
11159                                     enab->dten_error);
11160                         }
11161 
11162                         return (enab->dten_error);
11163                 }
11164         }
11165 
11166         enab->dten_probegen = dtrace_probegen;
11167         if (nmatched != NULL)
11168                 *nmatched = total_matched;
11169 
11170         return (0);
11171 }
11172 
11173 static void
11174 dtrace_enabling_matchall(void)
11175 {
11176         dtrace_enabling_t *enab;
11177 
11178         mutex_enter(&cpu_lock);
11179         mutex_enter(&dtrace_lock);
11180 
11181         /*
11182          * Iterate over all retained enablings to see if any probes match
11183          * against them.  We only perform this operation on enablings for which
11184          * we have sufficient permissions by virtue of being in the global zone
11185          * or in the same zone as the DTrace client.  Because we can be called
11186          * after dtrace_detach() has been called, we cannot assert that there
11187          * are retained enablings.  We can safely load from dtrace_retained,
11188          * however:  the taskq_destroy() at the end of dtrace_detach() will
11189          * block pending our completion.
11190          */
11191         for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11192                 dtrace_cred_t *dcr = &enab->dten_vstate->dtvs_state->dts_cred;
11193                 cred_t *cr = dcr->dcr_cred;
11194                 zoneid_t zone = cr != NULL ? crgetzoneid(cr) : 0;
11195 
11196                 if ((dcr->dcr_visible & DTRACE_CRV_ALLZONE) || (cr != NULL &&
11197                     (zone == GLOBAL_ZONEID || getzoneid() == zone)))
11198                         (void) dtrace_enabling_match(enab, NULL);
11199         }
11200 
11201         mutex_exit(&dtrace_lock);
11202         mutex_exit(&cpu_lock);
11203 }
11204 
11205 /*
11206  * If an enabling is to be enabled without having matched probes (that is, if
11207  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11208  * enabling must be _primed_ by creating an ECB for every ECB description.
11209  * This must be done to assure that we know the number of speculations, the
11210  * number of aggregations, the minimum buffer size needed, etc. before we
11211  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
11212  * enabling any probes, we create ECBs for every ECB decription, but with a
11213  * NULL probe -- which is exactly what this function does.
11214  */
11215 static void
11216 dtrace_enabling_prime(dtrace_state_t *state)
11217 {
11218         dtrace_enabling_t *enab;
11219         int i;
11220 
11221         for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11222                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11223 
11224                 if (enab->dten_vstate->dtvs_state != state)
11225                         continue;
11226 
11227                 /*
11228                  * We don't want to prime an enabling more than once, lest
11229                  * we allow a malicious user to induce resource exhaustion.
11230                  * (The ECBs that result from priming an enabling aren't
11231                  * leaked -- but they also aren't deallocated until the
11232                  * consumer state is destroyed.)
11233                  */
11234                 if (enab->dten_primed)
11235                         continue;
11236 
11237                 for (i = 0; i < enab->dten_ndesc; i++) {
11238                         enab->dten_current = enab->dten_desc[i];
11239                         (void) dtrace_probe_enable(NULL, enab);
11240                 }
11241 
11242                 enab->dten_primed = 1;
11243         }
11244 }
11245 
11246 /*
11247  * Called to indicate that probes should be provided due to retained
11248  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
11249  * must take an initial lap through the enabling calling the dtps_provide()
11250  * entry point explicitly to allow for autocreated probes.
11251  */
11252 static void
11253 dtrace_enabling_provide(dtrace_provider_t *prv)
11254 {
11255         int i, all = 0;
11256         dtrace_probedesc_t desc;
11257         dtrace_genid_t gen;
11258 
11259         ASSERT(MUTEX_HELD(&dtrace_lock));
11260         ASSERT(MUTEX_HELD(&dtrace_provider_lock));
11261 
11262         if (prv == NULL) {
11263                 all = 1;
11264                 prv = dtrace_provider;
11265         }
11266 
11267         do {
11268                 dtrace_enabling_t *enab;
11269                 void *parg = prv->dtpv_arg;
11270 
11271 retry:
11272                 gen = dtrace_retained_gen;
11273                 for (enab = dtrace_retained; enab != NULL;
11274                     enab = enab->dten_next) {
11275                         for (i = 0; i < enab->dten_ndesc; i++) {
11276                                 desc = enab->dten_desc[i]->dted_probe;
11277                                 mutex_exit(&dtrace_lock);
11278                                 prv->dtpv_pops.dtps_provide(parg, &desc);
11279                                 mutex_enter(&dtrace_lock);
11280                                 /*
11281                                  * Process the retained enablings again if
11282                                  * they have changed while we weren't holding
11283                                  * dtrace_lock.
11284                                  */
11285                                 if (gen != dtrace_retained_gen)
11286                                         goto retry;
11287                         }
11288                 }
11289         } while (all && (prv = prv->dtpv_next) != NULL);
11290 
11291         mutex_exit(&dtrace_lock);
11292         dtrace_probe_provide(NULL, all ? NULL : prv);
11293         mutex_enter(&dtrace_lock);
11294 }
11295 
11296 /*
11297  * Called to reap ECBs that are attached to probes from defunct providers.
11298  */
11299 static void
11300 dtrace_enabling_reap(void)
11301 {
11302         dtrace_provider_t *prov;
11303         dtrace_probe_t *probe;
11304         dtrace_ecb_t *ecb;
11305         hrtime_t when;
11306         int i;
11307 
11308         mutex_enter(&cpu_lock);
11309         mutex_enter(&dtrace_lock);
11310 
11311         for (i = 0; i < dtrace_nprobes; i++) {
11312                 if ((probe = dtrace_probes[i]) == NULL)
11313                         continue;
11314 
11315                 if (probe->dtpr_ecb == NULL)
11316                         continue;
11317 
11318                 prov = probe->dtpr_provider;
11319 
11320                 if ((when = prov->dtpv_defunct) == 0)
11321                         continue;
11322 
11323                 /*
11324                  * We have ECBs on a defunct provider:  we want to reap these
11325                  * ECBs to allow the provider to unregister.  The destruction
11326                  * of these ECBs must be done carefully:  if we destroy the ECB
11327                  * and the consumer later wishes to consume an EPID that
11328                  * corresponds to the destroyed ECB (and if the EPID metadata
11329                  * has not been previously consumed), the consumer will abort
11330                  * processing on the unknown EPID.  To reduce (but not, sadly,
11331                  * eliminate) the possibility of this, we will only destroy an
11332                  * ECB for a defunct provider if, for the state that
11333                  * corresponds to the ECB:
11334                  *
11335                  *  (a) There is no speculative tracing (which can effectively
11336                  *      cache an EPID for an arbitrary amount of time).
11337                  *
11338                  *  (b) The principal buffers have been switched twice since the
11339                  *      provider became defunct.
11340                  *
11341                  *  (c) The aggregation buffers are of zero size or have been
11342                  *      switched twice since the provider became defunct.
11343                  *
11344                  * We use dts_speculates to determine (a) and call a function
11345                  * (dtrace_buffer_consumed()) to determine (b) and (c).  Note
11346                  * that as soon as we've been unable to destroy one of the ECBs
11347                  * associated with the probe, we quit trying -- reaping is only
11348                  * fruitful in as much as we can destroy all ECBs associated
11349                  * with the defunct provider's probes.
11350                  */
11351                 while ((ecb = probe->dtpr_ecb) != NULL) {
11352                         dtrace_state_t *state = ecb->dte_state;
11353                         dtrace_buffer_t *buf = state->dts_buffer;
11354                         dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
11355 
11356                         if (state->dts_speculates)
11357                                 break;
11358 
11359                         if (!dtrace_buffer_consumed(buf, when))
11360                                 break;
11361 
11362                         if (!dtrace_buffer_consumed(aggbuf, when))
11363                                 break;
11364 
11365                         dtrace_ecb_disable(ecb);
11366                         ASSERT(probe->dtpr_ecb != ecb);
11367                         dtrace_ecb_destroy(ecb);
11368                 }
11369         }
11370 
11371         mutex_exit(&dtrace_lock);
11372         mutex_exit(&cpu_lock);
11373 }
11374 
11375 /*
11376  * DTrace DOF Functions
11377  */
11378 /*ARGSUSED*/
11379 static void
11380 dtrace_dof_error(dof_hdr_t *dof, const char *str)
11381 {
11382         if (dtrace_err_verbose)
11383                 cmn_err(CE_WARN, "failed to process DOF: %s", str);
11384 
11385 #ifdef DTRACE_ERRDEBUG
11386         dtrace_errdebug(str);
11387 #endif
11388 }
11389 
11390 /*
11391  * Create DOF out of a currently enabled state.  Right now, we only create
11392  * DOF containing the run-time options -- but this could be expanded to create
11393  * complete DOF representing the enabled state.
11394  */
11395 static dof_hdr_t *
11396 dtrace_dof_create(dtrace_state_t *state)
11397 {
11398         dof_hdr_t *dof;
11399         dof_sec_t *sec;
11400         dof_optdesc_t *opt;
11401         int i, len = sizeof (dof_hdr_t) +
11402             roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
11403             sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11404 
11405         ASSERT(MUTEX_HELD(&dtrace_lock));
11406 
11407         dof = kmem_zalloc(len, KM_SLEEP);
11408         dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
11409         dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
11410         dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
11411         dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
11412 
11413         dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
11414         dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
11415         dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
11416         dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
11417         dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
11418         dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
11419 
11420         dof->dofh_flags = 0;
11421         dof->dofh_hdrsize = sizeof (dof_hdr_t);
11422         dof->dofh_secsize = sizeof (dof_sec_t);
11423         dof->dofh_secnum = 1;        /* only DOF_SECT_OPTDESC */
11424         dof->dofh_secoff = sizeof (dof_hdr_t);
11425         dof->dofh_loadsz = len;
11426         dof->dofh_filesz = len;
11427         dof->dofh_pad = 0;
11428 
11429         /*
11430          * Fill in the option section header...
11431          */
11432         sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
11433         sec->dofs_type = DOF_SECT_OPTDESC;
11434         sec->dofs_align = sizeof (uint64_t);
11435         sec->dofs_flags = DOF_SECF_LOAD;
11436         sec->dofs_entsize = sizeof (dof_optdesc_t);
11437 
11438         opt = (dof_optdesc_t *)((uintptr_t)sec +
11439             roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
11440 
11441         sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
11442         sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11443 
11444         for (i = 0; i < DTRACEOPT_MAX; i++) {
11445                 opt[i].dofo_option = i;
11446                 opt[i].dofo_strtab = DOF_SECIDX_NONE;
11447                 opt[i].dofo_value = state->dts_options[i];
11448         }
11449 
11450         return (dof);
11451 }
11452 
11453 static dof_hdr_t *
11454 dtrace_dof_copyin(uintptr_t uarg, int *errp)
11455 {
11456         dof_hdr_t hdr, *dof;
11457 
11458         ASSERT(!MUTEX_HELD(&dtrace_lock));
11459 
11460         /*
11461          * First, we're going to copyin() the sizeof (dof_hdr_t).
11462          */
11463         if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
11464                 dtrace_dof_error(NULL, "failed to copyin DOF header");
11465                 *errp = EFAULT;
11466                 return (NULL);
11467         }
11468 
11469         /*
11470          * Now we'll allocate the entire DOF and copy it in -- provided
11471          * that the length isn't outrageous.
11472          */
11473         if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
11474                 dtrace_dof_error(&hdr, "load size exceeds maximum");
11475                 *errp = E2BIG;
11476                 return (NULL);
11477         }
11478 
11479         if (hdr.dofh_loadsz < sizeof (hdr)) {
11480                 dtrace_dof_error(&hdr, "invalid load size");
11481                 *errp = EINVAL;
11482                 return (NULL);
11483         }
11484 
11485         dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
11486 
11487         if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
11488             dof->dofh_loadsz != hdr.dofh_loadsz) {
11489                 kmem_free(dof, hdr.dofh_loadsz);
11490                 *errp = EFAULT;
11491                 return (NULL);
11492         }
11493 
11494         return (dof);
11495 }
11496 
11497 static dof_hdr_t *
11498 dtrace_dof_property(const char *name)
11499 {
11500         uchar_t *buf;
11501         uint64_t loadsz;
11502         unsigned int len, i;
11503         dof_hdr_t *dof;
11504 
11505         /*
11506          * Unfortunately, array of values in .conf files are always (and
11507          * only) interpreted to be integer arrays.  We must read our DOF
11508          * as an integer array, and then squeeze it into a byte array.
11509          */
11510         if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
11511             (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
11512                 return (NULL);
11513 
11514         for (i = 0; i < len; i++)
11515                 buf[i] = (uchar_t)(((int *)buf)[i]);
11516 
11517         if (len < sizeof (dof_hdr_t)) {
11518                 ddi_prop_free(buf);
11519                 dtrace_dof_error(NULL, "truncated header");
11520                 return (NULL);
11521         }
11522 
11523         if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
11524                 ddi_prop_free(buf);
11525                 dtrace_dof_error(NULL, "truncated DOF");
11526                 return (NULL);
11527         }
11528 
11529         if (loadsz >= dtrace_dof_maxsize) {
11530                 ddi_prop_free(buf);
11531                 dtrace_dof_error(NULL, "oversized DOF");
11532                 return (NULL);
11533         }
11534 
11535         dof = kmem_alloc(loadsz, KM_SLEEP);
11536         bcopy(buf, dof, loadsz);
11537         ddi_prop_free(buf);
11538 
11539         return (dof);
11540 }
11541 
11542 static void
11543 dtrace_dof_destroy(dof_hdr_t *dof)
11544 {
11545         kmem_free(dof, dof->dofh_loadsz);
11546 }
11547 
11548 /*
11549  * Return the dof_sec_t pointer corresponding to a given section index.  If the
11550  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
11551  * a type other than DOF_SECT_NONE is specified, the header is checked against
11552  * this type and NULL is returned if the types do not match.
11553  */
11554 static dof_sec_t *
11555 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
11556 {
11557         dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
11558             ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
11559 
11560         if (i >= dof->dofh_secnum) {
11561                 dtrace_dof_error(dof, "referenced section index is invalid");
11562                 return (NULL);
11563         }
11564 
11565         if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
11566                 dtrace_dof_error(dof, "referenced section is not loadable");
11567                 return (NULL);
11568         }
11569 
11570         if (type != DOF_SECT_NONE && type != sec->dofs_type) {
11571                 dtrace_dof_error(dof, "referenced section is the wrong type");
11572                 return (NULL);
11573         }
11574 
11575         return (sec);
11576 }
11577 
11578 static dtrace_probedesc_t *
11579 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
11580 {
11581         dof_probedesc_t *probe;
11582         dof_sec_t *strtab;
11583         uintptr_t daddr = (uintptr_t)dof;
11584         uintptr_t str;
11585         size_t size;
11586 
11587         if (sec->dofs_type != DOF_SECT_PROBEDESC) {
11588                 dtrace_dof_error(dof, "invalid probe section");
11589                 return (NULL);
11590         }
11591 
11592         if (sec->dofs_align != sizeof (dof_secidx_t)) {
11593                 dtrace_dof_error(dof, "bad alignment in probe description");
11594                 return (NULL);
11595         }
11596 
11597         if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
11598                 dtrace_dof_error(dof, "truncated probe description");
11599                 return (NULL);
11600         }
11601 
11602         probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
11603         strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
11604 
11605         if (strtab == NULL)
11606                 return (NULL);
11607 
11608         str = daddr + strtab->dofs_offset;
11609         size = strtab->dofs_size;
11610 
11611         if (probe->dofp_provider >= strtab->dofs_size) {
11612                 dtrace_dof_error(dof, "corrupt probe provider");
11613                 return (NULL);
11614         }
11615 
11616         (void) strncpy(desc->dtpd_provider,
11617             (char *)(str + probe->dofp_provider),
11618             MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
11619 
11620         if (probe->dofp_mod >= strtab->dofs_size) {
11621                 dtrace_dof_error(dof, "corrupt probe module");
11622                 return (NULL);
11623         }
11624 
11625         (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
11626             MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
11627 
11628         if (probe->dofp_func >= strtab->dofs_size) {
11629                 dtrace_dof_error(dof, "corrupt probe function");
11630                 return (NULL);
11631         }
11632 
11633         (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
11634             MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
11635 
11636         if (probe->dofp_name >= strtab->dofs_size) {
11637                 dtrace_dof_error(dof, "corrupt probe name");
11638                 return (NULL);
11639         }
11640 
11641         (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
11642             MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
11643 
11644         return (desc);
11645 }
11646 
11647 static dtrace_difo_t *
11648 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11649     cred_t *cr)
11650 {
11651         dtrace_difo_t *dp;
11652         size_t ttl = 0;
11653         dof_difohdr_t *dofd;
11654         uintptr_t daddr = (uintptr_t)dof;
11655         size_t max = dtrace_difo_maxsize;
11656         int i, l, n;
11657 
11658         static const struct {
11659                 int section;
11660                 int bufoffs;
11661                 int lenoffs;
11662                 int entsize;
11663                 int align;
11664                 const char *msg;
11665         } difo[] = {
11666                 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
11667                 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
11668                 sizeof (dif_instr_t), "multiple DIF sections" },
11669 
11670                 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
11671                 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
11672                 sizeof (uint64_t), "multiple integer tables" },
11673 
11674                 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
11675                 offsetof(dtrace_difo_t, dtdo_strlen), 0,
11676                 sizeof (char), "multiple string tables" },
11677 
11678                 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
11679                 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
11680                 sizeof (uint_t), "multiple variable tables" },
11681 
11682                 { DOF_SECT_NONE, 0, 0, 0, NULL }
11683         };
11684 
11685         if (sec->dofs_type != DOF_SECT_DIFOHDR) {
11686                 dtrace_dof_error(dof, "invalid DIFO header section");
11687                 return (NULL);
11688         }
11689 
11690         if (sec->dofs_align != sizeof (dof_secidx_t)) {
11691                 dtrace_dof_error(dof, "bad alignment in DIFO header");
11692                 return (NULL);
11693         }
11694 
11695         if (sec->dofs_size < sizeof (dof_difohdr_t) ||
11696             sec->dofs_size % sizeof (dof_secidx_t)) {
11697                 dtrace_dof_error(dof, "bad size in DIFO header");
11698                 return (NULL);
11699         }
11700 
11701         dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
11702         n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
11703 
11704         dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
11705         dp->dtdo_rtype = dofd->dofd_rtype;
11706 
11707         for (l = 0; l < n; l++) {
11708                 dof_sec_t *subsec;
11709                 void **bufp;
11710                 uint32_t *lenp;
11711 
11712                 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
11713                     dofd->dofd_links[l])) == NULL)
11714                         goto err; /* invalid section link */
11715 
11716                 if (ttl + subsec->dofs_size > max) {
11717                         dtrace_dof_error(dof, "exceeds maximum size");
11718                         goto err;
11719                 }
11720 
11721                 ttl += subsec->dofs_size;
11722 
11723                 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
11724                         if (subsec->dofs_type != difo[i].section)
11725                                 continue;
11726 
11727                         if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
11728                                 dtrace_dof_error(dof, "section not loaded");
11729                                 goto err;
11730                         }
11731 
11732                         if (subsec->dofs_align != difo[i].align) {
11733                                 dtrace_dof_error(dof, "bad alignment");
11734                                 goto err;
11735                         }
11736 
11737                         bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
11738                         lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
11739 
11740                         if (*bufp != NULL) {
11741                                 dtrace_dof_error(dof, difo[i].msg);
11742                                 goto err;
11743                         }
11744 
11745                         if (difo[i].entsize != subsec->dofs_entsize) {
11746                                 dtrace_dof_error(dof, "entry size mismatch");
11747                                 goto err;
11748                         }
11749 
11750                         if (subsec->dofs_entsize != 0 &&
11751                             (subsec->dofs_size % subsec->dofs_entsize) != 0) {
11752                                 dtrace_dof_error(dof, "corrupt entry size");
11753                                 goto err;
11754                         }
11755 
11756                         *lenp = subsec->dofs_size;
11757                         *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
11758                         bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
11759                             *bufp, subsec->dofs_size);
11760 
11761                         if (subsec->dofs_entsize != 0)
11762                                 *lenp /= subsec->dofs_entsize;
11763 
11764                         break;
11765                 }
11766 
11767                 /*
11768                  * If we encounter a loadable DIFO sub-section that is not
11769                  * known to us, assume this is a broken program and fail.
11770                  */
11771                 if (difo[i].section == DOF_SECT_NONE &&
11772                     (subsec->dofs_flags & DOF_SECF_LOAD)) {
11773                         dtrace_dof_error(dof, "unrecognized DIFO subsection");
11774                         goto err;
11775                 }
11776         }
11777 
11778         if (dp->dtdo_buf == NULL) {
11779                 /*
11780                  * We can't have a DIF object without DIF text.
11781                  */
11782                 dtrace_dof_error(dof, "missing DIF text");
11783                 goto err;
11784         }
11785 
11786         /*
11787          * Before we validate the DIF object, run through the variable table
11788          * looking for the strings -- if any of their size are under, we'll set
11789          * their size to be the system-wide default string size.  Note that
11790          * this should _not_ happen if the "strsize" option has been set --
11791          * in this case, the compiler should have set the size to reflect the
11792          * setting of the option.
11793          */
11794         for (i = 0; i < dp->dtdo_varlen; i++) {
11795                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
11796                 dtrace_diftype_t *t = &v->dtdv_type;
11797 
11798                 if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
11799                         continue;
11800 
11801                 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
11802                         t->dtdt_size = dtrace_strsize_default;
11803         }
11804 
11805         if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
11806                 goto err;
11807 
11808         dtrace_difo_init(dp, vstate);
11809         return (dp);
11810 
11811 err:
11812         kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
11813         kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
11814         kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
11815         kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
11816 
11817         kmem_free(dp, sizeof (dtrace_difo_t));
11818         return (NULL);
11819 }
11820 
11821 static dtrace_predicate_t *
11822 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11823     cred_t *cr)
11824 {
11825         dtrace_difo_t *dp;
11826 
11827         if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
11828                 return (NULL);
11829 
11830         return (dtrace_predicate_create(dp));
11831 }
11832 
11833 static dtrace_actdesc_t *
11834 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11835     cred_t *cr)
11836 {
11837         dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
11838         dof_actdesc_t *desc;
11839         dof_sec_t *difosec;
11840         size_t offs;
11841         uintptr_t daddr = (uintptr_t)dof;
11842         uint64_t arg;
11843         dtrace_actkind_t kind;
11844 
11845         if (sec->dofs_type != DOF_SECT_ACTDESC) {
11846                 dtrace_dof_error(dof, "invalid action section");
11847                 return (NULL);
11848         }
11849 
11850         if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
11851                 dtrace_dof_error(dof, "truncated action description");
11852                 return (NULL);
11853         }
11854 
11855         if (sec->dofs_align != sizeof (uint64_t)) {
11856                 dtrace_dof_error(dof, "bad alignment in action description");
11857                 return (NULL);
11858         }
11859 
11860         if (sec->dofs_size < sec->dofs_entsize) {
11861                 dtrace_dof_error(dof, "section entry size exceeds total size");
11862                 return (NULL);
11863         }
11864 
11865         if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
11866                 dtrace_dof_error(dof, "bad entry size in action description");
11867                 return (NULL);
11868         }
11869 
11870         if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
11871                 dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
11872                 return (NULL);
11873         }
11874 
11875         for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
11876                 desc = (dof_actdesc_t *)(daddr +
11877                     (uintptr_t)sec->dofs_offset + offs);
11878                 kind = (dtrace_actkind_t)desc->dofa_kind;
11879 
11880                 if ((DTRACEACT_ISPRINTFLIKE(kind) &&
11881                     (kind != DTRACEACT_PRINTA ||
11882                     desc->dofa_strtab != DOF_SECIDX_NONE)) ||
11883                     (kind == DTRACEACT_DIFEXPR &&
11884                     desc->dofa_strtab != DOF_SECIDX_NONE)) {
11885                         dof_sec_t *strtab;
11886                         char *str, *fmt;
11887                         uint64_t i;
11888 
11889                         /*
11890                          * The argument to these actions is an index into the
11891                          * DOF string table.  For printf()-like actions, this
11892                          * is the format string.  For print(), this is the
11893                          * CTF type of the expression result.
11894                          */
11895                         if ((strtab = dtrace_dof_sect(dof,
11896                             DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
11897                                 goto err;
11898 
11899                         str = (char *)((uintptr_t)dof +
11900                             (uintptr_t)strtab->dofs_offset);
11901 
11902                         for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
11903                                 if (str[i] == '\0')
11904                                         break;
11905                         }
11906 
11907                         if (i >= strtab->dofs_size) {
11908                                 dtrace_dof_error(dof, "bogus format string");
11909                                 goto err;
11910                         }
11911 
11912                         if (i == desc->dofa_arg) {
11913                                 dtrace_dof_error(dof, "empty format string");
11914                                 goto err;
11915                         }
11916 
11917                         i -= desc->dofa_arg;
11918                         fmt = kmem_alloc(i + 1, KM_SLEEP);
11919                         bcopy(&str[desc->dofa_arg], fmt, i + 1);
11920                         arg = (uint64_t)(uintptr_t)fmt;
11921                 } else {
11922                         if (kind == DTRACEACT_PRINTA) {
11923                                 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
11924                                 arg = 0;
11925                         } else {
11926                                 arg = desc->dofa_arg;
11927                         }
11928                 }
11929 
11930                 act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
11931                     desc->dofa_uarg, arg);
11932 
11933                 if (last != NULL) {
11934                         last->dtad_next = act;
11935                 } else {
11936                         first = act;
11937                 }
11938 
11939                 last = act;
11940 
11941                 if (desc->dofa_difo == DOF_SECIDX_NONE)
11942                         continue;
11943 
11944                 if ((difosec = dtrace_dof_sect(dof,
11945                     DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
11946                         goto err;
11947 
11948                 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
11949 
11950                 if (act->dtad_difo == NULL)
11951                         goto err;
11952         }
11953 
11954         ASSERT(first != NULL);
11955         return (first);
11956 
11957 err:
11958         for (act = first; act != NULL; act = next) {
11959                 next = act->dtad_next;
11960                 dtrace_actdesc_release(act, vstate);
11961         }
11962 
11963         return (NULL);
11964 }
11965 
11966 static dtrace_ecbdesc_t *
11967 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11968     cred_t *cr)
11969 {
11970         dtrace_ecbdesc_t *ep;
11971         dof_ecbdesc_t *ecb;
11972         dtrace_probedesc_t *desc;
11973         dtrace_predicate_t *pred = NULL;
11974 
11975         if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
11976                 dtrace_dof_error(dof, "truncated ECB description");
11977                 return (NULL);
11978         }
11979 
11980         if (sec->dofs_align != sizeof (uint64_t)) {
11981                 dtrace_dof_error(dof, "bad alignment in ECB description");
11982                 return (NULL);
11983         }
11984 
11985         ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
11986         sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
11987 
11988         if (sec == NULL)
11989                 return (NULL);
11990 
11991         ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11992         ep->dted_uarg = ecb->dofe_uarg;
11993         desc = &ep->dted_probe;
11994 
11995         if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
11996                 goto err;
11997 
11998         if (ecb->dofe_pred != DOF_SECIDX_NONE) {
11999                 if ((sec = dtrace_dof_sect(dof,
12000                     DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
12001                         goto err;
12002 
12003                 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
12004                         goto err;
12005 
12006                 ep->dted_pred.dtpdd_predicate = pred;
12007         }
12008 
12009         if (ecb->dofe_actions != DOF_SECIDX_NONE) {
12010                 if ((sec = dtrace_dof_sect(dof,
12011                     DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
12012                         goto err;
12013 
12014                 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
12015 
12016                 if (ep->dted_action == NULL)
12017                         goto err;
12018         }
12019 
12020         return (ep);
12021 
12022 err:
12023         if (pred != NULL)
12024                 dtrace_predicate_release(pred, vstate);
12025         kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12026         return (NULL);
12027 }
12028 
12029 /*
12030  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
12031  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
12032  * site of any user SETX relocations to account for load object base address.
12033  * In the future, if we need other relocations, this function can be extended.
12034  */
12035 static int
12036 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
12037 {
12038         uintptr_t daddr = (uintptr_t)dof;
12039         dof_relohdr_t *dofr =
12040             (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12041         dof_sec_t *ss, *rs, *ts;
12042         dof_relodesc_t *r;
12043         uint_t i, n;
12044 
12045         if (sec->dofs_size < sizeof (dof_relohdr_t) ||
12046             sec->dofs_align != sizeof (dof_secidx_t)) {
12047                 dtrace_dof_error(dof, "invalid relocation header");
12048                 return (-1);
12049         }
12050 
12051         ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
12052         rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
12053         ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
12054 
12055         if (ss == NULL || rs == NULL || ts == NULL)
12056                 return (-1); /* dtrace_dof_error() has been called already */
12057 
12058         if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
12059             rs->dofs_align != sizeof (uint64_t)) {
12060                 dtrace_dof_error(dof, "invalid relocation section");
12061                 return (-1);
12062         }
12063 
12064         r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
12065         n = rs->dofs_size / rs->dofs_entsize;
12066 
12067         for (i = 0; i < n; i++) {
12068                 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
12069 
12070                 switch (r->dofr_type) {
12071                 case DOF_RELO_NONE:
12072                         break;
12073                 case DOF_RELO_SETX:
12074                         if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
12075                             sizeof (uint64_t) > ts->dofs_size) {
12076                                 dtrace_dof_error(dof, "bad relocation offset");
12077                                 return (-1);
12078                         }
12079 
12080                         if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
12081                                 dtrace_dof_error(dof, "misaligned setx relo");
12082                                 return (-1);
12083                         }
12084 
12085                         *(uint64_t *)taddr += ubase;
12086                         break;
12087                 default:
12088                         dtrace_dof_error(dof, "invalid relocation type");
12089                         return (-1);
12090                 }
12091 
12092                 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
12093         }
12094 
12095         return (0);
12096 }
12097 
12098 /*
12099  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12100  * header:  it should be at the front of a memory region that is at least
12101  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12102  * size.  It need not be validated in any other way.
12103  */
12104 static int
12105 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12106     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12107 {
12108         uint64_t len = dof->dofh_loadsz, seclen;
12109         uintptr_t daddr = (uintptr_t)dof;
12110         dtrace_ecbdesc_t *ep;
12111         dtrace_enabling_t *enab;
12112         uint_t i;
12113 
12114         ASSERT(MUTEX_HELD(&dtrace_lock));
12115         ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
12116 
12117         /*
12118          * Check the DOF header identification bytes.  In addition to checking
12119          * valid settings, we also verify that unused bits/bytes are zeroed so
12120          * we can use them later without fear of regressing existing binaries.
12121          */
12122         if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
12123             DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
12124                 dtrace_dof_error(dof, "DOF magic string mismatch");
12125                 return (-1);
12126         }
12127 
12128         if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
12129             dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
12130                 dtrace_dof_error(dof, "DOF has invalid data model");
12131                 return (-1);
12132         }
12133 
12134         if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
12135                 dtrace_dof_error(dof, "DOF encoding mismatch");
12136                 return (-1);
12137         }
12138 
12139         if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
12140             dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
12141                 dtrace_dof_error(dof, "DOF version mismatch");
12142                 return (-1);
12143         }
12144 
12145         if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
12146                 dtrace_dof_error(dof, "DOF uses unsupported instruction set");
12147                 return (-1);
12148         }
12149 
12150         if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
12151                 dtrace_dof_error(dof, "DOF uses too many integer registers");
12152                 return (-1);
12153         }
12154 
12155         if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
12156                 dtrace_dof_error(dof, "DOF uses too many tuple registers");
12157                 return (-1);
12158         }
12159 
12160         for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
12161                 if (dof->dofh_ident[i] != 0) {
12162                         dtrace_dof_error(dof, "DOF has invalid ident byte set");
12163                         return (-1);
12164                 }
12165         }
12166 
12167         if (dof->dofh_flags & ~DOF_FL_VALID) {
12168                 dtrace_dof_error(dof, "DOF has invalid flag bits set");
12169                 return (-1);
12170         }
12171 
12172         if (dof->dofh_secsize == 0) {
12173                 dtrace_dof_error(dof, "zero section header size");
12174                 return (-1);
12175         }
12176 
12177         /*
12178          * Check that the section headers don't exceed the amount of DOF
12179          * data.  Note that we cast the section size and number of sections
12180          * to uint64_t's to prevent possible overflow in the multiplication.
12181          */
12182         seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
12183 
12184         if (dof->dofh_secoff > len || seclen > len ||
12185             dof->dofh_secoff + seclen > len) {
12186                 dtrace_dof_error(dof, "truncated section headers");
12187                 return (-1);
12188         }
12189 
12190         if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
12191                 dtrace_dof_error(dof, "misaligned section headers");
12192                 return (-1);
12193         }
12194 
12195         if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
12196                 dtrace_dof_error(dof, "misaligned section size");
12197                 return (-1);
12198         }
12199 
12200         /*
12201          * Take an initial pass through the section headers to be sure that
12202          * the headers don't have stray offsets.  If the 'noprobes' flag is
12203          * set, do not permit sections relating to providers, probes, or args.
12204          */
12205         for (i = 0; i < dof->dofh_secnum; i++) {
12206                 dof_sec_t *sec = (dof_sec_t *)(daddr +
12207                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12208 
12209                 if (noprobes) {
12210                         switch (sec->dofs_type) {
12211                         case DOF_SECT_PROVIDER:
12212                         case DOF_SECT_PROBES:
12213                         case DOF_SECT_PRARGS:
12214                         case DOF_SECT_PROFFS:
12215                                 dtrace_dof_error(dof, "illegal sections "
12216                                     "for enabling");
12217                                 return (-1);
12218                         }
12219                 }
12220 
12221                 if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
12222                     !(sec->dofs_flags & DOF_SECF_LOAD)) {
12223                         dtrace_dof_error(dof, "loadable section with load "
12224                             "flag unset");
12225                         return (-1);
12226                 }
12227 
12228                 if (!(sec->dofs_flags & DOF_SECF_LOAD))
12229                         continue; /* just ignore non-loadable sections */
12230 
12231                 if (sec->dofs_align & (sec->dofs_align - 1)) {
12232                         dtrace_dof_error(dof, "bad section alignment");
12233                         return (-1);
12234                 }
12235 
12236                 if (sec->dofs_offset & (sec->dofs_align - 1)) {
12237                         dtrace_dof_error(dof, "misaligned section");
12238                         return (-1);
12239                 }
12240 
12241                 if (sec->dofs_offset > len || sec->dofs_size > len ||
12242                     sec->dofs_offset + sec->dofs_size > len) {
12243                         dtrace_dof_error(dof, "corrupt section header");
12244                         return (-1);
12245                 }
12246 
12247                 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
12248                     sec->dofs_offset + sec->dofs_size - 1) != '\0') {
12249                         dtrace_dof_error(dof, "non-terminating string table");
12250                         return (-1);
12251                 }
12252         }
12253 
12254         /*
12255          * Take a second pass through the sections and locate and perform any
12256          * relocations that are present.  We do this after the first pass to
12257          * be sure that all sections have had their headers validated.
12258          */
12259         for (i = 0; i < dof->dofh_secnum; i++) {
12260                 dof_sec_t *sec = (dof_sec_t *)(daddr +
12261                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12262 
12263                 if (!(sec->dofs_flags & DOF_SECF_LOAD))
12264                         continue; /* skip sections that are not loadable */
12265 
12266                 switch (sec->dofs_type) {
12267                 case DOF_SECT_URELHDR:
12268                         if (dtrace_dof_relocate(dof, sec, ubase) != 0)
12269                                 return (-1);
12270                         break;
12271                 }
12272         }
12273 
12274         if ((enab = *enabp) == NULL)
12275                 enab = *enabp = dtrace_enabling_create(vstate);
12276 
12277         for (i = 0; i < dof->dofh_secnum; i++) {
12278                 dof_sec_t *sec = (dof_sec_t *)(daddr +
12279                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12280 
12281                 if (sec->dofs_type != DOF_SECT_ECBDESC)
12282                         continue;
12283 
12284                 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
12285                         dtrace_enabling_destroy(enab);
12286                         *enabp = NULL;
12287                         return (-1);
12288                 }
12289 
12290                 dtrace_enabling_add(enab, ep);
12291         }
12292 
12293         return (0);
12294 }
12295 
12296 /*
12297  * Process DOF for any options.  This routine assumes that the DOF has been
12298  * at least processed by dtrace_dof_slurp().
12299  */
12300 static int
12301 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
12302 {
12303         int i, rval;
12304         uint32_t entsize;
12305         size_t offs;
12306         dof_optdesc_t *desc;
12307 
12308         for (i = 0; i < dof->dofh_secnum; i++) {
12309                 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
12310                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12311 
12312                 if (sec->dofs_type != DOF_SECT_OPTDESC)
12313                         continue;
12314 
12315                 if (sec->dofs_align != sizeof (uint64_t)) {
12316                         dtrace_dof_error(dof, "bad alignment in "
12317                             "option description");
12318                         return (EINVAL);
12319                 }
12320 
12321                 if ((entsize = sec->dofs_entsize) == 0) {
12322                         dtrace_dof_error(dof, "zeroed option entry size");
12323                         return (EINVAL);
12324                 }
12325 
12326                 if (entsize < sizeof (dof_optdesc_t)) {
12327                         dtrace_dof_error(dof, "bad option entry size");
12328                         return (EINVAL);
12329                 }
12330 
12331                 for (offs = 0; offs < sec->dofs_size; offs += entsize) {
12332                         desc = (dof_optdesc_t *)((uintptr_t)dof +
12333                             (uintptr_t)sec->dofs_offset + offs);
12334 
12335                         if (desc->dofo_strtab != DOF_SECIDX_NONE) {
12336                                 dtrace_dof_error(dof, "non-zero option string");
12337                                 return (EINVAL);
12338                         }
12339 
12340                         if (desc->dofo_value == DTRACEOPT_UNSET) {
12341                                 dtrace_dof_error(dof, "unset option");
12342                                 return (EINVAL);
12343                         }
12344 
12345                         if ((rval = dtrace_state_option(state,
12346                             desc->dofo_option, desc->dofo_value)) != 0) {
12347                                 dtrace_dof_error(dof, "rejected option");
12348                                 return (rval);
12349                         }
12350                 }
12351         }
12352 
12353         return (0);
12354 }
12355 
12356 /*
12357  * DTrace Consumer State Functions
12358  */
12359 int
12360 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
12361 {
12362         size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
12363         void *base;
12364         uintptr_t limit;
12365         dtrace_dynvar_t *dvar, *next, *start;
12366         int i;
12367 
12368         ASSERT(MUTEX_HELD(&dtrace_lock));
12369         ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
12370 
12371         bzero(dstate, sizeof (dtrace_dstate_t));
12372 
12373         if ((dstate->dtds_chunksize = chunksize) == 0)
12374                 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
12375 
12376         if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
12377                 size = min;
12378 
12379         if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12380                 return (ENOMEM);
12381 
12382         dstate->dtds_size = size;
12383         dstate->dtds_base = base;
12384         dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
12385         bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
12386 
12387         hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
12388 
12389         if (hashsize != 1 && (hashsize & 1))
12390                 hashsize--;
12391 
12392         dstate->dtds_hashsize = hashsize;
12393         dstate->dtds_hash = dstate->dtds_base;
12394 
12395         /*
12396          * Set all of our hash buckets to point to the single sink, and (if
12397          * it hasn't already been set), set the sink's hash value to be the
12398          * sink sentinel value.  The sink is needed for dynamic variable
12399          * lookups to know that they have iterated over an entire, valid hash
12400          * chain.
12401          */
12402         for (i = 0; i < hashsize; i++)
12403                 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
12404 
12405         if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
12406                 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
12407 
12408         /*
12409          * Determine number of active CPUs.  Divide free list evenly among
12410          * active CPUs.
12411          */
12412         start = (dtrace_dynvar_t *)
12413             ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
12414         limit = (uintptr_t)base + size;
12415 
12416         maxper = (limit - (uintptr_t)start) / NCPU;
12417         maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
12418 
12419         for (i = 0; i < NCPU; i++) {
12420                 dstate->dtds_percpu[i].dtdsc_free = dvar = start;
12421 
12422                 /*
12423                  * If we don't even have enough chunks to make it once through
12424                  * NCPUs, we're just going to allocate everything to the first
12425                  * CPU.  And if we're on the last CPU, we're going to allocate
12426                  * whatever is left over.  In either case, we set the limit to
12427                  * be the limit of the dynamic variable space.
12428                  */
12429                 if (maxper == 0 || i == NCPU - 1) {
12430                         limit = (uintptr_t)base + size;
12431                         start = NULL;
12432                 } else {
12433                         limit = (uintptr_t)start + maxper;
12434                         start = (dtrace_dynvar_t *)limit;
12435                 }
12436 
12437                 ASSERT(limit <= (uintptr_t)base + size);
12438 
12439                 for (;;) {
12440                         next = (dtrace_dynvar_t *)((uintptr_t)dvar +
12441                             dstate->dtds_chunksize);
12442 
12443                         if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
12444                                 break;
12445 
12446                         dvar->dtdv_next = next;
12447                         dvar = next;
12448                 }
12449 
12450                 if (maxper == 0)
12451                         break;
12452         }
12453 
12454         return (0);
12455 }
12456 
12457 void
12458 dtrace_dstate_fini(dtrace_dstate_t *dstate)
12459 {
12460         ASSERT(MUTEX_HELD(&cpu_lock));
12461 
12462         if (dstate->dtds_base == NULL)
12463                 return;
12464 
12465         kmem_free(dstate->dtds_base, dstate->dtds_size);
12466         kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
12467 }
12468 
12469 static void
12470 dtrace_vstate_fini(dtrace_vstate_t *vstate)
12471 {
12472         /*
12473          * Logical XOR, where are you?
12474          */
12475         ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
12476 
12477         if (vstate->dtvs_nglobals > 0) {
12478                 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
12479                     sizeof (dtrace_statvar_t *));
12480         }
12481 
12482         if (vstate->dtvs_ntlocals > 0) {
12483                 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
12484                     sizeof (dtrace_difv_t));
12485         }
12486 
12487         ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
12488 
12489         if (vstate->dtvs_nlocals > 0) {
12490                 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
12491                     sizeof (dtrace_statvar_t *));
12492         }
12493 }
12494 
12495 static void
12496 dtrace_state_clean(dtrace_state_t *state)
12497 {
12498         if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
12499                 return;
12500 
12501         dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
12502         dtrace_speculation_clean(state);
12503 }
12504 
12505 static void
12506 dtrace_state_deadman(dtrace_state_t *state)
12507 {
12508         hrtime_t now;
12509 
12510         dtrace_sync();
12511 
12512         now = dtrace_gethrtime();
12513 
12514         if (state != dtrace_anon.dta_state &&
12515             now - state->dts_laststatus >= dtrace_deadman_user)
12516                 return;
12517 
12518         /*
12519          * We must be sure that dts_alive never appears to be less than the
12520          * value upon entry to dtrace_state_deadman(), and because we lack a
12521          * dtrace_cas64(), we cannot store to it atomically.  We thus instead
12522          * store INT64_MAX to it, followed by a memory barrier, followed by
12523          * the new value.  This assures that dts_alive never appears to be
12524          * less than its true value, regardless of the order in which the
12525          * stores to the underlying storage are issued.
12526          */
12527         state->dts_alive = INT64_MAX;
12528         dtrace_membar_producer();
12529         state->dts_alive = now;
12530 }
12531 
12532 dtrace_state_t *
12533 dtrace_state_create(dev_t *devp, cred_t *cr)
12534 {
12535         minor_t minor;
12536         major_t major;
12537         char c[30];
12538         dtrace_state_t *state;
12539         dtrace_optval_t *opt;
12540         int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
12541 
12542         ASSERT(MUTEX_HELD(&dtrace_lock));
12543         ASSERT(MUTEX_HELD(&cpu_lock));
12544 
12545         minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
12546             VM_BESTFIT | VM_SLEEP);
12547 
12548         if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
12549                 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
12550                 return (NULL);
12551         }
12552 
12553         state = ddi_get_soft_state(dtrace_softstate, minor);
12554         state->dts_epid = DTRACE_EPIDNONE + 1;
12555 
12556         (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor);
12557         state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
12558             NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
12559 
12560         if (devp != NULL) {
12561                 major = getemajor(*devp);
12562         } else {
12563                 major = ddi_driver_major(dtrace_devi);
12564         }
12565 
12566         state->dts_dev = makedevice(major, minor);
12567 
12568         if (devp != NULL)
12569                 *devp = state->dts_dev;
12570 
12571         /*
12572          * We allocate NCPU buffers.  On the one hand, this can be quite
12573          * a bit of memory per instance (nearly 36K on a Starcat).  On the
12574          * other hand, it saves an additional memory reference in the probe
12575          * path.
12576          */
12577         state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
12578         state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
12579         state->dts_cleaner = CYCLIC_NONE;
12580         state->dts_deadman = CYCLIC_NONE;
12581         state->dts_vstate.dtvs_state = state;
12582 
12583         for (i = 0; i < DTRACEOPT_MAX; i++)
12584                 state->dts_options[i] = DTRACEOPT_UNSET;
12585 
12586         /*
12587          * Set the default options.
12588          */
12589         opt = state->dts_options;
12590         opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
12591         opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
12592         opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
12593         opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
12594         opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
12595         opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
12596         opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
12597         opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
12598         opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
12599         opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
12600         opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
12601         opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
12602         opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
12603         opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
12604 
12605         state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
12606 
12607         /*
12608          * Depending on the user credentials, we set flag bits which alter probe
12609          * visibility or the amount of destructiveness allowed.  In the case of
12610          * actual anonymous tracing, or the possession of all privileges, all of
12611          * the normal checks are bypassed.
12612          */
12613         if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
12614                 state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
12615                 state->dts_cred.dcr_action = DTRACE_CRA_ALL;
12616         } else {
12617                 /*
12618                  * Set up the credentials for this instantiation.  We take a
12619                  * hold on the credential to prevent it from disappearing on
12620                  * us; this in turn prevents the zone_t referenced by this
12621                  * credential from disappearing.  This means that we can
12622                  * examine the credential and the zone from probe context.
12623                  */
12624                 crhold(cr);
12625                 state->dts_cred.dcr_cred = cr;
12626 
12627                 /*
12628                  * CRA_PROC means "we have *some* privilege for dtrace" and
12629                  * unlocks the use of variables like pid, zonename, etc.
12630                  */
12631                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
12632                     PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
12633                         state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
12634                 }
12635 
12636                 /*
12637                  * dtrace_user allows use of syscall and profile providers.
12638                  * If the user also has proc_owner and/or proc_zone, we
12639                  * extend the scope to include additional visibility and
12640                  * destructive power.
12641                  */
12642                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
12643                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
12644                                 state->dts_cred.dcr_visible |=
12645                                     DTRACE_CRV_ALLPROC;
12646 
12647                                 state->dts_cred.dcr_action |=
12648                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12649                         }
12650 
12651                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
12652                                 state->dts_cred.dcr_visible |=
12653                                     DTRACE_CRV_ALLZONE;
12654 
12655                                 state->dts_cred.dcr_action |=
12656                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12657                         }
12658 
12659                         /*
12660                          * If we have all privs in whatever zone this is,
12661                          * we can do destructive things to processes which
12662                          * have altered credentials.
12663                          */
12664                         if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
12665                             cr->cr_zone->zone_privset)) {
12666                                 state->dts_cred.dcr_action |=
12667                                     DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
12668                         }
12669                 }
12670 
12671                 /*
12672                  * Holding the dtrace_kernel privilege also implies that
12673                  * the user has the dtrace_user privilege from a visibility
12674                  * perspective.  But without further privileges, some
12675                  * destructive actions are not available.
12676                  */
12677                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
12678                         /*
12679                          * Make all probes in all zones visible.  However,
12680                          * this doesn't mean that all actions become available
12681                          * to all zones.
12682                          */
12683                         state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
12684                             DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
12685 
12686                         state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
12687                             DTRACE_CRA_PROC;
12688                         /*
12689                          * Holding proc_owner means that destructive actions
12690                          * for *this* zone are allowed.
12691                          */
12692                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
12693                                 state->dts_cred.dcr_action |=
12694                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12695 
12696                         /*
12697                          * Holding proc_zone means that destructive actions
12698                          * for this user/group ID in all zones is allowed.
12699                          */
12700                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
12701                                 state->dts_cred.dcr_action |=
12702                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12703 
12704                         /*
12705                          * If we have all privs in whatever zone this is,
12706                          * we can do destructive things to processes which
12707                          * have altered credentials.
12708                          */
12709                         if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
12710                             cr->cr_zone->zone_privset)) {
12711                                 state->dts_cred.dcr_action |=
12712                                     DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
12713                         }
12714                 }
12715 
12716                 /*
12717                  * Holding the dtrace_proc privilege gives control over fasttrap
12718                  * and pid providers.  We need to grant wider destructive
12719                  * privileges in the event that the user has proc_owner and/or
12720                  * proc_zone.
12721                  */
12722                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
12723                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
12724                                 state->dts_cred.dcr_action |=
12725                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12726 
12727                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
12728                                 state->dts_cred.dcr_action |=
12729                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12730                 }
12731         }
12732 
12733         return (state);
12734 }
12735 
12736 static int
12737 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
12738 {
12739         dtrace_optval_t *opt = state->dts_options, size;
12740         processorid_t cpu;
12741         int flags = 0, rval, factor, divisor = 1;
12742 
12743         ASSERT(MUTEX_HELD(&dtrace_lock));
12744         ASSERT(MUTEX_HELD(&cpu_lock));
12745         ASSERT(which < DTRACEOPT_MAX);
12746         ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
12747             (state == dtrace_anon.dta_state &&
12748             state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
12749 
12750         if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
12751                 return (0);
12752 
12753         if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
12754                 cpu = opt[DTRACEOPT_CPU];
12755 
12756         if (which == DTRACEOPT_SPECSIZE)
12757                 flags |= DTRACEBUF_NOSWITCH;
12758 
12759         if (which == DTRACEOPT_BUFSIZE) {
12760                 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
12761                         flags |= DTRACEBUF_RING;
12762 
12763                 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
12764                         flags |= DTRACEBUF_FILL;
12765 
12766                 if (state != dtrace_anon.dta_state ||
12767                     state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
12768                         flags |= DTRACEBUF_INACTIVE;
12769         }
12770 
12771         for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
12772                 /*
12773                  * The size must be 8-byte aligned.  If the size is not 8-byte
12774                  * aligned, drop it down by the difference.
12775                  */
12776                 if (size & (sizeof (uint64_t) - 1))
12777                         size -= size & (sizeof (uint64_t) - 1);
12778 
12779                 if (size < state->dts_reserve) {
12780                         /*
12781                          * Buffers always must be large enough to accommodate
12782                          * their prereserved space.  We return E2BIG instead
12783                          * of ENOMEM in this case to allow for user-level
12784                          * software to differentiate the cases.
12785                          */
12786                         return (E2BIG);
12787                 }
12788 
12789                 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);
12790 
12791                 if (rval != ENOMEM) {
12792                         opt[which] = size;
12793                         return (rval);
12794                 }
12795 
12796                 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
12797                         return (rval);
12798 
12799                 for (divisor = 2; divisor < factor; divisor <<= 1)
12800                         continue;
12801         }
12802 
12803         return (ENOMEM);
12804 }
12805 
12806 static int
12807 dtrace_state_buffers(dtrace_state_t *state)
12808 {
12809         dtrace_speculation_t *spec = state->dts_speculations;
12810         int rval, i;
12811 
12812         if ((rval = dtrace_state_buffer(state, state->dts_buffer,
12813             DTRACEOPT_BUFSIZE)) != 0)
12814                 return (rval);
12815 
12816         if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
12817             DTRACEOPT_AGGSIZE)) != 0)
12818                 return (rval);
12819 
12820         for (i = 0; i < state->dts_nspeculations; i++) {
12821                 if ((rval = dtrace_state_buffer(state,
12822                     spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
12823                         return (rval);
12824         }
12825 
12826         return (0);
12827 }
12828 
12829 static void
12830 dtrace_state_prereserve(dtrace_state_t *state)
12831 {
12832         dtrace_ecb_t *ecb;
12833         dtrace_probe_t *probe;
12834 
12835         state->dts_reserve = 0;
12836 
12837         if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
12838                 return;
12839 
12840         /*
12841          * If our buffer policy is a "fill" buffer policy, we need to set the
12842          * prereserved space to be the space required by the END probes.
12843          */
12844         probe = dtrace_probes[dtrace_probeid_end - 1];
12845         ASSERT(probe != NULL);
12846 
12847         for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
12848                 if (ecb->dte_state != state)
12849                         continue;
12850 
12851                 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
12852         }
12853 }
12854 
12855 static int
12856 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
12857 {
12858         dtrace_optval_t *opt = state->dts_options, sz, nspec;
12859         dtrace_speculation_t *spec;
12860         dtrace_buffer_t *buf;
12861         cyc_handler_t hdlr;
12862         cyc_time_t when;
12863         int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
12864         dtrace_icookie_t cookie;
12865 
12866         mutex_enter(&cpu_lock);
12867         mutex_enter(&dtrace_lock);
12868 
12869         if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
12870                 rval = EBUSY;
12871                 goto out;
12872         }
12873 
12874         /*
12875          * Before we can perform any checks, we must prime all of the
12876          * retained enablings that correspond to this state.
12877          */
12878         dtrace_enabling_prime(state);
12879 
12880         if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
12881                 rval = EACCES;
12882                 goto out;
12883         }
12884 
12885         dtrace_state_prereserve(state);
12886 
12887         /*
12888          * Now we want to do is try to allocate our speculations.
12889          * We do not automatically resize the number of speculations; if
12890          * this fails, we will fail the operation.
12891          */
12892         nspec = opt[DTRACEOPT_NSPEC];
12893         ASSERT(nspec != DTRACEOPT_UNSET);
12894 
12895         if (nspec > INT_MAX) {
12896                 rval = ENOMEM;
12897                 goto out;
12898         }
12899 
12900         spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
12901             KM_NOSLEEP | KM_NORMALPRI);
12902 
12903         if (spec == NULL) {
12904                 rval = ENOMEM;
12905                 goto out;
12906         }
12907 
12908         state->dts_speculations = spec;
12909         state->dts_nspeculations = (int)nspec;
12910 
12911         for (i = 0; i < nspec; i++) {
12912                 if ((buf = kmem_zalloc(bufsize,
12913                     KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
12914                         rval = ENOMEM;
12915                         goto err;
12916                 }
12917 
12918                 spec[i].dtsp_buffer = buf;
12919         }
12920 
12921         if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
12922                 if (dtrace_anon.dta_state == NULL) {
12923                         rval = ENOENT;
12924                         goto out;
12925                 }
12926 
12927                 if (state->dts_necbs != 0) {
12928                         rval = EALREADY;
12929                         goto out;
12930                 }
12931 
12932                 state->dts_anon = dtrace_anon_grab();
12933                 ASSERT(state->dts_anon != NULL);
12934                 state = state->dts_anon;
12935 
12936                 /*
12937                  * We want "grabanon" to be set in the grabbed state, so we'll
12938                  * copy that option value from the grabbing state into the
12939                  * grabbed state.
12940                  */
12941                 state->dts_options[DTRACEOPT_GRABANON] =
12942                     opt[DTRACEOPT_GRABANON];
12943 
12944                 *cpu = dtrace_anon.dta_beganon;
12945 
12946                 /*
12947                  * If the anonymous state is active (as it almost certainly
12948                  * is if the anonymous enabling ultimately matched anything),
12949                  * we don't allow any further option processing -- but we
12950                  * don't return failure.
12951                  */
12952                 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
12953                         goto out;
12954         }
12955 
12956         if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
12957             opt[DTRACEOPT_AGGSIZE] != 0) {
12958                 if (state->dts_aggregations == NULL) {
12959                         /*
12960                          * We're not going to create an aggregation buffer
12961                          * because we don't have any ECBs that contain
12962                          * aggregations -- set this option to 0.
12963                          */
12964                         opt[DTRACEOPT_AGGSIZE] = 0;
12965                 } else {
12966                         /*
12967                          * If we have an aggregation buffer, we must also have
12968                          * a buffer to use as scratch.
12969                          */
12970                         if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
12971                             opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
12972                                 opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
12973                         }
12974                 }
12975         }
12976 
12977         if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
12978             opt[DTRACEOPT_SPECSIZE] != 0) {
12979                 if (!state->dts_speculates) {
12980                         /*
12981                          * We're not going to create speculation buffers
12982                          * because we don't have any ECBs that actually
12983                          * speculate -- set the speculation size to 0.
12984                          */
12985                         opt[DTRACEOPT_SPECSIZE] = 0;
12986                 }
12987         }
12988 
12989         /*
12990          * The bare minimum size for any buffer that we're actually going to
12991          * do anything to is sizeof (uint64_t).
12992          */
12993         sz = sizeof (uint64_t);
12994 
12995         if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
12996             (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
12997             (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
12998                 /*
12999                  * A buffer size has been explicitly set to 0 (or to a size
13000                  * that will be adjusted to 0) and we need the space -- we
13001                  * need to return failure.  We return ENOSPC to differentiate
13002                  * it from failing to allocate a buffer due to failure to meet
13003                  * the reserve (for which we return E2BIG).
13004                  */
13005                 rval = ENOSPC;
13006                 goto out;
13007         }
13008 
13009         if ((rval = dtrace_state_buffers(state)) != 0)
13010                 goto err;
13011 
13012         if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
13013                 sz = dtrace_dstate_defsize;
13014 
13015         do {
13016                 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
13017 
13018                 if (rval == 0)
13019                         break;
13020 
13021                 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13022                         goto err;
13023         } while (sz >>= 1);
13024 
13025         opt[DTRACEOPT_DYNVARSIZE] = sz;
13026 
13027         if (rval != 0)
13028                 goto err;
13029 
13030         if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
13031                 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
13032 
13033         if (opt[DTRACEOPT_CLEANRATE] == 0)
13034                 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13035 
13036         if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
13037                 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
13038 
13039         if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
13040                 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13041 
13042         hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
13043         hdlr.cyh_arg = state;
13044         hdlr.cyh_level = CY_LOW_LEVEL;
13045 
13046         when.cyt_when = 0;
13047         when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
13048 
13049         state->dts_cleaner = cyclic_add(&hdlr, &when);
13050 
13051         hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
13052         hdlr.cyh_arg = state;
13053         hdlr.cyh_level = CY_LOW_LEVEL;
13054 
13055         when.cyt_when = 0;
13056         when.cyt_interval = dtrace_deadman_interval;
13057 
13058         state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
13059         state->dts_deadman = cyclic_add(&hdlr, &when);
13060 
13061         state->dts_activity = DTRACE_ACTIVITY_WARMUP;
13062 
13063         /*
13064          * Now it's time to actually fire the BEGIN probe.  We need to disable
13065          * interrupts here both to record the CPU on which we fired the BEGIN
13066          * probe (the data from this CPU will be processed first at user
13067          * level) and to manually activate the buffer for this CPU.
13068          */
13069         cookie = dtrace_interrupt_disable();
13070         *cpu = CPU->cpu_id;
13071         ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
13072         state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
13073 
13074         dtrace_probe(dtrace_probeid_begin,
13075             (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13076         dtrace_interrupt_enable(cookie);
13077         /*
13078          * We may have had an exit action from a BEGIN probe; only change our
13079          * state to ACTIVE if we're still in WARMUP.
13080          */
13081         ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
13082             state->dts_activity == DTRACE_ACTIVITY_DRAINING);
13083 
13084         if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
13085                 state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
13086 
13087         /*
13088          * Regardless of whether or not now we're in ACTIVE or DRAINING, we
13089          * want each CPU to transition its principal buffer out of the
13090          * INACTIVE state.  Doing this assures that no CPU will suddenly begin
13091          * processing an ECB halfway down a probe's ECB chain; all CPUs will
13092          * atomically transition from processing none of a state's ECBs to
13093          * processing all of them.
13094          */
13095         dtrace_xcall(DTRACE_CPUALL,
13096             (dtrace_xcall_t)dtrace_buffer_activate, state);
13097         goto out;
13098 
13099 err:
13100         dtrace_buffer_free(state->dts_buffer);
13101         dtrace_buffer_free(state->dts_aggbuffer);
13102 
13103         if ((nspec = state->dts_nspeculations) == 0) {
13104                 ASSERT(state->dts_speculations == NULL);
13105                 goto out;
13106         }
13107 
13108         spec = state->dts_speculations;
13109         ASSERT(spec != NULL);
13110 
13111         for (i = 0; i < state->dts_nspeculations; i++) {
13112                 if ((buf = spec[i].dtsp_buffer) == NULL)
13113                         break;
13114 
13115                 dtrace_buffer_free(buf);
13116                 kmem_free(buf, bufsize);
13117         }
13118 
13119         kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13120         state->dts_nspeculations = 0;
13121         state->dts_speculations = NULL;
13122 
13123 out:
13124         mutex_exit(&dtrace_lock);
13125         mutex_exit(&cpu_lock);
13126 
13127         return (rval);
13128 }
13129 
13130 static int
13131 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
13132 {
13133         dtrace_icookie_t cookie;
13134 
13135         ASSERT(MUTEX_HELD(&dtrace_lock));
13136 
13137         if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
13138             state->dts_activity != DTRACE_ACTIVITY_DRAINING)
13139                 return (EINVAL);
13140 
13141         /*
13142          * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13143          * to be sure that every CPU has seen it.  See below for the details
13144          * on why this is done.
13145          */
13146         state->dts_activity = DTRACE_ACTIVITY_DRAINING;
13147         dtrace_sync();
13148 
13149         /*
13150          * By this point, it is impossible for any CPU to be still processing
13151          * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
13152          * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13153          * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
13154          * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13155          * iff we're in the END probe.
13156          */
13157         state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
13158         dtrace_sync();
13159         ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
13160 
13161         /*
13162          * Finally, we can release the reserve and call the END probe.  We
13163          * disable interrupts across calling the END probe to allow us to
13164          * return the CPU on which we actually called the END probe.  This
13165          * allows user-land to be sure that this CPU's principal buffer is
13166          * processed last.
13167          */
13168         state->dts_reserve = 0;
13169 
13170         cookie = dtrace_interrupt_disable();
13171         *cpu = CPU->cpu_id;
13172         dtrace_probe(dtrace_probeid_end,
13173             (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13174         dtrace_interrupt_enable(cookie);
13175 
13176         state->dts_activity = DTRACE_ACTIVITY_STOPPED;
13177         dtrace_sync();
13178 
13179         return (0);
13180 }
13181 
13182 static int
13183 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
13184     dtrace_optval_t val)
13185 {
13186         ASSERT(MUTEX_HELD(&dtrace_lock));
13187 
13188         if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13189                 return (EBUSY);
13190 
13191         if (option >= DTRACEOPT_MAX)
13192                 return (EINVAL);
13193 
13194         if (option != DTRACEOPT_CPU && val < 0)
13195                 return (EINVAL);
13196 
13197         switch (option) {
13198         case DTRACEOPT_DESTRUCTIVE:
13199                 if (dtrace_destructive_disallow)
13200                         return (EACCES);
13201 
13202                 state->dts_cred.dcr_destructive = 1;
13203                 break;
13204 
13205         case DTRACEOPT_BUFSIZE:
13206         case DTRACEOPT_DYNVARSIZE:
13207         case DTRACEOPT_AGGSIZE:
13208         case DTRACEOPT_SPECSIZE:
13209         case DTRACEOPT_STRSIZE:
13210                 if (val < 0)
13211                         return (EINVAL);
13212 
13213                 if (val >= LONG_MAX) {
13214                         /*
13215                          * If this is an otherwise negative value, set it to
13216                          * the highest multiple of 128m less than LONG_MAX.
13217                          * Technically, we're adjusting the size without
13218                          * regard to the buffer resizing policy, but in fact,
13219                          * this has no effect -- if we set the buffer size to
13220                          * ~LONG_MAX and the buffer policy is ultimately set to
13221                          * be "manual", the buffer allocation is guaranteed to
13222                          * fail, if only because the allocation requires two
13223                          * buffers.  (We set the the size to the highest
13224                          * multiple of 128m because it ensures that the size
13225                          * will remain a multiple of a megabyte when
13226                          * repeatedly halved -- all the way down to 15m.)
13227                          */
13228                         val = LONG_MAX - (1 << 27) + 1;
13229                 }
13230         }
13231 
13232         state->dts_options[option] = val;
13233 
13234         return (0);
13235 }
13236 
13237 static void
13238 dtrace_state_destroy(dtrace_state_t *state)
13239 {
13240         dtrace_ecb_t *ecb;
13241         dtrace_vstate_t *vstate = &state->dts_vstate;
13242         minor_t minor = getminor(state->dts_dev);
13243         int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13244         dtrace_speculation_t *spec = state->dts_speculations;
13245         int nspec = state->dts_nspeculations;
13246         uint32_t match;
13247 
13248         ASSERT(MUTEX_HELD(&dtrace_lock));
13249         ASSERT(MUTEX_HELD(&cpu_lock));
13250 
13251         /*
13252          * First, retract any retained enablings for this state.
13253          */
13254         dtrace_enabling_retract(state);
13255         ASSERT(state->dts_nretained == 0);
13256 
13257         if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
13258             state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
13259                 /*
13260                  * We have managed to come into dtrace_state_destroy() on a
13261                  * hot enabling -- almost certainly because of a disorderly
13262                  * shutdown of a consumer.  (That is, a consumer that is
13263                  * exiting without having called dtrace_stop().) In this case,
13264                  * we're going to set our activity to be KILLED, and then
13265                  * issue a sync to be sure that everyone is out of probe
13266                  * context before we start blowing away ECBs.
13267                  */
13268                 state->dts_activity = DTRACE_ACTIVITY_KILLED;
13269                 dtrace_sync();
13270         }
13271 
13272         /*
13273          * Release the credential hold we took in dtrace_state_create().
13274          */
13275         if (state->dts_cred.dcr_cred != NULL)
13276                 crfree(state->dts_cred.dcr_cred);
13277 
13278         /*
13279          * Now we can safely disable and destroy any enabled probes.  Because
13280          * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
13281          * (especially if they're all enabled), we take two passes through the
13282          * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
13283          * in the second we disable whatever is left over.
13284          */
13285         for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
13286                 for (i = 0; i < state->dts_necbs; i++) {
13287                         if ((ecb = state->dts_ecbs[i]) == NULL)
13288                                 continue;
13289 
13290                         if (match && ecb->dte_probe != NULL) {
13291                                 dtrace_probe_t *probe = ecb->dte_probe;
13292                                 dtrace_provider_t *prov = probe->dtpr_provider;
13293 
13294                                 if (!(prov->dtpv_priv.dtpp_flags & match))
13295                                         continue;
13296                         }
13297 
13298                         dtrace_ecb_disable(ecb);
13299                         dtrace_ecb_destroy(ecb);
13300                 }
13301 
13302                 if (!match)
13303                         break;
13304         }
13305 
13306         /*
13307          * Before we free the buffers, perform one more sync to assure that
13308          * every CPU is out of probe context.
13309          */
13310         dtrace_sync();
13311 
13312         dtrace_buffer_free(state->dts_buffer);
13313         dtrace_buffer_free(state->dts_aggbuffer);
13314 
13315         for (i = 0; i < nspec; i++)
13316                 dtrace_buffer_free(spec[i].dtsp_buffer);
13317 
13318         if (state->dts_cleaner != CYCLIC_NONE)
13319                 cyclic_remove(state->dts_cleaner);
13320 
13321         if (state->dts_deadman != CYCLIC_NONE)
13322                 cyclic_remove(state->dts_deadman);
13323 
13324         dtrace_dstate_fini(&vstate->dtvs_dynvars);
13325         dtrace_vstate_fini(vstate);
13326         kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
13327 
13328         if (state->dts_aggregations != NULL) {
13329 #ifdef DEBUG
13330                 for (i = 0; i < state->dts_naggregations; i++)
13331                         ASSERT(state->dts_aggregations[i] == NULL);
13332 #endif
13333                 ASSERT(state->dts_naggregations > 0);
13334                 kmem_free(state->dts_aggregations,
13335                     state->dts_naggregations * sizeof (dtrace_aggregation_t *));
13336         }
13337 
13338         kmem_free(state->dts_buffer, bufsize);
13339         kmem_free(state->dts_aggbuffer, bufsize);
13340 
13341         for (i = 0; i < nspec; i++)
13342                 kmem_free(spec[i].dtsp_buffer, bufsize);
13343 
13344         kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13345 
13346         dtrace_format_destroy(state);
13347 
13348         vmem_destroy(state->dts_aggid_arena);
13349         ddi_soft_state_free(dtrace_softstate, minor);
13350         vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13351 }
13352 
13353 /*
13354  * DTrace Anonymous Enabling Functions
13355  */
13356 static dtrace_state_t *
13357 dtrace_anon_grab(void)
13358 {
13359         dtrace_state_t *state;
13360 
13361         ASSERT(MUTEX_HELD(&dtrace_lock));
13362 
13363         if ((state = dtrace_anon.dta_state) == NULL) {
13364                 ASSERT(dtrace_anon.dta_enabling == NULL);
13365                 return (NULL);
13366         }
13367 
13368         ASSERT(dtrace_anon.dta_enabling != NULL);
13369         ASSERT(dtrace_retained != NULL);
13370 
13371         dtrace_enabling_destroy(dtrace_anon.dta_enabling);
13372         dtrace_anon.dta_enabling = NULL;
13373         dtrace_anon.dta_state = NULL;
13374 
13375         return (state);
13376 }
13377 
13378 static void
13379 dtrace_anon_property(void)
13380 {
13381         int i, rv;
13382         dtrace_state_t *state;
13383         dof_hdr_t *dof;
13384         char c[32];             /* enough for "dof-data-" + digits */
13385 
13386         ASSERT(MUTEX_HELD(&dtrace_lock));
13387         ASSERT(MUTEX_HELD(&cpu_lock));
13388 
13389         for (i = 0; ; i++) {
13390                 (void) snprintf(c, sizeof (c), "dof-data-%d", i);
13391 
13392                 dtrace_err_verbose = 1;
13393 
13394                 if ((dof = dtrace_dof_property(c)) == NULL) {
13395                         dtrace_err_verbose = 0;
13396                         break;
13397                 }
13398 
13399                 /*
13400                  * We want to create anonymous state, so we need to transition
13401                  * the kernel debugger to indicate that DTrace is active.  If
13402                  * this fails (e.g. because the debugger has modified text in
13403                  * some way), we won't continue with the processing.
13404                  */
13405                 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
13406                         cmn_err(CE_NOTE, "kernel debugger active; anonymous "
13407                             "enabling ignored.");
13408                         dtrace_dof_destroy(dof);
13409                         break;
13410                 }
13411 
13412                 /*
13413                  * If we haven't allocated an anonymous state, we'll do so now.
13414                  */
13415                 if ((state = dtrace_anon.dta_state) == NULL) {
13416                         state = dtrace_state_create(NULL, NULL);
13417                         dtrace_anon.dta_state = state;
13418 
13419                         if (state == NULL) {
13420                                 /*
13421                                  * This basically shouldn't happen:  the only
13422                                  * failure mode from dtrace_state_create() is a
13423                                  * failure of ddi_soft_state_zalloc() that
13424                                  * itself should never happen.  Still, the
13425                                  * interface allows for a failure mode, and
13426                                  * we want to fail as gracefully as possible:
13427                                  * we'll emit an error message and cease
13428                                  * processing anonymous state in this case.
13429                                  */
13430                                 cmn_err(CE_WARN, "failed to create "
13431                                     "anonymous state");
13432                                 dtrace_dof_destroy(dof);
13433                                 break;
13434                         }
13435                 }
13436 
13437                 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
13438                     &dtrace_anon.dta_enabling, 0, B_TRUE);
13439 
13440                 if (rv == 0)
13441                         rv = dtrace_dof_options(dof, state);
13442 
13443                 dtrace_err_verbose = 0;
13444                 dtrace_dof_destroy(dof);
13445 
13446                 if (rv != 0) {
13447                         /*
13448                          * This is malformed DOF; chuck any anonymous state
13449                          * that we created.
13450                          */
13451                         ASSERT(dtrace_anon.dta_enabling == NULL);
13452                         dtrace_state_destroy(state);
13453                         dtrace_anon.dta_state = NULL;
13454                         break;
13455                 }
13456 
13457                 ASSERT(dtrace_anon.dta_enabling != NULL);
13458         }
13459 
13460         if (dtrace_anon.dta_enabling != NULL) {
13461                 int rval;
13462 
13463                 /*
13464                  * dtrace_enabling_retain() can only fail because we are
13465                  * trying to retain more enablings than are allowed -- but
13466                  * we only have one anonymous enabling, and we are guaranteed
13467                  * to be allowed at least one retained enabling; we assert
13468                  * that dtrace_enabling_retain() returns success.
13469                  */
13470                 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
13471                 ASSERT(rval == 0);
13472 
13473                 dtrace_enabling_dump(dtrace_anon.dta_enabling);
13474         }
13475 }
13476 
13477 /*
13478  * DTrace Helper Functions
13479  */
13480 static void
13481 dtrace_helper_trace(dtrace_helper_action_t *helper,
13482     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
13483 {
13484         uint32_t size, next, nnext, i;
13485         dtrace_helptrace_t *ent;
13486         uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
13487 
13488         if (!dtrace_helptrace_enabled)
13489                 return;
13490 
13491         ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
13492 
13493         /*
13494          * What would a tracing framework be without its own tracing
13495          * framework?  (Well, a hell of a lot simpler, for starters...)
13496          */
13497         size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
13498             sizeof (uint64_t) - sizeof (uint64_t);
13499 
13500         /*
13501          * Iterate until we can allocate a slot in the trace buffer.
13502          */
13503         do {
13504                 next = dtrace_helptrace_next;
13505 
13506                 if (next + size < dtrace_helptrace_bufsize) {
13507                         nnext = next + size;
13508                 } else {
13509                         nnext = size;
13510                 }
13511         } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
13512 
13513         /*
13514          * We have our slot; fill it in.
13515          */
13516         if (nnext == size)
13517                 next = 0;
13518 
13519         ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
13520         ent->dtht_helper = helper;
13521         ent->dtht_where = where;
13522         ent->dtht_nlocals = vstate->dtvs_nlocals;
13523 
13524         ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
13525             mstate->dtms_fltoffs : -1;
13526         ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
13527         ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
13528 
13529         for (i = 0; i < vstate->dtvs_nlocals; i++) {
13530                 dtrace_statvar_t *svar;
13531 
13532                 if ((svar = vstate->dtvs_locals[i]) == NULL)
13533                         continue;
13534 
13535                 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
13536                 ent->dtht_locals[i] =
13537                     ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id];
13538         }
13539 }
13540 
13541 static uint64_t
13542 dtrace_helper(int which, dtrace_mstate_t *mstate,
13543     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
13544 {
13545         uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
13546         uint64_t sarg0 = mstate->dtms_arg[0];
13547         uint64_t sarg1 = mstate->dtms_arg[1];
13548         uint64_t rval;
13549         dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
13550         dtrace_helper_action_t *helper;
13551         dtrace_vstate_t *vstate;
13552         dtrace_difo_t *pred;
13553         int i, trace = dtrace_helptrace_enabled;
13554 
13555         ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
13556 
13557         if (helpers == NULL)
13558                 return (0);
13559 
13560         if ((helper = helpers->dthps_actions[which]) == NULL)
13561                 return (0);
13562 
13563         vstate = &helpers->dthps_vstate;
13564         mstate->dtms_arg[0] = arg0;
13565         mstate->dtms_arg[1] = arg1;
13566 
13567         /*
13568          * Now iterate over each helper.  If its predicate evaluates to 'true',
13569          * we'll call the corresponding actions.  Note that the below calls
13570          * to dtrace_dif_emulate() may set faults in machine state.  This is
13571          * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
13572          * the stored DIF offset with its own (which is the desired behavior).
13573          * Also, note the calls to dtrace_dif_emulate() may allocate scratch
13574          * from machine state; this is okay, too.
13575          */
13576         for (; helper != NULL; helper = helper->dtha_next) {
13577                 if ((pred = helper->dtha_predicate) != NULL) {
13578                         if (trace)
13579                                 dtrace_helper_trace(helper, mstate, vstate, 0);
13580 
13581                         if (!dtrace_dif_emulate(pred, mstate, vstate, state))
13582                                 goto next;
13583 
13584                         if (*flags & CPU_DTRACE_FAULT)
13585                                 goto err;
13586                 }
13587 
13588                 for (i = 0; i < helper->dtha_nactions; i++) {
13589                         if (trace)
13590                                 dtrace_helper_trace(helper,
13591                                     mstate, vstate, i + 1);
13592 
13593                         rval = dtrace_dif_emulate(helper->dtha_actions[i],
13594                             mstate, vstate, state);
13595 
13596                         if (*flags & CPU_DTRACE_FAULT)
13597                                 goto err;
13598                 }
13599 
13600 next:
13601                 if (trace)
13602                         dtrace_helper_trace(helper, mstate, vstate,
13603                             DTRACE_HELPTRACE_NEXT);
13604         }
13605 
13606         if (trace)
13607                 dtrace_helper_trace(helper, mstate, vstate,
13608                     DTRACE_HELPTRACE_DONE);
13609 
13610         /*
13611          * Restore the arg0 that we saved upon entry.
13612          */
13613         mstate->dtms_arg[0] = sarg0;
13614         mstate->dtms_arg[1] = sarg1;
13615 
13616         return (rval);
13617 
13618 err:
13619         if (trace)
13620                 dtrace_helper_trace(helper, mstate, vstate,
13621                     DTRACE_HELPTRACE_ERR);
13622 
13623         /*
13624          * Restore the arg0 that we saved upon entry.
13625          */
13626         mstate->dtms_arg[0] = sarg0;
13627         mstate->dtms_arg[1] = sarg1;
13628 
13629         return (NULL);
13630 }
13631 
13632 static void
13633 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
13634     dtrace_vstate_t *vstate)
13635 {
13636         int i;
13637 
13638         if (helper->dtha_predicate != NULL)
13639                 dtrace_difo_release(helper->dtha_predicate, vstate);
13640 
13641         for (i = 0; i < helper->dtha_nactions; i++) {
13642                 ASSERT(helper->dtha_actions[i] != NULL);
13643                 dtrace_difo_release(helper->dtha_actions[i], vstate);
13644         }
13645 
13646         kmem_free(helper->dtha_actions,
13647             helper->dtha_nactions * sizeof (dtrace_difo_t *));
13648         kmem_free(helper, sizeof (dtrace_helper_action_t));
13649 }
13650 
13651 static int
13652 dtrace_helper_destroygen(int gen)
13653 {
13654         proc_t *p = curproc;
13655         dtrace_helpers_t *help = p->p_dtrace_helpers;
13656         dtrace_vstate_t *vstate;
13657         int i;
13658 
13659         ASSERT(MUTEX_HELD(&dtrace_lock));
13660 
13661         if (help == NULL || gen > help->dthps_generation)
13662                 return (EINVAL);
13663 
13664         vstate = &help->dthps_vstate;
13665 
13666         for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
13667                 dtrace_helper_action_t *last = NULL, *h, *next;
13668 
13669                 for (h = help->dthps_actions[i]; h != NULL; h = next) {
13670                         next = h->dtha_next;
13671 
13672                         if (h->dtha_generation == gen) {
13673                                 if (last != NULL) {
13674                                         last->dtha_next = next;
13675                                 } else {
13676                                         help->dthps_actions[i] = next;
13677                                 }
13678 
13679                                 dtrace_helper_action_destroy(h, vstate);
13680                         } else {
13681                                 last = h;
13682                         }
13683                 }
13684         }
13685 
13686         /*
13687          * Interate until we've cleared out all helper providers with the
13688          * given generation number.
13689          */
13690         for (;;) {
13691                 dtrace_helper_provider_t *prov;
13692 
13693                 /*
13694                  * Look for a helper provider with the right generation. We
13695                  * have to start back at the beginning of the list each time
13696                  * because we drop dtrace_lock. It's unlikely that we'll make
13697                  * more than two passes.
13698                  */
13699                 for (i = 0; i < help->dthps_nprovs; i++) {
13700                         prov = help->dthps_provs[i];
13701 
13702                         if (prov->dthp_generation == gen)
13703                                 break;
13704                 }
13705 
13706                 /*
13707                  * If there were no matches, we're done.
13708                  */
13709                 if (i == help->dthps_nprovs)
13710                         break;
13711 
13712                 /*
13713                  * Move the last helper provider into this slot.
13714                  */
13715                 help->dthps_nprovs--;
13716                 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
13717                 help->dthps_provs[help->dthps_nprovs] = NULL;
13718 
13719                 mutex_exit(&dtrace_lock);
13720 
13721                 /*
13722                  * If we have a meta provider, remove this helper provider.
13723                  */
13724                 mutex_enter(&dtrace_meta_lock);
13725                 if (dtrace_meta_pid != NULL) {
13726                         ASSERT(dtrace_deferred_pid == NULL);
13727                         dtrace_helper_provider_remove(&prov->dthp_prov,
13728                             p->p_pid);
13729                 }
13730                 mutex_exit(&dtrace_meta_lock);
13731 
13732                 dtrace_helper_provider_destroy(prov);
13733 
13734                 mutex_enter(&dtrace_lock);
13735         }
13736 
13737         return (0);
13738 }
13739 
13740 static int
13741 dtrace_helper_validate(dtrace_helper_action_t *helper)
13742 {
13743         int err = 0, i;
13744         dtrace_difo_t *dp;
13745 
13746         if ((dp = helper->dtha_predicate) != NULL)
13747                 err += dtrace_difo_validate_helper(dp);
13748 
13749         for (i = 0; i < helper->dtha_nactions; i++)
13750                 err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
13751 
13752         return (err == 0);
13753 }
13754 
13755 static int
13756 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
13757 {
13758         dtrace_helpers_t *help;
13759         dtrace_helper_action_t *helper, *last;
13760         dtrace_actdesc_t *act;
13761         dtrace_vstate_t *vstate;
13762         dtrace_predicate_t *pred;
13763         int count = 0, nactions = 0, i;
13764 
13765         if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
13766                 return (EINVAL);
13767 
13768         help = curproc->p_dtrace_helpers;
13769         last = help->dthps_actions[which];
13770         vstate = &help->dthps_vstate;
13771 
13772         for (count = 0; last != NULL; last = last->dtha_next) {
13773                 count++;
13774                 if (last->dtha_next == NULL)
13775                         break;
13776         }
13777 
13778         /*
13779          * If we already have dtrace_helper_actions_max helper actions for this
13780          * helper action type, we'll refuse to add a new one.
13781          */
13782         if (count >= dtrace_helper_actions_max)
13783                 return (ENOSPC);
13784 
13785         helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
13786         helper->dtha_generation = help->dthps_generation;
13787 
13788         if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
13789                 ASSERT(pred->dtp_difo != NULL);
13790                 dtrace_difo_hold(pred->dtp_difo);
13791                 helper->dtha_predicate = pred->dtp_difo;
13792         }
13793 
13794         for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
13795                 if (act->dtad_kind != DTRACEACT_DIFEXPR)
13796                         goto err;
13797 
13798                 if (act->dtad_difo == NULL)
13799                         goto err;
13800 
13801                 nactions++;
13802         }
13803 
13804         helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
13805             (helper->dtha_nactions = nactions), KM_SLEEP);
13806 
13807         for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
13808                 dtrace_difo_hold(act->dtad_difo);
13809                 helper->dtha_actions[i++] = act->dtad_difo;
13810         }
13811 
13812         if (!dtrace_helper_validate(helper))
13813                 goto err;
13814 
13815         if (last == NULL) {
13816                 help->dthps_actions[which] = helper;
13817         } else {
13818                 last->dtha_next = helper;
13819         }
13820 
13821         if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
13822                 dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
13823                 dtrace_helptrace_next = 0;
13824         }
13825 
13826         return (0);
13827 err:
13828         dtrace_helper_action_destroy(helper, vstate);
13829         return (EINVAL);
13830 }
13831 
13832 static void
13833 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
13834     dof_helper_t *dofhp)
13835 {
13836         ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
13837 
13838         mutex_enter(&dtrace_meta_lock);
13839         mutex_enter(&dtrace_lock);
13840 
13841         if (!dtrace_attached() || dtrace_meta_pid == NULL) {
13842                 /*
13843                  * If the dtrace module is loaded but not attached, or if
13844                  * there aren't isn't a meta provider registered to deal with
13845                  * these provider descriptions, we need to postpone creating
13846                  * the actual providers until later.
13847                  */
13848 
13849                 if (help->dthps_next == NULL && help->dthps_prev == NULL &&
13850                     dtrace_deferred_pid != help) {
13851                         help->dthps_deferred = 1;
13852                         help->dthps_pid = p->p_pid;
13853                         help->dthps_next = dtrace_deferred_pid;
13854                         help->dthps_prev = NULL;
13855                         if (dtrace_deferred_pid != NULL)
13856                                 dtrace_deferred_pid->dthps_prev = help;
13857                         dtrace_deferred_pid = help;
13858                 }
13859 
13860                 mutex_exit(&dtrace_lock);
13861 
13862         } else if (dofhp != NULL) {
13863                 /*
13864                  * If the dtrace module is loaded and we have a particular
13865                  * helper provider description, pass that off to the
13866                  * meta provider.
13867                  */
13868 
13869                 mutex_exit(&dtrace_lock);
13870 
13871                 dtrace_helper_provide(dofhp, p->p_pid);
13872 
13873         } else {
13874                 /*
13875                  * Otherwise, just pass all the helper provider descriptions
13876                  * off to the meta provider.
13877                  */
13878 
13879                 int i;
13880                 mutex_exit(&dtrace_lock);
13881 
13882                 for (i = 0; i < help->dthps_nprovs; i++) {
13883                         dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
13884                             p->p_pid);
13885                 }
13886         }
13887 
13888         mutex_exit(&dtrace_meta_lock);
13889 }
13890 
13891 static int
13892 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
13893 {
13894         dtrace_helpers_t *help;
13895         dtrace_helper_provider_t *hprov, **tmp_provs;
13896         uint_t tmp_maxprovs, i;
13897 
13898         ASSERT(MUTEX_HELD(&dtrace_lock));
13899 
13900         help = curproc->p_dtrace_helpers;
13901         ASSERT(help != NULL);
13902 
13903         /*
13904          * If we already have dtrace_helper_providers_max helper providers,
13905          * we're refuse to add a new one.
13906          */
13907         if (help->dthps_nprovs >= dtrace_helper_providers_max)
13908                 return (ENOSPC);
13909 
13910         /*
13911          * Check to make sure this isn't a duplicate.
13912          */
13913         for (i = 0; i < help->dthps_nprovs; i++) {
13914                 if (dofhp->dofhp_addr ==
13915                     help->dthps_provs[i]->dthp_prov.dofhp_addr)
13916                         return (EALREADY);
13917         }
13918 
13919         hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
13920         hprov->dthp_prov = *dofhp;
13921         hprov->dthp_ref = 1;
13922         hprov->dthp_generation = gen;
13923 
13924         /*
13925          * Allocate a bigger table for helper providers if it's already full.
13926          */
13927         if (help->dthps_maxprovs == help->dthps_nprovs) {
13928                 tmp_maxprovs = help->dthps_maxprovs;
13929                 tmp_provs = help->dthps_provs;
13930 
13931                 if (help->dthps_maxprovs == 0)
13932                         help->dthps_maxprovs = 2;
13933                 else
13934                         help->dthps_maxprovs *= 2;
13935                 if (help->dthps_maxprovs > dtrace_helper_providers_max)
13936                         help->dthps_maxprovs = dtrace_helper_providers_max;
13937 
13938                 ASSERT(tmp_maxprovs < help->dthps_maxprovs);
13939 
13940                 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
13941                     sizeof (dtrace_helper_provider_t *), KM_SLEEP);
13942 
13943                 if (tmp_provs != NULL) {
13944                         bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
13945                             sizeof (dtrace_helper_provider_t *));
13946                         kmem_free(tmp_provs, tmp_maxprovs *
13947                             sizeof (dtrace_helper_provider_t *));
13948                 }
13949         }
13950 
13951         help->dthps_provs[help->dthps_nprovs] = hprov;
13952         help->dthps_nprovs++;
13953 
13954         return (0);
13955 }
13956 
13957 static void
13958 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
13959 {
13960         mutex_enter(&dtrace_lock);
13961 
13962         if (--hprov->dthp_ref == 0) {
13963                 dof_hdr_t *dof;
13964                 mutex_exit(&dtrace_lock);
13965                 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
13966                 dtrace_dof_destroy(dof);
13967                 kmem_free(hprov, sizeof (dtrace_helper_provider_t));
13968         } else {
13969                 mutex_exit(&dtrace_lock);
13970         }
13971 }
13972 
13973 static int
13974 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
13975 {
13976         uintptr_t daddr = (uintptr_t)dof;
13977         dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
13978         dof_provider_t *provider;
13979         dof_probe_t *probe;
13980         uint8_t *arg;
13981         char *strtab, *typestr;
13982         dof_stridx_t typeidx;
13983         size_t typesz;
13984         uint_t nprobes, j, k;
13985 
13986         ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
13987 
13988         if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
13989                 dtrace_dof_error(dof, "misaligned section offset");
13990                 return (-1);
13991         }
13992 
13993         /*
13994          * The section needs to be large enough to contain the DOF provider
13995          * structure appropriate for the given version.
13996          */
13997         if (sec->dofs_size <
13998             ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
13999             offsetof(dof_provider_t, dofpv_prenoffs) :
14000             sizeof (dof_provider_t))) {
14001                 dtrace_dof_error(dof, "provider section too small");
14002                 return (-1);
14003         }
14004 
14005         provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
14006         str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
14007         prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
14008         arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
14009         off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
14010 
14011         if (str_sec == NULL || prb_sec == NULL ||
14012             arg_sec == NULL || off_sec == NULL)
14013                 return (-1);
14014 
14015         enoff_sec = NULL;
14016 
14017         if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14018             provider->dofpv_prenoffs != DOF_SECT_NONE &&
14019             (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
14020             provider->dofpv_prenoffs)) == NULL)
14021                 return (-1);
14022 
14023         strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
14024 
14025         if (provider->dofpv_name >= str_sec->dofs_size ||
14026             strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
14027                 dtrace_dof_error(dof, "invalid provider name");
14028                 return (-1);
14029         }
14030 
14031         if (prb_sec->dofs_entsize == 0 ||
14032             prb_sec->dofs_entsize > prb_sec->dofs_size) {
14033                 dtrace_dof_error(dof, "invalid entry size");
14034                 return (-1);
14035         }
14036 
14037         if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
14038                 dtrace_dof_error(dof, "misaligned entry size");
14039                 return (-1);
14040         }
14041 
14042         if (off_sec->dofs_entsize != sizeof (uint32_t)) {
14043                 dtrace_dof_error(dof, "invalid entry size");
14044                 return (-1);
14045         }
14046 
14047         if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
14048                 dtrace_dof_error(dof, "misaligned section offset");
14049                 return (-1);
14050         }
14051 
14052         if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
14053                 dtrace_dof_error(dof, "invalid entry size");
14054                 return (-1);
14055         }
14056 
14057         arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
14058 
14059         nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
14060 
14061         /*
14062          * Take a pass through the probes to check for errors.
14063          */
14064         for (j = 0; j < nprobes; j++) {
14065                 probe = (dof_probe_t *)(uintptr_t)(daddr +
14066                     prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
14067 
14068                 if (probe->dofpr_func >= str_sec->dofs_size) {
14069                         dtrace_dof_error(dof, "invalid function name");
14070                         return (-1);
14071                 }
14072 
14073                 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
14074                         dtrace_dof_error(dof, "function name too long");
14075                         return (-1);
14076                 }
14077 
14078                 if (probe->dofpr_name >= str_sec->dofs_size ||
14079                     strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
14080                         dtrace_dof_error(dof, "invalid probe name");
14081                         return (-1);
14082                 }
14083 
14084                 /*
14085                  * The offset count must not wrap the index, and the offsets
14086                  * must also not overflow the section's data.
14087                  */
14088                 if (probe->dofpr_offidx + probe->dofpr_noffs <
14089                     probe->dofpr_offidx ||
14090                     (probe->dofpr_offidx + probe->dofpr_noffs) *
14091                     off_sec->dofs_entsize > off_sec->dofs_size) {
14092                         dtrace_dof_error(dof, "invalid probe offset");
14093                         return (-1);
14094                 }
14095 
14096                 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
14097                         /*
14098                          * If there's no is-enabled offset section, make sure
14099                          * there aren't any is-enabled offsets. Otherwise
14100                          * perform the same checks as for probe offsets
14101                          * (immediately above).
14102                          */
14103                         if (enoff_sec == NULL) {
14104                                 if (probe->dofpr_enoffidx != 0 ||
14105                                     probe->dofpr_nenoffs != 0) {
14106                                         dtrace_dof_error(dof, "is-enabled "
14107                                             "offsets with null section");
14108                                         return (-1);
14109                                 }
14110                         } else if (probe->dofpr_enoffidx +
14111                             probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
14112                             (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
14113                             enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
14114                                 dtrace_dof_error(dof, "invalid is-enabled "
14115                                     "offset");
14116                                 return (-1);
14117                         }
14118 
14119                         if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
14120                                 dtrace_dof_error(dof, "zero probe and "
14121                                     "is-enabled offsets");
14122                                 return (-1);
14123                         }
14124                 } else if (probe->dofpr_noffs == 0) {
14125                         dtrace_dof_error(dof, "zero probe offsets");
14126                         return (-1);
14127                 }
14128 
14129                 if (probe->dofpr_argidx + probe->dofpr_xargc <
14130                     probe->dofpr_argidx ||
14131                     (probe->dofpr_argidx + probe->dofpr_xargc) *
14132                     arg_sec->dofs_entsize > arg_sec->dofs_size) {
14133                         dtrace_dof_error(dof, "invalid args");
14134                         return (-1);
14135                 }
14136 
14137                 typeidx = probe->dofpr_nargv;
14138                 typestr = strtab + probe->dofpr_nargv;
14139                 for (k = 0; k < probe->dofpr_nargc; k++) {
14140                         if (typeidx >= str_sec->dofs_size) {
14141                                 dtrace_dof_error(dof, "bad "
14142                                     "native argument type");
14143                                 return (-1);
14144                         }
14145 
14146                         typesz = strlen(typestr) + 1;
14147                         if (typesz > DTRACE_ARGTYPELEN) {
14148                                 dtrace_dof_error(dof, "native "
14149                                     "argument type too long");
14150                                 return (-1);
14151                         }
14152                         typeidx += typesz;
14153                         typestr += typesz;
14154                 }
14155 
14156                 typeidx = probe->dofpr_xargv;
14157                 typestr = strtab + probe->dofpr_xargv;
14158                 for (k = 0; k < probe->dofpr_xargc; k++) {
14159                         if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
14160                                 dtrace_dof_error(dof, "bad "
14161                                     "native argument index");
14162                                 return (-1);
14163                         }
14164 
14165                         if (typeidx >= str_sec->dofs_size) {
14166                                 dtrace_dof_error(dof, "bad "
14167                                     "translated argument type");
14168                                 return (-1);
14169                         }
14170 
14171                         typesz = strlen(typestr) + 1;
14172                         if (typesz > DTRACE_ARGTYPELEN) {
14173                                 dtrace_dof_error(dof, "translated argument "
14174                                     "type too long");
14175                                 return (-1);
14176                         }
14177 
14178                         typeidx += typesz;
14179                         typestr += typesz;
14180                 }
14181         }
14182 
14183         return (0);
14184 }
14185 
14186 static int
14187 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
14188 {
14189         dtrace_helpers_t *help;
14190         dtrace_vstate_t *vstate;
14191         dtrace_enabling_t *enab = NULL;
14192         int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
14193         uintptr_t daddr = (uintptr_t)dof;
14194 
14195         ASSERT(MUTEX_HELD(&dtrace_lock));
14196 
14197         if ((help = curproc->p_dtrace_helpers) == NULL)
14198                 help = dtrace_helpers_create(curproc);
14199 
14200         vstate = &help->dthps_vstate;
14201 
14202         if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
14203             dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
14204                 dtrace_dof_destroy(dof);
14205                 return (rv);
14206         }
14207 
14208         /*
14209          * Look for helper providers and validate their descriptions.
14210          */
14211         if (dhp != NULL) {
14212                 for (i = 0; i < dof->dofh_secnum; i++) {
14213                         dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
14214                             dof->dofh_secoff + i * dof->dofh_secsize);
14215 
14216                         if (sec->dofs_type != DOF_SECT_PROVIDER)
14217                                 continue;
14218 
14219                         if (dtrace_helper_provider_validate(dof, sec) != 0) {
14220                                 dtrace_enabling_destroy(enab);
14221                                 dtrace_dof_destroy(dof);
14222                                 return (-1);
14223                         }
14224 
14225                         nprovs++;
14226                 }
14227         }
14228 
14229         /*
14230          * Now we need to walk through the ECB descriptions in the enabling.
14231          */
14232         for (i = 0; i < enab->dten_ndesc; i++) {
14233                 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
14234                 dtrace_probedesc_t *desc = &ep->dted_probe;
14235 
14236                 if (strcmp(desc->dtpd_provider, "dtrace") != 0)
14237                         continue;
14238 
14239                 if (strcmp(desc->dtpd_mod, "helper") != 0)
14240                         continue;
14241 
14242                 if (strcmp(desc->dtpd_func, "ustack") != 0)
14243                         continue;
14244 
14245                 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
14246                     ep)) != 0) {
14247                         /*
14248                          * Adding this helper action failed -- we are now going
14249                          * to rip out the entire generation and return failure.
14250                          */
14251                         (void) dtrace_helper_destroygen(help->dthps_generation);
14252                         dtrace_enabling_destroy(enab);
14253                         dtrace_dof_destroy(dof);
14254                         return (-1);
14255                 }
14256 
14257                 nhelpers++;
14258         }
14259 
14260         if (nhelpers < enab->dten_ndesc)
14261                 dtrace_dof_error(dof, "unmatched helpers");
14262 
14263         gen = help->dthps_generation++;
14264         dtrace_enabling_destroy(enab);
14265 
14266         if (dhp != NULL && nprovs > 0) {
14267                 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
14268                 if (dtrace_helper_provider_add(dhp, gen) == 0) {
14269                         mutex_exit(&dtrace_lock);
14270                         dtrace_helper_provider_register(curproc, help, dhp);
14271                         mutex_enter(&dtrace_lock);
14272 
14273                         destroy = 0;
14274                 }
14275         }
14276 
14277         if (destroy)
14278                 dtrace_dof_destroy(dof);
14279 
14280         return (gen);
14281 }
14282 
14283 static dtrace_helpers_t *
14284 dtrace_helpers_create(proc_t *p)
14285 {
14286         dtrace_helpers_t *help;
14287 
14288         ASSERT(MUTEX_HELD(&dtrace_lock));
14289         ASSERT(p->p_dtrace_helpers == NULL);
14290 
14291         help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
14292         help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
14293             DTRACE_NHELPER_ACTIONS, KM_SLEEP);
14294 
14295         p->p_dtrace_helpers = help;
14296         dtrace_helpers++;
14297 
14298         return (help);
14299 }
14300 
14301 static void
14302 dtrace_helpers_destroy(void)
14303 {
14304         dtrace_helpers_t *help;
14305         dtrace_vstate_t *vstate;
14306         proc_t *p = curproc;
14307         int i;
14308 
14309         mutex_enter(&dtrace_lock);
14310 
14311         ASSERT(p->p_dtrace_helpers != NULL);
14312         ASSERT(dtrace_helpers > 0);
14313 
14314         help = p->p_dtrace_helpers;
14315         vstate = &help->dthps_vstate;
14316 
14317         /*
14318          * We're now going to lose the help from this process.
14319          */
14320         p->p_dtrace_helpers = NULL;
14321         dtrace_sync();
14322 
14323         /*
14324          * Destory the helper actions.
14325          */
14326         for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14327                 dtrace_helper_action_t *h, *next;
14328 
14329                 for (h = help->dthps_actions[i]; h != NULL; h = next) {
14330                         next = h->dtha_next;
14331                         dtrace_helper_action_destroy(h, vstate);
14332                         h = next;
14333                 }
14334         }
14335 
14336         mutex_exit(&dtrace_lock);
14337 
14338         /*
14339          * Destroy the helper providers.
14340          */
14341         if (help->dthps_maxprovs > 0) {
14342                 mutex_enter(&dtrace_meta_lock);
14343                 if (dtrace_meta_pid != NULL) {
14344                         ASSERT(dtrace_deferred_pid == NULL);
14345 
14346                         for (i = 0; i < help->dthps_nprovs; i++) {
14347                                 dtrace_helper_provider_remove(
14348                                     &help->dthps_provs[i]->dthp_prov, p->p_pid);
14349                         }
14350                 } else {
14351                         mutex_enter(&dtrace_lock);
14352                         ASSERT(help->dthps_deferred == 0 ||
14353                             help->dthps_next != NULL ||
14354                             help->dthps_prev != NULL ||
14355                             help == dtrace_deferred_pid);
14356 
14357                         /*
14358                          * Remove the helper from the deferred list.
14359                          */
14360                         if (help->dthps_next != NULL)
14361                                 help->dthps_next->dthps_prev = help->dthps_prev;
14362                         if (help->dthps_prev != NULL)
14363                                 help->dthps_prev->dthps_next = help->dthps_next;
14364                         if (dtrace_deferred_pid == help) {
14365                                 dtrace_deferred_pid = help->dthps_next;
14366                                 ASSERT(help->dthps_prev == NULL);
14367                         }
14368 
14369                         mutex_exit(&dtrace_lock);
14370                 }
14371 
14372                 mutex_exit(&dtrace_meta_lock);
14373 
14374                 for (i = 0; i < help->dthps_nprovs; i++) {
14375                         dtrace_helper_provider_destroy(help->dthps_provs[i]);
14376                 }
14377 
14378                 kmem_free(help->dthps_provs, help->dthps_maxprovs *
14379                     sizeof (dtrace_helper_provider_t *));
14380         }
14381 
14382         mutex_enter(&dtrace_lock);
14383 
14384         dtrace_vstate_fini(&help->dthps_vstate);
14385         kmem_free(help->dthps_actions,
14386             sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
14387         kmem_free(help, sizeof (dtrace_helpers_t));
14388 
14389         --dtrace_helpers;
14390         mutex_exit(&dtrace_lock);
14391 }
14392 
14393 static void
14394 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
14395 {
14396         dtrace_helpers_t *help, *newhelp;
14397         dtrace_helper_action_t *helper, *new, *last;
14398         dtrace_difo_t *dp;
14399         dtrace_vstate_t *vstate;
14400         int i, j, sz, hasprovs = 0;
14401 
14402         mutex_enter(&dtrace_lock);
14403         ASSERT(from->p_dtrace_helpers != NULL);
14404         ASSERT(dtrace_helpers > 0);
14405 
14406         help = from->p_dtrace_helpers;
14407         newhelp = dtrace_helpers_create(to);
14408         ASSERT(to->p_dtrace_helpers != NULL);
14409 
14410         newhelp->dthps_generation = help->dthps_generation;
14411         vstate = &newhelp->dthps_vstate;
14412 
14413         /*
14414          * Duplicate the helper actions.
14415          */
14416         for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14417                 if ((helper = help->dthps_actions[i]) == NULL)
14418                         continue;
14419 
14420                 for (last = NULL; helper != NULL; helper = helper->dtha_next) {
14421                         new = kmem_zalloc(sizeof (dtrace_helper_action_t),
14422                             KM_SLEEP);
14423                         new->dtha_generation = helper->dtha_generation;
14424 
14425                         if ((dp = helper->dtha_predicate) != NULL) {
14426                                 dp = dtrace_difo_duplicate(dp, vstate);
14427                                 new->dtha_predicate = dp;
14428                         }
14429 
14430                         new->dtha_nactions = helper->dtha_nactions;
14431                         sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
14432                         new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
14433 
14434                         for (j = 0; j < new->dtha_nactions; j++) {
14435                                 dtrace_difo_t *dp = helper->dtha_actions[j];
14436 
14437                                 ASSERT(dp != NULL);
14438                                 dp = dtrace_difo_duplicate(dp, vstate);
14439                                 new->dtha_actions[j] = dp;
14440                         }
14441 
14442                         if (last != NULL) {
14443                                 last->dtha_next = new;
14444                         } else {
14445                                 newhelp->dthps_actions[i] = new;
14446                         }
14447 
14448                         last = new;
14449                 }
14450         }
14451 
14452         /*
14453          * Duplicate the helper providers and register them with the
14454          * DTrace framework.
14455          */
14456         if (help->dthps_nprovs > 0) {
14457                 newhelp->dthps_nprovs = help->dthps_nprovs;
14458                 newhelp->dthps_maxprovs = help->dthps_nprovs;
14459                 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
14460                     sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14461                 for (i = 0; i < newhelp->dthps_nprovs; i++) {
14462                         newhelp->dthps_provs[i] = help->dthps_provs[i];
14463                         newhelp->dthps_provs[i]->dthp_ref++;
14464                 }
14465 
14466                 hasprovs = 1;
14467         }
14468 
14469         mutex_exit(&dtrace_lock);
14470 
14471         if (hasprovs)
14472                 dtrace_helper_provider_register(to, newhelp, NULL);
14473 }
14474 
14475 /*
14476  * DTrace Hook Functions
14477  */
14478 static void
14479 dtrace_module_loaded(struct modctl *ctl)
14480 {
14481         dtrace_provider_t *prv;
14482 
14483         mutex_enter(&dtrace_provider_lock);
14484         mutex_enter(&mod_lock);
14485 
14486         ASSERT(ctl->mod_busy);
14487 
14488         /*
14489          * We're going to call each providers per-module provide operation
14490          * specifying only this module.
14491          */
14492         for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
14493                 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
14494 
14495         mutex_exit(&mod_lock);
14496         mutex_exit(&dtrace_provider_lock);
14497 
14498         /*
14499          * If we have any retained enablings, we need to match against them.
14500          * Enabling probes requires that cpu_lock be held, and we cannot hold
14501          * cpu_lock here -- it is legal for cpu_lock to be held when loading a
14502          * module.  (In particular, this happens when loading scheduling
14503          * classes.)  So if we have any retained enablings, we need to dispatch
14504          * our task queue to do the match for us.
14505          */
14506         mutex_enter(&dtrace_lock);
14507 
14508         if (dtrace_retained == NULL) {
14509                 mutex_exit(&dtrace_lock);
14510                 return;
14511         }
14512 
14513         (void) taskq_dispatch(dtrace_taskq,
14514             (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
14515 
14516         mutex_exit(&dtrace_lock);
14517 
14518         /*
14519          * And now, for a little heuristic sleaze:  in general, we want to
14520          * match modules as soon as they load.  However, we cannot guarantee
14521          * this, because it would lead us to the lock ordering violation
14522          * outlined above.  The common case, of course, is that cpu_lock is
14523          * _not_ held -- so we delay here for a clock tick, hoping that that's
14524          * long enough for the task queue to do its work.  If it's not, it's
14525          * not a serious problem -- it just means that the module that we
14526          * just loaded may not be immediately instrumentable.
14527          */
14528         delay(1);
14529 }
14530 
14531 static void
14532 dtrace_module_unloaded(struct modctl *ctl)
14533 {
14534         dtrace_probe_t template, *probe, *first, *next;
14535         dtrace_provider_t *prov;
14536 
14537         template.dtpr_mod = ctl->mod_modname;
14538 
14539         mutex_enter(&dtrace_provider_lock);
14540         mutex_enter(&mod_lock);
14541         mutex_enter(&dtrace_lock);
14542 
14543         if (dtrace_bymod == NULL) {
14544                 /*
14545                  * The DTrace module is loaded (obviously) but not attached;
14546                  * we don't have any work to do.
14547                  */
14548                 mutex_exit(&dtrace_provider_lock);
14549                 mutex_exit(&mod_lock);
14550                 mutex_exit(&dtrace_lock);
14551                 return;
14552         }
14553 
14554         for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
14555             probe != NULL; probe = probe->dtpr_nextmod) {
14556                 if (probe->dtpr_ecb != NULL) {
14557                         mutex_exit(&dtrace_provider_lock);
14558                         mutex_exit(&mod_lock);
14559                         mutex_exit(&dtrace_lock);
14560 
14561                         /*
14562                          * This shouldn't _actually_ be possible -- we're
14563                          * unloading a module that has an enabled probe in it.
14564                          * (It's normally up to the provider to make sure that
14565                          * this can't happen.)  However, because dtps_enable()
14566                          * doesn't have a failure mode, there can be an
14567                          * enable/unload race.  Upshot:  we don't want to
14568                          * assert, but we're not going to disable the
14569                          * probe, either.
14570                          */
14571                         if (dtrace_err_verbose) {
14572                                 cmn_err(CE_WARN, "unloaded module '%s' had "
14573                                     "enabled probes", ctl->mod_modname);
14574                         }
14575 
14576                         return;
14577                 }
14578         }
14579 
14580         probe = first;
14581 
14582         for (first = NULL; probe != NULL; probe = next) {
14583                 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
14584 
14585                 dtrace_probes[probe->dtpr_id - 1] = NULL;
14586 
14587                 next = probe->dtpr_nextmod;
14588                 dtrace_hash_remove(dtrace_bymod, probe);
14589                 dtrace_hash_remove(dtrace_byfunc, probe);
14590                 dtrace_hash_remove(dtrace_byname, probe);
14591 
14592                 if (first == NULL) {
14593                         first = probe;
14594                         probe->dtpr_nextmod = NULL;
14595                 } else {
14596                         probe->dtpr_nextmod = first;
14597                         first = probe;
14598                 }
14599         }
14600 
14601         /*
14602          * We've removed all of the module's probes from the hash chains and
14603          * from the probe array.  Now issue a dtrace_sync() to be sure that
14604          * everyone has cleared out from any probe array processing.
14605          */
14606         dtrace_sync();
14607 
14608         for (probe = first; probe != NULL; probe = first) {
14609                 first = probe->dtpr_nextmod;
14610                 prov = probe->dtpr_provider;
14611                 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
14612                     probe->dtpr_arg);
14613                 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
14614                 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
14615                 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
14616                 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
14617                 kmem_free(probe, sizeof (dtrace_probe_t));
14618         }
14619 
14620         mutex_exit(&dtrace_lock);
14621         mutex_exit(&mod_lock);
14622         mutex_exit(&dtrace_provider_lock);
14623 }
14624 
14625 void
14626 dtrace_suspend(void)
14627 {
14628         dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
14629 }
14630 
14631 void
14632 dtrace_resume(void)
14633 {
14634         dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
14635 }
14636 
14637 static int
14638 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
14639 {
14640         ASSERT(MUTEX_HELD(&cpu_lock));
14641         mutex_enter(&dtrace_lock);
14642 
14643         switch (what) {
14644         case CPU_CONFIG: {
14645                 dtrace_state_t *state;
14646                 dtrace_optval_t *opt, rs, c;
14647 
14648                 /*
14649                  * For now, we only allocate a new buffer for anonymous state.
14650                  */
14651                 if ((state = dtrace_anon.dta_state) == NULL)
14652                         break;
14653 
14654                 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
14655                         break;
14656 
14657                 opt = state->dts_options;
14658                 c = opt[DTRACEOPT_CPU];
14659 
14660                 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
14661                         break;
14662 
14663                 /*
14664                  * Regardless of what the actual policy is, we're going to
14665                  * temporarily set our resize policy to be manual.  We're
14666                  * also going to temporarily set our CPU option to denote
14667                  * the newly configured CPU.
14668                  */
14669                 rs = opt[DTRACEOPT_BUFRESIZE];
14670                 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
14671                 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
14672 
14673                 (void) dtrace_state_buffers(state);
14674 
14675                 opt[DTRACEOPT_BUFRESIZE] = rs;
14676                 opt[DTRACEOPT_CPU] = c;
14677 
14678                 break;
14679         }
14680 
14681         case CPU_UNCONFIG:
14682                 /*
14683                  * We don't free the buffer in the CPU_UNCONFIG case.  (The
14684                  * buffer will be freed when the consumer exits.)
14685                  */
14686                 break;
14687 
14688         default:
14689                 break;
14690         }
14691 
14692         mutex_exit(&dtrace_lock);
14693         return (0);
14694 }
14695 
14696 static void
14697 dtrace_cpu_setup_initial(processorid_t cpu)
14698 {
14699         (void) dtrace_cpu_setup(CPU_CONFIG, cpu);
14700 }
14701 
14702 static void
14703 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
14704 {
14705         if (dtrace_toxranges >= dtrace_toxranges_max) {
14706                 int osize, nsize;
14707                 dtrace_toxrange_t *range;
14708 
14709                 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
14710 
14711                 if (osize == 0) {
14712                         ASSERT(dtrace_toxrange == NULL);
14713                         ASSERT(dtrace_toxranges_max == 0);
14714                         dtrace_toxranges_max = 1;
14715                 } else {
14716                         dtrace_toxranges_max <<= 1;
14717                 }
14718 
14719                 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
14720                 range = kmem_zalloc(nsize, KM_SLEEP);
14721 
14722                 if (dtrace_toxrange != NULL) {
14723                         ASSERT(osize != 0);
14724                         bcopy(dtrace_toxrange, range, osize);
14725                         kmem_free(dtrace_toxrange, osize);
14726                 }
14727 
14728                 dtrace_toxrange = range;
14729         }
14730 
14731         ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL);
14732         ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL);
14733 
14734         dtrace_toxrange[dtrace_toxranges].dtt_base = base;
14735         dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
14736         dtrace_toxranges++;
14737 }
14738 
14739 /*
14740  * DTrace Driver Cookbook Functions
14741  */
14742 /*ARGSUSED*/
14743 static int
14744 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
14745 {
14746         dtrace_provider_id_t id;
14747         dtrace_state_t *state = NULL;
14748         dtrace_enabling_t *enab;
14749 
14750         mutex_enter(&cpu_lock);
14751         mutex_enter(&dtrace_provider_lock);
14752         mutex_enter(&dtrace_lock);
14753 
14754         if (ddi_soft_state_init(&dtrace_softstate,
14755             sizeof (dtrace_state_t), 0) != 0) {
14756                 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
14757                 mutex_exit(&cpu_lock);
14758                 mutex_exit(&dtrace_provider_lock);
14759                 mutex_exit(&dtrace_lock);
14760                 return (DDI_FAILURE);
14761         }
14762 
14763         if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
14764             DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
14765             ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
14766             DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
14767                 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
14768                 ddi_remove_minor_node(devi, NULL);
14769                 ddi_soft_state_fini(&dtrace_softstate);
14770                 mutex_exit(&cpu_lock);
14771                 mutex_exit(&dtrace_provider_lock);
14772                 mutex_exit(&dtrace_lock);
14773                 return (DDI_FAILURE);
14774         }
14775 
14776         ddi_report_dev(devi);
14777         dtrace_devi = devi;
14778 
14779         dtrace_modload = dtrace_module_loaded;
14780         dtrace_modunload = dtrace_module_unloaded;
14781         dtrace_cpu_init = dtrace_cpu_setup_initial;
14782         dtrace_helpers_cleanup = dtrace_helpers_destroy;
14783         dtrace_helpers_fork = dtrace_helpers_duplicate;
14784         dtrace_cpustart_init = dtrace_suspend;
14785         dtrace_cpustart_fini = dtrace_resume;
14786         dtrace_debugger_init = dtrace_suspend;
14787         dtrace_debugger_fini = dtrace_resume;
14788 
14789         register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
14790 
14791         ASSERT(MUTEX_HELD(&cpu_lock));
14792 
14793         dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
14794             NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
14795         dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
14796             UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
14797             VM_SLEEP | VMC_IDENTIFIER);
14798         dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
14799             1, INT_MAX, 0);
14800 
14801         dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
14802             sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
14803             NULL, NULL, NULL, NULL, NULL, 0);
14804 
14805         ASSERT(MUTEX_HELD(&cpu_lock));
14806         dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
14807             offsetof(dtrace_probe_t, dtpr_nextmod),
14808             offsetof(dtrace_probe_t, dtpr_prevmod));
14809 
14810         dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
14811             offsetof(dtrace_probe_t, dtpr_nextfunc),
14812             offsetof(dtrace_probe_t, dtpr_prevfunc));
14813 
14814         dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
14815             offsetof(dtrace_probe_t, dtpr_nextname),
14816             offsetof(dtrace_probe_t, dtpr_prevname));
14817 
14818         if (dtrace_retain_max < 1) {
14819                 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
14820                     "setting to 1", dtrace_retain_max);
14821                 dtrace_retain_max = 1;
14822         }
14823 
14824         /*
14825          * Now discover our toxic ranges.
14826          */
14827         dtrace_toxic_ranges(dtrace_toxrange_add);
14828 
14829         /*
14830          * Before we register ourselves as a provider to our own framework,
14831          * we would like to assert that dtrace_provider is NULL -- but that's
14832          * not true if we were loaded as a dependency of a DTrace provider.
14833          * Once we've registered, we can assert that dtrace_provider is our
14834          * pseudo provider.
14835          */
14836         (void) dtrace_register("dtrace", &dtrace_provider_attr,
14837             DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
14838 
14839         ASSERT(dtrace_provider != NULL);
14840         ASSERT((dtrace_provider_id_t)dtrace_provider == id);
14841 
14842         dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
14843             dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
14844         dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
14845             dtrace_provider, NULL, NULL, "END", 0, NULL);
14846         dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
14847             dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
14848 
14849         dtrace_anon_property();
14850         mutex_exit(&cpu_lock);
14851 
14852         /*
14853          * If DTrace helper tracing is enabled, we need to allocate the
14854          * trace buffer and initialize the values.
14855          */
14856         if (dtrace_helptrace_enabled) {
14857                 ASSERT(dtrace_helptrace_buffer == NULL);
14858                 dtrace_helptrace_buffer =
14859                     kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
14860                 dtrace_helptrace_next = 0;
14861         }
14862 
14863         /*
14864          * If there are already providers, we must ask them to provide their
14865          * probes, and then match any anonymous enabling against them.  Note
14866          * that there should be no other retained enablings at this time:
14867          * the only retained enablings at this time should be the anonymous
14868          * enabling.
14869          */
14870         if (dtrace_anon.dta_enabling != NULL) {
14871                 ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
14872 
14873                 dtrace_enabling_provide(NULL);
14874                 state = dtrace_anon.dta_state;
14875 
14876                 /*
14877                  * We couldn't hold cpu_lock across the above call to
14878                  * dtrace_enabling_provide(), but we must hold it to actually
14879                  * enable the probes.  We have to drop all of our locks, pick
14880                  * up cpu_lock, and regain our locks before matching the
14881                  * retained anonymous enabling.
14882                  */
14883                 mutex_exit(&dtrace_lock);
14884                 mutex_exit(&dtrace_provider_lock);
14885 
14886                 mutex_enter(&cpu_lock);
14887                 mutex_enter(&dtrace_provider_lock);
14888                 mutex_enter(&dtrace_lock);
14889 
14890                 if ((enab = dtrace_anon.dta_enabling) != NULL)
14891                         (void) dtrace_enabling_match(enab, NULL);
14892 
14893                 mutex_exit(&cpu_lock);
14894         }
14895 
14896         mutex_exit(&dtrace_lock);
14897         mutex_exit(&dtrace_provider_lock);
14898 
14899         if (state != NULL) {
14900                 /*
14901                  * If we created any anonymous state, set it going now.
14902                  */
14903                 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
14904         }
14905 
14906         return (DDI_SUCCESS);
14907 }
14908 
14909 /*ARGSUSED*/
14910 static int
14911 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
14912 {
14913         dtrace_state_t *state;
14914         uint32_t priv;
14915         uid_t uid;
14916         zoneid_t zoneid;
14917 
14918         if (getminor(*devp) == DTRACEMNRN_HELPER)
14919                 return (0);
14920 
14921         /*
14922          * If this wasn't an open with the "helper" minor, then it must be
14923          * the "dtrace" minor.
14924          */
14925         if (getminor(*devp) != DTRACEMNRN_DTRACE)
14926                 return (ENXIO);
14927 
14928         /*
14929          * If no DTRACE_PRIV_* bits are set in the credential, then the
14930          * caller lacks sufficient permission to do anything with DTrace.
14931          */
14932         dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
14933         if (priv == DTRACE_PRIV_NONE)
14934                 return (EACCES);
14935 
14936         /*
14937          * Ask all providers to provide all their probes.
14938          */
14939         mutex_enter(&dtrace_provider_lock);
14940         dtrace_probe_provide(NULL, NULL);
14941         mutex_exit(&dtrace_provider_lock);
14942 
14943         mutex_enter(&cpu_lock);
14944         mutex_enter(&dtrace_lock);
14945         dtrace_opens++;
14946         dtrace_membar_producer();
14947 
14948         /*
14949          * If the kernel debugger is active (that is, if the kernel debugger
14950          * modified text in some way), we won't allow the open.
14951          */
14952         if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
14953                 dtrace_opens--;
14954                 mutex_exit(&cpu_lock);
14955                 mutex_exit(&dtrace_lock);
14956                 return (EBUSY);
14957         }
14958 
14959         state = dtrace_state_create(devp, cred_p);
14960         mutex_exit(&cpu_lock);
14961 
14962         if (state == NULL) {
14963                 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
14964                         (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
14965                 mutex_exit(&dtrace_lock);
14966                 return (EAGAIN);
14967         }
14968 
14969         mutex_exit(&dtrace_lock);
14970 
14971         return (0);
14972 }
14973 
14974 /*ARGSUSED*/
14975 static int
14976 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
14977 {
14978         minor_t minor = getminor(dev);
14979         dtrace_state_t *state;
14980 
14981         if (minor == DTRACEMNRN_HELPER)
14982                 return (0);
14983 
14984         state = ddi_get_soft_state(dtrace_softstate, minor);
14985 
14986         mutex_enter(&cpu_lock);
14987         mutex_enter(&dtrace_lock);
14988 
14989         if (state->dts_anon) {
14990                 /*
14991                  * There is anonymous state. Destroy that first.
14992                  */
14993                 ASSERT(dtrace_anon.dta_state == NULL);
14994                 dtrace_state_destroy(state->dts_anon);
14995         }
14996 
14997         dtrace_state_destroy(state);
14998         ASSERT(dtrace_opens > 0);
14999 
15000         /*
15001          * Only relinquish control of the kernel debugger interface when there
15002          * are no consumers and no anonymous enablings.
15003          */
15004         if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
15005                 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15006 
15007         mutex_exit(&dtrace_lock);
15008         mutex_exit(&cpu_lock);
15009 
15010         return (0);
15011 }
15012 
15013 /*ARGSUSED*/
15014 static int
15015 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
15016 {
15017         int rval;
15018         dof_helper_t help, *dhp = NULL;
15019 
15020         switch (cmd) {
15021         case DTRACEHIOC_ADDDOF:
15022                 if (copyin((void *)arg, &help, sizeof (help)) != 0) {
15023                         dtrace_dof_error(NULL, "failed to copyin DOF helper");
15024                         return (EFAULT);
15025                 }
15026 
15027                 dhp = &help;
15028                 arg = (intptr_t)help.dofhp_dof;
15029                 /*FALLTHROUGH*/
15030 
15031         case DTRACEHIOC_ADD: {
15032                 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
15033 
15034                 if (dof == NULL)
15035                         return (rval);
15036 
15037                 mutex_enter(&dtrace_lock);
15038 
15039                 /*
15040                  * dtrace_helper_slurp() takes responsibility for the dof --
15041                  * it may free it now or it may save it and free it later.
15042                  */
15043                 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
15044                         *rv = rval;
15045                         rval = 0;
15046                 } else {
15047                         rval = EINVAL;
15048                 }
15049 
15050                 mutex_exit(&dtrace_lock);
15051                 return (rval);
15052         }
15053 
15054         case DTRACEHIOC_REMOVE: {
15055                 mutex_enter(&dtrace_lock);
15056                 rval = dtrace_helper_destroygen(arg);
15057                 mutex_exit(&dtrace_lock);
15058 
15059                 return (rval);
15060         }
15061 
15062         default:
15063                 break;
15064         }
15065 
15066         return (ENOTTY);
15067 }
15068 
15069 /*ARGSUSED*/
15070 static int
15071 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
15072 {
15073         minor_t minor = getminor(dev);
15074         dtrace_state_t *state;
15075         int rval;
15076 
15077         if (minor == DTRACEMNRN_HELPER)
15078                 return (dtrace_ioctl_helper(cmd, arg, rv));
15079 
15080         state = ddi_get_soft_state(dtrace_softstate, minor);
15081 
15082         if (state->dts_anon) {
15083                 ASSERT(dtrace_anon.dta_state == NULL);
15084                 state = state->dts_anon;
15085         }
15086 
15087         switch (cmd) {
15088         case DTRACEIOC_PROVIDER: {
15089                 dtrace_providerdesc_t pvd;
15090                 dtrace_provider_t *pvp;
15091 
15092                 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
15093                         return (EFAULT);
15094 
15095                 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
15096                 mutex_enter(&dtrace_provider_lock);
15097 
15098                 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
15099                         if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
15100                                 break;
15101                 }
15102 
15103                 mutex_exit(&dtrace_provider_lock);
15104 
15105                 if (pvp == NULL)
15106                         return (ESRCH);
15107 
15108                 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
15109                 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
15110                 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
15111                         return (EFAULT);
15112 
15113                 return (0);
15114         }
15115 
15116         case DTRACEIOC_EPROBE: {
15117                 dtrace_eprobedesc_t epdesc;
15118                 dtrace_ecb_t *ecb;
15119                 dtrace_action_t *act;
15120                 void *buf;
15121                 size_t size;
15122                 uintptr_t dest;
15123                 int nrecs;
15124 
15125                 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
15126                         return (EFAULT);
15127 
15128                 mutex_enter(&dtrace_lock);
15129 
15130                 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
15131                         mutex_exit(&dtrace_lock);
15132                         return (EINVAL);
15133                 }
15134 
15135                 if (ecb->dte_probe == NULL) {
15136                         mutex_exit(&dtrace_lock);
15137                         return (EINVAL);
15138                 }
15139 
15140                 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
15141                 epdesc.dtepd_uarg = ecb->dte_uarg;
15142                 epdesc.dtepd_size = ecb->dte_size;
15143 
15144                 nrecs = epdesc.dtepd_nrecs;
15145                 epdesc.dtepd_nrecs = 0;
15146                 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15147                         if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15148                                 continue;
15149 
15150                         epdesc.dtepd_nrecs++;
15151                 }
15152 
15153                 /*
15154                  * Now that we have the size, we need to allocate a temporary
15155                  * buffer in which to store the complete description.  We need
15156                  * the temporary buffer to be able to drop dtrace_lock()
15157                  * across the copyout(), below.
15158                  */
15159                 size = sizeof (dtrace_eprobedesc_t) +
15160                     (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
15161 
15162                 buf = kmem_alloc(size, KM_SLEEP);
15163                 dest = (uintptr_t)buf;
15164 
15165                 bcopy(&epdesc, (void *)dest, sizeof (epdesc));
15166                 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
15167 
15168                 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15169                         if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15170                                 continue;
15171 
15172                         if (nrecs-- == 0)
15173                                 break;
15174 
15175                         bcopy(&act->dta_rec, (void *)dest,
15176                             sizeof (dtrace_recdesc_t));
15177                         dest += sizeof (dtrace_recdesc_t);
15178                 }
15179 
15180                 mutex_exit(&dtrace_lock);
15181 
15182                 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15183                         kmem_free(buf, size);
15184                         return (EFAULT);
15185                 }
15186 
15187                 kmem_free(buf, size);
15188                 return (0);
15189         }
15190 
15191         case DTRACEIOC_AGGDESC: {
15192                 dtrace_aggdesc_t aggdesc;
15193                 dtrace_action_t *act;
15194                 dtrace_aggregation_t *agg;
15195                 int nrecs;
15196                 uint32_t offs;
15197                 dtrace_recdesc_t *lrec;
15198                 void *buf;
15199                 size_t size;
15200                 uintptr_t dest;
15201 
15202                 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
15203                         return (EFAULT);
15204 
15205                 mutex_enter(&dtrace_lock);
15206 
15207                 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
15208                         mutex_exit(&dtrace_lock);
15209                         return (EINVAL);
15210                 }
15211 
15212                 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
15213 
15214                 nrecs = aggdesc.dtagd_nrecs;
15215                 aggdesc.dtagd_nrecs = 0;
15216 
15217                 offs = agg->dtag_base;
15218                 lrec = &agg->dtag_action.dta_rec;
15219                 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
15220 
15221                 for (act = agg->dtag_first; ; act = act->dta_next) {
15222                         ASSERT(act->dta_intuple ||
15223                             DTRACEACT_ISAGG(act->dta_kind));
15224 
15225                         /*
15226                          * If this action has a record size of zero, it
15227                          * denotes an argument to the aggregating action.
15228                          * Because the presence of this record doesn't (or
15229                          * shouldn't) affect the way the data is interpreted,
15230                          * we don't copy it out to save user-level the
15231                          * confusion of dealing with a zero-length record.
15232                          */
15233                         if (act->dta_rec.dtrd_size == 0) {
15234                                 ASSERT(agg->dtag_hasarg);
15235                                 continue;
15236                         }
15237 
15238                         aggdesc.dtagd_nrecs++;
15239 
15240                         if (act == &agg->dtag_action)
15241                                 break;
15242                 }
15243 
15244                 /*
15245                  * Now that we have the size, we need to allocate a temporary
15246                  * buffer in which to store the complete description.  We need
15247                  * the temporary buffer to be able to drop dtrace_lock()
15248                  * across the copyout(), below.
15249                  */
15250                 size = sizeof (dtrace_aggdesc_t) +
15251                     (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
15252 
15253                 buf = kmem_alloc(size, KM_SLEEP);
15254                 dest = (uintptr_t)buf;
15255 
15256                 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
15257                 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
15258 
15259                 for (act = agg->dtag_first; ; act = act->dta_next) {
15260                         dtrace_recdesc_t rec = act->dta_rec;
15261 
15262                         /*
15263                          * See the comment in the above loop for why we pass
15264                          * over zero-length records.
15265                          */
15266                         if (rec.dtrd_size == 0) {
15267                                 ASSERT(agg->dtag_hasarg);
15268                                 continue;
15269                         }
15270 
15271                         if (nrecs-- == 0)
15272                                 break;
15273 
15274                         rec.dtrd_offset -= offs;
15275                         bcopy(&rec, (void *)dest, sizeof (rec));
15276                         dest += sizeof (dtrace_recdesc_t);
15277 
15278                         if (act == &agg->dtag_action)
15279                                 break;
15280                 }
15281 
15282                 mutex_exit(&dtrace_lock);
15283 
15284                 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15285                         kmem_free(buf, size);
15286                         return (EFAULT);
15287                 }
15288 
15289                 kmem_free(buf, size);
15290                 return (0);
15291         }
15292 
15293         case DTRACEIOC_ENABLE: {
15294                 dof_hdr_t *dof;
15295                 dtrace_enabling_t *enab = NULL;
15296                 dtrace_vstate_t *vstate;
15297                 int err = 0;
15298 
15299                 *rv = 0;
15300 
15301                 /*
15302                  * If a NULL argument has been passed, we take this as our
15303                  * cue to reevaluate our enablings.
15304                  */
15305                 if (arg == NULL) {
15306                         dtrace_enabling_matchall();
15307 
15308                         return (0);
15309                 }
15310 
15311                 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
15312                         return (rval);
15313 
15314                 mutex_enter(&cpu_lock);
15315                 mutex_enter(&dtrace_lock);
15316                 vstate = &state->dts_vstate;
15317 
15318                 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
15319                         mutex_exit(&dtrace_lock);
15320                         mutex_exit(&cpu_lock);
15321                         dtrace_dof_destroy(dof);
15322                         return (EBUSY);
15323                 }
15324 
15325                 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
15326                         mutex_exit(&dtrace_lock);
15327                         mutex_exit(&cpu_lock);
15328                         dtrace_dof_destroy(dof);
15329                         return (EINVAL);
15330                 }
15331 
15332                 if ((rval = dtrace_dof_options(dof, state)) != 0) {
15333                         dtrace_enabling_destroy(enab);
15334                         mutex_exit(&dtrace_lock);
15335                         mutex_exit(&cpu_lock);
15336                         dtrace_dof_destroy(dof);
15337                         return (rval);
15338                 }
15339 
15340                 if ((err = dtrace_enabling_match(enab, rv)) == 0) {
15341                         err = dtrace_enabling_retain(enab);
15342                 } else {
15343                         dtrace_enabling_destroy(enab);
15344                 }
15345 
15346                 mutex_exit(&cpu_lock);
15347                 mutex_exit(&dtrace_lock);
15348                 dtrace_dof_destroy(dof);
15349 
15350                 return (err);
15351         }
15352 
15353         case DTRACEIOC_REPLICATE: {
15354                 dtrace_repldesc_t desc;
15355                 dtrace_probedesc_t *match = &desc.dtrpd_match;
15356                 dtrace_probedesc_t *create = &desc.dtrpd_create;
15357                 int err;
15358 
15359                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15360                         return (EFAULT);
15361 
15362                 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15363                 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15364                 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15365                 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15366 
15367                 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15368                 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15369                 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15370                 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15371 
15372                 mutex_enter(&dtrace_lock);
15373                 err = dtrace_enabling_replicate(state, match, create);
15374                 mutex_exit(&dtrace_lock);
15375 
15376                 return (err);
15377         }
15378 
15379         case DTRACEIOC_PROBEMATCH:
15380         case DTRACEIOC_PROBES: {
15381                 dtrace_probe_t *probe = NULL;
15382                 dtrace_probedesc_t desc;
15383                 dtrace_probekey_t pkey;
15384                 dtrace_id_t i;
15385                 int m = 0;
15386                 uint32_t priv;
15387                 uid_t uid;
15388                 zoneid_t zoneid;
15389 
15390                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15391                         return (EFAULT);
15392 
15393                 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15394                 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15395                 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15396                 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15397 
15398                 /*
15399                  * Before we attempt to match this probe, we want to give
15400                  * all providers the opportunity to provide it.
15401                  */
15402                 if (desc.dtpd_id == DTRACE_IDNONE) {
15403                         mutex_enter(&dtrace_provider_lock);
15404                         dtrace_probe_provide(&desc, NULL);
15405                         mutex_exit(&dtrace_provider_lock);
15406                         desc.dtpd_id++;
15407                 }
15408 
15409                 if (cmd == DTRACEIOC_PROBEMATCH)  {
15410                         dtrace_probekey(&desc, &pkey);
15411                         pkey.dtpk_id = DTRACE_IDNONE;
15412                 }
15413 
15414                 dtrace_cred2priv(cr, &priv, &uid, &zoneid);
15415 
15416                 mutex_enter(&dtrace_lock);
15417 
15418                 if (cmd == DTRACEIOC_PROBEMATCH) {
15419                         for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15420                                 if ((probe = dtrace_probes[i - 1]) != NULL &&
15421                                     (m = dtrace_match_probe(probe, &pkey,
15422                                     priv, uid, zoneid)) != 0)
15423                                         break;
15424                         }
15425 
15426                         if (m < 0) {
15427                                 mutex_exit(&dtrace_lock);
15428                                 return (EINVAL);
15429                         }
15430 
15431                 } else {
15432                         for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15433                                 if ((probe = dtrace_probes[i - 1]) != NULL &&
15434                                     dtrace_match_priv(probe, priv, uid, zoneid))
15435                                         break;
15436                         }
15437                 }
15438 
15439                 if (probe == NULL) {
15440                         mutex_exit(&dtrace_lock);
15441                         return (ESRCH);
15442                 }
15443 
15444                 dtrace_probe_description(probe, &desc);
15445                 mutex_exit(&dtrace_lock);
15446 
15447                 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15448                         return (EFAULT);
15449 
15450                 return (0);
15451         }
15452 
15453         case DTRACEIOC_PROBEARG: {
15454                 dtrace_argdesc_t desc;
15455                 dtrace_probe_t *probe;
15456                 dtrace_provider_t *prov;
15457 
15458                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15459                         return (EFAULT);
15460 
15461                 if (desc.dtargd_id == DTRACE_IDNONE)
15462                         return (EINVAL);
15463 
15464                 if (desc.dtargd_ndx == DTRACE_ARGNONE)
15465                         return (EINVAL);
15466 
15467                 mutex_enter(&dtrace_provider_lock);
15468                 mutex_enter(&mod_lock);
15469                 mutex_enter(&dtrace_lock);
15470 
15471                 if (desc.dtargd_id > dtrace_nprobes) {
15472                         mutex_exit(&dtrace_lock);
15473                         mutex_exit(&mod_lock);
15474                         mutex_exit(&dtrace_provider_lock);
15475                         return (EINVAL);
15476                 }
15477 
15478                 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
15479                         mutex_exit(&dtrace_lock);
15480                         mutex_exit(&mod_lock);
15481                         mutex_exit(&dtrace_provider_lock);
15482                         return (EINVAL);
15483                 }
15484 
15485                 mutex_exit(&dtrace_lock);
15486 
15487                 prov = probe->dtpr_provider;
15488 
15489                 if (prov->dtpv_pops.dtps_getargdesc == NULL) {
15490                         /*
15491                          * There isn't any typed information for this probe.
15492                          * Set the argument number to DTRACE_ARGNONE.
15493                          */
15494                         desc.dtargd_ndx = DTRACE_ARGNONE;
15495                 } else {
15496                         desc.dtargd_native[0] = '\0';
15497                         desc.dtargd_xlate[0] = '\0';
15498                         desc.dtargd_mapping = desc.dtargd_ndx;
15499 
15500                         prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
15501                             probe->dtpr_id, probe->dtpr_arg, &desc);
15502                 }
15503 
15504                 mutex_exit(&mod_lock);
15505                 mutex_exit(&dtrace_provider_lock);
15506 
15507                 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15508                         return (EFAULT);
15509 
15510                 return (0);
15511         }
15512 
15513         case DTRACEIOC_GO: {
15514                 processorid_t cpuid;
15515                 rval = dtrace_state_go(state, &cpuid);
15516 
15517                 if (rval != 0)
15518                         return (rval);
15519 
15520                 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
15521                         return (EFAULT);
15522 
15523                 return (0);
15524         }
15525 
15526         case DTRACEIOC_STOP: {
15527                 processorid_t cpuid;
15528 
15529                 mutex_enter(&dtrace_lock);
15530                 rval = dtrace_state_stop(state, &cpuid);
15531                 mutex_exit(&dtrace_lock);
15532 
15533                 if (rval != 0)
15534                         return (rval);
15535 
15536                 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
15537                         return (EFAULT);
15538 
15539                 return (0);
15540         }
15541 
15542         case DTRACEIOC_DOFGET: {
15543                 dof_hdr_t hdr, *dof;
15544                 uint64_t len;
15545 
15546                 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
15547                         return (EFAULT);
15548 
15549                 mutex_enter(&dtrace_lock);
15550                 dof = dtrace_dof_create(state);
15551                 mutex_exit(&dtrace_lock);
15552 
15553                 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
15554                 rval = copyout(dof, (void *)arg, len);
15555                 dtrace_dof_destroy(dof);
15556 
15557                 return (rval == 0 ? 0 : EFAULT);
15558         }
15559 
15560         case DTRACEIOC_AGGSNAP:
15561         case DTRACEIOC_BUFSNAP: {
15562                 dtrace_bufdesc_t desc;
15563                 caddr_t cached;
15564                 dtrace_buffer_t *buf;
15565 
15566                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15567                         return (EFAULT);
15568 
15569                 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
15570                         return (EINVAL);
15571 
15572                 mutex_enter(&dtrace_lock);
15573 
15574                 if (cmd == DTRACEIOC_BUFSNAP) {
15575                         buf = &state->dts_buffer[desc.dtbd_cpu];
15576                 } else {
15577                         buf = &state->dts_aggbuffer[desc.dtbd_cpu];
15578                 }
15579 
15580                 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
15581                         size_t sz = buf->dtb_offset;
15582 
15583                         if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
15584                                 mutex_exit(&dtrace_lock);
15585                                 return (EBUSY);
15586                         }
15587 
15588                         /*
15589                          * If this buffer has already been consumed, we're
15590                          * going to indicate that there's nothing left here
15591                          * to consume.
15592                          */
15593                         if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
15594                                 mutex_exit(&dtrace_lock);
15595 
15596                                 desc.dtbd_size = 0;
15597                                 desc.dtbd_drops = 0;
15598                                 desc.dtbd_errors = 0;
15599                                 desc.dtbd_oldest = 0;
15600                                 sz = sizeof (desc);
15601 
15602                                 if (copyout(&desc, (void *)arg, sz) != 0)
15603                                         return (EFAULT);
15604 
15605                                 return (0);
15606                         }
15607 
15608                         /*
15609                          * If this is a ring buffer that has wrapped, we want
15610                          * to copy the whole thing out.
15611                          */
15612                         if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
15613                                 dtrace_buffer_polish(buf);
15614                                 sz = buf->dtb_size;
15615                         }
15616 
15617                         if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
15618                                 mutex_exit(&dtrace_lock);
15619                                 return (EFAULT);
15620                         }
15621 
15622                         desc.dtbd_size = sz;
15623                         desc.dtbd_drops = buf->dtb_drops;
15624                         desc.dtbd_errors = buf->dtb_errors;
15625                         desc.dtbd_oldest = buf->dtb_xamot_offset;
15626 
15627                         mutex_exit(&dtrace_lock);
15628 
15629                         if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15630                                 return (EFAULT);
15631 
15632                         buf->dtb_flags |= DTRACEBUF_CONSUMED;
15633 
15634                         return (0);
15635                 }
15636 
15637                 if (buf->dtb_tomax == NULL) {
15638                         ASSERT(buf->dtb_xamot == NULL);
15639                         mutex_exit(&dtrace_lock);
15640                         return (ENOENT);
15641                 }
15642 
15643                 cached = buf->dtb_tomax;
15644                 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
15645 
15646                 dtrace_xcall(desc.dtbd_cpu,
15647                     (dtrace_xcall_t)dtrace_buffer_switch, buf);
15648 
15649                 state->dts_errors += buf->dtb_xamot_errors;
15650 
15651                 /*
15652                  * If the buffers did not actually switch, then the cross call
15653                  * did not take place -- presumably because the given CPU is
15654                  * not in the ready set.  If this is the case, we'll return
15655                  * ENOENT.
15656                  */
15657                 if (buf->dtb_tomax == cached) {
15658                         ASSERT(buf->dtb_xamot != cached);
15659                         mutex_exit(&dtrace_lock);
15660                         return (ENOENT);
15661                 }
15662 
15663                 ASSERT(cached == buf->dtb_xamot);
15664 
15665                 /*
15666                  * We have our snapshot; now copy it out.
15667                  */
15668                 if (copyout(buf->dtb_xamot, desc.dtbd_data,
15669                     buf->dtb_xamot_offset) != 0) {
15670                         mutex_exit(&dtrace_lock);
15671                         return (EFAULT);
15672                 }
15673 
15674                 desc.dtbd_size = buf->dtb_xamot_offset;
15675                 desc.dtbd_drops = buf->dtb_xamot_drops;
15676                 desc.dtbd_errors = buf->dtb_xamot_errors;
15677                 desc.dtbd_oldest = 0;
15678 
15679                 mutex_exit(&dtrace_lock);
15680 
15681                 /*
15682                  * Finally, copy out the buffer description.
15683                  */
15684                 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15685                         return (EFAULT);
15686 
15687                 return (0);
15688         }
15689 
15690         case DTRACEIOC_CONF: {
15691                 dtrace_conf_t conf;
15692 
15693                 bzero(&conf, sizeof (conf));
15694                 conf.dtc_difversion = DIF_VERSION;
15695                 conf.dtc_difintregs = DIF_DIR_NREGS;
15696                 conf.dtc_diftupregs = DIF_DTR_NREGS;
15697                 conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
15698 
15699                 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
15700                         return (EFAULT);
15701 
15702                 return (0);
15703         }
15704 
15705         case DTRACEIOC_STATUS: {
15706                 dtrace_status_t stat;
15707                 dtrace_dstate_t *dstate;
15708                 int i, j;
15709                 uint64_t nerrs;
15710 
15711                 /*
15712                  * See the comment in dtrace_state_deadman() for the reason
15713                  * for setting dts_laststatus to INT64_MAX before setting
15714                  * it to the correct value.
15715                  */
15716                 state->dts_laststatus = INT64_MAX;
15717                 dtrace_membar_producer();
15718                 state->dts_laststatus = dtrace_gethrtime();
15719 
15720                 bzero(&stat, sizeof (stat));
15721 
15722                 mutex_enter(&dtrace_lock);
15723 
15724                 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
15725                         mutex_exit(&dtrace_lock);
15726                         return (ENOENT);
15727                 }
15728 
15729                 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
15730                         stat.dtst_exiting = 1;
15731 
15732                 nerrs = state->dts_errors;
15733                 dstate = &state->dts_vstate.dtvs_dynvars;
15734 
15735                 for (i = 0; i < NCPU; i++) {
15736                         dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
15737 
15738                         stat.dtst_dyndrops += dcpu->dtdsc_drops;
15739                         stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
15740                         stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
15741 
15742                         if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
15743                                 stat.dtst_filled++;
15744 
15745                         nerrs += state->dts_buffer[i].dtb_errors;
15746 
15747                         for (j = 0; j < state->dts_nspeculations; j++) {
15748                                 dtrace_speculation_t *spec;
15749                                 dtrace_buffer_t *buf;
15750 
15751                                 spec = &state->dts_speculations[j];
15752                                 buf = &spec->dtsp_buffer[i];
15753                                 stat.dtst_specdrops += buf->dtb_xamot_drops;
15754                         }
15755                 }
15756 
15757                 stat.dtst_specdrops_busy = state->dts_speculations_busy;
15758                 stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
15759                 stat.dtst_stkstroverflows = state->dts_stkstroverflows;
15760                 stat.dtst_dblerrors = state->dts_dblerrors;
15761                 stat.dtst_killed =
15762                     (state->dts_activity == DTRACE_ACTIVITY_KILLED);
15763                 stat.dtst_errors = nerrs;
15764 
15765                 mutex_exit(&dtrace_lock);
15766 
15767                 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
15768                         return (EFAULT);
15769 
15770                 return (0);
15771         }
15772 
15773         case DTRACEIOC_FORMAT: {
15774                 dtrace_fmtdesc_t fmt;
15775                 char *str;
15776                 int len;
15777 
15778                 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
15779                         return (EFAULT);
15780 
15781                 mutex_enter(&dtrace_lock);
15782 
15783                 if (fmt.dtfd_format == 0 ||
15784                     fmt.dtfd_format > state->dts_nformats) {
15785                         mutex_exit(&dtrace_lock);
15786                         return (EINVAL);
15787                 }
15788 
15789                 /*
15790                  * Format strings are allocated contiguously and they are
15791                  * never freed; if a format index is less than the number
15792                  * of formats, we can assert that the format map is non-NULL
15793                  * and that the format for the specified index is non-NULL.
15794                  */
15795                 ASSERT(state->dts_formats != NULL);
15796                 str = state->dts_formats[fmt.dtfd_format - 1];
15797                 ASSERT(str != NULL);
15798 
15799                 len = strlen(str) + 1;
15800 
15801                 if (len > fmt.dtfd_length) {
15802                         fmt.dtfd_length = len;
15803 
15804                         if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
15805                                 mutex_exit(&dtrace_lock);
15806                                 return (EINVAL);
15807                         }
15808                 } else {
15809                         if (copyout(str, fmt.dtfd_string, len) != 0) {
15810                                 mutex_exit(&dtrace_lock);
15811                                 return (EINVAL);
15812                         }
15813                 }
15814 
15815                 mutex_exit(&dtrace_lock);
15816                 return (0);
15817         }
15818 
15819         default:
15820                 break;
15821         }
15822 
15823         return (ENOTTY);
15824 }
15825 
15826 /*ARGSUSED*/
15827 static int
15828 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
15829 {
15830         dtrace_state_t *state;
15831 
15832         switch (cmd) {
15833         case DDI_DETACH:
15834                 break;
15835 
15836         case DDI_SUSPEND:
15837                 return (DDI_SUCCESS);
15838 
15839         default:
15840                 return (DDI_FAILURE);
15841         }
15842 
15843         mutex_enter(&cpu_lock);
15844         mutex_enter(&dtrace_provider_lock);
15845         mutex_enter(&dtrace_lock);
15846 
15847         ASSERT(dtrace_opens == 0);
15848 
15849         if (dtrace_helpers > 0) {
15850                 mutex_exit(&dtrace_provider_lock);
15851                 mutex_exit(&dtrace_lock);
15852                 mutex_exit(&cpu_lock);
15853                 return (DDI_FAILURE);
15854         }
15855 
15856         if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
15857                 mutex_exit(&dtrace_provider_lock);
15858                 mutex_exit(&dtrace_lock);
15859                 mutex_exit(&cpu_lock);
15860                 return (DDI_FAILURE);
15861         }
15862 
15863         dtrace_provider = NULL;
15864 
15865         if ((state = dtrace_anon_grab()) != NULL) {
15866                 /*
15867                  * If there were ECBs on this state, the provider should
15868                  * have not been allowed to detach; assert that there is
15869                  * none.
15870                  */
15871                 ASSERT(state->dts_necbs == 0);
15872                 dtrace_state_destroy(state);
15873 
15874                 /*
15875                  * If we're being detached with anonymous state, we need to
15876                  * indicate to the kernel debugger that DTrace is now inactive.
15877                  */
15878                 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15879         }
15880 
15881         bzero(&dtrace_anon, sizeof (dtrace_anon_t));
15882         unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15883         dtrace_cpu_init = NULL;
15884         dtrace_helpers_cleanup = NULL;
15885         dtrace_helpers_fork = NULL;
15886         dtrace_cpustart_init = NULL;
15887         dtrace_cpustart_fini = NULL;
15888         dtrace_debugger_init = NULL;
15889         dtrace_debugger_fini = NULL;
15890         dtrace_modload = NULL;
15891         dtrace_modunload = NULL;
15892 
15893         mutex_exit(&cpu_lock);
15894 
15895         if (dtrace_helptrace_enabled) {
15896                 kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
15897                 dtrace_helptrace_buffer = NULL;
15898         }
15899 
15900         kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
15901         dtrace_probes = NULL;
15902         dtrace_nprobes = 0;
15903 
15904         dtrace_hash_destroy(dtrace_bymod);
15905         dtrace_hash_destroy(dtrace_byfunc);
15906         dtrace_hash_destroy(dtrace_byname);
15907         dtrace_bymod = NULL;
15908         dtrace_byfunc = NULL;
15909         dtrace_byname = NULL;
15910 
15911         kmem_cache_destroy(dtrace_state_cache);
15912         vmem_destroy(dtrace_minor);
15913         vmem_destroy(dtrace_arena);
15914 
15915         if (dtrace_toxrange != NULL) {
15916                 kmem_free(dtrace_toxrange,
15917                     dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
15918                 dtrace_toxrange = NULL;
15919                 dtrace_toxranges = 0;
15920                 dtrace_toxranges_max = 0;
15921         }
15922 
15923         ddi_remove_minor_node(dtrace_devi, NULL);
15924         dtrace_devi = NULL;
15925 
15926         ddi_soft_state_fini(&dtrace_softstate);
15927 
15928         ASSERT(dtrace_vtime_references == 0);
15929         ASSERT(dtrace_opens == 0);
15930         ASSERT(dtrace_retained == NULL);
15931 
15932         mutex_exit(&dtrace_lock);
15933         mutex_exit(&dtrace_provider_lock);
15934 
15935         /*
15936          * We don't destroy the task queue until after we have dropped our
15937          * locks (taskq_destroy() may block on running tasks).  To prevent
15938          * attempting to do work after we have effectively detached but before
15939          * the task queue has been destroyed, all tasks dispatched via the
15940          * task queue must check that DTrace is still attached before
15941          * performing any operation.
15942          */
15943         taskq_destroy(dtrace_taskq);
15944         dtrace_taskq = NULL;
15945 
15946         return (DDI_SUCCESS);
15947 }
15948 
15949 /*ARGSUSED*/
15950 static int
15951 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
15952 {
15953         int error;
15954 
15955         switch (infocmd) {
15956         case DDI_INFO_DEVT2DEVINFO:
15957                 *result = (void *)dtrace_devi;
15958                 error = DDI_SUCCESS;
15959                 break;
15960         case DDI_INFO_DEVT2INSTANCE:
15961                 *result = (void *)0;
15962                 error = DDI_SUCCESS;
15963                 break;
15964         default:
15965                 error = DDI_FAILURE;
15966         }
15967         return (error);
15968 }
15969 
15970 static struct cb_ops dtrace_cb_ops = {
15971         dtrace_open,            /* open */
15972         dtrace_close,           /* close */
15973         nulldev,                /* strategy */
15974         nulldev,                /* print */
15975         nodev,                  /* dump */
15976         nodev,                  /* read */
15977         nodev,                  /* write */
15978         dtrace_ioctl,           /* ioctl */
15979         nodev,                  /* devmap */
15980         nodev,                  /* mmap */
15981         nodev,                  /* segmap */
15982         nochpoll,               /* poll */
15983         ddi_prop_op,            /* cb_prop_op */
15984         0,                      /* streamtab  */
15985         D_NEW | D_MP            /* Driver compatibility flag */
15986 };
15987 
15988 static struct dev_ops dtrace_ops = {
15989         DEVO_REV,               /* devo_rev */
15990         0,                      /* refcnt */
15991         dtrace_info,            /* get_dev_info */
15992         nulldev,                /* identify */
15993         nulldev,                /* probe */
15994         dtrace_attach,          /* attach */
15995         dtrace_detach,          /* detach */
15996         nodev,                  /* reset */
15997         &dtrace_cb_ops,             /* driver operations */
15998         NULL,                   /* bus operations */
15999         nodev,                  /* dev power */
16000         ddi_quiesce_not_needed,         /* quiesce */
16001 };
16002 
16003 static struct modldrv modldrv = {
16004         &mod_driverops,             /* module type (this is a pseudo driver) */
16005         "Dynamic Tracing",      /* name of module */
16006         &dtrace_ops,                /* driver ops */
16007 };
16008 
16009 static struct modlinkage modlinkage = {
16010         MODREV_1,
16011         (void *)&modldrv,
16012         NULL
16013 };
16014 
16015 int
16016 _init(void)
16017 {
16018         return (mod_install(&modlinkage));
16019 }
16020 
16021 int
16022 _info(struct modinfo *modinfop)
16023 {
16024         return (mod_info(&modlinkage, modinfop));
16025 }
16026 
16027 int
16028 _fini(void)
16029 {
16030         return (mod_remove(&modlinkage));
16031 }