new usr/ src/ cnd/ mdb/ common/ ndb/ ndb_cnds. ¢ 1

R R R R

79277 Tue Jun 12 09:01:23 2012
new usr/ src/ cnd/ mdb/ common/ ndb/ ndb_cnds. ¢
2574 nmdb needs ::printf
Revi ewed by: Joshua M d ul ow <j osh@ysngr. or g>
Revi ewed by: Eric Schrock <eric.schrock@iel phix. conr
Revi ewed by: Adam Leventhal <ahl @lel phix. com>
Approved by: ?

R R R R R R R

__unchanged_portion_onitted_

2872 | *

2873 * Table of built-in dcnds associated with the root 'ndb’ nodule. Future
2874 * expansion of this program should be done here, or through the external
2875 * | oadabl e nodul e interface.

2876 */

2877 const ndb_dcnd_t ndb_dcnd_builtins[] = {

2879 /*

2880 * dcnds comon to both nmdb and kndb

2881 */

2882 > "vari abl e-nane", "assign variable", cnd_assign_variable },
2883 "/, "fmt-list", "format data fromvirtual as", cmd_print_core },
2884 "\\", "fmt-list", "format data from physical as", cnd_print_phys },
2885 "@, "fm-list", "format data from physical as", cnd_print_phys },
2886 "= "fm-list", "format inmmediate value", cnd_print_value },

2887 "$<", "macro-nanme", "replace input with macro”,

2888 cmd_exec_file, srcexec_fi | e_hel P, },

2889 { "$<<", "macro-nane", "source nacro"

2890 cmd_src_file, srcexec file _hel p},

2891 "$96, T NULL, NULL, cnd quit },

2892 "$?', NULL, "print status and registers", cmd_notsup },

2893 "$a", NULL, NULL, cnd_al gol 1},

2894 "$b", "[-av]", "list traced software events",

2895 cmd_events, events_help },

2896 "$c", "?[cnt]", "print stack backtrace", cnd_notsup },

2897 "$C', "?[cnt]", "print stack backtrace", cnd_notsup },

2898 "$d", NULL, "get/set default output radix", cnd_radix },

2899 "$D', "?[npde,...]", NULL, cnd_dbnode },

2900 "$e", NULL, "print listing of global synbols" crrti gI obal s },

2901 "$f", NULL, "print listing of source files", cnd s },

2902 "$nt, "?[nane]", "print address _space mappi ngs" cnd _mappi ngs },
2903 "$M', NULL, "list macro aliases", cnd_nmcalias I ist },

2904 " P, "[prorrpt] "set debugger prorrpt string", cnd_pronpt },

2905 "$q", NULL, qurt debugger", cnd_quit },

2906 "$Q', NULL, "quit debugger", cnd_quit },

2907 "$r", NULL, "print general —purpose regi sters", cnd_notsup },

2908 "$s", NULL, "get/set synbol matching distance", cnd_syndist },
2909 "$v", NULL, "print non-zero variables", cnmd_nzvars },

2910 "$\/', "[rode] ", "get/set disassenbly node", cnd_disnode },

2911 "$w', NULL, "get/set output page wi dth", crrd_pgwi dth },

2912 $W NULL, "re- open target in wite node", cnd_reopen },

2913 a", ":[emd...]", "set read access V\atchpor nt", cnd_ol dwp 1,

2914 " b", ":[cmd...]", "breakpoint at the specified address", cnd_ol dbp },
2915 ":d", "?[idlall]", "delete traced software events", cnd del ete 1,
2916 " p", ":[emd...]", "set execute access watchpoint cnd_ol dwpx 1},
2917 ":S', NULL, NULL, cnd_step },

2918 "w, ":fend...]", "set wite access watchpoint", cnd_oldwpw },
2919 ":z", NULL, "delete all traced software events", cnd_zapall },
2920 "array", ":[type count] [variable]", "print each array elenent’s "
2921 "address", cnd_array },

2922 { "bp", "’7[+/ dDestT] [-c¢ cr'rd] [-n count] sym...", "breakpoint at the "
2923 "specified addresses or synbols", cnd_bp, bp_help },

2924 "dcmds", NULL, "list avail abl e debugger conmmands", cnd_dcnds },
2925 "delete", "?[idlall]", "delete traced software events", cnd del ete },
2926 "dis", "?[-abfw] [-n cnt] [addr]", "disassenble near addr”, cnd _dis },

new usr/ src/ cnd/ mdb/ comon/ ndb/ ndb_cnds. ¢

2927 { "disasms", NULL, "list available disassenblers", cnd_disasns },

2928 { "disnpde", "[npde]", "get/set disassenbly node", cnd_disnode },
2929 { "dnods", "[-1] [nod]", "list |oaded debugger nodul es", cnd_dnods },
2930 { "dunp", "?[-eqrstu] [-f|-p] [-9 bytes] [-w paragraphs] ",

2931 "durrp nmenory from specrfr ed address", cnd_dunp, dunp_help },

2932 { "echo", "args ...", "echo argunents", cmd_echo },

2933 { 'enum‘, "?[-ex] enum [nane]", "print an enuneration", cnd_enum
2934 enum help },

2935 { 'eval "corrrrand", "evaI uate the specified conmand", cnd_eval },
2936 { "events", "[-av]", "list traced software events",

2937 cmd events events_hel p},

2938 { "evset", "’>[+/ dDestT] [-c¢ crrd] [-n count] id ...",

2939 "set software event specifier attributes", cnd_evset, evset_help },
2940 { "files", "[object]", "print listing of source files", cnd_files },
2941 #ifdef __sparc

2942 { "findsym', "?[-9] [synbol|addr ...]", "search for synbol references "
2943 "in all known functions", cnd_findsym NULL },

2944 #endi f

2945 { " formats", NULL, "list format specifiers", cnd_formats },

2946 { "grep", "?expr", "print dot if expression is true", cnd_grep },
2947 {" head" "-nunl -n nunt, "limt number of elenents in pi pe crrd_head,
2948 head_hel p},

2949 { "help", "[cmd]", "list commands/conmmand hel p", cnd_help },

2950 { "list", "?type member [variable]"

2951 "wal k |ist using nenmber as I|i nk’ pointer", cnd_list, NULL,

2952 nmdb_t ab_conpl ete_nt },

2953 “map", "?expr", "print dot after eval uati ng expression", cnd_nap },
2954 "mappi ngs", "?[nane]", "print address space mappi ngs", cnd_mappings },
2955 "nm' "2l - DPdghnopuvx] [-f format] [-t types] [object]”

2956 "print synbol s", cnd_nm nmhelp },

2957 "nmadd" :[-fo] [e end] [-s size] nanme",

{
{
{
{
2959 } "nndel ", "name", "renove name from prlvate syrrbol table",
{
{
{

2958 "add narre to prrvate synbol table", cnd_nmadd, nnadd_help },
cnd_nndel 1},

2960 "obey", NULL NULL cmd_obey },

2961 'obj ects” "[—v] ", "print |load objects infornation", cnd_objects },

2962 offset of " "type menber", "print the offset of a given struct

2963 "or unl on nenber” cnd_of fsetof, NULL, ndb_tab_conplete_nt },

2964 prrnt "2 - athertx] [-c lim [-]1 Iim [type] [nmenber|offset ...]",

2965 pri nt the contents of a data structure", cmd_print, print_help,

2966 cmd_print_tab },

2967 { "printf", " 3f or mat type nenber ...", "print and format the "

2968 "rrerrber(s) of a data structure", cnd_printf, prrntf _help },

2969 { " regs NULL, "print general purpose regi sters", cnd_notsup },

2970 { " set "[- V\F] [+/-0 opt] [-s drst] [-1 path] [- L path] [- Pprorrpt]

2971 get/set debugger propertles cmd_set },

2972 { "showev", "[-pv]", "print versi on i nformation" cmd_showrev },

2973 { "sizeof", "type", 'prr nt the size of a type", cr’rd_si zeof , NULL,

2974 cmd_si zeof _tab },

2975 { "stack", "?[cnt]", "print stack backtrace", cnd_notsup },

2976 { "stackregs", "?", "print stack backtrace and registers",

2977 cmd_notsup },

2978 { "status", NULL, "print summary of current target", cnd_notsup },

2979 { "ternf, NULL, "display current termnal type", cnd_term},

2980 { "typeset", "[+/-t] var ...", "set variable attributes", cnd_typeset },

2981 { "unset", "[name ...]", "unset variables", cnd_unset },

2982 { "vars", "[-npt]", "print listing of variables", cnd_vars },

2983 { "version", NULL, "print debugger version string", cnd_version },

2984 { "vtop", ":[-a as]", "print physical nmapping of virtual address",

2985 cmd_vtop },

2986 { "wal k", "?name [variable]", "walk data structure", cnd_wal k, NULL,

2987 cmd_wal k_tab },

2988 { "wal kers", NULL, "list available wal kers", cnd_wal kers },

2989 { "whatis", ":[-aikqv]", "given an address, return information",

2990 crrd_vrhatr s, whatis_help },

2991 { "whence", "[-v] name ...", "show source of walk or dcnd", cnd_which },

2992 { "which", "[-v] nane ...", "show source of walk or dcrmd", cnd_which },

new usr/ src/ cnd/ mdb/ common/ ndb/ ndb_cnds. ¢ 3

2993 { "xdata", NULL, "print list of external data buffers", cnd_xdata },
2995 #ifdef _KVDB

2996 /*

2997 * dcnds specific to knmdb, or which have kndb-specific argunents

2998 */

2999 { "2, "fm-llst "f or mat datafromwrtual as", cmd_print_core },
3000 { ":c", NULL, "conti nue target execution", cnd cont },

3001 { ":e", NULL, "step target over next instruction” cnd next },

3002 { ":s", NULL, "single-step target to next instruction”, cnd _step },
3003 { ":u", NULL, "step target out of current function" cmd _step_out },
3004 { "cont", NULL, "continue target execution", cnﬂ_cont },

3005 { "load", "[-sd] npodul e", "load debugger nodule", cnd Ioad | oad_help },
3006 { "next", NULL, "step target over next instruction” cmi_next },

3007 { "quit", "[-u] ", "quit debugger", cnd_quit, qui t_hel p},

3008 { 'step "[over | out 1",

3009 'Sl ngle step target to next instruction", cnd_step },

3010 { "unload", "[-d] nodule", "unload debugger nodul e", cnd_unl oad,

3011 unl oad_hel p},

3012 { "wp", ":[+/-dDeIstT] [-rwx] [-pi] [-c cmd] [-n count] [-L size]"
3013 "set a watchpoint at the specified address", crmd_wp, wp_help },
3015 #el se

3016 /*

3017 */dcrrds specific to nmdb, or which have ndb-specific argunents

3018 *

3019 v, "fmt-list", "format data fromobject file", cnd_print_object },
3020 "$>", "[file]", "log session to a file", cnd_old_log },

3021 "$g", "?", "get/set C++ demangling options", cnd_denflags },

3022 "$G', NULL, "enable/disable C++ denmangling support", cnd_denangle },
3023 "$i ", NULL, "print signals that are ignored", cnd_notsup },

3024 "$l", NULL, "print the representative thread's Iwp id", cnd_notsup },
3025 "$p", ":", "change debugger target context", cnd_context },

3026 "$x", NULL, "print floating point registers", cnd_notsup },

3027 "$X", NULL, "print floating point registers", cnd_notsup },

3028 "$y", NULL, "print floating point registers", cnd_notsup },

3029 "$Y", NULL, "print floating point registers", cnd_notsup },

3030 ":A", "?[core|lpid]", "attach to process or core file", cnd_notsup },
3031 ":c", "[SIG", "continue target execution", cmd_cont },

3032 ":re", "[SIG", "step target over next instruction", cmd_next },
3033 "ri", ":", "ignore signal (delete all matching events)", cnd_notsup },
3034 ": k", NULL, "forcibly kill and rel ease target"”, cnd_notsup },

3035 "it", "?[+/-dDestT] [-c crrd] [-n count] SIG...", "stop on delivery "
3036 "of the specified si gnal s", cnd_sigbp, sigbp_ heI p},

3037 A G | args 1", "run a newtarget process" cnd run },

3038 ":R', NULL, reI ease the previously attached pr ocess", cmd _notsup },
3039 s", "[SIG", "single-step target to next instructi on” , cnd_step },
3040 u", "[SIG]", "step target out of current function", cnd_step_out },
3041 " attach "?[core|pid]"

3042 "attach to process or core file", crmd_notsup },

3043 “cat", "[file ...]", "concatenate and di- spl ay files” cnd_cat },
3044 "cont " "[SIg", "continue target execution", cnd_ cont },

3045 "context", ":", "change debugger target context", “cnd_cont ext },
3046 "denf, "nane ...", "demangl e C++ synbol nanes", cnd_denstr },

3047 "fltbp", "?[+/-dDestT] [-c cmd] [-n count] fault ...",

3048 "stop on nachine fault", cnd_fltbp, fltbp_help },

3049 "fpregs", NULL, "print floating point registers”, cnd_notsup },
3050 "kill"™, NULL, "forcibly kill and release target", cnd_notsup },

3051 "l oad", "[-s] nodule", "load debugger nodule", cnd_load, |oad_help },
3052 "log", "[-d | [-e] file]l", "log session to a file", cnd_log },

3053 "next", "[SIG", "step target over next instruction", cnd_next },
3054 "quit", NULL, "quit debugger", cnd_quit },

3055 "rel ease", NULL,

3056 "rel ease the previously attached process", cnd_notsup },

3057 { "run", "[args ...]", "run a new target process", crm run },

3058 { "sigbp", "?[+ - dDestT] [-c cmd] [-n count] SIG...", "stop on "

new usr/ src/ cnd/ mdb/ comon/ ndb/ ndb_cnds. ¢

3059 "del i very of the specified signals", cnd_sigbp, sigbp_help },
3060 { " step, "[over | out 1 [SIG"

3061 "single-step target to next instruction”, cnd _step },

3062 { "sysbp", "?[+/-dDestT] [-io] [-c cmd] [-n count] syscall o
3063 "stop on entry or exit fromsystemcall", cnd_sysbp, sysbp hel p},
3064 { "unl oad", "nopdule", "unload debugger nodul e", cmd_unl oa },

3065 { "wp", ":[+/-dDelstT] [-rwx] [-c cnd] [-n count] [-L size]"

3066 "set a watchpoint at the specified address", cnd_wp, wp_hel p}.
3067 #endif

3069 { NULL }

3070 };

__unchanged_portion_omtted_

new usr/ src/ cnd/ mdb/ common/ ndb/ mdb_print. c

R R R R

75827 Tue Jun 12 09:01: 24 2012
new usr/ src/ cnd/ mdb/ common/ ndb/ mdb_print. c
2574 nmdb needs ::printf
Revi ewed by: Joshua M d ul ow <j osh@ysngr. or g>
Revi ewed by: Eric Schrock <eric.schrock@iel phix. conr
Revi ewed by: Adam Leventhal <ahl @lel phix. com>
Approved by: ?

R R R R R R R

2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.
10 * See the License for the specific | anguage governing perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the followi ng below this CDDL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 =
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Mcrosystens, Inc. Al rights reserved.
23 * Use is subject to license terns.
*

/

27 * Copyright (c) 2012 by Del phix. Al rights reserved.
28 * Copyright (c) 2012 Joyent, Inc. Al rights reserved.
*/

31 #include <ndb/ndb_nodapi . h>
32 #include <ndb/ndb_t arget. h>
33 #include <ndb/ ndb_ar gvec. h>
34 #include <ndb/ ndb_string. h>
35 #include <ndb/ndb_stdlib. h>
36 #i nclude <ndb/ ndb_err. h>

37 #include <ndb/ ndb_debug. h>
38 #include <mdb/ ndb_fnt. h>

39 #include <ndb/ndb_ctf. h>

40 #include <mdb/ ndb_ctf _i mpl. h>
41 #include <mdb/ ndb. h>

42 #incl ude <ndb/ ndb_t ab. h>

44 #include <sys/isa_defs. h>
45 #i ncl ude <sys/param h>

46 #incl ude <sys/sysmacros. h>
47 #include <netinet/in.h>

48 #include <strings. h>

49 #include <libctf.h>

50 #include <ctype. h>

52 typedef struct holeinfo {
53 ulong_t hi_offset; /* expected of fset */
54 uchar _t hi _i suni on; /* represents a union */
55 } holeinfo_t;
__unchanged_| port| on_om tted_

new usr/ src/ cnd/ mdb/ common/ ndb/ mdb_print. c

1669 /*

1670 * Special semantics for pipelines.

1671 */

1672 static int

1673 pipe_print(ndb_ctf_id_t id, ulong_t off, void *data)
1674 {

1675 printarg_t *pap = data;

1676 ssize_t size;

1677 static const char *const fsp[] = { "%#r", "%tr", "%tr", "%t Ir" };
1678 uintptr_t val ue;

1679 uintptr_t addr = pap->pa_addr + off / NBBY;

1680 mdb_ctf_id_t base;

1681 ctf_encoding_t e;

1683 uni on {

1684 uint64_t i8;

1685 uint32_t i4;

1686 uintl6_t i2;

1687 uint8_t i1;

1688 }ou

1690 if (mdb_ctf_type_resolve(id, &base) == -1) {

1691 mdb_war n("coul d not resolve type");

1690 mdb_war n("coul d not resolve type\n");

1692 return (-1);

1693 }

1695 /*

1696 * |f the user gives -a, then always print out the address of the
1697 * nmenber.

1698 */

1699 if ((pap->pa_flags & PA_SHOMDDR)) {

1700 mdb_printf ("%t r\n", addr)

1701 return (0);

1702 }

1704 agai n:

1705 switch (mdb_ctf type ki nd(base)) {

1706 case CTF_K_PO NT

1707 if (mib_ tgt _aread(pap->pa_tgt, pap->pa_as

1708 &val ue, sizeof (value), addr) != si zeof (value)) {
1709 r'rdb_warn("fai led to read pointer at %", addr);
1710 return (-1);

1711 }

1712 mdb_printf ("%l r\n", value);

1713 br eak;

1715 case CTF_K_|I NTEGER:

1716 case CTF_K_ENUM

1717 if (mdb_ctf_type_encodi ng(base, &) != 0) {

1718 ndb_printf("could not get type encoding\n");
1719 return (-1);

1720 }

1722 I*

1723 * For imediate values, we just print out the value.
1724 */

1725 size = e.cte_bits / NBBY;

1726 if (size > 8 || (e.cte_bits %NBBY) !=0 ||

1727 (size & (size - 1)) I=10) {

1728 return (print_bitfield(off, pap, &e));

1729 }

1731 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &u.i8, size,
1732 addr) !'= size) {

1733 nmdb_warn("failed to read % u bytes at %",

new usr/ src/ cnd/ mdb/ common/ ndb/ mdb_print. c

1734 (ul ong I)SI ze, pap->pa_addr);
1735 return (-

1736 }

1738 switch (size) {

1739 case sizeof (uint8_t):

1740 ndb_printf(fsp[0], u.il);
1741 br eak;

1742 case sizeof (uintl6_t):

1743 mdb_printf(fsp[1], u.i2);
1744 break;

1745 case sizeof (uint32_t):

1746 ndb_printf(fsp[2], u.i4)
1747 break;

1748 case sizeof (uint64_t):

1749 ndb_printf(fsp[3], u.i8);
1750 br eak;

1751 }

1752 mdb_printf("\n");

1753 br eak;

1755 case CTF_K_FUNCTI ON:

1756 case CTF_K FLOAT:

1757 case CTF_K_ARRAY:

1758 case CTF_K_UNKNOWN

1759 case CTF_K_STRUCT:

1760 case CTF_K_ UNI ON:

1761 case CTF_K FORWARD:

1762 /*

1763 * For these types, always print the address of the nmenber
1764 */

1765 mdb_printf ("%l r\n", addr);

1766 br eak;

1768 defaul t:

1769 mdb_war n("unknown type %", ndb_ctf_type_kind(base));
1770 br eak;

1771 }

1773 return (0);

1774 }

__unchanged_portion_omtted_

1837 static int
1838 parse_nenber(printarg_t *pap, const char *str, ndb_ctf_id_t id,

1839 ndb_ctf_id_t *idp, ulong_t *offp, int *last_deref)

1840 {

1841 int delim

1842 char nenber[64];

1843 char buf[128];

1844 ui nt _t index;

1845 char *start = (char *)str;

1846 char *end;

1847 ulong_t off = 0;

1848 ndb_ctf_arinfo_t ar;

1849 ndb_ctf_id_t rid;

1850 int kind;

1851 ssize_t size;

1852 int non_array = FALSE;

1854 /*

1855 * id always has the unresolved type for printing error nessages
1856 * that include the type; rid always has the resolved type for

1857 * use in ndb_ctf_* calls. It is possible for this command to fail,
1858 * however, if the resolved type is in the parent and it is currently
1859 * unavail able. Note that we also can’t print out the nane of the

new usr/ src/ cnd/ mdb/ common/ ndb/ mdb_print. c

1860
1861
1862
1863
1864
1865

1867
1868
1869
1870
1871
1872
1873
1874

1876

1878
1879
1880
1881
1882
1883
1884
1885
1886

1888
1889
1890

1892
1893

1895
1896

1898
1899
1900
1901
1902
1903
1904
1905

1907
1908
1909
1910
1911
1912

1914
1915

1917
1919
1920
1921

1923
1924

* type, since that would also rely on | ooking up the resol ved nane.
*/

if (mdb_ctf_type_resolve(id, &id) !=0) {
mdb_warn("failed to resolve type");
return (-1);

}
delim= parse_delimter(&start);
/*

* |f the user fails to specify an initial delimter, guess -> for
* pointer types and . for non-pointer types.
*

if (delim == MEMBER _DELI M ERR)
delim= (mdb_ctf_type kind(rid) == CTF_K PO NTER) ?
MEMBER_DELI M PTR © MEMBER_DELI M _DOCT;

*| ast _deref = FALSE;

while (delim!= MEMBER DELI M DONE) {
switch (delim
case MEMBER DELI M PTR:
kind = ndb_ctf _type kind(rid);
if (kind !|= CTF_K_PQO NTER)
mdb_warn("% is not a pointer type\n
mdb_ctf_type_nane(id, buf, S|zeof (buf)));
return (-1);

}

size = mib_ctf_type_: S|ze(|d)
if (deref(pap, size) = 0)
return (-1);

(void) ndb_ctf_type_reference(rid, & d);
(void) ndb_ctf_type_resolve(id, &rid);

off = 0;
br eak;

case MEMBER DELI M DOT:
kind = mdb_ctf_type_kind(rid);
if (kind '= CTF_K TRUCT&&klnd = CTF_LK.UNON) {
mdb_warn("% is not a struct or union type\n",
mdb_ctf_type_name(id, buf, sizeof (buf)));
return (-1);

br eak;

case MEMBER DELI M LBR:
end = strchr(start, "]’);
if (end == NULL) {
nmdb_warn("no trailing ']’'\n");
return (-1);

}

(voi d) ndb_snprintf(nenber, end - start + 1, "%",
start);

i ndex = ndb_strtoul | (nenber);
switch (mdb_ctf type kind(rid)) {
case CTF_K_PO NTER

size = mdb. _ctf_type_size(rid);

if (deref(pap, size) !=0)
return (-1);

new usr/ src/ cnd/ mdb/ common/ ndb/ mdb_print. c

1926
1927

1929
1930
1931
1932
1933
1934

1936
1937

1939
1940
1941

1943
1944

1946
1947
1948
1949
1950

1952
1953

1955
1956
1957
1958
1959
1960

1962
1963
1964

1966
1967
1968
1969
1970

1972
1973
1974

1976
1977
1978
1979
1980

1982
1983

1985
1986
1987
1988
1989
1990

(void) ndb_ctf_type_reference(rid, &d);
(void) mdb_ctf_type_resolve(id, &id);

size = mdb_ctf_type_size(id);
if (size <= 0) {
b_war n("cannot dereference void "
“typeln");
return (-1);

}
pap- >pa_addr += index * size;
off =0

if (index == 0 && non_array)
*| ast _deref = TRUE;
br eak;

case CTF_K_ARRAY:
(void) mdb_ctf_array_info(rid, &ar);

if (index >= ar.nta_nel ems) {
mdb_warn("index % is outside of
"array bounds [0 .. %]\n",
index, ar.nta_nelenms - 1);

}

id = ar.nta_contents;
(void) mdb_ctf_type_resolve(id, &id);

size = mdb_ctf_type_size(id);
if (size <= 0) {
mdb_war n(" cannot dereference void "
"type\n");
return (-1);

}

pap- >pa_addr += index * size;
off = 0;

break;

defaul t:
ndb_war n("cannot index into non-array,
“non-poi nter type\n");
return (-1);

}

start = end + 1;
delim = parse_delimter(&start);
conti nue;

case MEMBER DELI M ERR:

defaul t:
mdb_warn("’ %’ is not a valid delimter\n", *start);
return (-1);

}

*| ast _deref = FALSE;
non_array = TRUE

*

* Find the end of the nenber nane; assune that a nmenber

* nane is at |east one character |ong.

*/

for (end = start + 1; isalnun(*end) || *end =="'_"; end++)
cont i nue;

new usr/ src/ cnd/ mdb/ conmon/ ndb/ mdb_print. c

1992

1994
1995
1996
1997
1998
1999

2001
2003

2004
2005

2007
2008

2010
2011 }

(void) mdb_snprintf(menber, end - start + 1, "%", start);

if (mdb_ctf_menber _info(rid, nenber, &off, & d) !'= 0) {

ndb_warn("failed to find menber % of %", nenber,
ndb_ctf_type_nanme(id, buf, sizeof (buf)));
return (-1);

}
(void) nmdb_ctf_type_resolve(id, &id);

pap- >pa_addr += off / NBBY;

start
delim
}
*idp = id;
*offp = of f;
return (0);

end;
parse_delimter(&start);

____unchanged_portion_onitted_

2439 void

2440 print_hel p(void)

2441 {
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465 }

mdb_printf(

"-a

"-C

"-c limt
"-d

"-h

"

"-L

"Ll limt
"-n

"-p

"-s depth
"ot

"X

“\

show address of object\n"

unlimt the length of character arrays\n"
limt the length of character arrays\n"

out put val ues in decinal\n"

print holes in structures\n"

interpret address as data of the given type\n"
unlimt the length of standard arrays\n"

limt the length of standard arrays\n"

don’t print pointers as synbol offsets\n"
interpret address as a physical nmenory address\n
limt the recursion depth\n"

show type and <<base type>> of object\n"

show type of object\n"

out put val ues in hexadeci nal \n"

"type may be onitted if the C type of addr can be inferred.\n"
"\ n

"Menbers may be specified with standard C syntax using the\n

"array indexing operator \"[index]\", structure nmenber\n"
"operator \".\", or structure pointer operator \"->\".\n"

\n
"Offsets nust use the $[expression] syntax\n");

2467 static int
2468 printf_signed(ndb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fnt,

2469
2470 {
2471
2472
2473

2475
2476
2477
2478
2479
2480
2481

bool ean_t sign)

ssi ze_t size;

mdb_ctf_id_t base;
ctf_encoding_t e;

uni on {

new usr/ src/ cnd/ mdb/ common/ ndb/ mdb_print. c

2482
2483
2484

2486
2487
2488
2489

2491
2492
2493
2494

2496
2497
2498
2499

2501
2502

2504

2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518

2520
2521
2522
2523

2525
2526
2527
2528

2530
2531
2532
2533

2535
2536
2537
2538

2540
2541
2542
2543

2545
2546
2547

intlé_t i2;
int8_t i1;

}ow

if (mdb_ctf_type_| resolve(ld &base) == —1)
mdb_war n("coul d not resolve type");
return (DCVMD_ABORT) ;

}

if (mdb_ctf_type_kind(base) != CTF_K INTEGER) {
mdb_war n(" expect ed i nteger type\n");
return (DCVD_ABORT);

}

if (mdb_ctf_type_encodi ng(base, &) != 0) {
mdb_war n("coul d not get type encoding");
return (DCVD_ABORT) ;

}

if (sign)
sign = e.cte_format & CTF_I NT_SI GNED;

size = e.cte_bits / NBBY;

/
Check to see if our |life has been conplicated by the presence of
a bitfield. If it has, we will print it using logic that is only
slightly different than that found in print_bitfield(), above. (In

* %k ok

particular, see the comments there for an explanation of the
* endi anness differences in this code.)
*
/
if (size >8 || (e.cte blts % NBBY) != 0 ||
(size & (size - 1)) 0
uint64_t mask = (1ULL << e.cte_bits) - 1;
uint64_t value = 0;
uint8_t *buf = (uint8_t *)&val ue;
uint8_t shift
/*
* Round our size up one byte.
*
/
size = (e.cte_bits + (NBBY - 1)) / NBBY;
if (e.cte_bits > sizeof (value) * NBBY - 1)
mdb_printf("invalid bitfield size %", e.cte_bits);
return (DCVD_ABORT);
}
#i f def _BI G_ENDI AN
buf += sizeof (value) - size;
off += e.cte_bits;
#endi f
if (mdb_vread(buf, size, addr) == -1) {
ndb_warn("failed to read % u bytes at %", size, addr);
return (DCVMD_ERR);
}
shift = off % NBBY;
#ifdef _BI G_ENDI AN
shift = NBBY - shift;
#endi f

*

* |f we have a bit offset within the byte, shift it down.
*/

new usr/ src/ cnd/ mdb/ common/ ndb/ mdb_print.c

2548 if (off % NBBY != 0)

2549 val ue >>= shift;

2550 val ue & mask;

2552 if (sign) {

2553 int sshift = sizeof (value) * NBBY - e.cte_bits;
2554 value = ((int64_t)value << sshift) >> sshift;
2555 }

2557 mdb_printf(fnt, value);

2558 return (0);

2559 }

2561 if (mdb_vread(&u.i8, size, addr) == -1) {

2562 mdb_warn("failed to read % u bytes at %", (ulong_t)size,
2563 return (DCVMD_ERR);

2564 }

2566 switch (size) {

2567 case sizeof (uint8_t):

2568 mdb_printf(fnt, (uint64_t)(sign ? u.il : u.uil));
2569 br eak;

2570 case sizeof (uintl6_t):

2571 mdb_printf(fnmt, (uint64_t)(sign ? u.i2 : u.ui2));
2572 br eak;

2573 case sizeof (uint32_t):

2574 mdb_printf(fm, (uint64_t)(sign ? u.i4 : u.uid));
2575 br eak;

2576 case sizeof (uint64_t):

2577 mdb_printf(fnmt, (uint64_t)(sign ? u.i8 : u.ui8));
2578 br eak;

2579 1

2581 return (0);

2582 }

2584 static int

2585 printf_int(ndb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fnt)
2586 {

2587 return (printf_signed(id, addr, off, fnt, B_TRUE));

2588 }

2590 static int

2591 printf_uint(ndb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fnt)
2592 {

2593 return (printf_signed(id, addr, off, fnmt, B_FALSE));

2594 }

2596 /* ARGSUSED*/
2597 static int

2598 printf_uint32(nmdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fnt)
2599 {

2600 mdb_ctf_id_t base;

2601 ctf_encoding_t e;

2602 ui nt32_t val ue;

2604 if (mdb_ctf_type_resolve(id, &base) == -1) {

2605 ndb_war n("coul d not resolve type\n");

2606 return (DCMD_ABORT) ;

2607 }

2609 if (mdb_ctf_type_kind(base) != CTF_K_I NTEGER ||
2610 mdb_ct f _t ype_encodi ng(base, &) T= 0 ||

2611 e.cte_bits / NBBY != sizeof (value)) {

2612 mdb_war n("expected 32-bit integer type\n");

2613 return (DCVD_ABORT) ;

addr) ;

new usr/ src/ cnd/ mdb/ common/ ndb/ mdb_print. c

2614 }

2616 if (mdb_vread(&val ue, sizeof (value), addr) == -1) {

2617 mdb_warn("failed to read 32-bit value at %", addr);
2618 return (DCMD_ERR);

2619 }

2621 mdb_printf(fnt, value);

2623 return (0);

2624 }

2626 /* ARGSUSED*/

2627 static int

2628 printf_ptr(ndb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fnt)
2629 {

2630 uintptr_t val ue;

2631 mdb_ctf_id_t base;

2633 if (mdb_ctf_type_resolve(id, &base) == -1)

2634 mdb_war n("coul d not resolve type\ n")

2635 return (DCVD_ABORT) ;

2636 1

2638 if (mdb_ctf_type_kind(base) != CTF_K_PA NTER) {
2639 mdb_war n(" expect ed pointer type\n");

2640 return (DCVD_ABORT) ;

2641 }

2643 if (mdb_vread(&val ue, sizeof (value), addr) == -1) {
2644 mdb_warn("failed to read pointer at %I x", addr);
2645 return (DCVD_ERR);

2646 }

2648 mdb_printf(fnt, value);

2650 return (0);

2651 }

2653 /* ARGSUSED*/
2654 static int
2655 printf_string(nmdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fnt)

2656 {

2657 mdb _ctf _id t base;

2658 mdb_ctf _arinfo_t r;

2659 char buf] 1024] ;

2660 ssize_t size;

2662 if (mdb_ctf_type_resolve(id, &base) == -1)

2663 mdb_war n("coul d not resolve type");

2664 return (DCVMD_ABORT) ;

2665 }

2667 if (mdb_ctf_type_kind(base) == CTF_K_PO NTER) {

2668 uintptr_t val ue;

2670 if (mdb_vread(&val ue, sizeof (value), addr) == -1) {
2671 ndb_warn("failed to read pointer at %I|x", addr);
2672 return (DCVMD_ERR);

2673 }

2675 if (mdb_readstr(buf, sizeof (buf) - 1, value) < 0)

2676 ndb_warn("failed to read string at %1 x", value);
2677 return (DCVMD_ERR);

2678 }

new usr/ src/ cnd/ mdb/ common/ ndb/ mdb_print. c

2680 mdb_printf(fnt, buf);

2681 return (0);

2682 }

2684 if (mdb_ctf_type_kind(base) != CTF_K_ARRAY) {

2685 mdb_war n(" exepected pointer or array type\n");
2686 return (DCVMD_ABORT) ;

2687 }

2689 if (mdb_ctf_array_info(base, &) == -1 ||

2690 mdb_ctf_type_resolve(r.nta contents, &base) == -1 ||
2691 (size = ndb_ctf_type._: S|ze(base)) = -1) {

2692 mdb_warn("can’t determine array type");

2693 return (DCVD_ABORT) ;

2694 }

2696 if (size !'=1) {

2697 mdb_warn("string format specifier requires "
2698 "an array of characters\n");

2699 return (DCVD_ABORT) ;

2700 }

2702 bzero(buf, sizeof (buf));

2704 if (mdb_vread(buf, MN(r.nta_nel ens, sizeof (buf) 1), addr) == -1)
2705 mdb_warn("failed to read array at %", addr);
2706 return (DCVD_ERR);

2707 }

2709 mdb_printf(fnt, buf);

2711 return (0);

2712 }

2714 | * ARGSUSED* /
2715 static int
2716 printf_ipve(ndb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fnt)

2717 {

2718 mdb_ctf_id_t base;

2719 mdb_ctf_id_t ipv6_type, ipv6_base;

2720 in6_addr_t ipv6;

2722 if (mdb_ctf_| ookup_by_nanme("in6_addr_t", & pv6_type) == -1) {
2723 mdb_warn("coul'd not resol ve |n6 addr _t type\n");
2724 return (DCMD_ABORT) ;

2725 }

2727 if (mdb_ctf_type_resolve(id, &base) == -1) {

2728 mdb_war n("coul d not resolve type\n");

2729 return (DCMD_ABORT) ;

2730 }

2732 if (mdb_ctf_type_resolve(ipv6_type, & pv6_base) == -1) {
2733 mdb_war n("coul d not resolve in6_addr_t type\n");
2734 return (DCMD_ABORT) ;

2735 }

2737 if (mdb_ctf_type_cnp(base, ipv6_base) != 0)

2738 mdb_war n("requires argunent of type in6_addr_t\n");
2739 return (DCVD_ABORT) ;

2740 1

2742 if (mdb_vread(& pv6, sizeof (ipv6), addr) == - {

2743 mdb_warn("coul dn’t read in6_addr_t at %", addr);
2744 return (DCVD_ERR);

2745 }

new usr/ src/ cnd/ mdb/ common/ ndb/ mdb_print. c

2747 mdb_printf(fnt, & pv6);

2749 return (0);

2750

2752

2753 * To validate the format string specified to ::printf, we run the fornat
2754 * string through a very sinple state machine that restricts us to a subset
2755 * of ndb_printf() functionality.

2756 */

2757

2758 PRI NTF_NOFMI = 1, /* no current fornmat specifier */
2759 PRI NTF_PERC, /* processed '% */

2760 PRI NTF_FMT, /* processing format specifier */
2761 PRI NTF_LEFT, /* processed '-', expecting width */
2762 PRI NTF_W DTH, /* processing width */

2763 PRI NTF_QUES /* processed '?’, expecting format */
2764

2766

2767 cnd_printf(uintptr_t addr, uint_t flags, int argc, const ndb_arg_t *argv)
2768 {

2769 char type[MDB_SYM NAMLEN] ;

2770 int i, nfnmts =0, ret;

2771 ndb_ctf _id_t id;

2772 const char *fnt, *nenber;

2773 char **fnmts, *last, *dest, f;

2774 int (**funcs)(ndb_ctf_id_t, uintptr_t, ulong_t, char *);

2775 int state = PRI NTF_NOFMT;

2776 printarg_t pa;

2778 if (!(flags & DCVD_ADDRSPEC))

2779 return (DCMD_USAGE) ;

2781 bzero(&pa, sizeof (pa));

2782 pa. pa_as = MDB_TGI_AS VI RT;

2783 pa.pa_realtgt = pa.pa_tgt = ndb. mtarget;

2785 if (argc == 0 || argv[0].a_type != MDB_TYPE_STRING {

2786 mdb_war n("expected a format string\n");

2787 return (DCMD_USAGCE) ;

2788 }

2790 /*

2791 * Qur first argument is a format string; rip it apart and run it
2792 * through our state machine to validate that our input is within the
2793 * subset of ndb_printf() format strings that we allow.

2794 */

2795 fm = argv[0].a_un.a_str;

2796 /*

2797 * 'dest’ nust be | arge enough to hold a copy of the format string,
2798 * plus a NUL and up to 2 additional characters for each conversion
2799 * in the format string. This gives us a bloat factor of 5/2 ~= 3.
2800 * e.g. "%" (strlen of 2) -->"%1d\0" (need 5 bytes)

2801 */

2802 dest = ndb_zal l oc(strlen(fnt) * 3, UM SLEEP | UM GOC);

2803 fms = ndb_zal l oc(strlen(fnt) * sizeof (char *), UM SLEEP | UM GO);
2804 funcs = ndb_zal | oc(strlen(fnt) * sizeof (void *), UM SLEEP | UM GO);
2805 | ast = dest;

2807 for (i =0; fmt[i] !'="\0"; i++) {

2808 *dest++ = f = fnt[i];

2810 switch (state) {

2811

case PRI NTF_NOFM:

11

new usr/ src/ cnd/ mdb/ common/ ndb/ mdb_print.c

2812
2813

2815
2816
2817
2818
2819
2820

2822
2823
2824
2825

2827
2828
2829
2830

2832
2833
2834
2835

2837
2838

2840

2842
2843
2844
2845
2846
2847
2848
2849
2850

2852
2853
2854
2855
2856
2857
2858

2860
2861
2862

2864
2865
2866

2868
2869
2870
2871
2872
2873
2874
2875
2876

? PRINTF_PERC : PRI NTF_NOFMT;

? PRINTF_LEFT :
? PRI NTF_W DTH :

? PRI NTF_QUES :

? PRI NTF_NOFMI :

? PRI NTF_QUES :

PRI NTF_FMT;

&& f <=9 ? PRINTF_WDTH :

PRI NTF_FM;

&% f <= '9" ? PRINTF_WDTH :

one of our valid format characters.

ntf_ptr;

intf_int;

ntf_uint32;

ntf_i pv6;

ntf_uint;

state = f == "%
break;
case PRI NTF_PERC:
state = f == "'-’
f >="'0 &&f <=9
f =="7
f =="%
br eak;
case PRI NTF_LEFT:
state = f >="'0
f =9
break;
case PRI NTF_W DTH:
state = f >='0’
PRI NTF_FMT;
break;
case PRI NTF_QUES:
state = PRI NTF_FMT;
break;
}
if (state != PRI NTF_FM)
cont i nue;
dest--;
/*
* Now check that we have
*
switch (f) {
case 'a':
case 'A:
case 'p’:
funcs[nfnts] = pr
break;
case 'd:
case ' :
case 'R :
funcs[nfnts] = pr
*dest++ = "1
*dest++ = ' |’ ;
br eak;
case '|’:
funcs[nfnts] = pr
br eak;
case 'N:
funcs[nfnts] = pr
br eak;
case '0:
case 'r’:
case 'u’':
case 'x':
case ' X :
funcs[nfnts] = pr
*dest++ = ']’ ;
*dest++ = '’ ;
break;

12

new usr/ src/ cnd/ mdb/ common/ mdb/ ndb_print.c 13 new usr/ src/ cnd/ mdb/ common/ mdb/ ndb_print.c 14
2878 case 's’: 2944 funcs[i] != printf_int)
2879 funcs[nfnts] = printf_string; 2945 mdb_war n(" expected i nteger or pointer fornat
2880 br eak; 2946 "specifier for '.’\n");
2947 return (DCVMD_ABORT) ;
2882 case 'Y : 2948 }
2883 funcs[nfnts] = sizeof (time_t) == sizeof (int) ?
2884 printf_uint32 : printf_uint; 2950 ndb_printf(fnts[i], ndb_get_dot());
2885 br eak; 2951 conti nue;
2952 }
2887 defaul t:
2888 mdb_warn("illegal format string at or near " 2954 pa. pa_addr = addr;
2889 "% (position %d)\n", f, i + 1);
2890 return (DCVD_ABORT); 2956 if (parse_nenber(&a, nenber, id, &md, &off, & gnored) != 0)
2891 } 2957 return (DCVD_ABORT);
2893 *dest++ = f; 2959 if ((ret funcs[](md, pa.pa_addr, off, fnts[i])) !=0) {
2894 *dest++ = '\ 0’ ; 2960 b_warn("failed to print menber %’ \n", nenber);
2895 fms[nfnts++] = last; 2961 return (ret);
2896 | ast = dest; 2962 1
2897 state = PRI NTF_NOFMT; 2963 }
2898 }
2965 mdb_printf("%", |last);
2900 argc--;
2901 ar gv++; 2967 return (DCVD_OK);
2968 }
2903 /*
2904 * Now we expect a type nane. 2970 static char _ndb_printf_help[] =
2905 */ 2971 "The format string argunent is a printf(3C)-like format string that is a\n"
2906 if ((ret = args_to_typenanme(&argc, &argv, type, sizeof (type))) != 0) 2972 "subset of the format strings supported by ndb_printf(). The type argunent\n"
2907 return (ret); 2973 "is the nanme of a type to be used to interpret the nenory referenced by dot.\n"
2974 "The nenber should either be a field in the specified structure, or the\n"
2909 ar gv++; 2975 "special nenber ’'.’, denoting the value of dot (and treated as a pointer).\n"
2910 argc--; 2976 "The nunber of menbers nust match the nunber of format specifiers in theln”
2977 "format string.\n"
2912 if (mdb_ctf_l| ookup_by_nanme(type, & d) != 0) { 2978 "\n"
2913 midb_warn("failed to | ook up type %", type); 2979 "The following fornmat specifiers are recognized by ::printf:\n"
2914 return (DCVMD_ABORT) ; 2980 "\ n"
2915 } 2981 " 9% Prints the "% synbol.\n"
2982 " % Prints the menber in synbolic form\n"
2917 if (argc == 0) { 2983 " %l Prints the menber as a decimal integer. |If the nenber is a signed\n"
2918 rrdb_\/\arn(" at | east one nenber nust be specified\n"); 2984 " integer type, the output will be signed.\n"
2919 return (DCMD_USAGCE) ; 2985 " % Prints the menber a | Pv4 address (nust be a 32-bit integer type).\n"
2920 } 2986 " N Prints the menber an | Pv6 address (nust be of type in6_addr_t).\n"
2987 " % Prints the menber as an unsigned octal integer.\n"
2922 if (argc !'= nfnts) { 2988 " % Prints the menber as a pointer, in hexadecinal.\n"
2923 mdb_warn("% fornmat specifiers (found %, expected %l)\n", 2989 " 9%g Prints the menber in signed octal. Honk if you ever use this!\n"
2924 argc > nfnts ? "mssing" : “"extra", nfnts, argc); 2990 " % Prints the nmenber as an unsigned value in the current output radix.\n"
2925 return (DCVD_ABORT) ; 2991 " MR Prints the nmenber as a signed value in the current output radix.\n"
2926 } 2992 " % Prints the menber as a string (requires a pointer or an array of\n"
2993 " characters).\n"
2928 for (i =0; i < argc; i++) { 2994 " % Prints the menber as an unsigned deci mal integer.\n"
2929 mib_ctf_id_t md; 2995 " % Prints the menber in hexadecimal.\n"
2930 ulong_t off; 2996 " WX Prints the menber in hexadecimal, using the characters A-F as the\n"
2931 int ignored; 2997 " digits for the values 10-15.\n"
2998 " Wy Prints the menber as a time_t as the string "
2933 if (argv[i]. a_type I'= MDB_TYPE_STRI NG { 2999 "'year nonth day HH: MM SS .\n"
2934 mdb_war n("expect ed only type nmenber arguments\n"); 3000 "\n"
2935 return (DCVD_ABORT) ; 3001 "The following field width specifiers are recognized by ::printf:\n"
2936 } 3002 "\n"
3003 " 9% Field width is set to the specified deciml value.\n"
2938 if (strcnp((menber = argv[i].a_un.a_str), ".") == 0) { 3004 " w Field width is set to the maxi numwi dth of a hexadeci mal pointer\n"
2939 /* 3005 " value. This is 8 in an ILP32 environnent, and 16 in an LP64\n"
2940 * W allow "." to be specified to denote the current 3006 " environnment.\n"
2941 * val ue of dot. 3007 "\n"
2942 */ 3008 "The following flag specifers are recognized by ::printf:\n"
2943 if (funcs[i] != printf_ptr & funcs[i] != printf_uint && 3009 "\n"

new usr/ src/ cnd/ mdb/ common/ mdb/ ndb_print.c 15
3010 " % Left-justify the output within the specified field width. If the\n"
3011 " width of the output is Iless than the specified field width, the\n"
3012 " output will be padded with blanks on the right-hand side. Wthout\n"
3013 " %, values are right-justified by default.\n"

3014 "\n"

3015 " % Zero-fill the output field if the output is right-justified and the\n"
3016 " wi dth of the output is less than the specified field width. Wthout\n"
3017 " %, right-justified values are prepended with blanks in order to\n"
3018 " fill the field.\n"

3019 "\n"

3020 "Exanples: \n"

3021 "\n"

3022 " wal k proc | "

3023 “riprintf \"%6d %\\n\" proc_t p_pidp->pid_id p_user.u_psargs\n"

3024 " wal k thread | "

3025 "riprintf \"9%p %8d %\\n\" kthread_t . t_pri t_startpc\n”

3026 " ::walk zone | "

3027 "riprintf \"%40s 9%20s\\n\" zone_t zone_nane zone_nodenane\n"

3028 " ::walk ire |

3029 "riprintf \"% %\\n\" ire_t ire_create_tinme ire_u.ired4_u.ired_addr\n"
3030 "\n";

3032 void

3033 printf_hel p(void)

3034

3035 mdb_printf("%", _mdb_printf_help);

3036 }

__unchanged_portion_onitted_

new usr/ src/ cnd/ mdb/ conmon/ ndb/ mdb_print. h

R R R R

1948 Tue Jun 12 09:01:24 2012

new usr/ src/ cnd/ mdb/ common/ ndb/ mdb_print. h

2574 nmdb needs ::printf

Revi ewed by: Joshua M d ul ow <j osh@ysngr. or g>

Revi ewed by: Eric Schrock <eric.schrock@iel phix. conr

Revi ewed by: Adam Leventhal <ahl @lel phix. com>

Approved by: ?

LEEE R SRR EEEEEEEEE SRR EEEEEEREEEE SRR EEEEEEEEEEEEREREEEEEEEEESE]
1/*

* CDDL HEADER START

The contents of this file are subject to the ternms of the
Common Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governing perm ssions

and limtations under the License.

file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [name of copyright owner]

NRERRRRRRRRER
COONOUITAWNROW©O~NOUTDWN

CDDL HEADER END
/

*
*
*
*
*
*
*
*
*
*
* WWen distributing Covered Code, include this CDDL HEADER i n each
*
*
*
*
*
*
*
*
* Copyright 2009 Sun Mcrosystens, Inc. Al rights reserved.

* Use is subject to license terns.

*

/

27 * Copyright (c) 2012 by Del phix. Al rights reserved.
28 * Copyright (c) 2012 Joyent, Inc. Al rights reserved.
*/

31 #ifndef _MDB PRI NT_H
32 #define _MDB_PRINT_H

34 #include <ndb/ ndb_t ab. h>

36 #ifdef _ cplusplus
37 extern "C' {
38 #endif

40 #ifdef _MDB
42 extern int cmd_enunm(uintptr_t, uint_t, int, const nmdb_arg_t *);
43 extern void enum hel p(void);
nt cmd_si zeof (ui nt pt

44 extern i r_t, uint_t, int, const ndb_arg_t *);

45 extern int cnd_si zeof _tab(mdb_t al b cookie_t *, uint_t, int, const ndb_arg_t *);
46 extern int cnd_offsetof (uintptr_t, uint_t, int, const ndb_arg_t *);

47 extern int cnd_list(uintptr_t, U| nt_t, int, const ndb_arg_t *);

48 extern int cnd_array(uintptr_t, ui nt_t int, const mdb_arg_t *);

49 extern int cnmd_print(uintptr_t, uint_t, int, const mdb_arg_t *);

50 extern int cnd_print_tab(nmdb_tab_cookie_t *, uint_t, int, const mdb_arg_t *);

51 extern void print_hel p(void);

52 extern int cnd_printf(uintptr_t, uint_t, int, const ndb_arg_t *);
53 extern void printf_hel p(void);

55 #endif /* _MDB */

57 #ifdef __cplusplus

new usr/ src/ cnd/ mdb/ conmon/ ndb/ mdb_print. h

58
__unchanged_portion_onitted_

