
new/usr/src/cmd/mdb/common/mdb/mdb_cmds.c 1

**
 79277 Tue Jun 12 09:01:23 2012
new/usr/src/cmd/mdb/common/mdb/mdb_cmds.c
2574 mdb needs ::printf
Reviewed by: Joshua M. Clulow <josh@sysmgr.org>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Approved by: ?
**
______unchanged_portion_omitted_

2872 /*
2873 * Table of built-in dcmds associated with the root ’mdb’ module. Future
2874 * expansion of this program should be done here, or through the external
2875 * loadable module interface.
2876 */
2877 const mdb_dcmd_t mdb_dcmd_builtins[] = {

2879 /*
2880 * dcmds common to both mdb and kmdb
2881 */
2882 { ">", "variable-name", "assign variable", cmd_assign_variable },
2883 { "/", "fmt-list", "format data from virtual as", cmd_print_core },
2884 { "\\", "fmt-list", "format data from physical as", cmd_print_phys },
2885 { "@", "fmt-list", "format data from physical as", cmd_print_phys },
2886 { "=", "fmt-list", "format immediate value", cmd_print_value },
2887 { "$<", "macro-name", "replace input with macro",
2888 cmd_exec_file, srcexec_file_help },
2889 { "$<<", "macro-name", "source macro",
2890 cmd_src_file, srcexec_file_help},
2891 { "$%", NULL, NULL, cmd_quit },
2892 { "$?", NULL, "print status and registers", cmd_notsup },
2893 { "$a", NULL, NULL, cmd_algol },
2894 { "$b", "[-av]", "list traced software events",
2895 cmd_events, events_help },
2896 { "$c", "?[cnt]", "print stack backtrace", cmd_notsup },
2897 { "$C", "?[cnt]", "print stack backtrace", cmd_notsup },
2898 { "$d", NULL, "get/set default output radix", cmd_radix },
2899 { "$D", "?[mode,...]", NULL, cmd_dbmode },
2900 { "$e", NULL, "print listing of global symbols", cmd_globals },
2901 { "$f", NULL, "print listing of source files", cmd_files },
2902 { "$m", "?[name]", "print address space mappings", cmd_mappings },
2903 { "$M", NULL, "list macro aliases", cmd_macalias_list },
2904 { "$P", "[prompt]", "set debugger prompt string", cmd_prompt },
2905 { "$q", NULL, "quit debugger", cmd_quit },
2906 { "$Q", NULL, "quit debugger", cmd_quit },
2907 { "$r", NULL, "print general-purpose registers", cmd_notsup },
2908 { "$s", NULL, "get/set symbol matching distance", cmd_symdist },
2909 { "$v", NULL, "print non-zero variables", cmd_nzvars },
2910 { "$V", "[mode]", "get/set disassembly mode", cmd_dismode },
2911 { "$w", NULL, "get/set output page width", cmd_pgwidth },
2912 { "$W", NULL, "re-open target in write mode", cmd_reopen },
2913 { ":a", ":[cmd...]", "set read access watchpoint", cmd_oldwpr },
2914 { ":b", ":[cmd...]", "breakpoint at the specified address", cmd_oldbp },
2915 { ":d", "?[id|all]", "delete traced software events", cmd_delete },
2916 { ":p", ":[cmd...]", "set execute access watchpoint", cmd_oldwpx },
2917 { ":S", NULL, NULL, cmd_step },
2918 { ":w", ":[cmd...]", "set write access watchpoint", cmd_oldwpw },
2919 { ":z", NULL, "delete all traced software events", cmd_zapall },
2920 { "array", ":[type count] [variable]", "print each array element’s "
2921 "address", cmd_array },
2922 { "bp", "?[+/-dDestT] [-c cmd] [-n count] sym ...", "breakpoint at the "
2923 "specified addresses or symbols", cmd_bp, bp_help },
2924 { "dcmds", NULL, "list available debugger commands", cmd_dcmds },
2925 { "delete", "?[id|all]", "delete traced software events", cmd_delete },
2926 { "dis", "?[-abfw] [-n cnt] [addr]", "disassemble near addr", cmd_dis },

new/usr/src/cmd/mdb/common/mdb/mdb_cmds.c 2

2927 { "disasms", NULL, "list available disassemblers", cmd_disasms },
2928 { "dismode", "[mode]", "get/set disassembly mode", cmd_dismode },
2929 { "dmods", "[-l] [mod]", "list loaded debugger modules", cmd_dmods },
2930 { "dump", "?[-eqrstu] [-f|-p] [-g bytes] [-w paragraphs]",
2931 "dump memory from specified address", cmd_dump, dump_help },
2932 { "echo", "args ...", "echo arguments", cmd_echo },
2933 { "enum", "?[-ex] enum [name]", "print an enumeration", cmd_enum,
2934 enum_help },
2935 { "eval", "command", "evaluate the specified command", cmd_eval },
2936 { "events", "[-av]", "list traced software events",
2937 cmd_events, events_help },
2938 { "evset", "?[+/-dDestT] [-c cmd] [-n count] id ...",
2939 "set software event specifier attributes", cmd_evset, evset_help },
2940 { "files", "[object]", "print listing of source files", cmd_files },
2941 #ifdef __sparc
2942 { "findsym", "?[-g] [symbol|addr ...]", "search for symbol references "
2943 "in all known functions", cmd_findsym, NULL },
2944 #endif
2945 { "formats", NULL, "list format specifiers", cmd_formats },
2946 { "grep", "?expr", "print dot if expression is true", cmd_grep },
2947 { "head", "-num|-n num", "limit number of elements in pipe", cmd_head,
2948 head_help },
2949 { "help", "[cmd]", "list commands/command help", cmd_help },
2950 { "list", "?type member [variable]",
2951 "walk list using member as link pointer", cmd_list, NULL,
2952 mdb_tab_complete_mt },
2953 { "map", "?expr", "print dot after evaluating expression", cmd_map },
2954 { "mappings", "?[name]", "print address space mappings", cmd_mappings },
2955 { "nm", "?[-DPdghnopuvx] [-f format] [-t types] [object]",
2956 "print symbols", cmd_nm, nm_help },
2957 { "nmadd", ":[-fo] [-e end] [-s size] name",
2958 "add name to private symbol table", cmd_nmadd, nmadd_help },
2959 { "nmdel", "name", "remove name from private symbol table", cmd_nmdel },
2960 { "obey", NULL, NULL, cmd_obey },
2961 { "objects", "[-v]", "print load objects information", cmd_objects },
2962 { "offsetof", "type member", "print the offset of a given struct "
2963 "or union member", cmd_offsetof, NULL, mdb_tab_complete_mt },
2964 { "print", "?[-aCdhiLptx] [-c lim] [-l lim] [type] [member|offset ...]",
2965 "print the contents of a data structure", cmd_print, print_help,
2966 cmd_print_tab },
2967 { "printf", "?format type member ...", "print and format the "
2968 "member(s) of a data structure", cmd_printf, printf_help },
2969 { "regs", NULL, "print general purpose registers", cmd_notsup },
2970 { "set", "[-wF] [+/-o opt] [-s dist] [-I path] [-L path] [-P prompt]",
2971 "get/set debugger properties", cmd_set },
2972 { "showrev", "[-pv]", "print version information", cmd_showrev },
2973 { "sizeof", "type", "print the size of a type", cmd_sizeof, NULL,
2974 cmd_sizeof_tab },
2975 { "stack", "?[cnt]", "print stack backtrace", cmd_notsup },
2976 { "stackregs", "?", "print stack backtrace and registers",
2977 cmd_notsup },
2978 { "status", NULL, "print summary of current target", cmd_notsup },
2979 { "term", NULL, "display current terminal type", cmd_term },
2980 { "typeset", "[+/-t] var ...", "set variable attributes", cmd_typeset },
2981 { "unset", "[name ...]", "unset variables", cmd_unset },
2982 { "vars", "[-npt]", "print listing of variables", cmd_vars },
2983 { "version", NULL, "print debugger version string", cmd_version },
2984 { "vtop", ":[-a as]", "print physical mapping of virtual address",
2985 cmd_vtop },
2986 { "walk", "?name [variable]", "walk data structure", cmd_walk, NULL,
2987 cmd_walk_tab },
2988 { "walkers", NULL, "list available walkers", cmd_walkers },
2989 { "whatis", ":[-aikqv]", "given an address, return information",
2990 cmd_whatis, whatis_help },
2991 { "whence", "[-v] name ...", "show source of walk or dcmd", cmd_which },
2992 { "which", "[-v] name ...", "show source of walk or dcmd", cmd_which },

new/usr/src/cmd/mdb/common/mdb/mdb_cmds.c 3

2993 { "xdata", NULL, "print list of external data buffers", cmd_xdata },

2995 #ifdef _KMDB
2996 /*
2997 * dcmds specific to kmdb, or which have kmdb-specific arguments
2998 */
2999 { "?", "fmt-list", "format data from virtual as", cmd_print_core },
3000 { ":c", NULL, "continue target execution", cmd_cont },
3001 { ":e", NULL, "step target over next instruction", cmd_next },
3002 { ":s", NULL, "single-step target to next instruction", cmd_step },
3003 { ":u", NULL, "step target out of current function", cmd_step_out },
3004 { "cont", NULL, "continue target execution", cmd_cont },
3005 { "load", "[-sd] module", "load debugger module", cmd_load, load_help },
3006 { "next", NULL, "step target over next instruction", cmd_next },
3007 { "quit", "[-u]", "quit debugger", cmd_quit, quit_help },
3008 { "step", "[over | out]",
3009 "single-step target to next instruction", cmd_step },
3010 { "unload", "[-d] module", "unload debugger module", cmd_unload,
3011 unload_help },
3012 { "wp", ":[+/-dDelstT] [-rwx] [-pi] [-c cmd] [-n count] [-L size]",
3013 "set a watchpoint at the specified address", cmd_wp, wp_help },

3015 #else
3016 /*
3017 * dcmds specific to mdb, or which have mdb-specific arguments
3018 */
3019 { "?", "fmt-list", "format data from object file", cmd_print_object },
3020 { "$>", "[file]", "log session to a file", cmd_old_log },
3021 { "$g", "?", "get/set C++ demangling options", cmd_demflags },
3022 { "$G", NULL, "enable/disable C++ demangling support", cmd_demangle },
3023 { "$i", NULL, "print signals that are ignored", cmd_notsup },
3024 { "$l", NULL, "print the representative thread’s lwp id", cmd_notsup },
3025 { "$p", ":", "change debugger target context", cmd_context },
3026 { "$x", NULL, "print floating point registers", cmd_notsup },
3027 { "$X", NULL, "print floating point registers", cmd_notsup },
3028 { "$y", NULL, "print floating point registers", cmd_notsup },
3029 { "$Y", NULL, "print floating point registers", cmd_notsup },
3030 { ":A", "?[core|pid]", "attach to process or core file", cmd_notsup },
3031 { ":c", "[SIG]", "continue target execution", cmd_cont },
3032 { ":e", "[SIG]", "step target over next instruction", cmd_next },
3033 { ":i", ":", "ignore signal (delete all matching events)", cmd_notsup },
3034 { ":k", NULL, "forcibly kill and release target", cmd_notsup },
3035 { ":t", "?[+/-dDestT] [-c cmd] [-n count] SIG ...", "stop on delivery "
3036 "of the specified signals", cmd_sigbp, sigbp_help },
3037 { ":r", "[args ...]", "run a new target process", cmd_run },
3038 { ":R", NULL, "release the previously attached process", cmd_notsup },
3039 { ":s", "[SIG]", "single-step target to next instruction", cmd_step },
3040 { ":u", "[SIG]", "step target out of current function", cmd_step_out },
3041 { "attach", "?[core|pid]",
3042 "attach to process or core file", cmd_notsup },
3043 { "cat", "[file ...]", "concatenate and display files", cmd_cat },
3044 { "cont", "[SIG]", "continue target execution", cmd_cont },
3045 { "context", ":", "change debugger target context", cmd_context },
3046 { "dem", "name ...", "demangle C++ symbol names", cmd_demstr },
3047 { "fltbp", "?[+/-dDestT] [-c cmd] [-n count] fault ...",
3048 "stop on machine fault", cmd_fltbp, fltbp_help },
3049 { "fpregs", NULL, "print floating point registers", cmd_notsup },
3050 { "kill", NULL, "forcibly kill and release target", cmd_notsup },
3051 { "load", "[-s] module", "load debugger module", cmd_load, load_help },
3052 { "log", "[-d | [-e] file]", "log session to a file", cmd_log },
3053 { "next", "[SIG]", "step target over next instruction", cmd_next },
3054 { "quit", NULL, "quit debugger", cmd_quit },
3055 { "release", NULL,
3056 "release the previously attached process", cmd_notsup },
3057 { "run", "[args ...]", "run a new target process", cmd_run },
3058 { "sigbp", "?[+/-dDestT] [-c cmd] [-n count] SIG ...", "stop on "

new/usr/src/cmd/mdb/common/mdb/mdb_cmds.c 4

3059 "delivery of the specified signals", cmd_sigbp, sigbp_help },
3060 { "step", "[over | out] [SIG]",
3061 "single-step target to next instruction", cmd_step },
3062 { "sysbp", "?[+/-dDestT] [-io] [-c cmd] [-n count] syscall ...",
3063 "stop on entry or exit from system call", cmd_sysbp, sysbp_help },
3064 { "unload", "module", "unload debugger module", cmd_unload },
3065 { "wp", ":[+/-dDelstT] [-rwx] [-c cmd] [-n count] [-L size]",
3066 "set a watchpoint at the specified address", cmd_wp, wp_help },
3067 #endif

3069 { NULL }
3070 };
______unchanged_portion_omitted_

new/usr/src/cmd/mdb/common/mdb/mdb_print.c 1

**
 75827 Tue Jun 12 09:01:24 2012
new/usr/src/cmd/mdb/common/mdb/mdb_print.c
2574 mdb needs ::printf
Reviewed by: Joshua M. Clulow <josh@sysmgr.org>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Approved by: ?
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 /*
27 * Copyright (c) 2012 by Delphix. All rights reserved.
28 * Copyright (c) 2012 Joyent, Inc. All rights reserved.
29 */

31 #include <mdb/mdb_modapi.h>
32 #include <mdb/mdb_target.h>
33 #include <mdb/mdb_argvec.h>
34 #include <mdb/mdb_string.h>
35 #include <mdb/mdb_stdlib.h>
36 #include <mdb/mdb_err.h>
37 #include <mdb/mdb_debug.h>
38 #include <mdb/mdb_fmt.h>
39 #include <mdb/mdb_ctf.h>
40 #include <mdb/mdb_ctf_impl.h>
41 #include <mdb/mdb.h>
42 #include <mdb/mdb_tab.h>

44 #include <sys/isa_defs.h>
45 #include <sys/param.h>
46 #include <sys/sysmacros.h>
47 #include <netinet/in.h>
48 #include <strings.h>
49 #include <libctf.h>
50 #include <ctype.h>

52 typedef struct holeinfo {
53 ulong_t hi_offset; /* expected offset */
54 uchar_t hi_isunion; /* represents a union */
55 } holeinfo_t;

______unchanged_portion_omitted_

new/usr/src/cmd/mdb/common/mdb/mdb_print.c 2

1669 /*
1670 * Special semantics for pipelines.
1671 */
1672 static int
1673 pipe_print(mdb_ctf_id_t id, ulong_t off, void *data)
1674 {
1675 printarg_t *pap = data;
1676 ssize_t size;
1677 static const char *const fsp[] = { "%#r", "%#r", "%#r", "%#llr" };
1678 uintptr_t value;
1679 uintptr_t addr = pap->pa_addr + off / NBBY;
1680 mdb_ctf_id_t base;
1681 ctf_encoding_t e;

1683 union {
1684 uint64_t i8;
1685 uint32_t i4;
1686 uint16_t i2;
1687 uint8_t i1;
1688 } u;

1690 if (mdb_ctf_type_resolve(id, &base) == -1) {
1691 mdb_warn("could not resolve type");
1690 mdb_warn("could not resolve type\n");
1692 return (-1);
1693 }

1695 /*
1696 * If the user gives -a, then always print out the address of the
1697 * member.
1698 */
1699 if ((pap->pa_flags & PA_SHOWADDR)) {
1700 mdb_printf("%#lr\n", addr);
1701 return (0);
1702 }

1704 again:
1705 switch (mdb_ctf_type_kind(base)) {
1706 case CTF_K_POINTER:
1707 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as,
1708 &value, sizeof (value), addr) != sizeof (value)) {
1709 mdb_warn("failed to read pointer at %p", addr);
1710 return (-1);
1711 }
1712 mdb_printf("%#lr\n", value);
1713 break;

1715 case CTF_K_INTEGER:
1716 case CTF_K_ENUM:
1717 if (mdb_ctf_type_encoding(base, &e) != 0) {
1718 mdb_printf("could not get type encoding\n");
1719 return (-1);
1720 }

1722 /*
1723 * For immediate values, we just print out the value.
1724 */
1725 size = e.cte_bits / NBBY;
1726 if (size > 8 || (e.cte_bits % NBBY) != 0 ||
1727 (size & (size - 1)) != 0) {
1728 return (print_bitfield(off, pap, &e));
1729 }

1731 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &u.i8, size,
1732 addr) != size) {
1733 mdb_warn("failed to read %lu bytes at %p",

new/usr/src/cmd/mdb/common/mdb/mdb_print.c 3

1734 (ulong_t)size, pap->pa_addr);
1735 return (-1);
1736 }

1738 switch (size) {
1739 case sizeof (uint8_t):
1740 mdb_printf(fsp[0], u.i1);
1741 break;
1742 case sizeof (uint16_t):
1743 mdb_printf(fsp[1], u.i2);
1744 break;
1745 case sizeof (uint32_t):
1746 mdb_printf(fsp[2], u.i4);
1747 break;
1748 case sizeof (uint64_t):
1749 mdb_printf(fsp[3], u.i8);
1750 break;
1751 }
1752 mdb_printf("\n");
1753 break;

1755 case CTF_K_FUNCTION:
1756 case CTF_K_FLOAT:
1757 case CTF_K_ARRAY:
1758 case CTF_K_UNKNOWN:
1759 case CTF_K_STRUCT:
1760 case CTF_K_UNION:
1761 case CTF_K_FORWARD:
1762 /*
1763 * For these types, always print the address of the member
1764 */
1765 mdb_printf("%#lr\n", addr);
1766 break;

1768 default:
1769 mdb_warn("unknown type %d", mdb_ctf_type_kind(base));
1770 break;
1771 }

1773 return (0);
1774 }
______unchanged_portion_omitted_

1837 static int
1838 parse_member(printarg_t *pap, const char *str, mdb_ctf_id_t id,
1839 mdb_ctf_id_t *idp, ulong_t *offp, int *last_deref)
1840 {
1841 int delim;
1842 char member[64];
1843 char buf[128];
1844 uint_t index;
1845 char *start = (char *)str;
1846 char *end;
1847 ulong_t off = 0;
1848 mdb_ctf_arinfo_t ar;
1849 mdb_ctf_id_t rid;
1850 int kind;
1851 ssize_t size;
1852 int non_array = FALSE;

1854 /*
1855 * id always has the unresolved type for printing error messages
1856 * that include the type; rid always has the resolved type for
1857 * use in mdb_ctf_* calls. It is possible for this command to fail,
1858 * however, if the resolved type is in the parent and it is currently
1859 * unavailable. Note that we also can’t print out the name of the

new/usr/src/cmd/mdb/common/mdb/mdb_print.c 4

1860 * type, since that would also rely on looking up the resolved name.
1861 */
1862 if (mdb_ctf_type_resolve(id, &rid) != 0) {
1863 mdb_warn("failed to resolve type");
1864 return (-1);
1865 }

1867 delim = parse_delimiter(&start);
1868 /*
1869 * If the user fails to specify an initial delimiter, guess -> for
1870 * pointer types and . for non-pointer types.
1871 */
1872 if (delim == MEMBER_DELIM_ERR)
1873 delim = (mdb_ctf_type_kind(rid) == CTF_K_POINTER) ?
1874 MEMBER_DELIM_PTR : MEMBER_DELIM_DOT;

1876 *last_deref = FALSE;

1878 while (delim != MEMBER_DELIM_DONE) {
1879 switch (delim) {
1880 case MEMBER_DELIM_PTR:
1881 kind = mdb_ctf_type_kind(rid);
1882 if (kind != CTF_K_POINTER) {
1883 mdb_warn("%s is not a pointer type\n",
1884 mdb_ctf_type_name(id, buf, sizeof (buf)));
1885 return (-1);
1886 }

1888 size = mdb_ctf_type_size(id);
1889 if (deref(pap, size) != 0)
1890 return (-1);

1892 (void) mdb_ctf_type_reference(rid, &id);
1893 (void) mdb_ctf_type_resolve(id, &rid);

1895 off = 0;
1896 break;

1898 case MEMBER_DELIM_DOT:
1899 kind = mdb_ctf_type_kind(rid);
1900 if (kind != CTF_K_STRUCT && kind != CTF_K_UNION) {
1901 mdb_warn("%s is not a struct or union type\n",
1902 mdb_ctf_type_name(id, buf, sizeof (buf)));
1903 return (-1);
1904 }
1905 break;

1907 case MEMBER_DELIM_LBR:
1908 end = strchr(start, ’]’);
1909 if (end == NULL) {
1910 mdb_warn("no trailing ’]’\n");
1911 return (-1);
1912 }

1914 (void) mdb_snprintf(member, end - start + 1, "%s",
1915 start);

1917 index = mdb_strtoull(member);

1919 switch (mdb_ctf_type_kind(rid)) {
1920 case CTF_K_POINTER:
1921 size = mdb_ctf_type_size(rid);

1923 if (deref(pap, size) != 0)
1924 return (-1);

new/usr/src/cmd/mdb/common/mdb/mdb_print.c 5

1926 (void) mdb_ctf_type_reference(rid, &id);
1927 (void) mdb_ctf_type_resolve(id, &rid);

1929 size = mdb_ctf_type_size(id);
1930 if (size <= 0) {
1931 mdb_warn("cannot dereference void "
1932 "type\n");
1933 return (-1);
1934 }

1936 pap->pa_addr += index * size;
1937 off = 0;

1939 if (index == 0 && non_array)
1940 *last_deref = TRUE;
1941 break;

1943 case CTF_K_ARRAY:
1944 (void) mdb_ctf_array_info(rid, &ar);

1946 if (index >= ar.mta_nelems) {
1947 mdb_warn("index %r is outside of "
1948 "array bounds [0 .. %r]\n",
1949 index, ar.mta_nelems - 1);
1950 }

1952 id = ar.mta_contents;
1953 (void) mdb_ctf_type_resolve(id, &rid);

1955 size = mdb_ctf_type_size(id);
1956 if (size <= 0) {
1957 mdb_warn("cannot dereference void "
1958 "type\n");
1959 return (-1);
1960 }

1962 pap->pa_addr += index * size;
1963 off = 0;
1964 break;

1966 default:
1967 mdb_warn("cannot index into non-array, "
1968 "non-pointer type\n");
1969 return (-1);
1970 }

1972 start = end + 1;
1973 delim = parse_delimiter(&start);
1974 continue;

1976 case MEMBER_DELIM_ERR:
1977 default:
1978 mdb_warn("’%c’ is not a valid delimiter\n", *start);
1979 return (-1);
1980 }

1982 *last_deref = FALSE;
1983 non_array = TRUE;

1985 /*
1986 * Find the end of the member name; assume that a member
1987 * name is at least one character long.
1988 */
1989 for (end = start + 1; isalnum(*end) || *end == ’_’; end++)
1990 continue;

new/usr/src/cmd/mdb/common/mdb/mdb_print.c 6

1992 (void) mdb_snprintf(member, end - start + 1, "%s", start);

1994 if (mdb_ctf_member_info(rid, member, &off, &id) != 0) {
1995 mdb_warn("failed to find member %s of %s", member,
1996 mdb_ctf_type_name(id, buf, sizeof (buf)));
1997 return (-1);
1998 }
1999 (void) mdb_ctf_type_resolve(id, &rid);

2001 pap->pa_addr += off / NBBY;

2003 start = end;
2004 delim = parse_delimiter(&start);
2005 }

2007 *idp = id;
2008 *offp = off;

2010 return (0);
2011 }
______unchanged_portion_omitted_

2439 void
2440 print_help(void)
2441 {
2442 mdb_printf(
2443 "-a show address of object\n"
2444 "-C unlimit the length of character arrays\n"
2445 "-c limit limit the length of character arrays\n"
2446 "-d output values in decimal\n"
2447 "-h print holes in structures\n"
2448 "-i interpret address as data of the given type\n"
2449 "-L unlimit the length of standard arrays\n"
2450 "-l limit limit the length of standard arrays\n"
2451 "-n don’t print pointers as symbol offsets\n"
2452 "-p interpret address as a physical memory address\n"
2453 "-s depth limit the recursion depth\n"
2454 "-T show type and <<base type>> of object\n"
2455 "-t show type of object\n"
2456 "-x output values in hexadecimal\n"
2457 "\n"
2458 "type may be omitted if the C type of addr can be inferred.\n"
2459 "\n"
2460 "Members may be specified with standard C syntax using the\n"
2461 "array indexing operator \"[index]\", structure member\n"
2462 "operator \".\", or structure pointer operator \"->\".\n"
2463 "\n"
2464 "Offsets must use the $[expression] syntax\n");
2465 }

2467 static int
2468 printf_signed(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt,
2469 boolean_t sign)
2470 {
2471 ssize_t size;
2472 mdb_ctf_id_t base;
2473 ctf_encoding_t e;

2475 union {
2476 uint64_t ui8;
2477 uint32_t ui4;
2478 uint16_t ui2;
2479 uint8_t ui1;
2480 int64_t i8;
2481 int32_t i4;

new/usr/src/cmd/mdb/common/mdb/mdb_print.c 7

2482 int16_t i2;
2483 int8_t i1;
2484 } u;

2486 if (mdb_ctf_type_resolve(id, &base) == -1) {
2487 mdb_warn("could not resolve type");
2488 return (DCMD_ABORT);
2489 }

2491 if (mdb_ctf_type_kind(base) != CTF_K_INTEGER) {
2492 mdb_warn("expected integer type\n");
2493 return (DCMD_ABORT);
2494 }

2496 if (mdb_ctf_type_encoding(base, &e) != 0) {
2497 mdb_warn("could not get type encoding");
2498 return (DCMD_ABORT);
2499 }

2501 if (sign)
2502 sign = e.cte_format & CTF_INT_SIGNED;

2504 size = e.cte_bits / NBBY;

2506 /*
2507 * Check to see if our life has been complicated by the presence of
2508 * a bitfield. If it has, we will print it using logic that is only
2509 * slightly different than that found in print_bitfield(), above. (In
2510 * particular, see the comments there for an explanation of the
2511 * endianness differences in this code.)
2512 */
2513 if (size > 8 || (e.cte_bits % NBBY) != 0 ||
2514 (size & (size - 1)) != 0) {
2515 uint64_t mask = (1ULL << e.cte_bits) - 1;
2516 uint64_t value = 0;
2517 uint8_t *buf = (uint8_t *)&value;
2518 uint8_t shift;

2520 /*
2521 * Round our size up one byte.
2522 */
2523 size = (e.cte_bits + (NBBY - 1)) / NBBY;

2525 if (e.cte_bits > sizeof (value) * NBBY - 1) {
2526 mdb_printf("invalid bitfield size %u", e.cte_bits);
2527 return (DCMD_ABORT);
2528 }

2530 #ifdef _BIG_ENDIAN
2531 buf += sizeof (value) - size;
2532 off += e.cte_bits;
2533 #endif

2535 if (mdb_vread(buf, size, addr) == -1) {
2536 mdb_warn("failed to read %lu bytes at %p", size, addr);
2537 return (DCMD_ERR);
2538 }

2540 shift = off % NBBY;
2541 #ifdef _BIG_ENDIAN
2542 shift = NBBY - shift;
2543 #endif

2545 /*
2546 * If we have a bit offset within the byte, shift it down.
2547 */

new/usr/src/cmd/mdb/common/mdb/mdb_print.c 8

2548 if (off % NBBY != 0)
2549 value >>= shift;
2550 value &= mask;

2552 if (sign) {
2553 int sshift = sizeof (value) * NBBY - e.cte_bits;
2554 value = ((int64_t)value << sshift) >> sshift;
2555 }

2557 mdb_printf(fmt, value);
2558 return (0);
2559 }

2561 if (mdb_vread(&u.i8, size, addr) == -1) {
2562 mdb_warn("failed to read %lu bytes at %p", (ulong_t)size, addr);
2563 return (DCMD_ERR);
2564 }

2566 switch (size) {
2567 case sizeof (uint8_t):
2568 mdb_printf(fmt, (uint64_t)(sign ? u.i1 : u.ui1));
2569 break;
2570 case sizeof (uint16_t):
2571 mdb_printf(fmt, (uint64_t)(sign ? u.i2 : u.ui2));
2572 break;
2573 case sizeof (uint32_t):
2574 mdb_printf(fmt, (uint64_t)(sign ? u.i4 : u.ui4));
2575 break;
2576 case sizeof (uint64_t):
2577 mdb_printf(fmt, (uint64_t)(sign ? u.i8 : u.ui8));
2578 break;
2579 }

2581 return (0);
2582 }

2584 static int
2585 printf_int(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt)
2586 {
2587 return (printf_signed(id, addr, off, fmt, B_TRUE));
2588 }

2590 static int
2591 printf_uint(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt)
2592 {
2593 return (printf_signed(id, addr, off, fmt, B_FALSE));
2594 }

2596 /*ARGSUSED*/
2597 static int
2598 printf_uint32(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt)
2599 {
2600 mdb_ctf_id_t base;
2601 ctf_encoding_t e;
2602 uint32_t value;

2604 if (mdb_ctf_type_resolve(id, &base) == -1) {
2605 mdb_warn("could not resolve type\n");
2606 return (DCMD_ABORT);
2607 }

2609 if (mdb_ctf_type_kind(base) != CTF_K_INTEGER ||
2610 mdb_ctf_type_encoding(base, &e) != 0 ||
2611 e.cte_bits / NBBY != sizeof (value)) {
2612 mdb_warn("expected 32-bit integer type\n");
2613 return (DCMD_ABORT);

new/usr/src/cmd/mdb/common/mdb/mdb_print.c 9

2614 }

2616 if (mdb_vread(&value, sizeof (value), addr) == -1) {
2617 mdb_warn("failed to read 32-bit value at %p", addr);
2618 return (DCMD_ERR);
2619 }

2621 mdb_printf(fmt, value);

2623 return (0);
2624 }

2626 /*ARGSUSED*/
2627 static int
2628 printf_ptr(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt)
2629 {
2630 uintptr_t value;
2631 mdb_ctf_id_t base;

2633 if (mdb_ctf_type_resolve(id, &base) == -1) {
2634 mdb_warn("could not resolve type\n");
2635 return (DCMD_ABORT);
2636 }

2638 if (mdb_ctf_type_kind(base) != CTF_K_POINTER) {
2639 mdb_warn("expected pointer type\n");
2640 return (DCMD_ABORT);
2641 }

2643 if (mdb_vread(&value, sizeof (value), addr) == -1) {
2644 mdb_warn("failed to read pointer at %llx", addr);
2645 return (DCMD_ERR);
2646 }

2648 mdb_printf(fmt, value);

2650 return (0);
2651 }

2653 /*ARGSUSED*/
2654 static int
2655 printf_string(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt)
2656 {
2657 mdb_ctf_id_t base;
2658 mdb_ctf_arinfo_t r;
2659 char buf[1024];
2660 ssize_t size;

2662 if (mdb_ctf_type_resolve(id, &base) == -1) {
2663 mdb_warn("could not resolve type");
2664 return (DCMD_ABORT);
2665 }

2667 if (mdb_ctf_type_kind(base) == CTF_K_POINTER) {
2668 uintptr_t value;

2670 if (mdb_vread(&value, sizeof (value), addr) == -1) {
2671 mdb_warn("failed to read pointer at %llx", addr);
2672 return (DCMD_ERR);
2673 }

2675 if (mdb_readstr(buf, sizeof (buf) - 1, value) < 0) {
2676 mdb_warn("failed to read string at %llx", value);
2677 return (DCMD_ERR);
2678 }

new/usr/src/cmd/mdb/common/mdb/mdb_print.c 10

2680 mdb_printf(fmt, buf);
2681 return (0);
2682 }

2684 if (mdb_ctf_type_kind(base) != CTF_K_ARRAY) {
2685 mdb_warn("exepected pointer or array type\n");
2686 return (DCMD_ABORT);
2687 }

2689 if (mdb_ctf_array_info(base, &r) == -1 ||
2690 mdb_ctf_type_resolve(r.mta_contents, &base) == -1 ||
2691 (size = mdb_ctf_type_size(base)) == -1) {
2692 mdb_warn("can’t determine array type");
2693 return (DCMD_ABORT);
2694 }

2696 if (size != 1) {
2697 mdb_warn("string format specifier requires "
2698 "an array of characters\n");
2699 return (DCMD_ABORT);
2700 }

2702 bzero(buf, sizeof (buf));

2704 if (mdb_vread(buf, MIN(r.mta_nelems, sizeof (buf) - 1), addr) == -1) {
2705 mdb_warn("failed to read array at %p", addr);
2706 return (DCMD_ERR);
2707 }

2709 mdb_printf(fmt, buf);

2711 return (0);
2712 }

2714 /*ARGSUSED*/
2715 static int
2716 printf_ipv6(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt)
2717 {
2718 mdb_ctf_id_t base;
2719 mdb_ctf_id_t ipv6_type, ipv6_base;
2720 in6_addr_t ipv6;

2722 if (mdb_ctf_lookup_by_name("in6_addr_t", &ipv6_type) == -1) {
2723 mdb_warn("could not resolve in6_addr_t type\n");
2724 return (DCMD_ABORT);
2725 }

2727 if (mdb_ctf_type_resolve(id, &base) == -1) {
2728 mdb_warn("could not resolve type\n");
2729 return (DCMD_ABORT);
2730 }

2732 if (mdb_ctf_type_resolve(ipv6_type, &ipv6_base) == -1) {
2733 mdb_warn("could not resolve in6_addr_t type\n");
2734 return (DCMD_ABORT);
2735 }

2737 if (mdb_ctf_type_cmp(base, ipv6_base) != 0) {
2738 mdb_warn("requires argument of type in6_addr_t\n");
2739 return (DCMD_ABORT);
2740 }

2742 if (mdb_vread(&ipv6, sizeof (ipv6), addr) == -1) {
2743 mdb_warn("couldn’t read in6_addr_t at %p", addr);
2744 return (DCMD_ERR);
2745 }

new/usr/src/cmd/mdb/common/mdb/mdb_print.c 11

2747 mdb_printf(fmt, &ipv6);

2749 return (0);
2750 }

2752 /*
2753 * To validate the format string specified to ::printf, we run the format
2754 * string through a very simple state machine that restricts us to a subset
2755 * of mdb_printf() functionality.
2756 */
2757 enum {
2758 PRINTF_NOFMT = 1, /* no current format specifier */
2759 PRINTF_PERC, /* processed ’%’ */
2760 PRINTF_FMT, /* processing format specifier */
2761 PRINTF_LEFT, /* processed ’-’, expecting width */
2762 PRINTF_WIDTH, /* processing width */
2763 PRINTF_QUES /* processed ’?’, expecting format */
2764 };

2766 int
2767 cmd_printf(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2768 {
2769 char type[MDB_SYM_NAMLEN];
2770 int i, nfmts = 0, ret;
2771 mdb_ctf_id_t id;
2772 const char *fmt, *member;
2773 char **fmts, *last, *dest, f;
2774 int (**funcs)(mdb_ctf_id_t, uintptr_t, ulong_t, char *);
2775 int state = PRINTF_NOFMT;
2776 printarg_t pa;

2778 if (!(flags & DCMD_ADDRSPEC))
2779 return (DCMD_USAGE);

2781 bzero(&pa, sizeof (pa));
2782 pa.pa_as = MDB_TGT_AS_VIRT;
2783 pa.pa_realtgt = pa.pa_tgt = mdb.m_target;

2785 if (argc == 0 || argv[0].a_type != MDB_TYPE_STRING) {
2786 mdb_warn("expected a format string\n");
2787 return (DCMD_USAGE);
2788 }

2790 /*
2791 * Our first argument is a format string; rip it apart and run it
2792 * through our state machine to validate that our input is within the
2793 * subset of mdb_printf() format strings that we allow.
2794 */
2795 fmt = argv[0].a_un.a_str;
2796 /*
2797 * ’dest’ must be large enough to hold a copy of the format string,
2798 * plus a NUL and up to 2 additional characters for each conversion
2799 * in the format string. This gives us a bloat factor of 5/2 ~= 3.
2800 * e.g. "%d" (strlen of 2) --> "%lld\0" (need 5 bytes)
2801 */
2802 dest = mdb_zalloc(strlen(fmt) * 3, UM_SLEEP | UM_GC);
2803 fmts = mdb_zalloc(strlen(fmt) * sizeof (char *), UM_SLEEP | UM_GC);
2804 funcs = mdb_zalloc(strlen(fmt) * sizeof (void *), UM_SLEEP | UM_GC);
2805 last = dest;

2807 for (i = 0; fmt[i] != ’\0’; i++) {
2808 *dest++ = f = fmt[i];

2810 switch (state) {
2811 case PRINTF_NOFMT:

new/usr/src/cmd/mdb/common/mdb/mdb_print.c 12

2812 state = f == ’%’ ? PRINTF_PERC : PRINTF_NOFMT;
2813 break;

2815 case PRINTF_PERC:
2816 state = f == ’-’ ? PRINTF_LEFT :
2817 f >= ’0’ && f <= ’9’ ? PRINTF_WIDTH :
2818 f == ’?’ ? PRINTF_QUES :
2819 f == ’%’ ? PRINTF_NOFMT : PRINTF_FMT;
2820 break;

2822 case PRINTF_LEFT:
2823 state = f >= ’0’ && f <= ’9’ ? PRINTF_WIDTH :
2824 f == ’?’ ? PRINTF_QUES : PRINTF_FMT;
2825 break;

2827 case PRINTF_WIDTH:
2828 state = f >= ’0’ && f <= ’9’ ? PRINTF_WIDTH :
2829 PRINTF_FMT;
2830 break;

2832 case PRINTF_QUES:
2833 state = PRINTF_FMT;
2834 break;
2835 }

2837 if (state != PRINTF_FMT)
2838 continue;

2840 dest--;

2842 /*
2843 * Now check that we have one of our valid format characters.
2844 */
2845 switch (f) {
2846 case ’a’:
2847 case ’A’:
2848 case ’p’:
2849 funcs[nfmts] = printf_ptr;
2850 break;

2852 case ’d’:
2853 case ’q’:
2854 case ’R’:
2855 funcs[nfmts] = printf_int;
2856 *dest++ = ’l’;
2857 *dest++ = ’l’;
2858 break;

2860 case ’I’:
2861 funcs[nfmts] = printf_uint32;
2862 break;

2864 case ’N’:
2865 funcs[nfmts] = printf_ipv6;
2866 break;

2868 case ’o’:
2869 case ’r’:
2870 case ’u’:
2871 case ’x’:
2872 case ’X’:
2873 funcs[nfmts] = printf_uint;
2874 *dest++ = ’l’;
2875 *dest++ = ’l’;
2876 break;

new/usr/src/cmd/mdb/common/mdb/mdb_print.c 13

2878 case ’s’:
2879 funcs[nfmts] = printf_string;
2880 break;

2882 case ’Y’:
2883 funcs[nfmts] = sizeof (time_t) == sizeof (int) ?
2884 printf_uint32 : printf_uint;
2885 break;

2887 default:
2888 mdb_warn("illegal format string at or near "
2889 "’%c’ (position %d)\n", f, i + 1);
2890 return (DCMD_ABORT);
2891 }

2893 *dest++ = f;
2894 *dest++ = ’\0’;
2895 fmts[nfmts++] = last;
2896 last = dest;
2897 state = PRINTF_NOFMT;
2898 }

2900 argc--;
2901 argv++;

2903 /*
2904 * Now we expect a type name.
2905 */
2906 if ((ret = args_to_typename(&argc, &argv, type, sizeof (type))) != 0)
2907 return (ret);

2909 argv++;
2910 argc--;

2912 if (mdb_ctf_lookup_by_name(type, &id) != 0) {
2913 mdb_warn("failed to look up type %s", type);
2914 return (DCMD_ABORT);
2915 }

2917 if (argc == 0) {
2918 mdb_warn("at least one member must be specified\n");
2919 return (DCMD_USAGE);
2920 }

2922 if (argc != nfmts) {
2923 mdb_warn("%s format specifiers (found %d, expected %d)\n",
2924 argc > nfmts ? "missing" : "extra", nfmts, argc);
2925 return (DCMD_ABORT);
2926 }

2928 for (i = 0; i < argc; i++) {
2929 mdb_ctf_id_t mid;
2930 ulong_t off;
2931 int ignored;

2933 if (argv[i].a_type != MDB_TYPE_STRING) {
2934 mdb_warn("expected only type member arguments\n");
2935 return (DCMD_ABORT);
2936 }

2938 if (strcmp((member = argv[i].a_un.a_str), ".") == 0) {
2939 /*
2940 * We allow "." to be specified to denote the current
2941 * value of dot.
2942 */
2943 if (funcs[i] != printf_ptr && funcs[i] != printf_uint &&

new/usr/src/cmd/mdb/common/mdb/mdb_print.c 14

2944 funcs[i] != printf_int) {
2945 mdb_warn("expected integer or pointer format "
2946 "specifier for ’.’\n");
2947 return (DCMD_ABORT);
2948 }

2950 mdb_printf(fmts[i], mdb_get_dot());
2951 continue;
2952 }

2954 pa.pa_addr = addr;

2956 if (parse_member(&pa, member, id, &mid, &off, &ignored) != 0)
2957 return (DCMD_ABORT);

2959 if ((ret = funcs[i](mid, pa.pa_addr, off, fmts[i])) != 0) {
2960 mdb_warn("failed to print member ’%s’\n", member);
2961 return (ret);
2962 }
2963 }

2965 mdb_printf("%s", last);

2967 return (DCMD_OK);
2968 }

2970 static char _mdb_printf_help[] =
2971 "The format string argument is a printf(3C)-like format string that is a\n"
2972 "subset of the format strings supported by mdb_printf(). The type argument\n"
2973 "is the name of a type to be used to interpret the memory referenced by dot.\n"
2974 "The member should either be a field in the specified structure, or the\n"
2975 "special member ’.’, denoting the value of dot (and treated as a pointer).\n"
2976 "The number of members must match the number of format specifiers in the\n"
2977 "format string.\n"
2978 "\n"
2979 "The following format specifiers are recognized by ::printf:\n"
2980 "\n"
2981 " %% Prints the ’%’ symbol.\n"
2982 " %a Prints the member in symbolic form.\n"
2983 " %d Prints the member as a decimal integer. If the member is a signed\n"
2984 " integer type, the output will be signed.\n"
2985 " %I Prints the member a IPv4 address (must be a 32-bit integer type).\n"
2986 " %N Prints the member an IPv6 address (must be of type in6_addr_t).\n"
2987 " %o Prints the member as an unsigned octal integer.\n"
2988 " %p Prints the member as a pointer, in hexadecimal.\n"
2989 " %q Prints the member in signed octal. Honk if you ever use this!\n"
2990 " %r Prints the member as an unsigned value in the current output radix.\n"
2991 " %R Prints the member as a signed value in the current output radix.\n"
2992 " %s Prints the member as a string (requires a pointer or an array of\n"
2993 " characters).\n"
2994 " %u Prints the member as an unsigned decimal integer.\n"
2995 " %x Prints the member in hexadecimal.\n"
2996 " %X Prints the member in hexadecimal, using the characters A-F as the\n"
2997 " digits for the values 10-15.\n"
2998 " %Y Prints the member as a time_t as the string "
2999 "’year month day HH:MM:SS’.\n"
3000 "\n"
3001 "The following field width specifiers are recognized by ::printf:\n"
3002 "\n"
3003 " %n Field width is set to the specified decimal value.\n"
3004 " %? Field width is set to the maximum width of a hexadecimal pointer\n"
3005 " value. This is 8 in an ILP32 environment, and 16 in an LP64\n"
3006 " environment.\n"
3007 "\n"
3008 "The following flag specifers are recognized by ::printf:\n"
3009 "\n"

new/usr/src/cmd/mdb/common/mdb/mdb_print.c 15

3010 " %- Left-justify the output within the specified field width. If the\n"
3011 " width of the output is less than the specified field width, the\n"
3012 " output will be padded with blanks on the right-hand side. Without\n"
3013 " %-, values are right-justified by default.\n"
3014 "\n"
3015 " %0 Zero-fill the output field if the output is right-justified and the\n"
3016 " width of the output is less than the specified field width. Without\n"
3017 " %0, right-justified values are prepended with blanks in order to\n"
3018 " fill the field.\n"
3019 "\n"
3020 "Examples: \n"
3021 "\n"
3022 " ::walk proc | "
3023 "::printf \"%-6d %s\\n\" proc_t p_pidp->pid_id p_user.u_psargs\n"
3024 " ::walk thread | "
3025 "::printf \"%?p %3d %a\\n\" kthread_t . t_pri t_startpc\n"
3026 " ::walk zone | "
3027 "::printf \"%-40s %20s\\n\" zone_t zone_name zone_nodename\n"
3028 " ::walk ire | "
3029 "::printf \"%Y %I\\n\" ire_t ire_create_time ire_u.ire4_u.ire4_addr\n"
3030 "\n";

3032 void
3033 printf_help(void)
3034 {
3035 mdb_printf("%s", _mdb_printf_help);
3036 }
______unchanged_portion_omitted_

new/usr/src/cmd/mdb/common/mdb/mdb_print.h 1

**
 1948 Tue Jun 12 09:01:24 2012
new/usr/src/cmd/mdb/common/mdb/mdb_print.h
2574 mdb needs ::printf
Reviewed by: Joshua M. Clulow <josh@sysmgr.org>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Approved by: ?
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 /*
27 * Copyright (c) 2012 by Delphix. All rights reserved.
28 * Copyright (c) 2012 Joyent, Inc. All rights reserved.
29 */

31 #ifndef _MDB_PRINT_H
32 #define _MDB_PRINT_H

34 #include <mdb/mdb_tab.h>

36 #ifdef __cplusplus
37 extern "C" {
38 #endif

40 #ifdef _MDB

42 extern int cmd_enum(uintptr_t, uint_t, int, const mdb_arg_t *);
43 extern void enum_help(void);
44 extern int cmd_sizeof(uintptr_t, uint_t, int, const mdb_arg_t *);
45 extern int cmd_sizeof_tab(mdb_tab_cookie_t *, uint_t, int, const mdb_arg_t *);
46 extern int cmd_offsetof(uintptr_t, uint_t, int, const mdb_arg_t *);
47 extern int cmd_list(uintptr_t, uint_t, int, const mdb_arg_t *);
48 extern int cmd_array(uintptr_t, uint_t, int, const mdb_arg_t *);
49 extern int cmd_print(uintptr_t, uint_t, int, const mdb_arg_t *);
50 extern int cmd_print_tab(mdb_tab_cookie_t *, uint_t, int, const mdb_arg_t *);
51 extern void print_help(void);
52 extern int cmd_printf(uintptr_t, uint_t, int, const mdb_arg_t *);
53 extern void printf_help(void);

55 #endif /* _MDB */

57 #ifdef __cplusplus

new/usr/src/cmd/mdb/common/mdb/mdb_print.h 2

58 }
______unchanged_portion_omitted_

