1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 25 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2016 Toomas Soome <tsoome@me.com> 28 */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/fm/fs/zfs.h> 32 #include <sys/spa.h> 33 #include <sys/spa_impl.h> 34 #include <sys/dmu.h> 35 #include <sys/dmu_tx.h> 36 #include <sys/vdev_impl.h> 37 #include <sys/uberblock_impl.h> 38 #include <sys/metaslab.h> 39 #include <sys/metaslab_impl.h> 40 #include <sys/space_map.h> 41 #include <sys/space_reftree.h> 42 #include <sys/zio.h> 43 #include <sys/zap.h> 44 #include <sys/fs/zfs.h> 45 #include <sys/arc.h> 46 #include <sys/zil.h> 47 #include <sys/dsl_scan.h> 48 49 /* 50 * Virtual device management. 51 */ 52 53 static vdev_ops_t *vdev_ops_table[] = { 54 &vdev_root_ops, 55 &vdev_raidz_ops, 56 &vdev_mirror_ops, 57 &vdev_replacing_ops, 58 &vdev_spare_ops, 59 &vdev_disk_ops, 60 &vdev_file_ops, 61 &vdev_missing_ops, 62 &vdev_hole_ops, 63 NULL 64 }; 65 66 /* maximum scrub/resilver I/O queue per leaf vdev */ 67 int zfs_scrub_limit = 10; 68 69 /* 70 * When a vdev is added, it will be divided into approximately (but no 71 * more than) this number of metaslabs. 72 */ 73 int metaslabs_per_vdev = 200; 74 75 /* 76 * Given a vdev type, return the appropriate ops vector. 77 */ 78 static vdev_ops_t * 79 vdev_getops(const char *type) 80 { 81 vdev_ops_t *ops, **opspp; 82 83 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 84 if (strcmp(ops->vdev_op_type, type) == 0) 85 break; 86 87 return (ops); 88 } 89 90 /* 91 * Default asize function: return the MAX of psize with the asize of 92 * all children. This is what's used by anything other than RAID-Z. 93 */ 94 uint64_t 95 vdev_default_asize(vdev_t *vd, uint64_t psize) 96 { 97 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 98 uint64_t csize; 99 100 for (int c = 0; c < vd->vdev_children; c++) { 101 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 102 asize = MAX(asize, csize); 103 } 104 105 return (asize); 106 } 107 108 /* 109 * Get the minimum allocatable size. We define the allocatable size as 110 * the vdev's asize rounded to the nearest metaslab. This allows us to 111 * replace or attach devices which don't have the same physical size but 112 * can still satisfy the same number of allocations. 113 */ 114 uint64_t 115 vdev_get_min_asize(vdev_t *vd) 116 { 117 vdev_t *pvd = vd->vdev_parent; 118 119 /* 120 * If our parent is NULL (inactive spare or cache) or is the root, 121 * just return our own asize. 122 */ 123 if (pvd == NULL) 124 return (vd->vdev_asize); 125 126 /* 127 * The top-level vdev just returns the allocatable size rounded 128 * to the nearest metaslab. 129 */ 130 if (vd == vd->vdev_top) 131 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 132 133 /* 134 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 135 * so each child must provide at least 1/Nth of its asize. 136 */ 137 if (pvd->vdev_ops == &vdev_raidz_ops) 138 return (pvd->vdev_min_asize / pvd->vdev_children); 139 140 return (pvd->vdev_min_asize); 141 } 142 143 void 144 vdev_set_min_asize(vdev_t *vd) 145 { 146 vd->vdev_min_asize = vdev_get_min_asize(vd); 147 148 for (int c = 0; c < vd->vdev_children; c++) 149 vdev_set_min_asize(vd->vdev_child[c]); 150 } 151 152 vdev_t * 153 vdev_lookup_top(spa_t *spa, uint64_t vdev) 154 { 155 vdev_t *rvd = spa->spa_root_vdev; 156 157 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 158 159 if (vdev < rvd->vdev_children) { 160 ASSERT(rvd->vdev_child[vdev] != NULL); 161 return (rvd->vdev_child[vdev]); 162 } 163 164 return (NULL); 165 } 166 167 vdev_t * 168 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 169 { 170 vdev_t *mvd; 171 172 if (vd->vdev_guid == guid) 173 return (vd); 174 175 for (int c = 0; c < vd->vdev_children; c++) 176 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 177 NULL) 178 return (mvd); 179 180 return (NULL); 181 } 182 183 static int 184 vdev_count_leaves_impl(vdev_t *vd) 185 { 186 int n = 0; 187 188 if (vd->vdev_ops->vdev_op_leaf) 189 return (1); 190 191 for (int c = 0; c < vd->vdev_children; c++) 192 n += vdev_count_leaves_impl(vd->vdev_child[c]); 193 194 return (n); 195 } 196 197 int 198 vdev_count_leaves(spa_t *spa) 199 { 200 return (vdev_count_leaves_impl(spa->spa_root_vdev)); 201 } 202 203 void 204 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 205 { 206 size_t oldsize, newsize; 207 uint64_t id = cvd->vdev_id; 208 vdev_t **newchild; 209 spa_t *spa = cvd->vdev_spa; 210 211 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 212 ASSERT(cvd->vdev_parent == NULL); 213 214 cvd->vdev_parent = pvd; 215 216 if (pvd == NULL) 217 return; 218 219 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 220 221 oldsize = pvd->vdev_children * sizeof (vdev_t *); 222 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 223 newsize = pvd->vdev_children * sizeof (vdev_t *); 224 225 newchild = kmem_zalloc(newsize, KM_SLEEP); 226 if (pvd->vdev_child != NULL) { 227 bcopy(pvd->vdev_child, newchild, oldsize); 228 kmem_free(pvd->vdev_child, oldsize); 229 } 230 231 pvd->vdev_child = newchild; 232 pvd->vdev_child[id] = cvd; 233 234 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 235 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 236 237 /* 238 * Walk up all ancestors to update guid sum. 239 */ 240 for (; pvd != NULL; pvd = pvd->vdev_parent) 241 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 242 } 243 244 void 245 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 246 { 247 int c; 248 uint_t id = cvd->vdev_id; 249 250 ASSERT(cvd->vdev_parent == pvd); 251 252 if (pvd == NULL) 253 return; 254 255 ASSERT(id < pvd->vdev_children); 256 ASSERT(pvd->vdev_child[id] == cvd); 257 258 pvd->vdev_child[id] = NULL; 259 cvd->vdev_parent = NULL; 260 261 for (c = 0; c < pvd->vdev_children; c++) 262 if (pvd->vdev_child[c]) 263 break; 264 265 if (c == pvd->vdev_children) { 266 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 267 pvd->vdev_child = NULL; 268 pvd->vdev_children = 0; 269 } 270 271 /* 272 * Walk up all ancestors to update guid sum. 273 */ 274 for (; pvd != NULL; pvd = pvd->vdev_parent) 275 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 276 } 277 278 /* 279 * Remove any holes in the child array. 280 */ 281 void 282 vdev_compact_children(vdev_t *pvd) 283 { 284 vdev_t **newchild, *cvd; 285 int oldc = pvd->vdev_children; 286 int newc; 287 288 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 289 290 for (int c = newc = 0; c < oldc; c++) 291 if (pvd->vdev_child[c]) 292 newc++; 293 294 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 295 296 for (int c = newc = 0; c < oldc; c++) { 297 if ((cvd = pvd->vdev_child[c]) != NULL) { 298 newchild[newc] = cvd; 299 cvd->vdev_id = newc++; 300 } 301 } 302 303 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 304 pvd->vdev_child = newchild; 305 pvd->vdev_children = newc; 306 } 307 308 /* 309 * Allocate and minimally initialize a vdev_t. 310 */ 311 vdev_t * 312 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 313 { 314 vdev_t *vd; 315 316 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 317 318 if (spa->spa_root_vdev == NULL) { 319 ASSERT(ops == &vdev_root_ops); 320 spa->spa_root_vdev = vd; 321 spa->spa_load_guid = spa_generate_guid(NULL); 322 } 323 324 if (guid == 0 && ops != &vdev_hole_ops) { 325 if (spa->spa_root_vdev == vd) { 326 /* 327 * The root vdev's guid will also be the pool guid, 328 * which must be unique among all pools. 329 */ 330 guid = spa_generate_guid(NULL); 331 } else { 332 /* 333 * Any other vdev's guid must be unique within the pool. 334 */ 335 guid = spa_generate_guid(spa); 336 } 337 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 338 } 339 340 vd->vdev_spa = spa; 341 vd->vdev_id = id; 342 vd->vdev_guid = guid; 343 vd->vdev_guid_sum = guid; 344 vd->vdev_ops = ops; 345 vd->vdev_state = VDEV_STATE_CLOSED; 346 vd->vdev_ishole = (ops == &vdev_hole_ops); 347 348 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 349 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 350 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 351 mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL); 352 for (int t = 0; t < DTL_TYPES; t++) { 353 vd->vdev_dtl[t] = range_tree_create(NULL, NULL, 354 &vd->vdev_dtl_lock); 355 } 356 txg_list_create(&vd->vdev_ms_list, 357 offsetof(struct metaslab, ms_txg_node)); 358 txg_list_create(&vd->vdev_dtl_list, 359 offsetof(struct vdev, vdev_dtl_node)); 360 vd->vdev_stat.vs_timestamp = gethrtime(); 361 vdev_queue_init(vd); 362 vdev_cache_init(vd); 363 364 return (vd); 365 } 366 367 /* 368 * Allocate a new vdev. The 'alloctype' is used to control whether we are 369 * creating a new vdev or loading an existing one - the behavior is slightly 370 * different for each case. 371 */ 372 int 373 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 374 int alloctype) 375 { 376 vdev_ops_t *ops; 377 char *type; 378 uint64_t guid = 0, islog, nparity; 379 vdev_t *vd; 380 381 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 382 383 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 384 return (SET_ERROR(EINVAL)); 385 386 if ((ops = vdev_getops(type)) == NULL) 387 return (SET_ERROR(EINVAL)); 388 389 /* 390 * If this is a load, get the vdev guid from the nvlist. 391 * Otherwise, vdev_alloc_common() will generate one for us. 392 */ 393 if (alloctype == VDEV_ALLOC_LOAD) { 394 uint64_t label_id; 395 396 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 397 label_id != id) 398 return (SET_ERROR(EINVAL)); 399 400 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 401 return (SET_ERROR(EINVAL)); 402 } else if (alloctype == VDEV_ALLOC_SPARE) { 403 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 404 return (SET_ERROR(EINVAL)); 405 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 406 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 407 return (SET_ERROR(EINVAL)); 408 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 409 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 410 return (SET_ERROR(EINVAL)); 411 } 412 413 /* 414 * The first allocated vdev must be of type 'root'. 415 */ 416 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 417 return (SET_ERROR(EINVAL)); 418 419 /* 420 * Determine whether we're a log vdev. 421 */ 422 islog = 0; 423 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 424 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 425 return (SET_ERROR(ENOTSUP)); 426 427 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 428 return (SET_ERROR(ENOTSUP)); 429 430 /* 431 * Set the nparity property for RAID-Z vdevs. 432 */ 433 nparity = -1ULL; 434 if (ops == &vdev_raidz_ops) { 435 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 436 &nparity) == 0) { 437 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 438 return (SET_ERROR(EINVAL)); 439 /* 440 * Previous versions could only support 1 or 2 parity 441 * device. 442 */ 443 if (nparity > 1 && 444 spa_version(spa) < SPA_VERSION_RAIDZ2) 445 return (SET_ERROR(ENOTSUP)); 446 if (nparity > 2 && 447 spa_version(spa) < SPA_VERSION_RAIDZ3) 448 return (SET_ERROR(ENOTSUP)); 449 } else { 450 /* 451 * We require the parity to be specified for SPAs that 452 * support multiple parity levels. 453 */ 454 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 455 return (SET_ERROR(EINVAL)); 456 /* 457 * Otherwise, we default to 1 parity device for RAID-Z. 458 */ 459 nparity = 1; 460 } 461 } else { 462 nparity = 0; 463 } 464 ASSERT(nparity != -1ULL); 465 466 vd = vdev_alloc_common(spa, id, guid, ops); 467 468 vd->vdev_islog = islog; 469 vd->vdev_nparity = nparity; 470 471 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 472 vd->vdev_path = spa_strdup(vd->vdev_path); 473 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 474 vd->vdev_devid = spa_strdup(vd->vdev_devid); 475 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 476 &vd->vdev_physpath) == 0) 477 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 478 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 479 vd->vdev_fru = spa_strdup(vd->vdev_fru); 480 481 /* 482 * Set the whole_disk property. If it's not specified, leave the value 483 * as -1. 484 */ 485 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 486 &vd->vdev_wholedisk) != 0) 487 vd->vdev_wholedisk = -1ULL; 488 489 /* 490 * Look for the 'not present' flag. This will only be set if the device 491 * was not present at the time of import. 492 */ 493 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 494 &vd->vdev_not_present); 495 496 /* 497 * Get the alignment requirement. 498 */ 499 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 500 501 /* 502 * Retrieve the vdev creation time. 503 */ 504 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 505 &vd->vdev_crtxg); 506 507 /* 508 * If we're a top-level vdev, try to load the allocation parameters. 509 */ 510 if (parent && !parent->vdev_parent && 511 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 512 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 513 &vd->vdev_ms_array); 514 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 515 &vd->vdev_ms_shift); 516 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 517 &vd->vdev_asize); 518 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 519 &vd->vdev_removing); 520 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 521 &vd->vdev_top_zap); 522 } else { 523 ASSERT0(vd->vdev_top_zap); 524 } 525 526 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) { 527 ASSERT(alloctype == VDEV_ALLOC_LOAD || 528 alloctype == VDEV_ALLOC_ADD || 529 alloctype == VDEV_ALLOC_SPLIT || 530 alloctype == VDEV_ALLOC_ROOTPOOL); 531 vd->vdev_mg = metaslab_group_create(islog ? 532 spa_log_class(spa) : spa_normal_class(spa), vd); 533 } 534 535 if (vd->vdev_ops->vdev_op_leaf && 536 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 537 (void) nvlist_lookup_uint64(nv, 538 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap); 539 } else { 540 ASSERT0(vd->vdev_leaf_zap); 541 } 542 543 /* 544 * If we're a leaf vdev, try to load the DTL object and other state. 545 */ 546 547 if (vd->vdev_ops->vdev_op_leaf && 548 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 549 alloctype == VDEV_ALLOC_ROOTPOOL)) { 550 if (alloctype == VDEV_ALLOC_LOAD) { 551 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 552 &vd->vdev_dtl_object); 553 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 554 &vd->vdev_unspare); 555 } 556 557 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 558 uint64_t spare = 0; 559 560 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 561 &spare) == 0 && spare) 562 spa_spare_add(vd); 563 } 564 565 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 566 &vd->vdev_offline); 567 568 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 569 &vd->vdev_resilver_txg); 570 571 /* 572 * When importing a pool, we want to ignore the persistent fault 573 * state, as the diagnosis made on another system may not be 574 * valid in the current context. Local vdevs will 575 * remain in the faulted state. 576 */ 577 if (spa_load_state(spa) == SPA_LOAD_OPEN) { 578 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 579 &vd->vdev_faulted); 580 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 581 &vd->vdev_degraded); 582 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 583 &vd->vdev_removed); 584 585 if (vd->vdev_faulted || vd->vdev_degraded) { 586 char *aux; 587 588 vd->vdev_label_aux = 589 VDEV_AUX_ERR_EXCEEDED; 590 if (nvlist_lookup_string(nv, 591 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 592 strcmp(aux, "external") == 0) 593 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 594 } 595 } 596 } 597 598 /* 599 * Add ourselves to the parent's list of children. 600 */ 601 vdev_add_child(parent, vd); 602 603 *vdp = vd; 604 605 return (0); 606 } 607 608 void 609 vdev_free(vdev_t *vd) 610 { 611 spa_t *spa = vd->vdev_spa; 612 613 /* 614 * vdev_free() implies closing the vdev first. This is simpler than 615 * trying to ensure complicated semantics for all callers. 616 */ 617 vdev_close(vd); 618 619 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 620 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 621 622 /* 623 * Free all children. 624 */ 625 for (int c = 0; c < vd->vdev_children; c++) 626 vdev_free(vd->vdev_child[c]); 627 628 ASSERT(vd->vdev_child == NULL); 629 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 630 631 /* 632 * Discard allocation state. 633 */ 634 if (vd->vdev_mg != NULL) { 635 vdev_metaslab_fini(vd); 636 metaslab_group_destroy(vd->vdev_mg); 637 } 638 639 ASSERT0(vd->vdev_stat.vs_space); 640 ASSERT0(vd->vdev_stat.vs_dspace); 641 ASSERT0(vd->vdev_stat.vs_alloc); 642 643 /* 644 * Remove this vdev from its parent's child list. 645 */ 646 vdev_remove_child(vd->vdev_parent, vd); 647 648 ASSERT(vd->vdev_parent == NULL); 649 650 /* 651 * Clean up vdev structure. 652 */ 653 vdev_queue_fini(vd); 654 vdev_cache_fini(vd); 655 656 if (vd->vdev_path) 657 spa_strfree(vd->vdev_path); 658 if (vd->vdev_devid) 659 spa_strfree(vd->vdev_devid); 660 if (vd->vdev_physpath) 661 spa_strfree(vd->vdev_physpath); 662 if (vd->vdev_fru) 663 spa_strfree(vd->vdev_fru); 664 665 if (vd->vdev_isspare) 666 spa_spare_remove(vd); 667 if (vd->vdev_isl2cache) 668 spa_l2cache_remove(vd); 669 670 txg_list_destroy(&vd->vdev_ms_list); 671 txg_list_destroy(&vd->vdev_dtl_list); 672 673 mutex_enter(&vd->vdev_dtl_lock); 674 space_map_close(vd->vdev_dtl_sm); 675 for (int t = 0; t < DTL_TYPES; t++) { 676 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 677 range_tree_destroy(vd->vdev_dtl[t]); 678 } 679 mutex_exit(&vd->vdev_dtl_lock); 680 681 mutex_destroy(&vd->vdev_queue_lock); 682 mutex_destroy(&vd->vdev_dtl_lock); 683 mutex_destroy(&vd->vdev_stat_lock); 684 mutex_destroy(&vd->vdev_probe_lock); 685 686 if (vd == spa->spa_root_vdev) 687 spa->spa_root_vdev = NULL; 688 689 kmem_free(vd, sizeof (vdev_t)); 690 } 691 692 /* 693 * Transfer top-level vdev state from svd to tvd. 694 */ 695 static void 696 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 697 { 698 spa_t *spa = svd->vdev_spa; 699 metaslab_t *msp; 700 vdev_t *vd; 701 int t; 702 703 ASSERT(tvd == tvd->vdev_top); 704 705 tvd->vdev_ms_array = svd->vdev_ms_array; 706 tvd->vdev_ms_shift = svd->vdev_ms_shift; 707 tvd->vdev_ms_count = svd->vdev_ms_count; 708 tvd->vdev_top_zap = svd->vdev_top_zap; 709 710 svd->vdev_ms_array = 0; 711 svd->vdev_ms_shift = 0; 712 svd->vdev_ms_count = 0; 713 svd->vdev_top_zap = 0; 714 715 if (tvd->vdev_mg) 716 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 717 tvd->vdev_mg = svd->vdev_mg; 718 tvd->vdev_ms = svd->vdev_ms; 719 720 svd->vdev_mg = NULL; 721 svd->vdev_ms = NULL; 722 723 if (tvd->vdev_mg != NULL) 724 tvd->vdev_mg->mg_vd = tvd; 725 726 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 727 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 728 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 729 730 svd->vdev_stat.vs_alloc = 0; 731 svd->vdev_stat.vs_space = 0; 732 svd->vdev_stat.vs_dspace = 0; 733 734 for (t = 0; t < TXG_SIZE; t++) { 735 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 736 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 737 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 738 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 739 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 740 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 741 } 742 743 if (list_link_active(&svd->vdev_config_dirty_node)) { 744 vdev_config_clean(svd); 745 vdev_config_dirty(tvd); 746 } 747 748 if (list_link_active(&svd->vdev_state_dirty_node)) { 749 vdev_state_clean(svd); 750 vdev_state_dirty(tvd); 751 } 752 753 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 754 svd->vdev_deflate_ratio = 0; 755 756 tvd->vdev_islog = svd->vdev_islog; 757 svd->vdev_islog = 0; 758 } 759 760 static void 761 vdev_top_update(vdev_t *tvd, vdev_t *vd) 762 { 763 if (vd == NULL) 764 return; 765 766 vd->vdev_top = tvd; 767 768 for (int c = 0; c < vd->vdev_children; c++) 769 vdev_top_update(tvd, vd->vdev_child[c]); 770 } 771 772 /* 773 * Add a mirror/replacing vdev above an existing vdev. 774 */ 775 vdev_t * 776 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 777 { 778 spa_t *spa = cvd->vdev_spa; 779 vdev_t *pvd = cvd->vdev_parent; 780 vdev_t *mvd; 781 782 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 783 784 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 785 786 mvd->vdev_asize = cvd->vdev_asize; 787 mvd->vdev_min_asize = cvd->vdev_min_asize; 788 mvd->vdev_max_asize = cvd->vdev_max_asize; 789 mvd->vdev_ashift = cvd->vdev_ashift; 790 mvd->vdev_state = cvd->vdev_state; 791 mvd->vdev_crtxg = cvd->vdev_crtxg; 792 793 vdev_remove_child(pvd, cvd); 794 vdev_add_child(pvd, mvd); 795 cvd->vdev_id = mvd->vdev_children; 796 vdev_add_child(mvd, cvd); 797 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 798 799 if (mvd == mvd->vdev_top) 800 vdev_top_transfer(cvd, mvd); 801 802 return (mvd); 803 } 804 805 /* 806 * Remove a 1-way mirror/replacing vdev from the tree. 807 */ 808 void 809 vdev_remove_parent(vdev_t *cvd) 810 { 811 vdev_t *mvd = cvd->vdev_parent; 812 vdev_t *pvd = mvd->vdev_parent; 813 814 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 815 816 ASSERT(mvd->vdev_children == 1); 817 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 818 mvd->vdev_ops == &vdev_replacing_ops || 819 mvd->vdev_ops == &vdev_spare_ops); 820 cvd->vdev_ashift = mvd->vdev_ashift; 821 822 vdev_remove_child(mvd, cvd); 823 vdev_remove_child(pvd, mvd); 824 825 /* 826 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 827 * Otherwise, we could have detached an offline device, and when we 828 * go to import the pool we'll think we have two top-level vdevs, 829 * instead of a different version of the same top-level vdev. 830 */ 831 if (mvd->vdev_top == mvd) { 832 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 833 cvd->vdev_orig_guid = cvd->vdev_guid; 834 cvd->vdev_guid += guid_delta; 835 cvd->vdev_guid_sum += guid_delta; 836 } 837 cvd->vdev_id = mvd->vdev_id; 838 vdev_add_child(pvd, cvd); 839 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 840 841 if (cvd == cvd->vdev_top) 842 vdev_top_transfer(mvd, cvd); 843 844 ASSERT(mvd->vdev_children == 0); 845 vdev_free(mvd); 846 } 847 848 int 849 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 850 { 851 spa_t *spa = vd->vdev_spa; 852 objset_t *mos = spa->spa_meta_objset; 853 uint64_t m; 854 uint64_t oldc = vd->vdev_ms_count; 855 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 856 metaslab_t **mspp; 857 int error; 858 859 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 860 861 /* 862 * This vdev is not being allocated from yet or is a hole. 863 */ 864 if (vd->vdev_ms_shift == 0) 865 return (0); 866 867 ASSERT(!vd->vdev_ishole); 868 869 /* 870 * Compute the raidz-deflation ratio. Note, we hard-code 871 * in 128k (1 << 17) because it is the "typical" blocksize. 872 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change, 873 * otherwise it would inconsistently account for existing bp's. 874 */ 875 vd->vdev_deflate_ratio = (1 << 17) / 876 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 877 878 ASSERT(oldc <= newc); 879 880 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 881 882 if (oldc != 0) { 883 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 884 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 885 } 886 887 vd->vdev_ms = mspp; 888 vd->vdev_ms_count = newc; 889 890 for (m = oldc; m < newc; m++) { 891 uint64_t object = 0; 892 893 if (txg == 0) { 894 error = dmu_read(mos, vd->vdev_ms_array, 895 m * sizeof (uint64_t), sizeof (uint64_t), &object, 896 DMU_READ_PREFETCH); 897 if (error) 898 return (error); 899 } 900 901 error = metaslab_init(vd->vdev_mg, m, object, txg, 902 &(vd->vdev_ms[m])); 903 if (error) 904 return (error); 905 } 906 907 if (txg == 0) 908 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 909 910 /* 911 * If the vdev is being removed we don't activate 912 * the metaslabs since we want to ensure that no new 913 * allocations are performed on this device. 914 */ 915 if (oldc == 0 && !vd->vdev_removing) 916 metaslab_group_activate(vd->vdev_mg); 917 918 if (txg == 0) 919 spa_config_exit(spa, SCL_ALLOC, FTAG); 920 921 return (0); 922 } 923 924 void 925 vdev_metaslab_fini(vdev_t *vd) 926 { 927 uint64_t m; 928 uint64_t count = vd->vdev_ms_count; 929 930 if (vd->vdev_ms != NULL) { 931 metaslab_group_passivate(vd->vdev_mg); 932 for (m = 0; m < count; m++) { 933 metaslab_t *msp = vd->vdev_ms[m]; 934 935 if (msp != NULL) 936 metaslab_fini(msp); 937 } 938 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 939 vd->vdev_ms = NULL; 940 } 941 } 942 943 typedef struct vdev_probe_stats { 944 boolean_t vps_readable; 945 boolean_t vps_writeable; 946 int vps_flags; 947 } vdev_probe_stats_t; 948 949 static void 950 vdev_probe_done(zio_t *zio) 951 { 952 spa_t *spa = zio->io_spa; 953 vdev_t *vd = zio->io_vd; 954 vdev_probe_stats_t *vps = zio->io_private; 955 956 ASSERT(vd->vdev_probe_zio != NULL); 957 958 if (zio->io_type == ZIO_TYPE_READ) { 959 if (zio->io_error == 0) 960 vps->vps_readable = 1; 961 if (zio->io_error == 0 && spa_writeable(spa)) { 962 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 963 zio->io_offset, zio->io_size, zio->io_data, 964 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 965 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 966 } else { 967 zio_buf_free(zio->io_data, zio->io_size); 968 } 969 } else if (zio->io_type == ZIO_TYPE_WRITE) { 970 if (zio->io_error == 0) 971 vps->vps_writeable = 1; 972 zio_buf_free(zio->io_data, zio->io_size); 973 } else if (zio->io_type == ZIO_TYPE_NULL) { 974 zio_t *pio; 975 976 vd->vdev_cant_read |= !vps->vps_readable; 977 vd->vdev_cant_write |= !vps->vps_writeable; 978 979 if (vdev_readable(vd) && 980 (vdev_writeable(vd) || !spa_writeable(spa))) { 981 zio->io_error = 0; 982 } else { 983 ASSERT(zio->io_error != 0); 984 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 985 spa, vd, NULL, 0, 0); 986 zio->io_error = SET_ERROR(ENXIO); 987 } 988 989 mutex_enter(&vd->vdev_probe_lock); 990 ASSERT(vd->vdev_probe_zio == zio); 991 vd->vdev_probe_zio = NULL; 992 mutex_exit(&vd->vdev_probe_lock); 993 994 zio_link_t *zl = NULL; 995 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 996 if (!vdev_accessible(vd, pio)) 997 pio->io_error = SET_ERROR(ENXIO); 998 999 kmem_free(vps, sizeof (*vps)); 1000 } 1001 } 1002 1003 /* 1004 * Determine whether this device is accessible. 1005 * 1006 * Read and write to several known locations: the pad regions of each 1007 * vdev label but the first, which we leave alone in case it contains 1008 * a VTOC. 1009 */ 1010 zio_t * 1011 vdev_probe(vdev_t *vd, zio_t *zio) 1012 { 1013 spa_t *spa = vd->vdev_spa; 1014 vdev_probe_stats_t *vps = NULL; 1015 zio_t *pio; 1016 1017 ASSERT(vd->vdev_ops->vdev_op_leaf); 1018 1019 /* 1020 * Don't probe the probe. 1021 */ 1022 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1023 return (NULL); 1024 1025 /* 1026 * To prevent 'probe storms' when a device fails, we create 1027 * just one probe i/o at a time. All zios that want to probe 1028 * this vdev will become parents of the probe io. 1029 */ 1030 mutex_enter(&vd->vdev_probe_lock); 1031 1032 if ((pio = vd->vdev_probe_zio) == NULL) { 1033 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1034 1035 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1036 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 1037 ZIO_FLAG_TRYHARD; 1038 1039 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1040 /* 1041 * vdev_cant_read and vdev_cant_write can only 1042 * transition from TRUE to FALSE when we have the 1043 * SCL_ZIO lock as writer; otherwise they can only 1044 * transition from FALSE to TRUE. This ensures that 1045 * any zio looking at these values can assume that 1046 * failures persist for the life of the I/O. That's 1047 * important because when a device has intermittent 1048 * connectivity problems, we want to ensure that 1049 * they're ascribed to the device (ENXIO) and not 1050 * the zio (EIO). 1051 * 1052 * Since we hold SCL_ZIO as writer here, clear both 1053 * values so the probe can reevaluate from first 1054 * principles. 1055 */ 1056 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1057 vd->vdev_cant_read = B_FALSE; 1058 vd->vdev_cant_write = B_FALSE; 1059 } 1060 1061 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1062 vdev_probe_done, vps, 1063 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1064 1065 /* 1066 * We can't change the vdev state in this context, so we 1067 * kick off an async task to do it on our behalf. 1068 */ 1069 if (zio != NULL) { 1070 vd->vdev_probe_wanted = B_TRUE; 1071 spa_async_request(spa, SPA_ASYNC_PROBE); 1072 } 1073 } 1074 1075 if (zio != NULL) 1076 zio_add_child(zio, pio); 1077 1078 mutex_exit(&vd->vdev_probe_lock); 1079 1080 if (vps == NULL) { 1081 ASSERT(zio != NULL); 1082 return (NULL); 1083 } 1084 1085 for (int l = 1; l < VDEV_LABELS; l++) { 1086 zio_nowait(zio_read_phys(pio, vd, 1087 vdev_label_offset(vd->vdev_psize, l, 1088 offsetof(vdev_label_t, vl_pad2)), 1089 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE), 1090 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1091 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1092 } 1093 1094 if (zio == NULL) 1095 return (pio); 1096 1097 zio_nowait(pio); 1098 return (NULL); 1099 } 1100 1101 static void 1102 vdev_open_child(void *arg) 1103 { 1104 vdev_t *vd = arg; 1105 1106 vd->vdev_open_thread = curthread; 1107 vd->vdev_open_error = vdev_open(vd); 1108 vd->vdev_open_thread = NULL; 1109 vd->vdev_parent->vdev_nonrot &= vd->vdev_nonrot; 1110 } 1111 1112 boolean_t 1113 vdev_uses_zvols(vdev_t *vd) 1114 { 1115 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, 1116 strlen(ZVOL_DIR)) == 0) 1117 return (B_TRUE); 1118 for (int c = 0; c < vd->vdev_children; c++) 1119 if (vdev_uses_zvols(vd->vdev_child[c])) 1120 return (B_TRUE); 1121 return (B_FALSE); 1122 } 1123 1124 void 1125 vdev_open_children(vdev_t *vd) 1126 { 1127 taskq_t *tq; 1128 int children = vd->vdev_children; 1129 1130 vd->vdev_nonrot = B_TRUE; 1131 1132 /* 1133 * in order to handle pools on top of zvols, do the opens 1134 * in a single thread so that the same thread holds the 1135 * spa_namespace_lock 1136 */ 1137 if (vdev_uses_zvols(vd)) { 1138 for (int c = 0; c < children; c++) { 1139 vd->vdev_child[c]->vdev_open_error = 1140 vdev_open(vd->vdev_child[c]); 1141 vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot; 1142 } 1143 return; 1144 } 1145 tq = taskq_create("vdev_open", children, minclsyspri, 1146 children, children, TASKQ_PREPOPULATE); 1147 1148 for (int c = 0; c < children; c++) 1149 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c], 1150 TQ_SLEEP) != NULL); 1151 1152 taskq_destroy(tq); 1153 1154 for (int c = 0; c < children; c++) 1155 vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot; 1156 } 1157 1158 /* 1159 * Prepare a virtual device for access. 1160 */ 1161 int 1162 vdev_open(vdev_t *vd) 1163 { 1164 spa_t *spa = vd->vdev_spa; 1165 int error; 1166 uint64_t osize = 0; 1167 uint64_t max_osize = 0; 1168 uint64_t asize, max_asize, psize; 1169 uint64_t ashift = 0; 1170 1171 ASSERT(vd->vdev_open_thread == curthread || 1172 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1173 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1174 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1175 vd->vdev_state == VDEV_STATE_OFFLINE); 1176 1177 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1178 vd->vdev_cant_read = B_FALSE; 1179 vd->vdev_cant_write = B_FALSE; 1180 vd->vdev_min_asize = vdev_get_min_asize(vd); 1181 1182 /* 1183 * If this vdev is not removed, check its fault status. If it's 1184 * faulted, bail out of the open. 1185 */ 1186 if (!vd->vdev_removed && vd->vdev_faulted) { 1187 ASSERT(vd->vdev_children == 0); 1188 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1189 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1190 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1191 vd->vdev_label_aux); 1192 return (SET_ERROR(ENXIO)); 1193 } else if (vd->vdev_offline) { 1194 ASSERT(vd->vdev_children == 0); 1195 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1196 return (SET_ERROR(ENXIO)); 1197 } 1198 1199 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift); 1200 1201 /* 1202 * Reset the vdev_reopening flag so that we actually close 1203 * the vdev on error. 1204 */ 1205 vd->vdev_reopening = B_FALSE; 1206 if (zio_injection_enabled && error == 0) 1207 error = zio_handle_device_injection(vd, NULL, ENXIO); 1208 1209 if (error) { 1210 if (vd->vdev_removed && 1211 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1212 vd->vdev_removed = B_FALSE; 1213 1214 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1215 vd->vdev_stat.vs_aux); 1216 return (error); 1217 } 1218 1219 vd->vdev_removed = B_FALSE; 1220 1221 /* 1222 * Recheck the faulted flag now that we have confirmed that 1223 * the vdev is accessible. If we're faulted, bail. 1224 */ 1225 if (vd->vdev_faulted) { 1226 ASSERT(vd->vdev_children == 0); 1227 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1228 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1229 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1230 vd->vdev_label_aux); 1231 return (SET_ERROR(ENXIO)); 1232 } 1233 1234 if (vd->vdev_degraded) { 1235 ASSERT(vd->vdev_children == 0); 1236 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1237 VDEV_AUX_ERR_EXCEEDED); 1238 } else { 1239 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1240 } 1241 1242 /* 1243 * For hole or missing vdevs we just return success. 1244 */ 1245 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1246 return (0); 1247 1248 for (int c = 0; c < vd->vdev_children; c++) { 1249 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1250 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1251 VDEV_AUX_NONE); 1252 break; 1253 } 1254 } 1255 1256 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1257 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 1258 1259 if (vd->vdev_children == 0) { 1260 if (osize < SPA_MINDEVSIZE) { 1261 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1262 VDEV_AUX_TOO_SMALL); 1263 return (SET_ERROR(EOVERFLOW)); 1264 } 1265 psize = osize; 1266 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1267 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 1268 VDEV_LABEL_END_SIZE); 1269 } else { 1270 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1271 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1272 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1273 VDEV_AUX_TOO_SMALL); 1274 return (SET_ERROR(EOVERFLOW)); 1275 } 1276 psize = 0; 1277 asize = osize; 1278 max_asize = max_osize; 1279 } 1280 1281 vd->vdev_psize = psize; 1282 1283 /* 1284 * Make sure the allocatable size hasn't shrunk. 1285 */ 1286 if (asize < vd->vdev_min_asize) { 1287 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1288 VDEV_AUX_BAD_LABEL); 1289 return (SET_ERROR(EINVAL)); 1290 } 1291 1292 if (vd->vdev_asize == 0) { 1293 /* 1294 * This is the first-ever open, so use the computed values. 1295 * For testing purposes, a higher ashift can be requested. 1296 */ 1297 vd->vdev_asize = asize; 1298 vd->vdev_max_asize = max_asize; 1299 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1300 } else { 1301 /* 1302 * Detect if the alignment requirement has increased. 1303 * We don't want to make the pool unavailable, just 1304 * issue a warning instead. 1305 */ 1306 if (ashift > vd->vdev_top->vdev_ashift && 1307 vd->vdev_ops->vdev_op_leaf) { 1308 cmn_err(CE_WARN, 1309 "Disk, '%s', has a block alignment that is " 1310 "larger than the pool's alignment\n", 1311 vd->vdev_path); 1312 } 1313 vd->vdev_max_asize = max_asize; 1314 } 1315 1316 /* 1317 * If all children are healthy and the asize has increased, 1318 * then we've experienced dynamic LUN growth. If automatic 1319 * expansion is enabled then use the additional space. 1320 */ 1321 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize && 1322 (vd->vdev_expanding || spa->spa_autoexpand)) 1323 vd->vdev_asize = asize; 1324 1325 vdev_set_min_asize(vd); 1326 1327 /* 1328 * Ensure we can issue some IO before declaring the 1329 * vdev open for business. 1330 */ 1331 if (vd->vdev_ops->vdev_op_leaf && 1332 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1333 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1334 VDEV_AUX_ERR_EXCEEDED); 1335 return (error); 1336 } 1337 1338 /* 1339 * Track the min and max ashift values for normal data devices. 1340 */ 1341 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1342 !vd->vdev_islog && vd->vdev_aux == NULL) { 1343 if (vd->vdev_ashift > spa->spa_max_ashift) 1344 spa->spa_max_ashift = vd->vdev_ashift; 1345 if (vd->vdev_ashift < spa->spa_min_ashift) 1346 spa->spa_min_ashift = vd->vdev_ashift; 1347 } 1348 1349 /* 1350 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1351 * resilver. But don't do this if we are doing a reopen for a scrub, 1352 * since this would just restart the scrub we are already doing. 1353 */ 1354 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1355 vdev_resilver_needed(vd, NULL, NULL)) 1356 spa_async_request(spa, SPA_ASYNC_RESILVER); 1357 1358 return (0); 1359 } 1360 1361 /* 1362 * Called once the vdevs are all opened, this routine validates the label 1363 * contents. This needs to be done before vdev_load() so that we don't 1364 * inadvertently do repair I/Os to the wrong device. 1365 * 1366 * If 'strict' is false ignore the spa guid check. This is necessary because 1367 * if the machine crashed during a re-guid the new guid might have been written 1368 * to all of the vdev labels, but not the cached config. The strict check 1369 * will be performed when the pool is opened again using the mos config. 1370 * 1371 * This function will only return failure if one of the vdevs indicates that it 1372 * has since been destroyed or exported. This is only possible if 1373 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1374 * will be updated but the function will return 0. 1375 */ 1376 int 1377 vdev_validate(vdev_t *vd, boolean_t strict) 1378 { 1379 spa_t *spa = vd->vdev_spa; 1380 nvlist_t *label; 1381 uint64_t guid = 0, top_guid; 1382 uint64_t state; 1383 1384 for (int c = 0; c < vd->vdev_children; c++) 1385 if (vdev_validate(vd->vdev_child[c], strict) != 0) 1386 return (SET_ERROR(EBADF)); 1387 1388 /* 1389 * If the device has already failed, or was marked offline, don't do 1390 * any further validation. Otherwise, label I/O will fail and we will 1391 * overwrite the previous state. 1392 */ 1393 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1394 uint64_t aux_guid = 0; 1395 nvlist_t *nvl; 1396 uint64_t txg = spa_last_synced_txg(spa) != 0 ? 1397 spa_last_synced_txg(spa) : -1ULL; 1398 1399 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 1400 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1401 VDEV_AUX_BAD_LABEL); 1402 return (0); 1403 } 1404 1405 /* 1406 * Determine if this vdev has been split off into another 1407 * pool. If so, then refuse to open it. 1408 */ 1409 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 1410 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 1411 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1412 VDEV_AUX_SPLIT_POOL); 1413 nvlist_free(label); 1414 return (0); 1415 } 1416 1417 if (strict && (nvlist_lookup_uint64(label, 1418 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 || 1419 guid != spa_guid(spa))) { 1420 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1421 VDEV_AUX_CORRUPT_DATA); 1422 nvlist_free(label); 1423 return (0); 1424 } 1425 1426 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 1427 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 1428 &aux_guid) != 0) 1429 aux_guid = 0; 1430 1431 /* 1432 * If this vdev just became a top-level vdev because its 1433 * sibling was detached, it will have adopted the parent's 1434 * vdev guid -- but the label may or may not be on disk yet. 1435 * Fortunately, either version of the label will have the 1436 * same top guid, so if we're a top-level vdev, we can 1437 * safely compare to that instead. 1438 * 1439 * If we split this vdev off instead, then we also check the 1440 * original pool's guid. We don't want to consider the vdev 1441 * corrupt if it is partway through a split operation. 1442 */ 1443 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1444 &guid) != 0 || 1445 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, 1446 &top_guid) != 0 || 1447 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) && 1448 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { 1449 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1450 VDEV_AUX_CORRUPT_DATA); 1451 nvlist_free(label); 1452 return (0); 1453 } 1454 1455 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1456 &state) != 0) { 1457 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1458 VDEV_AUX_CORRUPT_DATA); 1459 nvlist_free(label); 1460 return (0); 1461 } 1462 1463 nvlist_free(label); 1464 1465 /* 1466 * If this is a verbatim import, no need to check the 1467 * state of the pool. 1468 */ 1469 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 1470 spa_load_state(spa) == SPA_LOAD_OPEN && 1471 state != POOL_STATE_ACTIVE) 1472 return (SET_ERROR(EBADF)); 1473 1474 /* 1475 * If we were able to open and validate a vdev that was 1476 * previously marked permanently unavailable, clear that state 1477 * now. 1478 */ 1479 if (vd->vdev_not_present) 1480 vd->vdev_not_present = 0; 1481 } 1482 1483 return (0); 1484 } 1485 1486 /* 1487 * Close a virtual device. 1488 */ 1489 void 1490 vdev_close(vdev_t *vd) 1491 { 1492 spa_t *spa = vd->vdev_spa; 1493 vdev_t *pvd = vd->vdev_parent; 1494 1495 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1496 1497 /* 1498 * If our parent is reopening, then we are as well, unless we are 1499 * going offline. 1500 */ 1501 if (pvd != NULL && pvd->vdev_reopening) 1502 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 1503 1504 vd->vdev_ops->vdev_op_close(vd); 1505 1506 vdev_cache_purge(vd); 1507 1508 /* 1509 * We record the previous state before we close it, so that if we are 1510 * doing a reopen(), we don't generate FMA ereports if we notice that 1511 * it's still faulted. 1512 */ 1513 vd->vdev_prevstate = vd->vdev_state; 1514 1515 if (vd->vdev_offline) 1516 vd->vdev_state = VDEV_STATE_OFFLINE; 1517 else 1518 vd->vdev_state = VDEV_STATE_CLOSED; 1519 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1520 } 1521 1522 void 1523 vdev_hold(vdev_t *vd) 1524 { 1525 spa_t *spa = vd->vdev_spa; 1526 1527 ASSERT(spa_is_root(spa)); 1528 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1529 return; 1530 1531 for (int c = 0; c < vd->vdev_children; c++) 1532 vdev_hold(vd->vdev_child[c]); 1533 1534 if (vd->vdev_ops->vdev_op_leaf) 1535 vd->vdev_ops->vdev_op_hold(vd); 1536 } 1537 1538 void 1539 vdev_rele(vdev_t *vd) 1540 { 1541 spa_t *spa = vd->vdev_spa; 1542 1543 ASSERT(spa_is_root(spa)); 1544 for (int c = 0; c < vd->vdev_children; c++) 1545 vdev_rele(vd->vdev_child[c]); 1546 1547 if (vd->vdev_ops->vdev_op_leaf) 1548 vd->vdev_ops->vdev_op_rele(vd); 1549 } 1550 1551 /* 1552 * Reopen all interior vdevs and any unopened leaves. We don't actually 1553 * reopen leaf vdevs which had previously been opened as they might deadlock 1554 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 1555 * If the leaf has never been opened then open it, as usual. 1556 */ 1557 void 1558 vdev_reopen(vdev_t *vd) 1559 { 1560 spa_t *spa = vd->vdev_spa; 1561 1562 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1563 1564 /* set the reopening flag unless we're taking the vdev offline */ 1565 vd->vdev_reopening = !vd->vdev_offline; 1566 vdev_close(vd); 1567 (void) vdev_open(vd); 1568 1569 /* 1570 * Call vdev_validate() here to make sure we have the same device. 1571 * Otherwise, a device with an invalid label could be successfully 1572 * opened in response to vdev_reopen(). 1573 */ 1574 if (vd->vdev_aux) { 1575 (void) vdev_validate_aux(vd); 1576 if (vdev_readable(vd) && vdev_writeable(vd) && 1577 vd->vdev_aux == &spa->spa_l2cache && 1578 !l2arc_vdev_present(vd)) 1579 l2arc_add_vdev(spa, vd); 1580 } else { 1581 (void) vdev_validate(vd, B_TRUE); 1582 } 1583 1584 /* 1585 * Reassess parent vdev's health. 1586 */ 1587 vdev_propagate_state(vd); 1588 } 1589 1590 int 1591 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1592 { 1593 int error; 1594 1595 /* 1596 * Normally, partial opens (e.g. of a mirror) are allowed. 1597 * For a create, however, we want to fail the request if 1598 * there are any components we can't open. 1599 */ 1600 error = vdev_open(vd); 1601 1602 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1603 vdev_close(vd); 1604 return (error ? error : ENXIO); 1605 } 1606 1607 /* 1608 * Recursively load DTLs and initialize all labels. 1609 */ 1610 if ((error = vdev_dtl_load(vd)) != 0 || 1611 (error = vdev_label_init(vd, txg, isreplacing ? 1612 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1613 vdev_close(vd); 1614 return (error); 1615 } 1616 1617 return (0); 1618 } 1619 1620 void 1621 vdev_metaslab_set_size(vdev_t *vd) 1622 { 1623 /* 1624 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev. 1625 */ 1626 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev); 1627 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1628 } 1629 1630 void 1631 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1632 { 1633 ASSERT(vd == vd->vdev_top); 1634 ASSERT(!vd->vdev_ishole); 1635 ASSERT(ISP2(flags)); 1636 ASSERT(spa_writeable(vd->vdev_spa)); 1637 1638 if (flags & VDD_METASLAB) 1639 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1640 1641 if (flags & VDD_DTL) 1642 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1643 1644 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1645 } 1646 1647 void 1648 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 1649 { 1650 for (int c = 0; c < vd->vdev_children; c++) 1651 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 1652 1653 if (vd->vdev_ops->vdev_op_leaf) 1654 vdev_dirty(vd->vdev_top, flags, vd, txg); 1655 } 1656 1657 /* 1658 * DTLs. 1659 * 1660 * A vdev's DTL (dirty time log) is the set of transaction groups for which 1661 * the vdev has less than perfect replication. There are four kinds of DTL: 1662 * 1663 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 1664 * 1665 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 1666 * 1667 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 1668 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 1669 * txgs that was scrubbed. 1670 * 1671 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 1672 * persistent errors or just some device being offline. 1673 * Unlike the other three, the DTL_OUTAGE map is not generally 1674 * maintained; it's only computed when needed, typically to 1675 * determine whether a device can be detached. 1676 * 1677 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 1678 * either has the data or it doesn't. 1679 * 1680 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 1681 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 1682 * if any child is less than fully replicated, then so is its parent. 1683 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 1684 * comprising only those txgs which appear in 'maxfaults' or more children; 1685 * those are the txgs we don't have enough replication to read. For example, 1686 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 1687 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 1688 * two child DTL_MISSING maps. 1689 * 1690 * It should be clear from the above that to compute the DTLs and outage maps 1691 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 1692 * Therefore, that is all we keep on disk. When loading the pool, or after 1693 * a configuration change, we generate all other DTLs from first principles. 1694 */ 1695 void 1696 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1697 { 1698 range_tree_t *rt = vd->vdev_dtl[t]; 1699 1700 ASSERT(t < DTL_TYPES); 1701 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1702 ASSERT(spa_writeable(vd->vdev_spa)); 1703 1704 mutex_enter(rt->rt_lock); 1705 if (!range_tree_contains(rt, txg, size)) 1706 range_tree_add(rt, txg, size); 1707 mutex_exit(rt->rt_lock); 1708 } 1709 1710 boolean_t 1711 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1712 { 1713 range_tree_t *rt = vd->vdev_dtl[t]; 1714 boolean_t dirty = B_FALSE; 1715 1716 ASSERT(t < DTL_TYPES); 1717 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1718 1719 mutex_enter(rt->rt_lock); 1720 if (range_tree_space(rt) != 0) 1721 dirty = range_tree_contains(rt, txg, size); 1722 mutex_exit(rt->rt_lock); 1723 1724 return (dirty); 1725 } 1726 1727 boolean_t 1728 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 1729 { 1730 range_tree_t *rt = vd->vdev_dtl[t]; 1731 boolean_t empty; 1732 1733 mutex_enter(rt->rt_lock); 1734 empty = (range_tree_space(rt) == 0); 1735 mutex_exit(rt->rt_lock); 1736 1737 return (empty); 1738 } 1739 1740 /* 1741 * Returns the lowest txg in the DTL range. 1742 */ 1743 static uint64_t 1744 vdev_dtl_min(vdev_t *vd) 1745 { 1746 range_seg_t *rs; 1747 1748 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1749 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1750 ASSERT0(vd->vdev_children); 1751 1752 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1753 return (rs->rs_start - 1); 1754 } 1755 1756 /* 1757 * Returns the highest txg in the DTL. 1758 */ 1759 static uint64_t 1760 vdev_dtl_max(vdev_t *vd) 1761 { 1762 range_seg_t *rs; 1763 1764 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1765 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1766 ASSERT0(vd->vdev_children); 1767 1768 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1769 return (rs->rs_end); 1770 } 1771 1772 /* 1773 * Determine if a resilvering vdev should remove any DTL entries from 1774 * its range. If the vdev was resilvering for the entire duration of the 1775 * scan then it should excise that range from its DTLs. Otherwise, this 1776 * vdev is considered partially resilvered and should leave its DTL 1777 * entries intact. The comment in vdev_dtl_reassess() describes how we 1778 * excise the DTLs. 1779 */ 1780 static boolean_t 1781 vdev_dtl_should_excise(vdev_t *vd) 1782 { 1783 spa_t *spa = vd->vdev_spa; 1784 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1785 1786 ASSERT0(scn->scn_phys.scn_errors); 1787 ASSERT0(vd->vdev_children); 1788 1789 if (vd->vdev_resilver_txg == 0 || 1790 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0) 1791 return (B_TRUE); 1792 1793 /* 1794 * When a resilver is initiated the scan will assign the scn_max_txg 1795 * value to the highest txg value that exists in all DTLs. If this 1796 * device's max DTL is not part of this scan (i.e. it is not in 1797 * the range (scn_min_txg, scn_max_txg] then it is not eligible 1798 * for excision. 1799 */ 1800 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 1801 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd)); 1802 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg); 1803 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg); 1804 return (B_TRUE); 1805 } 1806 return (B_FALSE); 1807 } 1808 1809 /* 1810 * Reassess DTLs after a config change or scrub completion. 1811 */ 1812 void 1813 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1814 { 1815 spa_t *spa = vd->vdev_spa; 1816 avl_tree_t reftree; 1817 int minref; 1818 1819 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1820 1821 for (int c = 0; c < vd->vdev_children; c++) 1822 vdev_dtl_reassess(vd->vdev_child[c], txg, 1823 scrub_txg, scrub_done); 1824 1825 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux) 1826 return; 1827 1828 if (vd->vdev_ops->vdev_op_leaf) { 1829 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1830 1831 mutex_enter(&vd->vdev_dtl_lock); 1832 1833 /* 1834 * If we've completed a scan cleanly then determine 1835 * if this vdev should remove any DTLs. We only want to 1836 * excise regions on vdevs that were available during 1837 * the entire duration of this scan. 1838 */ 1839 if (scrub_txg != 0 && 1840 (spa->spa_scrub_started || 1841 (scn != NULL && scn->scn_phys.scn_errors == 0)) && 1842 vdev_dtl_should_excise(vd)) { 1843 /* 1844 * We completed a scrub up to scrub_txg. If we 1845 * did it without rebooting, then the scrub dtl 1846 * will be valid, so excise the old region and 1847 * fold in the scrub dtl. Otherwise, leave the 1848 * dtl as-is if there was an error. 1849 * 1850 * There's little trick here: to excise the beginning 1851 * of the DTL_MISSING map, we put it into a reference 1852 * tree and then add a segment with refcnt -1 that 1853 * covers the range [0, scrub_txg). This means 1854 * that each txg in that range has refcnt -1 or 0. 1855 * We then add DTL_SCRUB with a refcnt of 2, so that 1856 * entries in the range [0, scrub_txg) will have a 1857 * positive refcnt -- either 1 or 2. We then convert 1858 * the reference tree into the new DTL_MISSING map. 1859 */ 1860 space_reftree_create(&reftree); 1861 space_reftree_add_map(&reftree, 1862 vd->vdev_dtl[DTL_MISSING], 1); 1863 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 1864 space_reftree_add_map(&reftree, 1865 vd->vdev_dtl[DTL_SCRUB], 2); 1866 space_reftree_generate_map(&reftree, 1867 vd->vdev_dtl[DTL_MISSING], 1); 1868 space_reftree_destroy(&reftree); 1869 } 1870 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 1871 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 1872 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 1873 if (scrub_done) 1874 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 1875 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 1876 if (!vdev_readable(vd)) 1877 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 1878 else 1879 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 1880 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 1881 1882 /* 1883 * If the vdev was resilvering and no longer has any 1884 * DTLs then reset its resilvering flag. 1885 */ 1886 if (vd->vdev_resilver_txg != 0 && 1887 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 && 1888 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) 1889 vd->vdev_resilver_txg = 0; 1890 1891 mutex_exit(&vd->vdev_dtl_lock); 1892 1893 if (txg != 0) 1894 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1895 return; 1896 } 1897 1898 mutex_enter(&vd->vdev_dtl_lock); 1899 for (int t = 0; t < DTL_TYPES; t++) { 1900 /* account for child's outage in parent's missing map */ 1901 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 1902 if (t == DTL_SCRUB) 1903 continue; /* leaf vdevs only */ 1904 if (t == DTL_PARTIAL) 1905 minref = 1; /* i.e. non-zero */ 1906 else if (vd->vdev_nparity != 0) 1907 minref = vd->vdev_nparity + 1; /* RAID-Z */ 1908 else 1909 minref = vd->vdev_children; /* any kind of mirror */ 1910 space_reftree_create(&reftree); 1911 for (int c = 0; c < vd->vdev_children; c++) { 1912 vdev_t *cvd = vd->vdev_child[c]; 1913 mutex_enter(&cvd->vdev_dtl_lock); 1914 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1); 1915 mutex_exit(&cvd->vdev_dtl_lock); 1916 } 1917 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref); 1918 space_reftree_destroy(&reftree); 1919 } 1920 mutex_exit(&vd->vdev_dtl_lock); 1921 } 1922 1923 int 1924 vdev_dtl_load(vdev_t *vd) 1925 { 1926 spa_t *spa = vd->vdev_spa; 1927 objset_t *mos = spa->spa_meta_objset; 1928 int error = 0; 1929 1930 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 1931 ASSERT(!vd->vdev_ishole); 1932 1933 error = space_map_open(&vd->vdev_dtl_sm, mos, 1934 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock); 1935 if (error) 1936 return (error); 1937 ASSERT(vd->vdev_dtl_sm != NULL); 1938 1939 mutex_enter(&vd->vdev_dtl_lock); 1940 1941 /* 1942 * Now that we've opened the space_map we need to update 1943 * the in-core DTL. 1944 */ 1945 space_map_update(vd->vdev_dtl_sm); 1946 1947 error = space_map_load(vd->vdev_dtl_sm, 1948 vd->vdev_dtl[DTL_MISSING], SM_ALLOC); 1949 mutex_exit(&vd->vdev_dtl_lock); 1950 1951 return (error); 1952 } 1953 1954 for (int c = 0; c < vd->vdev_children; c++) { 1955 error = vdev_dtl_load(vd->vdev_child[c]); 1956 if (error != 0) 1957 break; 1958 } 1959 1960 return (error); 1961 } 1962 1963 void 1964 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx) 1965 { 1966 spa_t *spa = vd->vdev_spa; 1967 1968 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx)); 1969 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 1970 zapobj, tx)); 1971 } 1972 1973 uint64_t 1974 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx) 1975 { 1976 spa_t *spa = vd->vdev_spa; 1977 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, 1978 DMU_OT_NONE, 0, tx); 1979 1980 ASSERT(zap != 0); 1981 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 1982 zap, tx)); 1983 1984 return (zap); 1985 } 1986 1987 void 1988 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx) 1989 { 1990 if (vd->vdev_ops != &vdev_hole_ops && 1991 vd->vdev_ops != &vdev_missing_ops && 1992 vd->vdev_ops != &vdev_root_ops && 1993 !vd->vdev_top->vdev_removing) { 1994 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) { 1995 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx); 1996 } 1997 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) { 1998 vd->vdev_top_zap = vdev_create_link_zap(vd, tx); 1999 } 2000 } 2001 for (uint64_t i = 0; i < vd->vdev_children; i++) { 2002 vdev_construct_zaps(vd->vdev_child[i], tx); 2003 } 2004 } 2005 2006 void 2007 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 2008 { 2009 spa_t *spa = vd->vdev_spa; 2010 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 2011 objset_t *mos = spa->spa_meta_objset; 2012 range_tree_t *rtsync; 2013 kmutex_t rtlock; 2014 dmu_tx_t *tx; 2015 uint64_t object = space_map_object(vd->vdev_dtl_sm); 2016 2017 ASSERT(!vd->vdev_ishole); 2018 ASSERT(vd->vdev_ops->vdev_op_leaf); 2019 2020 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2021 2022 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 2023 mutex_enter(&vd->vdev_dtl_lock); 2024 space_map_free(vd->vdev_dtl_sm, tx); 2025 space_map_close(vd->vdev_dtl_sm); 2026 vd->vdev_dtl_sm = NULL; 2027 mutex_exit(&vd->vdev_dtl_lock); 2028 2029 /* 2030 * We only destroy the leaf ZAP for detached leaves or for 2031 * removed log devices. Removed data devices handle leaf ZAP 2032 * cleanup later, once cancellation is no longer possible. 2033 */ 2034 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached || 2035 vd->vdev_top->vdev_islog)) { 2036 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx); 2037 vd->vdev_leaf_zap = 0; 2038 } 2039 2040 dmu_tx_commit(tx); 2041 return; 2042 } 2043 2044 if (vd->vdev_dtl_sm == NULL) { 2045 uint64_t new_object; 2046 2047 new_object = space_map_alloc(mos, tx); 2048 VERIFY3U(new_object, !=, 0); 2049 2050 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 2051 0, -1ULL, 0, &vd->vdev_dtl_lock)); 2052 ASSERT(vd->vdev_dtl_sm != NULL); 2053 } 2054 2055 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL); 2056 2057 rtsync = range_tree_create(NULL, NULL, &rtlock); 2058 2059 mutex_enter(&rtlock); 2060 2061 mutex_enter(&vd->vdev_dtl_lock); 2062 range_tree_walk(rt, range_tree_add, rtsync); 2063 mutex_exit(&vd->vdev_dtl_lock); 2064 2065 space_map_truncate(vd->vdev_dtl_sm, tx); 2066 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx); 2067 range_tree_vacate(rtsync, NULL, NULL); 2068 2069 range_tree_destroy(rtsync); 2070 2071 mutex_exit(&rtlock); 2072 mutex_destroy(&rtlock); 2073 2074 /* 2075 * If the object for the space map has changed then dirty 2076 * the top level so that we update the config. 2077 */ 2078 if (object != space_map_object(vd->vdev_dtl_sm)) { 2079 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, " 2080 "new object %llu", txg, spa_name(spa), object, 2081 space_map_object(vd->vdev_dtl_sm)); 2082 vdev_config_dirty(vd->vdev_top); 2083 } 2084 2085 dmu_tx_commit(tx); 2086 2087 mutex_enter(&vd->vdev_dtl_lock); 2088 space_map_update(vd->vdev_dtl_sm); 2089 mutex_exit(&vd->vdev_dtl_lock); 2090 } 2091 2092 /* 2093 * Determine whether the specified vdev can be offlined/detached/removed 2094 * without losing data. 2095 */ 2096 boolean_t 2097 vdev_dtl_required(vdev_t *vd) 2098 { 2099 spa_t *spa = vd->vdev_spa; 2100 vdev_t *tvd = vd->vdev_top; 2101 uint8_t cant_read = vd->vdev_cant_read; 2102 boolean_t required; 2103 2104 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2105 2106 if (vd == spa->spa_root_vdev || vd == tvd) 2107 return (B_TRUE); 2108 2109 /* 2110 * Temporarily mark the device as unreadable, and then determine 2111 * whether this results in any DTL outages in the top-level vdev. 2112 * If not, we can safely offline/detach/remove the device. 2113 */ 2114 vd->vdev_cant_read = B_TRUE; 2115 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2116 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 2117 vd->vdev_cant_read = cant_read; 2118 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2119 2120 if (!required && zio_injection_enabled) 2121 required = !!zio_handle_device_injection(vd, NULL, ECHILD); 2122 2123 return (required); 2124 } 2125 2126 /* 2127 * Determine if resilver is needed, and if so the txg range. 2128 */ 2129 boolean_t 2130 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 2131 { 2132 boolean_t needed = B_FALSE; 2133 uint64_t thismin = UINT64_MAX; 2134 uint64_t thismax = 0; 2135 2136 if (vd->vdev_children == 0) { 2137 mutex_enter(&vd->vdev_dtl_lock); 2138 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 && 2139 vdev_writeable(vd)) { 2140 2141 thismin = vdev_dtl_min(vd); 2142 thismax = vdev_dtl_max(vd); 2143 needed = B_TRUE; 2144 } 2145 mutex_exit(&vd->vdev_dtl_lock); 2146 } else { 2147 for (int c = 0; c < vd->vdev_children; c++) { 2148 vdev_t *cvd = vd->vdev_child[c]; 2149 uint64_t cmin, cmax; 2150 2151 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 2152 thismin = MIN(thismin, cmin); 2153 thismax = MAX(thismax, cmax); 2154 needed = B_TRUE; 2155 } 2156 } 2157 } 2158 2159 if (needed && minp) { 2160 *minp = thismin; 2161 *maxp = thismax; 2162 } 2163 return (needed); 2164 } 2165 2166 void 2167 vdev_load(vdev_t *vd) 2168 { 2169 /* 2170 * Recursively load all children. 2171 */ 2172 for (int c = 0; c < vd->vdev_children; c++) 2173 vdev_load(vd->vdev_child[c]); 2174 2175 /* 2176 * If this is a top-level vdev, initialize its metaslabs. 2177 */ 2178 if (vd == vd->vdev_top && !vd->vdev_ishole && 2179 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 2180 vdev_metaslab_init(vd, 0) != 0)) 2181 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2182 VDEV_AUX_CORRUPT_DATA); 2183 2184 /* 2185 * If this is a leaf vdev, load its DTL. 2186 */ 2187 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 2188 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2189 VDEV_AUX_CORRUPT_DATA); 2190 } 2191 2192 /* 2193 * The special vdev case is used for hot spares and l2cache devices. Its 2194 * sole purpose it to set the vdev state for the associated vdev. To do this, 2195 * we make sure that we can open the underlying device, then try to read the 2196 * label, and make sure that the label is sane and that it hasn't been 2197 * repurposed to another pool. 2198 */ 2199 int 2200 vdev_validate_aux(vdev_t *vd) 2201 { 2202 nvlist_t *label; 2203 uint64_t guid, version; 2204 uint64_t state; 2205 2206 if (!vdev_readable(vd)) 2207 return (0); 2208 2209 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 2210 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2211 VDEV_AUX_CORRUPT_DATA); 2212 return (-1); 2213 } 2214 2215 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 2216 !SPA_VERSION_IS_SUPPORTED(version) || 2217 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 2218 guid != vd->vdev_guid || 2219 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 2220 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2221 VDEV_AUX_CORRUPT_DATA); 2222 nvlist_free(label); 2223 return (-1); 2224 } 2225 2226 /* 2227 * We don't actually check the pool state here. If it's in fact in 2228 * use by another pool, we update this fact on the fly when requested. 2229 */ 2230 nvlist_free(label); 2231 return (0); 2232 } 2233 2234 void 2235 vdev_remove(vdev_t *vd, uint64_t txg) 2236 { 2237 spa_t *spa = vd->vdev_spa; 2238 objset_t *mos = spa->spa_meta_objset; 2239 dmu_tx_t *tx; 2240 2241 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 2242 ASSERT(vd == vd->vdev_top); 2243 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 2244 2245 if (vd->vdev_ms != NULL) { 2246 metaslab_group_t *mg = vd->vdev_mg; 2247 2248 metaslab_group_histogram_verify(mg); 2249 metaslab_class_histogram_verify(mg->mg_class); 2250 2251 for (int m = 0; m < vd->vdev_ms_count; m++) { 2252 metaslab_t *msp = vd->vdev_ms[m]; 2253 2254 if (msp == NULL || msp->ms_sm == NULL) 2255 continue; 2256 2257 mutex_enter(&msp->ms_lock); 2258 /* 2259 * If the metaslab was not loaded when the vdev 2260 * was removed then the histogram accounting may 2261 * not be accurate. Update the histogram information 2262 * here so that we ensure that the metaslab group 2263 * and metaslab class are up-to-date. 2264 */ 2265 metaslab_group_histogram_remove(mg, msp); 2266 2267 VERIFY0(space_map_allocated(msp->ms_sm)); 2268 space_map_free(msp->ms_sm, tx); 2269 space_map_close(msp->ms_sm); 2270 msp->ms_sm = NULL; 2271 mutex_exit(&msp->ms_lock); 2272 } 2273 2274 metaslab_group_histogram_verify(mg); 2275 metaslab_class_histogram_verify(mg->mg_class); 2276 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 2277 ASSERT0(mg->mg_histogram[i]); 2278 2279 } 2280 2281 if (vd->vdev_ms_array) { 2282 (void) dmu_object_free(mos, vd->vdev_ms_array, tx); 2283 vd->vdev_ms_array = 0; 2284 } 2285 2286 if (vd->vdev_islog && vd->vdev_top_zap != 0) { 2287 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx); 2288 vd->vdev_top_zap = 0; 2289 } 2290 dmu_tx_commit(tx); 2291 } 2292 2293 void 2294 vdev_sync_done(vdev_t *vd, uint64_t txg) 2295 { 2296 metaslab_t *msp; 2297 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 2298 2299 ASSERT(!vd->vdev_ishole); 2300 2301 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 2302 metaslab_sync_done(msp, txg); 2303 2304 if (reassess) 2305 metaslab_sync_reassess(vd->vdev_mg); 2306 } 2307 2308 void 2309 vdev_sync(vdev_t *vd, uint64_t txg) 2310 { 2311 spa_t *spa = vd->vdev_spa; 2312 vdev_t *lvd; 2313 metaslab_t *msp; 2314 dmu_tx_t *tx; 2315 2316 ASSERT(!vd->vdev_ishole); 2317 2318 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 2319 ASSERT(vd == vd->vdev_top); 2320 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2321 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 2322 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 2323 ASSERT(vd->vdev_ms_array != 0); 2324 vdev_config_dirty(vd); 2325 dmu_tx_commit(tx); 2326 } 2327 2328 /* 2329 * Remove the metadata associated with this vdev once it's empty. 2330 */ 2331 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 2332 vdev_remove(vd, txg); 2333 2334 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 2335 metaslab_sync(msp, txg); 2336 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 2337 } 2338 2339 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 2340 vdev_dtl_sync(lvd, txg); 2341 2342 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 2343 } 2344 2345 uint64_t 2346 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 2347 { 2348 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 2349 } 2350 2351 /* 2352 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 2353 * not be opened, and no I/O is attempted. 2354 */ 2355 int 2356 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2357 { 2358 vdev_t *vd, *tvd; 2359 2360 spa_vdev_state_enter(spa, SCL_NONE); 2361 2362 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2363 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2364 2365 if (!vd->vdev_ops->vdev_op_leaf) 2366 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2367 2368 tvd = vd->vdev_top; 2369 2370 /* 2371 * We don't directly use the aux state here, but if we do a 2372 * vdev_reopen(), we need this value to be present to remember why we 2373 * were faulted. 2374 */ 2375 vd->vdev_label_aux = aux; 2376 2377 /* 2378 * Faulted state takes precedence over degraded. 2379 */ 2380 vd->vdev_delayed_close = B_FALSE; 2381 vd->vdev_faulted = 1ULL; 2382 vd->vdev_degraded = 0ULL; 2383 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 2384 2385 /* 2386 * If this device has the only valid copy of the data, then 2387 * back off and simply mark the vdev as degraded instead. 2388 */ 2389 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 2390 vd->vdev_degraded = 1ULL; 2391 vd->vdev_faulted = 0ULL; 2392 2393 /* 2394 * If we reopen the device and it's not dead, only then do we 2395 * mark it degraded. 2396 */ 2397 vdev_reopen(tvd); 2398 2399 if (vdev_readable(vd)) 2400 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 2401 } 2402 2403 return (spa_vdev_state_exit(spa, vd, 0)); 2404 } 2405 2406 /* 2407 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 2408 * user that something is wrong. The vdev continues to operate as normal as far 2409 * as I/O is concerned. 2410 */ 2411 int 2412 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2413 { 2414 vdev_t *vd; 2415 2416 spa_vdev_state_enter(spa, SCL_NONE); 2417 2418 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2419 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2420 2421 if (!vd->vdev_ops->vdev_op_leaf) 2422 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2423 2424 /* 2425 * If the vdev is already faulted, then don't do anything. 2426 */ 2427 if (vd->vdev_faulted || vd->vdev_degraded) 2428 return (spa_vdev_state_exit(spa, NULL, 0)); 2429 2430 vd->vdev_degraded = 1ULL; 2431 if (!vdev_is_dead(vd)) 2432 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 2433 aux); 2434 2435 return (spa_vdev_state_exit(spa, vd, 0)); 2436 } 2437 2438 /* 2439 * Online the given vdev. 2440 * 2441 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 2442 * spare device should be detached when the device finishes resilvering. 2443 * Second, the online should be treated like a 'test' online case, so no FMA 2444 * events are generated if the device fails to open. 2445 */ 2446 int 2447 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 2448 { 2449 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 2450 boolean_t postevent = B_FALSE; 2451 2452 spa_vdev_state_enter(spa, SCL_NONE); 2453 2454 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2455 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2456 2457 if (!vd->vdev_ops->vdev_op_leaf) 2458 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2459 2460 postevent = 2461 (vd->vdev_offline == B_TRUE || vd->vdev_tmpoffline == B_TRUE) ? 2462 B_TRUE : B_FALSE; 2463 2464 tvd = vd->vdev_top; 2465 vd->vdev_offline = B_FALSE; 2466 vd->vdev_tmpoffline = B_FALSE; 2467 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 2468 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 2469 2470 /* XXX - L2ARC 1.0 does not support expansion */ 2471 if (!vd->vdev_aux) { 2472 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2473 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 2474 } 2475 2476 vdev_reopen(tvd); 2477 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 2478 2479 if (!vd->vdev_aux) { 2480 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2481 pvd->vdev_expanding = B_FALSE; 2482 } 2483 2484 if (newstate) 2485 *newstate = vd->vdev_state; 2486 if ((flags & ZFS_ONLINE_UNSPARE) && 2487 !vdev_is_dead(vd) && vd->vdev_parent && 2488 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2489 vd->vdev_parent->vdev_child[0] == vd) 2490 vd->vdev_unspare = B_TRUE; 2491 2492 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 2493 2494 /* XXX - L2ARC 1.0 does not support expansion */ 2495 if (vd->vdev_aux) 2496 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 2497 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2498 } 2499 2500 if (postevent) 2501 spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE); 2502 2503 return (spa_vdev_state_exit(spa, vd, 0)); 2504 } 2505 2506 static int 2507 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 2508 { 2509 vdev_t *vd, *tvd; 2510 int error = 0; 2511 uint64_t generation; 2512 metaslab_group_t *mg; 2513 2514 top: 2515 spa_vdev_state_enter(spa, SCL_ALLOC); 2516 2517 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2518 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2519 2520 if (!vd->vdev_ops->vdev_op_leaf) 2521 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2522 2523 tvd = vd->vdev_top; 2524 mg = tvd->vdev_mg; 2525 generation = spa->spa_config_generation + 1; 2526 2527 /* 2528 * If the device isn't already offline, try to offline it. 2529 */ 2530 if (!vd->vdev_offline) { 2531 /* 2532 * If this device has the only valid copy of some data, 2533 * don't allow it to be offlined. Log devices are always 2534 * expendable. 2535 */ 2536 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2537 vdev_dtl_required(vd)) 2538 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2539 2540 /* 2541 * If the top-level is a slog and it has had allocations 2542 * then proceed. We check that the vdev's metaslab group 2543 * is not NULL since it's possible that we may have just 2544 * added this vdev but not yet initialized its metaslabs. 2545 */ 2546 if (tvd->vdev_islog && mg != NULL) { 2547 /* 2548 * Prevent any future allocations. 2549 */ 2550 metaslab_group_passivate(mg); 2551 (void) spa_vdev_state_exit(spa, vd, 0); 2552 2553 error = spa_offline_log(spa); 2554 2555 spa_vdev_state_enter(spa, SCL_ALLOC); 2556 2557 /* 2558 * Check to see if the config has changed. 2559 */ 2560 if (error || generation != spa->spa_config_generation) { 2561 metaslab_group_activate(mg); 2562 if (error) 2563 return (spa_vdev_state_exit(spa, 2564 vd, error)); 2565 (void) spa_vdev_state_exit(spa, vd, 0); 2566 goto top; 2567 } 2568 ASSERT0(tvd->vdev_stat.vs_alloc); 2569 } 2570 2571 /* 2572 * Offline this device and reopen its top-level vdev. 2573 * If the top-level vdev is a log device then just offline 2574 * it. Otherwise, if this action results in the top-level 2575 * vdev becoming unusable, undo it and fail the request. 2576 */ 2577 vd->vdev_offline = B_TRUE; 2578 vdev_reopen(tvd); 2579 2580 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2581 vdev_is_dead(tvd)) { 2582 vd->vdev_offline = B_FALSE; 2583 vdev_reopen(tvd); 2584 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2585 } 2586 2587 /* 2588 * Add the device back into the metaslab rotor so that 2589 * once we online the device it's open for business. 2590 */ 2591 if (tvd->vdev_islog && mg != NULL) 2592 metaslab_group_activate(mg); 2593 } 2594 2595 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 2596 2597 return (spa_vdev_state_exit(spa, vd, 0)); 2598 } 2599 2600 int 2601 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 2602 { 2603 int error; 2604 2605 mutex_enter(&spa->spa_vdev_top_lock); 2606 error = vdev_offline_locked(spa, guid, flags); 2607 mutex_exit(&spa->spa_vdev_top_lock); 2608 2609 return (error); 2610 } 2611 2612 /* 2613 * Clear the error counts associated with this vdev. Unlike vdev_online() and 2614 * vdev_offline(), we assume the spa config is locked. We also clear all 2615 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 2616 */ 2617 void 2618 vdev_clear(spa_t *spa, vdev_t *vd) 2619 { 2620 vdev_t *rvd = spa->spa_root_vdev; 2621 2622 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2623 2624 if (vd == NULL) 2625 vd = rvd; 2626 2627 vd->vdev_stat.vs_read_errors = 0; 2628 vd->vdev_stat.vs_write_errors = 0; 2629 vd->vdev_stat.vs_checksum_errors = 0; 2630 2631 for (int c = 0; c < vd->vdev_children; c++) 2632 vdev_clear(spa, vd->vdev_child[c]); 2633 2634 /* 2635 * If we're in the FAULTED state or have experienced failed I/O, then 2636 * clear the persistent state and attempt to reopen the device. We 2637 * also mark the vdev config dirty, so that the new faulted state is 2638 * written out to disk. 2639 */ 2640 if (vd->vdev_faulted || vd->vdev_degraded || 2641 !vdev_readable(vd) || !vdev_writeable(vd)) { 2642 2643 /* 2644 * When reopening in reponse to a clear event, it may be due to 2645 * a fmadm repair request. In this case, if the device is 2646 * still broken, we want to still post the ereport again. 2647 */ 2648 vd->vdev_forcefault = B_TRUE; 2649 2650 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 2651 vd->vdev_cant_read = B_FALSE; 2652 vd->vdev_cant_write = B_FALSE; 2653 2654 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 2655 2656 vd->vdev_forcefault = B_FALSE; 2657 2658 if (vd != rvd && vdev_writeable(vd->vdev_top)) 2659 vdev_state_dirty(vd->vdev_top); 2660 2661 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 2662 spa_async_request(spa, SPA_ASYNC_RESILVER); 2663 2664 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 2665 } 2666 2667 /* 2668 * When clearing a FMA-diagnosed fault, we always want to 2669 * unspare the device, as we assume that the original spare was 2670 * done in response to the FMA fault. 2671 */ 2672 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 2673 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2674 vd->vdev_parent->vdev_child[0] == vd) 2675 vd->vdev_unspare = B_TRUE; 2676 } 2677 2678 boolean_t 2679 vdev_is_dead(vdev_t *vd) 2680 { 2681 /* 2682 * Holes and missing devices are always considered "dead". 2683 * This simplifies the code since we don't have to check for 2684 * these types of devices in the various code paths. 2685 * Instead we rely on the fact that we skip over dead devices 2686 * before issuing I/O to them. 2687 */ 2688 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole || 2689 vd->vdev_ops == &vdev_missing_ops); 2690 } 2691 2692 boolean_t 2693 vdev_readable(vdev_t *vd) 2694 { 2695 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 2696 } 2697 2698 boolean_t 2699 vdev_writeable(vdev_t *vd) 2700 { 2701 return (!vdev_is_dead(vd) && !vd->vdev_cant_write); 2702 } 2703 2704 boolean_t 2705 vdev_allocatable(vdev_t *vd) 2706 { 2707 uint64_t state = vd->vdev_state; 2708 2709 /* 2710 * We currently allow allocations from vdevs which may be in the 2711 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 2712 * fails to reopen then we'll catch it later when we're holding 2713 * the proper locks. Note that we have to get the vdev state 2714 * in a local variable because although it changes atomically, 2715 * we're asking two separate questions about it. 2716 */ 2717 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 2718 !vd->vdev_cant_write && !vd->vdev_ishole && 2719 vd->vdev_mg->mg_initialized); 2720 } 2721 2722 boolean_t 2723 vdev_accessible(vdev_t *vd, zio_t *zio) 2724 { 2725 ASSERT(zio->io_vd == vd); 2726 2727 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 2728 return (B_FALSE); 2729 2730 if (zio->io_type == ZIO_TYPE_READ) 2731 return (!vd->vdev_cant_read); 2732 2733 if (zio->io_type == ZIO_TYPE_WRITE) 2734 return (!vd->vdev_cant_write); 2735 2736 return (B_TRUE); 2737 } 2738 2739 /* 2740 * Get statistics for the given vdev. 2741 */ 2742 void 2743 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 2744 { 2745 spa_t *spa = vd->vdev_spa; 2746 vdev_t *rvd = spa->spa_root_vdev; 2747 vdev_t *tvd = vd->vdev_top; 2748 2749 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2750 2751 mutex_enter(&vd->vdev_stat_lock); 2752 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 2753 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 2754 vs->vs_state = vd->vdev_state; 2755 vs->vs_rsize = vdev_get_min_asize(vd); 2756 if (vd->vdev_ops->vdev_op_leaf) 2757 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 2758 /* 2759 * Report expandable space on top-level, non-auxillary devices only. 2760 * The expandable space is reported in terms of metaslab sized units 2761 * since that determines how much space the pool can expand. 2762 */ 2763 if (vd->vdev_aux == NULL && tvd != NULL) { 2764 vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize, 2765 1ULL << tvd->vdev_ms_shift); 2766 } 2767 if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) { 2768 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation; 2769 } 2770 2771 /* 2772 * If we're getting stats on the root vdev, aggregate the I/O counts 2773 * over all top-level vdevs (i.e. the direct children of the root). 2774 */ 2775 if (vd == rvd) { 2776 for (int c = 0; c < rvd->vdev_children; c++) { 2777 vdev_t *cvd = rvd->vdev_child[c]; 2778 vdev_stat_t *cvs = &cvd->vdev_stat; 2779 2780 for (int t = 0; t < ZIO_TYPES; t++) { 2781 vs->vs_ops[t] += cvs->vs_ops[t]; 2782 vs->vs_bytes[t] += cvs->vs_bytes[t]; 2783 } 2784 cvs->vs_scan_removing = cvd->vdev_removing; 2785 } 2786 } 2787 mutex_exit(&vd->vdev_stat_lock); 2788 } 2789 2790 void 2791 vdev_clear_stats(vdev_t *vd) 2792 { 2793 mutex_enter(&vd->vdev_stat_lock); 2794 vd->vdev_stat.vs_space = 0; 2795 vd->vdev_stat.vs_dspace = 0; 2796 vd->vdev_stat.vs_alloc = 0; 2797 mutex_exit(&vd->vdev_stat_lock); 2798 } 2799 2800 void 2801 vdev_scan_stat_init(vdev_t *vd) 2802 { 2803 vdev_stat_t *vs = &vd->vdev_stat; 2804 2805 for (int c = 0; c < vd->vdev_children; c++) 2806 vdev_scan_stat_init(vd->vdev_child[c]); 2807 2808 mutex_enter(&vd->vdev_stat_lock); 2809 vs->vs_scan_processed = 0; 2810 mutex_exit(&vd->vdev_stat_lock); 2811 } 2812 2813 void 2814 vdev_stat_update(zio_t *zio, uint64_t psize) 2815 { 2816 spa_t *spa = zio->io_spa; 2817 vdev_t *rvd = spa->spa_root_vdev; 2818 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 2819 vdev_t *pvd; 2820 uint64_t txg = zio->io_txg; 2821 vdev_stat_t *vs = &vd->vdev_stat; 2822 zio_type_t type = zio->io_type; 2823 int flags = zio->io_flags; 2824 2825 /* 2826 * If this i/o is a gang leader, it didn't do any actual work. 2827 */ 2828 if (zio->io_gang_tree) 2829 return; 2830 2831 if (zio->io_error == 0) { 2832 /* 2833 * If this is a root i/o, don't count it -- we've already 2834 * counted the top-level vdevs, and vdev_get_stats() will 2835 * aggregate them when asked. This reduces contention on 2836 * the root vdev_stat_lock and implicitly handles blocks 2837 * that compress away to holes, for which there is no i/o. 2838 * (Holes never create vdev children, so all the counters 2839 * remain zero, which is what we want.) 2840 * 2841 * Note: this only applies to successful i/o (io_error == 0) 2842 * because unlike i/o counts, errors are not additive. 2843 * When reading a ditto block, for example, failure of 2844 * one top-level vdev does not imply a root-level error. 2845 */ 2846 if (vd == rvd) 2847 return; 2848 2849 ASSERT(vd == zio->io_vd); 2850 2851 if (flags & ZIO_FLAG_IO_BYPASS) 2852 return; 2853 2854 mutex_enter(&vd->vdev_stat_lock); 2855 2856 if (flags & ZIO_FLAG_IO_REPAIR) { 2857 if (flags & ZIO_FLAG_SCAN_THREAD) { 2858 dsl_scan_phys_t *scn_phys = 2859 &spa->spa_dsl_pool->dp_scan->scn_phys; 2860 uint64_t *processed = &scn_phys->scn_processed; 2861 2862 /* XXX cleanup? */ 2863 if (vd->vdev_ops->vdev_op_leaf) 2864 atomic_add_64(processed, psize); 2865 vs->vs_scan_processed += psize; 2866 } 2867 2868 if (flags & ZIO_FLAG_SELF_HEAL) 2869 vs->vs_self_healed += psize; 2870 } 2871 2872 vs->vs_ops[type]++; 2873 vs->vs_bytes[type] += psize; 2874 2875 mutex_exit(&vd->vdev_stat_lock); 2876 return; 2877 } 2878 2879 if (flags & ZIO_FLAG_SPECULATIVE) 2880 return; 2881 2882 /* 2883 * If this is an I/O error that is going to be retried, then ignore the 2884 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 2885 * hard errors, when in reality they can happen for any number of 2886 * innocuous reasons (bus resets, MPxIO link failure, etc). 2887 */ 2888 if (zio->io_error == EIO && 2889 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 2890 return; 2891 2892 /* 2893 * Intent logs writes won't propagate their error to the root 2894 * I/O so don't mark these types of failures as pool-level 2895 * errors. 2896 */ 2897 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 2898 return; 2899 2900 mutex_enter(&vd->vdev_stat_lock); 2901 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 2902 if (zio->io_error == ECKSUM) 2903 vs->vs_checksum_errors++; 2904 else 2905 vs->vs_read_errors++; 2906 } 2907 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 2908 vs->vs_write_errors++; 2909 mutex_exit(&vd->vdev_stat_lock); 2910 2911 if (type == ZIO_TYPE_WRITE && txg != 0 && 2912 (!(flags & ZIO_FLAG_IO_REPAIR) || 2913 (flags & ZIO_FLAG_SCAN_THREAD) || 2914 spa->spa_claiming)) { 2915 /* 2916 * This is either a normal write (not a repair), or it's 2917 * a repair induced by the scrub thread, or it's a repair 2918 * made by zil_claim() during spa_load() in the first txg. 2919 * In the normal case, we commit the DTL change in the same 2920 * txg as the block was born. In the scrub-induced repair 2921 * case, we know that scrubs run in first-pass syncing context, 2922 * so we commit the DTL change in spa_syncing_txg(spa). 2923 * In the zil_claim() case, we commit in spa_first_txg(spa). 2924 * 2925 * We currently do not make DTL entries for failed spontaneous 2926 * self-healing writes triggered by normal (non-scrubbing) 2927 * reads, because we have no transactional context in which to 2928 * do so -- and it's not clear that it'd be desirable anyway. 2929 */ 2930 if (vd->vdev_ops->vdev_op_leaf) { 2931 uint64_t commit_txg = txg; 2932 if (flags & ZIO_FLAG_SCAN_THREAD) { 2933 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2934 ASSERT(spa_sync_pass(spa) == 1); 2935 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 2936 commit_txg = spa_syncing_txg(spa); 2937 } else if (spa->spa_claiming) { 2938 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2939 commit_txg = spa_first_txg(spa); 2940 } 2941 ASSERT(commit_txg >= spa_syncing_txg(spa)); 2942 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 2943 return; 2944 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2945 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 2946 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 2947 } 2948 if (vd != rvd) 2949 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 2950 } 2951 } 2952 2953 /* 2954 * Update the in-core space usage stats for this vdev, its metaslab class, 2955 * and the root vdev. 2956 */ 2957 void 2958 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 2959 int64_t space_delta) 2960 { 2961 int64_t dspace_delta = space_delta; 2962 spa_t *spa = vd->vdev_spa; 2963 vdev_t *rvd = spa->spa_root_vdev; 2964 metaslab_group_t *mg = vd->vdev_mg; 2965 metaslab_class_t *mc = mg ? mg->mg_class : NULL; 2966 2967 ASSERT(vd == vd->vdev_top); 2968 2969 /* 2970 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 2971 * factor. We must calculate this here and not at the root vdev 2972 * because the root vdev's psize-to-asize is simply the max of its 2973 * childrens', thus not accurate enough for us. 2974 */ 2975 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 2976 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 2977 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 2978 vd->vdev_deflate_ratio; 2979 2980 mutex_enter(&vd->vdev_stat_lock); 2981 vd->vdev_stat.vs_alloc += alloc_delta; 2982 vd->vdev_stat.vs_space += space_delta; 2983 vd->vdev_stat.vs_dspace += dspace_delta; 2984 mutex_exit(&vd->vdev_stat_lock); 2985 2986 if (mc == spa_normal_class(spa)) { 2987 mutex_enter(&rvd->vdev_stat_lock); 2988 rvd->vdev_stat.vs_alloc += alloc_delta; 2989 rvd->vdev_stat.vs_space += space_delta; 2990 rvd->vdev_stat.vs_dspace += dspace_delta; 2991 mutex_exit(&rvd->vdev_stat_lock); 2992 } 2993 2994 if (mc != NULL) { 2995 ASSERT(rvd == vd->vdev_parent); 2996 ASSERT(vd->vdev_ms_count != 0); 2997 2998 metaslab_class_space_update(mc, 2999 alloc_delta, defer_delta, space_delta, dspace_delta); 3000 } 3001 } 3002 3003 /* 3004 * Mark a top-level vdev's config as dirty, placing it on the dirty list 3005 * so that it will be written out next time the vdev configuration is synced. 3006 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 3007 */ 3008 void 3009 vdev_config_dirty(vdev_t *vd) 3010 { 3011 spa_t *spa = vd->vdev_spa; 3012 vdev_t *rvd = spa->spa_root_vdev; 3013 int c; 3014 3015 ASSERT(spa_writeable(spa)); 3016 3017 /* 3018 * If this is an aux vdev (as with l2cache and spare devices), then we 3019 * update the vdev config manually and set the sync flag. 3020 */ 3021 if (vd->vdev_aux != NULL) { 3022 spa_aux_vdev_t *sav = vd->vdev_aux; 3023 nvlist_t **aux; 3024 uint_t naux; 3025 3026 for (c = 0; c < sav->sav_count; c++) { 3027 if (sav->sav_vdevs[c] == vd) 3028 break; 3029 } 3030 3031 if (c == sav->sav_count) { 3032 /* 3033 * We're being removed. There's nothing more to do. 3034 */ 3035 ASSERT(sav->sav_sync == B_TRUE); 3036 return; 3037 } 3038 3039 sav->sav_sync = B_TRUE; 3040 3041 if (nvlist_lookup_nvlist_array(sav->sav_config, 3042 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 3043 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 3044 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 3045 } 3046 3047 ASSERT(c < naux); 3048 3049 /* 3050 * Setting the nvlist in the middle if the array is a little 3051 * sketchy, but it will work. 3052 */ 3053 nvlist_free(aux[c]); 3054 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 3055 3056 return; 3057 } 3058 3059 /* 3060 * The dirty list is protected by the SCL_CONFIG lock. The caller 3061 * must either hold SCL_CONFIG as writer, or must be the sync thread 3062 * (which holds SCL_CONFIG as reader). There's only one sync thread, 3063 * so this is sufficient to ensure mutual exclusion. 3064 */ 3065 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 3066 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3067 spa_config_held(spa, SCL_CONFIG, RW_READER))); 3068 3069 if (vd == rvd) { 3070 for (c = 0; c < rvd->vdev_children; c++) 3071 vdev_config_dirty(rvd->vdev_child[c]); 3072 } else { 3073 ASSERT(vd == vd->vdev_top); 3074 3075 if (!list_link_active(&vd->vdev_config_dirty_node) && 3076 !vd->vdev_ishole) 3077 list_insert_head(&spa->spa_config_dirty_list, vd); 3078 } 3079 } 3080 3081 void 3082 vdev_config_clean(vdev_t *vd) 3083 { 3084 spa_t *spa = vd->vdev_spa; 3085 3086 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 3087 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3088 spa_config_held(spa, SCL_CONFIG, RW_READER))); 3089 3090 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 3091 list_remove(&spa->spa_config_dirty_list, vd); 3092 } 3093 3094 /* 3095 * Mark a top-level vdev's state as dirty, so that the next pass of 3096 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 3097 * the state changes from larger config changes because they require 3098 * much less locking, and are often needed for administrative actions. 3099 */ 3100 void 3101 vdev_state_dirty(vdev_t *vd) 3102 { 3103 spa_t *spa = vd->vdev_spa; 3104 3105 ASSERT(spa_writeable(spa)); 3106 ASSERT(vd == vd->vdev_top); 3107 3108 /* 3109 * The state list is protected by the SCL_STATE lock. The caller 3110 * must either hold SCL_STATE as writer, or must be the sync thread 3111 * (which holds SCL_STATE as reader). There's only one sync thread, 3112 * so this is sufficient to ensure mutual exclusion. 3113 */ 3114 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 3115 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3116 spa_config_held(spa, SCL_STATE, RW_READER))); 3117 3118 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole) 3119 list_insert_head(&spa->spa_state_dirty_list, vd); 3120 } 3121 3122 void 3123 vdev_state_clean(vdev_t *vd) 3124 { 3125 spa_t *spa = vd->vdev_spa; 3126 3127 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 3128 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3129 spa_config_held(spa, SCL_STATE, RW_READER))); 3130 3131 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 3132 list_remove(&spa->spa_state_dirty_list, vd); 3133 } 3134 3135 /* 3136 * Propagate vdev state up from children to parent. 3137 */ 3138 void 3139 vdev_propagate_state(vdev_t *vd) 3140 { 3141 spa_t *spa = vd->vdev_spa; 3142 vdev_t *rvd = spa->spa_root_vdev; 3143 int degraded = 0, faulted = 0; 3144 int corrupted = 0; 3145 vdev_t *child; 3146 3147 if (vd->vdev_children > 0) { 3148 for (int c = 0; c < vd->vdev_children; c++) { 3149 child = vd->vdev_child[c]; 3150 3151 /* 3152 * Don't factor holes into the decision. 3153 */ 3154 if (child->vdev_ishole) 3155 continue; 3156 3157 if (!vdev_readable(child) || 3158 (!vdev_writeable(child) && spa_writeable(spa))) { 3159 /* 3160 * Root special: if there is a top-level log 3161 * device, treat the root vdev as if it were 3162 * degraded. 3163 */ 3164 if (child->vdev_islog && vd == rvd) 3165 degraded++; 3166 else 3167 faulted++; 3168 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 3169 degraded++; 3170 } 3171 3172 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 3173 corrupted++; 3174 } 3175 3176 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 3177 3178 /* 3179 * Root special: if there is a top-level vdev that cannot be 3180 * opened due to corrupted metadata, then propagate the root 3181 * vdev's aux state as 'corrupt' rather than 'insufficient 3182 * replicas'. 3183 */ 3184 if (corrupted && vd == rvd && 3185 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 3186 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 3187 VDEV_AUX_CORRUPT_DATA); 3188 } 3189 3190 if (vd->vdev_parent) 3191 vdev_propagate_state(vd->vdev_parent); 3192 } 3193 3194 /* 3195 * Set a vdev's state. If this is during an open, we don't update the parent 3196 * state, because we're in the process of opening children depth-first. 3197 * Otherwise, we propagate the change to the parent. 3198 * 3199 * If this routine places a device in a faulted state, an appropriate ereport is 3200 * generated. 3201 */ 3202 void 3203 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 3204 { 3205 uint64_t save_state; 3206 spa_t *spa = vd->vdev_spa; 3207 3208 if (state == vd->vdev_state) { 3209 vd->vdev_stat.vs_aux = aux; 3210 return; 3211 } 3212 3213 save_state = vd->vdev_state; 3214 3215 vd->vdev_state = state; 3216 vd->vdev_stat.vs_aux = aux; 3217 3218 /* 3219 * If we are setting the vdev state to anything but an open state, then 3220 * always close the underlying device unless the device has requested 3221 * a delayed close (i.e. we're about to remove or fault the device). 3222 * Otherwise, we keep accessible but invalid devices open forever. 3223 * We don't call vdev_close() itself, because that implies some extra 3224 * checks (offline, etc) that we don't want here. This is limited to 3225 * leaf devices, because otherwise closing the device will affect other 3226 * children. 3227 */ 3228 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 3229 vd->vdev_ops->vdev_op_leaf) 3230 vd->vdev_ops->vdev_op_close(vd); 3231 3232 /* 3233 * If we have brought this vdev back into service, we need 3234 * to notify fmd so that it can gracefully repair any outstanding 3235 * cases due to a missing device. We do this in all cases, even those 3236 * that probably don't correlate to a repaired fault. This is sure to 3237 * catch all cases, and we let the zfs-retire agent sort it out. If 3238 * this is a transient state it's OK, as the retire agent will 3239 * double-check the state of the vdev before repairing it. 3240 */ 3241 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf && 3242 vd->vdev_prevstate != state) 3243 zfs_post_state_change(spa, vd); 3244 3245 if (vd->vdev_removed && 3246 state == VDEV_STATE_CANT_OPEN && 3247 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 3248 /* 3249 * If the previous state is set to VDEV_STATE_REMOVED, then this 3250 * device was previously marked removed and someone attempted to 3251 * reopen it. If this failed due to a nonexistent device, then 3252 * keep the device in the REMOVED state. We also let this be if 3253 * it is one of our special test online cases, which is only 3254 * attempting to online the device and shouldn't generate an FMA 3255 * fault. 3256 */ 3257 vd->vdev_state = VDEV_STATE_REMOVED; 3258 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 3259 } else if (state == VDEV_STATE_REMOVED) { 3260 vd->vdev_removed = B_TRUE; 3261 } else if (state == VDEV_STATE_CANT_OPEN) { 3262 /* 3263 * If we fail to open a vdev during an import or recovery, we 3264 * mark it as "not available", which signifies that it was 3265 * never there to begin with. Failure to open such a device 3266 * is not considered an error. 3267 */ 3268 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 3269 spa_load_state(spa) == SPA_LOAD_RECOVER) && 3270 vd->vdev_ops->vdev_op_leaf) 3271 vd->vdev_not_present = 1; 3272 3273 /* 3274 * Post the appropriate ereport. If the 'prevstate' field is 3275 * set to something other than VDEV_STATE_UNKNOWN, it indicates 3276 * that this is part of a vdev_reopen(). In this case, we don't 3277 * want to post the ereport if the device was already in the 3278 * CANT_OPEN state beforehand. 3279 * 3280 * If the 'checkremove' flag is set, then this is an attempt to 3281 * online the device in response to an insertion event. If we 3282 * hit this case, then we have detected an insertion event for a 3283 * faulted or offline device that wasn't in the removed state. 3284 * In this scenario, we don't post an ereport because we are 3285 * about to replace the device, or attempt an online with 3286 * vdev_forcefault, which will generate the fault for us. 3287 */ 3288 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 3289 !vd->vdev_not_present && !vd->vdev_checkremove && 3290 vd != spa->spa_root_vdev) { 3291 const char *class; 3292 3293 switch (aux) { 3294 case VDEV_AUX_OPEN_FAILED: 3295 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 3296 break; 3297 case VDEV_AUX_CORRUPT_DATA: 3298 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 3299 break; 3300 case VDEV_AUX_NO_REPLICAS: 3301 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 3302 break; 3303 case VDEV_AUX_BAD_GUID_SUM: 3304 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 3305 break; 3306 case VDEV_AUX_TOO_SMALL: 3307 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 3308 break; 3309 case VDEV_AUX_BAD_LABEL: 3310 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 3311 break; 3312 default: 3313 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 3314 } 3315 3316 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 3317 } 3318 3319 /* Erase any notion of persistent removed state */ 3320 vd->vdev_removed = B_FALSE; 3321 } else { 3322 vd->vdev_removed = B_FALSE; 3323 } 3324 3325 if (!isopen && vd->vdev_parent) 3326 vdev_propagate_state(vd->vdev_parent); 3327 } 3328 3329 /* 3330 * Check the vdev configuration to ensure that it's capable of supporting 3331 * a root pool. We do not support partial configuration. 3332 * In addition, only a single top-level vdev is allowed. 3333 */ 3334 boolean_t 3335 vdev_is_bootable(vdev_t *vd) 3336 { 3337 if (!vd->vdev_ops->vdev_op_leaf) { 3338 char *vdev_type = vd->vdev_ops->vdev_op_type; 3339 3340 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 3341 vd->vdev_children > 1) { 3342 return (B_FALSE); 3343 } else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 3344 return (B_FALSE); 3345 } 3346 } 3347 3348 for (int c = 0; c < vd->vdev_children; c++) { 3349 if (!vdev_is_bootable(vd->vdev_child[c])) 3350 return (B_FALSE); 3351 } 3352 return (B_TRUE); 3353 } 3354 3355 /* 3356 * Load the state from the original vdev tree (ovd) which 3357 * we've retrieved from the MOS config object. If the original 3358 * vdev was offline or faulted then we transfer that state to the 3359 * device in the current vdev tree (nvd). 3360 */ 3361 void 3362 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd) 3363 { 3364 spa_t *spa = nvd->vdev_spa; 3365 3366 ASSERT(nvd->vdev_top->vdev_islog); 3367 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3368 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid); 3369 3370 for (int c = 0; c < nvd->vdev_children; c++) 3371 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]); 3372 3373 if (nvd->vdev_ops->vdev_op_leaf) { 3374 /* 3375 * Restore the persistent vdev state 3376 */ 3377 nvd->vdev_offline = ovd->vdev_offline; 3378 nvd->vdev_faulted = ovd->vdev_faulted; 3379 nvd->vdev_degraded = ovd->vdev_degraded; 3380 nvd->vdev_removed = ovd->vdev_removed; 3381 } 3382 } 3383 3384 /* 3385 * Determine if a log device has valid content. If the vdev was 3386 * removed or faulted in the MOS config then we know that 3387 * the content on the log device has already been written to the pool. 3388 */ 3389 boolean_t 3390 vdev_log_state_valid(vdev_t *vd) 3391 { 3392 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 3393 !vd->vdev_removed) 3394 return (B_TRUE); 3395 3396 for (int c = 0; c < vd->vdev_children; c++) 3397 if (vdev_log_state_valid(vd->vdev_child[c])) 3398 return (B_TRUE); 3399 3400 return (B_FALSE); 3401 } 3402 3403 /* 3404 * Expand a vdev if possible. 3405 */ 3406 void 3407 vdev_expand(vdev_t *vd, uint64_t txg) 3408 { 3409 ASSERT(vd->vdev_top == vd); 3410 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3411 3412 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) { 3413 VERIFY(vdev_metaslab_init(vd, txg) == 0); 3414 vdev_config_dirty(vd); 3415 } 3416 } 3417 3418 /* 3419 * Split a vdev. 3420 */ 3421 void 3422 vdev_split(vdev_t *vd) 3423 { 3424 vdev_t *cvd, *pvd = vd->vdev_parent; 3425 3426 vdev_remove_child(pvd, vd); 3427 vdev_compact_children(pvd); 3428 3429 cvd = pvd->vdev_child[0]; 3430 if (pvd->vdev_children == 1) { 3431 vdev_remove_parent(cvd); 3432 cvd->vdev_splitting = B_TRUE; 3433 } 3434 vdev_propagate_state(cvd); 3435 } 3436 3437 void 3438 vdev_deadman(vdev_t *vd) 3439 { 3440 for (int c = 0; c < vd->vdev_children; c++) { 3441 vdev_t *cvd = vd->vdev_child[c]; 3442 3443 vdev_deadman(cvd); 3444 } 3445 3446 if (vd->vdev_ops->vdev_op_leaf) { 3447 vdev_queue_t *vq = &vd->vdev_queue; 3448 3449 mutex_enter(&vq->vq_lock); 3450 if (avl_numnodes(&vq->vq_active_tree) > 0) { 3451 spa_t *spa = vd->vdev_spa; 3452 zio_t *fio; 3453 uint64_t delta; 3454 3455 /* 3456 * Look at the head of all the pending queues, 3457 * if any I/O has been outstanding for longer than 3458 * the spa_deadman_synctime we panic the system. 3459 */ 3460 fio = avl_first(&vq->vq_active_tree); 3461 delta = gethrtime() - fio->io_timestamp; 3462 if (delta > spa_deadman_synctime(spa)) { 3463 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, " 3464 "delta %lluns, last io %lluns", 3465 fio->io_timestamp, delta, 3466 vq->vq_io_complete_ts); 3467 fm_panic("I/O to pool '%s' appears to be " 3468 "hung.", spa_name(spa)); 3469 } 3470 } 3471 mutex_exit(&vq->vq_lock); 3472 } 3473 }