1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2016 Toomas Soome <tsoome@me.com>
28 */
29
30 #include <sys/zfs_context.h>
31 #include <sys/fm/fs/zfs.h>
32 #include <sys/spa.h>
33 #include <sys/spa_impl.h>
34 #include <sys/dmu.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/vdev_impl.h>
37 #include <sys/uberblock_impl.h>
38 #include <sys/metaslab.h>
39 #include <sys/metaslab_impl.h>
40 #include <sys/space_map.h>
41 #include <sys/space_reftree.h>
42 #include <sys/zio.h>
43 #include <sys/zap.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/arc.h>
46 #include <sys/zil.h>
47 #include <sys/dsl_scan.h>
48
49 /*
50 * Virtual device management.
51 */
52
53 static vdev_ops_t *vdev_ops_table[] = {
54 &vdev_root_ops,
55 &vdev_raidz_ops,
56 &vdev_mirror_ops,
57 &vdev_replacing_ops,
58 &vdev_spare_ops,
59 &vdev_disk_ops,
60 &vdev_file_ops,
61 &vdev_missing_ops,
62 &vdev_hole_ops,
63 NULL
64 };
65
66 /* maximum scrub/resilver I/O queue per leaf vdev */
67 int zfs_scrub_limit = 10;
68
69 /*
70 * When a vdev is added, it will be divided into approximately (but no
71 * more than) this number of metaslabs.
72 */
73 int metaslabs_per_vdev = 200;
74
75 /*
76 * Given a vdev type, return the appropriate ops vector.
77 */
78 static vdev_ops_t *
79 vdev_getops(const char *type)
80 {
81 vdev_ops_t *ops, **opspp;
82
83 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
84 if (strcmp(ops->vdev_op_type, type) == 0)
85 break;
86
87 return (ops);
88 }
89
90 /*
91 * Default asize function: return the MAX of psize with the asize of
92 * all children. This is what's used by anything other than RAID-Z.
93 */
94 uint64_t
95 vdev_default_asize(vdev_t *vd, uint64_t psize)
96 {
97 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
98 uint64_t csize;
99
100 for (int c = 0; c < vd->vdev_children; c++) {
101 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
102 asize = MAX(asize, csize);
103 }
104
105 return (asize);
106 }
107
108 /*
109 * Get the minimum allocatable size. We define the allocatable size as
110 * the vdev's asize rounded to the nearest metaslab. This allows us to
111 * replace or attach devices which don't have the same physical size but
112 * can still satisfy the same number of allocations.
113 */
114 uint64_t
115 vdev_get_min_asize(vdev_t *vd)
116 {
117 vdev_t *pvd = vd->vdev_parent;
118
119 /*
120 * If our parent is NULL (inactive spare or cache) or is the root,
121 * just return our own asize.
122 */
123 if (pvd == NULL)
124 return (vd->vdev_asize);
125
126 /*
127 * The top-level vdev just returns the allocatable size rounded
128 * to the nearest metaslab.
129 */
130 if (vd == vd->vdev_top)
131 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
132
133 /*
134 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
135 * so each child must provide at least 1/Nth of its asize.
136 */
137 if (pvd->vdev_ops == &vdev_raidz_ops)
138 return (pvd->vdev_min_asize / pvd->vdev_children);
139
140 return (pvd->vdev_min_asize);
141 }
142
143 void
144 vdev_set_min_asize(vdev_t *vd)
145 {
146 vd->vdev_min_asize = vdev_get_min_asize(vd);
147
148 for (int c = 0; c < vd->vdev_children; c++)
149 vdev_set_min_asize(vd->vdev_child[c]);
150 }
151
152 vdev_t *
153 vdev_lookup_top(spa_t *spa, uint64_t vdev)
154 {
155 vdev_t *rvd = spa->spa_root_vdev;
156
157 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
158
159 if (vdev < rvd->vdev_children) {
160 ASSERT(rvd->vdev_child[vdev] != NULL);
161 return (rvd->vdev_child[vdev]);
162 }
163
164 return (NULL);
165 }
166
167 vdev_t *
168 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
169 {
170 vdev_t *mvd;
171
172 if (vd->vdev_guid == guid)
173 return (vd);
174
175 for (int c = 0; c < vd->vdev_children; c++)
176 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
177 NULL)
178 return (mvd);
179
180 return (NULL);
181 }
182
183 static int
184 vdev_count_leaves_impl(vdev_t *vd)
185 {
186 int n = 0;
187
188 if (vd->vdev_ops->vdev_op_leaf)
189 return (1);
190
191 for (int c = 0; c < vd->vdev_children; c++)
192 n += vdev_count_leaves_impl(vd->vdev_child[c]);
193
194 return (n);
195 }
196
197 int
198 vdev_count_leaves(spa_t *spa)
199 {
200 return (vdev_count_leaves_impl(spa->spa_root_vdev));
201 }
202
203 void
204 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
205 {
206 size_t oldsize, newsize;
207 uint64_t id = cvd->vdev_id;
208 vdev_t **newchild;
209 spa_t *spa = cvd->vdev_spa;
210
211 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
212 ASSERT(cvd->vdev_parent == NULL);
213
214 cvd->vdev_parent = pvd;
215
216 if (pvd == NULL)
217 return;
218
219 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
220
221 oldsize = pvd->vdev_children * sizeof (vdev_t *);
222 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
223 newsize = pvd->vdev_children * sizeof (vdev_t *);
224
225 newchild = kmem_zalloc(newsize, KM_SLEEP);
226 if (pvd->vdev_child != NULL) {
227 bcopy(pvd->vdev_child, newchild, oldsize);
228 kmem_free(pvd->vdev_child, oldsize);
229 }
230
231 pvd->vdev_child = newchild;
232 pvd->vdev_child[id] = cvd;
233
234 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
235 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
236
237 /*
238 * Walk up all ancestors to update guid sum.
239 */
240 for (; pvd != NULL; pvd = pvd->vdev_parent)
241 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
242 }
243
244 void
245 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
246 {
247 int c;
248 uint_t id = cvd->vdev_id;
249
250 ASSERT(cvd->vdev_parent == pvd);
251
252 if (pvd == NULL)
253 return;
254
255 ASSERT(id < pvd->vdev_children);
256 ASSERT(pvd->vdev_child[id] == cvd);
257
258 pvd->vdev_child[id] = NULL;
259 cvd->vdev_parent = NULL;
260
261 for (c = 0; c < pvd->vdev_children; c++)
262 if (pvd->vdev_child[c])
263 break;
264
265 if (c == pvd->vdev_children) {
266 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
267 pvd->vdev_child = NULL;
268 pvd->vdev_children = 0;
269 }
270
271 /*
272 * Walk up all ancestors to update guid sum.
273 */
274 for (; pvd != NULL; pvd = pvd->vdev_parent)
275 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
276 }
277
278 /*
279 * Remove any holes in the child array.
280 */
281 void
282 vdev_compact_children(vdev_t *pvd)
283 {
284 vdev_t **newchild, *cvd;
285 int oldc = pvd->vdev_children;
286 int newc;
287
288 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
289
290 for (int c = newc = 0; c < oldc; c++)
291 if (pvd->vdev_child[c])
292 newc++;
293
294 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
295
296 for (int c = newc = 0; c < oldc; c++) {
297 if ((cvd = pvd->vdev_child[c]) != NULL) {
298 newchild[newc] = cvd;
299 cvd->vdev_id = newc++;
300 }
301 }
302
303 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
304 pvd->vdev_child = newchild;
305 pvd->vdev_children = newc;
306 }
307
308 /*
309 * Allocate and minimally initialize a vdev_t.
310 */
311 vdev_t *
312 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
313 {
314 vdev_t *vd;
315
316 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
317
318 if (spa->spa_root_vdev == NULL) {
319 ASSERT(ops == &vdev_root_ops);
320 spa->spa_root_vdev = vd;
321 spa->spa_load_guid = spa_generate_guid(NULL);
322 }
323
324 if (guid == 0 && ops != &vdev_hole_ops) {
325 if (spa->spa_root_vdev == vd) {
326 /*
327 * The root vdev's guid will also be the pool guid,
328 * which must be unique among all pools.
329 */
330 guid = spa_generate_guid(NULL);
331 } else {
332 /*
333 * Any other vdev's guid must be unique within the pool.
334 */
335 guid = spa_generate_guid(spa);
336 }
337 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
338 }
339
340 vd->vdev_spa = spa;
341 vd->vdev_id = id;
342 vd->vdev_guid = guid;
343 vd->vdev_guid_sum = guid;
344 vd->vdev_ops = ops;
345 vd->vdev_state = VDEV_STATE_CLOSED;
346 vd->vdev_ishole = (ops == &vdev_hole_ops);
347
348 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
349 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
350 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
351 mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
352 for (int t = 0; t < DTL_TYPES; t++) {
353 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
354 &vd->vdev_dtl_lock);
355 }
356 txg_list_create(&vd->vdev_ms_list,
357 offsetof(struct metaslab, ms_txg_node));
358 txg_list_create(&vd->vdev_dtl_list,
359 offsetof(struct vdev, vdev_dtl_node));
360 vd->vdev_stat.vs_timestamp = gethrtime();
361 vdev_queue_init(vd);
362 vdev_cache_init(vd);
363
364 return (vd);
365 }
366
367 /*
368 * Allocate a new vdev. The 'alloctype' is used to control whether we are
369 * creating a new vdev or loading an existing one - the behavior is slightly
370 * different for each case.
371 */
372 int
373 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
374 int alloctype)
375 {
376 vdev_ops_t *ops;
377 char *type;
378 uint64_t guid = 0, islog, nparity;
379 vdev_t *vd;
380
381 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
382
383 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
384 return (SET_ERROR(EINVAL));
385
386 if ((ops = vdev_getops(type)) == NULL)
387 return (SET_ERROR(EINVAL));
388
389 /*
390 * If this is a load, get the vdev guid from the nvlist.
391 * Otherwise, vdev_alloc_common() will generate one for us.
392 */
393 if (alloctype == VDEV_ALLOC_LOAD) {
394 uint64_t label_id;
395
396 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
397 label_id != id)
398 return (SET_ERROR(EINVAL));
399
400 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
401 return (SET_ERROR(EINVAL));
402 } else if (alloctype == VDEV_ALLOC_SPARE) {
403 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
404 return (SET_ERROR(EINVAL));
405 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
406 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
407 return (SET_ERROR(EINVAL));
408 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
409 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
410 return (SET_ERROR(EINVAL));
411 }
412
413 /*
414 * The first allocated vdev must be of type 'root'.
415 */
416 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
417 return (SET_ERROR(EINVAL));
418
419 /*
420 * Determine whether we're a log vdev.
421 */
422 islog = 0;
423 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
424 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
425 return (SET_ERROR(ENOTSUP));
426
427 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
428 return (SET_ERROR(ENOTSUP));
429
430 /*
431 * Set the nparity property for RAID-Z vdevs.
432 */
433 nparity = -1ULL;
434 if (ops == &vdev_raidz_ops) {
435 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
436 &nparity) == 0) {
437 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
438 return (SET_ERROR(EINVAL));
439 /*
440 * Previous versions could only support 1 or 2 parity
441 * device.
442 */
443 if (nparity > 1 &&
444 spa_version(spa) < SPA_VERSION_RAIDZ2)
445 return (SET_ERROR(ENOTSUP));
446 if (nparity > 2 &&
447 spa_version(spa) < SPA_VERSION_RAIDZ3)
448 return (SET_ERROR(ENOTSUP));
449 } else {
450 /*
451 * We require the parity to be specified for SPAs that
452 * support multiple parity levels.
453 */
454 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
455 return (SET_ERROR(EINVAL));
456 /*
457 * Otherwise, we default to 1 parity device for RAID-Z.
458 */
459 nparity = 1;
460 }
461 } else {
462 nparity = 0;
463 }
464 ASSERT(nparity != -1ULL);
465
466 vd = vdev_alloc_common(spa, id, guid, ops);
467
468 vd->vdev_islog = islog;
469 vd->vdev_nparity = nparity;
470
471 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
472 vd->vdev_path = spa_strdup(vd->vdev_path);
473 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
474 vd->vdev_devid = spa_strdup(vd->vdev_devid);
475 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
476 &vd->vdev_physpath) == 0)
477 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
478 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
479 vd->vdev_fru = spa_strdup(vd->vdev_fru);
480
481 /*
482 * Set the whole_disk property. If it's not specified, leave the value
483 * as -1.
484 */
485 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
486 &vd->vdev_wholedisk) != 0)
487 vd->vdev_wholedisk = -1ULL;
488
489 /*
490 * Look for the 'not present' flag. This will only be set if the device
491 * was not present at the time of import.
492 */
493 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
494 &vd->vdev_not_present);
495
496 /*
497 * Get the alignment requirement.
498 */
499 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
500
501 /*
502 * Retrieve the vdev creation time.
503 */
504 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
505 &vd->vdev_crtxg);
506
507 /*
508 * If we're a top-level vdev, try to load the allocation parameters.
509 */
510 if (parent && !parent->vdev_parent &&
511 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
512 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
513 &vd->vdev_ms_array);
514 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
515 &vd->vdev_ms_shift);
516 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
517 &vd->vdev_asize);
518 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
519 &vd->vdev_removing);
520 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
521 &vd->vdev_top_zap);
522 } else {
523 ASSERT0(vd->vdev_top_zap);
524 }
525
526 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
527 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
528 alloctype == VDEV_ALLOC_ADD ||
529 alloctype == VDEV_ALLOC_SPLIT ||
530 alloctype == VDEV_ALLOC_ROOTPOOL);
531 vd->vdev_mg = metaslab_group_create(islog ?
532 spa_log_class(spa) : spa_normal_class(spa), vd);
533 }
534
535 if (vd->vdev_ops->vdev_op_leaf &&
536 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
537 (void) nvlist_lookup_uint64(nv,
538 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
539 } else {
540 ASSERT0(vd->vdev_leaf_zap);
541 }
542
543 /*
544 * If we're a leaf vdev, try to load the DTL object and other state.
545 */
546
547 if (vd->vdev_ops->vdev_op_leaf &&
548 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
549 alloctype == VDEV_ALLOC_ROOTPOOL)) {
550 if (alloctype == VDEV_ALLOC_LOAD) {
551 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
552 &vd->vdev_dtl_object);
553 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
554 &vd->vdev_unspare);
555 }
556
557 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
558 uint64_t spare = 0;
559
560 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
561 &spare) == 0 && spare)
562 spa_spare_add(vd);
563 }
564
565 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
566 &vd->vdev_offline);
567
568 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
569 &vd->vdev_resilver_txg);
570
571 /*
572 * When importing a pool, we want to ignore the persistent fault
573 * state, as the diagnosis made on another system may not be
574 * valid in the current context. Local vdevs will
575 * remain in the faulted state.
576 */
577 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
578 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
579 &vd->vdev_faulted);
580 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
581 &vd->vdev_degraded);
582 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
583 &vd->vdev_removed);
584
585 if (vd->vdev_faulted || vd->vdev_degraded) {
586 char *aux;
587
588 vd->vdev_label_aux =
589 VDEV_AUX_ERR_EXCEEDED;
590 if (nvlist_lookup_string(nv,
591 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
592 strcmp(aux, "external") == 0)
593 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
594 }
595 }
596 }
597
598 /*
599 * Add ourselves to the parent's list of children.
600 */
601 vdev_add_child(parent, vd);
602
603 *vdp = vd;
604
605 return (0);
606 }
607
608 void
609 vdev_free(vdev_t *vd)
610 {
611 spa_t *spa = vd->vdev_spa;
612
613 /*
614 * vdev_free() implies closing the vdev first. This is simpler than
615 * trying to ensure complicated semantics for all callers.
616 */
617 vdev_close(vd);
618
619 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
620 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
621
622 /*
623 * Free all children.
624 */
625 for (int c = 0; c < vd->vdev_children; c++)
626 vdev_free(vd->vdev_child[c]);
627
628 ASSERT(vd->vdev_child == NULL);
629 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
630
631 /*
632 * Discard allocation state.
633 */
634 if (vd->vdev_mg != NULL) {
635 vdev_metaslab_fini(vd);
636 metaslab_group_destroy(vd->vdev_mg);
637 }
638
639 ASSERT0(vd->vdev_stat.vs_space);
640 ASSERT0(vd->vdev_stat.vs_dspace);
641 ASSERT0(vd->vdev_stat.vs_alloc);
642
643 /*
644 * Remove this vdev from its parent's child list.
645 */
646 vdev_remove_child(vd->vdev_parent, vd);
647
648 ASSERT(vd->vdev_parent == NULL);
649
650 /*
651 * Clean up vdev structure.
652 */
653 vdev_queue_fini(vd);
654 vdev_cache_fini(vd);
655
656 if (vd->vdev_path)
657 spa_strfree(vd->vdev_path);
658 if (vd->vdev_devid)
659 spa_strfree(vd->vdev_devid);
660 if (vd->vdev_physpath)
661 spa_strfree(vd->vdev_physpath);
662 if (vd->vdev_fru)
663 spa_strfree(vd->vdev_fru);
664
665 if (vd->vdev_isspare)
666 spa_spare_remove(vd);
667 if (vd->vdev_isl2cache)
668 spa_l2cache_remove(vd);
669
670 txg_list_destroy(&vd->vdev_ms_list);
671 txg_list_destroy(&vd->vdev_dtl_list);
672
673 mutex_enter(&vd->vdev_dtl_lock);
674 space_map_close(vd->vdev_dtl_sm);
675 for (int t = 0; t < DTL_TYPES; t++) {
676 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
677 range_tree_destroy(vd->vdev_dtl[t]);
678 }
679 mutex_exit(&vd->vdev_dtl_lock);
680
681 mutex_destroy(&vd->vdev_queue_lock);
682 mutex_destroy(&vd->vdev_dtl_lock);
683 mutex_destroy(&vd->vdev_stat_lock);
684 mutex_destroy(&vd->vdev_probe_lock);
685
686 if (vd == spa->spa_root_vdev)
687 spa->spa_root_vdev = NULL;
688
689 kmem_free(vd, sizeof (vdev_t));
690 }
691
692 /*
693 * Transfer top-level vdev state from svd to tvd.
694 */
695 static void
696 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
697 {
698 spa_t *spa = svd->vdev_spa;
699 metaslab_t *msp;
700 vdev_t *vd;
701 int t;
702
703 ASSERT(tvd == tvd->vdev_top);
704
705 tvd->vdev_ms_array = svd->vdev_ms_array;
706 tvd->vdev_ms_shift = svd->vdev_ms_shift;
707 tvd->vdev_ms_count = svd->vdev_ms_count;
708 tvd->vdev_top_zap = svd->vdev_top_zap;
709
710 svd->vdev_ms_array = 0;
711 svd->vdev_ms_shift = 0;
712 svd->vdev_ms_count = 0;
713 svd->vdev_top_zap = 0;
714
715 if (tvd->vdev_mg)
716 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
717 tvd->vdev_mg = svd->vdev_mg;
718 tvd->vdev_ms = svd->vdev_ms;
719
720 svd->vdev_mg = NULL;
721 svd->vdev_ms = NULL;
722
723 if (tvd->vdev_mg != NULL)
724 tvd->vdev_mg->mg_vd = tvd;
725
726 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
727 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
728 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
729
730 svd->vdev_stat.vs_alloc = 0;
731 svd->vdev_stat.vs_space = 0;
732 svd->vdev_stat.vs_dspace = 0;
733
734 for (t = 0; t < TXG_SIZE; t++) {
735 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
736 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
737 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
738 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
739 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
740 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
741 }
742
743 if (list_link_active(&svd->vdev_config_dirty_node)) {
744 vdev_config_clean(svd);
745 vdev_config_dirty(tvd);
746 }
747
748 if (list_link_active(&svd->vdev_state_dirty_node)) {
749 vdev_state_clean(svd);
750 vdev_state_dirty(tvd);
751 }
752
753 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
754 svd->vdev_deflate_ratio = 0;
755
756 tvd->vdev_islog = svd->vdev_islog;
757 svd->vdev_islog = 0;
758 }
759
760 static void
761 vdev_top_update(vdev_t *tvd, vdev_t *vd)
762 {
763 if (vd == NULL)
764 return;
765
766 vd->vdev_top = tvd;
767
768 for (int c = 0; c < vd->vdev_children; c++)
769 vdev_top_update(tvd, vd->vdev_child[c]);
770 }
771
772 /*
773 * Add a mirror/replacing vdev above an existing vdev.
774 */
775 vdev_t *
776 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
777 {
778 spa_t *spa = cvd->vdev_spa;
779 vdev_t *pvd = cvd->vdev_parent;
780 vdev_t *mvd;
781
782 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
783
784 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
785
786 mvd->vdev_asize = cvd->vdev_asize;
787 mvd->vdev_min_asize = cvd->vdev_min_asize;
788 mvd->vdev_max_asize = cvd->vdev_max_asize;
789 mvd->vdev_ashift = cvd->vdev_ashift;
790 mvd->vdev_state = cvd->vdev_state;
791 mvd->vdev_crtxg = cvd->vdev_crtxg;
792
793 vdev_remove_child(pvd, cvd);
794 vdev_add_child(pvd, mvd);
795 cvd->vdev_id = mvd->vdev_children;
796 vdev_add_child(mvd, cvd);
797 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
798
799 if (mvd == mvd->vdev_top)
800 vdev_top_transfer(cvd, mvd);
801
802 return (mvd);
803 }
804
805 /*
806 * Remove a 1-way mirror/replacing vdev from the tree.
807 */
808 void
809 vdev_remove_parent(vdev_t *cvd)
810 {
811 vdev_t *mvd = cvd->vdev_parent;
812 vdev_t *pvd = mvd->vdev_parent;
813
814 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
815
816 ASSERT(mvd->vdev_children == 1);
817 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
818 mvd->vdev_ops == &vdev_replacing_ops ||
819 mvd->vdev_ops == &vdev_spare_ops);
820 cvd->vdev_ashift = mvd->vdev_ashift;
821
822 vdev_remove_child(mvd, cvd);
823 vdev_remove_child(pvd, mvd);
824
825 /*
826 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
827 * Otherwise, we could have detached an offline device, and when we
828 * go to import the pool we'll think we have two top-level vdevs,
829 * instead of a different version of the same top-level vdev.
830 */
831 if (mvd->vdev_top == mvd) {
832 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
833 cvd->vdev_orig_guid = cvd->vdev_guid;
834 cvd->vdev_guid += guid_delta;
835 cvd->vdev_guid_sum += guid_delta;
836 }
837 cvd->vdev_id = mvd->vdev_id;
838 vdev_add_child(pvd, cvd);
839 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
840
841 if (cvd == cvd->vdev_top)
842 vdev_top_transfer(mvd, cvd);
843
844 ASSERT(mvd->vdev_children == 0);
845 vdev_free(mvd);
846 }
847
848 int
849 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
850 {
851 spa_t *spa = vd->vdev_spa;
852 objset_t *mos = spa->spa_meta_objset;
853 uint64_t m;
854 uint64_t oldc = vd->vdev_ms_count;
855 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
856 metaslab_t **mspp;
857 int error;
858
859 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
860
861 /*
862 * This vdev is not being allocated from yet or is a hole.
863 */
864 if (vd->vdev_ms_shift == 0)
865 return (0);
866
867 ASSERT(!vd->vdev_ishole);
868
869 /*
870 * Compute the raidz-deflation ratio. Note, we hard-code
871 * in 128k (1 << 17) because it is the "typical" blocksize.
872 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
873 * otherwise it would inconsistently account for existing bp's.
874 */
875 vd->vdev_deflate_ratio = (1 << 17) /
876 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
877
878 ASSERT(oldc <= newc);
879
880 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
881
882 if (oldc != 0) {
883 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
884 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
885 }
886
887 vd->vdev_ms = mspp;
888 vd->vdev_ms_count = newc;
889
890 for (m = oldc; m < newc; m++) {
891 uint64_t object = 0;
892
893 if (txg == 0) {
894 error = dmu_read(mos, vd->vdev_ms_array,
895 m * sizeof (uint64_t), sizeof (uint64_t), &object,
896 DMU_READ_PREFETCH);
897 if (error)
898 return (error);
899 }
900
901 error = metaslab_init(vd->vdev_mg, m, object, txg,
902 &(vd->vdev_ms[m]));
903 if (error)
904 return (error);
905 }
906
907 if (txg == 0)
908 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
909
910 /*
911 * If the vdev is being removed we don't activate
912 * the metaslabs since we want to ensure that no new
913 * allocations are performed on this device.
914 */
915 if (oldc == 0 && !vd->vdev_removing)
916 metaslab_group_activate(vd->vdev_mg);
917
918 if (txg == 0)
919 spa_config_exit(spa, SCL_ALLOC, FTAG);
920
921 return (0);
922 }
923
924 void
925 vdev_metaslab_fini(vdev_t *vd)
926 {
927 uint64_t m;
928 uint64_t count = vd->vdev_ms_count;
929
930 if (vd->vdev_ms != NULL) {
931 metaslab_group_passivate(vd->vdev_mg);
932 for (m = 0; m < count; m++) {
933 metaslab_t *msp = vd->vdev_ms[m];
934
935 if (msp != NULL)
936 metaslab_fini(msp);
937 }
938 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
939 vd->vdev_ms = NULL;
940 }
941 }
942
943 typedef struct vdev_probe_stats {
944 boolean_t vps_readable;
945 boolean_t vps_writeable;
946 int vps_flags;
947 } vdev_probe_stats_t;
948
949 static void
950 vdev_probe_done(zio_t *zio)
951 {
952 spa_t *spa = zio->io_spa;
953 vdev_t *vd = zio->io_vd;
954 vdev_probe_stats_t *vps = zio->io_private;
955
956 ASSERT(vd->vdev_probe_zio != NULL);
957
958 if (zio->io_type == ZIO_TYPE_READ) {
959 if (zio->io_error == 0)
960 vps->vps_readable = 1;
961 if (zio->io_error == 0 && spa_writeable(spa)) {
962 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
963 zio->io_offset, zio->io_size, zio->io_data,
964 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
965 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
966 } else {
967 zio_buf_free(zio->io_data, zio->io_size);
968 }
969 } else if (zio->io_type == ZIO_TYPE_WRITE) {
970 if (zio->io_error == 0)
971 vps->vps_writeable = 1;
972 zio_buf_free(zio->io_data, zio->io_size);
973 } else if (zio->io_type == ZIO_TYPE_NULL) {
974 zio_t *pio;
975
976 vd->vdev_cant_read |= !vps->vps_readable;
977 vd->vdev_cant_write |= !vps->vps_writeable;
978
979 if (vdev_readable(vd) &&
980 (vdev_writeable(vd) || !spa_writeable(spa))) {
981 zio->io_error = 0;
982 } else {
983 ASSERT(zio->io_error != 0);
984 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
985 spa, vd, NULL, 0, 0);
986 zio->io_error = SET_ERROR(ENXIO);
987 }
988
989 mutex_enter(&vd->vdev_probe_lock);
990 ASSERT(vd->vdev_probe_zio == zio);
991 vd->vdev_probe_zio = NULL;
992 mutex_exit(&vd->vdev_probe_lock);
993
994 zio_link_t *zl = NULL;
995 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
996 if (!vdev_accessible(vd, pio))
997 pio->io_error = SET_ERROR(ENXIO);
998
999 kmem_free(vps, sizeof (*vps));
1000 }
1001 }
1002
1003 /*
1004 * Determine whether this device is accessible.
1005 *
1006 * Read and write to several known locations: the pad regions of each
1007 * vdev label but the first, which we leave alone in case it contains
1008 * a VTOC.
1009 */
1010 zio_t *
1011 vdev_probe(vdev_t *vd, zio_t *zio)
1012 {
1013 spa_t *spa = vd->vdev_spa;
1014 vdev_probe_stats_t *vps = NULL;
1015 zio_t *pio;
1016
1017 ASSERT(vd->vdev_ops->vdev_op_leaf);
1018
1019 /*
1020 * Don't probe the probe.
1021 */
1022 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1023 return (NULL);
1024
1025 /*
1026 * To prevent 'probe storms' when a device fails, we create
1027 * just one probe i/o at a time. All zios that want to probe
1028 * this vdev will become parents of the probe io.
1029 */
1030 mutex_enter(&vd->vdev_probe_lock);
1031
1032 if ((pio = vd->vdev_probe_zio) == NULL) {
1033 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1034
1035 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1036 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1037 ZIO_FLAG_TRYHARD;
1038
1039 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1040 /*
1041 * vdev_cant_read and vdev_cant_write can only
1042 * transition from TRUE to FALSE when we have the
1043 * SCL_ZIO lock as writer; otherwise they can only
1044 * transition from FALSE to TRUE. This ensures that
1045 * any zio looking at these values can assume that
1046 * failures persist for the life of the I/O. That's
1047 * important because when a device has intermittent
1048 * connectivity problems, we want to ensure that
1049 * they're ascribed to the device (ENXIO) and not
1050 * the zio (EIO).
1051 *
1052 * Since we hold SCL_ZIO as writer here, clear both
1053 * values so the probe can reevaluate from first
1054 * principles.
1055 */
1056 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1057 vd->vdev_cant_read = B_FALSE;
1058 vd->vdev_cant_write = B_FALSE;
1059 }
1060
1061 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1062 vdev_probe_done, vps,
1063 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1064
1065 /*
1066 * We can't change the vdev state in this context, so we
1067 * kick off an async task to do it on our behalf.
1068 */
1069 if (zio != NULL) {
1070 vd->vdev_probe_wanted = B_TRUE;
1071 spa_async_request(spa, SPA_ASYNC_PROBE);
1072 }
1073 }
1074
1075 if (zio != NULL)
1076 zio_add_child(zio, pio);
1077
1078 mutex_exit(&vd->vdev_probe_lock);
1079
1080 if (vps == NULL) {
1081 ASSERT(zio != NULL);
1082 return (NULL);
1083 }
1084
1085 for (int l = 1; l < VDEV_LABELS; l++) {
1086 zio_nowait(zio_read_phys(pio, vd,
1087 vdev_label_offset(vd->vdev_psize, l,
1088 offsetof(vdev_label_t, vl_pad2)),
1089 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1090 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1091 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1092 }
1093
1094 if (zio == NULL)
1095 return (pio);
1096
1097 zio_nowait(pio);
1098 return (NULL);
1099 }
1100
1101 static void
1102 vdev_open_child(void *arg)
1103 {
1104 vdev_t *vd = arg;
1105
1106 vd->vdev_open_thread = curthread;
1107 vd->vdev_open_error = vdev_open(vd);
1108 vd->vdev_open_thread = NULL;
1109 }
1110
1111 boolean_t
1112 vdev_uses_zvols(vdev_t *vd)
1113 {
1114 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1115 strlen(ZVOL_DIR)) == 0)
1116 return (B_TRUE);
1117 for (int c = 0; c < vd->vdev_children; c++)
1118 if (vdev_uses_zvols(vd->vdev_child[c]))
1119 return (B_TRUE);
1120 return (B_FALSE);
1121 }
1122
1123 void
1124 vdev_open_children(vdev_t *vd)
1125 {
1126 taskq_t *tq;
1127 int children = vd->vdev_children;
1128
1129 /*
1130 * in order to handle pools on top of zvols, do the opens
1131 * in a single thread so that the same thread holds the
1132 * spa_namespace_lock
1133 */
1134 if (vdev_uses_zvols(vd)) {
1135 for (int c = 0; c < children; c++)
1136 vd->vdev_child[c]->vdev_open_error =
1137 vdev_open(vd->vdev_child[c]);
1138 return;
1139 }
1140 tq = taskq_create("vdev_open", children, minclsyspri,
1141 children, children, TASKQ_PREPOPULATE);
1142
1143 for (int c = 0; c < children; c++)
1144 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1145 TQ_SLEEP) != NULL);
1146
1147 taskq_destroy(tq);
1148 }
1149
1150 /*
1151 * Prepare a virtual device for access.
1152 */
1153 int
1154 vdev_open(vdev_t *vd)
1155 {
1156 spa_t *spa = vd->vdev_spa;
1157 int error;
1158 uint64_t osize = 0;
1159 uint64_t max_osize = 0;
1160 uint64_t asize, max_asize, psize;
1161 uint64_t ashift = 0;
1162
1163 ASSERT(vd->vdev_open_thread == curthread ||
1164 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1165 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1166 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1167 vd->vdev_state == VDEV_STATE_OFFLINE);
1168
1169 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1170 vd->vdev_cant_read = B_FALSE;
1171 vd->vdev_cant_write = B_FALSE;
1172 vd->vdev_min_asize = vdev_get_min_asize(vd);
1173
1174 /*
1175 * If this vdev is not removed, check its fault status. If it's
1176 * faulted, bail out of the open.
1177 */
1178 if (!vd->vdev_removed && vd->vdev_faulted) {
1179 ASSERT(vd->vdev_children == 0);
1180 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1181 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1182 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1183 vd->vdev_label_aux);
1184 return (SET_ERROR(ENXIO));
1185 } else if (vd->vdev_offline) {
1186 ASSERT(vd->vdev_children == 0);
1187 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1188 return (SET_ERROR(ENXIO));
1189 }
1190
1191 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1192
1193 /*
1194 * Reset the vdev_reopening flag so that we actually close
1195 * the vdev on error.
1196 */
1197 vd->vdev_reopening = B_FALSE;
1198 if (zio_injection_enabled && error == 0)
1199 error = zio_handle_device_injection(vd, NULL, ENXIO);
1200
1201 if (error) {
1202 if (vd->vdev_removed &&
1203 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1204 vd->vdev_removed = B_FALSE;
1205
1206 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1207 vd->vdev_stat.vs_aux);
1208 return (error);
1209 }
1210
1211 vd->vdev_removed = B_FALSE;
1212
1213 /*
1214 * Recheck the faulted flag now that we have confirmed that
1215 * the vdev is accessible. If we're faulted, bail.
1216 */
1217 if (vd->vdev_faulted) {
1218 ASSERT(vd->vdev_children == 0);
1219 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1220 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1221 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1222 vd->vdev_label_aux);
1223 return (SET_ERROR(ENXIO));
1224 }
1225
1226 if (vd->vdev_degraded) {
1227 ASSERT(vd->vdev_children == 0);
1228 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1229 VDEV_AUX_ERR_EXCEEDED);
1230 } else {
1231 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1232 }
1233
1234 /*
1235 * For hole or missing vdevs we just return success.
1236 */
1237 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1238 return (0);
1239
1240 for (int c = 0; c < vd->vdev_children; c++) {
1241 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1242 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1243 VDEV_AUX_NONE);
1244 break;
1245 }
1246 }
1247
1248 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1249 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1250
1251 if (vd->vdev_children == 0) {
1252 if (osize < SPA_MINDEVSIZE) {
1253 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1254 VDEV_AUX_TOO_SMALL);
1255 return (SET_ERROR(EOVERFLOW));
1256 }
1257 psize = osize;
1258 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1259 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1260 VDEV_LABEL_END_SIZE);
1261 } else {
1262 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1263 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1264 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1265 VDEV_AUX_TOO_SMALL);
1266 return (SET_ERROR(EOVERFLOW));
1267 }
1268 psize = 0;
1269 asize = osize;
1270 max_asize = max_osize;
1271 }
1272
1273 vd->vdev_psize = psize;
1274
1275 /*
1276 * Make sure the allocatable size hasn't shrunk.
1277 */
1278 if (asize < vd->vdev_min_asize) {
1279 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1280 VDEV_AUX_BAD_LABEL);
1281 return (SET_ERROR(EINVAL));
1282 }
1283
1284 if (vd->vdev_asize == 0) {
1285 /*
1286 * This is the first-ever open, so use the computed values.
1287 * For testing purposes, a higher ashift can be requested.
1288 */
1289 vd->vdev_asize = asize;
1290 vd->vdev_max_asize = max_asize;
1291 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1292 } else {
1293 /*
1294 * Detect if the alignment requirement has increased.
1295 * We don't want to make the pool unavailable, just
1296 * issue a warning instead.
1297 */
1298 if (ashift > vd->vdev_top->vdev_ashift &&
1299 vd->vdev_ops->vdev_op_leaf) {
1300 cmn_err(CE_WARN,
1301 "Disk, '%s', has a block alignment that is "
1302 "larger than the pool's alignment\n",
1303 vd->vdev_path);
1304 }
1305 vd->vdev_max_asize = max_asize;
1306 }
1307
1308 /*
1309 * If all children are healthy and the asize has increased,
1310 * then we've experienced dynamic LUN growth. If automatic
1311 * expansion is enabled then use the additional space.
1312 */
1313 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1314 (vd->vdev_expanding || spa->spa_autoexpand))
1315 vd->vdev_asize = asize;
1316
1317 vdev_set_min_asize(vd);
1318
1319 /*
1320 * Ensure we can issue some IO before declaring the
1321 * vdev open for business.
1322 */
1323 if (vd->vdev_ops->vdev_op_leaf &&
1324 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1325 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1326 VDEV_AUX_ERR_EXCEEDED);
1327 return (error);
1328 }
1329
1330 /*
1331 * Track the min and max ashift values for normal data devices.
1332 */
1333 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1334 !vd->vdev_islog && vd->vdev_aux == NULL) {
1335 if (vd->vdev_ashift > spa->spa_max_ashift)
1336 spa->spa_max_ashift = vd->vdev_ashift;
1337 if (vd->vdev_ashift < spa->spa_min_ashift)
1338 spa->spa_min_ashift = vd->vdev_ashift;
1339 }
1340
1341 /*
1342 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1343 * resilver. But don't do this if we are doing a reopen for a scrub,
1344 * since this would just restart the scrub we are already doing.
1345 */
1346 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1347 vdev_resilver_needed(vd, NULL, NULL))
1348 spa_async_request(spa, SPA_ASYNC_RESILVER);
1349
1350 return (0);
1351 }
1352
1353 /*
1354 * Called once the vdevs are all opened, this routine validates the label
1355 * contents. This needs to be done before vdev_load() so that we don't
1356 * inadvertently do repair I/Os to the wrong device.
1357 *
1358 * If 'strict' is false ignore the spa guid check. This is necessary because
1359 * if the machine crashed during a re-guid the new guid might have been written
1360 * to all of the vdev labels, but not the cached config. The strict check
1361 * will be performed when the pool is opened again using the mos config.
1362 *
1363 * This function will only return failure if one of the vdevs indicates that it
1364 * has since been destroyed or exported. This is only possible if
1365 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1366 * will be updated but the function will return 0.
1367 */
1368 int
1369 vdev_validate(vdev_t *vd, boolean_t strict)
1370 {
1371 spa_t *spa = vd->vdev_spa;
1372 nvlist_t *label;
1373 uint64_t guid = 0, top_guid;
1374 uint64_t state;
1375
1376 for (int c = 0; c < vd->vdev_children; c++)
1377 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1378 return (SET_ERROR(EBADF));
1379
1380 /*
1381 * If the device has already failed, or was marked offline, don't do
1382 * any further validation. Otherwise, label I/O will fail and we will
1383 * overwrite the previous state.
1384 */
1385 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1386 uint64_t aux_guid = 0;
1387 nvlist_t *nvl;
1388 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1389 spa_last_synced_txg(spa) : -1ULL;
1390
1391 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1392 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1393 VDEV_AUX_BAD_LABEL);
1394 return (0);
1395 }
1396
1397 /*
1398 * Determine if this vdev has been split off into another
1399 * pool. If so, then refuse to open it.
1400 */
1401 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1402 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1403 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1404 VDEV_AUX_SPLIT_POOL);
1405 nvlist_free(label);
1406 return (0);
1407 }
1408
1409 if (strict && (nvlist_lookup_uint64(label,
1410 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1411 guid != spa_guid(spa))) {
1412 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1413 VDEV_AUX_CORRUPT_DATA);
1414 nvlist_free(label);
1415 return (0);
1416 }
1417
1418 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1419 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1420 &aux_guid) != 0)
1421 aux_guid = 0;
1422
1423 /*
1424 * If this vdev just became a top-level vdev because its
1425 * sibling was detached, it will have adopted the parent's
1426 * vdev guid -- but the label may or may not be on disk yet.
1427 * Fortunately, either version of the label will have the
1428 * same top guid, so if we're a top-level vdev, we can
1429 * safely compare to that instead.
1430 *
1431 * If we split this vdev off instead, then we also check the
1432 * original pool's guid. We don't want to consider the vdev
1433 * corrupt if it is partway through a split operation.
1434 */
1435 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1436 &guid) != 0 ||
1437 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1438 &top_guid) != 0 ||
1439 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1440 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1441 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1442 VDEV_AUX_CORRUPT_DATA);
1443 nvlist_free(label);
1444 return (0);
1445 }
1446
1447 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1448 &state) != 0) {
1449 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1450 VDEV_AUX_CORRUPT_DATA);
1451 nvlist_free(label);
1452 return (0);
1453 }
1454
1455 nvlist_free(label);
1456
1457 /*
1458 * If this is a verbatim import, no need to check the
1459 * state of the pool.
1460 */
1461 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1462 spa_load_state(spa) == SPA_LOAD_OPEN &&
1463 state != POOL_STATE_ACTIVE)
1464 return (SET_ERROR(EBADF));
1465
1466 /*
1467 * If we were able to open and validate a vdev that was
1468 * previously marked permanently unavailable, clear that state
1469 * now.
1470 */
1471 if (vd->vdev_not_present)
1472 vd->vdev_not_present = 0;
1473 }
1474
1475 return (0);
1476 }
1477
1478 /*
1479 * Close a virtual device.
1480 */
1481 void
1482 vdev_close(vdev_t *vd)
1483 {
1484 spa_t *spa = vd->vdev_spa;
1485 vdev_t *pvd = vd->vdev_parent;
1486
1487 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1488
1489 /*
1490 * If our parent is reopening, then we are as well, unless we are
1491 * going offline.
1492 */
1493 if (pvd != NULL && pvd->vdev_reopening)
1494 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1495
1496 vd->vdev_ops->vdev_op_close(vd);
1497
1498 vdev_cache_purge(vd);
1499
1500 /*
1501 * We record the previous state before we close it, so that if we are
1502 * doing a reopen(), we don't generate FMA ereports if we notice that
1503 * it's still faulted.
1504 */
1505 vd->vdev_prevstate = vd->vdev_state;
1506
1507 if (vd->vdev_offline)
1508 vd->vdev_state = VDEV_STATE_OFFLINE;
1509 else
1510 vd->vdev_state = VDEV_STATE_CLOSED;
1511 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1512 }
1513
1514 void
1515 vdev_hold(vdev_t *vd)
1516 {
1517 spa_t *spa = vd->vdev_spa;
1518
1519 ASSERT(spa_is_root(spa));
1520 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1521 return;
1522
1523 for (int c = 0; c < vd->vdev_children; c++)
1524 vdev_hold(vd->vdev_child[c]);
1525
1526 if (vd->vdev_ops->vdev_op_leaf)
1527 vd->vdev_ops->vdev_op_hold(vd);
1528 }
1529
1530 void
1531 vdev_rele(vdev_t *vd)
1532 {
1533 spa_t *spa = vd->vdev_spa;
1534
1535 ASSERT(spa_is_root(spa));
1536 for (int c = 0; c < vd->vdev_children; c++)
1537 vdev_rele(vd->vdev_child[c]);
1538
1539 if (vd->vdev_ops->vdev_op_leaf)
1540 vd->vdev_ops->vdev_op_rele(vd);
1541 }
1542
1543 /*
1544 * Reopen all interior vdevs and any unopened leaves. We don't actually
1545 * reopen leaf vdevs which had previously been opened as they might deadlock
1546 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1547 * If the leaf has never been opened then open it, as usual.
1548 */
1549 void
1550 vdev_reopen(vdev_t *vd)
1551 {
1552 spa_t *spa = vd->vdev_spa;
1553
1554 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1555
1556 /* set the reopening flag unless we're taking the vdev offline */
1557 vd->vdev_reopening = !vd->vdev_offline;
1558 vdev_close(vd);
1559 (void) vdev_open(vd);
1560
1561 /*
1562 * Call vdev_validate() here to make sure we have the same device.
1563 * Otherwise, a device with an invalid label could be successfully
1564 * opened in response to vdev_reopen().
1565 */
1566 if (vd->vdev_aux) {
1567 (void) vdev_validate_aux(vd);
1568 if (vdev_readable(vd) && vdev_writeable(vd) &&
1569 vd->vdev_aux == &spa->spa_l2cache &&
1570 !l2arc_vdev_present(vd))
1571 l2arc_add_vdev(spa, vd);
1572 } else {
1573 (void) vdev_validate(vd, B_TRUE);
1574 }
1575
1576 /*
1577 * Reassess parent vdev's health.
1578 */
1579 vdev_propagate_state(vd);
1580 }
1581
1582 int
1583 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1584 {
1585 int error;
1586
1587 /*
1588 * Normally, partial opens (e.g. of a mirror) are allowed.
1589 * For a create, however, we want to fail the request if
1590 * there are any components we can't open.
1591 */
1592 error = vdev_open(vd);
1593
1594 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1595 vdev_close(vd);
1596 return (error ? error : ENXIO);
1597 }
1598
1599 /*
1600 * Recursively load DTLs and initialize all labels.
1601 */
1602 if ((error = vdev_dtl_load(vd)) != 0 ||
1603 (error = vdev_label_init(vd, txg, isreplacing ?
1604 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1605 vdev_close(vd);
1606 return (error);
1607 }
1608
1609 return (0);
1610 }
1611
1612 void
1613 vdev_metaslab_set_size(vdev_t *vd)
1614 {
1615 /*
1616 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1617 */
1618 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1619 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1620 }
1621
1622 void
1623 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1624 {
1625 ASSERT(vd == vd->vdev_top);
1626 ASSERT(!vd->vdev_ishole);
1627 ASSERT(ISP2(flags));
1628 ASSERT(spa_writeable(vd->vdev_spa));
1629
1630 if (flags & VDD_METASLAB)
1631 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1632
1633 if (flags & VDD_DTL)
1634 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1635
1636 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1637 }
1638
1639 void
1640 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1641 {
1642 for (int c = 0; c < vd->vdev_children; c++)
1643 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1644
1645 if (vd->vdev_ops->vdev_op_leaf)
1646 vdev_dirty(vd->vdev_top, flags, vd, txg);
1647 }
1648
1649 /*
1650 * DTLs.
1651 *
1652 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1653 * the vdev has less than perfect replication. There are four kinds of DTL:
1654 *
1655 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1656 *
1657 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1658 *
1659 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1660 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1661 * txgs that was scrubbed.
1662 *
1663 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1664 * persistent errors or just some device being offline.
1665 * Unlike the other three, the DTL_OUTAGE map is not generally
1666 * maintained; it's only computed when needed, typically to
1667 * determine whether a device can be detached.
1668 *
1669 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1670 * either has the data or it doesn't.
1671 *
1672 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1673 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1674 * if any child is less than fully replicated, then so is its parent.
1675 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1676 * comprising only those txgs which appear in 'maxfaults' or more children;
1677 * those are the txgs we don't have enough replication to read. For example,
1678 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1679 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1680 * two child DTL_MISSING maps.
1681 *
1682 * It should be clear from the above that to compute the DTLs and outage maps
1683 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1684 * Therefore, that is all we keep on disk. When loading the pool, or after
1685 * a configuration change, we generate all other DTLs from first principles.
1686 */
1687 void
1688 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1689 {
1690 range_tree_t *rt = vd->vdev_dtl[t];
1691
1692 ASSERT(t < DTL_TYPES);
1693 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1694 ASSERT(spa_writeable(vd->vdev_spa));
1695
1696 mutex_enter(rt->rt_lock);
1697 if (!range_tree_contains(rt, txg, size))
1698 range_tree_add(rt, txg, size);
1699 mutex_exit(rt->rt_lock);
1700 }
1701
1702 boolean_t
1703 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1704 {
1705 range_tree_t *rt = vd->vdev_dtl[t];
1706 boolean_t dirty = B_FALSE;
1707
1708 ASSERT(t < DTL_TYPES);
1709 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1710
1711 mutex_enter(rt->rt_lock);
1712 if (range_tree_space(rt) != 0)
1713 dirty = range_tree_contains(rt, txg, size);
1714 mutex_exit(rt->rt_lock);
1715
1716 return (dirty);
1717 }
1718
1719 boolean_t
1720 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1721 {
1722 range_tree_t *rt = vd->vdev_dtl[t];
1723 boolean_t empty;
1724
1725 mutex_enter(rt->rt_lock);
1726 empty = (range_tree_space(rt) == 0);
1727 mutex_exit(rt->rt_lock);
1728
1729 return (empty);
1730 }
1731
1732 /*
1733 * Returns the lowest txg in the DTL range.
1734 */
1735 static uint64_t
1736 vdev_dtl_min(vdev_t *vd)
1737 {
1738 range_seg_t *rs;
1739
1740 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1741 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1742 ASSERT0(vd->vdev_children);
1743
1744 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1745 return (rs->rs_start - 1);
1746 }
1747
1748 /*
1749 * Returns the highest txg in the DTL.
1750 */
1751 static uint64_t
1752 vdev_dtl_max(vdev_t *vd)
1753 {
1754 range_seg_t *rs;
1755
1756 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1757 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1758 ASSERT0(vd->vdev_children);
1759
1760 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1761 return (rs->rs_end);
1762 }
1763
1764 /*
1765 * Determine if a resilvering vdev should remove any DTL entries from
1766 * its range. If the vdev was resilvering for the entire duration of the
1767 * scan then it should excise that range from its DTLs. Otherwise, this
1768 * vdev is considered partially resilvered and should leave its DTL
1769 * entries intact. The comment in vdev_dtl_reassess() describes how we
1770 * excise the DTLs.
1771 */
1772 static boolean_t
1773 vdev_dtl_should_excise(vdev_t *vd)
1774 {
1775 spa_t *spa = vd->vdev_spa;
1776 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1777
1778 ASSERT0(scn->scn_phys.scn_errors);
1779 ASSERT0(vd->vdev_children);
1780
1781 if (vd->vdev_resilver_txg == 0 ||
1782 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1783 return (B_TRUE);
1784
1785 /*
1786 * When a resilver is initiated the scan will assign the scn_max_txg
1787 * value to the highest txg value that exists in all DTLs. If this
1788 * device's max DTL is not part of this scan (i.e. it is not in
1789 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1790 * for excision.
1791 */
1792 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1793 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1794 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1795 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1796 return (B_TRUE);
1797 }
1798 return (B_FALSE);
1799 }
1800
1801 /*
1802 * Reassess DTLs after a config change or scrub completion.
1803 */
1804 void
1805 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1806 {
1807 spa_t *spa = vd->vdev_spa;
1808 avl_tree_t reftree;
1809 int minref;
1810
1811 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1812
1813 for (int c = 0; c < vd->vdev_children; c++)
1814 vdev_dtl_reassess(vd->vdev_child[c], txg,
1815 scrub_txg, scrub_done);
1816
1817 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1818 return;
1819
1820 if (vd->vdev_ops->vdev_op_leaf) {
1821 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1822
1823 mutex_enter(&vd->vdev_dtl_lock);
1824
1825 /*
1826 * If we've completed a scan cleanly then determine
1827 * if this vdev should remove any DTLs. We only want to
1828 * excise regions on vdevs that were available during
1829 * the entire duration of this scan.
1830 */
1831 if (scrub_txg != 0 &&
1832 (spa->spa_scrub_started ||
1833 (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1834 vdev_dtl_should_excise(vd)) {
1835 /*
1836 * We completed a scrub up to scrub_txg. If we
1837 * did it without rebooting, then the scrub dtl
1838 * will be valid, so excise the old region and
1839 * fold in the scrub dtl. Otherwise, leave the
1840 * dtl as-is if there was an error.
1841 *
1842 * There's little trick here: to excise the beginning
1843 * of the DTL_MISSING map, we put it into a reference
1844 * tree and then add a segment with refcnt -1 that
1845 * covers the range [0, scrub_txg). This means
1846 * that each txg in that range has refcnt -1 or 0.
1847 * We then add DTL_SCRUB with a refcnt of 2, so that
1848 * entries in the range [0, scrub_txg) will have a
1849 * positive refcnt -- either 1 or 2. We then convert
1850 * the reference tree into the new DTL_MISSING map.
1851 */
1852 space_reftree_create(&reftree);
1853 space_reftree_add_map(&reftree,
1854 vd->vdev_dtl[DTL_MISSING], 1);
1855 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1856 space_reftree_add_map(&reftree,
1857 vd->vdev_dtl[DTL_SCRUB], 2);
1858 space_reftree_generate_map(&reftree,
1859 vd->vdev_dtl[DTL_MISSING], 1);
1860 space_reftree_destroy(&reftree);
1861 }
1862 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1863 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1864 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1865 if (scrub_done)
1866 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1867 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1868 if (!vdev_readable(vd))
1869 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1870 else
1871 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1872 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1873
1874 /*
1875 * If the vdev was resilvering and no longer has any
1876 * DTLs then reset its resilvering flag.
1877 */
1878 if (vd->vdev_resilver_txg != 0 &&
1879 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1880 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0)
1881 vd->vdev_resilver_txg = 0;
1882
1883 mutex_exit(&vd->vdev_dtl_lock);
1884
1885 if (txg != 0)
1886 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1887 return;
1888 }
1889
1890 mutex_enter(&vd->vdev_dtl_lock);
1891 for (int t = 0; t < DTL_TYPES; t++) {
1892 /* account for child's outage in parent's missing map */
1893 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1894 if (t == DTL_SCRUB)
1895 continue; /* leaf vdevs only */
1896 if (t == DTL_PARTIAL)
1897 minref = 1; /* i.e. non-zero */
1898 else if (vd->vdev_nparity != 0)
1899 minref = vd->vdev_nparity + 1; /* RAID-Z */
1900 else
1901 minref = vd->vdev_children; /* any kind of mirror */
1902 space_reftree_create(&reftree);
1903 for (int c = 0; c < vd->vdev_children; c++) {
1904 vdev_t *cvd = vd->vdev_child[c];
1905 mutex_enter(&cvd->vdev_dtl_lock);
1906 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1907 mutex_exit(&cvd->vdev_dtl_lock);
1908 }
1909 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1910 space_reftree_destroy(&reftree);
1911 }
1912 mutex_exit(&vd->vdev_dtl_lock);
1913 }
1914
1915 int
1916 vdev_dtl_load(vdev_t *vd)
1917 {
1918 spa_t *spa = vd->vdev_spa;
1919 objset_t *mos = spa->spa_meta_objset;
1920 int error = 0;
1921
1922 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
1923 ASSERT(!vd->vdev_ishole);
1924
1925 error = space_map_open(&vd->vdev_dtl_sm, mos,
1926 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
1927 if (error)
1928 return (error);
1929 ASSERT(vd->vdev_dtl_sm != NULL);
1930
1931 mutex_enter(&vd->vdev_dtl_lock);
1932
1933 /*
1934 * Now that we've opened the space_map we need to update
1935 * the in-core DTL.
1936 */
1937 space_map_update(vd->vdev_dtl_sm);
1938
1939 error = space_map_load(vd->vdev_dtl_sm,
1940 vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
1941 mutex_exit(&vd->vdev_dtl_lock);
1942
1943 return (error);
1944 }
1945
1946 for (int c = 0; c < vd->vdev_children; c++) {
1947 error = vdev_dtl_load(vd->vdev_child[c]);
1948 if (error != 0)
1949 break;
1950 }
1951
1952 return (error);
1953 }
1954
1955 void
1956 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
1957 {
1958 spa_t *spa = vd->vdev_spa;
1959
1960 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
1961 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
1962 zapobj, tx));
1963 }
1964
1965 uint64_t
1966 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
1967 {
1968 spa_t *spa = vd->vdev_spa;
1969 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
1970 DMU_OT_NONE, 0, tx);
1971
1972 ASSERT(zap != 0);
1973 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
1974 zap, tx));
1975
1976 return (zap);
1977 }
1978
1979 void
1980 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
1981 {
1982 if (vd->vdev_ops != &vdev_hole_ops &&
1983 vd->vdev_ops != &vdev_missing_ops &&
1984 vd->vdev_ops != &vdev_root_ops &&
1985 !vd->vdev_top->vdev_removing) {
1986 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
1987 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
1988 }
1989 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
1990 vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
1991 }
1992 }
1993 for (uint64_t i = 0; i < vd->vdev_children; i++) {
1994 vdev_construct_zaps(vd->vdev_child[i], tx);
1995 }
1996 }
1997
1998 void
1999 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2000 {
2001 spa_t *spa = vd->vdev_spa;
2002 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2003 objset_t *mos = spa->spa_meta_objset;
2004 range_tree_t *rtsync;
2005 kmutex_t rtlock;
2006 dmu_tx_t *tx;
2007 uint64_t object = space_map_object(vd->vdev_dtl_sm);
2008
2009 ASSERT(!vd->vdev_ishole);
2010 ASSERT(vd->vdev_ops->vdev_op_leaf);
2011
2012 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2013
2014 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2015 mutex_enter(&vd->vdev_dtl_lock);
2016 space_map_free(vd->vdev_dtl_sm, tx);
2017 space_map_close(vd->vdev_dtl_sm);
2018 vd->vdev_dtl_sm = NULL;
2019 mutex_exit(&vd->vdev_dtl_lock);
2020
2021 /*
2022 * We only destroy the leaf ZAP for detached leaves or for
2023 * removed log devices. Removed data devices handle leaf ZAP
2024 * cleanup later, once cancellation is no longer possible.
2025 */
2026 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2027 vd->vdev_top->vdev_islog)) {
2028 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2029 vd->vdev_leaf_zap = 0;
2030 }
2031
2032 dmu_tx_commit(tx);
2033 return;
2034 }
2035
2036 if (vd->vdev_dtl_sm == NULL) {
2037 uint64_t new_object;
2038
2039 new_object = space_map_alloc(mos, tx);
2040 VERIFY3U(new_object, !=, 0);
2041
2042 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2043 0, -1ULL, 0, &vd->vdev_dtl_lock));
2044 ASSERT(vd->vdev_dtl_sm != NULL);
2045 }
2046
2047 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2048
2049 rtsync = range_tree_create(NULL, NULL, &rtlock);
2050
2051 mutex_enter(&rtlock);
2052
2053 mutex_enter(&vd->vdev_dtl_lock);
2054 range_tree_walk(rt, range_tree_add, rtsync);
2055 mutex_exit(&vd->vdev_dtl_lock);
2056
2057 space_map_truncate(vd->vdev_dtl_sm, tx);
2058 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2059 range_tree_vacate(rtsync, NULL, NULL);
2060
2061 range_tree_destroy(rtsync);
2062
2063 mutex_exit(&rtlock);
2064 mutex_destroy(&rtlock);
2065
2066 /*
2067 * If the object for the space map has changed then dirty
2068 * the top level so that we update the config.
2069 */
2070 if (object != space_map_object(vd->vdev_dtl_sm)) {
2071 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2072 "new object %llu", txg, spa_name(spa), object,
2073 space_map_object(vd->vdev_dtl_sm));
2074 vdev_config_dirty(vd->vdev_top);
2075 }
2076
2077 dmu_tx_commit(tx);
2078
2079 mutex_enter(&vd->vdev_dtl_lock);
2080 space_map_update(vd->vdev_dtl_sm);
2081 mutex_exit(&vd->vdev_dtl_lock);
2082 }
2083
2084 /*
2085 * Determine whether the specified vdev can be offlined/detached/removed
2086 * without losing data.
2087 */
2088 boolean_t
2089 vdev_dtl_required(vdev_t *vd)
2090 {
2091 spa_t *spa = vd->vdev_spa;
2092 vdev_t *tvd = vd->vdev_top;
2093 uint8_t cant_read = vd->vdev_cant_read;
2094 boolean_t required;
2095
2096 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2097
2098 if (vd == spa->spa_root_vdev || vd == tvd)
2099 return (B_TRUE);
2100
2101 /*
2102 * Temporarily mark the device as unreadable, and then determine
2103 * whether this results in any DTL outages in the top-level vdev.
2104 * If not, we can safely offline/detach/remove the device.
2105 */
2106 vd->vdev_cant_read = B_TRUE;
2107 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2108 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2109 vd->vdev_cant_read = cant_read;
2110 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2111
2112 if (!required && zio_injection_enabled)
2113 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2114
2115 return (required);
2116 }
2117
2118 /*
2119 * Determine if resilver is needed, and if so the txg range.
2120 */
2121 boolean_t
2122 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2123 {
2124 boolean_t needed = B_FALSE;
2125 uint64_t thismin = UINT64_MAX;
2126 uint64_t thismax = 0;
2127
2128 if (vd->vdev_children == 0) {
2129 mutex_enter(&vd->vdev_dtl_lock);
2130 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2131 vdev_writeable(vd)) {
2132
2133 thismin = vdev_dtl_min(vd);
2134 thismax = vdev_dtl_max(vd);
2135 needed = B_TRUE;
2136 }
2137 mutex_exit(&vd->vdev_dtl_lock);
2138 } else {
2139 for (int c = 0; c < vd->vdev_children; c++) {
2140 vdev_t *cvd = vd->vdev_child[c];
2141 uint64_t cmin, cmax;
2142
2143 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2144 thismin = MIN(thismin, cmin);
2145 thismax = MAX(thismax, cmax);
2146 needed = B_TRUE;
2147 }
2148 }
2149 }
2150
2151 if (needed && minp) {
2152 *minp = thismin;
2153 *maxp = thismax;
2154 }
2155 return (needed);
2156 }
2157
2158 void
2159 vdev_load(vdev_t *vd)
2160 {
2161 /*
2162 * Recursively load all children.
2163 */
2164 for (int c = 0; c < vd->vdev_children; c++)
2165 vdev_load(vd->vdev_child[c]);
2166
2167 /*
2168 * If this is a top-level vdev, initialize its metaslabs.
2169 */
2170 if (vd == vd->vdev_top && !vd->vdev_ishole &&
2171 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2172 vdev_metaslab_init(vd, 0) != 0))
2173 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2174 VDEV_AUX_CORRUPT_DATA);
2175
2176 /*
2177 * If this is a leaf vdev, load its DTL.
2178 */
2179 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2180 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2181 VDEV_AUX_CORRUPT_DATA);
2182 }
2183
2184 /*
2185 * The special vdev case is used for hot spares and l2cache devices. Its
2186 * sole purpose it to set the vdev state for the associated vdev. To do this,
2187 * we make sure that we can open the underlying device, then try to read the
2188 * label, and make sure that the label is sane and that it hasn't been
2189 * repurposed to another pool.
2190 */
2191 int
2192 vdev_validate_aux(vdev_t *vd)
2193 {
2194 nvlist_t *label;
2195 uint64_t guid, version;
2196 uint64_t state;
2197
2198 if (!vdev_readable(vd))
2199 return (0);
2200
2201 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2202 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2203 VDEV_AUX_CORRUPT_DATA);
2204 return (-1);
2205 }
2206
2207 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2208 !SPA_VERSION_IS_SUPPORTED(version) ||
2209 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2210 guid != vd->vdev_guid ||
2211 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2212 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2213 VDEV_AUX_CORRUPT_DATA);
2214 nvlist_free(label);
2215 return (-1);
2216 }
2217
2218 /*
2219 * We don't actually check the pool state here. If it's in fact in
2220 * use by another pool, we update this fact on the fly when requested.
2221 */
2222 nvlist_free(label);
2223 return (0);
2224 }
2225
2226 void
2227 vdev_remove(vdev_t *vd, uint64_t txg)
2228 {
2229 spa_t *spa = vd->vdev_spa;
2230 objset_t *mos = spa->spa_meta_objset;
2231 dmu_tx_t *tx;
2232
2233 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2234 ASSERT(vd == vd->vdev_top);
2235 ASSERT3U(txg, ==, spa_syncing_txg(spa));
2236
2237 if (vd->vdev_ms != NULL) {
2238 metaslab_group_t *mg = vd->vdev_mg;
2239
2240 metaslab_group_histogram_verify(mg);
2241 metaslab_class_histogram_verify(mg->mg_class);
2242
2243 for (int m = 0; m < vd->vdev_ms_count; m++) {
2244 metaslab_t *msp = vd->vdev_ms[m];
2245
2246 if (msp == NULL || msp->ms_sm == NULL)
2247 continue;
2248
2249 mutex_enter(&msp->ms_lock);
2250 /*
2251 * If the metaslab was not loaded when the vdev
2252 * was removed then the histogram accounting may
2253 * not be accurate. Update the histogram information
2254 * here so that we ensure that the metaslab group
2255 * and metaslab class are up-to-date.
2256 */
2257 metaslab_group_histogram_remove(mg, msp);
2258
2259 VERIFY0(space_map_allocated(msp->ms_sm));
2260 space_map_free(msp->ms_sm, tx);
2261 space_map_close(msp->ms_sm);
2262 msp->ms_sm = NULL;
2263 mutex_exit(&msp->ms_lock);
2264 }
2265
2266 metaslab_group_histogram_verify(mg);
2267 metaslab_class_histogram_verify(mg->mg_class);
2268 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2269 ASSERT0(mg->mg_histogram[i]);
2270
2271 }
2272
2273 if (vd->vdev_ms_array) {
2274 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2275 vd->vdev_ms_array = 0;
2276 }
2277
2278 if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2279 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2280 vd->vdev_top_zap = 0;
2281 }
2282 dmu_tx_commit(tx);
2283 }
2284
2285 void
2286 vdev_sync_done(vdev_t *vd, uint64_t txg)
2287 {
2288 metaslab_t *msp;
2289 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2290
2291 ASSERT(!vd->vdev_ishole);
2292
2293 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2294 metaslab_sync_done(msp, txg);
2295
2296 if (reassess)
2297 metaslab_sync_reassess(vd->vdev_mg);
2298 }
2299
2300 void
2301 vdev_sync(vdev_t *vd, uint64_t txg)
2302 {
2303 spa_t *spa = vd->vdev_spa;
2304 vdev_t *lvd;
2305 metaslab_t *msp;
2306 dmu_tx_t *tx;
2307
2308 ASSERT(!vd->vdev_ishole);
2309
2310 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2311 ASSERT(vd == vd->vdev_top);
2312 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2313 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2314 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2315 ASSERT(vd->vdev_ms_array != 0);
2316 vdev_config_dirty(vd);
2317 dmu_tx_commit(tx);
2318 }
2319
2320 /*
2321 * Remove the metadata associated with this vdev once it's empty.
2322 */
2323 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2324 vdev_remove(vd, txg);
2325
2326 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2327 metaslab_sync(msp, txg);
2328 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2329 }
2330
2331 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2332 vdev_dtl_sync(lvd, txg);
2333
2334 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2335 }
2336
2337 uint64_t
2338 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2339 {
2340 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2341 }
2342
2343 /*
2344 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2345 * not be opened, and no I/O is attempted.
2346 */
2347 int
2348 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2349 {
2350 vdev_t *vd, *tvd;
2351
2352 spa_vdev_state_enter(spa, SCL_NONE);
2353
2354 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2355 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2356
2357 if (!vd->vdev_ops->vdev_op_leaf)
2358 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2359
2360 tvd = vd->vdev_top;
2361
2362 /*
2363 * We don't directly use the aux state here, but if we do a
2364 * vdev_reopen(), we need this value to be present to remember why we
2365 * were faulted.
2366 */
2367 vd->vdev_label_aux = aux;
2368
2369 /*
2370 * Faulted state takes precedence over degraded.
2371 */
2372 vd->vdev_delayed_close = B_FALSE;
2373 vd->vdev_faulted = 1ULL;
2374 vd->vdev_degraded = 0ULL;
2375 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2376
2377 /*
2378 * If this device has the only valid copy of the data, then
2379 * back off and simply mark the vdev as degraded instead.
2380 */
2381 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2382 vd->vdev_degraded = 1ULL;
2383 vd->vdev_faulted = 0ULL;
2384
2385 /*
2386 * If we reopen the device and it's not dead, only then do we
2387 * mark it degraded.
2388 */
2389 vdev_reopen(tvd);
2390
2391 if (vdev_readable(vd))
2392 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2393 }
2394
2395 return (spa_vdev_state_exit(spa, vd, 0));
2396 }
2397
2398 /*
2399 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2400 * user that something is wrong. The vdev continues to operate as normal as far
2401 * as I/O is concerned.
2402 */
2403 int
2404 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2405 {
2406 vdev_t *vd;
2407
2408 spa_vdev_state_enter(spa, SCL_NONE);
2409
2410 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2411 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2412
2413 if (!vd->vdev_ops->vdev_op_leaf)
2414 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2415
2416 /*
2417 * If the vdev is already faulted, then don't do anything.
2418 */
2419 if (vd->vdev_faulted || vd->vdev_degraded)
2420 return (spa_vdev_state_exit(spa, NULL, 0));
2421
2422 vd->vdev_degraded = 1ULL;
2423 if (!vdev_is_dead(vd))
2424 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2425 aux);
2426
2427 return (spa_vdev_state_exit(spa, vd, 0));
2428 }
2429
2430 /*
2431 * Online the given vdev.
2432 *
2433 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
2434 * spare device should be detached when the device finishes resilvering.
2435 * Second, the online should be treated like a 'test' online case, so no FMA
2436 * events are generated if the device fails to open.
2437 */
2438 int
2439 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2440 {
2441 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2442 boolean_t postevent = B_FALSE;
2443
2444 spa_vdev_state_enter(spa, SCL_NONE);
2445
2446 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2447 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2448
2449 if (!vd->vdev_ops->vdev_op_leaf)
2450 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2451
2452 postevent =
2453 (vd->vdev_offline == B_TRUE || vd->vdev_tmpoffline == B_TRUE) ?
2454 B_TRUE : B_FALSE;
2455
2456 tvd = vd->vdev_top;
2457 vd->vdev_offline = B_FALSE;
2458 vd->vdev_tmpoffline = B_FALSE;
2459 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2460 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2461
2462 /* XXX - L2ARC 1.0 does not support expansion */
2463 if (!vd->vdev_aux) {
2464 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2465 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2466 }
2467
2468 vdev_reopen(tvd);
2469 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2470
2471 if (!vd->vdev_aux) {
2472 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2473 pvd->vdev_expanding = B_FALSE;
2474 }
2475
2476 if (newstate)
2477 *newstate = vd->vdev_state;
2478 if ((flags & ZFS_ONLINE_UNSPARE) &&
2479 !vdev_is_dead(vd) && vd->vdev_parent &&
2480 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2481 vd->vdev_parent->vdev_child[0] == vd)
2482 vd->vdev_unspare = B_TRUE;
2483
2484 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2485
2486 /* XXX - L2ARC 1.0 does not support expansion */
2487 if (vd->vdev_aux)
2488 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2489 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2490 }
2491
2492 if (postevent)
2493 spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE);
2494
2495 return (spa_vdev_state_exit(spa, vd, 0));
2496 }
2497
2498 static int
2499 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2500 {
2501 vdev_t *vd, *tvd;
2502 int error = 0;
2503 uint64_t generation;
2504 metaslab_group_t *mg;
2505
2506 top:
2507 spa_vdev_state_enter(spa, SCL_ALLOC);
2508
2509 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2510 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2511
2512 if (!vd->vdev_ops->vdev_op_leaf)
2513 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2514
2515 tvd = vd->vdev_top;
2516 mg = tvd->vdev_mg;
2517 generation = spa->spa_config_generation + 1;
2518
2519 /*
2520 * If the device isn't already offline, try to offline it.
2521 */
2522 if (!vd->vdev_offline) {
2523 /*
2524 * If this device has the only valid copy of some data,
2525 * don't allow it to be offlined. Log devices are always
2526 * expendable.
2527 */
2528 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2529 vdev_dtl_required(vd))
2530 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2531
2532 /*
2533 * If the top-level is a slog and it has had allocations
2534 * then proceed. We check that the vdev's metaslab group
2535 * is not NULL since it's possible that we may have just
2536 * added this vdev but not yet initialized its metaslabs.
2537 */
2538 if (tvd->vdev_islog && mg != NULL) {
2539 /*
2540 * Prevent any future allocations.
2541 */
2542 metaslab_group_passivate(mg);
2543 (void) spa_vdev_state_exit(spa, vd, 0);
2544
2545 error = spa_offline_log(spa);
2546
2547 spa_vdev_state_enter(spa, SCL_ALLOC);
2548
2549 /*
2550 * Check to see if the config has changed.
2551 */
2552 if (error || generation != spa->spa_config_generation) {
2553 metaslab_group_activate(mg);
2554 if (error)
2555 return (spa_vdev_state_exit(spa,
2556 vd, error));
2557 (void) spa_vdev_state_exit(spa, vd, 0);
2558 goto top;
2559 }
2560 ASSERT0(tvd->vdev_stat.vs_alloc);
2561 }
2562
2563 /*
2564 * Offline this device and reopen its top-level vdev.
2565 * If the top-level vdev is a log device then just offline
2566 * it. Otherwise, if this action results in the top-level
2567 * vdev becoming unusable, undo it and fail the request.
2568 */
2569 vd->vdev_offline = B_TRUE;
2570 vdev_reopen(tvd);
2571
2572 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2573 vdev_is_dead(tvd)) {
2574 vd->vdev_offline = B_FALSE;
2575 vdev_reopen(tvd);
2576 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2577 }
2578
2579 /*
2580 * Add the device back into the metaslab rotor so that
2581 * once we online the device it's open for business.
2582 */
2583 if (tvd->vdev_islog && mg != NULL)
2584 metaslab_group_activate(mg);
2585 }
2586
2587 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2588
2589 return (spa_vdev_state_exit(spa, vd, 0));
2590 }
2591
2592 int
2593 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2594 {
2595 int error;
2596
2597 mutex_enter(&spa->spa_vdev_top_lock);
2598 error = vdev_offline_locked(spa, guid, flags);
2599 mutex_exit(&spa->spa_vdev_top_lock);
2600
2601 return (error);
2602 }
2603
2604 /*
2605 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2606 * vdev_offline(), we assume the spa config is locked. We also clear all
2607 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
2608 */
2609 void
2610 vdev_clear(spa_t *spa, vdev_t *vd)
2611 {
2612 vdev_t *rvd = spa->spa_root_vdev;
2613
2614 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2615
2616 if (vd == NULL)
2617 vd = rvd;
2618
2619 vd->vdev_stat.vs_read_errors = 0;
2620 vd->vdev_stat.vs_write_errors = 0;
2621 vd->vdev_stat.vs_checksum_errors = 0;
2622
2623 for (int c = 0; c < vd->vdev_children; c++)
2624 vdev_clear(spa, vd->vdev_child[c]);
2625
2626 /*
2627 * If we're in the FAULTED state or have experienced failed I/O, then
2628 * clear the persistent state and attempt to reopen the device. We
2629 * also mark the vdev config dirty, so that the new faulted state is
2630 * written out to disk.
2631 */
2632 if (vd->vdev_faulted || vd->vdev_degraded ||
2633 !vdev_readable(vd) || !vdev_writeable(vd)) {
2634
2635 /*
2636 * When reopening in reponse to a clear event, it may be due to
2637 * a fmadm repair request. In this case, if the device is
2638 * still broken, we want to still post the ereport again.
2639 */
2640 vd->vdev_forcefault = B_TRUE;
2641
2642 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2643 vd->vdev_cant_read = B_FALSE;
2644 vd->vdev_cant_write = B_FALSE;
2645
2646 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2647
2648 vd->vdev_forcefault = B_FALSE;
2649
2650 if (vd != rvd && vdev_writeable(vd->vdev_top))
2651 vdev_state_dirty(vd->vdev_top);
2652
2653 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2654 spa_async_request(spa, SPA_ASYNC_RESILVER);
2655
2656 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2657 }
2658
2659 /*
2660 * When clearing a FMA-diagnosed fault, we always want to
2661 * unspare the device, as we assume that the original spare was
2662 * done in response to the FMA fault.
2663 */
2664 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2665 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2666 vd->vdev_parent->vdev_child[0] == vd)
2667 vd->vdev_unspare = B_TRUE;
2668 }
2669
2670 boolean_t
2671 vdev_is_dead(vdev_t *vd)
2672 {
2673 /*
2674 * Holes and missing devices are always considered "dead".
2675 * This simplifies the code since we don't have to check for
2676 * these types of devices in the various code paths.
2677 * Instead we rely on the fact that we skip over dead devices
2678 * before issuing I/O to them.
2679 */
2680 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2681 vd->vdev_ops == &vdev_missing_ops);
2682 }
2683
2684 boolean_t
2685 vdev_readable(vdev_t *vd)
2686 {
2687 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2688 }
2689
2690 boolean_t
2691 vdev_writeable(vdev_t *vd)
2692 {
2693 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2694 }
2695
2696 boolean_t
2697 vdev_allocatable(vdev_t *vd)
2698 {
2699 uint64_t state = vd->vdev_state;
2700
2701 /*
2702 * We currently allow allocations from vdevs which may be in the
2703 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2704 * fails to reopen then we'll catch it later when we're holding
2705 * the proper locks. Note that we have to get the vdev state
2706 * in a local variable because although it changes atomically,
2707 * we're asking two separate questions about it.
2708 */
2709 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2710 !vd->vdev_cant_write && !vd->vdev_ishole &&
2711 vd->vdev_mg->mg_initialized);
2712 }
2713
2714 boolean_t
2715 vdev_accessible(vdev_t *vd, zio_t *zio)
2716 {
2717 ASSERT(zio->io_vd == vd);
2718
2719 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2720 return (B_FALSE);
2721
2722 if (zio->io_type == ZIO_TYPE_READ)
2723 return (!vd->vdev_cant_read);
2724
2725 if (zio->io_type == ZIO_TYPE_WRITE)
2726 return (!vd->vdev_cant_write);
2727
2728 return (B_TRUE);
2729 }
2730
2731 /*
2732 * Get statistics for the given vdev.
2733 */
2734 void
2735 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2736 {
2737 spa_t *spa = vd->vdev_spa;
2738 vdev_t *rvd = spa->spa_root_vdev;
2739 vdev_t *tvd = vd->vdev_top;
2740
2741 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2742
2743 mutex_enter(&vd->vdev_stat_lock);
2744 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2745 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2746 vs->vs_state = vd->vdev_state;
2747 vs->vs_rsize = vdev_get_min_asize(vd);
2748 if (vd->vdev_ops->vdev_op_leaf)
2749 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2750 /*
2751 * Report expandable space on top-level, non-auxillary devices only.
2752 * The expandable space is reported in terms of metaslab sized units
2753 * since that determines how much space the pool can expand.
2754 */
2755 if (vd->vdev_aux == NULL && tvd != NULL) {
2756 vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize,
2757 1ULL << tvd->vdev_ms_shift);
2758 }
2759 if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2760 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2761 }
2762
2763 /*
2764 * If we're getting stats on the root vdev, aggregate the I/O counts
2765 * over all top-level vdevs (i.e. the direct children of the root).
2766 */
2767 if (vd == rvd) {
2768 for (int c = 0; c < rvd->vdev_children; c++) {
2769 vdev_t *cvd = rvd->vdev_child[c];
2770 vdev_stat_t *cvs = &cvd->vdev_stat;
2771
2772 for (int t = 0; t < ZIO_TYPES; t++) {
2773 vs->vs_ops[t] += cvs->vs_ops[t];
2774 vs->vs_bytes[t] += cvs->vs_bytes[t];
2775 }
2776 cvs->vs_scan_removing = cvd->vdev_removing;
2777 }
2778 }
2779 mutex_exit(&vd->vdev_stat_lock);
2780 }
2781
2782 void
2783 vdev_clear_stats(vdev_t *vd)
2784 {
2785 mutex_enter(&vd->vdev_stat_lock);
2786 vd->vdev_stat.vs_space = 0;
2787 vd->vdev_stat.vs_dspace = 0;
2788 vd->vdev_stat.vs_alloc = 0;
2789 mutex_exit(&vd->vdev_stat_lock);
2790 }
2791
2792 void
2793 vdev_scan_stat_init(vdev_t *vd)
2794 {
2795 vdev_stat_t *vs = &vd->vdev_stat;
2796
2797 for (int c = 0; c < vd->vdev_children; c++)
2798 vdev_scan_stat_init(vd->vdev_child[c]);
2799
2800 mutex_enter(&vd->vdev_stat_lock);
2801 vs->vs_scan_processed = 0;
2802 mutex_exit(&vd->vdev_stat_lock);
2803 }
2804
2805 void
2806 vdev_stat_update(zio_t *zio, uint64_t psize)
2807 {
2808 spa_t *spa = zio->io_spa;
2809 vdev_t *rvd = spa->spa_root_vdev;
2810 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2811 vdev_t *pvd;
2812 uint64_t txg = zio->io_txg;
2813 vdev_stat_t *vs = &vd->vdev_stat;
2814 zio_type_t type = zio->io_type;
2815 int flags = zio->io_flags;
2816
2817 /*
2818 * If this i/o is a gang leader, it didn't do any actual work.
2819 */
2820 if (zio->io_gang_tree)
2821 return;
2822
2823 if (zio->io_error == 0) {
2824 /*
2825 * If this is a root i/o, don't count it -- we've already
2826 * counted the top-level vdevs, and vdev_get_stats() will
2827 * aggregate them when asked. This reduces contention on
2828 * the root vdev_stat_lock and implicitly handles blocks
2829 * that compress away to holes, for which there is no i/o.
2830 * (Holes never create vdev children, so all the counters
2831 * remain zero, which is what we want.)
2832 *
2833 * Note: this only applies to successful i/o (io_error == 0)
2834 * because unlike i/o counts, errors are not additive.
2835 * When reading a ditto block, for example, failure of
2836 * one top-level vdev does not imply a root-level error.
2837 */
2838 if (vd == rvd)
2839 return;
2840
2841 ASSERT(vd == zio->io_vd);
2842
2843 if (flags & ZIO_FLAG_IO_BYPASS)
2844 return;
2845
2846 mutex_enter(&vd->vdev_stat_lock);
2847
2848 if (flags & ZIO_FLAG_IO_REPAIR) {
2849 if (flags & ZIO_FLAG_SCAN_THREAD) {
2850 dsl_scan_phys_t *scn_phys =
2851 &spa->spa_dsl_pool->dp_scan->scn_phys;
2852 uint64_t *processed = &scn_phys->scn_processed;
2853
2854 /* XXX cleanup? */
2855 if (vd->vdev_ops->vdev_op_leaf)
2856 atomic_add_64(processed, psize);
2857 vs->vs_scan_processed += psize;
2858 }
2859
2860 if (flags & ZIO_FLAG_SELF_HEAL)
2861 vs->vs_self_healed += psize;
2862 }
2863
2864 vs->vs_ops[type]++;
2865 vs->vs_bytes[type] += psize;
2866
2867 mutex_exit(&vd->vdev_stat_lock);
2868 return;
2869 }
2870
2871 if (flags & ZIO_FLAG_SPECULATIVE)
2872 return;
2873
2874 /*
2875 * If this is an I/O error that is going to be retried, then ignore the
2876 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
2877 * hard errors, when in reality they can happen for any number of
2878 * innocuous reasons (bus resets, MPxIO link failure, etc).
2879 */
2880 if (zio->io_error == EIO &&
2881 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2882 return;
2883
2884 /*
2885 * Intent logs writes won't propagate their error to the root
2886 * I/O so don't mark these types of failures as pool-level
2887 * errors.
2888 */
2889 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2890 return;
2891
2892 mutex_enter(&vd->vdev_stat_lock);
2893 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2894 if (zio->io_error == ECKSUM)
2895 vs->vs_checksum_errors++;
2896 else
2897 vs->vs_read_errors++;
2898 }
2899 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2900 vs->vs_write_errors++;
2901 mutex_exit(&vd->vdev_stat_lock);
2902
2903 if (type == ZIO_TYPE_WRITE && txg != 0 &&
2904 (!(flags & ZIO_FLAG_IO_REPAIR) ||
2905 (flags & ZIO_FLAG_SCAN_THREAD) ||
2906 spa->spa_claiming)) {
2907 /*
2908 * This is either a normal write (not a repair), or it's
2909 * a repair induced by the scrub thread, or it's a repair
2910 * made by zil_claim() during spa_load() in the first txg.
2911 * In the normal case, we commit the DTL change in the same
2912 * txg as the block was born. In the scrub-induced repair
2913 * case, we know that scrubs run in first-pass syncing context,
2914 * so we commit the DTL change in spa_syncing_txg(spa).
2915 * In the zil_claim() case, we commit in spa_first_txg(spa).
2916 *
2917 * We currently do not make DTL entries for failed spontaneous
2918 * self-healing writes triggered by normal (non-scrubbing)
2919 * reads, because we have no transactional context in which to
2920 * do so -- and it's not clear that it'd be desirable anyway.
2921 */
2922 if (vd->vdev_ops->vdev_op_leaf) {
2923 uint64_t commit_txg = txg;
2924 if (flags & ZIO_FLAG_SCAN_THREAD) {
2925 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2926 ASSERT(spa_sync_pass(spa) == 1);
2927 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2928 commit_txg = spa_syncing_txg(spa);
2929 } else if (spa->spa_claiming) {
2930 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2931 commit_txg = spa_first_txg(spa);
2932 }
2933 ASSERT(commit_txg >= spa_syncing_txg(spa));
2934 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2935 return;
2936 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2937 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2938 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2939 }
2940 if (vd != rvd)
2941 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2942 }
2943 }
2944
2945 /*
2946 * Update the in-core space usage stats for this vdev, its metaslab class,
2947 * and the root vdev.
2948 */
2949 void
2950 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2951 int64_t space_delta)
2952 {
2953 int64_t dspace_delta = space_delta;
2954 spa_t *spa = vd->vdev_spa;
2955 vdev_t *rvd = spa->spa_root_vdev;
2956 metaslab_group_t *mg = vd->vdev_mg;
2957 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2958
2959 ASSERT(vd == vd->vdev_top);
2960
2961 /*
2962 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2963 * factor. We must calculate this here and not at the root vdev
2964 * because the root vdev's psize-to-asize is simply the max of its
2965 * childrens', thus not accurate enough for us.
2966 */
2967 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2968 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2969 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2970 vd->vdev_deflate_ratio;
2971
2972 mutex_enter(&vd->vdev_stat_lock);
2973 vd->vdev_stat.vs_alloc += alloc_delta;
2974 vd->vdev_stat.vs_space += space_delta;
2975 vd->vdev_stat.vs_dspace += dspace_delta;
2976 mutex_exit(&vd->vdev_stat_lock);
2977
2978 if (mc == spa_normal_class(spa)) {
2979 mutex_enter(&rvd->vdev_stat_lock);
2980 rvd->vdev_stat.vs_alloc += alloc_delta;
2981 rvd->vdev_stat.vs_space += space_delta;
2982 rvd->vdev_stat.vs_dspace += dspace_delta;
2983 mutex_exit(&rvd->vdev_stat_lock);
2984 }
2985
2986 if (mc != NULL) {
2987 ASSERT(rvd == vd->vdev_parent);
2988 ASSERT(vd->vdev_ms_count != 0);
2989
2990 metaslab_class_space_update(mc,
2991 alloc_delta, defer_delta, space_delta, dspace_delta);
2992 }
2993 }
2994
2995 /*
2996 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2997 * so that it will be written out next time the vdev configuration is synced.
2998 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2999 */
3000 void
3001 vdev_config_dirty(vdev_t *vd)
3002 {
3003 spa_t *spa = vd->vdev_spa;
3004 vdev_t *rvd = spa->spa_root_vdev;
3005 int c;
3006
3007 ASSERT(spa_writeable(spa));
3008
3009 /*
3010 * If this is an aux vdev (as with l2cache and spare devices), then we
3011 * update the vdev config manually and set the sync flag.
3012 */
3013 if (vd->vdev_aux != NULL) {
3014 spa_aux_vdev_t *sav = vd->vdev_aux;
3015 nvlist_t **aux;
3016 uint_t naux;
3017
3018 for (c = 0; c < sav->sav_count; c++) {
3019 if (sav->sav_vdevs[c] == vd)
3020 break;
3021 }
3022
3023 if (c == sav->sav_count) {
3024 /*
3025 * We're being removed. There's nothing more to do.
3026 */
3027 ASSERT(sav->sav_sync == B_TRUE);
3028 return;
3029 }
3030
3031 sav->sav_sync = B_TRUE;
3032
3033 if (nvlist_lookup_nvlist_array(sav->sav_config,
3034 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3035 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3036 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3037 }
3038
3039 ASSERT(c < naux);
3040
3041 /*
3042 * Setting the nvlist in the middle if the array is a little
3043 * sketchy, but it will work.
3044 */
3045 nvlist_free(aux[c]);
3046 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3047
3048 return;
3049 }
3050
3051 /*
3052 * The dirty list is protected by the SCL_CONFIG lock. The caller
3053 * must either hold SCL_CONFIG as writer, or must be the sync thread
3054 * (which holds SCL_CONFIG as reader). There's only one sync thread,
3055 * so this is sufficient to ensure mutual exclusion.
3056 */
3057 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3058 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3059 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3060
3061 if (vd == rvd) {
3062 for (c = 0; c < rvd->vdev_children; c++)
3063 vdev_config_dirty(rvd->vdev_child[c]);
3064 } else {
3065 ASSERT(vd == vd->vdev_top);
3066
3067 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3068 !vd->vdev_ishole)
3069 list_insert_head(&spa->spa_config_dirty_list, vd);
3070 }
3071 }
3072
3073 void
3074 vdev_config_clean(vdev_t *vd)
3075 {
3076 spa_t *spa = vd->vdev_spa;
3077
3078 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3079 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3080 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3081
3082 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3083 list_remove(&spa->spa_config_dirty_list, vd);
3084 }
3085
3086 /*
3087 * Mark a top-level vdev's state as dirty, so that the next pass of
3088 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
3089 * the state changes from larger config changes because they require
3090 * much less locking, and are often needed for administrative actions.
3091 */
3092 void
3093 vdev_state_dirty(vdev_t *vd)
3094 {
3095 spa_t *spa = vd->vdev_spa;
3096
3097 ASSERT(spa_writeable(spa));
3098 ASSERT(vd == vd->vdev_top);
3099
3100 /*
3101 * The state list is protected by the SCL_STATE lock. The caller
3102 * must either hold SCL_STATE as writer, or must be the sync thread
3103 * (which holds SCL_STATE as reader). There's only one sync thread,
3104 * so this is sufficient to ensure mutual exclusion.
3105 */
3106 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3107 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3108 spa_config_held(spa, SCL_STATE, RW_READER)));
3109
3110 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3111 list_insert_head(&spa->spa_state_dirty_list, vd);
3112 }
3113
3114 void
3115 vdev_state_clean(vdev_t *vd)
3116 {
3117 spa_t *spa = vd->vdev_spa;
3118
3119 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3120 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3121 spa_config_held(spa, SCL_STATE, RW_READER)));
3122
3123 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3124 list_remove(&spa->spa_state_dirty_list, vd);
3125 }
3126
3127 /*
3128 * Propagate vdev state up from children to parent.
3129 */
3130 void
3131 vdev_propagate_state(vdev_t *vd)
3132 {
3133 spa_t *spa = vd->vdev_spa;
3134 vdev_t *rvd = spa->spa_root_vdev;
3135 int degraded = 0, faulted = 0;
3136 int corrupted = 0;
3137 vdev_t *child;
3138
3139 if (vd->vdev_children > 0) {
3140 for (int c = 0; c < vd->vdev_children; c++) {
3141 child = vd->vdev_child[c];
3142
3143 /*
3144 * Don't factor holes into the decision.
3145 */
3146 if (child->vdev_ishole)
3147 continue;
3148
3149 if (!vdev_readable(child) ||
3150 (!vdev_writeable(child) && spa_writeable(spa))) {
3151 /*
3152 * Root special: if there is a top-level log
3153 * device, treat the root vdev as if it were
3154 * degraded.
3155 */
3156 if (child->vdev_islog && vd == rvd)
3157 degraded++;
3158 else
3159 faulted++;
3160 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3161 degraded++;
3162 }
3163
3164 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3165 corrupted++;
3166 }
3167
3168 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3169
3170 /*
3171 * Root special: if there is a top-level vdev that cannot be
3172 * opened due to corrupted metadata, then propagate the root
3173 * vdev's aux state as 'corrupt' rather than 'insufficient
3174 * replicas'.
3175 */
3176 if (corrupted && vd == rvd &&
3177 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3178 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3179 VDEV_AUX_CORRUPT_DATA);
3180 }
3181
3182 if (vd->vdev_parent)
3183 vdev_propagate_state(vd->vdev_parent);
3184 }
3185
3186 /*
3187 * Set a vdev's state. If this is during an open, we don't update the parent
3188 * state, because we're in the process of opening children depth-first.
3189 * Otherwise, we propagate the change to the parent.
3190 *
3191 * If this routine places a device in a faulted state, an appropriate ereport is
3192 * generated.
3193 */
3194 void
3195 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3196 {
3197 uint64_t save_state;
3198 spa_t *spa = vd->vdev_spa;
3199
3200 if (state == vd->vdev_state) {
3201 vd->vdev_stat.vs_aux = aux;
3202 return;
3203 }
3204
3205 save_state = vd->vdev_state;
3206
3207 vd->vdev_state = state;
3208 vd->vdev_stat.vs_aux = aux;
3209
3210 /*
3211 * If we are setting the vdev state to anything but an open state, then
3212 * always close the underlying device unless the device has requested
3213 * a delayed close (i.e. we're about to remove or fault the device).
3214 * Otherwise, we keep accessible but invalid devices open forever.
3215 * We don't call vdev_close() itself, because that implies some extra
3216 * checks (offline, etc) that we don't want here. This is limited to
3217 * leaf devices, because otherwise closing the device will affect other
3218 * children.
3219 */
3220 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3221 vd->vdev_ops->vdev_op_leaf)
3222 vd->vdev_ops->vdev_op_close(vd);
3223
3224 /*
3225 * If we have brought this vdev back into service, we need
3226 * to notify fmd so that it can gracefully repair any outstanding
3227 * cases due to a missing device. We do this in all cases, even those
3228 * that probably don't correlate to a repaired fault. This is sure to
3229 * catch all cases, and we let the zfs-retire agent sort it out. If
3230 * this is a transient state it's OK, as the retire agent will
3231 * double-check the state of the vdev before repairing it.
3232 */
3233 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3234 vd->vdev_prevstate != state)
3235 zfs_post_state_change(spa, vd);
3236
3237 if (vd->vdev_removed &&
3238 state == VDEV_STATE_CANT_OPEN &&
3239 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3240 /*
3241 * If the previous state is set to VDEV_STATE_REMOVED, then this
3242 * device was previously marked removed and someone attempted to
3243 * reopen it. If this failed due to a nonexistent device, then
3244 * keep the device in the REMOVED state. We also let this be if
3245 * it is one of our special test online cases, which is only
3246 * attempting to online the device and shouldn't generate an FMA
3247 * fault.
3248 */
3249 vd->vdev_state = VDEV_STATE_REMOVED;
3250 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3251 } else if (state == VDEV_STATE_REMOVED) {
3252 vd->vdev_removed = B_TRUE;
3253 } else if (state == VDEV_STATE_CANT_OPEN) {
3254 /*
3255 * If we fail to open a vdev during an import or recovery, we
3256 * mark it as "not available", which signifies that it was
3257 * never there to begin with. Failure to open such a device
3258 * is not considered an error.
3259 */
3260 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3261 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3262 vd->vdev_ops->vdev_op_leaf)
3263 vd->vdev_not_present = 1;
3264
3265 /*
3266 * Post the appropriate ereport. If the 'prevstate' field is
3267 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3268 * that this is part of a vdev_reopen(). In this case, we don't
3269 * want to post the ereport if the device was already in the
3270 * CANT_OPEN state beforehand.
3271 *
3272 * If the 'checkremove' flag is set, then this is an attempt to
3273 * online the device in response to an insertion event. If we
3274 * hit this case, then we have detected an insertion event for a
3275 * faulted or offline device that wasn't in the removed state.
3276 * In this scenario, we don't post an ereport because we are
3277 * about to replace the device, or attempt an online with
3278 * vdev_forcefault, which will generate the fault for us.
3279 */
3280 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3281 !vd->vdev_not_present && !vd->vdev_checkremove &&
3282 vd != spa->spa_root_vdev) {
3283 const char *class;
3284
3285 switch (aux) {
3286 case VDEV_AUX_OPEN_FAILED:
3287 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3288 break;
3289 case VDEV_AUX_CORRUPT_DATA:
3290 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3291 break;
3292 case VDEV_AUX_NO_REPLICAS:
3293 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3294 break;
3295 case VDEV_AUX_BAD_GUID_SUM:
3296 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3297 break;
3298 case VDEV_AUX_TOO_SMALL:
3299 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3300 break;
3301 case VDEV_AUX_BAD_LABEL:
3302 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3303 break;
3304 default:
3305 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3306 }
3307
3308 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3309 }
3310
3311 /* Erase any notion of persistent removed state */
3312 vd->vdev_removed = B_FALSE;
3313 } else {
3314 vd->vdev_removed = B_FALSE;
3315 }
3316
3317 if (!isopen && vd->vdev_parent)
3318 vdev_propagate_state(vd->vdev_parent);
3319 }
3320
3321 /*
3322 * Check the vdev configuration to ensure that it's capable of supporting
3323 * a root pool. We do not support partial configuration.
3324 * In addition, only a single top-level vdev is allowed.
3325 */
3326 boolean_t
3327 vdev_is_bootable(vdev_t *vd)
3328 {
3329 if (!vd->vdev_ops->vdev_op_leaf) {
3330 char *vdev_type = vd->vdev_ops->vdev_op_type;
3331
3332 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3333 vd->vdev_children > 1) {
3334 return (B_FALSE);
3335 } else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3336 return (B_FALSE);
3337 }
3338 }
3339
3340 for (int c = 0; c < vd->vdev_children; c++) {
3341 if (!vdev_is_bootable(vd->vdev_child[c]))
3342 return (B_FALSE);
3343 }
3344 return (B_TRUE);
3345 }
3346
3347 /*
3348 * Load the state from the original vdev tree (ovd) which
3349 * we've retrieved from the MOS config object. If the original
3350 * vdev was offline or faulted then we transfer that state to the
3351 * device in the current vdev tree (nvd).
3352 */
3353 void
3354 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3355 {
3356 spa_t *spa = nvd->vdev_spa;
3357
3358 ASSERT(nvd->vdev_top->vdev_islog);
3359 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3360 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3361
3362 for (int c = 0; c < nvd->vdev_children; c++)
3363 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3364
3365 if (nvd->vdev_ops->vdev_op_leaf) {
3366 /*
3367 * Restore the persistent vdev state
3368 */
3369 nvd->vdev_offline = ovd->vdev_offline;
3370 nvd->vdev_faulted = ovd->vdev_faulted;
3371 nvd->vdev_degraded = ovd->vdev_degraded;
3372 nvd->vdev_removed = ovd->vdev_removed;
3373 }
3374 }
3375
3376 /*
3377 * Determine if a log device has valid content. If the vdev was
3378 * removed or faulted in the MOS config then we know that
3379 * the content on the log device has already been written to the pool.
3380 */
3381 boolean_t
3382 vdev_log_state_valid(vdev_t *vd)
3383 {
3384 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3385 !vd->vdev_removed)
3386 return (B_TRUE);
3387
3388 for (int c = 0; c < vd->vdev_children; c++)
3389 if (vdev_log_state_valid(vd->vdev_child[c]))
3390 return (B_TRUE);
3391
3392 return (B_FALSE);
3393 }
3394
3395 /*
3396 * Expand a vdev if possible.
3397 */
3398 void
3399 vdev_expand(vdev_t *vd, uint64_t txg)
3400 {
3401 ASSERT(vd->vdev_top == vd);
3402 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3403
3404 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3405 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3406 vdev_config_dirty(vd);
3407 }
3408 }
3409
3410 /*
3411 * Split a vdev.
3412 */
3413 void
3414 vdev_split(vdev_t *vd)
3415 {
3416 vdev_t *cvd, *pvd = vd->vdev_parent;
3417
3418 vdev_remove_child(pvd, vd);
3419 vdev_compact_children(pvd);
3420
3421 cvd = pvd->vdev_child[0];
3422 if (pvd->vdev_children == 1) {
3423 vdev_remove_parent(cvd);
3424 cvd->vdev_splitting = B_TRUE;
3425 }
3426 vdev_propagate_state(cvd);
3427 }
3428
3429 void
3430 vdev_deadman(vdev_t *vd)
3431 {
3432 for (int c = 0; c < vd->vdev_children; c++) {
3433 vdev_t *cvd = vd->vdev_child[c];
3434
3435 vdev_deadman(cvd);
3436 }
3437
3438 if (vd->vdev_ops->vdev_op_leaf) {
3439 vdev_queue_t *vq = &vd->vdev_queue;
3440
3441 mutex_enter(&vq->vq_lock);
3442 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3443 spa_t *spa = vd->vdev_spa;
3444 zio_t *fio;
3445 uint64_t delta;
3446
3447 /*
3448 * Look at the head of all the pending queues,
3449 * if any I/O has been outstanding for longer than
3450 * the spa_deadman_synctime we panic the system.
3451 */
3452 fio = avl_first(&vq->vq_active_tree);
3453 delta = gethrtime() - fio->io_timestamp;
3454 if (delta > spa_deadman_synctime(spa)) {
3455 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3456 "delta %lluns, last io %lluns",
3457 fio->io_timestamp, delta,
3458 vq->vq_io_complete_ts);
3459 fm_panic("I/O to pool '%s' appears to be "
3460 "hung.", spa_name(spa));
3461 }
3462 }
3463 mutex_exit(&vq->vq_lock);
3464 }
3465 }