1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 25 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2016 Toomas Soome <tsoome@me.com> 28 */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/fm/fs/zfs.h> 32 #include <sys/spa.h> 33 #include <sys/spa_impl.h> 34 #include <sys/dmu.h> 35 #include <sys/dmu_tx.h> 36 #include <sys/vdev_impl.h> 37 #include <sys/uberblock_impl.h> 38 #include <sys/metaslab.h> 39 #include <sys/metaslab_impl.h> 40 #include <sys/space_map.h> 41 #include <sys/space_reftree.h> 42 #include <sys/zio.h> 43 #include <sys/zap.h> 44 #include <sys/fs/zfs.h> 45 #include <sys/arc.h> 46 #include <sys/zil.h> 47 #include <sys/dsl_scan.h> 48 49 /* 50 * Virtual device management. 51 */ 52 53 static vdev_ops_t *vdev_ops_table[] = { 54 &vdev_root_ops, 55 &vdev_raidz_ops, 56 &vdev_mirror_ops, 57 &vdev_replacing_ops, 58 &vdev_spare_ops, 59 &vdev_disk_ops, 60 &vdev_file_ops, 61 &vdev_missing_ops, 62 &vdev_hole_ops, 63 NULL 64 }; 65 66 /* maximum scrub/resilver I/O queue per leaf vdev */ 67 int zfs_scrub_limit = 10; 68 69 /* 70 * When a vdev is added, it will be divided into approximately (but no 71 * more than) this number of metaslabs. 72 */ 73 int metaslabs_per_vdev = 200; 74 75 /* 76 * Given a vdev type, return the appropriate ops vector. 77 */ 78 static vdev_ops_t * 79 vdev_getops(const char *type) 80 { 81 vdev_ops_t *ops, **opspp; 82 83 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 84 if (strcmp(ops->vdev_op_type, type) == 0) 85 break; 86 87 return (ops); 88 } 89 90 /* 91 * Default asize function: return the MAX of psize with the asize of 92 * all children. This is what's used by anything other than RAID-Z. 93 */ 94 uint64_t 95 vdev_default_asize(vdev_t *vd, uint64_t psize) 96 { 97 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 98 uint64_t csize; 99 100 for (int c = 0; c < vd->vdev_children; c++) { 101 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 102 asize = MAX(asize, csize); 103 } 104 105 return (asize); 106 } 107 108 /* 109 * Get the minimum allocatable size. We define the allocatable size as 110 * the vdev's asize rounded to the nearest metaslab. This allows us to 111 * replace or attach devices which don't have the same physical size but 112 * can still satisfy the same number of allocations. 113 */ 114 uint64_t 115 vdev_get_min_asize(vdev_t *vd) 116 { 117 vdev_t *pvd = vd->vdev_parent; 118 119 /* 120 * If our parent is NULL (inactive spare or cache) or is the root, 121 * just return our own asize. 122 */ 123 if (pvd == NULL) 124 return (vd->vdev_asize); 125 126 /* 127 * The top-level vdev just returns the allocatable size rounded 128 * to the nearest metaslab. 129 */ 130 if (vd == vd->vdev_top) 131 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 132 133 /* 134 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 135 * so each child must provide at least 1/Nth of its asize. 136 */ 137 if (pvd->vdev_ops == &vdev_raidz_ops) 138 return (pvd->vdev_min_asize / pvd->vdev_children); 139 140 return (pvd->vdev_min_asize); 141 } 142 143 void 144 vdev_set_min_asize(vdev_t *vd) 145 { 146 vd->vdev_min_asize = vdev_get_min_asize(vd); 147 148 for (int c = 0; c < vd->vdev_children; c++) 149 vdev_set_min_asize(vd->vdev_child[c]); 150 } 151 152 vdev_t * 153 vdev_lookup_top(spa_t *spa, uint64_t vdev) 154 { 155 vdev_t *rvd = spa->spa_root_vdev; 156 157 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 158 159 if (vdev < rvd->vdev_children) { 160 ASSERT(rvd->vdev_child[vdev] != NULL); 161 return (rvd->vdev_child[vdev]); 162 } 163 164 return (NULL); 165 } 166 167 vdev_t * 168 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 169 { 170 vdev_t *mvd; 171 172 if (vd->vdev_guid == guid) 173 return (vd); 174 175 for (int c = 0; c < vd->vdev_children; c++) 176 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 177 NULL) 178 return (mvd); 179 180 return (NULL); 181 } 182 183 static int 184 vdev_count_leaves_impl(vdev_t *vd) 185 { 186 int n = 0; 187 188 if (vd->vdev_ops->vdev_op_leaf) 189 return (1); 190 191 for (int c = 0; c < vd->vdev_children; c++) 192 n += vdev_count_leaves_impl(vd->vdev_child[c]); 193 194 return (n); 195 } 196 197 int 198 vdev_count_leaves(spa_t *spa) 199 { 200 return (vdev_count_leaves_impl(spa->spa_root_vdev)); 201 } 202 203 void 204 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 205 { 206 size_t oldsize, newsize; 207 uint64_t id = cvd->vdev_id; 208 vdev_t **newchild; 209 spa_t *spa = cvd->vdev_spa; 210 211 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 212 ASSERT(cvd->vdev_parent == NULL); 213 214 cvd->vdev_parent = pvd; 215 216 if (pvd == NULL) 217 return; 218 219 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 220 221 oldsize = pvd->vdev_children * sizeof (vdev_t *); 222 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 223 newsize = pvd->vdev_children * sizeof (vdev_t *); 224 225 newchild = kmem_zalloc(newsize, KM_SLEEP); 226 if (pvd->vdev_child != NULL) { 227 bcopy(pvd->vdev_child, newchild, oldsize); 228 kmem_free(pvd->vdev_child, oldsize); 229 } 230 231 pvd->vdev_child = newchild; 232 pvd->vdev_child[id] = cvd; 233 234 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 235 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 236 237 /* 238 * Walk up all ancestors to update guid sum. 239 */ 240 for (; pvd != NULL; pvd = pvd->vdev_parent) 241 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 242 } 243 244 void 245 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 246 { 247 int c; 248 uint_t id = cvd->vdev_id; 249 250 ASSERT(cvd->vdev_parent == pvd); 251 252 if (pvd == NULL) 253 return; 254 255 ASSERT(id < pvd->vdev_children); 256 ASSERT(pvd->vdev_child[id] == cvd); 257 258 pvd->vdev_child[id] = NULL; 259 cvd->vdev_parent = NULL; 260 261 for (c = 0; c < pvd->vdev_children; c++) 262 if (pvd->vdev_child[c]) 263 break; 264 265 if (c == pvd->vdev_children) { 266 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 267 pvd->vdev_child = NULL; 268 pvd->vdev_children = 0; 269 } 270 271 /* 272 * Walk up all ancestors to update guid sum. 273 */ 274 for (; pvd != NULL; pvd = pvd->vdev_parent) 275 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 276 } 277 278 /* 279 * Remove any holes in the child array. 280 */ 281 void 282 vdev_compact_children(vdev_t *pvd) 283 { 284 vdev_t **newchild, *cvd; 285 int oldc = pvd->vdev_children; 286 int newc; 287 288 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 289 290 for (int c = newc = 0; c < oldc; c++) 291 if (pvd->vdev_child[c]) 292 newc++; 293 294 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 295 296 for (int c = newc = 0; c < oldc; c++) { 297 if ((cvd = pvd->vdev_child[c]) != NULL) { 298 newchild[newc] = cvd; 299 cvd->vdev_id = newc++; 300 } 301 } 302 303 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 304 pvd->vdev_child = newchild; 305 pvd->vdev_children = newc; 306 } 307 308 /* 309 * Allocate and minimally initialize a vdev_t. 310 */ 311 vdev_t * 312 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 313 { 314 vdev_t *vd; 315 316 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 317 318 if (spa->spa_root_vdev == NULL) { 319 ASSERT(ops == &vdev_root_ops); 320 spa->spa_root_vdev = vd; 321 spa->spa_load_guid = spa_generate_guid(NULL); 322 } 323 324 if (guid == 0 && ops != &vdev_hole_ops) { 325 if (spa->spa_root_vdev == vd) { 326 /* 327 * The root vdev's guid will also be the pool guid, 328 * which must be unique among all pools. 329 */ 330 guid = spa_generate_guid(NULL); 331 } else { 332 /* 333 * Any other vdev's guid must be unique within the pool. 334 */ 335 guid = spa_generate_guid(spa); 336 } 337 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 338 } 339 340 vd->vdev_spa = spa; 341 vd->vdev_id = id; 342 vd->vdev_guid = guid; 343 vd->vdev_guid_sum = guid; 344 vd->vdev_ops = ops; 345 vd->vdev_state = VDEV_STATE_CLOSED; 346 vd->vdev_ishole = (ops == &vdev_hole_ops); 347 348 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 349 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 350 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 351 mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL); 352 for (int t = 0; t < DTL_TYPES; t++) { 353 vd->vdev_dtl[t] = range_tree_create(NULL, NULL, 354 &vd->vdev_dtl_lock); 355 } 356 txg_list_create(&vd->vdev_ms_list, 357 offsetof(struct metaslab, ms_txg_node)); 358 txg_list_create(&vd->vdev_dtl_list, 359 offsetof(struct vdev, vdev_dtl_node)); 360 vd->vdev_stat.vs_timestamp = gethrtime(); 361 vdev_queue_init(vd); 362 vdev_cache_init(vd); 363 364 return (vd); 365 } 366 367 /* 368 * Allocate a new vdev. The 'alloctype' is used to control whether we are 369 * creating a new vdev or loading an existing one - the behavior is slightly 370 * different for each case. 371 */ 372 int 373 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 374 int alloctype) 375 { 376 vdev_ops_t *ops; 377 char *type; 378 uint64_t guid = 0, islog, nparity; 379 vdev_t *vd; 380 381 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 382 383 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 384 return (SET_ERROR(EINVAL)); 385 386 if ((ops = vdev_getops(type)) == NULL) 387 return (SET_ERROR(EINVAL)); 388 389 /* 390 * If this is a load, get the vdev guid from the nvlist. 391 * Otherwise, vdev_alloc_common() will generate one for us. 392 */ 393 if (alloctype == VDEV_ALLOC_LOAD) { 394 uint64_t label_id; 395 396 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 397 label_id != id) 398 return (SET_ERROR(EINVAL)); 399 400 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 401 return (SET_ERROR(EINVAL)); 402 } else if (alloctype == VDEV_ALLOC_SPARE) { 403 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 404 return (SET_ERROR(EINVAL)); 405 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 406 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 407 return (SET_ERROR(EINVAL)); 408 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 409 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 410 return (SET_ERROR(EINVAL)); 411 } 412 413 /* 414 * The first allocated vdev must be of type 'root'. 415 */ 416 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 417 return (SET_ERROR(EINVAL)); 418 419 /* 420 * Determine whether we're a log vdev. 421 */ 422 islog = 0; 423 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 424 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 425 return (SET_ERROR(ENOTSUP)); 426 427 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 428 return (SET_ERROR(ENOTSUP)); 429 430 /* 431 * Set the nparity property for RAID-Z vdevs. 432 */ 433 nparity = -1ULL; 434 if (ops == &vdev_raidz_ops) { 435 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 436 &nparity) == 0) { 437 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 438 return (SET_ERROR(EINVAL)); 439 /* 440 * Previous versions could only support 1 or 2 parity 441 * device. 442 */ 443 if (nparity > 1 && 444 spa_version(spa) < SPA_VERSION_RAIDZ2) 445 return (SET_ERROR(ENOTSUP)); 446 if (nparity > 2 && 447 spa_version(spa) < SPA_VERSION_RAIDZ3) 448 return (SET_ERROR(ENOTSUP)); 449 } else { 450 /* 451 * We require the parity to be specified for SPAs that 452 * support multiple parity levels. 453 */ 454 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 455 return (SET_ERROR(EINVAL)); 456 /* 457 * Otherwise, we default to 1 parity device for RAID-Z. 458 */ 459 nparity = 1; 460 } 461 } else { 462 nparity = 0; 463 } 464 ASSERT(nparity != -1ULL); 465 466 vd = vdev_alloc_common(spa, id, guid, ops); 467 468 vd->vdev_islog = islog; 469 vd->vdev_nparity = nparity; 470 471 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 472 vd->vdev_path = spa_strdup(vd->vdev_path); 473 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 474 vd->vdev_devid = spa_strdup(vd->vdev_devid); 475 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 476 &vd->vdev_physpath) == 0) 477 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 478 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 479 vd->vdev_fru = spa_strdup(vd->vdev_fru); 480 481 /* 482 * Set the whole_disk property. If it's not specified, leave the value 483 * as -1. 484 */ 485 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 486 &vd->vdev_wholedisk) != 0) 487 vd->vdev_wholedisk = -1ULL; 488 489 /* 490 * Look for the 'not present' flag. This will only be set if the device 491 * was not present at the time of import. 492 */ 493 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 494 &vd->vdev_not_present); 495 496 /* 497 * Get the alignment requirement. 498 */ 499 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 500 501 /* 502 * Retrieve the vdev creation time. 503 */ 504 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 505 &vd->vdev_crtxg); 506 507 /* 508 * If we're a top-level vdev, try to load the allocation parameters. 509 */ 510 if (parent && !parent->vdev_parent && 511 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 512 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 513 &vd->vdev_ms_array); 514 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 515 &vd->vdev_ms_shift); 516 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 517 &vd->vdev_asize); 518 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 519 &vd->vdev_removing); 520 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 521 &vd->vdev_top_zap); 522 } else { 523 ASSERT0(vd->vdev_top_zap); 524 } 525 526 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) { 527 ASSERT(alloctype == VDEV_ALLOC_LOAD || 528 alloctype == VDEV_ALLOC_ADD || 529 alloctype == VDEV_ALLOC_SPLIT || 530 alloctype == VDEV_ALLOC_ROOTPOOL); 531 vd->vdev_mg = metaslab_group_create(islog ? 532 spa_log_class(spa) : spa_normal_class(spa), vd); 533 } 534 535 if (vd->vdev_ops->vdev_op_leaf && 536 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 537 (void) nvlist_lookup_uint64(nv, 538 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap); 539 } else { 540 ASSERT0(vd->vdev_leaf_zap); 541 } 542 543 /* 544 * If we're a leaf vdev, try to load the DTL object and other state. 545 */ 546 547 if (vd->vdev_ops->vdev_op_leaf && 548 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 549 alloctype == VDEV_ALLOC_ROOTPOOL)) { 550 if (alloctype == VDEV_ALLOC_LOAD) { 551 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 552 &vd->vdev_dtl_object); 553 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 554 &vd->vdev_unspare); 555 } 556 557 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 558 uint64_t spare = 0; 559 560 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 561 &spare) == 0 && spare) 562 spa_spare_add(vd); 563 } 564 565 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 566 &vd->vdev_offline); 567 568 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 569 &vd->vdev_resilver_txg); 570 571 /* 572 * When importing a pool, we want to ignore the persistent fault 573 * state, as the diagnosis made on another system may not be 574 * valid in the current context. Local vdevs will 575 * remain in the faulted state. 576 */ 577 if (spa_load_state(spa) == SPA_LOAD_OPEN) { 578 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 579 &vd->vdev_faulted); 580 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 581 &vd->vdev_degraded); 582 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 583 &vd->vdev_removed); 584 585 if (vd->vdev_faulted || vd->vdev_degraded) { 586 char *aux; 587 588 vd->vdev_label_aux = 589 VDEV_AUX_ERR_EXCEEDED; 590 if (nvlist_lookup_string(nv, 591 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 592 strcmp(aux, "external") == 0) 593 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 594 } 595 } 596 } 597 598 /* 599 * Add ourselves to the parent's list of children. 600 */ 601 vdev_add_child(parent, vd); 602 603 *vdp = vd; 604 605 return (0); 606 } 607 608 void 609 vdev_free(vdev_t *vd) 610 { 611 spa_t *spa = vd->vdev_spa; 612 613 /* 614 * vdev_free() implies closing the vdev first. This is simpler than 615 * trying to ensure complicated semantics for all callers. 616 */ 617 vdev_close(vd); 618 619 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 620 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 621 622 /* 623 * Free all children. 624 */ 625 for (int c = 0; c < vd->vdev_children; c++) 626 vdev_free(vd->vdev_child[c]); 627 628 ASSERT(vd->vdev_child == NULL); 629 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 630 631 /* 632 * Discard allocation state. 633 */ 634 if (vd->vdev_mg != NULL) { 635 vdev_metaslab_fini(vd); 636 metaslab_group_destroy(vd->vdev_mg); 637 } 638 639 ASSERT0(vd->vdev_stat.vs_space); 640 ASSERT0(vd->vdev_stat.vs_dspace); 641 ASSERT0(vd->vdev_stat.vs_alloc); 642 643 /* 644 * Remove this vdev from its parent's child list. 645 */ 646 vdev_remove_child(vd->vdev_parent, vd); 647 648 ASSERT(vd->vdev_parent == NULL); 649 650 /* 651 * Clean up vdev structure. 652 */ 653 vdev_queue_fini(vd); 654 vdev_cache_fini(vd); 655 656 if (vd->vdev_path) 657 spa_strfree(vd->vdev_path); 658 if (vd->vdev_devid) 659 spa_strfree(vd->vdev_devid); 660 if (vd->vdev_physpath) 661 spa_strfree(vd->vdev_physpath); 662 if (vd->vdev_fru) 663 spa_strfree(vd->vdev_fru); 664 665 if (vd->vdev_isspare) 666 spa_spare_remove(vd); 667 if (vd->vdev_isl2cache) 668 spa_l2cache_remove(vd); 669 670 txg_list_destroy(&vd->vdev_ms_list); 671 txg_list_destroy(&vd->vdev_dtl_list); 672 673 mutex_enter(&vd->vdev_dtl_lock); 674 space_map_close(vd->vdev_dtl_sm); 675 for (int t = 0; t < DTL_TYPES; t++) { 676 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 677 range_tree_destroy(vd->vdev_dtl[t]); 678 } 679 mutex_exit(&vd->vdev_dtl_lock); 680 681 mutex_destroy(&vd->vdev_queue_lock); 682 mutex_destroy(&vd->vdev_dtl_lock); 683 mutex_destroy(&vd->vdev_stat_lock); 684 mutex_destroy(&vd->vdev_probe_lock); 685 686 if (vd == spa->spa_root_vdev) 687 spa->spa_root_vdev = NULL; 688 689 kmem_free(vd, sizeof (vdev_t)); 690 } 691 692 /* 693 * Transfer top-level vdev state from svd to tvd. 694 */ 695 static void 696 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 697 { 698 spa_t *spa = svd->vdev_spa; 699 metaslab_t *msp; 700 vdev_t *vd; 701 int t; 702 703 ASSERT(tvd == tvd->vdev_top); 704 705 tvd->vdev_ms_array = svd->vdev_ms_array; 706 tvd->vdev_ms_shift = svd->vdev_ms_shift; 707 tvd->vdev_ms_count = svd->vdev_ms_count; 708 tvd->vdev_top_zap = svd->vdev_top_zap; 709 710 svd->vdev_ms_array = 0; 711 svd->vdev_ms_shift = 0; 712 svd->vdev_ms_count = 0; 713 svd->vdev_top_zap = 0; 714 715 if (tvd->vdev_mg) 716 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 717 tvd->vdev_mg = svd->vdev_mg; 718 tvd->vdev_ms = svd->vdev_ms; 719 720 svd->vdev_mg = NULL; 721 svd->vdev_ms = NULL; 722 723 if (tvd->vdev_mg != NULL) 724 tvd->vdev_mg->mg_vd = tvd; 725 726 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 727 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 728 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 729 730 svd->vdev_stat.vs_alloc = 0; 731 svd->vdev_stat.vs_space = 0; 732 svd->vdev_stat.vs_dspace = 0; 733 734 for (t = 0; t < TXG_SIZE; t++) { 735 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 736 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 737 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 738 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 739 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 740 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 741 } 742 743 if (list_link_active(&svd->vdev_config_dirty_node)) { 744 vdev_config_clean(svd); 745 vdev_config_dirty(tvd); 746 } 747 748 if (list_link_active(&svd->vdev_state_dirty_node)) { 749 vdev_state_clean(svd); 750 vdev_state_dirty(tvd); 751 } 752 753 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 754 svd->vdev_deflate_ratio = 0; 755 756 tvd->vdev_islog = svd->vdev_islog; 757 svd->vdev_islog = 0; 758 } 759 760 static void 761 vdev_top_update(vdev_t *tvd, vdev_t *vd) 762 { 763 if (vd == NULL) 764 return; 765 766 vd->vdev_top = tvd; 767 768 for (int c = 0; c < vd->vdev_children; c++) 769 vdev_top_update(tvd, vd->vdev_child[c]); 770 } 771 772 /* 773 * Add a mirror/replacing vdev above an existing vdev. 774 */ 775 vdev_t * 776 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 777 { 778 spa_t *spa = cvd->vdev_spa; 779 vdev_t *pvd = cvd->vdev_parent; 780 vdev_t *mvd; 781 782 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 783 784 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 785 786 mvd->vdev_asize = cvd->vdev_asize; 787 mvd->vdev_min_asize = cvd->vdev_min_asize; 788 mvd->vdev_max_asize = cvd->vdev_max_asize; 789 mvd->vdev_ashift = cvd->vdev_ashift; 790 mvd->vdev_state = cvd->vdev_state; 791 mvd->vdev_crtxg = cvd->vdev_crtxg; 792 793 vdev_remove_child(pvd, cvd); 794 vdev_add_child(pvd, mvd); 795 cvd->vdev_id = mvd->vdev_children; 796 vdev_add_child(mvd, cvd); 797 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 798 799 if (mvd == mvd->vdev_top) 800 vdev_top_transfer(cvd, mvd); 801 802 return (mvd); 803 } 804 805 /* 806 * Remove a 1-way mirror/replacing vdev from the tree. 807 */ 808 void 809 vdev_remove_parent(vdev_t *cvd) 810 { 811 vdev_t *mvd = cvd->vdev_parent; 812 vdev_t *pvd = mvd->vdev_parent; 813 814 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 815 816 ASSERT(mvd->vdev_children == 1); 817 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 818 mvd->vdev_ops == &vdev_replacing_ops || 819 mvd->vdev_ops == &vdev_spare_ops); 820 cvd->vdev_ashift = mvd->vdev_ashift; 821 822 vdev_remove_child(mvd, cvd); 823 vdev_remove_child(pvd, mvd); 824 825 /* 826 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 827 * Otherwise, we could have detached an offline device, and when we 828 * go to import the pool we'll think we have two top-level vdevs, 829 * instead of a different version of the same top-level vdev. 830 */ 831 if (mvd->vdev_top == mvd) { 832 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 833 cvd->vdev_orig_guid = cvd->vdev_guid; 834 cvd->vdev_guid += guid_delta; 835 cvd->vdev_guid_sum += guid_delta; 836 } 837 cvd->vdev_id = mvd->vdev_id; 838 vdev_add_child(pvd, cvd); 839 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 840 841 if (cvd == cvd->vdev_top) 842 vdev_top_transfer(mvd, cvd); 843 844 ASSERT(mvd->vdev_children == 0); 845 vdev_free(mvd); 846 } 847 848 int 849 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 850 { 851 spa_t *spa = vd->vdev_spa; 852 objset_t *mos = spa->spa_meta_objset; 853 uint64_t m; 854 uint64_t oldc = vd->vdev_ms_count; 855 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 856 metaslab_t **mspp; 857 int error; 858 859 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 860 861 /* 862 * This vdev is not being allocated from yet or is a hole. 863 */ 864 if (vd->vdev_ms_shift == 0) 865 return (0); 866 867 ASSERT(!vd->vdev_ishole); 868 869 /* 870 * Compute the raidz-deflation ratio. Note, we hard-code 871 * in 128k (1 << 17) because it is the "typical" blocksize. 872 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change, 873 * otherwise it would inconsistently account for existing bp's. 874 */ 875 vd->vdev_deflate_ratio = (1 << 17) / 876 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 877 878 ASSERT(oldc <= newc); 879 880 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 881 882 if (oldc != 0) { 883 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 884 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 885 } 886 887 vd->vdev_ms = mspp; 888 vd->vdev_ms_count = newc; 889 890 for (m = oldc; m < newc; m++) { 891 uint64_t object = 0; 892 893 if (txg == 0) { 894 error = dmu_read(mos, vd->vdev_ms_array, 895 m * sizeof (uint64_t), sizeof (uint64_t), &object, 896 DMU_READ_PREFETCH); 897 if (error) 898 return (error); 899 } 900 901 error = metaslab_init(vd->vdev_mg, m, object, txg, 902 &(vd->vdev_ms[m])); 903 if (error) 904 return (error); 905 } 906 907 if (txg == 0) 908 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 909 910 /* 911 * If the vdev is being removed we don't activate 912 * the metaslabs since we want to ensure that no new 913 * allocations are performed on this device. 914 */ 915 if (oldc == 0 && !vd->vdev_removing) 916 metaslab_group_activate(vd->vdev_mg); 917 918 if (txg == 0) 919 spa_config_exit(spa, SCL_ALLOC, FTAG); 920 921 return (0); 922 } 923 924 void 925 vdev_metaslab_fini(vdev_t *vd) 926 { 927 uint64_t m; 928 uint64_t count = vd->vdev_ms_count; 929 930 if (vd->vdev_ms != NULL) { 931 metaslab_group_passivate(vd->vdev_mg); 932 for (m = 0; m < count; m++) { 933 metaslab_t *msp = vd->vdev_ms[m]; 934 935 if (msp != NULL) 936 metaslab_fini(msp); 937 } 938 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 939 vd->vdev_ms = NULL; 940 } 941 } 942 943 typedef struct vdev_probe_stats { 944 boolean_t vps_readable; 945 boolean_t vps_writeable; 946 int vps_flags; 947 } vdev_probe_stats_t; 948 949 static void 950 vdev_probe_done(zio_t *zio) 951 { 952 spa_t *spa = zio->io_spa; 953 vdev_t *vd = zio->io_vd; 954 vdev_probe_stats_t *vps = zio->io_private; 955 956 ASSERT(vd->vdev_probe_zio != NULL); 957 958 if (zio->io_type == ZIO_TYPE_READ) { 959 if (zio->io_error == 0) 960 vps->vps_readable = 1; 961 if (zio->io_error == 0 && spa_writeable(spa)) { 962 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 963 zio->io_offset, zio->io_size, zio->io_data, 964 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 965 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 966 } else { 967 zio_buf_free(zio->io_data, zio->io_size); 968 } 969 } else if (zio->io_type == ZIO_TYPE_WRITE) { 970 if (zio->io_error == 0) 971 vps->vps_writeable = 1; 972 zio_buf_free(zio->io_data, zio->io_size); 973 } else if (zio->io_type == ZIO_TYPE_NULL) { 974 zio_t *pio; 975 976 vd->vdev_cant_read |= !vps->vps_readable; 977 vd->vdev_cant_write |= !vps->vps_writeable; 978 979 if (vdev_readable(vd) && 980 (vdev_writeable(vd) || !spa_writeable(spa))) { 981 zio->io_error = 0; 982 } else { 983 ASSERT(zio->io_error != 0); 984 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 985 spa, vd, NULL, 0, 0); 986 zio->io_error = SET_ERROR(ENXIO); 987 } 988 989 mutex_enter(&vd->vdev_probe_lock); 990 ASSERT(vd->vdev_probe_zio == zio); 991 vd->vdev_probe_zio = NULL; 992 mutex_exit(&vd->vdev_probe_lock); 993 994 zio_link_t *zl = NULL; 995 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 996 if (!vdev_accessible(vd, pio)) 997 pio->io_error = SET_ERROR(ENXIO); 998 999 kmem_free(vps, sizeof (*vps)); 1000 } 1001 } 1002 1003 /* 1004 * Determine whether this device is accessible. 1005 * 1006 * Read and write to several known locations: the pad regions of each 1007 * vdev label but the first, which we leave alone in case it contains 1008 * a VTOC. 1009 */ 1010 zio_t * 1011 vdev_probe(vdev_t *vd, zio_t *zio) 1012 { 1013 spa_t *spa = vd->vdev_spa; 1014 vdev_probe_stats_t *vps = NULL; 1015 zio_t *pio; 1016 1017 ASSERT(vd->vdev_ops->vdev_op_leaf); 1018 1019 /* 1020 * Don't probe the probe. 1021 */ 1022 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1023 return (NULL); 1024 1025 /* 1026 * To prevent 'probe storms' when a device fails, we create 1027 * just one probe i/o at a time. All zios that want to probe 1028 * this vdev will become parents of the probe io. 1029 */ 1030 mutex_enter(&vd->vdev_probe_lock); 1031 1032 if ((pio = vd->vdev_probe_zio) == NULL) { 1033 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1034 1035 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1036 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 1037 ZIO_FLAG_TRYHARD; 1038 1039 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1040 /* 1041 * vdev_cant_read and vdev_cant_write can only 1042 * transition from TRUE to FALSE when we have the 1043 * SCL_ZIO lock as writer; otherwise they can only 1044 * transition from FALSE to TRUE. This ensures that 1045 * any zio looking at these values can assume that 1046 * failures persist for the life of the I/O. That's 1047 * important because when a device has intermittent 1048 * connectivity problems, we want to ensure that 1049 * they're ascribed to the device (ENXIO) and not 1050 * the zio (EIO). 1051 * 1052 * Since we hold SCL_ZIO as writer here, clear both 1053 * values so the probe can reevaluate from first 1054 * principles. 1055 */ 1056 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1057 vd->vdev_cant_read = B_FALSE; 1058 vd->vdev_cant_write = B_FALSE; 1059 } 1060 1061 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1062 vdev_probe_done, vps, 1063 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1064 1065 /* 1066 * We can't change the vdev state in this context, so we 1067 * kick off an async task to do it on our behalf. 1068 */ 1069 if (zio != NULL) { 1070 vd->vdev_probe_wanted = B_TRUE; 1071 spa_async_request(spa, SPA_ASYNC_PROBE); 1072 } 1073 } 1074 1075 if (zio != NULL) 1076 zio_add_child(zio, pio); 1077 1078 mutex_exit(&vd->vdev_probe_lock); 1079 1080 if (vps == NULL) { 1081 ASSERT(zio != NULL); 1082 return (NULL); 1083 } 1084 1085 for (int l = 1; l < VDEV_LABELS; l++) { 1086 zio_nowait(zio_read_phys(pio, vd, 1087 vdev_label_offset(vd->vdev_psize, l, 1088 offsetof(vdev_label_t, vl_pad2)), 1089 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE), 1090 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1091 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1092 } 1093 1094 if (zio == NULL) 1095 return (pio); 1096 1097 zio_nowait(pio); 1098 return (NULL); 1099 } 1100 1101 static void 1102 vdev_open_child(void *arg) 1103 { 1104 vdev_t *vd = arg; 1105 1106 vd->vdev_open_thread = curthread; 1107 vd->vdev_open_error = vdev_open(vd); 1108 vd->vdev_open_thread = NULL; 1109 } 1110 1111 boolean_t 1112 vdev_uses_zvols(vdev_t *vd) 1113 { 1114 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, 1115 strlen(ZVOL_DIR)) == 0) 1116 return (B_TRUE); 1117 for (int c = 0; c < vd->vdev_children; c++) 1118 if (vdev_uses_zvols(vd->vdev_child[c])) 1119 return (B_TRUE); 1120 return (B_FALSE); 1121 } 1122 1123 void 1124 vdev_open_children(vdev_t *vd) 1125 { 1126 taskq_t *tq; 1127 int children = vd->vdev_children; 1128 1129 /* 1130 * in order to handle pools on top of zvols, do the opens 1131 * in a single thread so that the same thread holds the 1132 * spa_namespace_lock 1133 */ 1134 if (vdev_uses_zvols(vd)) { 1135 for (int c = 0; c < children; c++) 1136 vd->vdev_child[c]->vdev_open_error = 1137 vdev_open(vd->vdev_child[c]); 1138 return; 1139 } 1140 tq = taskq_create("vdev_open", children, minclsyspri, 1141 children, children, TASKQ_PREPOPULATE); 1142 1143 for (int c = 0; c < children; c++) 1144 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c], 1145 TQ_SLEEP) != NULL); 1146 1147 taskq_destroy(tq); 1148 } 1149 1150 /* 1151 * Prepare a virtual device for access. 1152 */ 1153 int 1154 vdev_open(vdev_t *vd) 1155 { 1156 spa_t *spa = vd->vdev_spa; 1157 int error; 1158 uint64_t osize = 0; 1159 uint64_t max_osize = 0; 1160 uint64_t asize, max_asize, psize; 1161 uint64_t ashift = 0; 1162 1163 ASSERT(vd->vdev_open_thread == curthread || 1164 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1165 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1166 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1167 vd->vdev_state == VDEV_STATE_OFFLINE); 1168 1169 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1170 vd->vdev_cant_read = B_FALSE; 1171 vd->vdev_cant_write = B_FALSE; 1172 vd->vdev_min_asize = vdev_get_min_asize(vd); 1173 1174 /* 1175 * If this vdev is not removed, check its fault status. If it's 1176 * faulted, bail out of the open. 1177 */ 1178 if (!vd->vdev_removed && vd->vdev_faulted) { 1179 ASSERT(vd->vdev_children == 0); 1180 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1181 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1182 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1183 vd->vdev_label_aux); 1184 return (SET_ERROR(ENXIO)); 1185 } else if (vd->vdev_offline) { 1186 ASSERT(vd->vdev_children == 0); 1187 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1188 return (SET_ERROR(ENXIO)); 1189 } 1190 1191 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift); 1192 1193 /* 1194 * Reset the vdev_reopening flag so that we actually close 1195 * the vdev on error. 1196 */ 1197 vd->vdev_reopening = B_FALSE; 1198 if (zio_injection_enabled && error == 0) 1199 error = zio_handle_device_injection(vd, NULL, ENXIO); 1200 1201 if (error) { 1202 if (vd->vdev_removed && 1203 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1204 vd->vdev_removed = B_FALSE; 1205 1206 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1207 vd->vdev_stat.vs_aux); 1208 return (error); 1209 } 1210 1211 vd->vdev_removed = B_FALSE; 1212 1213 /* 1214 * Recheck the faulted flag now that we have confirmed that 1215 * the vdev is accessible. If we're faulted, bail. 1216 */ 1217 if (vd->vdev_faulted) { 1218 ASSERT(vd->vdev_children == 0); 1219 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1220 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1221 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1222 vd->vdev_label_aux); 1223 return (SET_ERROR(ENXIO)); 1224 } 1225 1226 if (vd->vdev_degraded) { 1227 ASSERT(vd->vdev_children == 0); 1228 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1229 VDEV_AUX_ERR_EXCEEDED); 1230 } else { 1231 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1232 } 1233 1234 /* 1235 * For hole or missing vdevs we just return success. 1236 */ 1237 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1238 return (0); 1239 1240 for (int c = 0; c < vd->vdev_children; c++) { 1241 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1242 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1243 VDEV_AUX_NONE); 1244 break; 1245 } 1246 } 1247 1248 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1249 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 1250 1251 if (vd->vdev_children == 0) { 1252 if (osize < SPA_MINDEVSIZE) { 1253 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1254 VDEV_AUX_TOO_SMALL); 1255 return (SET_ERROR(EOVERFLOW)); 1256 } 1257 psize = osize; 1258 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1259 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 1260 VDEV_LABEL_END_SIZE); 1261 } else { 1262 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1263 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1264 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1265 VDEV_AUX_TOO_SMALL); 1266 return (SET_ERROR(EOVERFLOW)); 1267 } 1268 psize = 0; 1269 asize = osize; 1270 max_asize = max_osize; 1271 } 1272 1273 vd->vdev_psize = psize; 1274 1275 /* 1276 * Make sure the allocatable size hasn't shrunk. 1277 */ 1278 if (asize < vd->vdev_min_asize) { 1279 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1280 VDEV_AUX_BAD_LABEL); 1281 return (SET_ERROR(EINVAL)); 1282 } 1283 1284 if (vd->vdev_asize == 0) { 1285 /* 1286 * This is the first-ever open, so use the computed values. 1287 * For testing purposes, a higher ashift can be requested. 1288 */ 1289 vd->vdev_asize = asize; 1290 vd->vdev_max_asize = max_asize; 1291 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1292 } else { 1293 /* 1294 * Detect if the alignment requirement has increased. 1295 * We don't want to make the pool unavailable, just 1296 * issue a warning instead. 1297 */ 1298 if (ashift > vd->vdev_top->vdev_ashift && 1299 vd->vdev_ops->vdev_op_leaf) { 1300 cmn_err(CE_WARN, 1301 "Disk, '%s', has a block alignment that is " 1302 "larger than the pool's alignment\n", 1303 vd->vdev_path); 1304 } 1305 vd->vdev_max_asize = max_asize; 1306 } 1307 1308 /* 1309 * If all children are healthy and the asize has increased, 1310 * then we've experienced dynamic LUN growth. If automatic 1311 * expansion is enabled then use the additional space. 1312 */ 1313 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize && 1314 (vd->vdev_expanding || spa->spa_autoexpand)) 1315 vd->vdev_asize = asize; 1316 1317 vdev_set_min_asize(vd); 1318 1319 /* 1320 * Ensure we can issue some IO before declaring the 1321 * vdev open for business. 1322 */ 1323 if (vd->vdev_ops->vdev_op_leaf && 1324 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1325 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1326 VDEV_AUX_ERR_EXCEEDED); 1327 return (error); 1328 } 1329 1330 /* 1331 * Track the min and max ashift values for normal data devices. 1332 */ 1333 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1334 !vd->vdev_islog && vd->vdev_aux == NULL) { 1335 if (vd->vdev_ashift > spa->spa_max_ashift) 1336 spa->spa_max_ashift = vd->vdev_ashift; 1337 if (vd->vdev_ashift < spa->spa_min_ashift) 1338 spa->spa_min_ashift = vd->vdev_ashift; 1339 } 1340 1341 /* 1342 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1343 * resilver. But don't do this if we are doing a reopen for a scrub, 1344 * since this would just restart the scrub we are already doing. 1345 */ 1346 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1347 vdev_resilver_needed(vd, NULL, NULL)) 1348 spa_async_request(spa, SPA_ASYNC_RESILVER); 1349 1350 return (0); 1351 } 1352 1353 /* 1354 * Called once the vdevs are all opened, this routine validates the label 1355 * contents. This needs to be done before vdev_load() so that we don't 1356 * inadvertently do repair I/Os to the wrong device. 1357 * 1358 * If 'strict' is false ignore the spa guid check. This is necessary because 1359 * if the machine crashed during a re-guid the new guid might have been written 1360 * to all of the vdev labels, but not the cached config. The strict check 1361 * will be performed when the pool is opened again using the mos config. 1362 * 1363 * This function will only return failure if one of the vdevs indicates that it 1364 * has since been destroyed or exported. This is only possible if 1365 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1366 * will be updated but the function will return 0. 1367 */ 1368 int 1369 vdev_validate(vdev_t *vd, boolean_t strict) 1370 { 1371 spa_t *spa = vd->vdev_spa; 1372 nvlist_t *label; 1373 uint64_t guid = 0, top_guid; 1374 uint64_t state; 1375 1376 for (int c = 0; c < vd->vdev_children; c++) 1377 if (vdev_validate(vd->vdev_child[c], strict) != 0) 1378 return (SET_ERROR(EBADF)); 1379 1380 /* 1381 * If the device has already failed, or was marked offline, don't do 1382 * any further validation. Otherwise, label I/O will fail and we will 1383 * overwrite the previous state. 1384 */ 1385 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1386 uint64_t aux_guid = 0; 1387 nvlist_t *nvl; 1388 uint64_t txg = spa_last_synced_txg(spa) != 0 ? 1389 spa_last_synced_txg(spa) : -1ULL; 1390 1391 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 1392 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1393 VDEV_AUX_BAD_LABEL); 1394 return (0); 1395 } 1396 1397 /* 1398 * Determine if this vdev has been split off into another 1399 * pool. If so, then refuse to open it. 1400 */ 1401 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 1402 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 1403 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1404 VDEV_AUX_SPLIT_POOL); 1405 nvlist_free(label); 1406 return (0); 1407 } 1408 1409 if (strict && (nvlist_lookup_uint64(label, 1410 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 || 1411 guid != spa_guid(spa))) { 1412 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1413 VDEV_AUX_CORRUPT_DATA); 1414 nvlist_free(label); 1415 return (0); 1416 } 1417 1418 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 1419 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 1420 &aux_guid) != 0) 1421 aux_guid = 0; 1422 1423 /* 1424 * If this vdev just became a top-level vdev because its 1425 * sibling was detached, it will have adopted the parent's 1426 * vdev guid -- but the label may or may not be on disk yet. 1427 * Fortunately, either version of the label will have the 1428 * same top guid, so if we're a top-level vdev, we can 1429 * safely compare to that instead. 1430 * 1431 * If we split this vdev off instead, then we also check the 1432 * original pool's guid. We don't want to consider the vdev 1433 * corrupt if it is partway through a split operation. 1434 */ 1435 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1436 &guid) != 0 || 1437 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, 1438 &top_guid) != 0 || 1439 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) && 1440 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { 1441 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1442 VDEV_AUX_CORRUPT_DATA); 1443 nvlist_free(label); 1444 return (0); 1445 } 1446 1447 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1448 &state) != 0) { 1449 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1450 VDEV_AUX_CORRUPT_DATA); 1451 nvlist_free(label); 1452 return (0); 1453 } 1454 1455 nvlist_free(label); 1456 1457 /* 1458 * If this is a verbatim import, no need to check the 1459 * state of the pool. 1460 */ 1461 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 1462 spa_load_state(spa) == SPA_LOAD_OPEN && 1463 state != POOL_STATE_ACTIVE) 1464 return (SET_ERROR(EBADF)); 1465 1466 /* 1467 * If we were able to open and validate a vdev that was 1468 * previously marked permanently unavailable, clear that state 1469 * now. 1470 */ 1471 if (vd->vdev_not_present) 1472 vd->vdev_not_present = 0; 1473 } 1474 1475 return (0); 1476 } 1477 1478 /* 1479 * Close a virtual device. 1480 */ 1481 void 1482 vdev_close(vdev_t *vd) 1483 { 1484 spa_t *spa = vd->vdev_spa; 1485 vdev_t *pvd = vd->vdev_parent; 1486 1487 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1488 1489 /* 1490 * If our parent is reopening, then we are as well, unless we are 1491 * going offline. 1492 */ 1493 if (pvd != NULL && pvd->vdev_reopening) 1494 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 1495 1496 vd->vdev_ops->vdev_op_close(vd); 1497 1498 vdev_cache_purge(vd); 1499 1500 /* 1501 * We record the previous state before we close it, so that if we are 1502 * doing a reopen(), we don't generate FMA ereports if we notice that 1503 * it's still faulted. 1504 */ 1505 vd->vdev_prevstate = vd->vdev_state; 1506 1507 if (vd->vdev_offline) 1508 vd->vdev_state = VDEV_STATE_OFFLINE; 1509 else 1510 vd->vdev_state = VDEV_STATE_CLOSED; 1511 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1512 } 1513 1514 void 1515 vdev_hold(vdev_t *vd) 1516 { 1517 spa_t *spa = vd->vdev_spa; 1518 1519 ASSERT(spa_is_root(spa)); 1520 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1521 return; 1522 1523 for (int c = 0; c < vd->vdev_children; c++) 1524 vdev_hold(vd->vdev_child[c]); 1525 1526 if (vd->vdev_ops->vdev_op_leaf) 1527 vd->vdev_ops->vdev_op_hold(vd); 1528 } 1529 1530 void 1531 vdev_rele(vdev_t *vd) 1532 { 1533 spa_t *spa = vd->vdev_spa; 1534 1535 ASSERT(spa_is_root(spa)); 1536 for (int c = 0; c < vd->vdev_children; c++) 1537 vdev_rele(vd->vdev_child[c]); 1538 1539 if (vd->vdev_ops->vdev_op_leaf) 1540 vd->vdev_ops->vdev_op_rele(vd); 1541 } 1542 1543 /* 1544 * Reopen all interior vdevs and any unopened leaves. We don't actually 1545 * reopen leaf vdevs which had previously been opened as they might deadlock 1546 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 1547 * If the leaf has never been opened then open it, as usual. 1548 */ 1549 void 1550 vdev_reopen(vdev_t *vd) 1551 { 1552 spa_t *spa = vd->vdev_spa; 1553 1554 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1555 1556 /* set the reopening flag unless we're taking the vdev offline */ 1557 vd->vdev_reopening = !vd->vdev_offline; 1558 vdev_close(vd); 1559 (void) vdev_open(vd); 1560 1561 /* 1562 * Call vdev_validate() here to make sure we have the same device. 1563 * Otherwise, a device with an invalid label could be successfully 1564 * opened in response to vdev_reopen(). 1565 */ 1566 if (vd->vdev_aux) { 1567 (void) vdev_validate_aux(vd); 1568 if (vdev_readable(vd) && vdev_writeable(vd) && 1569 vd->vdev_aux == &spa->spa_l2cache && 1570 !l2arc_vdev_present(vd)) 1571 l2arc_add_vdev(spa, vd); 1572 } else { 1573 (void) vdev_validate(vd, B_TRUE); 1574 } 1575 1576 /* 1577 * Reassess parent vdev's health. 1578 */ 1579 vdev_propagate_state(vd); 1580 } 1581 1582 int 1583 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1584 { 1585 int error; 1586 1587 /* 1588 * Normally, partial opens (e.g. of a mirror) are allowed. 1589 * For a create, however, we want to fail the request if 1590 * there are any components we can't open. 1591 */ 1592 error = vdev_open(vd); 1593 1594 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1595 vdev_close(vd); 1596 return (error ? error : ENXIO); 1597 } 1598 1599 /* 1600 * Recursively load DTLs and initialize all labels. 1601 */ 1602 if ((error = vdev_dtl_load(vd)) != 0 || 1603 (error = vdev_label_init(vd, txg, isreplacing ? 1604 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1605 vdev_close(vd); 1606 return (error); 1607 } 1608 1609 return (0); 1610 } 1611 1612 void 1613 vdev_metaslab_set_size(vdev_t *vd) 1614 { 1615 /* 1616 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev. 1617 */ 1618 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev); 1619 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1620 } 1621 1622 void 1623 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1624 { 1625 ASSERT(vd == vd->vdev_top); 1626 ASSERT(!vd->vdev_ishole); 1627 ASSERT(ISP2(flags)); 1628 ASSERT(spa_writeable(vd->vdev_spa)); 1629 1630 if (flags & VDD_METASLAB) 1631 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1632 1633 if (flags & VDD_DTL) 1634 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1635 1636 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1637 } 1638 1639 void 1640 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 1641 { 1642 for (int c = 0; c < vd->vdev_children; c++) 1643 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 1644 1645 if (vd->vdev_ops->vdev_op_leaf) 1646 vdev_dirty(vd->vdev_top, flags, vd, txg); 1647 } 1648 1649 /* 1650 * DTLs. 1651 * 1652 * A vdev's DTL (dirty time log) is the set of transaction groups for which 1653 * the vdev has less than perfect replication. There are four kinds of DTL: 1654 * 1655 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 1656 * 1657 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 1658 * 1659 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 1660 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 1661 * txgs that was scrubbed. 1662 * 1663 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 1664 * persistent errors or just some device being offline. 1665 * Unlike the other three, the DTL_OUTAGE map is not generally 1666 * maintained; it's only computed when needed, typically to 1667 * determine whether a device can be detached. 1668 * 1669 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 1670 * either has the data or it doesn't. 1671 * 1672 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 1673 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 1674 * if any child is less than fully replicated, then so is its parent. 1675 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 1676 * comprising only those txgs which appear in 'maxfaults' or more children; 1677 * those are the txgs we don't have enough replication to read. For example, 1678 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 1679 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 1680 * two child DTL_MISSING maps. 1681 * 1682 * It should be clear from the above that to compute the DTLs and outage maps 1683 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 1684 * Therefore, that is all we keep on disk. When loading the pool, or after 1685 * a configuration change, we generate all other DTLs from first principles. 1686 */ 1687 void 1688 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1689 { 1690 range_tree_t *rt = vd->vdev_dtl[t]; 1691 1692 ASSERT(t < DTL_TYPES); 1693 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1694 ASSERT(spa_writeable(vd->vdev_spa)); 1695 1696 mutex_enter(rt->rt_lock); 1697 if (!range_tree_contains(rt, txg, size)) 1698 range_tree_add(rt, txg, size); 1699 mutex_exit(rt->rt_lock); 1700 } 1701 1702 boolean_t 1703 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1704 { 1705 range_tree_t *rt = vd->vdev_dtl[t]; 1706 boolean_t dirty = B_FALSE; 1707 1708 ASSERT(t < DTL_TYPES); 1709 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1710 1711 mutex_enter(rt->rt_lock); 1712 if (range_tree_space(rt) != 0) 1713 dirty = range_tree_contains(rt, txg, size); 1714 mutex_exit(rt->rt_lock); 1715 1716 return (dirty); 1717 } 1718 1719 boolean_t 1720 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 1721 { 1722 range_tree_t *rt = vd->vdev_dtl[t]; 1723 boolean_t empty; 1724 1725 mutex_enter(rt->rt_lock); 1726 empty = (range_tree_space(rt) == 0); 1727 mutex_exit(rt->rt_lock); 1728 1729 return (empty); 1730 } 1731 1732 /* 1733 * Returns the lowest txg in the DTL range. 1734 */ 1735 static uint64_t 1736 vdev_dtl_min(vdev_t *vd) 1737 { 1738 range_seg_t *rs; 1739 1740 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1741 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1742 ASSERT0(vd->vdev_children); 1743 1744 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1745 return (rs->rs_start - 1); 1746 } 1747 1748 /* 1749 * Returns the highest txg in the DTL. 1750 */ 1751 static uint64_t 1752 vdev_dtl_max(vdev_t *vd) 1753 { 1754 range_seg_t *rs; 1755 1756 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1757 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1758 ASSERT0(vd->vdev_children); 1759 1760 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1761 return (rs->rs_end); 1762 } 1763 1764 /* 1765 * Determine if a resilvering vdev should remove any DTL entries from 1766 * its range. If the vdev was resilvering for the entire duration of the 1767 * scan then it should excise that range from its DTLs. Otherwise, this 1768 * vdev is considered partially resilvered and should leave its DTL 1769 * entries intact. The comment in vdev_dtl_reassess() describes how we 1770 * excise the DTLs. 1771 */ 1772 static boolean_t 1773 vdev_dtl_should_excise(vdev_t *vd) 1774 { 1775 spa_t *spa = vd->vdev_spa; 1776 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1777 1778 ASSERT0(scn->scn_phys.scn_errors); 1779 ASSERT0(vd->vdev_children); 1780 1781 if (vd->vdev_resilver_txg == 0 || 1782 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0) 1783 return (B_TRUE); 1784 1785 /* 1786 * When a resilver is initiated the scan will assign the scn_max_txg 1787 * value to the highest txg value that exists in all DTLs. If this 1788 * device's max DTL is not part of this scan (i.e. it is not in 1789 * the range (scn_min_txg, scn_max_txg] then it is not eligible 1790 * for excision. 1791 */ 1792 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 1793 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd)); 1794 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg); 1795 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg); 1796 return (B_TRUE); 1797 } 1798 return (B_FALSE); 1799 } 1800 1801 /* 1802 * Reassess DTLs after a config change or scrub completion. 1803 */ 1804 void 1805 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1806 { 1807 spa_t *spa = vd->vdev_spa; 1808 avl_tree_t reftree; 1809 int minref; 1810 1811 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1812 1813 for (int c = 0; c < vd->vdev_children; c++) 1814 vdev_dtl_reassess(vd->vdev_child[c], txg, 1815 scrub_txg, scrub_done); 1816 1817 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux) 1818 return; 1819 1820 if (vd->vdev_ops->vdev_op_leaf) { 1821 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1822 1823 mutex_enter(&vd->vdev_dtl_lock); 1824 1825 /* 1826 * If we've completed a scan cleanly then determine 1827 * if this vdev should remove any DTLs. We only want to 1828 * excise regions on vdevs that were available during 1829 * the entire duration of this scan. 1830 */ 1831 if (scrub_txg != 0 && 1832 (spa->spa_scrub_started || 1833 (scn != NULL && scn->scn_phys.scn_errors == 0)) && 1834 vdev_dtl_should_excise(vd)) { 1835 /* 1836 * We completed a scrub up to scrub_txg. If we 1837 * did it without rebooting, then the scrub dtl 1838 * will be valid, so excise the old region and 1839 * fold in the scrub dtl. Otherwise, leave the 1840 * dtl as-is if there was an error. 1841 * 1842 * There's little trick here: to excise the beginning 1843 * of the DTL_MISSING map, we put it into a reference 1844 * tree and then add a segment with refcnt -1 that 1845 * covers the range [0, scrub_txg). This means 1846 * that each txg in that range has refcnt -1 or 0. 1847 * We then add DTL_SCRUB with a refcnt of 2, so that 1848 * entries in the range [0, scrub_txg) will have a 1849 * positive refcnt -- either 1 or 2. We then convert 1850 * the reference tree into the new DTL_MISSING map. 1851 */ 1852 space_reftree_create(&reftree); 1853 space_reftree_add_map(&reftree, 1854 vd->vdev_dtl[DTL_MISSING], 1); 1855 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 1856 space_reftree_add_map(&reftree, 1857 vd->vdev_dtl[DTL_SCRUB], 2); 1858 space_reftree_generate_map(&reftree, 1859 vd->vdev_dtl[DTL_MISSING], 1); 1860 space_reftree_destroy(&reftree); 1861 } 1862 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 1863 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 1864 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 1865 if (scrub_done) 1866 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 1867 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 1868 if (!vdev_readable(vd)) 1869 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 1870 else 1871 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 1872 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 1873 1874 /* 1875 * If the vdev was resilvering and no longer has any 1876 * DTLs then reset its resilvering flag. 1877 */ 1878 if (vd->vdev_resilver_txg != 0 && 1879 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 && 1880 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) 1881 vd->vdev_resilver_txg = 0; 1882 1883 mutex_exit(&vd->vdev_dtl_lock); 1884 1885 if (txg != 0) 1886 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1887 return; 1888 } 1889 1890 mutex_enter(&vd->vdev_dtl_lock); 1891 for (int t = 0; t < DTL_TYPES; t++) { 1892 /* account for child's outage in parent's missing map */ 1893 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 1894 if (t == DTL_SCRUB) 1895 continue; /* leaf vdevs only */ 1896 if (t == DTL_PARTIAL) 1897 minref = 1; /* i.e. non-zero */ 1898 else if (vd->vdev_nparity != 0) 1899 minref = vd->vdev_nparity + 1; /* RAID-Z */ 1900 else 1901 minref = vd->vdev_children; /* any kind of mirror */ 1902 space_reftree_create(&reftree); 1903 for (int c = 0; c < vd->vdev_children; c++) { 1904 vdev_t *cvd = vd->vdev_child[c]; 1905 mutex_enter(&cvd->vdev_dtl_lock); 1906 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1); 1907 mutex_exit(&cvd->vdev_dtl_lock); 1908 } 1909 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref); 1910 space_reftree_destroy(&reftree); 1911 } 1912 mutex_exit(&vd->vdev_dtl_lock); 1913 } 1914 1915 int 1916 vdev_dtl_load(vdev_t *vd) 1917 { 1918 spa_t *spa = vd->vdev_spa; 1919 objset_t *mos = spa->spa_meta_objset; 1920 int error = 0; 1921 1922 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 1923 ASSERT(!vd->vdev_ishole); 1924 1925 error = space_map_open(&vd->vdev_dtl_sm, mos, 1926 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock); 1927 if (error) 1928 return (error); 1929 ASSERT(vd->vdev_dtl_sm != NULL); 1930 1931 mutex_enter(&vd->vdev_dtl_lock); 1932 1933 /* 1934 * Now that we've opened the space_map we need to update 1935 * the in-core DTL. 1936 */ 1937 space_map_update(vd->vdev_dtl_sm); 1938 1939 error = space_map_load(vd->vdev_dtl_sm, 1940 vd->vdev_dtl[DTL_MISSING], SM_ALLOC); 1941 mutex_exit(&vd->vdev_dtl_lock); 1942 1943 return (error); 1944 } 1945 1946 for (int c = 0; c < vd->vdev_children; c++) { 1947 error = vdev_dtl_load(vd->vdev_child[c]); 1948 if (error != 0) 1949 break; 1950 } 1951 1952 return (error); 1953 } 1954 1955 void 1956 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx) 1957 { 1958 spa_t *spa = vd->vdev_spa; 1959 1960 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx)); 1961 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 1962 zapobj, tx)); 1963 } 1964 1965 uint64_t 1966 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx) 1967 { 1968 spa_t *spa = vd->vdev_spa; 1969 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, 1970 DMU_OT_NONE, 0, tx); 1971 1972 ASSERT(zap != 0); 1973 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 1974 zap, tx)); 1975 1976 return (zap); 1977 } 1978 1979 void 1980 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx) 1981 { 1982 if (vd->vdev_ops != &vdev_hole_ops && 1983 vd->vdev_ops != &vdev_missing_ops && 1984 vd->vdev_ops != &vdev_root_ops && 1985 !vd->vdev_top->vdev_removing) { 1986 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) { 1987 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx); 1988 } 1989 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) { 1990 vd->vdev_top_zap = vdev_create_link_zap(vd, tx); 1991 } 1992 } 1993 for (uint64_t i = 0; i < vd->vdev_children; i++) { 1994 vdev_construct_zaps(vd->vdev_child[i], tx); 1995 } 1996 } 1997 1998 void 1999 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 2000 { 2001 spa_t *spa = vd->vdev_spa; 2002 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 2003 objset_t *mos = spa->spa_meta_objset; 2004 range_tree_t *rtsync; 2005 kmutex_t rtlock; 2006 dmu_tx_t *tx; 2007 uint64_t object = space_map_object(vd->vdev_dtl_sm); 2008 2009 ASSERT(!vd->vdev_ishole); 2010 ASSERT(vd->vdev_ops->vdev_op_leaf); 2011 2012 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2013 2014 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 2015 mutex_enter(&vd->vdev_dtl_lock); 2016 space_map_free(vd->vdev_dtl_sm, tx); 2017 space_map_close(vd->vdev_dtl_sm); 2018 vd->vdev_dtl_sm = NULL; 2019 mutex_exit(&vd->vdev_dtl_lock); 2020 2021 /* 2022 * We only destroy the leaf ZAP for detached leaves or for 2023 * removed log devices. Removed data devices handle leaf ZAP 2024 * cleanup later, once cancellation is no longer possible. 2025 */ 2026 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached || 2027 vd->vdev_top->vdev_islog)) { 2028 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx); 2029 vd->vdev_leaf_zap = 0; 2030 } 2031 2032 dmu_tx_commit(tx); 2033 return; 2034 } 2035 2036 if (vd->vdev_dtl_sm == NULL) { 2037 uint64_t new_object; 2038 2039 new_object = space_map_alloc(mos, tx); 2040 VERIFY3U(new_object, !=, 0); 2041 2042 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 2043 0, -1ULL, 0, &vd->vdev_dtl_lock)); 2044 ASSERT(vd->vdev_dtl_sm != NULL); 2045 } 2046 2047 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL); 2048 2049 rtsync = range_tree_create(NULL, NULL, &rtlock); 2050 2051 mutex_enter(&rtlock); 2052 2053 mutex_enter(&vd->vdev_dtl_lock); 2054 range_tree_walk(rt, range_tree_add, rtsync); 2055 mutex_exit(&vd->vdev_dtl_lock); 2056 2057 space_map_truncate(vd->vdev_dtl_sm, tx); 2058 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx); 2059 range_tree_vacate(rtsync, NULL, NULL); 2060 2061 range_tree_destroy(rtsync); 2062 2063 mutex_exit(&rtlock); 2064 mutex_destroy(&rtlock); 2065 2066 /* 2067 * If the object for the space map has changed then dirty 2068 * the top level so that we update the config. 2069 */ 2070 if (object != space_map_object(vd->vdev_dtl_sm)) { 2071 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, " 2072 "new object %llu", txg, spa_name(spa), object, 2073 space_map_object(vd->vdev_dtl_sm)); 2074 vdev_config_dirty(vd->vdev_top); 2075 } 2076 2077 dmu_tx_commit(tx); 2078 2079 mutex_enter(&vd->vdev_dtl_lock); 2080 space_map_update(vd->vdev_dtl_sm); 2081 mutex_exit(&vd->vdev_dtl_lock); 2082 } 2083 2084 /* 2085 * Determine whether the specified vdev can be offlined/detached/removed 2086 * without losing data. 2087 */ 2088 boolean_t 2089 vdev_dtl_required(vdev_t *vd) 2090 { 2091 spa_t *spa = vd->vdev_spa; 2092 vdev_t *tvd = vd->vdev_top; 2093 uint8_t cant_read = vd->vdev_cant_read; 2094 boolean_t required; 2095 2096 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2097 2098 if (vd == spa->spa_root_vdev || vd == tvd) 2099 return (B_TRUE); 2100 2101 /* 2102 * Temporarily mark the device as unreadable, and then determine 2103 * whether this results in any DTL outages in the top-level vdev. 2104 * If not, we can safely offline/detach/remove the device. 2105 */ 2106 vd->vdev_cant_read = B_TRUE; 2107 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2108 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 2109 vd->vdev_cant_read = cant_read; 2110 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2111 2112 if (!required && zio_injection_enabled) 2113 required = !!zio_handle_device_injection(vd, NULL, ECHILD); 2114 2115 return (required); 2116 } 2117 2118 /* 2119 * Determine if resilver is needed, and if so the txg range. 2120 */ 2121 boolean_t 2122 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 2123 { 2124 boolean_t needed = B_FALSE; 2125 uint64_t thismin = UINT64_MAX; 2126 uint64_t thismax = 0; 2127 2128 if (vd->vdev_children == 0) { 2129 mutex_enter(&vd->vdev_dtl_lock); 2130 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 && 2131 vdev_writeable(vd)) { 2132 2133 thismin = vdev_dtl_min(vd); 2134 thismax = vdev_dtl_max(vd); 2135 needed = B_TRUE; 2136 } 2137 mutex_exit(&vd->vdev_dtl_lock); 2138 } else { 2139 for (int c = 0; c < vd->vdev_children; c++) { 2140 vdev_t *cvd = vd->vdev_child[c]; 2141 uint64_t cmin, cmax; 2142 2143 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 2144 thismin = MIN(thismin, cmin); 2145 thismax = MAX(thismax, cmax); 2146 needed = B_TRUE; 2147 } 2148 } 2149 } 2150 2151 if (needed && minp) { 2152 *minp = thismin; 2153 *maxp = thismax; 2154 } 2155 return (needed); 2156 } 2157 2158 void 2159 vdev_load(vdev_t *vd) 2160 { 2161 /* 2162 * Recursively load all children. 2163 */ 2164 for (int c = 0; c < vd->vdev_children; c++) 2165 vdev_load(vd->vdev_child[c]); 2166 2167 /* 2168 * If this is a top-level vdev, initialize its metaslabs. 2169 */ 2170 if (vd == vd->vdev_top && !vd->vdev_ishole && 2171 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 2172 vdev_metaslab_init(vd, 0) != 0)) 2173 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2174 VDEV_AUX_CORRUPT_DATA); 2175 2176 /* 2177 * If this is a leaf vdev, load its DTL. 2178 */ 2179 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 2180 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2181 VDEV_AUX_CORRUPT_DATA); 2182 } 2183 2184 /* 2185 * The special vdev case is used for hot spares and l2cache devices. Its 2186 * sole purpose it to set the vdev state for the associated vdev. To do this, 2187 * we make sure that we can open the underlying device, then try to read the 2188 * label, and make sure that the label is sane and that it hasn't been 2189 * repurposed to another pool. 2190 */ 2191 int 2192 vdev_validate_aux(vdev_t *vd) 2193 { 2194 nvlist_t *label; 2195 uint64_t guid, version; 2196 uint64_t state; 2197 2198 if (!vdev_readable(vd)) 2199 return (0); 2200 2201 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 2202 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2203 VDEV_AUX_CORRUPT_DATA); 2204 return (-1); 2205 } 2206 2207 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 2208 !SPA_VERSION_IS_SUPPORTED(version) || 2209 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 2210 guid != vd->vdev_guid || 2211 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 2212 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2213 VDEV_AUX_CORRUPT_DATA); 2214 nvlist_free(label); 2215 return (-1); 2216 } 2217 2218 /* 2219 * We don't actually check the pool state here. If it's in fact in 2220 * use by another pool, we update this fact on the fly when requested. 2221 */ 2222 nvlist_free(label); 2223 return (0); 2224 } 2225 2226 void 2227 vdev_remove(vdev_t *vd, uint64_t txg) 2228 { 2229 spa_t *spa = vd->vdev_spa; 2230 objset_t *mos = spa->spa_meta_objset; 2231 dmu_tx_t *tx; 2232 2233 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 2234 ASSERT(vd == vd->vdev_top); 2235 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 2236 2237 if (vd->vdev_ms != NULL) { 2238 metaslab_group_t *mg = vd->vdev_mg; 2239 2240 metaslab_group_histogram_verify(mg); 2241 metaslab_class_histogram_verify(mg->mg_class); 2242 2243 for (int m = 0; m < vd->vdev_ms_count; m++) { 2244 metaslab_t *msp = vd->vdev_ms[m]; 2245 2246 if (msp == NULL || msp->ms_sm == NULL) 2247 continue; 2248 2249 mutex_enter(&msp->ms_lock); 2250 /* 2251 * If the metaslab was not loaded when the vdev 2252 * was removed then the histogram accounting may 2253 * not be accurate. Update the histogram information 2254 * here so that we ensure that the metaslab group 2255 * and metaslab class are up-to-date. 2256 */ 2257 metaslab_group_histogram_remove(mg, msp); 2258 2259 VERIFY0(space_map_allocated(msp->ms_sm)); 2260 space_map_free(msp->ms_sm, tx); 2261 space_map_close(msp->ms_sm); 2262 msp->ms_sm = NULL; 2263 mutex_exit(&msp->ms_lock); 2264 } 2265 2266 metaslab_group_histogram_verify(mg); 2267 metaslab_class_histogram_verify(mg->mg_class); 2268 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 2269 ASSERT0(mg->mg_histogram[i]); 2270 2271 } 2272 2273 if (vd->vdev_ms_array) { 2274 (void) dmu_object_free(mos, vd->vdev_ms_array, tx); 2275 vd->vdev_ms_array = 0; 2276 } 2277 2278 if (vd->vdev_islog && vd->vdev_top_zap != 0) { 2279 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx); 2280 vd->vdev_top_zap = 0; 2281 } 2282 dmu_tx_commit(tx); 2283 } 2284 2285 void 2286 vdev_sync_done(vdev_t *vd, uint64_t txg) 2287 { 2288 metaslab_t *msp; 2289 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 2290 2291 ASSERT(!vd->vdev_ishole); 2292 2293 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 2294 metaslab_sync_done(msp, txg); 2295 2296 if (reassess) 2297 metaslab_sync_reassess(vd->vdev_mg); 2298 } 2299 2300 void 2301 vdev_sync(vdev_t *vd, uint64_t txg) 2302 { 2303 spa_t *spa = vd->vdev_spa; 2304 vdev_t *lvd; 2305 metaslab_t *msp; 2306 dmu_tx_t *tx; 2307 2308 ASSERT(!vd->vdev_ishole); 2309 2310 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 2311 ASSERT(vd == vd->vdev_top); 2312 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2313 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 2314 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 2315 ASSERT(vd->vdev_ms_array != 0); 2316 vdev_config_dirty(vd); 2317 dmu_tx_commit(tx); 2318 } 2319 2320 /* 2321 * Remove the metadata associated with this vdev once it's empty. 2322 */ 2323 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 2324 vdev_remove(vd, txg); 2325 2326 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 2327 metaslab_sync(msp, txg); 2328 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 2329 } 2330 2331 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 2332 vdev_dtl_sync(lvd, txg); 2333 2334 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 2335 } 2336 2337 uint64_t 2338 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 2339 { 2340 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 2341 } 2342 2343 /* 2344 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 2345 * not be opened, and no I/O is attempted. 2346 */ 2347 int 2348 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2349 { 2350 vdev_t *vd, *tvd; 2351 2352 spa_vdev_state_enter(spa, SCL_NONE); 2353 2354 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2355 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2356 2357 if (!vd->vdev_ops->vdev_op_leaf) 2358 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2359 2360 tvd = vd->vdev_top; 2361 2362 /* 2363 * We don't directly use the aux state here, but if we do a 2364 * vdev_reopen(), we need this value to be present to remember why we 2365 * were faulted. 2366 */ 2367 vd->vdev_label_aux = aux; 2368 2369 /* 2370 * Faulted state takes precedence over degraded. 2371 */ 2372 vd->vdev_delayed_close = B_FALSE; 2373 vd->vdev_faulted = 1ULL; 2374 vd->vdev_degraded = 0ULL; 2375 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 2376 2377 /* 2378 * If this device has the only valid copy of the data, then 2379 * back off and simply mark the vdev as degraded instead. 2380 */ 2381 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 2382 vd->vdev_degraded = 1ULL; 2383 vd->vdev_faulted = 0ULL; 2384 2385 /* 2386 * If we reopen the device and it's not dead, only then do we 2387 * mark it degraded. 2388 */ 2389 vdev_reopen(tvd); 2390 2391 if (vdev_readable(vd)) 2392 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 2393 } 2394 2395 return (spa_vdev_state_exit(spa, vd, 0)); 2396 } 2397 2398 /* 2399 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 2400 * user that something is wrong. The vdev continues to operate as normal as far 2401 * as I/O is concerned. 2402 */ 2403 int 2404 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2405 { 2406 vdev_t *vd; 2407 2408 spa_vdev_state_enter(spa, SCL_NONE); 2409 2410 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2411 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2412 2413 if (!vd->vdev_ops->vdev_op_leaf) 2414 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2415 2416 /* 2417 * If the vdev is already faulted, then don't do anything. 2418 */ 2419 if (vd->vdev_faulted || vd->vdev_degraded) 2420 return (spa_vdev_state_exit(spa, NULL, 0)); 2421 2422 vd->vdev_degraded = 1ULL; 2423 if (!vdev_is_dead(vd)) 2424 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 2425 aux); 2426 2427 return (spa_vdev_state_exit(spa, vd, 0)); 2428 } 2429 2430 /* 2431 * Online the given vdev. 2432 * 2433 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 2434 * spare device should be detached when the device finishes resilvering. 2435 * Second, the online should be treated like a 'test' online case, so no FMA 2436 * events are generated if the device fails to open. 2437 */ 2438 int 2439 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 2440 { 2441 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 2442 boolean_t postevent = B_FALSE; 2443 2444 spa_vdev_state_enter(spa, SCL_NONE); 2445 2446 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2447 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2448 2449 if (!vd->vdev_ops->vdev_op_leaf) 2450 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2451 2452 postevent = 2453 (vd->vdev_offline == B_TRUE || vd->vdev_tmpoffline == B_TRUE) ? 2454 B_TRUE : B_FALSE; 2455 2456 tvd = vd->vdev_top; 2457 vd->vdev_offline = B_FALSE; 2458 vd->vdev_tmpoffline = B_FALSE; 2459 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 2460 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 2461 2462 /* XXX - L2ARC 1.0 does not support expansion */ 2463 if (!vd->vdev_aux) { 2464 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2465 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 2466 } 2467 2468 vdev_reopen(tvd); 2469 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 2470 2471 if (!vd->vdev_aux) { 2472 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2473 pvd->vdev_expanding = B_FALSE; 2474 } 2475 2476 if (newstate) 2477 *newstate = vd->vdev_state; 2478 if ((flags & ZFS_ONLINE_UNSPARE) && 2479 !vdev_is_dead(vd) && vd->vdev_parent && 2480 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2481 vd->vdev_parent->vdev_child[0] == vd) 2482 vd->vdev_unspare = B_TRUE; 2483 2484 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 2485 2486 /* XXX - L2ARC 1.0 does not support expansion */ 2487 if (vd->vdev_aux) 2488 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 2489 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2490 } 2491 2492 if (postevent) 2493 spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE); 2494 2495 return (spa_vdev_state_exit(spa, vd, 0)); 2496 } 2497 2498 static int 2499 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 2500 { 2501 vdev_t *vd, *tvd; 2502 int error = 0; 2503 uint64_t generation; 2504 metaslab_group_t *mg; 2505 2506 top: 2507 spa_vdev_state_enter(spa, SCL_ALLOC); 2508 2509 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2510 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2511 2512 if (!vd->vdev_ops->vdev_op_leaf) 2513 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2514 2515 tvd = vd->vdev_top; 2516 mg = tvd->vdev_mg; 2517 generation = spa->spa_config_generation + 1; 2518 2519 /* 2520 * If the device isn't already offline, try to offline it. 2521 */ 2522 if (!vd->vdev_offline) { 2523 /* 2524 * If this device has the only valid copy of some data, 2525 * don't allow it to be offlined. Log devices are always 2526 * expendable. 2527 */ 2528 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2529 vdev_dtl_required(vd)) 2530 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2531 2532 /* 2533 * If the top-level is a slog and it has had allocations 2534 * then proceed. We check that the vdev's metaslab group 2535 * is not NULL since it's possible that we may have just 2536 * added this vdev but not yet initialized its metaslabs. 2537 */ 2538 if (tvd->vdev_islog && mg != NULL) { 2539 /* 2540 * Prevent any future allocations. 2541 */ 2542 metaslab_group_passivate(mg); 2543 (void) spa_vdev_state_exit(spa, vd, 0); 2544 2545 error = spa_offline_log(spa); 2546 2547 spa_vdev_state_enter(spa, SCL_ALLOC); 2548 2549 /* 2550 * Check to see if the config has changed. 2551 */ 2552 if (error || generation != spa->spa_config_generation) { 2553 metaslab_group_activate(mg); 2554 if (error) 2555 return (spa_vdev_state_exit(spa, 2556 vd, error)); 2557 (void) spa_vdev_state_exit(spa, vd, 0); 2558 goto top; 2559 } 2560 ASSERT0(tvd->vdev_stat.vs_alloc); 2561 } 2562 2563 /* 2564 * Offline this device and reopen its top-level vdev. 2565 * If the top-level vdev is a log device then just offline 2566 * it. Otherwise, if this action results in the top-level 2567 * vdev becoming unusable, undo it and fail the request. 2568 */ 2569 vd->vdev_offline = B_TRUE; 2570 vdev_reopen(tvd); 2571 2572 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2573 vdev_is_dead(tvd)) { 2574 vd->vdev_offline = B_FALSE; 2575 vdev_reopen(tvd); 2576 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2577 } 2578 2579 /* 2580 * Add the device back into the metaslab rotor so that 2581 * once we online the device it's open for business. 2582 */ 2583 if (tvd->vdev_islog && mg != NULL) 2584 metaslab_group_activate(mg); 2585 } 2586 2587 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 2588 2589 return (spa_vdev_state_exit(spa, vd, 0)); 2590 } 2591 2592 int 2593 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 2594 { 2595 int error; 2596 2597 mutex_enter(&spa->spa_vdev_top_lock); 2598 error = vdev_offline_locked(spa, guid, flags); 2599 mutex_exit(&spa->spa_vdev_top_lock); 2600 2601 return (error); 2602 } 2603 2604 /* 2605 * Clear the error counts associated with this vdev. Unlike vdev_online() and 2606 * vdev_offline(), we assume the spa config is locked. We also clear all 2607 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 2608 */ 2609 void 2610 vdev_clear(spa_t *spa, vdev_t *vd) 2611 { 2612 vdev_t *rvd = spa->spa_root_vdev; 2613 2614 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2615 2616 if (vd == NULL) 2617 vd = rvd; 2618 2619 vd->vdev_stat.vs_read_errors = 0; 2620 vd->vdev_stat.vs_write_errors = 0; 2621 vd->vdev_stat.vs_checksum_errors = 0; 2622 2623 for (int c = 0; c < vd->vdev_children; c++) 2624 vdev_clear(spa, vd->vdev_child[c]); 2625 2626 /* 2627 * If we're in the FAULTED state or have experienced failed I/O, then 2628 * clear the persistent state and attempt to reopen the device. We 2629 * also mark the vdev config dirty, so that the new faulted state is 2630 * written out to disk. 2631 */ 2632 if (vd->vdev_faulted || vd->vdev_degraded || 2633 !vdev_readable(vd) || !vdev_writeable(vd)) { 2634 2635 /* 2636 * When reopening in reponse to a clear event, it may be due to 2637 * a fmadm repair request. In this case, if the device is 2638 * still broken, we want to still post the ereport again. 2639 */ 2640 vd->vdev_forcefault = B_TRUE; 2641 2642 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 2643 vd->vdev_cant_read = B_FALSE; 2644 vd->vdev_cant_write = B_FALSE; 2645 2646 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 2647 2648 vd->vdev_forcefault = B_FALSE; 2649 2650 if (vd != rvd && vdev_writeable(vd->vdev_top)) 2651 vdev_state_dirty(vd->vdev_top); 2652 2653 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 2654 spa_async_request(spa, SPA_ASYNC_RESILVER); 2655 2656 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 2657 } 2658 2659 /* 2660 * When clearing a FMA-diagnosed fault, we always want to 2661 * unspare the device, as we assume that the original spare was 2662 * done in response to the FMA fault. 2663 */ 2664 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 2665 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2666 vd->vdev_parent->vdev_child[0] == vd) 2667 vd->vdev_unspare = B_TRUE; 2668 } 2669 2670 boolean_t 2671 vdev_is_dead(vdev_t *vd) 2672 { 2673 /* 2674 * Holes and missing devices are always considered "dead". 2675 * This simplifies the code since we don't have to check for 2676 * these types of devices in the various code paths. 2677 * Instead we rely on the fact that we skip over dead devices 2678 * before issuing I/O to them. 2679 */ 2680 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole || 2681 vd->vdev_ops == &vdev_missing_ops); 2682 } 2683 2684 boolean_t 2685 vdev_readable(vdev_t *vd) 2686 { 2687 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 2688 } 2689 2690 boolean_t 2691 vdev_writeable(vdev_t *vd) 2692 { 2693 return (!vdev_is_dead(vd) && !vd->vdev_cant_write); 2694 } 2695 2696 boolean_t 2697 vdev_allocatable(vdev_t *vd) 2698 { 2699 uint64_t state = vd->vdev_state; 2700 2701 /* 2702 * We currently allow allocations from vdevs which may be in the 2703 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 2704 * fails to reopen then we'll catch it later when we're holding 2705 * the proper locks. Note that we have to get the vdev state 2706 * in a local variable because although it changes atomically, 2707 * we're asking two separate questions about it. 2708 */ 2709 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 2710 !vd->vdev_cant_write && !vd->vdev_ishole && 2711 vd->vdev_mg->mg_initialized); 2712 } 2713 2714 boolean_t 2715 vdev_accessible(vdev_t *vd, zio_t *zio) 2716 { 2717 ASSERT(zio->io_vd == vd); 2718 2719 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 2720 return (B_FALSE); 2721 2722 if (zio->io_type == ZIO_TYPE_READ) 2723 return (!vd->vdev_cant_read); 2724 2725 if (zio->io_type == ZIO_TYPE_WRITE) 2726 return (!vd->vdev_cant_write); 2727 2728 return (B_TRUE); 2729 } 2730 2731 /* 2732 * Get statistics for the given vdev. 2733 */ 2734 void 2735 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 2736 { 2737 spa_t *spa = vd->vdev_spa; 2738 vdev_t *rvd = spa->spa_root_vdev; 2739 vdev_t *tvd = vd->vdev_top; 2740 2741 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2742 2743 mutex_enter(&vd->vdev_stat_lock); 2744 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 2745 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 2746 vs->vs_state = vd->vdev_state; 2747 vs->vs_rsize = vdev_get_min_asize(vd); 2748 if (vd->vdev_ops->vdev_op_leaf) 2749 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 2750 /* 2751 * Report expandable space on top-level, non-auxillary devices only. 2752 * The expandable space is reported in terms of metaslab sized units 2753 * since that determines how much space the pool can expand. 2754 */ 2755 if (vd->vdev_aux == NULL && tvd != NULL) { 2756 vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize, 2757 1ULL << tvd->vdev_ms_shift); 2758 } 2759 if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) { 2760 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation; 2761 } 2762 2763 /* 2764 * If we're getting stats on the root vdev, aggregate the I/O counts 2765 * over all top-level vdevs (i.e. the direct children of the root). 2766 */ 2767 if (vd == rvd) { 2768 for (int c = 0; c < rvd->vdev_children; c++) { 2769 vdev_t *cvd = rvd->vdev_child[c]; 2770 vdev_stat_t *cvs = &cvd->vdev_stat; 2771 2772 for (int t = 0; t < ZIO_TYPES; t++) { 2773 vs->vs_ops[t] += cvs->vs_ops[t]; 2774 vs->vs_bytes[t] += cvs->vs_bytes[t]; 2775 } 2776 cvs->vs_scan_removing = cvd->vdev_removing; 2777 } 2778 } 2779 mutex_exit(&vd->vdev_stat_lock); 2780 } 2781 2782 void 2783 vdev_clear_stats(vdev_t *vd) 2784 { 2785 mutex_enter(&vd->vdev_stat_lock); 2786 vd->vdev_stat.vs_space = 0; 2787 vd->vdev_stat.vs_dspace = 0; 2788 vd->vdev_stat.vs_alloc = 0; 2789 mutex_exit(&vd->vdev_stat_lock); 2790 } 2791 2792 void 2793 vdev_scan_stat_init(vdev_t *vd) 2794 { 2795 vdev_stat_t *vs = &vd->vdev_stat; 2796 2797 for (int c = 0; c < vd->vdev_children; c++) 2798 vdev_scan_stat_init(vd->vdev_child[c]); 2799 2800 mutex_enter(&vd->vdev_stat_lock); 2801 vs->vs_scan_processed = 0; 2802 mutex_exit(&vd->vdev_stat_lock); 2803 } 2804 2805 void 2806 vdev_stat_update(zio_t *zio, uint64_t psize) 2807 { 2808 spa_t *spa = zio->io_spa; 2809 vdev_t *rvd = spa->spa_root_vdev; 2810 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 2811 vdev_t *pvd; 2812 uint64_t txg = zio->io_txg; 2813 vdev_stat_t *vs = &vd->vdev_stat; 2814 zio_type_t type = zio->io_type; 2815 int flags = zio->io_flags; 2816 2817 /* 2818 * If this i/o is a gang leader, it didn't do any actual work. 2819 */ 2820 if (zio->io_gang_tree) 2821 return; 2822 2823 if (zio->io_error == 0) { 2824 /* 2825 * If this is a root i/o, don't count it -- we've already 2826 * counted the top-level vdevs, and vdev_get_stats() will 2827 * aggregate them when asked. This reduces contention on 2828 * the root vdev_stat_lock and implicitly handles blocks 2829 * that compress away to holes, for which there is no i/o. 2830 * (Holes never create vdev children, so all the counters 2831 * remain zero, which is what we want.) 2832 * 2833 * Note: this only applies to successful i/o (io_error == 0) 2834 * because unlike i/o counts, errors are not additive. 2835 * When reading a ditto block, for example, failure of 2836 * one top-level vdev does not imply a root-level error. 2837 */ 2838 if (vd == rvd) 2839 return; 2840 2841 ASSERT(vd == zio->io_vd); 2842 2843 if (flags & ZIO_FLAG_IO_BYPASS) 2844 return; 2845 2846 mutex_enter(&vd->vdev_stat_lock); 2847 2848 if (flags & ZIO_FLAG_IO_REPAIR) { 2849 if (flags & ZIO_FLAG_SCAN_THREAD) { 2850 dsl_scan_phys_t *scn_phys = 2851 &spa->spa_dsl_pool->dp_scan->scn_phys; 2852 uint64_t *processed = &scn_phys->scn_processed; 2853 2854 /* XXX cleanup? */ 2855 if (vd->vdev_ops->vdev_op_leaf) 2856 atomic_add_64(processed, psize); 2857 vs->vs_scan_processed += psize; 2858 } 2859 2860 if (flags & ZIO_FLAG_SELF_HEAL) 2861 vs->vs_self_healed += psize; 2862 } 2863 2864 vs->vs_ops[type]++; 2865 vs->vs_bytes[type] += psize; 2866 2867 mutex_exit(&vd->vdev_stat_lock); 2868 return; 2869 } 2870 2871 if (flags & ZIO_FLAG_SPECULATIVE) 2872 return; 2873 2874 /* 2875 * If this is an I/O error that is going to be retried, then ignore the 2876 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 2877 * hard errors, when in reality they can happen for any number of 2878 * innocuous reasons (bus resets, MPxIO link failure, etc). 2879 */ 2880 if (zio->io_error == EIO && 2881 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 2882 return; 2883 2884 /* 2885 * Intent logs writes won't propagate their error to the root 2886 * I/O so don't mark these types of failures as pool-level 2887 * errors. 2888 */ 2889 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 2890 return; 2891 2892 mutex_enter(&vd->vdev_stat_lock); 2893 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 2894 if (zio->io_error == ECKSUM) 2895 vs->vs_checksum_errors++; 2896 else 2897 vs->vs_read_errors++; 2898 } 2899 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 2900 vs->vs_write_errors++; 2901 mutex_exit(&vd->vdev_stat_lock); 2902 2903 if (type == ZIO_TYPE_WRITE && txg != 0 && 2904 (!(flags & ZIO_FLAG_IO_REPAIR) || 2905 (flags & ZIO_FLAG_SCAN_THREAD) || 2906 spa->spa_claiming)) { 2907 /* 2908 * This is either a normal write (not a repair), or it's 2909 * a repair induced by the scrub thread, or it's a repair 2910 * made by zil_claim() during spa_load() in the first txg. 2911 * In the normal case, we commit the DTL change in the same 2912 * txg as the block was born. In the scrub-induced repair 2913 * case, we know that scrubs run in first-pass syncing context, 2914 * so we commit the DTL change in spa_syncing_txg(spa). 2915 * In the zil_claim() case, we commit in spa_first_txg(spa). 2916 * 2917 * We currently do not make DTL entries for failed spontaneous 2918 * self-healing writes triggered by normal (non-scrubbing) 2919 * reads, because we have no transactional context in which to 2920 * do so -- and it's not clear that it'd be desirable anyway. 2921 */ 2922 if (vd->vdev_ops->vdev_op_leaf) { 2923 uint64_t commit_txg = txg; 2924 if (flags & ZIO_FLAG_SCAN_THREAD) { 2925 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2926 ASSERT(spa_sync_pass(spa) == 1); 2927 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 2928 commit_txg = spa_syncing_txg(spa); 2929 } else if (spa->spa_claiming) { 2930 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2931 commit_txg = spa_first_txg(spa); 2932 } 2933 ASSERT(commit_txg >= spa_syncing_txg(spa)); 2934 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 2935 return; 2936 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2937 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 2938 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 2939 } 2940 if (vd != rvd) 2941 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 2942 } 2943 } 2944 2945 /* 2946 * Update the in-core space usage stats for this vdev, its metaslab class, 2947 * and the root vdev. 2948 */ 2949 void 2950 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 2951 int64_t space_delta) 2952 { 2953 int64_t dspace_delta = space_delta; 2954 spa_t *spa = vd->vdev_spa; 2955 vdev_t *rvd = spa->spa_root_vdev; 2956 metaslab_group_t *mg = vd->vdev_mg; 2957 metaslab_class_t *mc = mg ? mg->mg_class : NULL; 2958 2959 ASSERT(vd == vd->vdev_top); 2960 2961 /* 2962 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 2963 * factor. We must calculate this here and not at the root vdev 2964 * because the root vdev's psize-to-asize is simply the max of its 2965 * childrens', thus not accurate enough for us. 2966 */ 2967 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 2968 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 2969 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 2970 vd->vdev_deflate_ratio; 2971 2972 mutex_enter(&vd->vdev_stat_lock); 2973 vd->vdev_stat.vs_alloc += alloc_delta; 2974 vd->vdev_stat.vs_space += space_delta; 2975 vd->vdev_stat.vs_dspace += dspace_delta; 2976 mutex_exit(&vd->vdev_stat_lock); 2977 2978 if (mc == spa_normal_class(spa)) { 2979 mutex_enter(&rvd->vdev_stat_lock); 2980 rvd->vdev_stat.vs_alloc += alloc_delta; 2981 rvd->vdev_stat.vs_space += space_delta; 2982 rvd->vdev_stat.vs_dspace += dspace_delta; 2983 mutex_exit(&rvd->vdev_stat_lock); 2984 } 2985 2986 if (mc != NULL) { 2987 ASSERT(rvd == vd->vdev_parent); 2988 ASSERT(vd->vdev_ms_count != 0); 2989 2990 metaslab_class_space_update(mc, 2991 alloc_delta, defer_delta, space_delta, dspace_delta); 2992 } 2993 } 2994 2995 /* 2996 * Mark a top-level vdev's config as dirty, placing it on the dirty list 2997 * so that it will be written out next time the vdev configuration is synced. 2998 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 2999 */ 3000 void 3001 vdev_config_dirty(vdev_t *vd) 3002 { 3003 spa_t *spa = vd->vdev_spa; 3004 vdev_t *rvd = spa->spa_root_vdev; 3005 int c; 3006 3007 ASSERT(spa_writeable(spa)); 3008 3009 /* 3010 * If this is an aux vdev (as with l2cache and spare devices), then we 3011 * update the vdev config manually and set the sync flag. 3012 */ 3013 if (vd->vdev_aux != NULL) { 3014 spa_aux_vdev_t *sav = vd->vdev_aux; 3015 nvlist_t **aux; 3016 uint_t naux; 3017 3018 for (c = 0; c < sav->sav_count; c++) { 3019 if (sav->sav_vdevs[c] == vd) 3020 break; 3021 } 3022 3023 if (c == sav->sav_count) { 3024 /* 3025 * We're being removed. There's nothing more to do. 3026 */ 3027 ASSERT(sav->sav_sync == B_TRUE); 3028 return; 3029 } 3030 3031 sav->sav_sync = B_TRUE; 3032 3033 if (nvlist_lookup_nvlist_array(sav->sav_config, 3034 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 3035 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 3036 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 3037 } 3038 3039 ASSERT(c < naux); 3040 3041 /* 3042 * Setting the nvlist in the middle if the array is a little 3043 * sketchy, but it will work. 3044 */ 3045 nvlist_free(aux[c]); 3046 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 3047 3048 return; 3049 } 3050 3051 /* 3052 * The dirty list is protected by the SCL_CONFIG lock. The caller 3053 * must either hold SCL_CONFIG as writer, or must be the sync thread 3054 * (which holds SCL_CONFIG as reader). There's only one sync thread, 3055 * so this is sufficient to ensure mutual exclusion. 3056 */ 3057 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 3058 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3059 spa_config_held(spa, SCL_CONFIG, RW_READER))); 3060 3061 if (vd == rvd) { 3062 for (c = 0; c < rvd->vdev_children; c++) 3063 vdev_config_dirty(rvd->vdev_child[c]); 3064 } else { 3065 ASSERT(vd == vd->vdev_top); 3066 3067 if (!list_link_active(&vd->vdev_config_dirty_node) && 3068 !vd->vdev_ishole) 3069 list_insert_head(&spa->spa_config_dirty_list, vd); 3070 } 3071 } 3072 3073 void 3074 vdev_config_clean(vdev_t *vd) 3075 { 3076 spa_t *spa = vd->vdev_spa; 3077 3078 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 3079 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3080 spa_config_held(spa, SCL_CONFIG, RW_READER))); 3081 3082 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 3083 list_remove(&spa->spa_config_dirty_list, vd); 3084 } 3085 3086 /* 3087 * Mark a top-level vdev's state as dirty, so that the next pass of 3088 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 3089 * the state changes from larger config changes because they require 3090 * much less locking, and are often needed for administrative actions. 3091 */ 3092 void 3093 vdev_state_dirty(vdev_t *vd) 3094 { 3095 spa_t *spa = vd->vdev_spa; 3096 3097 ASSERT(spa_writeable(spa)); 3098 ASSERT(vd == vd->vdev_top); 3099 3100 /* 3101 * The state list is protected by the SCL_STATE lock. The caller 3102 * must either hold SCL_STATE as writer, or must be the sync thread 3103 * (which holds SCL_STATE as reader). There's only one sync thread, 3104 * so this is sufficient to ensure mutual exclusion. 3105 */ 3106 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 3107 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3108 spa_config_held(spa, SCL_STATE, RW_READER))); 3109 3110 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole) 3111 list_insert_head(&spa->spa_state_dirty_list, vd); 3112 } 3113 3114 void 3115 vdev_state_clean(vdev_t *vd) 3116 { 3117 spa_t *spa = vd->vdev_spa; 3118 3119 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 3120 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3121 spa_config_held(spa, SCL_STATE, RW_READER))); 3122 3123 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 3124 list_remove(&spa->spa_state_dirty_list, vd); 3125 } 3126 3127 /* 3128 * Propagate vdev state up from children to parent. 3129 */ 3130 void 3131 vdev_propagate_state(vdev_t *vd) 3132 { 3133 spa_t *spa = vd->vdev_spa; 3134 vdev_t *rvd = spa->spa_root_vdev; 3135 int degraded = 0, faulted = 0; 3136 int corrupted = 0; 3137 vdev_t *child; 3138 3139 if (vd->vdev_children > 0) { 3140 for (int c = 0; c < vd->vdev_children; c++) { 3141 child = vd->vdev_child[c]; 3142 3143 /* 3144 * Don't factor holes into the decision. 3145 */ 3146 if (child->vdev_ishole) 3147 continue; 3148 3149 if (!vdev_readable(child) || 3150 (!vdev_writeable(child) && spa_writeable(spa))) { 3151 /* 3152 * Root special: if there is a top-level log 3153 * device, treat the root vdev as if it were 3154 * degraded. 3155 */ 3156 if (child->vdev_islog && vd == rvd) 3157 degraded++; 3158 else 3159 faulted++; 3160 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 3161 degraded++; 3162 } 3163 3164 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 3165 corrupted++; 3166 } 3167 3168 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 3169 3170 /* 3171 * Root special: if there is a top-level vdev that cannot be 3172 * opened due to corrupted metadata, then propagate the root 3173 * vdev's aux state as 'corrupt' rather than 'insufficient 3174 * replicas'. 3175 */ 3176 if (corrupted && vd == rvd && 3177 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 3178 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 3179 VDEV_AUX_CORRUPT_DATA); 3180 } 3181 3182 if (vd->vdev_parent) 3183 vdev_propagate_state(vd->vdev_parent); 3184 } 3185 3186 /* 3187 * Set a vdev's state. If this is during an open, we don't update the parent 3188 * state, because we're in the process of opening children depth-first. 3189 * Otherwise, we propagate the change to the parent. 3190 * 3191 * If this routine places a device in a faulted state, an appropriate ereport is 3192 * generated. 3193 */ 3194 void 3195 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 3196 { 3197 uint64_t save_state; 3198 spa_t *spa = vd->vdev_spa; 3199 3200 if (state == vd->vdev_state) { 3201 vd->vdev_stat.vs_aux = aux; 3202 return; 3203 } 3204 3205 save_state = vd->vdev_state; 3206 3207 vd->vdev_state = state; 3208 vd->vdev_stat.vs_aux = aux; 3209 3210 /* 3211 * If we are setting the vdev state to anything but an open state, then 3212 * always close the underlying device unless the device has requested 3213 * a delayed close (i.e. we're about to remove or fault the device). 3214 * Otherwise, we keep accessible but invalid devices open forever. 3215 * We don't call vdev_close() itself, because that implies some extra 3216 * checks (offline, etc) that we don't want here. This is limited to 3217 * leaf devices, because otherwise closing the device will affect other 3218 * children. 3219 */ 3220 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 3221 vd->vdev_ops->vdev_op_leaf) 3222 vd->vdev_ops->vdev_op_close(vd); 3223 3224 /* 3225 * If we have brought this vdev back into service, we need 3226 * to notify fmd so that it can gracefully repair any outstanding 3227 * cases due to a missing device. We do this in all cases, even those 3228 * that probably don't correlate to a repaired fault. This is sure to 3229 * catch all cases, and we let the zfs-retire agent sort it out. If 3230 * this is a transient state it's OK, as the retire agent will 3231 * double-check the state of the vdev before repairing it. 3232 */ 3233 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf && 3234 vd->vdev_prevstate != state) 3235 zfs_post_state_change(spa, vd); 3236 3237 if (vd->vdev_removed && 3238 state == VDEV_STATE_CANT_OPEN && 3239 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 3240 /* 3241 * If the previous state is set to VDEV_STATE_REMOVED, then this 3242 * device was previously marked removed and someone attempted to 3243 * reopen it. If this failed due to a nonexistent device, then 3244 * keep the device in the REMOVED state. We also let this be if 3245 * it is one of our special test online cases, which is only 3246 * attempting to online the device and shouldn't generate an FMA 3247 * fault. 3248 */ 3249 vd->vdev_state = VDEV_STATE_REMOVED; 3250 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 3251 } else if (state == VDEV_STATE_REMOVED) { 3252 vd->vdev_removed = B_TRUE; 3253 } else if (state == VDEV_STATE_CANT_OPEN) { 3254 /* 3255 * If we fail to open a vdev during an import or recovery, we 3256 * mark it as "not available", which signifies that it was 3257 * never there to begin with. Failure to open such a device 3258 * is not considered an error. 3259 */ 3260 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 3261 spa_load_state(spa) == SPA_LOAD_RECOVER) && 3262 vd->vdev_ops->vdev_op_leaf) 3263 vd->vdev_not_present = 1; 3264 3265 /* 3266 * Post the appropriate ereport. If the 'prevstate' field is 3267 * set to something other than VDEV_STATE_UNKNOWN, it indicates 3268 * that this is part of a vdev_reopen(). In this case, we don't 3269 * want to post the ereport if the device was already in the 3270 * CANT_OPEN state beforehand. 3271 * 3272 * If the 'checkremove' flag is set, then this is an attempt to 3273 * online the device in response to an insertion event. If we 3274 * hit this case, then we have detected an insertion event for a 3275 * faulted or offline device that wasn't in the removed state. 3276 * In this scenario, we don't post an ereport because we are 3277 * about to replace the device, or attempt an online with 3278 * vdev_forcefault, which will generate the fault for us. 3279 */ 3280 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 3281 !vd->vdev_not_present && !vd->vdev_checkremove && 3282 vd != spa->spa_root_vdev) { 3283 const char *class; 3284 3285 switch (aux) { 3286 case VDEV_AUX_OPEN_FAILED: 3287 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 3288 break; 3289 case VDEV_AUX_CORRUPT_DATA: 3290 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 3291 break; 3292 case VDEV_AUX_NO_REPLICAS: 3293 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 3294 break; 3295 case VDEV_AUX_BAD_GUID_SUM: 3296 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 3297 break; 3298 case VDEV_AUX_TOO_SMALL: 3299 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 3300 break; 3301 case VDEV_AUX_BAD_LABEL: 3302 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 3303 break; 3304 default: 3305 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 3306 } 3307 3308 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 3309 } 3310 3311 /* Erase any notion of persistent removed state */ 3312 vd->vdev_removed = B_FALSE; 3313 } else { 3314 vd->vdev_removed = B_FALSE; 3315 } 3316 3317 if (!isopen && vd->vdev_parent) 3318 vdev_propagate_state(vd->vdev_parent); 3319 } 3320 3321 /* 3322 * Check the vdev configuration to ensure that it's capable of supporting 3323 * a root pool. We do not support partial configuration. 3324 * In addition, only a single top-level vdev is allowed. 3325 */ 3326 boolean_t 3327 vdev_is_bootable(vdev_t *vd) 3328 { 3329 if (!vd->vdev_ops->vdev_op_leaf) { 3330 char *vdev_type = vd->vdev_ops->vdev_op_type; 3331 3332 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 3333 vd->vdev_children > 1) { 3334 return (B_FALSE); 3335 } else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 3336 return (B_FALSE); 3337 } 3338 } 3339 3340 for (int c = 0; c < vd->vdev_children; c++) { 3341 if (!vdev_is_bootable(vd->vdev_child[c])) 3342 return (B_FALSE); 3343 } 3344 return (B_TRUE); 3345 } 3346 3347 /* 3348 * Load the state from the original vdev tree (ovd) which 3349 * we've retrieved from the MOS config object. If the original 3350 * vdev was offline or faulted then we transfer that state to the 3351 * device in the current vdev tree (nvd). 3352 */ 3353 void 3354 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd) 3355 { 3356 spa_t *spa = nvd->vdev_spa; 3357 3358 ASSERT(nvd->vdev_top->vdev_islog); 3359 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3360 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid); 3361 3362 for (int c = 0; c < nvd->vdev_children; c++) 3363 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]); 3364 3365 if (nvd->vdev_ops->vdev_op_leaf) { 3366 /* 3367 * Restore the persistent vdev state 3368 */ 3369 nvd->vdev_offline = ovd->vdev_offline; 3370 nvd->vdev_faulted = ovd->vdev_faulted; 3371 nvd->vdev_degraded = ovd->vdev_degraded; 3372 nvd->vdev_removed = ovd->vdev_removed; 3373 } 3374 } 3375 3376 /* 3377 * Determine if a log device has valid content. If the vdev was 3378 * removed or faulted in the MOS config then we know that 3379 * the content on the log device has already been written to the pool. 3380 */ 3381 boolean_t 3382 vdev_log_state_valid(vdev_t *vd) 3383 { 3384 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 3385 !vd->vdev_removed) 3386 return (B_TRUE); 3387 3388 for (int c = 0; c < vd->vdev_children; c++) 3389 if (vdev_log_state_valid(vd->vdev_child[c])) 3390 return (B_TRUE); 3391 3392 return (B_FALSE); 3393 } 3394 3395 /* 3396 * Expand a vdev if possible. 3397 */ 3398 void 3399 vdev_expand(vdev_t *vd, uint64_t txg) 3400 { 3401 ASSERT(vd->vdev_top == vd); 3402 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3403 3404 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) { 3405 VERIFY(vdev_metaslab_init(vd, txg) == 0); 3406 vdev_config_dirty(vd); 3407 } 3408 } 3409 3410 /* 3411 * Split a vdev. 3412 */ 3413 void 3414 vdev_split(vdev_t *vd) 3415 { 3416 vdev_t *cvd, *pvd = vd->vdev_parent; 3417 3418 vdev_remove_child(pvd, vd); 3419 vdev_compact_children(pvd); 3420 3421 cvd = pvd->vdev_child[0]; 3422 if (pvd->vdev_children == 1) { 3423 vdev_remove_parent(cvd); 3424 cvd->vdev_splitting = B_TRUE; 3425 } 3426 vdev_propagate_state(cvd); 3427 } 3428 3429 void 3430 vdev_deadman(vdev_t *vd) 3431 { 3432 for (int c = 0; c < vd->vdev_children; c++) { 3433 vdev_t *cvd = vd->vdev_child[c]; 3434 3435 vdev_deadman(cvd); 3436 } 3437 3438 if (vd->vdev_ops->vdev_op_leaf) { 3439 vdev_queue_t *vq = &vd->vdev_queue; 3440 3441 mutex_enter(&vq->vq_lock); 3442 if (avl_numnodes(&vq->vq_active_tree) > 0) { 3443 spa_t *spa = vd->vdev_spa; 3444 zio_t *fio; 3445 uint64_t delta; 3446 3447 /* 3448 * Look at the head of all the pending queues, 3449 * if any I/O has been outstanding for longer than 3450 * the spa_deadman_synctime we panic the system. 3451 */ 3452 fio = avl_first(&vq->vq_active_tree); 3453 delta = gethrtime() - fio->io_timestamp; 3454 if (delta > spa_deadman_synctime(spa)) { 3455 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, " 3456 "delta %lluns, last io %lluns", 3457 fio->io_timestamp, delta, 3458 vq->vq_io_complete_ts); 3459 fm_panic("I/O to pool '%s' appears to be " 3460 "hung.", spa_name(spa)); 3461 } 3462 } 3463 mutex_exit(&vq->vq_lock); 3464 } 3465 }