1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
  25  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
  26  * Copyright (c) 2014 Integros [integros.com]
  27  * Copyright 2016 Toomas Soome <tsoome@me.com>
  28  */
  29 
  30 #include <sys/zfs_context.h>
  31 #include <sys/fm/fs/zfs.h>
  32 #include <sys/spa.h>
  33 #include <sys/spa_impl.h>
  34 #include <sys/dmu.h>
  35 #include <sys/dmu_tx.h>
  36 #include <sys/vdev_impl.h>
  37 #include <sys/uberblock_impl.h>
  38 #include <sys/metaslab.h>
  39 #include <sys/metaslab_impl.h>
  40 #include <sys/space_map.h>
  41 #include <sys/space_reftree.h>
  42 #include <sys/zio.h>
  43 #include <sys/zap.h>
  44 #include <sys/fs/zfs.h>
  45 #include <sys/arc.h>
  46 #include <sys/zil.h>
  47 #include <sys/dsl_scan.h>
  48 
  49 /*
  50  * Virtual device management.
  51  */
  52 
  53 static vdev_ops_t *vdev_ops_table[] = {
  54         &vdev_root_ops,
  55         &vdev_raidz_ops,
  56         &vdev_mirror_ops,
  57         &vdev_replacing_ops,
  58         &vdev_spare_ops,
  59         &vdev_disk_ops,
  60         &vdev_file_ops,
  61         &vdev_missing_ops,
  62         &vdev_hole_ops,
  63         NULL
  64 };
  65 
  66 /* maximum scrub/resilver I/O queue per leaf vdev */
  67 int zfs_scrub_limit = 10;
  68 
  69 /*
  70  * When a vdev is added, it will be divided into approximately (but no
  71  * more than) this number of metaslabs.
  72  */
  73 int metaslabs_per_vdev = 200;
  74 
  75 /*
  76  * Given a vdev type, return the appropriate ops vector.
  77  */
  78 static vdev_ops_t *
  79 vdev_getops(const char *type)
  80 {
  81         vdev_ops_t *ops, **opspp;
  82 
  83         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
  84                 if (strcmp(ops->vdev_op_type, type) == 0)
  85                         break;
  86 
  87         return (ops);
  88 }
  89 
  90 /*
  91  * Default asize function: return the MAX of psize with the asize of
  92  * all children.  This is what's used by anything other than RAID-Z.
  93  */
  94 uint64_t
  95 vdev_default_asize(vdev_t *vd, uint64_t psize)
  96 {
  97         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
  98         uint64_t csize;
  99 
 100         for (int c = 0; c < vd->vdev_children; c++) {
 101                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
 102                 asize = MAX(asize, csize);
 103         }
 104 
 105         return (asize);
 106 }
 107 
 108 /*
 109  * Get the minimum allocatable size. We define the allocatable size as
 110  * the vdev's asize rounded to the nearest metaslab. This allows us to
 111  * replace or attach devices which don't have the same physical size but
 112  * can still satisfy the same number of allocations.
 113  */
 114 uint64_t
 115 vdev_get_min_asize(vdev_t *vd)
 116 {
 117         vdev_t *pvd = vd->vdev_parent;
 118 
 119         /*
 120          * If our parent is NULL (inactive spare or cache) or is the root,
 121          * just return our own asize.
 122          */
 123         if (pvd == NULL)
 124                 return (vd->vdev_asize);
 125 
 126         /*
 127          * The top-level vdev just returns the allocatable size rounded
 128          * to the nearest metaslab.
 129          */
 130         if (vd == vd->vdev_top)
 131                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
 132 
 133         /*
 134          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
 135          * so each child must provide at least 1/Nth of its asize.
 136          */
 137         if (pvd->vdev_ops == &vdev_raidz_ops)
 138                 return (pvd->vdev_min_asize / pvd->vdev_children);
 139 
 140         return (pvd->vdev_min_asize);
 141 }
 142 
 143 void
 144 vdev_set_min_asize(vdev_t *vd)
 145 {
 146         vd->vdev_min_asize = vdev_get_min_asize(vd);
 147 
 148         for (int c = 0; c < vd->vdev_children; c++)
 149                 vdev_set_min_asize(vd->vdev_child[c]);
 150 }
 151 
 152 vdev_t *
 153 vdev_lookup_top(spa_t *spa, uint64_t vdev)
 154 {
 155         vdev_t *rvd = spa->spa_root_vdev;
 156 
 157         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
 158 
 159         if (vdev < rvd->vdev_children) {
 160                 ASSERT(rvd->vdev_child[vdev] != NULL);
 161                 return (rvd->vdev_child[vdev]);
 162         }
 163 
 164         return (NULL);
 165 }
 166 
 167 vdev_t *
 168 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
 169 {
 170         vdev_t *mvd;
 171 
 172         if (vd->vdev_guid == guid)
 173                 return (vd);
 174 
 175         for (int c = 0; c < vd->vdev_children; c++)
 176                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
 177                     NULL)
 178                         return (mvd);
 179 
 180         return (NULL);
 181 }
 182 
 183 static int
 184 vdev_count_leaves_impl(vdev_t *vd)
 185 {
 186         int n = 0;
 187 
 188         if (vd->vdev_ops->vdev_op_leaf)
 189                 return (1);
 190 
 191         for (int c = 0; c < vd->vdev_children; c++)
 192                 n += vdev_count_leaves_impl(vd->vdev_child[c]);
 193 
 194         return (n);
 195 }
 196 
 197 int
 198 vdev_count_leaves(spa_t *spa)
 199 {
 200         return (vdev_count_leaves_impl(spa->spa_root_vdev));
 201 }
 202 
 203 void
 204 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
 205 {
 206         size_t oldsize, newsize;
 207         uint64_t id = cvd->vdev_id;
 208         vdev_t **newchild;
 209         spa_t *spa = cvd->vdev_spa;
 210 
 211         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 212         ASSERT(cvd->vdev_parent == NULL);
 213 
 214         cvd->vdev_parent = pvd;
 215 
 216         if (pvd == NULL)
 217                 return;
 218 
 219         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
 220 
 221         oldsize = pvd->vdev_children * sizeof (vdev_t *);
 222         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
 223         newsize = pvd->vdev_children * sizeof (vdev_t *);
 224 
 225         newchild = kmem_zalloc(newsize, KM_SLEEP);
 226         if (pvd->vdev_child != NULL) {
 227                 bcopy(pvd->vdev_child, newchild, oldsize);
 228                 kmem_free(pvd->vdev_child, oldsize);
 229         }
 230 
 231         pvd->vdev_child = newchild;
 232         pvd->vdev_child[id] = cvd;
 233 
 234         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
 235         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
 236 
 237         /*
 238          * Walk up all ancestors to update guid sum.
 239          */
 240         for (; pvd != NULL; pvd = pvd->vdev_parent)
 241                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
 242 }
 243 
 244 void
 245 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
 246 {
 247         int c;
 248         uint_t id = cvd->vdev_id;
 249 
 250         ASSERT(cvd->vdev_parent == pvd);
 251 
 252         if (pvd == NULL)
 253                 return;
 254 
 255         ASSERT(id < pvd->vdev_children);
 256         ASSERT(pvd->vdev_child[id] == cvd);
 257 
 258         pvd->vdev_child[id] = NULL;
 259         cvd->vdev_parent = NULL;
 260 
 261         for (c = 0; c < pvd->vdev_children; c++)
 262                 if (pvd->vdev_child[c])
 263                         break;
 264 
 265         if (c == pvd->vdev_children) {
 266                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
 267                 pvd->vdev_child = NULL;
 268                 pvd->vdev_children = 0;
 269         }
 270 
 271         /*
 272          * Walk up all ancestors to update guid sum.
 273          */
 274         for (; pvd != NULL; pvd = pvd->vdev_parent)
 275                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
 276 }
 277 
 278 /*
 279  * Remove any holes in the child array.
 280  */
 281 void
 282 vdev_compact_children(vdev_t *pvd)
 283 {
 284         vdev_t **newchild, *cvd;
 285         int oldc = pvd->vdev_children;
 286         int newc;
 287 
 288         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 289 
 290         for (int c = newc = 0; c < oldc; c++)
 291                 if (pvd->vdev_child[c])
 292                         newc++;
 293 
 294         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
 295 
 296         for (int c = newc = 0; c < oldc; c++) {
 297                 if ((cvd = pvd->vdev_child[c]) != NULL) {
 298                         newchild[newc] = cvd;
 299                         cvd->vdev_id = newc++;
 300                 }
 301         }
 302 
 303         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
 304         pvd->vdev_child = newchild;
 305         pvd->vdev_children = newc;
 306 }
 307 
 308 /*
 309  * Allocate and minimally initialize a vdev_t.
 310  */
 311 vdev_t *
 312 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
 313 {
 314         vdev_t *vd;
 315 
 316         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
 317 
 318         if (spa->spa_root_vdev == NULL) {
 319                 ASSERT(ops == &vdev_root_ops);
 320                 spa->spa_root_vdev = vd;
 321                 spa->spa_load_guid = spa_generate_guid(NULL);
 322         }
 323 
 324         if (guid == 0 && ops != &vdev_hole_ops) {
 325                 if (spa->spa_root_vdev == vd) {
 326                         /*
 327                          * The root vdev's guid will also be the pool guid,
 328                          * which must be unique among all pools.
 329                          */
 330                         guid = spa_generate_guid(NULL);
 331                 } else {
 332                         /*
 333                          * Any other vdev's guid must be unique within the pool.
 334                          */
 335                         guid = spa_generate_guid(spa);
 336                 }
 337                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
 338         }
 339 
 340         vd->vdev_spa = spa;
 341         vd->vdev_id = id;
 342         vd->vdev_guid = guid;
 343         vd->vdev_guid_sum = guid;
 344         vd->vdev_ops = ops;
 345         vd->vdev_state = VDEV_STATE_CLOSED;
 346         vd->vdev_ishole = (ops == &vdev_hole_ops);
 347 
 348         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
 349         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
 350         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
 351         mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
 352         for (int t = 0; t < DTL_TYPES; t++) {
 353                 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
 354                     &vd->vdev_dtl_lock);
 355         }
 356         txg_list_create(&vd->vdev_ms_list,
 357             offsetof(struct metaslab, ms_txg_node));
 358         txg_list_create(&vd->vdev_dtl_list,
 359             offsetof(struct vdev, vdev_dtl_node));
 360         vd->vdev_stat.vs_timestamp = gethrtime();
 361         vdev_queue_init(vd);
 362         vdev_cache_init(vd);
 363 
 364         return (vd);
 365 }
 366 
 367 /*
 368  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
 369  * creating a new vdev or loading an existing one - the behavior is slightly
 370  * different for each case.
 371  */
 372 int
 373 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
 374     int alloctype)
 375 {
 376         vdev_ops_t *ops;
 377         char *type;
 378         uint64_t guid = 0, islog, nparity;
 379         vdev_t *vd;
 380 
 381         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 382 
 383         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
 384                 return (SET_ERROR(EINVAL));
 385 
 386         if ((ops = vdev_getops(type)) == NULL)
 387                 return (SET_ERROR(EINVAL));
 388 
 389         /*
 390          * If this is a load, get the vdev guid from the nvlist.
 391          * Otherwise, vdev_alloc_common() will generate one for us.
 392          */
 393         if (alloctype == VDEV_ALLOC_LOAD) {
 394                 uint64_t label_id;
 395 
 396                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
 397                     label_id != id)
 398                         return (SET_ERROR(EINVAL));
 399 
 400                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
 401                         return (SET_ERROR(EINVAL));
 402         } else if (alloctype == VDEV_ALLOC_SPARE) {
 403                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
 404                         return (SET_ERROR(EINVAL));
 405         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
 406                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
 407                         return (SET_ERROR(EINVAL));
 408         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
 409                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
 410                         return (SET_ERROR(EINVAL));
 411         }
 412 
 413         /*
 414          * The first allocated vdev must be of type 'root'.
 415          */
 416         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
 417                 return (SET_ERROR(EINVAL));
 418 
 419         /*
 420          * Determine whether we're a log vdev.
 421          */
 422         islog = 0;
 423         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
 424         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
 425                 return (SET_ERROR(ENOTSUP));
 426 
 427         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
 428                 return (SET_ERROR(ENOTSUP));
 429 
 430         /*
 431          * Set the nparity property for RAID-Z vdevs.
 432          */
 433         nparity = -1ULL;
 434         if (ops == &vdev_raidz_ops) {
 435                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
 436                     &nparity) == 0) {
 437                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
 438                                 return (SET_ERROR(EINVAL));
 439                         /*
 440                          * Previous versions could only support 1 or 2 parity
 441                          * device.
 442                          */
 443                         if (nparity > 1 &&
 444                             spa_version(spa) < SPA_VERSION_RAIDZ2)
 445                                 return (SET_ERROR(ENOTSUP));
 446                         if (nparity > 2 &&
 447                             spa_version(spa) < SPA_VERSION_RAIDZ3)
 448                                 return (SET_ERROR(ENOTSUP));
 449                 } else {
 450                         /*
 451                          * We require the parity to be specified for SPAs that
 452                          * support multiple parity levels.
 453                          */
 454                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
 455                                 return (SET_ERROR(EINVAL));
 456                         /*
 457                          * Otherwise, we default to 1 parity device for RAID-Z.
 458                          */
 459                         nparity = 1;
 460                 }
 461         } else {
 462                 nparity = 0;
 463         }
 464         ASSERT(nparity != -1ULL);
 465 
 466         vd = vdev_alloc_common(spa, id, guid, ops);
 467 
 468         vd->vdev_islog = islog;
 469         vd->vdev_nparity = nparity;
 470 
 471         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
 472                 vd->vdev_path = spa_strdup(vd->vdev_path);
 473         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
 474                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
 475         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
 476             &vd->vdev_physpath) == 0)
 477                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
 478         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
 479                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
 480 
 481         /*
 482          * Set the whole_disk property.  If it's not specified, leave the value
 483          * as -1.
 484          */
 485         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
 486             &vd->vdev_wholedisk) != 0)
 487                 vd->vdev_wholedisk = -1ULL;
 488 
 489         /*
 490          * Look for the 'not present' flag.  This will only be set if the device
 491          * was not present at the time of import.
 492          */
 493         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
 494             &vd->vdev_not_present);
 495 
 496         /*
 497          * Get the alignment requirement.
 498          */
 499         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
 500 
 501         /*
 502          * Retrieve the vdev creation time.
 503          */
 504         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
 505             &vd->vdev_crtxg);
 506 
 507         /*
 508          * If we're a top-level vdev, try to load the allocation parameters.
 509          */
 510         if (parent && !parent->vdev_parent &&
 511             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
 512                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
 513                     &vd->vdev_ms_array);
 514                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
 515                     &vd->vdev_ms_shift);
 516                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
 517                     &vd->vdev_asize);
 518                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
 519                     &vd->vdev_removing);
 520                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
 521                     &vd->vdev_top_zap);
 522         } else {
 523                 ASSERT0(vd->vdev_top_zap);
 524         }
 525 
 526         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
 527                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
 528                     alloctype == VDEV_ALLOC_ADD ||
 529                     alloctype == VDEV_ALLOC_SPLIT ||
 530                     alloctype == VDEV_ALLOC_ROOTPOOL);
 531                 vd->vdev_mg = metaslab_group_create(islog ?
 532                     spa_log_class(spa) : spa_normal_class(spa), vd);
 533         }
 534 
 535         if (vd->vdev_ops->vdev_op_leaf &&
 536             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
 537                 (void) nvlist_lookup_uint64(nv,
 538                     ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
 539         } else {
 540                 ASSERT0(vd->vdev_leaf_zap);
 541         }
 542 
 543         /*
 544          * If we're a leaf vdev, try to load the DTL object and other state.
 545          */
 546 
 547         if (vd->vdev_ops->vdev_op_leaf &&
 548             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
 549             alloctype == VDEV_ALLOC_ROOTPOOL)) {
 550                 if (alloctype == VDEV_ALLOC_LOAD) {
 551                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
 552                             &vd->vdev_dtl_object);
 553                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
 554                             &vd->vdev_unspare);
 555                 }
 556 
 557                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
 558                         uint64_t spare = 0;
 559 
 560                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
 561                             &spare) == 0 && spare)
 562                                 spa_spare_add(vd);
 563                 }
 564 
 565                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
 566                     &vd->vdev_offline);
 567 
 568                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
 569                     &vd->vdev_resilver_txg);
 570 
 571                 /*
 572                  * When importing a pool, we want to ignore the persistent fault
 573                  * state, as the diagnosis made on another system may not be
 574                  * valid in the current context.  Local vdevs will
 575                  * remain in the faulted state.
 576                  */
 577                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
 578                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
 579                             &vd->vdev_faulted);
 580                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
 581                             &vd->vdev_degraded);
 582                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
 583                             &vd->vdev_removed);
 584 
 585                         if (vd->vdev_faulted || vd->vdev_degraded) {
 586                                 char *aux;
 587 
 588                                 vd->vdev_label_aux =
 589                                     VDEV_AUX_ERR_EXCEEDED;
 590                                 if (nvlist_lookup_string(nv,
 591                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
 592                                     strcmp(aux, "external") == 0)
 593                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
 594                         }
 595                 }
 596         }
 597 
 598         /*
 599          * Add ourselves to the parent's list of children.
 600          */
 601         vdev_add_child(parent, vd);
 602 
 603         *vdp = vd;
 604 
 605         return (0);
 606 }
 607 
 608 void
 609 vdev_free(vdev_t *vd)
 610 {
 611         spa_t *spa = vd->vdev_spa;
 612 
 613         /*
 614          * vdev_free() implies closing the vdev first.  This is simpler than
 615          * trying to ensure complicated semantics for all callers.
 616          */
 617         vdev_close(vd);
 618 
 619         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
 620         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
 621 
 622         /*
 623          * Free all children.
 624          */
 625         for (int c = 0; c < vd->vdev_children; c++)
 626                 vdev_free(vd->vdev_child[c]);
 627 
 628         ASSERT(vd->vdev_child == NULL);
 629         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
 630 
 631         /*
 632          * Discard allocation state.
 633          */
 634         if (vd->vdev_mg != NULL) {
 635                 vdev_metaslab_fini(vd);
 636                 metaslab_group_destroy(vd->vdev_mg);
 637         }
 638 
 639         ASSERT0(vd->vdev_stat.vs_space);
 640         ASSERT0(vd->vdev_stat.vs_dspace);
 641         ASSERT0(vd->vdev_stat.vs_alloc);
 642 
 643         /*
 644          * Remove this vdev from its parent's child list.
 645          */
 646         vdev_remove_child(vd->vdev_parent, vd);
 647 
 648         ASSERT(vd->vdev_parent == NULL);
 649 
 650         /*
 651          * Clean up vdev structure.
 652          */
 653         vdev_queue_fini(vd);
 654         vdev_cache_fini(vd);
 655 
 656         if (vd->vdev_path)
 657                 spa_strfree(vd->vdev_path);
 658         if (vd->vdev_devid)
 659                 spa_strfree(vd->vdev_devid);
 660         if (vd->vdev_physpath)
 661                 spa_strfree(vd->vdev_physpath);
 662         if (vd->vdev_fru)
 663                 spa_strfree(vd->vdev_fru);
 664 
 665         if (vd->vdev_isspare)
 666                 spa_spare_remove(vd);
 667         if (vd->vdev_isl2cache)
 668                 spa_l2cache_remove(vd);
 669 
 670         txg_list_destroy(&vd->vdev_ms_list);
 671         txg_list_destroy(&vd->vdev_dtl_list);
 672 
 673         mutex_enter(&vd->vdev_dtl_lock);
 674         space_map_close(vd->vdev_dtl_sm);
 675         for (int t = 0; t < DTL_TYPES; t++) {
 676                 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
 677                 range_tree_destroy(vd->vdev_dtl[t]);
 678         }
 679         mutex_exit(&vd->vdev_dtl_lock);
 680 
 681         mutex_destroy(&vd->vdev_queue_lock);
 682         mutex_destroy(&vd->vdev_dtl_lock);
 683         mutex_destroy(&vd->vdev_stat_lock);
 684         mutex_destroy(&vd->vdev_probe_lock);
 685 
 686         if (vd == spa->spa_root_vdev)
 687                 spa->spa_root_vdev = NULL;
 688 
 689         kmem_free(vd, sizeof (vdev_t));
 690 }
 691 
 692 /*
 693  * Transfer top-level vdev state from svd to tvd.
 694  */
 695 static void
 696 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
 697 {
 698         spa_t *spa = svd->vdev_spa;
 699         metaslab_t *msp;
 700         vdev_t *vd;
 701         int t;
 702 
 703         ASSERT(tvd == tvd->vdev_top);
 704 
 705         tvd->vdev_ms_array = svd->vdev_ms_array;
 706         tvd->vdev_ms_shift = svd->vdev_ms_shift;
 707         tvd->vdev_ms_count = svd->vdev_ms_count;
 708         tvd->vdev_top_zap = svd->vdev_top_zap;
 709 
 710         svd->vdev_ms_array = 0;
 711         svd->vdev_ms_shift = 0;
 712         svd->vdev_ms_count = 0;
 713         svd->vdev_top_zap = 0;
 714 
 715         if (tvd->vdev_mg)
 716                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
 717         tvd->vdev_mg = svd->vdev_mg;
 718         tvd->vdev_ms = svd->vdev_ms;
 719 
 720         svd->vdev_mg = NULL;
 721         svd->vdev_ms = NULL;
 722 
 723         if (tvd->vdev_mg != NULL)
 724                 tvd->vdev_mg->mg_vd = tvd;
 725 
 726         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
 727         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
 728         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
 729 
 730         svd->vdev_stat.vs_alloc = 0;
 731         svd->vdev_stat.vs_space = 0;
 732         svd->vdev_stat.vs_dspace = 0;
 733 
 734         for (t = 0; t < TXG_SIZE; t++) {
 735                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
 736                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
 737                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
 738                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
 739                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
 740                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
 741         }
 742 
 743         if (list_link_active(&svd->vdev_config_dirty_node)) {
 744                 vdev_config_clean(svd);
 745                 vdev_config_dirty(tvd);
 746         }
 747 
 748         if (list_link_active(&svd->vdev_state_dirty_node)) {
 749                 vdev_state_clean(svd);
 750                 vdev_state_dirty(tvd);
 751         }
 752 
 753         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
 754         svd->vdev_deflate_ratio = 0;
 755 
 756         tvd->vdev_islog = svd->vdev_islog;
 757         svd->vdev_islog = 0;
 758 }
 759 
 760 static void
 761 vdev_top_update(vdev_t *tvd, vdev_t *vd)
 762 {
 763         if (vd == NULL)
 764                 return;
 765 
 766         vd->vdev_top = tvd;
 767 
 768         for (int c = 0; c < vd->vdev_children; c++)
 769                 vdev_top_update(tvd, vd->vdev_child[c]);
 770 }
 771 
 772 /*
 773  * Add a mirror/replacing vdev above an existing vdev.
 774  */
 775 vdev_t *
 776 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
 777 {
 778         spa_t *spa = cvd->vdev_spa;
 779         vdev_t *pvd = cvd->vdev_parent;
 780         vdev_t *mvd;
 781 
 782         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 783 
 784         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
 785 
 786         mvd->vdev_asize = cvd->vdev_asize;
 787         mvd->vdev_min_asize = cvd->vdev_min_asize;
 788         mvd->vdev_max_asize = cvd->vdev_max_asize;
 789         mvd->vdev_ashift = cvd->vdev_ashift;
 790         mvd->vdev_state = cvd->vdev_state;
 791         mvd->vdev_crtxg = cvd->vdev_crtxg;
 792 
 793         vdev_remove_child(pvd, cvd);
 794         vdev_add_child(pvd, mvd);
 795         cvd->vdev_id = mvd->vdev_children;
 796         vdev_add_child(mvd, cvd);
 797         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
 798 
 799         if (mvd == mvd->vdev_top)
 800                 vdev_top_transfer(cvd, mvd);
 801 
 802         return (mvd);
 803 }
 804 
 805 /*
 806  * Remove a 1-way mirror/replacing vdev from the tree.
 807  */
 808 void
 809 vdev_remove_parent(vdev_t *cvd)
 810 {
 811         vdev_t *mvd = cvd->vdev_parent;
 812         vdev_t *pvd = mvd->vdev_parent;
 813 
 814         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 815 
 816         ASSERT(mvd->vdev_children == 1);
 817         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
 818             mvd->vdev_ops == &vdev_replacing_ops ||
 819             mvd->vdev_ops == &vdev_spare_ops);
 820         cvd->vdev_ashift = mvd->vdev_ashift;
 821 
 822         vdev_remove_child(mvd, cvd);
 823         vdev_remove_child(pvd, mvd);
 824 
 825         /*
 826          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
 827          * Otherwise, we could have detached an offline device, and when we
 828          * go to import the pool we'll think we have two top-level vdevs,
 829          * instead of a different version of the same top-level vdev.
 830          */
 831         if (mvd->vdev_top == mvd) {
 832                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
 833                 cvd->vdev_orig_guid = cvd->vdev_guid;
 834                 cvd->vdev_guid += guid_delta;
 835                 cvd->vdev_guid_sum += guid_delta;
 836         }
 837         cvd->vdev_id = mvd->vdev_id;
 838         vdev_add_child(pvd, cvd);
 839         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
 840 
 841         if (cvd == cvd->vdev_top)
 842                 vdev_top_transfer(mvd, cvd);
 843 
 844         ASSERT(mvd->vdev_children == 0);
 845         vdev_free(mvd);
 846 }
 847 
 848 int
 849 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
 850 {
 851         spa_t *spa = vd->vdev_spa;
 852         objset_t *mos = spa->spa_meta_objset;
 853         uint64_t m;
 854         uint64_t oldc = vd->vdev_ms_count;
 855         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
 856         metaslab_t **mspp;
 857         int error;
 858 
 859         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
 860 
 861         /*
 862          * This vdev is not being allocated from yet or is a hole.
 863          */
 864         if (vd->vdev_ms_shift == 0)
 865                 return (0);
 866 
 867         ASSERT(!vd->vdev_ishole);
 868 
 869         /*
 870          * Compute the raidz-deflation ratio.  Note, we hard-code
 871          * in 128k (1 << 17) because it is the "typical" blocksize.
 872          * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
 873          * otherwise it would inconsistently account for existing bp's.
 874          */
 875         vd->vdev_deflate_ratio = (1 << 17) /
 876             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
 877 
 878         ASSERT(oldc <= newc);
 879 
 880         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
 881 
 882         if (oldc != 0) {
 883                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
 884                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
 885         }
 886 
 887         vd->vdev_ms = mspp;
 888         vd->vdev_ms_count = newc;
 889 
 890         for (m = oldc; m < newc; m++) {
 891                 uint64_t object = 0;
 892 
 893                 if (txg == 0) {
 894                         error = dmu_read(mos, vd->vdev_ms_array,
 895                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
 896                             DMU_READ_PREFETCH);
 897                         if (error)
 898                                 return (error);
 899                 }
 900 
 901                 error = metaslab_init(vd->vdev_mg, m, object, txg,
 902                     &(vd->vdev_ms[m]));
 903                 if (error)
 904                         return (error);
 905         }
 906 
 907         if (txg == 0)
 908                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
 909 
 910         /*
 911          * If the vdev is being removed we don't activate
 912          * the metaslabs since we want to ensure that no new
 913          * allocations are performed on this device.
 914          */
 915         if (oldc == 0 && !vd->vdev_removing)
 916                 metaslab_group_activate(vd->vdev_mg);
 917 
 918         if (txg == 0)
 919                 spa_config_exit(spa, SCL_ALLOC, FTAG);
 920 
 921         return (0);
 922 }
 923 
 924 void
 925 vdev_metaslab_fini(vdev_t *vd)
 926 {
 927         uint64_t m;
 928         uint64_t count = vd->vdev_ms_count;
 929 
 930         if (vd->vdev_ms != NULL) {
 931                 metaslab_group_passivate(vd->vdev_mg);
 932                 for (m = 0; m < count; m++) {
 933                         metaslab_t *msp = vd->vdev_ms[m];
 934 
 935                         if (msp != NULL)
 936                                 metaslab_fini(msp);
 937                 }
 938                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
 939                 vd->vdev_ms = NULL;
 940         }
 941 }
 942 
 943 typedef struct vdev_probe_stats {
 944         boolean_t       vps_readable;
 945         boolean_t       vps_writeable;
 946         int             vps_flags;
 947 } vdev_probe_stats_t;
 948 
 949 static void
 950 vdev_probe_done(zio_t *zio)
 951 {
 952         spa_t *spa = zio->io_spa;
 953         vdev_t *vd = zio->io_vd;
 954         vdev_probe_stats_t *vps = zio->io_private;
 955 
 956         ASSERT(vd->vdev_probe_zio != NULL);
 957 
 958         if (zio->io_type == ZIO_TYPE_READ) {
 959                 if (zio->io_error == 0)
 960                         vps->vps_readable = 1;
 961                 if (zio->io_error == 0 && spa_writeable(spa)) {
 962                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
 963                             zio->io_offset, zio->io_size, zio->io_data,
 964                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
 965                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
 966                 } else {
 967                         zio_buf_free(zio->io_data, zio->io_size);
 968                 }
 969         } else if (zio->io_type == ZIO_TYPE_WRITE) {
 970                 if (zio->io_error == 0)
 971                         vps->vps_writeable = 1;
 972                 zio_buf_free(zio->io_data, zio->io_size);
 973         } else if (zio->io_type == ZIO_TYPE_NULL) {
 974                 zio_t *pio;
 975 
 976                 vd->vdev_cant_read |= !vps->vps_readable;
 977                 vd->vdev_cant_write |= !vps->vps_writeable;
 978 
 979                 if (vdev_readable(vd) &&
 980                     (vdev_writeable(vd) || !spa_writeable(spa))) {
 981                         zio->io_error = 0;
 982                 } else {
 983                         ASSERT(zio->io_error != 0);
 984                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
 985                             spa, vd, NULL, 0, 0);
 986                         zio->io_error = SET_ERROR(ENXIO);
 987                 }
 988 
 989                 mutex_enter(&vd->vdev_probe_lock);
 990                 ASSERT(vd->vdev_probe_zio == zio);
 991                 vd->vdev_probe_zio = NULL;
 992                 mutex_exit(&vd->vdev_probe_lock);
 993 
 994                 zio_link_t *zl = NULL;
 995                 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
 996                         if (!vdev_accessible(vd, pio))
 997                                 pio->io_error = SET_ERROR(ENXIO);
 998 
 999                 kmem_free(vps, sizeof (*vps));
1000         }
1001 }
1002 
1003 /*
1004  * Determine whether this device is accessible.
1005  *
1006  * Read and write to several known locations: the pad regions of each
1007  * vdev label but the first, which we leave alone in case it contains
1008  * a VTOC.
1009  */
1010 zio_t *
1011 vdev_probe(vdev_t *vd, zio_t *zio)
1012 {
1013         spa_t *spa = vd->vdev_spa;
1014         vdev_probe_stats_t *vps = NULL;
1015         zio_t *pio;
1016 
1017         ASSERT(vd->vdev_ops->vdev_op_leaf);
1018 
1019         /*
1020          * Don't probe the probe.
1021          */
1022         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1023                 return (NULL);
1024 
1025         /*
1026          * To prevent 'probe storms' when a device fails, we create
1027          * just one probe i/o at a time.  All zios that want to probe
1028          * this vdev will become parents of the probe io.
1029          */
1030         mutex_enter(&vd->vdev_probe_lock);
1031 
1032         if ((pio = vd->vdev_probe_zio) == NULL) {
1033                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1034 
1035                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1036                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1037                     ZIO_FLAG_TRYHARD;
1038 
1039                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1040                         /*
1041                          * vdev_cant_read and vdev_cant_write can only
1042                          * transition from TRUE to FALSE when we have the
1043                          * SCL_ZIO lock as writer; otherwise they can only
1044                          * transition from FALSE to TRUE.  This ensures that
1045                          * any zio looking at these values can assume that
1046                          * failures persist for the life of the I/O.  That's
1047                          * important because when a device has intermittent
1048                          * connectivity problems, we want to ensure that
1049                          * they're ascribed to the device (ENXIO) and not
1050                          * the zio (EIO).
1051                          *
1052                          * Since we hold SCL_ZIO as writer here, clear both
1053                          * values so the probe can reevaluate from first
1054                          * principles.
1055                          */
1056                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1057                         vd->vdev_cant_read = B_FALSE;
1058                         vd->vdev_cant_write = B_FALSE;
1059                 }
1060 
1061                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1062                     vdev_probe_done, vps,
1063                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1064 
1065                 /*
1066                  * We can't change the vdev state in this context, so we
1067                  * kick off an async task to do it on our behalf.
1068                  */
1069                 if (zio != NULL) {
1070                         vd->vdev_probe_wanted = B_TRUE;
1071                         spa_async_request(spa, SPA_ASYNC_PROBE);
1072                 }
1073         }
1074 
1075         if (zio != NULL)
1076                 zio_add_child(zio, pio);
1077 
1078         mutex_exit(&vd->vdev_probe_lock);
1079 
1080         if (vps == NULL) {
1081                 ASSERT(zio != NULL);
1082                 return (NULL);
1083         }
1084 
1085         for (int l = 1; l < VDEV_LABELS; l++) {
1086                 zio_nowait(zio_read_phys(pio, vd,
1087                     vdev_label_offset(vd->vdev_psize, l,
1088                     offsetof(vdev_label_t, vl_pad2)),
1089                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1090                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1091                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1092         }
1093 
1094         if (zio == NULL)
1095                 return (pio);
1096 
1097         zio_nowait(pio);
1098         return (NULL);
1099 }
1100 
1101 static void
1102 vdev_open_child(void *arg)
1103 {
1104         vdev_t *vd = arg;
1105 
1106         vd->vdev_open_thread = curthread;
1107         vd->vdev_open_error = vdev_open(vd);
1108         vd->vdev_open_thread = NULL;
1109 }
1110 
1111 boolean_t
1112 vdev_uses_zvols(vdev_t *vd)
1113 {
1114         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1115             strlen(ZVOL_DIR)) == 0)
1116                 return (B_TRUE);
1117         for (int c = 0; c < vd->vdev_children; c++)
1118                 if (vdev_uses_zvols(vd->vdev_child[c]))
1119                         return (B_TRUE);
1120         return (B_FALSE);
1121 }
1122 
1123 void
1124 vdev_open_children(vdev_t *vd)
1125 {
1126         taskq_t *tq;
1127         int children = vd->vdev_children;
1128 
1129         /*
1130          * in order to handle pools on top of zvols, do the opens
1131          * in a single thread so that the same thread holds the
1132          * spa_namespace_lock
1133          */
1134         if (vdev_uses_zvols(vd)) {
1135                 for (int c = 0; c < children; c++)
1136                         vd->vdev_child[c]->vdev_open_error =
1137                             vdev_open(vd->vdev_child[c]);
1138                 return;
1139         }
1140         tq = taskq_create("vdev_open", children, minclsyspri,
1141             children, children, TASKQ_PREPOPULATE);
1142 
1143         for (int c = 0; c < children; c++)
1144                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1145                     TQ_SLEEP) != NULL);
1146 
1147         taskq_destroy(tq);
1148 }
1149 
1150 /*
1151  * Prepare a virtual device for access.
1152  */
1153 int
1154 vdev_open(vdev_t *vd)
1155 {
1156         spa_t *spa = vd->vdev_spa;
1157         int error;
1158         uint64_t osize = 0;
1159         uint64_t max_osize = 0;
1160         uint64_t asize, max_asize, psize;
1161         uint64_t ashift = 0;
1162 
1163         ASSERT(vd->vdev_open_thread == curthread ||
1164             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1165         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1166             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1167             vd->vdev_state == VDEV_STATE_OFFLINE);
1168 
1169         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1170         vd->vdev_cant_read = B_FALSE;
1171         vd->vdev_cant_write = B_FALSE;
1172         vd->vdev_min_asize = vdev_get_min_asize(vd);
1173 
1174         /*
1175          * If this vdev is not removed, check its fault status.  If it's
1176          * faulted, bail out of the open.
1177          */
1178         if (!vd->vdev_removed && vd->vdev_faulted) {
1179                 ASSERT(vd->vdev_children == 0);
1180                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1181                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1182                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1183                     vd->vdev_label_aux);
1184                 return (SET_ERROR(ENXIO));
1185         } else if (vd->vdev_offline) {
1186                 ASSERT(vd->vdev_children == 0);
1187                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1188                 return (SET_ERROR(ENXIO));
1189         }
1190 
1191         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1192 
1193         /*
1194          * Reset the vdev_reopening flag so that we actually close
1195          * the vdev on error.
1196          */
1197         vd->vdev_reopening = B_FALSE;
1198         if (zio_injection_enabled && error == 0)
1199                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1200 
1201         if (error) {
1202                 if (vd->vdev_removed &&
1203                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1204                         vd->vdev_removed = B_FALSE;
1205 
1206                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1207                     vd->vdev_stat.vs_aux);
1208                 return (error);
1209         }
1210 
1211         vd->vdev_removed = B_FALSE;
1212 
1213         /*
1214          * Recheck the faulted flag now that we have confirmed that
1215          * the vdev is accessible.  If we're faulted, bail.
1216          */
1217         if (vd->vdev_faulted) {
1218                 ASSERT(vd->vdev_children == 0);
1219                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1220                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1221                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1222                     vd->vdev_label_aux);
1223                 return (SET_ERROR(ENXIO));
1224         }
1225 
1226         if (vd->vdev_degraded) {
1227                 ASSERT(vd->vdev_children == 0);
1228                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1229                     VDEV_AUX_ERR_EXCEEDED);
1230         } else {
1231                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1232         }
1233 
1234         /*
1235          * For hole or missing vdevs we just return success.
1236          */
1237         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1238                 return (0);
1239 
1240         for (int c = 0; c < vd->vdev_children; c++) {
1241                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1242                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1243                             VDEV_AUX_NONE);
1244                         break;
1245                 }
1246         }
1247 
1248         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1249         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1250 
1251         if (vd->vdev_children == 0) {
1252                 if (osize < SPA_MINDEVSIZE) {
1253                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1254                             VDEV_AUX_TOO_SMALL);
1255                         return (SET_ERROR(EOVERFLOW));
1256                 }
1257                 psize = osize;
1258                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1259                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1260                     VDEV_LABEL_END_SIZE);
1261         } else {
1262                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1263                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1264                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1265                             VDEV_AUX_TOO_SMALL);
1266                         return (SET_ERROR(EOVERFLOW));
1267                 }
1268                 psize = 0;
1269                 asize = osize;
1270                 max_asize = max_osize;
1271         }
1272 
1273         vd->vdev_psize = psize;
1274 
1275         /*
1276          * Make sure the allocatable size hasn't shrunk.
1277          */
1278         if (asize < vd->vdev_min_asize) {
1279                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1280                     VDEV_AUX_BAD_LABEL);
1281                 return (SET_ERROR(EINVAL));
1282         }
1283 
1284         if (vd->vdev_asize == 0) {
1285                 /*
1286                  * This is the first-ever open, so use the computed values.
1287                  * For testing purposes, a higher ashift can be requested.
1288                  */
1289                 vd->vdev_asize = asize;
1290                 vd->vdev_max_asize = max_asize;
1291                 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1292         } else {
1293                 /*
1294                  * Detect if the alignment requirement has increased.
1295                  * We don't want to make the pool unavailable, just
1296                  * issue a warning instead.
1297                  */
1298                 if (ashift > vd->vdev_top->vdev_ashift &&
1299                     vd->vdev_ops->vdev_op_leaf) {
1300                         cmn_err(CE_WARN,
1301                             "Disk, '%s', has a block alignment that is "
1302                             "larger than the pool's alignment\n",
1303                             vd->vdev_path);
1304                 }
1305                 vd->vdev_max_asize = max_asize;
1306         }
1307 
1308         /*
1309          * If all children are healthy and the asize has increased,
1310          * then we've experienced dynamic LUN growth.  If automatic
1311          * expansion is enabled then use the additional space.
1312          */
1313         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1314             (vd->vdev_expanding || spa->spa_autoexpand))
1315                 vd->vdev_asize = asize;
1316 
1317         vdev_set_min_asize(vd);
1318 
1319         /*
1320          * Ensure we can issue some IO before declaring the
1321          * vdev open for business.
1322          */
1323         if (vd->vdev_ops->vdev_op_leaf &&
1324             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1325                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1326                     VDEV_AUX_ERR_EXCEEDED);
1327                 return (error);
1328         }
1329 
1330         /*
1331          * Track the min and max ashift values for normal data devices.
1332          */
1333         if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1334             !vd->vdev_islog && vd->vdev_aux == NULL) {
1335                 if (vd->vdev_ashift > spa->spa_max_ashift)
1336                         spa->spa_max_ashift = vd->vdev_ashift;
1337                 if (vd->vdev_ashift < spa->spa_min_ashift)
1338                         spa->spa_min_ashift = vd->vdev_ashift;
1339         }
1340 
1341         /*
1342          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1343          * resilver.  But don't do this if we are doing a reopen for a scrub,
1344          * since this would just restart the scrub we are already doing.
1345          */
1346         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1347             vdev_resilver_needed(vd, NULL, NULL))
1348                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1349 
1350         return (0);
1351 }
1352 
1353 /*
1354  * Called once the vdevs are all opened, this routine validates the label
1355  * contents.  This needs to be done before vdev_load() so that we don't
1356  * inadvertently do repair I/Os to the wrong device.
1357  *
1358  * If 'strict' is false ignore the spa guid check. This is necessary because
1359  * if the machine crashed during a re-guid the new guid might have been written
1360  * to all of the vdev labels, but not the cached config. The strict check
1361  * will be performed when the pool is opened again using the mos config.
1362  *
1363  * This function will only return failure if one of the vdevs indicates that it
1364  * has since been destroyed or exported.  This is only possible if
1365  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1366  * will be updated but the function will return 0.
1367  */
1368 int
1369 vdev_validate(vdev_t *vd, boolean_t strict)
1370 {
1371         spa_t *spa = vd->vdev_spa;
1372         nvlist_t *label;
1373         uint64_t guid = 0, top_guid;
1374         uint64_t state;
1375 
1376         for (int c = 0; c < vd->vdev_children; c++)
1377                 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1378                         return (SET_ERROR(EBADF));
1379 
1380         /*
1381          * If the device has already failed, or was marked offline, don't do
1382          * any further validation.  Otherwise, label I/O will fail and we will
1383          * overwrite the previous state.
1384          */
1385         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1386                 uint64_t aux_guid = 0;
1387                 nvlist_t *nvl;
1388                 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1389                     spa_last_synced_txg(spa) : -1ULL;
1390 
1391                 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1392                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1393                             VDEV_AUX_BAD_LABEL);
1394                         return (0);
1395                 }
1396 
1397                 /*
1398                  * Determine if this vdev has been split off into another
1399                  * pool.  If so, then refuse to open it.
1400                  */
1401                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1402                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1403                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1404                             VDEV_AUX_SPLIT_POOL);
1405                         nvlist_free(label);
1406                         return (0);
1407                 }
1408 
1409                 if (strict && (nvlist_lookup_uint64(label,
1410                     ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1411                     guid != spa_guid(spa))) {
1412                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1413                             VDEV_AUX_CORRUPT_DATA);
1414                         nvlist_free(label);
1415                         return (0);
1416                 }
1417 
1418                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1419                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1420                     &aux_guid) != 0)
1421                         aux_guid = 0;
1422 
1423                 /*
1424                  * If this vdev just became a top-level vdev because its
1425                  * sibling was detached, it will have adopted the parent's
1426                  * vdev guid -- but the label may or may not be on disk yet.
1427                  * Fortunately, either version of the label will have the
1428                  * same top guid, so if we're a top-level vdev, we can
1429                  * safely compare to that instead.
1430                  *
1431                  * If we split this vdev off instead, then we also check the
1432                  * original pool's guid.  We don't want to consider the vdev
1433                  * corrupt if it is partway through a split operation.
1434                  */
1435                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1436                     &guid) != 0 ||
1437                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1438                     &top_guid) != 0 ||
1439                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1440                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1441                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1442                             VDEV_AUX_CORRUPT_DATA);
1443                         nvlist_free(label);
1444                         return (0);
1445                 }
1446 
1447                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1448                     &state) != 0) {
1449                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1450                             VDEV_AUX_CORRUPT_DATA);
1451                         nvlist_free(label);
1452                         return (0);
1453                 }
1454 
1455                 nvlist_free(label);
1456 
1457                 /*
1458                  * If this is a verbatim import, no need to check the
1459                  * state of the pool.
1460                  */
1461                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1462                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1463                     state != POOL_STATE_ACTIVE)
1464                         return (SET_ERROR(EBADF));
1465 
1466                 /*
1467                  * If we were able to open and validate a vdev that was
1468                  * previously marked permanently unavailable, clear that state
1469                  * now.
1470                  */
1471                 if (vd->vdev_not_present)
1472                         vd->vdev_not_present = 0;
1473         }
1474 
1475         return (0);
1476 }
1477 
1478 /*
1479  * Close a virtual device.
1480  */
1481 void
1482 vdev_close(vdev_t *vd)
1483 {
1484         spa_t *spa = vd->vdev_spa;
1485         vdev_t *pvd = vd->vdev_parent;
1486 
1487         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1488 
1489         /*
1490          * If our parent is reopening, then we are as well, unless we are
1491          * going offline.
1492          */
1493         if (pvd != NULL && pvd->vdev_reopening)
1494                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1495 
1496         vd->vdev_ops->vdev_op_close(vd);
1497 
1498         vdev_cache_purge(vd);
1499 
1500         /*
1501          * We record the previous state before we close it, so that if we are
1502          * doing a reopen(), we don't generate FMA ereports if we notice that
1503          * it's still faulted.
1504          */
1505         vd->vdev_prevstate = vd->vdev_state;
1506 
1507         if (vd->vdev_offline)
1508                 vd->vdev_state = VDEV_STATE_OFFLINE;
1509         else
1510                 vd->vdev_state = VDEV_STATE_CLOSED;
1511         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1512 }
1513 
1514 void
1515 vdev_hold(vdev_t *vd)
1516 {
1517         spa_t *spa = vd->vdev_spa;
1518 
1519         ASSERT(spa_is_root(spa));
1520         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1521                 return;
1522 
1523         for (int c = 0; c < vd->vdev_children; c++)
1524                 vdev_hold(vd->vdev_child[c]);
1525 
1526         if (vd->vdev_ops->vdev_op_leaf)
1527                 vd->vdev_ops->vdev_op_hold(vd);
1528 }
1529 
1530 void
1531 vdev_rele(vdev_t *vd)
1532 {
1533         spa_t *spa = vd->vdev_spa;
1534 
1535         ASSERT(spa_is_root(spa));
1536         for (int c = 0; c < vd->vdev_children; c++)
1537                 vdev_rele(vd->vdev_child[c]);
1538 
1539         if (vd->vdev_ops->vdev_op_leaf)
1540                 vd->vdev_ops->vdev_op_rele(vd);
1541 }
1542 
1543 /*
1544  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1545  * reopen leaf vdevs which had previously been opened as they might deadlock
1546  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1547  * If the leaf has never been opened then open it, as usual.
1548  */
1549 void
1550 vdev_reopen(vdev_t *vd)
1551 {
1552         spa_t *spa = vd->vdev_spa;
1553 
1554         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1555 
1556         /* set the reopening flag unless we're taking the vdev offline */
1557         vd->vdev_reopening = !vd->vdev_offline;
1558         vdev_close(vd);
1559         (void) vdev_open(vd);
1560 
1561         /*
1562          * Call vdev_validate() here to make sure we have the same device.
1563          * Otherwise, a device with an invalid label could be successfully
1564          * opened in response to vdev_reopen().
1565          */
1566         if (vd->vdev_aux) {
1567                 (void) vdev_validate_aux(vd);
1568                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1569                     vd->vdev_aux == &spa->spa_l2cache &&
1570                     !l2arc_vdev_present(vd))
1571                         l2arc_add_vdev(spa, vd);
1572         } else {
1573                 (void) vdev_validate(vd, B_TRUE);
1574         }
1575 
1576         /*
1577          * Reassess parent vdev's health.
1578          */
1579         vdev_propagate_state(vd);
1580 }
1581 
1582 int
1583 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1584 {
1585         int error;
1586 
1587         /*
1588          * Normally, partial opens (e.g. of a mirror) are allowed.
1589          * For a create, however, we want to fail the request if
1590          * there are any components we can't open.
1591          */
1592         error = vdev_open(vd);
1593 
1594         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1595                 vdev_close(vd);
1596                 return (error ? error : ENXIO);
1597         }
1598 
1599         /*
1600          * Recursively load DTLs and initialize all labels.
1601          */
1602         if ((error = vdev_dtl_load(vd)) != 0 ||
1603             (error = vdev_label_init(vd, txg, isreplacing ?
1604             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1605                 vdev_close(vd);
1606                 return (error);
1607         }
1608 
1609         return (0);
1610 }
1611 
1612 void
1613 vdev_metaslab_set_size(vdev_t *vd)
1614 {
1615         /*
1616          * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1617          */
1618         vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1619         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1620 }
1621 
1622 void
1623 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1624 {
1625         ASSERT(vd == vd->vdev_top);
1626         ASSERT(!vd->vdev_ishole);
1627         ASSERT(ISP2(flags));
1628         ASSERT(spa_writeable(vd->vdev_spa));
1629 
1630         if (flags & VDD_METASLAB)
1631                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1632 
1633         if (flags & VDD_DTL)
1634                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1635 
1636         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1637 }
1638 
1639 void
1640 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1641 {
1642         for (int c = 0; c < vd->vdev_children; c++)
1643                 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1644 
1645         if (vd->vdev_ops->vdev_op_leaf)
1646                 vdev_dirty(vd->vdev_top, flags, vd, txg);
1647 }
1648 
1649 /*
1650  * DTLs.
1651  *
1652  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1653  * the vdev has less than perfect replication.  There are four kinds of DTL:
1654  *
1655  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1656  *
1657  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1658  *
1659  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1660  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1661  *      txgs that was scrubbed.
1662  *
1663  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1664  *      persistent errors or just some device being offline.
1665  *      Unlike the other three, the DTL_OUTAGE map is not generally
1666  *      maintained; it's only computed when needed, typically to
1667  *      determine whether a device can be detached.
1668  *
1669  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1670  * either has the data or it doesn't.
1671  *
1672  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1673  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1674  * if any child is less than fully replicated, then so is its parent.
1675  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1676  * comprising only those txgs which appear in 'maxfaults' or more children;
1677  * those are the txgs we don't have enough replication to read.  For example,
1678  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1679  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1680  * two child DTL_MISSING maps.
1681  *
1682  * It should be clear from the above that to compute the DTLs and outage maps
1683  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1684  * Therefore, that is all we keep on disk.  When loading the pool, or after
1685  * a configuration change, we generate all other DTLs from first principles.
1686  */
1687 void
1688 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1689 {
1690         range_tree_t *rt = vd->vdev_dtl[t];
1691 
1692         ASSERT(t < DTL_TYPES);
1693         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1694         ASSERT(spa_writeable(vd->vdev_spa));
1695 
1696         mutex_enter(rt->rt_lock);
1697         if (!range_tree_contains(rt, txg, size))
1698                 range_tree_add(rt, txg, size);
1699         mutex_exit(rt->rt_lock);
1700 }
1701 
1702 boolean_t
1703 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1704 {
1705         range_tree_t *rt = vd->vdev_dtl[t];
1706         boolean_t dirty = B_FALSE;
1707 
1708         ASSERT(t < DTL_TYPES);
1709         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1710 
1711         mutex_enter(rt->rt_lock);
1712         if (range_tree_space(rt) != 0)
1713                 dirty = range_tree_contains(rt, txg, size);
1714         mutex_exit(rt->rt_lock);
1715 
1716         return (dirty);
1717 }
1718 
1719 boolean_t
1720 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1721 {
1722         range_tree_t *rt = vd->vdev_dtl[t];
1723         boolean_t empty;
1724 
1725         mutex_enter(rt->rt_lock);
1726         empty = (range_tree_space(rt) == 0);
1727         mutex_exit(rt->rt_lock);
1728 
1729         return (empty);
1730 }
1731 
1732 /*
1733  * Returns the lowest txg in the DTL range.
1734  */
1735 static uint64_t
1736 vdev_dtl_min(vdev_t *vd)
1737 {
1738         range_seg_t *rs;
1739 
1740         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1741         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1742         ASSERT0(vd->vdev_children);
1743 
1744         rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1745         return (rs->rs_start - 1);
1746 }
1747 
1748 /*
1749  * Returns the highest txg in the DTL.
1750  */
1751 static uint64_t
1752 vdev_dtl_max(vdev_t *vd)
1753 {
1754         range_seg_t *rs;
1755 
1756         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1757         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1758         ASSERT0(vd->vdev_children);
1759 
1760         rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1761         return (rs->rs_end);
1762 }
1763 
1764 /*
1765  * Determine if a resilvering vdev should remove any DTL entries from
1766  * its range. If the vdev was resilvering for the entire duration of the
1767  * scan then it should excise that range from its DTLs. Otherwise, this
1768  * vdev is considered partially resilvered and should leave its DTL
1769  * entries intact. The comment in vdev_dtl_reassess() describes how we
1770  * excise the DTLs.
1771  */
1772 static boolean_t
1773 vdev_dtl_should_excise(vdev_t *vd)
1774 {
1775         spa_t *spa = vd->vdev_spa;
1776         dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1777 
1778         ASSERT0(scn->scn_phys.scn_errors);
1779         ASSERT0(vd->vdev_children);
1780 
1781         if (vd->vdev_resilver_txg == 0 ||
1782             range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1783                 return (B_TRUE);
1784 
1785         /*
1786          * When a resilver is initiated the scan will assign the scn_max_txg
1787          * value to the highest txg value that exists in all DTLs. If this
1788          * device's max DTL is not part of this scan (i.e. it is not in
1789          * the range (scn_min_txg, scn_max_txg] then it is not eligible
1790          * for excision.
1791          */
1792         if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1793                 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1794                 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1795                 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1796                 return (B_TRUE);
1797         }
1798         return (B_FALSE);
1799 }
1800 
1801 /*
1802  * Reassess DTLs after a config change or scrub completion.
1803  */
1804 void
1805 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1806 {
1807         spa_t *spa = vd->vdev_spa;
1808         avl_tree_t reftree;
1809         int minref;
1810 
1811         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1812 
1813         for (int c = 0; c < vd->vdev_children; c++)
1814                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1815                     scrub_txg, scrub_done);
1816 
1817         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1818                 return;
1819 
1820         if (vd->vdev_ops->vdev_op_leaf) {
1821                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1822 
1823                 mutex_enter(&vd->vdev_dtl_lock);
1824 
1825                 /*
1826                  * If we've completed a scan cleanly then determine
1827                  * if this vdev should remove any DTLs. We only want to
1828                  * excise regions on vdevs that were available during
1829                  * the entire duration of this scan.
1830                  */
1831                 if (scrub_txg != 0 &&
1832                     (spa->spa_scrub_started ||
1833                     (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1834                     vdev_dtl_should_excise(vd)) {
1835                         /*
1836                          * We completed a scrub up to scrub_txg.  If we
1837                          * did it without rebooting, then the scrub dtl
1838                          * will be valid, so excise the old region and
1839                          * fold in the scrub dtl.  Otherwise, leave the
1840                          * dtl as-is if there was an error.
1841                          *
1842                          * There's little trick here: to excise the beginning
1843                          * of the DTL_MISSING map, we put it into a reference
1844                          * tree and then add a segment with refcnt -1 that
1845                          * covers the range [0, scrub_txg).  This means
1846                          * that each txg in that range has refcnt -1 or 0.
1847                          * We then add DTL_SCRUB with a refcnt of 2, so that
1848                          * entries in the range [0, scrub_txg) will have a
1849                          * positive refcnt -- either 1 or 2.  We then convert
1850                          * the reference tree into the new DTL_MISSING map.
1851                          */
1852                         space_reftree_create(&reftree);
1853                         space_reftree_add_map(&reftree,
1854                             vd->vdev_dtl[DTL_MISSING], 1);
1855                         space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1856                         space_reftree_add_map(&reftree,
1857                             vd->vdev_dtl[DTL_SCRUB], 2);
1858                         space_reftree_generate_map(&reftree,
1859                             vd->vdev_dtl[DTL_MISSING], 1);
1860                         space_reftree_destroy(&reftree);
1861                 }
1862                 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1863                 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1864                     range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1865                 if (scrub_done)
1866                         range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1867                 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1868                 if (!vdev_readable(vd))
1869                         range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1870                 else
1871                         range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1872                             range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1873 
1874                 /*
1875                  * If the vdev was resilvering and no longer has any
1876                  * DTLs then reset its resilvering flag.
1877                  */
1878                 if (vd->vdev_resilver_txg != 0 &&
1879                     range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1880                     range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0)
1881                         vd->vdev_resilver_txg = 0;
1882 
1883                 mutex_exit(&vd->vdev_dtl_lock);
1884 
1885                 if (txg != 0)
1886                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1887                 return;
1888         }
1889 
1890         mutex_enter(&vd->vdev_dtl_lock);
1891         for (int t = 0; t < DTL_TYPES; t++) {
1892                 /* account for child's outage in parent's missing map */
1893                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1894                 if (t == DTL_SCRUB)
1895                         continue;                       /* leaf vdevs only */
1896                 if (t == DTL_PARTIAL)
1897                         minref = 1;                     /* i.e. non-zero */
1898                 else if (vd->vdev_nparity != 0)
1899                         minref = vd->vdev_nparity + 1;       /* RAID-Z */
1900                 else
1901                         minref = vd->vdev_children;  /* any kind of mirror */
1902                 space_reftree_create(&reftree);
1903                 for (int c = 0; c < vd->vdev_children; c++) {
1904                         vdev_t *cvd = vd->vdev_child[c];
1905                         mutex_enter(&cvd->vdev_dtl_lock);
1906                         space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1907                         mutex_exit(&cvd->vdev_dtl_lock);
1908                 }
1909                 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1910                 space_reftree_destroy(&reftree);
1911         }
1912         mutex_exit(&vd->vdev_dtl_lock);
1913 }
1914 
1915 int
1916 vdev_dtl_load(vdev_t *vd)
1917 {
1918         spa_t *spa = vd->vdev_spa;
1919         objset_t *mos = spa->spa_meta_objset;
1920         int error = 0;
1921 
1922         if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
1923                 ASSERT(!vd->vdev_ishole);
1924 
1925                 error = space_map_open(&vd->vdev_dtl_sm, mos,
1926                     vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
1927                 if (error)
1928                         return (error);
1929                 ASSERT(vd->vdev_dtl_sm != NULL);
1930 
1931                 mutex_enter(&vd->vdev_dtl_lock);
1932 
1933                 /*
1934                  * Now that we've opened the space_map we need to update
1935                  * the in-core DTL.
1936                  */
1937                 space_map_update(vd->vdev_dtl_sm);
1938 
1939                 error = space_map_load(vd->vdev_dtl_sm,
1940                     vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
1941                 mutex_exit(&vd->vdev_dtl_lock);
1942 
1943                 return (error);
1944         }
1945 
1946         for (int c = 0; c < vd->vdev_children; c++) {
1947                 error = vdev_dtl_load(vd->vdev_child[c]);
1948                 if (error != 0)
1949                         break;
1950         }
1951 
1952         return (error);
1953 }
1954 
1955 void
1956 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
1957 {
1958         spa_t *spa = vd->vdev_spa;
1959 
1960         VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
1961         VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
1962             zapobj, tx));
1963 }
1964 
1965 uint64_t
1966 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
1967 {
1968         spa_t *spa = vd->vdev_spa;
1969         uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
1970             DMU_OT_NONE, 0, tx);
1971 
1972         ASSERT(zap != 0);
1973         VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
1974             zap, tx));
1975 
1976         return (zap);
1977 }
1978 
1979 void
1980 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
1981 {
1982         if (vd->vdev_ops != &vdev_hole_ops &&
1983             vd->vdev_ops != &vdev_missing_ops &&
1984             vd->vdev_ops != &vdev_root_ops &&
1985             !vd->vdev_top->vdev_removing) {
1986                 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
1987                         vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
1988                 }
1989                 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
1990                         vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
1991                 }
1992         }
1993         for (uint64_t i = 0; i < vd->vdev_children; i++) {
1994                 vdev_construct_zaps(vd->vdev_child[i], tx);
1995         }
1996 }
1997 
1998 void
1999 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2000 {
2001         spa_t *spa = vd->vdev_spa;
2002         range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2003         objset_t *mos = spa->spa_meta_objset;
2004         range_tree_t *rtsync;
2005         kmutex_t rtlock;
2006         dmu_tx_t *tx;
2007         uint64_t object = space_map_object(vd->vdev_dtl_sm);
2008 
2009         ASSERT(!vd->vdev_ishole);
2010         ASSERT(vd->vdev_ops->vdev_op_leaf);
2011 
2012         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2013 
2014         if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2015                 mutex_enter(&vd->vdev_dtl_lock);
2016                 space_map_free(vd->vdev_dtl_sm, tx);
2017                 space_map_close(vd->vdev_dtl_sm);
2018                 vd->vdev_dtl_sm = NULL;
2019                 mutex_exit(&vd->vdev_dtl_lock);
2020 
2021                 /*
2022                  * We only destroy the leaf ZAP for detached leaves or for
2023                  * removed log devices. Removed data devices handle leaf ZAP
2024                  * cleanup later, once cancellation is no longer possible.
2025                  */
2026                 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2027                     vd->vdev_top->vdev_islog)) {
2028                         vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2029                         vd->vdev_leaf_zap = 0;
2030                 }
2031 
2032                 dmu_tx_commit(tx);
2033                 return;
2034         }
2035 
2036         if (vd->vdev_dtl_sm == NULL) {
2037                 uint64_t new_object;
2038 
2039                 new_object = space_map_alloc(mos, tx);
2040                 VERIFY3U(new_object, !=, 0);
2041 
2042                 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2043                     0, -1ULL, 0, &vd->vdev_dtl_lock));
2044                 ASSERT(vd->vdev_dtl_sm != NULL);
2045         }
2046 
2047         mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2048 
2049         rtsync = range_tree_create(NULL, NULL, &rtlock);
2050 
2051         mutex_enter(&rtlock);
2052 
2053         mutex_enter(&vd->vdev_dtl_lock);
2054         range_tree_walk(rt, range_tree_add, rtsync);
2055         mutex_exit(&vd->vdev_dtl_lock);
2056 
2057         space_map_truncate(vd->vdev_dtl_sm, tx);
2058         space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2059         range_tree_vacate(rtsync, NULL, NULL);
2060 
2061         range_tree_destroy(rtsync);
2062 
2063         mutex_exit(&rtlock);
2064         mutex_destroy(&rtlock);
2065 
2066         /*
2067          * If the object for the space map has changed then dirty
2068          * the top level so that we update the config.
2069          */
2070         if (object != space_map_object(vd->vdev_dtl_sm)) {
2071                 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2072                     "new object %llu", txg, spa_name(spa), object,
2073                     space_map_object(vd->vdev_dtl_sm));
2074                 vdev_config_dirty(vd->vdev_top);
2075         }
2076 
2077         dmu_tx_commit(tx);
2078 
2079         mutex_enter(&vd->vdev_dtl_lock);
2080         space_map_update(vd->vdev_dtl_sm);
2081         mutex_exit(&vd->vdev_dtl_lock);
2082 }
2083 
2084 /*
2085  * Determine whether the specified vdev can be offlined/detached/removed
2086  * without losing data.
2087  */
2088 boolean_t
2089 vdev_dtl_required(vdev_t *vd)
2090 {
2091         spa_t *spa = vd->vdev_spa;
2092         vdev_t *tvd = vd->vdev_top;
2093         uint8_t cant_read = vd->vdev_cant_read;
2094         boolean_t required;
2095 
2096         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2097 
2098         if (vd == spa->spa_root_vdev || vd == tvd)
2099                 return (B_TRUE);
2100 
2101         /*
2102          * Temporarily mark the device as unreadable, and then determine
2103          * whether this results in any DTL outages in the top-level vdev.
2104          * If not, we can safely offline/detach/remove the device.
2105          */
2106         vd->vdev_cant_read = B_TRUE;
2107         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2108         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2109         vd->vdev_cant_read = cant_read;
2110         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2111 
2112         if (!required && zio_injection_enabled)
2113                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2114 
2115         return (required);
2116 }
2117 
2118 /*
2119  * Determine if resilver is needed, and if so the txg range.
2120  */
2121 boolean_t
2122 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2123 {
2124         boolean_t needed = B_FALSE;
2125         uint64_t thismin = UINT64_MAX;
2126         uint64_t thismax = 0;
2127 
2128         if (vd->vdev_children == 0) {
2129                 mutex_enter(&vd->vdev_dtl_lock);
2130                 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2131                     vdev_writeable(vd)) {
2132 
2133                         thismin = vdev_dtl_min(vd);
2134                         thismax = vdev_dtl_max(vd);
2135                         needed = B_TRUE;
2136                 }
2137                 mutex_exit(&vd->vdev_dtl_lock);
2138         } else {
2139                 for (int c = 0; c < vd->vdev_children; c++) {
2140                         vdev_t *cvd = vd->vdev_child[c];
2141                         uint64_t cmin, cmax;
2142 
2143                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2144                                 thismin = MIN(thismin, cmin);
2145                                 thismax = MAX(thismax, cmax);
2146                                 needed = B_TRUE;
2147                         }
2148                 }
2149         }
2150 
2151         if (needed && minp) {
2152                 *minp = thismin;
2153                 *maxp = thismax;
2154         }
2155         return (needed);
2156 }
2157 
2158 void
2159 vdev_load(vdev_t *vd)
2160 {
2161         /*
2162          * Recursively load all children.
2163          */
2164         for (int c = 0; c < vd->vdev_children; c++)
2165                 vdev_load(vd->vdev_child[c]);
2166 
2167         /*
2168          * If this is a top-level vdev, initialize its metaslabs.
2169          */
2170         if (vd == vd->vdev_top && !vd->vdev_ishole &&
2171             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2172             vdev_metaslab_init(vd, 0) != 0))
2173                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2174                     VDEV_AUX_CORRUPT_DATA);
2175 
2176         /*
2177          * If this is a leaf vdev, load its DTL.
2178          */
2179         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2180                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2181                     VDEV_AUX_CORRUPT_DATA);
2182 }
2183 
2184 /*
2185  * The special vdev case is used for hot spares and l2cache devices.  Its
2186  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2187  * we make sure that we can open the underlying device, then try to read the
2188  * label, and make sure that the label is sane and that it hasn't been
2189  * repurposed to another pool.
2190  */
2191 int
2192 vdev_validate_aux(vdev_t *vd)
2193 {
2194         nvlist_t *label;
2195         uint64_t guid, version;
2196         uint64_t state;
2197 
2198         if (!vdev_readable(vd))
2199                 return (0);
2200 
2201         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2202                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2203                     VDEV_AUX_CORRUPT_DATA);
2204                 return (-1);
2205         }
2206 
2207         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2208             !SPA_VERSION_IS_SUPPORTED(version) ||
2209             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2210             guid != vd->vdev_guid ||
2211             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2212                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2213                     VDEV_AUX_CORRUPT_DATA);
2214                 nvlist_free(label);
2215                 return (-1);
2216         }
2217 
2218         /*
2219          * We don't actually check the pool state here.  If it's in fact in
2220          * use by another pool, we update this fact on the fly when requested.
2221          */
2222         nvlist_free(label);
2223         return (0);
2224 }
2225 
2226 void
2227 vdev_remove(vdev_t *vd, uint64_t txg)
2228 {
2229         spa_t *spa = vd->vdev_spa;
2230         objset_t *mos = spa->spa_meta_objset;
2231         dmu_tx_t *tx;
2232 
2233         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2234         ASSERT(vd == vd->vdev_top);
2235         ASSERT3U(txg, ==, spa_syncing_txg(spa));
2236 
2237         if (vd->vdev_ms != NULL) {
2238                 metaslab_group_t *mg = vd->vdev_mg;
2239 
2240                 metaslab_group_histogram_verify(mg);
2241                 metaslab_class_histogram_verify(mg->mg_class);
2242 
2243                 for (int m = 0; m < vd->vdev_ms_count; m++) {
2244                         metaslab_t *msp = vd->vdev_ms[m];
2245 
2246                         if (msp == NULL || msp->ms_sm == NULL)
2247                                 continue;
2248 
2249                         mutex_enter(&msp->ms_lock);
2250                         /*
2251                          * If the metaslab was not loaded when the vdev
2252                          * was removed then the histogram accounting may
2253                          * not be accurate. Update the histogram information
2254                          * here so that we ensure that the metaslab group
2255                          * and metaslab class are up-to-date.
2256                          */
2257                         metaslab_group_histogram_remove(mg, msp);
2258 
2259                         VERIFY0(space_map_allocated(msp->ms_sm));
2260                         space_map_free(msp->ms_sm, tx);
2261                         space_map_close(msp->ms_sm);
2262                         msp->ms_sm = NULL;
2263                         mutex_exit(&msp->ms_lock);
2264                 }
2265 
2266                 metaslab_group_histogram_verify(mg);
2267                 metaslab_class_histogram_verify(mg->mg_class);
2268                 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2269                         ASSERT0(mg->mg_histogram[i]);
2270 
2271         }
2272 
2273         if (vd->vdev_ms_array) {
2274                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2275                 vd->vdev_ms_array = 0;
2276         }
2277 
2278         if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2279                 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2280                 vd->vdev_top_zap = 0;
2281         }
2282         dmu_tx_commit(tx);
2283 }
2284 
2285 void
2286 vdev_sync_done(vdev_t *vd, uint64_t txg)
2287 {
2288         metaslab_t *msp;
2289         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2290 
2291         ASSERT(!vd->vdev_ishole);
2292 
2293         while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2294                 metaslab_sync_done(msp, txg);
2295 
2296         if (reassess)
2297                 metaslab_sync_reassess(vd->vdev_mg);
2298 }
2299 
2300 void
2301 vdev_sync(vdev_t *vd, uint64_t txg)
2302 {
2303         spa_t *spa = vd->vdev_spa;
2304         vdev_t *lvd;
2305         metaslab_t *msp;
2306         dmu_tx_t *tx;
2307 
2308         ASSERT(!vd->vdev_ishole);
2309 
2310         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2311                 ASSERT(vd == vd->vdev_top);
2312                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2313                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2314                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2315                 ASSERT(vd->vdev_ms_array != 0);
2316                 vdev_config_dirty(vd);
2317                 dmu_tx_commit(tx);
2318         }
2319 
2320         /*
2321          * Remove the metadata associated with this vdev once it's empty.
2322          */
2323         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2324                 vdev_remove(vd, txg);
2325 
2326         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2327                 metaslab_sync(msp, txg);
2328                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2329         }
2330 
2331         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2332                 vdev_dtl_sync(lvd, txg);
2333 
2334         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2335 }
2336 
2337 uint64_t
2338 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2339 {
2340         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2341 }
2342 
2343 /*
2344  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2345  * not be opened, and no I/O is attempted.
2346  */
2347 int
2348 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2349 {
2350         vdev_t *vd, *tvd;
2351 
2352         spa_vdev_state_enter(spa, SCL_NONE);
2353 
2354         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2355                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2356 
2357         if (!vd->vdev_ops->vdev_op_leaf)
2358                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2359 
2360         tvd = vd->vdev_top;
2361 
2362         /*
2363          * We don't directly use the aux state here, but if we do a
2364          * vdev_reopen(), we need this value to be present to remember why we
2365          * were faulted.
2366          */
2367         vd->vdev_label_aux = aux;
2368 
2369         /*
2370          * Faulted state takes precedence over degraded.
2371          */
2372         vd->vdev_delayed_close = B_FALSE;
2373         vd->vdev_faulted = 1ULL;
2374         vd->vdev_degraded = 0ULL;
2375         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2376 
2377         /*
2378          * If this device has the only valid copy of the data, then
2379          * back off and simply mark the vdev as degraded instead.
2380          */
2381         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2382                 vd->vdev_degraded = 1ULL;
2383                 vd->vdev_faulted = 0ULL;
2384 
2385                 /*
2386                  * If we reopen the device and it's not dead, only then do we
2387                  * mark it degraded.
2388                  */
2389                 vdev_reopen(tvd);
2390 
2391                 if (vdev_readable(vd))
2392                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2393         }
2394 
2395         return (spa_vdev_state_exit(spa, vd, 0));
2396 }
2397 
2398 /*
2399  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2400  * user that something is wrong.  The vdev continues to operate as normal as far
2401  * as I/O is concerned.
2402  */
2403 int
2404 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2405 {
2406         vdev_t *vd;
2407 
2408         spa_vdev_state_enter(spa, SCL_NONE);
2409 
2410         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2411                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2412 
2413         if (!vd->vdev_ops->vdev_op_leaf)
2414                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2415 
2416         /*
2417          * If the vdev is already faulted, then don't do anything.
2418          */
2419         if (vd->vdev_faulted || vd->vdev_degraded)
2420                 return (spa_vdev_state_exit(spa, NULL, 0));
2421 
2422         vd->vdev_degraded = 1ULL;
2423         if (!vdev_is_dead(vd))
2424                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2425                     aux);
2426 
2427         return (spa_vdev_state_exit(spa, vd, 0));
2428 }
2429 
2430 /*
2431  * Online the given vdev.
2432  *
2433  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2434  * spare device should be detached when the device finishes resilvering.
2435  * Second, the online should be treated like a 'test' online case, so no FMA
2436  * events are generated if the device fails to open.
2437  */
2438 int
2439 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2440 {
2441         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2442         boolean_t postevent = B_FALSE;
2443 
2444         spa_vdev_state_enter(spa, SCL_NONE);
2445 
2446         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2447                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2448 
2449         if (!vd->vdev_ops->vdev_op_leaf)
2450                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2451 
2452         postevent =
2453             (vd->vdev_offline == B_TRUE || vd->vdev_tmpoffline == B_TRUE) ?
2454             B_TRUE : B_FALSE;
2455 
2456         tvd = vd->vdev_top;
2457         vd->vdev_offline = B_FALSE;
2458         vd->vdev_tmpoffline = B_FALSE;
2459         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2460         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2461 
2462         /* XXX - L2ARC 1.0 does not support expansion */
2463         if (!vd->vdev_aux) {
2464                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2465                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2466         }
2467 
2468         vdev_reopen(tvd);
2469         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2470 
2471         if (!vd->vdev_aux) {
2472                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2473                         pvd->vdev_expanding = B_FALSE;
2474         }
2475 
2476         if (newstate)
2477                 *newstate = vd->vdev_state;
2478         if ((flags & ZFS_ONLINE_UNSPARE) &&
2479             !vdev_is_dead(vd) && vd->vdev_parent &&
2480             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2481             vd->vdev_parent->vdev_child[0] == vd)
2482                 vd->vdev_unspare = B_TRUE;
2483 
2484         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2485 
2486                 /* XXX - L2ARC 1.0 does not support expansion */
2487                 if (vd->vdev_aux)
2488                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2489                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2490         }
2491 
2492         if (postevent)
2493                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE);
2494 
2495         return (spa_vdev_state_exit(spa, vd, 0));
2496 }
2497 
2498 static int
2499 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2500 {
2501         vdev_t *vd, *tvd;
2502         int error = 0;
2503         uint64_t generation;
2504         metaslab_group_t *mg;
2505 
2506 top:
2507         spa_vdev_state_enter(spa, SCL_ALLOC);
2508 
2509         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2510                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2511 
2512         if (!vd->vdev_ops->vdev_op_leaf)
2513                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2514 
2515         tvd = vd->vdev_top;
2516         mg = tvd->vdev_mg;
2517         generation = spa->spa_config_generation + 1;
2518 
2519         /*
2520          * If the device isn't already offline, try to offline it.
2521          */
2522         if (!vd->vdev_offline) {
2523                 /*
2524                  * If this device has the only valid copy of some data,
2525                  * don't allow it to be offlined. Log devices are always
2526                  * expendable.
2527                  */
2528                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2529                     vdev_dtl_required(vd))
2530                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2531 
2532                 /*
2533                  * If the top-level is a slog and it has had allocations
2534                  * then proceed.  We check that the vdev's metaslab group
2535                  * is not NULL since it's possible that we may have just
2536                  * added this vdev but not yet initialized its metaslabs.
2537                  */
2538                 if (tvd->vdev_islog && mg != NULL) {
2539                         /*
2540                          * Prevent any future allocations.
2541                          */
2542                         metaslab_group_passivate(mg);
2543                         (void) spa_vdev_state_exit(spa, vd, 0);
2544 
2545                         error = spa_offline_log(spa);
2546 
2547                         spa_vdev_state_enter(spa, SCL_ALLOC);
2548 
2549                         /*
2550                          * Check to see if the config has changed.
2551                          */
2552                         if (error || generation != spa->spa_config_generation) {
2553                                 metaslab_group_activate(mg);
2554                                 if (error)
2555                                         return (spa_vdev_state_exit(spa,
2556                                             vd, error));
2557                                 (void) spa_vdev_state_exit(spa, vd, 0);
2558                                 goto top;
2559                         }
2560                         ASSERT0(tvd->vdev_stat.vs_alloc);
2561                 }
2562 
2563                 /*
2564                  * Offline this device and reopen its top-level vdev.
2565                  * If the top-level vdev is a log device then just offline
2566                  * it. Otherwise, if this action results in the top-level
2567                  * vdev becoming unusable, undo it and fail the request.
2568                  */
2569                 vd->vdev_offline = B_TRUE;
2570                 vdev_reopen(tvd);
2571 
2572                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2573                     vdev_is_dead(tvd)) {
2574                         vd->vdev_offline = B_FALSE;
2575                         vdev_reopen(tvd);
2576                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2577                 }
2578 
2579                 /*
2580                  * Add the device back into the metaslab rotor so that
2581                  * once we online the device it's open for business.
2582                  */
2583                 if (tvd->vdev_islog && mg != NULL)
2584                         metaslab_group_activate(mg);
2585         }
2586 
2587         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2588 
2589         return (spa_vdev_state_exit(spa, vd, 0));
2590 }
2591 
2592 int
2593 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2594 {
2595         int error;
2596 
2597         mutex_enter(&spa->spa_vdev_top_lock);
2598         error = vdev_offline_locked(spa, guid, flags);
2599         mutex_exit(&spa->spa_vdev_top_lock);
2600 
2601         return (error);
2602 }
2603 
2604 /*
2605  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2606  * vdev_offline(), we assume the spa config is locked.  We also clear all
2607  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2608  */
2609 void
2610 vdev_clear(spa_t *spa, vdev_t *vd)
2611 {
2612         vdev_t *rvd = spa->spa_root_vdev;
2613 
2614         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2615 
2616         if (vd == NULL)
2617                 vd = rvd;
2618 
2619         vd->vdev_stat.vs_read_errors = 0;
2620         vd->vdev_stat.vs_write_errors = 0;
2621         vd->vdev_stat.vs_checksum_errors = 0;
2622 
2623         for (int c = 0; c < vd->vdev_children; c++)
2624                 vdev_clear(spa, vd->vdev_child[c]);
2625 
2626         /*
2627          * If we're in the FAULTED state or have experienced failed I/O, then
2628          * clear the persistent state and attempt to reopen the device.  We
2629          * also mark the vdev config dirty, so that the new faulted state is
2630          * written out to disk.
2631          */
2632         if (vd->vdev_faulted || vd->vdev_degraded ||
2633             !vdev_readable(vd) || !vdev_writeable(vd)) {
2634 
2635                 /*
2636                  * When reopening in reponse to a clear event, it may be due to
2637                  * a fmadm repair request.  In this case, if the device is
2638                  * still broken, we want to still post the ereport again.
2639                  */
2640                 vd->vdev_forcefault = B_TRUE;
2641 
2642                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2643                 vd->vdev_cant_read = B_FALSE;
2644                 vd->vdev_cant_write = B_FALSE;
2645 
2646                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2647 
2648                 vd->vdev_forcefault = B_FALSE;
2649 
2650                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2651                         vdev_state_dirty(vd->vdev_top);
2652 
2653                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2654                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2655 
2656                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2657         }
2658 
2659         /*
2660          * When clearing a FMA-diagnosed fault, we always want to
2661          * unspare the device, as we assume that the original spare was
2662          * done in response to the FMA fault.
2663          */
2664         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2665             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2666             vd->vdev_parent->vdev_child[0] == vd)
2667                 vd->vdev_unspare = B_TRUE;
2668 }
2669 
2670 boolean_t
2671 vdev_is_dead(vdev_t *vd)
2672 {
2673         /*
2674          * Holes and missing devices are always considered "dead".
2675          * This simplifies the code since we don't have to check for
2676          * these types of devices in the various code paths.
2677          * Instead we rely on the fact that we skip over dead devices
2678          * before issuing I/O to them.
2679          */
2680         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2681             vd->vdev_ops == &vdev_missing_ops);
2682 }
2683 
2684 boolean_t
2685 vdev_readable(vdev_t *vd)
2686 {
2687         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2688 }
2689 
2690 boolean_t
2691 vdev_writeable(vdev_t *vd)
2692 {
2693         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2694 }
2695 
2696 boolean_t
2697 vdev_allocatable(vdev_t *vd)
2698 {
2699         uint64_t state = vd->vdev_state;
2700 
2701         /*
2702          * We currently allow allocations from vdevs which may be in the
2703          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2704          * fails to reopen then we'll catch it later when we're holding
2705          * the proper locks.  Note that we have to get the vdev state
2706          * in a local variable because although it changes atomically,
2707          * we're asking two separate questions about it.
2708          */
2709         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2710             !vd->vdev_cant_write && !vd->vdev_ishole &&
2711             vd->vdev_mg->mg_initialized);
2712 }
2713 
2714 boolean_t
2715 vdev_accessible(vdev_t *vd, zio_t *zio)
2716 {
2717         ASSERT(zio->io_vd == vd);
2718 
2719         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2720                 return (B_FALSE);
2721 
2722         if (zio->io_type == ZIO_TYPE_READ)
2723                 return (!vd->vdev_cant_read);
2724 
2725         if (zio->io_type == ZIO_TYPE_WRITE)
2726                 return (!vd->vdev_cant_write);
2727 
2728         return (B_TRUE);
2729 }
2730 
2731 /*
2732  * Get statistics for the given vdev.
2733  */
2734 void
2735 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2736 {
2737         spa_t *spa = vd->vdev_spa;
2738         vdev_t *rvd = spa->spa_root_vdev;
2739         vdev_t *tvd = vd->vdev_top;
2740 
2741         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2742 
2743         mutex_enter(&vd->vdev_stat_lock);
2744         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2745         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2746         vs->vs_state = vd->vdev_state;
2747         vs->vs_rsize = vdev_get_min_asize(vd);
2748         if (vd->vdev_ops->vdev_op_leaf)
2749                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2750         /*
2751          * Report expandable space on top-level, non-auxillary devices only.
2752          * The expandable space is reported in terms of metaslab sized units
2753          * since that determines how much space the pool can expand.
2754          */
2755         if (vd->vdev_aux == NULL && tvd != NULL) {
2756                 vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize,
2757                     1ULL << tvd->vdev_ms_shift);
2758         }
2759         if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2760                 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2761         }
2762 
2763         /*
2764          * If we're getting stats on the root vdev, aggregate the I/O counts
2765          * over all top-level vdevs (i.e. the direct children of the root).
2766          */
2767         if (vd == rvd) {
2768                 for (int c = 0; c < rvd->vdev_children; c++) {
2769                         vdev_t *cvd = rvd->vdev_child[c];
2770                         vdev_stat_t *cvs = &cvd->vdev_stat;
2771 
2772                         for (int t = 0; t < ZIO_TYPES; t++) {
2773                                 vs->vs_ops[t] += cvs->vs_ops[t];
2774                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2775                         }
2776                         cvs->vs_scan_removing = cvd->vdev_removing;
2777                 }
2778         }
2779         mutex_exit(&vd->vdev_stat_lock);
2780 }
2781 
2782 void
2783 vdev_clear_stats(vdev_t *vd)
2784 {
2785         mutex_enter(&vd->vdev_stat_lock);
2786         vd->vdev_stat.vs_space = 0;
2787         vd->vdev_stat.vs_dspace = 0;
2788         vd->vdev_stat.vs_alloc = 0;
2789         mutex_exit(&vd->vdev_stat_lock);
2790 }
2791 
2792 void
2793 vdev_scan_stat_init(vdev_t *vd)
2794 {
2795         vdev_stat_t *vs = &vd->vdev_stat;
2796 
2797         for (int c = 0; c < vd->vdev_children; c++)
2798                 vdev_scan_stat_init(vd->vdev_child[c]);
2799 
2800         mutex_enter(&vd->vdev_stat_lock);
2801         vs->vs_scan_processed = 0;
2802         mutex_exit(&vd->vdev_stat_lock);
2803 }
2804 
2805 void
2806 vdev_stat_update(zio_t *zio, uint64_t psize)
2807 {
2808         spa_t *spa = zio->io_spa;
2809         vdev_t *rvd = spa->spa_root_vdev;
2810         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2811         vdev_t *pvd;
2812         uint64_t txg = zio->io_txg;
2813         vdev_stat_t *vs = &vd->vdev_stat;
2814         zio_type_t type = zio->io_type;
2815         int flags = zio->io_flags;
2816 
2817         /*
2818          * If this i/o is a gang leader, it didn't do any actual work.
2819          */
2820         if (zio->io_gang_tree)
2821                 return;
2822 
2823         if (zio->io_error == 0) {
2824                 /*
2825                  * If this is a root i/o, don't count it -- we've already
2826                  * counted the top-level vdevs, and vdev_get_stats() will
2827                  * aggregate them when asked.  This reduces contention on
2828                  * the root vdev_stat_lock and implicitly handles blocks
2829                  * that compress away to holes, for which there is no i/o.
2830                  * (Holes never create vdev children, so all the counters
2831                  * remain zero, which is what we want.)
2832                  *
2833                  * Note: this only applies to successful i/o (io_error == 0)
2834                  * because unlike i/o counts, errors are not additive.
2835                  * When reading a ditto block, for example, failure of
2836                  * one top-level vdev does not imply a root-level error.
2837                  */
2838                 if (vd == rvd)
2839                         return;
2840 
2841                 ASSERT(vd == zio->io_vd);
2842 
2843                 if (flags & ZIO_FLAG_IO_BYPASS)
2844                         return;
2845 
2846                 mutex_enter(&vd->vdev_stat_lock);
2847 
2848                 if (flags & ZIO_FLAG_IO_REPAIR) {
2849                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2850                                 dsl_scan_phys_t *scn_phys =
2851                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
2852                                 uint64_t *processed = &scn_phys->scn_processed;
2853 
2854                                 /* XXX cleanup? */
2855                                 if (vd->vdev_ops->vdev_op_leaf)
2856                                         atomic_add_64(processed, psize);
2857                                 vs->vs_scan_processed += psize;
2858                         }
2859 
2860                         if (flags & ZIO_FLAG_SELF_HEAL)
2861                                 vs->vs_self_healed += psize;
2862                 }
2863 
2864                 vs->vs_ops[type]++;
2865                 vs->vs_bytes[type] += psize;
2866 
2867                 mutex_exit(&vd->vdev_stat_lock);
2868                 return;
2869         }
2870 
2871         if (flags & ZIO_FLAG_SPECULATIVE)
2872                 return;
2873 
2874         /*
2875          * If this is an I/O error that is going to be retried, then ignore the
2876          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2877          * hard errors, when in reality they can happen for any number of
2878          * innocuous reasons (bus resets, MPxIO link failure, etc).
2879          */
2880         if (zio->io_error == EIO &&
2881             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2882                 return;
2883 
2884         /*
2885          * Intent logs writes won't propagate their error to the root
2886          * I/O so don't mark these types of failures as pool-level
2887          * errors.
2888          */
2889         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2890                 return;
2891 
2892         mutex_enter(&vd->vdev_stat_lock);
2893         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2894                 if (zio->io_error == ECKSUM)
2895                         vs->vs_checksum_errors++;
2896                 else
2897                         vs->vs_read_errors++;
2898         }
2899         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2900                 vs->vs_write_errors++;
2901         mutex_exit(&vd->vdev_stat_lock);
2902 
2903         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2904             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2905             (flags & ZIO_FLAG_SCAN_THREAD) ||
2906             spa->spa_claiming)) {
2907                 /*
2908                  * This is either a normal write (not a repair), or it's
2909                  * a repair induced by the scrub thread, or it's a repair
2910                  * made by zil_claim() during spa_load() in the first txg.
2911                  * In the normal case, we commit the DTL change in the same
2912                  * txg as the block was born.  In the scrub-induced repair
2913                  * case, we know that scrubs run in first-pass syncing context,
2914                  * so we commit the DTL change in spa_syncing_txg(spa).
2915                  * In the zil_claim() case, we commit in spa_first_txg(spa).
2916                  *
2917                  * We currently do not make DTL entries for failed spontaneous
2918                  * self-healing writes triggered by normal (non-scrubbing)
2919                  * reads, because we have no transactional context in which to
2920                  * do so -- and it's not clear that it'd be desirable anyway.
2921                  */
2922                 if (vd->vdev_ops->vdev_op_leaf) {
2923                         uint64_t commit_txg = txg;
2924                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2925                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2926                                 ASSERT(spa_sync_pass(spa) == 1);
2927                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2928                                 commit_txg = spa_syncing_txg(spa);
2929                         } else if (spa->spa_claiming) {
2930                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2931                                 commit_txg = spa_first_txg(spa);
2932                         }
2933                         ASSERT(commit_txg >= spa_syncing_txg(spa));
2934                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2935                                 return;
2936                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2937                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2938                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2939                 }
2940                 if (vd != rvd)
2941                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2942         }
2943 }
2944 
2945 /*
2946  * Update the in-core space usage stats for this vdev, its metaslab class,
2947  * and the root vdev.
2948  */
2949 void
2950 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2951     int64_t space_delta)
2952 {
2953         int64_t dspace_delta = space_delta;
2954         spa_t *spa = vd->vdev_spa;
2955         vdev_t *rvd = spa->spa_root_vdev;
2956         metaslab_group_t *mg = vd->vdev_mg;
2957         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2958 
2959         ASSERT(vd == vd->vdev_top);
2960 
2961         /*
2962          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2963          * factor.  We must calculate this here and not at the root vdev
2964          * because the root vdev's psize-to-asize is simply the max of its
2965          * childrens', thus not accurate enough for us.
2966          */
2967         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2968         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2969         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2970             vd->vdev_deflate_ratio;
2971 
2972         mutex_enter(&vd->vdev_stat_lock);
2973         vd->vdev_stat.vs_alloc += alloc_delta;
2974         vd->vdev_stat.vs_space += space_delta;
2975         vd->vdev_stat.vs_dspace += dspace_delta;
2976         mutex_exit(&vd->vdev_stat_lock);
2977 
2978         if (mc == spa_normal_class(spa)) {
2979                 mutex_enter(&rvd->vdev_stat_lock);
2980                 rvd->vdev_stat.vs_alloc += alloc_delta;
2981                 rvd->vdev_stat.vs_space += space_delta;
2982                 rvd->vdev_stat.vs_dspace += dspace_delta;
2983                 mutex_exit(&rvd->vdev_stat_lock);
2984         }
2985 
2986         if (mc != NULL) {
2987                 ASSERT(rvd == vd->vdev_parent);
2988                 ASSERT(vd->vdev_ms_count != 0);
2989 
2990                 metaslab_class_space_update(mc,
2991                     alloc_delta, defer_delta, space_delta, dspace_delta);
2992         }
2993 }
2994 
2995 /*
2996  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2997  * so that it will be written out next time the vdev configuration is synced.
2998  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2999  */
3000 void
3001 vdev_config_dirty(vdev_t *vd)
3002 {
3003         spa_t *spa = vd->vdev_spa;
3004         vdev_t *rvd = spa->spa_root_vdev;
3005         int c;
3006 
3007         ASSERT(spa_writeable(spa));
3008 
3009         /*
3010          * If this is an aux vdev (as with l2cache and spare devices), then we
3011          * update the vdev config manually and set the sync flag.
3012          */
3013         if (vd->vdev_aux != NULL) {
3014                 spa_aux_vdev_t *sav = vd->vdev_aux;
3015                 nvlist_t **aux;
3016                 uint_t naux;
3017 
3018                 for (c = 0; c < sav->sav_count; c++) {
3019                         if (sav->sav_vdevs[c] == vd)
3020                                 break;
3021                 }
3022 
3023                 if (c == sav->sav_count) {
3024                         /*
3025                          * We're being removed.  There's nothing more to do.
3026                          */
3027                         ASSERT(sav->sav_sync == B_TRUE);
3028                         return;
3029                 }
3030 
3031                 sav->sav_sync = B_TRUE;
3032 
3033                 if (nvlist_lookup_nvlist_array(sav->sav_config,
3034                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3035                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3036                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3037                 }
3038 
3039                 ASSERT(c < naux);
3040 
3041                 /*
3042                  * Setting the nvlist in the middle if the array is a little
3043                  * sketchy, but it will work.
3044                  */
3045                 nvlist_free(aux[c]);
3046                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3047 
3048                 return;
3049         }
3050 
3051         /*
3052          * The dirty list is protected by the SCL_CONFIG lock.  The caller
3053          * must either hold SCL_CONFIG as writer, or must be the sync thread
3054          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3055          * so this is sufficient to ensure mutual exclusion.
3056          */
3057         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3058             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3059             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3060 
3061         if (vd == rvd) {
3062                 for (c = 0; c < rvd->vdev_children; c++)
3063                         vdev_config_dirty(rvd->vdev_child[c]);
3064         } else {
3065                 ASSERT(vd == vd->vdev_top);
3066 
3067                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3068                     !vd->vdev_ishole)
3069                         list_insert_head(&spa->spa_config_dirty_list, vd);
3070         }
3071 }
3072 
3073 void
3074 vdev_config_clean(vdev_t *vd)
3075 {
3076         spa_t *spa = vd->vdev_spa;
3077 
3078         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3079             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3080             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3081 
3082         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3083         list_remove(&spa->spa_config_dirty_list, vd);
3084 }
3085 
3086 /*
3087  * Mark a top-level vdev's state as dirty, so that the next pass of
3088  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3089  * the state changes from larger config changes because they require
3090  * much less locking, and are often needed for administrative actions.
3091  */
3092 void
3093 vdev_state_dirty(vdev_t *vd)
3094 {
3095         spa_t *spa = vd->vdev_spa;
3096 
3097         ASSERT(spa_writeable(spa));
3098         ASSERT(vd == vd->vdev_top);
3099 
3100         /*
3101          * The state list is protected by the SCL_STATE lock.  The caller
3102          * must either hold SCL_STATE as writer, or must be the sync thread
3103          * (which holds SCL_STATE as reader).  There's only one sync thread,
3104          * so this is sufficient to ensure mutual exclusion.
3105          */
3106         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3107             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3108             spa_config_held(spa, SCL_STATE, RW_READER)));
3109 
3110         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3111                 list_insert_head(&spa->spa_state_dirty_list, vd);
3112 }
3113 
3114 void
3115 vdev_state_clean(vdev_t *vd)
3116 {
3117         spa_t *spa = vd->vdev_spa;
3118 
3119         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3120             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3121             spa_config_held(spa, SCL_STATE, RW_READER)));
3122 
3123         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3124         list_remove(&spa->spa_state_dirty_list, vd);
3125 }
3126 
3127 /*
3128  * Propagate vdev state up from children to parent.
3129  */
3130 void
3131 vdev_propagate_state(vdev_t *vd)
3132 {
3133         spa_t *spa = vd->vdev_spa;
3134         vdev_t *rvd = spa->spa_root_vdev;
3135         int degraded = 0, faulted = 0;
3136         int corrupted = 0;
3137         vdev_t *child;
3138 
3139         if (vd->vdev_children > 0) {
3140                 for (int c = 0; c < vd->vdev_children; c++) {
3141                         child = vd->vdev_child[c];
3142 
3143                         /*
3144                          * Don't factor holes into the decision.
3145                          */
3146                         if (child->vdev_ishole)
3147                                 continue;
3148 
3149                         if (!vdev_readable(child) ||
3150                             (!vdev_writeable(child) && spa_writeable(spa))) {
3151                                 /*
3152                                  * Root special: if there is a top-level log
3153                                  * device, treat the root vdev as if it were
3154                                  * degraded.
3155                                  */
3156                                 if (child->vdev_islog && vd == rvd)
3157                                         degraded++;
3158                                 else
3159                                         faulted++;
3160                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3161                                 degraded++;
3162                         }
3163 
3164                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3165                                 corrupted++;
3166                 }
3167 
3168                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3169 
3170                 /*
3171                  * Root special: if there is a top-level vdev that cannot be
3172                  * opened due to corrupted metadata, then propagate the root
3173                  * vdev's aux state as 'corrupt' rather than 'insufficient
3174                  * replicas'.
3175                  */
3176                 if (corrupted && vd == rvd &&
3177                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3178                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3179                             VDEV_AUX_CORRUPT_DATA);
3180         }
3181 
3182         if (vd->vdev_parent)
3183                 vdev_propagate_state(vd->vdev_parent);
3184 }
3185 
3186 /*
3187  * Set a vdev's state.  If this is during an open, we don't update the parent
3188  * state, because we're in the process of opening children depth-first.
3189  * Otherwise, we propagate the change to the parent.
3190  *
3191  * If this routine places a device in a faulted state, an appropriate ereport is
3192  * generated.
3193  */
3194 void
3195 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3196 {
3197         uint64_t save_state;
3198         spa_t *spa = vd->vdev_spa;
3199 
3200         if (state == vd->vdev_state) {
3201                 vd->vdev_stat.vs_aux = aux;
3202                 return;
3203         }
3204 
3205         save_state = vd->vdev_state;
3206 
3207         vd->vdev_state = state;
3208         vd->vdev_stat.vs_aux = aux;
3209 
3210         /*
3211          * If we are setting the vdev state to anything but an open state, then
3212          * always close the underlying device unless the device has requested
3213          * a delayed close (i.e. we're about to remove or fault the device).
3214          * Otherwise, we keep accessible but invalid devices open forever.
3215          * We don't call vdev_close() itself, because that implies some extra
3216          * checks (offline, etc) that we don't want here.  This is limited to
3217          * leaf devices, because otherwise closing the device will affect other
3218          * children.
3219          */
3220         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3221             vd->vdev_ops->vdev_op_leaf)
3222                 vd->vdev_ops->vdev_op_close(vd);
3223 
3224         /*
3225          * If we have brought this vdev back into service, we need
3226          * to notify fmd so that it can gracefully repair any outstanding
3227          * cases due to a missing device.  We do this in all cases, even those
3228          * that probably don't correlate to a repaired fault.  This is sure to
3229          * catch all cases, and we let the zfs-retire agent sort it out.  If
3230          * this is a transient state it's OK, as the retire agent will
3231          * double-check the state of the vdev before repairing it.
3232          */
3233         if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3234             vd->vdev_prevstate != state)
3235                 zfs_post_state_change(spa, vd);
3236 
3237         if (vd->vdev_removed &&
3238             state == VDEV_STATE_CANT_OPEN &&
3239             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3240                 /*
3241                  * If the previous state is set to VDEV_STATE_REMOVED, then this
3242                  * device was previously marked removed and someone attempted to
3243                  * reopen it.  If this failed due to a nonexistent device, then
3244                  * keep the device in the REMOVED state.  We also let this be if
3245                  * it is one of our special test online cases, which is only
3246                  * attempting to online the device and shouldn't generate an FMA
3247                  * fault.
3248                  */
3249                 vd->vdev_state = VDEV_STATE_REMOVED;
3250                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3251         } else if (state == VDEV_STATE_REMOVED) {
3252                 vd->vdev_removed = B_TRUE;
3253         } else if (state == VDEV_STATE_CANT_OPEN) {
3254                 /*
3255                  * If we fail to open a vdev during an import or recovery, we
3256                  * mark it as "not available", which signifies that it was
3257                  * never there to begin with.  Failure to open such a device
3258                  * is not considered an error.
3259                  */
3260                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3261                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3262                     vd->vdev_ops->vdev_op_leaf)
3263                         vd->vdev_not_present = 1;
3264 
3265                 /*
3266                  * Post the appropriate ereport.  If the 'prevstate' field is
3267                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
3268                  * that this is part of a vdev_reopen().  In this case, we don't
3269                  * want to post the ereport if the device was already in the
3270                  * CANT_OPEN state beforehand.
3271                  *
3272                  * If the 'checkremove' flag is set, then this is an attempt to
3273                  * online the device in response to an insertion event.  If we
3274                  * hit this case, then we have detected an insertion event for a
3275                  * faulted or offline device that wasn't in the removed state.
3276                  * In this scenario, we don't post an ereport because we are
3277                  * about to replace the device, or attempt an online with
3278                  * vdev_forcefault, which will generate the fault for us.
3279                  */
3280                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3281                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3282                     vd != spa->spa_root_vdev) {
3283                         const char *class;
3284 
3285                         switch (aux) {
3286                         case VDEV_AUX_OPEN_FAILED:
3287                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3288                                 break;
3289                         case VDEV_AUX_CORRUPT_DATA:
3290                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3291                                 break;
3292                         case VDEV_AUX_NO_REPLICAS:
3293                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3294                                 break;
3295                         case VDEV_AUX_BAD_GUID_SUM:
3296                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3297                                 break;
3298                         case VDEV_AUX_TOO_SMALL:
3299                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3300                                 break;
3301                         case VDEV_AUX_BAD_LABEL:
3302                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3303                                 break;
3304                         default:
3305                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3306                         }
3307 
3308                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3309                 }
3310 
3311                 /* Erase any notion of persistent removed state */
3312                 vd->vdev_removed = B_FALSE;
3313         } else {
3314                 vd->vdev_removed = B_FALSE;
3315         }
3316 
3317         if (!isopen && vd->vdev_parent)
3318                 vdev_propagate_state(vd->vdev_parent);
3319 }
3320 
3321 /*
3322  * Check the vdev configuration to ensure that it's capable of supporting
3323  * a root pool. We do not support partial configuration.
3324  * In addition, only a single top-level vdev is allowed.
3325  */
3326 boolean_t
3327 vdev_is_bootable(vdev_t *vd)
3328 {
3329         if (!vd->vdev_ops->vdev_op_leaf) {
3330                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3331 
3332                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3333                     vd->vdev_children > 1) {
3334                         return (B_FALSE);
3335                 } else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3336                         return (B_FALSE);
3337                 }
3338         }
3339 
3340         for (int c = 0; c < vd->vdev_children; c++) {
3341                 if (!vdev_is_bootable(vd->vdev_child[c]))
3342                         return (B_FALSE);
3343         }
3344         return (B_TRUE);
3345 }
3346 
3347 /*
3348  * Load the state from the original vdev tree (ovd) which
3349  * we've retrieved from the MOS config object. If the original
3350  * vdev was offline or faulted then we transfer that state to the
3351  * device in the current vdev tree (nvd).
3352  */
3353 void
3354 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3355 {
3356         spa_t *spa = nvd->vdev_spa;
3357 
3358         ASSERT(nvd->vdev_top->vdev_islog);
3359         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3360         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3361 
3362         for (int c = 0; c < nvd->vdev_children; c++)
3363                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3364 
3365         if (nvd->vdev_ops->vdev_op_leaf) {
3366                 /*
3367                  * Restore the persistent vdev state
3368                  */
3369                 nvd->vdev_offline = ovd->vdev_offline;
3370                 nvd->vdev_faulted = ovd->vdev_faulted;
3371                 nvd->vdev_degraded = ovd->vdev_degraded;
3372                 nvd->vdev_removed = ovd->vdev_removed;
3373         }
3374 }
3375 
3376 /*
3377  * Determine if a log device has valid content.  If the vdev was
3378  * removed or faulted in the MOS config then we know that
3379  * the content on the log device has already been written to the pool.
3380  */
3381 boolean_t
3382 vdev_log_state_valid(vdev_t *vd)
3383 {
3384         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3385             !vd->vdev_removed)
3386                 return (B_TRUE);
3387 
3388         for (int c = 0; c < vd->vdev_children; c++)
3389                 if (vdev_log_state_valid(vd->vdev_child[c]))
3390                         return (B_TRUE);
3391 
3392         return (B_FALSE);
3393 }
3394 
3395 /*
3396  * Expand a vdev if possible.
3397  */
3398 void
3399 vdev_expand(vdev_t *vd, uint64_t txg)
3400 {
3401         ASSERT(vd->vdev_top == vd);
3402         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3403 
3404         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3405                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3406                 vdev_config_dirty(vd);
3407         }
3408 }
3409 
3410 /*
3411  * Split a vdev.
3412  */
3413 void
3414 vdev_split(vdev_t *vd)
3415 {
3416         vdev_t *cvd, *pvd = vd->vdev_parent;
3417 
3418         vdev_remove_child(pvd, vd);
3419         vdev_compact_children(pvd);
3420 
3421         cvd = pvd->vdev_child[0];
3422         if (pvd->vdev_children == 1) {
3423                 vdev_remove_parent(cvd);
3424                 cvd->vdev_splitting = B_TRUE;
3425         }
3426         vdev_propagate_state(cvd);
3427 }
3428 
3429 void
3430 vdev_deadman(vdev_t *vd)
3431 {
3432         for (int c = 0; c < vd->vdev_children; c++) {
3433                 vdev_t *cvd = vd->vdev_child[c];
3434 
3435                 vdev_deadman(cvd);
3436         }
3437 
3438         if (vd->vdev_ops->vdev_op_leaf) {
3439                 vdev_queue_t *vq = &vd->vdev_queue;
3440 
3441                 mutex_enter(&vq->vq_lock);
3442                 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3443                         spa_t *spa = vd->vdev_spa;
3444                         zio_t *fio;
3445                         uint64_t delta;
3446 
3447                         /*
3448                          * Look at the head of all the pending queues,
3449                          * if any I/O has been outstanding for longer than
3450                          * the spa_deadman_synctime we panic the system.
3451                          */
3452                         fio = avl_first(&vq->vq_active_tree);
3453                         delta = gethrtime() - fio->io_timestamp;
3454                         if (delta > spa_deadman_synctime(spa)) {
3455                                 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3456                                     "delta %lluns, last io %lluns",
3457                                     fio->io_timestamp, delta,
3458                                     vq->vq_io_complete_ts);
3459                                 fm_panic("I/O to pool '%s' appears to be "
3460                                     "hung.", spa_name(spa));
3461                         }
3462                 }
3463                 mutex_exit(&vq->vq_lock);
3464         }
3465 }