1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 */ 27 28 #include <sys/zfs_context.h> 29 #include <sys/dmu.h> 30 #include <sys/dmu_tx.h> 31 #include <sys/space_map.h> 32 #include <sys/metaslab_impl.h> 33 #include <sys/vdev_impl.h> 34 #include <sys/zio.h> 35 #include <sys/spa_impl.h> 36 #include <sys/zfeature.h> 37 38 #define GANG_ALLOCATION(flags) \ 39 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER)) 40 41 uint64_t metaslab_aliquot = 512ULL << 10; 42 uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1; /* force gang blocks */ 43 44 /* 45 * The in-core space map representation is more compact than its on-disk form. 46 * The zfs_condense_pct determines how much more compact the in-core 47 * space map representation must be before we compact it on-disk. 48 * Values should be greater than or equal to 100. 49 */ 50 int zfs_condense_pct = 200; 51 52 /* 53 * Condensing a metaslab is not guaranteed to actually reduce the amount of 54 * space used on disk. In particular, a space map uses data in increments of 55 * MAX(1 << ashift, space_map_blksize), so a metaslab might use the 56 * same number of blocks after condensing. Since the goal of condensing is to 57 * reduce the number of IOPs required to read the space map, we only want to 58 * condense when we can be sure we will reduce the number of blocks used by the 59 * space map. Unfortunately, we cannot precisely compute whether or not this is 60 * the case in metaslab_should_condense since we are holding ms_lock. Instead, 61 * we apply the following heuristic: do not condense a spacemap unless the 62 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold 63 * blocks. 64 */ 65 int zfs_metaslab_condense_block_threshold = 4; 66 67 /* 68 * The zfs_mg_noalloc_threshold defines which metaslab groups should 69 * be eligible for allocation. The value is defined as a percentage of 70 * free space. Metaslab groups that have more free space than 71 * zfs_mg_noalloc_threshold are always eligible for allocations. Once 72 * a metaslab group's free space is less than or equal to the 73 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that 74 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold. 75 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all 76 * groups are allowed to accept allocations. Gang blocks are always 77 * eligible to allocate on any metaslab group. The default value of 0 means 78 * no metaslab group will be excluded based on this criterion. 79 */ 80 int zfs_mg_noalloc_threshold = 0; 81 82 /* 83 * Metaslab groups are considered eligible for allocations if their 84 * fragmenation metric (measured as a percentage) is less than or equal to 85 * zfs_mg_fragmentation_threshold. If a metaslab group exceeds this threshold 86 * then it will be skipped unless all metaslab groups within the metaslab 87 * class have also crossed this threshold. 88 */ 89 int zfs_mg_fragmentation_threshold = 85; 90 91 /* 92 * Allow metaslabs to keep their active state as long as their fragmentation 93 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An 94 * active metaslab that exceeds this threshold will no longer keep its active 95 * status allowing better metaslabs to be selected. 96 */ 97 int zfs_metaslab_fragmentation_threshold = 70; 98 99 /* 100 * When set will load all metaslabs when pool is first opened. 101 */ 102 int metaslab_debug_load = 0; 103 104 /* 105 * When set will prevent metaslabs from being unloaded. 106 */ 107 int metaslab_debug_unload = 0; 108 109 /* 110 * Minimum size which forces the dynamic allocator to change 111 * it's allocation strategy. Once the space map cannot satisfy 112 * an allocation of this size then it switches to using more 113 * aggressive strategy (i.e search by size rather than offset). 114 */ 115 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE; 116 117 /* 118 * The minimum free space, in percent, which must be available 119 * in a space map to continue allocations in a first-fit fashion. 120 * Once the space map's free space drops below this level we dynamically 121 * switch to using best-fit allocations. 122 */ 123 int metaslab_df_free_pct = 4; 124 125 /* 126 * A metaslab is considered "free" if it contains a contiguous 127 * segment which is greater than metaslab_min_alloc_size. 128 */ 129 uint64_t metaslab_min_alloc_size = DMU_MAX_ACCESS; 130 131 /* 132 * Percentage of all cpus that can be used by the metaslab taskq. 133 */ 134 int metaslab_load_pct = 50; 135 136 /* 137 * Determines how many txgs a metaslab may remain loaded without having any 138 * allocations from it. As long as a metaslab continues to be used we will 139 * keep it loaded. 140 */ 141 int metaslab_unload_delay = TXG_SIZE * 2; 142 143 /* 144 * Max number of metaslabs per group to preload. 145 */ 146 int metaslab_preload_limit = SPA_DVAS_PER_BP; 147 148 /* 149 * Enable/disable preloading of metaslab. 150 */ 151 boolean_t metaslab_preload_enabled = B_TRUE; 152 153 /* 154 * Enable/disable fragmentation weighting on metaslabs. 155 */ 156 boolean_t metaslab_fragmentation_factor_enabled = B_TRUE; 157 158 /* 159 * Enable/disable lba weighting (i.e. outer tracks are given preference). 160 */ 161 boolean_t metaslab_lba_weighting_enabled = B_TRUE; 162 163 /* 164 * Enable/disable metaslab group biasing. 165 */ 166 boolean_t metaslab_bias_enabled = B_TRUE; 167 168 /* 169 * Enable/disable segment-based metaslab selection. 170 */ 171 boolean_t zfs_metaslab_segment_weight_enabled = B_TRUE; 172 173 /* 174 * When using segment-based metaslab selection, we will continue 175 * allocating from the active metaslab until we have exhausted 176 * zfs_metaslab_switch_threshold of its buckets. 177 */ 178 int zfs_metaslab_switch_threshold = 2; 179 180 /* 181 * Internal switch to enable/disable the metaslab allocation tracing 182 * facility. 183 */ 184 boolean_t metaslab_trace_enabled = B_TRUE; 185 186 /* 187 * Maximum entries that the metaslab allocation tracing facility will keep 188 * in a given list when running in non-debug mode. We limit the number 189 * of entries in non-debug mode to prevent us from using up too much memory. 190 * The limit should be sufficiently large that we don't expect any allocation 191 * to every exceed this value. In debug mode, the system will panic if this 192 * limit is ever reached allowing for further investigation. 193 */ 194 uint64_t metaslab_trace_max_entries = 5000; 195 196 static uint64_t metaslab_weight(metaslab_t *); 197 static void metaslab_set_fragmentation(metaslab_t *); 198 199 kmem_cache_t *metaslab_alloc_trace_cache; 200 201 /* 202 * ========================================================================== 203 * Metaslab classes 204 * ========================================================================== 205 */ 206 metaslab_class_t * 207 metaslab_class_create(spa_t *spa, metaslab_ops_t *ops) 208 { 209 metaslab_class_t *mc; 210 211 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP); 212 213 mc->mc_spa = spa; 214 mc->mc_rotor = NULL; 215 mc->mc_ops = ops; 216 mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL); 217 refcount_create_tracked(&mc->mc_alloc_slots); 218 219 return (mc); 220 } 221 222 void 223 metaslab_class_destroy(metaslab_class_t *mc) 224 { 225 ASSERT(mc->mc_rotor == NULL); 226 ASSERT(mc->mc_alloc == 0); 227 ASSERT(mc->mc_deferred == 0); 228 ASSERT(mc->mc_space == 0); 229 ASSERT(mc->mc_dspace == 0); 230 231 refcount_destroy(&mc->mc_alloc_slots); 232 mutex_destroy(&mc->mc_lock); 233 kmem_free(mc, sizeof (metaslab_class_t)); 234 } 235 236 int 237 metaslab_class_validate(metaslab_class_t *mc) 238 { 239 metaslab_group_t *mg; 240 vdev_t *vd; 241 242 /* 243 * Must hold one of the spa_config locks. 244 */ 245 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) || 246 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER)); 247 248 if ((mg = mc->mc_rotor) == NULL) 249 return (0); 250 251 do { 252 vd = mg->mg_vd; 253 ASSERT(vd->vdev_mg != NULL); 254 ASSERT3P(vd->vdev_top, ==, vd); 255 ASSERT3P(mg->mg_class, ==, mc); 256 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops); 257 } while ((mg = mg->mg_next) != mc->mc_rotor); 258 259 return (0); 260 } 261 262 void 263 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta, 264 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta) 265 { 266 atomic_add_64(&mc->mc_alloc, alloc_delta); 267 atomic_add_64(&mc->mc_deferred, defer_delta); 268 atomic_add_64(&mc->mc_space, space_delta); 269 atomic_add_64(&mc->mc_dspace, dspace_delta); 270 } 271 272 uint64_t 273 metaslab_class_get_alloc(metaslab_class_t *mc) 274 { 275 return (mc->mc_alloc); 276 } 277 278 uint64_t 279 metaslab_class_get_deferred(metaslab_class_t *mc) 280 { 281 return (mc->mc_deferred); 282 } 283 284 uint64_t 285 metaslab_class_get_space(metaslab_class_t *mc) 286 { 287 return (mc->mc_space); 288 } 289 290 uint64_t 291 metaslab_class_get_dspace(metaslab_class_t *mc) 292 { 293 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space); 294 } 295 296 void 297 metaslab_class_histogram_verify(metaslab_class_t *mc) 298 { 299 vdev_t *rvd = mc->mc_spa->spa_root_vdev; 300 uint64_t *mc_hist; 301 int i; 302 303 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0) 304 return; 305 306 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE, 307 KM_SLEEP); 308 309 for (int c = 0; c < rvd->vdev_children; c++) { 310 vdev_t *tvd = rvd->vdev_child[c]; 311 metaslab_group_t *mg = tvd->vdev_mg; 312 313 /* 314 * Skip any holes, uninitialized top-levels, or 315 * vdevs that are not in this metalab class. 316 */ 317 if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 || 318 mg->mg_class != mc) { 319 continue; 320 } 321 322 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 323 mc_hist[i] += mg->mg_histogram[i]; 324 } 325 326 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 327 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]); 328 329 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE); 330 } 331 332 /* 333 * Calculate the metaslab class's fragmentation metric. The metric 334 * is weighted based on the space contribution of each metaslab group. 335 * The return value will be a number between 0 and 100 (inclusive), or 336 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the 337 * zfs_frag_table for more information about the metric. 338 */ 339 uint64_t 340 metaslab_class_fragmentation(metaslab_class_t *mc) 341 { 342 vdev_t *rvd = mc->mc_spa->spa_root_vdev; 343 uint64_t fragmentation = 0; 344 345 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER); 346 347 for (int c = 0; c < rvd->vdev_children; c++) { 348 vdev_t *tvd = rvd->vdev_child[c]; 349 metaslab_group_t *mg = tvd->vdev_mg; 350 351 /* 352 * Skip any holes, uninitialized top-levels, or 353 * vdevs that are not in this metalab class. 354 */ 355 if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 || 356 mg->mg_class != mc) { 357 continue; 358 } 359 360 /* 361 * If a metaslab group does not contain a fragmentation 362 * metric then just bail out. 363 */ 364 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) { 365 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 366 return (ZFS_FRAG_INVALID); 367 } 368 369 /* 370 * Determine how much this metaslab_group is contributing 371 * to the overall pool fragmentation metric. 372 */ 373 fragmentation += mg->mg_fragmentation * 374 metaslab_group_get_space(mg); 375 } 376 fragmentation /= metaslab_class_get_space(mc); 377 378 ASSERT3U(fragmentation, <=, 100); 379 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 380 return (fragmentation); 381 } 382 383 /* 384 * Calculate the amount of expandable space that is available in 385 * this metaslab class. If a device is expanded then its expandable 386 * space will be the amount of allocatable space that is currently not 387 * part of this metaslab class. 388 */ 389 uint64_t 390 metaslab_class_expandable_space(metaslab_class_t *mc) 391 { 392 vdev_t *rvd = mc->mc_spa->spa_root_vdev; 393 uint64_t space = 0; 394 395 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER); 396 for (int c = 0; c < rvd->vdev_children; c++) { 397 vdev_t *tvd = rvd->vdev_child[c]; 398 metaslab_group_t *mg = tvd->vdev_mg; 399 400 if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 || 401 mg->mg_class != mc) { 402 continue; 403 } 404 405 /* 406 * Calculate if we have enough space to add additional 407 * metaslabs. We report the expandable space in terms 408 * of the metaslab size since that's the unit of expansion. 409 */ 410 space += P2ALIGN(tvd->vdev_max_asize - tvd->vdev_asize, 411 1ULL << tvd->vdev_ms_shift); 412 } 413 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 414 return (space); 415 } 416 417 static int 418 metaslab_compare(const void *x1, const void *x2) 419 { 420 const metaslab_t *m1 = x1; 421 const metaslab_t *m2 = x2; 422 423 if (m1->ms_weight < m2->ms_weight) 424 return (1); 425 if (m1->ms_weight > m2->ms_weight) 426 return (-1); 427 428 /* 429 * If the weights are identical, use the offset to force uniqueness. 430 */ 431 if (m1->ms_start < m2->ms_start) 432 return (-1); 433 if (m1->ms_start > m2->ms_start) 434 return (1); 435 436 ASSERT3P(m1, ==, m2); 437 438 return (0); 439 } 440 441 /* 442 * Verify that the space accounting on disk matches the in-core range_trees. 443 */ 444 void 445 metaslab_verify_space(metaslab_t *msp, uint64_t txg) 446 { 447 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 448 uint64_t allocated = 0; 449 uint64_t sm_free_space, msp_free_space; 450 451 ASSERT(MUTEX_HELD(&msp->ms_lock)); 452 453 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 454 return; 455 456 /* 457 * We can only verify the metaslab space when we're called 458 * from syncing context with a loaded metaslab that has an allocated 459 * space map. Calling this in non-syncing context does not 460 * provide a consistent view of the metaslab since we're performing 461 * allocations in the future. 462 */ 463 if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL || 464 !msp->ms_loaded) 465 return; 466 467 sm_free_space = msp->ms_size - space_map_allocated(msp->ms_sm) - 468 space_map_alloc_delta(msp->ms_sm); 469 470 /* 471 * Account for future allocations since we would have already 472 * deducted that space from the ms_freetree. 473 */ 474 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) { 475 allocated += 476 range_tree_space(msp->ms_alloctree[(txg + t) & TXG_MASK]); 477 } 478 479 msp_free_space = range_tree_space(msp->ms_tree) + allocated + 480 msp->ms_deferspace + range_tree_space(msp->ms_freedtree); 481 482 VERIFY3U(sm_free_space, ==, msp_free_space); 483 } 484 485 /* 486 * ========================================================================== 487 * Metaslab groups 488 * ========================================================================== 489 */ 490 /* 491 * Update the allocatable flag and the metaslab group's capacity. 492 * The allocatable flag is set to true if the capacity is below 493 * the zfs_mg_noalloc_threshold or has a fragmentation value that is 494 * greater than zfs_mg_fragmentation_threshold. If a metaslab group 495 * transitions from allocatable to non-allocatable or vice versa then the 496 * metaslab group's class is updated to reflect the transition. 497 */ 498 static void 499 metaslab_group_alloc_update(metaslab_group_t *mg) 500 { 501 vdev_t *vd = mg->mg_vd; 502 metaslab_class_t *mc = mg->mg_class; 503 vdev_stat_t *vs = &vd->vdev_stat; 504 boolean_t was_allocatable; 505 boolean_t was_initialized; 506 507 ASSERT(vd == vd->vdev_top); 508 509 mutex_enter(&mg->mg_lock); 510 was_allocatable = mg->mg_allocatable; 511 was_initialized = mg->mg_initialized; 512 513 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) / 514 (vs->vs_space + 1); 515 516 mutex_enter(&mc->mc_lock); 517 518 /* 519 * If the metaslab group was just added then it won't 520 * have any space until we finish syncing out this txg. 521 * At that point we will consider it initialized and available 522 * for allocations. We also don't consider non-activated 523 * metaslab groups (e.g. vdevs that are in the middle of being removed) 524 * to be initialized, because they can't be used for allocation. 525 */ 526 mg->mg_initialized = metaslab_group_initialized(mg); 527 if (!was_initialized && mg->mg_initialized) { 528 mc->mc_groups++; 529 } else if (was_initialized && !mg->mg_initialized) { 530 ASSERT3U(mc->mc_groups, >, 0); 531 mc->mc_groups--; 532 } 533 if (mg->mg_initialized) 534 mg->mg_no_free_space = B_FALSE; 535 536 /* 537 * A metaslab group is considered allocatable if it has plenty 538 * of free space or is not heavily fragmented. We only take 539 * fragmentation into account if the metaslab group has a valid 540 * fragmentation metric (i.e. a value between 0 and 100). 541 */ 542 mg->mg_allocatable = (mg->mg_activation_count > 0 && 543 mg->mg_free_capacity > zfs_mg_noalloc_threshold && 544 (mg->mg_fragmentation == ZFS_FRAG_INVALID || 545 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold)); 546 547 /* 548 * The mc_alloc_groups maintains a count of the number of 549 * groups in this metaslab class that are still above the 550 * zfs_mg_noalloc_threshold. This is used by the allocating 551 * threads to determine if they should avoid allocations to 552 * a given group. The allocator will avoid allocations to a group 553 * if that group has reached or is below the zfs_mg_noalloc_threshold 554 * and there are still other groups that are above the threshold. 555 * When a group transitions from allocatable to non-allocatable or 556 * vice versa we update the metaslab class to reflect that change. 557 * When the mc_alloc_groups value drops to 0 that means that all 558 * groups have reached the zfs_mg_noalloc_threshold making all groups 559 * eligible for allocations. This effectively means that all devices 560 * are balanced again. 561 */ 562 if (was_allocatable && !mg->mg_allocatable) 563 mc->mc_alloc_groups--; 564 else if (!was_allocatable && mg->mg_allocatable) 565 mc->mc_alloc_groups++; 566 mutex_exit(&mc->mc_lock); 567 568 mutex_exit(&mg->mg_lock); 569 } 570 571 metaslab_group_t * 572 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd) 573 { 574 metaslab_group_t *mg; 575 576 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP); 577 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL); 578 avl_create(&mg->mg_metaslab_tree, metaslab_compare, 579 sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node)); 580 mg->mg_vd = vd; 581 mg->mg_class = mc; 582 mg->mg_activation_count = 0; 583 mg->mg_initialized = B_FALSE; 584 mg->mg_no_free_space = B_TRUE; 585 refcount_create_tracked(&mg->mg_alloc_queue_depth); 586 587 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct, 588 minclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT); 589 590 return (mg); 591 } 592 593 void 594 metaslab_group_destroy(metaslab_group_t *mg) 595 { 596 ASSERT(mg->mg_prev == NULL); 597 ASSERT(mg->mg_next == NULL); 598 /* 599 * We may have gone below zero with the activation count 600 * either because we never activated in the first place or 601 * because we're done, and possibly removing the vdev. 602 */ 603 ASSERT(mg->mg_activation_count <= 0); 604 605 taskq_destroy(mg->mg_taskq); 606 avl_destroy(&mg->mg_metaslab_tree); 607 mutex_destroy(&mg->mg_lock); 608 refcount_destroy(&mg->mg_alloc_queue_depth); 609 kmem_free(mg, sizeof (metaslab_group_t)); 610 } 611 612 void 613 metaslab_group_activate(metaslab_group_t *mg) 614 { 615 metaslab_class_t *mc = mg->mg_class; 616 metaslab_group_t *mgprev, *mgnext; 617 618 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER)); 619 620 ASSERT(mc->mc_rotor != mg); 621 ASSERT(mg->mg_prev == NULL); 622 ASSERT(mg->mg_next == NULL); 623 ASSERT(mg->mg_activation_count <= 0); 624 625 if (++mg->mg_activation_count <= 0) 626 return; 627 628 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children); 629 metaslab_group_alloc_update(mg); 630 631 if ((mgprev = mc->mc_rotor) == NULL) { 632 mg->mg_prev = mg; 633 mg->mg_next = mg; 634 } else { 635 mgnext = mgprev->mg_next; 636 mg->mg_prev = mgprev; 637 mg->mg_next = mgnext; 638 mgprev->mg_next = mg; 639 mgnext->mg_prev = mg; 640 } 641 mc->mc_rotor = mg; 642 } 643 644 void 645 metaslab_group_passivate(metaslab_group_t *mg) 646 { 647 metaslab_class_t *mc = mg->mg_class; 648 metaslab_group_t *mgprev, *mgnext; 649 650 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER)); 651 652 if (--mg->mg_activation_count != 0) { 653 ASSERT(mc->mc_rotor != mg); 654 ASSERT(mg->mg_prev == NULL); 655 ASSERT(mg->mg_next == NULL); 656 ASSERT(mg->mg_activation_count < 0); 657 return; 658 } 659 660 taskq_wait(mg->mg_taskq); 661 metaslab_group_alloc_update(mg); 662 663 mgprev = mg->mg_prev; 664 mgnext = mg->mg_next; 665 666 if (mg == mgnext) { 667 mc->mc_rotor = NULL; 668 } else { 669 mc->mc_rotor = mgnext; 670 mgprev->mg_next = mgnext; 671 mgnext->mg_prev = mgprev; 672 } 673 674 mg->mg_prev = NULL; 675 mg->mg_next = NULL; 676 } 677 678 boolean_t 679 metaslab_group_initialized(metaslab_group_t *mg) 680 { 681 vdev_t *vd = mg->mg_vd; 682 vdev_stat_t *vs = &vd->vdev_stat; 683 684 return (vs->vs_space != 0 && mg->mg_activation_count > 0); 685 } 686 687 uint64_t 688 metaslab_group_get_space(metaslab_group_t *mg) 689 { 690 return ((1ULL << mg->mg_vd->vdev_ms_shift) * mg->mg_vd->vdev_ms_count); 691 } 692 693 void 694 metaslab_group_histogram_verify(metaslab_group_t *mg) 695 { 696 uint64_t *mg_hist; 697 vdev_t *vd = mg->mg_vd; 698 uint64_t ashift = vd->vdev_ashift; 699 int i; 700 701 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0) 702 return; 703 704 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE, 705 KM_SLEEP); 706 707 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=, 708 SPACE_MAP_HISTOGRAM_SIZE + ashift); 709 710 for (int m = 0; m < vd->vdev_ms_count; m++) { 711 metaslab_t *msp = vd->vdev_ms[m]; 712 713 if (msp->ms_sm == NULL) 714 continue; 715 716 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) 717 mg_hist[i + ashift] += 718 msp->ms_sm->sm_phys->smp_histogram[i]; 719 } 720 721 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++) 722 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]); 723 724 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE); 725 } 726 727 static void 728 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp) 729 { 730 metaslab_class_t *mc = mg->mg_class; 731 uint64_t ashift = mg->mg_vd->vdev_ashift; 732 733 ASSERT(MUTEX_HELD(&msp->ms_lock)); 734 if (msp->ms_sm == NULL) 735 return; 736 737 mutex_enter(&mg->mg_lock); 738 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 739 mg->mg_histogram[i + ashift] += 740 msp->ms_sm->sm_phys->smp_histogram[i]; 741 mc->mc_histogram[i + ashift] += 742 msp->ms_sm->sm_phys->smp_histogram[i]; 743 } 744 mutex_exit(&mg->mg_lock); 745 } 746 747 void 748 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp) 749 { 750 metaslab_class_t *mc = mg->mg_class; 751 uint64_t ashift = mg->mg_vd->vdev_ashift; 752 753 ASSERT(MUTEX_HELD(&msp->ms_lock)); 754 if (msp->ms_sm == NULL) 755 return; 756 757 mutex_enter(&mg->mg_lock); 758 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 759 ASSERT3U(mg->mg_histogram[i + ashift], >=, 760 msp->ms_sm->sm_phys->smp_histogram[i]); 761 ASSERT3U(mc->mc_histogram[i + ashift], >=, 762 msp->ms_sm->sm_phys->smp_histogram[i]); 763 764 mg->mg_histogram[i + ashift] -= 765 msp->ms_sm->sm_phys->smp_histogram[i]; 766 mc->mc_histogram[i + ashift] -= 767 msp->ms_sm->sm_phys->smp_histogram[i]; 768 } 769 mutex_exit(&mg->mg_lock); 770 } 771 772 static void 773 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp) 774 { 775 ASSERT(msp->ms_group == NULL); 776 mutex_enter(&mg->mg_lock); 777 msp->ms_group = mg; 778 msp->ms_weight = 0; 779 avl_add(&mg->mg_metaslab_tree, msp); 780 mutex_exit(&mg->mg_lock); 781 782 mutex_enter(&msp->ms_lock); 783 metaslab_group_histogram_add(mg, msp); 784 mutex_exit(&msp->ms_lock); 785 } 786 787 static void 788 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp) 789 { 790 mutex_enter(&msp->ms_lock); 791 metaslab_group_histogram_remove(mg, msp); 792 mutex_exit(&msp->ms_lock); 793 794 mutex_enter(&mg->mg_lock); 795 ASSERT(msp->ms_group == mg); 796 avl_remove(&mg->mg_metaslab_tree, msp); 797 msp->ms_group = NULL; 798 mutex_exit(&mg->mg_lock); 799 } 800 801 static void 802 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight) 803 { 804 /* 805 * Although in principle the weight can be any value, in 806 * practice we do not use values in the range [1, 511]. 807 */ 808 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0); 809 ASSERT(MUTEX_HELD(&msp->ms_lock)); 810 811 mutex_enter(&mg->mg_lock); 812 ASSERT(msp->ms_group == mg); 813 avl_remove(&mg->mg_metaslab_tree, msp); 814 msp->ms_weight = weight; 815 avl_add(&mg->mg_metaslab_tree, msp); 816 mutex_exit(&mg->mg_lock); 817 } 818 819 /* 820 * Calculate the fragmentation for a given metaslab group. We can use 821 * a simple average here since all metaslabs within the group must have 822 * the same size. The return value will be a value between 0 and 100 823 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this 824 * group have a fragmentation metric. 825 */ 826 uint64_t 827 metaslab_group_fragmentation(metaslab_group_t *mg) 828 { 829 vdev_t *vd = mg->mg_vd; 830 uint64_t fragmentation = 0; 831 uint64_t valid_ms = 0; 832 833 for (int m = 0; m < vd->vdev_ms_count; m++) { 834 metaslab_t *msp = vd->vdev_ms[m]; 835 836 if (msp->ms_fragmentation == ZFS_FRAG_INVALID) 837 continue; 838 839 valid_ms++; 840 fragmentation += msp->ms_fragmentation; 841 } 842 843 if (valid_ms <= vd->vdev_ms_count / 2) 844 return (ZFS_FRAG_INVALID); 845 846 fragmentation /= valid_ms; 847 ASSERT3U(fragmentation, <=, 100); 848 return (fragmentation); 849 } 850 851 /* 852 * Determine if a given metaslab group should skip allocations. A metaslab 853 * group should avoid allocations if its free capacity is less than the 854 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than 855 * zfs_mg_fragmentation_threshold and there is at least one metaslab group 856 * that can still handle allocations. If the allocation throttle is enabled 857 * then we skip allocations to devices that have reached their maximum 858 * allocation queue depth unless the selected metaslab group is the only 859 * eligible group remaining. 860 */ 861 static boolean_t 862 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor, 863 uint64_t psize) 864 { 865 spa_t *spa = mg->mg_vd->vdev_spa; 866 metaslab_class_t *mc = mg->mg_class; 867 868 /* 869 * We can only consider skipping this metaslab group if it's 870 * in the normal metaslab class and there are other metaslab 871 * groups to select from. Otherwise, we always consider it eligible 872 * for allocations. 873 */ 874 if (mc != spa_normal_class(spa) || mc->mc_groups <= 1) 875 return (B_TRUE); 876 877 /* 878 * If the metaslab group's mg_allocatable flag is set (see comments 879 * in metaslab_group_alloc_update() for more information) and 880 * the allocation throttle is disabled then allow allocations to this 881 * device. However, if the allocation throttle is enabled then 882 * check if we have reached our allocation limit (mg_alloc_queue_depth) 883 * to determine if we should allow allocations to this metaslab group. 884 * If all metaslab groups are no longer considered allocatable 885 * (mc_alloc_groups == 0) or we're trying to allocate the smallest 886 * gang block size then we allow allocations on this metaslab group 887 * regardless of the mg_allocatable or throttle settings. 888 */ 889 if (mg->mg_allocatable) { 890 metaslab_group_t *mgp; 891 int64_t qdepth; 892 uint64_t qmax = mg->mg_max_alloc_queue_depth; 893 894 if (!mc->mc_alloc_throttle_enabled) 895 return (B_TRUE); 896 897 /* 898 * If this metaslab group does not have any free space, then 899 * there is no point in looking further. 900 */ 901 if (mg->mg_no_free_space) 902 return (B_FALSE); 903 904 qdepth = refcount_count(&mg->mg_alloc_queue_depth); 905 906 /* 907 * If this metaslab group is below its qmax or it's 908 * the only allocatable metasable group, then attempt 909 * to allocate from it. 910 */ 911 if (qdepth < qmax || mc->mc_alloc_groups == 1) 912 return (B_TRUE); 913 ASSERT3U(mc->mc_alloc_groups, >, 1); 914 915 /* 916 * Since this metaslab group is at or over its qmax, we 917 * need to determine if there are metaslab groups after this 918 * one that might be able to handle this allocation. This is 919 * racy since we can't hold the locks for all metaslab 920 * groups at the same time when we make this check. 921 */ 922 for (mgp = mg->mg_next; mgp != rotor; mgp = mgp->mg_next) { 923 qmax = mgp->mg_max_alloc_queue_depth; 924 925 qdepth = refcount_count(&mgp->mg_alloc_queue_depth); 926 927 /* 928 * If there is another metaslab group that 929 * might be able to handle the allocation, then 930 * we return false so that we skip this group. 931 */ 932 if (qdepth < qmax && !mgp->mg_no_free_space) 933 return (B_FALSE); 934 } 935 936 /* 937 * We didn't find another group to handle the allocation 938 * so we can't skip this metaslab group even though 939 * we are at or over our qmax. 940 */ 941 return (B_TRUE); 942 943 } else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) { 944 return (B_TRUE); 945 } 946 return (B_FALSE); 947 } 948 949 /* 950 * ========================================================================== 951 * Range tree callbacks 952 * ========================================================================== 953 */ 954 955 /* 956 * Comparison function for the private size-ordered tree. Tree is sorted 957 * by size, larger sizes at the end of the tree. 958 */ 959 static int 960 metaslab_rangesize_compare(const void *x1, const void *x2) 961 { 962 const range_seg_t *r1 = x1; 963 const range_seg_t *r2 = x2; 964 uint64_t rs_size1 = r1->rs_end - r1->rs_start; 965 uint64_t rs_size2 = r2->rs_end - r2->rs_start; 966 967 if (rs_size1 < rs_size2) 968 return (-1); 969 if (rs_size1 > rs_size2) 970 return (1); 971 972 if (r1->rs_start < r2->rs_start) 973 return (-1); 974 975 if (r1->rs_start > r2->rs_start) 976 return (1); 977 978 return (0); 979 } 980 981 /* 982 * Create any block allocator specific components. The current allocators 983 * rely on using both a size-ordered range_tree_t and an array of uint64_t's. 984 */ 985 static void 986 metaslab_rt_create(range_tree_t *rt, void *arg) 987 { 988 metaslab_t *msp = arg; 989 990 ASSERT3P(rt->rt_arg, ==, msp); 991 ASSERT(msp->ms_tree == NULL); 992 993 avl_create(&msp->ms_size_tree, metaslab_rangesize_compare, 994 sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node)); 995 } 996 997 /* 998 * Destroy the block allocator specific components. 999 */ 1000 static void 1001 metaslab_rt_destroy(range_tree_t *rt, void *arg) 1002 { 1003 metaslab_t *msp = arg; 1004 1005 ASSERT3P(rt->rt_arg, ==, msp); 1006 ASSERT3P(msp->ms_tree, ==, rt); 1007 ASSERT0(avl_numnodes(&msp->ms_size_tree)); 1008 1009 avl_destroy(&msp->ms_size_tree); 1010 } 1011 1012 static void 1013 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg) 1014 { 1015 metaslab_t *msp = arg; 1016 1017 ASSERT3P(rt->rt_arg, ==, msp); 1018 ASSERT3P(msp->ms_tree, ==, rt); 1019 VERIFY(!msp->ms_condensing); 1020 avl_add(&msp->ms_size_tree, rs); 1021 } 1022 1023 static void 1024 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg) 1025 { 1026 metaslab_t *msp = arg; 1027 1028 ASSERT3P(rt->rt_arg, ==, msp); 1029 ASSERT3P(msp->ms_tree, ==, rt); 1030 VERIFY(!msp->ms_condensing); 1031 avl_remove(&msp->ms_size_tree, rs); 1032 } 1033 1034 static void 1035 metaslab_rt_vacate(range_tree_t *rt, void *arg) 1036 { 1037 metaslab_t *msp = arg; 1038 1039 ASSERT3P(rt->rt_arg, ==, msp); 1040 ASSERT3P(msp->ms_tree, ==, rt); 1041 1042 /* 1043 * Normally one would walk the tree freeing nodes along the way. 1044 * Since the nodes are shared with the range trees we can avoid 1045 * walking all nodes and just reinitialize the avl tree. The nodes 1046 * will be freed by the range tree, so we don't want to free them here. 1047 */ 1048 avl_create(&msp->ms_size_tree, metaslab_rangesize_compare, 1049 sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node)); 1050 } 1051 1052 static range_tree_ops_t metaslab_rt_ops = { 1053 metaslab_rt_create, 1054 metaslab_rt_destroy, 1055 metaslab_rt_add, 1056 metaslab_rt_remove, 1057 metaslab_rt_vacate 1058 }; 1059 1060 /* 1061 * ========================================================================== 1062 * Common allocator routines 1063 * ========================================================================== 1064 */ 1065 1066 /* 1067 * Return the maximum contiguous segment within the metaslab. 1068 */ 1069 uint64_t 1070 metaslab_block_maxsize(metaslab_t *msp) 1071 { 1072 avl_tree_t *t = &msp->ms_size_tree; 1073 range_seg_t *rs; 1074 1075 if (t == NULL || (rs = avl_last(t)) == NULL) 1076 return (0ULL); 1077 1078 return (rs->rs_end - rs->rs_start); 1079 } 1080 1081 static range_seg_t * 1082 metaslab_block_find(avl_tree_t *t, uint64_t start, uint64_t size) 1083 { 1084 range_seg_t *rs, rsearch; 1085 avl_index_t where; 1086 1087 rsearch.rs_start = start; 1088 rsearch.rs_end = start + size; 1089 1090 rs = avl_find(t, &rsearch, &where); 1091 if (rs == NULL) { 1092 rs = avl_nearest(t, where, AVL_AFTER); 1093 } 1094 1095 return (rs); 1096 } 1097 1098 /* 1099 * This is a helper function that can be used by the allocator to find 1100 * a suitable block to allocate. This will search the specified AVL 1101 * tree looking for a block that matches the specified criteria. 1102 */ 1103 static uint64_t 1104 metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size, 1105 uint64_t align) 1106 { 1107 range_seg_t *rs = metaslab_block_find(t, *cursor, size); 1108 1109 while (rs != NULL) { 1110 uint64_t offset = P2ROUNDUP(rs->rs_start, align); 1111 1112 if (offset + size <= rs->rs_end) { 1113 *cursor = offset + size; 1114 return (offset); 1115 } 1116 rs = AVL_NEXT(t, rs); 1117 } 1118 1119 /* 1120 * If we know we've searched the whole map (*cursor == 0), give up. 1121 * Otherwise, reset the cursor to the beginning and try again. 1122 */ 1123 if (*cursor == 0) 1124 return (-1ULL); 1125 1126 *cursor = 0; 1127 return (metaslab_block_picker(t, cursor, size, align)); 1128 } 1129 1130 /* 1131 * ========================================================================== 1132 * The first-fit block allocator 1133 * ========================================================================== 1134 */ 1135 static uint64_t 1136 metaslab_ff_alloc(metaslab_t *msp, uint64_t size) 1137 { 1138 /* 1139 * Find the largest power of 2 block size that evenly divides the 1140 * requested size. This is used to try to allocate blocks with similar 1141 * alignment from the same area of the metaslab (i.e. same cursor 1142 * bucket) but it does not guarantee that other allocations sizes 1143 * may exist in the same region. 1144 */ 1145 uint64_t align = size & -size; 1146 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1]; 1147 avl_tree_t *t = &msp->ms_tree->rt_root; 1148 1149 return (metaslab_block_picker(t, cursor, size, align)); 1150 } 1151 1152 static metaslab_ops_t metaslab_ff_ops = { 1153 metaslab_ff_alloc 1154 }; 1155 1156 /* 1157 * ========================================================================== 1158 * Dynamic block allocator - 1159 * Uses the first fit allocation scheme until space get low and then 1160 * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold 1161 * and metaslab_df_free_pct to determine when to switch the allocation scheme. 1162 * ========================================================================== 1163 */ 1164 static uint64_t 1165 metaslab_df_alloc(metaslab_t *msp, uint64_t size) 1166 { 1167 /* 1168 * Find the largest power of 2 block size that evenly divides the 1169 * requested size. This is used to try to allocate blocks with similar 1170 * alignment from the same area of the metaslab (i.e. same cursor 1171 * bucket) but it does not guarantee that other allocations sizes 1172 * may exist in the same region. 1173 */ 1174 uint64_t align = size & -size; 1175 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1]; 1176 range_tree_t *rt = msp->ms_tree; 1177 avl_tree_t *t = &rt->rt_root; 1178 uint64_t max_size = metaslab_block_maxsize(msp); 1179 int free_pct = range_tree_space(rt) * 100 / msp->ms_size; 1180 1181 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1182 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree)); 1183 1184 if (max_size < size) 1185 return (-1ULL); 1186 1187 /* 1188 * If we're running low on space switch to using the size 1189 * sorted AVL tree (best-fit). 1190 */ 1191 if (max_size < metaslab_df_alloc_threshold || 1192 free_pct < metaslab_df_free_pct) { 1193 t = &msp->ms_size_tree; 1194 *cursor = 0; 1195 } 1196 1197 return (metaslab_block_picker(t, cursor, size, 1ULL)); 1198 } 1199 1200 static metaslab_ops_t metaslab_df_ops = { 1201 metaslab_df_alloc 1202 }; 1203 1204 /* 1205 * ========================================================================== 1206 * Cursor fit block allocator - 1207 * Select the largest region in the metaslab, set the cursor to the beginning 1208 * of the range and the cursor_end to the end of the range. As allocations 1209 * are made advance the cursor. Continue allocating from the cursor until 1210 * the range is exhausted and then find a new range. 1211 * ========================================================================== 1212 */ 1213 static uint64_t 1214 metaslab_cf_alloc(metaslab_t *msp, uint64_t size) 1215 { 1216 range_tree_t *rt = msp->ms_tree; 1217 avl_tree_t *t = &msp->ms_size_tree; 1218 uint64_t *cursor = &msp->ms_lbas[0]; 1219 uint64_t *cursor_end = &msp->ms_lbas[1]; 1220 uint64_t offset = 0; 1221 1222 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1223 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&rt->rt_root)); 1224 1225 ASSERT3U(*cursor_end, >=, *cursor); 1226 1227 if ((*cursor + size) > *cursor_end) { 1228 range_seg_t *rs; 1229 1230 rs = avl_last(&msp->ms_size_tree); 1231 if (rs == NULL || (rs->rs_end - rs->rs_start) < size) 1232 return (-1ULL); 1233 1234 *cursor = rs->rs_start; 1235 *cursor_end = rs->rs_end; 1236 } 1237 1238 offset = *cursor; 1239 *cursor += size; 1240 1241 return (offset); 1242 } 1243 1244 static metaslab_ops_t metaslab_cf_ops = { 1245 metaslab_cf_alloc 1246 }; 1247 1248 /* 1249 * ========================================================================== 1250 * New dynamic fit allocator - 1251 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift 1252 * contiguous blocks. If no region is found then just use the largest segment 1253 * that remains. 1254 * ========================================================================== 1255 */ 1256 1257 /* 1258 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift) 1259 * to request from the allocator. 1260 */ 1261 uint64_t metaslab_ndf_clump_shift = 4; 1262 1263 static uint64_t 1264 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size) 1265 { 1266 avl_tree_t *t = &msp->ms_tree->rt_root; 1267 avl_index_t where; 1268 range_seg_t *rs, rsearch; 1269 uint64_t hbit = highbit64(size); 1270 uint64_t *cursor = &msp->ms_lbas[hbit - 1]; 1271 uint64_t max_size = metaslab_block_maxsize(msp); 1272 1273 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1274 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree)); 1275 1276 if (max_size < size) 1277 return (-1ULL); 1278 1279 rsearch.rs_start = *cursor; 1280 rsearch.rs_end = *cursor + size; 1281 1282 rs = avl_find(t, &rsearch, &where); 1283 if (rs == NULL || (rs->rs_end - rs->rs_start) < size) { 1284 t = &msp->ms_size_tree; 1285 1286 rsearch.rs_start = 0; 1287 rsearch.rs_end = MIN(max_size, 1288 1ULL << (hbit + metaslab_ndf_clump_shift)); 1289 rs = avl_find(t, &rsearch, &where); 1290 if (rs == NULL) 1291 rs = avl_nearest(t, where, AVL_AFTER); 1292 ASSERT(rs != NULL); 1293 } 1294 1295 if ((rs->rs_end - rs->rs_start) >= size) { 1296 *cursor = rs->rs_start + size; 1297 return (rs->rs_start); 1298 } 1299 return (-1ULL); 1300 } 1301 1302 static metaslab_ops_t metaslab_ndf_ops = { 1303 metaslab_ndf_alloc 1304 }; 1305 1306 metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops; 1307 1308 /* 1309 * ========================================================================== 1310 * Metaslabs 1311 * ========================================================================== 1312 */ 1313 1314 /* 1315 * Wait for any in-progress metaslab loads to complete. 1316 */ 1317 void 1318 metaslab_load_wait(metaslab_t *msp) 1319 { 1320 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1321 1322 while (msp->ms_loading) { 1323 ASSERT(!msp->ms_loaded); 1324 cv_wait(&msp->ms_load_cv, &msp->ms_lock); 1325 } 1326 } 1327 1328 int 1329 metaslab_load(metaslab_t *msp) 1330 { 1331 int error = 0; 1332 boolean_t success = B_FALSE; 1333 1334 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1335 ASSERT(!msp->ms_loaded); 1336 ASSERT(!msp->ms_loading); 1337 1338 msp->ms_loading = B_TRUE; 1339 1340 /* 1341 * If the space map has not been allocated yet, then treat 1342 * all the space in the metaslab as free and add it to the 1343 * ms_tree. 1344 */ 1345 if (msp->ms_sm != NULL) 1346 error = space_map_load(msp->ms_sm, msp->ms_tree, SM_FREE); 1347 else 1348 range_tree_add(msp->ms_tree, msp->ms_start, msp->ms_size); 1349 1350 success = (error == 0); 1351 msp->ms_loading = B_FALSE; 1352 1353 if (success) { 1354 ASSERT3P(msp->ms_group, !=, NULL); 1355 msp->ms_loaded = B_TRUE; 1356 1357 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 1358 range_tree_walk(msp->ms_defertree[t], 1359 range_tree_remove, msp->ms_tree); 1360 } 1361 msp->ms_max_size = metaslab_block_maxsize(msp); 1362 } 1363 cv_broadcast(&msp->ms_load_cv); 1364 return (error); 1365 } 1366 1367 void 1368 metaslab_unload(metaslab_t *msp) 1369 { 1370 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1371 range_tree_vacate(msp->ms_tree, NULL, NULL); 1372 msp->ms_loaded = B_FALSE; 1373 msp->ms_weight &= ~METASLAB_ACTIVE_MASK; 1374 msp->ms_max_size = 0; 1375 } 1376 1377 int 1378 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, uint64_t txg, 1379 metaslab_t **msp) 1380 { 1381 vdev_t *vd = mg->mg_vd; 1382 objset_t *mos = vd->vdev_spa->spa_meta_objset; 1383 metaslab_t *ms; 1384 int error; 1385 1386 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP); 1387 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL); 1388 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL); 1389 ms->ms_id = id; 1390 ms->ms_start = id << vd->vdev_ms_shift; 1391 ms->ms_size = 1ULL << vd->vdev_ms_shift; 1392 1393 /* 1394 * We only open space map objects that already exist. All others 1395 * will be opened when we finally allocate an object for it. 1396 */ 1397 if (object != 0) { 1398 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start, 1399 ms->ms_size, vd->vdev_ashift, &ms->ms_lock); 1400 1401 if (error != 0) { 1402 kmem_free(ms, sizeof (metaslab_t)); 1403 return (error); 1404 } 1405 1406 ASSERT(ms->ms_sm != NULL); 1407 } 1408 1409 /* 1410 * We create the main range tree here, but we don't create the 1411 * other range trees until metaslab_sync_done(). This serves 1412 * two purposes: it allows metaslab_sync_done() to detect the 1413 * addition of new space; and for debugging, it ensures that we'd 1414 * data fault on any attempt to use this metaslab before it's ready. 1415 */ 1416 ms->ms_tree = range_tree_create(&metaslab_rt_ops, ms, &ms->ms_lock); 1417 metaslab_group_add(mg, ms); 1418 1419 metaslab_set_fragmentation(ms); 1420 1421 /* 1422 * If we're opening an existing pool (txg == 0) or creating 1423 * a new one (txg == TXG_INITIAL), all space is available now. 1424 * If we're adding space to an existing pool, the new space 1425 * does not become available until after this txg has synced. 1426 * The metaslab's weight will also be initialized when we sync 1427 * out this txg. This ensures that we don't attempt to allocate 1428 * from it before we have initialized it completely. 1429 */ 1430 if (txg <= TXG_INITIAL) 1431 metaslab_sync_done(ms, 0); 1432 1433 /* 1434 * If metaslab_debug_load is set and we're initializing a metaslab 1435 * that has an allocated space map object then load the its space 1436 * map so that can verify frees. 1437 */ 1438 if (metaslab_debug_load && ms->ms_sm != NULL) { 1439 mutex_enter(&ms->ms_lock); 1440 VERIFY0(metaslab_load(ms)); 1441 mutex_exit(&ms->ms_lock); 1442 } 1443 1444 if (txg != 0) { 1445 vdev_dirty(vd, 0, NULL, txg); 1446 vdev_dirty(vd, VDD_METASLAB, ms, txg); 1447 } 1448 1449 *msp = ms; 1450 1451 return (0); 1452 } 1453 1454 void 1455 metaslab_fini(metaslab_t *msp) 1456 { 1457 metaslab_group_t *mg = msp->ms_group; 1458 1459 metaslab_group_remove(mg, msp); 1460 1461 mutex_enter(&msp->ms_lock); 1462 VERIFY(msp->ms_group == NULL); 1463 vdev_space_update(mg->mg_vd, -space_map_allocated(msp->ms_sm), 1464 0, -msp->ms_size); 1465 space_map_close(msp->ms_sm); 1466 1467 metaslab_unload(msp); 1468 range_tree_destroy(msp->ms_tree); 1469 range_tree_destroy(msp->ms_freeingtree); 1470 range_tree_destroy(msp->ms_freedtree); 1471 1472 for (int t = 0; t < TXG_SIZE; t++) { 1473 range_tree_destroy(msp->ms_alloctree[t]); 1474 } 1475 1476 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 1477 range_tree_destroy(msp->ms_defertree[t]); 1478 } 1479 1480 ASSERT0(msp->ms_deferspace); 1481 1482 mutex_exit(&msp->ms_lock); 1483 cv_destroy(&msp->ms_load_cv); 1484 mutex_destroy(&msp->ms_lock); 1485 1486 kmem_free(msp, sizeof (metaslab_t)); 1487 } 1488 1489 #define FRAGMENTATION_TABLE_SIZE 17 1490 1491 /* 1492 * This table defines a segment size based fragmentation metric that will 1493 * allow each metaslab to derive its own fragmentation value. This is done 1494 * by calculating the space in each bucket of the spacemap histogram and 1495 * multiplying that by the fragmetation metric in this table. Doing 1496 * this for all buckets and dividing it by the total amount of free 1497 * space in this metaslab (i.e. the total free space in all buckets) gives 1498 * us the fragmentation metric. This means that a high fragmentation metric 1499 * equates to most of the free space being comprised of small segments. 1500 * Conversely, if the metric is low, then most of the free space is in 1501 * large segments. A 10% change in fragmentation equates to approximately 1502 * double the number of segments. 1503 * 1504 * This table defines 0% fragmented space using 16MB segments. Testing has 1505 * shown that segments that are greater than or equal to 16MB do not suffer 1506 * from drastic performance problems. Using this value, we derive the rest 1507 * of the table. Since the fragmentation value is never stored on disk, it 1508 * is possible to change these calculations in the future. 1509 */ 1510 int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = { 1511 100, /* 512B */ 1512 100, /* 1K */ 1513 98, /* 2K */ 1514 95, /* 4K */ 1515 90, /* 8K */ 1516 80, /* 16K */ 1517 70, /* 32K */ 1518 60, /* 64K */ 1519 50, /* 128K */ 1520 40, /* 256K */ 1521 30, /* 512K */ 1522 20, /* 1M */ 1523 15, /* 2M */ 1524 10, /* 4M */ 1525 5, /* 8M */ 1526 0 /* 16M */ 1527 }; 1528 1529 /* 1530 * Calclate the metaslab's fragmentation metric. A return value 1531 * of ZFS_FRAG_INVALID means that the metaslab has not been upgraded and does 1532 * not support this metric. Otherwise, the return value should be in the 1533 * range [0, 100]. 1534 */ 1535 static void 1536 metaslab_set_fragmentation(metaslab_t *msp) 1537 { 1538 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 1539 uint64_t fragmentation = 0; 1540 uint64_t total = 0; 1541 boolean_t feature_enabled = spa_feature_is_enabled(spa, 1542 SPA_FEATURE_SPACEMAP_HISTOGRAM); 1543 1544 if (!feature_enabled) { 1545 msp->ms_fragmentation = ZFS_FRAG_INVALID; 1546 return; 1547 } 1548 1549 /* 1550 * A null space map means that the entire metaslab is free 1551 * and thus is not fragmented. 1552 */ 1553 if (msp->ms_sm == NULL) { 1554 msp->ms_fragmentation = 0; 1555 return; 1556 } 1557 1558 /* 1559 * If this metaslab's space map has not been upgraded, flag it 1560 * so that we upgrade next time we encounter it. 1561 */ 1562 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) { 1563 uint64_t txg = spa_syncing_txg(spa); 1564 vdev_t *vd = msp->ms_group->mg_vd; 1565 1566 if (spa_writeable(spa)) { 1567 msp->ms_condense_wanted = B_TRUE; 1568 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1); 1569 spa_dbgmsg(spa, "txg %llu, requesting force condense: " 1570 "msp %p, vd %p", txg, msp, vd); 1571 } 1572 msp->ms_fragmentation = ZFS_FRAG_INVALID; 1573 return; 1574 } 1575 1576 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1577 uint64_t space = 0; 1578 uint8_t shift = msp->ms_sm->sm_shift; 1579 1580 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i, 1581 FRAGMENTATION_TABLE_SIZE - 1); 1582 1583 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0) 1584 continue; 1585 1586 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift); 1587 total += space; 1588 1589 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE); 1590 fragmentation += space * zfs_frag_table[idx]; 1591 } 1592 1593 if (total > 0) 1594 fragmentation /= total; 1595 ASSERT3U(fragmentation, <=, 100); 1596 1597 msp->ms_fragmentation = fragmentation; 1598 } 1599 1600 /* 1601 * Compute a weight -- a selection preference value -- for the given metaslab. 1602 * This is based on the amount of free space, the level of fragmentation, 1603 * the LBA range, and whether the metaslab is loaded. 1604 */ 1605 static uint64_t 1606 metaslab_space_weight(metaslab_t *msp) 1607 { 1608 metaslab_group_t *mg = msp->ms_group; 1609 vdev_t *vd = mg->mg_vd; 1610 uint64_t weight, space; 1611 1612 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1613 ASSERT(!vd->vdev_removing); 1614 1615 /* 1616 * The baseline weight is the metaslab's free space. 1617 */ 1618 space = msp->ms_size - space_map_allocated(msp->ms_sm); 1619 1620 if (metaslab_fragmentation_factor_enabled && 1621 msp->ms_fragmentation != ZFS_FRAG_INVALID) { 1622 /* 1623 * Use the fragmentation information to inversely scale 1624 * down the baseline weight. We need to ensure that we 1625 * don't exclude this metaslab completely when it's 100% 1626 * fragmented. To avoid this we reduce the fragmented value 1627 * by 1. 1628 */ 1629 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100; 1630 1631 /* 1632 * If space < SPA_MINBLOCKSIZE, then we will not allocate from 1633 * this metaslab again. The fragmentation metric may have 1634 * decreased the space to something smaller than 1635 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE 1636 * so that we can consume any remaining space. 1637 */ 1638 if (space > 0 && space < SPA_MINBLOCKSIZE) 1639 space = SPA_MINBLOCKSIZE; 1640 } 1641 weight = space; 1642 1643 /* 1644 * Modern disks have uniform bit density and constant angular velocity. 1645 * Therefore, the outer recording zones are faster (higher bandwidth) 1646 * than the inner zones by the ratio of outer to inner track diameter, 1647 * which is typically around 2:1. We account for this by assigning 1648 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x). 1649 * In effect, this means that we'll select the metaslab with the most 1650 * free bandwidth rather than simply the one with the most free space. 1651 */ 1652 if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) { 1653 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count; 1654 ASSERT(weight >= space && weight <= 2 * space); 1655 } 1656 1657 /* 1658 * If this metaslab is one we're actively using, adjust its 1659 * weight to make it preferable to any inactive metaslab so 1660 * we'll polish it off. If the fragmentation on this metaslab 1661 * has exceed our threshold, then don't mark it active. 1662 */ 1663 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID && 1664 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) { 1665 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK); 1666 } 1667 1668 WEIGHT_SET_SPACEBASED(weight); 1669 return (weight); 1670 } 1671 1672 /* 1673 * Return the weight of the specified metaslab, according to the segment-based 1674 * weighting algorithm. The metaslab must be loaded. This function can 1675 * be called within a sync pass since it relies only on the metaslab's 1676 * range tree which is always accurate when the metaslab is loaded. 1677 */ 1678 static uint64_t 1679 metaslab_weight_from_range_tree(metaslab_t *msp) 1680 { 1681 uint64_t weight = 0; 1682 uint32_t segments = 0; 1683 1684 ASSERT(msp->ms_loaded); 1685 1686 for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT; 1687 i--) { 1688 uint8_t shift = msp->ms_group->mg_vd->vdev_ashift; 1689 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1; 1690 1691 segments <<= 1; 1692 segments += msp->ms_tree->rt_histogram[i]; 1693 1694 /* 1695 * The range tree provides more precision than the space map 1696 * and must be downgraded so that all values fit within the 1697 * space map's histogram. This allows us to compare loaded 1698 * vs. unloaded metaslabs to determine which metaslab is 1699 * considered "best". 1700 */ 1701 if (i > max_idx) 1702 continue; 1703 1704 if (segments != 0) { 1705 WEIGHT_SET_COUNT(weight, segments); 1706 WEIGHT_SET_INDEX(weight, i); 1707 WEIGHT_SET_ACTIVE(weight, 0); 1708 break; 1709 } 1710 } 1711 return (weight); 1712 } 1713 1714 /* 1715 * Calculate the weight based on the on-disk histogram. This should only 1716 * be called after a sync pass has completely finished since the on-disk 1717 * information is updated in metaslab_sync(). 1718 */ 1719 static uint64_t 1720 metaslab_weight_from_spacemap(metaslab_t *msp) 1721 { 1722 uint64_t weight = 0; 1723 1724 for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) { 1725 if (msp->ms_sm->sm_phys->smp_histogram[i] != 0) { 1726 WEIGHT_SET_COUNT(weight, 1727 msp->ms_sm->sm_phys->smp_histogram[i]); 1728 WEIGHT_SET_INDEX(weight, i + 1729 msp->ms_sm->sm_shift); 1730 WEIGHT_SET_ACTIVE(weight, 0); 1731 break; 1732 } 1733 } 1734 return (weight); 1735 } 1736 1737 /* 1738 * Compute a segment-based weight for the specified metaslab. The weight 1739 * is determined by highest bucket in the histogram. The information 1740 * for the highest bucket is encoded into the weight value. 1741 */ 1742 static uint64_t 1743 metaslab_segment_weight(metaslab_t *msp) 1744 { 1745 metaslab_group_t *mg = msp->ms_group; 1746 uint64_t weight = 0; 1747 uint8_t shift = mg->mg_vd->vdev_ashift; 1748 1749 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1750 1751 /* 1752 * The metaslab is completely free. 1753 */ 1754 if (space_map_allocated(msp->ms_sm) == 0) { 1755 int idx = highbit64(msp->ms_size) - 1; 1756 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1; 1757 1758 if (idx < max_idx) { 1759 WEIGHT_SET_COUNT(weight, 1ULL); 1760 WEIGHT_SET_INDEX(weight, idx); 1761 } else { 1762 WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx)); 1763 WEIGHT_SET_INDEX(weight, max_idx); 1764 } 1765 WEIGHT_SET_ACTIVE(weight, 0); 1766 ASSERT(!WEIGHT_IS_SPACEBASED(weight)); 1767 1768 return (weight); 1769 } 1770 1771 ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t)); 1772 1773 /* 1774 * If the metaslab is fully allocated then just make the weight 0. 1775 */ 1776 if (space_map_allocated(msp->ms_sm) == msp->ms_size) 1777 return (0); 1778 /* 1779 * If the metaslab is already loaded, then use the range tree to 1780 * determine the weight. Otherwise, we rely on the space map information 1781 * to generate the weight. 1782 */ 1783 if (msp->ms_loaded) { 1784 weight = metaslab_weight_from_range_tree(msp); 1785 } else { 1786 weight = metaslab_weight_from_spacemap(msp); 1787 } 1788 1789 /* 1790 * If the metaslab was active the last time we calculated its weight 1791 * then keep it active. We want to consume the entire region that 1792 * is associated with this weight. 1793 */ 1794 if (msp->ms_activation_weight != 0 && weight != 0) 1795 WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight)); 1796 return (weight); 1797 } 1798 1799 /* 1800 * Determine if we should attempt to allocate from this metaslab. If the 1801 * metaslab has a maximum size then we can quickly determine if the desired 1802 * allocation size can be satisfied. Otherwise, if we're using segment-based 1803 * weighting then we can determine the maximum allocation that this metaslab 1804 * can accommodate based on the index encoded in the weight. If we're using 1805 * space-based weights then rely on the entire weight (excluding the weight 1806 * type bit). 1807 */ 1808 boolean_t 1809 metaslab_should_allocate(metaslab_t *msp, uint64_t asize) 1810 { 1811 boolean_t should_allocate; 1812 1813 if (msp->ms_max_size != 0) 1814 return (msp->ms_max_size >= asize); 1815 1816 if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) { 1817 /* 1818 * The metaslab segment weight indicates segments in the 1819 * range [2^i, 2^(i+1)), where i is the index in the weight. 1820 * Since the asize might be in the middle of the range, we 1821 * should attempt the allocation if asize < 2^(i+1). 1822 */ 1823 should_allocate = (asize < 1824 1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1)); 1825 } else { 1826 should_allocate = (asize <= 1827 (msp->ms_weight & ~METASLAB_WEIGHT_TYPE)); 1828 } 1829 return (should_allocate); 1830 } 1831 1832 static uint64_t 1833 metaslab_weight(metaslab_t *msp) 1834 { 1835 vdev_t *vd = msp->ms_group->mg_vd; 1836 spa_t *spa = vd->vdev_spa; 1837 uint64_t weight; 1838 1839 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1840 1841 /* 1842 * This vdev is in the process of being removed so there is nothing 1843 * for us to do here. 1844 */ 1845 if (vd->vdev_removing) { 1846 ASSERT0(space_map_allocated(msp->ms_sm)); 1847 ASSERT0(vd->vdev_ms_shift); 1848 return (0); 1849 } 1850 1851 metaslab_set_fragmentation(msp); 1852 1853 /* 1854 * Update the maximum size if the metaslab is loaded. This will 1855 * ensure that we get an accurate maximum size if newly freed space 1856 * has been added back into the free tree. 1857 */ 1858 if (msp->ms_loaded) 1859 msp->ms_max_size = metaslab_block_maxsize(msp); 1860 1861 /* 1862 * Segment-based weighting requires space map histogram support. 1863 */ 1864 if (zfs_metaslab_segment_weight_enabled && 1865 spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) && 1866 (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size == 1867 sizeof (space_map_phys_t))) { 1868 weight = metaslab_segment_weight(msp); 1869 } else { 1870 weight = metaslab_space_weight(msp); 1871 } 1872 return (weight); 1873 } 1874 1875 static int 1876 metaslab_activate(metaslab_t *msp, uint64_t activation_weight) 1877 { 1878 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1879 1880 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) { 1881 metaslab_load_wait(msp); 1882 if (!msp->ms_loaded) { 1883 int error = metaslab_load(msp); 1884 if (error) { 1885 metaslab_group_sort(msp->ms_group, msp, 0); 1886 return (error); 1887 } 1888 } 1889 1890 msp->ms_activation_weight = msp->ms_weight; 1891 metaslab_group_sort(msp->ms_group, msp, 1892 msp->ms_weight | activation_weight); 1893 } 1894 ASSERT(msp->ms_loaded); 1895 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 1896 1897 return (0); 1898 } 1899 1900 static void 1901 metaslab_passivate(metaslab_t *msp, uint64_t weight) 1902 { 1903 uint64_t size = weight & ~METASLAB_WEIGHT_TYPE; 1904 1905 /* 1906 * If size < SPA_MINBLOCKSIZE, then we will not allocate from 1907 * this metaslab again. In that case, it had better be empty, 1908 * or we would be leaving space on the table. 1909 */ 1910 ASSERT(size >= SPA_MINBLOCKSIZE || 1911 range_tree_space(msp->ms_tree) == 0); 1912 ASSERT0(weight & METASLAB_ACTIVE_MASK); 1913 1914 msp->ms_activation_weight = 0; 1915 metaslab_group_sort(msp->ms_group, msp, weight); 1916 ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0); 1917 } 1918 1919 /* 1920 * Segment-based metaslabs are activated once and remain active until 1921 * we either fail an allocation attempt (similar to space-based metaslabs) 1922 * or have exhausted the free space in zfs_metaslab_switch_threshold 1923 * buckets since the metaslab was activated. This function checks to see 1924 * if we've exhaused the zfs_metaslab_switch_threshold buckets in the 1925 * metaslab and passivates it proactively. This will allow us to select a 1926 * metaslabs with larger contiguous region if any remaining within this 1927 * metaslab group. If we're in sync pass > 1, then we continue using this 1928 * metaslab so that we don't dirty more block and cause more sync passes. 1929 */ 1930 void 1931 metaslab_segment_may_passivate(metaslab_t *msp) 1932 { 1933 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 1934 1935 if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1) 1936 return; 1937 1938 /* 1939 * Since we are in the middle of a sync pass, the most accurate 1940 * information that is accessible to us is the in-core range tree 1941 * histogram; calculate the new weight based on that information. 1942 */ 1943 uint64_t weight = metaslab_weight_from_range_tree(msp); 1944 int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight); 1945 int current_idx = WEIGHT_GET_INDEX(weight); 1946 1947 if (current_idx <= activation_idx - zfs_metaslab_switch_threshold) 1948 metaslab_passivate(msp, weight); 1949 } 1950 1951 static void 1952 metaslab_preload(void *arg) 1953 { 1954 metaslab_t *msp = arg; 1955 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 1956 1957 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock)); 1958 1959 mutex_enter(&msp->ms_lock); 1960 metaslab_load_wait(msp); 1961 if (!msp->ms_loaded) 1962 (void) metaslab_load(msp); 1963 msp->ms_selected_txg = spa_syncing_txg(spa); 1964 mutex_exit(&msp->ms_lock); 1965 } 1966 1967 static void 1968 metaslab_group_preload(metaslab_group_t *mg) 1969 { 1970 spa_t *spa = mg->mg_vd->vdev_spa; 1971 metaslab_t *msp; 1972 avl_tree_t *t = &mg->mg_metaslab_tree; 1973 int m = 0; 1974 1975 if (spa_shutting_down(spa) || !metaslab_preload_enabled) { 1976 taskq_wait(mg->mg_taskq); 1977 return; 1978 } 1979 1980 mutex_enter(&mg->mg_lock); 1981 /* 1982 * Load the next potential metaslabs 1983 */ 1984 for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) { 1985 /* 1986 * We preload only the maximum number of metaslabs specified 1987 * by metaslab_preload_limit. If a metaslab is being forced 1988 * to condense then we preload it too. This will ensure 1989 * that force condensing happens in the next txg. 1990 */ 1991 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) { 1992 continue; 1993 } 1994 1995 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload, 1996 msp, TQ_SLEEP) != NULL); 1997 } 1998 mutex_exit(&mg->mg_lock); 1999 } 2000 2001 /* 2002 * Determine if the space map's on-disk footprint is past our tolerance 2003 * for inefficiency. We would like to use the following criteria to make 2004 * our decision: 2005 * 2006 * 1. The size of the space map object should not dramatically increase as a 2007 * result of writing out the free space range tree. 2008 * 2009 * 2. The minimal on-disk space map representation is zfs_condense_pct/100 2010 * times the size than the free space range tree representation 2011 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, minimal = 1.1.MB). 2012 * 2013 * 3. The on-disk size of the space map should actually decrease. 2014 * 2015 * Checking the first condition is tricky since we don't want to walk 2016 * the entire AVL tree calculating the estimated on-disk size. Instead we 2017 * use the size-ordered range tree in the metaslab and calculate the 2018 * size required to write out the largest segment in our free tree. If the 2019 * size required to represent that segment on disk is larger than the space 2020 * map object then we avoid condensing this map. 2021 * 2022 * To determine the second criterion we use a best-case estimate and assume 2023 * each segment can be represented on-disk as a single 64-bit entry. We refer 2024 * to this best-case estimate as the space map's minimal form. 2025 * 2026 * Unfortunately, we cannot compute the on-disk size of the space map in this 2027 * context because we cannot accurately compute the effects of compression, etc. 2028 * Instead, we apply the heuristic described in the block comment for 2029 * zfs_metaslab_condense_block_threshold - we only condense if the space used 2030 * is greater than a threshold number of blocks. 2031 */ 2032 static boolean_t 2033 metaslab_should_condense(metaslab_t *msp) 2034 { 2035 space_map_t *sm = msp->ms_sm; 2036 range_seg_t *rs; 2037 uint64_t size, entries, segsz, object_size, optimal_size, record_size; 2038 dmu_object_info_t doi; 2039 uint64_t vdev_blocksize = 1 << msp->ms_group->mg_vd->vdev_ashift; 2040 2041 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2042 ASSERT(msp->ms_loaded); 2043 2044 /* 2045 * Use the ms_size_tree range tree, which is ordered by size, to 2046 * obtain the largest segment in the free tree. We always condense 2047 * metaslabs that are empty and metaslabs for which a condense 2048 * request has been made. 2049 */ 2050 rs = avl_last(&msp->ms_size_tree); 2051 if (rs == NULL || msp->ms_condense_wanted) 2052 return (B_TRUE); 2053 2054 /* 2055 * Calculate the number of 64-bit entries this segment would 2056 * require when written to disk. If this single segment would be 2057 * larger on-disk than the entire current on-disk structure, then 2058 * clearly condensing will increase the on-disk structure size. 2059 */ 2060 size = (rs->rs_end - rs->rs_start) >> sm->sm_shift; 2061 entries = size / (MIN(size, SM_RUN_MAX)); 2062 segsz = entries * sizeof (uint64_t); 2063 2064 optimal_size = sizeof (uint64_t) * avl_numnodes(&msp->ms_tree->rt_root); 2065 object_size = space_map_length(msp->ms_sm); 2066 2067 dmu_object_info_from_db(sm->sm_dbuf, &doi); 2068 record_size = MAX(doi.doi_data_block_size, vdev_blocksize); 2069 2070 return (segsz <= object_size && 2071 object_size >= (optimal_size * zfs_condense_pct / 100) && 2072 object_size > zfs_metaslab_condense_block_threshold * record_size); 2073 } 2074 2075 /* 2076 * Condense the on-disk space map representation to its minimized form. 2077 * The minimized form consists of a small number of allocations followed by 2078 * the entries of the free range tree. 2079 */ 2080 static void 2081 metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx) 2082 { 2083 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2084 range_tree_t *condense_tree; 2085 space_map_t *sm = msp->ms_sm; 2086 2087 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2088 ASSERT3U(spa_sync_pass(spa), ==, 1); 2089 ASSERT(msp->ms_loaded); 2090 2091 2092 spa_dbgmsg(spa, "condensing: txg %llu, msp[%llu] %p, vdev id %llu, " 2093 "spa %s, smp size %llu, segments %lu, forcing condense=%s", txg, 2094 msp->ms_id, msp, msp->ms_group->mg_vd->vdev_id, 2095 msp->ms_group->mg_vd->vdev_spa->spa_name, 2096 space_map_length(msp->ms_sm), avl_numnodes(&msp->ms_tree->rt_root), 2097 msp->ms_condense_wanted ? "TRUE" : "FALSE"); 2098 2099 msp->ms_condense_wanted = B_FALSE; 2100 2101 /* 2102 * Create an range tree that is 100% allocated. We remove segments 2103 * that have been freed in this txg, any deferred frees that exist, 2104 * and any allocation in the future. Removing segments should be 2105 * a relatively inexpensive operation since we expect these trees to 2106 * have a small number of nodes. 2107 */ 2108 condense_tree = range_tree_create(NULL, NULL, &msp->ms_lock); 2109 range_tree_add(condense_tree, msp->ms_start, msp->ms_size); 2110 2111 /* 2112 * Remove what's been freed in this txg from the condense_tree. 2113 * Since we're in sync_pass 1, we know that all the frees from 2114 * this txg are in the freeingtree. 2115 */ 2116 range_tree_walk(msp->ms_freeingtree, range_tree_remove, condense_tree); 2117 2118 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2119 range_tree_walk(msp->ms_defertree[t], 2120 range_tree_remove, condense_tree); 2121 } 2122 2123 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) { 2124 range_tree_walk(msp->ms_alloctree[(txg + t) & TXG_MASK], 2125 range_tree_remove, condense_tree); 2126 } 2127 2128 /* 2129 * We're about to drop the metaslab's lock thus allowing 2130 * other consumers to change it's content. Set the 2131 * metaslab's ms_condensing flag to ensure that 2132 * allocations on this metaslab do not occur while we're 2133 * in the middle of committing it to disk. This is only critical 2134 * for the ms_tree as all other range trees use per txg 2135 * views of their content. 2136 */ 2137 msp->ms_condensing = B_TRUE; 2138 2139 mutex_exit(&msp->ms_lock); 2140 space_map_truncate(sm, tx); 2141 mutex_enter(&msp->ms_lock); 2142 2143 /* 2144 * While we would ideally like to create a space map representation 2145 * that consists only of allocation records, doing so can be 2146 * prohibitively expensive because the in-core free tree can be 2147 * large, and therefore computationally expensive to subtract 2148 * from the condense_tree. Instead we sync out two trees, a cheap 2149 * allocation only tree followed by the in-core free tree. While not 2150 * optimal, this is typically close to optimal, and much cheaper to 2151 * compute. 2152 */ 2153 space_map_write(sm, condense_tree, SM_ALLOC, tx); 2154 range_tree_vacate(condense_tree, NULL, NULL); 2155 range_tree_destroy(condense_tree); 2156 2157 space_map_write(sm, msp->ms_tree, SM_FREE, tx); 2158 msp->ms_condensing = B_FALSE; 2159 } 2160 2161 /* 2162 * Write a metaslab to disk in the context of the specified transaction group. 2163 */ 2164 void 2165 metaslab_sync(metaslab_t *msp, uint64_t txg) 2166 { 2167 metaslab_group_t *mg = msp->ms_group; 2168 vdev_t *vd = mg->mg_vd; 2169 spa_t *spa = vd->vdev_spa; 2170 objset_t *mos = spa_meta_objset(spa); 2171 range_tree_t *alloctree = msp->ms_alloctree[txg & TXG_MASK]; 2172 dmu_tx_t *tx; 2173 uint64_t object = space_map_object(msp->ms_sm); 2174 2175 ASSERT(!vd->vdev_ishole); 2176 2177 /* 2178 * This metaslab has just been added so there's no work to do now. 2179 */ 2180 if (msp->ms_freeingtree == NULL) { 2181 ASSERT3P(alloctree, ==, NULL); 2182 return; 2183 } 2184 2185 ASSERT3P(alloctree, !=, NULL); 2186 ASSERT3P(msp->ms_freeingtree, !=, NULL); 2187 ASSERT3P(msp->ms_freedtree, !=, NULL); 2188 2189 /* 2190 * Normally, we don't want to process a metaslab if there 2191 * are no allocations or frees to perform. However, if the metaslab 2192 * is being forced to condense we need to let it through. 2193 */ 2194 if (range_tree_space(alloctree) == 0 && 2195 range_tree_space(msp->ms_freeingtree) == 0 && 2196 !msp->ms_condense_wanted) 2197 return; 2198 2199 /* 2200 * The only state that can actually be changing concurrently with 2201 * metaslab_sync() is the metaslab's ms_tree. No other thread can 2202 * be modifying this txg's alloctree, freeingtree, freedtree, or 2203 * space_map_phys_t. Therefore, we only hold ms_lock to satify 2204 * space map ASSERTs. We drop it whenever we call into the DMU, 2205 * because the DMU can call down to us (e.g. via zio_free()) at 2206 * any time. 2207 */ 2208 2209 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 2210 2211 if (msp->ms_sm == NULL) { 2212 uint64_t new_object; 2213 2214 new_object = space_map_alloc(mos, tx); 2215 VERIFY3U(new_object, !=, 0); 2216 2217 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object, 2218 msp->ms_start, msp->ms_size, vd->vdev_ashift, 2219 &msp->ms_lock)); 2220 ASSERT(msp->ms_sm != NULL); 2221 } 2222 2223 mutex_enter(&msp->ms_lock); 2224 2225 /* 2226 * Note: metaslab_condense() clears the space map's histogram. 2227 * Therefore we must verify and remove this histogram before 2228 * condensing. 2229 */ 2230 metaslab_group_histogram_verify(mg); 2231 metaslab_class_histogram_verify(mg->mg_class); 2232 metaslab_group_histogram_remove(mg, msp); 2233 2234 if (msp->ms_loaded && spa_sync_pass(spa) == 1 && 2235 metaslab_should_condense(msp)) { 2236 metaslab_condense(msp, txg, tx); 2237 } else { 2238 space_map_write(msp->ms_sm, alloctree, SM_ALLOC, tx); 2239 space_map_write(msp->ms_sm, msp->ms_freeingtree, SM_FREE, tx); 2240 } 2241 2242 if (msp->ms_loaded) { 2243 /* 2244 * When the space map is loaded, we have an accruate 2245 * histogram in the range tree. This gives us an opportunity 2246 * to bring the space map's histogram up-to-date so we clear 2247 * it first before updating it. 2248 */ 2249 space_map_histogram_clear(msp->ms_sm); 2250 space_map_histogram_add(msp->ms_sm, msp->ms_tree, tx); 2251 2252 /* 2253 * Since we've cleared the histogram we need to add back 2254 * any free space that has already been processed, plus 2255 * any deferred space. This allows the on-disk histogram 2256 * to accurately reflect all free space even if some space 2257 * is not yet available for allocation (i.e. deferred). 2258 */ 2259 space_map_histogram_add(msp->ms_sm, msp->ms_freedtree, tx); 2260 2261 /* 2262 * Add back any deferred free space that has not been 2263 * added back into the in-core free tree yet. This will 2264 * ensure that we don't end up with a space map histogram 2265 * that is completely empty unless the metaslab is fully 2266 * allocated. 2267 */ 2268 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2269 space_map_histogram_add(msp->ms_sm, 2270 msp->ms_defertree[t], tx); 2271 } 2272 } 2273 2274 /* 2275 * Always add the free space from this sync pass to the space 2276 * map histogram. We want to make sure that the on-disk histogram 2277 * accounts for all free space. If the space map is not loaded, 2278 * then we will lose some accuracy but will correct it the next 2279 * time we load the space map. 2280 */ 2281 space_map_histogram_add(msp->ms_sm, msp->ms_freeingtree, tx); 2282 2283 metaslab_group_histogram_add(mg, msp); 2284 metaslab_group_histogram_verify(mg); 2285 metaslab_class_histogram_verify(mg->mg_class); 2286 2287 /* 2288 * For sync pass 1, we avoid traversing this txg's free range tree 2289 * and instead will just swap the pointers for freeingtree and 2290 * freedtree. We can safely do this since the freed_tree is 2291 * guaranteed to be empty on the initial pass. 2292 */ 2293 if (spa_sync_pass(spa) == 1) { 2294 range_tree_swap(&msp->ms_freeingtree, &msp->ms_freedtree); 2295 } else { 2296 range_tree_vacate(msp->ms_freeingtree, 2297 range_tree_add, msp->ms_freedtree); 2298 } 2299 range_tree_vacate(alloctree, NULL, NULL); 2300 2301 ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK])); 2302 ASSERT0(range_tree_space(msp->ms_alloctree[TXG_CLEAN(txg) & TXG_MASK])); 2303 ASSERT0(range_tree_space(msp->ms_freeingtree)); 2304 2305 mutex_exit(&msp->ms_lock); 2306 2307 if (object != space_map_object(msp->ms_sm)) { 2308 object = space_map_object(msp->ms_sm); 2309 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) * 2310 msp->ms_id, sizeof (uint64_t), &object, tx); 2311 } 2312 dmu_tx_commit(tx); 2313 } 2314 2315 /* 2316 * Called after a transaction group has completely synced to mark 2317 * all of the metaslab's free space as usable. 2318 */ 2319 void 2320 metaslab_sync_done(metaslab_t *msp, uint64_t txg) 2321 { 2322 metaslab_group_t *mg = msp->ms_group; 2323 vdev_t *vd = mg->mg_vd; 2324 spa_t *spa = vd->vdev_spa; 2325 range_tree_t **defer_tree; 2326 int64_t alloc_delta, defer_delta; 2327 boolean_t defer_allowed = B_TRUE; 2328 2329 ASSERT(!vd->vdev_ishole); 2330 2331 mutex_enter(&msp->ms_lock); 2332 2333 /* 2334 * If this metaslab is just becoming available, initialize its 2335 * range trees and add its capacity to the vdev. 2336 */ 2337 if (msp->ms_freedtree == NULL) { 2338 for (int t = 0; t < TXG_SIZE; t++) { 2339 ASSERT(msp->ms_alloctree[t] == NULL); 2340 2341 msp->ms_alloctree[t] = range_tree_create(NULL, msp, 2342 &msp->ms_lock); 2343 } 2344 2345 ASSERT3P(msp->ms_freeingtree, ==, NULL); 2346 msp->ms_freeingtree = range_tree_create(NULL, msp, 2347 &msp->ms_lock); 2348 2349 ASSERT3P(msp->ms_freedtree, ==, NULL); 2350 msp->ms_freedtree = range_tree_create(NULL, msp, 2351 &msp->ms_lock); 2352 2353 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2354 ASSERT(msp->ms_defertree[t] == NULL); 2355 2356 msp->ms_defertree[t] = range_tree_create(NULL, msp, 2357 &msp->ms_lock); 2358 } 2359 2360 vdev_space_update(vd, 0, 0, msp->ms_size); 2361 } 2362 2363 defer_tree = &msp->ms_defertree[txg % TXG_DEFER_SIZE]; 2364 2365 uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) - 2366 metaslab_class_get_alloc(spa_normal_class(spa)); 2367 if (free_space <= spa_get_slop_space(spa)) { 2368 defer_allowed = B_FALSE; 2369 } 2370 2371 defer_delta = 0; 2372 alloc_delta = space_map_alloc_delta(msp->ms_sm); 2373 if (defer_allowed) { 2374 defer_delta = range_tree_space(msp->ms_freedtree) - 2375 range_tree_space(*defer_tree); 2376 } else { 2377 defer_delta -= range_tree_space(*defer_tree); 2378 } 2379 2380 vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0); 2381 2382 /* 2383 * If there's a metaslab_load() in progress, wait for it to complete 2384 * so that we have a consistent view of the in-core space map. 2385 */ 2386 metaslab_load_wait(msp); 2387 2388 /* 2389 * Move the frees from the defer_tree back to the free 2390 * range tree (if it's loaded). Swap the freed_tree and the 2391 * defer_tree -- this is safe to do because we've just emptied out 2392 * the defer_tree. 2393 */ 2394 range_tree_vacate(*defer_tree, 2395 msp->ms_loaded ? range_tree_add : NULL, msp->ms_tree); 2396 if (defer_allowed) { 2397 range_tree_swap(&msp->ms_freedtree, defer_tree); 2398 } else { 2399 range_tree_vacate(msp->ms_freedtree, 2400 msp->ms_loaded ? range_tree_add : NULL, msp->ms_tree); 2401 } 2402 2403 space_map_update(msp->ms_sm); 2404 2405 msp->ms_deferspace += defer_delta; 2406 ASSERT3S(msp->ms_deferspace, >=, 0); 2407 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size); 2408 if (msp->ms_deferspace != 0) { 2409 /* 2410 * Keep syncing this metaslab until all deferred frees 2411 * are back in circulation. 2412 */ 2413 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1); 2414 } 2415 2416 /* 2417 * Calculate the new weights before unloading any metaslabs. 2418 * This will give us the most accurate weighting. 2419 */ 2420 metaslab_group_sort(mg, msp, metaslab_weight(msp)); 2421 2422 /* 2423 * If the metaslab is loaded and we've not tried to load or allocate 2424 * from it in 'metaslab_unload_delay' txgs, then unload it. 2425 */ 2426 if (msp->ms_loaded && 2427 msp->ms_selected_txg + metaslab_unload_delay < txg) { 2428 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) { 2429 VERIFY0(range_tree_space( 2430 msp->ms_alloctree[(txg + t) & TXG_MASK])); 2431 } 2432 2433 if (!metaslab_debug_unload) 2434 metaslab_unload(msp); 2435 } 2436 2437 mutex_exit(&msp->ms_lock); 2438 } 2439 2440 void 2441 metaslab_sync_reassess(metaslab_group_t *mg) 2442 { 2443 metaslab_group_alloc_update(mg); 2444 mg->mg_fragmentation = metaslab_group_fragmentation(mg); 2445 2446 /* 2447 * Preload the next potential metaslabs 2448 */ 2449 metaslab_group_preload(mg); 2450 } 2451 2452 static uint64_t 2453 metaslab_distance(metaslab_t *msp, dva_t *dva) 2454 { 2455 uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift; 2456 uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift; 2457 uint64_t start = msp->ms_id; 2458 2459 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva)) 2460 return (1ULL << 63); 2461 2462 if (offset < start) 2463 return ((start - offset) << ms_shift); 2464 if (offset > start) 2465 return ((offset - start) << ms_shift); 2466 return (0); 2467 } 2468 2469 /* 2470 * ========================================================================== 2471 * Metaslab allocation tracing facility 2472 * ========================================================================== 2473 */ 2474 kstat_t *metaslab_trace_ksp; 2475 kstat_named_t metaslab_trace_over_limit; 2476 2477 void 2478 metaslab_alloc_trace_init(void) 2479 { 2480 ASSERT(metaslab_alloc_trace_cache == NULL); 2481 metaslab_alloc_trace_cache = kmem_cache_create( 2482 "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t), 2483 0, NULL, NULL, NULL, NULL, NULL, 0); 2484 metaslab_trace_ksp = kstat_create("zfs", 0, "metaslab_trace_stats", 2485 "misc", KSTAT_TYPE_NAMED, 1, KSTAT_FLAG_VIRTUAL); 2486 if (metaslab_trace_ksp != NULL) { 2487 metaslab_trace_ksp->ks_data = &metaslab_trace_over_limit; 2488 kstat_named_init(&metaslab_trace_over_limit, 2489 "metaslab_trace_over_limit", KSTAT_DATA_UINT64); 2490 kstat_install(metaslab_trace_ksp); 2491 } 2492 } 2493 2494 void 2495 metaslab_alloc_trace_fini(void) 2496 { 2497 if (metaslab_trace_ksp != NULL) { 2498 kstat_delete(metaslab_trace_ksp); 2499 metaslab_trace_ksp = NULL; 2500 } 2501 kmem_cache_destroy(metaslab_alloc_trace_cache); 2502 metaslab_alloc_trace_cache = NULL; 2503 } 2504 2505 /* 2506 * Add an allocation trace element to the allocation tracing list. 2507 */ 2508 static void 2509 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg, 2510 metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset) 2511 { 2512 if (!metaslab_trace_enabled) 2513 return; 2514 2515 /* 2516 * When the tracing list reaches its maximum we remove 2517 * the second element in the list before adding a new one. 2518 * By removing the second element we preserve the original 2519 * entry as a clue to what allocations steps have already been 2520 * performed. 2521 */ 2522 if (zal->zal_size == metaslab_trace_max_entries) { 2523 metaslab_alloc_trace_t *mat_next; 2524 #ifdef DEBUG 2525 panic("too many entries in allocation list"); 2526 #endif 2527 atomic_inc_64(&metaslab_trace_over_limit.value.ui64); 2528 zal->zal_size--; 2529 mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list)); 2530 list_remove(&zal->zal_list, mat_next); 2531 kmem_cache_free(metaslab_alloc_trace_cache, mat_next); 2532 } 2533 2534 metaslab_alloc_trace_t *mat = 2535 kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP); 2536 list_link_init(&mat->mat_list_node); 2537 mat->mat_mg = mg; 2538 mat->mat_msp = msp; 2539 mat->mat_size = psize; 2540 mat->mat_dva_id = dva_id; 2541 mat->mat_offset = offset; 2542 mat->mat_weight = 0; 2543 2544 if (msp != NULL) 2545 mat->mat_weight = msp->ms_weight; 2546 2547 /* 2548 * The list is part of the zio so locking is not required. Only 2549 * a single thread will perform allocations for a given zio. 2550 */ 2551 list_insert_tail(&zal->zal_list, mat); 2552 zal->zal_size++; 2553 2554 ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries); 2555 } 2556 2557 void 2558 metaslab_trace_init(zio_alloc_list_t *zal) 2559 { 2560 list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t), 2561 offsetof(metaslab_alloc_trace_t, mat_list_node)); 2562 zal->zal_size = 0; 2563 } 2564 2565 void 2566 metaslab_trace_fini(zio_alloc_list_t *zal) 2567 { 2568 metaslab_alloc_trace_t *mat; 2569 2570 while ((mat = list_remove_head(&zal->zal_list)) != NULL) 2571 kmem_cache_free(metaslab_alloc_trace_cache, mat); 2572 list_destroy(&zal->zal_list); 2573 zal->zal_size = 0; 2574 } 2575 2576 /* 2577 * ========================================================================== 2578 * Metaslab block operations 2579 * ========================================================================== 2580 */ 2581 2582 static void 2583 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, void *tag, int flags) 2584 { 2585 if (!(flags & METASLAB_ASYNC_ALLOC) || 2586 flags & METASLAB_DONT_THROTTLE) 2587 return; 2588 2589 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 2590 if (!mg->mg_class->mc_alloc_throttle_enabled) 2591 return; 2592 2593 (void) refcount_add(&mg->mg_alloc_queue_depth, tag); 2594 } 2595 2596 void 2597 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, void *tag, int flags) 2598 { 2599 if (!(flags & METASLAB_ASYNC_ALLOC) || 2600 flags & METASLAB_DONT_THROTTLE) 2601 return; 2602 2603 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 2604 if (!mg->mg_class->mc_alloc_throttle_enabled) 2605 return; 2606 2607 (void) refcount_remove(&mg->mg_alloc_queue_depth, tag); 2608 } 2609 2610 void 2611 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, void *tag) 2612 { 2613 #ifdef ZFS_DEBUG 2614 const dva_t *dva = bp->blk_dva; 2615 int ndvas = BP_GET_NDVAS(bp); 2616 2617 for (int d = 0; d < ndvas; d++) { 2618 uint64_t vdev = DVA_GET_VDEV(&dva[d]); 2619 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 2620 VERIFY(refcount_not_held(&mg->mg_alloc_queue_depth, tag)); 2621 } 2622 #endif 2623 } 2624 2625 static uint64_t 2626 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg) 2627 { 2628 uint64_t start; 2629 range_tree_t *rt = msp->ms_tree; 2630 metaslab_class_t *mc = msp->ms_group->mg_class; 2631 2632 VERIFY(!msp->ms_condensing); 2633 2634 start = mc->mc_ops->msop_alloc(msp, size); 2635 if (start != -1ULL) { 2636 metaslab_group_t *mg = msp->ms_group; 2637 vdev_t *vd = mg->mg_vd; 2638 2639 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift)); 2640 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 2641 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size); 2642 range_tree_remove(rt, start, size); 2643 2644 if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0) 2645 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg); 2646 2647 range_tree_add(msp->ms_alloctree[txg & TXG_MASK], start, size); 2648 2649 /* Track the last successful allocation */ 2650 msp->ms_alloc_txg = txg; 2651 metaslab_verify_space(msp, txg); 2652 } 2653 2654 /* 2655 * Now that we've attempted the allocation we need to update the 2656 * metaslab's maximum block size since it may have changed. 2657 */ 2658 msp->ms_max_size = metaslab_block_maxsize(msp); 2659 return (start); 2660 } 2661 2662 static uint64_t 2663 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal, 2664 uint64_t asize, uint64_t txg, uint64_t min_distance, dva_t *dva, int d) 2665 { 2666 metaslab_t *msp = NULL; 2667 uint64_t offset = -1ULL; 2668 uint64_t activation_weight; 2669 uint64_t target_distance; 2670 int i; 2671 2672 activation_weight = METASLAB_WEIGHT_PRIMARY; 2673 for (i = 0; i < d; i++) { 2674 if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) { 2675 activation_weight = METASLAB_WEIGHT_SECONDARY; 2676 break; 2677 } 2678 } 2679 2680 metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP); 2681 search->ms_weight = UINT64_MAX; 2682 search->ms_start = 0; 2683 for (;;) { 2684 boolean_t was_active; 2685 avl_tree_t *t = &mg->mg_metaslab_tree; 2686 avl_index_t idx; 2687 2688 mutex_enter(&mg->mg_lock); 2689 2690 /* 2691 * Find the metaslab with the highest weight that is less 2692 * than what we've already tried. In the common case, this 2693 * means that we will examine each metaslab at most once. 2694 * Note that concurrent callers could reorder metaslabs 2695 * by activation/passivation once we have dropped the mg_lock. 2696 * If a metaslab is activated by another thread, and we fail 2697 * to allocate from the metaslab we have selected, we may 2698 * not try the newly-activated metaslab, and instead activate 2699 * another metaslab. This is not optimal, but generally 2700 * does not cause any problems (a possible exception being 2701 * if every metaslab is completely full except for the 2702 * the newly-activated metaslab which we fail to examine). 2703 */ 2704 msp = avl_find(t, search, &idx); 2705 if (msp == NULL) 2706 msp = avl_nearest(t, idx, AVL_AFTER); 2707 for (; msp != NULL; msp = AVL_NEXT(t, msp)) { 2708 2709 if (!metaslab_should_allocate(msp, asize)) { 2710 metaslab_trace_add(zal, mg, msp, asize, d, 2711 TRACE_TOO_SMALL); 2712 continue; 2713 } 2714 2715 /* 2716 * If the selected metaslab is condensing, skip it. 2717 */ 2718 if (msp->ms_condensing) 2719 continue; 2720 2721 was_active = msp->ms_weight & METASLAB_ACTIVE_MASK; 2722 if (activation_weight == METASLAB_WEIGHT_PRIMARY) 2723 break; 2724 2725 target_distance = min_distance + 2726 (space_map_allocated(msp->ms_sm) != 0 ? 0 : 2727 min_distance >> 1); 2728 2729 for (i = 0; i < d; i++) { 2730 if (metaslab_distance(msp, &dva[i]) < 2731 target_distance) 2732 break; 2733 } 2734 if (i == d) 2735 break; 2736 } 2737 mutex_exit(&mg->mg_lock); 2738 if (msp == NULL) { 2739 kmem_free(search, sizeof (*search)); 2740 return (-1ULL); 2741 } 2742 search->ms_weight = msp->ms_weight; 2743 search->ms_start = msp->ms_start + 1; 2744 2745 mutex_enter(&msp->ms_lock); 2746 2747 /* 2748 * Ensure that the metaslab we have selected is still 2749 * capable of handling our request. It's possible that 2750 * another thread may have changed the weight while we 2751 * were blocked on the metaslab lock. We check the 2752 * active status first to see if we need to reselect 2753 * a new metaslab. 2754 */ 2755 if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) { 2756 mutex_exit(&msp->ms_lock); 2757 continue; 2758 } 2759 2760 if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) && 2761 activation_weight == METASLAB_WEIGHT_PRIMARY) { 2762 metaslab_passivate(msp, 2763 msp->ms_weight & ~METASLAB_ACTIVE_MASK); 2764 mutex_exit(&msp->ms_lock); 2765 continue; 2766 } 2767 2768 if (metaslab_activate(msp, activation_weight) != 0) { 2769 mutex_exit(&msp->ms_lock); 2770 continue; 2771 } 2772 msp->ms_selected_txg = txg; 2773 2774 /* 2775 * Now that we have the lock, recheck to see if we should 2776 * continue to use this metaslab for this allocation. The 2777 * the metaslab is now loaded so metaslab_should_allocate() can 2778 * accurately determine if the allocation attempt should 2779 * proceed. 2780 */ 2781 if (!metaslab_should_allocate(msp, asize)) { 2782 /* Passivate this metaslab and select a new one. */ 2783 metaslab_trace_add(zal, mg, msp, asize, d, 2784 TRACE_TOO_SMALL); 2785 goto next; 2786 } 2787 2788 /* 2789 * If this metaslab is currently condensing then pick again as 2790 * we can't manipulate this metaslab until it's committed 2791 * to disk. 2792 */ 2793 if (msp->ms_condensing) { 2794 metaslab_trace_add(zal, mg, msp, asize, d, 2795 TRACE_CONDENSING); 2796 mutex_exit(&msp->ms_lock); 2797 continue; 2798 } 2799 2800 offset = metaslab_block_alloc(msp, asize, txg); 2801 metaslab_trace_add(zal, mg, msp, asize, d, offset); 2802 2803 if (offset != -1ULL) { 2804 /* Proactively passivate the metaslab, if needed */ 2805 metaslab_segment_may_passivate(msp); 2806 break; 2807 } 2808 next: 2809 ASSERT(msp->ms_loaded); 2810 2811 /* 2812 * We were unable to allocate from this metaslab so determine 2813 * a new weight for this metaslab. Now that we have loaded 2814 * the metaslab we can provide a better hint to the metaslab 2815 * selector. 2816 * 2817 * For space-based metaslabs, we use the maximum block size. 2818 * This information is only available when the metaslab 2819 * is loaded and is more accurate than the generic free 2820 * space weight that was calculated by metaslab_weight(). 2821 * This information allows us to quickly compare the maximum 2822 * available allocation in the metaslab to the allocation 2823 * size being requested. 2824 * 2825 * For segment-based metaslabs, determine the new weight 2826 * based on the highest bucket in the range tree. We 2827 * explicitly use the loaded segment weight (i.e. the range 2828 * tree histogram) since it contains the space that is 2829 * currently available for allocation and is accurate 2830 * even within a sync pass. 2831 */ 2832 if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) { 2833 uint64_t weight = metaslab_block_maxsize(msp); 2834 WEIGHT_SET_SPACEBASED(weight); 2835 metaslab_passivate(msp, weight); 2836 } else { 2837 metaslab_passivate(msp, 2838 metaslab_weight_from_range_tree(msp)); 2839 } 2840 2841 /* 2842 * We have just failed an allocation attempt, check 2843 * that metaslab_should_allocate() agrees. Otherwise, 2844 * we may end up in an infinite loop retrying the same 2845 * metaslab. 2846 */ 2847 ASSERT(!metaslab_should_allocate(msp, asize)); 2848 mutex_exit(&msp->ms_lock); 2849 } 2850 mutex_exit(&msp->ms_lock); 2851 kmem_free(search, sizeof (*search)); 2852 return (offset); 2853 } 2854 2855 static uint64_t 2856 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal, 2857 uint64_t asize, uint64_t txg, uint64_t min_distance, dva_t *dva, int d) 2858 { 2859 uint64_t offset; 2860 ASSERT(mg->mg_initialized); 2861 2862 offset = metaslab_group_alloc_normal(mg, zal, asize, txg, 2863 min_distance, dva, d); 2864 2865 mutex_enter(&mg->mg_lock); 2866 if (offset == -1ULL) { 2867 mg->mg_failed_allocations++; 2868 metaslab_trace_add(zal, mg, NULL, asize, d, 2869 TRACE_GROUP_FAILURE); 2870 if (asize == SPA_GANGBLOCKSIZE) { 2871 /* 2872 * This metaslab group was unable to allocate 2873 * the minimum gang block size so it must be out of 2874 * space. We must notify the allocation throttle 2875 * to start skipping allocation attempts to this 2876 * metaslab group until more space becomes available. 2877 * Note: this failure cannot be caused by the 2878 * allocation throttle since the allocation throttle 2879 * is only responsible for skipping devices and 2880 * not failing block allocations. 2881 */ 2882 mg->mg_no_free_space = B_TRUE; 2883 } 2884 } 2885 mg->mg_allocations++; 2886 mutex_exit(&mg->mg_lock); 2887 return (offset); 2888 } 2889 2890 /* 2891 * If we have to write a ditto block (i.e. more than one DVA for a given BP) 2892 * on the same vdev as an existing DVA of this BP, then try to allocate it 2893 * at least (vdev_asize / (2 ^ ditto_same_vdev_distance_shift)) away from the 2894 * existing DVAs. 2895 */ 2896 int ditto_same_vdev_distance_shift = 3; 2897 2898 /* 2899 * Allocate a block for the specified i/o. 2900 */ 2901 static int 2902 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize, 2903 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags, 2904 zio_alloc_list_t *zal) 2905 { 2906 metaslab_group_t *mg, *rotor; 2907 vdev_t *vd; 2908 boolean_t try_hard = B_FALSE; 2909 2910 ASSERT(!DVA_IS_VALID(&dva[d])); 2911 2912 /* 2913 * For testing, make some blocks above a certain size be gang blocks. 2914 */ 2915 if (psize >= metaslab_gang_bang && (ddi_get_lbolt() & 3) == 0) { 2916 metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG); 2917 return (SET_ERROR(ENOSPC)); 2918 } 2919 2920 /* 2921 * Start at the rotor and loop through all mgs until we find something. 2922 * Note that there's no locking on mc_rotor or mc_aliquot because 2923 * nothing actually breaks if we miss a few updates -- we just won't 2924 * allocate quite as evenly. It all balances out over time. 2925 * 2926 * If we are doing ditto or log blocks, try to spread them across 2927 * consecutive vdevs. If we're forced to reuse a vdev before we've 2928 * allocated all of our ditto blocks, then try and spread them out on 2929 * that vdev as much as possible. If it turns out to not be possible, 2930 * gradually lower our standards until anything becomes acceptable. 2931 * Also, allocating on consecutive vdevs (as opposed to random vdevs) 2932 * gives us hope of containing our fault domains to something we're 2933 * able to reason about. Otherwise, any two top-level vdev failures 2934 * will guarantee the loss of data. With consecutive allocation, 2935 * only two adjacent top-level vdev failures will result in data loss. 2936 * 2937 * If we are doing gang blocks (hintdva is non-NULL), try to keep 2938 * ourselves on the same vdev as our gang block header. That 2939 * way, we can hope for locality in vdev_cache, plus it makes our 2940 * fault domains something tractable. 2941 */ 2942 if (hintdva) { 2943 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d])); 2944 2945 /* 2946 * It's possible the vdev we're using as the hint no 2947 * longer exists (i.e. removed). Consult the rotor when 2948 * all else fails. 2949 */ 2950 if (vd != NULL) { 2951 mg = vd->vdev_mg; 2952 2953 if (flags & METASLAB_HINTBP_AVOID && 2954 mg->mg_next != NULL) 2955 mg = mg->mg_next; 2956 } else { 2957 mg = mc->mc_rotor; 2958 } 2959 } else if (d != 0) { 2960 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1])); 2961 mg = vd->vdev_mg->mg_next; 2962 } else { 2963 mg = mc->mc_rotor; 2964 } 2965 2966 /* 2967 * If the hint put us into the wrong metaslab class, or into a 2968 * metaslab group that has been passivated, just follow the rotor. 2969 */ 2970 if (mg->mg_class != mc || mg->mg_activation_count <= 0) 2971 mg = mc->mc_rotor; 2972 2973 rotor = mg; 2974 top: 2975 do { 2976 boolean_t allocatable; 2977 2978 ASSERT(mg->mg_activation_count == 1); 2979 vd = mg->mg_vd; 2980 2981 /* 2982 * Don't allocate from faulted devices. 2983 */ 2984 if (try_hard) { 2985 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER); 2986 allocatable = vdev_allocatable(vd); 2987 spa_config_exit(spa, SCL_ZIO, FTAG); 2988 } else { 2989 allocatable = vdev_allocatable(vd); 2990 } 2991 2992 /* 2993 * Determine if the selected metaslab group is eligible 2994 * for allocations. If we're ganging then don't allow 2995 * this metaslab group to skip allocations since that would 2996 * inadvertently return ENOSPC and suspend the pool 2997 * even though space is still available. 2998 */ 2999 if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) { 3000 allocatable = metaslab_group_allocatable(mg, rotor, 3001 psize); 3002 } 3003 3004 if (!allocatable) { 3005 metaslab_trace_add(zal, mg, NULL, psize, d, 3006 TRACE_NOT_ALLOCATABLE); 3007 goto next; 3008 } 3009 3010 ASSERT(mg->mg_initialized); 3011 3012 /* 3013 * Avoid writing single-copy data to a failing, 3014 * non-redundant vdev, unless we've already tried all 3015 * other vdevs. 3016 */ 3017 if ((vd->vdev_stat.vs_write_errors > 0 || 3018 vd->vdev_state < VDEV_STATE_HEALTHY) && 3019 d == 0 && !try_hard && vd->vdev_children == 0) { 3020 metaslab_trace_add(zal, mg, NULL, psize, d, 3021 TRACE_VDEV_ERROR); 3022 goto next; 3023 } 3024 3025 ASSERT(mg->mg_class == mc); 3026 3027 /* 3028 * If we don't need to try hard, then require that the 3029 * block be 1/8th of the device away from any other DVAs 3030 * in this BP. If we are trying hard, allow any offset 3031 * to be used (distance=0). 3032 */ 3033 uint64_t distance = 0; 3034 if (!try_hard) { 3035 distance = vd->vdev_asize >> 3036 ditto_same_vdev_distance_shift; 3037 if (distance <= (1ULL << vd->vdev_ms_shift)) 3038 distance = 0; 3039 } 3040 3041 uint64_t asize = vdev_psize_to_asize(vd, psize); 3042 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0); 3043 3044 uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg, 3045 distance, dva, d); 3046 3047 if (offset != -1ULL) { 3048 /* 3049 * If we've just selected this metaslab group, 3050 * figure out whether the corresponding vdev is 3051 * over- or under-used relative to the pool, 3052 * and set an allocation bias to even it out. 3053 */ 3054 if (mc->mc_aliquot == 0 && metaslab_bias_enabled) { 3055 vdev_stat_t *vs = &vd->vdev_stat; 3056 int64_t vu, cu; 3057 3058 vu = (vs->vs_alloc * 100) / (vs->vs_space + 1); 3059 cu = (mc->mc_alloc * 100) / (mc->mc_space + 1); 3060 3061 /* 3062 * Calculate how much more or less we should 3063 * try to allocate from this device during 3064 * this iteration around the rotor. 3065 * For example, if a device is 80% full 3066 * and the pool is 20% full then we should 3067 * reduce allocations by 60% on this device. 3068 * 3069 * mg_bias = (20 - 80) * 512K / 100 = -307K 3070 * 3071 * This reduces allocations by 307K for this 3072 * iteration. 3073 */ 3074 mg->mg_bias = ((cu - vu) * 3075 (int64_t)mg->mg_aliquot) / 100; 3076 } else if (!metaslab_bias_enabled) { 3077 mg->mg_bias = 0; 3078 } 3079 3080 if (atomic_add_64_nv(&mc->mc_aliquot, asize) >= 3081 mg->mg_aliquot + mg->mg_bias) { 3082 mc->mc_rotor = mg->mg_next; 3083 mc->mc_aliquot = 0; 3084 } 3085 3086 DVA_SET_VDEV(&dva[d], vd->vdev_id); 3087 DVA_SET_OFFSET(&dva[d], offset); 3088 DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER)); 3089 DVA_SET_ASIZE(&dva[d], asize); 3090 3091 return (0); 3092 } 3093 next: 3094 mc->mc_rotor = mg->mg_next; 3095 mc->mc_aliquot = 0; 3096 } while ((mg = mg->mg_next) != rotor); 3097 3098 /* 3099 * If we haven't tried hard, do so now. 3100 */ 3101 if (!try_hard) { 3102 try_hard = B_TRUE; 3103 goto top; 3104 } 3105 3106 bzero(&dva[d], sizeof (dva_t)); 3107 3108 metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC); 3109 return (SET_ERROR(ENOSPC)); 3110 } 3111 3112 /* 3113 * Free the block represented by DVA in the context of the specified 3114 * transaction group. 3115 */ 3116 static void 3117 metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now) 3118 { 3119 uint64_t vdev = DVA_GET_VDEV(dva); 3120 uint64_t offset = DVA_GET_OFFSET(dva); 3121 uint64_t size = DVA_GET_ASIZE(dva); 3122 vdev_t *vd; 3123 metaslab_t *msp; 3124 3125 ASSERT(DVA_IS_VALID(dva)); 3126 3127 if (txg > spa_freeze_txg(spa)) 3128 return; 3129 3130 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || 3131 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) { 3132 cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu", 3133 (u_longlong_t)vdev, (u_longlong_t)offset); 3134 ASSERT(0); 3135 return; 3136 } 3137 3138 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 3139 3140 if (DVA_GET_GANG(dva)) 3141 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 3142 3143 mutex_enter(&msp->ms_lock); 3144 3145 if (now) { 3146 range_tree_remove(msp->ms_alloctree[txg & TXG_MASK], 3147 offset, size); 3148 3149 VERIFY(!msp->ms_condensing); 3150 VERIFY3U(offset, >=, msp->ms_start); 3151 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size); 3152 VERIFY3U(range_tree_space(msp->ms_tree) + size, <=, 3153 msp->ms_size); 3154 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 3155 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 3156 range_tree_add(msp->ms_tree, offset, size); 3157 msp->ms_max_size = metaslab_block_maxsize(msp); 3158 } else { 3159 VERIFY3U(txg, ==, spa->spa_syncing_txg); 3160 if (range_tree_space(msp->ms_freeingtree) == 0) 3161 vdev_dirty(vd, VDD_METASLAB, msp, txg); 3162 range_tree_add(msp->ms_freeingtree, offset, size); 3163 } 3164 3165 mutex_exit(&msp->ms_lock); 3166 } 3167 3168 /* 3169 * Intent log support: upon opening the pool after a crash, notify the SPA 3170 * of blocks that the intent log has allocated for immediate write, but 3171 * which are still considered free by the SPA because the last transaction 3172 * group didn't commit yet. 3173 */ 3174 static int 3175 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg) 3176 { 3177 uint64_t vdev = DVA_GET_VDEV(dva); 3178 uint64_t offset = DVA_GET_OFFSET(dva); 3179 uint64_t size = DVA_GET_ASIZE(dva); 3180 vdev_t *vd; 3181 metaslab_t *msp; 3182 int error = 0; 3183 3184 ASSERT(DVA_IS_VALID(dva)); 3185 3186 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || 3187 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) 3188 return (SET_ERROR(ENXIO)); 3189 3190 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 3191 3192 if (DVA_GET_GANG(dva)) 3193 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 3194 3195 mutex_enter(&msp->ms_lock); 3196 3197 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) 3198 error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY); 3199 3200 if (error == 0 && !range_tree_contains(msp->ms_tree, offset, size)) 3201 error = SET_ERROR(ENOENT); 3202 3203 if (error || txg == 0) { /* txg == 0 indicates dry run */ 3204 mutex_exit(&msp->ms_lock); 3205 return (error); 3206 } 3207 3208 VERIFY(!msp->ms_condensing); 3209 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 3210 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 3211 VERIFY3U(range_tree_space(msp->ms_tree) - size, <=, msp->ms_size); 3212 range_tree_remove(msp->ms_tree, offset, size); 3213 3214 if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */ 3215 if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0) 3216 vdev_dirty(vd, VDD_METASLAB, msp, txg); 3217 range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, size); 3218 } 3219 3220 mutex_exit(&msp->ms_lock); 3221 3222 return (0); 3223 } 3224 3225 /* 3226 * Reserve some allocation slots. The reservation system must be called 3227 * before we call into the allocator. If there aren't any available slots 3228 * then the I/O will be throttled until an I/O completes and its slots are 3229 * freed up. The function returns true if it was successful in placing 3230 * the reservation. 3231 */ 3232 boolean_t 3233 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, zio_t *zio, 3234 int flags) 3235 { 3236 uint64_t available_slots = 0; 3237 boolean_t slot_reserved = B_FALSE; 3238 3239 ASSERT(mc->mc_alloc_throttle_enabled); 3240 mutex_enter(&mc->mc_lock); 3241 3242 uint64_t reserved_slots = refcount_count(&mc->mc_alloc_slots); 3243 if (reserved_slots < mc->mc_alloc_max_slots) 3244 available_slots = mc->mc_alloc_max_slots - reserved_slots; 3245 3246 if (slots <= available_slots || GANG_ALLOCATION(flags)) { 3247 /* 3248 * We reserve the slots individually so that we can unreserve 3249 * them individually when an I/O completes. 3250 */ 3251 for (int d = 0; d < slots; d++) { 3252 reserved_slots = refcount_add(&mc->mc_alloc_slots, zio); 3253 } 3254 zio->io_flags |= ZIO_FLAG_IO_ALLOCATING; 3255 slot_reserved = B_TRUE; 3256 } 3257 3258 mutex_exit(&mc->mc_lock); 3259 return (slot_reserved); 3260 } 3261 3262 void 3263 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots, zio_t *zio) 3264 { 3265 ASSERT(mc->mc_alloc_throttle_enabled); 3266 mutex_enter(&mc->mc_lock); 3267 for (int d = 0; d < slots; d++) { 3268 (void) refcount_remove(&mc->mc_alloc_slots, zio); 3269 } 3270 mutex_exit(&mc->mc_lock); 3271 } 3272 3273 int 3274 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp, 3275 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags, 3276 zio_alloc_list_t *zal, zio_t *zio) 3277 { 3278 dva_t *dva = bp->blk_dva; 3279 dva_t *hintdva = hintbp->blk_dva; 3280 int error = 0; 3281 3282 ASSERT(bp->blk_birth == 0); 3283 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0); 3284 3285 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 3286 3287 if (mc->mc_rotor == NULL) { /* no vdevs in this class */ 3288 spa_config_exit(spa, SCL_ALLOC, FTAG); 3289 return (SET_ERROR(ENOSPC)); 3290 } 3291 3292 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa)); 3293 ASSERT(BP_GET_NDVAS(bp) == 0); 3294 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp)); 3295 ASSERT3P(zal, !=, NULL); 3296 3297 for (int d = 0; d < ndvas; d++) { 3298 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva, 3299 txg, flags, zal); 3300 if (error != 0) { 3301 for (d--; d >= 0; d--) { 3302 metaslab_free_dva(spa, &dva[d], txg, B_TRUE); 3303 metaslab_group_alloc_decrement(spa, 3304 DVA_GET_VDEV(&dva[d]), zio, flags); 3305 bzero(&dva[d], sizeof (dva_t)); 3306 } 3307 spa_config_exit(spa, SCL_ALLOC, FTAG); 3308 return (error); 3309 } else { 3310 /* 3311 * Update the metaslab group's queue depth 3312 * based on the newly allocated dva. 3313 */ 3314 metaslab_group_alloc_increment(spa, 3315 DVA_GET_VDEV(&dva[d]), zio, flags); 3316 } 3317 3318 } 3319 ASSERT(error == 0); 3320 ASSERT(BP_GET_NDVAS(bp) == ndvas); 3321 3322 spa_config_exit(spa, SCL_ALLOC, FTAG); 3323 3324 BP_SET_BIRTH(bp, txg, txg); 3325 3326 return (0); 3327 } 3328 3329 void 3330 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now) 3331 { 3332 const dva_t *dva = bp->blk_dva; 3333 int ndvas = BP_GET_NDVAS(bp); 3334 3335 ASSERT(!BP_IS_HOLE(bp)); 3336 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa)); 3337 3338 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER); 3339 3340 for (int d = 0; d < ndvas; d++) 3341 metaslab_free_dva(spa, &dva[d], txg, now); 3342 3343 spa_config_exit(spa, SCL_FREE, FTAG); 3344 } 3345 3346 int 3347 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg) 3348 { 3349 const dva_t *dva = bp->blk_dva; 3350 int ndvas = BP_GET_NDVAS(bp); 3351 int error = 0; 3352 3353 ASSERT(!BP_IS_HOLE(bp)); 3354 3355 if (txg != 0) { 3356 /* 3357 * First do a dry run to make sure all DVAs are claimable, 3358 * so we don't have to unwind from partial failures below. 3359 */ 3360 if ((error = metaslab_claim(spa, bp, 0)) != 0) 3361 return (error); 3362 } 3363 3364 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 3365 3366 for (int d = 0; d < ndvas; d++) 3367 if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0) 3368 break; 3369 3370 spa_config_exit(spa, SCL_ALLOC, FTAG); 3371 3372 ASSERT(error == 0 || txg == 0); 3373 3374 return (error); 3375 } 3376 3377 void 3378 metaslab_check_free(spa_t *spa, const blkptr_t *bp) 3379 { 3380 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0) 3381 return; 3382 3383 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 3384 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 3385 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 3386 vdev_t *vd = vdev_lookup_top(spa, vdev); 3387 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]); 3388 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]); 3389 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 3390 3391 if (msp->ms_loaded) 3392 range_tree_verify(msp->ms_tree, offset, size); 3393 3394 range_tree_verify(msp->ms_freeingtree, offset, size); 3395 range_tree_verify(msp->ms_freedtree, offset, size); 3396 for (int j = 0; j < TXG_DEFER_SIZE; j++) 3397 range_tree_verify(msp->ms_defertree[j], offset, size); 3398 } 3399 spa_config_exit(spa, SCL_VDEV, FTAG); 3400 }