1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 25 * Copyright 2017 Nexenta Systems, Inc. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2016 Toomas Soome <tsoome@me.com> 28 * Copyright 2017 Joyent, Inc. 29 */ 30 31 #include <sys/zfs_context.h> 32 #include <sys/fm/fs/zfs.h> 33 #include <sys/spa.h> 34 #include <sys/spa_impl.h> 35 #include <sys/dmu.h> 36 #include <sys/dmu_tx.h> 37 #include <sys/vdev_impl.h> 38 #include <sys/uberblock_impl.h> 39 #include <sys/metaslab.h> 40 #include <sys/metaslab_impl.h> 41 #include <sys/space_map.h> 42 #include <sys/space_reftree.h> 43 #include <sys/zio.h> 44 #include <sys/zap.h> 45 #include <sys/fs/zfs.h> 46 #include <sys/arc.h> 47 #include <sys/zil.h> 48 #include <sys/dsl_scan.h> 49 #include <sys/abd.h> 50 51 /* 52 * Virtual device management. 53 */ 54 55 static vdev_ops_t *vdev_ops_table[] = { 56 &vdev_root_ops, 57 &vdev_raidz_ops, 58 &vdev_mirror_ops, 59 &vdev_replacing_ops, 60 &vdev_spare_ops, 61 &vdev_disk_ops, 62 &vdev_file_ops, 63 &vdev_missing_ops, 64 &vdev_hole_ops, 65 NULL 66 }; 67 68 /* maximum scrub/resilver I/O queue per leaf vdev */ 69 int zfs_scrub_limit = 10; 70 71 /* 72 * When a vdev is added, it will be divided into approximately (but no 73 * more than) this number of metaslabs. 74 */ 75 int metaslabs_per_vdev = 200; 76 77 /* 78 * Given a vdev type, return the appropriate ops vector. 79 */ 80 static vdev_ops_t * 81 vdev_getops(const char *type) 82 { 83 vdev_ops_t *ops, **opspp; 84 85 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 86 if (strcmp(ops->vdev_op_type, type) == 0) 87 break; 88 89 return (ops); 90 } 91 92 /* 93 * Default asize function: return the MAX of psize with the asize of 94 * all children. This is what's used by anything other than RAID-Z. 95 */ 96 uint64_t 97 vdev_default_asize(vdev_t *vd, uint64_t psize) 98 { 99 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 100 uint64_t csize; 101 102 for (int c = 0; c < vd->vdev_children; c++) { 103 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 104 asize = MAX(asize, csize); 105 } 106 107 return (asize); 108 } 109 110 /* 111 * Get the minimum allocatable size. We define the allocatable size as 112 * the vdev's asize rounded to the nearest metaslab. This allows us to 113 * replace or attach devices which don't have the same physical size but 114 * can still satisfy the same number of allocations. 115 */ 116 uint64_t 117 vdev_get_min_asize(vdev_t *vd) 118 { 119 vdev_t *pvd = vd->vdev_parent; 120 121 /* 122 * If our parent is NULL (inactive spare or cache) or is the root, 123 * just return our own asize. 124 */ 125 if (pvd == NULL) 126 return (vd->vdev_asize); 127 128 /* 129 * The top-level vdev just returns the allocatable size rounded 130 * to the nearest metaslab. 131 */ 132 if (vd == vd->vdev_top) 133 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 134 135 /* 136 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 137 * so each child must provide at least 1/Nth of its asize. 138 */ 139 if (pvd->vdev_ops == &vdev_raidz_ops) 140 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) / 141 pvd->vdev_children); 142 143 return (pvd->vdev_min_asize); 144 } 145 146 void 147 vdev_set_min_asize(vdev_t *vd) 148 { 149 vd->vdev_min_asize = vdev_get_min_asize(vd); 150 151 for (int c = 0; c < vd->vdev_children; c++) 152 vdev_set_min_asize(vd->vdev_child[c]); 153 } 154 155 vdev_t * 156 vdev_lookup_top(spa_t *spa, uint64_t vdev) 157 { 158 vdev_t *rvd = spa->spa_root_vdev; 159 160 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 161 162 if (vdev < rvd->vdev_children) { 163 ASSERT(rvd->vdev_child[vdev] != NULL); 164 return (rvd->vdev_child[vdev]); 165 } 166 167 return (NULL); 168 } 169 170 vdev_t * 171 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 172 { 173 vdev_t *mvd; 174 175 if (vd->vdev_guid == guid) 176 return (vd); 177 178 for (int c = 0; c < vd->vdev_children; c++) 179 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 180 NULL) 181 return (mvd); 182 183 return (NULL); 184 } 185 186 static int 187 vdev_count_leaves_impl(vdev_t *vd) 188 { 189 int n = 0; 190 191 if (vd->vdev_ops->vdev_op_leaf) 192 return (1); 193 194 for (int c = 0; c < vd->vdev_children; c++) 195 n += vdev_count_leaves_impl(vd->vdev_child[c]); 196 197 return (n); 198 } 199 200 int 201 vdev_count_leaves(spa_t *spa) 202 { 203 return (vdev_count_leaves_impl(spa->spa_root_vdev)); 204 } 205 206 void 207 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 208 { 209 size_t oldsize, newsize; 210 uint64_t id = cvd->vdev_id; 211 vdev_t **newchild; 212 spa_t *spa = cvd->vdev_spa; 213 214 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 215 ASSERT(cvd->vdev_parent == NULL); 216 217 cvd->vdev_parent = pvd; 218 219 if (pvd == NULL) 220 return; 221 222 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 223 224 oldsize = pvd->vdev_children * sizeof (vdev_t *); 225 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 226 newsize = pvd->vdev_children * sizeof (vdev_t *); 227 228 newchild = kmem_zalloc(newsize, KM_SLEEP); 229 if (pvd->vdev_child != NULL) { 230 bcopy(pvd->vdev_child, newchild, oldsize); 231 kmem_free(pvd->vdev_child, oldsize); 232 } 233 234 pvd->vdev_child = newchild; 235 pvd->vdev_child[id] = cvd; 236 237 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 238 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 239 240 /* 241 * Walk up all ancestors to update guid sum. 242 */ 243 for (; pvd != NULL; pvd = pvd->vdev_parent) 244 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 245 } 246 247 void 248 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 249 { 250 int c; 251 uint_t id = cvd->vdev_id; 252 253 ASSERT(cvd->vdev_parent == pvd); 254 255 if (pvd == NULL) 256 return; 257 258 ASSERT(id < pvd->vdev_children); 259 ASSERT(pvd->vdev_child[id] == cvd); 260 261 pvd->vdev_child[id] = NULL; 262 cvd->vdev_parent = NULL; 263 264 for (c = 0; c < pvd->vdev_children; c++) 265 if (pvd->vdev_child[c]) 266 break; 267 268 if (c == pvd->vdev_children) { 269 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 270 pvd->vdev_child = NULL; 271 pvd->vdev_children = 0; 272 } 273 274 /* 275 * Walk up all ancestors to update guid sum. 276 */ 277 for (; pvd != NULL; pvd = pvd->vdev_parent) 278 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 279 } 280 281 /* 282 * Remove any holes in the child array. 283 */ 284 void 285 vdev_compact_children(vdev_t *pvd) 286 { 287 vdev_t **newchild, *cvd; 288 int oldc = pvd->vdev_children; 289 int newc; 290 291 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 292 293 for (int c = newc = 0; c < oldc; c++) 294 if (pvd->vdev_child[c]) 295 newc++; 296 297 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 298 299 for (int c = newc = 0; c < oldc; c++) { 300 if ((cvd = pvd->vdev_child[c]) != NULL) { 301 newchild[newc] = cvd; 302 cvd->vdev_id = newc++; 303 } 304 } 305 306 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 307 pvd->vdev_child = newchild; 308 pvd->vdev_children = newc; 309 } 310 311 /* 312 * Allocate and minimally initialize a vdev_t. 313 */ 314 vdev_t * 315 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 316 { 317 vdev_t *vd; 318 319 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 320 321 if (spa->spa_root_vdev == NULL) { 322 ASSERT(ops == &vdev_root_ops); 323 spa->spa_root_vdev = vd; 324 spa->spa_load_guid = spa_generate_guid(NULL); 325 } 326 327 if (guid == 0 && ops != &vdev_hole_ops) { 328 if (spa->spa_root_vdev == vd) { 329 /* 330 * The root vdev's guid will also be the pool guid, 331 * which must be unique among all pools. 332 */ 333 guid = spa_generate_guid(NULL); 334 } else { 335 /* 336 * Any other vdev's guid must be unique within the pool. 337 */ 338 guid = spa_generate_guid(spa); 339 } 340 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 341 } 342 343 vd->vdev_spa = spa; 344 vd->vdev_id = id; 345 vd->vdev_guid = guid; 346 vd->vdev_guid_sum = guid; 347 vd->vdev_ops = ops; 348 vd->vdev_state = VDEV_STATE_CLOSED; 349 vd->vdev_ishole = (ops == &vdev_hole_ops); 350 351 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 352 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 353 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 354 mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL); 355 for (int t = 0; t < DTL_TYPES; t++) { 356 vd->vdev_dtl[t] = range_tree_create(NULL, NULL, 357 &vd->vdev_dtl_lock); 358 } 359 txg_list_create(&vd->vdev_ms_list, spa, 360 offsetof(struct metaslab, ms_txg_node)); 361 txg_list_create(&vd->vdev_dtl_list, spa, 362 offsetof(struct vdev, vdev_dtl_node)); 363 vd->vdev_stat.vs_timestamp = gethrtime(); 364 vdev_queue_init(vd); 365 vdev_cache_init(vd); 366 367 return (vd); 368 } 369 370 /* 371 * Allocate a new vdev. The 'alloctype' is used to control whether we are 372 * creating a new vdev or loading an existing one - the behavior is slightly 373 * different for each case. 374 */ 375 int 376 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 377 int alloctype) 378 { 379 vdev_ops_t *ops; 380 char *type; 381 uint64_t guid = 0, islog, nparity; 382 vdev_t *vd; 383 384 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 385 386 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 387 return (SET_ERROR(EINVAL)); 388 389 if ((ops = vdev_getops(type)) == NULL) 390 return (SET_ERROR(EINVAL)); 391 392 /* 393 * If this is a load, get the vdev guid from the nvlist. 394 * Otherwise, vdev_alloc_common() will generate one for us. 395 */ 396 if (alloctype == VDEV_ALLOC_LOAD) { 397 uint64_t label_id; 398 399 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 400 label_id != id) 401 return (SET_ERROR(EINVAL)); 402 403 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 404 return (SET_ERROR(EINVAL)); 405 } else if (alloctype == VDEV_ALLOC_SPARE) { 406 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 407 return (SET_ERROR(EINVAL)); 408 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 409 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 410 return (SET_ERROR(EINVAL)); 411 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 412 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 413 return (SET_ERROR(EINVAL)); 414 } 415 416 /* 417 * The first allocated vdev must be of type 'root'. 418 */ 419 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 420 return (SET_ERROR(EINVAL)); 421 422 /* 423 * Determine whether we're a log vdev. 424 */ 425 islog = 0; 426 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 427 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 428 return (SET_ERROR(ENOTSUP)); 429 430 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 431 return (SET_ERROR(ENOTSUP)); 432 433 /* 434 * Set the nparity property for RAID-Z vdevs. 435 */ 436 nparity = -1ULL; 437 if (ops == &vdev_raidz_ops) { 438 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 439 &nparity) == 0) { 440 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 441 return (SET_ERROR(EINVAL)); 442 /* 443 * Previous versions could only support 1 or 2 parity 444 * device. 445 */ 446 if (nparity > 1 && 447 spa_version(spa) < SPA_VERSION_RAIDZ2) 448 return (SET_ERROR(ENOTSUP)); 449 if (nparity > 2 && 450 spa_version(spa) < SPA_VERSION_RAIDZ3) 451 return (SET_ERROR(ENOTSUP)); 452 } else { 453 /* 454 * We require the parity to be specified for SPAs that 455 * support multiple parity levels. 456 */ 457 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 458 return (SET_ERROR(EINVAL)); 459 /* 460 * Otherwise, we default to 1 parity device for RAID-Z. 461 */ 462 nparity = 1; 463 } 464 } else { 465 nparity = 0; 466 } 467 ASSERT(nparity != -1ULL); 468 469 vd = vdev_alloc_common(spa, id, guid, ops); 470 471 vd->vdev_islog = islog; 472 vd->vdev_nparity = nparity; 473 474 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 475 vd->vdev_path = spa_strdup(vd->vdev_path); 476 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 477 vd->vdev_devid = spa_strdup(vd->vdev_devid); 478 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 479 &vd->vdev_physpath) == 0) 480 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 481 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 482 vd->vdev_fru = spa_strdup(vd->vdev_fru); 483 484 /* 485 * Set the whole_disk property. If it's not specified, leave the value 486 * as -1. 487 */ 488 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 489 &vd->vdev_wholedisk) != 0) 490 vd->vdev_wholedisk = -1ULL; 491 492 /* 493 * Look for the 'not present' flag. This will only be set if the device 494 * was not present at the time of import. 495 */ 496 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 497 &vd->vdev_not_present); 498 499 /* 500 * Get the alignment requirement. 501 */ 502 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 503 504 /* 505 * Retrieve the vdev creation time. 506 */ 507 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 508 &vd->vdev_crtxg); 509 510 /* 511 * If we're a top-level vdev, try to load the allocation parameters. 512 */ 513 if (parent && !parent->vdev_parent && 514 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 515 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 516 &vd->vdev_ms_array); 517 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 518 &vd->vdev_ms_shift); 519 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 520 &vd->vdev_asize); 521 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 522 &vd->vdev_removing); 523 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 524 &vd->vdev_top_zap); 525 } else { 526 ASSERT0(vd->vdev_top_zap); 527 } 528 529 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) { 530 ASSERT(alloctype == VDEV_ALLOC_LOAD || 531 alloctype == VDEV_ALLOC_ADD || 532 alloctype == VDEV_ALLOC_SPLIT || 533 alloctype == VDEV_ALLOC_ROOTPOOL); 534 vd->vdev_mg = metaslab_group_create(islog ? 535 spa_log_class(spa) : spa_normal_class(spa), vd); 536 } 537 538 if (vd->vdev_ops->vdev_op_leaf && 539 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 540 (void) nvlist_lookup_uint64(nv, 541 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap); 542 } else { 543 ASSERT0(vd->vdev_leaf_zap); 544 } 545 546 /* 547 * If we're a leaf vdev, try to load the DTL object and other state. 548 */ 549 550 if (vd->vdev_ops->vdev_op_leaf && 551 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 552 alloctype == VDEV_ALLOC_ROOTPOOL)) { 553 if (alloctype == VDEV_ALLOC_LOAD) { 554 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 555 &vd->vdev_dtl_object); 556 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 557 &vd->vdev_unspare); 558 } 559 560 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 561 uint64_t spare = 0; 562 563 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 564 &spare) == 0 && spare) 565 spa_spare_add(vd); 566 } 567 568 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 569 &vd->vdev_offline); 570 571 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 572 &vd->vdev_resilver_txg); 573 574 /* 575 * When importing a pool, we want to ignore the persistent fault 576 * state, as the diagnosis made on another system may not be 577 * valid in the current context. Local vdevs will 578 * remain in the faulted state. 579 */ 580 if (spa_load_state(spa) == SPA_LOAD_OPEN) { 581 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 582 &vd->vdev_faulted); 583 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 584 &vd->vdev_degraded); 585 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 586 &vd->vdev_removed); 587 588 if (vd->vdev_faulted || vd->vdev_degraded) { 589 char *aux; 590 591 vd->vdev_label_aux = 592 VDEV_AUX_ERR_EXCEEDED; 593 if (nvlist_lookup_string(nv, 594 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 595 strcmp(aux, "external") == 0) 596 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 597 } 598 } 599 } 600 601 /* 602 * Add ourselves to the parent's list of children. 603 */ 604 vdev_add_child(parent, vd); 605 606 *vdp = vd; 607 608 return (0); 609 } 610 611 void 612 vdev_free(vdev_t *vd) 613 { 614 spa_t *spa = vd->vdev_spa; 615 616 /* 617 * vdev_free() implies closing the vdev first. This is simpler than 618 * trying to ensure complicated semantics for all callers. 619 */ 620 vdev_close(vd); 621 622 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 623 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 624 625 /* 626 * Free all children. 627 */ 628 for (int c = 0; c < vd->vdev_children; c++) 629 vdev_free(vd->vdev_child[c]); 630 631 ASSERT(vd->vdev_child == NULL); 632 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 633 634 /* 635 * Discard allocation state. 636 */ 637 if (vd->vdev_mg != NULL) { 638 vdev_metaslab_fini(vd); 639 metaslab_group_destroy(vd->vdev_mg); 640 } 641 642 ASSERT0(vd->vdev_stat.vs_space); 643 ASSERT0(vd->vdev_stat.vs_dspace); 644 ASSERT0(vd->vdev_stat.vs_alloc); 645 646 /* 647 * Remove this vdev from its parent's child list. 648 */ 649 vdev_remove_child(vd->vdev_parent, vd); 650 651 ASSERT(vd->vdev_parent == NULL); 652 653 /* 654 * Clean up vdev structure. 655 */ 656 vdev_queue_fini(vd); 657 vdev_cache_fini(vd); 658 659 if (vd->vdev_path) 660 spa_strfree(vd->vdev_path); 661 if (vd->vdev_devid) 662 spa_strfree(vd->vdev_devid); 663 if (vd->vdev_physpath) 664 spa_strfree(vd->vdev_physpath); 665 if (vd->vdev_fru) 666 spa_strfree(vd->vdev_fru); 667 668 if (vd->vdev_isspare) 669 spa_spare_remove(vd); 670 if (vd->vdev_isl2cache) 671 spa_l2cache_remove(vd); 672 673 txg_list_destroy(&vd->vdev_ms_list); 674 txg_list_destroy(&vd->vdev_dtl_list); 675 676 mutex_enter(&vd->vdev_dtl_lock); 677 space_map_close(vd->vdev_dtl_sm); 678 for (int t = 0; t < DTL_TYPES; t++) { 679 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 680 range_tree_destroy(vd->vdev_dtl[t]); 681 } 682 mutex_exit(&vd->vdev_dtl_lock); 683 684 mutex_destroy(&vd->vdev_queue_lock); 685 mutex_destroy(&vd->vdev_dtl_lock); 686 mutex_destroy(&vd->vdev_stat_lock); 687 mutex_destroy(&vd->vdev_probe_lock); 688 689 if (vd == spa->spa_root_vdev) 690 spa->spa_root_vdev = NULL; 691 692 kmem_free(vd, sizeof (vdev_t)); 693 } 694 695 /* 696 * Transfer top-level vdev state from svd to tvd. 697 */ 698 static void 699 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 700 { 701 spa_t *spa = svd->vdev_spa; 702 metaslab_t *msp; 703 vdev_t *vd; 704 int t; 705 706 ASSERT(tvd == tvd->vdev_top); 707 708 tvd->vdev_ms_array = svd->vdev_ms_array; 709 tvd->vdev_ms_shift = svd->vdev_ms_shift; 710 tvd->vdev_ms_count = svd->vdev_ms_count; 711 tvd->vdev_top_zap = svd->vdev_top_zap; 712 713 svd->vdev_ms_array = 0; 714 svd->vdev_ms_shift = 0; 715 svd->vdev_ms_count = 0; 716 svd->vdev_top_zap = 0; 717 718 if (tvd->vdev_mg) 719 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 720 tvd->vdev_mg = svd->vdev_mg; 721 tvd->vdev_ms = svd->vdev_ms; 722 723 svd->vdev_mg = NULL; 724 svd->vdev_ms = NULL; 725 726 if (tvd->vdev_mg != NULL) 727 tvd->vdev_mg->mg_vd = tvd; 728 729 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 730 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 731 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 732 733 svd->vdev_stat.vs_alloc = 0; 734 svd->vdev_stat.vs_space = 0; 735 svd->vdev_stat.vs_dspace = 0; 736 737 for (t = 0; t < TXG_SIZE; t++) { 738 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 739 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 740 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 741 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 742 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 743 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 744 } 745 746 if (list_link_active(&svd->vdev_config_dirty_node)) { 747 vdev_config_clean(svd); 748 vdev_config_dirty(tvd); 749 } 750 751 if (list_link_active(&svd->vdev_state_dirty_node)) { 752 vdev_state_clean(svd); 753 vdev_state_dirty(tvd); 754 } 755 756 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 757 svd->vdev_deflate_ratio = 0; 758 759 tvd->vdev_islog = svd->vdev_islog; 760 svd->vdev_islog = 0; 761 } 762 763 static void 764 vdev_top_update(vdev_t *tvd, vdev_t *vd) 765 { 766 if (vd == NULL) 767 return; 768 769 vd->vdev_top = tvd; 770 771 for (int c = 0; c < vd->vdev_children; c++) 772 vdev_top_update(tvd, vd->vdev_child[c]); 773 } 774 775 /* 776 * Add a mirror/replacing vdev above an existing vdev. 777 */ 778 vdev_t * 779 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 780 { 781 spa_t *spa = cvd->vdev_spa; 782 vdev_t *pvd = cvd->vdev_parent; 783 vdev_t *mvd; 784 785 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 786 787 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 788 789 mvd->vdev_asize = cvd->vdev_asize; 790 mvd->vdev_min_asize = cvd->vdev_min_asize; 791 mvd->vdev_max_asize = cvd->vdev_max_asize; 792 mvd->vdev_ashift = cvd->vdev_ashift; 793 mvd->vdev_state = cvd->vdev_state; 794 mvd->vdev_crtxg = cvd->vdev_crtxg; 795 796 vdev_remove_child(pvd, cvd); 797 vdev_add_child(pvd, mvd); 798 cvd->vdev_id = mvd->vdev_children; 799 vdev_add_child(mvd, cvd); 800 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 801 802 if (mvd == mvd->vdev_top) 803 vdev_top_transfer(cvd, mvd); 804 805 return (mvd); 806 } 807 808 /* 809 * Remove a 1-way mirror/replacing vdev from the tree. 810 */ 811 void 812 vdev_remove_parent(vdev_t *cvd) 813 { 814 vdev_t *mvd = cvd->vdev_parent; 815 vdev_t *pvd = mvd->vdev_parent; 816 817 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 818 819 ASSERT(mvd->vdev_children == 1); 820 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 821 mvd->vdev_ops == &vdev_replacing_ops || 822 mvd->vdev_ops == &vdev_spare_ops); 823 cvd->vdev_ashift = mvd->vdev_ashift; 824 825 vdev_remove_child(mvd, cvd); 826 vdev_remove_child(pvd, mvd); 827 828 /* 829 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 830 * Otherwise, we could have detached an offline device, and when we 831 * go to import the pool we'll think we have two top-level vdevs, 832 * instead of a different version of the same top-level vdev. 833 */ 834 if (mvd->vdev_top == mvd) { 835 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 836 cvd->vdev_orig_guid = cvd->vdev_guid; 837 cvd->vdev_guid += guid_delta; 838 cvd->vdev_guid_sum += guid_delta; 839 } 840 cvd->vdev_id = mvd->vdev_id; 841 vdev_add_child(pvd, cvd); 842 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 843 844 if (cvd == cvd->vdev_top) 845 vdev_top_transfer(mvd, cvd); 846 847 ASSERT(mvd->vdev_children == 0); 848 vdev_free(mvd); 849 } 850 851 int 852 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 853 { 854 spa_t *spa = vd->vdev_spa; 855 objset_t *mos = spa->spa_meta_objset; 856 uint64_t m; 857 uint64_t oldc = vd->vdev_ms_count; 858 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 859 metaslab_t **mspp; 860 int error; 861 862 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 863 864 /* 865 * This vdev is not being allocated from yet or is a hole. 866 */ 867 if (vd->vdev_ms_shift == 0) 868 return (0); 869 870 ASSERT(!vd->vdev_ishole); 871 872 /* 873 * Compute the raidz-deflation ratio. Note, we hard-code 874 * in 128k (1 << 17) because it is the "typical" blocksize. 875 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change, 876 * otherwise it would inconsistently account for existing bp's. 877 */ 878 vd->vdev_deflate_ratio = (1 << 17) / 879 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 880 881 ASSERT(oldc <= newc); 882 883 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 884 885 if (oldc != 0) { 886 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 887 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 888 } 889 890 vd->vdev_ms = mspp; 891 vd->vdev_ms_count = newc; 892 893 for (m = oldc; m < newc; m++) { 894 uint64_t object = 0; 895 896 if (txg == 0) { 897 error = dmu_read(mos, vd->vdev_ms_array, 898 m * sizeof (uint64_t), sizeof (uint64_t), &object, 899 DMU_READ_PREFETCH); 900 if (error) 901 return (error); 902 } 903 904 error = metaslab_init(vd->vdev_mg, m, object, txg, 905 &(vd->vdev_ms[m])); 906 if (error) 907 return (error); 908 } 909 910 if (txg == 0) 911 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 912 913 /* 914 * If the vdev is being removed we don't activate 915 * the metaslabs since we want to ensure that no new 916 * allocations are performed on this device. 917 */ 918 if (oldc == 0 && !vd->vdev_removing) 919 metaslab_group_activate(vd->vdev_mg); 920 921 if (txg == 0) 922 spa_config_exit(spa, SCL_ALLOC, FTAG); 923 924 return (0); 925 } 926 927 void 928 vdev_metaslab_fini(vdev_t *vd) 929 { 930 uint64_t m; 931 uint64_t count = vd->vdev_ms_count; 932 933 if (vd->vdev_ms != NULL) { 934 metaslab_group_passivate(vd->vdev_mg); 935 for (m = 0; m < count; m++) { 936 metaslab_t *msp = vd->vdev_ms[m]; 937 938 if (msp != NULL) 939 metaslab_fini(msp); 940 } 941 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 942 vd->vdev_ms = NULL; 943 } 944 } 945 946 typedef struct vdev_probe_stats { 947 boolean_t vps_readable; 948 boolean_t vps_writeable; 949 int vps_flags; 950 } vdev_probe_stats_t; 951 952 static void 953 vdev_probe_done(zio_t *zio) 954 { 955 spa_t *spa = zio->io_spa; 956 vdev_t *vd = zio->io_vd; 957 vdev_probe_stats_t *vps = zio->io_private; 958 959 ASSERT(vd->vdev_probe_zio != NULL); 960 961 if (zio->io_type == ZIO_TYPE_READ) { 962 if (zio->io_error == 0) 963 vps->vps_readable = 1; 964 if (zio->io_error == 0 && spa_writeable(spa)) { 965 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 966 zio->io_offset, zio->io_size, zio->io_abd, 967 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 968 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 969 } else { 970 abd_free(zio->io_abd); 971 } 972 } else if (zio->io_type == ZIO_TYPE_WRITE) { 973 if (zio->io_error == 0) 974 vps->vps_writeable = 1; 975 abd_free(zio->io_abd); 976 } else if (zio->io_type == ZIO_TYPE_NULL) { 977 zio_t *pio; 978 979 vd->vdev_cant_read |= !vps->vps_readable; 980 vd->vdev_cant_write |= !vps->vps_writeable; 981 982 if (vdev_readable(vd) && 983 (vdev_writeable(vd) || !spa_writeable(spa))) { 984 zio->io_error = 0; 985 } else { 986 ASSERT(zio->io_error != 0); 987 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 988 spa, vd, NULL, 0, 0); 989 zio->io_error = SET_ERROR(ENXIO); 990 } 991 992 mutex_enter(&vd->vdev_probe_lock); 993 ASSERT(vd->vdev_probe_zio == zio); 994 vd->vdev_probe_zio = NULL; 995 mutex_exit(&vd->vdev_probe_lock); 996 997 zio_link_t *zl = NULL; 998 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 999 if (!vdev_accessible(vd, pio)) 1000 pio->io_error = SET_ERROR(ENXIO); 1001 1002 kmem_free(vps, sizeof (*vps)); 1003 } 1004 } 1005 1006 /* 1007 * Determine whether this device is accessible. 1008 * 1009 * Read and write to several known locations: the pad regions of each 1010 * vdev label but the first, which we leave alone in case it contains 1011 * a VTOC. 1012 */ 1013 zio_t * 1014 vdev_probe(vdev_t *vd, zio_t *zio) 1015 { 1016 spa_t *spa = vd->vdev_spa; 1017 vdev_probe_stats_t *vps = NULL; 1018 zio_t *pio; 1019 1020 ASSERT(vd->vdev_ops->vdev_op_leaf); 1021 1022 /* 1023 * Don't probe the probe. 1024 */ 1025 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1026 return (NULL); 1027 1028 /* 1029 * To prevent 'probe storms' when a device fails, we create 1030 * just one probe i/o at a time. All zios that want to probe 1031 * this vdev will become parents of the probe io. 1032 */ 1033 mutex_enter(&vd->vdev_probe_lock); 1034 1035 if ((pio = vd->vdev_probe_zio) == NULL) { 1036 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1037 1038 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1039 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 1040 ZIO_FLAG_TRYHARD; 1041 1042 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1043 /* 1044 * vdev_cant_read and vdev_cant_write can only 1045 * transition from TRUE to FALSE when we have the 1046 * SCL_ZIO lock as writer; otherwise they can only 1047 * transition from FALSE to TRUE. This ensures that 1048 * any zio looking at these values can assume that 1049 * failures persist for the life of the I/O. That's 1050 * important because when a device has intermittent 1051 * connectivity problems, we want to ensure that 1052 * they're ascribed to the device (ENXIO) and not 1053 * the zio (EIO). 1054 * 1055 * Since we hold SCL_ZIO as writer here, clear both 1056 * values so the probe can reevaluate from first 1057 * principles. 1058 */ 1059 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1060 vd->vdev_cant_read = B_FALSE; 1061 vd->vdev_cant_write = B_FALSE; 1062 } 1063 1064 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1065 vdev_probe_done, vps, 1066 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1067 1068 /* 1069 * We can't change the vdev state in this context, so we 1070 * kick off an async task to do it on our behalf. 1071 */ 1072 if (zio != NULL) { 1073 vd->vdev_probe_wanted = B_TRUE; 1074 spa_async_request(spa, SPA_ASYNC_PROBE); 1075 } 1076 } 1077 1078 if (zio != NULL) 1079 zio_add_child(zio, pio); 1080 1081 mutex_exit(&vd->vdev_probe_lock); 1082 1083 if (vps == NULL) { 1084 ASSERT(zio != NULL); 1085 return (NULL); 1086 } 1087 1088 for (int l = 1; l < VDEV_LABELS; l++) { 1089 zio_nowait(zio_read_phys(pio, vd, 1090 vdev_label_offset(vd->vdev_psize, l, 1091 offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE, 1092 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE), 1093 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1094 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1095 } 1096 1097 if (zio == NULL) 1098 return (pio); 1099 1100 zio_nowait(pio); 1101 return (NULL); 1102 } 1103 1104 static void 1105 vdev_open_child(void *arg) 1106 { 1107 vdev_t *vd = arg; 1108 1109 vd->vdev_open_thread = curthread; 1110 vd->vdev_open_error = vdev_open(vd); 1111 vd->vdev_open_thread = NULL; 1112 vd->vdev_parent->vdev_nonrot &= vd->vdev_nonrot; 1113 } 1114 1115 boolean_t 1116 vdev_uses_zvols(vdev_t *vd) 1117 { 1118 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, 1119 strlen(ZVOL_DIR)) == 0) 1120 return (B_TRUE); 1121 for (int c = 0; c < vd->vdev_children; c++) 1122 if (vdev_uses_zvols(vd->vdev_child[c])) 1123 return (B_TRUE); 1124 return (B_FALSE); 1125 } 1126 1127 void 1128 vdev_open_children(vdev_t *vd) 1129 { 1130 taskq_t *tq; 1131 int children = vd->vdev_children; 1132 1133 vd->vdev_nonrot = B_TRUE; 1134 1135 /* 1136 * in order to handle pools on top of zvols, do the opens 1137 * in a single thread so that the same thread holds the 1138 * spa_namespace_lock 1139 */ 1140 if (vdev_uses_zvols(vd)) { 1141 for (int c = 0; c < children; c++) { 1142 vd->vdev_child[c]->vdev_open_error = 1143 vdev_open(vd->vdev_child[c]); 1144 vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot; 1145 } 1146 return; 1147 } 1148 tq = taskq_create("vdev_open", children, minclsyspri, 1149 children, children, TASKQ_PREPOPULATE); 1150 1151 for (int c = 0; c < children; c++) 1152 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c], 1153 TQ_SLEEP) != NULL); 1154 1155 taskq_destroy(tq); 1156 1157 for (int c = 0; c < children; c++) 1158 vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot; 1159 } 1160 1161 /* 1162 * Prepare a virtual device for access. 1163 */ 1164 int 1165 vdev_open(vdev_t *vd) 1166 { 1167 spa_t *spa = vd->vdev_spa; 1168 int error; 1169 uint64_t osize = 0; 1170 uint64_t max_osize = 0; 1171 uint64_t asize, max_asize, psize; 1172 uint64_t ashift = 0; 1173 1174 ASSERT(vd->vdev_open_thread == curthread || 1175 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1176 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1177 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1178 vd->vdev_state == VDEV_STATE_OFFLINE); 1179 1180 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1181 vd->vdev_cant_read = B_FALSE; 1182 vd->vdev_cant_write = B_FALSE; 1183 vd->vdev_min_asize = vdev_get_min_asize(vd); 1184 1185 /* 1186 * If this vdev is not removed, check its fault status. If it's 1187 * faulted, bail out of the open. 1188 */ 1189 if (!vd->vdev_removed && vd->vdev_faulted) { 1190 ASSERT(vd->vdev_children == 0); 1191 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1192 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1193 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1194 vd->vdev_label_aux); 1195 return (SET_ERROR(ENXIO)); 1196 } else if (vd->vdev_offline) { 1197 ASSERT(vd->vdev_children == 0); 1198 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1199 return (SET_ERROR(ENXIO)); 1200 } 1201 1202 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift); 1203 1204 /* 1205 * Reset the vdev_reopening flag so that we actually close 1206 * the vdev on error. 1207 */ 1208 vd->vdev_reopening = B_FALSE; 1209 if (zio_injection_enabled && error == 0) 1210 error = zio_handle_device_injection(vd, NULL, ENXIO); 1211 1212 if (error) { 1213 if (vd->vdev_removed && 1214 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1215 vd->vdev_removed = B_FALSE; 1216 1217 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1218 vd->vdev_stat.vs_aux); 1219 return (error); 1220 } 1221 1222 vd->vdev_removed = B_FALSE; 1223 1224 /* 1225 * Recheck the faulted flag now that we have confirmed that 1226 * the vdev is accessible. If we're faulted, bail. 1227 */ 1228 if (vd->vdev_faulted) { 1229 ASSERT(vd->vdev_children == 0); 1230 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1231 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1232 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1233 vd->vdev_label_aux); 1234 return (SET_ERROR(ENXIO)); 1235 } 1236 1237 if (vd->vdev_degraded) { 1238 ASSERT(vd->vdev_children == 0); 1239 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1240 VDEV_AUX_ERR_EXCEEDED); 1241 } else { 1242 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1243 } 1244 1245 /* 1246 * For hole or missing vdevs we just return success. 1247 */ 1248 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1249 return (0); 1250 1251 for (int c = 0; c < vd->vdev_children; c++) { 1252 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1253 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1254 VDEV_AUX_NONE); 1255 break; 1256 } 1257 } 1258 1259 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1260 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 1261 1262 if (vd->vdev_children == 0) { 1263 if (osize < SPA_MINDEVSIZE) { 1264 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1265 VDEV_AUX_TOO_SMALL); 1266 return (SET_ERROR(EOVERFLOW)); 1267 } 1268 psize = osize; 1269 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1270 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 1271 VDEV_LABEL_END_SIZE); 1272 } else { 1273 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1274 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1275 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1276 VDEV_AUX_TOO_SMALL); 1277 return (SET_ERROR(EOVERFLOW)); 1278 } 1279 psize = 0; 1280 asize = osize; 1281 max_asize = max_osize; 1282 } 1283 1284 vd->vdev_psize = psize; 1285 1286 /* 1287 * Make sure the allocatable size hasn't shrunk too much. 1288 */ 1289 if (asize < vd->vdev_min_asize) { 1290 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1291 VDEV_AUX_BAD_LABEL); 1292 return (SET_ERROR(EINVAL)); 1293 } 1294 1295 if (vd->vdev_asize == 0) { 1296 /* 1297 * This is the first-ever open, so use the computed values. 1298 * For testing purposes, a higher ashift can be requested. 1299 */ 1300 vd->vdev_asize = asize; 1301 vd->vdev_max_asize = max_asize; 1302 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1303 } else { 1304 /* 1305 * Detect if the alignment requirement has increased. 1306 * We don't want to make the pool unavailable, just 1307 * issue a warning instead. 1308 */ 1309 if (ashift > vd->vdev_top->vdev_ashift && 1310 vd->vdev_ops->vdev_op_leaf) { 1311 cmn_err(CE_WARN, 1312 "Disk, '%s', has a block alignment that is " 1313 "larger than the pool's alignment\n", 1314 vd->vdev_path); 1315 } 1316 vd->vdev_max_asize = max_asize; 1317 } 1318 1319 /* 1320 * If all children are healthy we update asize if either: 1321 * The asize has increased, due to a device expansion caused by dynamic 1322 * LUN growth or vdev replacement, and automatic expansion is enabled; 1323 * making the additional space available. 1324 * 1325 * The asize has decreased, due to a device shrink usually caused by a 1326 * vdev replace with a smaller device. This ensures that calculations 1327 * based of max_asize and asize e.g. esize are always valid. It's safe 1328 * to do this as we've already validated that asize is greater than 1329 * vdev_min_asize. 1330 */ 1331 if (vd->vdev_state == VDEV_STATE_HEALTHY && 1332 ((asize > vd->vdev_asize && 1333 (vd->vdev_expanding || spa->spa_autoexpand)) || 1334 (asize < vd->vdev_asize))) 1335 vd->vdev_asize = asize; 1336 1337 vdev_set_min_asize(vd); 1338 1339 /* 1340 * Ensure we can issue some IO before declaring the 1341 * vdev open for business. 1342 */ 1343 if (vd->vdev_ops->vdev_op_leaf && 1344 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1345 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1346 VDEV_AUX_ERR_EXCEEDED); 1347 return (error); 1348 } 1349 1350 /* 1351 * Track the min and max ashift values for normal data devices. 1352 */ 1353 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1354 !vd->vdev_islog && vd->vdev_aux == NULL) { 1355 if (vd->vdev_ashift > spa->spa_max_ashift) 1356 spa->spa_max_ashift = vd->vdev_ashift; 1357 if (vd->vdev_ashift < spa->spa_min_ashift) 1358 spa->spa_min_ashift = vd->vdev_ashift; 1359 } 1360 1361 /* 1362 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1363 * resilver. But don't do this if we are doing a reopen for a scrub, 1364 * since this would just restart the scrub we are already doing. 1365 */ 1366 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1367 vdev_resilver_needed(vd, NULL, NULL)) 1368 spa_async_request(spa, SPA_ASYNC_RESILVER); 1369 1370 return (0); 1371 } 1372 1373 /* 1374 * Called once the vdevs are all opened, this routine validates the label 1375 * contents. This needs to be done before vdev_load() so that we don't 1376 * inadvertently do repair I/Os to the wrong device. 1377 * 1378 * If 'strict' is false ignore the spa guid check. This is necessary because 1379 * if the machine crashed during a re-guid the new guid might have been written 1380 * to all of the vdev labels, but not the cached config. The strict check 1381 * will be performed when the pool is opened again using the mos config. 1382 * 1383 * This function will only return failure if one of the vdevs indicates that it 1384 * has since been destroyed or exported. This is only possible if 1385 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1386 * will be updated but the function will return 0. 1387 */ 1388 int 1389 vdev_validate(vdev_t *vd, boolean_t strict) 1390 { 1391 spa_t *spa = vd->vdev_spa; 1392 nvlist_t *label; 1393 uint64_t guid = 0, top_guid; 1394 uint64_t state; 1395 1396 for (int c = 0; c < vd->vdev_children; c++) 1397 if (vdev_validate(vd->vdev_child[c], strict) != 0) 1398 return (SET_ERROR(EBADF)); 1399 1400 /* 1401 * If the device has already failed, or was marked offline, don't do 1402 * any further validation. Otherwise, label I/O will fail and we will 1403 * overwrite the previous state. 1404 */ 1405 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1406 uint64_t aux_guid = 0; 1407 nvlist_t *nvl; 1408 uint64_t txg = spa_last_synced_txg(spa) != 0 ? 1409 spa_last_synced_txg(spa) : -1ULL; 1410 1411 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 1412 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1413 VDEV_AUX_BAD_LABEL); 1414 return (0); 1415 } 1416 1417 /* 1418 * Determine if this vdev has been split off into another 1419 * pool. If so, then refuse to open it. 1420 */ 1421 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 1422 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 1423 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1424 VDEV_AUX_SPLIT_POOL); 1425 nvlist_free(label); 1426 return (0); 1427 } 1428 1429 if (strict && (nvlist_lookup_uint64(label, 1430 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 || 1431 guid != spa_guid(spa))) { 1432 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1433 VDEV_AUX_CORRUPT_DATA); 1434 nvlist_free(label); 1435 return (0); 1436 } 1437 1438 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 1439 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 1440 &aux_guid) != 0) 1441 aux_guid = 0; 1442 1443 /* 1444 * If this vdev just became a top-level vdev because its 1445 * sibling was detached, it will have adopted the parent's 1446 * vdev guid -- but the label may or may not be on disk yet. 1447 * Fortunately, either version of the label will have the 1448 * same top guid, so if we're a top-level vdev, we can 1449 * safely compare to that instead. 1450 * 1451 * If we split this vdev off instead, then we also check the 1452 * original pool's guid. We don't want to consider the vdev 1453 * corrupt if it is partway through a split operation. 1454 */ 1455 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1456 &guid) != 0 || 1457 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, 1458 &top_guid) != 0 || 1459 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) && 1460 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { 1461 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1462 VDEV_AUX_CORRUPT_DATA); 1463 nvlist_free(label); 1464 return (0); 1465 } 1466 1467 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1468 &state) != 0) { 1469 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1470 VDEV_AUX_CORRUPT_DATA); 1471 nvlist_free(label); 1472 return (0); 1473 } 1474 1475 nvlist_free(label); 1476 1477 /* 1478 * If this is a verbatim import, no need to check the 1479 * state of the pool. 1480 */ 1481 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 1482 spa_load_state(spa) == SPA_LOAD_OPEN && 1483 state != POOL_STATE_ACTIVE) 1484 return (SET_ERROR(EBADF)); 1485 1486 /* 1487 * If we were able to open and validate a vdev that was 1488 * previously marked permanently unavailable, clear that state 1489 * now. 1490 */ 1491 if (vd->vdev_not_present) 1492 vd->vdev_not_present = 0; 1493 } 1494 1495 return (0); 1496 } 1497 1498 /* 1499 * Close a virtual device. 1500 */ 1501 void 1502 vdev_close(vdev_t *vd) 1503 { 1504 spa_t *spa = vd->vdev_spa; 1505 vdev_t *pvd = vd->vdev_parent; 1506 1507 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1508 1509 /* 1510 * If our parent is reopening, then we are as well, unless we are 1511 * going offline. 1512 */ 1513 if (pvd != NULL && pvd->vdev_reopening) 1514 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 1515 1516 vd->vdev_ops->vdev_op_close(vd); 1517 1518 vdev_cache_purge(vd); 1519 1520 /* 1521 * We record the previous state before we close it, so that if we are 1522 * doing a reopen(), we don't generate FMA ereports if we notice that 1523 * it's still faulted. 1524 */ 1525 vd->vdev_prevstate = vd->vdev_state; 1526 1527 if (vd->vdev_offline) 1528 vd->vdev_state = VDEV_STATE_OFFLINE; 1529 else 1530 vd->vdev_state = VDEV_STATE_CLOSED; 1531 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1532 } 1533 1534 void 1535 vdev_hold(vdev_t *vd) 1536 { 1537 spa_t *spa = vd->vdev_spa; 1538 1539 ASSERT(spa_is_root(spa)); 1540 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1541 return; 1542 1543 for (int c = 0; c < vd->vdev_children; c++) 1544 vdev_hold(vd->vdev_child[c]); 1545 1546 if (vd->vdev_ops->vdev_op_leaf) 1547 vd->vdev_ops->vdev_op_hold(vd); 1548 } 1549 1550 void 1551 vdev_rele(vdev_t *vd) 1552 { 1553 spa_t *spa = vd->vdev_spa; 1554 1555 ASSERT(spa_is_root(spa)); 1556 for (int c = 0; c < vd->vdev_children; c++) 1557 vdev_rele(vd->vdev_child[c]); 1558 1559 if (vd->vdev_ops->vdev_op_leaf) 1560 vd->vdev_ops->vdev_op_rele(vd); 1561 } 1562 1563 /* 1564 * Reopen all interior vdevs and any unopened leaves. We don't actually 1565 * reopen leaf vdevs which had previously been opened as they might deadlock 1566 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 1567 * If the leaf has never been opened then open it, as usual. 1568 */ 1569 void 1570 vdev_reopen(vdev_t *vd) 1571 { 1572 spa_t *spa = vd->vdev_spa; 1573 1574 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1575 1576 /* set the reopening flag unless we're taking the vdev offline */ 1577 vd->vdev_reopening = !vd->vdev_offline; 1578 vdev_close(vd); 1579 (void) vdev_open(vd); 1580 1581 /* 1582 * Call vdev_validate() here to make sure we have the same device. 1583 * Otherwise, a device with an invalid label could be successfully 1584 * opened in response to vdev_reopen(). 1585 */ 1586 if (vd->vdev_aux) { 1587 (void) vdev_validate_aux(vd); 1588 if (vdev_readable(vd) && vdev_writeable(vd) && 1589 vd->vdev_aux == &spa->spa_l2cache && 1590 !l2arc_vdev_present(vd)) 1591 l2arc_add_vdev(spa, vd); 1592 } else { 1593 (void) vdev_validate(vd, B_TRUE); 1594 } 1595 1596 /* 1597 * Reassess parent vdev's health. 1598 */ 1599 vdev_propagate_state(vd); 1600 } 1601 1602 int 1603 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1604 { 1605 int error; 1606 1607 /* 1608 * Normally, partial opens (e.g. of a mirror) are allowed. 1609 * For a create, however, we want to fail the request if 1610 * there are any components we can't open. 1611 */ 1612 error = vdev_open(vd); 1613 1614 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1615 vdev_close(vd); 1616 return (error ? error : ENXIO); 1617 } 1618 1619 /* 1620 * Recursively load DTLs and initialize all labels. 1621 */ 1622 if ((error = vdev_dtl_load(vd)) != 0 || 1623 (error = vdev_label_init(vd, txg, isreplacing ? 1624 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1625 vdev_close(vd); 1626 return (error); 1627 } 1628 1629 return (0); 1630 } 1631 1632 void 1633 vdev_metaslab_set_size(vdev_t *vd) 1634 { 1635 /* 1636 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev. 1637 */ 1638 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev); 1639 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1640 } 1641 1642 void 1643 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1644 { 1645 ASSERT(vd == vd->vdev_top); 1646 ASSERT(!vd->vdev_ishole); 1647 ASSERT(ISP2(flags)); 1648 ASSERT(spa_writeable(vd->vdev_spa)); 1649 1650 if (flags & VDD_METASLAB) 1651 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1652 1653 if (flags & VDD_DTL) 1654 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1655 1656 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1657 } 1658 1659 void 1660 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 1661 { 1662 for (int c = 0; c < vd->vdev_children; c++) 1663 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 1664 1665 if (vd->vdev_ops->vdev_op_leaf) 1666 vdev_dirty(vd->vdev_top, flags, vd, txg); 1667 } 1668 1669 /* 1670 * DTLs. 1671 * 1672 * A vdev's DTL (dirty time log) is the set of transaction groups for which 1673 * the vdev has less than perfect replication. There are four kinds of DTL: 1674 * 1675 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 1676 * 1677 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 1678 * 1679 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 1680 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 1681 * txgs that was scrubbed. 1682 * 1683 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 1684 * persistent errors or just some device being offline. 1685 * Unlike the other three, the DTL_OUTAGE map is not generally 1686 * maintained; it's only computed when needed, typically to 1687 * determine whether a device can be detached. 1688 * 1689 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 1690 * either has the data or it doesn't. 1691 * 1692 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 1693 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 1694 * if any child is less than fully replicated, then so is its parent. 1695 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 1696 * comprising only those txgs which appear in 'maxfaults' or more children; 1697 * those are the txgs we don't have enough replication to read. For example, 1698 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 1699 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 1700 * two child DTL_MISSING maps. 1701 * 1702 * It should be clear from the above that to compute the DTLs and outage maps 1703 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 1704 * Therefore, that is all we keep on disk. When loading the pool, or after 1705 * a configuration change, we generate all other DTLs from first principles. 1706 */ 1707 void 1708 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1709 { 1710 range_tree_t *rt = vd->vdev_dtl[t]; 1711 1712 ASSERT(t < DTL_TYPES); 1713 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1714 ASSERT(spa_writeable(vd->vdev_spa)); 1715 1716 mutex_enter(rt->rt_lock); 1717 if (!range_tree_contains(rt, txg, size)) 1718 range_tree_add(rt, txg, size); 1719 mutex_exit(rt->rt_lock); 1720 } 1721 1722 boolean_t 1723 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1724 { 1725 range_tree_t *rt = vd->vdev_dtl[t]; 1726 boolean_t dirty = B_FALSE; 1727 1728 ASSERT(t < DTL_TYPES); 1729 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1730 1731 mutex_enter(rt->rt_lock); 1732 if (range_tree_space(rt) != 0) 1733 dirty = range_tree_contains(rt, txg, size); 1734 mutex_exit(rt->rt_lock); 1735 1736 return (dirty); 1737 } 1738 1739 boolean_t 1740 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 1741 { 1742 range_tree_t *rt = vd->vdev_dtl[t]; 1743 boolean_t empty; 1744 1745 mutex_enter(rt->rt_lock); 1746 empty = (range_tree_space(rt) == 0); 1747 mutex_exit(rt->rt_lock); 1748 1749 return (empty); 1750 } 1751 1752 /* 1753 * Returns the lowest txg in the DTL range. 1754 */ 1755 static uint64_t 1756 vdev_dtl_min(vdev_t *vd) 1757 { 1758 range_seg_t *rs; 1759 1760 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1761 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1762 ASSERT0(vd->vdev_children); 1763 1764 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1765 return (rs->rs_start - 1); 1766 } 1767 1768 /* 1769 * Returns the highest txg in the DTL. 1770 */ 1771 static uint64_t 1772 vdev_dtl_max(vdev_t *vd) 1773 { 1774 range_seg_t *rs; 1775 1776 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1777 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1778 ASSERT0(vd->vdev_children); 1779 1780 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1781 return (rs->rs_end); 1782 } 1783 1784 /* 1785 * Determine if a resilvering vdev should remove any DTL entries from 1786 * its range. If the vdev was resilvering for the entire duration of the 1787 * scan then it should excise that range from its DTLs. Otherwise, this 1788 * vdev is considered partially resilvered and should leave its DTL 1789 * entries intact. The comment in vdev_dtl_reassess() describes how we 1790 * excise the DTLs. 1791 */ 1792 static boolean_t 1793 vdev_dtl_should_excise(vdev_t *vd) 1794 { 1795 spa_t *spa = vd->vdev_spa; 1796 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1797 1798 ASSERT0(scn->scn_phys.scn_errors); 1799 ASSERT0(vd->vdev_children); 1800 1801 if (vd->vdev_state < VDEV_STATE_DEGRADED) 1802 return (B_FALSE); 1803 1804 if (vd->vdev_resilver_txg == 0 || 1805 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0) 1806 return (B_TRUE); 1807 1808 /* 1809 * When a resilver is initiated the scan will assign the scn_max_txg 1810 * value to the highest txg value that exists in all DTLs. If this 1811 * device's max DTL is not part of this scan (i.e. it is not in 1812 * the range (scn_min_txg, scn_max_txg] then it is not eligible 1813 * for excision. 1814 */ 1815 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 1816 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd)); 1817 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg); 1818 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg); 1819 return (B_TRUE); 1820 } 1821 return (B_FALSE); 1822 } 1823 1824 /* 1825 * Reassess DTLs after a config change or scrub completion. 1826 */ 1827 void 1828 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1829 { 1830 spa_t *spa = vd->vdev_spa; 1831 avl_tree_t reftree; 1832 int minref; 1833 1834 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1835 1836 for (int c = 0; c < vd->vdev_children; c++) 1837 vdev_dtl_reassess(vd->vdev_child[c], txg, 1838 scrub_txg, scrub_done); 1839 1840 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux) 1841 return; 1842 1843 if (vd->vdev_ops->vdev_op_leaf) { 1844 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1845 1846 mutex_enter(&vd->vdev_dtl_lock); 1847 1848 /* 1849 * If we've completed a scan cleanly then determine 1850 * if this vdev should remove any DTLs. We only want to 1851 * excise regions on vdevs that were available during 1852 * the entire duration of this scan. 1853 */ 1854 if (scrub_txg != 0 && 1855 (spa->spa_scrub_started || 1856 (scn != NULL && scn->scn_phys.scn_errors == 0)) && 1857 vdev_dtl_should_excise(vd)) { 1858 /* 1859 * We completed a scrub up to scrub_txg. If we 1860 * did it without rebooting, then the scrub dtl 1861 * will be valid, so excise the old region and 1862 * fold in the scrub dtl. Otherwise, leave the 1863 * dtl as-is if there was an error. 1864 * 1865 * There's little trick here: to excise the beginning 1866 * of the DTL_MISSING map, we put it into a reference 1867 * tree and then add a segment with refcnt -1 that 1868 * covers the range [0, scrub_txg). This means 1869 * that each txg in that range has refcnt -1 or 0. 1870 * We then add DTL_SCRUB with a refcnt of 2, so that 1871 * entries in the range [0, scrub_txg) will have a 1872 * positive refcnt -- either 1 or 2. We then convert 1873 * the reference tree into the new DTL_MISSING map. 1874 */ 1875 space_reftree_create(&reftree); 1876 space_reftree_add_map(&reftree, 1877 vd->vdev_dtl[DTL_MISSING], 1); 1878 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 1879 space_reftree_add_map(&reftree, 1880 vd->vdev_dtl[DTL_SCRUB], 2); 1881 space_reftree_generate_map(&reftree, 1882 vd->vdev_dtl[DTL_MISSING], 1); 1883 space_reftree_destroy(&reftree); 1884 } 1885 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 1886 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 1887 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 1888 if (scrub_done) 1889 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 1890 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 1891 if (!vdev_readable(vd)) 1892 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 1893 else 1894 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 1895 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 1896 1897 /* 1898 * If the vdev was resilvering and no longer has any 1899 * DTLs then reset its resilvering flag. 1900 */ 1901 if (vd->vdev_resilver_txg != 0 && 1902 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 && 1903 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) 1904 vd->vdev_resilver_txg = 0; 1905 1906 mutex_exit(&vd->vdev_dtl_lock); 1907 1908 if (txg != 0) 1909 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1910 return; 1911 } 1912 1913 mutex_enter(&vd->vdev_dtl_lock); 1914 for (int t = 0; t < DTL_TYPES; t++) { 1915 /* account for child's outage in parent's missing map */ 1916 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 1917 if (t == DTL_SCRUB) 1918 continue; /* leaf vdevs only */ 1919 if (t == DTL_PARTIAL) 1920 minref = 1; /* i.e. non-zero */ 1921 else if (vd->vdev_nparity != 0) 1922 minref = vd->vdev_nparity + 1; /* RAID-Z */ 1923 else 1924 minref = vd->vdev_children; /* any kind of mirror */ 1925 space_reftree_create(&reftree); 1926 for (int c = 0; c < vd->vdev_children; c++) { 1927 vdev_t *cvd = vd->vdev_child[c]; 1928 mutex_enter(&cvd->vdev_dtl_lock); 1929 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1); 1930 mutex_exit(&cvd->vdev_dtl_lock); 1931 } 1932 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref); 1933 space_reftree_destroy(&reftree); 1934 } 1935 mutex_exit(&vd->vdev_dtl_lock); 1936 } 1937 1938 int 1939 vdev_dtl_load(vdev_t *vd) 1940 { 1941 spa_t *spa = vd->vdev_spa; 1942 objset_t *mos = spa->spa_meta_objset; 1943 int error = 0; 1944 1945 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 1946 ASSERT(!vd->vdev_ishole); 1947 1948 error = space_map_open(&vd->vdev_dtl_sm, mos, 1949 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock); 1950 if (error) 1951 return (error); 1952 ASSERT(vd->vdev_dtl_sm != NULL); 1953 1954 mutex_enter(&vd->vdev_dtl_lock); 1955 1956 /* 1957 * Now that we've opened the space_map we need to update 1958 * the in-core DTL. 1959 */ 1960 space_map_update(vd->vdev_dtl_sm); 1961 1962 error = space_map_load(vd->vdev_dtl_sm, 1963 vd->vdev_dtl[DTL_MISSING], SM_ALLOC); 1964 mutex_exit(&vd->vdev_dtl_lock); 1965 1966 return (error); 1967 } 1968 1969 for (int c = 0; c < vd->vdev_children; c++) { 1970 error = vdev_dtl_load(vd->vdev_child[c]); 1971 if (error != 0) 1972 break; 1973 } 1974 1975 return (error); 1976 } 1977 1978 void 1979 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx) 1980 { 1981 spa_t *spa = vd->vdev_spa; 1982 1983 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx)); 1984 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 1985 zapobj, tx)); 1986 } 1987 1988 uint64_t 1989 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx) 1990 { 1991 spa_t *spa = vd->vdev_spa; 1992 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, 1993 DMU_OT_NONE, 0, tx); 1994 1995 ASSERT(zap != 0); 1996 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 1997 zap, tx)); 1998 1999 return (zap); 2000 } 2001 2002 void 2003 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx) 2004 { 2005 if (vd->vdev_ops != &vdev_hole_ops && 2006 vd->vdev_ops != &vdev_missing_ops && 2007 vd->vdev_ops != &vdev_root_ops && 2008 !vd->vdev_top->vdev_removing) { 2009 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) { 2010 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx); 2011 } 2012 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) { 2013 vd->vdev_top_zap = vdev_create_link_zap(vd, tx); 2014 } 2015 } 2016 for (uint64_t i = 0; i < vd->vdev_children; i++) { 2017 vdev_construct_zaps(vd->vdev_child[i], tx); 2018 } 2019 } 2020 2021 void 2022 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 2023 { 2024 spa_t *spa = vd->vdev_spa; 2025 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 2026 objset_t *mos = spa->spa_meta_objset; 2027 range_tree_t *rtsync; 2028 kmutex_t rtlock; 2029 dmu_tx_t *tx; 2030 uint64_t object = space_map_object(vd->vdev_dtl_sm); 2031 2032 ASSERT(!vd->vdev_ishole); 2033 ASSERT(vd->vdev_ops->vdev_op_leaf); 2034 2035 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2036 2037 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 2038 mutex_enter(&vd->vdev_dtl_lock); 2039 space_map_free(vd->vdev_dtl_sm, tx); 2040 space_map_close(vd->vdev_dtl_sm); 2041 vd->vdev_dtl_sm = NULL; 2042 mutex_exit(&vd->vdev_dtl_lock); 2043 2044 /* 2045 * We only destroy the leaf ZAP for detached leaves or for 2046 * removed log devices. Removed data devices handle leaf ZAP 2047 * cleanup later, once cancellation is no longer possible. 2048 */ 2049 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached || 2050 vd->vdev_top->vdev_islog)) { 2051 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx); 2052 vd->vdev_leaf_zap = 0; 2053 } 2054 2055 dmu_tx_commit(tx); 2056 return; 2057 } 2058 2059 if (vd->vdev_dtl_sm == NULL) { 2060 uint64_t new_object; 2061 2062 new_object = space_map_alloc(mos, tx); 2063 VERIFY3U(new_object, !=, 0); 2064 2065 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 2066 0, -1ULL, 0, &vd->vdev_dtl_lock)); 2067 ASSERT(vd->vdev_dtl_sm != NULL); 2068 } 2069 2070 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL); 2071 2072 rtsync = range_tree_create(NULL, NULL, &rtlock); 2073 2074 mutex_enter(&rtlock); 2075 2076 mutex_enter(&vd->vdev_dtl_lock); 2077 range_tree_walk(rt, range_tree_add, rtsync); 2078 mutex_exit(&vd->vdev_dtl_lock); 2079 2080 space_map_truncate(vd->vdev_dtl_sm, tx); 2081 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx); 2082 range_tree_vacate(rtsync, NULL, NULL); 2083 2084 range_tree_destroy(rtsync); 2085 2086 mutex_exit(&rtlock); 2087 mutex_destroy(&rtlock); 2088 2089 /* 2090 * If the object for the space map has changed then dirty 2091 * the top level so that we update the config. 2092 */ 2093 if (object != space_map_object(vd->vdev_dtl_sm)) { 2094 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, " 2095 "new object %llu", txg, spa_name(spa), object, 2096 space_map_object(vd->vdev_dtl_sm)); 2097 vdev_config_dirty(vd->vdev_top); 2098 } 2099 2100 dmu_tx_commit(tx); 2101 2102 mutex_enter(&vd->vdev_dtl_lock); 2103 space_map_update(vd->vdev_dtl_sm); 2104 mutex_exit(&vd->vdev_dtl_lock); 2105 } 2106 2107 /* 2108 * Determine whether the specified vdev can be offlined/detached/removed 2109 * without losing data. 2110 */ 2111 boolean_t 2112 vdev_dtl_required(vdev_t *vd) 2113 { 2114 spa_t *spa = vd->vdev_spa; 2115 vdev_t *tvd = vd->vdev_top; 2116 uint8_t cant_read = vd->vdev_cant_read; 2117 boolean_t required; 2118 2119 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2120 2121 if (vd == spa->spa_root_vdev || vd == tvd) 2122 return (B_TRUE); 2123 2124 /* 2125 * Temporarily mark the device as unreadable, and then determine 2126 * whether this results in any DTL outages in the top-level vdev. 2127 * If not, we can safely offline/detach/remove the device. 2128 */ 2129 vd->vdev_cant_read = B_TRUE; 2130 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2131 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 2132 vd->vdev_cant_read = cant_read; 2133 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2134 2135 if (!required && zio_injection_enabled) 2136 required = !!zio_handle_device_injection(vd, NULL, ECHILD); 2137 2138 return (required); 2139 } 2140 2141 /* 2142 * Determine if resilver is needed, and if so the txg range. 2143 */ 2144 boolean_t 2145 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 2146 { 2147 boolean_t needed = B_FALSE; 2148 uint64_t thismin = UINT64_MAX; 2149 uint64_t thismax = 0; 2150 2151 if (vd->vdev_children == 0) { 2152 mutex_enter(&vd->vdev_dtl_lock); 2153 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 && 2154 vdev_writeable(vd)) { 2155 2156 thismin = vdev_dtl_min(vd); 2157 thismax = vdev_dtl_max(vd); 2158 needed = B_TRUE; 2159 } 2160 mutex_exit(&vd->vdev_dtl_lock); 2161 } else { 2162 for (int c = 0; c < vd->vdev_children; c++) { 2163 vdev_t *cvd = vd->vdev_child[c]; 2164 uint64_t cmin, cmax; 2165 2166 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 2167 thismin = MIN(thismin, cmin); 2168 thismax = MAX(thismax, cmax); 2169 needed = B_TRUE; 2170 } 2171 } 2172 } 2173 2174 if (needed && minp) { 2175 *minp = thismin; 2176 *maxp = thismax; 2177 } 2178 return (needed); 2179 } 2180 2181 void 2182 vdev_load(vdev_t *vd) 2183 { 2184 /* 2185 * Recursively load all children. 2186 */ 2187 for (int c = 0; c < vd->vdev_children; c++) 2188 vdev_load(vd->vdev_child[c]); 2189 2190 /* 2191 * If this is a top-level vdev, initialize its metaslabs. 2192 */ 2193 if (vd == vd->vdev_top && !vd->vdev_ishole && 2194 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 2195 vdev_metaslab_init(vd, 0) != 0)) 2196 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2197 VDEV_AUX_CORRUPT_DATA); 2198 2199 /* 2200 * If this is a leaf vdev, load its DTL. 2201 */ 2202 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 2203 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2204 VDEV_AUX_CORRUPT_DATA); 2205 } 2206 2207 /* 2208 * The special vdev case is used for hot spares and l2cache devices. Its 2209 * sole purpose it to set the vdev state for the associated vdev. To do this, 2210 * we make sure that we can open the underlying device, then try to read the 2211 * label, and make sure that the label is sane and that it hasn't been 2212 * repurposed to another pool. 2213 */ 2214 int 2215 vdev_validate_aux(vdev_t *vd) 2216 { 2217 nvlist_t *label; 2218 uint64_t guid, version; 2219 uint64_t state; 2220 2221 if (!vdev_readable(vd)) 2222 return (0); 2223 2224 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 2225 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2226 VDEV_AUX_CORRUPT_DATA); 2227 return (-1); 2228 } 2229 2230 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 2231 !SPA_VERSION_IS_SUPPORTED(version) || 2232 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 2233 guid != vd->vdev_guid || 2234 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 2235 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2236 VDEV_AUX_CORRUPT_DATA); 2237 nvlist_free(label); 2238 return (-1); 2239 } 2240 2241 /* 2242 * We don't actually check the pool state here. If it's in fact in 2243 * use by another pool, we update this fact on the fly when requested. 2244 */ 2245 nvlist_free(label); 2246 return (0); 2247 } 2248 2249 void 2250 vdev_remove(vdev_t *vd, uint64_t txg) 2251 { 2252 spa_t *spa = vd->vdev_spa; 2253 objset_t *mos = spa->spa_meta_objset; 2254 dmu_tx_t *tx; 2255 2256 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 2257 ASSERT(vd == vd->vdev_top); 2258 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 2259 2260 if (vd->vdev_ms != NULL) { 2261 metaslab_group_t *mg = vd->vdev_mg; 2262 2263 metaslab_group_histogram_verify(mg); 2264 metaslab_class_histogram_verify(mg->mg_class); 2265 2266 for (int m = 0; m < vd->vdev_ms_count; m++) { 2267 metaslab_t *msp = vd->vdev_ms[m]; 2268 2269 if (msp == NULL || msp->ms_sm == NULL) 2270 continue; 2271 2272 mutex_enter(&msp->ms_lock); 2273 /* 2274 * If the metaslab was not loaded when the vdev 2275 * was removed then the histogram accounting may 2276 * not be accurate. Update the histogram information 2277 * here so that we ensure that the metaslab group 2278 * and metaslab class are up-to-date. 2279 */ 2280 metaslab_group_histogram_remove(mg, msp); 2281 2282 VERIFY0(space_map_allocated(msp->ms_sm)); 2283 space_map_free(msp->ms_sm, tx); 2284 space_map_close(msp->ms_sm); 2285 msp->ms_sm = NULL; 2286 mutex_exit(&msp->ms_lock); 2287 } 2288 2289 metaslab_group_histogram_verify(mg); 2290 metaslab_class_histogram_verify(mg->mg_class); 2291 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 2292 ASSERT0(mg->mg_histogram[i]); 2293 2294 } 2295 2296 if (vd->vdev_ms_array) { 2297 (void) dmu_object_free(mos, vd->vdev_ms_array, tx); 2298 vd->vdev_ms_array = 0; 2299 } 2300 2301 if (vd->vdev_islog && vd->vdev_top_zap != 0) { 2302 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx); 2303 vd->vdev_top_zap = 0; 2304 } 2305 dmu_tx_commit(tx); 2306 } 2307 2308 void 2309 vdev_sync_done(vdev_t *vd, uint64_t txg) 2310 { 2311 metaslab_t *msp; 2312 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 2313 2314 ASSERT(!vd->vdev_ishole); 2315 2316 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 2317 metaslab_sync_done(msp, txg); 2318 2319 if (reassess) 2320 metaslab_sync_reassess(vd->vdev_mg); 2321 } 2322 2323 void 2324 vdev_sync(vdev_t *vd, uint64_t txg) 2325 { 2326 spa_t *spa = vd->vdev_spa; 2327 vdev_t *lvd; 2328 metaslab_t *msp; 2329 dmu_tx_t *tx; 2330 2331 ASSERT(!vd->vdev_ishole); 2332 2333 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 2334 ASSERT(vd == vd->vdev_top); 2335 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2336 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 2337 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 2338 ASSERT(vd->vdev_ms_array != 0); 2339 vdev_config_dirty(vd); 2340 dmu_tx_commit(tx); 2341 } 2342 2343 /* 2344 * Remove the metadata associated with this vdev once it's empty. 2345 */ 2346 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 2347 vdev_remove(vd, txg); 2348 2349 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 2350 metaslab_sync(msp, txg); 2351 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 2352 } 2353 2354 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 2355 vdev_dtl_sync(lvd, txg); 2356 2357 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 2358 } 2359 2360 uint64_t 2361 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 2362 { 2363 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 2364 } 2365 2366 /* 2367 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 2368 * not be opened, and no I/O is attempted. 2369 */ 2370 int 2371 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2372 { 2373 vdev_t *vd, *tvd; 2374 2375 spa_vdev_state_enter(spa, SCL_NONE); 2376 2377 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2378 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2379 2380 if (!vd->vdev_ops->vdev_op_leaf) 2381 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2382 2383 tvd = vd->vdev_top; 2384 2385 /* 2386 * We don't directly use the aux state here, but if we do a 2387 * vdev_reopen(), we need this value to be present to remember why we 2388 * were faulted. 2389 */ 2390 vd->vdev_label_aux = aux; 2391 2392 /* 2393 * Faulted state takes precedence over degraded. 2394 */ 2395 vd->vdev_delayed_close = B_FALSE; 2396 vd->vdev_faulted = 1ULL; 2397 vd->vdev_degraded = 0ULL; 2398 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 2399 2400 /* 2401 * If this device has the only valid copy of the data, then 2402 * back off and simply mark the vdev as degraded instead. 2403 */ 2404 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 2405 vd->vdev_degraded = 1ULL; 2406 vd->vdev_faulted = 0ULL; 2407 2408 /* 2409 * If we reopen the device and it's not dead, only then do we 2410 * mark it degraded. 2411 */ 2412 vdev_reopen(tvd); 2413 2414 if (vdev_readable(vd)) 2415 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 2416 } 2417 2418 return (spa_vdev_state_exit(spa, vd, 0)); 2419 } 2420 2421 /* 2422 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 2423 * user that something is wrong. The vdev continues to operate as normal as far 2424 * as I/O is concerned. 2425 */ 2426 int 2427 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2428 { 2429 vdev_t *vd; 2430 2431 spa_vdev_state_enter(spa, SCL_NONE); 2432 2433 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2434 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2435 2436 if (!vd->vdev_ops->vdev_op_leaf) 2437 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2438 2439 /* 2440 * If the vdev is already faulted, then don't do anything. 2441 */ 2442 if (vd->vdev_faulted || vd->vdev_degraded) 2443 return (spa_vdev_state_exit(spa, NULL, 0)); 2444 2445 vd->vdev_degraded = 1ULL; 2446 if (!vdev_is_dead(vd)) 2447 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 2448 aux); 2449 2450 return (spa_vdev_state_exit(spa, vd, 0)); 2451 } 2452 2453 /* 2454 * Online the given vdev. 2455 * 2456 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 2457 * spare device should be detached when the device finishes resilvering. 2458 * Second, the online should be treated like a 'test' online case, so no FMA 2459 * events are generated if the device fails to open. 2460 */ 2461 int 2462 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 2463 { 2464 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 2465 boolean_t wasoffline; 2466 vdev_state_t oldstate; 2467 2468 spa_vdev_state_enter(spa, SCL_NONE); 2469 2470 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2471 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2472 2473 if (!vd->vdev_ops->vdev_op_leaf) 2474 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2475 2476 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline); 2477 oldstate = vd->vdev_state; 2478 2479 tvd = vd->vdev_top; 2480 vd->vdev_offline = B_FALSE; 2481 vd->vdev_tmpoffline = B_FALSE; 2482 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 2483 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 2484 2485 /* XXX - L2ARC 1.0 does not support expansion */ 2486 if (!vd->vdev_aux) { 2487 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2488 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 2489 } 2490 2491 vdev_reopen(tvd); 2492 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 2493 2494 if (!vd->vdev_aux) { 2495 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2496 pvd->vdev_expanding = B_FALSE; 2497 } 2498 2499 if (newstate) 2500 *newstate = vd->vdev_state; 2501 if ((flags & ZFS_ONLINE_UNSPARE) && 2502 !vdev_is_dead(vd) && vd->vdev_parent && 2503 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2504 vd->vdev_parent->vdev_child[0] == vd) 2505 vd->vdev_unspare = B_TRUE; 2506 2507 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 2508 2509 /* XXX - L2ARC 1.0 does not support expansion */ 2510 if (vd->vdev_aux) 2511 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 2512 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2513 } 2514 2515 if (wasoffline || 2516 (oldstate < VDEV_STATE_DEGRADED && 2517 vd->vdev_state >= VDEV_STATE_DEGRADED)) 2518 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE); 2519 2520 return (spa_vdev_state_exit(spa, vd, 0)); 2521 } 2522 2523 static int 2524 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 2525 { 2526 vdev_t *vd, *tvd; 2527 int error = 0; 2528 uint64_t generation; 2529 metaslab_group_t *mg; 2530 2531 top: 2532 spa_vdev_state_enter(spa, SCL_ALLOC); 2533 2534 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2535 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2536 2537 if (!vd->vdev_ops->vdev_op_leaf) 2538 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2539 2540 tvd = vd->vdev_top; 2541 mg = tvd->vdev_mg; 2542 generation = spa->spa_config_generation + 1; 2543 2544 /* 2545 * If the device isn't already offline, try to offline it. 2546 */ 2547 if (!vd->vdev_offline) { 2548 /* 2549 * If this device has the only valid copy of some data, 2550 * don't allow it to be offlined. Log devices are always 2551 * expendable. 2552 */ 2553 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2554 vdev_dtl_required(vd)) 2555 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2556 2557 /* 2558 * If the top-level is a slog and it has had allocations 2559 * then proceed. We check that the vdev's metaslab group 2560 * is not NULL since it's possible that we may have just 2561 * added this vdev but not yet initialized its metaslabs. 2562 */ 2563 if (tvd->vdev_islog && mg != NULL) { 2564 /* 2565 * Prevent any future allocations. 2566 */ 2567 metaslab_group_passivate(mg); 2568 (void) spa_vdev_state_exit(spa, vd, 0); 2569 2570 error = spa_offline_log(spa); 2571 2572 spa_vdev_state_enter(spa, SCL_ALLOC); 2573 2574 /* 2575 * Check to see if the config has changed. 2576 */ 2577 if (error || generation != spa->spa_config_generation) { 2578 metaslab_group_activate(mg); 2579 if (error) 2580 return (spa_vdev_state_exit(spa, 2581 vd, error)); 2582 (void) spa_vdev_state_exit(spa, vd, 0); 2583 goto top; 2584 } 2585 ASSERT0(tvd->vdev_stat.vs_alloc); 2586 } 2587 2588 /* 2589 * Offline this device and reopen its top-level vdev. 2590 * If the top-level vdev is a log device then just offline 2591 * it. Otherwise, if this action results in the top-level 2592 * vdev becoming unusable, undo it and fail the request. 2593 */ 2594 vd->vdev_offline = B_TRUE; 2595 vdev_reopen(tvd); 2596 2597 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2598 vdev_is_dead(tvd)) { 2599 vd->vdev_offline = B_FALSE; 2600 vdev_reopen(tvd); 2601 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2602 } 2603 2604 /* 2605 * Add the device back into the metaslab rotor so that 2606 * once we online the device it's open for business. 2607 */ 2608 if (tvd->vdev_islog && mg != NULL) 2609 metaslab_group_activate(mg); 2610 } 2611 2612 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 2613 2614 return (spa_vdev_state_exit(spa, vd, 0)); 2615 } 2616 2617 int 2618 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 2619 { 2620 int error; 2621 2622 mutex_enter(&spa->spa_vdev_top_lock); 2623 error = vdev_offline_locked(spa, guid, flags); 2624 mutex_exit(&spa->spa_vdev_top_lock); 2625 2626 return (error); 2627 } 2628 2629 /* 2630 * Clear the error counts associated with this vdev. Unlike vdev_online() and 2631 * vdev_offline(), we assume the spa config is locked. We also clear all 2632 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 2633 */ 2634 void 2635 vdev_clear(spa_t *spa, vdev_t *vd) 2636 { 2637 vdev_t *rvd = spa->spa_root_vdev; 2638 2639 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2640 2641 if (vd == NULL) 2642 vd = rvd; 2643 2644 vd->vdev_stat.vs_read_errors = 0; 2645 vd->vdev_stat.vs_write_errors = 0; 2646 vd->vdev_stat.vs_checksum_errors = 0; 2647 2648 for (int c = 0; c < vd->vdev_children; c++) 2649 vdev_clear(spa, vd->vdev_child[c]); 2650 2651 /* 2652 * If we're in the FAULTED state or have experienced failed I/O, then 2653 * clear the persistent state and attempt to reopen the device. We 2654 * also mark the vdev config dirty, so that the new faulted state is 2655 * written out to disk. 2656 */ 2657 if (vd->vdev_faulted || vd->vdev_degraded || 2658 !vdev_readable(vd) || !vdev_writeable(vd)) { 2659 2660 /* 2661 * When reopening in reponse to a clear event, it may be due to 2662 * a fmadm repair request. In this case, if the device is 2663 * still broken, we want to still post the ereport again. 2664 */ 2665 vd->vdev_forcefault = B_TRUE; 2666 2667 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 2668 vd->vdev_cant_read = B_FALSE; 2669 vd->vdev_cant_write = B_FALSE; 2670 2671 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 2672 2673 vd->vdev_forcefault = B_FALSE; 2674 2675 if (vd != rvd && vdev_writeable(vd->vdev_top)) 2676 vdev_state_dirty(vd->vdev_top); 2677 2678 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 2679 spa_async_request(spa, SPA_ASYNC_RESILVER); 2680 2681 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR); 2682 } 2683 2684 /* 2685 * When clearing a FMA-diagnosed fault, we always want to 2686 * unspare the device, as we assume that the original spare was 2687 * done in response to the FMA fault. 2688 */ 2689 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 2690 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2691 vd->vdev_parent->vdev_child[0] == vd) 2692 vd->vdev_unspare = B_TRUE; 2693 } 2694 2695 boolean_t 2696 vdev_is_dead(vdev_t *vd) 2697 { 2698 /* 2699 * Holes and missing devices are always considered "dead". 2700 * This simplifies the code since we don't have to check for 2701 * these types of devices in the various code paths. 2702 * Instead we rely on the fact that we skip over dead devices 2703 * before issuing I/O to them. 2704 */ 2705 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole || 2706 vd->vdev_ops == &vdev_missing_ops); 2707 } 2708 2709 boolean_t 2710 vdev_readable(vdev_t *vd) 2711 { 2712 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 2713 } 2714 2715 boolean_t 2716 vdev_writeable(vdev_t *vd) 2717 { 2718 return (!vdev_is_dead(vd) && !vd->vdev_cant_write); 2719 } 2720 2721 boolean_t 2722 vdev_allocatable(vdev_t *vd) 2723 { 2724 uint64_t state = vd->vdev_state; 2725 2726 /* 2727 * We currently allow allocations from vdevs which may be in the 2728 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 2729 * fails to reopen then we'll catch it later when we're holding 2730 * the proper locks. Note that we have to get the vdev state 2731 * in a local variable because although it changes atomically, 2732 * we're asking two separate questions about it. 2733 */ 2734 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 2735 !vd->vdev_cant_write && !vd->vdev_ishole && 2736 vd->vdev_mg->mg_initialized); 2737 } 2738 2739 boolean_t 2740 vdev_accessible(vdev_t *vd, zio_t *zio) 2741 { 2742 ASSERT(zio->io_vd == vd); 2743 2744 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 2745 return (B_FALSE); 2746 2747 if (zio->io_type == ZIO_TYPE_READ) 2748 return (!vd->vdev_cant_read); 2749 2750 if (zio->io_type == ZIO_TYPE_WRITE) 2751 return (!vd->vdev_cant_write); 2752 2753 return (B_TRUE); 2754 } 2755 2756 /* 2757 * Get statistics for the given vdev. 2758 */ 2759 void 2760 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 2761 { 2762 spa_t *spa = vd->vdev_spa; 2763 vdev_t *rvd = spa->spa_root_vdev; 2764 vdev_t *tvd = vd->vdev_top; 2765 2766 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2767 2768 mutex_enter(&vd->vdev_stat_lock); 2769 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 2770 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 2771 vs->vs_state = vd->vdev_state; 2772 vs->vs_rsize = vdev_get_min_asize(vd); 2773 if (vd->vdev_ops->vdev_op_leaf) 2774 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 2775 /* 2776 * Report expandable space on top-level, non-auxillary devices only. 2777 * The expandable space is reported in terms of metaslab sized units 2778 * since that determines how much space the pool can expand. 2779 */ 2780 if (vd->vdev_aux == NULL && tvd != NULL) { 2781 vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize - 2782 spa->spa_bootsize, 1ULL << tvd->vdev_ms_shift); 2783 } 2784 if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) { 2785 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation; 2786 } 2787 2788 /* 2789 * If we're getting stats on the root vdev, aggregate the I/O counts 2790 * over all top-level vdevs (i.e. the direct children of the root). 2791 */ 2792 if (vd == rvd) { 2793 for (int c = 0; c < rvd->vdev_children; c++) { 2794 vdev_t *cvd = rvd->vdev_child[c]; 2795 vdev_stat_t *cvs = &cvd->vdev_stat; 2796 2797 for (int t = 0; t < ZIO_TYPES; t++) { 2798 vs->vs_ops[t] += cvs->vs_ops[t]; 2799 vs->vs_bytes[t] += cvs->vs_bytes[t]; 2800 } 2801 cvs->vs_scan_removing = cvd->vdev_removing; 2802 } 2803 } 2804 mutex_exit(&vd->vdev_stat_lock); 2805 } 2806 2807 void 2808 vdev_clear_stats(vdev_t *vd) 2809 { 2810 mutex_enter(&vd->vdev_stat_lock); 2811 vd->vdev_stat.vs_space = 0; 2812 vd->vdev_stat.vs_dspace = 0; 2813 vd->vdev_stat.vs_alloc = 0; 2814 mutex_exit(&vd->vdev_stat_lock); 2815 } 2816 2817 void 2818 vdev_scan_stat_init(vdev_t *vd) 2819 { 2820 vdev_stat_t *vs = &vd->vdev_stat; 2821 2822 for (int c = 0; c < vd->vdev_children; c++) 2823 vdev_scan_stat_init(vd->vdev_child[c]); 2824 2825 mutex_enter(&vd->vdev_stat_lock); 2826 vs->vs_scan_processed = 0; 2827 mutex_exit(&vd->vdev_stat_lock); 2828 } 2829 2830 void 2831 vdev_stat_update(zio_t *zio, uint64_t psize) 2832 { 2833 spa_t *spa = zio->io_spa; 2834 vdev_t *rvd = spa->spa_root_vdev; 2835 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 2836 vdev_t *pvd; 2837 uint64_t txg = zio->io_txg; 2838 vdev_stat_t *vs = &vd->vdev_stat; 2839 zio_type_t type = zio->io_type; 2840 int flags = zio->io_flags; 2841 2842 /* 2843 * If this i/o is a gang leader, it didn't do any actual work. 2844 */ 2845 if (zio->io_gang_tree) 2846 return; 2847 2848 if (zio->io_error == 0) { 2849 /* 2850 * If this is a root i/o, don't count it -- we've already 2851 * counted the top-level vdevs, and vdev_get_stats() will 2852 * aggregate them when asked. This reduces contention on 2853 * the root vdev_stat_lock and implicitly handles blocks 2854 * that compress away to holes, for which there is no i/o. 2855 * (Holes never create vdev children, so all the counters 2856 * remain zero, which is what we want.) 2857 * 2858 * Note: this only applies to successful i/o (io_error == 0) 2859 * because unlike i/o counts, errors are not additive. 2860 * When reading a ditto block, for example, failure of 2861 * one top-level vdev does not imply a root-level error. 2862 */ 2863 if (vd == rvd) 2864 return; 2865 2866 ASSERT(vd == zio->io_vd); 2867 2868 if (flags & ZIO_FLAG_IO_BYPASS) 2869 return; 2870 2871 mutex_enter(&vd->vdev_stat_lock); 2872 2873 if (flags & ZIO_FLAG_IO_REPAIR) { 2874 if (flags & ZIO_FLAG_SCAN_THREAD) { 2875 dsl_scan_phys_t *scn_phys = 2876 &spa->spa_dsl_pool->dp_scan->scn_phys; 2877 uint64_t *processed = &scn_phys->scn_processed; 2878 2879 /* XXX cleanup? */ 2880 if (vd->vdev_ops->vdev_op_leaf) 2881 atomic_add_64(processed, psize); 2882 vs->vs_scan_processed += psize; 2883 } 2884 2885 if (flags & ZIO_FLAG_SELF_HEAL) 2886 vs->vs_self_healed += psize; 2887 } 2888 2889 vs->vs_ops[type]++; 2890 vs->vs_bytes[type] += psize; 2891 2892 mutex_exit(&vd->vdev_stat_lock); 2893 return; 2894 } 2895 2896 if (flags & ZIO_FLAG_SPECULATIVE) 2897 return; 2898 2899 /* 2900 * If this is an I/O error that is going to be retried, then ignore the 2901 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 2902 * hard errors, when in reality they can happen for any number of 2903 * innocuous reasons (bus resets, MPxIO link failure, etc). 2904 */ 2905 if (zio->io_error == EIO && 2906 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 2907 return; 2908 2909 /* 2910 * Intent logs writes won't propagate their error to the root 2911 * I/O so don't mark these types of failures as pool-level 2912 * errors. 2913 */ 2914 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 2915 return; 2916 2917 mutex_enter(&vd->vdev_stat_lock); 2918 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 2919 if (zio->io_error == ECKSUM) 2920 vs->vs_checksum_errors++; 2921 else 2922 vs->vs_read_errors++; 2923 } 2924 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 2925 vs->vs_write_errors++; 2926 mutex_exit(&vd->vdev_stat_lock); 2927 2928 if (type == ZIO_TYPE_WRITE && txg != 0 && 2929 (!(flags & ZIO_FLAG_IO_REPAIR) || 2930 (flags & ZIO_FLAG_SCAN_THREAD) || 2931 spa->spa_claiming)) { 2932 /* 2933 * This is either a normal write (not a repair), or it's 2934 * a repair induced by the scrub thread, or it's a repair 2935 * made by zil_claim() during spa_load() in the first txg. 2936 * In the normal case, we commit the DTL change in the same 2937 * txg as the block was born. In the scrub-induced repair 2938 * case, we know that scrubs run in first-pass syncing context, 2939 * so we commit the DTL change in spa_syncing_txg(spa). 2940 * In the zil_claim() case, we commit in spa_first_txg(spa). 2941 * 2942 * We currently do not make DTL entries for failed spontaneous 2943 * self-healing writes triggered by normal (non-scrubbing) 2944 * reads, because we have no transactional context in which to 2945 * do so -- and it's not clear that it'd be desirable anyway. 2946 */ 2947 if (vd->vdev_ops->vdev_op_leaf) { 2948 uint64_t commit_txg = txg; 2949 if (flags & ZIO_FLAG_SCAN_THREAD) { 2950 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2951 ASSERT(spa_sync_pass(spa) == 1); 2952 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 2953 commit_txg = spa_syncing_txg(spa); 2954 } else if (spa->spa_claiming) { 2955 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2956 commit_txg = spa_first_txg(spa); 2957 } 2958 ASSERT(commit_txg >= spa_syncing_txg(spa)); 2959 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 2960 return; 2961 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2962 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 2963 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 2964 } 2965 if (vd != rvd) 2966 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 2967 } 2968 } 2969 2970 /* 2971 * Update the in-core space usage stats for this vdev, its metaslab class, 2972 * and the root vdev. 2973 */ 2974 void 2975 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 2976 int64_t space_delta) 2977 { 2978 int64_t dspace_delta = space_delta; 2979 spa_t *spa = vd->vdev_spa; 2980 vdev_t *rvd = spa->spa_root_vdev; 2981 metaslab_group_t *mg = vd->vdev_mg; 2982 metaslab_class_t *mc = mg ? mg->mg_class : NULL; 2983 2984 ASSERT(vd == vd->vdev_top); 2985 2986 /* 2987 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 2988 * factor. We must calculate this here and not at the root vdev 2989 * because the root vdev's psize-to-asize is simply the max of its 2990 * childrens', thus not accurate enough for us. 2991 */ 2992 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 2993 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 2994 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 2995 vd->vdev_deflate_ratio; 2996 2997 mutex_enter(&vd->vdev_stat_lock); 2998 vd->vdev_stat.vs_alloc += alloc_delta; 2999 vd->vdev_stat.vs_space += space_delta; 3000 vd->vdev_stat.vs_dspace += dspace_delta; 3001 mutex_exit(&vd->vdev_stat_lock); 3002 3003 if (mc == spa_normal_class(spa)) { 3004 mutex_enter(&rvd->vdev_stat_lock); 3005 rvd->vdev_stat.vs_alloc += alloc_delta; 3006 rvd->vdev_stat.vs_space += space_delta; 3007 rvd->vdev_stat.vs_dspace += dspace_delta; 3008 mutex_exit(&rvd->vdev_stat_lock); 3009 } 3010 3011 if (mc != NULL) { 3012 ASSERT(rvd == vd->vdev_parent); 3013 ASSERT(vd->vdev_ms_count != 0); 3014 3015 metaslab_class_space_update(mc, 3016 alloc_delta, defer_delta, space_delta, dspace_delta); 3017 } 3018 } 3019 3020 /* 3021 * Mark a top-level vdev's config as dirty, placing it on the dirty list 3022 * so that it will be written out next time the vdev configuration is synced. 3023 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 3024 */ 3025 void 3026 vdev_config_dirty(vdev_t *vd) 3027 { 3028 spa_t *spa = vd->vdev_spa; 3029 vdev_t *rvd = spa->spa_root_vdev; 3030 int c; 3031 3032 ASSERT(spa_writeable(spa)); 3033 3034 /* 3035 * If this is an aux vdev (as with l2cache and spare devices), then we 3036 * update the vdev config manually and set the sync flag. 3037 */ 3038 if (vd->vdev_aux != NULL) { 3039 spa_aux_vdev_t *sav = vd->vdev_aux; 3040 nvlist_t **aux; 3041 uint_t naux; 3042 3043 for (c = 0; c < sav->sav_count; c++) { 3044 if (sav->sav_vdevs[c] == vd) 3045 break; 3046 } 3047 3048 if (c == sav->sav_count) { 3049 /* 3050 * We're being removed. There's nothing more to do. 3051 */ 3052 ASSERT(sav->sav_sync == B_TRUE); 3053 return; 3054 } 3055 3056 sav->sav_sync = B_TRUE; 3057 3058 if (nvlist_lookup_nvlist_array(sav->sav_config, 3059 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 3060 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 3061 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 3062 } 3063 3064 ASSERT(c < naux); 3065 3066 /* 3067 * Setting the nvlist in the middle if the array is a little 3068 * sketchy, but it will work. 3069 */ 3070 nvlist_free(aux[c]); 3071 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 3072 3073 return; 3074 } 3075 3076 /* 3077 * The dirty list is protected by the SCL_CONFIG lock. The caller 3078 * must either hold SCL_CONFIG as writer, or must be the sync thread 3079 * (which holds SCL_CONFIG as reader). There's only one sync thread, 3080 * so this is sufficient to ensure mutual exclusion. 3081 */ 3082 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 3083 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3084 spa_config_held(spa, SCL_CONFIG, RW_READER))); 3085 3086 if (vd == rvd) { 3087 for (c = 0; c < rvd->vdev_children; c++) 3088 vdev_config_dirty(rvd->vdev_child[c]); 3089 } else { 3090 ASSERT(vd == vd->vdev_top); 3091 3092 if (!list_link_active(&vd->vdev_config_dirty_node) && 3093 !vd->vdev_ishole) 3094 list_insert_head(&spa->spa_config_dirty_list, vd); 3095 } 3096 } 3097 3098 void 3099 vdev_config_clean(vdev_t *vd) 3100 { 3101 spa_t *spa = vd->vdev_spa; 3102 3103 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 3104 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3105 spa_config_held(spa, SCL_CONFIG, RW_READER))); 3106 3107 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 3108 list_remove(&spa->spa_config_dirty_list, vd); 3109 } 3110 3111 /* 3112 * Mark a top-level vdev's state as dirty, so that the next pass of 3113 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 3114 * the state changes from larger config changes because they require 3115 * much less locking, and are often needed for administrative actions. 3116 */ 3117 void 3118 vdev_state_dirty(vdev_t *vd) 3119 { 3120 spa_t *spa = vd->vdev_spa; 3121 3122 ASSERT(spa_writeable(spa)); 3123 ASSERT(vd == vd->vdev_top); 3124 3125 /* 3126 * The state list is protected by the SCL_STATE lock. The caller 3127 * must either hold SCL_STATE as writer, or must be the sync thread 3128 * (which holds SCL_STATE as reader). There's only one sync thread, 3129 * so this is sufficient to ensure mutual exclusion. 3130 */ 3131 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 3132 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3133 spa_config_held(spa, SCL_STATE, RW_READER))); 3134 3135 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole) 3136 list_insert_head(&spa->spa_state_dirty_list, vd); 3137 } 3138 3139 void 3140 vdev_state_clean(vdev_t *vd) 3141 { 3142 spa_t *spa = vd->vdev_spa; 3143 3144 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 3145 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3146 spa_config_held(spa, SCL_STATE, RW_READER))); 3147 3148 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 3149 list_remove(&spa->spa_state_dirty_list, vd); 3150 } 3151 3152 /* 3153 * Propagate vdev state up from children to parent. 3154 */ 3155 void 3156 vdev_propagate_state(vdev_t *vd) 3157 { 3158 spa_t *spa = vd->vdev_spa; 3159 vdev_t *rvd = spa->spa_root_vdev; 3160 int degraded = 0, faulted = 0; 3161 int corrupted = 0; 3162 vdev_t *child; 3163 3164 if (vd->vdev_children > 0) { 3165 for (int c = 0; c < vd->vdev_children; c++) { 3166 child = vd->vdev_child[c]; 3167 3168 /* 3169 * Don't factor holes into the decision. 3170 */ 3171 if (child->vdev_ishole) 3172 continue; 3173 3174 if (!vdev_readable(child) || 3175 (!vdev_writeable(child) && spa_writeable(spa))) { 3176 /* 3177 * Root special: if there is a top-level log 3178 * device, treat the root vdev as if it were 3179 * degraded. 3180 */ 3181 if (child->vdev_islog && vd == rvd) 3182 degraded++; 3183 else 3184 faulted++; 3185 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 3186 degraded++; 3187 } 3188 3189 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 3190 corrupted++; 3191 } 3192 3193 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 3194 3195 /* 3196 * Root special: if there is a top-level vdev that cannot be 3197 * opened due to corrupted metadata, then propagate the root 3198 * vdev's aux state as 'corrupt' rather than 'insufficient 3199 * replicas'. 3200 */ 3201 if (corrupted && vd == rvd && 3202 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 3203 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 3204 VDEV_AUX_CORRUPT_DATA); 3205 } 3206 3207 if (vd->vdev_parent) 3208 vdev_propagate_state(vd->vdev_parent); 3209 } 3210 3211 /* 3212 * Set a vdev's state. If this is during an open, we don't update the parent 3213 * state, because we're in the process of opening children depth-first. 3214 * Otherwise, we propagate the change to the parent. 3215 * 3216 * If this routine places a device in a faulted state, an appropriate ereport is 3217 * generated. 3218 */ 3219 void 3220 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 3221 { 3222 uint64_t save_state; 3223 spa_t *spa = vd->vdev_spa; 3224 3225 if (state == vd->vdev_state) { 3226 vd->vdev_stat.vs_aux = aux; 3227 return; 3228 } 3229 3230 save_state = vd->vdev_state; 3231 3232 vd->vdev_state = state; 3233 vd->vdev_stat.vs_aux = aux; 3234 3235 /* 3236 * If we are setting the vdev state to anything but an open state, then 3237 * always close the underlying device unless the device has requested 3238 * a delayed close (i.e. we're about to remove or fault the device). 3239 * Otherwise, we keep accessible but invalid devices open forever. 3240 * We don't call vdev_close() itself, because that implies some extra 3241 * checks (offline, etc) that we don't want here. This is limited to 3242 * leaf devices, because otherwise closing the device will affect other 3243 * children. 3244 */ 3245 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 3246 vd->vdev_ops->vdev_op_leaf) 3247 vd->vdev_ops->vdev_op_close(vd); 3248 3249 /* 3250 * If we have brought this vdev back into service, we need 3251 * to notify fmd so that it can gracefully repair any outstanding 3252 * cases due to a missing device. We do this in all cases, even those 3253 * that probably don't correlate to a repaired fault. This is sure to 3254 * catch all cases, and we let the zfs-retire agent sort it out. If 3255 * this is a transient state it's OK, as the retire agent will 3256 * double-check the state of the vdev before repairing it. 3257 */ 3258 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf && 3259 vd->vdev_prevstate != state) 3260 zfs_post_state_change(spa, vd); 3261 3262 if (vd->vdev_removed && 3263 state == VDEV_STATE_CANT_OPEN && 3264 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 3265 /* 3266 * If the previous state is set to VDEV_STATE_REMOVED, then this 3267 * device was previously marked removed and someone attempted to 3268 * reopen it. If this failed due to a nonexistent device, then 3269 * keep the device in the REMOVED state. We also let this be if 3270 * it is one of our special test online cases, which is only 3271 * attempting to online the device and shouldn't generate an FMA 3272 * fault. 3273 */ 3274 vd->vdev_state = VDEV_STATE_REMOVED; 3275 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 3276 } else if (state == VDEV_STATE_REMOVED) { 3277 vd->vdev_removed = B_TRUE; 3278 } else if (state == VDEV_STATE_CANT_OPEN) { 3279 /* 3280 * If we fail to open a vdev during an import or recovery, we 3281 * mark it as "not available", which signifies that it was 3282 * never there to begin with. Failure to open such a device 3283 * is not considered an error. 3284 */ 3285 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 3286 spa_load_state(spa) == SPA_LOAD_RECOVER) && 3287 vd->vdev_ops->vdev_op_leaf) 3288 vd->vdev_not_present = 1; 3289 3290 /* 3291 * Post the appropriate ereport. If the 'prevstate' field is 3292 * set to something other than VDEV_STATE_UNKNOWN, it indicates 3293 * that this is part of a vdev_reopen(). In this case, we don't 3294 * want to post the ereport if the device was already in the 3295 * CANT_OPEN state beforehand. 3296 * 3297 * If the 'checkremove' flag is set, then this is an attempt to 3298 * online the device in response to an insertion event. If we 3299 * hit this case, then we have detected an insertion event for a 3300 * faulted or offline device that wasn't in the removed state. 3301 * In this scenario, we don't post an ereport because we are 3302 * about to replace the device, or attempt an online with 3303 * vdev_forcefault, which will generate the fault for us. 3304 */ 3305 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 3306 !vd->vdev_not_present && !vd->vdev_checkremove && 3307 vd != spa->spa_root_vdev) { 3308 const char *class; 3309 3310 switch (aux) { 3311 case VDEV_AUX_OPEN_FAILED: 3312 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 3313 break; 3314 case VDEV_AUX_CORRUPT_DATA: 3315 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 3316 break; 3317 case VDEV_AUX_NO_REPLICAS: 3318 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 3319 break; 3320 case VDEV_AUX_BAD_GUID_SUM: 3321 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 3322 break; 3323 case VDEV_AUX_TOO_SMALL: 3324 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 3325 break; 3326 case VDEV_AUX_BAD_LABEL: 3327 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 3328 break; 3329 default: 3330 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 3331 } 3332 3333 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 3334 } 3335 3336 /* Erase any notion of persistent removed state */ 3337 vd->vdev_removed = B_FALSE; 3338 } else { 3339 vd->vdev_removed = B_FALSE; 3340 } 3341 3342 if (!isopen && vd->vdev_parent) 3343 vdev_propagate_state(vd->vdev_parent); 3344 } 3345 3346 /* 3347 * Check the vdev configuration to ensure that it's capable of supporting 3348 * a root pool. We do not support partial configuration. 3349 * In addition, only a single top-level vdev is allowed. 3350 */ 3351 boolean_t 3352 vdev_is_bootable(vdev_t *vd) 3353 { 3354 if (!vd->vdev_ops->vdev_op_leaf) { 3355 char *vdev_type = vd->vdev_ops->vdev_op_type; 3356 3357 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 3358 vd->vdev_children > 1) { 3359 return (B_FALSE); 3360 } else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 3361 return (B_FALSE); 3362 } 3363 } 3364 3365 for (int c = 0; c < vd->vdev_children; c++) { 3366 if (!vdev_is_bootable(vd->vdev_child[c])) 3367 return (B_FALSE); 3368 } 3369 return (B_TRUE); 3370 } 3371 3372 /* 3373 * Load the state from the original vdev tree (ovd) which 3374 * we've retrieved from the MOS config object. If the original 3375 * vdev was offline or faulted then we transfer that state to the 3376 * device in the current vdev tree (nvd). 3377 */ 3378 void 3379 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd) 3380 { 3381 spa_t *spa = nvd->vdev_spa; 3382 3383 ASSERT(nvd->vdev_top->vdev_islog); 3384 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3385 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid); 3386 3387 for (int c = 0; c < nvd->vdev_children; c++) 3388 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]); 3389 3390 if (nvd->vdev_ops->vdev_op_leaf) { 3391 /* 3392 * Restore the persistent vdev state 3393 */ 3394 nvd->vdev_offline = ovd->vdev_offline; 3395 nvd->vdev_faulted = ovd->vdev_faulted; 3396 nvd->vdev_degraded = ovd->vdev_degraded; 3397 nvd->vdev_removed = ovd->vdev_removed; 3398 } 3399 } 3400 3401 /* 3402 * Determine if a log device has valid content. If the vdev was 3403 * removed or faulted in the MOS config then we know that 3404 * the content on the log device has already been written to the pool. 3405 */ 3406 boolean_t 3407 vdev_log_state_valid(vdev_t *vd) 3408 { 3409 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 3410 !vd->vdev_removed) 3411 return (B_TRUE); 3412 3413 for (int c = 0; c < vd->vdev_children; c++) 3414 if (vdev_log_state_valid(vd->vdev_child[c])) 3415 return (B_TRUE); 3416 3417 return (B_FALSE); 3418 } 3419 3420 /* 3421 * Expand a vdev if possible. 3422 */ 3423 void 3424 vdev_expand(vdev_t *vd, uint64_t txg) 3425 { 3426 ASSERT(vd->vdev_top == vd); 3427 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3428 3429 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) { 3430 VERIFY(vdev_metaslab_init(vd, txg) == 0); 3431 vdev_config_dirty(vd); 3432 } 3433 } 3434 3435 /* 3436 * Split a vdev. 3437 */ 3438 void 3439 vdev_split(vdev_t *vd) 3440 { 3441 vdev_t *cvd, *pvd = vd->vdev_parent; 3442 3443 vdev_remove_child(pvd, vd); 3444 vdev_compact_children(pvd); 3445 3446 cvd = pvd->vdev_child[0]; 3447 if (pvd->vdev_children == 1) { 3448 vdev_remove_parent(cvd); 3449 cvd->vdev_splitting = B_TRUE; 3450 } 3451 vdev_propagate_state(cvd); 3452 } 3453 3454 void 3455 vdev_deadman(vdev_t *vd) 3456 { 3457 for (int c = 0; c < vd->vdev_children; c++) { 3458 vdev_t *cvd = vd->vdev_child[c]; 3459 3460 vdev_deadman(cvd); 3461 } 3462 3463 if (vd->vdev_ops->vdev_op_leaf) { 3464 vdev_queue_t *vq = &vd->vdev_queue; 3465 3466 mutex_enter(&vq->vq_lock); 3467 if (avl_numnodes(&vq->vq_active_tree) > 0) { 3468 spa_t *spa = vd->vdev_spa; 3469 zio_t *fio; 3470 uint64_t delta; 3471 3472 /* 3473 * Look at the head of all the pending queues, 3474 * if any I/O has been outstanding for longer than 3475 * the spa_deadman_synctime we panic the system. 3476 */ 3477 fio = avl_first(&vq->vq_active_tree); 3478 delta = gethrtime() - fio->io_timestamp; 3479 if (delta > spa_deadman_synctime(spa)) { 3480 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, " 3481 "delta %lluns, last io %lluns", 3482 fio->io_timestamp, delta, 3483 vq->vq_io_complete_ts); 3484 fm_panic("I/O to pool '%s' appears to be " 3485 "hung.", spa_name(spa)); 3486 } 3487 } 3488 mutex_exit(&vq->vq_lock); 3489 } 3490 }