new usr/src/uts/comon/fs/nfs/nfs4_srv_readdir.c

R R R R

39929 Tue Jun 21 14:47:39 2016
new usr/src/uts/comon/fs/nfs/nfs4_srv_readdir.c
7123 encode timestanps in rfs4_op_readdir()

R R R R

__unchanged_portion_onitted_

378 #define |'S_ M N _ATTR_MASK(m) (((mM & ~M N MAL_RD ATTRS) == 0)
379 /*

380 * If readdir only needs to return FILEID, we can take it fromthe
381 * dirent struct and save doing the | ookup.

382 */

383 /* ARGSUSED */

384 void

385 rfs4_op_readdir(nfs_argop4 *argop, nfs_resop4 *resop,
386 (struct svc_req *req, struct conpound_state *cs)
387

388 READDI Rdar gs *args = &ar gop->nfs_argop4_u. opr eaddir;
389 READDI Rdres *resp = & esop->nfs_resop4_u. opreaddir;
390 struct exportinfo *newexi = NULL;

391 int error;

392 nbl k_t *np;

393 uint_t npcount;

394 int alloc_err = 0;

395 vnode_t *dvp = cs->vp;

396 vnode_t *vp;

397 vattr_t va;

398 struct dirent64 *dp;

399 rfs4_sb_encode_t dsbe, sbe;

400 int vfs_different;

401 int rddir_data_len, rddir_result_size;
402 caddr _t rddir_data;

403 of fset _t rddir_next_of fset;

404 int dircount;

405 int no_space;

406 int iseofdir;

407 uint_t eof;

408 struct iovec iov;

409 struct uio uio;

410 int tsize;

411 int check_visible;

412 int expseudo = O;

414 uint32_t *ptr, *ptr_redzone;

415 ui nt32_t *begi nni ng_ptr;

416 uint32_t *lastentry_ptr;

417 uint32_t *attrmask_ptr;

418 uint32_t *attr_offset_ptr;

419 uint32_t attr_length;

420 ui nt32_t rndup;

421 ui nt32_t nanel en;

422 uint32_t rddirattr_error = 0;

423 int nents;

424 bi tmap4 ar = args->attr_request & NFS4_SRV_RDDI R_SUPPORTED ATTRS;
425 bi t map4 ae;

426 rfs4_pc_encode_t dpce, pce;

427 ulong_t pc_val;

428 ui nt 64_t maxread;

429 uint64_t maxwite;

430 uint_t true = TRUE

431 uint_t false = FALSE;

432 uid_t lastuid;

433 gid_t lastgid;

434 int lu_set, |g_set;

435 utf8string owner, group;

436 int owner_error, group_error;

new usr/src/uts/comon/fs/nfs/nfs4_srv_readdir.c

437
438

440
441

443
444
445

447

449
450

452
453
454
455

457
458
459
460
461
462
463
464

466
467
468
469

471
472
473
474

476
477
478
479
480
481
482
483

485
486
487
488
489

491
492
493
494

496
497
498
499

501

struct sockaddr *ca;
char *nanme = NULL;

DTRACE_NFSV4_2(op__readdir__start, struct conmpound_state *, cs,
READDI Rd4args *, args);

lu_set = lg_set = 0;
owner . utf8string_len = group.utf8string_|len
owner . utf8string_val = group.utf8string_val

0;
NULL;
resp->nbl k = NULL;

/* Maxi mumread and wite size */
maxread = maxwite = rfs4_tsize(req);

if (dvp == NULL)
*cs->statusp = resp->status = NFS4ERR_NOFI LEHANDLE;
goto out;

}

*

* |f there is an unshared filesystem mounted on this vnode,
* do not allow readdir in this directory.
*/
if (vn_ismtpt(dvp)) {
*Ccs->statusp = resp->status = NFS4ERR_ACCESS;
goto out;

}

if (dvp->v_type != VDR {
*cs->statusp = resp->status = NFS4ERR _NOTDI R,

goto out;

}

if (args->maxcount <= RFS4_M NLEN_RDDI R4) {
*cs->statusp = resp->status = NFS4ERR TOOSMALL;
goto out;

}

/*

* If wite-only attrs are requested, then fail the readdir op
*/
if (args->attr_request &
(FATTR4_TI ME_MODI FY_SET_MASK | FATTR4_TI ME_ACCESS SET_MASK)) {
*cs->statusp = resp->status = NFS4ERR | NVAL;

goto out;

}

error = VOP_ACCESS(dvp, VREAD, 0, cs->cr, NULL);

if (error) {
*cs->statusp = resp->status = puterrno4(error);
goto out;

}

if (args->cookieverf != Readdir4verf)
*cs->statusp = resp->status = NFS4AERR_NOT_SAME;
goto out;

}

/* 1Is there pseudo-fs work that is needed for this readdir? */
check_vi si bl e = PSEUDQ(cs->exi) ||

! is_exported_sec(cs->nfsflavor, cs->exi) ||

cs->access & CS_ACCESS LI M TED;

/* Check the requested attributes and only do the work if needed */

new usr/src/uts/comon/fs/nfs/nfs4_srv_readdir.c 3 new usr/src/uts/comon/fs/nfs/nfs4_srv_readdir.c
503 if (ar & (FATTR4_MAXFI LESI ZE_MASK | 569 mp = al |l ocb_wai t (RNDUP(npcount), BPRI _MED,
504 FATTRA_MAXLI NK_MASK | 570 STR_NOSIG, &alloc_err);
505 FATTRA_MAXNAVE_MASK)) { 571 }
506 if (error = rfs4_get_pc_encode(cs->vp, &dpce, ar, cs->cr)) {
507 *cs->statusp = resp->status = puterrno4(error); 573 ASSERT(np != NULL);
508 goto out; 574 ASSERT(al l oc_err == 0);
509 }
510 pce = dpce; 576 resp->nbl k = np;
511 }
578 ptr = beginning_ptr = (uint32_t *)np->b_datap->db_base;
513 /* 1f there is statvfs data requested, pick it up once */
514 if (ar & 580 /*
515 (FATTR4_FI LES_AVAI L_MASK | 581 * The "redzone" at the end of the encoding buffer is used
516 FATTR4A_FI LES FREE_MASK | 582 * to deal with xdr encoding |ength. |Instead of checking
517 FATTR4A_FI LES TOTAL_MASK | 583 * each encoding of an attribute value before it is done,
518 FATTRA_FI LES_AVAI L_NMASK | 584 * make the assunption that it will fit into the buffer and
519 FATTR4A_FI LES_FREE _MASK | 585 * check occasionally.
520 FATTRA_FI LES_TOTAL_MASK)) { 586 *
521 if (error = rfs4_get_sb_encode(dvp->v_vfsp, &dsbe)) { 587 * The | argest block of attributes that are encoded w thout
522 *cs->statusp = resp->status = puterrno4(error); 588 * checking the redzone is 18 * BYTES PER XDR UNIT (72 bytes)
523 goto out; 589 * "round" to 128 as the redzone size.
524 } 590 */
525 sbe = dsbe; 591 if (args->maxcount < (npcount - 128))
526 } 592 ptr_redzone =
593 (uint32_t *)(((char *)ptr) + RNDUP(args->naxcount));
528 /* 594 el se
529 * Max transfer size of the server is the absolute limte. 595 ptr_redzone =
530 * |f the client has decided to max out with something really 596 (uint32_t *)((((char *)ptr) + RNDUP(npcount)) - 128);
531 * tiny, then return toosnall. O herw se, nove forward and
532 * see if a single entry can be encoded. 598 /*
533 */ 599 * Set the dircount; this will be used as the size for the
534 tsize = rfs4_tsize(req); 600 * readdir of the underlying filesystem First make sure
535 if (args->maxcount > tsize) 601 * that it is large enough to do a reasonable readdir (client
536 ar gs- >maxcount = tsi ze; 602 * may have short changed us - it is an advisory nunber);
537 else if (args->naxcount < RFS4_M NLEN_RDDI R BUF) { 603 * then nake sure that it isn't too |arge.
538 if (args->maxcount < RFS4_M NLEN_ENTRY4) { 604 * After all of that, if maxcount is "snall" then just use
539 *cs->statusp = resp->status = NFS4ERR _TOOSMALL; 605 * that for the dircount nunber.
540 goto out; 606 */
541 } 607 dircount = (args->dircount < MAXBSI ZE) ? MAXBSI ZE : args->dircount;
542 } 608 dircount = (dircount > tsize) ? tsize : dircount;
609 if (dircount > args->maxcount)
544 /* 610 di rcount = args->maxcount;
545 * How | arge should the nbl k be for outgoing encoding. 611 if (args->maxcount <= MAXBSI ZE)
546 */ 612 if (args->maxcount < RFS4_ M NLEN RDDI R BUF)
547 if (args->maxcount < MAXBSI ZE) 613 di rcount = RFS4_M NLEN_RDDI R_BUF;
548 mpcount = MAXBSI ZE; 614 el se
549 el se 615 di rcount = args->naxcount;
550 npcount = args->naxcount; 616 }
552 /* 618 /* nunber of entries fully encoded in outgoing buffer */
553 * mp will contain the data to be sent out in the readdir reply. 619 nents = 0;
554 * It will be freed after the reply has been sent.
555 * Let’s roundup the data to a BYTES PER XDR_UNI X mul ti pl e, 621 /* ENCODE READDI R4res. cooki everf */
556 */ so that the call to xdrnbl k_putnbl k() never fails. 622 | XDR_PUT_HYPER(ptr, Readdir4verf);
557 *
558 mp = al | ocb(RNDUP(npcount), BPRI _MED); 624 rddir_data_l en = dircount;
625 rddir_data = kmem al | oc(rddir_data_l en, KM NOSLEEP);
560 if (nmp == NULL) { 626 if (rddir_data == NULL) {
561 /* 627 /* The allocation failed; downsize and wait for it this time */
562 * The allocation of the client’s requested size has 628 if (rddir_data_l en > MAXBSI ZE)
563 * failed. It nay be that the size is too large for 629 rddir_data_l en = dircount = MAXBSI ZE;
564 * current systemutilization; step down to a "comon" 630 rddir_data = knem. al | oc(rddir_data_|l en, KM SLEEP);
565 * size and wait for the allocation to occur. 631 }
566 *
567 if (mpcount > MAXBSI ZE) 633 rddi r_next_offset = (offset_t)args->cookie;
568 ar gs- >nmaxcount = npcount = MAXBSI ZE;

new usr/src/uts/comon/fs/nfs/nfs4_srv_readdir.c

635
637

639
640

642

644
645
646
647
648
649
650
651
652

654
656
658

660
661
662
663
664
665
666
667

670

672
673
674
675
676
677
678
679
680
681
682
683

685
686
687
688

690
691

693
694
695
696

698
699

r eadagai

ca = (struct sockaddr *)svc_getrpccaller(reqg->rg_xprt)->buf;

n:
no_space = FALSE;
i seofdir = FALSE;
vp = NULL;

/* Move on to reading the directory contents */
iov.iov_base = rddir_data;
iov.iov_len = rddir_data_l en;

ui 0. ui
ui 0. ui
ui 0. ui
ui 0. ui
ui 0. ui
ui 0. ui

o_iov = & ov;

o_iovent = 1;

o_segflg = u O_SYSSPACE;
o_extflg = UI O_COPY_CACHED;
o_| offset = rddir_next_of fset;
o_resid = rddir_data_l en;

(void) VOP_RW.OCK(dvp, V_WRI TELOCK_FALSE, NULL);

error

= VOP_READDI R(dvp, &uio, cs->cr, & seofdir, NULL, 0);

VOP_RWUNLOCK(dvp, V_WRI TELOCK_FALSE, NULL);

if (error) {

rddir

/* No data were read. Check if we reached the end of the directory.

kmem free((caddr_t)rddir_data, rddir_data_len);
freeb(resp->nbl k);

resp->nmbl k = NULL;

resp->data_l en = O;

*cs->statusp = resp->status = puterrno4(error);
goto out;

_result_size = rddir_data_len - uio.uio_resid;

if (rddir_result_size == 0)

}

{
/* encode the BOOLEAN marking no further entries */
I XDR_PUT_U_I NT32(ptr, false);
/* encode the BOOLEAN signifying end of directory */
| XDR_PUT_U_| NT32(ptr, iseofdir ? true : false);

resp->data_l en (char *)ptr - (char *) begi nni ng_ptr;

resp- >nbl k- >b_wptr += resp->data_l en;

kmem free((caddr_t)rddir_ data rddir_data_| en);
*cs->statusp = resp->status = NFS4_CK;

goto out;

lastentry_ptr = ptr;
no_space = 0;
for (dp = (struct dirent64 *)rddir_data,;
I'no_space &% rddir_result_size > 0; dp = nextdp(dp)) {

/* reset expseudo */
expseudo = 0;

if (vp) {
VN_RELE(vp);
vp = NULL;

}

if (newexi)

newexi = NULL;

*/

new usr/src/uts/comon/fs/nfs/nfs4_srv_readdir.c

701

703
704
705
706
707

709
710
711
712
713

715
716
717
718
719
720
721
722
723
724

726
727
728
729
730
731

735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766

rddir_result_size -= dp->d_reclen;
/* skip "." and ".." entries */
if (dp->d_ino ==

NFS_I'S DOTNANE(dp >d_nare)) {
rddir_next_offset = dp->d_off
conti nue;

if (check_visible &&
I'nfs_visible_inode(cs->exi, dp->d_ino, &expseudo)) {

rddi r_next_of fset = dp->d_off;
conti nue;
}
/*
* Only if the client requested attributes.
* |f the VOP_LOOKUP fails ENCENT, then sklp this entry
* for the readdir response. |f there was another error,
* then set the rddirattr_error and the error will be
* encoded later in the "attributes" section.
*/
ae = ar;
if (ar == 0)

goto reencode_attrs;

error = nfs4_readdir_getvp(dvp, dp->d_nane,
&vp, &newexi, req, cs, expseudo);
if (error == ENCENT) {
rddir_next _of fset = dp->d_off;
conti nue;

}
rddirattr_error = error;

/*
* The vp obtained from above nay be froma
* different filesystem nount and the vfs-1like
* attributes shoul d be obtained fromthat
* different vfs; only do this if appropriate.
*
/
if (vp &&
(vfs_different = (dvp->v_vfsp !I= vp >v _vfsp))) {
if (ar & (FATTR4A_FILES AVAI L_MASK |
FATTRA_FI LES_FREE_NASK |
FATTRA_FI LES_TOTAL_MASK |
FATTR4_FI LES_AVAI L_NMASK |
FATTR4 Fl LES FREE_ VASK |
FATTR4_FI LES TOTAL_MASK)) {
if (error =
rfs4_get_sb_encode(dvp->v_vfsp,
&sbe)) {
/* Renpove attrs from encode */
ae & ~(FATTR4_FI LES_AVAI L_MASK |
FATTRA_FI LES_FREE_MASK |
FATTR4_FI LES_TOTAL_MASK |
FATTR4A_FI LES AVAI L_MASK |
FATTRA_FI LES_FREE_NASK |
FATTRA_FI LES TOTAL _MASK) ;
rddirattr_error = error;

}

}
if (ar & (FATTRA_MAXFI LESI ZE_MASK |
FATTR4_MAXLI NK_MASK |
FATTR4_MAXNAME_MASK))
if (error = rfsd4_get_pc_encode(cs->vp,
&pce, ar, cs->cr))

new usr/src/uts/comon/fs/nfs/nfs4_srv_readdir.c

767
768
769
770
771
772
773

775
776
777
778
779

781
782

784
785
786
787
788
789

793
794
795
796
797

799
800
801
802
803
804
805
806

808
809

811
812
813
814
815
816
817
818
819
820
821
822
823
824

826
827
828
829
830
831
832

reencode_attrs:

ar & ~(FATTR4A_MAXFI LESI ZE_MASK |
FATTR4_| MAXLI NK_MASK |
FATTR4 MAXNANME_ = MASK) ;

rddirattr_error = error;

/* encode the BOOLEAN for the existence of the next entry */
I XDR_PUT_U_ I NT32(ptr, true);

/* encode the COXKIE for the entry */

| XDR_PUT_U_HYPER(ptr, dp->d_off);

nane = nfscnd_convnane(ca, cs->exi, dp->d_nane,
NFSCVD_CONV_OUTBOUND, MAXPATHLEN + 1);

if (name == NULL) {
rddi r_next_of fset = dp->d_off;
conti nue;

/* Calculate the dirent name |length */
nanel en = strlen(nane);

rndup = RNDUP(nanel en) / BYTES_PER XDR_UNIT;

/* room for LENGTH + string ? */

if ((ptr + (1 + rndup)) > ptr_redzone) {
no_space = TRUE;
conti nue;

}

/* encode the LENGTH of the nane */
| XDR_PUT_U_I NT32(ptr, nanel en);

/* encode the RNDUP FILL first */
ptrirndup - 1] =

/* encode the NANE of the entry */
bcopy(nane, (char *)ptr, nanelen);
/* now bunp the ptr after... */

ptr += rndup;

if (name != dp->d_nane)
kmem free(name, MAXPATHLEN + 1);

*

* Keep checking on the dircount to see if we have
* reached the Iimt; fromthe RFC, dircount is to be
* the XDR encoded linit of the cookie plus nane.

* So the count is the nane, XDR UNIT of length for
* that nane and 2 * XDR_UNIT bytes of cookie;

* However, use the regular DI RENT64 to match nost

* client’s APIs.

*
i
f

count -= DI RENT64_RECLEN(nanel en);
(nents !'= 0 & dircount < 0) {
no_space = TRUE;

cont i nue;
}
/*
* Attributes requested?
* Gather up the attribute info and the previ ous VOP_LOOKUP()
* succeeded; if an error occurs on the VOP_GETATTR() then
* return just the error (again if it is requested).
* Note that the previous VOP_LOOKUP() could have failed
*

itself which leaves this code without anything for

new usr/src/uts/comon/fs/nfs/nfs4_srv_readdir.c

833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858

860

862
863
864
865
866
867
868
869

871
872
873
874

876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895

897
898

* a VOP_CETATTR().
* Also note that the readdir_attr_error is left in the

* encoding mask if requested and so is the nounted_on_fileid.
*

if (ae '=0) {
if (tvp) {
ae = ar & (FATTR4A_RDATTR_ERROR MASK |
FATTR4_MOUNTED_ON FI LEI D_MASK) ;
} else {
va.va_mask = AT_ALL;
rddirattr_error =

VOP_GETATTR(vp, &va, 0, cs->cr, NULL);

if (rddirattr_error)

ae = ar & (FATTRA_RDATTR _ERROR MASK |
FATTR4_MOUNTED_ON_FI LEI D_MASK) ;

} else {
/*

* W may |ie about the object
* type for a referral

|f (vn_is_nfs_reparse(vp, cs->cr) &&

client_is_downrev(req))
va.va_type = VLNK

}
/* START OF ATTRI BUTE ENCODI NG */

/* encode the LENGTH of the BI TMAP4 array */
| XDR_PUT_U I NT32(ptr, 2);

/* encode the Bl TMAP4 */

attrmask_ptr = ptr;

| XDR_PUT_HYPER(ptr, ae);

attr_of fset_ptr = ptr;

/* encode the default LENGTH of the attributes for entry */

I XDR_PUT_U_I NT32(ptr, 0);

if (ptr > ptr_redzone) {
no_space = TRUE;
conti nue;

}

/* Check if any of the first 32 attributes are being encoded */

if (ae & Oxffffffff00000000) {
/*

* Redzone check is done at the end of this section.
* This particular section will encode a maxi mum of

* 18 * BYTES_PER XDR_UNI T of data
*
/

if (ae &
(FATTR4_SUPPORTED _ATTRS MASK |
FATTRA_TYPE_NASK |
FATTR4_FH_EXPI RE_TYPE_MASK |
FATTR4_CHANGE_MASK |
FATTRA_S| ZE_NASK |
FATTRA_LI NK_SUPPORT_MASK |
FATTR4_SYM.T NK_SUPPORT_MASK |
FATTR4_NAMED ATTR_MASK |
FATTR4A_FSI D_NASK |
FATTRA_UNI QUE_HANDLES_MASK |
FATTR4_LEASE TI ME_MASK |
FATTR4_RDATTR_ERROR_MASK)) {

if (ae & FATTRA_SUPPORTED ATTRS MASK) {
I XDR_PUT_| NT32(ptT, 2);

new usr/src/uts/comon/fs/nfs/nfs4_srv_readdir.c

899 | XDR_PUT_HYPER(pt r,

900 rfs4_supported_attrs);

901 }

902 if (ae & FATTR4A_TYPE_MASK)

903 uint_t ftype = vt_to_nf4[va.va_type];
904 if (dvp->v_flag & V_XATTRDIR) {

905 if (va.va_type == VDR

906 ftype = NF4ATTRDI R,
907 el se

908 ftype = NFANAMEDATTR,
909 }

910) I XDR_PUT_U I NT32(ptr, ftype);

911

912 if (ae & FATTR4A_FH_EXPI RE_TYPE_MASK)

913 uint_t expire_type = FH4_PERSI STENT;
914) I XDR_PUT_U_ | NT32(ptr, expire_type);
915

916 if (ae & FATTR4A_CHANGE_MASK) {

917 u_l ongl ong_t change;

918 NFS4_SET_FATTR4 OHAN(E(change,

919 va.va_ctine

920 | XDR_PUT_HYPER(pt r, change);

921 }

922 if (ae & FATTR4_SI ZE_MASK) {

923 u_l onglong_t size = va.va_size;

924 | XDR_PUT_HYPER(ptr, size);

925 }

926 if (ae & FATTRA_LI NK_SUPPORT_MASK) {

927) | XDR_PUT_U_I NT32(ptr, true);

928

929 if (ae & FATTR4_SYM.I NK_SUPPORT_MASK) {

930 | XDR_PUT U I NT32(ptr, true);

931 }

932 if (ae & FATTRA_NAMED ATTR_MASK) {

933 uint_t isit;

934 pc_val = FALSE;

935 int sattr_error;

937 if (!(vp->v_vfsp->vfs_flag &

938 VFS XATTR)) {

939 isit = FALSE;

940 } else {

941 sattr_error = VOP_PATHCONF(vp,
942 PC SATTR EXI STS,

943 &c_val, c¢s->cr, NULL);
944 if (sattr_error | pc_val == 0)
945 (voi d) VOP_PATHCONF(vp,
946 _PC_XATTR_EXI STS,
947 &pc_val ,

948 cs->cr, NULL);
949 }

950 1sit = (pc_val ? TRUE : FALSE);

951 I DRPUTUINT32(ptr isit);

952 }

953 if (ae & FATTR4A_FSI D_MASK) {

954 u_l ongl ong_t maj or, minor;

955 struct exportinfo *exi;

957 exi = newexi ? newexi : cs->exi;

958 if (exi->exi_volatile_dev)

959 int *pmaj = (int *)&mgjor;
961 pmej [0] = exi->exi_fsid.val[0];
962 pmaj [1] = exi->exi_fsid.val[1];
963 mnor = 0;

964 } else {

new usr/src/uts/comon/fs/nfs/nfs4_srv_readdir.c

965 mej or = getmajor(va.va_fsid);
966 m nor = getminor(va.va_fsid);
967 }

968 I XDR_PUT_HYPER(ptr, major);

969 | XDR_PUT_HYPER(ptr, m nor);

970 }

971 if (ae & FATTR4_UNI QUE_HANDLES_MASK) {

972 I XDR_PUT_U_I NT32(ptr, false);

973 }

974 if (ae & FATTR4_LEASE TI ME_MASK) {

975 uint_t Tt = rfs4_lease_tine;

976 | XDR_PUT_U_INT32(ptr, Tt);

977 }

978 if (ae & FATTRA_RDATTR ERROR MASK) {

979 rddirattr_error =

980 (rddirattr_error == 0 ?

981 0 : puterrno4(rddirattr_error));
982 I XDR_PUT_U_I NT32(ptr, rddirattr_error);
983 }

985 /* Check the redzone boundary */

986 if (ptr > ptr_redzone)

987 if (nents || IS_MNATTR MASK(ar)) {
988 no_space = TRUE;

989 conti nue;

990 }

991 M NI M ZE_ATTR _MASK(ar) ;

992 ae = ar;

993 ptr = lastentry_ptr;

994 goto reencode_attrs;

995 }

996 }

997 /*

998 * Redzone check is done at the end of this section.
999 * This particular section will encode a maxi mum of
1000 * 4 * BYTES_PER XDR UNIT of data.

1001 * NOTE: that if ACLs are supported that the

1002 * redzone cal culations will need to change.

1003 */

1004 if (ae &

1005 (FATTRA_ACL_MASK |

1006 FATTR4_ACLSUPPORT_MASK |

1007 FATTRA_ARCHI VE_MASK |

1008 FATTRA_CANSETTI ME_MASK |

1009 FATTR4_CASE_| NSENSI Tl VE_MASK |

1010 FATTR4_CASE_PRESERVI NG MASK |

1011 FATTR4_CHOWN_RESTRI CTED_MASK)) {

1013 if (ae & FATTR4_ACL_MASK) {

1014 ASSERT(0) ;

1015 }

1016 if (ae & FATTR4_ACLSUPPORT_MASK) {

1017 ASSERT(0) ;

1018 }

1019 if (ae & FATTRA_ARCH VE_MASK) {

1020 ASSERT(0) ;

1021 }

1022 if (ae & FATTR4_CANSETTI ME_MASK) {

1023 I XDR_PUT_U_I NT32(ptr, true);

1024 }

1025 if (ae & FATTR4_CASE | NSENSI TI VE_MASK) {
1026 I XDR_PUT_U_I NT32(ptr, false);

1027 }

1028 if (ae & FATTR4_CASE PRESERVI NG MASK) {
1029 | XDR_PUT U I NT32(ptr, true);

1030

10

new usr/src/uts/comon/fs/nfs/nfs4_srv_readdir.c

1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

1060
1061
1062
1063
1064
1065
1066
1067
1068
1069

1071
1072
1073

1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096

if (ae & FATTR4_CHOWN_RESTRI CTED MASK) {

uint_t isit;

pc_val = FALSE

(voi d) VOP_PATHCONF(vp,
_PC_CHOWN_RESTRI CTED,
&pc_val, cs->cr, NULL)

isit = (pc_ val ? TRUE : FALSE)

I XDR_PUT_U_I NT32(ptr, i5|t)

}
/* Check the redzone boundary */

if (ptr > ptr_redzone) {
if (nents || IS_MNATTR MASK(ar)) {
no_space = TRUE;
conti nue;

}

M NI M ZE_ATTR_MASK(ar) ;
ae = ar;

ptr = lastentry_ptr;
goto reencode_attrs;

;*
* Redzone check is done before the filehandle
* is encoded.

*

if (ae &
(FATTR4_FI LEHANDLE_NMASK
FATTR4_FI LEI D_MASK)) {

if (ae & FATTR4A_FI LEHANDLE_MASK) {
struct {
uint _t Ien
char *val
char fh[NFS FHA_LEN ;

= O;

al = fh.fh

oi d) makefh4((nfs_fh4 *)&h, vp,
(newexi ? newexi : cs->exi));

if (dvp->v_flag & V_XATTRDI R)
set_fha_flag((nfs_fh4 *)&fh,
FH4A_NAVEDATTR) ;

if (!'xdr_inline_encode_nfs_fh4(
&ptr, ptr_redzone,
(nfs_fh4a_fm _t *)fh.val)) {
if (nents ||
I'S_M N_ATTR_MASK(ar)) {

no_space = TRUE;
conti nue;

}

M NI M ZE_ATTR_MASK(ar) ;
ae = ar;

ptr = lastentry_ptr;
goto reencode_attrs;

}

}
if (ae & FATTR4_FI LEI D_MASK)
| XDR_PUT_HYPER(ptr, va.va_nodeid);

}
/* Check the redzone boundary */

if (ptr > ptr_redzone) {
if (nents || IS_MN_ATTR_MASK(ar)) {
no_space = TRUE
conti nue;

new usr/src/uts/comon/fs/nfs/nfs4_srv_readdir.c

1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120

1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162

—~—

*
*
*
*

*/
if

}

M NI M ZE_ATTR _MASK(ar) ;
ae = ar;

ptr = lastentry_ptr;
goto reencode_attrs;

Redzone check is done at the end of this section.
This particular section will encode a maxi mum of
15 * BYTES PER XDR UNI T of data.

(ae &

(FATTR4_FI LES_AVAI L_NMASK
FATTRA_FI LES FREE_MASK |
FATTRA4_FI LES_TOTAL_MASK |
FATTRA_FS_LOCATI ONS_MASK |
FATTR4_H DDEN_MASK |
FATTR4_HOMOGENEOUS MASK |
FATTR4_NMAXFI LESI ZE_MASK
FATTRA_MAXLI NK_NMASK |
FATTRA_VAXNAMVE_MASK |
FATTR4_MAXREAD MASK |
FATTRA_MAXWRI TE_MASK)) {

if (ae & FATTR4A_FI LES_AVAI L_MASK) {
| XDR_PUT_HYPER(ptr, she.fa);

}
if (ae & FATTRA_FI LES_FREE_MASK) {
| XDR_PUT_HYPER(ptr, sbe.ff);

}
if (ae & FATTR4_FI LES TOTAL_MASK)
I XDR_PUT_HYPER(ptr, sbe. ft)

f (ae & FATTRA_FS LOCATI ONS_MASK) {
ASSERT(0) ;

if (ae & FATTRA_H DDEN_MASK) {
ASSERT(0) ;

}
if (ae & FATTR4_HOVOGENEQUS_MASK) {
I XDR_PUT_U_I NT32(ptr, true);

}
if (ae & FATTR4_MAXFI LESI ZE_MASK) {
| XDR_PUT_HYPER(ptr, pce. maxfil esize);

f (ae & FATTRA_MAXLI NK_MASK)
| XDR_PUT_U_INT32(ptr, pce.nmaxlink);

if (ae & FATTRA_MAXNAME_MASK) {
I XDR_PUT_U_I NT32(ptr, pce.naxnane);

}
if (ae & FATTR4_NMAXREAD MASK)
| XDR_PUT_HYPER(pt r, maxread);

f (ae & FATTR4A_MAXWRI TE_MASK)
| XDR_PUT_HYPER(ptr, maxwrite);

}
/* Check the redzone boundary */
if (ptr > ptr_redzone)
if (nents || IS_MNATTR MASK(ar)) {
no_space = TRUE;
conti nue;

}
M NI M ZE_ATTR_MASK(ar) ;
ae = ar;

new usr/src/uts/ comon/fs/nfs/nfs4_srv_readdir.c 13

1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178

1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228

ptr = lastentry_ptr;
goto reencode_attrs;

}

}
1f (ae & 0x00000000ffffffff) {
/*

* Redzone check is done at the end of this section.
* This particular section will encode a maxi mnum of
* 3 * BYTES PER XDR UNI T of data.
*
/
if (ae &
(FATTRA_M METYPE_NMASK |
FATTR4_MODE_MASK
FATTRA_NO TRUNC_MASK
FATTRA_NUMLI NKS_MASK)) {

if (ae & FATTRA_M METYPE_MASK) {
ASSERT(0) ;

}

if (ae & FATTR4A_MODE_MASK) {
uint_t m= va.va_node;
| XDR_PUT_U_I NT32(ptr, m;

}
if (ae & FATTRA_NO TRUNC_MASK) {
| XDR_PUT_U_I NT32(ptr, true);

}
if (ae & FATTRA_NUMLI NKS_MASK) {
I XDR_PUT_U_I NT32(ptr, va.va_nlink);

}
/* Check the redzone boundary */
if (ptr > ptr_redzone) {
if (nents || IS_MNATTR MASK(ar)) {
no_space = TRUE;
conti nue;

}

M NI M ZE_ATTR_MASK(ar) ;
ae = ar;

ptr = lastentry_ptr;
goto reencode_attrs;

*

* Redzone check is done before the encoding of the
* owner string since the length is indeterm nate.
*/

}
1

if (ae & FATTRA_OWNER MASK) {
if (!lu_set) {
owner _error = nfs_idmap_uid_str(
va.va_uid, &owner, TRUE);
if (!owner_error) {
lu_set = TRUE;
) lastuid = va.va_uid;
} else if (va.va_uid !'= lastuid) {
if (owner.utf8string_len != 0)
kmem free(owner. utf8string_val,
owner . utf8string_|len);
owner.utf8string_len = 0;
owner . utf8string_val = NULL;

owner _error = nfs_idmap_uid_str(
va.va_uid, &owner, TRUE);
if (!owner_error)
lastuid = va.va_uid;
} else {

new usr/src/uts/comon/fs/nfs/nfs4_srv_readdir.c

1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294

lu_set = FALSE;
}

}
if (lowner_error) {
if ((ptr +
(owner.utf8string_len /
BYTES_PER XDR _UNI T)
+2) > ptr_redzone) {
if (nents ||
I'S M N_ATTR_MASK(ar)) {
no_space = TRUE;
conti nue;

}

M NI M ZE_ATTR _MASK(ar);
ae = ar;

ptr = lastentry_ptr;
goto reencode_attrs;

}
/* encode the LENGTH of owner string */
I XDR_PUT_U_I NT32(ptr,
owner. utf8string_|len);
/* encode the RNDUP FILL first */
rndup = RNDUP(owner.utf8string_len) /
BYTES_PER_XDR_UNIT;
ptrirndup - 1] = 0;
/* encode the O/\NER */
bcopy(owner. utf8string_val, ptr,
owner. utf8string_len);
ptr += rndup;
}
/*
* Redzone check is done before the encoding of the
* group string since the length is indeterm nate.
*
/

if (ae & FATTRA_ONNER_GROUP_MASK) {
if (!lg_set) {
group_error =
nfs_idmap_gid_str(va.va_gid,
&group, TRUE);
if (!group_error) {
I g_set = TRUE;
lastgid = va.va_gid;

}
} elseif (va.va_gid != lastgid) {
if (group.utf8string_len I'= 0) {
kmem free(

group. utf8string_val,

group. utf8string_len);
group.utf8string_len = 0O;
group. utf8string_val = NULL;

group_error =
nfs_idmap_gid_str(va.va_gid,
&group, TRUE);
if (!group_error)
lastgid = va.va_gid;
el se
| g_set = FALSE;

}
if (!group_error) {
if ((ptr +
(group.utf8string_len /
BYTES_PER_XDR_UNI T)
+ 2) > ptr_redzone) {
if (nents ||

14

new usr/src/uts/comon/fs/nfs/nfs4_srv_readdir.c 15 new usr/src/uts/comon/fs/nfs/nfs4_srv_readdir.c 16

1295 IS M N _ATTR MASK(ar)) { 1361 }

1296 no_space = TRUE, 1362 if (ae & FATTR4_SPACE _USED MASK) {

1297 conti nue; 1363 u Iongl ong_t su;

1298 } 1364 (fattr4_space_used) DEV_BSI| ZE *

1299 M NI M ZE_ATTR_MASK(ar) ; 1365 (f attr4_space_used) va.va_nbl ocks;

1300 ae = ar; 1366 | XDR_PUT_HYPER(ptr, su);

1301 ptr = lastentry_ptr; 1367 }

1302 goto reencode_attrs; 1368 if (ae & FATTR4_SYSTEM MASK) {

1303 } 1369 ASSERT(0) ;

1304 /* encode the LENGTH of owner string */ 1370 }

1305 I XDR_PUT_U_| NT32(ptr, 1371 /* Check the redzone boundary */

1306 group. utf8string_len); 1372 if (ptr > ptr_redzone) {

1307 /* encode the RNDUP FILL first */ 1373 if (nents || IS_.MN_ ATTR . MASK(ar)) {

1308 rndup = RNDUP(group. utf8string_len) / 1374 no_space = TRUE;

1309 BYTES_PER _XDR_UNIT; 1375 conti nue;

1310 ptr[rndup - 1] = O; 1376 }

1311 /* encode the O/\NER */ 1377 M NIM ZE_ATTR_MASK(ar) ;

1312 bcopy(group. utf8string_val, ptr, 1378 ae = ar;

1313 group. utf8string_len); 1379 ptr = lastentry_ptr;

1314 ptr += rndup; 1380 goto reencode_attrs;

1315 } 1381 }

1316 } 1382 }

1317 if (ae & 1383 /*

1318 (FATTR4_QUOTA_AVAI L_HARD MASK | 1384 * Redzone check is done at the end of this section.

1319 FATTR4_QUOTA AVAI L_SOFT_MASK | 1385 * This particular section will encode a maxi num of

1320 FATTRA_QUOTA_USED_MASK)) { 1386 * 14 * BYTES_PER XDR _UNI T of data.

1321 if (ae & FATTR4_QUOTA AVAI L_HARD MASK) { 1387 */

1322 ASSERT(0) ; 1388 if (ae &

1323 } 1389 (FATTR4A_TI ME_ACCESS_MASK |

1324 if (ae & FATTRA_QUOTA_AVAI L_SOFT_MASK) { 1390 FATTR4_TI ME_ACCESS_SET_MASK |

1325 ASSERT(0) ; 1391 FATTRA_TI ME_BACKUP_NMASK |

1326 } 1392 FATTRA_TI ME_CREATE_MASK |

1327 if (ae & FATTR4A_QUOTA USED MASK) { 1393 FATTRA_TI ME_DELTA MASK |

1328 ASSERT(0) ; 1394 FATTR4_TI ME_METADATA_MASK |

1329 } 1395 FATTRA_TI ME_MODI FY_MASK |

1330 } 1396 FATTRA_TI ME_MODI FY_SET_MASK |

1331 /* 1397 FATTRA_MOUNTED _ON_FI LEID_MASK)) {

1332 * Redzone check is done at the end of this section.

1333 * This particular section will encode a maxi mum of 1399 if (ae & FATTR4_TI ME_ACCESS_MASK) {

1334 * 10 * BYTES_PER XDR UNIT of data. 1400 nfstimed atinme;

1335 */ 1401 (void) nfs4_tinme_vton(&va.va_atineg,

1336 if (ae & 1402 &atine);

1337 (FATTR4A_RAVDEV_MASK | 1403 | XDR_PUT. HYPER(ptr, atime.seconds);

1338 FATTRA_SPACE_AVAI L_NASK | 1404 | XDR_PUT_| NT32(ptr atime. nseconds) ;

1339 FATTR4_SPACE_FREE_IMASK | 1400 u_longlong_t sec =

1340 FATTR4_SPACE_TOTAL_MASK | 1401 (u_longlong_t)va.va_atine.tv_sec;

1341 FATTR4_SPACE_USED_MASK | 1402 uint_t nsec =

1342 FATTR4_SYSTEM MASK)) { 1403 (uint_t)va.va_atine.tv_nsec;
1404 | XDR_PUT_HYPER(ptT, sec);

1344 if (ae & FATTRA_RAWDEV_MASK) { 1405 | XDR_PUT_I NT32(ptr, nsec);

1345 fattr4_rawdev rd; 1405 }

1346 rd. specdatal = 1406 i1f (ae & FATTR4_TI ME_ACCESS_SET_MASK) {

1347 (ui nt32) get maj or (va. va_rdev); 1407 ASSERT(0) ;

1348 rd. specdata2 = 1408 }

1349 (ui nt 32) get mi nor (va. va_rdev); 1409 if (ae & FATTR4A_TI ME_BACKUP_MASK) {

1350 | XDR_PUT_U_I NT32(ptr, rd.specdat al) 1410 ASSERT(0) ;

1351 I XDR_PUT_U | NT32(ptr, rd.specdata2); 1411

1352 } 1412 if (ae & FATTR4A_TI ME_CREATE_MASK) {

1353 if (ae & FATTR4A_SPACE_AVAI L_MASK) { 1413 ASSERT(0) ;

1354 | XDR_PUT_HYPER(ptr, sbe.space_avail); 1414 }

1355 } 1415 if (ae & FATTR4_TI ME_DELTA MASK) {

1356 if (ae & FATTR4A_SPACE_FREE_MASK) { 1416 u_l ongl ong_t sec = 0;

1357 | XDR_PUT_HYPER(ptr, sbe.space_free); 1417 uint _t nsec = 1000;

1358 } 1418 | XDR_PUT_HYPER(ptr, sec);

1359 if (ae & FATTR4_SPACE TOTAL_MASK) { 1419 | XDR_PUT_I NT32(ptr, nsec);

1360 | XDR_PUT_HYPER(ptr, sbe.space_total); 1420 }

new usr/src/uts/comon/fs/nfs/nfs4_srv_readdir.c 17 new usr/src/uts/comon/fs/nfs/nfs4_srv_readdir.c
1421 if (ae & FATTR4A_TI ME_METADATA MASK) { 1475 if (owner_error || group_error) {
1422 nfstimed ctime; 1476 if (owner_error)
1423 (void) nfs4_tinme_vton(&va.va_ctine, 1477 ae & ~FATTR4_OWNER_MASK;
1424 &ctinme); 1478 if (group_error)
1425 | XDR_PUT HYPER(ptr, ctine.seconds); 1479 ae &= ~FATTR4A_OMNER_GROUP_MASK;
1426 | XDR_PUT_I NT32(ptr ctime. nseconds); 1480 | XDR_PUT_HYPER(attrmask_ptr, ae);
1423 u_l onglong_t sec = 1481 }
1424 (u_l onglong_t)va.va_ctine.tv_sec;
1425 uint_t nsec = 1483 /* END OF ATTRI BUTE ENCODI NG */
1426 (uint_t)va.va_ctine.tv_nsec;
1427 | XDR_PUT_HYPER(ptr, sec); 1485 lastentry_ptr = ptr;
1428 | XDR_PUT_I NT32(ptr, nsec); 1486 nent s++;
1427 } 1487 rddir_next _of fset = dp->d_off;
1428 if (ae & FATTR4_TI ME_MODI FY_MASK) { 1488 }
1429 nfstimed ntine;
1430 (void) nfs4_tinme_vton(&va.va_ntineg, 1490 I*
1431 &ntinme); 1491 * Check for the case that another VOP_READDI R() has to be done.
1432 | XDR_PUT. HYPER(ptr, ntime.seconds); 1492 * - no space encoding error
1433 | XDR_PUT_| NT32(ptr ntime. nseconds) ; 1493 * - no entry successfully encoded
1431 u_l onglong_t sec = 1494 * - still nore directory to read
1432 (u_longlong_t)va.va_ntine.tv_sec; 1495 */
1433 uint_t nsec = 1496 if (!no_space & nents == 0 && !iseofdir)
1434 (uint_t)va.va_ntine.tv_nsec; 1497 got o readagai n;
1435 | XDR_PUT_HYPER(ptr, sec);
1436) | XDR_PUT_I NT32(ptr, nsec); 1499 *cs->statusp = resp->status = NFS4_CK;
1434
1435 if (ae & FATTR4_TI ME_MODI FY_SET_MASK) { 1501 /*
1436 ASSERT(0) ; 1502 * |f no_space is set then we ternminated prematurely,
1437 } 1503 * rewind to the last entry and this can never be ECF.
1438 if (ae & FATTRA_MOUNTED ON _FI LEI D_MASK) { 1504 */
1439 | XDR_PUT_HYPER(ptr, dp->d_ino); 1505 if (no_space) {
1440 } 1506 ptr = lastentry_ptr;
1441 /* Check the redzone boundary */ 1507 eof = FALSE; /* ended encoded prematurely */
1442 if (ptr > ptr_redzone) { 1508 } else {
1443 if (nents || IS_MN_ATTR MASK(ar)) { 1509 eof = (iseofdir ? TRUE : FALSE);
1444 no_space = TRUE; 1510 }
1445 conti nue;
1446 } 1512 /*
1447 M NI M ZE_ATTR_MASK(ar) ; 1513 * |If we have entries, always return them otherwi se only error
1448 ae = ar; 1514 * if we ran out of space.
1449 ptr = lastentry_ptr; 1515 */
1450 goto reencode_attrs; 1516 if (nents || !no_space) {
1451 } 1517 ASSERT(ptr != NULL);
1452 } 1518 /* encode the BOOLEAN marking no further entries */
1453 } 1519 | XDR_PUT_U_| NT32(ptr, false);
1520 /* encode the BOOLEAN signifying end of directory */
1455 /* Reset to directory’'s vfs info when encoding conplete */ 1521 I XDR_PUT_U_| NT32(ptr, eof);
1456 if (vfs_i dlfferent) {
1457 dsbe = sbe; 1523 resp->data_l en = (char *)ptr - (char *)beginning_ptr;
1458 dpce = pce; 1524 resp- >nbl k->b_wptr += resp->data_l en;
1459 vis_different = 0; 1525 } else {
1460 } 1526 freeb(np);
1527 resp- >nbl k = NULL;
1462 /* "go back" and encode the attributes’ |length */ 1528 resp->data_l en = O;
1463 attr_length = 1529 *cs->statusp = resp->status = NFS4ERR TOOSMALL;
1464 (char *)ptr - 1530 }
1465 (char *)attr_offset_ptr -
1466 BYTES_PER_XDR UNI T; 1532 kmem free((caddr_t)rddir_data, rddir_data_len);
1467 I XDR_PUT_U_I NT32(attr offset _ptr, attr_length); 1533 if (vp)
1534 VN_RELE(vp) ;
1469 /* 1535 if (owner. utf8$tr|ng len 1= 0)
1470 * |f there was trouble obtaining a mapping for either 1536 kmem free(owner. utf8string_val, owner.utf8string_len);
1471 * the owner or group attributes, then renmpve them from 1537 if (group.utf8string_len !=0)
1472 * bitmap4 for this entry and reset the bitmap val ue 1538 kmem free(group. utf8string_val, group.utf8string_|en);
1473 * in the data stream
1474 */ 1540 out:

new usr/src/uts/comon/fs/nfs/nfs4_srv_readdir.c

1541 DTRACE_NFSV4_2(op__readdir__done, struct
1542 READDI R4res *, resp);
1543 }

____unchanged_portion_onitted_

conpound_state *,

cs,

19

