
new/usr/src/uts/common/fs/nfs/nfs4_srv_readdir.c 1

**
 39929 Tue Jun 21 14:47:39 2016
new/usr/src/uts/common/fs/nfs/nfs4_srv_readdir.c
7123 encode timestamps in rfs4_op_readdir()
**
______unchanged_portion_omitted_

378 #define IS_MIN_ATTR_MASK(m) (((m) & ~MINIMAL_RD_ATTRS) == 0)
379 /*
380 * If readdir only needs to return FILEID, we can take it from the
381 * dirent struct and save doing the lookup.
382 */
383 /* ARGSUSED */
384 void
385 rfs4_op_readdir(nfs_argop4 *argop, nfs_resop4 *resop,
386 struct svc_req *req, struct compound_state *cs)
387 {
388 READDIR4args *args = &argop->nfs_argop4_u.opreaddir;
389 READDIR4res *resp = &resop->nfs_resop4_u.opreaddir;
390 struct exportinfo *newexi = NULL;
391 int error;
392 mblk_t *mp;
393 uint_t mpcount;
394 int alloc_err = 0;
395 vnode_t *dvp = cs->vp;
396 vnode_t *vp;
397 vattr_t va;
398 struct dirent64 *dp;
399 rfs4_sb_encode_t dsbe, sbe;
400 int vfs_different;
401 int rddir_data_len, rddir_result_size;
402 caddr_t rddir_data;
403 offset_t rddir_next_offset;
404 int dircount;
405 int no_space;
406 int iseofdir;
407 uint_t eof;
408 struct iovec iov;
409 struct uio uio;
410 int tsize;
411 int check_visible;
412 int expseudo = 0;

414 uint32_t *ptr, *ptr_redzone;
415 uint32_t *beginning_ptr;
416 uint32_t *lastentry_ptr;
417 uint32_t *attrmask_ptr;
418 uint32_t *attr_offset_ptr;
419 uint32_t attr_length;
420 uint32_t rndup;
421 uint32_t namelen;
422 uint32_t rddirattr_error = 0;
423 int nents;
424 bitmap4 ar = args->attr_request & NFS4_SRV_RDDIR_SUPPORTED_ATTRS;
425 bitmap4 ae;
426 rfs4_pc_encode_t dpce, pce;
427 ulong_t pc_val;
428 uint64_t maxread;
429 uint64_t maxwrite;
430 uint_t true = TRUE;
431 uint_t false = FALSE;
432 uid_t lastuid;
433 gid_t lastgid;
434 int lu_set, lg_set;
435 utf8string owner, group;
436 int owner_error, group_error;

new/usr/src/uts/common/fs/nfs/nfs4_srv_readdir.c 2

437 struct sockaddr *ca;
438 char *name = NULL;

440 DTRACE_NFSV4_2(op__readdir__start, struct compound_state *, cs,
441 READDIR4args *, args);

443 lu_set = lg_set = 0;
444 owner.utf8string_len = group.utf8string_len = 0;
445 owner.utf8string_val = group.utf8string_val = NULL;

447 resp->mblk = NULL;

449 /* Maximum read and write size */
450 maxread = maxwrite = rfs4_tsize(req);

452 if (dvp == NULL) {
453 *cs->statusp = resp->status = NFS4ERR_NOFILEHANDLE;
454 goto out;
455 }

457 /*
458 * If there is an unshared filesystem mounted on this vnode,
459 * do not allow readdir in this directory.
460 */
461 if (vn_ismntpt(dvp)) {
462 *cs->statusp = resp->status = NFS4ERR_ACCESS;
463 goto out;
464 }

466 if (dvp->v_type != VDIR) {
467 *cs->statusp = resp->status = NFS4ERR_NOTDIR;
468 goto out;
469 }

471 if (args->maxcount <= RFS4_MINLEN_RDDIR4) {
472 *cs->statusp = resp->status = NFS4ERR_TOOSMALL;
473 goto out;
474 }

476 /*
477 * If write-only attrs are requested, then fail the readdir op
478 */
479 if (args->attr_request &
480 (FATTR4_TIME_MODIFY_SET_MASK | FATTR4_TIME_ACCESS_SET_MASK)) {
481 *cs->statusp = resp->status = NFS4ERR_INVAL;
482 goto out;
483 }

485 error = VOP_ACCESS(dvp, VREAD, 0, cs->cr, NULL);
486 if (error) {
487 *cs->statusp = resp->status = puterrno4(error);
488 goto out;
489 }

491 if (args->cookieverf != Readdir4verf) {
492 *cs->statusp = resp->status = NFS4ERR_NOT_SAME;
493 goto out;
494 }

496 /* Is there pseudo-fs work that is needed for this readdir? */
497 check_visible = PSEUDO(cs->exi) ||
498 ! is_exported_sec(cs->nfsflavor, cs->exi) ||
499 cs->access & CS_ACCESS_LIMITED;

501 /* Check the requested attributes and only do the work if needed */

new/usr/src/uts/common/fs/nfs/nfs4_srv_readdir.c 3

503 if (ar & (FATTR4_MAXFILESIZE_MASK |
504 FATTR4_MAXLINK_MASK |
505 FATTR4_MAXNAME_MASK)) {
506 if (error = rfs4_get_pc_encode(cs->vp, &dpce, ar, cs->cr)) {
507 *cs->statusp = resp->status = puterrno4(error);
508 goto out;
509 }
510 pce = dpce;
511 }

513 /* If there is statvfs data requested, pick it up once */
514 if (ar &
515 (FATTR4_FILES_AVAIL_MASK |
516 FATTR4_FILES_FREE_MASK |
517 FATTR4_FILES_TOTAL_MASK |
518 FATTR4_FILES_AVAIL_MASK |
519 FATTR4_FILES_FREE_MASK |
520 FATTR4_FILES_TOTAL_MASK)) {
521 if (error = rfs4_get_sb_encode(dvp->v_vfsp, &dsbe)) {
522 *cs->statusp = resp->status = puterrno4(error);
523 goto out;
524 }
525 sbe = dsbe;
526 }

528 /*
529 * Max transfer size of the server is the absolute limite.
530 * If the client has decided to max out with something really
531 * tiny, then return toosmall. Otherwise, move forward and
532 * see if a single entry can be encoded.
533 */
534 tsize = rfs4_tsize(req);
535 if (args->maxcount > tsize)
536 args->maxcount = tsize;
537 else if (args->maxcount < RFS4_MINLEN_RDDIR_BUF) {
538 if (args->maxcount < RFS4_MINLEN_ENTRY4) {
539 *cs->statusp = resp->status = NFS4ERR_TOOSMALL;
540 goto out;
541 }
542 }

544 /*
545 * How large should the mblk be for outgoing encoding.
546 */
547 if (args->maxcount < MAXBSIZE)
548 mpcount = MAXBSIZE;
549 else
550 mpcount = args->maxcount;

552 /*
553 * mp will contain the data to be sent out in the readdir reply.
554 * It will be freed after the reply has been sent.
555 * Let’s roundup the data to a BYTES_PER_XDR_UNIX multiple,
556 * so that the call to xdrmblk_putmblk() never fails.
557 */
558 mp = allocb(RNDUP(mpcount), BPRI_MED);

560 if (mp == NULL) {
561 /*
562 * The allocation of the client’s requested size has
563 * failed. It may be that the size is too large for
564 * current system utilization; step down to a "common"
565 * size and wait for the allocation to occur.
566 */
567 if (mpcount > MAXBSIZE)
568 args->maxcount = mpcount = MAXBSIZE;

new/usr/src/uts/common/fs/nfs/nfs4_srv_readdir.c 4

569 mp = allocb_wait(RNDUP(mpcount), BPRI_MED,
570 STR_NOSIG, &alloc_err);
571 }

573 ASSERT(mp != NULL);
574 ASSERT(alloc_err == 0);

576 resp->mblk = mp;

578 ptr = beginning_ptr = (uint32_t *)mp->b_datap->db_base;

580 /*
581 * The "redzone" at the end of the encoding buffer is used
582 * to deal with xdr encoding length. Instead of checking
583 * each encoding of an attribute value before it is done,
584 * make the assumption that it will fit into the buffer and
585 * check occasionally.
586 *
587 * The largest block of attributes that are encoded without
588 * checking the redzone is 18 * BYTES_PER_XDR_UNIT (72 bytes)
589 * "round" to 128 as the redzone size.
590 */
591 if (args->maxcount < (mpcount - 128))
592 ptr_redzone =
593 (uint32_t *)(((char *)ptr) + RNDUP(args->maxcount));
594 else
595 ptr_redzone =
596 (uint32_t *)((((char *)ptr) + RNDUP(mpcount)) - 128);

598 /*
599 * Set the dircount; this will be used as the size for the
600 * readdir of the underlying filesystem. First make sure
601 * that it is large enough to do a reasonable readdir (client
602 * may have short changed us - it is an advisory number);
603 * then make sure that it isn’t too large.
604 * After all of that, if maxcount is "small" then just use
605 * that for the dircount number.
606 */
607 dircount = (args->dircount < MAXBSIZE) ? MAXBSIZE : args->dircount;
608 dircount = (dircount > tsize) ? tsize : dircount;
609 if (dircount > args->maxcount)
610 dircount = args->maxcount;
611 if (args->maxcount <= MAXBSIZE) {
612 if (args->maxcount < RFS4_MINLEN_RDDIR_BUF)
613 dircount = RFS4_MINLEN_RDDIR_BUF;
614 else
615 dircount = args->maxcount;
616 }

618 /* number of entries fully encoded in outgoing buffer */
619 nents = 0;

621 /* ENCODE READDIR4res.cookieverf */
622 IXDR_PUT_HYPER(ptr, Readdir4verf);

624 rddir_data_len = dircount;
625 rddir_data = kmem_alloc(rddir_data_len, KM_NOSLEEP);
626 if (rddir_data == NULL) {
627 /* The allocation failed; downsize and wait for it this time */
628 if (rddir_data_len > MAXBSIZE)
629 rddir_data_len = dircount = MAXBSIZE;
630 rddir_data = kmem_alloc(rddir_data_len, KM_SLEEP);
631 }

633 rddir_next_offset = (offset_t)args->cookie;

new/usr/src/uts/common/fs/nfs/nfs4_srv_readdir.c 5

635 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf;

637 readagain:

639 no_space = FALSE;
640 iseofdir = FALSE;

642 vp = NULL;

644 /* Move on to reading the directory contents */
645 iov.iov_base = rddir_data;
646 iov.iov_len = rddir_data_len;
647 uio.uio_iov = &iov;
648 uio.uio_iovcnt = 1;
649 uio.uio_segflg = UIO_SYSSPACE;
650 uio.uio_extflg = UIO_COPY_CACHED;
651 uio.uio_loffset = rddir_next_offset;
652 uio.uio_resid = rddir_data_len;

654 (void) VOP_RWLOCK(dvp, V_WRITELOCK_FALSE, NULL);

656 error = VOP_READDIR(dvp, &uio, cs->cr, &iseofdir, NULL, 0);

658 VOP_RWUNLOCK(dvp, V_WRITELOCK_FALSE, NULL);

660 if (error) {
661 kmem_free((caddr_t)rddir_data, rddir_data_len);
662 freeb(resp->mblk);
663 resp->mblk = NULL;
664 resp->data_len = 0;
665 *cs->statusp = resp->status = puterrno4(error);
666 goto out;
667 }

670 rddir_result_size = rddir_data_len - uio.uio_resid;

672 /* No data were read. Check if we reached the end of the directory. */
673 if (rddir_result_size == 0) {
674 /* encode the BOOLEAN marking no further entries */
675 IXDR_PUT_U_INT32(ptr, false);
676 /* encode the BOOLEAN signifying end of directory */
677 IXDR_PUT_U_INT32(ptr, iseofdir ? true : false);
678 resp->data_len = (char *)ptr - (char *)beginning_ptr;
679 resp->mblk->b_wptr += resp->data_len;
680 kmem_free((caddr_t)rddir_data, rddir_data_len);
681 *cs->statusp = resp->status = NFS4_OK;
682 goto out;
683 }

685 lastentry_ptr = ptr;
686 no_space = 0;
687 for (dp = (struct dirent64 *)rddir_data;
688 !no_space && rddir_result_size > 0; dp = nextdp(dp)) {

690 /* reset expseudo */
691 expseudo = 0;

693 if (vp) {
694 VN_RELE(vp);
695 vp = NULL;
696 }

698 if (newexi)
699 newexi = NULL;

new/usr/src/uts/common/fs/nfs/nfs4_srv_readdir.c 6

701 rddir_result_size -= dp->d_reclen;

703 /* skip "." and ".." entries */
704 if (dp->d_ino == 0 || NFS_IS_DOTNAME(dp->d_name)) {
705 rddir_next_offset = dp->d_off;
706 continue;
707 }

709 if (check_visible &&
710 !nfs_visible_inode(cs->exi, dp->d_ino, &expseudo)) {
711 rddir_next_offset = dp->d_off;
712 continue;
713 }

715 /*
716 * Only if the client requested attributes...
717 * If the VOP_LOOKUP fails ENOENT, then skip this entry
718 * for the readdir response. If there was another error,
719 * then set the rddirattr_error and the error will be
720 * encoded later in the "attributes" section.
721 */
722 ae = ar;
723 if (ar == 0)
724 goto reencode_attrs;

726 error = nfs4_readdir_getvp(dvp, dp->d_name,
727 &vp, &newexi, req, cs, expseudo);
728 if (error == ENOENT) {
729 rddir_next_offset = dp->d_off;
730 continue;
731 }

733 rddirattr_error = error;

735 /*
736 * The vp obtained from above may be from a
737 * different filesystem mount and the vfs-like
738 * attributes should be obtained from that
739 * different vfs; only do this if appropriate.
740 */
741 if (vp &&
742 (vfs_different = (dvp->v_vfsp != vp->v_vfsp))) {
743 if (ar & (FATTR4_FILES_AVAIL_MASK |
744 FATTR4_FILES_FREE_MASK |
745 FATTR4_FILES_TOTAL_MASK |
746 FATTR4_FILES_AVAIL_MASK |
747 FATTR4_FILES_FREE_MASK |
748 FATTR4_FILES_TOTAL_MASK)) {
749 if (error =
750 rfs4_get_sb_encode(dvp->v_vfsp,
751 &sbe)) {
752 /* Remove attrs from encode */
753 ae &= ~(FATTR4_FILES_AVAIL_MASK |
754 FATTR4_FILES_FREE_MASK |
755 FATTR4_FILES_TOTAL_MASK |
756 FATTR4_FILES_AVAIL_MASK |
757 FATTR4_FILES_FREE_MASK |
758 FATTR4_FILES_TOTAL_MASK);
759 rddirattr_error = error;
760 }
761 }
762 if (ar & (FATTR4_MAXFILESIZE_MASK |
763 FATTR4_MAXLINK_MASK |
764 FATTR4_MAXNAME_MASK)) {
765 if (error = rfs4_get_pc_encode(cs->vp,
766 &pce, ar, cs->cr)) {

new/usr/src/uts/common/fs/nfs/nfs4_srv_readdir.c 7

767 ar &= ~(FATTR4_MAXFILESIZE_MASK |
768 FATTR4_MAXLINK_MASK |
769 FATTR4_MAXNAME_MASK);
770 rddirattr_error = error;
771 }
772 }
773 }

775 reencode_attrs:
776 /* encode the BOOLEAN for the existence of the next entry */
777 IXDR_PUT_U_INT32(ptr, true);
778 /* encode the COOKIE for the entry */
779 IXDR_PUT_U_HYPER(ptr, dp->d_off);

781 name = nfscmd_convname(ca, cs->exi, dp->d_name,
782 NFSCMD_CONV_OUTBOUND, MAXPATHLEN + 1);

784 if (name == NULL) {
785 rddir_next_offset = dp->d_off;
786 continue;
787 }
788 /* Calculate the dirent name length */
789 namelen = strlen(name);

791 rndup = RNDUP(namelen) / BYTES_PER_XDR_UNIT;

793 /* room for LENGTH + string ? */
794 if ((ptr + (1 + rndup)) > ptr_redzone) {
795 no_space = TRUE;
796 continue;
797 }

799 /* encode the LENGTH of the name */
800 IXDR_PUT_U_INT32(ptr, namelen);
801 /* encode the RNDUP FILL first */
802 ptr[rndup - 1] = 0;
803 /* encode the NAME of the entry */
804 bcopy(name, (char *)ptr, namelen);
805 /* now bump the ptr after... */
806 ptr += rndup;

808 if (name != dp->d_name)
809 kmem_free(name, MAXPATHLEN + 1);

811 /*
812 * Keep checking on the dircount to see if we have
813 * reached the limit; from the RFC, dircount is to be
814 * the XDR encoded limit of the cookie plus name.
815 * So the count is the name, XDR_UNIT of length for
816 * that name and 2 * XDR_UNIT bytes of cookie;
817 * However, use the regular DIRENT64 to match most
818 * client’s APIs.
819 */
820 dircount -= DIRENT64_RECLEN(namelen);
821 if (nents != 0 && dircount < 0) {
822 no_space = TRUE;
823 continue;
824 }

826 /*
827 * Attributes requested?
828 * Gather up the attribute info and the previous VOP_LOOKUP()
829 * succeeded; if an error occurs on the VOP_GETATTR() then
830 * return just the error (again if it is requested).
831 * Note that the previous VOP_LOOKUP() could have failed
832 * itself which leaves this code without anything for

new/usr/src/uts/common/fs/nfs/nfs4_srv_readdir.c 8

833 * a VOP_GETATTR().
834 * Also note that the readdir_attr_error is left in the
835 * encoding mask if requested and so is the mounted_on_fileid.
836 */
837 if (ae != 0) {
838 if (!vp) {
839 ae = ar & (FATTR4_RDATTR_ERROR_MASK |
840 FATTR4_MOUNTED_ON_FILEID_MASK);
841 } else {
842 va.va_mask = AT_ALL;
843 rddirattr_error =
844 VOP_GETATTR(vp, &va, 0, cs->cr, NULL);
845 if (rddirattr_error) {
846 ae = ar & (FATTR4_RDATTR_ERROR_MASK |
847 FATTR4_MOUNTED_ON_FILEID_MASK);
848 } else {
849 /*
850 * We may lie about the object
851 * type for a referral
852 */
853 if (vn_is_nfs_reparse(vp, cs->cr) &&
854 client_is_downrev(req))
855 va.va_type = VLNK;
856 }
857 }
858 }

860 /* START OF ATTRIBUTE ENCODING */

862 /* encode the LENGTH of the BITMAP4 array */
863 IXDR_PUT_U_INT32(ptr, 2);
864 /* encode the BITMAP4 */
865 attrmask_ptr = ptr;
866 IXDR_PUT_HYPER(ptr, ae);
867 attr_offset_ptr = ptr;
868 /* encode the default LENGTH of the attributes for entry */
869 IXDR_PUT_U_INT32(ptr, 0);

871 if (ptr > ptr_redzone) {
872 no_space = TRUE;
873 continue;
874 }

876 /* Check if any of the first 32 attributes are being encoded */
877 if (ae & 0xffffffff00000000) {
878 /*
879 * Redzone check is done at the end of this section.
880 * This particular section will encode a maximum of
881 * 18 * BYTES_PER_XDR_UNIT of data
882 */
883 if (ae &
884 (FATTR4_SUPPORTED_ATTRS_MASK |
885 FATTR4_TYPE_MASK |
886 FATTR4_FH_EXPIRE_TYPE_MASK |
887 FATTR4_CHANGE_MASK |
888 FATTR4_SIZE_MASK |
889 FATTR4_LINK_SUPPORT_MASK |
890 FATTR4_SYMLINK_SUPPORT_MASK |
891 FATTR4_NAMED_ATTR_MASK |
892 FATTR4_FSID_MASK |
893 FATTR4_UNIQUE_HANDLES_MASK |
894 FATTR4_LEASE_TIME_MASK |
895 FATTR4_RDATTR_ERROR_MASK)) {

897 if (ae & FATTR4_SUPPORTED_ATTRS_MASK) {
898 IXDR_PUT_INT32(ptr, 2);

new/usr/src/uts/common/fs/nfs/nfs4_srv_readdir.c 9

899 IXDR_PUT_HYPER(ptr,
900 rfs4_supported_attrs);
901 }
902 if (ae & FATTR4_TYPE_MASK) {
903 uint_t ftype = vt_to_nf4[va.va_type];
904 if (dvp->v_flag & V_XATTRDIR) {
905 if (va.va_type == VDIR)
906 ftype = NF4ATTRDIR;
907 else
908 ftype = NF4NAMEDATTR;
909 }
910 IXDR_PUT_U_INT32(ptr, ftype);
911 }
912 if (ae & FATTR4_FH_EXPIRE_TYPE_MASK) {
913 uint_t expire_type = FH4_PERSISTENT;
914 IXDR_PUT_U_INT32(ptr, expire_type);
915 }
916 if (ae & FATTR4_CHANGE_MASK) {
917 u_longlong_t change;
918 NFS4_SET_FATTR4_CHANGE(change,
919 va.va_ctime);
920 IXDR_PUT_HYPER(ptr, change);
921 }
922 if (ae & FATTR4_SIZE_MASK) {
923 u_longlong_t size = va.va_size;
924 IXDR_PUT_HYPER(ptr, size);
925 }
926 if (ae & FATTR4_LINK_SUPPORT_MASK) {
927 IXDR_PUT_U_INT32(ptr, true);
928 }
929 if (ae & FATTR4_SYMLINK_SUPPORT_MASK) {
930 IXDR_PUT_U_INT32(ptr, true);
931 }
932 if (ae & FATTR4_NAMED_ATTR_MASK) {
933 uint_t isit;
934 pc_val = FALSE;
935 int sattr_error;

937 if (!(vp->v_vfsp->vfs_flag &
938 VFS_XATTR)) {
939 isit = FALSE;
940 } else {
941 sattr_error = VOP_PATHCONF(vp,
942 _PC_SATTR_EXISTS,
943 &pc_val, cs->cr, NULL);
944 if (sattr_error || pc_val == 0)
945 (void) VOP_PATHCONF(vp,
946 _PC_XATTR_EXISTS,
947 &pc_val,
948 cs->cr, NULL);
949 }
950 isit = (pc_val ? TRUE : FALSE);
951 IXDR_PUT_U_INT32(ptr, isit);
952 }
953 if (ae & FATTR4_FSID_MASK) {
954 u_longlong_t major, minor;
955 struct exportinfo *exi;

957 exi = newexi ? newexi : cs->exi;
958 if (exi->exi_volatile_dev) {
959 int *pmaj = (int *)&major;

961 pmaj[0] = exi->exi_fsid.val[0];
962 pmaj[1] = exi->exi_fsid.val[1];
963 minor = 0;
964 } else {

new/usr/src/uts/common/fs/nfs/nfs4_srv_readdir.c 10

965 major = getmajor(va.va_fsid);
966 minor = getminor(va.va_fsid);
967 }
968 IXDR_PUT_HYPER(ptr, major);
969 IXDR_PUT_HYPER(ptr, minor);
970 }
971 if (ae & FATTR4_UNIQUE_HANDLES_MASK) {
972 IXDR_PUT_U_INT32(ptr, false);
973 }
974 if (ae & FATTR4_LEASE_TIME_MASK) {
975 uint_t lt = rfs4_lease_time;
976 IXDR_PUT_U_INT32(ptr, lt);
977 }
978 if (ae & FATTR4_RDATTR_ERROR_MASK) {
979 rddirattr_error =
980 (rddirattr_error == 0 ?
981 0 : puterrno4(rddirattr_error));
982 IXDR_PUT_U_INT32(ptr, rddirattr_error);
983 }

985 /* Check the redzone boundary */
986 if (ptr > ptr_redzone) {
987 if (nents || IS_MIN_ATTR_MASK(ar)) {
988 no_space = TRUE;
989 continue;
990 }
991 MINIMIZE_ATTR_MASK(ar);
992 ae = ar;
993 ptr = lastentry_ptr;
994 goto reencode_attrs;
995 }
996 }
997 /*
998 * Redzone check is done at the end of this section.
999 * This particular section will encode a maximum of

1000 * 4 * BYTES_PER_XDR_UNIT of data.
1001 * NOTE: that if ACLs are supported that the
1002 * redzone calculations will need to change.
1003 */
1004 if (ae &
1005 (FATTR4_ACL_MASK |
1006 FATTR4_ACLSUPPORT_MASK |
1007 FATTR4_ARCHIVE_MASK |
1008 FATTR4_CANSETTIME_MASK |
1009 FATTR4_CASE_INSENSITIVE_MASK |
1010 FATTR4_CASE_PRESERVING_MASK |
1011 FATTR4_CHOWN_RESTRICTED_MASK)) {

1013 if (ae & FATTR4_ACL_MASK) {
1014 ASSERT(0);
1015 }
1016 if (ae & FATTR4_ACLSUPPORT_MASK) {
1017 ASSERT(0);
1018 }
1019 if (ae & FATTR4_ARCHIVE_MASK) {
1020 ASSERT(0);
1021 }
1022 if (ae & FATTR4_CANSETTIME_MASK) {
1023 IXDR_PUT_U_INT32(ptr, true);
1024 }
1025 if (ae & FATTR4_CASE_INSENSITIVE_MASK) {
1026 IXDR_PUT_U_INT32(ptr, false);
1027 }
1028 if (ae & FATTR4_CASE_PRESERVING_MASK) {
1029 IXDR_PUT_U_INT32(ptr, true);
1030 }

new/usr/src/uts/common/fs/nfs/nfs4_srv_readdir.c 11

1031 if (ae & FATTR4_CHOWN_RESTRICTED_MASK) {
1032 uint_t isit;
1033 pc_val = FALSE;
1034 (void) VOP_PATHCONF(vp,
1035 _PC_CHOWN_RESTRICTED,
1036 &pc_val, cs->cr, NULL);
1037 isit = (pc_val ? TRUE : FALSE);
1038 IXDR_PUT_U_INT32(ptr, isit);
1039 }
1040 /* Check the redzone boundary */
1041 if (ptr > ptr_redzone) {
1042 if (nents || IS_MIN_ATTR_MASK(ar)) {
1043 no_space = TRUE;
1044 continue;
1045 }
1046 MINIMIZE_ATTR_MASK(ar);
1047 ae = ar;
1048 ptr = lastentry_ptr;
1049 goto reencode_attrs;
1050 }
1051 }
1052 /*
1053 * Redzone check is done before the filehandle
1054 * is encoded.
1055 */
1056 if (ae &
1057 (FATTR4_FILEHANDLE_MASK |
1058 FATTR4_FILEID_MASK)) {

1060 if (ae & FATTR4_FILEHANDLE_MASK) {
1061 struct {
1062 uint_t len;
1063 char *val;
1064 char fh[NFS_FH4_LEN];
1065 } fh;
1066 fh.len = 0;
1067 fh.val = fh.fh;
1068 (void) makefh4((nfs_fh4 *)&fh, vp,
1069 (newexi ? newexi : cs->exi));

1071 if (dvp->v_flag & V_XATTRDIR)
1072 set_fh4_flag((nfs_fh4 *)&fh,
1073 FH4_NAMEDATTR);

1075 if (!xdr_inline_encode_nfs_fh4(
1076 &ptr, ptr_redzone,
1077 (nfs_fh4_fmt_t *)fh.val)) {
1078 if (nents ||
1079 IS_MIN_ATTR_MASK(ar)) {
1080 no_space = TRUE;
1081 continue;
1082 }
1083 MINIMIZE_ATTR_MASK(ar);
1084 ae = ar;
1085 ptr = lastentry_ptr;
1086 goto reencode_attrs;
1087 }
1088 }
1089 if (ae & FATTR4_FILEID_MASK) {
1090 IXDR_PUT_HYPER(ptr, va.va_nodeid);
1091 }
1092 /* Check the redzone boundary */
1093 if (ptr > ptr_redzone) {
1094 if (nents || IS_MIN_ATTR_MASK(ar)) {
1095 no_space = TRUE;
1096 continue;

new/usr/src/uts/common/fs/nfs/nfs4_srv_readdir.c 12

1097 }
1098 MINIMIZE_ATTR_MASK(ar);
1099 ae = ar;
1100 ptr = lastentry_ptr;
1101 goto reencode_attrs;
1102 }
1103 }
1104 /*
1105 * Redzone check is done at the end of this section.
1106 * This particular section will encode a maximum of
1107 * 15 * BYTES_PER_XDR_UNIT of data.
1108 */
1109 if (ae &
1110 (FATTR4_FILES_AVAIL_MASK |
1111 FATTR4_FILES_FREE_MASK |
1112 FATTR4_FILES_TOTAL_MASK |
1113 FATTR4_FS_LOCATIONS_MASK |
1114 FATTR4_HIDDEN_MASK |
1115 FATTR4_HOMOGENEOUS_MASK |
1116 FATTR4_MAXFILESIZE_MASK |
1117 FATTR4_MAXLINK_MASK |
1118 FATTR4_MAXNAME_MASK |
1119 FATTR4_MAXREAD_MASK |
1120 FATTR4_MAXWRITE_MASK)) {

1122 if (ae & FATTR4_FILES_AVAIL_MASK) {
1123 IXDR_PUT_HYPER(ptr, sbe.fa);
1124 }
1125 if (ae & FATTR4_FILES_FREE_MASK) {
1126 IXDR_PUT_HYPER(ptr, sbe.ff);
1127 }
1128 if (ae & FATTR4_FILES_TOTAL_MASK) {
1129 IXDR_PUT_HYPER(ptr, sbe.ft);
1130 }
1131 if (ae & FATTR4_FS_LOCATIONS_MASK) {
1132 ASSERT(0);
1133 }
1134 if (ae & FATTR4_HIDDEN_MASK) {
1135 ASSERT(0);
1136 }
1137 if (ae & FATTR4_HOMOGENEOUS_MASK) {
1138 IXDR_PUT_U_INT32(ptr, true);
1139 }
1140 if (ae & FATTR4_MAXFILESIZE_MASK) {
1141 IXDR_PUT_HYPER(ptr, pce.maxfilesize);
1142 }
1143 if (ae & FATTR4_MAXLINK_MASK) {
1144 IXDR_PUT_U_INT32(ptr, pce.maxlink);
1145 }
1146 if (ae & FATTR4_MAXNAME_MASK) {
1147 IXDR_PUT_U_INT32(ptr, pce.maxname);
1148 }
1149 if (ae & FATTR4_MAXREAD_MASK) {
1150 IXDR_PUT_HYPER(ptr, maxread);
1151 }
1152 if (ae & FATTR4_MAXWRITE_MASK) {
1153 IXDR_PUT_HYPER(ptr, maxwrite);
1154 }
1155 /* Check the redzone boundary */
1156 if (ptr > ptr_redzone) {
1157 if (nents || IS_MIN_ATTR_MASK(ar)) {
1158 no_space = TRUE;
1159 continue;
1160 }
1161 MINIMIZE_ATTR_MASK(ar);
1162 ae = ar;

new/usr/src/uts/common/fs/nfs/nfs4_srv_readdir.c 13

1163 ptr = lastentry_ptr;
1164 goto reencode_attrs;
1165 }
1166 }
1167 }
1168 if (ae & 0x00000000ffffffff) {
1169 /*
1170 * Redzone check is done at the end of this section.
1171 * This particular section will encode a maximum of
1172 * 3 * BYTES_PER_XDR_UNIT of data.
1173 */
1174 if (ae &
1175 (FATTR4_MIMETYPE_MASK |
1176 FATTR4_MODE_MASK |
1177 FATTR4_NO_TRUNC_MASK |
1178 FATTR4_NUMLINKS_MASK)) {

1180 if (ae & FATTR4_MIMETYPE_MASK) {
1181 ASSERT(0);
1182 }
1183 if (ae & FATTR4_MODE_MASK) {
1184 uint_t m = va.va_mode;
1185 IXDR_PUT_U_INT32(ptr, m);
1186 }
1187 if (ae & FATTR4_NO_TRUNC_MASK) {
1188 IXDR_PUT_U_INT32(ptr, true);
1189 }
1190 if (ae & FATTR4_NUMLINKS_MASK) {
1191 IXDR_PUT_U_INT32(ptr, va.va_nlink);
1192 }
1193 /* Check the redzone boundary */
1194 if (ptr > ptr_redzone) {
1195 if (nents || IS_MIN_ATTR_MASK(ar)) {
1196 no_space = TRUE;
1197 continue;
1198 }
1199 MINIMIZE_ATTR_MASK(ar);
1200 ae = ar;
1201 ptr = lastentry_ptr;
1202 goto reencode_attrs;
1203 }
1204 }
1205 /*
1206 * Redzone check is done before the encoding of the
1207 * owner string since the length is indeterminate.
1208 */
1209 if (ae & FATTR4_OWNER_MASK) {
1210 if (!lu_set) {
1211 owner_error = nfs_idmap_uid_str(
1212 va.va_uid, &owner, TRUE);
1213 if (!owner_error) {
1214 lu_set = TRUE;
1215 lastuid = va.va_uid;
1216 }
1217 } else if (va.va_uid != lastuid) {
1218 if (owner.utf8string_len != 0) {
1219 kmem_free(owner.utf8string_val,
1220 owner.utf8string_len);
1221 owner.utf8string_len = 0;
1222 owner.utf8string_val = NULL;
1223 }
1224 owner_error = nfs_idmap_uid_str(
1225 va.va_uid, &owner, TRUE);
1226 if (!owner_error) {
1227 lastuid = va.va_uid;
1228 } else {

new/usr/src/uts/common/fs/nfs/nfs4_srv_readdir.c 14

1229 lu_set = FALSE;
1230 }
1231 }
1232 if (!owner_error) {
1233 if ((ptr +
1234 (owner.utf8string_len /
1235 BYTES_PER_XDR_UNIT)
1236 + 2) > ptr_redzone) {
1237 if (nents ||
1238 IS_MIN_ATTR_MASK(ar)) {
1239 no_space = TRUE;
1240 continue;
1241 }
1242 MINIMIZE_ATTR_MASK(ar);
1243 ae = ar;
1244 ptr = lastentry_ptr;
1245 goto reencode_attrs;
1246 }
1247 /* encode the LENGTH of owner string */
1248 IXDR_PUT_U_INT32(ptr,
1249 owner.utf8string_len);
1250 /* encode the RNDUP FILL first */
1251 rndup = RNDUP(owner.utf8string_len) /
1252 BYTES_PER_XDR_UNIT;
1253 ptr[rndup - 1] = 0;
1254 /* encode the OWNER */
1255 bcopy(owner.utf8string_val, ptr,
1256 owner.utf8string_len);
1257 ptr += rndup;
1258 }
1259 }
1260 /*
1261 * Redzone check is done before the encoding of the
1262 * group string since the length is indeterminate.
1263 */
1264 if (ae & FATTR4_OWNER_GROUP_MASK) {
1265 if (!lg_set) {
1266 group_error =
1267 nfs_idmap_gid_str(va.va_gid,
1268 &group, TRUE);
1269 if (!group_error) {
1270 lg_set = TRUE;
1271 lastgid = va.va_gid;
1272 }
1273 } else if (va.va_gid != lastgid) {
1274 if (group.utf8string_len != 0) {
1275 kmem_free(
1276 group.utf8string_val,
1277 group.utf8string_len);
1278 group.utf8string_len = 0;
1279 group.utf8string_val = NULL;
1280 }
1281 group_error =
1282 nfs_idmap_gid_str(va.va_gid,
1283 &group, TRUE);
1284 if (!group_error)
1285 lastgid = va.va_gid;
1286 else
1287 lg_set = FALSE;
1288 }
1289 if (!group_error) {
1290 if ((ptr +
1291 (group.utf8string_len /
1292 BYTES_PER_XDR_UNIT)
1293 + 2) > ptr_redzone) {
1294 if (nents ||

new/usr/src/uts/common/fs/nfs/nfs4_srv_readdir.c 15

1295 IS_MIN_ATTR_MASK(ar)) {
1296 no_space = TRUE;
1297 continue;
1298 }
1299 MINIMIZE_ATTR_MASK(ar);
1300 ae = ar;
1301 ptr = lastentry_ptr;
1302 goto reencode_attrs;
1303 }
1304 /* encode the LENGTH of owner string */
1305 IXDR_PUT_U_INT32(ptr,
1306 group.utf8string_len);
1307 /* encode the RNDUP FILL first */
1308 rndup = RNDUP(group.utf8string_len) /
1309 BYTES_PER_XDR_UNIT;
1310 ptr[rndup - 1] = 0;
1311 /* encode the OWNER */
1312 bcopy(group.utf8string_val, ptr,
1313 group.utf8string_len);
1314 ptr += rndup;
1315 }
1316 }
1317 if (ae &
1318 (FATTR4_QUOTA_AVAIL_HARD_MASK |
1319 FATTR4_QUOTA_AVAIL_SOFT_MASK |
1320 FATTR4_QUOTA_USED_MASK)) {
1321 if (ae & FATTR4_QUOTA_AVAIL_HARD_MASK) {
1322 ASSERT(0);
1323 }
1324 if (ae & FATTR4_QUOTA_AVAIL_SOFT_MASK) {
1325 ASSERT(0);
1326 }
1327 if (ae & FATTR4_QUOTA_USED_MASK) {
1328 ASSERT(0);
1329 }
1330 }
1331 /*
1332 * Redzone check is done at the end of this section.
1333 * This particular section will encode a maximum of
1334 * 10 * BYTES_PER_XDR_UNIT of data.
1335 */
1336 if (ae &
1337 (FATTR4_RAWDEV_MASK |
1338 FATTR4_SPACE_AVAIL_MASK |
1339 FATTR4_SPACE_FREE_MASK |
1340 FATTR4_SPACE_TOTAL_MASK |
1341 FATTR4_SPACE_USED_MASK |
1342 FATTR4_SYSTEM_MASK)) {

1344 if (ae & FATTR4_RAWDEV_MASK) {
1345 fattr4_rawdev rd;
1346 rd.specdata1 =
1347 (uint32)getmajor(va.va_rdev);
1348 rd.specdata2 =
1349 (uint32)getminor(va.va_rdev);
1350 IXDR_PUT_U_INT32(ptr, rd.specdata1);
1351 IXDR_PUT_U_INT32(ptr, rd.specdata2);
1352 }
1353 if (ae & FATTR4_SPACE_AVAIL_MASK) {
1354 IXDR_PUT_HYPER(ptr, sbe.space_avail);
1355 }
1356 if (ae & FATTR4_SPACE_FREE_MASK) {
1357 IXDR_PUT_HYPER(ptr, sbe.space_free);
1358 }
1359 if (ae & FATTR4_SPACE_TOTAL_MASK) {
1360 IXDR_PUT_HYPER(ptr, sbe.space_total);

new/usr/src/uts/common/fs/nfs/nfs4_srv_readdir.c 16

1361 }
1362 if (ae & FATTR4_SPACE_USED_MASK) {
1363 u_longlong_t su;
1364 su = (fattr4_space_used) DEV_BSIZE *
1365 (fattr4_space_used) va.va_nblocks;
1366 IXDR_PUT_HYPER(ptr, su);
1367 }
1368 if (ae & FATTR4_SYSTEM_MASK) {
1369 ASSERT(0);
1370 }
1371 /* Check the redzone boundary */
1372 if (ptr > ptr_redzone) {
1373 if (nents || IS_MIN_ATTR_MASK(ar)) {
1374 no_space = TRUE;
1375 continue;
1376 }
1377 MINIMIZE_ATTR_MASK(ar);
1378 ae = ar;
1379 ptr = lastentry_ptr;
1380 goto reencode_attrs;
1381 }
1382 }
1383 /*
1384 * Redzone check is done at the end of this section.
1385 * This particular section will encode a maximum of
1386 * 14 * BYTES_PER_XDR_UNIT of data.
1387 */
1388 if (ae &
1389 (FATTR4_TIME_ACCESS_MASK |
1390 FATTR4_TIME_ACCESS_SET_MASK |
1391 FATTR4_TIME_BACKUP_MASK |
1392 FATTR4_TIME_CREATE_MASK |
1393 FATTR4_TIME_DELTA_MASK |
1394 FATTR4_TIME_METADATA_MASK |
1395 FATTR4_TIME_MODIFY_MASK |
1396 FATTR4_TIME_MODIFY_SET_MASK |
1397 FATTR4_MOUNTED_ON_FILEID_MASK)) {

1399 if (ae & FATTR4_TIME_ACCESS_MASK) {
1400 nfstime4 atime;
1401 (void) nfs4_time_vton(&va.va_atime,
1402 &atime);
1403 IXDR_PUT_HYPER(ptr, atime.seconds);
1404 IXDR_PUT_INT32(ptr, atime.nseconds);
1400 u_longlong_t sec =
1401 (u_longlong_t)va.va_atime.tv_sec;
1402 uint_t nsec =
1403 (uint_t)va.va_atime.tv_nsec;
1404 IXDR_PUT_HYPER(ptr, sec);
1405 IXDR_PUT_INT32(ptr, nsec);
1405 }
1406 if (ae & FATTR4_TIME_ACCESS_SET_MASK) {
1407 ASSERT(0);
1408 }
1409 if (ae & FATTR4_TIME_BACKUP_MASK) {
1410 ASSERT(0);
1411 }
1412 if (ae & FATTR4_TIME_CREATE_MASK) {
1413 ASSERT(0);
1414 }
1415 if (ae & FATTR4_TIME_DELTA_MASK) {
1416 u_longlong_t sec = 0;
1417 uint_t nsec = 1000;
1418 IXDR_PUT_HYPER(ptr, sec);
1419 IXDR_PUT_INT32(ptr, nsec);
1420 }

new/usr/src/uts/common/fs/nfs/nfs4_srv_readdir.c 17

1421 if (ae & FATTR4_TIME_METADATA_MASK) {
1422 nfstime4 ctime;
1423 (void) nfs4_time_vton(&va.va_ctime,
1424 &ctime);
1425 IXDR_PUT_HYPER(ptr, ctime.seconds);
1426 IXDR_PUT_INT32(ptr, ctime.nseconds);
1423 u_longlong_t sec =
1424 (u_longlong_t)va.va_ctime.tv_sec;
1425 uint_t nsec =
1426 (uint_t)va.va_ctime.tv_nsec;
1427 IXDR_PUT_HYPER(ptr, sec);
1428 IXDR_PUT_INT32(ptr, nsec);
1427 }
1428 if (ae & FATTR4_TIME_MODIFY_MASK) {
1429 nfstime4 mtime;
1430 (void) nfs4_time_vton(&va.va_mtime,
1431 &mtime);
1432 IXDR_PUT_HYPER(ptr, mtime.seconds);
1433 IXDR_PUT_INT32(ptr, mtime.nseconds);
1431 u_longlong_t sec =
1432 (u_longlong_t)va.va_mtime.tv_sec;
1433 uint_t nsec =
1434 (uint_t)va.va_mtime.tv_nsec;
1435 IXDR_PUT_HYPER(ptr, sec);
1436 IXDR_PUT_INT32(ptr, nsec);
1434 }
1435 if (ae & FATTR4_TIME_MODIFY_SET_MASK) {
1436 ASSERT(0);
1437 }
1438 if (ae & FATTR4_MOUNTED_ON_FILEID_MASK) {
1439 IXDR_PUT_HYPER(ptr, dp->d_ino);
1440 }
1441 /* Check the redzone boundary */
1442 if (ptr > ptr_redzone) {
1443 if (nents || IS_MIN_ATTR_MASK(ar)) {
1444 no_space = TRUE;
1445 continue;
1446 }
1447 MINIMIZE_ATTR_MASK(ar);
1448 ae = ar;
1449 ptr = lastentry_ptr;
1450 goto reencode_attrs;
1451 }
1452 }
1453 }

1455 /* Reset to directory’s vfs info when encoding complete */
1456 if (vfs_different) {
1457 dsbe = sbe;
1458 dpce = pce;
1459 vfs_different = 0;
1460 }

1462 /* "go back" and encode the attributes’ length */
1463 attr_length =
1464 (char *)ptr -
1465 (char *)attr_offset_ptr -
1466 BYTES_PER_XDR_UNIT;
1467 IXDR_PUT_U_INT32(attr_offset_ptr, attr_length);

1469 /*
1470 * If there was trouble obtaining a mapping for either
1471 * the owner or group attributes, then remove them from
1472 * bitmap4 for this entry and reset the bitmap value
1473 * in the data stream.
1474 */

new/usr/src/uts/common/fs/nfs/nfs4_srv_readdir.c 18

1475 if (owner_error || group_error) {
1476 if (owner_error)
1477 ae &= ~FATTR4_OWNER_MASK;
1478 if (group_error)
1479 ae &= ~FATTR4_OWNER_GROUP_MASK;
1480 IXDR_PUT_HYPER(attrmask_ptr, ae);
1481 }

1483 /* END OF ATTRIBUTE ENCODING */

1485 lastentry_ptr = ptr;
1486 nents++;
1487 rddir_next_offset = dp->d_off;
1488 }

1490 /*
1491 * Check for the case that another VOP_READDIR() has to be done.
1492 * - no space encoding error
1493 * - no entry successfully encoded
1494 * - still more directory to read
1495 */
1496 if (!no_space && nents == 0 && !iseofdir)
1497 goto readagain;

1499 *cs->statusp = resp->status = NFS4_OK;

1501 /*
1502 * If no_space is set then we terminated prematurely,
1503 * rewind to the last entry and this can never be EOF.
1504 */
1505 if (no_space) {
1506 ptr = lastentry_ptr;
1507 eof = FALSE; /* ended encoded prematurely */
1508 } else {
1509 eof = (iseofdir ? TRUE : FALSE);
1510 }

1512 /*
1513 * If we have entries, always return them, otherwise only error
1514 * if we ran out of space.
1515 */
1516 if (nents || !no_space) {
1517 ASSERT(ptr != NULL);
1518 /* encode the BOOLEAN marking no further entries */
1519 IXDR_PUT_U_INT32(ptr, false);
1520 /* encode the BOOLEAN signifying end of directory */
1521 IXDR_PUT_U_INT32(ptr, eof);

1523 resp->data_len = (char *)ptr - (char *)beginning_ptr;
1524 resp->mblk->b_wptr += resp->data_len;
1525 } else {
1526 freeb(mp);
1527 resp->mblk = NULL;
1528 resp->data_len = 0;
1529 *cs->statusp = resp->status = NFS4ERR_TOOSMALL;
1530 }

1532 kmem_free((caddr_t)rddir_data, rddir_data_len);
1533 if (vp)
1534 VN_RELE(vp);
1535 if (owner.utf8string_len != 0)
1536 kmem_free(owner.utf8string_val, owner.utf8string_len);
1537 if (group.utf8string_len != 0)
1538 kmem_free(group.utf8string_val, group.utf8string_len);

1540 out:

new/usr/src/uts/common/fs/nfs/nfs4_srv_readdir.c 19

1541 DTRACE_NFSV4_2(op__readdir__done, struct compound_state *, cs,
1542 READDIR4res *, resp);
1543 }
______unchanged_portion_omitted_

