1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
  23  */
  24 
  25 #include <stdio.h>
  26 #include <stdlib.h>
  27 #include <string.h>
  28 #include <errno.h>
  29 #include <fcntl.h>
  30 #include <unistd.h>
  31 #include <stropts.h>
  32 #include <sys/sockio.h>
  33 #include <sys/types.h>
  34 #include <sys/stat.h>
  35 #include <sys/socket.h>
  36 #include <net/route.h>
  37 #include <netinet/in.h>
  38 #include <inet/ip.h>
  39 #include <arpa/inet.h>
  40 #include <libintl.h>
  41 #include <libdlpi.h>
  42 #include <libinetutil.h>
  43 #include <libdladm.h>
  44 #include <libdllink.h>
  45 #include <libdliptun.h>
  46 #include <strings.h>
  47 #include <zone.h>
  48 #include <ctype.h>
  49 #include <limits.h>
  50 #include <assert.h>
  51 #include <netdb.h>
  52 #include <pwd.h>
  53 #include <auth_attr.h>
  54 #include <secdb.h>
  55 #include <nss_dbdefs.h>
  56 #include "libipadm_impl.h"
  57 
  58 /* error codes and text description */
  59 static struct ipadm_error_info {
  60         ipadm_status_t  error_code;
  61         const char      *error_desc;
  62 } ipadm_errors[] = {
  63         { IPADM_SUCCESS,        "Operation succeeded" },
  64         { IPADM_FAILURE,        "Operation failed" },
  65         { IPADM_EAUTH,          "Insufficient user authorizations" },
  66         { IPADM_EPERM,          "Permission denied" },
  67         { IPADM_NO_BUFS,        "No buffer space available" },
  68         { IPADM_NO_MEMORY,      "Insufficient memory" },
  69         { IPADM_BAD_ADDR,       "Invalid address" },
  70         { IPADM_BAD_PROTOCOL,   "Incorrect protocol family for operation" },
  71         { IPADM_DAD_FOUND,      "Duplicate address detected" },
  72         { IPADM_EXISTS,         "Already exists" },
  73         { IPADM_IF_EXISTS,      "Interface already exists" },
  74         { IPADM_ADDROBJ_EXISTS, "Address object already exists" },
  75         { IPADM_ADDRCONF_EXISTS, "Addrconf already in progress" },
  76         { IPADM_ENXIO,          "Interface does not exist" },
  77         { IPADM_GRP_NOTEMPTY,   "IPMP group is not empty" },
  78         { IPADM_INVALID_ARG,    "Invalid argument provided" },
  79         { IPADM_INVALID_NAME,   "Invalid name" },
  80         { IPADM_DLPI_FAILURE,   "Could not open DLPI link" },
  81         { IPADM_DLADM_FAILURE,  "Datalink does not exist" },
  82         { IPADM_PROP_UNKNOWN,   "Unknown property" },
  83         { IPADM_ERANGE,         "Value is outside the allowed range" },
  84         { IPADM_ESRCH,          "Value does not exist" },
  85         { IPADM_EOVERFLOW,      "Number of values exceeds the allowed limit" },
  86         { IPADM_NOTFOUND,       "Object not found" },
  87         { IPADM_IF_INUSE,       "Interface already in use" },
  88         { IPADM_ADDR_INUSE,     "Address already in use" },
  89         { IPADM_BAD_HOSTNAME,   "Hostname maps to multiple IP addresses" },
  90         { IPADM_ADDR_NOTAVAIL,  "Can't assign requested address" },
  91         { IPADM_ALL_ADDRS_NOT_ENABLED, "All addresses could not be enabled" },
  92         { IPADM_NDPD_NOT_RUNNING, "IPv6 autoconf daemon in.ndpd not running" },
  93         { IPADM_DHCP_START_ERROR, "Could not start dhcpagent" },
  94         { IPADM_DHCP_IPC_ERROR, "Could not communicate with dhcpagent" },
  95         { IPADM_DHCP_IPC_TIMEOUT, "Communication with dhcpagent timed out" },
  96         { IPADM_TEMPORARY_OBJ,  "Persistent operation on temporary object" },
  97         { IPADM_IPC_ERROR,      "Could not communicate with ipmgmtd" },
  98         { IPADM_NOTSUP,         "Operation not supported" },
  99         { IPADM_OP_DISABLE_OBJ, "Operation not supported on disabled object" },
 100         { IPADM_EBADE,          "Invalid data exchange with daemon" },
 101         { IPADM_GZ_PERM,        "Operation not permitted on from-gz interface"}
 102 };
 103 
 104 #define IPADM_NUM_ERRORS        (sizeof (ipadm_errors) / sizeof (*ipadm_errors))
 105 
 106 ipadm_status_t
 107 ipadm_errno2status(int error)
 108 {
 109         switch (error) {
 110         case 0:
 111                 return (IPADM_SUCCESS);
 112         case ENXIO:
 113                 return (IPADM_ENXIO);
 114         case ENOMEM:
 115                 return (IPADM_NO_MEMORY);
 116         case ENOBUFS:
 117                 return (IPADM_NO_BUFS);
 118         case EINVAL:
 119                 return (IPADM_INVALID_ARG);
 120         case EBUSY:
 121                 return (IPADM_IF_INUSE);
 122         case EEXIST:
 123                 return (IPADM_EXISTS);
 124         case EADDRNOTAVAIL:
 125                 return (IPADM_ADDR_NOTAVAIL);
 126         case EADDRINUSE:
 127                 return (IPADM_ADDR_INUSE);
 128         case ENOENT:
 129                 return (IPADM_NOTFOUND);
 130         case ERANGE:
 131                 return (IPADM_ERANGE);
 132         case EPERM:
 133                 return (IPADM_EPERM);
 134         case ENOTSUP:
 135         case EOPNOTSUPP:
 136                 return (IPADM_NOTSUP);
 137         case EBADF:
 138                 return (IPADM_IPC_ERROR);
 139         case EBADE:
 140                 return (IPADM_EBADE);
 141         case ESRCH:
 142                 return (IPADM_ESRCH);
 143         case EOVERFLOW:
 144                 return (IPADM_EOVERFLOW);
 145         default:
 146                 return (IPADM_FAILURE);
 147         }
 148 }
 149 
 150 /*
 151  * Returns a message string for the given libipadm error status.
 152  */
 153 const char *
 154 ipadm_status2str(ipadm_status_t status)
 155 {
 156         int     i;
 157 
 158         for (i = 0; i < IPADM_NUM_ERRORS; i++) {
 159                 if (status == ipadm_errors[i].error_code)
 160                         return (dgettext(TEXT_DOMAIN,
 161                             ipadm_errors[i].error_desc));
 162         }
 163 
 164         return (dgettext(TEXT_DOMAIN, "<unknown error>"));
 165 }
 166 
 167 /*
 168  * Opens a handle to libipadm.
 169  * Possible values for flags:
 170  *  IPH_VRRP:   Used by VRRP daemon to set the socket option SO_VRRP.
 171  *  IPH_LEGACY: This is used whenever an application needs to provide a
 172  *              logical interface name while creating or deleting
 173  *              interfaces and static addresses.
 174  *  IPH_INIT:   Used by ipadm_init_prop(), to initialize protocol properties
 175  *              on reboot.
 176  */
 177 ipadm_status_t
 178 ipadm_open(ipadm_handle_t *handle, uint32_t flags)
 179 {
 180         ipadm_handle_t  iph;
 181         ipadm_status_t  status = IPADM_SUCCESS;
 182         zoneid_t        zoneid;
 183         ushort_t        zflags;
 184         int             on = B_TRUE;
 185 
 186         if (handle == NULL)
 187                 return (IPADM_INVALID_ARG);
 188         *handle = NULL;
 189 
 190         if (flags & ~(IPH_VRRP|IPH_LEGACY|IPH_INIT|IPH_IPMGMTD))
 191                 return (IPADM_INVALID_ARG);
 192 
 193         if ((iph = calloc(1, sizeof (struct ipadm_handle))) == NULL)
 194                 return (IPADM_NO_MEMORY);
 195         iph->iph_sock = -1;
 196         iph->iph_sock6 = -1;
 197         iph->iph_door_fd = -1;
 198         iph->iph_rtsock = -1;
 199         iph->iph_flags = flags;
 200         (void) pthread_mutex_init(&iph->iph_lock, NULL);
 201 
 202         if ((iph->iph_sock = socket(AF_INET, SOCK_DGRAM, 0)) < 0 ||
 203             (iph->iph_sock6 = socket(AF_INET6, SOCK_DGRAM, 0)) < 0) {
 204                 goto errnofail;
 205         }
 206 
 207         /*
 208          * We open a handle to libdladm here, to facilitate some daemons (like
 209          * nwamd) which opens handle to libipadm before devfsadmd installs the
 210          * right device permissions into the kernel and requires "all"
 211          * privileges to open DLD_CONTROL_DEV.
 212          *
 213          * In a non-global shared-ip zone there will be no DLD_CONTROL_DEV node
 214          * and dladm_open() will fail. So, we avoid this by not calling
 215          * dladm_open() for such zones.
 216          */
 217         zoneid = getzoneid();
 218         iph->iph_zoneid = zoneid;
 219         if (zoneid != GLOBAL_ZONEID) {
 220                 if (zone_getattr(zoneid, ZONE_ATTR_FLAGS, &zflags,
 221                     sizeof (zflags)) < 0) {
 222                         goto errnofail;
 223                 }
 224         }
 225         if ((zoneid == GLOBAL_ZONEID) || (zflags & ZF_NET_EXCL)) {
 226                 if (dladm_open(&iph->iph_dlh) != DLADM_STATUS_OK) {
 227                         ipadm_close(iph);
 228                         return (IPADM_DLADM_FAILURE);
 229                 }
 230                 if (zoneid != GLOBAL_ZONEID) {
 231                         iph->iph_rtsock = socket(PF_ROUTE, SOCK_RAW, 0);
 232                         /*
 233                          * Failure to open rtsock is ignored as this is
 234                          * only used in non-global zones to initialize
 235                          * routing socket information.
 236                          */
 237                 }
 238         } else {
 239                 assert(zoneid != GLOBAL_ZONEID);
 240                 iph->iph_dlh = NULL;
 241         }
 242         if (flags & IPH_VRRP) {
 243                 if (setsockopt(iph->iph_sock6, SOL_SOCKET, SO_VRRP, &on,
 244                     sizeof (on)) < 0 || setsockopt(iph->iph_sock, SOL_SOCKET,
 245                     SO_VRRP, &on, sizeof (on)) < 0) {
 246                         goto errnofail;
 247                 }
 248         }
 249         *handle = iph;
 250         return (status);
 251 
 252 errnofail:
 253         status = ipadm_errno2status(errno);
 254         ipadm_close(iph);
 255         return (status);
 256 }
 257 
 258 /*
 259  * Closes and frees the libipadm handle.
 260  */
 261 void
 262 ipadm_close(ipadm_handle_t iph)
 263 {
 264         if (iph == NULL)
 265                 return;
 266         if (iph->iph_sock != -1)
 267                 (void) close(iph->iph_sock);
 268         if (iph->iph_sock6 != -1)
 269                 (void) close(iph->iph_sock6);
 270         if (iph->iph_rtsock != -1)
 271                 (void) close(iph->iph_rtsock);
 272         if (iph->iph_door_fd != -1)
 273                 (void) close(iph->iph_door_fd);
 274         dladm_close(iph->iph_dlh);
 275         (void) pthread_mutex_destroy(&iph->iph_lock);
 276         free(iph);
 277 }
 278 
 279 /*
 280  * Checks if the caller has the authorization to configure network
 281  * interfaces.
 282  */
 283 boolean_t
 284 ipadm_check_auth(void)
 285 {
 286         struct passwd   pwd;
 287         char            buf[NSS_BUFLEN_PASSWD];
 288 
 289         /* get the password entry for the given user ID */
 290         if (getpwuid_r(getuid(), &pwd, buf, sizeof (buf)) == NULL)
 291                 return (B_FALSE);
 292 
 293         /* check for presence of given authorization */
 294         return (chkauthattr(NETWORK_INTERFACE_CONFIG_AUTH, pwd.pw_name) != 0);
 295 }
 296 
 297 /*
 298  * Stores the index value of the interface in `ifname' for the address
 299  * family `af' into the buffer pointed to by `index'.
 300  */
 301 static ipadm_status_t
 302 i_ipadm_get_index(ipadm_handle_t iph, const char *ifname, sa_family_t af,
 303     int *index)
 304 {
 305         struct lifreq   lifr;
 306         int             sock;
 307 
 308         bzero(&lifr, sizeof (lifr));
 309         (void) strlcpy(lifr.lifr_name, ifname, sizeof (lifr.lifr_name));
 310         if (af == AF_INET)
 311                 sock = iph->iph_sock;
 312         else
 313                 sock = iph->iph_sock6;
 314 
 315         if (ioctl(sock, SIOCGLIFINDEX, (caddr_t)&lifr) < 0)
 316                 return (ipadm_errno2status(errno));
 317         *index = lifr.lifr_index;
 318 
 319         return (IPADM_SUCCESS);
 320 }
 321 
 322 /*
 323  * Maximum amount of time (in milliseconds) to wait for Duplicate Address
 324  * Detection to complete in the kernel.
 325  */
 326 #define DAD_WAIT_TIME           1000
 327 
 328 /*
 329  * Any time that flags are changed on an interface where either the new or the
 330  * existing flags have IFF_UP set, we'll get a RTM_NEWADDR message to
 331  * announce the new address added and its flag status.
 332  * We wait here for that message and look for IFF_UP.
 333  * If something's amiss with the kernel, though, we don't wait forever.
 334  * (Note that IFF_DUPLICATE is a high-order bit, and we cannot see
 335  * it in the routing socket messages.)
 336  */
 337 static ipadm_status_t
 338 i_ipadm_dad_wait(ipadm_handle_t handle, const char *lifname, sa_family_t af,
 339     int rtsock)
 340 {
 341         struct pollfd   fds[1];
 342         union {
 343                 struct if_msghdr ifm;
 344                 char buf[1024];
 345         } msg;
 346         int             index;
 347         ipadm_status_t  retv;
 348         uint64_t        flags;
 349         hrtime_t        starttime, now;
 350 
 351         fds[0].fd = rtsock;
 352         fds[0].events = POLLIN;
 353         fds[0].revents = 0;
 354 
 355         retv = i_ipadm_get_index(handle, lifname, af, &index);
 356         if (retv != IPADM_SUCCESS)
 357                 return (retv);
 358 
 359         starttime = gethrtime();
 360         for (;;) {
 361                 now = gethrtime();
 362                 now = (now - starttime) / 1000000;
 363                 if (now >= DAD_WAIT_TIME)
 364                         break;
 365                 if (poll(fds, 1, DAD_WAIT_TIME - (int)now) <= 0)
 366                         break;
 367                 if (read(rtsock, &msg, sizeof (msg)) <= 0)
 368                         break;
 369                 if (msg.ifm.ifm_type != RTM_NEWADDR)
 370                         continue;
 371                 /* Note that ifm_index is just 16 bits */
 372                 if (index == msg.ifm.ifm_index && (msg.ifm.ifm_flags & IFF_UP))
 373                         return (IPADM_SUCCESS);
 374         }
 375 
 376         retv = i_ipadm_get_flags(handle, lifname, af, &flags);
 377         if (retv != IPADM_SUCCESS)
 378                 return (retv);
 379         if (flags & IFF_DUPLICATE)
 380                 return (IPADM_DAD_FOUND);
 381 
 382         return (IPADM_SUCCESS);
 383 }
 384 
 385 /*
 386  * Sets the flags `on_flags' and resets the flags `off_flags' for the logical
 387  * interface in `lifname'.
 388  *
 389  * If the new flags value will transition the interface from "down" to "up"
 390  * then duplicate address detection is performed by the kernel.  This routine
 391  * waits to get the outcome of that test.
 392  */
 393 ipadm_status_t
 394 i_ipadm_set_flags(ipadm_handle_t iph, const char *lifname, sa_family_t af,
 395     uint64_t on_flags, uint64_t off_flags)
 396 {
 397         struct lifreq   lifr;
 398         uint64_t        oflags;
 399         ipadm_status_t  ret;
 400         int             rtsock = -1;
 401         int             sock, err;
 402 
 403         ret = i_ipadm_get_flags(iph, lifname, af, &oflags);
 404         if (ret != IPADM_SUCCESS)
 405                 return (ret);
 406 
 407         sock = (af == AF_INET ? iph->iph_sock : iph->iph_sock6);
 408 
 409         /*
 410          * Any time flags are changed on an interface that has IFF_UP set,
 411          * we get a routing socket message.  We care about the status,
 412          * though, only when the new flags are marked "up."
 413          */
 414         if (!(oflags & IFF_UP) && (on_flags & IFF_UP))
 415                 rtsock = socket(PF_ROUTE, SOCK_RAW, af);
 416 
 417         oflags |= on_flags;
 418         oflags &= ~off_flags;
 419         bzero(&lifr, sizeof (lifr));
 420         (void) strlcpy(lifr.lifr_name, lifname, sizeof (lifr.lifr_name));
 421         lifr.lifr_flags = oflags;
 422         if (ioctl(sock, SIOCSLIFFLAGS, (caddr_t)&lifr) < 0) {
 423                 err = errno;
 424                 if (rtsock != -1)
 425                         (void) close(rtsock);
 426                 return (ipadm_errno2status(err));
 427         }
 428         if (rtsock == -1) {
 429                 return (IPADM_SUCCESS);
 430         } else {
 431                 /* Wait for DAD to complete. */
 432                 ret = i_ipadm_dad_wait(iph, lifname, af, rtsock);
 433                 (void) close(rtsock);
 434                 return (ret);
 435         }
 436 }
 437 
 438 /*
 439  * Returns the flags value for the logical interface in `lifname'
 440  * in the buffer pointed to by `flags'.
 441  */
 442 ipadm_status_t
 443 i_ipadm_get_flags(ipadm_handle_t iph, const char *lifname, sa_family_t af,
 444     uint64_t *flags)
 445 {
 446         struct lifreq   lifr;
 447         int             sock;
 448 
 449         bzero(&lifr, sizeof (lifr));
 450         (void) strlcpy(lifr.lifr_name, lifname, sizeof (lifr.lifr_name));
 451         if (af == AF_INET)
 452                 sock = iph->iph_sock;
 453         else
 454                 sock = iph->iph_sock6;
 455 
 456         if (ioctl(sock, SIOCGLIFFLAGS, (caddr_t)&lifr) < 0) {
 457                 return (ipadm_errno2status(errno));
 458         }
 459         *flags = lifr.lifr_flags;
 460 
 461         return (IPADM_SUCCESS);
 462 }
 463 
 464 /*
 465  * Determines whether or not an interface name represents a loopback
 466  * interface, before the interface has been plumbed.
 467  * It is assumed that the interface name in `ifname' is of correct format
 468  * as verified by ifparse_ifspec().
 469  *
 470  * Returns: B_TRUE if loopback, B_FALSE if not.
 471  */
 472 boolean_t
 473 i_ipadm_is_loopback(const char *ifname)
 474 {
 475         int len = strlen(LOOPBACK_IF);
 476 
 477         return (strncmp(ifname, LOOPBACK_IF, len) == 0 &&
 478             (ifname[len] == '\0' || ifname[len] == IPADM_LOGICAL_SEP));
 479 }
 480 
 481 /*
 482  * Determines whether or not an interface name represents a vni
 483  * interface, before the interface has been plumbed.
 484  * It is assumed that the interface name in `ifname' is of correct format
 485  * as verified by ifparse_ifspec().
 486  *
 487  * Returns: B_TRUE if vni, B_FALSE if not.
 488  */
 489 boolean_t
 490 i_ipadm_is_vni(const char *ifname)
 491 {
 492         ifspec_t        ifsp;
 493 
 494         return (ifparse_ifspec(ifname, &ifsp) &&
 495             strcmp(ifsp.ifsp_devnm, "vni") == 0);
 496 }
 497 
 498 /*
 499  * Returns B_TRUE if `ifname' is an IP interface on a 6to4 tunnel.
 500  */
 501 boolean_t
 502 i_ipadm_is_6to4(ipadm_handle_t iph, char *ifname)
 503 {
 504         dladm_status_t          dlstatus;
 505         datalink_class_t        class;
 506         iptun_params_t          params;
 507         datalink_id_t           linkid;
 508 
 509         if (iph->iph_dlh == NULL) {
 510                 assert(iph->iph_zoneid != GLOBAL_ZONEID);
 511                 return (B_FALSE);
 512         }
 513         dlstatus = dladm_name2info(iph->iph_dlh, ifname, &linkid, NULL,
 514             &class, NULL);
 515         if (dlstatus == DLADM_STATUS_OK && class == DATALINK_CLASS_IPTUN) {
 516                 params.iptun_param_linkid = linkid;
 517                 dlstatus = dladm_iptun_getparams(iph->iph_dlh, &params,
 518                     DLADM_OPT_ACTIVE);
 519                 if (dlstatus == DLADM_STATUS_OK &&
 520                     params.iptun_param_type == IPTUN_TYPE_6TO4) {
 521                         return (B_TRUE);
 522                 }
 523         }
 524         return (B_FALSE);
 525 }
 526 
 527 /*
 528  * Returns B_TRUE if `ifname' represents an IPMP underlying interface.
 529  */
 530 boolean_t
 531 i_ipadm_is_under_ipmp(ipadm_handle_t iph, const char *ifname)
 532 {
 533         struct lifreq   lifr;
 534 
 535         (void) strlcpy(lifr.lifr_name, ifname, sizeof (lifr.lifr_name));
 536         if (ioctl(iph->iph_sock, SIOCGLIFGROUPNAME, (caddr_t)&lifr) < 0) {
 537                 if (ioctl(iph->iph_sock6, SIOCGLIFGROUPNAME,
 538                     (caddr_t)&lifr) < 0) {
 539                         return (B_FALSE);
 540                 }
 541         }
 542         return (lifr.lifr_groupname[0] != '\0');
 543 }
 544 
 545 /*
 546  * Returns B_TRUE if `ifname' represents an IPMP meta-interface.
 547  */
 548 boolean_t
 549 i_ipadm_is_ipmp(ipadm_handle_t iph, const char *ifname)
 550 {
 551         uint64_t flags;
 552 
 553         if (i_ipadm_get_flags(iph, ifname, AF_INET, &flags) != IPADM_SUCCESS &&
 554             i_ipadm_get_flags(iph, ifname, AF_INET6, &flags) != IPADM_SUCCESS)
 555                 return (B_FALSE);
 556 
 557         return ((flags & IFF_IPMP) != 0);
 558 }
 559 
 560 /*
 561  * For a given interface name, ipadm_if_enabled() checks if v4
 562  * or v6 or both IP interfaces exist in the active configuration.
 563  */
 564 boolean_t
 565 ipadm_if_enabled(ipadm_handle_t iph, const char *ifname, sa_family_t af)
 566 {
 567         struct lifreq   lifr;
 568         int             s4 = iph->iph_sock;
 569         int             s6 = iph->iph_sock6;
 570 
 571         bzero(&lifr, sizeof (lifr));
 572         (void) strlcpy(lifr.lifr_name, ifname, sizeof (lifr.lifr_name));
 573         switch (af) {
 574         case AF_INET:
 575                 if (ioctl(s4, SIOCGLIFFLAGS, (caddr_t)&lifr) == 0)
 576                         return (B_TRUE);
 577                 break;
 578         case AF_INET6:
 579                 if (ioctl(s6, SIOCGLIFFLAGS, (caddr_t)&lifr) == 0)
 580                         return (B_TRUE);
 581                 break;
 582         case AF_UNSPEC:
 583                 if (ioctl(s4, SIOCGLIFFLAGS, (caddr_t)&lifr) == 0 ||
 584                     ioctl(s6, SIOCGLIFFLAGS, (caddr_t)&lifr) == 0) {
 585                         return (B_TRUE);
 586                 }
 587         }
 588         return (B_FALSE);
 589 }
 590 
 591 /*
 592  * Apply the interface property by retrieving information from nvl.
 593  */
 594 static ipadm_status_t
 595 i_ipadm_init_ifprop(ipadm_handle_t iph, nvlist_t *nvl)
 596 {
 597         nvpair_t        *nvp;
 598         char            *name, *pname = NULL;
 599         char            *protostr = NULL, *ifname = NULL, *pval = NULL;
 600         uint_t          proto;
 601         int             err = 0;
 602 
 603         for (nvp = nvlist_next_nvpair(nvl, NULL); nvp != NULL;
 604             nvp = nvlist_next_nvpair(nvl, nvp)) {
 605                 name = nvpair_name(nvp);
 606                 if (strcmp(name, IPADM_NVP_IFNAME) == 0) {
 607                         if ((err = nvpair_value_string(nvp, &ifname)) != 0)
 608                                 break;
 609                 } else if (strcmp(name, IPADM_NVP_PROTONAME) == 0) {
 610                         if ((err = nvpair_value_string(nvp, &protostr)) != 0)
 611                                 break;
 612                 } else {
 613                         assert(!IPADM_PRIV_NVP(name));
 614                         pname = name;
 615                         if ((err = nvpair_value_string(nvp, &pval)) != 0)
 616                                 break;
 617                 }
 618         }
 619         if (err != 0)
 620                 return (ipadm_errno2status(err));
 621         proto = ipadm_str2proto(protostr);
 622         return (ipadm_set_ifprop(iph, ifname, pname, pval, proto,
 623             IPADM_OPT_ACTIVE));
 624 }
 625 
 626 /*
 627  * Instantiate the address object or set the address object property by
 628  * retrieving the configuration from the nvlist `nvl'.
 629  */
 630 ipadm_status_t
 631 i_ipadm_init_addrobj(ipadm_handle_t iph, nvlist_t *nvl)
 632 {
 633         nvpair_t        *nvp;
 634         char            *name;
 635         char            *aobjname = NULL, *pval = NULL, *ifname = NULL;
 636         sa_family_t     af = AF_UNSPEC;
 637         ipadm_addr_type_t atype = IPADM_ADDR_NONE;
 638         int             err = 0;
 639         ipadm_status_t  status = IPADM_SUCCESS;
 640 
 641         for (nvp = nvlist_next_nvpair(nvl, NULL); nvp != NULL;
 642             nvp = nvlist_next_nvpair(nvl, nvp)) {
 643                 name = nvpair_name(nvp);
 644                 if (strcmp(name, IPADM_NVP_IFNAME) == 0) {
 645                         if ((err = nvpair_value_string(nvp, &ifname)) != 0)
 646                                 break;
 647                 } else if (strcmp(name, IPADM_NVP_AOBJNAME) == 0) {
 648                         if ((err = nvpair_value_string(nvp, &aobjname)) != 0)
 649                                 break;
 650                 } else if (i_ipadm_name2atype(name, &af, &atype)) {
 651                         break;
 652                 } else {
 653                         assert(!IPADM_PRIV_NVP(name));
 654                         err = nvpair_value_string(nvp, &pval);
 655                         break;
 656                 }
 657         }
 658         if (err != 0)
 659                 return (ipadm_errno2status(err));
 660 
 661         switch (atype) {
 662         case IPADM_ADDR_STATIC:
 663                 status = i_ipadm_enable_static(iph, ifname, nvl, af);
 664                 break;
 665         case IPADM_ADDR_DHCP:
 666                 status = i_ipadm_enable_dhcp(iph, ifname, nvl);
 667                 if (status == IPADM_DHCP_IPC_TIMEOUT)
 668                         status = IPADM_SUCCESS;
 669                 break;
 670         case IPADM_ADDR_IPV6_ADDRCONF:
 671                 status = i_ipadm_enable_addrconf(iph, ifname, nvl);
 672                 break;
 673         case IPADM_ADDR_NONE:
 674                 status = ipadm_set_addrprop(iph, name, pval, aobjname,
 675                     IPADM_OPT_ACTIVE);
 676                 break;
 677         }
 678 
 679         return (status);
 680 }
 681 
 682 /*
 683  * Instantiate the interface object by retrieving the configuration from
 684  * `ifnvl'. The nvlist `ifnvl' contains all the persistent configuration
 685  * (interface properties and address objects on that interface) for the
 686  * given `ifname'.
 687  */
 688 ipadm_status_t
 689 i_ipadm_init_ifobj(ipadm_handle_t iph, const char *ifname, nvlist_t *ifnvl)
 690 {
 691         nvlist_t        *nvl = NULL;
 692         nvpair_t        *nvp;
 693         char            *afstr;
 694         ipadm_status_t  status;
 695         ipadm_status_t  ret_status = IPADM_SUCCESS;
 696         char            newifname[LIFNAMSIZ];
 697         char            *aobjstr;
 698         sa_family_t     af = AF_UNSPEC;
 699         boolean_t       is_ngz = (iph->iph_zoneid != GLOBAL_ZONEID);
 700 
 701         (void) strlcpy(newifname, ifname, sizeof (newifname));
 702         /*
 703          * First plumb the given interface and then apply all the persistent
 704          * interface properties and then instantiate any persistent addresses
 705          * objects on that interface.
 706          */
 707         for (nvp = nvlist_next_nvpair(ifnvl, NULL); nvp != NULL;
 708             nvp = nvlist_next_nvpair(ifnvl, nvp)) {
 709                 if (nvpair_value_nvlist(nvp, &nvl) != 0)
 710                         continue;
 711 
 712                 if (nvlist_lookup_string(nvl, IPADM_NVP_FAMILY, &afstr) == 0) {
 713                         status = i_ipadm_plumb_if(iph, newifname, atoi(afstr),
 714                             IPADM_OPT_ACTIVE);
 715                         /*
 716                          * If the interface is already plumbed, we should
 717                          * ignore this error because there might be address
 718                          * address objects on that interface that needs to
 719                          * be enabled again.
 720                          */
 721                         if (status == IPADM_IF_EXISTS)
 722                                 status = IPADM_SUCCESS;
 723 
 724                         if (is_ngz)
 725                                 af = atoi(afstr);
 726                 } else if (nvlist_lookup_string(nvl, IPADM_NVP_AOBJNAME,
 727                     &aobjstr) == 0) {
 728                         /*
 729                          * For a static address, we need to search for
 730                          * the prefixlen in the nvlist `ifnvl'.
 731                          */
 732                         if (nvlist_exists(nvl, IPADM_NVP_IPV4ADDR) ||
 733                             nvlist_exists(nvl, IPADM_NVP_IPV6ADDR)) {
 734                                 status = i_ipadm_merge_prefixlen_from_nvl(ifnvl,
 735                                     nvl, aobjstr);
 736                                 if (status != IPADM_SUCCESS)
 737                                         continue;
 738                         }
 739                         status = i_ipadm_init_addrobj(iph, nvl);
 740                         /*
 741                          * If this address is in use on some other interface,
 742                          * we want to record an error to be returned as
 743                          * a soft error and continue processing the rest of
 744                          * the addresses.
 745                          */
 746                         if (status == IPADM_ADDR_NOTAVAIL) {
 747                                 ret_status = IPADM_ALL_ADDRS_NOT_ENABLED;
 748                                 status = IPADM_SUCCESS;
 749                         }
 750                 } else {
 751                         assert(nvlist_exists(nvl, IPADM_NVP_PROTONAME));
 752                         status = i_ipadm_init_ifprop(iph, nvl);
 753                 }
 754                 if (status != IPADM_SUCCESS)
 755                         return (status);
 756         }
 757 
 758         if (is_ngz && af != AF_UNSPEC)
 759                 ret_status = ipadm_init_net_from_gz(iph, newifname, NULL);
 760         return (ret_status);
 761 }
 762 
 763 /*
 764  * Retrieves the persistent configuration for the given interface(s) in `ifs'
 765  * by contacting the daemon and dumps the information in `allifs'.
 766  */
 767 ipadm_status_t
 768 i_ipadm_init_ifs(ipadm_handle_t iph, const char *ifs, nvlist_t **allifs)
 769 {
 770         nvlist_t                *nvl = NULL;
 771         size_t                  nvlsize, bufsize;
 772         ipmgmt_initif_arg_t     *iargp;
 773         char                    *buf = NULL, *nvlbuf = NULL;
 774         ipmgmt_get_rval_t       *rvalp = NULL;
 775         int                     err;
 776         ipadm_status_t          status = IPADM_SUCCESS;
 777 
 778         if ((err = ipadm_str2nvlist(ifs, &nvl, IPADM_NORVAL)) != 0)
 779                 return (ipadm_errno2status(err));
 780 
 781         err = nvlist_pack(nvl, &nvlbuf, &nvlsize, NV_ENCODE_NATIVE, 0);
 782         if (err != 0) {
 783                 status = ipadm_errno2status(err);
 784                 goto done;
 785         }
 786         bufsize = sizeof (*iargp) + nvlsize;
 787         if ((buf = malloc(bufsize)) == NULL) {
 788                 status = ipadm_errno2status(errno);
 789                 goto done;
 790         }
 791 
 792         /* populate the door_call argument structure */
 793         iargp = (void *)buf;
 794         iargp->ia_cmd = IPMGMT_CMD_INITIF;
 795         iargp->ia_flags = 0;
 796         iargp->ia_family = AF_UNSPEC;
 797         iargp->ia_nvlsize = nvlsize;
 798         (void) bcopy(nvlbuf, buf + sizeof (*iargp), nvlsize);
 799 
 800         if ((rvalp = malloc(sizeof (ipmgmt_get_rval_t))) == NULL) {
 801                 status = ipadm_errno2status(errno);
 802                 goto done;
 803         }
 804         if ((err = ipadm_door_call(iph, iargp, bufsize, (void **)&rvalp,
 805             sizeof (*rvalp), B_TRUE)) != 0) {
 806                 status = ipadm_errno2status(err);
 807                 goto done;
 808         }
 809         nvlsize = rvalp->ir_nvlsize;
 810         nvlbuf = (char *)rvalp + sizeof (ipmgmt_get_rval_t);
 811 
 812         /*
 813          * nvlbuf contains a list of nvlists, each of which represents
 814          * configuration information for the given interface(s)
 815          */
 816         err = nvlist_unpack(nvlbuf, nvlsize, allifs, NV_ENCODE_NATIVE);
 817         if (err != 0)
 818                 status = ipadm_errno2status(err);
 819 done:
 820         nvlist_free(nvl);
 821         free(buf);
 822         free(nvlbuf);
 823         free(rvalp);
 824         return (status);
 825 }
 826 
 827 /*
 828  * Returns B_FALSE if
 829  * (1) `ifname' is NULL or has no string or has a string of invalid length
 830  * (2) ifname is a logical interface and IPH_LEGACY is not set, or
 831  */
 832 boolean_t
 833 i_ipadm_validate_ifname(ipadm_handle_t iph, const char *ifname)
 834 {
 835         ifspec_t ifsp;
 836 
 837         if (ifname == NULL || ifname[0] == '\0' ||
 838             !ifparse_ifspec(ifname, &ifsp))
 839                 return (B_FALSE);
 840         if (ifsp.ifsp_lunvalid)
 841                 return (ifsp.ifsp_lun > 0 && (iph->iph_flags & IPH_LEGACY));
 842         return (B_TRUE);
 843 }
 844 
 845 /*
 846  * Wrapper for sending a non-transparent I_STR ioctl().
 847  * Returns: Result from ioctl().
 848  */
 849 int
 850 i_ipadm_strioctl(int s, int cmd, char *buf, int buflen)
 851 {
 852         struct strioctl ioc;
 853 
 854         (void) memset(&ioc, 0, sizeof (ioc));
 855         ioc.ic_cmd = cmd;
 856         ioc.ic_timout = 0;
 857         ioc.ic_len = buflen;
 858         ioc.ic_dp = buf;
 859 
 860         return (ioctl(s, I_STR, (char *)&ioc));
 861 }
 862 
 863 /*
 864  * Make a door call to the server and checks if the door call succeeded or not.
 865  * `is_varsize' specifies that the data returned by ipmgmtd daemon is of
 866  * variable size and door will allocate buffer using mmap(). In such cases
 867  * we re-allocate the required memory,n assign it to `rbufp', copy the data to
 868  * `rbufp' and then call munmap() (see below).
 869  *
 870  * It also checks to see if the server side procedure ran successfully by
 871  * checking for ir_err. Therefore, for some callers who just care about the
 872  * return status can set `rbufp' to NULL and set `rsize' to 0.
 873  */
 874 int
 875 ipadm_door_call(ipadm_handle_t iph, void *arg, size_t asize, void **rbufp,
 876     size_t rsize, boolean_t is_varsize)
 877 {
 878         door_arg_t      darg;
 879         int             err;
 880         ipmgmt_retval_t rval, *rvalp;
 881         boolean_t       reopen = B_FALSE;
 882 
 883         if (rbufp == NULL) {
 884                 rvalp = &rval;
 885                 rbufp = (void **)&rvalp;
 886                 rsize = sizeof (rval);
 887         }
 888 
 889         darg.data_ptr = arg;
 890         darg.data_size = asize;
 891         darg.desc_ptr = NULL;
 892         darg.desc_num = 0;
 893         darg.rbuf = *rbufp;
 894         darg.rsize = rsize;
 895 
 896 reopen:
 897         (void) pthread_mutex_lock(&iph->iph_lock);
 898         /* The door descriptor is opened if it isn't already */
 899         if (iph->iph_door_fd == -1) {
 900                 if ((iph->iph_door_fd = open(IPMGMT_DOOR, O_RDONLY)) < 0) {
 901                         err = errno;
 902                         (void) pthread_mutex_unlock(&iph->iph_lock);
 903                         return (err);
 904                 }
 905         }
 906         (void) pthread_mutex_unlock(&iph->iph_lock);
 907 
 908         if (door_call(iph->iph_door_fd, &darg) == -1) {
 909                 /*
 910                  * Stale door descriptor is possible if ipmgmtd was restarted
 911                  * since last iph_door_fd was opened, so try re-opening door
 912                  * descriptor.
 913                  */
 914                 if (!reopen && errno == EBADF) {
 915                         (void) close(iph->iph_door_fd);
 916                         iph->iph_door_fd = -1;
 917                         reopen = B_TRUE;
 918                         goto reopen;
 919                 }
 920                 return (errno);
 921         }
 922         err = ((ipmgmt_retval_t *)(void *)(darg.rbuf))->ir_err;
 923         if (darg.rbuf != *rbufp) {
 924                 /*
 925                  * if the caller is expecting the result to fit in specified
 926                  * buffer then return failure.
 927                  */
 928                 if (!is_varsize)
 929                         err = EBADE;
 930                 /*
 931                  * The size of the buffer `*rbufp' was not big enough
 932                  * and the door itself allocated buffer, for us. We will
 933                  * hit this, on several occasion as for some cases
 934                  * we cannot predict the size of the return structure.
 935                  * Reallocate the buffer `*rbufp' and memcpy() the contents
 936                  * to new buffer.
 937                  */
 938                 if (err == 0) {
 939                         void *newp;
 940 
 941                         /* allocated memory will be freed by the caller */
 942                         if ((newp = realloc(*rbufp, darg.rsize)) == NULL) {
 943                                 err = ENOMEM;
 944                         } else {
 945                                 *rbufp = newp;
 946                                 (void) memcpy(*rbufp, darg.rbuf, darg.rsize);
 947                         }
 948                 }
 949                 /* munmap() the door buffer */
 950                 (void) munmap(darg.rbuf, darg.rsize);
 951         } else {
 952                 if (darg.rsize != rsize)
 953                         err = EBADE;
 954         }
 955         return (err);
 956 }