1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 /* 26 * Copyright (c) 2011 Bayard G. Bell. All rights reserved. 27 * Copyright (c) 2012 by Delphix. All rights reserved. 28 * Copyright 2013 Nexenta Systems, Inc. All rights reserved. 29 */ 30 /* 31 * Copyright 2011 cyril.galibern@opensvc.com 32 */ 33 34 /* 35 * SCSI disk target driver. 36 */ 37 #include <sys/scsi/scsi.h> 38 #include <sys/dkbad.h> 39 #include <sys/dklabel.h> 40 #include <sys/dkio.h> 41 #include <sys/fdio.h> 42 #include <sys/cdio.h> 43 #include <sys/mhd.h> 44 #include <sys/vtoc.h> 45 #include <sys/dktp/fdisk.h> 46 #include <sys/kstat.h> 47 #include <sys/vtrace.h> 48 #include <sys/note.h> 49 #include <sys/thread.h> 50 #include <sys/proc.h> 51 #include <sys/efi_partition.h> 52 #include <sys/var.h> 53 #include <sys/aio_req.h> 54 55 #ifdef __lock_lint 56 #define _LP64 57 #define __amd64 58 #endif 59 60 #if (defined(__fibre)) 61 /* Note: is there a leadville version of the following? */ 62 #include <sys/fc4/fcal_linkapp.h> 63 #endif 64 #include <sys/taskq.h> 65 #include <sys/uuid.h> 66 #include <sys/byteorder.h> 67 #include <sys/sdt.h> 68 69 #include "sd_xbuf.h" 70 71 #include <sys/scsi/targets/sddef.h> 72 #include <sys/cmlb.h> 73 #include <sys/sysevent/eventdefs.h> 74 #include <sys/sysevent/dev.h> 75 76 #include <sys/fm/protocol.h> 77 78 /* 79 * Loadable module info. 80 */ 81 #if (defined(__fibre)) 82 #define SD_MODULE_NAME "SCSI SSA/FCAL Disk Driver" 83 #else /* !__fibre */ 84 #define SD_MODULE_NAME "SCSI Disk Driver" 85 #endif /* !__fibre */ 86 87 /* 88 * Define the interconnect type, to allow the driver to distinguish 89 * between parallel SCSI (sd) and fibre channel (ssd) behaviors. 90 * 91 * This is really for backward compatibility. In the future, the driver 92 * should actually check the "interconnect-type" property as reported by 93 * the HBA; however at present this property is not defined by all HBAs, 94 * so we will use this #define (1) to permit the driver to run in 95 * backward-compatibility mode; and (2) to print a notification message 96 * if an FC HBA does not support the "interconnect-type" property. The 97 * behavior of the driver will be to assume parallel SCSI behaviors unless 98 * the "interconnect-type" property is defined by the HBA **AND** has a 99 * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or 100 * INTERCONNECT_FABRIC, in which case the driver will assume Fibre 101 * Channel behaviors (as per the old ssd). (Note that the 102 * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and 103 * will result in the driver assuming parallel SCSI behaviors.) 104 * 105 * (see common/sys/scsi/impl/services.h) 106 * 107 * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default 108 * since some FC HBAs may already support that, and there is some code in 109 * the driver that already looks for it. Using INTERCONNECT_FABRIC as the 110 * default would confuse that code, and besides things should work fine 111 * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the 112 * "interconnect_type" property. 113 * 114 */ 115 #if (defined(__fibre)) 116 #define SD_DEFAULT_INTERCONNECT_TYPE SD_INTERCONNECT_FIBRE 117 #else 118 #define SD_DEFAULT_INTERCONNECT_TYPE SD_INTERCONNECT_PARALLEL 119 #endif 120 121 /* 122 * The name of the driver, established from the module name in _init. 123 */ 124 static char *sd_label = NULL; 125 126 /* 127 * Driver name is unfortunately prefixed on some driver.conf properties. 128 */ 129 #if (defined(__fibre)) 130 #define sd_max_xfer_size ssd_max_xfer_size 131 #define sd_config_list ssd_config_list 132 static char *sd_max_xfer_size = "ssd_max_xfer_size"; 133 static char *sd_config_list = "ssd-config-list"; 134 #else 135 static char *sd_max_xfer_size = "sd_max_xfer_size"; 136 static char *sd_config_list = "sd-config-list"; 137 #endif 138 139 /* 140 * Driver global variables 141 */ 142 143 #if (defined(__fibre)) 144 /* 145 * These #defines are to avoid namespace collisions that occur because this 146 * code is currently used to compile two separate driver modules: sd and ssd. 147 * All global variables need to be treated this way (even if declared static) 148 * in order to allow the debugger to resolve the names properly. 149 * It is anticipated that in the near future the ssd module will be obsoleted, 150 * at which time this namespace issue should go away. 151 */ 152 #define sd_state ssd_state 153 #define sd_io_time ssd_io_time 154 #define sd_failfast_enable ssd_failfast_enable 155 #define sd_ua_retry_count ssd_ua_retry_count 156 #define sd_report_pfa ssd_report_pfa 157 #define sd_max_throttle ssd_max_throttle 158 #define sd_min_throttle ssd_min_throttle 159 #define sd_rot_delay ssd_rot_delay 160 161 #define sd_retry_on_reservation_conflict \ 162 ssd_retry_on_reservation_conflict 163 #define sd_reinstate_resv_delay ssd_reinstate_resv_delay 164 #define sd_resv_conflict_name ssd_resv_conflict_name 165 166 #define sd_component_mask ssd_component_mask 167 #define sd_level_mask ssd_level_mask 168 #define sd_debug_un ssd_debug_un 169 #define sd_error_level ssd_error_level 170 171 #define sd_xbuf_active_limit ssd_xbuf_active_limit 172 #define sd_xbuf_reserve_limit ssd_xbuf_reserve_limit 173 174 #define sd_tr ssd_tr 175 #define sd_reset_throttle_timeout ssd_reset_throttle_timeout 176 #define sd_qfull_throttle_timeout ssd_qfull_throttle_timeout 177 #define sd_qfull_throttle_enable ssd_qfull_throttle_enable 178 #define sd_check_media_time ssd_check_media_time 179 #define sd_wait_cmds_complete ssd_wait_cmds_complete 180 #define sd_label_mutex ssd_label_mutex 181 #define sd_detach_mutex ssd_detach_mutex 182 #define sd_log_buf ssd_log_buf 183 #define sd_log_mutex ssd_log_mutex 184 185 #define sd_disk_table ssd_disk_table 186 #define sd_disk_table_size ssd_disk_table_size 187 #define sd_sense_mutex ssd_sense_mutex 188 #define sd_cdbtab ssd_cdbtab 189 190 #define sd_cb_ops ssd_cb_ops 191 #define sd_ops ssd_ops 192 #define sd_additional_codes ssd_additional_codes 193 #define sd_tgops ssd_tgops 194 195 #define sd_minor_data ssd_minor_data 196 #define sd_minor_data_efi ssd_minor_data_efi 197 198 #define sd_tq ssd_tq 199 #define sd_wmr_tq ssd_wmr_tq 200 #define sd_taskq_name ssd_taskq_name 201 #define sd_wmr_taskq_name ssd_wmr_taskq_name 202 #define sd_taskq_minalloc ssd_taskq_minalloc 203 #define sd_taskq_maxalloc ssd_taskq_maxalloc 204 205 #define sd_dump_format_string ssd_dump_format_string 206 207 #define sd_iostart_chain ssd_iostart_chain 208 #define sd_iodone_chain ssd_iodone_chain 209 210 #define sd_pm_idletime ssd_pm_idletime 211 212 #define sd_force_pm_supported ssd_force_pm_supported 213 214 #define sd_dtype_optical_bind ssd_dtype_optical_bind 215 216 #define sd_ssc_init ssd_ssc_init 217 #define sd_ssc_send ssd_ssc_send 218 #define sd_ssc_fini ssd_ssc_fini 219 #define sd_ssc_assessment ssd_ssc_assessment 220 #define sd_ssc_post ssd_ssc_post 221 #define sd_ssc_print ssd_ssc_print 222 #define sd_ssc_ereport_post ssd_ssc_ereport_post 223 #define sd_ssc_set_info ssd_ssc_set_info 224 #define sd_ssc_extract_info ssd_ssc_extract_info 225 226 #endif 227 228 #ifdef SDDEBUG 229 int sd_force_pm_supported = 0; 230 #endif /* SDDEBUG */ 231 232 void *sd_state = NULL; 233 int sd_io_time = SD_IO_TIME; 234 int sd_failfast_enable = 1; 235 int sd_ua_retry_count = SD_UA_RETRY_COUNT; 236 int sd_report_pfa = 1; 237 int sd_max_throttle = SD_MAX_THROTTLE; 238 int sd_min_throttle = SD_MIN_THROTTLE; 239 int sd_rot_delay = 4; /* Default 4ms Rotation delay */ 240 int sd_qfull_throttle_enable = TRUE; 241 242 int sd_retry_on_reservation_conflict = 1; 243 int sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY; 244 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay)) 245 246 static int sd_dtype_optical_bind = -1; 247 248 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */ 249 static char *sd_resv_conflict_name = "sd_retry_on_reservation_conflict"; 250 251 /* 252 * Global data for debug logging. To enable debug printing, sd_component_mask 253 * and sd_level_mask should be set to the desired bit patterns as outlined in 254 * sddef.h. 255 */ 256 uint_t sd_component_mask = 0x0; 257 uint_t sd_level_mask = 0x0; 258 struct sd_lun *sd_debug_un = NULL; 259 uint_t sd_error_level = SCSI_ERR_RETRYABLE; 260 261 /* Note: these may go away in the future... */ 262 static uint32_t sd_xbuf_active_limit = 512; 263 static uint32_t sd_xbuf_reserve_limit = 16; 264 265 static struct sd_resv_reclaim_request sd_tr = { NULL, NULL, NULL, 0, 0, 0 }; 266 267 /* 268 * Timer value used to reset the throttle after it has been reduced 269 * (typically in response to TRAN_BUSY or STATUS_QFULL) 270 */ 271 static int sd_reset_throttle_timeout = SD_RESET_THROTTLE_TIMEOUT; 272 static int sd_qfull_throttle_timeout = SD_QFULL_THROTTLE_TIMEOUT; 273 274 /* 275 * Interval value associated with the media change scsi watch. 276 */ 277 static int sd_check_media_time = 3000000; 278 279 /* 280 * Wait value used for in progress operations during a DDI_SUSPEND 281 */ 282 static int sd_wait_cmds_complete = SD_WAIT_CMDS_COMPLETE; 283 284 /* 285 * sd_label_mutex protects a static buffer used in the disk label 286 * component of the driver 287 */ 288 static kmutex_t sd_label_mutex; 289 290 /* 291 * sd_detach_mutex protects un_layer_count, un_detach_count, and 292 * un_opens_in_progress in the sd_lun structure. 293 */ 294 static kmutex_t sd_detach_mutex; 295 296 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex, 297 sd_lun::{un_layer_count un_detach_count un_opens_in_progress})) 298 299 /* 300 * Global buffer and mutex for debug logging 301 */ 302 static char sd_log_buf[1024]; 303 static kmutex_t sd_log_mutex; 304 305 /* 306 * Structs and globals for recording attached lun information. 307 * This maintains a chain. Each node in the chain represents a SCSI controller. 308 * The structure records the number of luns attached to each target connected 309 * with the controller. 310 * For parallel scsi device only. 311 */ 312 struct sd_scsi_hba_tgt_lun { 313 struct sd_scsi_hba_tgt_lun *next; 314 dev_info_t *pdip; 315 int nlun[NTARGETS_WIDE]; 316 }; 317 318 /* 319 * Flag to indicate the lun is attached or detached 320 */ 321 #define SD_SCSI_LUN_ATTACH 0 322 #define SD_SCSI_LUN_DETACH 1 323 324 static kmutex_t sd_scsi_target_lun_mutex; 325 static struct sd_scsi_hba_tgt_lun *sd_scsi_target_lun_head = NULL; 326 327 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex, 328 sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip)) 329 330 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex, 331 sd_scsi_target_lun_head)) 332 333 /* 334 * "Smart" Probe Caching structs, globals, #defines, etc. 335 * For parallel scsi and non-self-identify device only. 336 */ 337 338 /* 339 * The following resources and routines are implemented to support 340 * "smart" probing, which caches the scsi_probe() results in an array, 341 * in order to help avoid long probe times. 342 */ 343 struct sd_scsi_probe_cache { 344 struct sd_scsi_probe_cache *next; 345 dev_info_t *pdip; 346 int cache[NTARGETS_WIDE]; 347 }; 348 349 static kmutex_t sd_scsi_probe_cache_mutex; 350 static struct sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL; 351 352 /* 353 * Really we only need protection on the head of the linked list, but 354 * better safe than sorry. 355 */ 356 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex, 357 sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip)) 358 359 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex, 360 sd_scsi_probe_cache_head)) 361 362 /* 363 * Power attribute table 364 */ 365 static sd_power_attr_ss sd_pwr_ss = { 366 { "NAME=spindle-motor", "0=off", "1=on", NULL }, 367 {0, 100}, 368 {30, 0}, 369 {20000, 0} 370 }; 371 372 static sd_power_attr_pc sd_pwr_pc = { 373 { "NAME=spindle-motor", "0=stopped", "1=standby", "2=idle", 374 "3=active", NULL }, 375 {0, 0, 0, 100}, 376 {90, 90, 20, 0}, 377 {15000, 15000, 1000, 0} 378 }; 379 380 /* 381 * Power level to power condition 382 */ 383 static int sd_pl2pc[] = { 384 SD_TARGET_START_VALID, 385 SD_TARGET_STANDBY, 386 SD_TARGET_IDLE, 387 SD_TARGET_ACTIVE 388 }; 389 390 /* 391 * Vendor specific data name property declarations 392 */ 393 394 #if defined(__fibre) || defined(__i386) ||defined(__amd64) 395 396 static sd_tunables seagate_properties = { 397 SEAGATE_THROTTLE_VALUE, 398 0, 399 0, 400 0, 401 0, 402 0, 403 0, 404 0, 405 0 406 }; 407 408 409 static sd_tunables fujitsu_properties = { 410 FUJITSU_THROTTLE_VALUE, 411 0, 412 0, 413 0, 414 0, 415 0, 416 0, 417 0, 418 0 419 }; 420 421 static sd_tunables ibm_properties = { 422 IBM_THROTTLE_VALUE, 423 0, 424 0, 425 0, 426 0, 427 0, 428 0, 429 0, 430 0 431 }; 432 433 static sd_tunables purple_properties = { 434 PURPLE_THROTTLE_VALUE, 435 0, 436 0, 437 PURPLE_BUSY_RETRIES, 438 PURPLE_RESET_RETRY_COUNT, 439 PURPLE_RESERVE_RELEASE_TIME, 440 0, 441 0, 442 0 443 }; 444 445 static sd_tunables sve_properties = { 446 SVE_THROTTLE_VALUE, 447 0, 448 0, 449 SVE_BUSY_RETRIES, 450 SVE_RESET_RETRY_COUNT, 451 SVE_RESERVE_RELEASE_TIME, 452 SVE_MIN_THROTTLE_VALUE, 453 SVE_DISKSORT_DISABLED_FLAG, 454 0 455 }; 456 457 static sd_tunables maserati_properties = { 458 0, 459 0, 460 0, 461 0, 462 0, 463 0, 464 0, 465 MASERATI_DISKSORT_DISABLED_FLAG, 466 MASERATI_LUN_RESET_ENABLED_FLAG 467 }; 468 469 static sd_tunables pirus_properties = { 470 PIRUS_THROTTLE_VALUE, 471 0, 472 PIRUS_NRR_COUNT, 473 PIRUS_BUSY_RETRIES, 474 PIRUS_RESET_RETRY_COUNT, 475 0, 476 PIRUS_MIN_THROTTLE_VALUE, 477 PIRUS_DISKSORT_DISABLED_FLAG, 478 PIRUS_LUN_RESET_ENABLED_FLAG 479 }; 480 481 #endif 482 483 #if (defined(__sparc) && !defined(__fibre)) || \ 484 (defined(__i386) || defined(__amd64)) 485 486 487 static sd_tunables elite_properties = { 488 ELITE_THROTTLE_VALUE, 489 0, 490 0, 491 0, 492 0, 493 0, 494 0, 495 0, 496 0 497 }; 498 499 static sd_tunables st31200n_properties = { 500 ST31200N_THROTTLE_VALUE, 501 0, 502 0, 503 0, 504 0, 505 0, 506 0, 507 0, 508 0 509 }; 510 511 #endif /* Fibre or not */ 512 513 static sd_tunables lsi_properties_scsi = { 514 LSI_THROTTLE_VALUE, 515 0, 516 LSI_NOTREADY_RETRIES, 517 0, 518 0, 519 0, 520 0, 521 0, 522 0 523 }; 524 525 static sd_tunables symbios_properties = { 526 SYMBIOS_THROTTLE_VALUE, 527 0, 528 SYMBIOS_NOTREADY_RETRIES, 529 0, 530 0, 531 0, 532 0, 533 0, 534 0 535 }; 536 537 static sd_tunables lsi_properties = { 538 0, 539 0, 540 LSI_NOTREADY_RETRIES, 541 0, 542 0, 543 0, 544 0, 545 0, 546 0 547 }; 548 549 static sd_tunables lsi_oem_properties = { 550 0, 551 0, 552 LSI_OEM_NOTREADY_RETRIES, 553 0, 554 0, 555 0, 556 0, 557 0, 558 0, 559 1 560 }; 561 562 563 564 #if (defined(SD_PROP_TST)) 565 566 #define SD_TST_CTYPE_VAL CTYPE_CDROM 567 #define SD_TST_THROTTLE_VAL 16 568 #define SD_TST_NOTREADY_VAL 12 569 #define SD_TST_BUSY_VAL 60 570 #define SD_TST_RST_RETRY_VAL 36 571 #define SD_TST_RSV_REL_TIME 60 572 573 static sd_tunables tst_properties = { 574 SD_TST_THROTTLE_VAL, 575 SD_TST_CTYPE_VAL, 576 SD_TST_NOTREADY_VAL, 577 SD_TST_BUSY_VAL, 578 SD_TST_RST_RETRY_VAL, 579 SD_TST_RSV_REL_TIME, 580 0, 581 0, 582 0 583 }; 584 #endif 585 586 /* This is similar to the ANSI toupper implementation */ 587 #define SD_TOUPPER(C) (((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C)) 588 589 /* 590 * Static Driver Configuration Table 591 * 592 * This is the table of disks which need throttle adjustment (or, perhaps 593 * something else as defined by the flags at a future time.) device_id 594 * is a string consisting of concatenated vid (vendor), pid (product/model) 595 * and revision strings as defined in the scsi_inquiry structure. Offsets of 596 * the parts of the string are as defined by the sizes in the scsi_inquiry 597 * structure. Device type is searched as far as the device_id string is 598 * defined. Flags defines which values are to be set in the driver from the 599 * properties list. 600 * 601 * Entries below which begin and end with a "*" are a special case. 602 * These do not have a specific vendor, and the string which follows 603 * can appear anywhere in the 16 byte PID portion of the inquiry data. 604 * 605 * Entries below which begin and end with a " " (blank) are a special 606 * case. The comparison function will treat multiple consecutive blanks 607 * as equivalent to a single blank. For example, this causes a 608 * sd_disk_table entry of " NEC CDROM " to match a device's id string 609 * of "NEC CDROM". 610 * 611 * Note: The MD21 controller type has been obsoleted. 612 * ST318202F is a Legacy device 613 * MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been 614 * made with an FC connection. The entries here are a legacy. 615 */ 616 static sd_disk_config_t sd_disk_table[] = { 617 #if defined(__fibre) || defined(__i386) || defined(__amd64) 618 { "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 619 { "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 620 { "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 621 { "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 622 { "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 623 { "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 624 { "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 625 { "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 626 { "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 627 { "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 628 { "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 629 { "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 630 { "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 631 { "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 632 { "FUJITSU MAG3091F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 633 { "FUJITSU MAG3182F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 634 { "FUJITSU MAA3182F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 635 { "FUJITSU MAF3364F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 636 { "FUJITSU MAL3364F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 637 { "FUJITSU MAL3738F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 638 { "FUJITSU MAM3182FC", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 639 { "FUJITSU MAM3364FC", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 640 { "FUJITSU MAM3738FC", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 641 { "IBM DDYFT1835", SD_CONF_BSET_THROTTLE, &ibm_properties }, 642 { "IBM DDYFT3695", SD_CONF_BSET_THROTTLE, &ibm_properties }, 643 { "IBM IC35LF2D2", SD_CONF_BSET_THROTTLE, &ibm_properties }, 644 { "IBM IC35LF2PR", SD_CONF_BSET_THROTTLE, &ibm_properties }, 645 { "IBM 1724-100", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 646 { "IBM 1726-2xx", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 647 { "IBM 1726-22x", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 648 { "IBM 1726-4xx", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 649 { "IBM 1726-42x", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 650 { "IBM 1726-3xx", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 651 { "IBM 3526", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 652 { "IBM 3542", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 653 { "IBM 3552", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 654 { "IBM 1722", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 655 { "IBM 1742", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 656 { "IBM 1815", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 657 { "IBM FAStT", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 658 { "IBM 1814", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 659 { "IBM 1814-200", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 660 { "IBM 1818", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 661 { "DELL MD3000", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 662 { "DELL MD3000i", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 663 { "LSI INF", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 664 { "ENGENIO INF", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 665 { "SGI TP", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 666 { "SGI IS", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 667 { "*CSM100_*", SD_CONF_BSET_NRR_COUNT | 668 SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties }, 669 { "*CSM200_*", SD_CONF_BSET_NRR_COUNT | 670 SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties }, 671 { "Fujitsu SX300", SD_CONF_BSET_THROTTLE, &lsi_oem_properties }, 672 { "LSI", SD_CONF_BSET_NRR_COUNT, &lsi_properties }, 673 { "SUN T3", SD_CONF_BSET_THROTTLE | 674 SD_CONF_BSET_BSY_RETRY_COUNT| 675 SD_CONF_BSET_RST_RETRIES| 676 SD_CONF_BSET_RSV_REL_TIME, 677 &purple_properties }, 678 { "SUN SESS01", SD_CONF_BSET_THROTTLE | 679 SD_CONF_BSET_BSY_RETRY_COUNT| 680 SD_CONF_BSET_RST_RETRIES| 681 SD_CONF_BSET_RSV_REL_TIME| 682 SD_CONF_BSET_MIN_THROTTLE| 683 SD_CONF_BSET_DISKSORT_DISABLED, 684 &sve_properties }, 685 { "SUN T4", SD_CONF_BSET_THROTTLE | 686 SD_CONF_BSET_BSY_RETRY_COUNT| 687 SD_CONF_BSET_RST_RETRIES| 688 SD_CONF_BSET_RSV_REL_TIME, 689 &purple_properties }, 690 { "SUN SVE01", SD_CONF_BSET_DISKSORT_DISABLED | 691 SD_CONF_BSET_LUN_RESET_ENABLED, 692 &maserati_properties }, 693 { "SUN SE6920", SD_CONF_BSET_THROTTLE | 694 SD_CONF_BSET_NRR_COUNT| 695 SD_CONF_BSET_BSY_RETRY_COUNT| 696 SD_CONF_BSET_RST_RETRIES| 697 SD_CONF_BSET_MIN_THROTTLE| 698 SD_CONF_BSET_DISKSORT_DISABLED| 699 SD_CONF_BSET_LUN_RESET_ENABLED, 700 &pirus_properties }, 701 { "SUN SE6940", SD_CONF_BSET_THROTTLE | 702 SD_CONF_BSET_NRR_COUNT| 703 SD_CONF_BSET_BSY_RETRY_COUNT| 704 SD_CONF_BSET_RST_RETRIES| 705 SD_CONF_BSET_MIN_THROTTLE| 706 SD_CONF_BSET_DISKSORT_DISABLED| 707 SD_CONF_BSET_LUN_RESET_ENABLED, 708 &pirus_properties }, 709 { "SUN StorageTek 6920", SD_CONF_BSET_THROTTLE | 710 SD_CONF_BSET_NRR_COUNT| 711 SD_CONF_BSET_BSY_RETRY_COUNT| 712 SD_CONF_BSET_RST_RETRIES| 713 SD_CONF_BSET_MIN_THROTTLE| 714 SD_CONF_BSET_DISKSORT_DISABLED| 715 SD_CONF_BSET_LUN_RESET_ENABLED, 716 &pirus_properties }, 717 { "SUN StorageTek 6940", SD_CONF_BSET_THROTTLE | 718 SD_CONF_BSET_NRR_COUNT| 719 SD_CONF_BSET_BSY_RETRY_COUNT| 720 SD_CONF_BSET_RST_RETRIES| 721 SD_CONF_BSET_MIN_THROTTLE| 722 SD_CONF_BSET_DISKSORT_DISABLED| 723 SD_CONF_BSET_LUN_RESET_ENABLED, 724 &pirus_properties }, 725 { "SUN PSX1000", SD_CONF_BSET_THROTTLE | 726 SD_CONF_BSET_NRR_COUNT| 727 SD_CONF_BSET_BSY_RETRY_COUNT| 728 SD_CONF_BSET_RST_RETRIES| 729 SD_CONF_BSET_MIN_THROTTLE| 730 SD_CONF_BSET_DISKSORT_DISABLED| 731 SD_CONF_BSET_LUN_RESET_ENABLED, 732 &pirus_properties }, 733 { "SUN SE6330", SD_CONF_BSET_THROTTLE | 734 SD_CONF_BSET_NRR_COUNT| 735 SD_CONF_BSET_BSY_RETRY_COUNT| 736 SD_CONF_BSET_RST_RETRIES| 737 SD_CONF_BSET_MIN_THROTTLE| 738 SD_CONF_BSET_DISKSORT_DISABLED| 739 SD_CONF_BSET_LUN_RESET_ENABLED, 740 &pirus_properties }, 741 { "SUN STK6580_6780", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 742 { "SUN SUN_6180", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 743 { "STK OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 744 { "STK OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 745 { "STK BladeCtlr", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 746 { "STK FLEXLINE", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 747 { "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties }, 748 #endif /* fibre or NON-sparc platforms */ 749 #if ((defined(__sparc) && !defined(__fibre)) ||\ 750 (defined(__i386) || defined(__amd64))) 751 { "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties }, 752 { "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties }, 753 { "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL }, 754 { "CONNER CP30540", SD_CONF_BSET_NOCACHE, NULL }, 755 { "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL }, 756 { "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL }, 757 { "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL }, 758 { "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL }, 759 { "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL }, 760 { "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL }, 761 { "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL }, 762 { "SYMBIOS INF-01-00 ", SD_CONF_BSET_FAB_DEVID, NULL }, 763 { "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT, 764 &symbios_properties }, 765 { "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT, 766 &lsi_properties_scsi }, 767 #if defined(__i386) || defined(__amd64) 768 { " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD 769 | SD_CONF_BSET_READSUB_BCD 770 | SD_CONF_BSET_READ_TOC_ADDR_BCD 771 | SD_CONF_BSET_NO_READ_HEADER 772 | SD_CONF_BSET_READ_CD_XD4), NULL }, 773 774 { " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD 775 | SD_CONF_BSET_READSUB_BCD 776 | SD_CONF_BSET_READ_TOC_ADDR_BCD 777 | SD_CONF_BSET_NO_READ_HEADER 778 | SD_CONF_BSET_READ_CD_XD4), NULL }, 779 #endif /* __i386 || __amd64 */ 780 #endif /* sparc NON-fibre or NON-sparc platforms */ 781 782 #if (defined(SD_PROP_TST)) 783 { "VENDOR PRODUCT ", (SD_CONF_BSET_THROTTLE 784 | SD_CONF_BSET_CTYPE 785 | SD_CONF_BSET_NRR_COUNT 786 | SD_CONF_BSET_FAB_DEVID 787 | SD_CONF_BSET_NOCACHE 788 | SD_CONF_BSET_BSY_RETRY_COUNT 789 | SD_CONF_BSET_PLAYMSF_BCD 790 | SD_CONF_BSET_READSUB_BCD 791 | SD_CONF_BSET_READ_TOC_TRK_BCD 792 | SD_CONF_BSET_READ_TOC_ADDR_BCD 793 | SD_CONF_BSET_NO_READ_HEADER 794 | SD_CONF_BSET_READ_CD_XD4 795 | SD_CONF_BSET_RST_RETRIES 796 | SD_CONF_BSET_RSV_REL_TIME 797 | SD_CONF_BSET_TUR_CHECK), &tst_properties}, 798 #endif 799 }; 800 801 static const int sd_disk_table_size = 802 sizeof (sd_disk_table)/ sizeof (sd_disk_config_t); 803 804 /* 805 * Emulation mode disk drive VID/PID table 806 */ 807 static char sd_flash_dev_table[][25] = { 808 "ATA MARVELL SD88SA02", 809 "MARVELL SD88SA02", 810 "TOSHIBA THNSNV05", 811 }; 812 813 static const int sd_flash_dev_table_size = 814 sizeof (sd_flash_dev_table) / sizeof (sd_flash_dev_table[0]); 815 816 #define SD_INTERCONNECT_PARALLEL 0 817 #define SD_INTERCONNECT_FABRIC 1 818 #define SD_INTERCONNECT_FIBRE 2 819 #define SD_INTERCONNECT_SSA 3 820 #define SD_INTERCONNECT_SATA 4 821 #define SD_INTERCONNECT_SAS 5 822 823 #define SD_IS_PARALLEL_SCSI(un) \ 824 ((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL) 825 #define SD_IS_SERIAL(un) \ 826 (((un)->un_interconnect_type == SD_INTERCONNECT_SATA) ||\ 827 ((un)->un_interconnect_type == SD_INTERCONNECT_SAS)) 828 829 /* 830 * Definitions used by device id registration routines 831 */ 832 #define VPD_HEAD_OFFSET 3 /* size of head for vpd page */ 833 #define VPD_PAGE_LENGTH 3 /* offset for pge length data */ 834 #define VPD_MODE_PAGE 1 /* offset into vpd pg for "page code" */ 835 836 static kmutex_t sd_sense_mutex = {0}; 837 838 /* 839 * Macros for updates of the driver state 840 */ 841 #define New_state(un, s) \ 842 (un)->un_last_state = (un)->un_state, (un)->un_state = (s) 843 #define Restore_state(un) \ 844 { uchar_t tmp = (un)->un_last_state; New_state((un), tmp); } 845 846 static struct sd_cdbinfo sd_cdbtab[] = { 847 { CDB_GROUP0, 0x00, 0x1FFFFF, 0xFF, }, 848 { CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF, }, 849 { CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF, }, 850 { CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, }, 851 }; 852 853 /* 854 * Specifies the number of seconds that must have elapsed since the last 855 * cmd. has completed for a device to be declared idle to the PM framework. 856 */ 857 static int sd_pm_idletime = 1; 858 859 /* 860 * Internal function prototypes 861 */ 862 863 #if (defined(__fibre)) 864 /* 865 * These #defines are to avoid namespace collisions that occur because this 866 * code is currently used to compile two separate driver modules: sd and ssd. 867 * All function names need to be treated this way (even if declared static) 868 * in order to allow the debugger to resolve the names properly. 869 * It is anticipated that in the near future the ssd module will be obsoleted, 870 * at which time this ugliness should go away. 871 */ 872 #define sd_log_trace ssd_log_trace 873 #define sd_log_info ssd_log_info 874 #define sd_log_err ssd_log_err 875 #define sdprobe ssdprobe 876 #define sdinfo ssdinfo 877 #define sd_prop_op ssd_prop_op 878 #define sd_scsi_probe_cache_init ssd_scsi_probe_cache_init 879 #define sd_scsi_probe_cache_fini ssd_scsi_probe_cache_fini 880 #define sd_scsi_clear_probe_cache ssd_scsi_clear_probe_cache 881 #define sd_scsi_probe_with_cache ssd_scsi_probe_with_cache 882 #define sd_scsi_target_lun_init ssd_scsi_target_lun_init 883 #define sd_scsi_target_lun_fini ssd_scsi_target_lun_fini 884 #define sd_scsi_get_target_lun_count ssd_scsi_get_target_lun_count 885 #define sd_scsi_update_lun_on_target ssd_scsi_update_lun_on_target 886 #define sd_spin_up_unit ssd_spin_up_unit 887 #define sd_enable_descr_sense ssd_enable_descr_sense 888 #define sd_reenable_dsense_task ssd_reenable_dsense_task 889 #define sd_set_mmc_caps ssd_set_mmc_caps 890 #define sd_read_unit_properties ssd_read_unit_properties 891 #define sd_process_sdconf_file ssd_process_sdconf_file 892 #define sd_process_sdconf_table ssd_process_sdconf_table 893 #define sd_sdconf_id_match ssd_sdconf_id_match 894 #define sd_blank_cmp ssd_blank_cmp 895 #define sd_chk_vers1_data ssd_chk_vers1_data 896 #define sd_set_vers1_properties ssd_set_vers1_properties 897 #define sd_check_solid_state ssd_check_solid_state 898 #define sd_check_emulation_mode ssd_check_emulation_mode 899 900 #define sd_get_physical_geometry ssd_get_physical_geometry 901 #define sd_get_virtual_geometry ssd_get_virtual_geometry 902 #define sd_update_block_info ssd_update_block_info 903 #define sd_register_devid ssd_register_devid 904 #define sd_get_devid ssd_get_devid 905 #define sd_create_devid ssd_create_devid 906 #define sd_write_deviceid ssd_write_deviceid 907 #define sd_check_vpd_page_support ssd_check_vpd_page_support 908 #define sd_setup_pm ssd_setup_pm 909 #define sd_create_pm_components ssd_create_pm_components 910 #define sd_ddi_suspend ssd_ddi_suspend 911 #define sd_ddi_resume ssd_ddi_resume 912 #define sd_pm_state_change ssd_pm_state_change 913 #define sdpower ssdpower 914 #define sdattach ssdattach 915 #define sddetach ssddetach 916 #define sd_unit_attach ssd_unit_attach 917 #define sd_unit_detach ssd_unit_detach 918 #define sd_set_unit_attributes ssd_set_unit_attributes 919 #define sd_create_errstats ssd_create_errstats 920 #define sd_set_errstats ssd_set_errstats 921 #define sd_set_pstats ssd_set_pstats 922 #define sddump ssddump 923 #define sd_scsi_poll ssd_scsi_poll 924 #define sd_send_polled_RQS ssd_send_polled_RQS 925 #define sd_ddi_scsi_poll ssd_ddi_scsi_poll 926 #define sd_init_event_callbacks ssd_init_event_callbacks 927 #define sd_event_callback ssd_event_callback 928 #define sd_cache_control ssd_cache_control 929 #define sd_get_write_cache_enabled ssd_get_write_cache_enabled 930 #define sd_get_nv_sup ssd_get_nv_sup 931 #define sd_make_device ssd_make_device 932 #define sdopen ssdopen 933 #define sdclose ssdclose 934 #define sd_ready_and_valid ssd_ready_and_valid 935 #define sdmin ssdmin 936 #define sdread ssdread 937 #define sdwrite ssdwrite 938 #define sdaread ssdaread 939 #define sdawrite ssdawrite 940 #define sdstrategy ssdstrategy 941 #define sdioctl ssdioctl 942 #define sd_mapblockaddr_iostart ssd_mapblockaddr_iostart 943 #define sd_mapblocksize_iostart ssd_mapblocksize_iostart 944 #define sd_checksum_iostart ssd_checksum_iostart 945 #define sd_checksum_uscsi_iostart ssd_checksum_uscsi_iostart 946 #define sd_pm_iostart ssd_pm_iostart 947 #define sd_core_iostart ssd_core_iostart 948 #define sd_mapblockaddr_iodone ssd_mapblockaddr_iodone 949 #define sd_mapblocksize_iodone ssd_mapblocksize_iodone 950 #define sd_checksum_iodone ssd_checksum_iodone 951 #define sd_checksum_uscsi_iodone ssd_checksum_uscsi_iodone 952 #define sd_pm_iodone ssd_pm_iodone 953 #define sd_initpkt_for_buf ssd_initpkt_for_buf 954 #define sd_destroypkt_for_buf ssd_destroypkt_for_buf 955 #define sd_setup_rw_pkt ssd_setup_rw_pkt 956 #define sd_setup_next_rw_pkt ssd_setup_next_rw_pkt 957 #define sd_buf_iodone ssd_buf_iodone 958 #define sd_uscsi_strategy ssd_uscsi_strategy 959 #define sd_initpkt_for_uscsi ssd_initpkt_for_uscsi 960 #define sd_destroypkt_for_uscsi ssd_destroypkt_for_uscsi 961 #define sd_uscsi_iodone ssd_uscsi_iodone 962 #define sd_xbuf_strategy ssd_xbuf_strategy 963 #define sd_xbuf_init ssd_xbuf_init 964 #define sd_pm_entry ssd_pm_entry 965 #define sd_pm_exit ssd_pm_exit 966 967 #define sd_pm_idletimeout_handler ssd_pm_idletimeout_handler 968 #define sd_pm_timeout_handler ssd_pm_timeout_handler 969 970 #define sd_add_buf_to_waitq ssd_add_buf_to_waitq 971 #define sdintr ssdintr 972 #define sd_start_cmds ssd_start_cmds 973 #define sd_send_scsi_cmd ssd_send_scsi_cmd 974 #define sd_bioclone_alloc ssd_bioclone_alloc 975 #define sd_bioclone_free ssd_bioclone_free 976 #define sd_shadow_buf_alloc ssd_shadow_buf_alloc 977 #define sd_shadow_buf_free ssd_shadow_buf_free 978 #define sd_print_transport_rejected_message \ 979 ssd_print_transport_rejected_message 980 #define sd_retry_command ssd_retry_command 981 #define sd_set_retry_bp ssd_set_retry_bp 982 #define sd_send_request_sense_command ssd_send_request_sense_command 983 #define sd_start_retry_command ssd_start_retry_command 984 #define sd_start_direct_priority_command \ 985 ssd_start_direct_priority_command 986 #define sd_return_failed_command ssd_return_failed_command 987 #define sd_return_failed_command_no_restart \ 988 ssd_return_failed_command_no_restart 989 #define sd_return_command ssd_return_command 990 #define sd_sync_with_callback ssd_sync_with_callback 991 #define sdrunout ssdrunout 992 #define sd_mark_rqs_busy ssd_mark_rqs_busy 993 #define sd_mark_rqs_idle ssd_mark_rqs_idle 994 #define sd_reduce_throttle ssd_reduce_throttle 995 #define sd_restore_throttle ssd_restore_throttle 996 #define sd_print_incomplete_msg ssd_print_incomplete_msg 997 #define sd_init_cdb_limits ssd_init_cdb_limits 998 #define sd_pkt_status_good ssd_pkt_status_good 999 #define sd_pkt_status_check_condition ssd_pkt_status_check_condition 1000 #define sd_pkt_status_busy ssd_pkt_status_busy 1001 #define sd_pkt_status_reservation_conflict \ 1002 ssd_pkt_status_reservation_conflict 1003 #define sd_pkt_status_qfull ssd_pkt_status_qfull 1004 #define sd_handle_request_sense ssd_handle_request_sense 1005 #define sd_handle_auto_request_sense ssd_handle_auto_request_sense 1006 #define sd_print_sense_failed_msg ssd_print_sense_failed_msg 1007 #define sd_validate_sense_data ssd_validate_sense_data 1008 #define sd_decode_sense ssd_decode_sense 1009 #define sd_print_sense_msg ssd_print_sense_msg 1010 #define sd_sense_key_no_sense ssd_sense_key_no_sense 1011 #define sd_sense_key_recoverable_error ssd_sense_key_recoverable_error 1012 #define sd_sense_key_not_ready ssd_sense_key_not_ready 1013 #define sd_sense_key_medium_or_hardware_error \ 1014 ssd_sense_key_medium_or_hardware_error 1015 #define sd_sense_key_illegal_request ssd_sense_key_illegal_request 1016 #define sd_sense_key_unit_attention ssd_sense_key_unit_attention 1017 #define sd_sense_key_fail_command ssd_sense_key_fail_command 1018 #define sd_sense_key_blank_check ssd_sense_key_blank_check 1019 #define sd_sense_key_aborted_command ssd_sense_key_aborted_command 1020 #define sd_sense_key_default ssd_sense_key_default 1021 #define sd_print_retry_msg ssd_print_retry_msg 1022 #define sd_print_cmd_incomplete_msg ssd_print_cmd_incomplete_msg 1023 #define sd_pkt_reason_cmd_incomplete ssd_pkt_reason_cmd_incomplete 1024 #define sd_pkt_reason_cmd_tran_err ssd_pkt_reason_cmd_tran_err 1025 #define sd_pkt_reason_cmd_reset ssd_pkt_reason_cmd_reset 1026 #define sd_pkt_reason_cmd_aborted ssd_pkt_reason_cmd_aborted 1027 #define sd_pkt_reason_cmd_timeout ssd_pkt_reason_cmd_timeout 1028 #define sd_pkt_reason_cmd_unx_bus_free ssd_pkt_reason_cmd_unx_bus_free 1029 #define sd_pkt_reason_cmd_tag_reject ssd_pkt_reason_cmd_tag_reject 1030 #define sd_pkt_reason_default ssd_pkt_reason_default 1031 #define sd_reset_target ssd_reset_target 1032 #define sd_start_stop_unit_callback ssd_start_stop_unit_callback 1033 #define sd_start_stop_unit_task ssd_start_stop_unit_task 1034 #define sd_taskq_create ssd_taskq_create 1035 #define sd_taskq_delete ssd_taskq_delete 1036 #define sd_target_change_task ssd_target_change_task 1037 #define sd_log_dev_status_event ssd_log_dev_status_event 1038 #define sd_log_lun_expansion_event ssd_log_lun_expansion_event 1039 #define sd_log_eject_request_event ssd_log_eject_request_event 1040 #define sd_media_change_task ssd_media_change_task 1041 #define sd_handle_mchange ssd_handle_mchange 1042 #define sd_send_scsi_DOORLOCK ssd_send_scsi_DOORLOCK 1043 #define sd_send_scsi_READ_CAPACITY ssd_send_scsi_READ_CAPACITY 1044 #define sd_send_scsi_READ_CAPACITY_16 ssd_send_scsi_READ_CAPACITY_16 1045 #define sd_send_scsi_GET_CONFIGURATION ssd_send_scsi_GET_CONFIGURATION 1046 #define sd_send_scsi_feature_GET_CONFIGURATION \ 1047 sd_send_scsi_feature_GET_CONFIGURATION 1048 #define sd_send_scsi_START_STOP_UNIT ssd_send_scsi_START_STOP_UNIT 1049 #define sd_send_scsi_INQUIRY ssd_send_scsi_INQUIRY 1050 #define sd_send_scsi_TEST_UNIT_READY ssd_send_scsi_TEST_UNIT_READY 1051 #define sd_send_scsi_PERSISTENT_RESERVE_IN \ 1052 ssd_send_scsi_PERSISTENT_RESERVE_IN 1053 #define sd_send_scsi_PERSISTENT_RESERVE_OUT \ 1054 ssd_send_scsi_PERSISTENT_RESERVE_OUT 1055 #define sd_send_scsi_SYNCHRONIZE_CACHE ssd_send_scsi_SYNCHRONIZE_CACHE 1056 #define sd_send_scsi_SYNCHRONIZE_CACHE_biodone \ 1057 ssd_send_scsi_SYNCHRONIZE_CACHE_biodone 1058 #define sd_send_scsi_MODE_SENSE ssd_send_scsi_MODE_SENSE 1059 #define sd_send_scsi_MODE_SELECT ssd_send_scsi_MODE_SELECT 1060 #define sd_send_scsi_RDWR ssd_send_scsi_RDWR 1061 #define sd_send_scsi_LOG_SENSE ssd_send_scsi_LOG_SENSE 1062 #define sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION \ 1063 ssd_send_scsi_GET_EVENT_STATUS_NOTIFICATION 1064 #define sd_gesn_media_data_valid ssd_gesn_media_data_valid 1065 #define sd_alloc_rqs ssd_alloc_rqs 1066 #define sd_free_rqs ssd_free_rqs 1067 #define sd_dump_memory ssd_dump_memory 1068 #define sd_get_media_info_com ssd_get_media_info_com 1069 #define sd_get_media_info ssd_get_media_info 1070 #define sd_get_media_info_ext ssd_get_media_info_ext 1071 #define sd_dkio_ctrl_info ssd_dkio_ctrl_info 1072 #define sd_nvpair_str_decode ssd_nvpair_str_decode 1073 #define sd_strtok_r ssd_strtok_r 1074 #define sd_set_properties ssd_set_properties 1075 #define sd_get_tunables_from_conf ssd_get_tunables_from_conf 1076 #define sd_setup_next_xfer ssd_setup_next_xfer 1077 #define sd_dkio_get_temp ssd_dkio_get_temp 1078 #define sd_check_mhd ssd_check_mhd 1079 #define sd_mhd_watch_cb ssd_mhd_watch_cb 1080 #define sd_mhd_watch_incomplete ssd_mhd_watch_incomplete 1081 #define sd_sname ssd_sname 1082 #define sd_mhd_resvd_recover ssd_mhd_resvd_recover 1083 #define sd_resv_reclaim_thread ssd_resv_reclaim_thread 1084 #define sd_take_ownership ssd_take_ownership 1085 #define sd_reserve_release ssd_reserve_release 1086 #define sd_rmv_resv_reclaim_req ssd_rmv_resv_reclaim_req 1087 #define sd_mhd_reset_notify_cb ssd_mhd_reset_notify_cb 1088 #define sd_persistent_reservation_in_read_keys \ 1089 ssd_persistent_reservation_in_read_keys 1090 #define sd_persistent_reservation_in_read_resv \ 1091 ssd_persistent_reservation_in_read_resv 1092 #define sd_mhdioc_takeown ssd_mhdioc_takeown 1093 #define sd_mhdioc_failfast ssd_mhdioc_failfast 1094 #define sd_mhdioc_release ssd_mhdioc_release 1095 #define sd_mhdioc_register_devid ssd_mhdioc_register_devid 1096 #define sd_mhdioc_inkeys ssd_mhdioc_inkeys 1097 #define sd_mhdioc_inresv ssd_mhdioc_inresv 1098 #define sr_change_blkmode ssr_change_blkmode 1099 #define sr_change_speed ssr_change_speed 1100 #define sr_atapi_change_speed ssr_atapi_change_speed 1101 #define sr_pause_resume ssr_pause_resume 1102 #define sr_play_msf ssr_play_msf 1103 #define sr_play_trkind ssr_play_trkind 1104 #define sr_read_all_subcodes ssr_read_all_subcodes 1105 #define sr_read_subchannel ssr_read_subchannel 1106 #define sr_read_tocentry ssr_read_tocentry 1107 #define sr_read_tochdr ssr_read_tochdr 1108 #define sr_read_cdda ssr_read_cdda 1109 #define sr_read_cdxa ssr_read_cdxa 1110 #define sr_read_mode1 ssr_read_mode1 1111 #define sr_read_mode2 ssr_read_mode2 1112 #define sr_read_cd_mode2 ssr_read_cd_mode2 1113 #define sr_sector_mode ssr_sector_mode 1114 #define sr_eject ssr_eject 1115 #define sr_ejected ssr_ejected 1116 #define sr_check_wp ssr_check_wp 1117 #define sd_watch_request_submit ssd_watch_request_submit 1118 #define sd_check_media ssd_check_media 1119 #define sd_media_watch_cb ssd_media_watch_cb 1120 #define sd_delayed_cv_broadcast ssd_delayed_cv_broadcast 1121 #define sr_volume_ctrl ssr_volume_ctrl 1122 #define sr_read_sony_session_offset ssr_read_sony_session_offset 1123 #define sd_log_page_supported ssd_log_page_supported 1124 #define sd_check_for_writable_cd ssd_check_for_writable_cd 1125 #define sd_wm_cache_constructor ssd_wm_cache_constructor 1126 #define sd_wm_cache_destructor ssd_wm_cache_destructor 1127 #define sd_range_lock ssd_range_lock 1128 #define sd_get_range ssd_get_range 1129 #define sd_free_inlist_wmap ssd_free_inlist_wmap 1130 #define sd_range_unlock ssd_range_unlock 1131 #define sd_read_modify_write_task ssd_read_modify_write_task 1132 #define sddump_do_read_of_rmw ssddump_do_read_of_rmw 1133 1134 #define sd_iostart_chain ssd_iostart_chain 1135 #define sd_iodone_chain ssd_iodone_chain 1136 #define sd_initpkt_map ssd_initpkt_map 1137 #define sd_destroypkt_map ssd_destroypkt_map 1138 #define sd_chain_type_map ssd_chain_type_map 1139 #define sd_chain_index_map ssd_chain_index_map 1140 1141 #define sd_failfast_flushctl ssd_failfast_flushctl 1142 #define sd_failfast_flushq ssd_failfast_flushq 1143 #define sd_failfast_flushq_callback ssd_failfast_flushq_callback 1144 1145 #define sd_is_lsi ssd_is_lsi 1146 #define sd_tg_rdwr ssd_tg_rdwr 1147 #define sd_tg_getinfo ssd_tg_getinfo 1148 #define sd_rmw_msg_print_handler ssd_rmw_msg_print_handler 1149 1150 #endif /* #if (defined(__fibre)) */ 1151 1152 1153 int _init(void); 1154 int _fini(void); 1155 int _info(struct modinfo *modinfop); 1156 1157 /*PRINTFLIKE3*/ 1158 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...); 1159 /*PRINTFLIKE3*/ 1160 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...); 1161 /*PRINTFLIKE3*/ 1162 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...); 1163 1164 static int sdprobe(dev_info_t *devi); 1165 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, 1166 void **result); 1167 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, 1168 int mod_flags, char *name, caddr_t valuep, int *lengthp); 1169 1170 /* 1171 * Smart probe for parallel scsi 1172 */ 1173 static void sd_scsi_probe_cache_init(void); 1174 static void sd_scsi_probe_cache_fini(void); 1175 static void sd_scsi_clear_probe_cache(void); 1176 static int sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)()); 1177 1178 /* 1179 * Attached luns on target for parallel scsi 1180 */ 1181 static void sd_scsi_target_lun_init(void); 1182 static void sd_scsi_target_lun_fini(void); 1183 static int sd_scsi_get_target_lun_count(dev_info_t *dip, int target); 1184 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag); 1185 1186 static int sd_spin_up_unit(sd_ssc_t *ssc); 1187 1188 /* 1189 * Using sd_ssc_init to establish sd_ssc_t struct 1190 * Using sd_ssc_send to send uscsi internal command 1191 * Using sd_ssc_fini to free sd_ssc_t struct 1192 */ 1193 static sd_ssc_t *sd_ssc_init(struct sd_lun *un); 1194 static int sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd, 1195 int flag, enum uio_seg dataspace, int path_flag); 1196 static void sd_ssc_fini(sd_ssc_t *ssc); 1197 1198 /* 1199 * Using sd_ssc_assessment to set correct type-of-assessment 1200 * Using sd_ssc_post to post ereport & system log 1201 * sd_ssc_post will call sd_ssc_print to print system log 1202 * sd_ssc_post will call sd_ssd_ereport_post to post ereport 1203 */ 1204 static void sd_ssc_assessment(sd_ssc_t *ssc, 1205 enum sd_type_assessment tp_assess); 1206 1207 static void sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess); 1208 static void sd_ssc_print(sd_ssc_t *ssc, int sd_severity); 1209 static void sd_ssc_ereport_post(sd_ssc_t *ssc, 1210 enum sd_driver_assessment drv_assess); 1211 1212 /* 1213 * Using sd_ssc_set_info to mark an un-decodable-data error. 1214 * Using sd_ssc_extract_info to transfer information from internal 1215 * data structures to sd_ssc_t. 1216 */ 1217 static void sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, uint_t comp, 1218 const char *fmt, ...); 1219 static void sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un, 1220 struct scsi_pkt *pktp, struct buf *bp, struct sd_xbuf *xp); 1221 1222 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag, 1223 enum uio_seg dataspace, int path_flag); 1224 1225 #ifdef _LP64 1226 static void sd_enable_descr_sense(sd_ssc_t *ssc); 1227 static void sd_reenable_dsense_task(void *arg); 1228 #endif /* _LP64 */ 1229 1230 static void sd_set_mmc_caps(sd_ssc_t *ssc); 1231 1232 static void sd_read_unit_properties(struct sd_lun *un); 1233 static int sd_process_sdconf_file(struct sd_lun *un); 1234 static void sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str); 1235 static char *sd_strtok_r(char *string, const char *sepset, char **lasts); 1236 static void sd_set_properties(struct sd_lun *un, char *name, char *value); 1237 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags, 1238 int *data_list, sd_tunables *values); 1239 static void sd_process_sdconf_table(struct sd_lun *un); 1240 static int sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen); 1241 static int sd_blank_cmp(struct sd_lun *un, char *id, int idlen); 1242 static int sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list, 1243 int list_len, char *dataname_ptr); 1244 static void sd_set_vers1_properties(struct sd_lun *un, int flags, 1245 sd_tunables *prop_list); 1246 1247 static void sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi, 1248 int reservation_flag); 1249 static int sd_get_devid(sd_ssc_t *ssc); 1250 static ddi_devid_t sd_create_devid(sd_ssc_t *ssc); 1251 static int sd_write_deviceid(sd_ssc_t *ssc); 1252 static int sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len); 1253 static int sd_check_vpd_page_support(sd_ssc_t *ssc); 1254 1255 static void sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi); 1256 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un); 1257 1258 static int sd_ddi_suspend(dev_info_t *devi); 1259 static int sd_ddi_resume(dev_info_t *devi); 1260 static int sd_pm_state_change(struct sd_lun *un, int level, int flag); 1261 static int sdpower(dev_info_t *devi, int component, int level); 1262 1263 static int sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd); 1264 static int sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd); 1265 static int sd_unit_attach(dev_info_t *devi); 1266 static int sd_unit_detach(dev_info_t *devi); 1267 1268 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi); 1269 static void sd_create_errstats(struct sd_lun *un, int instance); 1270 static void sd_set_errstats(struct sd_lun *un); 1271 static void sd_set_pstats(struct sd_lun *un); 1272 1273 static int sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk); 1274 static int sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt); 1275 static int sd_send_polled_RQS(struct sd_lun *un); 1276 static int sd_ddi_scsi_poll(struct scsi_pkt *pkt); 1277 1278 #if (defined(__fibre)) 1279 /* 1280 * Event callbacks (photon) 1281 */ 1282 static void sd_init_event_callbacks(struct sd_lun *un); 1283 static void sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *); 1284 #endif 1285 1286 /* 1287 * Defines for sd_cache_control 1288 */ 1289 1290 #define SD_CACHE_ENABLE 1 1291 #define SD_CACHE_DISABLE 0 1292 #define SD_CACHE_NOCHANGE -1 1293 1294 static int sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag); 1295 static int sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled); 1296 static void sd_get_nv_sup(sd_ssc_t *ssc); 1297 static dev_t sd_make_device(dev_info_t *devi); 1298 static void sd_check_solid_state(sd_ssc_t *ssc); 1299 static void sd_check_emulation_mode(sd_ssc_t *ssc); 1300 static void sd_update_block_info(struct sd_lun *un, uint32_t lbasize, 1301 uint64_t capacity); 1302 1303 /* 1304 * Driver entry point functions. 1305 */ 1306 static int sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p); 1307 static int sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p); 1308 static int sd_ready_and_valid(sd_ssc_t *ssc, int part); 1309 1310 static void sdmin(struct buf *bp); 1311 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p); 1312 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p); 1313 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p); 1314 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p); 1315 1316 static int sdstrategy(struct buf *bp); 1317 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *); 1318 1319 /* 1320 * Function prototypes for layering functions in the iostart chain. 1321 */ 1322 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un, 1323 struct buf *bp); 1324 static void sd_mapblocksize_iostart(int index, struct sd_lun *un, 1325 struct buf *bp); 1326 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp); 1327 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un, 1328 struct buf *bp); 1329 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp); 1330 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp); 1331 1332 /* 1333 * Function prototypes for layering functions in the iodone chain. 1334 */ 1335 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp); 1336 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp); 1337 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un, 1338 struct buf *bp); 1339 static void sd_mapblocksize_iodone(int index, struct sd_lun *un, 1340 struct buf *bp); 1341 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp); 1342 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un, 1343 struct buf *bp); 1344 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp); 1345 1346 /* 1347 * Prototypes for functions to support buf(9S) based IO. 1348 */ 1349 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg); 1350 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **); 1351 static void sd_destroypkt_for_buf(struct buf *); 1352 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp, 1353 struct buf *bp, int flags, 1354 int (*callback)(caddr_t), caddr_t callback_arg, 1355 diskaddr_t lba, uint32_t blockcount); 1356 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp, 1357 struct buf *bp, diskaddr_t lba, uint32_t blockcount); 1358 1359 /* 1360 * Prototypes for functions to support USCSI IO. 1361 */ 1362 static int sd_uscsi_strategy(struct buf *bp); 1363 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **); 1364 static void sd_destroypkt_for_uscsi(struct buf *); 1365 1366 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 1367 uchar_t chain_type, void *pktinfop); 1368 1369 static int sd_pm_entry(struct sd_lun *un); 1370 static void sd_pm_exit(struct sd_lun *un); 1371 1372 static void sd_pm_idletimeout_handler(void *arg); 1373 1374 /* 1375 * sd_core internal functions (used at the sd_core_io layer). 1376 */ 1377 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp); 1378 static void sdintr(struct scsi_pkt *pktp); 1379 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp); 1380 1381 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag, 1382 enum uio_seg dataspace, int path_flag); 1383 1384 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen, 1385 daddr_t blkno, int (*func)(struct buf *)); 1386 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen, 1387 uint_t bflags, daddr_t blkno, int (*func)(struct buf *)); 1388 static void sd_bioclone_free(struct buf *bp); 1389 static void sd_shadow_buf_free(struct buf *bp); 1390 1391 static void sd_print_transport_rejected_message(struct sd_lun *un, 1392 struct sd_xbuf *xp, int code); 1393 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, 1394 void *arg, int code); 1395 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, 1396 void *arg, int code); 1397 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, 1398 void *arg, int code); 1399 1400 static void sd_retry_command(struct sd_lun *un, struct buf *bp, 1401 int retry_check_flag, 1402 void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, 1403 int c), 1404 void *user_arg, int failure_code, clock_t retry_delay, 1405 void (*statp)(kstat_io_t *)); 1406 1407 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp, 1408 clock_t retry_delay, void (*statp)(kstat_io_t *)); 1409 1410 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp, 1411 struct scsi_pkt *pktp); 1412 static void sd_start_retry_command(void *arg); 1413 static void sd_start_direct_priority_command(void *arg); 1414 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp, 1415 int errcode); 1416 static void sd_return_failed_command_no_restart(struct sd_lun *un, 1417 struct buf *bp, int errcode); 1418 static void sd_return_command(struct sd_lun *un, struct buf *bp); 1419 static void sd_sync_with_callback(struct sd_lun *un); 1420 static int sdrunout(caddr_t arg); 1421 1422 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp); 1423 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp); 1424 1425 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type); 1426 static void sd_restore_throttle(void *arg); 1427 1428 static void sd_init_cdb_limits(struct sd_lun *un); 1429 1430 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp, 1431 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1432 1433 /* 1434 * Error handling functions 1435 */ 1436 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp, 1437 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1438 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, 1439 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1440 static void sd_pkt_status_reservation_conflict(struct sd_lun *un, 1441 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1442 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp, 1443 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1444 1445 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp, 1446 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1447 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp, 1448 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1449 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp, 1450 struct sd_xbuf *xp, size_t actual_len); 1451 static void sd_decode_sense(struct sd_lun *un, struct buf *bp, 1452 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1453 1454 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp, 1455 void *arg, int code); 1456 1457 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp, 1458 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1459 static void sd_sense_key_recoverable_error(struct sd_lun *un, 1460 uint8_t *sense_datap, 1461 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1462 static void sd_sense_key_not_ready(struct sd_lun *un, 1463 uint8_t *sense_datap, 1464 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1465 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un, 1466 uint8_t *sense_datap, 1467 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1468 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp, 1469 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1470 static void sd_sense_key_unit_attention(struct sd_lun *un, 1471 uint8_t *sense_datap, 1472 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1473 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp, 1474 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1475 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp, 1476 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1477 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp, 1478 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1479 static void sd_sense_key_default(struct sd_lun *un, 1480 uint8_t *sense_datap, 1481 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1482 1483 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp, 1484 void *arg, int flag); 1485 1486 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp, 1487 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1488 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp, 1489 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1490 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp, 1491 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1492 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp, 1493 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1494 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp, 1495 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1496 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp, 1497 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1498 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp, 1499 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1500 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp, 1501 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1502 1503 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp); 1504 1505 static void sd_start_stop_unit_callback(void *arg); 1506 static void sd_start_stop_unit_task(void *arg); 1507 1508 static void sd_taskq_create(void); 1509 static void sd_taskq_delete(void); 1510 static void sd_target_change_task(void *arg); 1511 static void sd_log_dev_status_event(struct sd_lun *un, char *esc, int km_flag); 1512 static void sd_log_lun_expansion_event(struct sd_lun *un, int km_flag); 1513 static void sd_log_eject_request_event(struct sd_lun *un, int km_flag); 1514 static void sd_media_change_task(void *arg); 1515 1516 static int sd_handle_mchange(struct sd_lun *un); 1517 static int sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag); 1518 static int sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp, 1519 uint32_t *lbap, int path_flag); 1520 static int sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp, 1521 uint32_t *lbap, uint32_t *psp, int path_flag); 1522 static int sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int pc_flag, 1523 int flag, int path_flag); 1524 static int sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr, 1525 size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp); 1526 static int sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag); 1527 static int sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc, 1528 uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp); 1529 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc, 1530 uchar_t usr_cmd, uchar_t *usr_bufp); 1531 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, 1532 struct dk_callback *dkc); 1533 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp); 1534 static int sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc, 1535 struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen, 1536 uchar_t *bufaddr, uint_t buflen, int path_flag); 1537 static int sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc, 1538 struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen, 1539 uchar_t *bufaddr, uint_t buflen, char feature, int path_flag); 1540 static int sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize, 1541 uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag); 1542 static int sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize, 1543 uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag); 1544 static int sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr, 1545 size_t buflen, daddr_t start_block, int path_flag); 1546 #define sd_send_scsi_READ(ssc, bufaddr, buflen, start_block, path_flag) \ 1547 sd_send_scsi_RDWR(ssc, SCMD_READ, bufaddr, buflen, start_block, \ 1548 path_flag) 1549 #define sd_send_scsi_WRITE(ssc, bufaddr, buflen, start_block, path_flag)\ 1550 sd_send_scsi_RDWR(ssc, SCMD_WRITE, bufaddr, buflen, start_block,\ 1551 path_flag) 1552 1553 static int sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr, 1554 uint16_t buflen, uchar_t page_code, uchar_t page_control, 1555 uint16_t param_ptr, int path_flag); 1556 static int sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(sd_ssc_t *ssc, 1557 uchar_t *bufaddr, size_t buflen, uchar_t class_req); 1558 static boolean_t sd_gesn_media_data_valid(uchar_t *data); 1559 1560 static int sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un); 1561 static void sd_free_rqs(struct sd_lun *un); 1562 1563 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, 1564 uchar_t *data, int len, int fmt); 1565 static void sd_panic_for_res_conflict(struct sd_lun *un); 1566 1567 /* 1568 * Disk Ioctl Function Prototypes 1569 */ 1570 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag); 1571 static int sd_get_media_info_ext(dev_t dev, caddr_t arg, int flag); 1572 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag); 1573 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag); 1574 1575 /* 1576 * Multi-host Ioctl Prototypes 1577 */ 1578 static int sd_check_mhd(dev_t dev, int interval); 1579 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp); 1580 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt); 1581 static char *sd_sname(uchar_t status); 1582 static void sd_mhd_resvd_recover(void *arg); 1583 static void sd_resv_reclaim_thread(); 1584 static int sd_take_ownership(dev_t dev, struct mhioctkown *p); 1585 static int sd_reserve_release(dev_t dev, int cmd); 1586 static void sd_rmv_resv_reclaim_req(dev_t dev); 1587 static void sd_mhd_reset_notify_cb(caddr_t arg); 1588 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un, 1589 mhioc_inkeys_t *usrp, int flag); 1590 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un, 1591 mhioc_inresvs_t *usrp, int flag); 1592 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag); 1593 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag); 1594 static int sd_mhdioc_release(dev_t dev); 1595 static int sd_mhdioc_register_devid(dev_t dev); 1596 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag); 1597 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag); 1598 1599 /* 1600 * SCSI removable prototypes 1601 */ 1602 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag); 1603 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag); 1604 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag); 1605 static int sr_pause_resume(dev_t dev, int mode); 1606 static int sr_play_msf(dev_t dev, caddr_t data, int flag); 1607 static int sr_play_trkind(dev_t dev, caddr_t data, int flag); 1608 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag); 1609 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag); 1610 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag); 1611 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag); 1612 static int sr_read_cdda(dev_t dev, caddr_t data, int flag); 1613 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag); 1614 static int sr_read_mode1(dev_t dev, caddr_t data, int flag); 1615 static int sr_read_mode2(dev_t dev, caddr_t data, int flag); 1616 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag); 1617 static int sr_sector_mode(dev_t dev, uint32_t blksize); 1618 static int sr_eject(dev_t dev); 1619 static void sr_ejected(register struct sd_lun *un); 1620 static int sr_check_wp(dev_t dev); 1621 static opaque_t sd_watch_request_submit(struct sd_lun *un); 1622 static int sd_check_media(dev_t dev, enum dkio_state state); 1623 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp); 1624 static void sd_delayed_cv_broadcast(void *arg); 1625 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag); 1626 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag); 1627 1628 static int sd_log_page_supported(sd_ssc_t *ssc, int log_page); 1629 1630 /* 1631 * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions. 1632 */ 1633 static void sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag); 1634 static int sd_wm_cache_constructor(void *wm, void *un, int flags); 1635 static void sd_wm_cache_destructor(void *wm, void *un); 1636 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb, 1637 daddr_t endb, ushort_t typ); 1638 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb, 1639 daddr_t endb); 1640 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp); 1641 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm); 1642 static void sd_read_modify_write_task(void * arg); 1643 static int 1644 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk, 1645 struct buf **bpp); 1646 1647 1648 /* 1649 * Function prototypes for failfast support. 1650 */ 1651 static void sd_failfast_flushq(struct sd_lun *un); 1652 static int sd_failfast_flushq_callback(struct buf *bp); 1653 1654 /* 1655 * Function prototypes to check for lsi devices 1656 */ 1657 static void sd_is_lsi(struct sd_lun *un); 1658 1659 /* 1660 * Function prototypes for partial DMA support 1661 */ 1662 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp, 1663 struct scsi_pkt *pkt, struct sd_xbuf *xp); 1664 1665 1666 /* Function prototypes for cmlb */ 1667 static int sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr, 1668 diskaddr_t start_block, size_t reqlength, void *tg_cookie); 1669 1670 static int sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie); 1671 1672 /* 1673 * For printing RMW warning message timely 1674 */ 1675 static void sd_rmw_msg_print_handler(void *arg); 1676 1677 /* 1678 * Constants for failfast support: 1679 * 1680 * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO 1681 * failfast processing being performed. 1682 * 1683 * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing 1684 * failfast processing on all bufs with B_FAILFAST set. 1685 */ 1686 1687 #define SD_FAILFAST_INACTIVE 0 1688 #define SD_FAILFAST_ACTIVE 1 1689 1690 /* 1691 * Bitmask to control behavior of buf(9S) flushes when a transition to 1692 * the failfast state occurs. Optional bits include: 1693 * 1694 * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that 1695 * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will 1696 * be flushed. 1697 * 1698 * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the 1699 * driver, in addition to the regular wait queue. This includes the xbuf 1700 * queues. When clear, only the driver's wait queue will be flushed. 1701 */ 1702 #define SD_FAILFAST_FLUSH_ALL_BUFS 0x01 1703 #define SD_FAILFAST_FLUSH_ALL_QUEUES 0x02 1704 1705 /* 1706 * The default behavior is to only flush bufs that have B_FAILFAST set, but 1707 * to flush all queues within the driver. 1708 */ 1709 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES; 1710 1711 1712 /* 1713 * SD Testing Fault Injection 1714 */ 1715 #ifdef SD_FAULT_INJECTION 1716 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un); 1717 static void sd_faultinjection(struct scsi_pkt *pktp); 1718 static void sd_injection_log(char *buf, struct sd_lun *un); 1719 #endif 1720 1721 /* 1722 * Device driver ops vector 1723 */ 1724 static struct cb_ops sd_cb_ops = { 1725 sdopen, /* open */ 1726 sdclose, /* close */ 1727 sdstrategy, /* strategy */ 1728 nodev, /* print */ 1729 sddump, /* dump */ 1730 sdread, /* read */ 1731 sdwrite, /* write */ 1732 sdioctl, /* ioctl */ 1733 nodev, /* devmap */ 1734 nodev, /* mmap */ 1735 nodev, /* segmap */ 1736 nochpoll, /* poll */ 1737 sd_prop_op, /* cb_prop_op */ 1738 0, /* streamtab */ 1739 D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */ 1740 CB_REV, /* cb_rev */ 1741 sdaread, /* async I/O read entry point */ 1742 sdawrite /* async I/O write entry point */ 1743 }; 1744 1745 struct dev_ops sd_ops = { 1746 DEVO_REV, /* devo_rev, */ 1747 0, /* refcnt */ 1748 sdinfo, /* info */ 1749 nulldev, /* identify */ 1750 sdprobe, /* probe */ 1751 sdattach, /* attach */ 1752 sddetach, /* detach */ 1753 nodev, /* reset */ 1754 &sd_cb_ops, /* driver operations */ 1755 NULL, /* bus operations */ 1756 sdpower, /* power */ 1757 ddi_quiesce_not_needed, /* quiesce */ 1758 }; 1759 1760 /* 1761 * This is the loadable module wrapper. 1762 */ 1763 #include <sys/modctl.h> 1764 1765 #ifndef XPV_HVM_DRIVER 1766 static struct modldrv modldrv = { 1767 &mod_driverops, /* Type of module. This one is a driver */ 1768 SD_MODULE_NAME, /* Module name. */ 1769 &sd_ops /* driver ops */ 1770 }; 1771 1772 static struct modlinkage modlinkage = { 1773 MODREV_1, &modldrv, NULL 1774 }; 1775 1776 #else /* XPV_HVM_DRIVER */ 1777 static struct modlmisc modlmisc = { 1778 &mod_miscops, /* Type of module. This one is a misc */ 1779 "HVM " SD_MODULE_NAME, /* Module name. */ 1780 }; 1781 1782 static struct modlinkage modlinkage = { 1783 MODREV_1, &modlmisc, NULL 1784 }; 1785 1786 #endif /* XPV_HVM_DRIVER */ 1787 1788 static cmlb_tg_ops_t sd_tgops = { 1789 TG_DK_OPS_VERSION_1, 1790 sd_tg_rdwr, 1791 sd_tg_getinfo 1792 }; 1793 1794 static struct scsi_asq_key_strings sd_additional_codes[] = { 1795 0x81, 0, "Logical Unit is Reserved", 1796 0x85, 0, "Audio Address Not Valid", 1797 0xb6, 0, "Media Load Mechanism Failed", 1798 0xB9, 0, "Audio Play Operation Aborted", 1799 0xbf, 0, "Buffer Overflow for Read All Subcodes Command", 1800 0x53, 2, "Medium removal prevented", 1801 0x6f, 0, "Authentication failed during key exchange", 1802 0x6f, 1, "Key not present", 1803 0x6f, 2, "Key not established", 1804 0x6f, 3, "Read without proper authentication", 1805 0x6f, 4, "Mismatched region to this logical unit", 1806 0x6f, 5, "Region reset count error", 1807 0xffff, 0x0, NULL 1808 }; 1809 1810 1811 /* 1812 * Struct for passing printing information for sense data messages 1813 */ 1814 struct sd_sense_info { 1815 int ssi_severity; 1816 int ssi_pfa_flag; 1817 }; 1818 1819 /* 1820 * Table of function pointers for iostart-side routines. Separate "chains" 1821 * of layered function calls are formed by placing the function pointers 1822 * sequentially in the desired order. Functions are called according to an 1823 * incrementing table index ordering. The last function in each chain must 1824 * be sd_core_iostart(). The corresponding iodone-side routines are expected 1825 * in the sd_iodone_chain[] array. 1826 * 1827 * Note: It may seem more natural to organize both the iostart and iodone 1828 * functions together, into an array of structures (or some similar 1829 * organization) with a common index, rather than two separate arrays which 1830 * must be maintained in synchronization. The purpose of this division is 1831 * to achieve improved performance: individual arrays allows for more 1832 * effective cache line utilization on certain platforms. 1833 */ 1834 1835 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp); 1836 1837 1838 static sd_chain_t sd_iostart_chain[] = { 1839 1840 /* Chain for buf IO for disk drive targets (PM enabled) */ 1841 sd_mapblockaddr_iostart, /* Index: 0 */ 1842 sd_pm_iostart, /* Index: 1 */ 1843 sd_core_iostart, /* Index: 2 */ 1844 1845 /* Chain for buf IO for disk drive targets (PM disabled) */ 1846 sd_mapblockaddr_iostart, /* Index: 3 */ 1847 sd_core_iostart, /* Index: 4 */ 1848 1849 /* 1850 * Chain for buf IO for removable-media or large sector size 1851 * disk drive targets with RMW needed (PM enabled) 1852 */ 1853 sd_mapblockaddr_iostart, /* Index: 5 */ 1854 sd_mapblocksize_iostart, /* Index: 6 */ 1855 sd_pm_iostart, /* Index: 7 */ 1856 sd_core_iostart, /* Index: 8 */ 1857 1858 /* 1859 * Chain for buf IO for removable-media or large sector size 1860 * disk drive targets with RMW needed (PM disabled) 1861 */ 1862 sd_mapblockaddr_iostart, /* Index: 9 */ 1863 sd_mapblocksize_iostart, /* Index: 10 */ 1864 sd_core_iostart, /* Index: 11 */ 1865 1866 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 1867 sd_mapblockaddr_iostart, /* Index: 12 */ 1868 sd_checksum_iostart, /* Index: 13 */ 1869 sd_pm_iostart, /* Index: 14 */ 1870 sd_core_iostart, /* Index: 15 */ 1871 1872 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 1873 sd_mapblockaddr_iostart, /* Index: 16 */ 1874 sd_checksum_iostart, /* Index: 17 */ 1875 sd_core_iostart, /* Index: 18 */ 1876 1877 /* Chain for USCSI commands (all targets) */ 1878 sd_pm_iostart, /* Index: 19 */ 1879 sd_core_iostart, /* Index: 20 */ 1880 1881 /* Chain for checksumming USCSI commands (all targets) */ 1882 sd_checksum_uscsi_iostart, /* Index: 21 */ 1883 sd_pm_iostart, /* Index: 22 */ 1884 sd_core_iostart, /* Index: 23 */ 1885 1886 /* Chain for "direct" USCSI commands (all targets) */ 1887 sd_core_iostart, /* Index: 24 */ 1888 1889 /* Chain for "direct priority" USCSI commands (all targets) */ 1890 sd_core_iostart, /* Index: 25 */ 1891 1892 /* 1893 * Chain for buf IO for large sector size disk drive targets 1894 * with RMW needed with checksumming (PM enabled) 1895 */ 1896 sd_mapblockaddr_iostart, /* Index: 26 */ 1897 sd_mapblocksize_iostart, /* Index: 27 */ 1898 sd_checksum_iostart, /* Index: 28 */ 1899 sd_pm_iostart, /* Index: 29 */ 1900 sd_core_iostart, /* Index: 30 */ 1901 1902 /* 1903 * Chain for buf IO for large sector size disk drive targets 1904 * with RMW needed with checksumming (PM disabled) 1905 */ 1906 sd_mapblockaddr_iostart, /* Index: 31 */ 1907 sd_mapblocksize_iostart, /* Index: 32 */ 1908 sd_checksum_iostart, /* Index: 33 */ 1909 sd_core_iostart, /* Index: 34 */ 1910 1911 }; 1912 1913 /* 1914 * Macros to locate the first function of each iostart chain in the 1915 * sd_iostart_chain[] array. These are located by the index in the array. 1916 */ 1917 #define SD_CHAIN_DISK_IOSTART 0 1918 #define SD_CHAIN_DISK_IOSTART_NO_PM 3 1919 #define SD_CHAIN_MSS_DISK_IOSTART 5 1920 #define SD_CHAIN_RMMEDIA_IOSTART 5 1921 #define SD_CHAIN_MSS_DISK_IOSTART_NO_PM 9 1922 #define SD_CHAIN_RMMEDIA_IOSTART_NO_PM 9 1923 #define SD_CHAIN_CHKSUM_IOSTART 12 1924 #define SD_CHAIN_CHKSUM_IOSTART_NO_PM 16 1925 #define SD_CHAIN_USCSI_CMD_IOSTART 19 1926 #define SD_CHAIN_USCSI_CHKSUM_IOSTART 21 1927 #define SD_CHAIN_DIRECT_CMD_IOSTART 24 1928 #define SD_CHAIN_PRIORITY_CMD_IOSTART 25 1929 #define SD_CHAIN_MSS_CHKSUM_IOSTART 26 1930 #define SD_CHAIN_MSS_CHKSUM_IOSTART_NO_PM 31 1931 1932 1933 /* 1934 * Table of function pointers for the iodone-side routines for the driver- 1935 * internal layering mechanism. The calling sequence for iodone routines 1936 * uses a decrementing table index, so the last routine called in a chain 1937 * must be at the lowest array index location for that chain. The last 1938 * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs) 1939 * or sd_uscsi_iodone() (for uscsi IOs). Other than this, the ordering 1940 * of the functions in an iodone side chain must correspond to the ordering 1941 * of the iostart routines for that chain. Note that there is no iodone 1942 * side routine that corresponds to sd_core_iostart(), so there is no 1943 * entry in the table for this. 1944 */ 1945 1946 static sd_chain_t sd_iodone_chain[] = { 1947 1948 /* Chain for buf IO for disk drive targets (PM enabled) */ 1949 sd_buf_iodone, /* Index: 0 */ 1950 sd_mapblockaddr_iodone, /* Index: 1 */ 1951 sd_pm_iodone, /* Index: 2 */ 1952 1953 /* Chain for buf IO for disk drive targets (PM disabled) */ 1954 sd_buf_iodone, /* Index: 3 */ 1955 sd_mapblockaddr_iodone, /* Index: 4 */ 1956 1957 /* 1958 * Chain for buf IO for removable-media or large sector size 1959 * disk drive targets with RMW needed (PM enabled) 1960 */ 1961 sd_buf_iodone, /* Index: 5 */ 1962 sd_mapblockaddr_iodone, /* Index: 6 */ 1963 sd_mapblocksize_iodone, /* Index: 7 */ 1964 sd_pm_iodone, /* Index: 8 */ 1965 1966 /* 1967 * Chain for buf IO for removable-media or large sector size 1968 * disk drive targets with RMW needed (PM disabled) 1969 */ 1970 sd_buf_iodone, /* Index: 9 */ 1971 sd_mapblockaddr_iodone, /* Index: 10 */ 1972 sd_mapblocksize_iodone, /* Index: 11 */ 1973 1974 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 1975 sd_buf_iodone, /* Index: 12 */ 1976 sd_mapblockaddr_iodone, /* Index: 13 */ 1977 sd_checksum_iodone, /* Index: 14 */ 1978 sd_pm_iodone, /* Index: 15 */ 1979 1980 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 1981 sd_buf_iodone, /* Index: 16 */ 1982 sd_mapblockaddr_iodone, /* Index: 17 */ 1983 sd_checksum_iodone, /* Index: 18 */ 1984 1985 /* Chain for USCSI commands (non-checksum targets) */ 1986 sd_uscsi_iodone, /* Index: 19 */ 1987 sd_pm_iodone, /* Index: 20 */ 1988 1989 /* Chain for USCSI commands (checksum targets) */ 1990 sd_uscsi_iodone, /* Index: 21 */ 1991 sd_checksum_uscsi_iodone, /* Index: 22 */ 1992 sd_pm_iodone, /* Index: 22 */ 1993 1994 /* Chain for "direct" USCSI commands (all targets) */ 1995 sd_uscsi_iodone, /* Index: 24 */ 1996 1997 /* Chain for "direct priority" USCSI commands (all targets) */ 1998 sd_uscsi_iodone, /* Index: 25 */ 1999 2000 /* 2001 * Chain for buf IO for large sector size disk drive targets 2002 * with checksumming (PM enabled) 2003 */ 2004 sd_buf_iodone, /* Index: 26 */ 2005 sd_mapblockaddr_iodone, /* Index: 27 */ 2006 sd_mapblocksize_iodone, /* Index: 28 */ 2007 sd_checksum_iodone, /* Index: 29 */ 2008 sd_pm_iodone, /* Index: 30 */ 2009 2010 /* 2011 * Chain for buf IO for large sector size disk drive targets 2012 * with checksumming (PM disabled) 2013 */ 2014 sd_buf_iodone, /* Index: 31 */ 2015 sd_mapblockaddr_iodone, /* Index: 32 */ 2016 sd_mapblocksize_iodone, /* Index: 33 */ 2017 sd_checksum_iodone, /* Index: 34 */ 2018 }; 2019 2020 2021 /* 2022 * Macros to locate the "first" function in the sd_iodone_chain[] array for 2023 * each iodone-side chain. These are located by the array index, but as the 2024 * iodone side functions are called in a decrementing-index order, the 2025 * highest index number in each chain must be specified (as these correspond 2026 * to the first function in the iodone chain that will be called by the core 2027 * at IO completion time). 2028 */ 2029 2030 #define SD_CHAIN_DISK_IODONE 2 2031 #define SD_CHAIN_DISK_IODONE_NO_PM 4 2032 #define SD_CHAIN_RMMEDIA_IODONE 8 2033 #define SD_CHAIN_MSS_DISK_IODONE 8 2034 #define SD_CHAIN_RMMEDIA_IODONE_NO_PM 11 2035 #define SD_CHAIN_MSS_DISK_IODONE_NO_PM 11 2036 #define SD_CHAIN_CHKSUM_IODONE 15 2037 #define SD_CHAIN_CHKSUM_IODONE_NO_PM 18 2038 #define SD_CHAIN_USCSI_CMD_IODONE 20 2039 #define SD_CHAIN_USCSI_CHKSUM_IODONE 22 2040 #define SD_CHAIN_DIRECT_CMD_IODONE 24 2041 #define SD_CHAIN_PRIORITY_CMD_IODONE 25 2042 #define SD_CHAIN_MSS_CHKSUM_IODONE 30 2043 #define SD_CHAIN_MSS_CHKSUM_IODONE_NO_PM 34 2044 2045 2046 2047 /* 2048 * Array to map a layering chain index to the appropriate initpkt routine. 2049 * The redundant entries are present so that the index used for accessing 2050 * the above sd_iostart_chain and sd_iodone_chain tables can be used directly 2051 * with this table as well. 2052 */ 2053 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **); 2054 2055 static sd_initpkt_t sd_initpkt_map[] = { 2056 2057 /* Chain for buf IO for disk drive targets (PM enabled) */ 2058 sd_initpkt_for_buf, /* Index: 0 */ 2059 sd_initpkt_for_buf, /* Index: 1 */ 2060 sd_initpkt_for_buf, /* Index: 2 */ 2061 2062 /* Chain for buf IO for disk drive targets (PM disabled) */ 2063 sd_initpkt_for_buf, /* Index: 3 */ 2064 sd_initpkt_for_buf, /* Index: 4 */ 2065 2066 /* 2067 * Chain for buf IO for removable-media or large sector size 2068 * disk drive targets (PM enabled) 2069 */ 2070 sd_initpkt_for_buf, /* Index: 5 */ 2071 sd_initpkt_for_buf, /* Index: 6 */ 2072 sd_initpkt_for_buf, /* Index: 7 */ 2073 sd_initpkt_for_buf, /* Index: 8 */ 2074 2075 /* 2076 * Chain for buf IO for removable-media or large sector size 2077 * disk drive targets (PM disabled) 2078 */ 2079 sd_initpkt_for_buf, /* Index: 9 */ 2080 sd_initpkt_for_buf, /* Index: 10 */ 2081 sd_initpkt_for_buf, /* Index: 11 */ 2082 2083 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 2084 sd_initpkt_for_buf, /* Index: 12 */ 2085 sd_initpkt_for_buf, /* Index: 13 */ 2086 sd_initpkt_for_buf, /* Index: 14 */ 2087 sd_initpkt_for_buf, /* Index: 15 */ 2088 2089 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 2090 sd_initpkt_for_buf, /* Index: 16 */ 2091 sd_initpkt_for_buf, /* Index: 17 */ 2092 sd_initpkt_for_buf, /* Index: 18 */ 2093 2094 /* Chain for USCSI commands (non-checksum targets) */ 2095 sd_initpkt_for_uscsi, /* Index: 19 */ 2096 sd_initpkt_for_uscsi, /* Index: 20 */ 2097 2098 /* Chain for USCSI commands (checksum targets) */ 2099 sd_initpkt_for_uscsi, /* Index: 21 */ 2100 sd_initpkt_for_uscsi, /* Index: 22 */ 2101 sd_initpkt_for_uscsi, /* Index: 22 */ 2102 2103 /* Chain for "direct" USCSI commands (all targets) */ 2104 sd_initpkt_for_uscsi, /* Index: 24 */ 2105 2106 /* Chain for "direct priority" USCSI commands (all targets) */ 2107 sd_initpkt_for_uscsi, /* Index: 25 */ 2108 2109 /* 2110 * Chain for buf IO for large sector size disk drive targets 2111 * with checksumming (PM enabled) 2112 */ 2113 sd_initpkt_for_buf, /* Index: 26 */ 2114 sd_initpkt_for_buf, /* Index: 27 */ 2115 sd_initpkt_for_buf, /* Index: 28 */ 2116 sd_initpkt_for_buf, /* Index: 29 */ 2117 sd_initpkt_for_buf, /* Index: 30 */ 2118 2119 /* 2120 * Chain for buf IO for large sector size disk drive targets 2121 * with checksumming (PM disabled) 2122 */ 2123 sd_initpkt_for_buf, /* Index: 31 */ 2124 sd_initpkt_for_buf, /* Index: 32 */ 2125 sd_initpkt_for_buf, /* Index: 33 */ 2126 sd_initpkt_for_buf, /* Index: 34 */ 2127 }; 2128 2129 2130 /* 2131 * Array to map a layering chain index to the appropriate destroypktpkt routine. 2132 * The redundant entries are present so that the index used for accessing 2133 * the above sd_iostart_chain and sd_iodone_chain tables can be used directly 2134 * with this table as well. 2135 */ 2136 typedef void (*sd_destroypkt_t)(struct buf *); 2137 2138 static sd_destroypkt_t sd_destroypkt_map[] = { 2139 2140 /* Chain for buf IO for disk drive targets (PM enabled) */ 2141 sd_destroypkt_for_buf, /* Index: 0 */ 2142 sd_destroypkt_for_buf, /* Index: 1 */ 2143 sd_destroypkt_for_buf, /* Index: 2 */ 2144 2145 /* Chain for buf IO for disk drive targets (PM disabled) */ 2146 sd_destroypkt_for_buf, /* Index: 3 */ 2147 sd_destroypkt_for_buf, /* Index: 4 */ 2148 2149 /* 2150 * Chain for buf IO for removable-media or large sector size 2151 * disk drive targets (PM enabled) 2152 */ 2153 sd_destroypkt_for_buf, /* Index: 5 */ 2154 sd_destroypkt_for_buf, /* Index: 6 */ 2155 sd_destroypkt_for_buf, /* Index: 7 */ 2156 sd_destroypkt_for_buf, /* Index: 8 */ 2157 2158 /* 2159 * Chain for buf IO for removable-media or large sector size 2160 * disk drive targets (PM disabled) 2161 */ 2162 sd_destroypkt_for_buf, /* Index: 9 */ 2163 sd_destroypkt_for_buf, /* Index: 10 */ 2164 sd_destroypkt_for_buf, /* Index: 11 */ 2165 2166 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 2167 sd_destroypkt_for_buf, /* Index: 12 */ 2168 sd_destroypkt_for_buf, /* Index: 13 */ 2169 sd_destroypkt_for_buf, /* Index: 14 */ 2170 sd_destroypkt_for_buf, /* Index: 15 */ 2171 2172 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 2173 sd_destroypkt_for_buf, /* Index: 16 */ 2174 sd_destroypkt_for_buf, /* Index: 17 */ 2175 sd_destroypkt_for_buf, /* Index: 18 */ 2176 2177 /* Chain for USCSI commands (non-checksum targets) */ 2178 sd_destroypkt_for_uscsi, /* Index: 19 */ 2179 sd_destroypkt_for_uscsi, /* Index: 20 */ 2180 2181 /* Chain for USCSI commands (checksum targets) */ 2182 sd_destroypkt_for_uscsi, /* Index: 21 */ 2183 sd_destroypkt_for_uscsi, /* Index: 22 */ 2184 sd_destroypkt_for_uscsi, /* Index: 22 */ 2185 2186 /* Chain for "direct" USCSI commands (all targets) */ 2187 sd_destroypkt_for_uscsi, /* Index: 24 */ 2188 2189 /* Chain for "direct priority" USCSI commands (all targets) */ 2190 sd_destroypkt_for_uscsi, /* Index: 25 */ 2191 2192 /* 2193 * Chain for buf IO for large sector size disk drive targets 2194 * with checksumming (PM disabled) 2195 */ 2196 sd_destroypkt_for_buf, /* Index: 26 */ 2197 sd_destroypkt_for_buf, /* Index: 27 */ 2198 sd_destroypkt_for_buf, /* Index: 28 */ 2199 sd_destroypkt_for_buf, /* Index: 29 */ 2200 sd_destroypkt_for_buf, /* Index: 30 */ 2201 2202 /* 2203 * Chain for buf IO for large sector size disk drive targets 2204 * with checksumming (PM enabled) 2205 */ 2206 sd_destroypkt_for_buf, /* Index: 31 */ 2207 sd_destroypkt_for_buf, /* Index: 32 */ 2208 sd_destroypkt_for_buf, /* Index: 33 */ 2209 sd_destroypkt_for_buf, /* Index: 34 */ 2210 }; 2211 2212 2213 2214 /* 2215 * Array to map a layering chain index to the appropriate chain "type". 2216 * The chain type indicates a specific property/usage of the chain. 2217 * The redundant entries are present so that the index used for accessing 2218 * the above sd_iostart_chain and sd_iodone_chain tables can be used directly 2219 * with this table as well. 2220 */ 2221 2222 #define SD_CHAIN_NULL 0 /* for the special RQS cmd */ 2223 #define SD_CHAIN_BUFIO 1 /* regular buf IO */ 2224 #define SD_CHAIN_USCSI 2 /* regular USCSI commands */ 2225 #define SD_CHAIN_DIRECT 3 /* uscsi, w/ bypass power mgt */ 2226 #define SD_CHAIN_DIRECT_PRIORITY 4 /* uscsi, w/ bypass power mgt */ 2227 /* (for error recovery) */ 2228 2229 static int sd_chain_type_map[] = { 2230 2231 /* Chain for buf IO for disk drive targets (PM enabled) */ 2232 SD_CHAIN_BUFIO, /* Index: 0 */ 2233 SD_CHAIN_BUFIO, /* Index: 1 */ 2234 SD_CHAIN_BUFIO, /* Index: 2 */ 2235 2236 /* Chain for buf IO for disk drive targets (PM disabled) */ 2237 SD_CHAIN_BUFIO, /* Index: 3 */ 2238 SD_CHAIN_BUFIO, /* Index: 4 */ 2239 2240 /* 2241 * Chain for buf IO for removable-media or large sector size 2242 * disk drive targets (PM enabled) 2243 */ 2244 SD_CHAIN_BUFIO, /* Index: 5 */ 2245 SD_CHAIN_BUFIO, /* Index: 6 */ 2246 SD_CHAIN_BUFIO, /* Index: 7 */ 2247 SD_CHAIN_BUFIO, /* Index: 8 */ 2248 2249 /* 2250 * Chain for buf IO for removable-media or large sector size 2251 * disk drive targets (PM disabled) 2252 */ 2253 SD_CHAIN_BUFIO, /* Index: 9 */ 2254 SD_CHAIN_BUFIO, /* Index: 10 */ 2255 SD_CHAIN_BUFIO, /* Index: 11 */ 2256 2257 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 2258 SD_CHAIN_BUFIO, /* Index: 12 */ 2259 SD_CHAIN_BUFIO, /* Index: 13 */ 2260 SD_CHAIN_BUFIO, /* Index: 14 */ 2261 SD_CHAIN_BUFIO, /* Index: 15 */ 2262 2263 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 2264 SD_CHAIN_BUFIO, /* Index: 16 */ 2265 SD_CHAIN_BUFIO, /* Index: 17 */ 2266 SD_CHAIN_BUFIO, /* Index: 18 */ 2267 2268 /* Chain for USCSI commands (non-checksum targets) */ 2269 SD_CHAIN_USCSI, /* Index: 19 */ 2270 SD_CHAIN_USCSI, /* Index: 20 */ 2271 2272 /* Chain for USCSI commands (checksum targets) */ 2273 SD_CHAIN_USCSI, /* Index: 21 */ 2274 SD_CHAIN_USCSI, /* Index: 22 */ 2275 SD_CHAIN_USCSI, /* Index: 23 */ 2276 2277 /* Chain for "direct" USCSI commands (all targets) */ 2278 SD_CHAIN_DIRECT, /* Index: 24 */ 2279 2280 /* Chain for "direct priority" USCSI commands (all targets) */ 2281 SD_CHAIN_DIRECT_PRIORITY, /* Index: 25 */ 2282 2283 /* 2284 * Chain for buf IO for large sector size disk drive targets 2285 * with checksumming (PM enabled) 2286 */ 2287 SD_CHAIN_BUFIO, /* Index: 26 */ 2288 SD_CHAIN_BUFIO, /* Index: 27 */ 2289 SD_CHAIN_BUFIO, /* Index: 28 */ 2290 SD_CHAIN_BUFIO, /* Index: 29 */ 2291 SD_CHAIN_BUFIO, /* Index: 30 */ 2292 2293 /* 2294 * Chain for buf IO for large sector size disk drive targets 2295 * with checksumming (PM disabled) 2296 */ 2297 SD_CHAIN_BUFIO, /* Index: 31 */ 2298 SD_CHAIN_BUFIO, /* Index: 32 */ 2299 SD_CHAIN_BUFIO, /* Index: 33 */ 2300 SD_CHAIN_BUFIO, /* Index: 34 */ 2301 }; 2302 2303 2304 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */ 2305 #define SD_IS_BUFIO(xp) \ 2306 (sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO) 2307 2308 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */ 2309 #define SD_IS_DIRECT_PRIORITY(xp) \ 2310 (sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY) 2311 2312 2313 2314 /* 2315 * Struct, array, and macros to map a specific chain to the appropriate 2316 * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays. 2317 * 2318 * The sd_chain_index_map[] array is used at attach time to set the various 2319 * un_xxx_chain type members of the sd_lun softstate to the specific layering 2320 * chain to be used with the instance. This allows different instances to use 2321 * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart 2322 * and xb_chain_iodone index values in the sd_xbuf are initialized to these 2323 * values at sd_xbuf init time, this allows (1) layering chains may be changed 2324 * dynamically & without the use of locking; and (2) a layer may update the 2325 * xb_chain_io[start|done] member in a given xbuf with its current index value, 2326 * to allow for deferred processing of an IO within the same chain from a 2327 * different execution context. 2328 */ 2329 2330 struct sd_chain_index { 2331 int sci_iostart_index; 2332 int sci_iodone_index; 2333 }; 2334 2335 static struct sd_chain_index sd_chain_index_map[] = { 2336 { SD_CHAIN_DISK_IOSTART, SD_CHAIN_DISK_IODONE }, 2337 { SD_CHAIN_DISK_IOSTART_NO_PM, SD_CHAIN_DISK_IODONE_NO_PM }, 2338 { SD_CHAIN_RMMEDIA_IOSTART, SD_CHAIN_RMMEDIA_IODONE }, 2339 { SD_CHAIN_RMMEDIA_IOSTART_NO_PM, SD_CHAIN_RMMEDIA_IODONE_NO_PM }, 2340 { SD_CHAIN_CHKSUM_IOSTART, SD_CHAIN_CHKSUM_IODONE }, 2341 { SD_CHAIN_CHKSUM_IOSTART_NO_PM, SD_CHAIN_CHKSUM_IODONE_NO_PM }, 2342 { SD_CHAIN_USCSI_CMD_IOSTART, SD_CHAIN_USCSI_CMD_IODONE }, 2343 { SD_CHAIN_USCSI_CHKSUM_IOSTART, SD_CHAIN_USCSI_CHKSUM_IODONE }, 2344 { SD_CHAIN_DIRECT_CMD_IOSTART, SD_CHAIN_DIRECT_CMD_IODONE }, 2345 { SD_CHAIN_PRIORITY_CMD_IOSTART, SD_CHAIN_PRIORITY_CMD_IODONE }, 2346 { SD_CHAIN_MSS_CHKSUM_IOSTART, SD_CHAIN_MSS_CHKSUM_IODONE }, 2347 { SD_CHAIN_MSS_CHKSUM_IOSTART_NO_PM, SD_CHAIN_MSS_CHKSUM_IODONE_NO_PM }, 2348 2349 }; 2350 2351 2352 /* 2353 * The following are indexes into the sd_chain_index_map[] array. 2354 */ 2355 2356 /* un->un_buf_chain_type must be set to one of these */ 2357 #define SD_CHAIN_INFO_DISK 0 2358 #define SD_CHAIN_INFO_DISK_NO_PM 1 2359 #define SD_CHAIN_INFO_RMMEDIA 2 2360 #define SD_CHAIN_INFO_MSS_DISK 2 2361 #define SD_CHAIN_INFO_RMMEDIA_NO_PM 3 2362 #define SD_CHAIN_INFO_MSS_DSK_NO_PM 3 2363 #define SD_CHAIN_INFO_CHKSUM 4 2364 #define SD_CHAIN_INFO_CHKSUM_NO_PM 5 2365 #define SD_CHAIN_INFO_MSS_DISK_CHKSUM 10 2366 #define SD_CHAIN_INFO_MSS_DISK_CHKSUM_NO_PM 11 2367 2368 /* un->un_uscsi_chain_type must be set to one of these */ 2369 #define SD_CHAIN_INFO_USCSI_CMD 6 2370 /* USCSI with PM disabled is the same as DIRECT */ 2371 #define SD_CHAIN_INFO_USCSI_CMD_NO_PM 8 2372 #define SD_CHAIN_INFO_USCSI_CHKSUM 7 2373 2374 /* un->un_direct_chain_type must be set to one of these */ 2375 #define SD_CHAIN_INFO_DIRECT_CMD 8 2376 2377 /* un->un_priority_chain_type must be set to one of these */ 2378 #define SD_CHAIN_INFO_PRIORITY_CMD 9 2379 2380 /* size for devid inquiries */ 2381 #define MAX_INQUIRY_SIZE 0xF0 2382 2383 /* 2384 * Macros used by functions to pass a given buf(9S) struct along to the 2385 * next function in the layering chain for further processing. 2386 * 2387 * In the following macros, passing more than three arguments to the called 2388 * routines causes the optimizer for the SPARC compiler to stop doing tail 2389 * call elimination which results in significant performance degradation. 2390 */ 2391 #define SD_BEGIN_IOSTART(index, un, bp) \ 2392 ((*(sd_iostart_chain[index]))(index, un, bp)) 2393 2394 #define SD_BEGIN_IODONE(index, un, bp) \ 2395 ((*(sd_iodone_chain[index]))(index, un, bp)) 2396 2397 #define SD_NEXT_IOSTART(index, un, bp) \ 2398 ((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp)) 2399 2400 #define SD_NEXT_IODONE(index, un, bp) \ 2401 ((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp)) 2402 2403 /* 2404 * Function: _init 2405 * 2406 * Description: This is the driver _init(9E) entry point. 2407 * 2408 * Return Code: Returns the value from mod_install(9F) or 2409 * ddi_soft_state_init(9F) as appropriate. 2410 * 2411 * Context: Called when driver module loaded. 2412 */ 2413 2414 int 2415 _init(void) 2416 { 2417 int err; 2418 2419 /* establish driver name from module name */ 2420 sd_label = (char *)mod_modname(&modlinkage); 2421 2422 #ifndef XPV_HVM_DRIVER 2423 err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun), 2424 SD_MAXUNIT); 2425 if (err != 0) { 2426 return (err); 2427 } 2428 2429 #else /* XPV_HVM_DRIVER */ 2430 /* Remove the leading "hvm_" from the module name */ 2431 ASSERT(strncmp(sd_label, "hvm_", strlen("hvm_")) == 0); 2432 sd_label += strlen("hvm_"); 2433 2434 #endif /* XPV_HVM_DRIVER */ 2435 2436 mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL); 2437 mutex_init(&sd_log_mutex, NULL, MUTEX_DRIVER, NULL); 2438 mutex_init(&sd_label_mutex, NULL, MUTEX_DRIVER, NULL); 2439 2440 mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL); 2441 cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL); 2442 cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL); 2443 2444 /* 2445 * it's ok to init here even for fibre device 2446 */ 2447 sd_scsi_probe_cache_init(); 2448 2449 sd_scsi_target_lun_init(); 2450 2451 /* 2452 * Creating taskq before mod_install ensures that all callers (threads) 2453 * that enter the module after a successful mod_install encounter 2454 * a valid taskq. 2455 */ 2456 sd_taskq_create(); 2457 2458 err = mod_install(&modlinkage); 2459 if (err != 0) { 2460 /* delete taskq if install fails */ 2461 sd_taskq_delete(); 2462 2463 mutex_destroy(&sd_detach_mutex); 2464 mutex_destroy(&sd_log_mutex); 2465 mutex_destroy(&sd_label_mutex); 2466 2467 mutex_destroy(&sd_tr.srq_resv_reclaim_mutex); 2468 cv_destroy(&sd_tr.srq_resv_reclaim_cv); 2469 cv_destroy(&sd_tr.srq_inprocess_cv); 2470 2471 sd_scsi_probe_cache_fini(); 2472 2473 sd_scsi_target_lun_fini(); 2474 2475 #ifndef XPV_HVM_DRIVER 2476 ddi_soft_state_fini(&sd_state); 2477 #endif /* !XPV_HVM_DRIVER */ 2478 return (err); 2479 } 2480 2481 return (err); 2482 } 2483 2484 2485 /* 2486 * Function: _fini 2487 * 2488 * Description: This is the driver _fini(9E) entry point. 2489 * 2490 * Return Code: Returns the value from mod_remove(9F) 2491 * 2492 * Context: Called when driver module is unloaded. 2493 */ 2494 2495 int 2496 _fini(void) 2497 { 2498 int err; 2499 2500 if ((err = mod_remove(&modlinkage)) != 0) { 2501 return (err); 2502 } 2503 2504 sd_taskq_delete(); 2505 2506 mutex_destroy(&sd_detach_mutex); 2507 mutex_destroy(&sd_log_mutex); 2508 mutex_destroy(&sd_label_mutex); 2509 mutex_destroy(&sd_tr.srq_resv_reclaim_mutex); 2510 2511 sd_scsi_probe_cache_fini(); 2512 2513 sd_scsi_target_lun_fini(); 2514 2515 cv_destroy(&sd_tr.srq_resv_reclaim_cv); 2516 cv_destroy(&sd_tr.srq_inprocess_cv); 2517 2518 #ifndef XPV_HVM_DRIVER 2519 ddi_soft_state_fini(&sd_state); 2520 #endif /* !XPV_HVM_DRIVER */ 2521 2522 return (err); 2523 } 2524 2525 2526 /* 2527 * Function: _info 2528 * 2529 * Description: This is the driver _info(9E) entry point. 2530 * 2531 * Arguments: modinfop - pointer to the driver modinfo structure 2532 * 2533 * Return Code: Returns the value from mod_info(9F). 2534 * 2535 * Context: Kernel thread context 2536 */ 2537 2538 int 2539 _info(struct modinfo *modinfop) 2540 { 2541 return (mod_info(&modlinkage, modinfop)); 2542 } 2543 2544 2545 /* 2546 * The following routines implement the driver message logging facility. 2547 * They provide component- and level- based debug output filtering. 2548 * Output may also be restricted to messages for a single instance by 2549 * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set 2550 * to NULL, then messages for all instances are printed. 2551 * 2552 * These routines have been cloned from each other due to the language 2553 * constraints of macros and variable argument list processing. 2554 */ 2555 2556 2557 /* 2558 * Function: sd_log_err 2559 * 2560 * Description: This routine is called by the SD_ERROR macro for debug 2561 * logging of error conditions. 2562 * 2563 * Arguments: comp - driver component being logged 2564 * dev - pointer to driver info structure 2565 * fmt - error string and format to be logged 2566 */ 2567 2568 static void 2569 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...) 2570 { 2571 va_list ap; 2572 dev_info_t *dev; 2573 2574 ASSERT(un != NULL); 2575 dev = SD_DEVINFO(un); 2576 ASSERT(dev != NULL); 2577 2578 /* 2579 * Filter messages based on the global component and level masks. 2580 * Also print if un matches the value of sd_debug_un, or if 2581 * sd_debug_un is set to NULL. 2582 */ 2583 if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) && 2584 ((sd_debug_un == NULL) || (sd_debug_un == un))) { 2585 mutex_enter(&sd_log_mutex); 2586 va_start(ap, fmt); 2587 (void) vsprintf(sd_log_buf, fmt, ap); 2588 va_end(ap); 2589 scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf); 2590 mutex_exit(&sd_log_mutex); 2591 } 2592 #ifdef SD_FAULT_INJECTION 2593 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask)); 2594 if (un->sd_injection_mask & comp) { 2595 mutex_enter(&sd_log_mutex); 2596 va_start(ap, fmt); 2597 (void) vsprintf(sd_log_buf, fmt, ap); 2598 va_end(ap); 2599 sd_injection_log(sd_log_buf, un); 2600 mutex_exit(&sd_log_mutex); 2601 } 2602 #endif 2603 } 2604 2605 2606 /* 2607 * Function: sd_log_info 2608 * 2609 * Description: This routine is called by the SD_INFO macro for debug 2610 * logging of general purpose informational conditions. 2611 * 2612 * Arguments: comp - driver component being logged 2613 * dev - pointer to driver info structure 2614 * fmt - info string and format to be logged 2615 */ 2616 2617 static void 2618 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...) 2619 { 2620 va_list ap; 2621 dev_info_t *dev; 2622 2623 ASSERT(un != NULL); 2624 dev = SD_DEVINFO(un); 2625 ASSERT(dev != NULL); 2626 2627 /* 2628 * Filter messages based on the global component and level masks. 2629 * Also print if un matches the value of sd_debug_un, or if 2630 * sd_debug_un is set to NULL. 2631 */ 2632 if ((sd_component_mask & component) && 2633 (sd_level_mask & SD_LOGMASK_INFO) && 2634 ((sd_debug_un == NULL) || (sd_debug_un == un))) { 2635 mutex_enter(&sd_log_mutex); 2636 va_start(ap, fmt); 2637 (void) vsprintf(sd_log_buf, fmt, ap); 2638 va_end(ap); 2639 scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf); 2640 mutex_exit(&sd_log_mutex); 2641 } 2642 #ifdef SD_FAULT_INJECTION 2643 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask)); 2644 if (un->sd_injection_mask & component) { 2645 mutex_enter(&sd_log_mutex); 2646 va_start(ap, fmt); 2647 (void) vsprintf(sd_log_buf, fmt, ap); 2648 va_end(ap); 2649 sd_injection_log(sd_log_buf, un); 2650 mutex_exit(&sd_log_mutex); 2651 } 2652 #endif 2653 } 2654 2655 2656 /* 2657 * Function: sd_log_trace 2658 * 2659 * Description: This routine is called by the SD_TRACE macro for debug 2660 * logging of trace conditions (i.e. function entry/exit). 2661 * 2662 * Arguments: comp - driver component being logged 2663 * dev - pointer to driver info structure 2664 * fmt - trace string and format to be logged 2665 */ 2666 2667 static void 2668 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...) 2669 { 2670 va_list ap; 2671 dev_info_t *dev; 2672 2673 ASSERT(un != NULL); 2674 dev = SD_DEVINFO(un); 2675 ASSERT(dev != NULL); 2676 2677 /* 2678 * Filter messages based on the global component and level masks. 2679 * Also print if un matches the value of sd_debug_un, or if 2680 * sd_debug_un is set to NULL. 2681 */ 2682 if ((sd_component_mask & component) && 2683 (sd_level_mask & SD_LOGMASK_TRACE) && 2684 ((sd_debug_un == NULL) || (sd_debug_un == un))) { 2685 mutex_enter(&sd_log_mutex); 2686 va_start(ap, fmt); 2687 (void) vsprintf(sd_log_buf, fmt, ap); 2688 va_end(ap); 2689 scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf); 2690 mutex_exit(&sd_log_mutex); 2691 } 2692 #ifdef SD_FAULT_INJECTION 2693 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask)); 2694 if (un->sd_injection_mask & component) { 2695 mutex_enter(&sd_log_mutex); 2696 va_start(ap, fmt); 2697 (void) vsprintf(sd_log_buf, fmt, ap); 2698 va_end(ap); 2699 sd_injection_log(sd_log_buf, un); 2700 mutex_exit(&sd_log_mutex); 2701 } 2702 #endif 2703 } 2704 2705 2706 /* 2707 * Function: sdprobe 2708 * 2709 * Description: This is the driver probe(9e) entry point function. 2710 * 2711 * Arguments: devi - opaque device info handle 2712 * 2713 * Return Code: DDI_PROBE_SUCCESS: If the probe was successful. 2714 * DDI_PROBE_FAILURE: If the probe failed. 2715 * DDI_PROBE_PARTIAL: If the instance is not present now, 2716 * but may be present in the future. 2717 */ 2718 2719 static int 2720 sdprobe(dev_info_t *devi) 2721 { 2722 struct scsi_device *devp; 2723 int rval; 2724 #ifndef XPV_HVM_DRIVER 2725 int instance = ddi_get_instance(devi); 2726 #endif /* !XPV_HVM_DRIVER */ 2727 2728 /* 2729 * if it wasn't for pln, sdprobe could actually be nulldev 2730 * in the "__fibre" case. 2731 */ 2732 if (ddi_dev_is_sid(devi) == DDI_SUCCESS) { 2733 return (DDI_PROBE_DONTCARE); 2734 } 2735 2736 devp = ddi_get_driver_private(devi); 2737 2738 if (devp == NULL) { 2739 /* Ooops... nexus driver is mis-configured... */ 2740 return (DDI_PROBE_FAILURE); 2741 } 2742 2743 #ifndef XPV_HVM_DRIVER 2744 if (ddi_get_soft_state(sd_state, instance) != NULL) { 2745 return (DDI_PROBE_PARTIAL); 2746 } 2747 #endif /* !XPV_HVM_DRIVER */ 2748 2749 /* 2750 * Call the SCSA utility probe routine to see if we actually 2751 * have a target at this SCSI nexus. 2752 */ 2753 switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) { 2754 case SCSIPROBE_EXISTS: 2755 switch (devp->sd_inq->inq_dtype) { 2756 case DTYPE_DIRECT: 2757 rval = DDI_PROBE_SUCCESS; 2758 break; 2759 case DTYPE_RODIRECT: 2760 /* CDs etc. Can be removable media */ 2761 rval = DDI_PROBE_SUCCESS; 2762 break; 2763 case DTYPE_OPTICAL: 2764 /* 2765 * Rewritable optical driver HP115AA 2766 * Can also be removable media 2767 */ 2768 2769 /* 2770 * Do not attempt to bind to DTYPE_OPTICAL if 2771 * pre solaris 9 sparc sd behavior is required 2772 * 2773 * If first time through and sd_dtype_optical_bind 2774 * has not been set in /etc/system check properties 2775 */ 2776 2777 if (sd_dtype_optical_bind < 0) { 2778 sd_dtype_optical_bind = ddi_prop_get_int 2779 (DDI_DEV_T_ANY, devi, 0, 2780 "optical-device-bind", 1); 2781 } 2782 2783 if (sd_dtype_optical_bind == 0) { 2784 rval = DDI_PROBE_FAILURE; 2785 } else { 2786 rval = DDI_PROBE_SUCCESS; 2787 } 2788 break; 2789 2790 case DTYPE_NOTPRESENT: 2791 default: 2792 rval = DDI_PROBE_FAILURE; 2793 break; 2794 } 2795 break; 2796 default: 2797 rval = DDI_PROBE_PARTIAL; 2798 break; 2799 } 2800 2801 /* 2802 * This routine checks for resource allocation prior to freeing, 2803 * so it will take care of the "smart probing" case where a 2804 * scsi_probe() may or may not have been issued and will *not* 2805 * free previously-freed resources. 2806 */ 2807 scsi_unprobe(devp); 2808 return (rval); 2809 } 2810 2811 2812 /* 2813 * Function: sdinfo 2814 * 2815 * Description: This is the driver getinfo(9e) entry point function. 2816 * Given the device number, return the devinfo pointer from 2817 * the scsi_device structure or the instance number 2818 * associated with the dev_t. 2819 * 2820 * Arguments: dip - pointer to device info structure 2821 * infocmd - command argument (DDI_INFO_DEVT2DEVINFO, 2822 * DDI_INFO_DEVT2INSTANCE) 2823 * arg - driver dev_t 2824 * resultp - user buffer for request response 2825 * 2826 * Return Code: DDI_SUCCESS 2827 * DDI_FAILURE 2828 */ 2829 /* ARGSUSED */ 2830 static int 2831 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 2832 { 2833 struct sd_lun *un; 2834 dev_t dev; 2835 int instance; 2836 int error; 2837 2838 switch (infocmd) { 2839 case DDI_INFO_DEVT2DEVINFO: 2840 dev = (dev_t)arg; 2841 instance = SDUNIT(dev); 2842 if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) { 2843 return (DDI_FAILURE); 2844 } 2845 *result = (void *) SD_DEVINFO(un); 2846 error = DDI_SUCCESS; 2847 break; 2848 case DDI_INFO_DEVT2INSTANCE: 2849 dev = (dev_t)arg; 2850 instance = SDUNIT(dev); 2851 *result = (void *)(uintptr_t)instance; 2852 error = DDI_SUCCESS; 2853 break; 2854 default: 2855 error = DDI_FAILURE; 2856 } 2857 return (error); 2858 } 2859 2860 /* 2861 * Function: sd_prop_op 2862 * 2863 * Description: This is the driver prop_op(9e) entry point function. 2864 * Return the number of blocks for the partition in question 2865 * or forward the request to the property facilities. 2866 * 2867 * Arguments: dev - device number 2868 * dip - pointer to device info structure 2869 * prop_op - property operator 2870 * mod_flags - DDI_PROP_DONTPASS, don't pass to parent 2871 * name - pointer to property name 2872 * valuep - pointer or address of the user buffer 2873 * lengthp - property length 2874 * 2875 * Return Code: DDI_PROP_SUCCESS 2876 * DDI_PROP_NOT_FOUND 2877 * DDI_PROP_UNDEFINED 2878 * DDI_PROP_NO_MEMORY 2879 * DDI_PROP_BUF_TOO_SMALL 2880 */ 2881 2882 static int 2883 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags, 2884 char *name, caddr_t valuep, int *lengthp) 2885 { 2886 struct sd_lun *un; 2887 2888 if ((un = ddi_get_soft_state(sd_state, ddi_get_instance(dip))) == NULL) 2889 return (ddi_prop_op(dev, dip, prop_op, mod_flags, 2890 name, valuep, lengthp)); 2891 2892 return (cmlb_prop_op(un->un_cmlbhandle, 2893 dev, dip, prop_op, mod_flags, name, valuep, lengthp, 2894 SDPART(dev), (void *)SD_PATH_DIRECT)); 2895 } 2896 2897 /* 2898 * The following functions are for smart probing: 2899 * sd_scsi_probe_cache_init() 2900 * sd_scsi_probe_cache_fini() 2901 * sd_scsi_clear_probe_cache() 2902 * sd_scsi_probe_with_cache() 2903 */ 2904 2905 /* 2906 * Function: sd_scsi_probe_cache_init 2907 * 2908 * Description: Initializes the probe response cache mutex and head pointer. 2909 * 2910 * Context: Kernel thread context 2911 */ 2912 2913 static void 2914 sd_scsi_probe_cache_init(void) 2915 { 2916 mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL); 2917 sd_scsi_probe_cache_head = NULL; 2918 } 2919 2920 2921 /* 2922 * Function: sd_scsi_probe_cache_fini 2923 * 2924 * Description: Frees all resources associated with the probe response cache. 2925 * 2926 * Context: Kernel thread context 2927 */ 2928 2929 static void 2930 sd_scsi_probe_cache_fini(void) 2931 { 2932 struct sd_scsi_probe_cache *cp; 2933 struct sd_scsi_probe_cache *ncp; 2934 2935 /* Clean up our smart probing linked list */ 2936 for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) { 2937 ncp = cp->next; 2938 kmem_free(cp, sizeof (struct sd_scsi_probe_cache)); 2939 } 2940 sd_scsi_probe_cache_head = NULL; 2941 mutex_destroy(&sd_scsi_probe_cache_mutex); 2942 } 2943 2944 2945 /* 2946 * Function: sd_scsi_clear_probe_cache 2947 * 2948 * Description: This routine clears the probe response cache. This is 2949 * done when open() returns ENXIO so that when deferred 2950 * attach is attempted (possibly after a device has been 2951 * turned on) we will retry the probe. Since we don't know 2952 * which target we failed to open, we just clear the 2953 * entire cache. 2954 * 2955 * Context: Kernel thread context 2956 */ 2957 2958 static void 2959 sd_scsi_clear_probe_cache(void) 2960 { 2961 struct sd_scsi_probe_cache *cp; 2962 int i; 2963 2964 mutex_enter(&sd_scsi_probe_cache_mutex); 2965 for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) { 2966 /* 2967 * Reset all entries to SCSIPROBE_EXISTS. This will 2968 * force probing to be performed the next time 2969 * sd_scsi_probe_with_cache is called. 2970 */ 2971 for (i = 0; i < NTARGETS_WIDE; i++) { 2972 cp->cache[i] = SCSIPROBE_EXISTS; 2973 } 2974 } 2975 mutex_exit(&sd_scsi_probe_cache_mutex); 2976 } 2977 2978 2979 /* 2980 * Function: sd_scsi_probe_with_cache 2981 * 2982 * Description: This routine implements support for a scsi device probe 2983 * with cache. The driver maintains a cache of the target 2984 * responses to scsi probes. If we get no response from a 2985 * target during a probe inquiry, we remember that, and we 2986 * avoid additional calls to scsi_probe on non-zero LUNs 2987 * on the same target until the cache is cleared. By doing 2988 * so we avoid the 1/4 sec selection timeout for nonzero 2989 * LUNs. lun0 of a target is always probed. 2990 * 2991 * Arguments: devp - Pointer to a scsi_device(9S) structure 2992 * waitfunc - indicates what the allocator routines should 2993 * do when resources are not available. This value 2994 * is passed on to scsi_probe() when that routine 2995 * is called. 2996 * 2997 * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache; 2998 * otherwise the value returned by scsi_probe(9F). 2999 * 3000 * Context: Kernel thread context 3001 */ 3002 3003 static int 3004 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)()) 3005 { 3006 struct sd_scsi_probe_cache *cp; 3007 dev_info_t *pdip = ddi_get_parent(devp->sd_dev); 3008 int lun, tgt; 3009 3010 lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS, 3011 SCSI_ADDR_PROP_LUN, 0); 3012 tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS, 3013 SCSI_ADDR_PROP_TARGET, -1); 3014 3015 /* Make sure caching enabled and target in range */ 3016 if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) { 3017 /* do it the old way (no cache) */ 3018 return (scsi_probe(devp, waitfn)); 3019 } 3020 3021 mutex_enter(&sd_scsi_probe_cache_mutex); 3022 3023 /* Find the cache for this scsi bus instance */ 3024 for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) { 3025 if (cp->pdip == pdip) { 3026 break; 3027 } 3028 } 3029 3030 /* If we can't find a cache for this pdip, create one */ 3031 if (cp == NULL) { 3032 int i; 3033 3034 cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache), 3035 KM_SLEEP); 3036 cp->pdip = pdip; 3037 cp->next = sd_scsi_probe_cache_head; 3038 sd_scsi_probe_cache_head = cp; 3039 for (i = 0; i < NTARGETS_WIDE; i++) { 3040 cp->cache[i] = SCSIPROBE_EXISTS; 3041 } 3042 } 3043 3044 mutex_exit(&sd_scsi_probe_cache_mutex); 3045 3046 /* Recompute the cache for this target if LUN zero */ 3047 if (lun == 0) { 3048 cp->cache[tgt] = SCSIPROBE_EXISTS; 3049 } 3050 3051 /* Don't probe if cache remembers a NORESP from a previous LUN. */ 3052 if (cp->cache[tgt] != SCSIPROBE_EXISTS) { 3053 return (SCSIPROBE_NORESP); 3054 } 3055 3056 /* Do the actual probe; save & return the result */ 3057 return (cp->cache[tgt] = scsi_probe(devp, waitfn)); 3058 } 3059 3060 3061 /* 3062 * Function: sd_scsi_target_lun_init 3063 * 3064 * Description: Initializes the attached lun chain mutex and head pointer. 3065 * 3066 * Context: Kernel thread context 3067 */ 3068 3069 static void 3070 sd_scsi_target_lun_init(void) 3071 { 3072 mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL); 3073 sd_scsi_target_lun_head = NULL; 3074 } 3075 3076 3077 /* 3078 * Function: sd_scsi_target_lun_fini 3079 * 3080 * Description: Frees all resources associated with the attached lun 3081 * chain 3082 * 3083 * Context: Kernel thread context 3084 */ 3085 3086 static void 3087 sd_scsi_target_lun_fini(void) 3088 { 3089 struct sd_scsi_hba_tgt_lun *cp; 3090 struct sd_scsi_hba_tgt_lun *ncp; 3091 3092 for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) { 3093 ncp = cp->next; 3094 kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun)); 3095 } 3096 sd_scsi_target_lun_head = NULL; 3097 mutex_destroy(&sd_scsi_target_lun_mutex); 3098 } 3099 3100 3101 /* 3102 * Function: sd_scsi_get_target_lun_count 3103 * 3104 * Description: This routine will check in the attached lun chain to see 3105 * how many luns are attached on the required SCSI controller 3106 * and target. Currently, some capabilities like tagged queue 3107 * are supported per target based by HBA. So all luns in a 3108 * target have the same capabilities. Based on this assumption, 3109 * sd should only set these capabilities once per target. This 3110 * function is called when sd needs to decide how many luns 3111 * already attached on a target. 3112 * 3113 * Arguments: dip - Pointer to the system's dev_info_t for the SCSI 3114 * controller device. 3115 * target - The target ID on the controller's SCSI bus. 3116 * 3117 * Return Code: The number of luns attached on the required target and 3118 * controller. 3119 * -1 if target ID is not in parallel SCSI scope or the given 3120 * dip is not in the chain. 3121 * 3122 * Context: Kernel thread context 3123 */ 3124 3125 static int 3126 sd_scsi_get_target_lun_count(dev_info_t *dip, int target) 3127 { 3128 struct sd_scsi_hba_tgt_lun *cp; 3129 3130 if ((target < 0) || (target >= NTARGETS_WIDE)) { 3131 return (-1); 3132 } 3133 3134 mutex_enter(&sd_scsi_target_lun_mutex); 3135 3136 for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) { 3137 if (cp->pdip == dip) { 3138 break; 3139 } 3140 } 3141 3142 mutex_exit(&sd_scsi_target_lun_mutex); 3143 3144 if (cp == NULL) { 3145 return (-1); 3146 } 3147 3148 return (cp->nlun[target]); 3149 } 3150 3151 3152 /* 3153 * Function: sd_scsi_update_lun_on_target 3154 * 3155 * Description: This routine is used to update the attached lun chain when a 3156 * lun is attached or detached on a target. 3157 * 3158 * Arguments: dip - Pointer to the system's dev_info_t for the SCSI 3159 * controller device. 3160 * target - The target ID on the controller's SCSI bus. 3161 * flag - Indicate the lun is attached or detached. 3162 * 3163 * Context: Kernel thread context 3164 */ 3165 3166 static void 3167 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag) 3168 { 3169 struct sd_scsi_hba_tgt_lun *cp; 3170 3171 mutex_enter(&sd_scsi_target_lun_mutex); 3172 3173 for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) { 3174 if (cp->pdip == dip) { 3175 break; 3176 } 3177 } 3178 3179 if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) { 3180 cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun), 3181 KM_SLEEP); 3182 cp->pdip = dip; 3183 cp->next = sd_scsi_target_lun_head; 3184 sd_scsi_target_lun_head = cp; 3185 } 3186 3187 mutex_exit(&sd_scsi_target_lun_mutex); 3188 3189 if (cp != NULL) { 3190 if (flag == SD_SCSI_LUN_ATTACH) { 3191 cp->nlun[target] ++; 3192 } else { 3193 cp->nlun[target] --; 3194 } 3195 } 3196 } 3197 3198 3199 /* 3200 * Function: sd_spin_up_unit 3201 * 3202 * Description: Issues the following commands to spin-up the device: 3203 * START STOP UNIT, and INQUIRY. 3204 * 3205 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 3206 * structure for this target. 3207 * 3208 * Return Code: 0 - success 3209 * EIO - failure 3210 * EACCES - reservation conflict 3211 * 3212 * Context: Kernel thread context 3213 */ 3214 3215 static int 3216 sd_spin_up_unit(sd_ssc_t *ssc) 3217 { 3218 size_t resid = 0; 3219 int has_conflict = FALSE; 3220 uchar_t *bufaddr; 3221 int status; 3222 struct sd_lun *un; 3223 3224 ASSERT(ssc != NULL); 3225 un = ssc->ssc_un; 3226 ASSERT(un != NULL); 3227 3228 /* 3229 * Send a throwaway START UNIT command. 3230 * 3231 * If we fail on this, we don't care presently what precisely 3232 * is wrong. EMC's arrays will also fail this with a check 3233 * condition (0x2/0x4/0x3) if the device is "inactive," but 3234 * we don't want to fail the attach because it may become 3235 * "active" later. 3236 * We don't know if power condition is supported or not at 3237 * this stage, use START STOP bit. 3238 */ 3239 status = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 3240 SD_TARGET_START, SD_PATH_DIRECT); 3241 3242 if (status != 0) { 3243 if (status == EACCES) 3244 has_conflict = TRUE; 3245 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3246 } 3247 3248 /* 3249 * Send another INQUIRY command to the target. This is necessary for 3250 * non-removable media direct access devices because their INQUIRY data 3251 * may not be fully qualified until they are spun up (perhaps via the 3252 * START command above). Note: This seems to be needed for some 3253 * legacy devices only.) The INQUIRY command should succeed even if a 3254 * Reservation Conflict is present. 3255 */ 3256 bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP); 3257 3258 if (sd_send_scsi_INQUIRY(ssc, bufaddr, SUN_INQSIZE, 0, 0, &resid) 3259 != 0) { 3260 kmem_free(bufaddr, SUN_INQSIZE); 3261 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 3262 return (EIO); 3263 } 3264 3265 /* 3266 * If we got enough INQUIRY data, copy it over the old INQUIRY data. 3267 * Note that this routine does not return a failure here even if the 3268 * INQUIRY command did not return any data. This is a legacy behavior. 3269 */ 3270 if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) { 3271 bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE); 3272 } 3273 3274 kmem_free(bufaddr, SUN_INQSIZE); 3275 3276 /* If we hit a reservation conflict above, tell the caller. */ 3277 if (has_conflict == TRUE) { 3278 return (EACCES); 3279 } 3280 3281 return (0); 3282 } 3283 3284 #ifdef _LP64 3285 /* 3286 * Function: sd_enable_descr_sense 3287 * 3288 * Description: This routine attempts to select descriptor sense format 3289 * using the Control mode page. Devices that support 64 bit 3290 * LBAs (for >2TB luns) should also implement descriptor 3291 * sense data so we will call this function whenever we see 3292 * a lun larger than 2TB. If for some reason the device 3293 * supports 64 bit LBAs but doesn't support descriptor sense 3294 * presumably the mode select will fail. Everything will 3295 * continue to work normally except that we will not get 3296 * complete sense data for commands that fail with an LBA 3297 * larger than 32 bits. 3298 * 3299 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 3300 * structure for this target. 3301 * 3302 * Context: Kernel thread context only 3303 */ 3304 3305 static void 3306 sd_enable_descr_sense(sd_ssc_t *ssc) 3307 { 3308 uchar_t *header; 3309 struct mode_control_scsi3 *ctrl_bufp; 3310 size_t buflen; 3311 size_t bd_len; 3312 int status; 3313 struct sd_lun *un; 3314 3315 ASSERT(ssc != NULL); 3316 un = ssc->ssc_un; 3317 ASSERT(un != NULL); 3318 3319 /* 3320 * Read MODE SENSE page 0xA, Control Mode Page 3321 */ 3322 buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH + 3323 sizeof (struct mode_control_scsi3); 3324 header = kmem_zalloc(buflen, KM_SLEEP); 3325 3326 status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen, 3327 MODEPAGE_CTRL_MODE, SD_PATH_DIRECT); 3328 3329 if (status != 0) { 3330 SD_ERROR(SD_LOG_COMMON, un, 3331 "sd_enable_descr_sense: mode sense ctrl page failed\n"); 3332 goto eds_exit; 3333 } 3334 3335 /* 3336 * Determine size of Block Descriptors in order to locate 3337 * the mode page data. ATAPI devices return 0, SCSI devices 3338 * should return MODE_BLK_DESC_LENGTH. 3339 */ 3340 bd_len = ((struct mode_header *)header)->bdesc_length; 3341 3342 /* Clear the mode data length field for MODE SELECT */ 3343 ((struct mode_header *)header)->length = 0; 3344 3345 ctrl_bufp = (struct mode_control_scsi3 *) 3346 (header + MODE_HEADER_LENGTH + bd_len); 3347 3348 /* 3349 * If the page length is smaller than the expected value, 3350 * the target device doesn't support D_SENSE. Bail out here. 3351 */ 3352 if (ctrl_bufp->mode_page.length < 3353 sizeof (struct mode_control_scsi3) - 2) { 3354 SD_ERROR(SD_LOG_COMMON, un, 3355 "sd_enable_descr_sense: enable D_SENSE failed\n"); 3356 goto eds_exit; 3357 } 3358 3359 /* 3360 * Clear PS bit for MODE SELECT 3361 */ 3362 ctrl_bufp->mode_page.ps = 0; 3363 3364 /* 3365 * Set D_SENSE to enable descriptor sense format. 3366 */ 3367 ctrl_bufp->d_sense = 1; 3368 3369 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3370 3371 /* 3372 * Use MODE SELECT to commit the change to the D_SENSE bit 3373 */ 3374 status = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header, 3375 buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT); 3376 3377 if (status != 0) { 3378 SD_INFO(SD_LOG_COMMON, un, 3379 "sd_enable_descr_sense: mode select ctrl page failed\n"); 3380 } else { 3381 kmem_free(header, buflen); 3382 return; 3383 } 3384 3385 eds_exit: 3386 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3387 kmem_free(header, buflen); 3388 } 3389 3390 /* 3391 * Function: sd_reenable_dsense_task 3392 * 3393 * Description: Re-enable descriptor sense after device or bus reset 3394 * 3395 * Context: Executes in a taskq() thread context 3396 */ 3397 static void 3398 sd_reenable_dsense_task(void *arg) 3399 { 3400 struct sd_lun *un = arg; 3401 sd_ssc_t *ssc; 3402 3403 ASSERT(un != NULL); 3404 3405 ssc = sd_ssc_init(un); 3406 sd_enable_descr_sense(ssc); 3407 sd_ssc_fini(ssc); 3408 } 3409 #endif /* _LP64 */ 3410 3411 /* 3412 * Function: sd_set_mmc_caps 3413 * 3414 * Description: This routine determines if the device is MMC compliant and if 3415 * the device supports CDDA via a mode sense of the CDVD 3416 * capabilities mode page. Also checks if the device is a 3417 * dvdram writable device. 3418 * 3419 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 3420 * structure for this target. 3421 * 3422 * Context: Kernel thread context only 3423 */ 3424 3425 static void 3426 sd_set_mmc_caps(sd_ssc_t *ssc) 3427 { 3428 struct mode_header_grp2 *sense_mhp; 3429 uchar_t *sense_page; 3430 caddr_t buf; 3431 int bd_len; 3432 int status; 3433 struct uscsi_cmd com; 3434 int rtn; 3435 uchar_t *out_data_rw, *out_data_hd; 3436 uchar_t *rqbuf_rw, *rqbuf_hd; 3437 uchar_t *out_data_gesn; 3438 int gesn_len; 3439 struct sd_lun *un; 3440 3441 ASSERT(ssc != NULL); 3442 un = ssc->ssc_un; 3443 ASSERT(un != NULL); 3444 3445 /* 3446 * The flags which will be set in this function are - mmc compliant, 3447 * dvdram writable device, cdda support. Initialize them to FALSE 3448 * and if a capability is detected - it will be set to TRUE. 3449 */ 3450 un->un_f_mmc_cap = FALSE; 3451 un->un_f_dvdram_writable_device = FALSE; 3452 un->un_f_cfg_cdda = FALSE; 3453 3454 buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP); 3455 status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf, 3456 BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT); 3457 3458 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3459 3460 if (status != 0) { 3461 /* command failed; just return */ 3462 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3463 return; 3464 } 3465 /* 3466 * If the mode sense request for the CDROM CAPABILITIES 3467 * page (0x2A) succeeds the device is assumed to be MMC. 3468 */ 3469 un->un_f_mmc_cap = TRUE; 3470 3471 /* See if GET STATUS EVENT NOTIFICATION is supported */ 3472 if (un->un_f_mmc_gesn_polling) { 3473 gesn_len = SD_GESN_HEADER_LEN + SD_GESN_MEDIA_DATA_LEN; 3474 out_data_gesn = kmem_zalloc(gesn_len, KM_SLEEP); 3475 3476 rtn = sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(ssc, 3477 out_data_gesn, gesn_len, 1 << SD_GESN_MEDIA_CLASS); 3478 3479 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3480 3481 if ((rtn != 0) || !sd_gesn_media_data_valid(out_data_gesn)) { 3482 un->un_f_mmc_gesn_polling = FALSE; 3483 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3484 "sd_set_mmc_caps: gesn not supported " 3485 "%d %x %x %x %x\n", rtn, 3486 out_data_gesn[0], out_data_gesn[1], 3487 out_data_gesn[2], out_data_gesn[3]); 3488 } 3489 3490 kmem_free(out_data_gesn, gesn_len); 3491 } 3492 3493 /* Get to the page data */ 3494 sense_mhp = (struct mode_header_grp2 *)buf; 3495 bd_len = (sense_mhp->bdesc_length_hi << 8) | 3496 sense_mhp->bdesc_length_lo; 3497 if (bd_len > MODE_BLK_DESC_LENGTH) { 3498 /* 3499 * We did not get back the expected block descriptor 3500 * length so we cannot determine if the device supports 3501 * CDDA. However, we still indicate the device is MMC 3502 * according to the successful response to the page 3503 * 0x2A mode sense request. 3504 */ 3505 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3506 "sd_set_mmc_caps: Mode Sense returned " 3507 "invalid block descriptor length\n"); 3508 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3509 return; 3510 } 3511 3512 /* See if read CDDA is supported */ 3513 sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + 3514 bd_len); 3515 un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE; 3516 3517 /* See if writing DVD RAM is supported. */ 3518 un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE; 3519 if (un->un_f_dvdram_writable_device == TRUE) { 3520 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3521 return; 3522 } 3523 3524 /* 3525 * If the device presents DVD or CD capabilities in the mode 3526 * page, we can return here since a RRD will not have 3527 * these capabilities. 3528 */ 3529 if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) { 3530 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3531 return; 3532 } 3533 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3534 3535 /* 3536 * If un->un_f_dvdram_writable_device is still FALSE, 3537 * check for a Removable Rigid Disk (RRD). A RRD 3538 * device is identified by the features RANDOM_WRITABLE and 3539 * HARDWARE_DEFECT_MANAGEMENT. 3540 */ 3541 out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3542 rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3543 3544 rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw, 3545 SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN, 3546 RANDOM_WRITABLE, SD_PATH_STANDARD); 3547 3548 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3549 3550 if (rtn != 0) { 3551 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3552 kmem_free(rqbuf_rw, SENSE_LENGTH); 3553 return; 3554 } 3555 3556 out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3557 rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3558 3559 rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd, 3560 SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN, 3561 HARDWARE_DEFECT_MANAGEMENT, SD_PATH_STANDARD); 3562 3563 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3564 3565 if (rtn == 0) { 3566 /* 3567 * We have good information, check for random writable 3568 * and hardware defect features. 3569 */ 3570 if ((out_data_rw[9] & RANDOM_WRITABLE) && 3571 (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) { 3572 un->un_f_dvdram_writable_device = TRUE; 3573 } 3574 } 3575 3576 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3577 kmem_free(rqbuf_rw, SENSE_LENGTH); 3578 kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN); 3579 kmem_free(rqbuf_hd, SENSE_LENGTH); 3580 } 3581 3582 /* 3583 * Function: sd_check_for_writable_cd 3584 * 3585 * Description: This routine determines if the media in the device is 3586 * writable or not. It uses the get configuration command (0x46) 3587 * to determine if the media is writable 3588 * 3589 * Arguments: un - driver soft state (unit) structure 3590 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" 3591 * chain and the normal command waitq, or 3592 * SD_PATH_DIRECT_PRIORITY to use the USCSI 3593 * "direct" chain and bypass the normal command 3594 * waitq. 3595 * 3596 * Context: Never called at interrupt context. 3597 */ 3598 3599 static void 3600 sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag) 3601 { 3602 struct uscsi_cmd com; 3603 uchar_t *out_data; 3604 uchar_t *rqbuf; 3605 int rtn; 3606 uchar_t *out_data_rw, *out_data_hd; 3607 uchar_t *rqbuf_rw, *rqbuf_hd; 3608 struct mode_header_grp2 *sense_mhp; 3609 uchar_t *sense_page; 3610 caddr_t buf; 3611 int bd_len; 3612 int status; 3613 struct sd_lun *un; 3614 3615 ASSERT(ssc != NULL); 3616 un = ssc->ssc_un; 3617 ASSERT(un != NULL); 3618 ASSERT(mutex_owned(SD_MUTEX(un))); 3619 3620 /* 3621 * Initialize the writable media to false, if configuration info. 3622 * tells us otherwise then only we will set it. 3623 */ 3624 un->un_f_mmc_writable_media = FALSE; 3625 mutex_exit(SD_MUTEX(un)); 3626 3627 out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP); 3628 rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3629 3630 rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf, SENSE_LENGTH, 3631 out_data, SD_PROFILE_HEADER_LEN, path_flag); 3632 3633 if (rtn != 0) 3634 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3635 3636 mutex_enter(SD_MUTEX(un)); 3637 if (rtn == 0) { 3638 /* 3639 * We have good information, check for writable DVD. 3640 */ 3641 if ((out_data[6] == 0) && (out_data[7] == 0x12)) { 3642 un->un_f_mmc_writable_media = TRUE; 3643 kmem_free(out_data, SD_PROFILE_HEADER_LEN); 3644 kmem_free(rqbuf, SENSE_LENGTH); 3645 return; 3646 } 3647 } 3648 3649 kmem_free(out_data, SD_PROFILE_HEADER_LEN); 3650 kmem_free(rqbuf, SENSE_LENGTH); 3651 3652 /* 3653 * Determine if this is a RRD type device. 3654 */ 3655 mutex_exit(SD_MUTEX(un)); 3656 buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP); 3657 status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf, 3658 BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, path_flag); 3659 3660 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3661 3662 mutex_enter(SD_MUTEX(un)); 3663 if (status != 0) { 3664 /* command failed; just return */ 3665 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3666 return; 3667 } 3668 3669 /* Get to the page data */ 3670 sense_mhp = (struct mode_header_grp2 *)buf; 3671 bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo; 3672 if (bd_len > MODE_BLK_DESC_LENGTH) { 3673 /* 3674 * We did not get back the expected block descriptor length so 3675 * we cannot check the mode page. 3676 */ 3677 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3678 "sd_check_for_writable_cd: Mode Sense returned " 3679 "invalid block descriptor length\n"); 3680 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3681 return; 3682 } 3683 3684 /* 3685 * If the device presents DVD or CD capabilities in the mode 3686 * page, we can return here since a RRD device will not have 3687 * these capabilities. 3688 */ 3689 sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len); 3690 if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) { 3691 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3692 return; 3693 } 3694 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3695 3696 /* 3697 * If un->un_f_mmc_writable_media is still FALSE, 3698 * check for RRD type media. A RRD device is identified 3699 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT. 3700 */ 3701 mutex_exit(SD_MUTEX(un)); 3702 out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3703 rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3704 3705 rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw, 3706 SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN, 3707 RANDOM_WRITABLE, path_flag); 3708 3709 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3710 if (rtn != 0) { 3711 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3712 kmem_free(rqbuf_rw, SENSE_LENGTH); 3713 mutex_enter(SD_MUTEX(un)); 3714 return; 3715 } 3716 3717 out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3718 rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3719 3720 rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd, 3721 SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN, 3722 HARDWARE_DEFECT_MANAGEMENT, path_flag); 3723 3724 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3725 mutex_enter(SD_MUTEX(un)); 3726 if (rtn == 0) { 3727 /* 3728 * We have good information, check for random writable 3729 * and hardware defect features as current. 3730 */ 3731 if ((out_data_rw[9] & RANDOM_WRITABLE) && 3732 (out_data_rw[10] & 0x1) && 3733 (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) && 3734 (out_data_hd[10] & 0x1)) { 3735 un->un_f_mmc_writable_media = TRUE; 3736 } 3737 } 3738 3739 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3740 kmem_free(rqbuf_rw, SENSE_LENGTH); 3741 kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN); 3742 kmem_free(rqbuf_hd, SENSE_LENGTH); 3743 } 3744 3745 /* 3746 * Function: sd_read_unit_properties 3747 * 3748 * Description: The following implements a property lookup mechanism. 3749 * Properties for particular disks (keyed on vendor, model 3750 * and rev numbers) are sought in the sd.conf file via 3751 * sd_process_sdconf_file(), and if not found there, are 3752 * looked for in a list hardcoded in this driver via 3753 * sd_process_sdconf_table() Once located the properties 3754 * are used to update the driver unit structure. 3755 * 3756 * Arguments: un - driver soft state (unit) structure 3757 */ 3758 3759 static void 3760 sd_read_unit_properties(struct sd_lun *un) 3761 { 3762 /* 3763 * sd_process_sdconf_file returns SD_FAILURE if it cannot find 3764 * the "sd-config-list" property (from the sd.conf file) or if 3765 * there was not a match for the inquiry vid/pid. If this event 3766 * occurs the static driver configuration table is searched for 3767 * a match. 3768 */ 3769 ASSERT(un != NULL); 3770 if (sd_process_sdconf_file(un) == SD_FAILURE) { 3771 sd_process_sdconf_table(un); 3772 } 3773 3774 /* check for LSI device */ 3775 sd_is_lsi(un); 3776 3777 3778 } 3779 3780 3781 /* 3782 * Function: sd_process_sdconf_file 3783 * 3784 * Description: Use ddi_prop_lookup(9F) to obtain the properties from the 3785 * driver's config file (ie, sd.conf) and update the driver 3786 * soft state structure accordingly. 3787 * 3788 * Arguments: un - driver soft state (unit) structure 3789 * 3790 * Return Code: SD_SUCCESS - The properties were successfully set according 3791 * to the driver configuration file. 3792 * SD_FAILURE - The driver config list was not obtained or 3793 * there was no vid/pid match. This indicates that 3794 * the static config table should be used. 3795 * 3796 * The config file has a property, "sd-config-list". Currently we support 3797 * two kinds of formats. For both formats, the value of this property 3798 * is a list of duplets: 3799 * 3800 * sd-config-list= 3801 * <duplet>, 3802 * [,<duplet>]*; 3803 * 3804 * For the improved format, where 3805 * 3806 * <duplet>:= "<vid+pid>","<tunable-list>" 3807 * 3808 * and 3809 * 3810 * <tunable-list>:= <tunable> [, <tunable> ]*; 3811 * <tunable> = <name> : <value> 3812 * 3813 * The <vid+pid> is the string that is returned by the target device on a 3814 * SCSI inquiry command, the <tunable-list> contains one or more tunables 3815 * to apply to all target devices with the specified <vid+pid>. 3816 * 3817 * Each <tunable> is a "<name> : <value>" pair. 3818 * 3819 * For the old format, the structure of each duplet is as follows: 3820 * 3821 * <duplet>:= "<vid+pid>","<data-property-name_list>" 3822 * 3823 * The first entry of the duplet is the device ID string (the concatenated 3824 * vid & pid; not to be confused with a device_id). This is defined in 3825 * the same way as in the sd_disk_table. 3826 * 3827 * The second part of the duplet is a string that identifies a 3828 * data-property-name-list. The data-property-name-list is defined as 3829 * follows: 3830 * 3831 * <data-property-name-list>:=<data-property-name> [<data-property-name>] 3832 * 3833 * The syntax of <data-property-name> depends on the <version> field. 3834 * 3835 * If version = SD_CONF_VERSION_1 we have the following syntax: 3836 * 3837 * <data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN> 3838 * 3839 * where the prop0 value will be used to set prop0 if bit0 set in the 3840 * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1 3841 * 3842 */ 3843 3844 static int 3845 sd_process_sdconf_file(struct sd_lun *un) 3846 { 3847 char **config_list = NULL; 3848 uint_t nelements; 3849 char *vidptr; 3850 int vidlen; 3851 char *dnlist_ptr; 3852 char *dataname_ptr; 3853 char *dataname_lasts; 3854 int *data_list = NULL; 3855 uint_t data_list_len; 3856 int rval = SD_FAILURE; 3857 int i; 3858 3859 ASSERT(un != NULL); 3860 3861 /* Obtain the configuration list associated with the .conf file */ 3862 if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, SD_DEVINFO(un), 3863 DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, sd_config_list, 3864 &config_list, &nelements) != DDI_PROP_SUCCESS) { 3865 return (SD_FAILURE); 3866 } 3867 3868 /* 3869 * Compare vids in each duplet to the inquiry vid - if a match is 3870 * made, get the data value and update the soft state structure 3871 * accordingly. 3872 * 3873 * Each duplet should show as a pair of strings, return SD_FAILURE 3874 * otherwise. 3875 */ 3876 if (nelements & 1) { 3877 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3878 "sd-config-list should show as pairs of strings.\n"); 3879 if (config_list) 3880 ddi_prop_free(config_list); 3881 return (SD_FAILURE); 3882 } 3883 3884 for (i = 0; i < nelements; i += 2) { 3885 /* 3886 * Note: The assumption here is that each vid entry is on 3887 * a unique line from its associated duplet. 3888 */ 3889 vidptr = config_list[i]; 3890 vidlen = (int)strlen(vidptr); 3891 if ((vidlen == 0) || 3892 (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) { 3893 continue; 3894 } 3895 3896 /* 3897 * dnlist contains 1 or more blank separated 3898 * data-property-name entries 3899 */ 3900 dnlist_ptr = config_list[i + 1]; 3901 3902 if (strchr(dnlist_ptr, ':') != NULL) { 3903 /* 3904 * Decode the improved format sd-config-list. 3905 */ 3906 sd_nvpair_str_decode(un, dnlist_ptr); 3907 } else { 3908 /* 3909 * The old format sd-config-list, loop through all 3910 * data-property-name entries in the 3911 * data-property-name-list 3912 * setting the properties for each. 3913 */ 3914 for (dataname_ptr = sd_strtok_r(dnlist_ptr, " \t", 3915 &dataname_lasts); dataname_ptr != NULL; 3916 dataname_ptr = sd_strtok_r(NULL, " \t", 3917 &dataname_lasts)) { 3918 int version; 3919 3920 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3921 "sd_process_sdconf_file: disk:%s, " 3922 "data:%s\n", vidptr, dataname_ptr); 3923 3924 /* Get the data list */ 3925 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, 3926 SD_DEVINFO(un), 0, dataname_ptr, &data_list, 3927 &data_list_len) != DDI_PROP_SUCCESS) { 3928 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3929 "sd_process_sdconf_file: data " 3930 "property (%s) has no value\n", 3931 dataname_ptr); 3932 continue; 3933 } 3934 3935 version = data_list[0]; 3936 3937 if (version == SD_CONF_VERSION_1) { 3938 sd_tunables values; 3939 3940 /* Set the properties */ 3941 if (sd_chk_vers1_data(un, data_list[1], 3942 &data_list[2], data_list_len, 3943 dataname_ptr) == SD_SUCCESS) { 3944 sd_get_tunables_from_conf(un, 3945 data_list[1], &data_list[2], 3946 &values); 3947 sd_set_vers1_properties(un, 3948 data_list[1], &values); 3949 rval = SD_SUCCESS; 3950 } else { 3951 rval = SD_FAILURE; 3952 } 3953 } else { 3954 scsi_log(SD_DEVINFO(un), sd_label, 3955 CE_WARN, "data property %s version " 3956 "0x%x is invalid.", 3957 dataname_ptr, version); 3958 rval = SD_FAILURE; 3959 } 3960 if (data_list) 3961 ddi_prop_free(data_list); 3962 } 3963 } 3964 } 3965 3966 /* free up the memory allocated by ddi_prop_lookup_string_array(). */ 3967 if (config_list) { 3968 ddi_prop_free(config_list); 3969 } 3970 3971 return (rval); 3972 } 3973 3974 /* 3975 * Function: sd_nvpair_str_decode() 3976 * 3977 * Description: Parse the improved format sd-config-list to get 3978 * each entry of tunable, which includes a name-value pair. 3979 * Then call sd_set_properties() to set the property. 3980 * 3981 * Arguments: un - driver soft state (unit) structure 3982 * nvpair_str - the tunable list 3983 */ 3984 static void 3985 sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str) 3986 { 3987 char *nv, *name, *value, *token; 3988 char *nv_lasts, *v_lasts, *x_lasts; 3989 3990 for (nv = sd_strtok_r(nvpair_str, ",", &nv_lasts); nv != NULL; 3991 nv = sd_strtok_r(NULL, ",", &nv_lasts)) { 3992 token = sd_strtok_r(nv, ":", &v_lasts); 3993 name = sd_strtok_r(token, " \t", &x_lasts); 3994 token = sd_strtok_r(NULL, ":", &v_lasts); 3995 value = sd_strtok_r(token, " \t", &x_lasts); 3996 if (name == NULL || value == NULL) { 3997 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3998 "sd_nvpair_str_decode: " 3999 "name or value is not valid!\n"); 4000 } else { 4001 sd_set_properties(un, name, value); 4002 } 4003 } 4004 } 4005 4006 /* 4007 * Function: sd_strtok_r() 4008 * 4009 * Description: This function uses strpbrk and strspn to break 4010 * string into tokens on sequentially subsequent calls. Return 4011 * NULL when no non-separator characters remain. The first 4012 * argument is NULL for subsequent calls. 4013 */ 4014 static char * 4015 sd_strtok_r(char *string, const char *sepset, char **lasts) 4016 { 4017 char *q, *r; 4018 4019 /* First or subsequent call */ 4020 if (string == NULL) 4021 string = *lasts; 4022 4023 if (string == NULL) 4024 return (NULL); 4025 4026 /* Skip leading separators */ 4027 q = string + strspn(string, sepset); 4028 4029 if (*q == '\0') 4030 return (NULL); 4031 4032 if ((r = strpbrk(q, sepset)) == NULL) 4033 *lasts = NULL; 4034 else { 4035 *r = '\0'; 4036 *lasts = r + 1; 4037 } 4038 return (q); 4039 } 4040 4041 /* 4042 * Function: sd_set_properties() 4043 * 4044 * Description: Set device properties based on the improved 4045 * format sd-config-list. 4046 * 4047 * Arguments: un - driver soft state (unit) structure 4048 * name - supported tunable name 4049 * value - tunable value 4050 */ 4051 static void 4052 sd_set_properties(struct sd_lun *un, char *name, char *value) 4053 { 4054 char *endptr = NULL; 4055 long val = 0; 4056 4057 if (strcasecmp(name, "cache-nonvolatile") == 0) { 4058 if (strcasecmp(value, "true") == 0) { 4059 un->un_f_suppress_cache_flush = TRUE; 4060 } else if (strcasecmp(value, "false") == 0) { 4061 un->un_f_suppress_cache_flush = FALSE; 4062 } else { 4063 goto value_invalid; 4064 } 4065 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4066 "suppress_cache_flush flag set to %d\n", 4067 un->un_f_suppress_cache_flush); 4068 return; 4069 } 4070 4071 if (strcasecmp(name, "controller-type") == 0) { 4072 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4073 un->un_ctype = val; 4074 } else { 4075 goto value_invalid; 4076 } 4077 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4078 "ctype set to %d\n", un->un_ctype); 4079 return; 4080 } 4081 4082 if (strcasecmp(name, "delay-busy") == 0) { 4083 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4084 un->un_busy_timeout = drv_usectohz(val / 1000); 4085 } else { 4086 goto value_invalid; 4087 } 4088 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4089 "busy_timeout set to %d\n", un->un_busy_timeout); 4090 return; 4091 } 4092 4093 if (strcasecmp(name, "disksort") == 0) { 4094 if (strcasecmp(value, "true") == 0) { 4095 un->un_f_disksort_disabled = FALSE; 4096 } else if (strcasecmp(value, "false") == 0) { 4097 un->un_f_disksort_disabled = TRUE; 4098 } else { 4099 goto value_invalid; 4100 } 4101 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4102 "disksort disabled flag set to %d\n", 4103 un->un_f_disksort_disabled); 4104 return; 4105 } 4106 4107 if (strcasecmp(name, "power-condition") == 0) { 4108 if (strcasecmp(value, "true") == 0) { 4109 un->un_f_power_condition_disabled = FALSE; 4110 } else if (strcasecmp(value, "false") == 0) { 4111 un->un_f_power_condition_disabled = TRUE; 4112 } else { 4113 goto value_invalid; 4114 } 4115 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4116 "power condition disabled flag set to %d\n", 4117 un->un_f_power_condition_disabled); 4118 return; 4119 } 4120 4121 if (strcasecmp(name, "timeout-releasereservation") == 0) { 4122 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4123 un->un_reserve_release_time = val; 4124 } else { 4125 goto value_invalid; 4126 } 4127 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4128 "reservation release timeout set to %d\n", 4129 un->un_reserve_release_time); 4130 return; 4131 } 4132 4133 if (strcasecmp(name, "reset-lun") == 0) { 4134 if (strcasecmp(value, "true") == 0) { 4135 un->un_f_lun_reset_enabled = TRUE; 4136 } else if (strcasecmp(value, "false") == 0) { 4137 un->un_f_lun_reset_enabled = FALSE; 4138 } else { 4139 goto value_invalid; 4140 } 4141 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4142 "lun reset enabled flag set to %d\n", 4143 un->un_f_lun_reset_enabled); 4144 return; 4145 } 4146 4147 if (strcasecmp(name, "retries-busy") == 0) { 4148 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4149 un->un_busy_retry_count = val; 4150 } else { 4151 goto value_invalid; 4152 } 4153 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4154 "busy retry count set to %d\n", un->un_busy_retry_count); 4155 return; 4156 } 4157 4158 if (strcasecmp(name, "retries-timeout") == 0) { 4159 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4160 un->un_retry_count = val; 4161 } else { 4162 goto value_invalid; 4163 } 4164 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4165 "timeout retry count set to %d\n", un->un_retry_count); 4166 return; 4167 } 4168 4169 if (strcasecmp(name, "retries-notready") == 0) { 4170 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4171 un->un_notready_retry_count = val; 4172 } else { 4173 goto value_invalid; 4174 } 4175 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4176 "notready retry count set to %d\n", 4177 un->un_notready_retry_count); 4178 return; 4179 } 4180 4181 if (strcasecmp(name, "retries-reset") == 0) { 4182 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4183 un->un_reset_retry_count = val; 4184 } else { 4185 goto value_invalid; 4186 } 4187 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4188 "reset retry count set to %d\n", 4189 un->un_reset_retry_count); 4190 return; 4191 } 4192 4193 if (strcasecmp(name, "throttle-max") == 0) { 4194 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4195 un->un_saved_throttle = un->un_throttle = val; 4196 } else { 4197 goto value_invalid; 4198 } 4199 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4200 "throttle set to %d\n", un->un_throttle); 4201 } 4202 4203 if (strcasecmp(name, "throttle-min") == 0) { 4204 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4205 un->un_min_throttle = val; 4206 } else { 4207 goto value_invalid; 4208 } 4209 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4210 "min throttle set to %d\n", un->un_min_throttle); 4211 } 4212 4213 if (strcasecmp(name, "rmw-type") == 0) { 4214 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4215 un->un_f_rmw_type = val; 4216 } else { 4217 goto value_invalid; 4218 } 4219 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4220 "RMW type set to %d\n", un->un_f_rmw_type); 4221 } 4222 4223 if (strcasecmp(name, "physical-block-size") == 0) { 4224 if (ddi_strtol(value, &endptr, 0, &val) == 0 && 4225 ISP2(val) && val >= un->un_tgt_blocksize && 4226 val >= un->un_sys_blocksize) { 4227 un->un_phy_blocksize = val; 4228 } else { 4229 goto value_invalid; 4230 } 4231 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4232 "physical block size set to %d\n", un->un_phy_blocksize); 4233 } 4234 4235 /* 4236 * Validate the throttle values. 4237 * If any of the numbers are invalid, set everything to defaults. 4238 */ 4239 if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) || 4240 (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) || 4241 (un->un_min_throttle > un->un_throttle)) { 4242 un->un_saved_throttle = un->un_throttle = sd_max_throttle; 4243 un->un_min_throttle = sd_min_throttle; 4244 } 4245 4246 if (strcasecmp(name, "mmc-gesn-polling") == 0) { 4247 if (strcasecmp(value, "true") == 0) { 4248 un->un_f_mmc_gesn_polling = TRUE; 4249 } else if (strcasecmp(value, "false") == 0) { 4250 un->un_f_mmc_gesn_polling = FALSE; 4251 } else { 4252 goto value_invalid; 4253 } 4254 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4255 "mmc-gesn-polling set to %d\n", 4256 un->un_f_mmc_gesn_polling); 4257 } 4258 4259 return; 4260 4261 value_invalid: 4262 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4263 "value of prop %s is invalid\n", name); 4264 } 4265 4266 /* 4267 * Function: sd_get_tunables_from_conf() 4268 * 4269 * 4270 * This function reads the data list from the sd.conf file and pulls 4271 * the values that can have numeric values as arguments and places 4272 * the values in the appropriate sd_tunables member. 4273 * Since the order of the data list members varies across platforms 4274 * This function reads them from the data list in a platform specific 4275 * order and places them into the correct sd_tunable member that is 4276 * consistent across all platforms. 4277 */ 4278 static void 4279 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list, 4280 sd_tunables *values) 4281 { 4282 int i; 4283 int mask; 4284 4285 bzero(values, sizeof (sd_tunables)); 4286 4287 for (i = 0; i < SD_CONF_MAX_ITEMS; i++) { 4288 4289 mask = 1 << i; 4290 if (mask > flags) { 4291 break; 4292 } 4293 4294 switch (mask & flags) { 4295 case 0: /* This mask bit not set in flags */ 4296 continue; 4297 case SD_CONF_BSET_THROTTLE: 4298 values->sdt_throttle = data_list[i]; 4299 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4300 "sd_get_tunables_from_conf: throttle = %d\n", 4301 values->sdt_throttle); 4302 break; 4303 case SD_CONF_BSET_CTYPE: 4304 values->sdt_ctype = data_list[i]; 4305 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4306 "sd_get_tunables_from_conf: ctype = %d\n", 4307 values->sdt_ctype); 4308 break; 4309 case SD_CONF_BSET_NRR_COUNT: 4310 values->sdt_not_rdy_retries = data_list[i]; 4311 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4312 "sd_get_tunables_from_conf: not_rdy_retries = %d\n", 4313 values->sdt_not_rdy_retries); 4314 break; 4315 case SD_CONF_BSET_BSY_RETRY_COUNT: 4316 values->sdt_busy_retries = data_list[i]; 4317 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4318 "sd_get_tunables_from_conf: busy_retries = %d\n", 4319 values->sdt_busy_retries); 4320 break; 4321 case SD_CONF_BSET_RST_RETRIES: 4322 values->sdt_reset_retries = data_list[i]; 4323 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4324 "sd_get_tunables_from_conf: reset_retries = %d\n", 4325 values->sdt_reset_retries); 4326 break; 4327 case SD_CONF_BSET_RSV_REL_TIME: 4328 values->sdt_reserv_rel_time = data_list[i]; 4329 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4330 "sd_get_tunables_from_conf: reserv_rel_time = %d\n", 4331 values->sdt_reserv_rel_time); 4332 break; 4333 case SD_CONF_BSET_MIN_THROTTLE: 4334 values->sdt_min_throttle = data_list[i]; 4335 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4336 "sd_get_tunables_from_conf: min_throttle = %d\n", 4337 values->sdt_min_throttle); 4338 break; 4339 case SD_CONF_BSET_DISKSORT_DISABLED: 4340 values->sdt_disk_sort_dis = data_list[i]; 4341 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4342 "sd_get_tunables_from_conf: disk_sort_dis = %d\n", 4343 values->sdt_disk_sort_dis); 4344 break; 4345 case SD_CONF_BSET_LUN_RESET_ENABLED: 4346 values->sdt_lun_reset_enable = data_list[i]; 4347 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4348 "sd_get_tunables_from_conf: lun_reset_enable = %d" 4349 "\n", values->sdt_lun_reset_enable); 4350 break; 4351 case SD_CONF_BSET_CACHE_IS_NV: 4352 values->sdt_suppress_cache_flush = data_list[i]; 4353 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4354 "sd_get_tunables_from_conf: \ 4355 suppress_cache_flush = %d" 4356 "\n", values->sdt_suppress_cache_flush); 4357 break; 4358 case SD_CONF_BSET_PC_DISABLED: 4359 values->sdt_disk_sort_dis = data_list[i]; 4360 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4361 "sd_get_tunables_from_conf: power_condition_dis = " 4362 "%d\n", values->sdt_power_condition_dis); 4363 break; 4364 } 4365 } 4366 } 4367 4368 /* 4369 * Function: sd_process_sdconf_table 4370 * 4371 * Description: Search the static configuration table for a match on the 4372 * inquiry vid/pid and update the driver soft state structure 4373 * according to the table property values for the device. 4374 * 4375 * The form of a configuration table entry is: 4376 * <vid+pid>,<flags>,<property-data> 4377 * "SEAGATE ST42400N",1,0x40000, 4378 * 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1; 4379 * 4380 * Arguments: un - driver soft state (unit) structure 4381 */ 4382 4383 static void 4384 sd_process_sdconf_table(struct sd_lun *un) 4385 { 4386 char *id = NULL; 4387 int table_index; 4388 int idlen; 4389 4390 ASSERT(un != NULL); 4391 for (table_index = 0; table_index < sd_disk_table_size; 4392 table_index++) { 4393 id = sd_disk_table[table_index].device_id; 4394 idlen = strlen(id); 4395 if (idlen == 0) { 4396 continue; 4397 } 4398 4399 /* 4400 * The static configuration table currently does not 4401 * implement version 10 properties. Additionally, 4402 * multiple data-property-name entries are not 4403 * implemented in the static configuration table. 4404 */ 4405 if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) { 4406 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4407 "sd_process_sdconf_table: disk %s\n", id); 4408 sd_set_vers1_properties(un, 4409 sd_disk_table[table_index].flags, 4410 sd_disk_table[table_index].properties); 4411 break; 4412 } 4413 } 4414 } 4415 4416 4417 /* 4418 * Function: sd_sdconf_id_match 4419 * 4420 * Description: This local function implements a case sensitive vid/pid 4421 * comparison as well as the boundary cases of wild card and 4422 * multiple blanks. 4423 * 4424 * Note: An implicit assumption made here is that the scsi 4425 * inquiry structure will always keep the vid, pid and 4426 * revision strings in consecutive sequence, so they can be 4427 * read as a single string. If this assumption is not the 4428 * case, a separate string, to be used for the check, needs 4429 * to be built with these strings concatenated. 4430 * 4431 * Arguments: un - driver soft state (unit) structure 4432 * id - table or config file vid/pid 4433 * idlen - length of the vid/pid (bytes) 4434 * 4435 * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid 4436 * SD_FAILURE - Indicates no match with the inquiry vid/pid 4437 */ 4438 4439 static int 4440 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen) 4441 { 4442 struct scsi_inquiry *sd_inq; 4443 int rval = SD_SUCCESS; 4444 4445 ASSERT(un != NULL); 4446 sd_inq = un->un_sd->sd_inq; 4447 ASSERT(id != NULL); 4448 4449 /* 4450 * We use the inq_vid as a pointer to a buffer containing the 4451 * vid and pid and use the entire vid/pid length of the table 4452 * entry for the comparison. This works because the inq_pid 4453 * data member follows inq_vid in the scsi_inquiry structure. 4454 */ 4455 if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) { 4456 /* 4457 * The user id string is compared to the inquiry vid/pid 4458 * using a case insensitive comparison and ignoring 4459 * multiple spaces. 4460 */ 4461 rval = sd_blank_cmp(un, id, idlen); 4462 if (rval != SD_SUCCESS) { 4463 /* 4464 * User id strings that start and end with a "*" 4465 * are a special case. These do not have a 4466 * specific vendor, and the product string can 4467 * appear anywhere in the 16 byte PID portion of 4468 * the inquiry data. This is a simple strstr() 4469 * type search for the user id in the inquiry data. 4470 */ 4471 if ((id[0] == '*') && (id[idlen - 1] == '*')) { 4472 char *pidptr = &id[1]; 4473 int i; 4474 int j; 4475 int pidstrlen = idlen - 2; 4476 j = sizeof (SD_INQUIRY(un)->inq_pid) - 4477 pidstrlen; 4478 4479 if (j < 0) { 4480 return (SD_FAILURE); 4481 } 4482 for (i = 0; i < j; i++) { 4483 if (bcmp(&SD_INQUIRY(un)->inq_pid[i], 4484 pidptr, pidstrlen) == 0) { 4485 rval = SD_SUCCESS; 4486 break; 4487 } 4488 } 4489 } 4490 } 4491 } 4492 return (rval); 4493 } 4494 4495 4496 /* 4497 * Function: sd_blank_cmp 4498 * 4499 * Description: If the id string starts and ends with a space, treat 4500 * multiple consecutive spaces as equivalent to a single 4501 * space. For example, this causes a sd_disk_table entry 4502 * of " NEC CDROM " to match a device's id string of 4503 * "NEC CDROM". 4504 * 4505 * Note: The success exit condition for this routine is if 4506 * the pointer to the table entry is '\0' and the cnt of 4507 * the inquiry length is zero. This will happen if the inquiry 4508 * string returned by the device is padded with spaces to be 4509 * exactly 24 bytes in length (8 byte vid + 16 byte pid). The 4510 * SCSI spec states that the inquiry string is to be padded with 4511 * spaces. 4512 * 4513 * Arguments: un - driver soft state (unit) structure 4514 * id - table or config file vid/pid 4515 * idlen - length of the vid/pid (bytes) 4516 * 4517 * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid 4518 * SD_FAILURE - Indicates no match with the inquiry vid/pid 4519 */ 4520 4521 static int 4522 sd_blank_cmp(struct sd_lun *un, char *id, int idlen) 4523 { 4524 char *p1; 4525 char *p2; 4526 int cnt; 4527 cnt = sizeof (SD_INQUIRY(un)->inq_vid) + 4528 sizeof (SD_INQUIRY(un)->inq_pid); 4529 4530 ASSERT(un != NULL); 4531 p2 = un->un_sd->sd_inq->inq_vid; 4532 ASSERT(id != NULL); 4533 p1 = id; 4534 4535 if ((id[0] == ' ') && (id[idlen - 1] == ' ')) { 4536 /* 4537 * Note: string p1 is terminated by a NUL but string p2 4538 * isn't. The end of p2 is determined by cnt. 4539 */ 4540 for (;;) { 4541 /* skip over any extra blanks in both strings */ 4542 while ((*p1 != '\0') && (*p1 == ' ')) { 4543 p1++; 4544 } 4545 while ((cnt != 0) && (*p2 == ' ')) { 4546 p2++; 4547 cnt--; 4548 } 4549 4550 /* compare the two strings */ 4551 if ((cnt == 0) || 4552 (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) { 4553 break; 4554 } 4555 while ((cnt > 0) && 4556 (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) { 4557 p1++; 4558 p2++; 4559 cnt--; 4560 } 4561 } 4562 } 4563 4564 /* return SD_SUCCESS if both strings match */ 4565 return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE); 4566 } 4567 4568 4569 /* 4570 * Function: sd_chk_vers1_data 4571 * 4572 * Description: Verify the version 1 device properties provided by the 4573 * user via the configuration file 4574 * 4575 * Arguments: un - driver soft state (unit) structure 4576 * flags - integer mask indicating properties to be set 4577 * prop_list - integer list of property values 4578 * list_len - number of the elements 4579 * 4580 * Return Code: SD_SUCCESS - Indicates the user provided data is valid 4581 * SD_FAILURE - Indicates the user provided data is invalid 4582 */ 4583 4584 static int 4585 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list, 4586 int list_len, char *dataname_ptr) 4587 { 4588 int i; 4589 int mask = 1; 4590 int index = 0; 4591 4592 ASSERT(un != NULL); 4593 4594 /* Check for a NULL property name and list */ 4595 if (dataname_ptr == NULL) { 4596 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4597 "sd_chk_vers1_data: NULL data property name."); 4598 return (SD_FAILURE); 4599 } 4600 if (prop_list == NULL) { 4601 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4602 "sd_chk_vers1_data: %s NULL data property list.", 4603 dataname_ptr); 4604 return (SD_FAILURE); 4605 } 4606 4607 /* Display a warning if undefined bits are set in the flags */ 4608 if (flags & ~SD_CONF_BIT_MASK) { 4609 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4610 "sd_chk_vers1_data: invalid bits 0x%x in data list %s. " 4611 "Properties not set.", 4612 (flags & ~SD_CONF_BIT_MASK), dataname_ptr); 4613 return (SD_FAILURE); 4614 } 4615 4616 /* 4617 * Verify the length of the list by identifying the highest bit set 4618 * in the flags and validating that the property list has a length 4619 * up to the index of this bit. 4620 */ 4621 for (i = 0; i < SD_CONF_MAX_ITEMS; i++) { 4622 if (flags & mask) { 4623 index++; 4624 } 4625 mask = 1 << i; 4626 } 4627 if (list_len < (index + 2)) { 4628 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4629 "sd_chk_vers1_data: " 4630 "Data property list %s size is incorrect. " 4631 "Properties not set.", dataname_ptr); 4632 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: " 4633 "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS); 4634 return (SD_FAILURE); 4635 } 4636 return (SD_SUCCESS); 4637 } 4638 4639 4640 /* 4641 * Function: sd_set_vers1_properties 4642 * 4643 * Description: Set version 1 device properties based on a property list 4644 * retrieved from the driver configuration file or static 4645 * configuration table. Version 1 properties have the format: 4646 * 4647 * <data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN> 4648 * 4649 * where the prop0 value will be used to set prop0 if bit0 4650 * is set in the flags 4651 * 4652 * Arguments: un - driver soft state (unit) structure 4653 * flags - integer mask indicating properties to be set 4654 * prop_list - integer list of property values 4655 */ 4656 4657 static void 4658 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list) 4659 { 4660 ASSERT(un != NULL); 4661 4662 /* 4663 * Set the flag to indicate cache is to be disabled. An attempt 4664 * to disable the cache via sd_cache_control() will be made 4665 * later during attach once the basic initialization is complete. 4666 */ 4667 if (flags & SD_CONF_BSET_NOCACHE) { 4668 un->un_f_opt_disable_cache = TRUE; 4669 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4670 "sd_set_vers1_properties: caching disabled flag set\n"); 4671 } 4672 4673 /* CD-specific configuration parameters */ 4674 if (flags & SD_CONF_BSET_PLAYMSF_BCD) { 4675 un->un_f_cfg_playmsf_bcd = TRUE; 4676 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4677 "sd_set_vers1_properties: playmsf_bcd set\n"); 4678 } 4679 if (flags & SD_CONF_BSET_READSUB_BCD) { 4680 un->un_f_cfg_readsub_bcd = TRUE; 4681 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4682 "sd_set_vers1_properties: readsub_bcd set\n"); 4683 } 4684 if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) { 4685 un->un_f_cfg_read_toc_trk_bcd = TRUE; 4686 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4687 "sd_set_vers1_properties: read_toc_trk_bcd set\n"); 4688 } 4689 if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) { 4690 un->un_f_cfg_read_toc_addr_bcd = TRUE; 4691 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4692 "sd_set_vers1_properties: read_toc_addr_bcd set\n"); 4693 } 4694 if (flags & SD_CONF_BSET_NO_READ_HEADER) { 4695 un->un_f_cfg_no_read_header = TRUE; 4696 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4697 "sd_set_vers1_properties: no_read_header set\n"); 4698 } 4699 if (flags & SD_CONF_BSET_READ_CD_XD4) { 4700 un->un_f_cfg_read_cd_xd4 = TRUE; 4701 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4702 "sd_set_vers1_properties: read_cd_xd4 set\n"); 4703 } 4704 4705 /* Support for devices which do not have valid/unique serial numbers */ 4706 if (flags & SD_CONF_BSET_FAB_DEVID) { 4707 un->un_f_opt_fab_devid = TRUE; 4708 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4709 "sd_set_vers1_properties: fab_devid bit set\n"); 4710 } 4711 4712 /* Support for user throttle configuration */ 4713 if (flags & SD_CONF_BSET_THROTTLE) { 4714 ASSERT(prop_list != NULL); 4715 un->un_saved_throttle = un->un_throttle = 4716 prop_list->sdt_throttle; 4717 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4718 "sd_set_vers1_properties: throttle set to %d\n", 4719 prop_list->sdt_throttle); 4720 } 4721 4722 /* Set the per disk retry count according to the conf file or table. */ 4723 if (flags & SD_CONF_BSET_NRR_COUNT) { 4724 ASSERT(prop_list != NULL); 4725 if (prop_list->sdt_not_rdy_retries) { 4726 un->un_notready_retry_count = 4727 prop_list->sdt_not_rdy_retries; 4728 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4729 "sd_set_vers1_properties: not ready retry count" 4730 " set to %d\n", un->un_notready_retry_count); 4731 } 4732 } 4733 4734 /* The controller type is reported for generic disk driver ioctls */ 4735 if (flags & SD_CONF_BSET_CTYPE) { 4736 ASSERT(prop_list != NULL); 4737 switch (prop_list->sdt_ctype) { 4738 case CTYPE_CDROM: 4739 un->un_ctype = prop_list->sdt_ctype; 4740 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4741 "sd_set_vers1_properties: ctype set to " 4742 "CTYPE_CDROM\n"); 4743 break; 4744 case CTYPE_CCS: 4745 un->un_ctype = prop_list->sdt_ctype; 4746 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4747 "sd_set_vers1_properties: ctype set to " 4748 "CTYPE_CCS\n"); 4749 break; 4750 case CTYPE_ROD: /* RW optical */ 4751 un->un_ctype = prop_list->sdt_ctype; 4752 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4753 "sd_set_vers1_properties: ctype set to " 4754 "CTYPE_ROD\n"); 4755 break; 4756 default: 4757 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4758 "sd_set_vers1_properties: Could not set " 4759 "invalid ctype value (%d)", 4760 prop_list->sdt_ctype); 4761 } 4762 } 4763 4764 /* Purple failover timeout */ 4765 if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) { 4766 ASSERT(prop_list != NULL); 4767 un->un_busy_retry_count = 4768 prop_list->sdt_busy_retries; 4769 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4770 "sd_set_vers1_properties: " 4771 "busy retry count set to %d\n", 4772 un->un_busy_retry_count); 4773 } 4774 4775 /* Purple reset retry count */ 4776 if (flags & SD_CONF_BSET_RST_RETRIES) { 4777 ASSERT(prop_list != NULL); 4778 un->un_reset_retry_count = 4779 prop_list->sdt_reset_retries; 4780 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4781 "sd_set_vers1_properties: " 4782 "reset retry count set to %d\n", 4783 un->un_reset_retry_count); 4784 } 4785 4786 /* Purple reservation release timeout */ 4787 if (flags & SD_CONF_BSET_RSV_REL_TIME) { 4788 ASSERT(prop_list != NULL); 4789 un->un_reserve_release_time = 4790 prop_list->sdt_reserv_rel_time; 4791 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4792 "sd_set_vers1_properties: " 4793 "reservation release timeout set to %d\n", 4794 un->un_reserve_release_time); 4795 } 4796 4797 /* 4798 * Driver flag telling the driver to verify that no commands are pending 4799 * for a device before issuing a Test Unit Ready. This is a workaround 4800 * for a firmware bug in some Seagate eliteI drives. 4801 */ 4802 if (flags & SD_CONF_BSET_TUR_CHECK) { 4803 un->un_f_cfg_tur_check = TRUE; 4804 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4805 "sd_set_vers1_properties: tur queue check set\n"); 4806 } 4807 4808 if (flags & SD_CONF_BSET_MIN_THROTTLE) { 4809 un->un_min_throttle = prop_list->sdt_min_throttle; 4810 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4811 "sd_set_vers1_properties: min throttle set to %d\n", 4812 un->un_min_throttle); 4813 } 4814 4815 if (flags & SD_CONF_BSET_DISKSORT_DISABLED) { 4816 un->un_f_disksort_disabled = 4817 (prop_list->sdt_disk_sort_dis != 0) ? 4818 TRUE : FALSE; 4819 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4820 "sd_set_vers1_properties: disksort disabled " 4821 "flag set to %d\n", 4822 prop_list->sdt_disk_sort_dis); 4823 } 4824 4825 if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) { 4826 un->un_f_lun_reset_enabled = 4827 (prop_list->sdt_lun_reset_enable != 0) ? 4828 TRUE : FALSE; 4829 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4830 "sd_set_vers1_properties: lun reset enabled " 4831 "flag set to %d\n", 4832 prop_list->sdt_lun_reset_enable); 4833 } 4834 4835 if (flags & SD_CONF_BSET_CACHE_IS_NV) { 4836 un->un_f_suppress_cache_flush = 4837 (prop_list->sdt_suppress_cache_flush != 0) ? 4838 TRUE : FALSE; 4839 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4840 "sd_set_vers1_properties: suppress_cache_flush " 4841 "flag set to %d\n", 4842 prop_list->sdt_suppress_cache_flush); 4843 } 4844 4845 if (flags & SD_CONF_BSET_PC_DISABLED) { 4846 un->un_f_power_condition_disabled = 4847 (prop_list->sdt_power_condition_dis != 0) ? 4848 TRUE : FALSE; 4849 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4850 "sd_set_vers1_properties: power_condition_disabled " 4851 "flag set to %d\n", 4852 prop_list->sdt_power_condition_dis); 4853 } 4854 4855 /* 4856 * Validate the throttle values. 4857 * If any of the numbers are invalid, set everything to defaults. 4858 */ 4859 if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) || 4860 (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) || 4861 (un->un_min_throttle > un->un_throttle)) { 4862 un->un_saved_throttle = un->un_throttle = sd_max_throttle; 4863 un->un_min_throttle = sd_min_throttle; 4864 } 4865 } 4866 4867 /* 4868 * Function: sd_is_lsi() 4869 * 4870 * Description: Check for lsi devices, step through the static device 4871 * table to match vid/pid. 4872 * 4873 * Args: un - ptr to sd_lun 4874 * 4875 * Notes: When creating new LSI property, need to add the new LSI property 4876 * to this function. 4877 */ 4878 static void 4879 sd_is_lsi(struct sd_lun *un) 4880 { 4881 char *id = NULL; 4882 int table_index; 4883 int idlen; 4884 void *prop; 4885 4886 ASSERT(un != NULL); 4887 for (table_index = 0; table_index < sd_disk_table_size; 4888 table_index++) { 4889 id = sd_disk_table[table_index].device_id; 4890 idlen = strlen(id); 4891 if (idlen == 0) { 4892 continue; 4893 } 4894 4895 if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) { 4896 prop = sd_disk_table[table_index].properties; 4897 if (prop == &lsi_properties || 4898 prop == &lsi_oem_properties || 4899 prop == &lsi_properties_scsi || 4900 prop == &symbios_properties) { 4901 un->un_f_cfg_is_lsi = TRUE; 4902 } 4903 break; 4904 } 4905 } 4906 } 4907 4908 /* 4909 * Function: sd_get_physical_geometry 4910 * 4911 * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and 4912 * MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the 4913 * target, and use this information to initialize the physical 4914 * geometry cache specified by pgeom_p. 4915 * 4916 * MODE SENSE is an optional command, so failure in this case 4917 * does not necessarily denote an error. We want to use the 4918 * MODE SENSE commands to derive the physical geometry of the 4919 * device, but if either command fails, the logical geometry is 4920 * used as the fallback for disk label geometry in cmlb. 4921 * 4922 * This requires that un->un_blockcount and un->un_tgt_blocksize 4923 * have already been initialized for the current target and 4924 * that the current values be passed as args so that we don't 4925 * end up ever trying to use -1 as a valid value. This could 4926 * happen if either value is reset while we're not holding 4927 * the mutex. 4928 * 4929 * Arguments: un - driver soft state (unit) structure 4930 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 4931 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 4932 * to use the USCSI "direct" chain and bypass the normal 4933 * command waitq. 4934 * 4935 * Context: Kernel thread only (can sleep). 4936 */ 4937 4938 static int 4939 sd_get_physical_geometry(struct sd_lun *un, cmlb_geom_t *pgeom_p, 4940 diskaddr_t capacity, int lbasize, int path_flag) 4941 { 4942 struct mode_format *page3p; 4943 struct mode_geometry *page4p; 4944 struct mode_header *headerp; 4945 int sector_size; 4946 int nsect; 4947 int nhead; 4948 int ncyl; 4949 int intrlv; 4950 int spc; 4951 diskaddr_t modesense_capacity; 4952 int rpm; 4953 int bd_len; 4954 int mode_header_length; 4955 uchar_t *p3bufp; 4956 uchar_t *p4bufp; 4957 int cdbsize; 4958 int ret = EIO; 4959 sd_ssc_t *ssc; 4960 int status; 4961 4962 ASSERT(un != NULL); 4963 4964 if (lbasize == 0) { 4965 if (ISCD(un)) { 4966 lbasize = 2048; 4967 } else { 4968 lbasize = un->un_sys_blocksize; 4969 } 4970 } 4971 pgeom_p->g_secsize = (unsigned short)lbasize; 4972 4973 /* 4974 * If the unit is a cd/dvd drive MODE SENSE page three 4975 * and MODE SENSE page four are reserved (see SBC spec 4976 * and MMC spec). To prevent soft errors just return 4977 * using the default LBA size. 4978 */ 4979 if (ISCD(un)) 4980 return (ret); 4981 4982 cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0; 4983 4984 /* 4985 * Retrieve MODE SENSE page 3 - Format Device Page 4986 */ 4987 p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP); 4988 ssc = sd_ssc_init(un); 4989 status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p3bufp, 4990 SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag); 4991 if (status != 0) { 4992 SD_ERROR(SD_LOG_COMMON, un, 4993 "sd_get_physical_geometry: mode sense page 3 failed\n"); 4994 goto page3_exit; 4995 } 4996 4997 /* 4998 * Determine size of Block Descriptors in order to locate the mode 4999 * page data. ATAPI devices return 0, SCSI devices should return 5000 * MODE_BLK_DESC_LENGTH. 5001 */ 5002 headerp = (struct mode_header *)p3bufp; 5003 if (un->un_f_cfg_is_atapi == TRUE) { 5004 struct mode_header_grp2 *mhp = 5005 (struct mode_header_grp2 *)headerp; 5006 mode_header_length = MODE_HEADER_LENGTH_GRP2; 5007 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 5008 } else { 5009 mode_header_length = MODE_HEADER_LENGTH; 5010 bd_len = ((struct mode_header *)headerp)->bdesc_length; 5011 } 5012 5013 if (bd_len > MODE_BLK_DESC_LENGTH) { 5014 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON, 5015 "sd_get_physical_geometry: received unexpected bd_len " 5016 "of %d, page3\n", bd_len); 5017 status = EIO; 5018 goto page3_exit; 5019 } 5020 5021 page3p = (struct mode_format *) 5022 ((caddr_t)headerp + mode_header_length + bd_len); 5023 5024 if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) { 5025 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON, 5026 "sd_get_physical_geometry: mode sense pg3 code mismatch " 5027 "%d\n", page3p->mode_page.code); 5028 status = EIO; 5029 goto page3_exit; 5030 } 5031 5032 /* 5033 * Use this physical geometry data only if BOTH MODE SENSE commands 5034 * complete successfully; otherwise, revert to the logical geometry. 5035 * So, we need to save everything in temporary variables. 5036 */ 5037 sector_size = BE_16(page3p->data_bytes_sect); 5038 5039 /* 5040 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size 5041 */ 5042 if (sector_size == 0) { 5043 sector_size = un->un_sys_blocksize; 5044 } else { 5045 sector_size &= ~(un->un_sys_blocksize - 1); 5046 } 5047 5048 nsect = BE_16(page3p->sect_track); 5049 intrlv = BE_16(page3p->interleave); 5050 5051 SD_INFO(SD_LOG_COMMON, un, 5052 "sd_get_physical_geometry: Format Parameters (page 3)\n"); 5053 SD_INFO(SD_LOG_COMMON, un, 5054 " mode page: %d; nsect: %d; sector size: %d;\n", 5055 page3p->mode_page.code, nsect, sector_size); 5056 SD_INFO(SD_LOG_COMMON, un, 5057 " interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv, 5058 BE_16(page3p->track_skew), 5059 BE_16(page3p->cylinder_skew)); 5060 5061 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 5062 5063 /* 5064 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page 5065 */ 5066 p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP); 5067 status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p4bufp, 5068 SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag); 5069 if (status != 0) { 5070 SD_ERROR(SD_LOG_COMMON, un, 5071 "sd_get_physical_geometry: mode sense page 4 failed\n"); 5072 goto page4_exit; 5073 } 5074 5075 /* 5076 * Determine size of Block Descriptors in order to locate the mode 5077 * page data. ATAPI devices return 0, SCSI devices should return 5078 * MODE_BLK_DESC_LENGTH. 5079 */ 5080 headerp = (struct mode_header *)p4bufp; 5081 if (un->un_f_cfg_is_atapi == TRUE) { 5082 struct mode_header_grp2 *mhp = 5083 (struct mode_header_grp2 *)headerp; 5084 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 5085 } else { 5086 bd_len = ((struct mode_header *)headerp)->bdesc_length; 5087 } 5088 5089 if (bd_len > MODE_BLK_DESC_LENGTH) { 5090 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON, 5091 "sd_get_physical_geometry: received unexpected bd_len of " 5092 "%d, page4\n", bd_len); 5093 status = EIO; 5094 goto page4_exit; 5095 } 5096 5097 page4p = (struct mode_geometry *) 5098 ((caddr_t)headerp + mode_header_length + bd_len); 5099 5100 if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) { 5101 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON, 5102 "sd_get_physical_geometry: mode sense pg4 code mismatch " 5103 "%d\n", page4p->mode_page.code); 5104 status = EIO; 5105 goto page4_exit; 5106 } 5107 5108 /* 5109 * Stash the data now, after we know that both commands completed. 5110 */ 5111 5112 5113 nhead = (int)page4p->heads; /* uchar, so no conversion needed */ 5114 spc = nhead * nsect; 5115 ncyl = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb; 5116 rpm = BE_16(page4p->rpm); 5117 5118 modesense_capacity = spc * ncyl; 5119 5120 SD_INFO(SD_LOG_COMMON, un, 5121 "sd_get_physical_geometry: Geometry Parameters (page 4)\n"); 5122 SD_INFO(SD_LOG_COMMON, un, 5123 " cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm); 5124 SD_INFO(SD_LOG_COMMON, un, 5125 " computed capacity(h*s*c): %d;\n", modesense_capacity); 5126 SD_INFO(SD_LOG_COMMON, un, " pgeom_p: %p; read cap: %d\n", 5127 (void *)pgeom_p, capacity); 5128 5129 /* 5130 * Compensate if the drive's geometry is not rectangular, i.e., 5131 * the product of C * H * S returned by MODE SENSE >= that returned 5132 * by read capacity. This is an idiosyncrasy of the original x86 5133 * disk subsystem. 5134 */ 5135 if (modesense_capacity >= capacity) { 5136 SD_INFO(SD_LOG_COMMON, un, 5137 "sd_get_physical_geometry: adjusting acyl; " 5138 "old: %d; new: %d\n", pgeom_p->g_acyl, 5139 (modesense_capacity - capacity + spc - 1) / spc); 5140 if (sector_size != 0) { 5141 /* 1243403: NEC D38x7 drives don't support sec size */ 5142 pgeom_p->g_secsize = (unsigned short)sector_size; 5143 } 5144 pgeom_p->g_nsect = (unsigned short)nsect; 5145 pgeom_p->g_nhead = (unsigned short)nhead; 5146 pgeom_p->g_capacity = capacity; 5147 pgeom_p->g_acyl = 5148 (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc; 5149 pgeom_p->g_ncyl = ncyl - pgeom_p->g_acyl; 5150 } 5151 5152 pgeom_p->g_rpm = (unsigned short)rpm; 5153 pgeom_p->g_intrlv = (unsigned short)intrlv; 5154 ret = 0; 5155 5156 SD_INFO(SD_LOG_COMMON, un, 5157 "sd_get_physical_geometry: mode sense geometry:\n"); 5158 SD_INFO(SD_LOG_COMMON, un, 5159 " nsect: %d; sector size: %d; interlv: %d\n", 5160 nsect, sector_size, intrlv); 5161 SD_INFO(SD_LOG_COMMON, un, 5162 " nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n", 5163 nhead, ncyl, rpm, modesense_capacity); 5164 SD_INFO(SD_LOG_COMMON, un, 5165 "sd_get_physical_geometry: (cached)\n"); 5166 SD_INFO(SD_LOG_COMMON, un, 5167 " ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n", 5168 pgeom_p->g_ncyl, pgeom_p->g_acyl, 5169 pgeom_p->g_nhead, pgeom_p->g_nsect); 5170 SD_INFO(SD_LOG_COMMON, un, 5171 " lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n", 5172 pgeom_p->g_secsize, pgeom_p->g_capacity, 5173 pgeom_p->g_intrlv, pgeom_p->g_rpm); 5174 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 5175 5176 page4_exit: 5177 kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH); 5178 5179 page3_exit: 5180 kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH); 5181 5182 if (status != 0) { 5183 if (status == EIO) { 5184 /* 5185 * Some disks do not support mode sense(6), we 5186 * should ignore this kind of error(sense key is 5187 * 0x5 - illegal request). 5188 */ 5189 uint8_t *sensep; 5190 int senlen; 5191 5192 sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf; 5193 senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen - 5194 ssc->ssc_uscsi_cmd->uscsi_rqresid); 5195 5196 if (senlen > 0 && 5197 scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) { 5198 sd_ssc_assessment(ssc, 5199 SD_FMT_IGNORE_COMPROMISE); 5200 } else { 5201 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 5202 } 5203 } else { 5204 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5205 } 5206 } 5207 sd_ssc_fini(ssc); 5208 return (ret); 5209 } 5210 5211 /* 5212 * Function: sd_get_virtual_geometry 5213 * 5214 * Description: Ask the controller to tell us about the target device. 5215 * 5216 * Arguments: un - pointer to softstate 5217 * capacity - disk capacity in #blocks 5218 * lbasize - disk block size in bytes 5219 * 5220 * Context: Kernel thread only 5221 */ 5222 5223 static int 5224 sd_get_virtual_geometry(struct sd_lun *un, cmlb_geom_t *lgeom_p, 5225 diskaddr_t capacity, int lbasize) 5226 { 5227 uint_t geombuf; 5228 int spc; 5229 5230 ASSERT(un != NULL); 5231 5232 /* Set sector size, and total number of sectors */ 5233 (void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size", lbasize, 1); 5234 (void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1); 5235 5236 /* Let the HBA tell us its geometry */ 5237 geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1); 5238 5239 /* A value of -1 indicates an undefined "geometry" property */ 5240 if (geombuf == (-1)) { 5241 return (EINVAL); 5242 } 5243 5244 /* Initialize the logical geometry cache. */ 5245 lgeom_p->g_nhead = (geombuf >> 16) & 0xffff; 5246 lgeom_p->g_nsect = geombuf & 0xffff; 5247 lgeom_p->g_secsize = un->un_sys_blocksize; 5248 5249 spc = lgeom_p->g_nhead * lgeom_p->g_nsect; 5250 5251 /* 5252 * Note: The driver originally converted the capacity value from 5253 * target blocks to system blocks. However, the capacity value passed 5254 * to this routine is already in terms of system blocks (this scaling 5255 * is done when the READ CAPACITY command is issued and processed). 5256 * This 'error' may have gone undetected because the usage of g_ncyl 5257 * (which is based upon g_capacity) is very limited within the driver 5258 */ 5259 lgeom_p->g_capacity = capacity; 5260 5261 /* 5262 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The 5263 * hba may return zero values if the device has been removed. 5264 */ 5265 if (spc == 0) { 5266 lgeom_p->g_ncyl = 0; 5267 } else { 5268 lgeom_p->g_ncyl = lgeom_p->g_capacity / spc; 5269 } 5270 lgeom_p->g_acyl = 0; 5271 5272 SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n"); 5273 return (0); 5274 5275 } 5276 /* 5277 * Function: sd_update_block_info 5278 * 5279 * Description: Calculate a byte count to sector count bitshift value 5280 * from sector size. 5281 * 5282 * Arguments: un: unit struct. 5283 * lbasize: new target sector size 5284 * capacity: new target capacity, ie. block count 5285 * 5286 * Context: Kernel thread context 5287 */ 5288 5289 static void 5290 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity) 5291 { 5292 if (lbasize != 0) { 5293 un->un_tgt_blocksize = lbasize; 5294 un->un_f_tgt_blocksize_is_valid = TRUE; 5295 if (!un->un_f_has_removable_media) { 5296 un->un_sys_blocksize = lbasize; 5297 } 5298 } 5299 5300 if (capacity != 0) { 5301 un->un_blockcount = capacity; 5302 un->un_f_blockcount_is_valid = TRUE; 5303 5304 /* 5305 * The capacity has changed so update the errstats. 5306 */ 5307 if (un->un_errstats != NULL) { 5308 struct sd_errstats *stp; 5309 5310 capacity *= un->un_sys_blocksize; 5311 stp = (struct sd_errstats *)un->un_errstats->ks_data; 5312 if (stp->sd_capacity.value.ui64 < capacity) 5313 stp->sd_capacity.value.ui64 = capacity; 5314 } 5315 } 5316 } 5317 5318 5319 /* 5320 * Function: sd_register_devid 5321 * 5322 * Description: This routine will obtain the device id information from the 5323 * target, obtain the serial number, and register the device 5324 * id with the ddi framework. 5325 * 5326 * Arguments: devi - the system's dev_info_t for the device. 5327 * un - driver soft state (unit) structure 5328 * reservation_flag - indicates if a reservation conflict 5329 * occurred during attach 5330 * 5331 * Context: Kernel Thread 5332 */ 5333 static void 5334 sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi, int reservation_flag) 5335 { 5336 int rval = 0; 5337 uchar_t *inq80 = NULL; 5338 size_t inq80_len = MAX_INQUIRY_SIZE; 5339 size_t inq80_resid = 0; 5340 uchar_t *inq83 = NULL; 5341 size_t inq83_len = MAX_INQUIRY_SIZE; 5342 size_t inq83_resid = 0; 5343 int dlen, len; 5344 char *sn; 5345 struct sd_lun *un; 5346 5347 ASSERT(ssc != NULL); 5348 un = ssc->ssc_un; 5349 ASSERT(un != NULL); 5350 ASSERT(mutex_owned(SD_MUTEX(un))); 5351 ASSERT((SD_DEVINFO(un)) == devi); 5352 5353 5354 /* 5355 * We check the availability of the World Wide Name (0x83) and Unit 5356 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using 5357 * un_vpd_page_mask from them, we decide which way to get the WWN. If 5358 * 0x83 is available, that is the best choice. Our next choice is 5359 * 0x80. If neither are available, we munge the devid from the device 5360 * vid/pid/serial # for Sun qualified disks, or use the ddi framework 5361 * to fabricate a devid for non-Sun qualified disks. 5362 */ 5363 if (sd_check_vpd_page_support(ssc) == 0) { 5364 /* collect page 80 data if available */ 5365 if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) { 5366 5367 mutex_exit(SD_MUTEX(un)); 5368 inq80 = kmem_zalloc(inq80_len, KM_SLEEP); 5369 5370 rval = sd_send_scsi_INQUIRY(ssc, inq80, inq80_len, 5371 0x01, 0x80, &inq80_resid); 5372 5373 if (rval != 0) { 5374 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5375 kmem_free(inq80, inq80_len); 5376 inq80 = NULL; 5377 inq80_len = 0; 5378 } else if (ddi_prop_exists( 5379 DDI_DEV_T_NONE, SD_DEVINFO(un), 5380 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, 5381 INQUIRY_SERIAL_NO) == 0) { 5382 /* 5383 * If we don't already have a serial number 5384 * property, do quick verify of data returned 5385 * and define property. 5386 */ 5387 dlen = inq80_len - inq80_resid; 5388 len = (size_t)inq80[3]; 5389 if ((dlen >= 4) && ((len + 4) <= dlen)) { 5390 /* 5391 * Ensure sn termination, skip leading 5392 * blanks, and create property 5393 * 'inquiry-serial-no'. 5394 */ 5395 sn = (char *)&inq80[4]; 5396 sn[len] = 0; 5397 while (*sn && (*sn == ' ')) 5398 sn++; 5399 if (*sn) { 5400 (void) ddi_prop_update_string( 5401 DDI_DEV_T_NONE, 5402 SD_DEVINFO(un), 5403 INQUIRY_SERIAL_NO, sn); 5404 } 5405 } 5406 } 5407 mutex_enter(SD_MUTEX(un)); 5408 } 5409 5410 /* collect page 83 data if available */ 5411 if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) { 5412 mutex_exit(SD_MUTEX(un)); 5413 inq83 = kmem_zalloc(inq83_len, KM_SLEEP); 5414 5415 rval = sd_send_scsi_INQUIRY(ssc, inq83, inq83_len, 5416 0x01, 0x83, &inq83_resid); 5417 5418 if (rval != 0) { 5419 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5420 kmem_free(inq83, inq83_len); 5421 inq83 = NULL; 5422 inq83_len = 0; 5423 } 5424 mutex_enter(SD_MUTEX(un)); 5425 } 5426 } 5427 5428 /* 5429 * If transport has already registered a devid for this target 5430 * then that takes precedence over the driver's determination 5431 * of the devid. 5432 * 5433 * NOTE: The reason this check is done here instead of at the beginning 5434 * of the function is to allow the code above to create the 5435 * 'inquiry-serial-no' property. 5436 */ 5437 if (ddi_devid_get(SD_DEVINFO(un), &un->un_devid) == DDI_SUCCESS) { 5438 ASSERT(un->un_devid); 5439 un->un_f_devid_transport_defined = TRUE; 5440 goto cleanup; /* use devid registered by the transport */ 5441 } 5442 5443 /* 5444 * This is the case of antiquated Sun disk drives that have the 5445 * FAB_DEVID property set in the disk_table. These drives 5446 * manage the devid's by storing them in last 2 available sectors 5447 * on the drive and have them fabricated by the ddi layer by calling 5448 * ddi_devid_init and passing the DEVID_FAB flag. 5449 */ 5450 if (un->un_f_opt_fab_devid == TRUE) { 5451 /* 5452 * Depending on EINVAL isn't reliable, since a reserved disk 5453 * may result in invalid geometry, so check to make sure a 5454 * reservation conflict did not occur during attach. 5455 */ 5456 if ((sd_get_devid(ssc) == EINVAL) && 5457 (reservation_flag != SD_TARGET_IS_RESERVED)) { 5458 /* 5459 * The devid is invalid AND there is no reservation 5460 * conflict. Fabricate a new devid. 5461 */ 5462 (void) sd_create_devid(ssc); 5463 } 5464 5465 /* Register the devid if it exists */ 5466 if (un->un_devid != NULL) { 5467 (void) ddi_devid_register(SD_DEVINFO(un), 5468 un->un_devid); 5469 SD_INFO(SD_LOG_ATTACH_DETACH, un, 5470 "sd_register_devid: Devid Fabricated\n"); 5471 } 5472 goto cleanup; 5473 } 5474 5475 /* encode best devid possible based on data available */ 5476 if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST, 5477 (char *)ddi_driver_name(SD_DEVINFO(un)), 5478 (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)), 5479 inq80, inq80_len - inq80_resid, inq83, inq83_len - 5480 inq83_resid, &un->un_devid) == DDI_SUCCESS) { 5481 5482 /* devid successfully encoded, register devid */ 5483 (void) ddi_devid_register(SD_DEVINFO(un), un->un_devid); 5484 5485 } else { 5486 /* 5487 * Unable to encode a devid based on data available. 5488 * This is not a Sun qualified disk. Older Sun disk 5489 * drives that have the SD_FAB_DEVID property 5490 * set in the disk_table and non Sun qualified 5491 * disks are treated in the same manner. These 5492 * drives manage the devid's by storing them in 5493 * last 2 available sectors on the drive and 5494 * have them fabricated by the ddi layer by 5495 * calling ddi_devid_init and passing the 5496 * DEVID_FAB flag. 5497 * Create a fabricate devid only if there's no 5498 * fabricate devid existed. 5499 */ 5500 if (sd_get_devid(ssc) == EINVAL) { 5501 (void) sd_create_devid(ssc); 5502 } 5503 un->un_f_opt_fab_devid = TRUE; 5504 5505 /* Register the devid if it exists */ 5506 if (un->un_devid != NULL) { 5507 (void) ddi_devid_register(SD_DEVINFO(un), 5508 un->un_devid); 5509 SD_INFO(SD_LOG_ATTACH_DETACH, un, 5510 "sd_register_devid: devid fabricated using " 5511 "ddi framework\n"); 5512 } 5513 } 5514 5515 cleanup: 5516 /* clean up resources */ 5517 if (inq80 != NULL) { 5518 kmem_free(inq80, inq80_len); 5519 } 5520 if (inq83 != NULL) { 5521 kmem_free(inq83, inq83_len); 5522 } 5523 } 5524 5525 5526 5527 /* 5528 * Function: sd_get_devid 5529 * 5530 * Description: This routine will return 0 if a valid device id has been 5531 * obtained from the target and stored in the soft state. If a 5532 * valid device id has not been previously read and stored, a 5533 * read attempt will be made. 5534 * 5535 * Arguments: un - driver soft state (unit) structure 5536 * 5537 * Return Code: 0 if we successfully get the device id 5538 * 5539 * Context: Kernel Thread 5540 */ 5541 5542 static int 5543 sd_get_devid(sd_ssc_t *ssc) 5544 { 5545 struct dk_devid *dkdevid; 5546 ddi_devid_t tmpid; 5547 uint_t *ip; 5548 size_t sz; 5549 diskaddr_t blk; 5550 int status; 5551 int chksum; 5552 int i; 5553 size_t buffer_size; 5554 struct sd_lun *un; 5555 5556 ASSERT(ssc != NULL); 5557 un = ssc->ssc_un; 5558 ASSERT(un != NULL); 5559 ASSERT(mutex_owned(SD_MUTEX(un))); 5560 5561 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n", 5562 un); 5563 5564 if (un->un_devid != NULL) { 5565 return (0); 5566 } 5567 5568 mutex_exit(SD_MUTEX(un)); 5569 if (cmlb_get_devid_block(un->un_cmlbhandle, &blk, 5570 (void *)SD_PATH_DIRECT) != 0) { 5571 mutex_enter(SD_MUTEX(un)); 5572 return (EINVAL); 5573 } 5574 5575 /* 5576 * Read and verify device id, stored in the reserved cylinders at the 5577 * end of the disk. Backup label is on the odd sectors of the last 5578 * track of the last cylinder. Device id will be on track of the next 5579 * to last cylinder. 5580 */ 5581 mutex_enter(SD_MUTEX(un)); 5582 buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid)); 5583 mutex_exit(SD_MUTEX(un)); 5584 dkdevid = kmem_alloc(buffer_size, KM_SLEEP); 5585 status = sd_send_scsi_READ(ssc, dkdevid, buffer_size, blk, 5586 SD_PATH_DIRECT); 5587 5588 if (status != 0) { 5589 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5590 goto error; 5591 } 5592 5593 /* Validate the revision */ 5594 if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) || 5595 (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) { 5596 status = EINVAL; 5597 goto error; 5598 } 5599 5600 /* Calculate the checksum */ 5601 chksum = 0; 5602 ip = (uint_t *)dkdevid; 5603 for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int)); 5604 i++) { 5605 chksum ^= ip[i]; 5606 } 5607 5608 /* Compare the checksums */ 5609 if (DKD_GETCHKSUM(dkdevid) != chksum) { 5610 status = EINVAL; 5611 goto error; 5612 } 5613 5614 /* Validate the device id */ 5615 if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) { 5616 status = EINVAL; 5617 goto error; 5618 } 5619 5620 /* 5621 * Store the device id in the driver soft state 5622 */ 5623 sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid); 5624 tmpid = kmem_alloc(sz, KM_SLEEP); 5625 5626 mutex_enter(SD_MUTEX(un)); 5627 5628 un->un_devid = tmpid; 5629 bcopy(&dkdevid->dkd_devid, un->un_devid, sz); 5630 5631 kmem_free(dkdevid, buffer_size); 5632 5633 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un); 5634 5635 return (status); 5636 error: 5637 mutex_enter(SD_MUTEX(un)); 5638 kmem_free(dkdevid, buffer_size); 5639 return (status); 5640 } 5641 5642 5643 /* 5644 * Function: sd_create_devid 5645 * 5646 * Description: This routine will fabricate the device id and write it 5647 * to the disk. 5648 * 5649 * Arguments: un - driver soft state (unit) structure 5650 * 5651 * Return Code: value of the fabricated device id 5652 * 5653 * Context: Kernel Thread 5654 */ 5655 5656 static ddi_devid_t 5657 sd_create_devid(sd_ssc_t *ssc) 5658 { 5659 struct sd_lun *un; 5660 5661 ASSERT(ssc != NULL); 5662 un = ssc->ssc_un; 5663 ASSERT(un != NULL); 5664 5665 /* Fabricate the devid */ 5666 if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid) 5667 == DDI_FAILURE) { 5668 return (NULL); 5669 } 5670 5671 /* Write the devid to disk */ 5672 if (sd_write_deviceid(ssc) != 0) { 5673 ddi_devid_free(un->un_devid); 5674 un->un_devid = NULL; 5675 } 5676 5677 return (un->un_devid); 5678 } 5679 5680 5681 /* 5682 * Function: sd_write_deviceid 5683 * 5684 * Description: This routine will write the device id to the disk 5685 * reserved sector. 5686 * 5687 * Arguments: un - driver soft state (unit) structure 5688 * 5689 * Return Code: EINVAL 5690 * value returned by sd_send_scsi_cmd 5691 * 5692 * Context: Kernel Thread 5693 */ 5694 5695 static int 5696 sd_write_deviceid(sd_ssc_t *ssc) 5697 { 5698 struct dk_devid *dkdevid; 5699 uchar_t *buf; 5700 diskaddr_t blk; 5701 uint_t *ip, chksum; 5702 int status; 5703 int i; 5704 struct sd_lun *un; 5705 5706 ASSERT(ssc != NULL); 5707 un = ssc->ssc_un; 5708 ASSERT(un != NULL); 5709 ASSERT(mutex_owned(SD_MUTEX(un))); 5710 5711 mutex_exit(SD_MUTEX(un)); 5712 if (cmlb_get_devid_block(un->un_cmlbhandle, &blk, 5713 (void *)SD_PATH_DIRECT) != 0) { 5714 mutex_enter(SD_MUTEX(un)); 5715 return (-1); 5716 } 5717 5718 5719 /* Allocate the buffer */ 5720 buf = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP); 5721 dkdevid = (struct dk_devid *)buf; 5722 5723 /* Fill in the revision */ 5724 dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB; 5725 dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB; 5726 5727 /* Copy in the device id */ 5728 mutex_enter(SD_MUTEX(un)); 5729 bcopy(un->un_devid, &dkdevid->dkd_devid, 5730 ddi_devid_sizeof(un->un_devid)); 5731 mutex_exit(SD_MUTEX(un)); 5732 5733 /* Calculate the checksum */ 5734 chksum = 0; 5735 ip = (uint_t *)dkdevid; 5736 for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int)); 5737 i++) { 5738 chksum ^= ip[i]; 5739 } 5740 5741 /* Fill-in checksum */ 5742 DKD_FORMCHKSUM(chksum, dkdevid); 5743 5744 /* Write the reserved sector */ 5745 status = sd_send_scsi_WRITE(ssc, buf, un->un_sys_blocksize, blk, 5746 SD_PATH_DIRECT); 5747 if (status != 0) 5748 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5749 5750 kmem_free(buf, un->un_sys_blocksize); 5751 5752 mutex_enter(SD_MUTEX(un)); 5753 return (status); 5754 } 5755 5756 5757 /* 5758 * Function: sd_check_vpd_page_support 5759 * 5760 * Description: This routine sends an inquiry command with the EVPD bit set and 5761 * a page code of 0x00 to the device. It is used to determine which 5762 * vital product pages are available to find the devid. We are 5763 * looking for pages 0x83 0x80 or 0xB1. If we return a negative 1, 5764 * the device does not support that command. 5765 * 5766 * Arguments: un - driver soft state (unit) structure 5767 * 5768 * Return Code: 0 - success 5769 * 1 - check condition 5770 * 5771 * Context: This routine can sleep. 5772 */ 5773 5774 static int 5775 sd_check_vpd_page_support(sd_ssc_t *ssc) 5776 { 5777 uchar_t *page_list = NULL; 5778 uchar_t page_length = 0xff; /* Use max possible length */ 5779 uchar_t evpd = 0x01; /* Set the EVPD bit */ 5780 uchar_t page_code = 0x00; /* Supported VPD Pages */ 5781 int rval = 0; 5782 int counter; 5783 struct sd_lun *un; 5784 5785 ASSERT(ssc != NULL); 5786 un = ssc->ssc_un; 5787 ASSERT(un != NULL); 5788 ASSERT(mutex_owned(SD_MUTEX(un))); 5789 5790 mutex_exit(SD_MUTEX(un)); 5791 5792 /* 5793 * We'll set the page length to the maximum to save figuring it out 5794 * with an additional call. 5795 */ 5796 page_list = kmem_zalloc(page_length, KM_SLEEP); 5797 5798 rval = sd_send_scsi_INQUIRY(ssc, page_list, page_length, evpd, 5799 page_code, NULL); 5800 5801 if (rval != 0) 5802 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5803 5804 mutex_enter(SD_MUTEX(un)); 5805 5806 /* 5807 * Now we must validate that the device accepted the command, as some 5808 * drives do not support it. If the drive does support it, we will 5809 * return 0, and the supported pages will be in un_vpd_page_mask. If 5810 * not, we return -1. 5811 */ 5812 if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) { 5813 /* Loop to find one of the 2 pages we need */ 5814 counter = 4; /* Supported pages start at byte 4, with 0x00 */ 5815 5816 /* 5817 * Pages are returned in ascending order, and 0x83 is what we 5818 * are hoping for. 5819 */ 5820 while ((page_list[counter] <= 0xB1) && 5821 (counter <= (page_list[VPD_PAGE_LENGTH] + 5822 VPD_HEAD_OFFSET))) { 5823 /* 5824 * Add 3 because page_list[3] is the number of 5825 * pages minus 3 5826 */ 5827 5828 switch (page_list[counter]) { 5829 case 0x00: 5830 un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG; 5831 break; 5832 case 0x80: 5833 un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG; 5834 break; 5835 case 0x81: 5836 un->un_vpd_page_mask |= SD_VPD_OPERATING_PG; 5837 break; 5838 case 0x82: 5839 un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG; 5840 break; 5841 case 0x83: 5842 un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG; 5843 break; 5844 case 0x86: 5845 un->un_vpd_page_mask |= SD_VPD_EXTENDED_DATA_PG; 5846 break; 5847 case 0xB1: 5848 un->un_vpd_page_mask |= SD_VPD_DEV_CHARACTER_PG; 5849 break; 5850 } 5851 counter++; 5852 } 5853 5854 } else { 5855 rval = -1; 5856 5857 SD_INFO(SD_LOG_ATTACH_DETACH, un, 5858 "sd_check_vpd_page_support: This drive does not implement " 5859 "VPD pages.\n"); 5860 } 5861 5862 kmem_free(page_list, page_length); 5863 5864 return (rval); 5865 } 5866 5867 5868 /* 5869 * Function: sd_setup_pm 5870 * 5871 * Description: Initialize Power Management on the device 5872 * 5873 * Context: Kernel Thread 5874 */ 5875 5876 static void 5877 sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi) 5878 { 5879 uint_t log_page_size; 5880 uchar_t *log_page_data; 5881 int rval = 0; 5882 struct sd_lun *un; 5883 5884 ASSERT(ssc != NULL); 5885 un = ssc->ssc_un; 5886 ASSERT(un != NULL); 5887 5888 /* 5889 * Since we are called from attach, holding a mutex for 5890 * un is unnecessary. Because some of the routines called 5891 * from here require SD_MUTEX to not be held, assert this 5892 * right up front. 5893 */ 5894 ASSERT(!mutex_owned(SD_MUTEX(un))); 5895 /* 5896 * Since the sd device does not have the 'reg' property, 5897 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries. 5898 * The following code is to tell cpr that this device 5899 * DOES need to be suspended and resumed. 5900 */ 5901 (void) ddi_prop_update_string(DDI_DEV_T_NONE, devi, 5902 "pm-hardware-state", "needs-suspend-resume"); 5903 5904 /* 5905 * This complies with the new power management framework 5906 * for certain desktop machines. Create the pm_components 5907 * property as a string array property. 5908 * If un_f_pm_supported is TRUE, that means the disk 5909 * attached HBA has set the "pm-capable" property and 5910 * the value of this property is bigger than 0. 5911 */ 5912 if (un->un_f_pm_supported) { 5913 /* 5914 * not all devices have a motor, try it first. 5915 * some devices may return ILLEGAL REQUEST, some 5916 * will hang 5917 * The following START_STOP_UNIT is used to check if target 5918 * device has a motor. 5919 */ 5920 un->un_f_start_stop_supported = TRUE; 5921 5922 if (un->un_f_power_condition_supported) { 5923 rval = sd_send_scsi_START_STOP_UNIT(ssc, 5924 SD_POWER_CONDITION, SD_TARGET_ACTIVE, 5925 SD_PATH_DIRECT); 5926 if (rval != 0) { 5927 un->un_f_power_condition_supported = FALSE; 5928 } 5929 } 5930 if (!un->un_f_power_condition_supported) { 5931 rval = sd_send_scsi_START_STOP_UNIT(ssc, 5932 SD_START_STOP, SD_TARGET_START, SD_PATH_DIRECT); 5933 } 5934 if (rval != 0) { 5935 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5936 un->un_f_start_stop_supported = FALSE; 5937 } 5938 5939 /* 5940 * create pm properties anyways otherwise the parent can't 5941 * go to sleep 5942 */ 5943 un->un_f_pm_is_enabled = TRUE; 5944 (void) sd_create_pm_components(devi, un); 5945 5946 /* 5947 * If it claims that log sense is supported, check it out. 5948 */ 5949 if (un->un_f_log_sense_supported) { 5950 rval = sd_log_page_supported(ssc, 5951 START_STOP_CYCLE_PAGE); 5952 if (rval == 1) { 5953 /* Page found, use it. */ 5954 un->un_start_stop_cycle_page = 5955 START_STOP_CYCLE_PAGE; 5956 } else { 5957 /* 5958 * Page not found or log sense is not 5959 * supported. 5960 * Notice we do not check the old style 5961 * START_STOP_CYCLE_VU_PAGE because this 5962 * code path does not apply to old disks. 5963 */ 5964 un->un_f_log_sense_supported = FALSE; 5965 un->un_f_pm_log_sense_smart = FALSE; 5966 } 5967 } 5968 5969 return; 5970 } 5971 5972 /* 5973 * For the disk whose attached HBA has not set the "pm-capable" 5974 * property, check if it supports the power management. 5975 */ 5976 if (!un->un_f_log_sense_supported) { 5977 un->un_power_level = SD_SPINDLE_ON; 5978 un->un_f_pm_is_enabled = FALSE; 5979 return; 5980 } 5981 5982 rval = sd_log_page_supported(ssc, START_STOP_CYCLE_PAGE); 5983 5984 #ifdef SDDEBUG 5985 if (sd_force_pm_supported) { 5986 /* Force a successful result */ 5987 rval = 1; 5988 } 5989 #endif 5990 5991 /* 5992 * If the start-stop cycle counter log page is not supported 5993 * or if the pm-capable property is set to be false (0), 5994 * then we should not create the pm_components property. 5995 */ 5996 if (rval == -1) { 5997 /* 5998 * Error. 5999 * Reading log sense failed, most likely this is 6000 * an older drive that does not support log sense. 6001 * If this fails auto-pm is not supported. 6002 */ 6003 un->un_power_level = SD_SPINDLE_ON; 6004 un->un_f_pm_is_enabled = FALSE; 6005 6006 } else if (rval == 0) { 6007 /* 6008 * Page not found. 6009 * The start stop cycle counter is implemented as page 6010 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For 6011 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE). 6012 */ 6013 if (sd_log_page_supported(ssc, START_STOP_CYCLE_VU_PAGE) == 1) { 6014 /* 6015 * Page found, use this one. 6016 */ 6017 un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE; 6018 un->un_f_pm_is_enabled = TRUE; 6019 } else { 6020 /* 6021 * Error or page not found. 6022 * auto-pm is not supported for this device. 6023 */ 6024 un->un_power_level = SD_SPINDLE_ON; 6025 un->un_f_pm_is_enabled = FALSE; 6026 } 6027 } else { 6028 /* 6029 * Page found, use it. 6030 */ 6031 un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE; 6032 un->un_f_pm_is_enabled = TRUE; 6033 } 6034 6035 6036 if (un->un_f_pm_is_enabled == TRUE) { 6037 log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE; 6038 log_page_data = kmem_zalloc(log_page_size, KM_SLEEP); 6039 6040 rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data, 6041 log_page_size, un->un_start_stop_cycle_page, 6042 0x01, 0, SD_PATH_DIRECT); 6043 6044 if (rval != 0) { 6045 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 6046 } 6047 6048 #ifdef SDDEBUG 6049 if (sd_force_pm_supported) { 6050 /* Force a successful result */ 6051 rval = 0; 6052 } 6053 #endif 6054 6055 /* 6056 * If the Log sense for Page( Start/stop cycle counter page) 6057 * succeeds, then power management is supported and we can 6058 * enable auto-pm. 6059 */ 6060 if (rval == 0) { 6061 (void) sd_create_pm_components(devi, un); 6062 } else { 6063 un->un_power_level = SD_SPINDLE_ON; 6064 un->un_f_pm_is_enabled = FALSE; 6065 } 6066 6067 kmem_free(log_page_data, log_page_size); 6068 } 6069 } 6070 6071 6072 /* 6073 * Function: sd_create_pm_components 6074 * 6075 * Description: Initialize PM property. 6076 * 6077 * Context: Kernel thread context 6078 */ 6079 6080 static void 6081 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un) 6082 { 6083 ASSERT(!mutex_owned(SD_MUTEX(un))); 6084 6085 if (un->un_f_power_condition_supported) { 6086 if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi, 6087 "pm-components", sd_pwr_pc.pm_comp, 5) 6088 != DDI_PROP_SUCCESS) { 6089 un->un_power_level = SD_SPINDLE_ACTIVE; 6090 un->un_f_pm_is_enabled = FALSE; 6091 return; 6092 } 6093 } else { 6094 if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi, 6095 "pm-components", sd_pwr_ss.pm_comp, 3) 6096 != DDI_PROP_SUCCESS) { 6097 un->un_power_level = SD_SPINDLE_ON; 6098 un->un_f_pm_is_enabled = FALSE; 6099 return; 6100 } 6101 } 6102 /* 6103 * When components are initially created they are idle, 6104 * power up any non-removables. 6105 * Note: the return value of pm_raise_power can't be used 6106 * for determining if PM should be enabled for this device. 6107 * Even if you check the return values and remove this 6108 * property created above, the PM framework will not honor the 6109 * change after the first call to pm_raise_power. Hence, 6110 * removal of that property does not help if pm_raise_power 6111 * fails. In the case of removable media, the start/stop 6112 * will fail if the media is not present. 6113 */ 6114 if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0, 6115 SD_PM_STATE_ACTIVE(un)) == DDI_SUCCESS)) { 6116 mutex_enter(SD_MUTEX(un)); 6117 un->un_power_level = SD_PM_STATE_ACTIVE(un); 6118 mutex_enter(&un->un_pm_mutex); 6119 /* Set to on and not busy. */ 6120 un->un_pm_count = 0; 6121 } else { 6122 mutex_enter(SD_MUTEX(un)); 6123 un->un_power_level = SD_PM_STATE_STOPPED(un); 6124 mutex_enter(&un->un_pm_mutex); 6125 /* Set to off. */ 6126 un->un_pm_count = -1; 6127 } 6128 mutex_exit(&un->un_pm_mutex); 6129 mutex_exit(SD_MUTEX(un)); 6130 } 6131 6132 6133 /* 6134 * Function: sd_ddi_suspend 6135 * 6136 * Description: Performs system power-down operations. This includes 6137 * setting the drive state to indicate its suspended so 6138 * that no new commands will be accepted. Also, wait for 6139 * all commands that are in transport or queued to a timer 6140 * for retry to complete. All timeout threads are cancelled. 6141 * 6142 * Return Code: DDI_FAILURE or DDI_SUCCESS 6143 * 6144 * Context: Kernel thread context 6145 */ 6146 6147 static int 6148 sd_ddi_suspend(dev_info_t *devi) 6149 { 6150 struct sd_lun *un; 6151 clock_t wait_cmds_complete; 6152 6153 un = ddi_get_soft_state(sd_state, ddi_get_instance(devi)); 6154 if (un == NULL) { 6155 return (DDI_FAILURE); 6156 } 6157 6158 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n"); 6159 6160 mutex_enter(SD_MUTEX(un)); 6161 6162 /* Return success if the device is already suspended. */ 6163 if (un->un_state == SD_STATE_SUSPENDED) { 6164 mutex_exit(SD_MUTEX(un)); 6165 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: " 6166 "device already suspended, exiting\n"); 6167 return (DDI_SUCCESS); 6168 } 6169 6170 /* Return failure if the device is being used by HA */ 6171 if (un->un_resvd_status & 6172 (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) { 6173 mutex_exit(SD_MUTEX(un)); 6174 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: " 6175 "device in use by HA, exiting\n"); 6176 return (DDI_FAILURE); 6177 } 6178 6179 /* 6180 * Return failure if the device is in a resource wait 6181 * or power changing state. 6182 */ 6183 if ((un->un_state == SD_STATE_RWAIT) || 6184 (un->un_state == SD_STATE_PM_CHANGING)) { 6185 mutex_exit(SD_MUTEX(un)); 6186 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: " 6187 "device in resource wait state, exiting\n"); 6188 return (DDI_FAILURE); 6189 } 6190 6191 6192 un->un_save_state = un->un_last_state; 6193 New_state(un, SD_STATE_SUSPENDED); 6194 6195 /* 6196 * Wait for all commands that are in transport or queued to a timer 6197 * for retry to complete. 6198 * 6199 * While waiting, no new commands will be accepted or sent because of 6200 * the new state we set above. 6201 * 6202 * Wait till current operation has completed. If we are in the resource 6203 * wait state (with an intr outstanding) then we need to wait till the 6204 * intr completes and starts the next cmd. We want to wait for 6205 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND. 6206 */ 6207 wait_cmds_complete = ddi_get_lbolt() + 6208 (sd_wait_cmds_complete * drv_usectohz(1000000)); 6209 6210 while (un->un_ncmds_in_transport != 0) { 6211 /* 6212 * Fail if commands do not finish in the specified time. 6213 */ 6214 if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un), 6215 wait_cmds_complete) == -1) { 6216 /* 6217 * Undo the state changes made above. Everything 6218 * must go back to it's original value. 6219 */ 6220 Restore_state(un); 6221 un->un_last_state = un->un_save_state; 6222 /* Wake up any threads that might be waiting. */ 6223 cv_broadcast(&un->un_suspend_cv); 6224 mutex_exit(SD_MUTEX(un)); 6225 SD_ERROR(SD_LOG_IO_PM, un, 6226 "sd_ddi_suspend: failed due to outstanding cmds\n"); 6227 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n"); 6228 return (DDI_FAILURE); 6229 } 6230 } 6231 6232 /* 6233 * Cancel SCSI watch thread and timeouts, if any are active 6234 */ 6235 6236 if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) { 6237 opaque_t temp_token = un->un_swr_token; 6238 mutex_exit(SD_MUTEX(un)); 6239 scsi_watch_suspend(temp_token); 6240 mutex_enter(SD_MUTEX(un)); 6241 } 6242 6243 if (un->un_reset_throttle_timeid != NULL) { 6244 timeout_id_t temp_id = un->un_reset_throttle_timeid; 6245 un->un_reset_throttle_timeid = NULL; 6246 mutex_exit(SD_MUTEX(un)); 6247 (void) untimeout(temp_id); 6248 mutex_enter(SD_MUTEX(un)); 6249 } 6250 6251 if (un->un_dcvb_timeid != NULL) { 6252 timeout_id_t temp_id = un->un_dcvb_timeid; 6253 un->un_dcvb_timeid = NULL; 6254 mutex_exit(SD_MUTEX(un)); 6255 (void) untimeout(temp_id); 6256 mutex_enter(SD_MUTEX(un)); 6257 } 6258 6259 mutex_enter(&un->un_pm_mutex); 6260 if (un->un_pm_timeid != NULL) { 6261 timeout_id_t temp_id = un->un_pm_timeid; 6262 un->un_pm_timeid = NULL; 6263 mutex_exit(&un->un_pm_mutex); 6264 mutex_exit(SD_MUTEX(un)); 6265 (void) untimeout(temp_id); 6266 mutex_enter(SD_MUTEX(un)); 6267 } else { 6268 mutex_exit(&un->un_pm_mutex); 6269 } 6270 6271 if (un->un_rmw_msg_timeid != NULL) { 6272 timeout_id_t temp_id = un->un_rmw_msg_timeid; 6273 un->un_rmw_msg_timeid = NULL; 6274 mutex_exit(SD_MUTEX(un)); 6275 (void) untimeout(temp_id); 6276 mutex_enter(SD_MUTEX(un)); 6277 } 6278 6279 if (un->un_retry_timeid != NULL) { 6280 timeout_id_t temp_id = un->un_retry_timeid; 6281 un->un_retry_timeid = NULL; 6282 mutex_exit(SD_MUTEX(un)); 6283 (void) untimeout(temp_id); 6284 mutex_enter(SD_MUTEX(un)); 6285 6286 if (un->un_retry_bp != NULL) { 6287 un->un_retry_bp->av_forw = un->un_waitq_headp; 6288 un->un_waitq_headp = un->un_retry_bp; 6289 if (un->un_waitq_tailp == NULL) { 6290 un->un_waitq_tailp = un->un_retry_bp; 6291 } 6292 un->un_retry_bp = NULL; 6293 un->un_retry_statp = NULL; 6294 } 6295 } 6296 6297 if (un->un_direct_priority_timeid != NULL) { 6298 timeout_id_t temp_id = un->un_direct_priority_timeid; 6299 un->un_direct_priority_timeid = NULL; 6300 mutex_exit(SD_MUTEX(un)); 6301 (void) untimeout(temp_id); 6302 mutex_enter(SD_MUTEX(un)); 6303 } 6304 6305 if (un->un_f_is_fibre == TRUE) { 6306 /* 6307 * Remove callbacks for insert and remove events 6308 */ 6309 if (un->un_insert_event != NULL) { 6310 mutex_exit(SD_MUTEX(un)); 6311 (void) ddi_remove_event_handler(un->un_insert_cb_id); 6312 mutex_enter(SD_MUTEX(un)); 6313 un->un_insert_event = NULL; 6314 } 6315 6316 if (un->un_remove_event != NULL) { 6317 mutex_exit(SD_MUTEX(un)); 6318 (void) ddi_remove_event_handler(un->un_remove_cb_id); 6319 mutex_enter(SD_MUTEX(un)); 6320 un->un_remove_event = NULL; 6321 } 6322 } 6323 6324 mutex_exit(SD_MUTEX(un)); 6325 6326 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n"); 6327 6328 return (DDI_SUCCESS); 6329 } 6330 6331 6332 /* 6333 * Function: sd_ddi_resume 6334 * 6335 * Description: Performs system power-up operations.. 6336 * 6337 * Return Code: DDI_SUCCESS 6338 * DDI_FAILURE 6339 * 6340 * Context: Kernel thread context 6341 */ 6342 6343 static int 6344 sd_ddi_resume(dev_info_t *devi) 6345 { 6346 struct sd_lun *un; 6347 6348 un = ddi_get_soft_state(sd_state, ddi_get_instance(devi)); 6349 if (un == NULL) { 6350 return (DDI_FAILURE); 6351 } 6352 6353 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n"); 6354 6355 mutex_enter(SD_MUTEX(un)); 6356 Restore_state(un); 6357 6358 /* 6359 * Restore the state which was saved to give the 6360 * the right state in un_last_state 6361 */ 6362 un->un_last_state = un->un_save_state; 6363 /* 6364 * Note: throttle comes back at full. 6365 * Also note: this MUST be done before calling pm_raise_power 6366 * otherwise the system can get hung in biowait. The scenario where 6367 * this'll happen is under cpr suspend. Writing of the system 6368 * state goes through sddump, which writes 0 to un_throttle. If 6369 * writing the system state then fails, example if the partition is 6370 * too small, then cpr attempts a resume. If throttle isn't restored 6371 * from the saved value until after calling pm_raise_power then 6372 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs 6373 * in biowait. 6374 */ 6375 un->un_throttle = un->un_saved_throttle; 6376 6377 /* 6378 * The chance of failure is very rare as the only command done in power 6379 * entry point is START command when you transition from 0->1 or 6380 * unknown->1. Put it to SPINDLE ON state irrespective of the state at 6381 * which suspend was done. Ignore the return value as the resume should 6382 * not be failed. In the case of removable media the media need not be 6383 * inserted and hence there is a chance that raise power will fail with 6384 * media not present. 6385 */ 6386 if (un->un_f_attach_spinup) { 6387 mutex_exit(SD_MUTEX(un)); 6388 (void) pm_raise_power(SD_DEVINFO(un), 0, 6389 SD_PM_STATE_ACTIVE(un)); 6390 mutex_enter(SD_MUTEX(un)); 6391 } 6392 6393 /* 6394 * Don't broadcast to the suspend cv and therefore possibly 6395 * start I/O until after power has been restored. 6396 */ 6397 cv_broadcast(&un->un_suspend_cv); 6398 cv_broadcast(&un->un_state_cv); 6399 6400 /* restart thread */ 6401 if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) { 6402 scsi_watch_resume(un->un_swr_token); 6403 } 6404 6405 #if (defined(__fibre)) 6406 if (un->un_f_is_fibre == TRUE) { 6407 /* 6408 * Add callbacks for insert and remove events 6409 */ 6410 if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) { 6411 sd_init_event_callbacks(un); 6412 } 6413 } 6414 #endif 6415 6416 /* 6417 * Transport any pending commands to the target. 6418 * 6419 * If this is a low-activity device commands in queue will have to wait 6420 * until new commands come in, which may take awhile. Also, we 6421 * specifically don't check un_ncmds_in_transport because we know that 6422 * there really are no commands in progress after the unit was 6423 * suspended and we could have reached the throttle level, been 6424 * suspended, and have no new commands coming in for awhile. Highly 6425 * unlikely, but so is the low-activity disk scenario. 6426 */ 6427 ddi_xbuf_dispatch(un->un_xbuf_attr); 6428 6429 sd_start_cmds(un, NULL); 6430 mutex_exit(SD_MUTEX(un)); 6431 6432 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n"); 6433 6434 return (DDI_SUCCESS); 6435 } 6436 6437 6438 /* 6439 * Function: sd_pm_state_change 6440 * 6441 * Description: Change the driver power state. 6442 * Someone else is required to actually change the driver 6443 * power level. 6444 * 6445 * Arguments: un - driver soft state (unit) structure 6446 * level - the power level that is changed to 6447 * flag - to decide how to change the power state 6448 * 6449 * Return Code: DDI_SUCCESS 6450 * 6451 * Context: Kernel thread context 6452 */ 6453 static int 6454 sd_pm_state_change(struct sd_lun *un, int level, int flag) 6455 { 6456 ASSERT(un != NULL); 6457 SD_TRACE(SD_LOG_POWER, un, "sd_pm_state_change: entry\n"); 6458 6459 ASSERT(!mutex_owned(SD_MUTEX(un))); 6460 mutex_enter(SD_MUTEX(un)); 6461 6462 if (flag == SD_PM_STATE_ROLLBACK || SD_PM_IS_IO_CAPABLE(un, level)) { 6463 un->un_power_level = level; 6464 ASSERT(!mutex_owned(&un->un_pm_mutex)); 6465 mutex_enter(&un->un_pm_mutex); 6466 if (SD_DEVICE_IS_IN_LOW_POWER(un)) { 6467 un->un_pm_count++; 6468 ASSERT(un->un_pm_count == 0); 6469 } 6470 mutex_exit(&un->un_pm_mutex); 6471 } else { 6472 /* 6473 * Exit if power management is not enabled for this device, 6474 * or if the device is being used by HA. 6475 */ 6476 if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status & 6477 (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) { 6478 mutex_exit(SD_MUTEX(un)); 6479 SD_TRACE(SD_LOG_POWER, un, 6480 "sd_pm_state_change: exiting\n"); 6481 return (DDI_FAILURE); 6482 } 6483 6484 SD_INFO(SD_LOG_POWER, un, "sd_pm_state_change: " 6485 "un_ncmds_in_driver=%ld\n", un->un_ncmds_in_driver); 6486 6487 /* 6488 * See if the device is not busy, ie.: 6489 * - we have no commands in the driver for this device 6490 * - not waiting for resources 6491 */ 6492 if ((un->un_ncmds_in_driver == 0) && 6493 (un->un_state != SD_STATE_RWAIT)) { 6494 /* 6495 * The device is not busy, so it is OK to go to low 6496 * power state. Indicate low power, but rely on someone 6497 * else to actually change it. 6498 */ 6499 mutex_enter(&un->un_pm_mutex); 6500 un->un_pm_count = -1; 6501 mutex_exit(&un->un_pm_mutex); 6502 un->un_power_level = level; 6503 } 6504 } 6505 6506 mutex_exit(SD_MUTEX(un)); 6507 6508 SD_TRACE(SD_LOG_POWER, un, "sd_pm_state_change: exit\n"); 6509 6510 return (DDI_SUCCESS); 6511 } 6512 6513 6514 /* 6515 * Function: sd_pm_idletimeout_handler 6516 * 6517 * Description: A timer routine that's active only while a device is busy. 6518 * The purpose is to extend slightly the pm framework's busy 6519 * view of the device to prevent busy/idle thrashing for 6520 * back-to-back commands. Do this by comparing the current time 6521 * to the time at which the last command completed and when the 6522 * difference is greater than sd_pm_idletime, call 6523 * pm_idle_component. In addition to indicating idle to the pm 6524 * framework, update the chain type to again use the internal pm 6525 * layers of the driver. 6526 * 6527 * Arguments: arg - driver soft state (unit) structure 6528 * 6529 * Context: Executes in a timeout(9F) thread context 6530 */ 6531 6532 static void 6533 sd_pm_idletimeout_handler(void *arg) 6534 { 6535 struct sd_lun *un = arg; 6536 6537 time_t now; 6538 6539 mutex_enter(&sd_detach_mutex); 6540 if (un->un_detach_count != 0) { 6541 /* Abort if the instance is detaching */ 6542 mutex_exit(&sd_detach_mutex); 6543 return; 6544 } 6545 mutex_exit(&sd_detach_mutex); 6546 6547 now = ddi_get_time(); 6548 /* 6549 * Grab both mutexes, in the proper order, since we're accessing 6550 * both PM and softstate variables. 6551 */ 6552 mutex_enter(SD_MUTEX(un)); 6553 mutex_enter(&un->un_pm_mutex); 6554 if (((now - un->un_pm_idle_time) > sd_pm_idletime) && 6555 (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) { 6556 /* 6557 * Update the chain types. 6558 * This takes affect on the next new command received. 6559 */ 6560 if (un->un_f_non_devbsize_supported) { 6561 un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA; 6562 } else { 6563 un->un_buf_chain_type = SD_CHAIN_INFO_DISK; 6564 } 6565 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD; 6566 6567 SD_TRACE(SD_LOG_IO_PM, un, 6568 "sd_pm_idletimeout_handler: idling device\n"); 6569 (void) pm_idle_component(SD_DEVINFO(un), 0); 6570 un->un_pm_idle_timeid = NULL; 6571 } else { 6572 un->un_pm_idle_timeid = 6573 timeout(sd_pm_idletimeout_handler, un, 6574 (drv_usectohz((clock_t)300000))); /* 300 ms. */ 6575 } 6576 mutex_exit(&un->un_pm_mutex); 6577 mutex_exit(SD_MUTEX(un)); 6578 } 6579 6580 6581 /* 6582 * Function: sd_pm_timeout_handler 6583 * 6584 * Description: Callback to tell framework we are idle. 6585 * 6586 * Context: timeout(9f) thread context. 6587 */ 6588 6589 static void 6590 sd_pm_timeout_handler(void *arg) 6591 { 6592 struct sd_lun *un = arg; 6593 6594 (void) pm_idle_component(SD_DEVINFO(un), 0); 6595 mutex_enter(&un->un_pm_mutex); 6596 un->un_pm_timeid = NULL; 6597 mutex_exit(&un->un_pm_mutex); 6598 } 6599 6600 6601 /* 6602 * Function: sdpower 6603 * 6604 * Description: PM entry point. 6605 * 6606 * Return Code: DDI_SUCCESS 6607 * DDI_FAILURE 6608 * 6609 * Context: Kernel thread context 6610 */ 6611 6612 static int 6613 sdpower(dev_info_t *devi, int component, int level) 6614 { 6615 struct sd_lun *un; 6616 int instance; 6617 int rval = DDI_SUCCESS; 6618 uint_t i, log_page_size, maxcycles, ncycles; 6619 uchar_t *log_page_data; 6620 int log_sense_page; 6621 int medium_present; 6622 time_t intvlp; 6623 struct pm_trans_data sd_pm_tran_data; 6624 uchar_t save_state; 6625 int sval; 6626 uchar_t state_before_pm; 6627 int got_semaphore_here; 6628 sd_ssc_t *ssc; 6629 int last_power_level; 6630 6631 instance = ddi_get_instance(devi); 6632 6633 if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) || 6634 !SD_PM_IS_LEVEL_VALID(un, level) || component != 0) { 6635 return (DDI_FAILURE); 6636 } 6637 6638 ssc = sd_ssc_init(un); 6639 6640 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level); 6641 6642 /* 6643 * Must synchronize power down with close. 6644 * Attempt to decrement/acquire the open/close semaphore, 6645 * but do NOT wait on it. If it's not greater than zero, 6646 * ie. it can't be decremented without waiting, then 6647 * someone else, either open or close, already has it 6648 * and the try returns 0. Use that knowledge here to determine 6649 * if it's OK to change the device power level. 6650 * Also, only increment it on exit if it was decremented, ie. gotten, 6651 * here. 6652 */ 6653 got_semaphore_here = sema_tryp(&un->un_semoclose); 6654 6655 mutex_enter(SD_MUTEX(un)); 6656 6657 SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n", 6658 un->un_ncmds_in_driver); 6659 6660 /* 6661 * If un_ncmds_in_driver is non-zero it indicates commands are 6662 * already being processed in the driver, or if the semaphore was 6663 * not gotten here it indicates an open or close is being processed. 6664 * At the same time somebody is requesting to go to a lower power 6665 * that can't perform I/O, which can't happen, therefore we need to 6666 * return failure. 6667 */ 6668 if ((!SD_PM_IS_IO_CAPABLE(un, level)) && 6669 ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) { 6670 mutex_exit(SD_MUTEX(un)); 6671 6672 if (got_semaphore_here != 0) { 6673 sema_v(&un->un_semoclose); 6674 } 6675 SD_TRACE(SD_LOG_IO_PM, un, 6676 "sdpower: exit, device has queued cmds.\n"); 6677 6678 goto sdpower_failed; 6679 } 6680 6681 /* 6682 * if it is OFFLINE that means the disk is completely dead 6683 * in our case we have to put the disk in on or off by sending commands 6684 * Of course that will fail anyway so return back here. 6685 * 6686 * Power changes to a device that's OFFLINE or SUSPENDED 6687 * are not allowed. 6688 */ 6689 if ((un->un_state == SD_STATE_OFFLINE) || 6690 (un->un_state == SD_STATE_SUSPENDED)) { 6691 mutex_exit(SD_MUTEX(un)); 6692 6693 if (got_semaphore_here != 0) { 6694 sema_v(&un->un_semoclose); 6695 } 6696 SD_TRACE(SD_LOG_IO_PM, un, 6697 "sdpower: exit, device is off-line.\n"); 6698 6699 goto sdpower_failed; 6700 } 6701 6702 /* 6703 * Change the device's state to indicate it's power level 6704 * is being changed. Do this to prevent a power off in the 6705 * middle of commands, which is especially bad on devices 6706 * that are really powered off instead of just spun down. 6707 */ 6708 state_before_pm = un->un_state; 6709 un->un_state = SD_STATE_PM_CHANGING; 6710 6711 mutex_exit(SD_MUTEX(un)); 6712 6713 /* 6714 * If log sense command is not supported, bypass the 6715 * following checking, otherwise, check the log sense 6716 * information for this device. 6717 */ 6718 if (SD_PM_STOP_MOTOR_NEEDED(un, level) && 6719 un->un_f_log_sense_supported) { 6720 /* 6721 * Get the log sense information to understand whether the 6722 * the powercycle counts have gone beyond the threshhold. 6723 */ 6724 log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE; 6725 log_page_data = kmem_zalloc(log_page_size, KM_SLEEP); 6726 6727 mutex_enter(SD_MUTEX(un)); 6728 log_sense_page = un->un_start_stop_cycle_page; 6729 mutex_exit(SD_MUTEX(un)); 6730 6731 rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data, 6732 log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT); 6733 6734 if (rval != 0) { 6735 if (rval == EIO) 6736 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 6737 else 6738 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 6739 } 6740 6741 #ifdef SDDEBUG 6742 if (sd_force_pm_supported) { 6743 /* Force a successful result */ 6744 rval = 0; 6745 } 6746 #endif 6747 if (rval != 0) { 6748 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 6749 "Log Sense Failed\n"); 6750 6751 kmem_free(log_page_data, log_page_size); 6752 /* Cannot support power management on those drives */ 6753 6754 if (got_semaphore_here != 0) { 6755 sema_v(&un->un_semoclose); 6756 } 6757 /* 6758 * On exit put the state back to it's original value 6759 * and broadcast to anyone waiting for the power 6760 * change completion. 6761 */ 6762 mutex_enter(SD_MUTEX(un)); 6763 un->un_state = state_before_pm; 6764 cv_broadcast(&un->un_suspend_cv); 6765 mutex_exit(SD_MUTEX(un)); 6766 SD_TRACE(SD_LOG_IO_PM, un, 6767 "sdpower: exit, Log Sense Failed.\n"); 6768 6769 goto sdpower_failed; 6770 } 6771 6772 /* 6773 * From the page data - Convert the essential information to 6774 * pm_trans_data 6775 */ 6776 maxcycles = 6777 (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) | 6778 (log_page_data[0x1E] << 8) | log_page_data[0x1F]; 6779 6780 ncycles = 6781 (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) | 6782 (log_page_data[0x26] << 8) | log_page_data[0x27]; 6783 6784 if (un->un_f_pm_log_sense_smart) { 6785 sd_pm_tran_data.un.smart_count.allowed = maxcycles; 6786 sd_pm_tran_data.un.smart_count.consumed = ncycles; 6787 sd_pm_tran_data.un.smart_count.flag = 0; 6788 sd_pm_tran_data.format = DC_SMART_FORMAT; 6789 } else { 6790 sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles; 6791 sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles; 6792 for (i = 0; i < DC_SCSI_MFR_LEN; i++) { 6793 sd_pm_tran_data.un.scsi_cycles.svc_date[i] = 6794 log_page_data[8+i]; 6795 } 6796 sd_pm_tran_data.un.scsi_cycles.flag = 0; 6797 sd_pm_tran_data.format = DC_SCSI_FORMAT; 6798 } 6799 6800 kmem_free(log_page_data, log_page_size); 6801 6802 /* 6803 * Call pm_trans_check routine to get the Ok from 6804 * the global policy 6805 */ 6806 rval = pm_trans_check(&sd_pm_tran_data, &intvlp); 6807 #ifdef SDDEBUG 6808 if (sd_force_pm_supported) { 6809 /* Force a successful result */ 6810 rval = 1; 6811 } 6812 #endif 6813 switch (rval) { 6814 case 0: 6815 /* 6816 * Not Ok to Power cycle or error in parameters passed 6817 * Would have given the advised time to consider power 6818 * cycle. Based on the new intvlp parameter we are 6819 * supposed to pretend we are busy so that pm framework 6820 * will never call our power entry point. Because of 6821 * that install a timeout handler and wait for the 6822 * recommended time to elapse so that power management 6823 * can be effective again. 6824 * 6825 * To effect this behavior, call pm_busy_component to 6826 * indicate to the framework this device is busy. 6827 * By not adjusting un_pm_count the rest of PM in 6828 * the driver will function normally, and independent 6829 * of this but because the framework is told the device 6830 * is busy it won't attempt powering down until it gets 6831 * a matching idle. The timeout handler sends this. 6832 * Note: sd_pm_entry can't be called here to do this 6833 * because sdpower may have been called as a result 6834 * of a call to pm_raise_power from within sd_pm_entry. 6835 * 6836 * If a timeout handler is already active then 6837 * don't install another. 6838 */ 6839 mutex_enter(&un->un_pm_mutex); 6840 if (un->un_pm_timeid == NULL) { 6841 un->un_pm_timeid = 6842 timeout(sd_pm_timeout_handler, 6843 un, intvlp * drv_usectohz(1000000)); 6844 mutex_exit(&un->un_pm_mutex); 6845 (void) pm_busy_component(SD_DEVINFO(un), 0); 6846 } else { 6847 mutex_exit(&un->un_pm_mutex); 6848 } 6849 if (got_semaphore_here != 0) { 6850 sema_v(&un->un_semoclose); 6851 } 6852 /* 6853 * On exit put the state back to it's original value 6854 * and broadcast to anyone waiting for the power 6855 * change completion. 6856 */ 6857 mutex_enter(SD_MUTEX(un)); 6858 un->un_state = state_before_pm; 6859 cv_broadcast(&un->un_suspend_cv); 6860 mutex_exit(SD_MUTEX(un)); 6861 6862 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, " 6863 "trans check Failed, not ok to power cycle.\n"); 6864 6865 goto sdpower_failed; 6866 case -1: 6867 if (got_semaphore_here != 0) { 6868 sema_v(&un->un_semoclose); 6869 } 6870 /* 6871 * On exit put the state back to it's original value 6872 * and broadcast to anyone waiting for the power 6873 * change completion. 6874 */ 6875 mutex_enter(SD_MUTEX(un)); 6876 un->un_state = state_before_pm; 6877 cv_broadcast(&un->un_suspend_cv); 6878 mutex_exit(SD_MUTEX(un)); 6879 SD_TRACE(SD_LOG_IO_PM, un, 6880 "sdpower: exit, trans check command Failed.\n"); 6881 6882 goto sdpower_failed; 6883 } 6884 } 6885 6886 if (!SD_PM_IS_IO_CAPABLE(un, level)) { 6887 /* 6888 * Save the last state... if the STOP FAILS we need it 6889 * for restoring 6890 */ 6891 mutex_enter(SD_MUTEX(un)); 6892 save_state = un->un_last_state; 6893 last_power_level = un->un_power_level; 6894 /* 6895 * There must not be any cmds. getting processed 6896 * in the driver when we get here. Power to the 6897 * device is potentially going off. 6898 */ 6899 ASSERT(un->un_ncmds_in_driver == 0); 6900 mutex_exit(SD_MUTEX(un)); 6901 6902 /* 6903 * For now PM suspend the device completely before spindle is 6904 * turned off 6905 */ 6906 if ((rval = sd_pm_state_change(un, level, SD_PM_STATE_CHANGE)) 6907 == DDI_FAILURE) { 6908 if (got_semaphore_here != 0) { 6909 sema_v(&un->un_semoclose); 6910 } 6911 /* 6912 * On exit put the state back to it's original value 6913 * and broadcast to anyone waiting for the power 6914 * change completion. 6915 */ 6916 mutex_enter(SD_MUTEX(un)); 6917 un->un_state = state_before_pm; 6918 un->un_power_level = last_power_level; 6919 cv_broadcast(&un->un_suspend_cv); 6920 mutex_exit(SD_MUTEX(un)); 6921 SD_TRACE(SD_LOG_IO_PM, un, 6922 "sdpower: exit, PM suspend Failed.\n"); 6923 6924 goto sdpower_failed; 6925 } 6926 } 6927 6928 /* 6929 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open, 6930 * close, or strategy. Dump no long uses this routine, it uses it's 6931 * own code so it can be done in polled mode. 6932 */ 6933 6934 medium_present = TRUE; 6935 6936 /* 6937 * When powering up, issue a TUR in case the device is at unit 6938 * attention. Don't do retries. Bypass the PM layer, otherwise 6939 * a deadlock on un_pm_busy_cv will occur. 6940 */ 6941 if (SD_PM_IS_IO_CAPABLE(un, level)) { 6942 sval = sd_send_scsi_TEST_UNIT_READY(ssc, 6943 SD_DONT_RETRY_TUR | SD_BYPASS_PM); 6944 if (sval != 0) 6945 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 6946 } 6947 6948 if (un->un_f_power_condition_supported) { 6949 char *pm_condition_name[] = {"STOPPED", "STANDBY", 6950 "IDLE", "ACTIVE"}; 6951 SD_TRACE(SD_LOG_IO_PM, un, 6952 "sdpower: sending \'%s\' power condition", 6953 pm_condition_name[level]); 6954 sval = sd_send_scsi_START_STOP_UNIT(ssc, SD_POWER_CONDITION, 6955 sd_pl2pc[level], SD_PATH_DIRECT); 6956 } else { 6957 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n", 6958 ((level == SD_SPINDLE_ON) ? "START" : "STOP")); 6959 sval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 6960 ((level == SD_SPINDLE_ON) ? SD_TARGET_START : 6961 SD_TARGET_STOP), SD_PATH_DIRECT); 6962 } 6963 if (sval != 0) { 6964 if (sval == EIO) 6965 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 6966 else 6967 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 6968 } 6969 6970 /* Command failed, check for media present. */ 6971 if ((sval == ENXIO) && un->un_f_has_removable_media) { 6972 medium_present = FALSE; 6973 } 6974 6975 /* 6976 * The conditions of interest here are: 6977 * if a spindle off with media present fails, 6978 * then restore the state and return an error. 6979 * else if a spindle on fails, 6980 * then return an error (there's no state to restore). 6981 * In all other cases we setup for the new state 6982 * and return success. 6983 */ 6984 if (!SD_PM_IS_IO_CAPABLE(un, level)) { 6985 if ((medium_present == TRUE) && (sval != 0)) { 6986 /* The stop command from above failed */ 6987 rval = DDI_FAILURE; 6988 /* 6989 * The stop command failed, and we have media 6990 * present. Put the level back by calling the 6991 * sd_pm_resume() and set the state back to 6992 * it's previous value. 6993 */ 6994 (void) sd_pm_state_change(un, last_power_level, 6995 SD_PM_STATE_ROLLBACK); 6996 mutex_enter(SD_MUTEX(un)); 6997 un->un_last_state = save_state; 6998 mutex_exit(SD_MUTEX(un)); 6999 } else if (un->un_f_monitor_media_state) { 7000 /* 7001 * The stop command from above succeeded. 7002 * Terminate watch thread in case of removable media 7003 * devices going into low power state. This is as per 7004 * the requirements of pm framework, otherwise commands 7005 * will be generated for the device (through watch 7006 * thread), even when the device is in low power state. 7007 */ 7008 mutex_enter(SD_MUTEX(un)); 7009 un->un_f_watcht_stopped = FALSE; 7010 if (un->un_swr_token != NULL) { 7011 opaque_t temp_token = un->un_swr_token; 7012 un->un_f_watcht_stopped = TRUE; 7013 un->un_swr_token = NULL; 7014 mutex_exit(SD_MUTEX(un)); 7015 (void) scsi_watch_request_terminate(temp_token, 7016 SCSI_WATCH_TERMINATE_ALL_WAIT); 7017 } else { 7018 mutex_exit(SD_MUTEX(un)); 7019 } 7020 } 7021 } else { 7022 /* 7023 * The level requested is I/O capable. 7024 * Legacy behavior: return success on a failed spinup 7025 * if there is no media in the drive. 7026 * Do this by looking at medium_present here. 7027 */ 7028 if ((sval != 0) && medium_present) { 7029 /* The start command from above failed */ 7030 rval = DDI_FAILURE; 7031 } else { 7032 /* 7033 * The start command from above succeeded 7034 * PM resume the devices now that we have 7035 * started the disks 7036 */ 7037 (void) sd_pm_state_change(un, level, 7038 SD_PM_STATE_CHANGE); 7039 7040 /* 7041 * Resume the watch thread since it was suspended 7042 * when the device went into low power mode. 7043 */ 7044 if (un->un_f_monitor_media_state) { 7045 mutex_enter(SD_MUTEX(un)); 7046 if (un->un_f_watcht_stopped == TRUE) { 7047 opaque_t temp_token; 7048 7049 un->un_f_watcht_stopped = FALSE; 7050 mutex_exit(SD_MUTEX(un)); 7051 temp_token = 7052 sd_watch_request_submit(un); 7053 mutex_enter(SD_MUTEX(un)); 7054 un->un_swr_token = temp_token; 7055 } 7056 mutex_exit(SD_MUTEX(un)); 7057 } 7058 } 7059 } 7060 7061 if (got_semaphore_here != 0) { 7062 sema_v(&un->un_semoclose); 7063 } 7064 /* 7065 * On exit put the state back to it's original value 7066 * and broadcast to anyone waiting for the power 7067 * change completion. 7068 */ 7069 mutex_enter(SD_MUTEX(un)); 7070 un->un_state = state_before_pm; 7071 cv_broadcast(&un->un_suspend_cv); 7072 mutex_exit(SD_MUTEX(un)); 7073 7074 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval); 7075 7076 sd_ssc_fini(ssc); 7077 return (rval); 7078 7079 sdpower_failed: 7080 7081 sd_ssc_fini(ssc); 7082 return (DDI_FAILURE); 7083 } 7084 7085 7086 7087 /* 7088 * Function: sdattach 7089 * 7090 * Description: Driver's attach(9e) entry point function. 7091 * 7092 * Arguments: devi - opaque device info handle 7093 * cmd - attach type 7094 * 7095 * Return Code: DDI_SUCCESS 7096 * DDI_FAILURE 7097 * 7098 * Context: Kernel thread context 7099 */ 7100 7101 static int 7102 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd) 7103 { 7104 switch (cmd) { 7105 case DDI_ATTACH: 7106 return (sd_unit_attach(devi)); 7107 case DDI_RESUME: 7108 return (sd_ddi_resume(devi)); 7109 default: 7110 break; 7111 } 7112 return (DDI_FAILURE); 7113 } 7114 7115 7116 /* 7117 * Function: sddetach 7118 * 7119 * Description: Driver's detach(9E) entry point function. 7120 * 7121 * Arguments: devi - opaque device info handle 7122 * cmd - detach type 7123 * 7124 * Return Code: DDI_SUCCESS 7125 * DDI_FAILURE 7126 * 7127 * Context: Kernel thread context 7128 */ 7129 7130 static int 7131 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd) 7132 { 7133 switch (cmd) { 7134 case DDI_DETACH: 7135 return (sd_unit_detach(devi)); 7136 case DDI_SUSPEND: 7137 return (sd_ddi_suspend(devi)); 7138 default: 7139 break; 7140 } 7141 return (DDI_FAILURE); 7142 } 7143 7144 7145 /* 7146 * Function: sd_sync_with_callback 7147 * 7148 * Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft 7149 * state while the callback routine is active. 7150 * 7151 * Arguments: un: softstate structure for the instance 7152 * 7153 * Context: Kernel thread context 7154 */ 7155 7156 static void 7157 sd_sync_with_callback(struct sd_lun *un) 7158 { 7159 ASSERT(un != NULL); 7160 7161 mutex_enter(SD_MUTEX(un)); 7162 7163 ASSERT(un->un_in_callback >= 0); 7164 7165 while (un->un_in_callback > 0) { 7166 mutex_exit(SD_MUTEX(un)); 7167 delay(2); 7168 mutex_enter(SD_MUTEX(un)); 7169 } 7170 7171 mutex_exit(SD_MUTEX(un)); 7172 } 7173 7174 /* 7175 * Function: sd_unit_attach 7176 * 7177 * Description: Performs DDI_ATTACH processing for sdattach(). Allocates 7178 * the soft state structure for the device and performs 7179 * all necessary structure and device initializations. 7180 * 7181 * Arguments: devi: the system's dev_info_t for the device. 7182 * 7183 * Return Code: DDI_SUCCESS if attach is successful. 7184 * DDI_FAILURE if any part of the attach fails. 7185 * 7186 * Context: Called at attach(9e) time for the DDI_ATTACH flag. 7187 * Kernel thread context only. Can sleep. 7188 */ 7189 7190 static int 7191 sd_unit_attach(dev_info_t *devi) 7192 { 7193 struct scsi_device *devp; 7194 struct sd_lun *un; 7195 char *variantp; 7196 char name_str[48]; 7197 int reservation_flag = SD_TARGET_IS_UNRESERVED; 7198 int instance; 7199 int rval; 7200 int wc_enabled; 7201 int tgt; 7202 uint64_t capacity; 7203 uint_t lbasize = 0; 7204 dev_info_t *pdip = ddi_get_parent(devi); 7205 int offbyone = 0; 7206 int geom_label_valid = 0; 7207 sd_ssc_t *ssc; 7208 int status; 7209 struct sd_fm_internal *sfip = NULL; 7210 int max_xfer_size; 7211 7212 /* 7213 * Retrieve the target driver's private data area. This was set 7214 * up by the HBA. 7215 */ 7216 devp = ddi_get_driver_private(devi); 7217 7218 /* 7219 * Retrieve the target ID of the device. 7220 */ 7221 tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 7222 SCSI_ADDR_PROP_TARGET, -1); 7223 7224 /* 7225 * Since we have no idea what state things were left in by the last 7226 * user of the device, set up some 'default' settings, ie. turn 'em 7227 * off. The scsi_ifsetcap calls force re-negotiations with the drive. 7228 * Do this before the scsi_probe, which sends an inquiry. 7229 * This is a fix for bug (4430280). 7230 * Of special importance is wide-xfer. The drive could have been left 7231 * in wide transfer mode by the last driver to communicate with it, 7232 * this includes us. If that's the case, and if the following is not 7233 * setup properly or we don't re-negotiate with the drive prior to 7234 * transferring data to/from the drive, it causes bus parity errors, 7235 * data overruns, and unexpected interrupts. This first occurred when 7236 * the fix for bug (4378686) was made. 7237 */ 7238 (void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1); 7239 (void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1); 7240 (void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1); 7241 7242 /* 7243 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs 7244 * on a target. Setting it per lun instance actually sets the 7245 * capability of this target, which affects those luns already 7246 * attached on the same target. So during attach, we can only disable 7247 * this capability only when no other lun has been attached on this 7248 * target. By doing this, we assume a target has the same tagged-qing 7249 * capability for every lun. The condition can be removed when HBA 7250 * is changed to support per lun based tagged-qing capability. 7251 */ 7252 if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) { 7253 (void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1); 7254 } 7255 7256 /* 7257 * Use scsi_probe() to issue an INQUIRY command to the device. 7258 * This call will allocate and fill in the scsi_inquiry structure 7259 * and point the sd_inq member of the scsi_device structure to it. 7260 * If the attach succeeds, then this memory will not be de-allocated 7261 * (via scsi_unprobe()) until the instance is detached. 7262 */ 7263 if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) { 7264 goto probe_failed; 7265 } 7266 7267 /* 7268 * Check the device type as specified in the inquiry data and 7269 * claim it if it is of a type that we support. 7270 */ 7271 switch (devp->sd_inq->inq_dtype) { 7272 case DTYPE_DIRECT: 7273 break; 7274 case DTYPE_RODIRECT: 7275 break; 7276 case DTYPE_OPTICAL: 7277 break; 7278 case DTYPE_NOTPRESENT: 7279 default: 7280 /* Unsupported device type; fail the attach. */ 7281 goto probe_failed; 7282 } 7283 7284 /* 7285 * Allocate the soft state structure for this unit. 7286 * 7287 * We rely upon this memory being set to all zeroes by 7288 * ddi_soft_state_zalloc(). We assume that any member of the 7289 * soft state structure that is not explicitly initialized by 7290 * this routine will have a value of zero. 7291 */ 7292 instance = ddi_get_instance(devp->sd_dev); 7293 #ifndef XPV_HVM_DRIVER 7294 if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) { 7295 goto probe_failed; 7296 } 7297 #endif /* !XPV_HVM_DRIVER */ 7298 7299 /* 7300 * Retrieve a pointer to the newly-allocated soft state. 7301 * 7302 * This should NEVER fail if the ddi_soft_state_zalloc() call above 7303 * was successful, unless something has gone horribly wrong and the 7304 * ddi's soft state internals are corrupt (in which case it is 7305 * probably better to halt here than just fail the attach....) 7306 */ 7307 if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) { 7308 panic("sd_unit_attach: NULL soft state on instance:0x%x", 7309 instance); 7310 /*NOTREACHED*/ 7311 } 7312 7313 /* 7314 * Link the back ptr of the driver soft state to the scsi_device 7315 * struct for this lun. 7316 * Save a pointer to the softstate in the driver-private area of 7317 * the scsi_device struct. 7318 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until 7319 * we first set un->un_sd below. 7320 */ 7321 un->un_sd = devp; 7322 devp->sd_private = (opaque_t)un; 7323 7324 /* 7325 * The following must be after devp is stored in the soft state struct. 7326 */ 7327 #ifdef SDDEBUG 7328 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7329 "%s_unit_attach: un:0x%p instance:%d\n", 7330 ddi_driver_name(devi), un, instance); 7331 #endif 7332 7333 /* 7334 * Set up the device type and node type (for the minor nodes). 7335 * By default we assume that the device can at least support the 7336 * Common Command Set. Call it a CD-ROM if it reports itself 7337 * as a RODIRECT device. 7338 */ 7339 switch (devp->sd_inq->inq_dtype) { 7340 case DTYPE_RODIRECT: 7341 un->un_node_type = DDI_NT_CD_CHAN; 7342 un->un_ctype = CTYPE_CDROM; 7343 break; 7344 case DTYPE_OPTICAL: 7345 un->un_node_type = DDI_NT_BLOCK_CHAN; 7346 un->un_ctype = CTYPE_ROD; 7347 break; 7348 default: 7349 un->un_node_type = DDI_NT_BLOCK_CHAN; 7350 un->un_ctype = CTYPE_CCS; 7351 break; 7352 } 7353 7354 /* 7355 * Try to read the interconnect type from the HBA. 7356 * 7357 * Note: This driver is currently compiled as two binaries, a parallel 7358 * scsi version (sd) and a fibre channel version (ssd). All functional 7359 * differences are determined at compile time. In the future a single 7360 * binary will be provided and the interconnect type will be used to 7361 * differentiate between fibre and parallel scsi behaviors. At that time 7362 * it will be necessary for all fibre channel HBAs to support this 7363 * property. 7364 * 7365 * set un_f_is_fiber to TRUE ( default fiber ) 7366 */ 7367 un->un_f_is_fibre = TRUE; 7368 switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) { 7369 case INTERCONNECT_SSA: 7370 un->un_interconnect_type = SD_INTERCONNECT_SSA; 7371 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7372 "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un); 7373 break; 7374 case INTERCONNECT_PARALLEL: 7375 un->un_f_is_fibre = FALSE; 7376 un->un_interconnect_type = SD_INTERCONNECT_PARALLEL; 7377 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7378 "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un); 7379 break; 7380 case INTERCONNECT_SAS: 7381 un->un_f_is_fibre = FALSE; 7382 un->un_interconnect_type = SD_INTERCONNECT_SAS; 7383 un->un_node_type = DDI_NT_BLOCK_SAS; 7384 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7385 "sd_unit_attach: un:0x%p SD_INTERCONNECT_SAS\n", un); 7386 break; 7387 case INTERCONNECT_SATA: 7388 un->un_f_is_fibre = FALSE; 7389 un->un_interconnect_type = SD_INTERCONNECT_SATA; 7390 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7391 "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un); 7392 break; 7393 case INTERCONNECT_FIBRE: 7394 un->un_interconnect_type = SD_INTERCONNECT_FIBRE; 7395 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7396 "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un); 7397 break; 7398 case INTERCONNECT_FABRIC: 7399 un->un_interconnect_type = SD_INTERCONNECT_FABRIC; 7400 un->un_node_type = DDI_NT_BLOCK_FABRIC; 7401 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7402 "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un); 7403 break; 7404 default: 7405 #ifdef SD_DEFAULT_INTERCONNECT_TYPE 7406 /* 7407 * The HBA does not support the "interconnect-type" property 7408 * (or did not provide a recognized type). 7409 * 7410 * Note: This will be obsoleted when a single fibre channel 7411 * and parallel scsi driver is delivered. In the meantime the 7412 * interconnect type will be set to the platform default.If that 7413 * type is not parallel SCSI, it means that we should be 7414 * assuming "ssd" semantics. However, here this also means that 7415 * the FC HBA is not supporting the "interconnect-type" property 7416 * like we expect it to, so log this occurrence. 7417 */ 7418 un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE; 7419 if (!SD_IS_PARALLEL_SCSI(un)) { 7420 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7421 "sd_unit_attach: un:0x%p Assuming " 7422 "INTERCONNECT_FIBRE\n", un); 7423 } else { 7424 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7425 "sd_unit_attach: un:0x%p Assuming " 7426 "INTERCONNECT_PARALLEL\n", un); 7427 un->un_f_is_fibre = FALSE; 7428 } 7429 #else 7430 /* 7431 * Note: This source will be implemented when a single fibre 7432 * channel and parallel scsi driver is delivered. The default 7433 * will be to assume that if a device does not support the 7434 * "interconnect-type" property it is a parallel SCSI HBA and 7435 * we will set the interconnect type for parallel scsi. 7436 */ 7437 un->un_interconnect_type = SD_INTERCONNECT_PARALLEL; 7438 un->un_f_is_fibre = FALSE; 7439 #endif 7440 break; 7441 } 7442 7443 if (un->un_f_is_fibre == TRUE) { 7444 if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) == 7445 SCSI_VERSION_3) { 7446 switch (un->un_interconnect_type) { 7447 case SD_INTERCONNECT_FIBRE: 7448 case SD_INTERCONNECT_SSA: 7449 un->un_node_type = DDI_NT_BLOCK_WWN; 7450 break; 7451 default: 7452 break; 7453 } 7454 } 7455 } 7456 7457 /* 7458 * Initialize the Request Sense command for the target 7459 */ 7460 if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) { 7461 goto alloc_rqs_failed; 7462 } 7463 7464 /* 7465 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc 7466 * with separate binary for sd and ssd. 7467 * 7468 * x86 has 1 binary, un_retry_count is set base on connection type. 7469 * The hardcoded values will go away when Sparc uses 1 binary 7470 * for sd and ssd. This hardcoded values need to match 7471 * SD_RETRY_COUNT in sddef.h 7472 * The value used is base on interconnect type. 7473 * fibre = 3, parallel = 5 7474 */ 7475 #if defined(__i386) || defined(__amd64) 7476 un->un_retry_count = un->un_f_is_fibre ? 3 : 5; 7477 #else 7478 un->un_retry_count = SD_RETRY_COUNT; 7479 #endif 7480 7481 /* 7482 * Set the per disk retry count to the default number of retries 7483 * for disks and CDROMs. This value can be overridden by the 7484 * disk property list or an entry in sd.conf. 7485 */ 7486 un->un_notready_retry_count = 7487 ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un) 7488 : DISK_NOT_READY_RETRY_COUNT(un); 7489 7490 /* 7491 * Set the busy retry count to the default value of un_retry_count. 7492 * This can be overridden by entries in sd.conf or the device 7493 * config table. 7494 */ 7495 un->un_busy_retry_count = un->un_retry_count; 7496 7497 /* 7498 * Init the reset threshold for retries. This number determines 7499 * how many retries must be performed before a reset can be issued 7500 * (for certain error conditions). This can be overridden by entries 7501 * in sd.conf or the device config table. 7502 */ 7503 un->un_reset_retry_count = (un->un_retry_count / 2); 7504 7505 /* 7506 * Set the victim_retry_count to the default un_retry_count 7507 */ 7508 un->un_victim_retry_count = (2 * un->un_retry_count); 7509 7510 /* 7511 * Set the reservation release timeout to the default value of 7512 * 5 seconds. This can be overridden by entries in ssd.conf or the 7513 * device config table. 7514 */ 7515 un->un_reserve_release_time = 5; 7516 7517 /* 7518 * Set up the default maximum transfer size. Note that this may 7519 * get updated later in the attach, when setting up default wide 7520 * operations for disks. 7521 */ 7522 #if defined(__i386) || defined(__amd64) 7523 un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE; 7524 un->un_partial_dma_supported = 1; 7525 #else 7526 un->un_max_xfer_size = (uint_t)maxphys; 7527 #endif 7528 7529 /* 7530 * Get "allow bus device reset" property (defaults to "enabled" if 7531 * the property was not defined). This is to disable bus resets for 7532 * certain kinds of error recovery. Note: In the future when a run-time 7533 * fibre check is available the soft state flag should default to 7534 * enabled. 7535 */ 7536 if (un->un_f_is_fibre == TRUE) { 7537 un->un_f_allow_bus_device_reset = TRUE; 7538 } else { 7539 if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 7540 "allow-bus-device-reset", 1) != 0) { 7541 un->un_f_allow_bus_device_reset = TRUE; 7542 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7543 "sd_unit_attach: un:0x%p Bus device reset " 7544 "enabled\n", un); 7545 } else { 7546 un->un_f_allow_bus_device_reset = FALSE; 7547 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7548 "sd_unit_attach: un:0x%p Bus device reset " 7549 "disabled\n", un); 7550 } 7551 } 7552 7553 /* 7554 * Check if this is an ATAPI device. ATAPI devices use Group 1 7555 * Read/Write commands and Group 2 Mode Sense/Select commands. 7556 * 7557 * Note: The "obsolete" way of doing this is to check for the "atapi" 7558 * property. The new "variant" property with a value of "atapi" has been 7559 * introduced so that future 'variants' of standard SCSI behavior (like 7560 * atapi) could be specified by the underlying HBA drivers by supplying 7561 * a new value for the "variant" property, instead of having to define a 7562 * new property. 7563 */ 7564 if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) { 7565 un->un_f_cfg_is_atapi = TRUE; 7566 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7567 "sd_unit_attach: un:0x%p Atapi device\n", un); 7568 } 7569 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant", 7570 &variantp) == DDI_PROP_SUCCESS) { 7571 if (strcmp(variantp, "atapi") == 0) { 7572 un->un_f_cfg_is_atapi = TRUE; 7573 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7574 "sd_unit_attach: un:0x%p Atapi device\n", un); 7575 } 7576 ddi_prop_free(variantp); 7577 } 7578 7579 un->un_cmd_timeout = SD_IO_TIME; 7580 7581 un->un_busy_timeout = SD_BSY_TIMEOUT; 7582 7583 /* Info on current states, statuses, etc. (Updated frequently) */ 7584 un->un_state = SD_STATE_NORMAL; 7585 un->un_last_state = SD_STATE_NORMAL; 7586 7587 /* Control & status info for command throttling */ 7588 un->un_throttle = sd_max_throttle; 7589 un->un_saved_throttle = sd_max_throttle; 7590 un->un_min_throttle = sd_min_throttle; 7591 7592 if (un->un_f_is_fibre == TRUE) { 7593 un->un_f_use_adaptive_throttle = TRUE; 7594 } else { 7595 un->un_f_use_adaptive_throttle = FALSE; 7596 } 7597 7598 /* Removable media support. */ 7599 cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL); 7600 un->un_mediastate = DKIO_NONE; 7601 un->un_specified_mediastate = DKIO_NONE; 7602 7603 /* CVs for suspend/resume (PM or DR) */ 7604 cv_init(&un->un_suspend_cv, NULL, CV_DRIVER, NULL); 7605 cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL); 7606 7607 /* Power management support. */ 7608 un->un_power_level = SD_SPINDLE_UNINIT; 7609 7610 cv_init(&un->un_wcc_cv, NULL, CV_DRIVER, NULL); 7611 un->un_f_wcc_inprog = 0; 7612 7613 /* 7614 * The open/close semaphore is used to serialize threads executing 7615 * in the driver's open & close entry point routines for a given 7616 * instance. 7617 */ 7618 (void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL); 7619 7620 /* 7621 * The conf file entry and softstate variable is a forceful override, 7622 * meaning a non-zero value must be entered to change the default. 7623 */ 7624 un->un_f_disksort_disabled = FALSE; 7625 un->un_f_rmw_type = SD_RMW_TYPE_DEFAULT; 7626 un->un_f_enable_rmw = FALSE; 7627 7628 /* 7629 * GET EVENT STATUS NOTIFICATION media polling enabled by default, but 7630 * can be overridden via [s]sd-config-list "mmc-gesn-polling" property. 7631 */ 7632 un->un_f_mmc_gesn_polling = TRUE; 7633 7634 /* 7635 * physical sector size defaults to DEV_BSIZE currently. We can 7636 * override this value via the driver configuration file so we must 7637 * set it before calling sd_read_unit_properties(). 7638 */ 7639 un->un_phy_blocksize = DEV_BSIZE; 7640 7641 /* 7642 * Retrieve the properties from the static driver table or the driver 7643 * configuration file (.conf) for this unit and update the soft state 7644 * for the device as needed for the indicated properties. 7645 * Note: the property configuration needs to occur here as some of the 7646 * following routines may have dependencies on soft state flags set 7647 * as part of the driver property configuration. 7648 */ 7649 sd_read_unit_properties(un); 7650 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7651 "sd_unit_attach: un:0x%p property configuration complete.\n", un); 7652 7653 /* 7654 * Only if a device has "hotpluggable" property, it is 7655 * treated as hotpluggable device. Otherwise, it is 7656 * regarded as non-hotpluggable one. 7657 */ 7658 if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable", 7659 -1) != -1) { 7660 un->un_f_is_hotpluggable = TRUE; 7661 } 7662 7663 /* 7664 * set unit's attributes(flags) according to "hotpluggable" and 7665 * RMB bit in INQUIRY data. 7666 */ 7667 sd_set_unit_attributes(un, devi); 7668 7669 /* 7670 * By default, we mark the capacity, lbasize, and geometry 7671 * as invalid. Only if we successfully read a valid capacity 7672 * will we update the un_blockcount and un_tgt_blocksize with the 7673 * valid values (the geometry will be validated later). 7674 */ 7675 un->un_f_blockcount_is_valid = FALSE; 7676 un->un_f_tgt_blocksize_is_valid = FALSE; 7677 7678 /* 7679 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine 7680 * otherwise. 7681 */ 7682 un->un_tgt_blocksize = un->un_sys_blocksize = DEV_BSIZE; 7683 un->un_blockcount = 0; 7684 7685 /* 7686 * Set up the per-instance info needed to determine the correct 7687 * CDBs and other info for issuing commands to the target. 7688 */ 7689 sd_init_cdb_limits(un); 7690 7691 /* 7692 * Set up the IO chains to use, based upon the target type. 7693 */ 7694 if (un->un_f_non_devbsize_supported) { 7695 un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA; 7696 } else { 7697 un->un_buf_chain_type = SD_CHAIN_INFO_DISK; 7698 } 7699 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD; 7700 un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD; 7701 un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD; 7702 7703 un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf), 7704 sd_xbuf_strategy, un, sd_xbuf_active_limit, sd_xbuf_reserve_limit, 7705 ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER); 7706 ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi); 7707 7708 7709 if (ISCD(un)) { 7710 un->un_additional_codes = sd_additional_codes; 7711 } else { 7712 un->un_additional_codes = NULL; 7713 } 7714 7715 /* 7716 * Create the kstats here so they can be available for attach-time 7717 * routines that send commands to the unit (either polled or via 7718 * sd_send_scsi_cmd). 7719 * 7720 * Note: This is a critical sequence that needs to be maintained: 7721 * 1) Instantiate the kstats here, before any routines using the 7722 * iopath (i.e. sd_send_scsi_cmd). 7723 * 2) Instantiate and initialize the partition stats 7724 * (sd_set_pstats). 7725 * 3) Initialize the error stats (sd_set_errstats), following 7726 * sd_validate_geometry(),sd_register_devid(), 7727 * and sd_cache_control(). 7728 */ 7729 7730 un->un_stats = kstat_create(sd_label, instance, 7731 NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT); 7732 if (un->un_stats != NULL) { 7733 un->un_stats->ks_lock = SD_MUTEX(un); 7734 kstat_install(un->un_stats); 7735 } 7736 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7737 "sd_unit_attach: un:0x%p un_stats created\n", un); 7738 7739 sd_create_errstats(un, instance); 7740 if (un->un_errstats == NULL) { 7741 goto create_errstats_failed; 7742 } 7743 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7744 "sd_unit_attach: un:0x%p errstats created\n", un); 7745 7746 /* 7747 * The following if/else code was relocated here from below as part 7748 * of the fix for bug (4430280). However with the default setup added 7749 * on entry to this routine, it's no longer absolutely necessary for 7750 * this to be before the call to sd_spin_up_unit. 7751 */ 7752 if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) { 7753 int tq_trigger_flag = (((devp->sd_inq->inq_ansi == 4) || 7754 (devp->sd_inq->inq_ansi == 5)) && 7755 devp->sd_inq->inq_bque) || devp->sd_inq->inq_cmdque; 7756 7757 /* 7758 * If tagged queueing is supported by the target 7759 * and by the host adapter then we will enable it 7760 */ 7761 un->un_tagflags = 0; 7762 if ((devp->sd_inq->inq_rdf == RDF_SCSI2) && tq_trigger_flag && 7763 (un->un_f_arq_enabled == TRUE)) { 7764 if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 7765 1, 1) == 1) { 7766 un->un_tagflags = FLAG_STAG; 7767 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7768 "sd_unit_attach: un:0x%p tag queueing " 7769 "enabled\n", un); 7770 } else if (scsi_ifgetcap(SD_ADDRESS(un), 7771 "untagged-qing", 0) == 1) { 7772 un->un_f_opt_queueing = TRUE; 7773 un->un_saved_throttle = un->un_throttle = 7774 min(un->un_throttle, 3); 7775 } else { 7776 un->un_f_opt_queueing = FALSE; 7777 un->un_saved_throttle = un->un_throttle = 1; 7778 } 7779 } else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0) 7780 == 1) && (un->un_f_arq_enabled == TRUE)) { 7781 /* The Host Adapter supports internal queueing. */ 7782 un->un_f_opt_queueing = TRUE; 7783 un->un_saved_throttle = un->un_throttle = 7784 min(un->un_throttle, 3); 7785 } else { 7786 un->un_f_opt_queueing = FALSE; 7787 un->un_saved_throttle = un->un_throttle = 1; 7788 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7789 "sd_unit_attach: un:0x%p no tag queueing\n", un); 7790 } 7791 7792 /* 7793 * Enable large transfers for SATA/SAS drives 7794 */ 7795 if (SD_IS_SERIAL(un)) { 7796 un->un_max_xfer_size = 7797 ddi_getprop(DDI_DEV_T_ANY, devi, 0, 7798 sd_max_xfer_size, SD_MAX_XFER_SIZE); 7799 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7800 "sd_unit_attach: un:0x%p max transfer " 7801 "size=0x%x\n", un, un->un_max_xfer_size); 7802 7803 } 7804 7805 /* Setup or tear down default wide operations for disks */ 7806 7807 /* 7808 * Note: Legacy: it may be possible for both "sd_max_xfer_size" 7809 * and "ssd_max_xfer_size" to exist simultaneously on the same 7810 * system and be set to different values. In the future this 7811 * code may need to be updated when the ssd module is 7812 * obsoleted and removed from the system. (4299588) 7813 */ 7814 if (SD_IS_PARALLEL_SCSI(un) && 7815 (devp->sd_inq->inq_rdf == RDF_SCSI2) && 7816 (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) { 7817 if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 7818 1, 1) == 1) { 7819 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7820 "sd_unit_attach: un:0x%p Wide Transfer " 7821 "enabled\n", un); 7822 } 7823 7824 /* 7825 * If tagged queuing has also been enabled, then 7826 * enable large xfers 7827 */ 7828 if (un->un_saved_throttle == sd_max_throttle) { 7829 un->un_max_xfer_size = 7830 ddi_getprop(DDI_DEV_T_ANY, devi, 0, 7831 sd_max_xfer_size, SD_MAX_XFER_SIZE); 7832 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7833 "sd_unit_attach: un:0x%p max transfer " 7834 "size=0x%x\n", un, un->un_max_xfer_size); 7835 } 7836 } else { 7837 if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 7838 0, 1) == 1) { 7839 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7840 "sd_unit_attach: un:0x%p " 7841 "Wide Transfer disabled\n", un); 7842 } 7843 } 7844 } else { 7845 un->un_tagflags = FLAG_STAG; 7846 un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY, 7847 devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE); 7848 } 7849 7850 /* 7851 * If this target supports LUN reset, try to enable it. 7852 */ 7853 if (un->un_f_lun_reset_enabled) { 7854 if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) { 7855 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: " 7856 "un:0x%p lun_reset capability set\n", un); 7857 } else { 7858 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: " 7859 "un:0x%p lun-reset capability not set\n", un); 7860 } 7861 } 7862 7863 /* 7864 * Adjust the maximum transfer size. This is to fix 7865 * the problem of partial DMA support on SPARC. Some 7866 * HBA driver, like aac, has very small dma_attr_maxxfer 7867 * size, which requires partial DMA support on SPARC. 7868 * In the future the SPARC pci nexus driver may solve 7869 * the problem instead of this fix. 7870 */ 7871 max_xfer_size = scsi_ifgetcap(SD_ADDRESS(un), "dma-max", 1); 7872 if ((max_xfer_size > 0) && (max_xfer_size < un->un_max_xfer_size)) { 7873 /* We need DMA partial even on sparc to ensure sddump() works */ 7874 un->un_max_xfer_size = max_xfer_size; 7875 if (un->un_partial_dma_supported == 0) 7876 un->un_partial_dma_supported = 1; 7877 } 7878 if (ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un), 7879 DDI_PROP_DONTPASS, "buf_break", 0) == 1) { 7880 if (ddi_xbuf_attr_setup_brk(un->un_xbuf_attr, 7881 un->un_max_xfer_size) == 1) { 7882 un->un_buf_breakup_supported = 1; 7883 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: " 7884 "un:0x%p Buf breakup enabled\n", un); 7885 } 7886 } 7887 7888 /* 7889 * Set PKT_DMA_PARTIAL flag. 7890 */ 7891 if (un->un_partial_dma_supported == 1) { 7892 un->un_pkt_flags = PKT_DMA_PARTIAL; 7893 } else { 7894 un->un_pkt_flags = 0; 7895 } 7896 7897 /* Initialize sd_ssc_t for internal uscsi commands */ 7898 ssc = sd_ssc_init(un); 7899 scsi_fm_init(devp); 7900 7901 /* 7902 * Allocate memory for SCSI FMA stuffs. 7903 */ 7904 un->un_fm_private = 7905 kmem_zalloc(sizeof (struct sd_fm_internal), KM_SLEEP); 7906 sfip = (struct sd_fm_internal *)un->un_fm_private; 7907 sfip->fm_ssc.ssc_uscsi_cmd = &sfip->fm_ucmd; 7908 sfip->fm_ssc.ssc_uscsi_info = &sfip->fm_uinfo; 7909 sfip->fm_ssc.ssc_un = un; 7910 7911 if (ISCD(un) || 7912 un->un_f_has_removable_media || 7913 devp->sd_fm_capable == DDI_FM_NOT_CAPABLE) { 7914 /* 7915 * We don't touch CDROM or the DDI_FM_NOT_CAPABLE device. 7916 * Their log are unchanged. 7917 */ 7918 sfip->fm_log_level = SD_FM_LOG_NSUP; 7919 } else { 7920 /* 7921 * If enter here, it should be non-CDROM and FM-capable 7922 * device, and it will not keep the old scsi_log as before 7923 * in /var/adm/messages. However, the property 7924 * "fm-scsi-log" will control whether the FM telemetry will 7925 * be logged in /var/adm/messages. 7926 */ 7927 int fm_scsi_log; 7928 fm_scsi_log = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un), 7929 DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "fm-scsi-log", 0); 7930 7931 if (fm_scsi_log) 7932 sfip->fm_log_level = SD_FM_LOG_EREPORT; 7933 else 7934 sfip->fm_log_level = SD_FM_LOG_SILENT; 7935 } 7936 7937 /* 7938 * At this point in the attach, we have enough info in the 7939 * soft state to be able to issue commands to the target. 7940 * 7941 * All command paths used below MUST issue their commands as 7942 * SD_PATH_DIRECT. This is important as intermediate layers 7943 * are not all initialized yet (such as PM). 7944 */ 7945 7946 /* 7947 * Send a TEST UNIT READY command to the device. This should clear 7948 * any outstanding UNIT ATTENTION that may be present. 7949 * 7950 * Note: Don't check for success, just track if there is a reservation, 7951 * this is a throw away command to clear any unit attentions. 7952 * 7953 * Note: This MUST be the first command issued to the target during 7954 * attach to ensure power on UNIT ATTENTIONS are cleared. 7955 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated 7956 * with attempts at spinning up a device with no media. 7957 */ 7958 status = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR); 7959 if (status != 0) { 7960 if (status == EACCES) 7961 reservation_flag = SD_TARGET_IS_RESERVED; 7962 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 7963 } 7964 7965 /* 7966 * If the device is NOT a removable media device, attempt to spin 7967 * it up (using the START_STOP_UNIT command) and read its capacity 7968 * (using the READ CAPACITY command). Note, however, that either 7969 * of these could fail and in some cases we would continue with 7970 * the attach despite the failure (see below). 7971 */ 7972 if (un->un_f_descr_format_supported) { 7973 7974 switch (sd_spin_up_unit(ssc)) { 7975 case 0: 7976 /* 7977 * Spin-up was successful; now try to read the 7978 * capacity. If successful then save the results 7979 * and mark the capacity & lbasize as valid. 7980 */ 7981 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7982 "sd_unit_attach: un:0x%p spin-up successful\n", un); 7983 7984 status = sd_send_scsi_READ_CAPACITY(ssc, &capacity, 7985 &lbasize, SD_PATH_DIRECT); 7986 7987 switch (status) { 7988 case 0: { 7989 if (capacity > DK_MAX_BLOCKS) { 7990 #ifdef _LP64 7991 if ((capacity + 1) > 7992 SD_GROUP1_MAX_ADDRESS) { 7993 /* 7994 * Enable descriptor format 7995 * sense data so that we can 7996 * get 64 bit sense data 7997 * fields. 7998 */ 7999 sd_enable_descr_sense(ssc); 8000 } 8001 #else 8002 /* 32-bit kernels can't handle this */ 8003 scsi_log(SD_DEVINFO(un), 8004 sd_label, CE_WARN, 8005 "disk has %llu blocks, which " 8006 "is too large for a 32-bit " 8007 "kernel", capacity); 8008 8009 #if defined(__i386) || defined(__amd64) 8010 /* 8011 * 1TB disk was treated as (1T - 512)B 8012 * in the past, so that it might have 8013 * valid VTOC and solaris partitions, 8014 * we have to allow it to continue to 8015 * work. 8016 */ 8017 if (capacity -1 > DK_MAX_BLOCKS) 8018 #endif 8019 goto spinup_failed; 8020 #endif 8021 } 8022 8023 /* 8024 * Here it's not necessary to check the case: 8025 * the capacity of the device is bigger than 8026 * what the max hba cdb can support. Because 8027 * sd_send_scsi_READ_CAPACITY will retrieve 8028 * the capacity by sending USCSI command, which 8029 * is constrained by the max hba cdb. Actually, 8030 * sd_send_scsi_READ_CAPACITY will return 8031 * EINVAL when using bigger cdb than required 8032 * cdb length. Will handle this case in 8033 * "case EINVAL". 8034 */ 8035 8036 /* 8037 * The following relies on 8038 * sd_send_scsi_READ_CAPACITY never 8039 * returning 0 for capacity and/or lbasize. 8040 */ 8041 sd_update_block_info(un, lbasize, capacity); 8042 8043 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8044 "sd_unit_attach: un:0x%p capacity = %ld " 8045 "blocks; lbasize= %ld.\n", un, 8046 un->un_blockcount, un->un_tgt_blocksize); 8047 8048 break; 8049 } 8050 case EINVAL: 8051 /* 8052 * In the case where the max-cdb-length property 8053 * is smaller than the required CDB length for 8054 * a SCSI device, a target driver can fail to 8055 * attach to that device. 8056 */ 8057 scsi_log(SD_DEVINFO(un), 8058 sd_label, CE_WARN, 8059 "disk capacity is too large " 8060 "for current cdb length"); 8061 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 8062 8063 goto spinup_failed; 8064 case EACCES: 8065 /* 8066 * Should never get here if the spin-up 8067 * succeeded, but code it in anyway. 8068 * From here, just continue with the attach... 8069 */ 8070 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8071 "sd_unit_attach: un:0x%p " 8072 "sd_send_scsi_READ_CAPACITY " 8073 "returned reservation conflict\n", un); 8074 reservation_flag = SD_TARGET_IS_RESERVED; 8075 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 8076 break; 8077 default: 8078 /* 8079 * Likewise, should never get here if the 8080 * spin-up succeeded. Just continue with 8081 * the attach... 8082 */ 8083 if (status == EIO) 8084 sd_ssc_assessment(ssc, 8085 SD_FMT_STATUS_CHECK); 8086 else 8087 sd_ssc_assessment(ssc, 8088 SD_FMT_IGNORE); 8089 break; 8090 } 8091 break; 8092 case EACCES: 8093 /* 8094 * Device is reserved by another host. In this case 8095 * we could not spin it up or read the capacity, but 8096 * we continue with the attach anyway. 8097 */ 8098 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8099 "sd_unit_attach: un:0x%p spin-up reservation " 8100 "conflict.\n", un); 8101 reservation_flag = SD_TARGET_IS_RESERVED; 8102 break; 8103 default: 8104 /* Fail the attach if the spin-up failed. */ 8105 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8106 "sd_unit_attach: un:0x%p spin-up failed.", un); 8107 goto spinup_failed; 8108 } 8109 8110 } 8111 8112 /* 8113 * Check to see if this is a MMC drive 8114 */ 8115 if (ISCD(un)) { 8116 sd_set_mmc_caps(ssc); 8117 } 8118 8119 /* 8120 * Add a zero-length attribute to tell the world we support 8121 * kernel ioctls (for layered drivers) 8122 */ 8123 (void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP, 8124 DDI_KERNEL_IOCTL, NULL, 0); 8125 8126 /* 8127 * Add a boolean property to tell the world we support 8128 * the B_FAILFAST flag (for layered drivers) 8129 */ 8130 (void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP, 8131 "ddi-failfast-supported", NULL, 0); 8132 8133 /* 8134 * Initialize power management 8135 */ 8136 mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL); 8137 cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL); 8138 sd_setup_pm(ssc, devi); 8139 if (un->un_f_pm_is_enabled == FALSE) { 8140 /* 8141 * For performance, point to a jump table that does 8142 * not include pm. 8143 * The direct and priority chains don't change with PM. 8144 * 8145 * Note: this is currently done based on individual device 8146 * capabilities. When an interface for determining system 8147 * power enabled state becomes available, or when additional 8148 * layers are added to the command chain, these values will 8149 * have to be re-evaluated for correctness. 8150 */ 8151 if (un->un_f_non_devbsize_supported) { 8152 un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM; 8153 } else { 8154 un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM; 8155 } 8156 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM; 8157 } 8158 8159 /* 8160 * This property is set to 0 by HA software to avoid retries 8161 * on a reserved disk. (The preferred property name is 8162 * "retry-on-reservation-conflict") (1189689) 8163 * 8164 * Note: The use of a global here can have unintended consequences. A 8165 * per instance variable is preferable to match the capabilities of 8166 * different underlying hba's (4402600) 8167 */ 8168 sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi, 8169 DDI_PROP_DONTPASS, "retry-on-reservation-conflict", 8170 sd_retry_on_reservation_conflict); 8171 if (sd_retry_on_reservation_conflict != 0) { 8172 sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, 8173 devi, DDI_PROP_DONTPASS, sd_resv_conflict_name, 8174 sd_retry_on_reservation_conflict); 8175 } 8176 8177 /* Set up options for QFULL handling. */ 8178 if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0, 8179 "qfull-retries", -1)) != -1) { 8180 (void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries", 8181 rval, 1); 8182 } 8183 if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0, 8184 "qfull-retry-interval", -1)) != -1) { 8185 (void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval", 8186 rval, 1); 8187 } 8188 8189 /* 8190 * This just prints a message that announces the existence of the 8191 * device. The message is always printed in the system logfile, but 8192 * only appears on the console if the system is booted with the 8193 * -v (verbose) argument. 8194 */ 8195 ddi_report_dev(devi); 8196 8197 un->un_mediastate = DKIO_NONE; 8198 8199 /* 8200 * Check if this is a SSD(Solid State Drive). 8201 */ 8202 sd_check_solid_state(ssc); 8203 8204 /* 8205 * Check whether the drive is in emulation mode. 8206 */ 8207 sd_check_emulation_mode(ssc); 8208 8209 cmlb_alloc_handle(&un->un_cmlbhandle); 8210 8211 #if defined(__i386) || defined(__amd64) 8212 /* 8213 * On x86, compensate for off-by-1 legacy error 8214 */ 8215 if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable && 8216 (lbasize == un->un_sys_blocksize)) 8217 offbyone = CMLB_OFF_BY_ONE; 8218 #endif 8219 8220 if (cmlb_attach(devi, &sd_tgops, (int)devp->sd_inq->inq_dtype, 8221 VOID2BOOLEAN(un->un_f_has_removable_media != 0), 8222 VOID2BOOLEAN(un->un_f_is_hotpluggable != 0), 8223 un->un_node_type, offbyone, un->un_cmlbhandle, 8224 (void *)SD_PATH_DIRECT) != 0) { 8225 goto cmlb_attach_failed; 8226 } 8227 8228 8229 /* 8230 * Read and validate the device's geometry (ie, disk label) 8231 * A new unformatted drive will not have a valid geometry, but 8232 * the driver needs to successfully attach to this device so 8233 * the drive can be formatted via ioctls. 8234 */ 8235 geom_label_valid = (cmlb_validate(un->un_cmlbhandle, 0, 8236 (void *)SD_PATH_DIRECT) == 0) ? 1: 0; 8237 8238 mutex_enter(SD_MUTEX(un)); 8239 8240 /* 8241 * Read and initialize the devid for the unit. 8242 */ 8243 if (un->un_f_devid_supported) { 8244 sd_register_devid(ssc, devi, reservation_flag); 8245 } 8246 mutex_exit(SD_MUTEX(un)); 8247 8248 #if (defined(__fibre)) 8249 /* 8250 * Register callbacks for fibre only. You can't do this solely 8251 * on the basis of the devid_type because this is hba specific. 8252 * We need to query our hba capabilities to find out whether to 8253 * register or not. 8254 */ 8255 if (un->un_f_is_fibre) { 8256 if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) { 8257 sd_init_event_callbacks(un); 8258 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8259 "sd_unit_attach: un:0x%p event callbacks inserted", 8260 un); 8261 } 8262 } 8263 #endif 8264 8265 if (un->un_f_opt_disable_cache == TRUE) { 8266 /* 8267 * Disable both read cache and write cache. This is 8268 * the historic behavior of the keywords in the config file. 8269 */ 8270 if (sd_cache_control(ssc, SD_CACHE_DISABLE, SD_CACHE_DISABLE) != 8271 0) { 8272 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8273 "sd_unit_attach: un:0x%p Could not disable " 8274 "caching", un); 8275 goto devid_failed; 8276 } 8277 } 8278 8279 /* 8280 * Check the value of the WCE bit now and 8281 * set un_f_write_cache_enabled accordingly. 8282 */ 8283 (void) sd_get_write_cache_enabled(ssc, &wc_enabled); 8284 mutex_enter(SD_MUTEX(un)); 8285 un->un_f_write_cache_enabled = (wc_enabled != 0); 8286 mutex_exit(SD_MUTEX(un)); 8287 8288 if ((un->un_f_rmw_type != SD_RMW_TYPE_RETURN_ERROR && 8289 un->un_tgt_blocksize != DEV_BSIZE) || 8290 un->un_f_enable_rmw) { 8291 if (!(un->un_wm_cache)) { 8292 (void) snprintf(name_str, sizeof (name_str), 8293 "%s%d_cache", 8294 ddi_driver_name(SD_DEVINFO(un)), 8295 ddi_get_instance(SD_DEVINFO(un))); 8296 un->un_wm_cache = kmem_cache_create( 8297 name_str, sizeof (struct sd_w_map), 8298 8, sd_wm_cache_constructor, 8299 sd_wm_cache_destructor, NULL, 8300 (void *)un, NULL, 0); 8301 if (!(un->un_wm_cache)) { 8302 goto wm_cache_failed; 8303 } 8304 } 8305 } 8306 8307 /* 8308 * Check the value of the NV_SUP bit and set 8309 * un_f_suppress_cache_flush accordingly. 8310 */ 8311 sd_get_nv_sup(ssc); 8312 8313 /* 8314 * Find out what type of reservation this disk supports. 8315 */ 8316 status = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS, 0, NULL); 8317 8318 switch (status) { 8319 case 0: 8320 /* 8321 * SCSI-3 reservations are supported. 8322 */ 8323 un->un_reservation_type = SD_SCSI3_RESERVATION; 8324 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8325 "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un); 8326 break; 8327 case ENOTSUP: 8328 /* 8329 * The PERSISTENT RESERVE IN command would not be recognized by 8330 * a SCSI-2 device, so assume the reservation type is SCSI-2. 8331 */ 8332 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8333 "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un); 8334 un->un_reservation_type = SD_SCSI2_RESERVATION; 8335 8336 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 8337 break; 8338 default: 8339 /* 8340 * default to SCSI-3 reservations 8341 */ 8342 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8343 "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un); 8344 un->un_reservation_type = SD_SCSI3_RESERVATION; 8345 8346 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 8347 break; 8348 } 8349 8350 /* 8351 * Set the pstat and error stat values here, so data obtained during the 8352 * previous attach-time routines is available. 8353 * 8354 * Note: This is a critical sequence that needs to be maintained: 8355 * 1) Instantiate the kstats before any routines using the iopath 8356 * (i.e. sd_send_scsi_cmd). 8357 * 2) Initialize the error stats (sd_set_errstats) and partition 8358 * stats (sd_set_pstats)here, following 8359 * cmlb_validate_geometry(), sd_register_devid(), and 8360 * sd_cache_control(). 8361 */ 8362 8363 if (un->un_f_pkstats_enabled && geom_label_valid) { 8364 sd_set_pstats(un); 8365 SD_TRACE(SD_LOG_IO_PARTITION, un, 8366 "sd_unit_attach: un:0x%p pstats created and set\n", un); 8367 } 8368 8369 sd_set_errstats(un); 8370 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8371 "sd_unit_attach: un:0x%p errstats set\n", un); 8372 8373 8374 /* 8375 * After successfully attaching an instance, we record the information 8376 * of how many luns have been attached on the relative target and 8377 * controller for parallel SCSI. This information is used when sd tries 8378 * to set the tagged queuing capability in HBA. 8379 */ 8380 if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) { 8381 sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH); 8382 } 8383 8384 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8385 "sd_unit_attach: un:0x%p exit success\n", un); 8386 8387 /* Uninitialize sd_ssc_t pointer */ 8388 sd_ssc_fini(ssc); 8389 8390 return (DDI_SUCCESS); 8391 8392 /* 8393 * An error occurred during the attach; clean up & return failure. 8394 */ 8395 wm_cache_failed: 8396 devid_failed: 8397 8398 setup_pm_failed: 8399 ddi_remove_minor_node(devi, NULL); 8400 8401 cmlb_attach_failed: 8402 /* 8403 * Cleanup from the scsi_ifsetcap() calls (437868) 8404 */ 8405 (void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1); 8406 (void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1); 8407 8408 /* 8409 * Refer to the comments of setting tagged-qing in the beginning of 8410 * sd_unit_attach. We can only disable tagged queuing when there is 8411 * no lun attached on the target. 8412 */ 8413 if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) { 8414 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 8415 } 8416 8417 if (un->un_f_is_fibre == FALSE) { 8418 (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1); 8419 } 8420 8421 spinup_failed: 8422 8423 /* Uninitialize sd_ssc_t pointer */ 8424 sd_ssc_fini(ssc); 8425 8426 mutex_enter(SD_MUTEX(un)); 8427 8428 /* Deallocate SCSI FMA memory spaces */ 8429 kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal)); 8430 8431 /* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */ 8432 if (un->un_direct_priority_timeid != NULL) { 8433 timeout_id_t temp_id = un->un_direct_priority_timeid; 8434 un->un_direct_priority_timeid = NULL; 8435 mutex_exit(SD_MUTEX(un)); 8436 (void) untimeout(temp_id); 8437 mutex_enter(SD_MUTEX(un)); 8438 } 8439 8440 /* Cancel any pending start/stop timeouts */ 8441 if (un->un_startstop_timeid != NULL) { 8442 timeout_id_t temp_id = un->un_startstop_timeid; 8443 un->un_startstop_timeid = NULL; 8444 mutex_exit(SD_MUTEX(un)); 8445 (void) untimeout(temp_id); 8446 mutex_enter(SD_MUTEX(un)); 8447 } 8448 8449 /* Cancel any pending reset-throttle timeouts */ 8450 if (un->un_reset_throttle_timeid != NULL) { 8451 timeout_id_t temp_id = un->un_reset_throttle_timeid; 8452 un->un_reset_throttle_timeid = NULL; 8453 mutex_exit(SD_MUTEX(un)); 8454 (void) untimeout(temp_id); 8455 mutex_enter(SD_MUTEX(un)); 8456 } 8457 8458 /* Cancel rmw warning message timeouts */ 8459 if (un->un_rmw_msg_timeid != NULL) { 8460 timeout_id_t temp_id = un->un_rmw_msg_timeid; 8461 un->un_rmw_msg_timeid = NULL; 8462 mutex_exit(SD_MUTEX(un)); 8463 (void) untimeout(temp_id); 8464 mutex_enter(SD_MUTEX(un)); 8465 } 8466 8467 /* Cancel any pending retry timeouts */ 8468 if (un->un_retry_timeid != NULL) { 8469 timeout_id_t temp_id = un->un_retry_timeid; 8470 un->un_retry_timeid = NULL; 8471 mutex_exit(SD_MUTEX(un)); 8472 (void) untimeout(temp_id); 8473 mutex_enter(SD_MUTEX(un)); 8474 } 8475 8476 /* Cancel any pending delayed cv broadcast timeouts */ 8477 if (un->un_dcvb_timeid != NULL) { 8478 timeout_id_t temp_id = un->un_dcvb_timeid; 8479 un->un_dcvb_timeid = NULL; 8480 mutex_exit(SD_MUTEX(un)); 8481 (void) untimeout(temp_id); 8482 mutex_enter(SD_MUTEX(un)); 8483 } 8484 8485 mutex_exit(SD_MUTEX(un)); 8486 8487 /* There should not be any in-progress I/O so ASSERT this check */ 8488 ASSERT(un->un_ncmds_in_transport == 0); 8489 ASSERT(un->un_ncmds_in_driver == 0); 8490 8491 /* Do not free the softstate if the callback routine is active */ 8492 sd_sync_with_callback(un); 8493 8494 /* 8495 * Partition stats apparently are not used with removables. These would 8496 * not have been created during attach, so no need to clean them up... 8497 */ 8498 if (un->un_errstats != NULL) { 8499 kstat_delete(un->un_errstats); 8500 un->un_errstats = NULL; 8501 } 8502 8503 create_errstats_failed: 8504 8505 if (un->un_stats != NULL) { 8506 kstat_delete(un->un_stats); 8507 un->un_stats = NULL; 8508 } 8509 8510 ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi); 8511 ddi_xbuf_attr_destroy(un->un_xbuf_attr); 8512 8513 ddi_prop_remove_all(devi); 8514 sema_destroy(&un->un_semoclose); 8515 cv_destroy(&un->un_state_cv); 8516 8517 getrbuf_failed: 8518 8519 sd_free_rqs(un); 8520 8521 alloc_rqs_failed: 8522 8523 devp->sd_private = NULL; 8524 bzero(un, sizeof (struct sd_lun)); /* Clear any stale data! */ 8525 8526 get_softstate_failed: 8527 /* 8528 * Note: the man pages are unclear as to whether or not doing a 8529 * ddi_soft_state_free(sd_state, instance) is the right way to 8530 * clean up after the ddi_soft_state_zalloc() if the subsequent 8531 * ddi_get_soft_state() fails. The implication seems to be 8532 * that the get_soft_state cannot fail if the zalloc succeeds. 8533 */ 8534 #ifndef XPV_HVM_DRIVER 8535 ddi_soft_state_free(sd_state, instance); 8536 #endif /* !XPV_HVM_DRIVER */ 8537 8538 probe_failed: 8539 scsi_unprobe(devp); 8540 8541 return (DDI_FAILURE); 8542 } 8543 8544 8545 /* 8546 * Function: sd_unit_detach 8547 * 8548 * Description: Performs DDI_DETACH processing for sddetach(). 8549 * 8550 * Return Code: DDI_SUCCESS 8551 * DDI_FAILURE 8552 * 8553 * Context: Kernel thread context 8554 */ 8555 8556 static int 8557 sd_unit_detach(dev_info_t *devi) 8558 { 8559 struct scsi_device *devp; 8560 struct sd_lun *un; 8561 int i; 8562 int tgt; 8563 dev_t dev; 8564 dev_info_t *pdip = ddi_get_parent(devi); 8565 #ifndef XPV_HVM_DRIVER 8566 int instance = ddi_get_instance(devi); 8567 #endif /* !XPV_HVM_DRIVER */ 8568 8569 mutex_enter(&sd_detach_mutex); 8570 8571 /* 8572 * Fail the detach for any of the following: 8573 * - Unable to get the sd_lun struct for the instance 8574 * - A layered driver has an outstanding open on the instance 8575 * - Another thread is already detaching this instance 8576 * - Another thread is currently performing an open 8577 */ 8578 devp = ddi_get_driver_private(devi); 8579 if ((devp == NULL) || 8580 ((un = (struct sd_lun *)devp->sd_private) == NULL) || 8581 (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) || 8582 (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) { 8583 mutex_exit(&sd_detach_mutex); 8584 return (DDI_FAILURE); 8585 } 8586 8587 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un); 8588 8589 /* 8590 * Mark this instance as currently in a detach, to inhibit any 8591 * opens from a layered driver. 8592 */ 8593 un->un_detach_count++; 8594 mutex_exit(&sd_detach_mutex); 8595 8596 tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 8597 SCSI_ADDR_PROP_TARGET, -1); 8598 8599 dev = sd_make_device(SD_DEVINFO(un)); 8600 8601 #ifndef lint 8602 _NOTE(COMPETING_THREADS_NOW); 8603 #endif 8604 8605 mutex_enter(SD_MUTEX(un)); 8606 8607 /* 8608 * Fail the detach if there are any outstanding layered 8609 * opens on this device. 8610 */ 8611 for (i = 0; i < NDKMAP; i++) { 8612 if (un->un_ocmap.lyropen[i] != 0) { 8613 goto err_notclosed; 8614 } 8615 } 8616 8617 /* 8618 * Verify there are NO outstanding commands issued to this device. 8619 * ie, un_ncmds_in_transport == 0. 8620 * It's possible to have outstanding commands through the physio 8621 * code path, even though everything's closed. 8622 */ 8623 if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) || 8624 (un->un_direct_priority_timeid != NULL) || 8625 (un->un_state == SD_STATE_RWAIT)) { 8626 mutex_exit(SD_MUTEX(un)); 8627 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8628 "sd_dr_detach: Detach failure due to outstanding cmds\n"); 8629 goto err_stillbusy; 8630 } 8631 8632 /* 8633 * If we have the device reserved, release the reservation. 8634 */ 8635 if ((un->un_resvd_status & SD_RESERVE) && 8636 !(un->un_resvd_status & SD_LOST_RESERVE)) { 8637 mutex_exit(SD_MUTEX(un)); 8638 /* 8639 * Note: sd_reserve_release sends a command to the device 8640 * via the sd_ioctlcmd() path, and can sleep. 8641 */ 8642 if (sd_reserve_release(dev, SD_RELEASE) != 0) { 8643 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8644 "sd_dr_detach: Cannot release reservation \n"); 8645 } 8646 } else { 8647 mutex_exit(SD_MUTEX(un)); 8648 } 8649 8650 /* 8651 * Untimeout any reserve recover, throttle reset, restart unit 8652 * and delayed broadcast timeout threads. Protect the timeout pointer 8653 * from getting nulled by their callback functions. 8654 */ 8655 mutex_enter(SD_MUTEX(un)); 8656 if (un->un_resvd_timeid != NULL) { 8657 timeout_id_t temp_id = un->un_resvd_timeid; 8658 un->un_resvd_timeid = NULL; 8659 mutex_exit(SD_MUTEX(un)); 8660 (void) untimeout(temp_id); 8661 mutex_enter(SD_MUTEX(un)); 8662 } 8663 8664 if (un->un_reset_throttle_timeid != NULL) { 8665 timeout_id_t temp_id = un->un_reset_throttle_timeid; 8666 un->un_reset_throttle_timeid = NULL; 8667 mutex_exit(SD_MUTEX(un)); 8668 (void) untimeout(temp_id); 8669 mutex_enter(SD_MUTEX(un)); 8670 } 8671 8672 if (un->un_startstop_timeid != NULL) { 8673 timeout_id_t temp_id = un->un_startstop_timeid; 8674 un->un_startstop_timeid = NULL; 8675 mutex_exit(SD_MUTEX(un)); 8676 (void) untimeout(temp_id); 8677 mutex_enter(SD_MUTEX(un)); 8678 } 8679 8680 if (un->un_rmw_msg_timeid != NULL) { 8681 timeout_id_t temp_id = un->un_rmw_msg_timeid; 8682 un->un_rmw_msg_timeid = NULL; 8683 mutex_exit(SD_MUTEX(un)); 8684 (void) untimeout(temp_id); 8685 mutex_enter(SD_MUTEX(un)); 8686 } 8687 8688 if (un->un_dcvb_timeid != NULL) { 8689 timeout_id_t temp_id = un->un_dcvb_timeid; 8690 un->un_dcvb_timeid = NULL; 8691 mutex_exit(SD_MUTEX(un)); 8692 (void) untimeout(temp_id); 8693 } else { 8694 mutex_exit(SD_MUTEX(un)); 8695 } 8696 8697 /* Remove any pending reservation reclaim requests for this device */ 8698 sd_rmv_resv_reclaim_req(dev); 8699 8700 mutex_enter(SD_MUTEX(un)); 8701 8702 /* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */ 8703 if (un->un_direct_priority_timeid != NULL) { 8704 timeout_id_t temp_id = un->un_direct_priority_timeid; 8705 un->un_direct_priority_timeid = NULL; 8706 mutex_exit(SD_MUTEX(un)); 8707 (void) untimeout(temp_id); 8708 mutex_enter(SD_MUTEX(un)); 8709 } 8710 8711 /* Cancel any active multi-host disk watch thread requests */ 8712 if (un->un_mhd_token != NULL) { 8713 mutex_exit(SD_MUTEX(un)); 8714 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token)); 8715 if (scsi_watch_request_terminate(un->un_mhd_token, 8716 SCSI_WATCH_TERMINATE_NOWAIT)) { 8717 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8718 "sd_dr_detach: Cannot cancel mhd watch request\n"); 8719 /* 8720 * Note: We are returning here after having removed 8721 * some driver timeouts above. This is consistent with 8722 * the legacy implementation but perhaps the watch 8723 * terminate call should be made with the wait flag set. 8724 */ 8725 goto err_stillbusy; 8726 } 8727 mutex_enter(SD_MUTEX(un)); 8728 un->un_mhd_token = NULL; 8729 } 8730 8731 if (un->un_swr_token != NULL) { 8732 mutex_exit(SD_MUTEX(un)); 8733 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token)); 8734 if (scsi_watch_request_terminate(un->un_swr_token, 8735 SCSI_WATCH_TERMINATE_NOWAIT)) { 8736 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8737 "sd_dr_detach: Cannot cancel swr watch request\n"); 8738 /* 8739 * Note: We are returning here after having removed 8740 * some driver timeouts above. This is consistent with 8741 * the legacy implementation but perhaps the watch 8742 * terminate call should be made with the wait flag set. 8743 */ 8744 goto err_stillbusy; 8745 } 8746 mutex_enter(SD_MUTEX(un)); 8747 un->un_swr_token = NULL; 8748 } 8749 8750 mutex_exit(SD_MUTEX(un)); 8751 8752 /* 8753 * Clear any scsi_reset_notifies. We clear the reset notifies 8754 * if we have not registered one. 8755 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX! 8756 */ 8757 (void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL, 8758 sd_mhd_reset_notify_cb, (caddr_t)un); 8759 8760 /* 8761 * protect the timeout pointers from getting nulled by 8762 * their callback functions during the cancellation process. 8763 * In such a scenario untimeout can be invoked with a null value. 8764 */ 8765 _NOTE(NO_COMPETING_THREADS_NOW); 8766 8767 mutex_enter(&un->un_pm_mutex); 8768 if (un->un_pm_idle_timeid != NULL) { 8769 timeout_id_t temp_id = un->un_pm_idle_timeid; 8770 un->un_pm_idle_timeid = NULL; 8771 mutex_exit(&un->un_pm_mutex); 8772 8773 /* 8774 * Timeout is active; cancel it. 8775 * Note that it'll never be active on a device 8776 * that does not support PM therefore we don't 8777 * have to check before calling pm_idle_component. 8778 */ 8779 (void) untimeout(temp_id); 8780 (void) pm_idle_component(SD_DEVINFO(un), 0); 8781 mutex_enter(&un->un_pm_mutex); 8782 } 8783 8784 /* 8785 * Check whether there is already a timeout scheduled for power 8786 * management. If yes then don't lower the power here, that's. 8787 * the timeout handler's job. 8788 */ 8789 if (un->un_pm_timeid != NULL) { 8790 timeout_id_t temp_id = un->un_pm_timeid; 8791 un->un_pm_timeid = NULL; 8792 mutex_exit(&un->un_pm_mutex); 8793 /* 8794 * Timeout is active; cancel it. 8795 * Note that it'll never be active on a device 8796 * that does not support PM therefore we don't 8797 * have to check before calling pm_idle_component. 8798 */ 8799 (void) untimeout(temp_id); 8800 (void) pm_idle_component(SD_DEVINFO(un), 0); 8801 8802 } else { 8803 mutex_exit(&un->un_pm_mutex); 8804 if ((un->un_f_pm_is_enabled == TRUE) && 8805 (pm_lower_power(SD_DEVINFO(un), 0, SD_PM_STATE_STOPPED(un)) 8806 != DDI_SUCCESS)) { 8807 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8808 "sd_dr_detach: Lower power request failed, ignoring.\n"); 8809 /* 8810 * Fix for bug: 4297749, item # 13 8811 * The above test now includes a check to see if PM is 8812 * supported by this device before call 8813 * pm_lower_power(). 8814 * Note, the following is not dead code. The call to 8815 * pm_lower_power above will generate a call back into 8816 * our sdpower routine which might result in a timeout 8817 * handler getting activated. Therefore the following 8818 * code is valid and necessary. 8819 */ 8820 mutex_enter(&un->un_pm_mutex); 8821 if (un->un_pm_timeid != NULL) { 8822 timeout_id_t temp_id = un->un_pm_timeid; 8823 un->un_pm_timeid = NULL; 8824 mutex_exit(&un->un_pm_mutex); 8825 (void) untimeout(temp_id); 8826 (void) pm_idle_component(SD_DEVINFO(un), 0); 8827 } else { 8828 mutex_exit(&un->un_pm_mutex); 8829 } 8830 } 8831 } 8832 8833 /* 8834 * Cleanup from the scsi_ifsetcap() calls (437868) 8835 * Relocated here from above to be after the call to 8836 * pm_lower_power, which was getting errors. 8837 */ 8838 (void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1); 8839 (void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1); 8840 8841 /* 8842 * Currently, tagged queuing is supported per target based by HBA. 8843 * Setting this per lun instance actually sets the capability of this 8844 * target in HBA, which affects those luns already attached on the 8845 * same target. So during detach, we can only disable this capability 8846 * only when this is the only lun left on this target. By doing 8847 * this, we assume a target has the same tagged queuing capability 8848 * for every lun. The condition can be removed when HBA is changed to 8849 * support per lun based tagged queuing capability. 8850 */ 8851 if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) { 8852 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 8853 } 8854 8855 if (un->un_f_is_fibre == FALSE) { 8856 (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1); 8857 } 8858 8859 /* 8860 * Remove any event callbacks, fibre only 8861 */ 8862 if (un->un_f_is_fibre == TRUE) { 8863 if ((un->un_insert_event != NULL) && 8864 (ddi_remove_event_handler(un->un_insert_cb_id) != 8865 DDI_SUCCESS)) { 8866 /* 8867 * Note: We are returning here after having done 8868 * substantial cleanup above. This is consistent 8869 * with the legacy implementation but this may not 8870 * be the right thing to do. 8871 */ 8872 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8873 "sd_dr_detach: Cannot cancel insert event\n"); 8874 goto err_remove_event; 8875 } 8876 un->un_insert_event = NULL; 8877 8878 if ((un->un_remove_event != NULL) && 8879 (ddi_remove_event_handler(un->un_remove_cb_id) != 8880 DDI_SUCCESS)) { 8881 /* 8882 * Note: We are returning here after having done 8883 * substantial cleanup above. This is consistent 8884 * with the legacy implementation but this may not 8885 * be the right thing to do. 8886 */ 8887 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8888 "sd_dr_detach: Cannot cancel remove event\n"); 8889 goto err_remove_event; 8890 } 8891 un->un_remove_event = NULL; 8892 } 8893 8894 /* Do not free the softstate if the callback routine is active */ 8895 sd_sync_with_callback(un); 8896 8897 cmlb_detach(un->un_cmlbhandle, (void *)SD_PATH_DIRECT); 8898 cmlb_free_handle(&un->un_cmlbhandle); 8899 8900 /* 8901 * Hold the detach mutex here, to make sure that no other threads ever 8902 * can access a (partially) freed soft state structure. 8903 */ 8904 mutex_enter(&sd_detach_mutex); 8905 8906 /* 8907 * Clean up the soft state struct. 8908 * Cleanup is done in reverse order of allocs/inits. 8909 * At this point there should be no competing threads anymore. 8910 */ 8911 8912 scsi_fm_fini(devp); 8913 8914 /* 8915 * Deallocate memory for SCSI FMA. 8916 */ 8917 kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal)); 8918 8919 /* 8920 * Unregister and free device id if it was not registered 8921 * by the transport. 8922 */ 8923 if (un->un_f_devid_transport_defined == FALSE) 8924 ddi_devid_unregister(devi); 8925 8926 /* 8927 * free the devid structure if allocated before (by ddi_devid_init() 8928 * or ddi_devid_get()). 8929 */ 8930 if (un->un_devid) { 8931 ddi_devid_free(un->un_devid); 8932 un->un_devid = NULL; 8933 } 8934 8935 /* 8936 * Destroy wmap cache if it exists. 8937 */ 8938 if (un->un_wm_cache != NULL) { 8939 kmem_cache_destroy(un->un_wm_cache); 8940 un->un_wm_cache = NULL; 8941 } 8942 8943 /* 8944 * kstat cleanup is done in detach for all device types (4363169). 8945 * We do not want to fail detach if the device kstats are not deleted 8946 * since there is a confusion about the devo_refcnt for the device. 8947 * We just delete the kstats and let detach complete successfully. 8948 */ 8949 if (un->un_stats != NULL) { 8950 kstat_delete(un->un_stats); 8951 un->un_stats = NULL; 8952 } 8953 if (un->un_errstats != NULL) { 8954 kstat_delete(un->un_errstats); 8955 un->un_errstats = NULL; 8956 } 8957 8958 /* Remove partition stats */ 8959 if (un->un_f_pkstats_enabled) { 8960 for (i = 0; i < NSDMAP; i++) { 8961 if (un->un_pstats[i] != NULL) { 8962 kstat_delete(un->un_pstats[i]); 8963 un->un_pstats[i] = NULL; 8964 } 8965 } 8966 } 8967 8968 /* Remove xbuf registration */ 8969 ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi); 8970 ddi_xbuf_attr_destroy(un->un_xbuf_attr); 8971 8972 /* Remove driver properties */ 8973 ddi_prop_remove_all(devi); 8974 8975 mutex_destroy(&un->un_pm_mutex); 8976 cv_destroy(&un->un_pm_busy_cv); 8977 8978 cv_destroy(&un->un_wcc_cv); 8979 8980 /* Open/close semaphore */ 8981 sema_destroy(&un->un_semoclose); 8982 8983 /* Removable media condvar. */ 8984 cv_destroy(&un->un_state_cv); 8985 8986 /* Suspend/resume condvar. */ 8987 cv_destroy(&un->un_suspend_cv); 8988 cv_destroy(&un->un_disk_busy_cv); 8989 8990 sd_free_rqs(un); 8991 8992 /* Free up soft state */ 8993 devp->sd_private = NULL; 8994 8995 bzero(un, sizeof (struct sd_lun)); 8996 #ifndef XPV_HVM_DRIVER 8997 ddi_soft_state_free(sd_state, instance); 8998 #endif /* !XPV_HVM_DRIVER */ 8999 9000 mutex_exit(&sd_detach_mutex); 9001 9002 /* This frees up the INQUIRY data associated with the device. */ 9003 scsi_unprobe(devp); 9004 9005 /* 9006 * After successfully detaching an instance, we update the information 9007 * of how many luns have been attached in the relative target and 9008 * controller for parallel SCSI. This information is used when sd tries 9009 * to set the tagged queuing capability in HBA. 9010 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to 9011 * check if the device is parallel SCSI. However, we don't need to 9012 * check here because we've already checked during attach. No device 9013 * that is not parallel SCSI is in the chain. 9014 */ 9015 if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) { 9016 sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH); 9017 } 9018 9019 return (DDI_SUCCESS); 9020 9021 err_notclosed: 9022 mutex_exit(SD_MUTEX(un)); 9023 9024 err_stillbusy: 9025 _NOTE(NO_COMPETING_THREADS_NOW); 9026 9027 err_remove_event: 9028 mutex_enter(&sd_detach_mutex); 9029 un->un_detach_count--; 9030 mutex_exit(&sd_detach_mutex); 9031 9032 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n"); 9033 return (DDI_FAILURE); 9034 } 9035 9036 9037 /* 9038 * Function: sd_create_errstats 9039 * 9040 * Description: This routine instantiates the device error stats. 9041 * 9042 * Note: During attach the stats are instantiated first so they are 9043 * available for attach-time routines that utilize the driver 9044 * iopath to send commands to the device. The stats are initialized 9045 * separately so data obtained during some attach-time routines is 9046 * available. (4362483) 9047 * 9048 * Arguments: un - driver soft state (unit) structure 9049 * instance - driver instance 9050 * 9051 * Context: Kernel thread context 9052 */ 9053 9054 static void 9055 sd_create_errstats(struct sd_lun *un, int instance) 9056 { 9057 struct sd_errstats *stp; 9058 char kstatmodule_err[KSTAT_STRLEN]; 9059 char kstatname[KSTAT_STRLEN]; 9060 int ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t)); 9061 9062 ASSERT(un != NULL); 9063 9064 if (un->un_errstats != NULL) { 9065 return; 9066 } 9067 9068 (void) snprintf(kstatmodule_err, sizeof (kstatmodule_err), 9069 "%serr", sd_label); 9070 (void) snprintf(kstatname, sizeof (kstatname), 9071 "%s%d,err", sd_label, instance); 9072 9073 un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname, 9074 "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT); 9075 9076 if (un->un_errstats == NULL) { 9077 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 9078 "sd_create_errstats: Failed kstat_create\n"); 9079 return; 9080 } 9081 9082 stp = (struct sd_errstats *)un->un_errstats->ks_data; 9083 kstat_named_init(&stp->sd_softerrs, "Soft Errors", 9084 KSTAT_DATA_UINT32); 9085 kstat_named_init(&stp->sd_harderrs, "Hard Errors", 9086 KSTAT_DATA_UINT32); 9087 kstat_named_init(&stp->sd_transerrs, "Transport Errors", 9088 KSTAT_DATA_UINT32); 9089 kstat_named_init(&stp->sd_vid, "Vendor", 9090 KSTAT_DATA_CHAR); 9091 kstat_named_init(&stp->sd_pid, "Product", 9092 KSTAT_DATA_CHAR); 9093 kstat_named_init(&stp->sd_revision, "Revision", 9094 KSTAT_DATA_CHAR); 9095 kstat_named_init(&stp->sd_serial, "Serial No", 9096 KSTAT_DATA_CHAR); 9097 kstat_named_init(&stp->sd_capacity, "Size", 9098 KSTAT_DATA_ULONGLONG); 9099 kstat_named_init(&stp->sd_rq_media_err, "Media Error", 9100 KSTAT_DATA_UINT32); 9101 kstat_named_init(&stp->sd_rq_ntrdy_err, "Device Not Ready", 9102 KSTAT_DATA_UINT32); 9103 kstat_named_init(&stp->sd_rq_nodev_err, "No Device", 9104 KSTAT_DATA_UINT32); 9105 kstat_named_init(&stp->sd_rq_recov_err, "Recoverable", 9106 KSTAT_DATA_UINT32); 9107 kstat_named_init(&stp->sd_rq_illrq_err, "Illegal Request", 9108 KSTAT_DATA_UINT32); 9109 kstat_named_init(&stp->sd_rq_pfa_err, "Predictive Failure Analysis", 9110 KSTAT_DATA_UINT32); 9111 9112 un->un_errstats->ks_private = un; 9113 un->un_errstats->ks_update = nulldev; 9114 9115 kstat_install(un->un_errstats); 9116 } 9117 9118 9119 /* 9120 * Function: sd_set_errstats 9121 * 9122 * Description: This routine sets the value of the vendor id, product id, 9123 * revision, serial number, and capacity device error stats. 9124 * 9125 * Note: During attach the stats are instantiated first so they are 9126 * available for attach-time routines that utilize the driver 9127 * iopath to send commands to the device. The stats are initialized 9128 * separately so data obtained during some attach-time routines is 9129 * available. (4362483) 9130 * 9131 * Arguments: un - driver soft state (unit) structure 9132 * 9133 * Context: Kernel thread context 9134 */ 9135 9136 static void 9137 sd_set_errstats(struct sd_lun *un) 9138 { 9139 struct sd_errstats *stp; 9140 char *sn; 9141 9142 ASSERT(un != NULL); 9143 ASSERT(un->un_errstats != NULL); 9144 stp = (struct sd_errstats *)un->un_errstats->ks_data; 9145 ASSERT(stp != NULL); 9146 (void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8); 9147 (void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16); 9148 (void) strncpy(stp->sd_revision.value.c, 9149 un->un_sd->sd_inq->inq_revision, 4); 9150 9151 /* 9152 * All the errstats are persistent across detach/attach, 9153 * so reset all the errstats here in case of the hot 9154 * replacement of disk drives, except for not changed 9155 * Sun qualified drives. 9156 */ 9157 if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) || 9158 (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c, 9159 sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) { 9160 stp->sd_softerrs.value.ui32 = 0; 9161 stp->sd_harderrs.value.ui32 = 0; 9162 stp->sd_transerrs.value.ui32 = 0; 9163 stp->sd_rq_media_err.value.ui32 = 0; 9164 stp->sd_rq_ntrdy_err.value.ui32 = 0; 9165 stp->sd_rq_nodev_err.value.ui32 = 0; 9166 stp->sd_rq_recov_err.value.ui32 = 0; 9167 stp->sd_rq_illrq_err.value.ui32 = 0; 9168 stp->sd_rq_pfa_err.value.ui32 = 0; 9169 } 9170 9171 /* 9172 * Set the "Serial No" kstat for Sun qualified drives (indicated by 9173 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid) 9174 * (4376302)) 9175 */ 9176 if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) { 9177 bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c, 9178 sizeof (SD_INQUIRY(un)->inq_serial)); 9179 } else { 9180 /* 9181 * Set the "Serial No" kstat for non-Sun qualified drives 9182 */ 9183 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, SD_DEVINFO(un), 9184 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, 9185 INQUIRY_SERIAL_NO, &sn) == DDI_SUCCESS) { 9186 (void) strlcpy(stp->sd_serial.value.c, sn, 9187 sizeof (stp->sd_serial.value.c)); 9188 ddi_prop_free(sn); 9189 } 9190 } 9191 9192 if (un->un_f_blockcount_is_valid != TRUE) { 9193 /* 9194 * Set capacity error stat to 0 for no media. This ensures 9195 * a valid capacity is displayed in response to 'iostat -E' 9196 * when no media is present in the device. 9197 */ 9198 stp->sd_capacity.value.ui64 = 0; 9199 } else { 9200 /* 9201 * Multiply un_blockcount by un->un_sys_blocksize to get 9202 * capacity. 9203 * 9204 * Note: for non-512 blocksize devices "un_blockcount" has been 9205 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by 9206 * (un_tgt_blocksize / un->un_sys_blocksize). 9207 */ 9208 stp->sd_capacity.value.ui64 = (uint64_t) 9209 ((uint64_t)un->un_blockcount * un->un_sys_blocksize); 9210 } 9211 } 9212 9213 9214 /* 9215 * Function: sd_set_pstats 9216 * 9217 * Description: This routine instantiates and initializes the partition 9218 * stats for each partition with more than zero blocks. 9219 * (4363169) 9220 * 9221 * Arguments: un - driver soft state (unit) structure 9222 * 9223 * Context: Kernel thread context 9224 */ 9225 9226 static void 9227 sd_set_pstats(struct sd_lun *un) 9228 { 9229 char kstatname[KSTAT_STRLEN]; 9230 int instance; 9231 int i; 9232 diskaddr_t nblks = 0; 9233 char *partname = NULL; 9234 9235 ASSERT(un != NULL); 9236 9237 instance = ddi_get_instance(SD_DEVINFO(un)); 9238 9239 /* Note:x86: is this a VTOC8/VTOC16 difference? */ 9240 for (i = 0; i < NSDMAP; i++) { 9241 9242 if (cmlb_partinfo(un->un_cmlbhandle, i, 9243 &nblks, NULL, &partname, NULL, (void *)SD_PATH_DIRECT) != 0) 9244 continue; 9245 mutex_enter(SD_MUTEX(un)); 9246 9247 if ((un->un_pstats[i] == NULL) && 9248 (nblks != 0)) { 9249 9250 (void) snprintf(kstatname, sizeof (kstatname), 9251 "%s%d,%s", sd_label, instance, 9252 partname); 9253 9254 un->un_pstats[i] = kstat_create(sd_label, 9255 instance, kstatname, "partition", KSTAT_TYPE_IO, 9256 1, KSTAT_FLAG_PERSISTENT); 9257 if (un->un_pstats[i] != NULL) { 9258 un->un_pstats[i]->ks_lock = SD_MUTEX(un); 9259 kstat_install(un->un_pstats[i]); 9260 } 9261 } 9262 mutex_exit(SD_MUTEX(un)); 9263 } 9264 } 9265 9266 9267 #if (defined(__fibre)) 9268 /* 9269 * Function: sd_init_event_callbacks 9270 * 9271 * Description: This routine initializes the insertion and removal event 9272 * callbacks. (fibre only) 9273 * 9274 * Arguments: un - driver soft state (unit) structure 9275 * 9276 * Context: Kernel thread context 9277 */ 9278 9279 static void 9280 sd_init_event_callbacks(struct sd_lun *un) 9281 { 9282 ASSERT(un != NULL); 9283 9284 if ((un->un_insert_event == NULL) && 9285 (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT, 9286 &un->un_insert_event) == DDI_SUCCESS)) { 9287 /* 9288 * Add the callback for an insertion event 9289 */ 9290 (void) ddi_add_event_handler(SD_DEVINFO(un), 9291 un->un_insert_event, sd_event_callback, (void *)un, 9292 &(un->un_insert_cb_id)); 9293 } 9294 9295 if ((un->un_remove_event == NULL) && 9296 (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT, 9297 &un->un_remove_event) == DDI_SUCCESS)) { 9298 /* 9299 * Add the callback for a removal event 9300 */ 9301 (void) ddi_add_event_handler(SD_DEVINFO(un), 9302 un->un_remove_event, sd_event_callback, (void *)un, 9303 &(un->un_remove_cb_id)); 9304 } 9305 } 9306 9307 9308 /* 9309 * Function: sd_event_callback 9310 * 9311 * Description: This routine handles insert/remove events (photon). The 9312 * state is changed to OFFLINE which can be used to supress 9313 * error msgs. (fibre only) 9314 * 9315 * Arguments: un - driver soft state (unit) structure 9316 * 9317 * Context: Callout thread context 9318 */ 9319 /* ARGSUSED */ 9320 static void 9321 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg, 9322 void *bus_impldata) 9323 { 9324 struct sd_lun *un = (struct sd_lun *)arg; 9325 9326 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event)); 9327 if (event == un->un_insert_event) { 9328 SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event"); 9329 mutex_enter(SD_MUTEX(un)); 9330 if (un->un_state == SD_STATE_OFFLINE) { 9331 if (un->un_last_state != SD_STATE_SUSPENDED) { 9332 un->un_state = un->un_last_state; 9333 } else { 9334 /* 9335 * We have gone through SUSPEND/RESUME while 9336 * we were offline. Restore the last state 9337 */ 9338 un->un_state = un->un_save_state; 9339 } 9340 } 9341 mutex_exit(SD_MUTEX(un)); 9342 9343 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event)); 9344 } else if (event == un->un_remove_event) { 9345 SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event"); 9346 mutex_enter(SD_MUTEX(un)); 9347 /* 9348 * We need to handle an event callback that occurs during 9349 * the suspend operation, since we don't prevent it. 9350 */ 9351 if (un->un_state != SD_STATE_OFFLINE) { 9352 if (un->un_state != SD_STATE_SUSPENDED) { 9353 New_state(un, SD_STATE_OFFLINE); 9354 } else { 9355 un->un_last_state = SD_STATE_OFFLINE; 9356 } 9357 } 9358 mutex_exit(SD_MUTEX(un)); 9359 } else { 9360 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, 9361 "!Unknown event\n"); 9362 } 9363 9364 } 9365 #endif 9366 9367 /* 9368 * Function: sd_cache_control() 9369 * 9370 * Description: This routine is the driver entry point for setting 9371 * read and write caching by modifying the WCE (write cache 9372 * enable) and RCD (read cache disable) bits of mode 9373 * page 8 (MODEPAGE_CACHING). 9374 * 9375 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 9376 * structure for this target. 9377 * rcd_flag - flag for controlling the read cache 9378 * wce_flag - flag for controlling the write cache 9379 * 9380 * Return Code: EIO 9381 * code returned by sd_send_scsi_MODE_SENSE and 9382 * sd_send_scsi_MODE_SELECT 9383 * 9384 * Context: Kernel Thread 9385 */ 9386 9387 static int 9388 sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag) 9389 { 9390 struct mode_caching *mode_caching_page; 9391 uchar_t *header; 9392 size_t buflen; 9393 int hdrlen; 9394 int bd_len; 9395 int rval = 0; 9396 struct mode_header_grp2 *mhp; 9397 struct sd_lun *un; 9398 int status; 9399 9400 ASSERT(ssc != NULL); 9401 un = ssc->ssc_un; 9402 ASSERT(un != NULL); 9403 9404 /* 9405 * Do a test unit ready, otherwise a mode sense may not work if this 9406 * is the first command sent to the device after boot. 9407 */ 9408 status = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 9409 if (status != 0) 9410 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9411 9412 if (un->un_f_cfg_is_atapi == TRUE) { 9413 hdrlen = MODE_HEADER_LENGTH_GRP2; 9414 } else { 9415 hdrlen = MODE_HEADER_LENGTH; 9416 } 9417 9418 /* 9419 * Allocate memory for the retrieved mode page and its headers. Set 9420 * a pointer to the page itself. Use mode_cache_scsi3 to insure 9421 * we get all of the mode sense data otherwise, the mode select 9422 * will fail. mode_cache_scsi3 is a superset of mode_caching. 9423 */ 9424 buflen = hdrlen + MODE_BLK_DESC_LENGTH + 9425 sizeof (struct mode_cache_scsi3); 9426 9427 header = kmem_zalloc(buflen, KM_SLEEP); 9428 9429 /* Get the information from the device. */ 9430 if (un->un_f_cfg_is_atapi == TRUE) { 9431 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen, 9432 MODEPAGE_CACHING, SD_PATH_DIRECT); 9433 } else { 9434 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen, 9435 MODEPAGE_CACHING, SD_PATH_DIRECT); 9436 } 9437 9438 if (rval != 0) { 9439 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 9440 "sd_cache_control: Mode Sense Failed\n"); 9441 goto mode_sense_failed; 9442 } 9443 9444 /* 9445 * Determine size of Block Descriptors in order to locate 9446 * the mode page data. ATAPI devices return 0, SCSI devices 9447 * should return MODE_BLK_DESC_LENGTH. 9448 */ 9449 if (un->un_f_cfg_is_atapi == TRUE) { 9450 mhp = (struct mode_header_grp2 *)header; 9451 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 9452 } else { 9453 bd_len = ((struct mode_header *)header)->bdesc_length; 9454 } 9455 9456 if (bd_len > MODE_BLK_DESC_LENGTH) { 9457 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, 0, 9458 "sd_cache_control: Mode Sense returned invalid block " 9459 "descriptor length\n"); 9460 rval = EIO; 9461 goto mode_sense_failed; 9462 } 9463 9464 mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len); 9465 if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) { 9466 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON, 9467 "sd_cache_control: Mode Sense caching page code mismatch " 9468 "%d\n", mode_caching_page->mode_page.code); 9469 rval = EIO; 9470 goto mode_sense_failed; 9471 } 9472 9473 /* Check the relevant bits on successful mode sense. */ 9474 if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) || 9475 (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) || 9476 (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) || 9477 (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) { 9478 9479 size_t sbuflen; 9480 uchar_t save_pg; 9481 9482 /* 9483 * Construct select buffer length based on the 9484 * length of the sense data returned. 9485 */ 9486 sbuflen = hdrlen + bd_len + 9487 sizeof (struct mode_page) + 9488 (int)mode_caching_page->mode_page.length; 9489 9490 /* 9491 * Set the caching bits as requested. 9492 */ 9493 if (rcd_flag == SD_CACHE_ENABLE) 9494 mode_caching_page->rcd = 0; 9495 else if (rcd_flag == SD_CACHE_DISABLE) 9496 mode_caching_page->rcd = 1; 9497 9498 if (wce_flag == SD_CACHE_ENABLE) 9499 mode_caching_page->wce = 1; 9500 else if (wce_flag == SD_CACHE_DISABLE) 9501 mode_caching_page->wce = 0; 9502 9503 /* 9504 * Save the page if the mode sense says the 9505 * drive supports it. 9506 */ 9507 save_pg = mode_caching_page->mode_page.ps ? 9508 SD_SAVE_PAGE : SD_DONTSAVE_PAGE; 9509 9510 /* Clear reserved bits before mode select. */ 9511 mode_caching_page->mode_page.ps = 0; 9512 9513 /* 9514 * Clear out mode header for mode select. 9515 * The rest of the retrieved page will be reused. 9516 */ 9517 bzero(header, hdrlen); 9518 9519 if (un->un_f_cfg_is_atapi == TRUE) { 9520 mhp = (struct mode_header_grp2 *)header; 9521 mhp->bdesc_length_hi = bd_len >> 8; 9522 mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff; 9523 } else { 9524 ((struct mode_header *)header)->bdesc_length = bd_len; 9525 } 9526 9527 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9528 9529 /* Issue mode select to change the cache settings */ 9530 if (un->un_f_cfg_is_atapi == TRUE) { 9531 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, header, 9532 sbuflen, save_pg, SD_PATH_DIRECT); 9533 } else { 9534 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header, 9535 sbuflen, save_pg, SD_PATH_DIRECT); 9536 } 9537 9538 } 9539 9540 9541 mode_sense_failed: 9542 9543 kmem_free(header, buflen); 9544 9545 if (rval != 0) { 9546 if (rval == EIO) 9547 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 9548 else 9549 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9550 } 9551 return (rval); 9552 } 9553 9554 9555 /* 9556 * Function: sd_get_write_cache_enabled() 9557 * 9558 * Description: This routine is the driver entry point for determining if 9559 * write caching is enabled. It examines the WCE (write cache 9560 * enable) bits of mode page 8 (MODEPAGE_CACHING). 9561 * 9562 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 9563 * structure for this target. 9564 * is_enabled - pointer to int where write cache enabled state 9565 * is returned (non-zero -> write cache enabled) 9566 * 9567 * 9568 * Return Code: EIO 9569 * code returned by sd_send_scsi_MODE_SENSE 9570 * 9571 * Context: Kernel Thread 9572 * 9573 * NOTE: If ioctl is added to disable write cache, this sequence should 9574 * be followed so that no locking is required for accesses to 9575 * un->un_f_write_cache_enabled: 9576 * do mode select to clear wce 9577 * do synchronize cache to flush cache 9578 * set un->un_f_write_cache_enabled = FALSE 9579 * 9580 * Conversely, an ioctl to enable the write cache should be done 9581 * in this order: 9582 * set un->un_f_write_cache_enabled = TRUE 9583 * do mode select to set wce 9584 */ 9585 9586 static int 9587 sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled) 9588 { 9589 struct mode_caching *mode_caching_page; 9590 uchar_t *header; 9591 size_t buflen; 9592 int hdrlen; 9593 int bd_len; 9594 int rval = 0; 9595 struct sd_lun *un; 9596 int status; 9597 9598 ASSERT(ssc != NULL); 9599 un = ssc->ssc_un; 9600 ASSERT(un != NULL); 9601 ASSERT(is_enabled != NULL); 9602 9603 /* in case of error, flag as enabled */ 9604 *is_enabled = TRUE; 9605 9606 /* 9607 * Do a test unit ready, otherwise a mode sense may not work if this 9608 * is the first command sent to the device after boot. 9609 */ 9610 status = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 9611 9612 if (status != 0) 9613 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9614 9615 if (un->un_f_cfg_is_atapi == TRUE) { 9616 hdrlen = MODE_HEADER_LENGTH_GRP2; 9617 } else { 9618 hdrlen = MODE_HEADER_LENGTH; 9619 } 9620 9621 /* 9622 * Allocate memory for the retrieved mode page and its headers. Set 9623 * a pointer to the page itself. 9624 */ 9625 buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching); 9626 header = kmem_zalloc(buflen, KM_SLEEP); 9627 9628 /* Get the information from the device. */ 9629 if (un->un_f_cfg_is_atapi == TRUE) { 9630 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen, 9631 MODEPAGE_CACHING, SD_PATH_DIRECT); 9632 } else { 9633 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen, 9634 MODEPAGE_CACHING, SD_PATH_DIRECT); 9635 } 9636 9637 if (rval != 0) { 9638 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 9639 "sd_get_write_cache_enabled: Mode Sense Failed\n"); 9640 goto mode_sense_failed; 9641 } 9642 9643 /* 9644 * Determine size of Block Descriptors in order to locate 9645 * the mode page data. ATAPI devices return 0, SCSI devices 9646 * should return MODE_BLK_DESC_LENGTH. 9647 */ 9648 if (un->un_f_cfg_is_atapi == TRUE) { 9649 struct mode_header_grp2 *mhp; 9650 mhp = (struct mode_header_grp2 *)header; 9651 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 9652 } else { 9653 bd_len = ((struct mode_header *)header)->bdesc_length; 9654 } 9655 9656 if (bd_len > MODE_BLK_DESC_LENGTH) { 9657 /* FMA should make upset complain here */ 9658 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, 0, 9659 "sd_get_write_cache_enabled: Mode Sense returned invalid " 9660 "block descriptor length\n"); 9661 rval = EIO; 9662 goto mode_sense_failed; 9663 } 9664 9665 mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len); 9666 if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) { 9667 /* FMA could make upset complain here */ 9668 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON, 9669 "sd_get_write_cache_enabled: Mode Sense caching page " 9670 "code mismatch %d\n", mode_caching_page->mode_page.code); 9671 rval = EIO; 9672 goto mode_sense_failed; 9673 } 9674 *is_enabled = mode_caching_page->wce; 9675 9676 mode_sense_failed: 9677 if (rval == 0) { 9678 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 9679 } else if (rval == EIO) { 9680 /* 9681 * Some disks do not support mode sense(6), we 9682 * should ignore this kind of error(sense key is 9683 * 0x5 - illegal request). 9684 */ 9685 uint8_t *sensep; 9686 int senlen; 9687 9688 sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf; 9689 senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen - 9690 ssc->ssc_uscsi_cmd->uscsi_rqresid); 9691 9692 if (senlen > 0 && 9693 scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) { 9694 sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE); 9695 } else { 9696 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 9697 } 9698 } else { 9699 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9700 } 9701 kmem_free(header, buflen); 9702 return (rval); 9703 } 9704 9705 /* 9706 * Function: sd_get_nv_sup() 9707 * 9708 * Description: This routine is the driver entry point for 9709 * determining whether non-volatile cache is supported. This 9710 * determination process works as follows: 9711 * 9712 * 1. sd first queries sd.conf on whether 9713 * suppress_cache_flush bit is set for this device. 9714 * 9715 * 2. if not there, then queries the internal disk table. 9716 * 9717 * 3. if either sd.conf or internal disk table specifies 9718 * cache flush be suppressed, we don't bother checking 9719 * NV_SUP bit. 9720 * 9721 * If SUPPRESS_CACHE_FLUSH bit is not set to 1, sd queries 9722 * the optional INQUIRY VPD page 0x86. If the device 9723 * supports VPD page 0x86, sd examines the NV_SUP 9724 * (non-volatile cache support) bit in the INQUIRY VPD page 9725 * 0x86: 9726 * o If NV_SUP bit is set, sd assumes the device has a 9727 * non-volatile cache and set the 9728 * un_f_sync_nv_supported to TRUE. 9729 * o Otherwise cache is not non-volatile, 9730 * un_f_sync_nv_supported is set to FALSE. 9731 * 9732 * Arguments: un - driver soft state (unit) structure 9733 * 9734 * Return Code: 9735 * 9736 * Context: Kernel Thread 9737 */ 9738 9739 static void 9740 sd_get_nv_sup(sd_ssc_t *ssc) 9741 { 9742 int rval = 0; 9743 uchar_t *inq86 = NULL; 9744 size_t inq86_len = MAX_INQUIRY_SIZE; 9745 size_t inq86_resid = 0; 9746 struct dk_callback *dkc; 9747 struct sd_lun *un; 9748 9749 ASSERT(ssc != NULL); 9750 un = ssc->ssc_un; 9751 ASSERT(un != NULL); 9752 9753 mutex_enter(SD_MUTEX(un)); 9754 9755 /* 9756 * Be conservative on the device's support of 9757 * SYNC_NV bit: un_f_sync_nv_supported is 9758 * initialized to be false. 9759 */ 9760 un->un_f_sync_nv_supported = FALSE; 9761 9762 /* 9763 * If either sd.conf or internal disk table 9764 * specifies cache flush be suppressed, then 9765 * we don't bother checking NV_SUP bit. 9766 */ 9767 if (un->un_f_suppress_cache_flush == TRUE) { 9768 mutex_exit(SD_MUTEX(un)); 9769 return; 9770 } 9771 9772 if (sd_check_vpd_page_support(ssc) == 0 && 9773 un->un_vpd_page_mask & SD_VPD_EXTENDED_DATA_PG) { 9774 mutex_exit(SD_MUTEX(un)); 9775 /* collect page 86 data if available */ 9776 inq86 = kmem_zalloc(inq86_len, KM_SLEEP); 9777 9778 rval = sd_send_scsi_INQUIRY(ssc, inq86, inq86_len, 9779 0x01, 0x86, &inq86_resid); 9780 9781 if (rval == 0 && (inq86_len - inq86_resid > 6)) { 9782 SD_TRACE(SD_LOG_COMMON, un, 9783 "sd_get_nv_sup: \ 9784 successfully get VPD page: %x \ 9785 PAGE LENGTH: %x BYTE 6: %x\n", 9786 inq86[1], inq86[3], inq86[6]); 9787 9788 mutex_enter(SD_MUTEX(un)); 9789 /* 9790 * check the value of NV_SUP bit: only if the device 9791 * reports NV_SUP bit to be 1, the 9792 * un_f_sync_nv_supported bit will be set to true. 9793 */ 9794 if (inq86[6] & SD_VPD_NV_SUP) { 9795 un->un_f_sync_nv_supported = TRUE; 9796 } 9797 mutex_exit(SD_MUTEX(un)); 9798 } else if (rval != 0) { 9799 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9800 } 9801 9802 kmem_free(inq86, inq86_len); 9803 } else { 9804 mutex_exit(SD_MUTEX(un)); 9805 } 9806 9807 /* 9808 * Send a SYNC CACHE command to check whether 9809 * SYNC_NV bit is supported. This command should have 9810 * un_f_sync_nv_supported set to correct value. 9811 */ 9812 mutex_enter(SD_MUTEX(un)); 9813 if (un->un_f_sync_nv_supported) { 9814 mutex_exit(SD_MUTEX(un)); 9815 dkc = kmem_zalloc(sizeof (struct dk_callback), KM_SLEEP); 9816 dkc->dkc_flag = FLUSH_VOLATILE; 9817 (void) sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc); 9818 9819 /* 9820 * Send a TEST UNIT READY command to the device. This should 9821 * clear any outstanding UNIT ATTENTION that may be present. 9822 */ 9823 rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR); 9824 if (rval != 0) 9825 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9826 9827 kmem_free(dkc, sizeof (struct dk_callback)); 9828 } else { 9829 mutex_exit(SD_MUTEX(un)); 9830 } 9831 9832 SD_TRACE(SD_LOG_COMMON, un, "sd_get_nv_sup: \ 9833 un_f_suppress_cache_flush is set to %d\n", 9834 un->un_f_suppress_cache_flush); 9835 } 9836 9837 /* 9838 * Function: sd_make_device 9839 * 9840 * Description: Utility routine to return the Solaris device number from 9841 * the data in the device's dev_info structure. 9842 * 9843 * Return Code: The Solaris device number 9844 * 9845 * Context: Any 9846 */ 9847 9848 static dev_t 9849 sd_make_device(dev_info_t *devi) 9850 { 9851 return (makedevice(ddi_driver_major(devi), 9852 ddi_get_instance(devi) << SDUNIT_SHIFT)); 9853 } 9854 9855 9856 /* 9857 * Function: sd_pm_entry 9858 * 9859 * Description: Called at the start of a new command to manage power 9860 * and busy status of a device. This includes determining whether 9861 * the current power state of the device is sufficient for 9862 * performing the command or whether it must be changed. 9863 * The PM framework is notified appropriately. 9864 * Only with a return status of DDI_SUCCESS will the 9865 * component be busy to the framework. 9866 * 9867 * All callers of sd_pm_entry must check the return status 9868 * and only call sd_pm_exit it it was DDI_SUCCESS. A status 9869 * of DDI_FAILURE indicates the device failed to power up. 9870 * In this case un_pm_count has been adjusted so the result 9871 * on exit is still powered down, ie. count is less than 0. 9872 * Calling sd_pm_exit with this count value hits an ASSERT. 9873 * 9874 * Return Code: DDI_SUCCESS or DDI_FAILURE 9875 * 9876 * Context: Kernel thread context. 9877 */ 9878 9879 static int 9880 sd_pm_entry(struct sd_lun *un) 9881 { 9882 int return_status = DDI_SUCCESS; 9883 9884 ASSERT(!mutex_owned(SD_MUTEX(un))); 9885 ASSERT(!mutex_owned(&un->un_pm_mutex)); 9886 9887 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n"); 9888 9889 if (un->un_f_pm_is_enabled == FALSE) { 9890 SD_TRACE(SD_LOG_IO_PM, un, 9891 "sd_pm_entry: exiting, PM not enabled\n"); 9892 return (return_status); 9893 } 9894 9895 /* 9896 * Just increment a counter if PM is enabled. On the transition from 9897 * 0 ==> 1, mark the device as busy. The iodone side will decrement 9898 * the count with each IO and mark the device as idle when the count 9899 * hits 0. 9900 * 9901 * If the count is less than 0 the device is powered down. If a powered 9902 * down device is successfully powered up then the count must be 9903 * incremented to reflect the power up. Note that it'll get incremented 9904 * a second time to become busy. 9905 * 9906 * Because the following has the potential to change the device state 9907 * and must release the un_pm_mutex to do so, only one thread can be 9908 * allowed through at a time. 9909 */ 9910 9911 mutex_enter(&un->un_pm_mutex); 9912 while (un->un_pm_busy == TRUE) { 9913 cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex); 9914 } 9915 un->un_pm_busy = TRUE; 9916 9917 if (un->un_pm_count < 1) { 9918 9919 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n"); 9920 9921 /* 9922 * Indicate we are now busy so the framework won't attempt to 9923 * power down the device. This call will only fail if either 9924 * we passed a bad component number or the device has no 9925 * components. Neither of these should ever happen. 9926 */ 9927 mutex_exit(&un->un_pm_mutex); 9928 return_status = pm_busy_component(SD_DEVINFO(un), 0); 9929 ASSERT(return_status == DDI_SUCCESS); 9930 9931 mutex_enter(&un->un_pm_mutex); 9932 9933 if (un->un_pm_count < 0) { 9934 mutex_exit(&un->un_pm_mutex); 9935 9936 SD_TRACE(SD_LOG_IO_PM, un, 9937 "sd_pm_entry: power up component\n"); 9938 9939 /* 9940 * pm_raise_power will cause sdpower to be called 9941 * which brings the device power level to the 9942 * desired state, If successful, un_pm_count and 9943 * un_power_level will be updated appropriately. 9944 */ 9945 return_status = pm_raise_power(SD_DEVINFO(un), 0, 9946 SD_PM_STATE_ACTIVE(un)); 9947 9948 mutex_enter(&un->un_pm_mutex); 9949 9950 if (return_status != DDI_SUCCESS) { 9951 /* 9952 * Power up failed. 9953 * Idle the device and adjust the count 9954 * so the result on exit is that we're 9955 * still powered down, ie. count is less than 0. 9956 */ 9957 SD_TRACE(SD_LOG_IO_PM, un, 9958 "sd_pm_entry: power up failed," 9959 " idle the component\n"); 9960 9961 (void) pm_idle_component(SD_DEVINFO(un), 0); 9962 un->un_pm_count--; 9963 } else { 9964 /* 9965 * Device is powered up, verify the 9966 * count is non-negative. 9967 * This is debug only. 9968 */ 9969 ASSERT(un->un_pm_count == 0); 9970 } 9971 } 9972 9973 if (return_status == DDI_SUCCESS) { 9974 /* 9975 * For performance, now that the device has been tagged 9976 * as busy, and it's known to be powered up, update the 9977 * chain types to use jump tables that do not include 9978 * pm. This significantly lowers the overhead and 9979 * therefore improves performance. 9980 */ 9981 9982 mutex_exit(&un->un_pm_mutex); 9983 mutex_enter(SD_MUTEX(un)); 9984 SD_TRACE(SD_LOG_IO_PM, un, 9985 "sd_pm_entry: changing uscsi_chain_type from %d\n", 9986 un->un_uscsi_chain_type); 9987 9988 if (un->un_f_non_devbsize_supported) { 9989 un->un_buf_chain_type = 9990 SD_CHAIN_INFO_RMMEDIA_NO_PM; 9991 } else { 9992 un->un_buf_chain_type = 9993 SD_CHAIN_INFO_DISK_NO_PM; 9994 } 9995 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM; 9996 9997 SD_TRACE(SD_LOG_IO_PM, un, 9998 " changed uscsi_chain_type to %d\n", 9999 un->un_uscsi_chain_type); 10000 mutex_exit(SD_MUTEX(un)); 10001 mutex_enter(&un->un_pm_mutex); 10002 10003 if (un->un_pm_idle_timeid == NULL) { 10004 /* 300 ms. */ 10005 un->un_pm_idle_timeid = 10006 timeout(sd_pm_idletimeout_handler, un, 10007 (drv_usectohz((clock_t)300000))); 10008 /* 10009 * Include an extra call to busy which keeps the 10010 * device busy with-respect-to the PM layer 10011 * until the timer fires, at which time it'll 10012 * get the extra idle call. 10013 */ 10014 (void) pm_busy_component(SD_DEVINFO(un), 0); 10015 } 10016 } 10017 } 10018 un->un_pm_busy = FALSE; 10019 /* Next... */ 10020 cv_signal(&un->un_pm_busy_cv); 10021 10022 un->un_pm_count++; 10023 10024 SD_TRACE(SD_LOG_IO_PM, un, 10025 "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count); 10026 10027 mutex_exit(&un->un_pm_mutex); 10028 10029 return (return_status); 10030 } 10031 10032 10033 /* 10034 * Function: sd_pm_exit 10035 * 10036 * Description: Called at the completion of a command to manage busy 10037 * status for the device. If the device becomes idle the 10038 * PM framework is notified. 10039 * 10040 * Context: Kernel thread context 10041 */ 10042 10043 static void 10044 sd_pm_exit(struct sd_lun *un) 10045 { 10046 ASSERT(!mutex_owned(SD_MUTEX(un))); 10047 ASSERT(!mutex_owned(&un->un_pm_mutex)); 10048 10049 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n"); 10050 10051 /* 10052 * After attach the following flag is only read, so don't 10053 * take the penalty of acquiring a mutex for it. 10054 */ 10055 if (un->un_f_pm_is_enabled == TRUE) { 10056 10057 mutex_enter(&un->un_pm_mutex); 10058 un->un_pm_count--; 10059 10060 SD_TRACE(SD_LOG_IO_PM, un, 10061 "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count); 10062 10063 ASSERT(un->un_pm_count >= 0); 10064 if (un->un_pm_count == 0) { 10065 mutex_exit(&un->un_pm_mutex); 10066 10067 SD_TRACE(SD_LOG_IO_PM, un, 10068 "sd_pm_exit: idle component\n"); 10069 10070 (void) pm_idle_component(SD_DEVINFO(un), 0); 10071 10072 } else { 10073 mutex_exit(&un->un_pm_mutex); 10074 } 10075 } 10076 10077 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n"); 10078 } 10079 10080 10081 /* 10082 * Function: sdopen 10083 * 10084 * Description: Driver's open(9e) entry point function. 10085 * 10086 * Arguments: dev_i - pointer to device number 10087 * flag - how to open file (FEXCL, FNDELAY, FREAD, FWRITE) 10088 * otyp - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR) 10089 * cred_p - user credential pointer 10090 * 10091 * Return Code: EINVAL 10092 * ENXIO 10093 * EIO 10094 * EROFS 10095 * EBUSY 10096 * 10097 * Context: Kernel thread context 10098 */ 10099 /* ARGSUSED */ 10100 static int 10101 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p) 10102 { 10103 struct sd_lun *un; 10104 int nodelay; 10105 int part; 10106 uint64_t partmask; 10107 int instance; 10108 dev_t dev; 10109 int rval = EIO; 10110 diskaddr_t nblks = 0; 10111 diskaddr_t label_cap; 10112 10113 /* Validate the open type */ 10114 if (otyp >= OTYPCNT) { 10115 return (EINVAL); 10116 } 10117 10118 dev = *dev_p; 10119 instance = SDUNIT(dev); 10120 mutex_enter(&sd_detach_mutex); 10121 10122 /* 10123 * Fail the open if there is no softstate for the instance, or 10124 * if another thread somewhere is trying to detach the instance. 10125 */ 10126 if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) || 10127 (un->un_detach_count != 0)) { 10128 mutex_exit(&sd_detach_mutex); 10129 /* 10130 * The probe cache only needs to be cleared when open (9e) fails 10131 * with ENXIO (4238046). 10132 */ 10133 /* 10134 * un-conditionally clearing probe cache is ok with 10135 * separate sd/ssd binaries 10136 * x86 platform can be an issue with both parallel 10137 * and fibre in 1 binary 10138 */ 10139 sd_scsi_clear_probe_cache(); 10140 return (ENXIO); 10141 } 10142 10143 /* 10144 * The un_layer_count is to prevent another thread in specfs from 10145 * trying to detach the instance, which can happen when we are 10146 * called from a higher-layer driver instead of thru specfs. 10147 * This will not be needed when DDI provides a layered driver 10148 * interface that allows specfs to know that an instance is in 10149 * use by a layered driver & should not be detached. 10150 * 10151 * Note: the semantics for layered driver opens are exactly one 10152 * close for every open. 10153 */ 10154 if (otyp == OTYP_LYR) { 10155 un->un_layer_count++; 10156 } 10157 10158 /* 10159 * Keep a count of the current # of opens in progress. This is because 10160 * some layered drivers try to call us as a regular open. This can 10161 * cause problems that we cannot prevent, however by keeping this count 10162 * we can at least keep our open and detach routines from racing against 10163 * each other under such conditions. 10164 */ 10165 un->un_opens_in_progress++; 10166 mutex_exit(&sd_detach_mutex); 10167 10168 nodelay = (flag & (FNDELAY | FNONBLOCK)); 10169 part = SDPART(dev); 10170 partmask = 1 << part; 10171 10172 /* 10173 * We use a semaphore here in order to serialize 10174 * open and close requests on the device. 10175 */ 10176 sema_p(&un->un_semoclose); 10177 10178 mutex_enter(SD_MUTEX(un)); 10179 10180 /* 10181 * All device accesses go thru sdstrategy() where we check 10182 * on suspend status but there could be a scsi_poll command, 10183 * which bypasses sdstrategy(), so we need to check pm 10184 * status. 10185 */ 10186 10187 if (!nodelay) { 10188 while ((un->un_state == SD_STATE_SUSPENDED) || 10189 (un->un_state == SD_STATE_PM_CHANGING)) { 10190 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 10191 } 10192 10193 mutex_exit(SD_MUTEX(un)); 10194 if (sd_pm_entry(un) != DDI_SUCCESS) { 10195 rval = EIO; 10196 SD_ERROR(SD_LOG_OPEN_CLOSE, un, 10197 "sdopen: sd_pm_entry failed\n"); 10198 goto open_failed_with_pm; 10199 } 10200 mutex_enter(SD_MUTEX(un)); 10201 } 10202 10203 /* check for previous exclusive open */ 10204 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un); 10205 SD_TRACE(SD_LOG_OPEN_CLOSE, un, 10206 "sdopen: exclopen=%x, flag=%x, regopen=%x\n", 10207 un->un_exclopen, flag, un->un_ocmap.regopen[otyp]); 10208 10209 if (un->un_exclopen & (partmask)) { 10210 goto excl_open_fail; 10211 } 10212 10213 if (flag & FEXCL) { 10214 int i; 10215 if (un->un_ocmap.lyropen[part]) { 10216 goto excl_open_fail; 10217 } 10218 for (i = 0; i < (OTYPCNT - 1); i++) { 10219 if (un->un_ocmap.regopen[i] & (partmask)) { 10220 goto excl_open_fail; 10221 } 10222 } 10223 } 10224 10225 /* 10226 * Check the write permission if this is a removable media device, 10227 * NDELAY has not been set, and writable permission is requested. 10228 * 10229 * Note: If NDELAY was set and this is write-protected media the WRITE 10230 * attempt will fail with EIO as part of the I/O processing. This is a 10231 * more permissive implementation that allows the open to succeed and 10232 * WRITE attempts to fail when appropriate. 10233 */ 10234 if (un->un_f_chk_wp_open) { 10235 if ((flag & FWRITE) && (!nodelay)) { 10236 mutex_exit(SD_MUTEX(un)); 10237 /* 10238 * Defer the check for write permission on writable 10239 * DVD drive till sdstrategy and will not fail open even 10240 * if FWRITE is set as the device can be writable 10241 * depending upon the media and the media can change 10242 * after the call to open(). 10243 */ 10244 if (un->un_f_dvdram_writable_device == FALSE) { 10245 if (ISCD(un) || sr_check_wp(dev)) { 10246 rval = EROFS; 10247 mutex_enter(SD_MUTEX(un)); 10248 SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: " 10249 "write to cd or write protected media\n"); 10250 goto open_fail; 10251 } 10252 } 10253 mutex_enter(SD_MUTEX(un)); 10254 } 10255 } 10256 10257 /* 10258 * If opening in NDELAY/NONBLOCK mode, just return. 10259 * Check if disk is ready and has a valid geometry later. 10260 */ 10261 if (!nodelay) { 10262 sd_ssc_t *ssc; 10263 10264 mutex_exit(SD_MUTEX(un)); 10265 ssc = sd_ssc_init(un); 10266 rval = sd_ready_and_valid(ssc, part); 10267 sd_ssc_fini(ssc); 10268 mutex_enter(SD_MUTEX(un)); 10269 /* 10270 * Fail if device is not ready or if the number of disk 10271 * blocks is zero or negative for non CD devices. 10272 */ 10273 10274 nblks = 0; 10275 10276 if (rval == SD_READY_VALID && (!ISCD(un))) { 10277 /* if cmlb_partinfo fails, nblks remains 0 */ 10278 mutex_exit(SD_MUTEX(un)); 10279 (void) cmlb_partinfo(un->un_cmlbhandle, part, &nblks, 10280 NULL, NULL, NULL, (void *)SD_PATH_DIRECT); 10281 mutex_enter(SD_MUTEX(un)); 10282 } 10283 10284 if ((rval != SD_READY_VALID) || 10285 (!ISCD(un) && nblks <= 0)) { 10286 rval = un->un_f_has_removable_media ? ENXIO : EIO; 10287 SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: " 10288 "device not ready or invalid disk block value\n"); 10289 goto open_fail; 10290 } 10291 #if defined(__i386) || defined(__amd64) 10292 } else { 10293 uchar_t *cp; 10294 /* 10295 * x86 requires special nodelay handling, so that p0 is 10296 * always defined and accessible. 10297 * Invalidate geometry only if device is not already open. 10298 */ 10299 cp = &un->un_ocmap.chkd[0]; 10300 while (cp < &un->un_ocmap.chkd[OCSIZE]) { 10301 if (*cp != (uchar_t)0) { 10302 break; 10303 } 10304 cp++; 10305 } 10306 if (cp == &un->un_ocmap.chkd[OCSIZE]) { 10307 mutex_exit(SD_MUTEX(un)); 10308 cmlb_invalidate(un->un_cmlbhandle, 10309 (void *)SD_PATH_DIRECT); 10310 mutex_enter(SD_MUTEX(un)); 10311 } 10312 10313 #endif 10314 } 10315 10316 if (otyp == OTYP_LYR) { 10317 un->un_ocmap.lyropen[part]++; 10318 } else { 10319 un->un_ocmap.regopen[otyp] |= partmask; 10320 } 10321 10322 /* Set up open and exclusive open flags */ 10323 if (flag & FEXCL) { 10324 un->un_exclopen |= (partmask); 10325 } 10326 10327 /* 10328 * If the lun is EFI labeled and lun capacity is greater than the 10329 * capacity contained in the label, log a sys-event to notify the 10330 * interested module. 10331 * To avoid an infinite loop of logging sys-event, we only log the 10332 * event when the lun is not opened in NDELAY mode. The event handler 10333 * should open the lun in NDELAY mode. 10334 */ 10335 if (!nodelay) { 10336 mutex_exit(SD_MUTEX(un)); 10337 if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap, 10338 (void*)SD_PATH_DIRECT) == 0) { 10339 mutex_enter(SD_MUTEX(un)); 10340 if (un->un_f_blockcount_is_valid && 10341 un->un_blockcount > label_cap && 10342 un->un_f_expnevent == B_FALSE) { 10343 un->un_f_expnevent = B_TRUE; 10344 mutex_exit(SD_MUTEX(un)); 10345 sd_log_lun_expansion_event(un, 10346 (nodelay ? KM_NOSLEEP : KM_SLEEP)); 10347 mutex_enter(SD_MUTEX(un)); 10348 } 10349 } else { 10350 mutex_enter(SD_MUTEX(un)); 10351 } 10352 } 10353 10354 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: " 10355 "open of part %d type %d\n", part, otyp); 10356 10357 mutex_exit(SD_MUTEX(un)); 10358 if (!nodelay) { 10359 sd_pm_exit(un); 10360 } 10361 10362 sema_v(&un->un_semoclose); 10363 10364 mutex_enter(&sd_detach_mutex); 10365 un->un_opens_in_progress--; 10366 mutex_exit(&sd_detach_mutex); 10367 10368 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n"); 10369 return (DDI_SUCCESS); 10370 10371 excl_open_fail: 10372 SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n"); 10373 rval = EBUSY; 10374 10375 open_fail: 10376 mutex_exit(SD_MUTEX(un)); 10377 10378 /* 10379 * On a failed open we must exit the pm management. 10380 */ 10381 if (!nodelay) { 10382 sd_pm_exit(un); 10383 } 10384 open_failed_with_pm: 10385 sema_v(&un->un_semoclose); 10386 10387 mutex_enter(&sd_detach_mutex); 10388 un->un_opens_in_progress--; 10389 if (otyp == OTYP_LYR) { 10390 un->un_layer_count--; 10391 } 10392 mutex_exit(&sd_detach_mutex); 10393 10394 return (rval); 10395 } 10396 10397 10398 /* 10399 * Function: sdclose 10400 * 10401 * Description: Driver's close(9e) entry point function. 10402 * 10403 * Arguments: dev - device number 10404 * flag - file status flag, informational only 10405 * otyp - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR) 10406 * cred_p - user credential pointer 10407 * 10408 * Return Code: ENXIO 10409 * 10410 * Context: Kernel thread context 10411 */ 10412 /* ARGSUSED */ 10413 static int 10414 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p) 10415 { 10416 struct sd_lun *un; 10417 uchar_t *cp; 10418 int part; 10419 int nodelay; 10420 int rval = 0; 10421 10422 /* Validate the open type */ 10423 if (otyp >= OTYPCNT) { 10424 return (ENXIO); 10425 } 10426 10427 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 10428 return (ENXIO); 10429 } 10430 10431 part = SDPART(dev); 10432 nodelay = flag & (FNDELAY | FNONBLOCK); 10433 10434 SD_TRACE(SD_LOG_OPEN_CLOSE, un, 10435 "sdclose: close of part %d type %d\n", part, otyp); 10436 10437 /* 10438 * We use a semaphore here in order to serialize 10439 * open and close requests on the device. 10440 */ 10441 sema_p(&un->un_semoclose); 10442 10443 mutex_enter(SD_MUTEX(un)); 10444 10445 /* Don't proceed if power is being changed. */ 10446 while (un->un_state == SD_STATE_PM_CHANGING) { 10447 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 10448 } 10449 10450 if (un->un_exclopen & (1 << part)) { 10451 un->un_exclopen &= ~(1 << part); 10452 } 10453 10454 /* Update the open partition map */ 10455 if (otyp == OTYP_LYR) { 10456 un->un_ocmap.lyropen[part] -= 1; 10457 } else { 10458 un->un_ocmap.regopen[otyp] &= ~(1 << part); 10459 } 10460 10461 cp = &un->un_ocmap.chkd[0]; 10462 while (cp < &un->un_ocmap.chkd[OCSIZE]) { 10463 if (*cp != NULL) { 10464 break; 10465 } 10466 cp++; 10467 } 10468 10469 if (cp == &un->un_ocmap.chkd[OCSIZE]) { 10470 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n"); 10471 10472 /* 10473 * We avoid persistance upon the last close, and set 10474 * the throttle back to the maximum. 10475 */ 10476 un->un_throttle = un->un_saved_throttle; 10477 10478 if (un->un_state == SD_STATE_OFFLINE) { 10479 if (un->un_f_is_fibre == FALSE) { 10480 scsi_log(SD_DEVINFO(un), sd_label, 10481 CE_WARN, "offline\n"); 10482 } 10483 mutex_exit(SD_MUTEX(un)); 10484 cmlb_invalidate(un->un_cmlbhandle, 10485 (void *)SD_PATH_DIRECT); 10486 mutex_enter(SD_MUTEX(un)); 10487 10488 } else { 10489 /* 10490 * Flush any outstanding writes in NVRAM cache. 10491 * Note: SYNCHRONIZE CACHE is an optional SCSI-2 10492 * cmd, it may not work for non-Pluto devices. 10493 * SYNCHRONIZE CACHE is not required for removables, 10494 * except DVD-RAM drives. 10495 * 10496 * Also note: because SYNCHRONIZE CACHE is currently 10497 * the only command issued here that requires the 10498 * drive be powered up, only do the power up before 10499 * sending the Sync Cache command. If additional 10500 * commands are added which require a powered up 10501 * drive, the following sequence may have to change. 10502 * 10503 * And finally, note that parallel SCSI on SPARC 10504 * only issues a Sync Cache to DVD-RAM, a newly 10505 * supported device. 10506 */ 10507 #if defined(__i386) || defined(__amd64) 10508 if ((un->un_f_sync_cache_supported && 10509 un->un_f_sync_cache_required) || 10510 un->un_f_dvdram_writable_device == TRUE) { 10511 #else 10512 if (un->un_f_dvdram_writable_device == TRUE) { 10513 #endif 10514 mutex_exit(SD_MUTEX(un)); 10515 if (sd_pm_entry(un) == DDI_SUCCESS) { 10516 rval = 10517 sd_send_scsi_SYNCHRONIZE_CACHE(un, 10518 NULL); 10519 /* ignore error if not supported */ 10520 if (rval == ENOTSUP) { 10521 rval = 0; 10522 } else if (rval != 0) { 10523 rval = EIO; 10524 } 10525 sd_pm_exit(un); 10526 } else { 10527 rval = EIO; 10528 } 10529 mutex_enter(SD_MUTEX(un)); 10530 } 10531 10532 /* 10533 * For devices which supports DOOR_LOCK, send an ALLOW 10534 * MEDIA REMOVAL command, but don't get upset if it 10535 * fails. We need to raise the power of the drive before 10536 * we can call sd_send_scsi_DOORLOCK() 10537 */ 10538 if (un->un_f_doorlock_supported) { 10539 mutex_exit(SD_MUTEX(un)); 10540 if (sd_pm_entry(un) == DDI_SUCCESS) { 10541 sd_ssc_t *ssc; 10542 10543 ssc = sd_ssc_init(un); 10544 rval = sd_send_scsi_DOORLOCK(ssc, 10545 SD_REMOVAL_ALLOW, SD_PATH_DIRECT); 10546 if (rval != 0) 10547 sd_ssc_assessment(ssc, 10548 SD_FMT_IGNORE); 10549 sd_ssc_fini(ssc); 10550 10551 sd_pm_exit(un); 10552 if (ISCD(un) && (rval != 0) && 10553 (nodelay != 0)) { 10554 rval = ENXIO; 10555 } 10556 } else { 10557 rval = EIO; 10558 } 10559 mutex_enter(SD_MUTEX(un)); 10560 } 10561 10562 /* 10563 * If a device has removable media, invalidate all 10564 * parameters related to media, such as geometry, 10565 * blocksize, and blockcount. 10566 */ 10567 if (un->un_f_has_removable_media) { 10568 sr_ejected(un); 10569 } 10570 10571 /* 10572 * Destroy the cache (if it exists) which was 10573 * allocated for the write maps since this is 10574 * the last close for this media. 10575 */ 10576 if (un->un_wm_cache) { 10577 /* 10578 * Check if there are pending commands. 10579 * and if there are give a warning and 10580 * do not destroy the cache. 10581 */ 10582 if (un->un_ncmds_in_driver > 0) { 10583 scsi_log(SD_DEVINFO(un), 10584 sd_label, CE_WARN, 10585 "Unable to clean up memory " 10586 "because of pending I/O\n"); 10587 } else { 10588 kmem_cache_destroy( 10589 un->un_wm_cache); 10590 un->un_wm_cache = NULL; 10591 } 10592 } 10593 } 10594 } 10595 10596 mutex_exit(SD_MUTEX(un)); 10597 sema_v(&un->un_semoclose); 10598 10599 if (otyp == OTYP_LYR) { 10600 mutex_enter(&sd_detach_mutex); 10601 /* 10602 * The detach routine may run when the layer count 10603 * drops to zero. 10604 */ 10605 un->un_layer_count--; 10606 mutex_exit(&sd_detach_mutex); 10607 } 10608 10609 return (rval); 10610 } 10611 10612 10613 /* 10614 * Function: sd_ready_and_valid 10615 * 10616 * Description: Test if device is ready and has a valid geometry. 10617 * 10618 * Arguments: ssc - sd_ssc_t will contain un 10619 * un - driver soft state (unit) structure 10620 * 10621 * Return Code: SD_READY_VALID ready and valid label 10622 * SD_NOT_READY_VALID not ready, no label 10623 * SD_RESERVED_BY_OTHERS reservation conflict 10624 * 10625 * Context: Never called at interrupt context. 10626 */ 10627 10628 static int 10629 sd_ready_and_valid(sd_ssc_t *ssc, int part) 10630 { 10631 struct sd_errstats *stp; 10632 uint64_t capacity; 10633 uint_t lbasize; 10634 int rval = SD_READY_VALID; 10635 char name_str[48]; 10636 boolean_t is_valid; 10637 struct sd_lun *un; 10638 int status; 10639 10640 ASSERT(ssc != NULL); 10641 un = ssc->ssc_un; 10642 ASSERT(un != NULL); 10643 ASSERT(!mutex_owned(SD_MUTEX(un))); 10644 10645 mutex_enter(SD_MUTEX(un)); 10646 /* 10647 * If a device has removable media, we must check if media is 10648 * ready when checking if this device is ready and valid. 10649 */ 10650 if (un->un_f_has_removable_media) { 10651 mutex_exit(SD_MUTEX(un)); 10652 status = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 10653 10654 if (status != 0) { 10655 rval = SD_NOT_READY_VALID; 10656 mutex_enter(SD_MUTEX(un)); 10657 10658 /* Ignore all failed status for removalbe media */ 10659 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10660 10661 goto done; 10662 } 10663 10664 is_valid = SD_IS_VALID_LABEL(un); 10665 mutex_enter(SD_MUTEX(un)); 10666 if (!is_valid || 10667 (un->un_f_blockcount_is_valid == FALSE) || 10668 (un->un_f_tgt_blocksize_is_valid == FALSE)) { 10669 10670 /* capacity has to be read every open. */ 10671 mutex_exit(SD_MUTEX(un)); 10672 status = sd_send_scsi_READ_CAPACITY(ssc, &capacity, 10673 &lbasize, SD_PATH_DIRECT); 10674 10675 if (status != 0) { 10676 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10677 10678 cmlb_invalidate(un->un_cmlbhandle, 10679 (void *)SD_PATH_DIRECT); 10680 mutex_enter(SD_MUTEX(un)); 10681 rval = SD_NOT_READY_VALID; 10682 10683 goto done; 10684 } else { 10685 mutex_enter(SD_MUTEX(un)); 10686 sd_update_block_info(un, lbasize, capacity); 10687 } 10688 } 10689 10690 /* 10691 * Check if the media in the device is writable or not. 10692 */ 10693 if (!is_valid && ISCD(un)) { 10694 sd_check_for_writable_cd(ssc, SD_PATH_DIRECT); 10695 } 10696 10697 } else { 10698 /* 10699 * Do a test unit ready to clear any unit attention from non-cd 10700 * devices. 10701 */ 10702 mutex_exit(SD_MUTEX(un)); 10703 10704 status = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 10705 if (status != 0) { 10706 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10707 } 10708 10709 mutex_enter(SD_MUTEX(un)); 10710 } 10711 10712 10713 /* 10714 * If this is a non 512 block device, allocate space for 10715 * the wmap cache. This is being done here since every time 10716 * a media is changed this routine will be called and the 10717 * block size is a function of media rather than device. 10718 */ 10719 if (((un->un_f_rmw_type != SD_RMW_TYPE_RETURN_ERROR || 10720 un->un_f_non_devbsize_supported) && 10721 un->un_tgt_blocksize != DEV_BSIZE) || 10722 un->un_f_enable_rmw) { 10723 if (!(un->un_wm_cache)) { 10724 (void) snprintf(name_str, sizeof (name_str), 10725 "%s%d_cache", 10726 ddi_driver_name(SD_DEVINFO(un)), 10727 ddi_get_instance(SD_DEVINFO(un))); 10728 un->un_wm_cache = kmem_cache_create( 10729 name_str, sizeof (struct sd_w_map), 10730 8, sd_wm_cache_constructor, 10731 sd_wm_cache_destructor, NULL, 10732 (void *)un, NULL, 0); 10733 if (!(un->un_wm_cache)) { 10734 rval = ENOMEM; 10735 goto done; 10736 } 10737 } 10738 } 10739 10740 if (un->un_state == SD_STATE_NORMAL) { 10741 /* 10742 * If the target is not yet ready here (defined by a TUR 10743 * failure), invalidate the geometry and print an 'offline' 10744 * message. This is a legacy message, as the state of the 10745 * target is not actually changed to SD_STATE_OFFLINE. 10746 * 10747 * If the TUR fails for EACCES (Reservation Conflict), 10748 * SD_RESERVED_BY_OTHERS will be returned to indicate 10749 * reservation conflict. If the TUR fails for other 10750 * reasons, SD_NOT_READY_VALID will be returned. 10751 */ 10752 int err; 10753 10754 mutex_exit(SD_MUTEX(un)); 10755 err = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 10756 mutex_enter(SD_MUTEX(un)); 10757 10758 if (err != 0) { 10759 mutex_exit(SD_MUTEX(un)); 10760 cmlb_invalidate(un->un_cmlbhandle, 10761 (void *)SD_PATH_DIRECT); 10762 mutex_enter(SD_MUTEX(un)); 10763 if (err == EACCES) { 10764 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 10765 "reservation conflict\n"); 10766 rval = SD_RESERVED_BY_OTHERS; 10767 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10768 } else { 10769 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 10770 "drive offline\n"); 10771 rval = SD_NOT_READY_VALID; 10772 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 10773 } 10774 goto done; 10775 } 10776 } 10777 10778 if (un->un_f_format_in_progress == FALSE) { 10779 mutex_exit(SD_MUTEX(un)); 10780 10781 (void) cmlb_validate(un->un_cmlbhandle, 0, 10782 (void *)SD_PATH_DIRECT); 10783 if (cmlb_partinfo(un->un_cmlbhandle, part, NULL, NULL, NULL, 10784 NULL, (void *) SD_PATH_DIRECT) != 0) { 10785 rval = SD_NOT_READY_VALID; 10786 mutex_enter(SD_MUTEX(un)); 10787 10788 goto done; 10789 } 10790 if (un->un_f_pkstats_enabled) { 10791 sd_set_pstats(un); 10792 SD_TRACE(SD_LOG_IO_PARTITION, un, 10793 "sd_ready_and_valid: un:0x%p pstats created and " 10794 "set\n", un); 10795 } 10796 mutex_enter(SD_MUTEX(un)); 10797 } 10798 10799 /* 10800 * If this device supports DOOR_LOCK command, try and send 10801 * this command to PREVENT MEDIA REMOVAL, but don't get upset 10802 * if it fails. For a CD, however, it is an error 10803 */ 10804 if (un->un_f_doorlock_supported) { 10805 mutex_exit(SD_MUTEX(un)); 10806 status = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT, 10807 SD_PATH_DIRECT); 10808 10809 if ((status != 0) && ISCD(un)) { 10810 rval = SD_NOT_READY_VALID; 10811 mutex_enter(SD_MUTEX(un)); 10812 10813 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10814 10815 goto done; 10816 } else if (status != 0) 10817 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10818 mutex_enter(SD_MUTEX(un)); 10819 } 10820 10821 /* The state has changed, inform the media watch routines */ 10822 un->un_mediastate = DKIO_INSERTED; 10823 cv_broadcast(&un->un_state_cv); 10824 rval = SD_READY_VALID; 10825 10826 done: 10827 10828 /* 10829 * Initialize the capacity kstat value, if no media previously 10830 * (capacity kstat is 0) and a media has been inserted 10831 * (un_blockcount > 0). 10832 */ 10833 if (un->un_errstats != NULL) { 10834 stp = (struct sd_errstats *)un->un_errstats->ks_data; 10835 if ((stp->sd_capacity.value.ui64 == 0) && 10836 (un->un_f_blockcount_is_valid == TRUE)) { 10837 stp->sd_capacity.value.ui64 = 10838 (uint64_t)((uint64_t)un->un_blockcount * 10839 un->un_sys_blocksize); 10840 } 10841 } 10842 10843 mutex_exit(SD_MUTEX(un)); 10844 return (rval); 10845 } 10846 10847 10848 /* 10849 * Function: sdmin 10850 * 10851 * Description: Routine to limit the size of a data transfer. Used in 10852 * conjunction with physio(9F). 10853 * 10854 * Arguments: bp - pointer to the indicated buf(9S) struct. 10855 * 10856 * Context: Kernel thread context. 10857 */ 10858 10859 static void 10860 sdmin(struct buf *bp) 10861 { 10862 struct sd_lun *un; 10863 int instance; 10864 10865 instance = SDUNIT(bp->b_edev); 10866 10867 un = ddi_get_soft_state(sd_state, instance); 10868 ASSERT(un != NULL); 10869 10870 /* 10871 * We depend on buf breakup to restrict 10872 * IO size if it is enabled. 10873 */ 10874 if (un->un_buf_breakup_supported) { 10875 return; 10876 } 10877 10878 if (bp->b_bcount > un->un_max_xfer_size) { 10879 bp->b_bcount = un->un_max_xfer_size; 10880 } 10881 } 10882 10883 10884 /* 10885 * Function: sdread 10886 * 10887 * Description: Driver's read(9e) entry point function. 10888 * 10889 * Arguments: dev - device number 10890 * uio - structure pointer describing where data is to be stored 10891 * in user's space 10892 * cred_p - user credential pointer 10893 * 10894 * Return Code: ENXIO 10895 * EIO 10896 * EINVAL 10897 * value returned by physio 10898 * 10899 * Context: Kernel thread context. 10900 */ 10901 /* ARGSUSED */ 10902 static int 10903 sdread(dev_t dev, struct uio *uio, cred_t *cred_p) 10904 { 10905 struct sd_lun *un = NULL; 10906 int secmask; 10907 int err = 0; 10908 sd_ssc_t *ssc; 10909 10910 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 10911 return (ENXIO); 10912 } 10913 10914 ASSERT(!mutex_owned(SD_MUTEX(un))); 10915 10916 10917 if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) { 10918 mutex_enter(SD_MUTEX(un)); 10919 /* 10920 * Because the call to sd_ready_and_valid will issue I/O we 10921 * must wait here if either the device is suspended or 10922 * if it's power level is changing. 10923 */ 10924 while ((un->un_state == SD_STATE_SUSPENDED) || 10925 (un->un_state == SD_STATE_PM_CHANGING)) { 10926 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 10927 } 10928 un->un_ncmds_in_driver++; 10929 mutex_exit(SD_MUTEX(un)); 10930 10931 /* Initialize sd_ssc_t for internal uscsi commands */ 10932 ssc = sd_ssc_init(un); 10933 if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) { 10934 err = EIO; 10935 } else { 10936 err = 0; 10937 } 10938 sd_ssc_fini(ssc); 10939 10940 mutex_enter(SD_MUTEX(un)); 10941 un->un_ncmds_in_driver--; 10942 ASSERT(un->un_ncmds_in_driver >= 0); 10943 mutex_exit(SD_MUTEX(un)); 10944 if (err != 0) 10945 return (err); 10946 } 10947 10948 /* 10949 * Read requests are restricted to multiples of the system block size. 10950 */ 10951 if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR && 10952 !un->un_f_enable_rmw) 10953 secmask = un->un_tgt_blocksize - 1; 10954 else 10955 secmask = DEV_BSIZE - 1; 10956 10957 if (uio->uio_loffset & ((offset_t)(secmask))) { 10958 SD_ERROR(SD_LOG_READ_WRITE, un, 10959 "sdread: file offset not modulo %d\n", 10960 secmask + 1); 10961 err = EINVAL; 10962 } else if (uio->uio_iov->iov_len & (secmask)) { 10963 SD_ERROR(SD_LOG_READ_WRITE, un, 10964 "sdread: transfer length not modulo %d\n", 10965 secmask + 1); 10966 err = EINVAL; 10967 } else { 10968 err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio); 10969 } 10970 10971 return (err); 10972 } 10973 10974 10975 /* 10976 * Function: sdwrite 10977 * 10978 * Description: Driver's write(9e) entry point function. 10979 * 10980 * Arguments: dev - device number 10981 * uio - structure pointer describing where data is stored in 10982 * user's space 10983 * cred_p - user credential pointer 10984 * 10985 * Return Code: ENXIO 10986 * EIO 10987 * EINVAL 10988 * value returned by physio 10989 * 10990 * Context: Kernel thread context. 10991 */ 10992 /* ARGSUSED */ 10993 static int 10994 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p) 10995 { 10996 struct sd_lun *un = NULL; 10997 int secmask; 10998 int err = 0; 10999 sd_ssc_t *ssc; 11000 11001 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 11002 return (ENXIO); 11003 } 11004 11005 ASSERT(!mutex_owned(SD_MUTEX(un))); 11006 11007 if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) { 11008 mutex_enter(SD_MUTEX(un)); 11009 /* 11010 * Because the call to sd_ready_and_valid will issue I/O we 11011 * must wait here if either the device is suspended or 11012 * if it's power level is changing. 11013 */ 11014 while ((un->un_state == SD_STATE_SUSPENDED) || 11015 (un->un_state == SD_STATE_PM_CHANGING)) { 11016 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 11017 } 11018 un->un_ncmds_in_driver++; 11019 mutex_exit(SD_MUTEX(un)); 11020 11021 /* Initialize sd_ssc_t for internal uscsi commands */ 11022 ssc = sd_ssc_init(un); 11023 if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) { 11024 err = EIO; 11025 } else { 11026 err = 0; 11027 } 11028 sd_ssc_fini(ssc); 11029 11030 mutex_enter(SD_MUTEX(un)); 11031 un->un_ncmds_in_driver--; 11032 ASSERT(un->un_ncmds_in_driver >= 0); 11033 mutex_exit(SD_MUTEX(un)); 11034 if (err != 0) 11035 return (err); 11036 } 11037 11038 /* 11039 * Write requests are restricted to multiples of the system block size. 11040 */ 11041 if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR && 11042 !un->un_f_enable_rmw) 11043 secmask = un->un_tgt_blocksize - 1; 11044 else 11045 secmask = DEV_BSIZE - 1; 11046 11047 if (uio->uio_loffset & ((offset_t)(secmask))) { 11048 SD_ERROR(SD_LOG_READ_WRITE, un, 11049 "sdwrite: file offset not modulo %d\n", 11050 secmask + 1); 11051 err = EINVAL; 11052 } else if (uio->uio_iov->iov_len & (secmask)) { 11053 SD_ERROR(SD_LOG_READ_WRITE, un, 11054 "sdwrite: transfer length not modulo %d\n", 11055 secmask + 1); 11056 err = EINVAL; 11057 } else { 11058 err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio); 11059 } 11060 11061 return (err); 11062 } 11063 11064 11065 /* 11066 * Function: sdaread 11067 * 11068 * Description: Driver's aread(9e) entry point function. 11069 * 11070 * Arguments: dev - device number 11071 * aio - structure pointer describing where data is to be stored 11072 * cred_p - user credential pointer 11073 * 11074 * Return Code: ENXIO 11075 * EIO 11076 * EINVAL 11077 * value returned by aphysio 11078 * 11079 * Context: Kernel thread context. 11080 */ 11081 /* ARGSUSED */ 11082 static int 11083 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p) 11084 { 11085 struct sd_lun *un = NULL; 11086 struct uio *uio = aio->aio_uio; 11087 int secmask; 11088 int err = 0; 11089 sd_ssc_t *ssc; 11090 11091 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 11092 return (ENXIO); 11093 } 11094 11095 ASSERT(!mutex_owned(SD_MUTEX(un))); 11096 11097 if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) { 11098 mutex_enter(SD_MUTEX(un)); 11099 /* 11100 * Because the call to sd_ready_and_valid will issue I/O we 11101 * must wait here if either the device is suspended or 11102 * if it's power level is changing. 11103 */ 11104 while ((un->un_state == SD_STATE_SUSPENDED) || 11105 (un->un_state == SD_STATE_PM_CHANGING)) { 11106 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 11107 } 11108 un->un_ncmds_in_driver++; 11109 mutex_exit(SD_MUTEX(un)); 11110 11111 /* Initialize sd_ssc_t for internal uscsi commands */ 11112 ssc = sd_ssc_init(un); 11113 if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) { 11114 err = EIO; 11115 } else { 11116 err = 0; 11117 } 11118 sd_ssc_fini(ssc); 11119 11120 mutex_enter(SD_MUTEX(un)); 11121 un->un_ncmds_in_driver--; 11122 ASSERT(un->un_ncmds_in_driver >= 0); 11123 mutex_exit(SD_MUTEX(un)); 11124 if (err != 0) 11125 return (err); 11126 } 11127 11128 /* 11129 * Read requests are restricted to multiples of the system block size. 11130 */ 11131 if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR && 11132 !un->un_f_enable_rmw) 11133 secmask = un->un_tgt_blocksize - 1; 11134 else 11135 secmask = DEV_BSIZE - 1; 11136 11137 if (uio->uio_loffset & ((offset_t)(secmask))) { 11138 SD_ERROR(SD_LOG_READ_WRITE, un, 11139 "sdaread: file offset not modulo %d\n", 11140 secmask + 1); 11141 err = EINVAL; 11142 } else if (uio->uio_iov->iov_len & (secmask)) { 11143 SD_ERROR(SD_LOG_READ_WRITE, un, 11144 "sdaread: transfer length not modulo %d\n", 11145 secmask + 1); 11146 err = EINVAL; 11147 } else { 11148 err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio); 11149 } 11150 11151 return (err); 11152 } 11153 11154 11155 /* 11156 * Function: sdawrite 11157 * 11158 * Description: Driver's awrite(9e) entry point function. 11159 * 11160 * Arguments: dev - device number 11161 * aio - structure pointer describing where data is stored 11162 * cred_p - user credential pointer 11163 * 11164 * Return Code: ENXIO 11165 * EIO 11166 * EINVAL 11167 * value returned by aphysio 11168 * 11169 * Context: Kernel thread context. 11170 */ 11171 /* ARGSUSED */ 11172 static int 11173 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p) 11174 { 11175 struct sd_lun *un = NULL; 11176 struct uio *uio = aio->aio_uio; 11177 int secmask; 11178 int err = 0; 11179 sd_ssc_t *ssc; 11180 11181 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 11182 return (ENXIO); 11183 } 11184 11185 ASSERT(!mutex_owned(SD_MUTEX(un))); 11186 11187 if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) { 11188 mutex_enter(SD_MUTEX(un)); 11189 /* 11190 * Because the call to sd_ready_and_valid will issue I/O we 11191 * must wait here if either the device is suspended or 11192 * if it's power level is changing. 11193 */ 11194 while ((un->un_state == SD_STATE_SUSPENDED) || 11195 (un->un_state == SD_STATE_PM_CHANGING)) { 11196 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 11197 } 11198 un->un_ncmds_in_driver++; 11199 mutex_exit(SD_MUTEX(un)); 11200 11201 /* Initialize sd_ssc_t for internal uscsi commands */ 11202 ssc = sd_ssc_init(un); 11203 if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) { 11204 err = EIO; 11205 } else { 11206 err = 0; 11207 } 11208 sd_ssc_fini(ssc); 11209 11210 mutex_enter(SD_MUTEX(un)); 11211 un->un_ncmds_in_driver--; 11212 ASSERT(un->un_ncmds_in_driver >= 0); 11213 mutex_exit(SD_MUTEX(un)); 11214 if (err != 0) 11215 return (err); 11216 } 11217 11218 /* 11219 * Write requests are restricted to multiples of the system block size. 11220 */ 11221 if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR && 11222 !un->un_f_enable_rmw) 11223 secmask = un->un_tgt_blocksize - 1; 11224 else 11225 secmask = DEV_BSIZE - 1; 11226 11227 if (uio->uio_loffset & ((offset_t)(secmask))) { 11228 SD_ERROR(SD_LOG_READ_WRITE, un, 11229 "sdawrite: file offset not modulo %d\n", 11230 secmask + 1); 11231 err = EINVAL; 11232 } else if (uio->uio_iov->iov_len & (secmask)) { 11233 SD_ERROR(SD_LOG_READ_WRITE, un, 11234 "sdawrite: transfer length not modulo %d\n", 11235 secmask + 1); 11236 err = EINVAL; 11237 } else { 11238 err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio); 11239 } 11240 11241 return (err); 11242 } 11243 11244 11245 11246 11247 11248 /* 11249 * Driver IO processing follows the following sequence: 11250 * 11251 * sdioctl(9E) sdstrategy(9E) biodone(9F) 11252 * | | ^ 11253 * v v | 11254 * sd_send_scsi_cmd() ddi_xbuf_qstrategy() +-------------------+ 11255 * | | | | 11256 * v | | | 11257 * sd_uscsi_strategy() sd_xbuf_strategy() sd_buf_iodone() sd_uscsi_iodone() 11258 * | | ^ ^ 11259 * v v | | 11260 * SD_BEGIN_IOSTART() SD_BEGIN_IOSTART() | | 11261 * | | | | 11262 * +---+ | +------------+ +-------+ 11263 * | | | | 11264 * | SD_NEXT_IOSTART()| SD_NEXT_IODONE()| | 11265 * | v | | 11266 * | sd_mapblockaddr_iostart() sd_mapblockaddr_iodone() | 11267 * | | ^ | 11268 * | SD_NEXT_IOSTART()| SD_NEXT_IODONE()| | 11269 * | v | | 11270 * | sd_mapblocksize_iostart() sd_mapblocksize_iodone() | 11271 * | | ^ | 11272 * | SD_NEXT_IOSTART()| SD_NEXT_IODONE()| | 11273 * | v | | 11274 * | sd_checksum_iostart() sd_checksum_iodone() | 11275 * | | ^ | 11276 * +-> SD_NEXT_IOSTART()| SD_NEXT_IODONE()+------------->+ 11277 * | v | | 11278 * | sd_pm_iostart() sd_pm_iodone() | 11279 * | | ^ | 11280 * | | | | 11281 * +-> SD_NEXT_IOSTART()| SD_BEGIN_IODONE()--+--------------+ 11282 * | ^ 11283 * v | 11284 * sd_core_iostart() | 11285 * | | 11286 * | +------>(*destroypkt)() 11287 * +-> sd_start_cmds() <-+ | | 11288 * | | | v 11289 * | | | scsi_destroy_pkt(9F) 11290 * | | | 11291 * +->(*initpkt)() +- sdintr() 11292 * | | | | 11293 * | +-> scsi_init_pkt(9F) | +-> sd_handle_xxx() 11294 * | +-> scsi_setup_cdb(9F) | 11295 * | | 11296 * +--> scsi_transport(9F) | 11297 * | | 11298 * +----> SCSA ---->+ 11299 * 11300 * 11301 * This code is based upon the following presumptions: 11302 * 11303 * - iostart and iodone functions operate on buf(9S) structures. These 11304 * functions perform the necessary operations on the buf(9S) and pass 11305 * them along to the next function in the chain by using the macros 11306 * SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE() 11307 * (for iodone side functions). 11308 * 11309 * - The iostart side functions may sleep. The iodone side functions 11310 * are called under interrupt context and may NOT sleep. Therefore 11311 * iodone side functions also may not call iostart side functions. 11312 * (NOTE: iostart side functions should NOT sleep for memory, as 11313 * this could result in deadlock.) 11314 * 11315 * - An iostart side function may call its corresponding iodone side 11316 * function directly (if necessary). 11317 * 11318 * - In the event of an error, an iostart side function can return a buf(9S) 11319 * to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and 11320 * b_error in the usual way of course). 11321 * 11322 * - The taskq mechanism may be used by the iodone side functions to dispatch 11323 * requests to the iostart side functions. The iostart side functions in 11324 * this case would be called under the context of a taskq thread, so it's 11325 * OK for them to block/sleep/spin in this case. 11326 * 11327 * - iostart side functions may allocate "shadow" buf(9S) structs and 11328 * pass them along to the next function in the chain. The corresponding 11329 * iodone side functions must coalesce the "shadow" bufs and return 11330 * the "original" buf to the next higher layer. 11331 * 11332 * - The b_private field of the buf(9S) struct holds a pointer to 11333 * an sd_xbuf struct, which contains information needed to 11334 * construct the scsi_pkt for the command. 11335 * 11336 * - The SD_MUTEX(un) is NOT held across calls to the next layer. Each 11337 * layer must acquire & release the SD_MUTEX(un) as needed. 11338 */ 11339 11340 11341 /* 11342 * Create taskq for all targets in the system. This is created at 11343 * _init(9E) and destroyed at _fini(9E). 11344 * 11345 * Note: here we set the minalloc to a reasonably high number to ensure that 11346 * we will have an adequate supply of task entries available at interrupt time. 11347 * This is used in conjunction with the TASKQ_PREPOPULATE flag in 11348 * sd_create_taskq(). Since we do not want to sleep for allocations at 11349 * interrupt time, set maxalloc equal to minalloc. That way we will just fail 11350 * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq 11351 * requests any one instant in time. 11352 */ 11353 #define SD_TASKQ_NUMTHREADS 8 11354 #define SD_TASKQ_MINALLOC 256 11355 #define SD_TASKQ_MAXALLOC 256 11356 11357 static taskq_t *sd_tq = NULL; 11358 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq)) 11359 11360 static int sd_taskq_minalloc = SD_TASKQ_MINALLOC; 11361 static int sd_taskq_maxalloc = SD_TASKQ_MAXALLOC; 11362 11363 /* 11364 * The following task queue is being created for the write part of 11365 * read-modify-write of non-512 block size devices. 11366 * Limit the number of threads to 1 for now. This number has been chosen 11367 * considering the fact that it applies only to dvd ram drives/MO drives 11368 * currently. Performance for which is not main criteria at this stage. 11369 * Note: It needs to be explored if we can use a single taskq in future 11370 */ 11371 #define SD_WMR_TASKQ_NUMTHREADS 1 11372 static taskq_t *sd_wmr_tq = NULL; 11373 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq)) 11374 11375 /* 11376 * Function: sd_taskq_create 11377 * 11378 * Description: Create taskq thread(s) and preallocate task entries 11379 * 11380 * Return Code: Returns a pointer to the allocated taskq_t. 11381 * 11382 * Context: Can sleep. Requires blockable context. 11383 * 11384 * Notes: - The taskq() facility currently is NOT part of the DDI. 11385 * (definitely NOT recommeded for 3rd-party drivers!) :-) 11386 * - taskq_create() will block for memory, also it will panic 11387 * if it cannot create the requested number of threads. 11388 * - Currently taskq_create() creates threads that cannot be 11389 * swapped. 11390 * - We use TASKQ_PREPOPULATE to ensure we have an adequate 11391 * supply of taskq entries at interrupt time (ie, so that we 11392 * do not have to sleep for memory) 11393 */ 11394 11395 static void 11396 sd_taskq_create(void) 11397 { 11398 char taskq_name[TASKQ_NAMELEN]; 11399 11400 ASSERT(sd_tq == NULL); 11401 ASSERT(sd_wmr_tq == NULL); 11402 11403 (void) snprintf(taskq_name, sizeof (taskq_name), 11404 "%s_drv_taskq", sd_label); 11405 sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS, 11406 (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc, 11407 TASKQ_PREPOPULATE)); 11408 11409 (void) snprintf(taskq_name, sizeof (taskq_name), 11410 "%s_rmw_taskq", sd_label); 11411 sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS, 11412 (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc, 11413 TASKQ_PREPOPULATE)); 11414 } 11415 11416 11417 /* 11418 * Function: sd_taskq_delete 11419 * 11420 * Description: Complementary cleanup routine for sd_taskq_create(). 11421 * 11422 * Context: Kernel thread context. 11423 */ 11424 11425 static void 11426 sd_taskq_delete(void) 11427 { 11428 ASSERT(sd_tq != NULL); 11429 ASSERT(sd_wmr_tq != NULL); 11430 taskq_destroy(sd_tq); 11431 taskq_destroy(sd_wmr_tq); 11432 sd_tq = NULL; 11433 sd_wmr_tq = NULL; 11434 } 11435 11436 11437 /* 11438 * Function: sdstrategy 11439 * 11440 * Description: Driver's strategy (9E) entry point function. 11441 * 11442 * Arguments: bp - pointer to buf(9S) 11443 * 11444 * Return Code: Always returns zero 11445 * 11446 * Context: Kernel thread context. 11447 */ 11448 11449 static int 11450 sdstrategy(struct buf *bp) 11451 { 11452 struct sd_lun *un; 11453 11454 un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp)); 11455 if (un == NULL) { 11456 bioerror(bp, EIO); 11457 bp->b_resid = bp->b_bcount; 11458 biodone(bp); 11459 return (0); 11460 } 11461 11462 /* As was done in the past, fail new cmds. if state is dumping. */ 11463 if (un->un_state == SD_STATE_DUMPING) { 11464 bioerror(bp, ENXIO); 11465 bp->b_resid = bp->b_bcount; 11466 biodone(bp); 11467 return (0); 11468 } 11469 11470 ASSERT(!mutex_owned(SD_MUTEX(un))); 11471 11472 /* 11473 * Commands may sneak in while we released the mutex in 11474 * DDI_SUSPEND, we should block new commands. However, old 11475 * commands that are still in the driver at this point should 11476 * still be allowed to drain. 11477 */ 11478 mutex_enter(SD_MUTEX(un)); 11479 /* 11480 * Must wait here if either the device is suspended or 11481 * if it's power level is changing. 11482 */ 11483 while ((un->un_state == SD_STATE_SUSPENDED) || 11484 (un->un_state == SD_STATE_PM_CHANGING)) { 11485 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 11486 } 11487 11488 un->un_ncmds_in_driver++; 11489 11490 /* 11491 * atapi: Since we are running the CD for now in PIO mode we need to 11492 * call bp_mapin here to avoid bp_mapin called interrupt context under 11493 * the HBA's init_pkt routine. 11494 */ 11495 if (un->un_f_cfg_is_atapi == TRUE) { 11496 mutex_exit(SD_MUTEX(un)); 11497 bp_mapin(bp); 11498 mutex_enter(SD_MUTEX(un)); 11499 } 11500 SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n", 11501 un->un_ncmds_in_driver); 11502 11503 if (bp->b_flags & B_WRITE) 11504 un->un_f_sync_cache_required = TRUE; 11505 11506 mutex_exit(SD_MUTEX(un)); 11507 11508 /* 11509 * This will (eventually) allocate the sd_xbuf area and 11510 * call sd_xbuf_strategy(). We just want to return the 11511 * result of ddi_xbuf_qstrategy so that we have an opt- 11512 * imized tail call which saves us a stack frame. 11513 */ 11514 return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr)); 11515 } 11516 11517 11518 /* 11519 * Function: sd_xbuf_strategy 11520 * 11521 * Description: Function for initiating IO operations via the 11522 * ddi_xbuf_qstrategy() mechanism. 11523 * 11524 * Context: Kernel thread context. 11525 */ 11526 11527 static void 11528 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg) 11529 { 11530 struct sd_lun *un = arg; 11531 11532 ASSERT(bp != NULL); 11533 ASSERT(xp != NULL); 11534 ASSERT(un != NULL); 11535 ASSERT(!mutex_owned(SD_MUTEX(un))); 11536 11537 /* 11538 * Initialize the fields in the xbuf and save a pointer to the 11539 * xbuf in bp->b_private. 11540 */ 11541 sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL); 11542 11543 /* Send the buf down the iostart chain */ 11544 SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp); 11545 } 11546 11547 11548 /* 11549 * Function: sd_xbuf_init 11550 * 11551 * Description: Prepare the given sd_xbuf struct for use. 11552 * 11553 * Arguments: un - ptr to softstate 11554 * bp - ptr to associated buf(9S) 11555 * xp - ptr to associated sd_xbuf 11556 * chain_type - IO chain type to use: 11557 * SD_CHAIN_NULL 11558 * SD_CHAIN_BUFIO 11559 * SD_CHAIN_USCSI 11560 * SD_CHAIN_DIRECT 11561 * SD_CHAIN_DIRECT_PRIORITY 11562 * pktinfop - ptr to private data struct for scsi_pkt(9S) 11563 * initialization; may be NULL if none. 11564 * 11565 * Context: Kernel thread context 11566 */ 11567 11568 static void 11569 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 11570 uchar_t chain_type, void *pktinfop) 11571 { 11572 int index; 11573 11574 ASSERT(un != NULL); 11575 ASSERT(bp != NULL); 11576 ASSERT(xp != NULL); 11577 11578 SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n", 11579 bp, chain_type); 11580 11581 xp->xb_un = un; 11582 xp->xb_pktp = NULL; 11583 xp->xb_pktinfo = pktinfop; 11584 xp->xb_private = bp->b_private; 11585 xp->xb_blkno = (daddr_t)bp->b_blkno; 11586 11587 /* 11588 * Set up the iostart and iodone chain indexes in the xbuf, based 11589 * upon the specified chain type to use. 11590 */ 11591 switch (chain_type) { 11592 case SD_CHAIN_NULL: 11593 /* 11594 * Fall thru to just use the values for the buf type, even 11595 * tho for the NULL chain these values will never be used. 11596 */ 11597 /* FALLTHRU */ 11598 case SD_CHAIN_BUFIO: 11599 index = un->un_buf_chain_type; 11600 if ((!un->un_f_has_removable_media) && 11601 (un->un_tgt_blocksize != 0) && 11602 (un->un_tgt_blocksize != DEV_BSIZE || 11603 un->un_f_enable_rmw)) { 11604 int secmask = 0, blknomask = 0; 11605 if (un->un_f_enable_rmw) { 11606 blknomask = 11607 (un->un_phy_blocksize / DEV_BSIZE) - 1; 11608 secmask = un->un_phy_blocksize - 1; 11609 } else { 11610 blknomask = 11611 (un->un_tgt_blocksize / DEV_BSIZE) - 1; 11612 secmask = un->un_tgt_blocksize - 1; 11613 } 11614 11615 if ((bp->b_lblkno & (blknomask)) || 11616 (bp->b_bcount & (secmask))) { 11617 if ((un->un_f_rmw_type != 11618 SD_RMW_TYPE_RETURN_ERROR) || 11619 un->un_f_enable_rmw) { 11620 if (un->un_f_pm_is_enabled == FALSE) 11621 index = 11622 SD_CHAIN_INFO_MSS_DSK_NO_PM; 11623 else 11624 index = 11625 SD_CHAIN_INFO_MSS_DISK; 11626 } 11627 } 11628 } 11629 break; 11630 case SD_CHAIN_USCSI: 11631 index = un->un_uscsi_chain_type; 11632 break; 11633 case SD_CHAIN_DIRECT: 11634 index = un->un_direct_chain_type; 11635 break; 11636 case SD_CHAIN_DIRECT_PRIORITY: 11637 index = un->un_priority_chain_type; 11638 break; 11639 default: 11640 /* We're really broken if we ever get here... */ 11641 panic("sd_xbuf_init: illegal chain type!"); 11642 /*NOTREACHED*/ 11643 } 11644 11645 xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index; 11646 xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index; 11647 11648 /* 11649 * It might be a bit easier to simply bzero the entire xbuf above, 11650 * but it turns out that since we init a fair number of members anyway, 11651 * we save a fair number cycles by doing explicit assignment of zero. 11652 */ 11653 xp->xb_pkt_flags = 0; 11654 xp->xb_dma_resid = 0; 11655 xp->xb_retry_count = 0; 11656 xp->xb_victim_retry_count = 0; 11657 xp->xb_ua_retry_count = 0; 11658 xp->xb_nr_retry_count = 0; 11659 xp->xb_sense_bp = NULL; 11660 xp->xb_sense_status = 0; 11661 xp->xb_sense_state = 0; 11662 xp->xb_sense_resid = 0; 11663 xp->xb_ena = 0; 11664 11665 bp->b_private = xp; 11666 bp->b_flags &= ~(B_DONE | B_ERROR); 11667 bp->b_resid = 0; 11668 bp->av_forw = NULL; 11669 bp->av_back = NULL; 11670 bioerror(bp, 0); 11671 11672 SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n"); 11673 } 11674 11675 11676 /* 11677 * Function: sd_uscsi_strategy 11678 * 11679 * Description: Wrapper for calling into the USCSI chain via physio(9F) 11680 * 11681 * Arguments: bp - buf struct ptr 11682 * 11683 * Return Code: Always returns 0 11684 * 11685 * Context: Kernel thread context 11686 */ 11687 11688 static int 11689 sd_uscsi_strategy(struct buf *bp) 11690 { 11691 struct sd_lun *un; 11692 struct sd_uscsi_info *uip; 11693 struct sd_xbuf *xp; 11694 uchar_t chain_type; 11695 uchar_t cmd; 11696 11697 ASSERT(bp != NULL); 11698 11699 un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp)); 11700 if (un == NULL) { 11701 bioerror(bp, EIO); 11702 bp->b_resid = bp->b_bcount; 11703 biodone(bp); 11704 return (0); 11705 } 11706 11707 ASSERT(!mutex_owned(SD_MUTEX(un))); 11708 11709 SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp); 11710 11711 /* 11712 * A pointer to a struct sd_uscsi_info is expected in bp->b_private 11713 */ 11714 ASSERT(bp->b_private != NULL); 11715 uip = (struct sd_uscsi_info *)bp->b_private; 11716 cmd = ((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_cdb[0]; 11717 11718 mutex_enter(SD_MUTEX(un)); 11719 /* 11720 * atapi: Since we are running the CD for now in PIO mode we need to 11721 * call bp_mapin here to avoid bp_mapin called interrupt context under 11722 * the HBA's init_pkt routine. 11723 */ 11724 if (un->un_f_cfg_is_atapi == TRUE) { 11725 mutex_exit(SD_MUTEX(un)); 11726 bp_mapin(bp); 11727 mutex_enter(SD_MUTEX(un)); 11728 } 11729 un->un_ncmds_in_driver++; 11730 SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n", 11731 un->un_ncmds_in_driver); 11732 11733 if ((bp->b_flags & B_WRITE) && (bp->b_bcount != 0) && 11734 (cmd != SCMD_MODE_SELECT) && (cmd != SCMD_MODE_SELECT_G1)) 11735 un->un_f_sync_cache_required = TRUE; 11736 11737 mutex_exit(SD_MUTEX(un)); 11738 11739 switch (uip->ui_flags) { 11740 case SD_PATH_DIRECT: 11741 chain_type = SD_CHAIN_DIRECT; 11742 break; 11743 case SD_PATH_DIRECT_PRIORITY: 11744 chain_type = SD_CHAIN_DIRECT_PRIORITY; 11745 break; 11746 default: 11747 chain_type = SD_CHAIN_USCSI; 11748 break; 11749 } 11750 11751 /* 11752 * We may allocate extra buf for external USCSI commands. If the 11753 * application asks for bigger than 20-byte sense data via USCSI, 11754 * SCSA layer will allocate 252 bytes sense buf for that command. 11755 */ 11756 if (((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_rqlen > 11757 SENSE_LENGTH) { 11758 xp = kmem_zalloc(sizeof (struct sd_xbuf) - SENSE_LENGTH + 11759 MAX_SENSE_LENGTH, KM_SLEEP); 11760 } else { 11761 xp = kmem_zalloc(sizeof (struct sd_xbuf), KM_SLEEP); 11762 } 11763 11764 sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp); 11765 11766 /* Use the index obtained within xbuf_init */ 11767 SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp); 11768 11769 SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp); 11770 11771 return (0); 11772 } 11773 11774 /* 11775 * Function: sd_send_scsi_cmd 11776 * 11777 * Description: Runs a USCSI command for user (when called thru sdioctl), 11778 * or for the driver 11779 * 11780 * Arguments: dev - the dev_t for the device 11781 * incmd - ptr to a valid uscsi_cmd struct 11782 * flag - bit flag, indicating open settings, 32/64 bit type 11783 * dataspace - UIO_USERSPACE or UIO_SYSSPACE 11784 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 11785 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 11786 * to use the USCSI "direct" chain and bypass the normal 11787 * command waitq. 11788 * 11789 * Return Code: 0 - successful completion of the given command 11790 * EIO - scsi_uscsi_handle_command() failed 11791 * ENXIO - soft state not found for specified dev 11792 * EINVAL 11793 * EFAULT - copyin/copyout error 11794 * return code of scsi_uscsi_handle_command(): 11795 * EIO 11796 * ENXIO 11797 * EACCES 11798 * 11799 * Context: Waits for command to complete. Can sleep. 11800 */ 11801 11802 static int 11803 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag, 11804 enum uio_seg dataspace, int path_flag) 11805 { 11806 struct sd_lun *un; 11807 sd_ssc_t *ssc; 11808 int rval; 11809 11810 un = ddi_get_soft_state(sd_state, SDUNIT(dev)); 11811 if (un == NULL) { 11812 return (ENXIO); 11813 } 11814 11815 /* 11816 * Using sd_ssc_send to handle uscsi cmd 11817 */ 11818 ssc = sd_ssc_init(un); 11819 rval = sd_ssc_send(ssc, incmd, flag, dataspace, path_flag); 11820 sd_ssc_fini(ssc); 11821 11822 return (rval); 11823 } 11824 11825 /* 11826 * Function: sd_ssc_init 11827 * 11828 * Description: Uscsi end-user call this function to initialize necessary 11829 * fields, such as uscsi_cmd and sd_uscsi_info struct. 11830 * 11831 * The return value of sd_send_scsi_cmd will be treated as a 11832 * fault in various conditions. Even it is not Zero, some 11833 * callers may ignore the return value. That is to say, we can 11834 * not make an accurate assessment in sdintr, since if a 11835 * command is failed in sdintr it does not mean the caller of 11836 * sd_send_scsi_cmd will treat it as a real failure. 11837 * 11838 * To avoid printing too many error logs for a failed uscsi 11839 * packet that the caller may not treat it as a failure, the 11840 * sd will keep silent for handling all uscsi commands. 11841 * 11842 * During detach->attach and attach-open, for some types of 11843 * problems, the driver should be providing information about 11844 * the problem encountered. Device use USCSI_SILENT, which 11845 * suppresses all driver information. The result is that no 11846 * information about the problem is available. Being 11847 * completely silent during this time is inappropriate. The 11848 * driver needs a more selective filter than USCSI_SILENT, so 11849 * that information related to faults is provided. 11850 * 11851 * To make the accurate accessment, the caller of 11852 * sd_send_scsi_USCSI_CMD should take the ownership and 11853 * get necessary information to print error messages. 11854 * 11855 * If we want to print necessary info of uscsi command, we need to 11856 * keep the uscsi_cmd and sd_uscsi_info till we can make the 11857 * assessment. We use sd_ssc_init to alloc necessary 11858 * structs for sending an uscsi command and we are also 11859 * responsible for free the memory by calling 11860 * sd_ssc_fini. 11861 * 11862 * The calling secquences will look like: 11863 * sd_ssc_init-> 11864 * 11865 * ... 11866 * 11867 * sd_send_scsi_USCSI_CMD-> 11868 * sd_ssc_send-> - - - sdintr 11869 * ... 11870 * 11871 * if we think the return value should be treated as a 11872 * failure, we make the accessment here and print out 11873 * necessary by retrieving uscsi_cmd and sd_uscsi_info' 11874 * 11875 * ... 11876 * 11877 * sd_ssc_fini 11878 * 11879 * 11880 * Arguments: un - pointer to driver soft state (unit) structure for this 11881 * target. 11882 * 11883 * Return code: sd_ssc_t - pointer to allocated sd_ssc_t struct, it contains 11884 * uscsi_cmd and sd_uscsi_info. 11885 * NULL - if can not alloc memory for sd_ssc_t struct 11886 * 11887 * Context: Kernel Thread. 11888 */ 11889 static sd_ssc_t * 11890 sd_ssc_init(struct sd_lun *un) 11891 { 11892 sd_ssc_t *ssc; 11893 struct uscsi_cmd *ucmdp; 11894 struct sd_uscsi_info *uip; 11895 11896 ASSERT(un != NULL); 11897 ASSERT(!mutex_owned(SD_MUTEX(un))); 11898 11899 /* 11900 * Allocate sd_ssc_t structure 11901 */ 11902 ssc = kmem_zalloc(sizeof (sd_ssc_t), KM_SLEEP); 11903 11904 /* 11905 * Allocate uscsi_cmd by calling scsi_uscsi_alloc common routine 11906 */ 11907 ucmdp = scsi_uscsi_alloc(); 11908 11909 /* 11910 * Allocate sd_uscsi_info structure 11911 */ 11912 uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP); 11913 11914 ssc->ssc_uscsi_cmd = ucmdp; 11915 ssc->ssc_uscsi_info = uip; 11916 ssc->ssc_un = un; 11917 11918 return (ssc); 11919 } 11920 11921 /* 11922 * Function: sd_ssc_fini 11923 * 11924 * Description: To free sd_ssc_t and it's hanging off 11925 * 11926 * Arguments: ssc - struct pointer of sd_ssc_t. 11927 */ 11928 static void 11929 sd_ssc_fini(sd_ssc_t *ssc) 11930 { 11931 scsi_uscsi_free(ssc->ssc_uscsi_cmd); 11932 11933 if (ssc->ssc_uscsi_info != NULL) { 11934 kmem_free(ssc->ssc_uscsi_info, sizeof (struct sd_uscsi_info)); 11935 ssc->ssc_uscsi_info = NULL; 11936 } 11937 11938 kmem_free(ssc, sizeof (sd_ssc_t)); 11939 ssc = NULL; 11940 } 11941 11942 /* 11943 * Function: sd_ssc_send 11944 * 11945 * Description: Runs a USCSI command for user when called through sdioctl, 11946 * or for the driver. 11947 * 11948 * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and 11949 * sd_uscsi_info in. 11950 * incmd - ptr to a valid uscsi_cmd struct 11951 * flag - bit flag, indicating open settings, 32/64 bit type 11952 * dataspace - UIO_USERSPACE or UIO_SYSSPACE 11953 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 11954 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 11955 * to use the USCSI "direct" chain and bypass the normal 11956 * command waitq. 11957 * 11958 * Return Code: 0 - successful completion of the given command 11959 * EIO - scsi_uscsi_handle_command() failed 11960 * ENXIO - soft state not found for specified dev 11961 * ECANCELED - command cancelled due to low power 11962 * EINVAL 11963 * EFAULT - copyin/copyout error 11964 * return code of scsi_uscsi_handle_command(): 11965 * EIO 11966 * ENXIO 11967 * EACCES 11968 * 11969 * Context: Kernel Thread; 11970 * Waits for command to complete. Can sleep. 11971 */ 11972 static int 11973 sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd, int flag, 11974 enum uio_seg dataspace, int path_flag) 11975 { 11976 struct sd_uscsi_info *uip; 11977 struct uscsi_cmd *uscmd; 11978 struct sd_lun *un; 11979 dev_t dev; 11980 11981 int format = 0; 11982 int rval; 11983 11984 ASSERT(ssc != NULL); 11985 un = ssc->ssc_un; 11986 ASSERT(un != NULL); 11987 uscmd = ssc->ssc_uscsi_cmd; 11988 ASSERT(uscmd != NULL); 11989 ASSERT(!mutex_owned(SD_MUTEX(un))); 11990 if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) { 11991 /* 11992 * If enter here, it indicates that the previous uscsi 11993 * command has not been processed by sd_ssc_assessment. 11994 * This is violating our rules of FMA telemetry processing. 11995 * We should print out this message and the last undisposed 11996 * uscsi command. 11997 */ 11998 if (uscmd->uscsi_cdb != NULL) { 11999 SD_INFO(SD_LOG_SDTEST, un, 12000 "sd_ssc_send is missing the alternative " 12001 "sd_ssc_assessment when running command 0x%x.\n", 12002 uscmd->uscsi_cdb[0]); 12003 } 12004 /* 12005 * Set the ssc_flags to SSC_FLAGS_UNKNOWN, which should be 12006 * the initial status. 12007 */ 12008 ssc->ssc_flags = SSC_FLAGS_UNKNOWN; 12009 } 12010 12011 /* 12012 * We need to make sure sd_ssc_send will have sd_ssc_assessment 12013 * followed to avoid missing FMA telemetries. 12014 */ 12015 ssc->ssc_flags |= SSC_FLAGS_NEED_ASSESSMENT; 12016 12017 /* 12018 * if USCSI_PMFAILFAST is set and un is in low power, fail the 12019 * command immediately. 12020 */ 12021 mutex_enter(SD_MUTEX(un)); 12022 mutex_enter(&un->un_pm_mutex); 12023 if ((uscmd->uscsi_flags & USCSI_PMFAILFAST) && 12024 SD_DEVICE_IS_IN_LOW_POWER(un)) { 12025 SD_TRACE(SD_LOG_IO, un, "sd_ssc_send:" 12026 "un:0x%p is in low power\n", un); 12027 mutex_exit(&un->un_pm_mutex); 12028 mutex_exit(SD_MUTEX(un)); 12029 return (ECANCELED); 12030 } 12031 mutex_exit(&un->un_pm_mutex); 12032 mutex_exit(SD_MUTEX(un)); 12033 12034 #ifdef SDDEBUG 12035 switch (dataspace) { 12036 case UIO_USERSPACE: 12037 SD_TRACE(SD_LOG_IO, un, 12038 "sd_ssc_send: entry: un:0x%p UIO_USERSPACE\n", un); 12039 break; 12040 case UIO_SYSSPACE: 12041 SD_TRACE(SD_LOG_IO, un, 12042 "sd_ssc_send: entry: un:0x%p UIO_SYSSPACE\n", un); 12043 break; 12044 default: 12045 SD_TRACE(SD_LOG_IO, un, 12046 "sd_ssc_send: entry: un:0x%p UNEXPECTED SPACE\n", un); 12047 break; 12048 } 12049 #endif 12050 12051 rval = scsi_uscsi_copyin((intptr_t)incmd, flag, 12052 SD_ADDRESS(un), &uscmd); 12053 if (rval != 0) { 12054 SD_TRACE(SD_LOG_IO, un, "sd_sense_scsi_cmd: " 12055 "scsi_uscsi_alloc_and_copyin failed\n", un); 12056 return (rval); 12057 } 12058 12059 if ((uscmd->uscsi_cdb != NULL) && 12060 (uscmd->uscsi_cdb[0] == SCMD_FORMAT)) { 12061 mutex_enter(SD_MUTEX(un)); 12062 un->un_f_format_in_progress = TRUE; 12063 mutex_exit(SD_MUTEX(un)); 12064 format = 1; 12065 } 12066 12067 /* 12068 * Allocate an sd_uscsi_info struct and fill it with the info 12069 * needed by sd_initpkt_for_uscsi(). Then put the pointer into 12070 * b_private in the buf for sd_initpkt_for_uscsi(). Note that 12071 * since we allocate the buf here in this function, we do not 12072 * need to preserve the prior contents of b_private. 12073 * The sd_uscsi_info struct is also used by sd_uscsi_strategy() 12074 */ 12075 uip = ssc->ssc_uscsi_info; 12076 uip->ui_flags = path_flag; 12077 uip->ui_cmdp = uscmd; 12078 12079 /* 12080 * Commands sent with priority are intended for error recovery 12081 * situations, and do not have retries performed. 12082 */ 12083 if (path_flag == SD_PATH_DIRECT_PRIORITY) { 12084 uscmd->uscsi_flags |= USCSI_DIAGNOSE; 12085 } 12086 uscmd->uscsi_flags &= ~USCSI_NOINTR; 12087 12088 dev = SD_GET_DEV(un); 12089 rval = scsi_uscsi_handle_cmd(dev, dataspace, uscmd, 12090 sd_uscsi_strategy, NULL, uip); 12091 12092 /* 12093 * mark ssc_flags right after handle_cmd to make sure 12094 * the uscsi has been sent 12095 */ 12096 ssc->ssc_flags |= SSC_FLAGS_CMD_ISSUED; 12097 12098 #ifdef SDDEBUG 12099 SD_INFO(SD_LOG_IO, un, "sd_ssc_send: " 12100 "uscsi_status: 0x%02x uscsi_resid:0x%x\n", 12101 uscmd->uscsi_status, uscmd->uscsi_resid); 12102 if (uscmd->uscsi_bufaddr != NULL) { 12103 SD_INFO(SD_LOG_IO, un, "sd_ssc_send: " 12104 "uscmd->uscsi_bufaddr: 0x%p uscmd->uscsi_buflen:%d\n", 12105 uscmd->uscsi_bufaddr, uscmd->uscsi_buflen); 12106 if (dataspace == UIO_SYSSPACE) { 12107 SD_DUMP_MEMORY(un, SD_LOG_IO, 12108 "data", (uchar_t *)uscmd->uscsi_bufaddr, 12109 uscmd->uscsi_buflen, SD_LOG_HEX); 12110 } 12111 } 12112 #endif 12113 12114 if (format == 1) { 12115 mutex_enter(SD_MUTEX(un)); 12116 un->un_f_format_in_progress = FALSE; 12117 mutex_exit(SD_MUTEX(un)); 12118 } 12119 12120 (void) scsi_uscsi_copyout((intptr_t)incmd, uscmd); 12121 12122 return (rval); 12123 } 12124 12125 /* 12126 * Function: sd_ssc_print 12127 * 12128 * Description: Print information available to the console. 12129 * 12130 * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and 12131 * sd_uscsi_info in. 12132 * sd_severity - log level. 12133 * Context: Kernel thread or interrupt context. 12134 */ 12135 static void 12136 sd_ssc_print(sd_ssc_t *ssc, int sd_severity) 12137 { 12138 struct uscsi_cmd *ucmdp; 12139 struct scsi_device *devp; 12140 dev_info_t *devinfo; 12141 uchar_t *sensep; 12142 int senlen; 12143 union scsi_cdb *cdbp; 12144 uchar_t com; 12145 extern struct scsi_key_strings scsi_cmds[]; 12146 12147 ASSERT(ssc != NULL); 12148 ASSERT(ssc->ssc_un != NULL); 12149 12150 if (SD_FM_LOG(ssc->ssc_un) != SD_FM_LOG_EREPORT) 12151 return; 12152 ucmdp = ssc->ssc_uscsi_cmd; 12153 devp = SD_SCSI_DEVP(ssc->ssc_un); 12154 devinfo = SD_DEVINFO(ssc->ssc_un); 12155 ASSERT(ucmdp != NULL); 12156 ASSERT(devp != NULL); 12157 ASSERT(devinfo != NULL); 12158 sensep = (uint8_t *)ucmdp->uscsi_rqbuf; 12159 senlen = ucmdp->uscsi_rqlen - ucmdp->uscsi_rqresid; 12160 cdbp = (union scsi_cdb *)ucmdp->uscsi_cdb; 12161 12162 /* In certain case (like DOORLOCK), the cdb could be NULL. */ 12163 if (cdbp == NULL) 12164 return; 12165 /* We don't print log if no sense data available. */ 12166 if (senlen == 0) 12167 sensep = NULL; 12168 com = cdbp->scc_cmd; 12169 scsi_generic_errmsg(devp, sd_label, sd_severity, 0, 0, com, 12170 scsi_cmds, sensep, ssc->ssc_un->un_additional_codes, NULL); 12171 } 12172 12173 /* 12174 * Function: sd_ssc_assessment 12175 * 12176 * Description: We use this function to make an assessment at the point 12177 * where SD driver may encounter a potential error. 12178 * 12179 * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and 12180 * sd_uscsi_info in. 12181 * tp_assess - a hint of strategy for ereport posting. 12182 * Possible values of tp_assess include: 12183 * SD_FMT_IGNORE - we don't post any ereport because we're 12184 * sure that it is ok to ignore the underlying problems. 12185 * SD_FMT_IGNORE_COMPROMISE - we don't post any ereport for now 12186 * but it might be not correct to ignore the underlying hardware 12187 * error. 12188 * SD_FMT_STATUS_CHECK - we will post an ereport with the 12189 * payload driver-assessment of value "fail" or 12190 * "fatal"(depending on what information we have here). This 12191 * assessment value is usually set when SD driver think there 12192 * is a potential error occurred(Typically, when return value 12193 * of the SCSI command is EIO). 12194 * SD_FMT_STANDARD - we will post an ereport with the payload 12195 * driver-assessment of value "info". This assessment value is 12196 * set when the SCSI command returned successfully and with 12197 * sense data sent back. 12198 * 12199 * Context: Kernel thread. 12200 */ 12201 static void 12202 sd_ssc_assessment(sd_ssc_t *ssc, enum sd_type_assessment tp_assess) 12203 { 12204 int senlen = 0; 12205 struct uscsi_cmd *ucmdp = NULL; 12206 struct sd_lun *un; 12207 12208 ASSERT(ssc != NULL); 12209 un = ssc->ssc_un; 12210 ASSERT(un != NULL); 12211 ucmdp = ssc->ssc_uscsi_cmd; 12212 ASSERT(ucmdp != NULL); 12213 12214 if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) { 12215 ssc->ssc_flags &= ~SSC_FLAGS_NEED_ASSESSMENT; 12216 } else { 12217 /* 12218 * If enter here, it indicates that we have a wrong 12219 * calling sequence of sd_ssc_send and sd_ssc_assessment, 12220 * both of which should be called in a pair in case of 12221 * loss of FMA telemetries. 12222 */ 12223 if (ucmdp->uscsi_cdb != NULL) { 12224 SD_INFO(SD_LOG_SDTEST, un, 12225 "sd_ssc_assessment is missing the " 12226 "alternative sd_ssc_send when running 0x%x, " 12227 "or there are superfluous sd_ssc_assessment for " 12228 "the same sd_ssc_send.\n", 12229 ucmdp->uscsi_cdb[0]); 12230 } 12231 /* 12232 * Set the ssc_flags to the initial value to avoid passing 12233 * down dirty flags to the following sd_ssc_send function. 12234 */ 12235 ssc->ssc_flags = SSC_FLAGS_UNKNOWN; 12236 return; 12237 } 12238 12239 /* 12240 * Only handle an issued command which is waiting for assessment. 12241 * A command which is not issued will not have 12242 * SSC_FLAGS_INVALID_DATA set, so it'ok we just return here. 12243 */ 12244 if (!(ssc->ssc_flags & SSC_FLAGS_CMD_ISSUED)) { 12245 sd_ssc_print(ssc, SCSI_ERR_INFO); 12246 return; 12247 } else { 12248 /* 12249 * For an issued command, we should clear this flag in 12250 * order to make the sd_ssc_t structure be used off 12251 * multiple uscsi commands. 12252 */ 12253 ssc->ssc_flags &= ~SSC_FLAGS_CMD_ISSUED; 12254 } 12255 12256 /* 12257 * We will not deal with non-retryable(flag USCSI_DIAGNOSE set) 12258 * commands here. And we should clear the ssc_flags before return. 12259 */ 12260 if (ucmdp->uscsi_flags & USCSI_DIAGNOSE) { 12261 ssc->ssc_flags = SSC_FLAGS_UNKNOWN; 12262 return; 12263 } 12264 12265 switch (tp_assess) { 12266 case SD_FMT_IGNORE: 12267 case SD_FMT_IGNORE_COMPROMISE: 12268 break; 12269 case SD_FMT_STATUS_CHECK: 12270 /* 12271 * For a failed command(including the succeeded command 12272 * with invalid data sent back). 12273 */ 12274 sd_ssc_post(ssc, SD_FM_DRV_FATAL); 12275 break; 12276 case SD_FMT_STANDARD: 12277 /* 12278 * Always for the succeeded commands probably with sense 12279 * data sent back. 12280 * Limitation: 12281 * We can only handle a succeeded command with sense 12282 * data sent back when auto-request-sense is enabled. 12283 */ 12284 senlen = ssc->ssc_uscsi_cmd->uscsi_rqlen - 12285 ssc->ssc_uscsi_cmd->uscsi_rqresid; 12286 if ((ssc->ssc_uscsi_info->ui_pkt_state & STATE_ARQ_DONE) && 12287 (un->un_f_arq_enabled == TRUE) && 12288 senlen > 0 && 12289 ssc->ssc_uscsi_cmd->uscsi_rqbuf != NULL) { 12290 sd_ssc_post(ssc, SD_FM_DRV_NOTICE); 12291 } 12292 break; 12293 default: 12294 /* 12295 * Should not have other type of assessment. 12296 */ 12297 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 12298 "sd_ssc_assessment got wrong " 12299 "sd_type_assessment %d.\n", tp_assess); 12300 break; 12301 } 12302 /* 12303 * Clear up the ssc_flags before return. 12304 */ 12305 ssc->ssc_flags = SSC_FLAGS_UNKNOWN; 12306 } 12307 12308 /* 12309 * Function: sd_ssc_post 12310 * 12311 * Description: 1. read the driver property to get fm-scsi-log flag. 12312 * 2. print log if fm_log_capable is non-zero. 12313 * 3. call sd_ssc_ereport_post to post ereport if possible. 12314 * 12315 * Context: May be called from kernel thread or interrupt context. 12316 */ 12317 static void 12318 sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess) 12319 { 12320 struct sd_lun *un; 12321 int sd_severity; 12322 12323 ASSERT(ssc != NULL); 12324 un = ssc->ssc_un; 12325 ASSERT(un != NULL); 12326 12327 /* 12328 * We may enter here from sd_ssc_assessment(for USCSI command) or 12329 * by directly called from sdintr context. 12330 * We don't handle a non-disk drive(CD-ROM, removable media). 12331 * Clear the ssc_flags before return in case we've set 12332 * SSC_FLAGS_INVALID_XXX which should be skipped for a non-disk 12333 * driver. 12334 */ 12335 if (ISCD(un) || un->un_f_has_removable_media) { 12336 ssc->ssc_flags = SSC_FLAGS_UNKNOWN; 12337 return; 12338 } 12339 12340 switch (sd_assess) { 12341 case SD_FM_DRV_FATAL: 12342 sd_severity = SCSI_ERR_FATAL; 12343 break; 12344 case SD_FM_DRV_RECOVERY: 12345 sd_severity = SCSI_ERR_RECOVERED; 12346 break; 12347 case SD_FM_DRV_RETRY: 12348 sd_severity = SCSI_ERR_RETRYABLE; 12349 break; 12350 case SD_FM_DRV_NOTICE: 12351 sd_severity = SCSI_ERR_INFO; 12352 break; 12353 default: 12354 sd_severity = SCSI_ERR_UNKNOWN; 12355 } 12356 /* print log */ 12357 sd_ssc_print(ssc, sd_severity); 12358 12359 /* always post ereport */ 12360 sd_ssc_ereport_post(ssc, sd_assess); 12361 } 12362 12363 /* 12364 * Function: sd_ssc_set_info 12365 * 12366 * Description: Mark ssc_flags and set ssc_info which would be the 12367 * payload of uderr ereport. This function will cause 12368 * sd_ssc_ereport_post to post uderr ereport only. 12369 * Besides, when ssc_flags == SSC_FLAGS_INVALID_DATA(USCSI), 12370 * the function will also call SD_ERROR or scsi_log for a 12371 * CDROM/removable-media/DDI_FM_NOT_CAPABLE device. 12372 * 12373 * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and 12374 * sd_uscsi_info in. 12375 * ssc_flags - indicate the sub-category of a uderr. 12376 * comp - this argument is meaningful only when 12377 * ssc_flags == SSC_FLAGS_INVALID_DATA, and its possible 12378 * values include: 12379 * > 0, SD_ERROR is used with comp as the driver logging 12380 * component; 12381 * = 0, scsi-log is used to log error telemetries; 12382 * < 0, no log available for this telemetry. 12383 * 12384 * Context: Kernel thread or interrupt context 12385 */ 12386 static void 12387 sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, uint_t comp, const char *fmt, ...) 12388 { 12389 va_list ap; 12390 12391 ASSERT(ssc != NULL); 12392 ASSERT(ssc->ssc_un != NULL); 12393 12394 ssc->ssc_flags |= ssc_flags; 12395 va_start(ap, fmt); 12396 (void) vsnprintf(ssc->ssc_info, sizeof (ssc->ssc_info), fmt, ap); 12397 va_end(ap); 12398 12399 /* 12400 * If SSC_FLAGS_INVALID_DATA is set, it should be a uscsi command 12401 * with invalid data sent back. For non-uscsi command, the 12402 * following code will be bypassed. 12403 */ 12404 if (ssc_flags & SSC_FLAGS_INVALID_DATA) { 12405 if (SD_FM_LOG(ssc->ssc_un) == SD_FM_LOG_NSUP) { 12406 /* 12407 * If the error belong to certain component and we 12408 * do not want it to show up on the console, we 12409 * will use SD_ERROR, otherwise scsi_log is 12410 * preferred. 12411 */ 12412 if (comp > 0) { 12413 SD_ERROR(comp, ssc->ssc_un, ssc->ssc_info); 12414 } else if (comp == 0) { 12415 scsi_log(SD_DEVINFO(ssc->ssc_un), sd_label, 12416 CE_WARN, ssc->ssc_info); 12417 } 12418 } 12419 } 12420 } 12421 12422 /* 12423 * Function: sd_buf_iodone 12424 * 12425 * Description: Frees the sd_xbuf & returns the buf to its originator. 12426 * 12427 * Context: May be called from interrupt context. 12428 */ 12429 /* ARGSUSED */ 12430 static void 12431 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp) 12432 { 12433 struct sd_xbuf *xp; 12434 12435 ASSERT(un != NULL); 12436 ASSERT(bp != NULL); 12437 ASSERT(!mutex_owned(SD_MUTEX(un))); 12438 12439 SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n"); 12440 12441 xp = SD_GET_XBUF(bp); 12442 ASSERT(xp != NULL); 12443 12444 /* xbuf is gone after this */ 12445 if (ddi_xbuf_done(bp, un->un_xbuf_attr)) { 12446 mutex_enter(SD_MUTEX(un)); 12447 12448 /* 12449 * Grab time when the cmd completed. 12450 * This is used for determining if the system has been 12451 * idle long enough to make it idle to the PM framework. 12452 * This is for lowering the overhead, and therefore improving 12453 * performance per I/O operation. 12454 */ 12455 un->un_pm_idle_time = ddi_get_time(); 12456 12457 un->un_ncmds_in_driver--; 12458 ASSERT(un->un_ncmds_in_driver >= 0); 12459 SD_INFO(SD_LOG_IO, un, 12460 "sd_buf_iodone: un_ncmds_in_driver = %ld\n", 12461 un->un_ncmds_in_driver); 12462 12463 mutex_exit(SD_MUTEX(un)); 12464 } 12465 12466 biodone(bp); /* bp is gone after this */ 12467 12468 SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n"); 12469 } 12470 12471 12472 /* 12473 * Function: sd_uscsi_iodone 12474 * 12475 * Description: Frees the sd_xbuf & returns the buf to its originator. 12476 * 12477 * Context: May be called from interrupt context. 12478 */ 12479 /* ARGSUSED */ 12480 static void 12481 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp) 12482 { 12483 struct sd_xbuf *xp; 12484 12485 ASSERT(un != NULL); 12486 ASSERT(bp != NULL); 12487 12488 xp = SD_GET_XBUF(bp); 12489 ASSERT(xp != NULL); 12490 ASSERT(!mutex_owned(SD_MUTEX(un))); 12491 12492 SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n"); 12493 12494 bp->b_private = xp->xb_private; 12495 12496 mutex_enter(SD_MUTEX(un)); 12497 12498 /* 12499 * Grab time when the cmd completed. 12500 * This is used for determining if the system has been 12501 * idle long enough to make it idle to the PM framework. 12502 * This is for lowering the overhead, and therefore improving 12503 * performance per I/O operation. 12504 */ 12505 un->un_pm_idle_time = ddi_get_time(); 12506 12507 un->un_ncmds_in_driver--; 12508 ASSERT(un->un_ncmds_in_driver >= 0); 12509 SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n", 12510 un->un_ncmds_in_driver); 12511 12512 mutex_exit(SD_MUTEX(un)); 12513 12514 if (((struct uscsi_cmd *)(xp->xb_pktinfo))->uscsi_rqlen > 12515 SENSE_LENGTH) { 12516 kmem_free(xp, sizeof (struct sd_xbuf) - SENSE_LENGTH + 12517 MAX_SENSE_LENGTH); 12518 } else { 12519 kmem_free(xp, sizeof (struct sd_xbuf)); 12520 } 12521 12522 biodone(bp); 12523 12524 SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n"); 12525 } 12526 12527 12528 /* 12529 * Function: sd_mapblockaddr_iostart 12530 * 12531 * Description: Verify request lies within the partition limits for 12532 * the indicated minor device. Issue "overrun" buf if 12533 * request would exceed partition range. Converts 12534 * partition-relative block address to absolute. 12535 * 12536 * Upon exit of this function: 12537 * 1.I/O is aligned 12538 * xp->xb_blkno represents the absolute sector address 12539 * 2.I/O is misaligned 12540 * xp->xb_blkno represents the absolute logical block address 12541 * based on DEV_BSIZE. The logical block address will be 12542 * converted to physical sector address in sd_mapblocksize_\ 12543 * iostart. 12544 * 3.I/O is misaligned but is aligned in "overrun" buf 12545 * xp->xb_blkno represents the absolute logical block address 12546 * based on DEV_BSIZE. The logical block address will be 12547 * converted to physical sector address in sd_mapblocksize_\ 12548 * iostart. But no RMW will be issued in this case. 12549 * 12550 * Context: Can sleep 12551 * 12552 * Issues: This follows what the old code did, in terms of accessing 12553 * some of the partition info in the unit struct without holding 12554 * the mutext. This is a general issue, if the partition info 12555 * can be altered while IO is in progress... as soon as we send 12556 * a buf, its partitioning can be invalid before it gets to the 12557 * device. Probably the right fix is to move partitioning out 12558 * of the driver entirely. 12559 */ 12560 12561 static void 12562 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp) 12563 { 12564 diskaddr_t nblocks; /* #blocks in the given partition */ 12565 daddr_t blocknum; /* Block number specified by the buf */ 12566 size_t requested_nblocks; 12567 size_t available_nblocks; 12568 int partition; 12569 diskaddr_t partition_offset; 12570 struct sd_xbuf *xp; 12571 int secmask = 0, blknomask = 0; 12572 ushort_t is_aligned = TRUE; 12573 12574 ASSERT(un != NULL); 12575 ASSERT(bp != NULL); 12576 ASSERT(!mutex_owned(SD_MUTEX(un))); 12577 12578 SD_TRACE(SD_LOG_IO_PARTITION, un, 12579 "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp); 12580 12581 xp = SD_GET_XBUF(bp); 12582 ASSERT(xp != NULL); 12583 12584 /* 12585 * If the geometry is not indicated as valid, attempt to access 12586 * the unit & verify the geometry/label. This can be the case for 12587 * removable-media devices, of if the device was opened in 12588 * NDELAY/NONBLOCK mode. 12589 */ 12590 partition = SDPART(bp->b_edev); 12591 12592 if (!SD_IS_VALID_LABEL(un)) { 12593 sd_ssc_t *ssc; 12594 /* 12595 * Initialize sd_ssc_t for internal uscsi commands 12596 * In case of potential porformance issue, we need 12597 * to alloc memory only if there is invalid label 12598 */ 12599 ssc = sd_ssc_init(un); 12600 12601 if (sd_ready_and_valid(ssc, partition) != SD_READY_VALID) { 12602 /* 12603 * For removable devices it is possible to start an 12604 * I/O without a media by opening the device in nodelay 12605 * mode. Also for writable CDs there can be many 12606 * scenarios where there is no geometry yet but volume 12607 * manager is trying to issue a read() just because 12608 * it can see TOC on the CD. So do not print a message 12609 * for removables. 12610 */ 12611 if (!un->un_f_has_removable_media) { 12612 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 12613 "i/o to invalid geometry\n"); 12614 } 12615 bioerror(bp, EIO); 12616 bp->b_resid = bp->b_bcount; 12617 SD_BEGIN_IODONE(index, un, bp); 12618 12619 sd_ssc_fini(ssc); 12620 return; 12621 } 12622 sd_ssc_fini(ssc); 12623 } 12624 12625 nblocks = 0; 12626 (void) cmlb_partinfo(un->un_cmlbhandle, partition, 12627 &nblocks, &partition_offset, NULL, NULL, (void *)SD_PATH_DIRECT); 12628 12629 if (un->un_f_enable_rmw) { 12630 blknomask = (un->un_phy_blocksize / DEV_BSIZE) - 1; 12631 secmask = un->un_phy_blocksize - 1; 12632 } else { 12633 blknomask = (un->un_tgt_blocksize / DEV_BSIZE) - 1; 12634 secmask = un->un_tgt_blocksize - 1; 12635 } 12636 12637 if ((bp->b_lblkno & (blknomask)) || (bp->b_bcount & (secmask))) { 12638 is_aligned = FALSE; 12639 } 12640 12641 if (!(NOT_DEVBSIZE(un)) || un->un_f_enable_rmw) { 12642 /* 12643 * If I/O is aligned, no need to involve RMW(Read Modify Write) 12644 * Convert the logical block number to target's physical sector 12645 * number. 12646 */ 12647 if (is_aligned) { 12648 xp->xb_blkno = SD_SYS2TGTBLOCK(un, xp->xb_blkno); 12649 } else { 12650 /* 12651 * There is no RMW if we're just reading, so don't 12652 * warn or error out because of it. 12653 */ 12654 if (bp->b_flags & B_READ) { 12655 /*EMPTY*/ 12656 } else if (!un->un_f_enable_rmw && 12657 un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR) { 12658 bp->b_flags |= B_ERROR; 12659 goto error_exit; 12660 } else if (un->un_f_rmw_type == SD_RMW_TYPE_DEFAULT) { 12661 mutex_enter(SD_MUTEX(un)); 12662 if (!un->un_f_enable_rmw && 12663 un->un_rmw_msg_timeid == NULL) { 12664 scsi_log(SD_DEVINFO(un), sd_label, 12665 CE_WARN, "I/O request is not " 12666 "aligned with %d disk sector size. " 12667 "It is handled through Read Modify " 12668 "Write but the performance is " 12669 "very low.\n", 12670 un->un_tgt_blocksize); 12671 un->un_rmw_msg_timeid = 12672 timeout(sd_rmw_msg_print_handler, 12673 un, SD_RMW_MSG_PRINT_TIMEOUT); 12674 } else { 12675 un->un_rmw_incre_count ++; 12676 } 12677 mutex_exit(SD_MUTEX(un)); 12678 } 12679 12680 nblocks = SD_TGT2SYSBLOCK(un, nblocks); 12681 partition_offset = SD_TGT2SYSBLOCK(un, 12682 partition_offset); 12683 } 12684 } 12685 12686 /* 12687 * blocknum is the starting block number of the request. At this 12688 * point it is still relative to the start of the minor device. 12689 */ 12690 blocknum = xp->xb_blkno; 12691 12692 /* 12693 * Legacy: If the starting block number is one past the last block 12694 * in the partition, do not set B_ERROR in the buf. 12695 */ 12696 if (blocknum == nblocks) { 12697 goto error_exit; 12698 } 12699 12700 /* 12701 * Confirm that the first block of the request lies within the 12702 * partition limits. Also the requested number of bytes must be 12703 * a multiple of the system block size. 12704 */ 12705 if ((blocknum < 0) || (blocknum >= nblocks) || 12706 ((bp->b_bcount & (DEV_BSIZE - 1)) != 0)) { 12707 bp->b_flags |= B_ERROR; 12708 goto error_exit; 12709 } 12710 12711 /* 12712 * If the requsted # blocks exceeds the available # blocks, that 12713 * is an overrun of the partition. 12714 */ 12715 if ((!NOT_DEVBSIZE(un)) && is_aligned) { 12716 requested_nblocks = SD_BYTES2TGTBLOCKS(un, bp->b_bcount); 12717 } else { 12718 requested_nblocks = SD_BYTES2SYSBLOCKS(bp->b_bcount); 12719 } 12720 12721 available_nblocks = (size_t)(nblocks - blocknum); 12722 ASSERT(nblocks >= blocknum); 12723 12724 if (requested_nblocks > available_nblocks) { 12725 size_t resid; 12726 12727 /* 12728 * Allocate an "overrun" buf to allow the request to proceed 12729 * for the amount of space available in the partition. The 12730 * amount not transferred will be added into the b_resid 12731 * when the operation is complete. The overrun buf 12732 * replaces the original buf here, and the original buf 12733 * is saved inside the overrun buf, for later use. 12734 */ 12735 if ((!NOT_DEVBSIZE(un)) && is_aligned) { 12736 resid = SD_TGTBLOCKS2BYTES(un, 12737 (offset_t)(requested_nblocks - available_nblocks)); 12738 } else { 12739 resid = SD_SYSBLOCKS2BYTES( 12740 (offset_t)(requested_nblocks - available_nblocks)); 12741 } 12742 12743 size_t count = bp->b_bcount - resid; 12744 /* 12745 * Note: count is an unsigned entity thus it'll NEVER 12746 * be less than 0 so ASSERT the original values are 12747 * correct. 12748 */ 12749 ASSERT(bp->b_bcount >= resid); 12750 12751 bp = sd_bioclone_alloc(bp, count, blocknum, 12752 (int (*)(struct buf *)) sd_mapblockaddr_iodone); 12753 xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */ 12754 ASSERT(xp != NULL); 12755 } 12756 12757 /* At this point there should be no residual for this buf. */ 12758 ASSERT(bp->b_resid == 0); 12759 12760 /* Convert the block number to an absolute address. */ 12761 xp->xb_blkno += partition_offset; 12762 12763 SD_NEXT_IOSTART(index, un, bp); 12764 12765 SD_TRACE(SD_LOG_IO_PARTITION, un, 12766 "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp); 12767 12768 return; 12769 12770 error_exit: 12771 bp->b_resid = bp->b_bcount; 12772 SD_BEGIN_IODONE(index, un, bp); 12773 SD_TRACE(SD_LOG_IO_PARTITION, un, 12774 "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp); 12775 } 12776 12777 12778 /* 12779 * Function: sd_mapblockaddr_iodone 12780 * 12781 * Description: Completion-side processing for partition management. 12782 * 12783 * Context: May be called under interrupt context 12784 */ 12785 12786 static void 12787 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp) 12788 { 12789 /* int partition; */ /* Not used, see below. */ 12790 ASSERT(un != NULL); 12791 ASSERT(bp != NULL); 12792 ASSERT(!mutex_owned(SD_MUTEX(un))); 12793 12794 SD_TRACE(SD_LOG_IO_PARTITION, un, 12795 "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp); 12796 12797 if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) { 12798 /* 12799 * We have an "overrun" buf to deal with... 12800 */ 12801 struct sd_xbuf *xp; 12802 struct buf *obp; /* ptr to the original buf */ 12803 12804 xp = SD_GET_XBUF(bp); 12805 ASSERT(xp != NULL); 12806 12807 /* Retrieve the pointer to the original buf */ 12808 obp = (struct buf *)xp->xb_private; 12809 ASSERT(obp != NULL); 12810 12811 obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid); 12812 bioerror(obp, bp->b_error); 12813 12814 sd_bioclone_free(bp); 12815 12816 /* 12817 * Get back the original buf. 12818 * Note that since the restoration of xb_blkno below 12819 * was removed, the sd_xbuf is not needed. 12820 */ 12821 bp = obp; 12822 /* 12823 * xp = SD_GET_XBUF(bp); 12824 * ASSERT(xp != NULL); 12825 */ 12826 } 12827 12828 /* 12829 * Convert sd->xb_blkno back to a minor-device relative value. 12830 * Note: this has been commented out, as it is not needed in the 12831 * current implementation of the driver (ie, since this function 12832 * is at the top of the layering chains, so the info will be 12833 * discarded) and it is in the "hot" IO path. 12834 * 12835 * partition = getminor(bp->b_edev) & SDPART_MASK; 12836 * xp->xb_blkno -= un->un_offset[partition]; 12837 */ 12838 12839 SD_NEXT_IODONE(index, un, bp); 12840 12841 SD_TRACE(SD_LOG_IO_PARTITION, un, 12842 "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp); 12843 } 12844 12845 12846 /* 12847 * Function: sd_mapblocksize_iostart 12848 * 12849 * Description: Convert between system block size (un->un_sys_blocksize) 12850 * and target block size (un->un_tgt_blocksize). 12851 * 12852 * Context: Can sleep to allocate resources. 12853 * 12854 * Assumptions: A higher layer has already performed any partition validation, 12855 * and converted the xp->xb_blkno to an absolute value relative 12856 * to the start of the device. 12857 * 12858 * It is also assumed that the higher layer has implemented 12859 * an "overrun" mechanism for the case where the request would 12860 * read/write beyond the end of a partition. In this case we 12861 * assume (and ASSERT) that bp->b_resid == 0. 12862 * 12863 * Note: The implementation for this routine assumes the target 12864 * block size remains constant between allocation and transport. 12865 */ 12866 12867 static void 12868 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp) 12869 { 12870 struct sd_mapblocksize_info *bsp; 12871 struct sd_xbuf *xp; 12872 offset_t first_byte; 12873 daddr_t start_block, end_block; 12874 daddr_t request_bytes; 12875 ushort_t is_aligned = FALSE; 12876 12877 ASSERT(un != NULL); 12878 ASSERT(bp != NULL); 12879 ASSERT(!mutex_owned(SD_MUTEX(un))); 12880 ASSERT(bp->b_resid == 0); 12881 12882 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 12883 "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp); 12884 12885 /* 12886 * For a non-writable CD, a write request is an error 12887 */ 12888 if (ISCD(un) && ((bp->b_flags & B_READ) == 0) && 12889 (un->un_f_mmc_writable_media == FALSE)) { 12890 bioerror(bp, EIO); 12891 bp->b_resid = bp->b_bcount; 12892 SD_BEGIN_IODONE(index, un, bp); 12893 return; 12894 } 12895 12896 /* 12897 * We do not need a shadow buf if the device is using 12898 * un->un_sys_blocksize as its block size or if bcount == 0. 12899 * In this case there is no layer-private data block allocated. 12900 */ 12901 if ((un->un_tgt_blocksize == DEV_BSIZE && !un->un_f_enable_rmw) || 12902 (bp->b_bcount == 0)) { 12903 goto done; 12904 } 12905 12906 #if defined(__i386) || defined(__amd64) 12907 /* We do not support non-block-aligned transfers for ROD devices */ 12908 ASSERT(!ISROD(un)); 12909 #endif 12910 12911 xp = SD_GET_XBUF(bp); 12912 ASSERT(xp != NULL); 12913 12914 SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: " 12915 "tgt_blocksize:0x%x sys_blocksize: 0x%x\n", 12916 un->un_tgt_blocksize, DEV_BSIZE); 12917 SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: " 12918 "request start block:0x%x\n", xp->xb_blkno); 12919 SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: " 12920 "request len:0x%x\n", bp->b_bcount); 12921 12922 /* 12923 * Allocate the layer-private data area for the mapblocksize layer. 12924 * Layers are allowed to use the xp_private member of the sd_xbuf 12925 * struct to store the pointer to their layer-private data block, but 12926 * each layer also has the responsibility of restoring the prior 12927 * contents of xb_private before returning the buf/xbuf to the 12928 * higher layer that sent it. 12929 * 12930 * Here we save the prior contents of xp->xb_private into the 12931 * bsp->mbs_oprivate field of our layer-private data area. This value 12932 * is restored by sd_mapblocksize_iodone() just prior to freeing up 12933 * the layer-private area and returning the buf/xbuf to the layer 12934 * that sent it. 12935 * 12936 * Note that here we use kmem_zalloc for the allocation as there are 12937 * parts of the mapblocksize code that expect certain fields to be 12938 * zero unless explicitly set to a required value. 12939 */ 12940 bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP); 12941 bsp->mbs_oprivate = xp->xb_private; 12942 xp->xb_private = bsp; 12943 12944 /* 12945 * This treats the data on the disk (target) as an array of bytes. 12946 * first_byte is the byte offset, from the beginning of the device, 12947 * to the location of the request. This is converted from a 12948 * un->un_sys_blocksize block address to a byte offset, and then back 12949 * to a block address based upon a un->un_tgt_blocksize block size. 12950 * 12951 * xp->xb_blkno should be absolute upon entry into this function, 12952 * but, but it is based upon partitions that use the "system" 12953 * block size. It must be adjusted to reflect the block size of 12954 * the target. 12955 * 12956 * Note that end_block is actually the block that follows the last 12957 * block of the request, but that's what is needed for the computation. 12958 */ 12959 first_byte = SD_SYSBLOCKS2BYTES((offset_t)xp->xb_blkno); 12960 if (un->un_f_enable_rmw) { 12961 start_block = xp->xb_blkno = 12962 (first_byte / un->un_phy_blocksize) * 12963 (un->un_phy_blocksize / DEV_BSIZE); 12964 end_block = ((first_byte + bp->b_bcount + 12965 un->un_phy_blocksize - 1) / un->un_phy_blocksize) * 12966 (un->un_phy_blocksize / DEV_BSIZE); 12967 } else { 12968 start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize; 12969 end_block = (first_byte + bp->b_bcount + 12970 un->un_tgt_blocksize - 1) / un->un_tgt_blocksize; 12971 } 12972 12973 /* request_bytes is rounded up to a multiple of the target block size */ 12974 request_bytes = (end_block - start_block) * un->un_tgt_blocksize; 12975 12976 /* 12977 * See if the starting address of the request and the request 12978 * length are aligned on a un->un_tgt_blocksize boundary. If aligned 12979 * then we do not need to allocate a shadow buf to handle the request. 12980 */ 12981 if (un->un_f_enable_rmw) { 12982 if (((first_byte % un->un_phy_blocksize) == 0) && 12983 ((bp->b_bcount % un->un_phy_blocksize) == 0)) { 12984 is_aligned = TRUE; 12985 } 12986 } else { 12987 if (((first_byte % un->un_tgt_blocksize) == 0) && 12988 ((bp->b_bcount % un->un_tgt_blocksize) == 0)) { 12989 is_aligned = TRUE; 12990 } 12991 } 12992 12993 if ((bp->b_flags & B_READ) == 0) { 12994 /* 12995 * Lock the range for a write operation. An aligned request is 12996 * considered a simple write; otherwise the request must be a 12997 * read-modify-write. 12998 */ 12999 bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1, 13000 (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW); 13001 } 13002 13003 /* 13004 * Alloc a shadow buf if the request is not aligned. Also, this is 13005 * where the READ command is generated for a read-modify-write. (The 13006 * write phase is deferred until after the read completes.) 13007 */ 13008 if (is_aligned == FALSE) { 13009 13010 struct sd_mapblocksize_info *shadow_bsp; 13011 struct sd_xbuf *shadow_xp; 13012 struct buf *shadow_bp; 13013 13014 /* 13015 * Allocate the shadow buf and it associated xbuf. Note that 13016 * after this call the xb_blkno value in both the original 13017 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the 13018 * same: absolute relative to the start of the device, and 13019 * adjusted for the target block size. The b_blkno in the 13020 * shadow buf will also be set to this value. We should never 13021 * change b_blkno in the original bp however. 13022 * 13023 * Note also that the shadow buf will always need to be a 13024 * READ command, regardless of whether the incoming command 13025 * is a READ or a WRITE. 13026 */ 13027 shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ, 13028 xp->xb_blkno, 13029 (int (*)(struct buf *)) sd_mapblocksize_iodone); 13030 13031 shadow_xp = SD_GET_XBUF(shadow_bp); 13032 13033 /* 13034 * Allocate the layer-private data for the shadow buf. 13035 * (No need to preserve xb_private in the shadow xbuf.) 13036 */ 13037 shadow_xp->xb_private = shadow_bsp = 13038 kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP); 13039 13040 /* 13041 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone 13042 * to figure out where the start of the user data is (based upon 13043 * the system block size) in the data returned by the READ 13044 * command (which will be based upon the target blocksize). Note 13045 * that this is only really used if the request is unaligned. 13046 */ 13047 if (un->un_f_enable_rmw) { 13048 bsp->mbs_copy_offset = (ssize_t)(first_byte - 13049 ((offset_t)xp->xb_blkno * un->un_sys_blocksize)); 13050 ASSERT((bsp->mbs_copy_offset >= 0) && 13051 (bsp->mbs_copy_offset < un->un_phy_blocksize)); 13052 } else { 13053 bsp->mbs_copy_offset = (ssize_t)(first_byte - 13054 ((offset_t)xp->xb_blkno * un->un_tgt_blocksize)); 13055 ASSERT((bsp->mbs_copy_offset >= 0) && 13056 (bsp->mbs_copy_offset < un->un_tgt_blocksize)); 13057 } 13058 13059 shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset; 13060 13061 shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index; 13062 13063 /* Transfer the wmap (if any) to the shadow buf */ 13064 shadow_bsp->mbs_wmp = bsp->mbs_wmp; 13065 bsp->mbs_wmp = NULL; 13066 13067 /* 13068 * The shadow buf goes on from here in place of the 13069 * original buf. 13070 */ 13071 shadow_bsp->mbs_orig_bp = bp; 13072 bp = shadow_bp; 13073 } 13074 13075 SD_INFO(SD_LOG_IO_RMMEDIA, un, 13076 "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno); 13077 SD_INFO(SD_LOG_IO_RMMEDIA, un, 13078 "sd_mapblocksize_iostart: tgt request len:0x%x\n", 13079 request_bytes); 13080 SD_INFO(SD_LOG_IO_RMMEDIA, un, 13081 "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp); 13082 13083 done: 13084 SD_NEXT_IOSTART(index, un, bp); 13085 13086 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 13087 "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp); 13088 } 13089 13090 13091 /* 13092 * Function: sd_mapblocksize_iodone 13093 * 13094 * Description: Completion side processing for block-size mapping. 13095 * 13096 * Context: May be called under interrupt context 13097 */ 13098 13099 static void 13100 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp) 13101 { 13102 struct sd_mapblocksize_info *bsp; 13103 struct sd_xbuf *xp; 13104 struct sd_xbuf *orig_xp; /* sd_xbuf for the original buf */ 13105 struct buf *orig_bp; /* ptr to the original buf */ 13106 offset_t shadow_end; 13107 offset_t request_end; 13108 offset_t shadow_start; 13109 ssize_t copy_offset; 13110 size_t copy_length; 13111 size_t shortfall; 13112 uint_t is_write; /* TRUE if this bp is a WRITE */ 13113 uint_t has_wmap; /* TRUE is this bp has a wmap */ 13114 13115 ASSERT(un != NULL); 13116 ASSERT(bp != NULL); 13117 13118 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 13119 "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp); 13120 13121 /* 13122 * There is no shadow buf or layer-private data if the target is 13123 * using un->un_sys_blocksize as its block size or if bcount == 0. 13124 */ 13125 if ((un->un_tgt_blocksize == DEV_BSIZE && !un->un_f_enable_rmw) || 13126 (bp->b_bcount == 0)) { 13127 goto exit; 13128 } 13129 13130 xp = SD_GET_XBUF(bp); 13131 ASSERT(xp != NULL); 13132 13133 /* Retrieve the pointer to the layer-private data area from the xbuf. */ 13134 bsp = xp->xb_private; 13135 13136 is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE; 13137 has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE; 13138 13139 if (is_write) { 13140 /* 13141 * For a WRITE request we must free up the block range that 13142 * we have locked up. This holds regardless of whether this is 13143 * an aligned write request or a read-modify-write request. 13144 */ 13145 sd_range_unlock(un, bsp->mbs_wmp); 13146 bsp->mbs_wmp = NULL; 13147 } 13148 13149 if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) { 13150 /* 13151 * An aligned read or write command will have no shadow buf; 13152 * there is not much else to do with it. 13153 */ 13154 goto done; 13155 } 13156 13157 orig_bp = bsp->mbs_orig_bp; 13158 ASSERT(orig_bp != NULL); 13159 orig_xp = SD_GET_XBUF(orig_bp); 13160 ASSERT(orig_xp != NULL); 13161 ASSERT(!mutex_owned(SD_MUTEX(un))); 13162 13163 if (!is_write && has_wmap) { 13164 /* 13165 * A READ with a wmap means this is the READ phase of a 13166 * read-modify-write. If an error occurred on the READ then 13167 * we do not proceed with the WRITE phase or copy any data. 13168 * Just release the write maps and return with an error. 13169 */ 13170 if ((bp->b_resid != 0) || (bp->b_error != 0)) { 13171 orig_bp->b_resid = orig_bp->b_bcount; 13172 bioerror(orig_bp, bp->b_error); 13173 sd_range_unlock(un, bsp->mbs_wmp); 13174 goto freebuf_done; 13175 } 13176 } 13177 13178 /* 13179 * Here is where we set up to copy the data from the shadow buf 13180 * into the space associated with the original buf. 13181 * 13182 * To deal with the conversion between block sizes, these 13183 * computations treat the data as an array of bytes, with the 13184 * first byte (byte 0) corresponding to the first byte in the 13185 * first block on the disk. 13186 */ 13187 13188 /* 13189 * shadow_start and shadow_len indicate the location and size of 13190 * the data returned with the shadow IO request. 13191 */ 13192 if (un->un_f_enable_rmw) { 13193 shadow_start = SD_SYSBLOCKS2BYTES((offset_t)xp->xb_blkno); 13194 } else { 13195 shadow_start = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno); 13196 } 13197 shadow_end = shadow_start + bp->b_bcount - bp->b_resid; 13198 13199 /* 13200 * copy_offset gives the offset (in bytes) from the start of the first 13201 * block of the READ request to the beginning of the data. We retrieve 13202 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved 13203 * there by sd_mapblockize_iostart(). copy_length gives the amount of 13204 * data to be copied (in bytes). 13205 */ 13206 copy_offset = bsp->mbs_copy_offset; 13207 if (un->un_f_enable_rmw) { 13208 ASSERT((copy_offset >= 0) && 13209 (copy_offset < un->un_phy_blocksize)); 13210 } else { 13211 ASSERT((copy_offset >= 0) && 13212 (copy_offset < un->un_tgt_blocksize)); 13213 } 13214 13215 copy_length = orig_bp->b_bcount; 13216 request_end = shadow_start + copy_offset + orig_bp->b_bcount; 13217 13218 /* 13219 * Set up the resid and error fields of orig_bp as appropriate. 13220 */ 13221 if (shadow_end >= request_end) { 13222 /* We got all the requested data; set resid to zero */ 13223 orig_bp->b_resid = 0; 13224 } else { 13225 /* 13226 * We failed to get enough data to fully satisfy the original 13227 * request. Just copy back whatever data we got and set 13228 * up the residual and error code as required. 13229 * 13230 * 'shortfall' is the amount by which the data received with the 13231 * shadow buf has "fallen short" of the requested amount. 13232 */ 13233 shortfall = (size_t)(request_end - shadow_end); 13234 13235 if (shortfall > orig_bp->b_bcount) { 13236 /* 13237 * We did not get enough data to even partially 13238 * fulfill the original request. The residual is 13239 * equal to the amount requested. 13240 */ 13241 orig_bp->b_resid = orig_bp->b_bcount; 13242 } else { 13243 /* 13244 * We did not get all the data that we requested 13245 * from the device, but we will try to return what 13246 * portion we did get. 13247 */ 13248 orig_bp->b_resid = shortfall; 13249 } 13250 ASSERT(copy_length >= orig_bp->b_resid); 13251 copy_length -= orig_bp->b_resid; 13252 } 13253 13254 /* Propagate the error code from the shadow buf to the original buf */ 13255 bioerror(orig_bp, bp->b_error); 13256 13257 if (is_write) { 13258 goto freebuf_done; /* No data copying for a WRITE */ 13259 } 13260 13261 if (has_wmap) { 13262 /* 13263 * This is a READ command from the READ phase of a 13264 * read-modify-write request. We have to copy the data given 13265 * by the user OVER the data returned by the READ command, 13266 * then convert the command from a READ to a WRITE and send 13267 * it back to the target. 13268 */ 13269 bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset, 13270 copy_length); 13271 13272 bp->b_flags &= ~((int)B_READ); /* Convert to a WRITE */ 13273 13274 /* 13275 * Dispatch the WRITE command to the taskq thread, which 13276 * will in turn send the command to the target. When the 13277 * WRITE command completes, we (sd_mapblocksize_iodone()) 13278 * will get called again as part of the iodone chain 13279 * processing for it. Note that we will still be dealing 13280 * with the shadow buf at that point. 13281 */ 13282 if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp, 13283 KM_NOSLEEP) != 0) { 13284 /* 13285 * Dispatch was successful so we are done. Return 13286 * without going any higher up the iodone chain. Do 13287 * not free up any layer-private data until after the 13288 * WRITE completes. 13289 */ 13290 return; 13291 } 13292 13293 /* 13294 * Dispatch of the WRITE command failed; set up the error 13295 * condition and send this IO back up the iodone chain. 13296 */ 13297 bioerror(orig_bp, EIO); 13298 orig_bp->b_resid = orig_bp->b_bcount; 13299 13300 } else { 13301 /* 13302 * This is a regular READ request (ie, not a RMW). Copy the 13303 * data from the shadow buf into the original buf. The 13304 * copy_offset compensates for any "misalignment" between the 13305 * shadow buf (with its un->un_tgt_blocksize blocks) and the 13306 * original buf (with its un->un_sys_blocksize blocks). 13307 */ 13308 bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr, 13309 copy_length); 13310 } 13311 13312 freebuf_done: 13313 13314 /* 13315 * At this point we still have both the shadow buf AND the original 13316 * buf to deal with, as well as the layer-private data area in each. 13317 * Local variables are as follows: 13318 * 13319 * bp -- points to shadow buf 13320 * xp -- points to xbuf of shadow buf 13321 * bsp -- points to layer-private data area of shadow buf 13322 * orig_bp -- points to original buf 13323 * 13324 * First free the shadow buf and its associated xbuf, then free the 13325 * layer-private data area from the shadow buf. There is no need to 13326 * restore xb_private in the shadow xbuf. 13327 */ 13328 sd_shadow_buf_free(bp); 13329 kmem_free(bsp, sizeof (struct sd_mapblocksize_info)); 13330 13331 /* 13332 * Now update the local variables to point to the original buf, xbuf, 13333 * and layer-private area. 13334 */ 13335 bp = orig_bp; 13336 xp = SD_GET_XBUF(bp); 13337 ASSERT(xp != NULL); 13338 ASSERT(xp == orig_xp); 13339 bsp = xp->xb_private; 13340 ASSERT(bsp != NULL); 13341 13342 done: 13343 /* 13344 * Restore xb_private to whatever it was set to by the next higher 13345 * layer in the chain, then free the layer-private data area. 13346 */ 13347 xp->xb_private = bsp->mbs_oprivate; 13348 kmem_free(bsp, sizeof (struct sd_mapblocksize_info)); 13349 13350 exit: 13351 SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp), 13352 "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp); 13353 13354 SD_NEXT_IODONE(index, un, bp); 13355 } 13356 13357 13358 /* 13359 * Function: sd_checksum_iostart 13360 * 13361 * Description: A stub function for a layer that's currently not used. 13362 * For now just a placeholder. 13363 * 13364 * Context: Kernel thread context 13365 */ 13366 13367 static void 13368 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp) 13369 { 13370 ASSERT(un != NULL); 13371 ASSERT(bp != NULL); 13372 ASSERT(!mutex_owned(SD_MUTEX(un))); 13373 SD_NEXT_IOSTART(index, un, bp); 13374 } 13375 13376 13377 /* 13378 * Function: sd_checksum_iodone 13379 * 13380 * Description: A stub function for a layer that's currently not used. 13381 * For now just a placeholder. 13382 * 13383 * Context: May be called under interrupt context 13384 */ 13385 13386 static void 13387 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp) 13388 { 13389 ASSERT(un != NULL); 13390 ASSERT(bp != NULL); 13391 ASSERT(!mutex_owned(SD_MUTEX(un))); 13392 SD_NEXT_IODONE(index, un, bp); 13393 } 13394 13395 13396 /* 13397 * Function: sd_checksum_uscsi_iostart 13398 * 13399 * Description: A stub function for a layer that's currently not used. 13400 * For now just a placeholder. 13401 * 13402 * Context: Kernel thread context 13403 */ 13404 13405 static void 13406 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp) 13407 { 13408 ASSERT(un != NULL); 13409 ASSERT(bp != NULL); 13410 ASSERT(!mutex_owned(SD_MUTEX(un))); 13411 SD_NEXT_IOSTART(index, un, bp); 13412 } 13413 13414 13415 /* 13416 * Function: sd_checksum_uscsi_iodone 13417 * 13418 * Description: A stub function for a layer that's currently not used. 13419 * For now just a placeholder. 13420 * 13421 * Context: May be called under interrupt context 13422 */ 13423 13424 static void 13425 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp) 13426 { 13427 ASSERT(un != NULL); 13428 ASSERT(bp != NULL); 13429 ASSERT(!mutex_owned(SD_MUTEX(un))); 13430 SD_NEXT_IODONE(index, un, bp); 13431 } 13432 13433 13434 /* 13435 * Function: sd_pm_iostart 13436 * 13437 * Description: iostart-side routine for Power mangement. 13438 * 13439 * Context: Kernel thread context 13440 */ 13441 13442 static void 13443 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp) 13444 { 13445 ASSERT(un != NULL); 13446 ASSERT(bp != NULL); 13447 ASSERT(!mutex_owned(SD_MUTEX(un))); 13448 ASSERT(!mutex_owned(&un->un_pm_mutex)); 13449 13450 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n"); 13451 13452 if (sd_pm_entry(un) != DDI_SUCCESS) { 13453 /* 13454 * Set up to return the failed buf back up the 'iodone' 13455 * side of the calling chain. 13456 */ 13457 bioerror(bp, EIO); 13458 bp->b_resid = bp->b_bcount; 13459 13460 SD_BEGIN_IODONE(index, un, bp); 13461 13462 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n"); 13463 return; 13464 } 13465 13466 SD_NEXT_IOSTART(index, un, bp); 13467 13468 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n"); 13469 } 13470 13471 13472 /* 13473 * Function: sd_pm_iodone 13474 * 13475 * Description: iodone-side routine for power mangement. 13476 * 13477 * Context: may be called from interrupt context 13478 */ 13479 13480 static void 13481 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp) 13482 { 13483 ASSERT(un != NULL); 13484 ASSERT(bp != NULL); 13485 ASSERT(!mutex_owned(&un->un_pm_mutex)); 13486 13487 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n"); 13488 13489 /* 13490 * After attach the following flag is only read, so don't 13491 * take the penalty of acquiring a mutex for it. 13492 */ 13493 if (un->un_f_pm_is_enabled == TRUE) { 13494 sd_pm_exit(un); 13495 } 13496 13497 SD_NEXT_IODONE(index, un, bp); 13498 13499 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n"); 13500 } 13501 13502 13503 /* 13504 * Function: sd_core_iostart 13505 * 13506 * Description: Primary driver function for enqueuing buf(9S) structs from 13507 * the system and initiating IO to the target device 13508 * 13509 * Context: Kernel thread context. Can sleep. 13510 * 13511 * Assumptions: - The given xp->xb_blkno is absolute 13512 * (ie, relative to the start of the device). 13513 * - The IO is to be done using the native blocksize of 13514 * the device, as specified in un->un_tgt_blocksize. 13515 */ 13516 /* ARGSUSED */ 13517 static void 13518 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp) 13519 { 13520 struct sd_xbuf *xp; 13521 13522 ASSERT(un != NULL); 13523 ASSERT(bp != NULL); 13524 ASSERT(!mutex_owned(SD_MUTEX(un))); 13525 ASSERT(bp->b_resid == 0); 13526 13527 SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp); 13528 13529 xp = SD_GET_XBUF(bp); 13530 ASSERT(xp != NULL); 13531 13532 mutex_enter(SD_MUTEX(un)); 13533 13534 /* 13535 * If we are currently in the failfast state, fail any new IO 13536 * that has B_FAILFAST set, then return. 13537 */ 13538 if ((bp->b_flags & B_FAILFAST) && 13539 (un->un_failfast_state == SD_FAILFAST_ACTIVE)) { 13540 mutex_exit(SD_MUTEX(un)); 13541 bioerror(bp, EIO); 13542 bp->b_resid = bp->b_bcount; 13543 SD_BEGIN_IODONE(index, un, bp); 13544 return; 13545 } 13546 13547 if (SD_IS_DIRECT_PRIORITY(xp)) { 13548 /* 13549 * Priority command -- transport it immediately. 13550 * 13551 * Note: We may want to assert that USCSI_DIAGNOSE is set, 13552 * because all direct priority commands should be associated 13553 * with error recovery actions which we don't want to retry. 13554 */ 13555 sd_start_cmds(un, bp); 13556 } else { 13557 /* 13558 * Normal command -- add it to the wait queue, then start 13559 * transporting commands from the wait queue. 13560 */ 13561 sd_add_buf_to_waitq(un, bp); 13562 SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp); 13563 sd_start_cmds(un, NULL); 13564 } 13565 13566 mutex_exit(SD_MUTEX(un)); 13567 13568 SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp); 13569 } 13570 13571 13572 /* 13573 * Function: sd_init_cdb_limits 13574 * 13575 * Description: This is to handle scsi_pkt initialization differences 13576 * between the driver platforms. 13577 * 13578 * Legacy behaviors: 13579 * 13580 * If the block number or the sector count exceeds the 13581 * capabilities of a Group 0 command, shift over to a 13582 * Group 1 command. We don't blindly use Group 1 13583 * commands because a) some drives (CDC Wren IVs) get a 13584 * bit confused, and b) there is probably a fair amount 13585 * of speed difference for a target to receive and decode 13586 * a 10 byte command instead of a 6 byte command. 13587 * 13588 * The xfer time difference of 6 vs 10 byte CDBs is 13589 * still significant so this code is still worthwhile. 13590 * 10 byte CDBs are very inefficient with the fas HBA driver 13591 * and older disks. Each CDB byte took 1 usec with some 13592 * popular disks. 13593 * 13594 * Context: Must be called at attach time 13595 */ 13596 13597 static void 13598 sd_init_cdb_limits(struct sd_lun *un) 13599 { 13600 int hba_cdb_limit; 13601 13602 /* 13603 * Use CDB_GROUP1 commands for most devices except for 13604 * parallel SCSI fixed drives in which case we get better 13605 * performance using CDB_GROUP0 commands (where applicable). 13606 */ 13607 un->un_mincdb = SD_CDB_GROUP1; 13608 #if !defined(__fibre) 13609 if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) && 13610 !un->un_f_has_removable_media) { 13611 un->un_mincdb = SD_CDB_GROUP0; 13612 } 13613 #endif 13614 13615 /* 13616 * Try to read the max-cdb-length supported by HBA. 13617 */ 13618 un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1); 13619 if (0 >= un->un_max_hba_cdb) { 13620 un->un_max_hba_cdb = CDB_GROUP4; 13621 hba_cdb_limit = SD_CDB_GROUP4; 13622 } else if (0 < un->un_max_hba_cdb && 13623 un->un_max_hba_cdb < CDB_GROUP1) { 13624 hba_cdb_limit = SD_CDB_GROUP0; 13625 } else if (CDB_GROUP1 <= un->un_max_hba_cdb && 13626 un->un_max_hba_cdb < CDB_GROUP5) { 13627 hba_cdb_limit = SD_CDB_GROUP1; 13628 } else if (CDB_GROUP5 <= un->un_max_hba_cdb && 13629 un->un_max_hba_cdb < CDB_GROUP4) { 13630 hba_cdb_limit = SD_CDB_GROUP5; 13631 } else { 13632 hba_cdb_limit = SD_CDB_GROUP4; 13633 } 13634 13635 /* 13636 * Use CDB_GROUP5 commands for removable devices. Use CDB_GROUP4 13637 * commands for fixed disks unless we are building for a 32 bit 13638 * kernel. 13639 */ 13640 #ifdef _LP64 13641 un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 : 13642 min(hba_cdb_limit, SD_CDB_GROUP4); 13643 #else 13644 un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 : 13645 min(hba_cdb_limit, SD_CDB_GROUP1); 13646 #endif 13647 13648 un->un_status_len = (int)((un->un_f_arq_enabled == TRUE) 13649 ? sizeof (struct scsi_arq_status) : 1); 13650 un->un_cmd_timeout = (ushort_t)sd_io_time; 13651 un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout; 13652 } 13653 13654 13655 /* 13656 * Function: sd_initpkt_for_buf 13657 * 13658 * Description: Allocate and initialize for transport a scsi_pkt struct, 13659 * based upon the info specified in the given buf struct. 13660 * 13661 * Assumes the xb_blkno in the request is absolute (ie, 13662 * relative to the start of the device (NOT partition!). 13663 * Also assumes that the request is using the native block 13664 * size of the device (as returned by the READ CAPACITY 13665 * command). 13666 * 13667 * Return Code: SD_PKT_ALLOC_SUCCESS 13668 * SD_PKT_ALLOC_FAILURE 13669 * SD_PKT_ALLOC_FAILURE_NO_DMA 13670 * SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL 13671 * 13672 * Context: Kernel thread and may be called from software interrupt context 13673 * as part of a sdrunout callback. This function may not block or 13674 * call routines that block 13675 */ 13676 13677 static int 13678 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp) 13679 { 13680 struct sd_xbuf *xp; 13681 struct scsi_pkt *pktp = NULL; 13682 struct sd_lun *un; 13683 size_t blockcount; 13684 daddr_t startblock; 13685 int rval; 13686 int cmd_flags; 13687 13688 ASSERT(bp != NULL); 13689 ASSERT(pktpp != NULL); 13690 xp = SD_GET_XBUF(bp); 13691 ASSERT(xp != NULL); 13692 un = SD_GET_UN(bp); 13693 ASSERT(un != NULL); 13694 ASSERT(mutex_owned(SD_MUTEX(un))); 13695 ASSERT(bp->b_resid == 0); 13696 13697 SD_TRACE(SD_LOG_IO_CORE, un, 13698 "sd_initpkt_for_buf: entry: buf:0x%p\n", bp); 13699 13700 mutex_exit(SD_MUTEX(un)); 13701 13702 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 13703 if (xp->xb_pkt_flags & SD_XB_DMA_FREED) { 13704 /* 13705 * Already have a scsi_pkt -- just need DMA resources. 13706 * We must recompute the CDB in case the mapping returns 13707 * a nonzero pkt_resid. 13708 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer 13709 * that is being retried, the unmap/remap of the DMA resouces 13710 * will result in the entire transfer starting over again 13711 * from the very first block. 13712 */ 13713 ASSERT(xp->xb_pktp != NULL); 13714 pktp = xp->xb_pktp; 13715 } else { 13716 pktp = NULL; 13717 } 13718 #endif /* __i386 || __amd64 */ 13719 13720 startblock = xp->xb_blkno; /* Absolute block num. */ 13721 blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount); 13722 13723 cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK); 13724 13725 /* 13726 * sd_setup_rw_pkt will determine the appropriate CDB group to use, 13727 * call scsi_init_pkt, and build the CDB. 13728 */ 13729 rval = sd_setup_rw_pkt(un, &pktp, bp, 13730 cmd_flags, sdrunout, (caddr_t)un, 13731 startblock, blockcount); 13732 13733 if (rval == 0) { 13734 /* 13735 * Success. 13736 * 13737 * If partial DMA is being used and required for this transfer. 13738 * set it up here. 13739 */ 13740 if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 && 13741 (pktp->pkt_resid != 0)) { 13742 13743 /* 13744 * Save the CDB length and pkt_resid for the 13745 * next xfer 13746 */ 13747 xp->xb_dma_resid = pktp->pkt_resid; 13748 13749 /* rezero resid */ 13750 pktp->pkt_resid = 0; 13751 13752 } else { 13753 xp->xb_dma_resid = 0; 13754 } 13755 13756 pktp->pkt_flags = un->un_tagflags; 13757 pktp->pkt_time = un->un_cmd_timeout; 13758 pktp->pkt_comp = sdintr; 13759 13760 pktp->pkt_private = bp; 13761 *pktpp = pktp; 13762 13763 SD_TRACE(SD_LOG_IO_CORE, un, 13764 "sd_initpkt_for_buf: exit: buf:0x%p\n", bp); 13765 13766 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 13767 xp->xb_pkt_flags &= ~SD_XB_DMA_FREED; 13768 #endif 13769 13770 mutex_enter(SD_MUTEX(un)); 13771 return (SD_PKT_ALLOC_SUCCESS); 13772 13773 } 13774 13775 /* 13776 * SD_PKT_ALLOC_FAILURE is the only expected failure code 13777 * from sd_setup_rw_pkt. 13778 */ 13779 ASSERT(rval == SD_PKT_ALLOC_FAILURE); 13780 13781 if (rval == SD_PKT_ALLOC_FAILURE) { 13782 *pktpp = NULL; 13783 /* 13784 * Set the driver state to RWAIT to indicate the driver 13785 * is waiting on resource allocations. The driver will not 13786 * suspend, pm_suspend, or detatch while the state is RWAIT. 13787 */ 13788 mutex_enter(SD_MUTEX(un)); 13789 New_state(un, SD_STATE_RWAIT); 13790 13791 SD_ERROR(SD_LOG_IO_CORE, un, 13792 "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp); 13793 13794 if ((bp->b_flags & B_ERROR) != 0) { 13795 return (SD_PKT_ALLOC_FAILURE_NO_DMA); 13796 } 13797 return (SD_PKT_ALLOC_FAILURE); 13798 } else { 13799 /* 13800 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL 13801 * 13802 * This should never happen. Maybe someone messed with the 13803 * kernel's minphys? 13804 */ 13805 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 13806 "Request rejected: too large for CDB: " 13807 "lba:0x%08lx len:0x%08lx\n", startblock, blockcount); 13808 SD_ERROR(SD_LOG_IO_CORE, un, 13809 "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp); 13810 mutex_enter(SD_MUTEX(un)); 13811 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 13812 13813 } 13814 } 13815 13816 13817 /* 13818 * Function: sd_destroypkt_for_buf 13819 * 13820 * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing). 13821 * 13822 * Context: Kernel thread or interrupt context 13823 */ 13824 13825 static void 13826 sd_destroypkt_for_buf(struct buf *bp) 13827 { 13828 ASSERT(bp != NULL); 13829 ASSERT(SD_GET_UN(bp) != NULL); 13830 13831 SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp), 13832 "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp); 13833 13834 ASSERT(SD_GET_PKTP(bp) != NULL); 13835 scsi_destroy_pkt(SD_GET_PKTP(bp)); 13836 13837 SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp), 13838 "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp); 13839 } 13840 13841 /* 13842 * Function: sd_setup_rw_pkt 13843 * 13844 * Description: Determines appropriate CDB group for the requested LBA 13845 * and transfer length, calls scsi_init_pkt, and builds 13846 * the CDB. Do not use for partial DMA transfers except 13847 * for the initial transfer since the CDB size must 13848 * remain constant. 13849 * 13850 * Context: Kernel thread and may be called from software interrupt 13851 * context as part of a sdrunout callback. This function may not 13852 * block or call routines that block 13853 */ 13854 13855 13856 int 13857 sd_setup_rw_pkt(struct sd_lun *un, 13858 struct scsi_pkt **pktpp, struct buf *bp, int flags, 13859 int (*callback)(caddr_t), caddr_t callback_arg, 13860 diskaddr_t lba, uint32_t blockcount) 13861 { 13862 struct scsi_pkt *return_pktp; 13863 union scsi_cdb *cdbp; 13864 struct sd_cdbinfo *cp = NULL; 13865 int i; 13866 13867 /* 13868 * See which size CDB to use, based upon the request. 13869 */ 13870 for (i = un->un_mincdb; i <= un->un_maxcdb; i++) { 13871 13872 /* 13873 * Check lba and block count against sd_cdbtab limits. 13874 * In the partial DMA case, we have to use the same size 13875 * CDB for all the transfers. Check lba + blockcount 13876 * against the max LBA so we know that segment of the 13877 * transfer can use the CDB we select. 13878 */ 13879 if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) && 13880 (blockcount <= sd_cdbtab[i].sc_maxlen)) { 13881 13882 /* 13883 * The command will fit into the CDB type 13884 * specified by sd_cdbtab[i]. 13885 */ 13886 cp = sd_cdbtab + i; 13887 13888 /* 13889 * Call scsi_init_pkt so we can fill in the 13890 * CDB. 13891 */ 13892 return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp, 13893 bp, cp->sc_grpcode, un->un_status_len, 0, 13894 flags, callback, callback_arg); 13895 13896 if (return_pktp != NULL) { 13897 13898 /* 13899 * Return new value of pkt 13900 */ 13901 *pktpp = return_pktp; 13902 13903 /* 13904 * To be safe, zero the CDB insuring there is 13905 * no leftover data from a previous command. 13906 */ 13907 bzero(return_pktp->pkt_cdbp, cp->sc_grpcode); 13908 13909 /* 13910 * Handle partial DMA mapping 13911 */ 13912 if (return_pktp->pkt_resid != 0) { 13913 13914 /* 13915 * Not going to xfer as many blocks as 13916 * originally expected 13917 */ 13918 blockcount -= 13919 SD_BYTES2TGTBLOCKS(un, 13920 return_pktp->pkt_resid); 13921 } 13922 13923 cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp; 13924 13925 /* 13926 * Set command byte based on the CDB 13927 * type we matched. 13928 */ 13929 cdbp->scc_cmd = cp->sc_grpmask | 13930 ((bp->b_flags & B_READ) ? 13931 SCMD_READ : SCMD_WRITE); 13932 13933 SD_FILL_SCSI1_LUN(un, return_pktp); 13934 13935 /* 13936 * Fill in LBA and length 13937 */ 13938 ASSERT((cp->sc_grpcode == CDB_GROUP1) || 13939 (cp->sc_grpcode == CDB_GROUP4) || 13940 (cp->sc_grpcode == CDB_GROUP0) || 13941 (cp->sc_grpcode == CDB_GROUP5)); 13942 13943 if (cp->sc_grpcode == CDB_GROUP1) { 13944 FORMG1ADDR(cdbp, lba); 13945 FORMG1COUNT(cdbp, blockcount); 13946 return (0); 13947 } else if (cp->sc_grpcode == CDB_GROUP4) { 13948 FORMG4LONGADDR(cdbp, lba); 13949 FORMG4COUNT(cdbp, blockcount); 13950 return (0); 13951 } else if (cp->sc_grpcode == CDB_GROUP0) { 13952 FORMG0ADDR(cdbp, lba); 13953 FORMG0COUNT(cdbp, blockcount); 13954 return (0); 13955 } else if (cp->sc_grpcode == CDB_GROUP5) { 13956 FORMG5ADDR(cdbp, lba); 13957 FORMG5COUNT(cdbp, blockcount); 13958 return (0); 13959 } 13960 13961 /* 13962 * It should be impossible to not match one 13963 * of the CDB types above, so we should never 13964 * reach this point. Set the CDB command byte 13965 * to test-unit-ready to avoid writing 13966 * to somewhere we don't intend. 13967 */ 13968 cdbp->scc_cmd = SCMD_TEST_UNIT_READY; 13969 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 13970 } else { 13971 /* 13972 * Couldn't get scsi_pkt 13973 */ 13974 return (SD_PKT_ALLOC_FAILURE); 13975 } 13976 } 13977 } 13978 13979 /* 13980 * None of the available CDB types were suitable. This really 13981 * should never happen: on a 64 bit system we support 13982 * READ16/WRITE16 which will hold an entire 64 bit disk address 13983 * and on a 32 bit system we will refuse to bind to a device 13984 * larger than 2TB so addresses will never be larger than 32 bits. 13985 */ 13986 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 13987 } 13988 13989 /* 13990 * Function: sd_setup_next_rw_pkt 13991 * 13992 * Description: Setup packet for partial DMA transfers, except for the 13993 * initial transfer. sd_setup_rw_pkt should be used for 13994 * the initial transfer. 13995 * 13996 * Context: Kernel thread and may be called from interrupt context. 13997 */ 13998 13999 int 14000 sd_setup_next_rw_pkt(struct sd_lun *un, 14001 struct scsi_pkt *pktp, struct buf *bp, 14002 diskaddr_t lba, uint32_t blockcount) 14003 { 14004 uchar_t com; 14005 union scsi_cdb *cdbp; 14006 uchar_t cdb_group_id; 14007 14008 ASSERT(pktp != NULL); 14009 ASSERT(pktp->pkt_cdbp != NULL); 14010 14011 cdbp = (union scsi_cdb *)pktp->pkt_cdbp; 14012 com = cdbp->scc_cmd; 14013 cdb_group_id = CDB_GROUPID(com); 14014 14015 ASSERT((cdb_group_id == CDB_GROUPID_0) || 14016 (cdb_group_id == CDB_GROUPID_1) || 14017 (cdb_group_id == CDB_GROUPID_4) || 14018 (cdb_group_id == CDB_GROUPID_5)); 14019 14020 /* 14021 * Move pkt to the next portion of the xfer. 14022 * func is NULL_FUNC so we do not have to release 14023 * the disk mutex here. 14024 */ 14025 if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0, 14026 NULL_FUNC, NULL) == pktp) { 14027 /* Success. Handle partial DMA */ 14028 if (pktp->pkt_resid != 0) { 14029 blockcount -= 14030 SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid); 14031 } 14032 14033 cdbp->scc_cmd = com; 14034 SD_FILL_SCSI1_LUN(un, pktp); 14035 if (cdb_group_id == CDB_GROUPID_1) { 14036 FORMG1ADDR(cdbp, lba); 14037 FORMG1COUNT(cdbp, blockcount); 14038 return (0); 14039 } else if (cdb_group_id == CDB_GROUPID_4) { 14040 FORMG4LONGADDR(cdbp, lba); 14041 FORMG4COUNT(cdbp, blockcount); 14042 return (0); 14043 } else if (cdb_group_id == CDB_GROUPID_0) { 14044 FORMG0ADDR(cdbp, lba); 14045 FORMG0COUNT(cdbp, blockcount); 14046 return (0); 14047 } else if (cdb_group_id == CDB_GROUPID_5) { 14048 FORMG5ADDR(cdbp, lba); 14049 FORMG5COUNT(cdbp, blockcount); 14050 return (0); 14051 } 14052 14053 /* Unreachable */ 14054 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 14055 } 14056 14057 /* 14058 * Error setting up next portion of cmd transfer. 14059 * Something is definitely very wrong and this 14060 * should not happen. 14061 */ 14062 return (SD_PKT_ALLOC_FAILURE); 14063 } 14064 14065 /* 14066 * Function: sd_initpkt_for_uscsi 14067 * 14068 * Description: Allocate and initialize for transport a scsi_pkt struct, 14069 * based upon the info specified in the given uscsi_cmd struct. 14070 * 14071 * Return Code: SD_PKT_ALLOC_SUCCESS 14072 * SD_PKT_ALLOC_FAILURE 14073 * SD_PKT_ALLOC_FAILURE_NO_DMA 14074 * SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL 14075 * 14076 * Context: Kernel thread and may be called from software interrupt context 14077 * as part of a sdrunout callback. This function may not block or 14078 * call routines that block 14079 */ 14080 14081 static int 14082 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp) 14083 { 14084 struct uscsi_cmd *uscmd; 14085 struct sd_xbuf *xp; 14086 struct scsi_pkt *pktp; 14087 struct sd_lun *un; 14088 uint32_t flags = 0; 14089 14090 ASSERT(bp != NULL); 14091 ASSERT(pktpp != NULL); 14092 xp = SD_GET_XBUF(bp); 14093 ASSERT(xp != NULL); 14094 un = SD_GET_UN(bp); 14095 ASSERT(un != NULL); 14096 ASSERT(mutex_owned(SD_MUTEX(un))); 14097 14098 /* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */ 14099 uscmd = (struct uscsi_cmd *)xp->xb_pktinfo; 14100 ASSERT(uscmd != NULL); 14101 14102 SD_TRACE(SD_LOG_IO_CORE, un, 14103 "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp); 14104 14105 /* 14106 * Allocate the scsi_pkt for the command. 14107 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path 14108 * during scsi_init_pkt time and will continue to use the 14109 * same path as long as the same scsi_pkt is used without 14110 * intervening scsi_dma_free(). Since uscsi command does 14111 * not call scsi_dmafree() before retry failed command, it 14112 * is necessary to make sure PKT_DMA_PARTIAL flag is NOT 14113 * set such that scsi_vhci can use other available path for 14114 * retry. Besides, ucsci command does not allow DMA breakup, 14115 * so there is no need to set PKT_DMA_PARTIAL flag. 14116 */ 14117 if (uscmd->uscsi_rqlen > SENSE_LENGTH) { 14118 pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, 14119 ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen, 14120 ((int)(uscmd->uscsi_rqlen) + sizeof (struct scsi_arq_status) 14121 - sizeof (struct scsi_extended_sense)), 0, 14122 (un->un_pkt_flags & ~PKT_DMA_PARTIAL) | PKT_XARQ, 14123 sdrunout, (caddr_t)un); 14124 } else { 14125 pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, 14126 ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen, 14127 sizeof (struct scsi_arq_status), 0, 14128 (un->un_pkt_flags & ~PKT_DMA_PARTIAL), 14129 sdrunout, (caddr_t)un); 14130 } 14131 14132 if (pktp == NULL) { 14133 *pktpp = NULL; 14134 /* 14135 * Set the driver state to RWAIT to indicate the driver 14136 * is waiting on resource allocations. The driver will not 14137 * suspend, pm_suspend, or detatch while the state is RWAIT. 14138 */ 14139 New_state(un, SD_STATE_RWAIT); 14140 14141 SD_ERROR(SD_LOG_IO_CORE, un, 14142 "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp); 14143 14144 if ((bp->b_flags & B_ERROR) != 0) { 14145 return (SD_PKT_ALLOC_FAILURE_NO_DMA); 14146 } 14147 return (SD_PKT_ALLOC_FAILURE); 14148 } 14149 14150 /* 14151 * We do not do DMA breakup for USCSI commands, so return failure 14152 * here if all the needed DMA resources were not allocated. 14153 */ 14154 if ((un->un_pkt_flags & PKT_DMA_PARTIAL) && 14155 (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) { 14156 scsi_destroy_pkt(pktp); 14157 SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: " 14158 "No partial DMA for USCSI. exit: buf:0x%p\n", bp); 14159 return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL); 14160 } 14161 14162 /* Init the cdb from the given uscsi struct */ 14163 (void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp, 14164 uscmd->uscsi_cdb[0], 0, 0, 0); 14165 14166 SD_FILL_SCSI1_LUN(un, pktp); 14167 14168 /* 14169 * Set up the optional USCSI flags. See the uscsi (7I) man page 14170 * for listing of the supported flags. 14171 */ 14172 14173 if (uscmd->uscsi_flags & USCSI_SILENT) { 14174 flags |= FLAG_SILENT; 14175 } 14176 14177 if (uscmd->uscsi_flags & USCSI_DIAGNOSE) { 14178 flags |= FLAG_DIAGNOSE; 14179 } 14180 14181 if (uscmd->uscsi_flags & USCSI_ISOLATE) { 14182 flags |= FLAG_ISOLATE; 14183 } 14184 14185 if (un->un_f_is_fibre == FALSE) { 14186 if (uscmd->uscsi_flags & USCSI_RENEGOT) { 14187 flags |= FLAG_RENEGOTIATE_WIDE_SYNC; 14188 } 14189 } 14190 14191 /* 14192 * Set the pkt flags here so we save time later. 14193 * Note: These flags are NOT in the uscsi man page!!! 14194 */ 14195 if (uscmd->uscsi_flags & USCSI_HEAD) { 14196 flags |= FLAG_HEAD; 14197 } 14198 14199 if (uscmd->uscsi_flags & USCSI_NOINTR) { 14200 flags |= FLAG_NOINTR; 14201 } 14202 14203 /* 14204 * For tagged queueing, things get a bit complicated. 14205 * Check first for head of queue and last for ordered queue. 14206 * If neither head nor order, use the default driver tag flags. 14207 */ 14208 if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) { 14209 if (uscmd->uscsi_flags & USCSI_HTAG) { 14210 flags |= FLAG_HTAG; 14211 } else if (uscmd->uscsi_flags & USCSI_OTAG) { 14212 flags |= FLAG_OTAG; 14213 } else { 14214 flags |= un->un_tagflags & FLAG_TAGMASK; 14215 } 14216 } 14217 14218 if (uscmd->uscsi_flags & USCSI_NODISCON) { 14219 flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON; 14220 } 14221 14222 pktp->pkt_flags = flags; 14223 14224 /* Transfer uscsi information to scsi_pkt */ 14225 (void) scsi_uscsi_pktinit(uscmd, pktp); 14226 14227 /* Copy the caller's CDB into the pkt... */ 14228 bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen); 14229 14230 if (uscmd->uscsi_timeout == 0) { 14231 pktp->pkt_time = un->un_uscsi_timeout; 14232 } else { 14233 pktp->pkt_time = uscmd->uscsi_timeout; 14234 } 14235 14236 /* need it later to identify USCSI request in sdintr */ 14237 xp->xb_pkt_flags |= SD_XB_USCSICMD; 14238 14239 xp->xb_sense_resid = uscmd->uscsi_rqresid; 14240 14241 pktp->pkt_private = bp; 14242 pktp->pkt_comp = sdintr; 14243 *pktpp = pktp; 14244 14245 SD_TRACE(SD_LOG_IO_CORE, un, 14246 "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp); 14247 14248 return (SD_PKT_ALLOC_SUCCESS); 14249 } 14250 14251 14252 /* 14253 * Function: sd_destroypkt_for_uscsi 14254 * 14255 * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi 14256 * IOs.. Also saves relevant info into the associated uscsi_cmd 14257 * struct. 14258 * 14259 * Context: May be called under interrupt context 14260 */ 14261 14262 static void 14263 sd_destroypkt_for_uscsi(struct buf *bp) 14264 { 14265 struct uscsi_cmd *uscmd; 14266 struct sd_xbuf *xp; 14267 struct scsi_pkt *pktp; 14268 struct sd_lun *un; 14269 struct sd_uscsi_info *suip; 14270 14271 ASSERT(bp != NULL); 14272 xp = SD_GET_XBUF(bp); 14273 ASSERT(xp != NULL); 14274 un = SD_GET_UN(bp); 14275 ASSERT(un != NULL); 14276 ASSERT(!mutex_owned(SD_MUTEX(un))); 14277 pktp = SD_GET_PKTP(bp); 14278 ASSERT(pktp != NULL); 14279 14280 SD_TRACE(SD_LOG_IO_CORE, un, 14281 "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp); 14282 14283 /* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */ 14284 uscmd = (struct uscsi_cmd *)xp->xb_pktinfo; 14285 ASSERT(uscmd != NULL); 14286 14287 /* Save the status and the residual into the uscsi_cmd struct */ 14288 uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK); 14289 uscmd->uscsi_resid = bp->b_resid; 14290 14291 /* Transfer scsi_pkt information to uscsi */ 14292 (void) scsi_uscsi_pktfini(pktp, uscmd); 14293 14294 /* 14295 * If enabled, copy any saved sense data into the area specified 14296 * by the uscsi command. 14297 */ 14298 if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) && 14299 (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) { 14300 /* 14301 * Note: uscmd->uscsi_rqbuf should always point to a buffer 14302 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd()) 14303 */ 14304 uscmd->uscsi_rqstatus = xp->xb_sense_status; 14305 uscmd->uscsi_rqresid = xp->xb_sense_resid; 14306 if (uscmd->uscsi_rqlen > SENSE_LENGTH) { 14307 bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf, 14308 MAX_SENSE_LENGTH); 14309 } else { 14310 bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf, 14311 SENSE_LENGTH); 14312 } 14313 } 14314 /* 14315 * The following assignments are for SCSI FMA. 14316 */ 14317 ASSERT(xp->xb_private != NULL); 14318 suip = (struct sd_uscsi_info *)xp->xb_private; 14319 suip->ui_pkt_reason = pktp->pkt_reason; 14320 suip->ui_pkt_state = pktp->pkt_state; 14321 suip->ui_pkt_statistics = pktp->pkt_statistics; 14322 suip->ui_lba = (uint64_t)SD_GET_BLKNO(bp); 14323 14324 /* We are done with the scsi_pkt; free it now */ 14325 ASSERT(SD_GET_PKTP(bp) != NULL); 14326 scsi_destroy_pkt(SD_GET_PKTP(bp)); 14327 14328 SD_TRACE(SD_LOG_IO_CORE, un, 14329 "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp); 14330 } 14331 14332 14333 /* 14334 * Function: sd_bioclone_alloc 14335 * 14336 * Description: Allocate a buf(9S) and init it as per the given buf 14337 * and the various arguments. The associated sd_xbuf 14338 * struct is (nearly) duplicated. The struct buf *bp 14339 * argument is saved in new_xp->xb_private. 14340 * 14341 * Arguments: bp - ptr the the buf(9S) to be "shadowed" 14342 * datalen - size of data area for the shadow bp 14343 * blkno - starting LBA 14344 * func - function pointer for b_iodone in the shadow buf. (May 14345 * be NULL if none.) 14346 * 14347 * Return Code: Pointer to allocates buf(9S) struct 14348 * 14349 * Context: Can sleep. 14350 */ 14351 14352 static struct buf * 14353 sd_bioclone_alloc(struct buf *bp, size_t datalen, 14354 daddr_t blkno, int (*func)(struct buf *)) 14355 { 14356 struct sd_lun *un; 14357 struct sd_xbuf *xp; 14358 struct sd_xbuf *new_xp; 14359 struct buf *new_bp; 14360 14361 ASSERT(bp != NULL); 14362 xp = SD_GET_XBUF(bp); 14363 ASSERT(xp != NULL); 14364 un = SD_GET_UN(bp); 14365 ASSERT(un != NULL); 14366 ASSERT(!mutex_owned(SD_MUTEX(un))); 14367 14368 new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func, 14369 NULL, KM_SLEEP); 14370 14371 new_bp->b_lblkno = blkno; 14372 14373 /* 14374 * Allocate an xbuf for the shadow bp and copy the contents of the 14375 * original xbuf into it. 14376 */ 14377 new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP); 14378 bcopy(xp, new_xp, sizeof (struct sd_xbuf)); 14379 14380 /* 14381 * The given bp is automatically saved in the xb_private member 14382 * of the new xbuf. Callers are allowed to depend on this. 14383 */ 14384 new_xp->xb_private = bp; 14385 14386 new_bp->b_private = new_xp; 14387 14388 return (new_bp); 14389 } 14390 14391 /* 14392 * Function: sd_shadow_buf_alloc 14393 * 14394 * Description: Allocate a buf(9S) and init it as per the given buf 14395 * and the various arguments. The associated sd_xbuf 14396 * struct is (nearly) duplicated. The struct buf *bp 14397 * argument is saved in new_xp->xb_private. 14398 * 14399 * Arguments: bp - ptr the the buf(9S) to be "shadowed" 14400 * datalen - size of data area for the shadow bp 14401 * bflags - B_READ or B_WRITE (pseudo flag) 14402 * blkno - starting LBA 14403 * func - function pointer for b_iodone in the shadow buf. (May 14404 * be NULL if none.) 14405 * 14406 * Return Code: Pointer to allocates buf(9S) struct 14407 * 14408 * Context: Can sleep. 14409 */ 14410 14411 static struct buf * 14412 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags, 14413 daddr_t blkno, int (*func)(struct buf *)) 14414 { 14415 struct sd_lun *un; 14416 struct sd_xbuf *xp; 14417 struct sd_xbuf *new_xp; 14418 struct buf *new_bp; 14419 14420 ASSERT(bp != NULL); 14421 xp = SD_GET_XBUF(bp); 14422 ASSERT(xp != NULL); 14423 un = SD_GET_UN(bp); 14424 ASSERT(un != NULL); 14425 ASSERT(!mutex_owned(SD_MUTEX(un))); 14426 14427 if (bp->b_flags & (B_PAGEIO | B_PHYS)) { 14428 bp_mapin(bp); 14429 } 14430 14431 bflags &= (B_READ | B_WRITE); 14432 #if defined(__i386) || defined(__amd64) 14433 new_bp = getrbuf(KM_SLEEP); 14434 new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP); 14435 new_bp->b_bcount = datalen; 14436 new_bp->b_flags = bflags | 14437 (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW)); 14438 #else 14439 new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL, 14440 datalen, bflags, SLEEP_FUNC, NULL); 14441 #endif 14442 new_bp->av_forw = NULL; 14443 new_bp->av_back = NULL; 14444 new_bp->b_dev = bp->b_dev; 14445 new_bp->b_blkno = blkno; 14446 new_bp->b_iodone = func; 14447 new_bp->b_edev = bp->b_edev; 14448 new_bp->b_resid = 0; 14449 14450 /* We need to preserve the B_FAILFAST flag */ 14451 if (bp->b_flags & B_FAILFAST) { 14452 new_bp->b_flags |= B_FAILFAST; 14453 } 14454 14455 /* 14456 * Allocate an xbuf for the shadow bp and copy the contents of the 14457 * original xbuf into it. 14458 */ 14459 new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP); 14460 bcopy(xp, new_xp, sizeof (struct sd_xbuf)); 14461 14462 /* Need later to copy data between the shadow buf & original buf! */ 14463 new_xp->xb_pkt_flags |= PKT_CONSISTENT; 14464 14465 /* 14466 * The given bp is automatically saved in the xb_private member 14467 * of the new xbuf. Callers are allowed to depend on this. 14468 */ 14469 new_xp->xb_private = bp; 14470 14471 new_bp->b_private = new_xp; 14472 14473 return (new_bp); 14474 } 14475 14476 /* 14477 * Function: sd_bioclone_free 14478 * 14479 * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations 14480 * in the larger than partition operation. 14481 * 14482 * Context: May be called under interrupt context 14483 */ 14484 14485 static void 14486 sd_bioclone_free(struct buf *bp) 14487 { 14488 struct sd_xbuf *xp; 14489 14490 ASSERT(bp != NULL); 14491 xp = SD_GET_XBUF(bp); 14492 ASSERT(xp != NULL); 14493 14494 /* 14495 * Call bp_mapout() before freeing the buf, in case a lower 14496 * layer or HBA had done a bp_mapin(). we must do this here 14497 * as we are the "originator" of the shadow buf. 14498 */ 14499 bp_mapout(bp); 14500 14501 /* 14502 * Null out b_iodone before freeing the bp, to ensure that the driver 14503 * never gets confused by a stale value in this field. (Just a little 14504 * extra defensiveness here.) 14505 */ 14506 bp->b_iodone = NULL; 14507 14508 freerbuf(bp); 14509 14510 kmem_free(xp, sizeof (struct sd_xbuf)); 14511 } 14512 14513 /* 14514 * Function: sd_shadow_buf_free 14515 * 14516 * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations. 14517 * 14518 * Context: May be called under interrupt context 14519 */ 14520 14521 static void 14522 sd_shadow_buf_free(struct buf *bp) 14523 { 14524 struct sd_xbuf *xp; 14525 14526 ASSERT(bp != NULL); 14527 xp = SD_GET_XBUF(bp); 14528 ASSERT(xp != NULL); 14529 14530 #if defined(__sparc) 14531 /* 14532 * Call bp_mapout() before freeing the buf, in case a lower 14533 * layer or HBA had done a bp_mapin(). we must do this here 14534 * as we are the "originator" of the shadow buf. 14535 */ 14536 bp_mapout(bp); 14537 #endif 14538 14539 /* 14540 * Null out b_iodone before freeing the bp, to ensure that the driver 14541 * never gets confused by a stale value in this field. (Just a little 14542 * extra defensiveness here.) 14543 */ 14544 bp->b_iodone = NULL; 14545 14546 #if defined(__i386) || defined(__amd64) 14547 kmem_free(bp->b_un.b_addr, bp->b_bcount); 14548 freerbuf(bp); 14549 #else 14550 scsi_free_consistent_buf(bp); 14551 #endif 14552 14553 kmem_free(xp, sizeof (struct sd_xbuf)); 14554 } 14555 14556 14557 /* 14558 * Function: sd_print_transport_rejected_message 14559 * 14560 * Description: This implements the ludicrously complex rules for printing 14561 * a "transport rejected" message. This is to address the 14562 * specific problem of having a flood of this error message 14563 * produced when a failover occurs. 14564 * 14565 * Context: Any. 14566 */ 14567 14568 static void 14569 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp, 14570 int code) 14571 { 14572 ASSERT(un != NULL); 14573 ASSERT(mutex_owned(SD_MUTEX(un))); 14574 ASSERT(xp != NULL); 14575 14576 /* 14577 * Print the "transport rejected" message under the following 14578 * conditions: 14579 * 14580 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set 14581 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR. 14582 * - If the error code IS a TRAN_FATAL_ERROR, then the message is 14583 * printed the FIRST time a TRAN_FATAL_ERROR is returned from 14584 * scsi_transport(9F) (which indicates that the target might have 14585 * gone off-line). This uses the un->un_tran_fatal_count 14586 * count, which is incremented whenever a TRAN_FATAL_ERROR is 14587 * received, and reset to zero whenver a TRAN_ACCEPT is returned 14588 * from scsi_transport(). 14589 * 14590 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of 14591 * the preceeding cases in order for the message to be printed. 14592 */ 14593 if (((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) && 14594 (SD_FM_LOG(un) == SD_FM_LOG_NSUP)) { 14595 if ((sd_level_mask & SD_LOGMASK_DIAG) || 14596 (code != TRAN_FATAL_ERROR) || 14597 (un->un_tran_fatal_count == 1)) { 14598 switch (code) { 14599 case TRAN_BADPKT: 14600 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 14601 "transport rejected bad packet\n"); 14602 break; 14603 case TRAN_FATAL_ERROR: 14604 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 14605 "transport rejected fatal error\n"); 14606 break; 14607 default: 14608 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 14609 "transport rejected (%d)\n", code); 14610 break; 14611 } 14612 } 14613 } 14614 } 14615 14616 14617 /* 14618 * Function: sd_add_buf_to_waitq 14619 * 14620 * Description: Add the given buf(9S) struct to the wait queue for the 14621 * instance. If sorting is enabled, then the buf is added 14622 * to the queue via an elevator sort algorithm (a la 14623 * disksort(9F)). The SD_GET_BLKNO(bp) is used as the sort key. 14624 * If sorting is not enabled, then the buf is just added 14625 * to the end of the wait queue. 14626 * 14627 * Return Code: void 14628 * 14629 * Context: Does not sleep/block, therefore technically can be called 14630 * from any context. However if sorting is enabled then the 14631 * execution time is indeterminate, and may take long if 14632 * the wait queue grows large. 14633 */ 14634 14635 static void 14636 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp) 14637 { 14638 struct buf *ap; 14639 14640 ASSERT(bp != NULL); 14641 ASSERT(un != NULL); 14642 ASSERT(mutex_owned(SD_MUTEX(un))); 14643 14644 /* If the queue is empty, add the buf as the only entry & return. */ 14645 if (un->un_waitq_headp == NULL) { 14646 ASSERT(un->un_waitq_tailp == NULL); 14647 un->un_waitq_headp = un->un_waitq_tailp = bp; 14648 bp->av_forw = NULL; 14649 return; 14650 } 14651 14652 ASSERT(un->un_waitq_tailp != NULL); 14653 14654 /* 14655 * If sorting is disabled, just add the buf to the tail end of 14656 * the wait queue and return. 14657 */ 14658 if (un->un_f_disksort_disabled || un->un_f_enable_rmw) { 14659 un->un_waitq_tailp->av_forw = bp; 14660 un->un_waitq_tailp = bp; 14661 bp->av_forw = NULL; 14662 return; 14663 } 14664 14665 /* 14666 * Sort thru the list of requests currently on the wait queue 14667 * and add the new buf request at the appropriate position. 14668 * 14669 * The un->un_waitq_headp is an activity chain pointer on which 14670 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The 14671 * first queue holds those requests which are positioned after 14672 * the current SD_GET_BLKNO() (in the first request); the second holds 14673 * requests which came in after their SD_GET_BLKNO() number was passed. 14674 * Thus we implement a one way scan, retracting after reaching 14675 * the end of the drive to the first request on the second 14676 * queue, at which time it becomes the first queue. 14677 * A one-way scan is natural because of the way UNIX read-ahead 14678 * blocks are allocated. 14679 * 14680 * If we lie after the first request, then we must locate the 14681 * second request list and add ourselves to it. 14682 */ 14683 ap = un->un_waitq_headp; 14684 if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) { 14685 while (ap->av_forw != NULL) { 14686 /* 14687 * Look for an "inversion" in the (normally 14688 * ascending) block numbers. This indicates 14689 * the start of the second request list. 14690 */ 14691 if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) { 14692 /* 14693 * Search the second request list for the 14694 * first request at a larger block number. 14695 * We go before that; however if there is 14696 * no such request, we go at the end. 14697 */ 14698 do { 14699 if (SD_GET_BLKNO(bp) < 14700 SD_GET_BLKNO(ap->av_forw)) { 14701 goto insert; 14702 } 14703 ap = ap->av_forw; 14704 } while (ap->av_forw != NULL); 14705 goto insert; /* after last */ 14706 } 14707 ap = ap->av_forw; 14708 } 14709 14710 /* 14711 * No inversions... we will go after the last, and 14712 * be the first request in the second request list. 14713 */ 14714 goto insert; 14715 } 14716 14717 /* 14718 * Request is at/after the current request... 14719 * sort in the first request list. 14720 */ 14721 while (ap->av_forw != NULL) { 14722 /* 14723 * We want to go after the current request (1) if 14724 * there is an inversion after it (i.e. it is the end 14725 * of the first request list), or (2) if the next 14726 * request is a larger block no. than our request. 14727 */ 14728 if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) || 14729 (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) { 14730 goto insert; 14731 } 14732 ap = ap->av_forw; 14733 } 14734 14735 /* 14736 * Neither a second list nor a larger request, therefore 14737 * we go at the end of the first list (which is the same 14738 * as the end of the whole schebang). 14739 */ 14740 insert: 14741 bp->av_forw = ap->av_forw; 14742 ap->av_forw = bp; 14743 14744 /* 14745 * If we inserted onto the tail end of the waitq, make sure the 14746 * tail pointer is updated. 14747 */ 14748 if (ap == un->un_waitq_tailp) { 14749 un->un_waitq_tailp = bp; 14750 } 14751 } 14752 14753 14754 /* 14755 * Function: sd_start_cmds 14756 * 14757 * Description: Remove and transport cmds from the driver queues. 14758 * 14759 * Arguments: un - pointer to the unit (soft state) struct for the target. 14760 * 14761 * immed_bp - ptr to a buf to be transported immediately. Only 14762 * the immed_bp is transported; bufs on the waitq are not 14763 * processed and the un_retry_bp is not checked. If immed_bp is 14764 * NULL, then normal queue processing is performed. 14765 * 14766 * Context: May be called from kernel thread context, interrupt context, 14767 * or runout callback context. This function may not block or 14768 * call routines that block. 14769 */ 14770 14771 static void 14772 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp) 14773 { 14774 struct sd_xbuf *xp; 14775 struct buf *bp; 14776 void (*statp)(kstat_io_t *); 14777 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14778 void (*saved_statp)(kstat_io_t *); 14779 #endif 14780 int rval; 14781 struct sd_fm_internal *sfip = NULL; 14782 14783 ASSERT(un != NULL); 14784 ASSERT(mutex_owned(SD_MUTEX(un))); 14785 ASSERT(un->un_ncmds_in_transport >= 0); 14786 ASSERT(un->un_throttle >= 0); 14787 14788 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n"); 14789 14790 do { 14791 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14792 saved_statp = NULL; 14793 #endif 14794 14795 /* 14796 * If we are syncing or dumping, fail the command to 14797 * avoid recursively calling back into scsi_transport(). 14798 * The dump I/O itself uses a separate code path so this 14799 * only prevents non-dump I/O from being sent while dumping. 14800 * File system sync takes place before dumping begins. 14801 * During panic, filesystem I/O is allowed provided 14802 * un_in_callback is <= 1. This is to prevent recursion 14803 * such as sd_start_cmds -> scsi_transport -> sdintr -> 14804 * sd_start_cmds and so on. See panic.c for more information 14805 * about the states the system can be in during panic. 14806 */ 14807 if ((un->un_state == SD_STATE_DUMPING) || 14808 (ddi_in_panic() && (un->un_in_callback > 1))) { 14809 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14810 "sd_start_cmds: panicking\n"); 14811 goto exit; 14812 } 14813 14814 if ((bp = immed_bp) != NULL) { 14815 /* 14816 * We have a bp that must be transported immediately. 14817 * It's OK to transport the immed_bp here without doing 14818 * the throttle limit check because the immed_bp is 14819 * always used in a retry/recovery case. This means 14820 * that we know we are not at the throttle limit by 14821 * virtue of the fact that to get here we must have 14822 * already gotten a command back via sdintr(). This also 14823 * relies on (1) the command on un_retry_bp preventing 14824 * further commands from the waitq from being issued; 14825 * and (2) the code in sd_retry_command checking the 14826 * throttle limit before issuing a delayed or immediate 14827 * retry. This holds even if the throttle limit is 14828 * currently ratcheted down from its maximum value. 14829 */ 14830 statp = kstat_runq_enter; 14831 if (bp == un->un_retry_bp) { 14832 ASSERT((un->un_retry_statp == NULL) || 14833 (un->un_retry_statp == kstat_waitq_enter) || 14834 (un->un_retry_statp == 14835 kstat_runq_back_to_waitq)); 14836 /* 14837 * If the waitq kstat was incremented when 14838 * sd_set_retry_bp() queued this bp for a retry, 14839 * then we must set up statp so that the waitq 14840 * count will get decremented correctly below. 14841 * Also we must clear un->un_retry_statp to 14842 * ensure that we do not act on a stale value 14843 * in this field. 14844 */ 14845 if ((un->un_retry_statp == kstat_waitq_enter) || 14846 (un->un_retry_statp == 14847 kstat_runq_back_to_waitq)) { 14848 statp = kstat_waitq_to_runq; 14849 } 14850 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14851 saved_statp = un->un_retry_statp; 14852 #endif 14853 un->un_retry_statp = NULL; 14854 14855 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 14856 "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p " 14857 "un_throttle:%d un_ncmds_in_transport:%d\n", 14858 un, un->un_retry_bp, un->un_throttle, 14859 un->un_ncmds_in_transport); 14860 } else { 14861 SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: " 14862 "processing priority bp:0x%p\n", bp); 14863 } 14864 14865 } else if ((bp = un->un_waitq_headp) != NULL) { 14866 /* 14867 * A command on the waitq is ready to go, but do not 14868 * send it if: 14869 * 14870 * (1) the throttle limit has been reached, or 14871 * (2) a retry is pending, or 14872 * (3) a START_STOP_UNIT callback pending, or 14873 * (4) a callback for a SD_PATH_DIRECT_PRIORITY 14874 * command is pending. 14875 * 14876 * For all of these conditions, IO processing will 14877 * restart after the condition is cleared. 14878 */ 14879 if (un->un_ncmds_in_transport >= un->un_throttle) { 14880 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14881 "sd_start_cmds: exiting, " 14882 "throttle limit reached!\n"); 14883 goto exit; 14884 } 14885 if (un->un_retry_bp != NULL) { 14886 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14887 "sd_start_cmds: exiting, retry pending!\n"); 14888 goto exit; 14889 } 14890 if (un->un_startstop_timeid != NULL) { 14891 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14892 "sd_start_cmds: exiting, " 14893 "START_STOP pending!\n"); 14894 goto exit; 14895 } 14896 if (un->un_direct_priority_timeid != NULL) { 14897 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14898 "sd_start_cmds: exiting, " 14899 "SD_PATH_DIRECT_PRIORITY cmd. pending!\n"); 14900 goto exit; 14901 } 14902 14903 /* Dequeue the command */ 14904 un->un_waitq_headp = bp->av_forw; 14905 if (un->un_waitq_headp == NULL) { 14906 un->un_waitq_tailp = NULL; 14907 } 14908 bp->av_forw = NULL; 14909 statp = kstat_waitq_to_runq; 14910 SD_TRACE(SD_LOG_IO_CORE, un, 14911 "sd_start_cmds: processing waitq bp:0x%p\n", bp); 14912 14913 } else { 14914 /* No work to do so bail out now */ 14915 SD_TRACE(SD_LOG_IO_CORE, un, 14916 "sd_start_cmds: no more work, exiting!\n"); 14917 goto exit; 14918 } 14919 14920 /* 14921 * Reset the state to normal. This is the mechanism by which 14922 * the state transitions from either SD_STATE_RWAIT or 14923 * SD_STATE_OFFLINE to SD_STATE_NORMAL. 14924 * If state is SD_STATE_PM_CHANGING then this command is 14925 * part of the device power control and the state must 14926 * not be put back to normal. Doing so would would 14927 * allow new commands to proceed when they shouldn't, 14928 * the device may be going off. 14929 */ 14930 if ((un->un_state != SD_STATE_SUSPENDED) && 14931 (un->un_state != SD_STATE_PM_CHANGING)) { 14932 New_state(un, SD_STATE_NORMAL); 14933 } 14934 14935 xp = SD_GET_XBUF(bp); 14936 ASSERT(xp != NULL); 14937 14938 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14939 /* 14940 * Allocate the scsi_pkt if we need one, or attach DMA 14941 * resources if we have a scsi_pkt that needs them. The 14942 * latter should only occur for commands that are being 14943 * retried. 14944 */ 14945 if ((xp->xb_pktp == NULL) || 14946 ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) { 14947 #else 14948 if (xp->xb_pktp == NULL) { 14949 #endif 14950 /* 14951 * There is no scsi_pkt allocated for this buf. Call 14952 * the initpkt function to allocate & init one. 14953 * 14954 * The scsi_init_pkt runout callback functionality is 14955 * implemented as follows: 14956 * 14957 * 1) The initpkt function always calls 14958 * scsi_init_pkt(9F) with sdrunout specified as the 14959 * callback routine. 14960 * 2) A successful packet allocation is initialized and 14961 * the I/O is transported. 14962 * 3) The I/O associated with an allocation resource 14963 * failure is left on its queue to be retried via 14964 * runout or the next I/O. 14965 * 4) The I/O associated with a DMA error is removed 14966 * from the queue and failed with EIO. Processing of 14967 * the transport queues is also halted to be 14968 * restarted via runout or the next I/O. 14969 * 5) The I/O associated with a CDB size or packet 14970 * size error is removed from the queue and failed 14971 * with EIO. Processing of the transport queues is 14972 * continued. 14973 * 14974 * Note: there is no interface for canceling a runout 14975 * callback. To prevent the driver from detaching or 14976 * suspending while a runout is pending the driver 14977 * state is set to SD_STATE_RWAIT 14978 * 14979 * Note: using the scsi_init_pkt callback facility can 14980 * result in an I/O request persisting at the head of 14981 * the list which cannot be satisfied even after 14982 * multiple retries. In the future the driver may 14983 * implement some kind of maximum runout count before 14984 * failing an I/O. 14985 * 14986 * Note: the use of funcp below may seem superfluous, 14987 * but it helps warlock figure out the correct 14988 * initpkt function calls (see [s]sd.wlcmd). 14989 */ 14990 struct scsi_pkt *pktp; 14991 int (*funcp)(struct buf *bp, struct scsi_pkt **pktp); 14992 14993 ASSERT(bp != un->un_rqs_bp); 14994 14995 funcp = sd_initpkt_map[xp->xb_chain_iostart]; 14996 switch ((*funcp)(bp, &pktp)) { 14997 case SD_PKT_ALLOC_SUCCESS: 14998 xp->xb_pktp = pktp; 14999 SD_TRACE(SD_LOG_IO_CORE, un, 15000 "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n", 15001 pktp); 15002 goto got_pkt; 15003 15004 case SD_PKT_ALLOC_FAILURE: 15005 /* 15006 * Temporary (hopefully) resource depletion. 15007 * Since retries and RQS commands always have a 15008 * scsi_pkt allocated, these cases should never 15009 * get here. So the only cases this needs to 15010 * handle is a bp from the waitq (which we put 15011 * back onto the waitq for sdrunout), or a bp 15012 * sent as an immed_bp (which we just fail). 15013 */ 15014 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15015 "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n"); 15016 15017 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 15018 15019 if (bp == immed_bp) { 15020 /* 15021 * If SD_XB_DMA_FREED is clear, then 15022 * this is a failure to allocate a 15023 * scsi_pkt, and we must fail the 15024 * command. 15025 */ 15026 if ((xp->xb_pkt_flags & 15027 SD_XB_DMA_FREED) == 0) { 15028 break; 15029 } 15030 15031 /* 15032 * If this immediate command is NOT our 15033 * un_retry_bp, then we must fail it. 15034 */ 15035 if (bp != un->un_retry_bp) { 15036 break; 15037 } 15038 15039 /* 15040 * We get here if this cmd is our 15041 * un_retry_bp that was DMAFREED, but 15042 * scsi_init_pkt() failed to reallocate 15043 * DMA resources when we attempted to 15044 * retry it. This can happen when an 15045 * mpxio failover is in progress, but 15046 * we don't want to just fail the 15047 * command in this case. 15048 * 15049 * Use timeout(9F) to restart it after 15050 * a 100ms delay. We don't want to 15051 * let sdrunout() restart it, because 15052 * sdrunout() is just supposed to start 15053 * commands that are sitting on the 15054 * wait queue. The un_retry_bp stays 15055 * set until the command completes, but 15056 * sdrunout can be called many times 15057 * before that happens. Since sdrunout 15058 * cannot tell if the un_retry_bp is 15059 * already in the transport, it could 15060 * end up calling scsi_transport() for 15061 * the un_retry_bp multiple times. 15062 * 15063 * Also: don't schedule the callback 15064 * if some other callback is already 15065 * pending. 15066 */ 15067 if (un->un_retry_statp == NULL) { 15068 /* 15069 * restore the kstat pointer to 15070 * keep kstat counts coherent 15071 * when we do retry the command. 15072 */ 15073 un->un_retry_statp = 15074 saved_statp; 15075 } 15076 15077 if ((un->un_startstop_timeid == NULL) && 15078 (un->un_retry_timeid == NULL) && 15079 (un->un_direct_priority_timeid == 15080 NULL)) { 15081 15082 un->un_retry_timeid = 15083 timeout( 15084 sd_start_retry_command, 15085 un, SD_RESTART_TIMEOUT); 15086 } 15087 goto exit; 15088 } 15089 15090 #else 15091 if (bp == immed_bp) { 15092 break; /* Just fail the command */ 15093 } 15094 #endif 15095 15096 /* Add the buf back to the head of the waitq */ 15097 bp->av_forw = un->un_waitq_headp; 15098 un->un_waitq_headp = bp; 15099 if (un->un_waitq_tailp == NULL) { 15100 un->un_waitq_tailp = bp; 15101 } 15102 goto exit; 15103 15104 case SD_PKT_ALLOC_FAILURE_NO_DMA: 15105 /* 15106 * HBA DMA resource failure. Fail the command 15107 * and continue processing of the queues. 15108 */ 15109 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15110 "sd_start_cmds: " 15111 "SD_PKT_ALLOC_FAILURE_NO_DMA\n"); 15112 break; 15113 15114 case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL: 15115 /* 15116 * Note:x86: Partial DMA mapping not supported 15117 * for USCSI commands, and all the needed DMA 15118 * resources were not allocated. 15119 */ 15120 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15121 "sd_start_cmds: " 15122 "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n"); 15123 break; 15124 15125 case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL: 15126 /* 15127 * Note:x86: Request cannot fit into CDB based 15128 * on lba and len. 15129 */ 15130 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15131 "sd_start_cmds: " 15132 "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n"); 15133 break; 15134 15135 default: 15136 /* Should NEVER get here! */ 15137 panic("scsi_initpkt error"); 15138 /*NOTREACHED*/ 15139 } 15140 15141 /* 15142 * Fatal error in allocating a scsi_pkt for this buf. 15143 * Update kstats & return the buf with an error code. 15144 * We must use sd_return_failed_command_no_restart() to 15145 * avoid a recursive call back into sd_start_cmds(). 15146 * However this also means that we must keep processing 15147 * the waitq here in order to avoid stalling. 15148 */ 15149 if (statp == kstat_waitq_to_runq) { 15150 SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp); 15151 } 15152 sd_return_failed_command_no_restart(un, bp, EIO); 15153 if (bp == immed_bp) { 15154 /* immed_bp is gone by now, so clear this */ 15155 immed_bp = NULL; 15156 } 15157 continue; 15158 } 15159 got_pkt: 15160 if (bp == immed_bp) { 15161 /* goto the head of the class.... */ 15162 xp->xb_pktp->pkt_flags |= FLAG_HEAD; 15163 } 15164 15165 un->un_ncmds_in_transport++; 15166 SD_UPDATE_KSTATS(un, statp, bp); 15167 15168 /* 15169 * Call scsi_transport() to send the command to the target. 15170 * According to SCSA architecture, we must drop the mutex here 15171 * before calling scsi_transport() in order to avoid deadlock. 15172 * Note that the scsi_pkt's completion routine can be executed 15173 * (from interrupt context) even before the call to 15174 * scsi_transport() returns. 15175 */ 15176 SD_TRACE(SD_LOG_IO_CORE, un, 15177 "sd_start_cmds: calling scsi_transport()\n"); 15178 DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp); 15179 15180 mutex_exit(SD_MUTEX(un)); 15181 rval = scsi_transport(xp->xb_pktp); 15182 mutex_enter(SD_MUTEX(un)); 15183 15184 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15185 "sd_start_cmds: scsi_transport() returned %d\n", rval); 15186 15187 switch (rval) { 15188 case TRAN_ACCEPT: 15189 /* Clear this with every pkt accepted by the HBA */ 15190 un->un_tran_fatal_count = 0; 15191 break; /* Success; try the next cmd (if any) */ 15192 15193 case TRAN_BUSY: 15194 un->un_ncmds_in_transport--; 15195 ASSERT(un->un_ncmds_in_transport >= 0); 15196 15197 /* 15198 * Don't retry request sense, the sense data 15199 * is lost when another request is sent. 15200 * Free up the rqs buf and retry 15201 * the original failed cmd. Update kstat. 15202 */ 15203 if (bp == un->un_rqs_bp) { 15204 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 15205 bp = sd_mark_rqs_idle(un, xp); 15206 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 15207 NULL, NULL, EIO, un->un_busy_timeout / 500, 15208 kstat_waitq_enter); 15209 goto exit; 15210 } 15211 15212 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 15213 /* 15214 * Free the DMA resources for the scsi_pkt. This will 15215 * allow mpxio to select another path the next time 15216 * we call scsi_transport() with this scsi_pkt. 15217 * See sdintr() for the rationalization behind this. 15218 */ 15219 if ((un->un_f_is_fibre == TRUE) && 15220 ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) && 15221 ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) { 15222 scsi_dmafree(xp->xb_pktp); 15223 xp->xb_pkt_flags |= SD_XB_DMA_FREED; 15224 } 15225 #endif 15226 15227 if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) { 15228 /* 15229 * Commands that are SD_PATH_DIRECT_PRIORITY 15230 * are for error recovery situations. These do 15231 * not use the normal command waitq, so if they 15232 * get a TRAN_BUSY we cannot put them back onto 15233 * the waitq for later retry. One possible 15234 * problem is that there could already be some 15235 * other command on un_retry_bp that is waiting 15236 * for this one to complete, so we would be 15237 * deadlocked if we put this command back onto 15238 * the waitq for later retry (since un_retry_bp 15239 * must complete before the driver gets back to 15240 * commands on the waitq). 15241 * 15242 * To avoid deadlock we must schedule a callback 15243 * that will restart this command after a set 15244 * interval. This should keep retrying for as 15245 * long as the underlying transport keeps 15246 * returning TRAN_BUSY (just like for other 15247 * commands). Use the same timeout interval as 15248 * for the ordinary TRAN_BUSY retry. 15249 */ 15250 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15251 "sd_start_cmds: scsi_transport() returned " 15252 "TRAN_BUSY for DIRECT_PRIORITY cmd!\n"); 15253 15254 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 15255 un->un_direct_priority_timeid = 15256 timeout(sd_start_direct_priority_command, 15257 bp, un->un_busy_timeout / 500); 15258 15259 goto exit; 15260 } 15261 15262 /* 15263 * For TRAN_BUSY, we want to reduce the throttle value, 15264 * unless we are retrying a command. 15265 */ 15266 if (bp != un->un_retry_bp) { 15267 sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY); 15268 } 15269 15270 /* 15271 * Set up the bp to be tried again 10 ms later. 15272 * Note:x86: Is there a timeout value in the sd_lun 15273 * for this condition? 15274 */ 15275 sd_set_retry_bp(un, bp, un->un_busy_timeout / 500, 15276 kstat_runq_back_to_waitq); 15277 goto exit; 15278 15279 case TRAN_FATAL_ERROR: 15280 un->un_tran_fatal_count++; 15281 /* FALLTHRU */ 15282 15283 case TRAN_BADPKT: 15284 default: 15285 un->un_ncmds_in_transport--; 15286 ASSERT(un->un_ncmds_in_transport >= 0); 15287 15288 /* 15289 * If this is our REQUEST SENSE command with a 15290 * transport error, we must get back the pointers 15291 * to the original buf, and mark the REQUEST 15292 * SENSE command as "available". 15293 */ 15294 if (bp == un->un_rqs_bp) { 15295 bp = sd_mark_rqs_idle(un, xp); 15296 xp = SD_GET_XBUF(bp); 15297 } else { 15298 /* 15299 * Legacy behavior: do not update transport 15300 * error count for request sense commands. 15301 */ 15302 SD_UPDATE_ERRSTATS(un, sd_transerrs); 15303 } 15304 15305 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 15306 sd_print_transport_rejected_message(un, xp, rval); 15307 15308 /* 15309 * This command will be terminated by SD driver due 15310 * to a fatal transport error. We should post 15311 * ereport.io.scsi.cmd.disk.tran with driver-assessment 15312 * of "fail" for any command to indicate this 15313 * situation. 15314 */ 15315 if (xp->xb_ena > 0) { 15316 ASSERT(un->un_fm_private != NULL); 15317 sfip = un->un_fm_private; 15318 sfip->fm_ssc.ssc_flags |= SSC_FLAGS_TRAN_ABORT; 15319 sd_ssc_extract_info(&sfip->fm_ssc, un, 15320 xp->xb_pktp, bp, xp); 15321 sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL); 15322 } 15323 15324 /* 15325 * We must use sd_return_failed_command_no_restart() to 15326 * avoid a recursive call back into sd_start_cmds(). 15327 * However this also means that we must keep processing 15328 * the waitq here in order to avoid stalling. 15329 */ 15330 sd_return_failed_command_no_restart(un, bp, EIO); 15331 15332 /* 15333 * Notify any threads waiting in sd_ddi_suspend() that 15334 * a command completion has occurred. 15335 */ 15336 if (un->un_state == SD_STATE_SUSPENDED) { 15337 cv_broadcast(&un->un_disk_busy_cv); 15338 } 15339 15340 if (bp == immed_bp) { 15341 /* immed_bp is gone by now, so clear this */ 15342 immed_bp = NULL; 15343 } 15344 break; 15345 } 15346 15347 } while (immed_bp == NULL); 15348 15349 exit: 15350 ASSERT(mutex_owned(SD_MUTEX(un))); 15351 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n"); 15352 } 15353 15354 15355 /* 15356 * Function: sd_return_command 15357 * 15358 * Description: Returns a command to its originator (with or without an 15359 * error). Also starts commands waiting to be transported 15360 * to the target. 15361 * 15362 * Context: May be called from interrupt, kernel, or timeout context 15363 */ 15364 15365 static void 15366 sd_return_command(struct sd_lun *un, struct buf *bp) 15367 { 15368 struct sd_xbuf *xp; 15369 struct scsi_pkt *pktp; 15370 struct sd_fm_internal *sfip; 15371 15372 ASSERT(bp != NULL); 15373 ASSERT(un != NULL); 15374 ASSERT(mutex_owned(SD_MUTEX(un))); 15375 ASSERT(bp != un->un_rqs_bp); 15376 xp = SD_GET_XBUF(bp); 15377 ASSERT(xp != NULL); 15378 15379 pktp = SD_GET_PKTP(bp); 15380 sfip = (struct sd_fm_internal *)un->un_fm_private; 15381 ASSERT(sfip != NULL); 15382 15383 SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n"); 15384 15385 /* 15386 * Note: check for the "sdrestart failed" case. 15387 */ 15388 if ((un->un_partial_dma_supported == 1) && 15389 ((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) && 15390 (geterror(bp) == 0) && (xp->xb_dma_resid != 0) && 15391 (xp->xb_pktp->pkt_resid == 0)) { 15392 15393 if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) { 15394 /* 15395 * Successfully set up next portion of cmd 15396 * transfer, try sending it 15397 */ 15398 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, 15399 NULL, NULL, 0, (clock_t)0, NULL); 15400 sd_start_cmds(un, NULL); 15401 return; /* Note:x86: need a return here? */ 15402 } 15403 } 15404 15405 /* 15406 * If this is the failfast bp, clear it from un_failfast_bp. This 15407 * can happen if upon being re-tried the failfast bp either 15408 * succeeded or encountered another error (possibly even a different 15409 * error than the one that precipitated the failfast state, but in 15410 * that case it would have had to exhaust retries as well). Regardless, 15411 * this should not occur whenever the instance is in the active 15412 * failfast state. 15413 */ 15414 if (bp == un->un_failfast_bp) { 15415 ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE); 15416 un->un_failfast_bp = NULL; 15417 } 15418 15419 /* 15420 * Clear the failfast state upon successful completion of ANY cmd. 15421 */ 15422 if (bp->b_error == 0) { 15423 un->un_failfast_state = SD_FAILFAST_INACTIVE; 15424 /* 15425 * If this is a successful command, but used to be retried, 15426 * we will take it as a recovered command and post an 15427 * ereport with driver-assessment of "recovered". 15428 */ 15429 if (xp->xb_ena > 0) { 15430 sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp); 15431 sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RECOVERY); 15432 } 15433 } else { 15434 /* 15435 * If this is a failed non-USCSI command we will post an 15436 * ereport with driver-assessment set accordingly("fail" or 15437 * "fatal"). 15438 */ 15439 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 15440 sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp); 15441 sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL); 15442 } 15443 } 15444 15445 /* 15446 * This is used if the command was retried one or more times. Show that 15447 * we are done with it, and allow processing of the waitq to resume. 15448 */ 15449 if (bp == un->un_retry_bp) { 15450 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15451 "sd_return_command: un:0x%p: " 15452 "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp); 15453 un->un_retry_bp = NULL; 15454 un->un_retry_statp = NULL; 15455 } 15456 15457 SD_UPDATE_RDWR_STATS(un, bp); 15458 SD_UPDATE_PARTITION_STATS(un, bp); 15459 15460 switch (un->un_state) { 15461 case SD_STATE_SUSPENDED: 15462 /* 15463 * Notify any threads waiting in sd_ddi_suspend() that 15464 * a command completion has occurred. 15465 */ 15466 cv_broadcast(&un->un_disk_busy_cv); 15467 break; 15468 default: 15469 sd_start_cmds(un, NULL); 15470 break; 15471 } 15472 15473 /* Return this command up the iodone chain to its originator. */ 15474 mutex_exit(SD_MUTEX(un)); 15475 15476 (*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp); 15477 xp->xb_pktp = NULL; 15478 15479 SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp); 15480 15481 ASSERT(!mutex_owned(SD_MUTEX(un))); 15482 mutex_enter(SD_MUTEX(un)); 15483 15484 SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n"); 15485 } 15486 15487 15488 /* 15489 * Function: sd_return_failed_command 15490 * 15491 * Description: Command completion when an error occurred. 15492 * 15493 * Context: May be called from interrupt context 15494 */ 15495 15496 static void 15497 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode) 15498 { 15499 ASSERT(bp != NULL); 15500 ASSERT(un != NULL); 15501 ASSERT(mutex_owned(SD_MUTEX(un))); 15502 15503 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15504 "sd_return_failed_command: entry\n"); 15505 15506 /* 15507 * b_resid could already be nonzero due to a partial data 15508 * transfer, so do not change it here. 15509 */ 15510 SD_BIOERROR(bp, errcode); 15511 15512 sd_return_command(un, bp); 15513 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15514 "sd_return_failed_command: exit\n"); 15515 } 15516 15517 15518 /* 15519 * Function: sd_return_failed_command_no_restart 15520 * 15521 * Description: Same as sd_return_failed_command, but ensures that no 15522 * call back into sd_start_cmds will be issued. 15523 * 15524 * Context: May be called from interrupt context 15525 */ 15526 15527 static void 15528 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp, 15529 int errcode) 15530 { 15531 struct sd_xbuf *xp; 15532 15533 ASSERT(bp != NULL); 15534 ASSERT(un != NULL); 15535 ASSERT(mutex_owned(SD_MUTEX(un))); 15536 xp = SD_GET_XBUF(bp); 15537 ASSERT(xp != NULL); 15538 ASSERT(errcode != 0); 15539 15540 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15541 "sd_return_failed_command_no_restart: entry\n"); 15542 15543 /* 15544 * b_resid could already be nonzero due to a partial data 15545 * transfer, so do not change it here. 15546 */ 15547 SD_BIOERROR(bp, errcode); 15548 15549 /* 15550 * If this is the failfast bp, clear it. This can happen if the 15551 * failfast bp encounterd a fatal error when we attempted to 15552 * re-try it (such as a scsi_transport(9F) failure). However 15553 * we should NOT be in an active failfast state if the failfast 15554 * bp is not NULL. 15555 */ 15556 if (bp == un->un_failfast_bp) { 15557 ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE); 15558 un->un_failfast_bp = NULL; 15559 } 15560 15561 if (bp == un->un_retry_bp) { 15562 /* 15563 * This command was retried one or more times. Show that we are 15564 * done with it, and allow processing of the waitq to resume. 15565 */ 15566 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15567 "sd_return_failed_command_no_restart: " 15568 " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp); 15569 un->un_retry_bp = NULL; 15570 un->un_retry_statp = NULL; 15571 } 15572 15573 SD_UPDATE_RDWR_STATS(un, bp); 15574 SD_UPDATE_PARTITION_STATS(un, bp); 15575 15576 mutex_exit(SD_MUTEX(un)); 15577 15578 if (xp->xb_pktp != NULL) { 15579 (*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp); 15580 xp->xb_pktp = NULL; 15581 } 15582 15583 SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp); 15584 15585 mutex_enter(SD_MUTEX(un)); 15586 15587 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15588 "sd_return_failed_command_no_restart: exit\n"); 15589 } 15590 15591 15592 /* 15593 * Function: sd_retry_command 15594 * 15595 * Description: queue up a command for retry, or (optionally) fail it 15596 * if retry counts are exhausted. 15597 * 15598 * Arguments: un - Pointer to the sd_lun struct for the target. 15599 * 15600 * bp - Pointer to the buf for the command to be retried. 15601 * 15602 * retry_check_flag - Flag to see which (if any) of the retry 15603 * counts should be decremented/checked. If the indicated 15604 * retry count is exhausted, then the command will not be 15605 * retried; it will be failed instead. This should use a 15606 * value equal to one of the following: 15607 * 15608 * SD_RETRIES_NOCHECK 15609 * SD_RESD_RETRIES_STANDARD 15610 * SD_RETRIES_VICTIM 15611 * 15612 * Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE 15613 * if the check should be made to see of FLAG_ISOLATE is set 15614 * in the pkt. If FLAG_ISOLATE is set, then the command is 15615 * not retried, it is simply failed. 15616 * 15617 * user_funcp - Ptr to function to call before dispatching the 15618 * command. May be NULL if no action needs to be performed. 15619 * (Primarily intended for printing messages.) 15620 * 15621 * user_arg - Optional argument to be passed along to 15622 * the user_funcp call. 15623 * 15624 * failure_code - errno return code to set in the bp if the 15625 * command is going to be failed. 15626 * 15627 * retry_delay - Retry delay interval in (clock_t) units. May 15628 * be zero which indicates that the retry should be retried 15629 * immediately (ie, without an intervening delay). 15630 * 15631 * statp - Ptr to kstat function to be updated if the command 15632 * is queued for a delayed retry. May be NULL if no kstat 15633 * update is desired. 15634 * 15635 * Context: May be called from interrupt context. 15636 */ 15637 15638 static void 15639 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag, 15640 void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int 15641 code), void *user_arg, int failure_code, clock_t retry_delay, 15642 void (*statp)(kstat_io_t *)) 15643 { 15644 struct sd_xbuf *xp; 15645 struct scsi_pkt *pktp; 15646 struct sd_fm_internal *sfip; 15647 15648 ASSERT(un != NULL); 15649 ASSERT(mutex_owned(SD_MUTEX(un))); 15650 ASSERT(bp != NULL); 15651 xp = SD_GET_XBUF(bp); 15652 ASSERT(xp != NULL); 15653 pktp = SD_GET_PKTP(bp); 15654 ASSERT(pktp != NULL); 15655 15656 sfip = (struct sd_fm_internal *)un->un_fm_private; 15657 ASSERT(sfip != NULL); 15658 15659 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 15660 "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp); 15661 15662 /* 15663 * If we are syncing or dumping, fail the command to avoid 15664 * recursively calling back into scsi_transport(). 15665 */ 15666 if (ddi_in_panic()) { 15667 goto fail_command_no_log; 15668 } 15669 15670 /* 15671 * We should never be be retrying a command with FLAG_DIAGNOSE set, so 15672 * log an error and fail the command. 15673 */ 15674 if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) { 15675 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, 15676 "ERROR, retrying FLAG_DIAGNOSE command.\n"); 15677 sd_dump_memory(un, SD_LOG_IO, "CDB", 15678 (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX); 15679 sd_dump_memory(un, SD_LOG_IO, "Sense Data", 15680 (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX); 15681 goto fail_command; 15682 } 15683 15684 /* 15685 * If we are suspended, then put the command onto head of the 15686 * wait queue since we don't want to start more commands, and 15687 * clear the un_retry_bp. Next time when we are resumed, will 15688 * handle the command in the wait queue. 15689 */ 15690 switch (un->un_state) { 15691 case SD_STATE_SUSPENDED: 15692 case SD_STATE_DUMPING: 15693 bp->av_forw = un->un_waitq_headp; 15694 un->un_waitq_headp = bp; 15695 if (un->un_waitq_tailp == NULL) { 15696 un->un_waitq_tailp = bp; 15697 } 15698 if (bp == un->un_retry_bp) { 15699 un->un_retry_bp = NULL; 15700 un->un_retry_statp = NULL; 15701 } 15702 SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp); 15703 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: " 15704 "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp); 15705 return; 15706 default: 15707 break; 15708 } 15709 15710 /* 15711 * If the caller wants us to check FLAG_ISOLATE, then see if that 15712 * is set; if it is then we do not want to retry the command. 15713 * Normally, FLAG_ISOLATE is only used with USCSI cmds. 15714 */ 15715 if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) { 15716 if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) { 15717 goto fail_command; 15718 } 15719 } 15720 15721 15722 /* 15723 * If SD_RETRIES_FAILFAST is set, it indicates that either a 15724 * command timeout or a selection timeout has occurred. This means 15725 * that we were unable to establish an kind of communication with 15726 * the target, and subsequent retries and/or commands are likely 15727 * to encounter similar results and take a long time to complete. 15728 * 15729 * If this is a failfast error condition, we need to update the 15730 * failfast state, even if this bp does not have B_FAILFAST set. 15731 */ 15732 if (retry_check_flag & SD_RETRIES_FAILFAST) { 15733 if (un->un_failfast_state == SD_FAILFAST_ACTIVE) { 15734 ASSERT(un->un_failfast_bp == NULL); 15735 /* 15736 * If we are already in the active failfast state, and 15737 * another failfast error condition has been detected, 15738 * then fail this command if it has B_FAILFAST set. 15739 * If B_FAILFAST is clear, then maintain the legacy 15740 * behavior of retrying heroically, even tho this will 15741 * take a lot more time to fail the command. 15742 */ 15743 if (bp->b_flags & B_FAILFAST) { 15744 goto fail_command; 15745 } 15746 } else { 15747 /* 15748 * We're not in the active failfast state, but we 15749 * have a failfast error condition, so we must begin 15750 * transition to the next state. We do this regardless 15751 * of whether or not this bp has B_FAILFAST set. 15752 */ 15753 if (un->un_failfast_bp == NULL) { 15754 /* 15755 * This is the first bp to meet a failfast 15756 * condition so save it on un_failfast_bp & 15757 * do normal retry processing. Do not enter 15758 * active failfast state yet. This marks 15759 * entry into the "failfast pending" state. 15760 */ 15761 un->un_failfast_bp = bp; 15762 15763 } else if (un->un_failfast_bp == bp) { 15764 /* 15765 * This is the second time *this* bp has 15766 * encountered a failfast error condition, 15767 * so enter active failfast state & flush 15768 * queues as appropriate. 15769 */ 15770 un->un_failfast_state = SD_FAILFAST_ACTIVE; 15771 un->un_failfast_bp = NULL; 15772 sd_failfast_flushq(un); 15773 15774 /* 15775 * Fail this bp now if B_FAILFAST set; 15776 * otherwise continue with retries. (It would 15777 * be pretty ironic if this bp succeeded on a 15778 * subsequent retry after we just flushed all 15779 * the queues). 15780 */ 15781 if (bp->b_flags & B_FAILFAST) { 15782 goto fail_command; 15783 } 15784 15785 #if !defined(lint) && !defined(__lint) 15786 } else { 15787 /* 15788 * If neither of the preceeding conditionals 15789 * was true, it means that there is some 15790 * *other* bp that has met an inital failfast 15791 * condition and is currently either being 15792 * retried or is waiting to be retried. In 15793 * that case we should perform normal retry 15794 * processing on *this* bp, since there is a 15795 * chance that the current failfast condition 15796 * is transient and recoverable. If that does 15797 * not turn out to be the case, then retries 15798 * will be cleared when the wait queue is 15799 * flushed anyway. 15800 */ 15801 #endif 15802 } 15803 } 15804 } else { 15805 /* 15806 * SD_RETRIES_FAILFAST is clear, which indicates that we 15807 * likely were able to at least establish some level of 15808 * communication with the target and subsequent commands 15809 * and/or retries are likely to get through to the target, 15810 * In this case we want to be aggressive about clearing 15811 * the failfast state. Note that this does not affect 15812 * the "failfast pending" condition. 15813 */ 15814 un->un_failfast_state = SD_FAILFAST_INACTIVE; 15815 } 15816 15817 15818 /* 15819 * Check the specified retry count to see if we can still do 15820 * any retries with this pkt before we should fail it. 15821 */ 15822 switch (retry_check_flag & SD_RETRIES_MASK) { 15823 case SD_RETRIES_VICTIM: 15824 /* 15825 * Check the victim retry count. If exhausted, then fall 15826 * thru & check against the standard retry count. 15827 */ 15828 if (xp->xb_victim_retry_count < un->un_victim_retry_count) { 15829 /* Increment count & proceed with the retry */ 15830 xp->xb_victim_retry_count++; 15831 break; 15832 } 15833 /* Victim retries exhausted, fall back to std. retries... */ 15834 /* FALLTHRU */ 15835 15836 case SD_RETRIES_STANDARD: 15837 if (xp->xb_retry_count >= un->un_retry_count) { 15838 /* Retries exhausted, fail the command */ 15839 SD_TRACE(SD_LOG_IO_CORE, un, 15840 "sd_retry_command: retries exhausted!\n"); 15841 /* 15842 * update b_resid for failed SCMD_READ & SCMD_WRITE 15843 * commands with nonzero pkt_resid. 15844 */ 15845 if ((pktp->pkt_reason == CMD_CMPLT) && 15846 (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) && 15847 (pktp->pkt_resid != 0)) { 15848 uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F; 15849 if ((op == SCMD_READ) || (op == SCMD_WRITE)) { 15850 SD_UPDATE_B_RESID(bp, pktp); 15851 } 15852 } 15853 goto fail_command; 15854 } 15855 xp->xb_retry_count++; 15856 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15857 "sd_retry_command: retry count:%d\n", xp->xb_retry_count); 15858 break; 15859 15860 case SD_RETRIES_UA: 15861 if (xp->xb_ua_retry_count >= sd_ua_retry_count) { 15862 /* Retries exhausted, fail the command */ 15863 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 15864 "Unit Attention retries exhausted. " 15865 "Check the target.\n"); 15866 goto fail_command; 15867 } 15868 xp->xb_ua_retry_count++; 15869 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15870 "sd_retry_command: retry count:%d\n", 15871 xp->xb_ua_retry_count); 15872 break; 15873 15874 case SD_RETRIES_BUSY: 15875 if (xp->xb_retry_count >= un->un_busy_retry_count) { 15876 /* Retries exhausted, fail the command */ 15877 SD_TRACE(SD_LOG_IO_CORE, un, 15878 "sd_retry_command: retries exhausted!\n"); 15879 goto fail_command; 15880 } 15881 xp->xb_retry_count++; 15882 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15883 "sd_retry_command: retry count:%d\n", xp->xb_retry_count); 15884 break; 15885 15886 case SD_RETRIES_NOCHECK: 15887 default: 15888 /* No retry count to check. Just proceed with the retry */ 15889 break; 15890 } 15891 15892 xp->xb_pktp->pkt_flags |= FLAG_HEAD; 15893 15894 /* 15895 * If this is a non-USCSI command being retried 15896 * during execution last time, we should post an ereport with 15897 * driver-assessment of the value "retry". 15898 * For partial DMA, request sense and STATUS_QFULL, there are no 15899 * hardware errors, we bypass ereport posting. 15900 */ 15901 if (failure_code != 0) { 15902 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 15903 sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp); 15904 sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RETRY); 15905 } 15906 } 15907 15908 /* 15909 * If we were given a zero timeout, we must attempt to retry the 15910 * command immediately (ie, without a delay). 15911 */ 15912 if (retry_delay == 0) { 15913 /* 15914 * Check some limiting conditions to see if we can actually 15915 * do the immediate retry. If we cannot, then we must 15916 * fall back to queueing up a delayed retry. 15917 */ 15918 if (un->un_ncmds_in_transport >= un->un_throttle) { 15919 /* 15920 * We are at the throttle limit for the target, 15921 * fall back to delayed retry. 15922 */ 15923 retry_delay = un->un_busy_timeout; 15924 statp = kstat_waitq_enter; 15925 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15926 "sd_retry_command: immed. retry hit " 15927 "throttle!\n"); 15928 } else { 15929 /* 15930 * We're clear to proceed with the immediate retry. 15931 * First call the user-provided function (if any) 15932 */ 15933 if (user_funcp != NULL) { 15934 (*user_funcp)(un, bp, user_arg, 15935 SD_IMMEDIATE_RETRY_ISSUED); 15936 #ifdef __lock_lint 15937 sd_print_incomplete_msg(un, bp, user_arg, 15938 SD_IMMEDIATE_RETRY_ISSUED); 15939 sd_print_cmd_incomplete_msg(un, bp, user_arg, 15940 SD_IMMEDIATE_RETRY_ISSUED); 15941 sd_print_sense_failed_msg(un, bp, user_arg, 15942 SD_IMMEDIATE_RETRY_ISSUED); 15943 #endif 15944 } 15945 15946 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15947 "sd_retry_command: issuing immediate retry\n"); 15948 15949 /* 15950 * Call sd_start_cmds() to transport the command to 15951 * the target. 15952 */ 15953 sd_start_cmds(un, bp); 15954 15955 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15956 "sd_retry_command exit\n"); 15957 return; 15958 } 15959 } 15960 15961 /* 15962 * Set up to retry the command after a delay. 15963 * First call the user-provided function (if any) 15964 */ 15965 if (user_funcp != NULL) { 15966 (*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED); 15967 } 15968 15969 sd_set_retry_bp(un, bp, retry_delay, statp); 15970 15971 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n"); 15972 return; 15973 15974 fail_command: 15975 15976 if (user_funcp != NULL) { 15977 (*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED); 15978 } 15979 15980 fail_command_no_log: 15981 15982 SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15983 "sd_retry_command: returning failed command\n"); 15984 15985 sd_return_failed_command(un, bp, failure_code); 15986 15987 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n"); 15988 } 15989 15990 15991 /* 15992 * Function: sd_set_retry_bp 15993 * 15994 * Description: Set up the given bp for retry. 15995 * 15996 * Arguments: un - ptr to associated softstate 15997 * bp - ptr to buf(9S) for the command 15998 * retry_delay - time interval before issuing retry (may be 0) 15999 * statp - optional pointer to kstat function 16000 * 16001 * Context: May be called under interrupt context 16002 */ 16003 16004 static void 16005 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay, 16006 void (*statp)(kstat_io_t *)) 16007 { 16008 ASSERT(un != NULL); 16009 ASSERT(mutex_owned(SD_MUTEX(un))); 16010 ASSERT(bp != NULL); 16011 16012 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 16013 "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp); 16014 16015 /* 16016 * Indicate that the command is being retried. This will not allow any 16017 * other commands on the wait queue to be transported to the target 16018 * until this command has been completed (success or failure). The 16019 * "retry command" is not transported to the target until the given 16020 * time delay expires, unless the user specified a 0 retry_delay. 16021 * 16022 * Note: the timeout(9F) callback routine is what actually calls 16023 * sd_start_cmds() to transport the command, with the exception of a 16024 * zero retry_delay. The only current implementor of a zero retry delay 16025 * is the case where a START_STOP_UNIT is sent to spin-up a device. 16026 */ 16027 if (un->un_retry_bp == NULL) { 16028 ASSERT(un->un_retry_statp == NULL); 16029 un->un_retry_bp = bp; 16030 16031 /* 16032 * If the user has not specified a delay the command should 16033 * be queued and no timeout should be scheduled. 16034 */ 16035 if (retry_delay == 0) { 16036 /* 16037 * Save the kstat pointer that will be used in the 16038 * call to SD_UPDATE_KSTATS() below, so that 16039 * sd_start_cmds() can correctly decrement the waitq 16040 * count when it is time to transport this command. 16041 */ 16042 un->un_retry_statp = statp; 16043 goto done; 16044 } 16045 } 16046 16047 if (un->un_retry_bp == bp) { 16048 /* 16049 * Save the kstat pointer that will be used in the call to 16050 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can 16051 * correctly decrement the waitq count when it is time to 16052 * transport this command. 16053 */ 16054 un->un_retry_statp = statp; 16055 16056 /* 16057 * Schedule a timeout if: 16058 * 1) The user has specified a delay. 16059 * 2) There is not a START_STOP_UNIT callback pending. 16060 * 16061 * If no delay has been specified, then it is up to the caller 16062 * to ensure that IO processing continues without stalling. 16063 * Effectively, this means that the caller will issue the 16064 * required call to sd_start_cmds(). The START_STOP_UNIT 16065 * callback does this after the START STOP UNIT command has 16066 * completed. In either of these cases we should not schedule 16067 * a timeout callback here. Also don't schedule the timeout if 16068 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart. 16069 */ 16070 if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) && 16071 (un->un_direct_priority_timeid == NULL)) { 16072 un->un_retry_timeid = 16073 timeout(sd_start_retry_command, un, retry_delay); 16074 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16075 "sd_set_retry_bp: setting timeout: un: 0x%p" 16076 " bp:0x%p un_retry_timeid:0x%p\n", 16077 un, bp, un->un_retry_timeid); 16078 } 16079 } else { 16080 /* 16081 * We only get in here if there is already another command 16082 * waiting to be retried. In this case, we just put the 16083 * given command onto the wait queue, so it can be transported 16084 * after the current retry command has completed. 16085 * 16086 * Also we have to make sure that if the command at the head 16087 * of the wait queue is the un_failfast_bp, that we do not 16088 * put ahead of it any other commands that are to be retried. 16089 */ 16090 if ((un->un_failfast_bp != NULL) && 16091 (un->un_failfast_bp == un->un_waitq_headp)) { 16092 /* 16093 * Enqueue this command AFTER the first command on 16094 * the wait queue (which is also un_failfast_bp). 16095 */ 16096 bp->av_forw = un->un_waitq_headp->av_forw; 16097 un->un_waitq_headp->av_forw = bp; 16098 if (un->un_waitq_headp == un->un_waitq_tailp) { 16099 un->un_waitq_tailp = bp; 16100 } 16101 } else { 16102 /* Enqueue this command at the head of the waitq. */ 16103 bp->av_forw = un->un_waitq_headp; 16104 un->un_waitq_headp = bp; 16105 if (un->un_waitq_tailp == NULL) { 16106 un->un_waitq_tailp = bp; 16107 } 16108 } 16109 16110 if (statp == NULL) { 16111 statp = kstat_waitq_enter; 16112 } 16113 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16114 "sd_set_retry_bp: un:0x%p already delayed retry\n", un); 16115 } 16116 16117 done: 16118 if (statp != NULL) { 16119 SD_UPDATE_KSTATS(un, statp, bp); 16120 } 16121 16122 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16123 "sd_set_retry_bp: exit un:0x%p\n", un); 16124 } 16125 16126 16127 /* 16128 * Function: sd_start_retry_command 16129 * 16130 * Description: Start the command that has been waiting on the target's 16131 * retry queue. Called from timeout(9F) context after the 16132 * retry delay interval has expired. 16133 * 16134 * Arguments: arg - pointer to associated softstate for the device. 16135 * 16136 * Context: timeout(9F) thread context. May not sleep. 16137 */ 16138 16139 static void 16140 sd_start_retry_command(void *arg) 16141 { 16142 struct sd_lun *un = arg; 16143 16144 ASSERT(un != NULL); 16145 ASSERT(!mutex_owned(SD_MUTEX(un))); 16146 16147 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16148 "sd_start_retry_command: entry\n"); 16149 16150 mutex_enter(SD_MUTEX(un)); 16151 16152 un->un_retry_timeid = NULL; 16153 16154 if (un->un_retry_bp != NULL) { 16155 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16156 "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n", 16157 un, un->un_retry_bp); 16158 sd_start_cmds(un, un->un_retry_bp); 16159 } 16160 16161 mutex_exit(SD_MUTEX(un)); 16162 16163 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16164 "sd_start_retry_command: exit\n"); 16165 } 16166 16167 /* 16168 * Function: sd_rmw_msg_print_handler 16169 * 16170 * Description: If RMW mode is enabled and warning message is triggered 16171 * print I/O count during a fixed interval. 16172 * 16173 * Arguments: arg - pointer to associated softstate for the device. 16174 * 16175 * Context: timeout(9F) thread context. May not sleep. 16176 */ 16177 static void 16178 sd_rmw_msg_print_handler(void *arg) 16179 { 16180 struct sd_lun *un = arg; 16181 16182 ASSERT(un != NULL); 16183 ASSERT(!mutex_owned(SD_MUTEX(un))); 16184 16185 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16186 "sd_rmw_msg_print_handler: entry\n"); 16187 16188 mutex_enter(SD_MUTEX(un)); 16189 16190 if (un->un_rmw_incre_count > 0) { 16191 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 16192 "%"PRIu64" I/O requests are not aligned with %d disk " 16193 "sector size in %ld seconds. They are handled through " 16194 "Read Modify Write but the performance is very low!\n", 16195 un->un_rmw_incre_count, un->un_tgt_blocksize, 16196 drv_hztousec(SD_RMW_MSG_PRINT_TIMEOUT) / 1000000); 16197 un->un_rmw_incre_count = 0; 16198 un->un_rmw_msg_timeid = timeout(sd_rmw_msg_print_handler, 16199 un, SD_RMW_MSG_PRINT_TIMEOUT); 16200 } else { 16201 un->un_rmw_msg_timeid = NULL; 16202 } 16203 16204 mutex_exit(SD_MUTEX(un)); 16205 16206 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16207 "sd_rmw_msg_print_handler: exit\n"); 16208 } 16209 16210 /* 16211 * Function: sd_start_direct_priority_command 16212 * 16213 * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had 16214 * received TRAN_BUSY when we called scsi_transport() to send it 16215 * to the underlying HBA. This function is called from timeout(9F) 16216 * context after the delay interval has expired. 16217 * 16218 * Arguments: arg - pointer to associated buf(9S) to be restarted. 16219 * 16220 * Context: timeout(9F) thread context. May not sleep. 16221 */ 16222 16223 static void 16224 sd_start_direct_priority_command(void *arg) 16225 { 16226 struct buf *priority_bp = arg; 16227 struct sd_lun *un; 16228 16229 ASSERT(priority_bp != NULL); 16230 un = SD_GET_UN(priority_bp); 16231 ASSERT(un != NULL); 16232 ASSERT(!mutex_owned(SD_MUTEX(un))); 16233 16234 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16235 "sd_start_direct_priority_command: entry\n"); 16236 16237 mutex_enter(SD_MUTEX(un)); 16238 un->un_direct_priority_timeid = NULL; 16239 sd_start_cmds(un, priority_bp); 16240 mutex_exit(SD_MUTEX(un)); 16241 16242 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16243 "sd_start_direct_priority_command: exit\n"); 16244 } 16245 16246 16247 /* 16248 * Function: sd_send_request_sense_command 16249 * 16250 * Description: Sends a REQUEST SENSE command to the target 16251 * 16252 * Context: May be called from interrupt context. 16253 */ 16254 16255 static void 16256 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp, 16257 struct scsi_pkt *pktp) 16258 { 16259 ASSERT(bp != NULL); 16260 ASSERT(un != NULL); 16261 ASSERT(mutex_owned(SD_MUTEX(un))); 16262 16263 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: " 16264 "entry: buf:0x%p\n", bp); 16265 16266 /* 16267 * If we are syncing or dumping, then fail the command to avoid a 16268 * recursive callback into scsi_transport(). Also fail the command 16269 * if we are suspended (legacy behavior). 16270 */ 16271 if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) || 16272 (un->un_state == SD_STATE_DUMPING)) { 16273 sd_return_failed_command(un, bp, EIO); 16274 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16275 "sd_send_request_sense_command: syncing/dumping, exit\n"); 16276 return; 16277 } 16278 16279 /* 16280 * Retry the failed command and don't issue the request sense if: 16281 * 1) the sense buf is busy 16282 * 2) we have 1 or more outstanding commands on the target 16283 * (the sense data will be cleared or invalidated any way) 16284 * 16285 * Note: There could be an issue with not checking a retry limit here, 16286 * the problem is determining which retry limit to check. 16287 */ 16288 if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) { 16289 /* Don't retry if the command is flagged as non-retryable */ 16290 if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) { 16291 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, 16292 NULL, NULL, 0, un->un_busy_timeout, 16293 kstat_waitq_enter); 16294 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16295 "sd_send_request_sense_command: " 16296 "at full throttle, retrying exit\n"); 16297 } else { 16298 sd_return_failed_command(un, bp, EIO); 16299 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16300 "sd_send_request_sense_command: " 16301 "at full throttle, non-retryable exit\n"); 16302 } 16303 return; 16304 } 16305 16306 sd_mark_rqs_busy(un, bp); 16307 sd_start_cmds(un, un->un_rqs_bp); 16308 16309 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16310 "sd_send_request_sense_command: exit\n"); 16311 } 16312 16313 16314 /* 16315 * Function: sd_mark_rqs_busy 16316 * 16317 * Description: Indicate that the request sense bp for this instance is 16318 * in use. 16319 * 16320 * Context: May be called under interrupt context 16321 */ 16322 16323 static void 16324 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp) 16325 { 16326 struct sd_xbuf *sense_xp; 16327 16328 ASSERT(un != NULL); 16329 ASSERT(bp != NULL); 16330 ASSERT(mutex_owned(SD_MUTEX(un))); 16331 ASSERT(un->un_sense_isbusy == 0); 16332 16333 SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: " 16334 "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un); 16335 16336 sense_xp = SD_GET_XBUF(un->un_rqs_bp); 16337 ASSERT(sense_xp != NULL); 16338 16339 SD_INFO(SD_LOG_IO, un, 16340 "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp); 16341 16342 ASSERT(sense_xp->xb_pktp != NULL); 16343 ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) 16344 == (FLAG_SENSING | FLAG_HEAD)); 16345 16346 un->un_sense_isbusy = 1; 16347 un->un_rqs_bp->b_resid = 0; 16348 sense_xp->xb_pktp->pkt_resid = 0; 16349 sense_xp->xb_pktp->pkt_reason = 0; 16350 16351 /* So we can get back the bp at interrupt time! */ 16352 sense_xp->xb_sense_bp = bp; 16353 16354 bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH); 16355 16356 /* 16357 * Mark this buf as awaiting sense data. (This is already set in 16358 * the pkt_flags for the RQS packet.) 16359 */ 16360 ((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING; 16361 16362 /* Request sense down same path */ 16363 if (scsi_pkt_allocated_correctly((SD_GET_XBUF(bp))->xb_pktp) && 16364 ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance) 16365 sense_xp->xb_pktp->pkt_path_instance = 16366 ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance; 16367 16368 sense_xp->xb_retry_count = 0; 16369 sense_xp->xb_victim_retry_count = 0; 16370 sense_xp->xb_ua_retry_count = 0; 16371 sense_xp->xb_nr_retry_count = 0; 16372 sense_xp->xb_dma_resid = 0; 16373 16374 /* Clean up the fields for auto-request sense */ 16375 sense_xp->xb_sense_status = 0; 16376 sense_xp->xb_sense_state = 0; 16377 sense_xp->xb_sense_resid = 0; 16378 bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data)); 16379 16380 SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n"); 16381 } 16382 16383 16384 /* 16385 * Function: sd_mark_rqs_idle 16386 * 16387 * Description: SD_MUTEX must be held continuously through this routine 16388 * to prevent reuse of the rqs struct before the caller can 16389 * complete it's processing. 16390 * 16391 * Return Code: Pointer to the RQS buf 16392 * 16393 * Context: May be called under interrupt context 16394 */ 16395 16396 static struct buf * 16397 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp) 16398 { 16399 struct buf *bp; 16400 ASSERT(un != NULL); 16401 ASSERT(sense_xp != NULL); 16402 ASSERT(mutex_owned(SD_MUTEX(un))); 16403 ASSERT(un->un_sense_isbusy != 0); 16404 16405 un->un_sense_isbusy = 0; 16406 bp = sense_xp->xb_sense_bp; 16407 sense_xp->xb_sense_bp = NULL; 16408 16409 /* This pkt is no longer interested in getting sense data */ 16410 ((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING; 16411 16412 return (bp); 16413 } 16414 16415 16416 16417 /* 16418 * Function: sd_alloc_rqs 16419 * 16420 * Description: Set up the unit to receive auto request sense data 16421 * 16422 * Return Code: DDI_SUCCESS or DDI_FAILURE 16423 * 16424 * Context: Called under attach(9E) context 16425 */ 16426 16427 static int 16428 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un) 16429 { 16430 struct sd_xbuf *xp; 16431 16432 ASSERT(un != NULL); 16433 ASSERT(!mutex_owned(SD_MUTEX(un))); 16434 ASSERT(un->un_rqs_bp == NULL); 16435 ASSERT(un->un_rqs_pktp == NULL); 16436 16437 /* 16438 * First allocate the required buf and scsi_pkt structs, then set up 16439 * the CDB in the scsi_pkt for a REQUEST SENSE command. 16440 */ 16441 un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL, 16442 MAX_SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL); 16443 if (un->un_rqs_bp == NULL) { 16444 return (DDI_FAILURE); 16445 } 16446 16447 un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp, 16448 CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL); 16449 16450 if (un->un_rqs_pktp == NULL) { 16451 sd_free_rqs(un); 16452 return (DDI_FAILURE); 16453 } 16454 16455 /* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */ 16456 (void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp, 16457 SCMD_REQUEST_SENSE, 0, MAX_SENSE_LENGTH, 0); 16458 16459 SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp); 16460 16461 /* Set up the other needed members in the ARQ scsi_pkt. */ 16462 un->un_rqs_pktp->pkt_comp = sdintr; 16463 un->un_rqs_pktp->pkt_time = sd_io_time; 16464 un->un_rqs_pktp->pkt_flags |= 16465 (FLAG_SENSING | FLAG_HEAD); /* (1222170) */ 16466 16467 /* 16468 * Allocate & init the sd_xbuf struct for the RQS command. Do not 16469 * provide any intpkt, destroypkt routines as we take care of 16470 * scsi_pkt allocation/freeing here and in sd_free_rqs(). 16471 */ 16472 xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP); 16473 sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL); 16474 xp->xb_pktp = un->un_rqs_pktp; 16475 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16476 "sd_alloc_rqs: un 0x%p, rqs xp 0x%p, pkt 0x%p, buf 0x%p\n", 16477 un, xp, un->un_rqs_pktp, un->un_rqs_bp); 16478 16479 /* 16480 * Save the pointer to the request sense private bp so it can 16481 * be retrieved in sdintr. 16482 */ 16483 un->un_rqs_pktp->pkt_private = un->un_rqs_bp; 16484 ASSERT(un->un_rqs_bp->b_private == xp); 16485 16486 /* 16487 * See if the HBA supports auto-request sense for the specified 16488 * target/lun. If it does, then try to enable it (if not already 16489 * enabled). 16490 * 16491 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return 16492 * failure, while for other HBAs (pln) scsi_ifsetcap will always 16493 * return success. However, in both of these cases ARQ is always 16494 * enabled and scsi_ifgetcap will always return true. The best approach 16495 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap(). 16496 * 16497 * The 3rd case is the HBA (adp) always return enabled on 16498 * scsi_ifgetgetcap even when it's not enable, the best approach 16499 * is issue a scsi_ifsetcap then a scsi_ifgetcap 16500 * Note: this case is to circumvent the Adaptec bug. (x86 only) 16501 */ 16502 16503 if (un->un_f_is_fibre == TRUE) { 16504 un->un_f_arq_enabled = TRUE; 16505 } else { 16506 #if defined(__i386) || defined(__amd64) 16507 /* 16508 * Circumvent the Adaptec bug, remove this code when 16509 * the bug is fixed 16510 */ 16511 (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1); 16512 #endif 16513 switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) { 16514 case 0: 16515 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16516 "sd_alloc_rqs: HBA supports ARQ\n"); 16517 /* 16518 * ARQ is supported by this HBA but currently is not 16519 * enabled. Attempt to enable it and if successful then 16520 * mark this instance as ARQ enabled. 16521 */ 16522 if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1) 16523 == 1) { 16524 /* Successfully enabled ARQ in the HBA */ 16525 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16526 "sd_alloc_rqs: ARQ enabled\n"); 16527 un->un_f_arq_enabled = TRUE; 16528 } else { 16529 /* Could not enable ARQ in the HBA */ 16530 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16531 "sd_alloc_rqs: failed ARQ enable\n"); 16532 un->un_f_arq_enabled = FALSE; 16533 } 16534 break; 16535 case 1: 16536 /* 16537 * ARQ is supported by this HBA and is already enabled. 16538 * Just mark ARQ as enabled for this instance. 16539 */ 16540 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16541 "sd_alloc_rqs: ARQ already enabled\n"); 16542 un->un_f_arq_enabled = TRUE; 16543 break; 16544 default: 16545 /* 16546 * ARQ is not supported by this HBA; disable it for this 16547 * instance. 16548 */ 16549 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16550 "sd_alloc_rqs: HBA does not support ARQ\n"); 16551 un->un_f_arq_enabled = FALSE; 16552 break; 16553 } 16554 } 16555 16556 return (DDI_SUCCESS); 16557 } 16558 16559 16560 /* 16561 * Function: sd_free_rqs 16562 * 16563 * Description: Cleanup for the pre-instance RQS command. 16564 * 16565 * Context: Kernel thread context 16566 */ 16567 16568 static void 16569 sd_free_rqs(struct sd_lun *un) 16570 { 16571 ASSERT(un != NULL); 16572 16573 SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n"); 16574 16575 /* 16576 * If consistent memory is bound to a scsi_pkt, the pkt 16577 * has to be destroyed *before* freeing the consistent memory. 16578 * Don't change the sequence of this operations. 16579 * scsi_destroy_pkt() might access memory, which isn't allowed, 16580 * after it was freed in scsi_free_consistent_buf(). 16581 */ 16582 if (un->un_rqs_pktp != NULL) { 16583 scsi_destroy_pkt(un->un_rqs_pktp); 16584 un->un_rqs_pktp = NULL; 16585 } 16586 16587 if (un->un_rqs_bp != NULL) { 16588 struct sd_xbuf *xp = SD_GET_XBUF(un->un_rqs_bp); 16589 if (xp != NULL) { 16590 kmem_free(xp, sizeof (struct sd_xbuf)); 16591 } 16592 scsi_free_consistent_buf(un->un_rqs_bp); 16593 un->un_rqs_bp = NULL; 16594 } 16595 SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n"); 16596 } 16597 16598 16599 16600 /* 16601 * Function: sd_reduce_throttle 16602 * 16603 * Description: Reduces the maximum # of outstanding commands on a 16604 * target to the current number of outstanding commands. 16605 * Queues a tiemout(9F) callback to restore the limit 16606 * after a specified interval has elapsed. 16607 * Typically used when we get a TRAN_BUSY return code 16608 * back from scsi_transport(). 16609 * 16610 * Arguments: un - ptr to the sd_lun softstate struct 16611 * throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL 16612 * 16613 * Context: May be called from interrupt context 16614 */ 16615 16616 static void 16617 sd_reduce_throttle(struct sd_lun *un, int throttle_type) 16618 { 16619 ASSERT(un != NULL); 16620 ASSERT(mutex_owned(SD_MUTEX(un))); 16621 ASSERT(un->un_ncmds_in_transport >= 0); 16622 16623 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: " 16624 "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n", 16625 un, un->un_throttle, un->un_ncmds_in_transport); 16626 16627 if (un->un_throttle > 1) { 16628 if (un->un_f_use_adaptive_throttle == TRUE) { 16629 switch (throttle_type) { 16630 case SD_THROTTLE_TRAN_BUSY: 16631 if (un->un_busy_throttle == 0) { 16632 un->un_busy_throttle = un->un_throttle; 16633 } 16634 break; 16635 case SD_THROTTLE_QFULL: 16636 un->un_busy_throttle = 0; 16637 break; 16638 default: 16639 ASSERT(FALSE); 16640 } 16641 16642 if (un->un_ncmds_in_transport > 0) { 16643 un->un_throttle = un->un_ncmds_in_transport; 16644 } 16645 16646 } else { 16647 if (un->un_ncmds_in_transport == 0) { 16648 un->un_throttle = 1; 16649 } else { 16650 un->un_throttle = un->un_ncmds_in_transport; 16651 } 16652 } 16653 } 16654 16655 /* Reschedule the timeout if none is currently active */ 16656 if (un->un_reset_throttle_timeid == NULL) { 16657 un->un_reset_throttle_timeid = timeout(sd_restore_throttle, 16658 un, SD_THROTTLE_RESET_INTERVAL); 16659 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16660 "sd_reduce_throttle: timeout scheduled!\n"); 16661 } 16662 16663 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: " 16664 "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle); 16665 } 16666 16667 16668 16669 /* 16670 * Function: sd_restore_throttle 16671 * 16672 * Description: Callback function for timeout(9F). Resets the current 16673 * value of un->un_throttle to its default. 16674 * 16675 * Arguments: arg - pointer to associated softstate for the device. 16676 * 16677 * Context: May be called from interrupt context 16678 */ 16679 16680 static void 16681 sd_restore_throttle(void *arg) 16682 { 16683 struct sd_lun *un = arg; 16684 16685 ASSERT(un != NULL); 16686 ASSERT(!mutex_owned(SD_MUTEX(un))); 16687 16688 mutex_enter(SD_MUTEX(un)); 16689 16690 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: " 16691 "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle); 16692 16693 un->un_reset_throttle_timeid = NULL; 16694 16695 if (un->un_f_use_adaptive_throttle == TRUE) { 16696 /* 16697 * If un_busy_throttle is nonzero, then it contains the 16698 * value that un_throttle was when we got a TRAN_BUSY back 16699 * from scsi_transport(). We want to revert back to this 16700 * value. 16701 * 16702 * In the QFULL case, the throttle limit will incrementally 16703 * increase until it reaches max throttle. 16704 */ 16705 if (un->un_busy_throttle > 0) { 16706 un->un_throttle = un->un_busy_throttle; 16707 un->un_busy_throttle = 0; 16708 } else { 16709 /* 16710 * increase throttle by 10% open gate slowly, schedule 16711 * another restore if saved throttle has not been 16712 * reached 16713 */ 16714 short throttle; 16715 if (sd_qfull_throttle_enable) { 16716 throttle = un->un_throttle + 16717 max((un->un_throttle / 10), 1); 16718 un->un_throttle = 16719 (throttle < un->un_saved_throttle) ? 16720 throttle : un->un_saved_throttle; 16721 if (un->un_throttle < un->un_saved_throttle) { 16722 un->un_reset_throttle_timeid = 16723 timeout(sd_restore_throttle, 16724 un, 16725 SD_QFULL_THROTTLE_RESET_INTERVAL); 16726 } 16727 } 16728 } 16729 16730 /* 16731 * If un_throttle has fallen below the low-water mark, we 16732 * restore the maximum value here (and allow it to ratchet 16733 * down again if necessary). 16734 */ 16735 if (un->un_throttle < un->un_min_throttle) { 16736 un->un_throttle = un->un_saved_throttle; 16737 } 16738 } else { 16739 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: " 16740 "restoring limit from 0x%x to 0x%x\n", 16741 un->un_throttle, un->un_saved_throttle); 16742 un->un_throttle = un->un_saved_throttle; 16743 } 16744 16745 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 16746 "sd_restore_throttle: calling sd_start_cmds!\n"); 16747 16748 sd_start_cmds(un, NULL); 16749 16750 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 16751 "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n", 16752 un, un->un_throttle); 16753 16754 mutex_exit(SD_MUTEX(un)); 16755 16756 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n"); 16757 } 16758 16759 /* 16760 * Function: sdrunout 16761 * 16762 * Description: Callback routine for scsi_init_pkt when a resource allocation 16763 * fails. 16764 * 16765 * Arguments: arg - a pointer to the sd_lun unit struct for the particular 16766 * soft state instance. 16767 * 16768 * Return Code: The scsi_init_pkt routine allows for the callback function to 16769 * return a 0 indicating the callback should be rescheduled or a 1 16770 * indicating not to reschedule. This routine always returns 1 16771 * because the driver always provides a callback function to 16772 * scsi_init_pkt. This results in a callback always being scheduled 16773 * (via the scsi_init_pkt callback implementation) if a resource 16774 * failure occurs. 16775 * 16776 * Context: This callback function may not block or call routines that block 16777 * 16778 * Note: Using the scsi_init_pkt callback facility can result in an I/O 16779 * request persisting at the head of the list which cannot be 16780 * satisfied even after multiple retries. In the future the driver 16781 * may implement some time of maximum runout count before failing 16782 * an I/O. 16783 */ 16784 16785 static int 16786 sdrunout(caddr_t arg) 16787 { 16788 struct sd_lun *un = (struct sd_lun *)arg; 16789 16790 ASSERT(un != NULL); 16791 ASSERT(!mutex_owned(SD_MUTEX(un))); 16792 16793 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n"); 16794 16795 mutex_enter(SD_MUTEX(un)); 16796 sd_start_cmds(un, NULL); 16797 mutex_exit(SD_MUTEX(un)); 16798 /* 16799 * This callback routine always returns 1 (i.e. do not reschedule) 16800 * because we always specify sdrunout as the callback handler for 16801 * scsi_init_pkt inside the call to sd_start_cmds. 16802 */ 16803 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n"); 16804 return (1); 16805 } 16806 16807 16808 /* 16809 * Function: sdintr 16810 * 16811 * Description: Completion callback routine for scsi_pkt(9S) structs 16812 * sent to the HBA driver via scsi_transport(9F). 16813 * 16814 * Context: Interrupt context 16815 */ 16816 16817 static void 16818 sdintr(struct scsi_pkt *pktp) 16819 { 16820 struct buf *bp; 16821 struct sd_xbuf *xp; 16822 struct sd_lun *un; 16823 size_t actual_len; 16824 sd_ssc_t *sscp; 16825 16826 ASSERT(pktp != NULL); 16827 bp = (struct buf *)pktp->pkt_private; 16828 ASSERT(bp != NULL); 16829 xp = SD_GET_XBUF(bp); 16830 ASSERT(xp != NULL); 16831 ASSERT(xp->xb_pktp != NULL); 16832 un = SD_GET_UN(bp); 16833 ASSERT(un != NULL); 16834 ASSERT(!mutex_owned(SD_MUTEX(un))); 16835 16836 #ifdef SD_FAULT_INJECTION 16837 16838 SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n"); 16839 /* SD FaultInjection */ 16840 sd_faultinjection(pktp); 16841 16842 #endif /* SD_FAULT_INJECTION */ 16843 16844 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p," 16845 " xp:0x%p, un:0x%p\n", bp, xp, un); 16846 16847 mutex_enter(SD_MUTEX(un)); 16848 16849 ASSERT(un->un_fm_private != NULL); 16850 sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc; 16851 ASSERT(sscp != NULL); 16852 16853 /* Reduce the count of the #commands currently in transport */ 16854 un->un_ncmds_in_transport--; 16855 ASSERT(un->un_ncmds_in_transport >= 0); 16856 16857 /* Increment counter to indicate that the callback routine is active */ 16858 un->un_in_callback++; 16859 16860 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 16861 16862 #ifdef SDDEBUG 16863 if (bp == un->un_retry_bp) { 16864 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: " 16865 "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n", 16866 un, un->un_retry_bp, un->un_ncmds_in_transport); 16867 } 16868 #endif 16869 16870 /* 16871 * If pkt_reason is CMD_DEV_GONE, fail the command, and update the media 16872 * state if needed. 16873 */ 16874 if (pktp->pkt_reason == CMD_DEV_GONE) { 16875 /* Prevent multiple console messages for the same failure. */ 16876 if (un->un_last_pkt_reason != CMD_DEV_GONE) { 16877 un->un_last_pkt_reason = CMD_DEV_GONE; 16878 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 16879 "Command failed to complete...Device is gone\n"); 16880 } 16881 if (un->un_mediastate != DKIO_DEV_GONE) { 16882 un->un_mediastate = DKIO_DEV_GONE; 16883 cv_broadcast(&un->un_state_cv); 16884 } 16885 /* 16886 * If the command happens to be the REQUEST SENSE command, 16887 * free up the rqs buf and fail the original command. 16888 */ 16889 if (bp == un->un_rqs_bp) { 16890 bp = sd_mark_rqs_idle(un, xp); 16891 } 16892 sd_return_failed_command(un, bp, EIO); 16893 goto exit; 16894 } 16895 16896 if (pktp->pkt_state & STATE_XARQ_DONE) { 16897 SD_TRACE(SD_LOG_COMMON, un, 16898 "sdintr: extra sense data received. pkt=%p\n", pktp); 16899 } 16900 16901 /* 16902 * First see if the pkt has auto-request sense data with it.... 16903 * Look at the packet state first so we don't take a performance 16904 * hit looking at the arq enabled flag unless absolutely necessary. 16905 */ 16906 if ((pktp->pkt_state & STATE_ARQ_DONE) && 16907 (un->un_f_arq_enabled == TRUE)) { 16908 /* 16909 * The HBA did an auto request sense for this command so check 16910 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal 16911 * driver command that should not be retried. 16912 */ 16913 if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) { 16914 /* 16915 * Save the relevant sense info into the xp for the 16916 * original cmd. 16917 */ 16918 struct scsi_arq_status *asp; 16919 asp = (struct scsi_arq_status *)(pktp->pkt_scbp); 16920 xp->xb_sense_status = 16921 *((uchar_t *)(&(asp->sts_rqpkt_status))); 16922 xp->xb_sense_state = asp->sts_rqpkt_state; 16923 xp->xb_sense_resid = asp->sts_rqpkt_resid; 16924 if (pktp->pkt_state & STATE_XARQ_DONE) { 16925 actual_len = MAX_SENSE_LENGTH - 16926 xp->xb_sense_resid; 16927 bcopy(&asp->sts_sensedata, xp->xb_sense_data, 16928 MAX_SENSE_LENGTH); 16929 } else { 16930 if (xp->xb_sense_resid > SENSE_LENGTH) { 16931 actual_len = MAX_SENSE_LENGTH - 16932 xp->xb_sense_resid; 16933 } else { 16934 actual_len = SENSE_LENGTH - 16935 xp->xb_sense_resid; 16936 } 16937 if (xp->xb_pkt_flags & SD_XB_USCSICMD) { 16938 if ((((struct uscsi_cmd *) 16939 (xp->xb_pktinfo))->uscsi_rqlen) > 16940 actual_len) { 16941 xp->xb_sense_resid = 16942 (((struct uscsi_cmd *) 16943 (xp->xb_pktinfo))-> 16944 uscsi_rqlen) - actual_len; 16945 } else { 16946 xp->xb_sense_resid = 0; 16947 } 16948 } 16949 bcopy(&asp->sts_sensedata, xp->xb_sense_data, 16950 SENSE_LENGTH); 16951 } 16952 16953 /* fail the command */ 16954 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16955 "sdintr: arq done and FLAG_DIAGNOSE set\n"); 16956 sd_return_failed_command(un, bp, EIO); 16957 goto exit; 16958 } 16959 16960 #if (defined(__i386) || defined(__amd64)) /* DMAFREE for x86 only */ 16961 /* 16962 * We want to either retry or fail this command, so free 16963 * the DMA resources here. If we retry the command then 16964 * the DMA resources will be reallocated in sd_start_cmds(). 16965 * Note that when PKT_DMA_PARTIAL is used, this reallocation 16966 * causes the *entire* transfer to start over again from the 16967 * beginning of the request, even for PARTIAL chunks that 16968 * have already transferred successfully. 16969 */ 16970 if ((un->un_f_is_fibre == TRUE) && 16971 ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) && 16972 ((pktp->pkt_flags & FLAG_SENSING) == 0)) { 16973 scsi_dmafree(pktp); 16974 xp->xb_pkt_flags |= SD_XB_DMA_FREED; 16975 } 16976 #endif 16977 16978 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16979 "sdintr: arq done, sd_handle_auto_request_sense\n"); 16980 16981 sd_handle_auto_request_sense(un, bp, xp, pktp); 16982 goto exit; 16983 } 16984 16985 /* Next see if this is the REQUEST SENSE pkt for the instance */ 16986 if (pktp->pkt_flags & FLAG_SENSING) { 16987 /* This pktp is from the unit's REQUEST_SENSE command */ 16988 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16989 "sdintr: sd_handle_request_sense\n"); 16990 sd_handle_request_sense(un, bp, xp, pktp); 16991 goto exit; 16992 } 16993 16994 /* 16995 * Check to see if the command successfully completed as requested; 16996 * this is the most common case (and also the hot performance path). 16997 * 16998 * Requirements for successful completion are: 16999 * pkt_reason is CMD_CMPLT and packet status is status good. 17000 * In addition: 17001 * - A residual of zero indicates successful completion no matter what 17002 * the command is. 17003 * - If the residual is not zero and the command is not a read or 17004 * write, then it's still defined as successful completion. In other 17005 * words, if the command is a read or write the residual must be 17006 * zero for successful completion. 17007 * - If the residual is not zero and the command is a read or 17008 * write, and it's a USCSICMD, then it's still defined as 17009 * successful completion. 17010 */ 17011 if ((pktp->pkt_reason == CMD_CMPLT) && 17012 (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) { 17013 17014 /* 17015 * Since this command is returned with a good status, we 17016 * can reset the count for Sonoma failover. 17017 */ 17018 un->un_sonoma_failure_count = 0; 17019 17020 /* 17021 * Return all USCSI commands on good status 17022 */ 17023 if (pktp->pkt_resid == 0) { 17024 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17025 "sdintr: returning command for resid == 0\n"); 17026 } else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) && 17027 ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) { 17028 SD_UPDATE_B_RESID(bp, pktp); 17029 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17030 "sdintr: returning command for resid != 0\n"); 17031 } else if (xp->xb_pkt_flags & SD_XB_USCSICMD) { 17032 SD_UPDATE_B_RESID(bp, pktp); 17033 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17034 "sdintr: returning uscsi command\n"); 17035 } else { 17036 goto not_successful; 17037 } 17038 sd_return_command(un, bp); 17039 17040 /* 17041 * Decrement counter to indicate that the callback routine 17042 * is done. 17043 */ 17044 un->un_in_callback--; 17045 ASSERT(un->un_in_callback >= 0); 17046 mutex_exit(SD_MUTEX(un)); 17047 17048 return; 17049 } 17050 17051 not_successful: 17052 17053 #if (defined(__i386) || defined(__amd64)) /* DMAFREE for x86 only */ 17054 /* 17055 * The following is based upon knowledge of the underlying transport 17056 * and its use of DMA resources. This code should be removed when 17057 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor 17058 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf() 17059 * and sd_start_cmds(). 17060 * 17061 * Free any DMA resources associated with this command if there 17062 * is a chance it could be retried or enqueued for later retry. 17063 * If we keep the DMA binding then mpxio cannot reissue the 17064 * command on another path whenever a path failure occurs. 17065 * 17066 * Note that when PKT_DMA_PARTIAL is used, free/reallocation 17067 * causes the *entire* transfer to start over again from the 17068 * beginning of the request, even for PARTIAL chunks that 17069 * have already transferred successfully. 17070 * 17071 * This is only done for non-uscsi commands (and also skipped for the 17072 * driver's internal RQS command). Also just do this for Fibre Channel 17073 * devices as these are the only ones that support mpxio. 17074 */ 17075 if ((un->un_f_is_fibre == TRUE) && 17076 ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) && 17077 ((pktp->pkt_flags & FLAG_SENSING) == 0)) { 17078 scsi_dmafree(pktp); 17079 xp->xb_pkt_flags |= SD_XB_DMA_FREED; 17080 } 17081 #endif 17082 17083 /* 17084 * The command did not successfully complete as requested so check 17085 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal 17086 * driver command that should not be retried so just return. If 17087 * FLAG_DIAGNOSE is not set the error will be processed below. 17088 */ 17089 if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) { 17090 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17091 "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n"); 17092 /* 17093 * Issue a request sense if a check condition caused the error 17094 * (we handle the auto request sense case above), otherwise 17095 * just fail the command. 17096 */ 17097 if ((pktp->pkt_reason == CMD_CMPLT) && 17098 (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) { 17099 sd_send_request_sense_command(un, bp, pktp); 17100 } else { 17101 sd_return_failed_command(un, bp, EIO); 17102 } 17103 goto exit; 17104 } 17105 17106 /* 17107 * The command did not successfully complete as requested so process 17108 * the error, retry, and/or attempt recovery. 17109 */ 17110 switch (pktp->pkt_reason) { 17111 case CMD_CMPLT: 17112 switch (SD_GET_PKT_STATUS(pktp)) { 17113 case STATUS_GOOD: 17114 /* 17115 * The command completed successfully with a non-zero 17116 * residual 17117 */ 17118 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17119 "sdintr: STATUS_GOOD \n"); 17120 sd_pkt_status_good(un, bp, xp, pktp); 17121 break; 17122 17123 case STATUS_CHECK: 17124 case STATUS_TERMINATED: 17125 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17126 "sdintr: STATUS_TERMINATED | STATUS_CHECK\n"); 17127 sd_pkt_status_check_condition(un, bp, xp, pktp); 17128 break; 17129 17130 case STATUS_BUSY: 17131 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17132 "sdintr: STATUS_BUSY\n"); 17133 sd_pkt_status_busy(un, bp, xp, pktp); 17134 break; 17135 17136 case STATUS_RESERVATION_CONFLICT: 17137 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17138 "sdintr: STATUS_RESERVATION_CONFLICT\n"); 17139 sd_pkt_status_reservation_conflict(un, bp, xp, pktp); 17140 break; 17141 17142 case STATUS_QFULL: 17143 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17144 "sdintr: STATUS_QFULL\n"); 17145 sd_pkt_status_qfull(un, bp, xp, pktp); 17146 break; 17147 17148 case STATUS_MET: 17149 case STATUS_INTERMEDIATE: 17150 case STATUS_SCSI2: 17151 case STATUS_INTERMEDIATE_MET: 17152 case STATUS_ACA_ACTIVE: 17153 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17154 "Unexpected SCSI status received: 0x%x\n", 17155 SD_GET_PKT_STATUS(pktp)); 17156 /* 17157 * Mark the ssc_flags when detected invalid status 17158 * code for non-USCSI command. 17159 */ 17160 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 17161 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS, 17162 0, "stat-code"); 17163 } 17164 sd_return_failed_command(un, bp, EIO); 17165 break; 17166 17167 default: 17168 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17169 "Invalid SCSI status received: 0x%x\n", 17170 SD_GET_PKT_STATUS(pktp)); 17171 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 17172 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS, 17173 0, "stat-code"); 17174 } 17175 sd_return_failed_command(un, bp, EIO); 17176 break; 17177 17178 } 17179 break; 17180 17181 case CMD_INCOMPLETE: 17182 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17183 "sdintr: CMD_INCOMPLETE\n"); 17184 sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp); 17185 break; 17186 case CMD_TRAN_ERR: 17187 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17188 "sdintr: CMD_TRAN_ERR\n"); 17189 sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp); 17190 break; 17191 case CMD_RESET: 17192 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17193 "sdintr: CMD_RESET \n"); 17194 sd_pkt_reason_cmd_reset(un, bp, xp, pktp); 17195 break; 17196 case CMD_ABORTED: 17197 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17198 "sdintr: CMD_ABORTED \n"); 17199 sd_pkt_reason_cmd_aborted(un, bp, xp, pktp); 17200 break; 17201 case CMD_TIMEOUT: 17202 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17203 "sdintr: CMD_TIMEOUT\n"); 17204 sd_pkt_reason_cmd_timeout(un, bp, xp, pktp); 17205 break; 17206 case CMD_UNX_BUS_FREE: 17207 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17208 "sdintr: CMD_UNX_BUS_FREE \n"); 17209 sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp); 17210 break; 17211 case CMD_TAG_REJECT: 17212 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17213 "sdintr: CMD_TAG_REJECT\n"); 17214 sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp); 17215 break; 17216 default: 17217 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17218 "sdintr: default\n"); 17219 /* 17220 * Mark the ssc_flags for detecting invliad pkt_reason. 17221 */ 17222 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 17223 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_PKT_REASON, 17224 0, "pkt-reason"); 17225 } 17226 sd_pkt_reason_default(un, bp, xp, pktp); 17227 break; 17228 } 17229 17230 exit: 17231 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n"); 17232 17233 /* Decrement counter to indicate that the callback routine is done. */ 17234 un->un_in_callback--; 17235 ASSERT(un->un_in_callback >= 0); 17236 17237 /* 17238 * At this point, the pkt has been dispatched, ie, it is either 17239 * being re-tried or has been returned to its caller and should 17240 * not be referenced. 17241 */ 17242 17243 mutex_exit(SD_MUTEX(un)); 17244 } 17245 17246 17247 /* 17248 * Function: sd_print_incomplete_msg 17249 * 17250 * Description: Prints the error message for a CMD_INCOMPLETE error. 17251 * 17252 * Arguments: un - ptr to associated softstate for the device. 17253 * bp - ptr to the buf(9S) for the command. 17254 * arg - message string ptr 17255 * code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED, 17256 * or SD_NO_RETRY_ISSUED. 17257 * 17258 * Context: May be called under interrupt context 17259 */ 17260 17261 static void 17262 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code) 17263 { 17264 struct scsi_pkt *pktp; 17265 char *msgp; 17266 char *cmdp = arg; 17267 17268 ASSERT(un != NULL); 17269 ASSERT(mutex_owned(SD_MUTEX(un))); 17270 ASSERT(bp != NULL); 17271 ASSERT(arg != NULL); 17272 pktp = SD_GET_PKTP(bp); 17273 ASSERT(pktp != NULL); 17274 17275 switch (code) { 17276 case SD_DELAYED_RETRY_ISSUED: 17277 case SD_IMMEDIATE_RETRY_ISSUED: 17278 msgp = "retrying"; 17279 break; 17280 case SD_NO_RETRY_ISSUED: 17281 default: 17282 msgp = "giving up"; 17283 break; 17284 } 17285 17286 if ((pktp->pkt_flags & FLAG_SILENT) == 0) { 17287 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17288 "incomplete %s- %s\n", cmdp, msgp); 17289 } 17290 } 17291 17292 17293 17294 /* 17295 * Function: sd_pkt_status_good 17296 * 17297 * Description: Processing for a STATUS_GOOD code in pkt_status. 17298 * 17299 * Context: May be called under interrupt context 17300 */ 17301 17302 static void 17303 sd_pkt_status_good(struct sd_lun *un, struct buf *bp, 17304 struct sd_xbuf *xp, struct scsi_pkt *pktp) 17305 { 17306 char *cmdp; 17307 17308 ASSERT(un != NULL); 17309 ASSERT(mutex_owned(SD_MUTEX(un))); 17310 ASSERT(bp != NULL); 17311 ASSERT(xp != NULL); 17312 ASSERT(pktp != NULL); 17313 ASSERT(pktp->pkt_reason == CMD_CMPLT); 17314 ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD); 17315 ASSERT(pktp->pkt_resid != 0); 17316 17317 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n"); 17318 17319 SD_UPDATE_ERRSTATS(un, sd_harderrs); 17320 switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) { 17321 case SCMD_READ: 17322 cmdp = "read"; 17323 break; 17324 case SCMD_WRITE: 17325 cmdp = "write"; 17326 break; 17327 default: 17328 SD_UPDATE_B_RESID(bp, pktp); 17329 sd_return_command(un, bp); 17330 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n"); 17331 return; 17332 } 17333 17334 /* 17335 * See if we can retry the read/write, preferrably immediately. 17336 * If retries are exhaused, then sd_retry_command() will update 17337 * the b_resid count. 17338 */ 17339 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg, 17340 cmdp, EIO, (clock_t)0, NULL); 17341 17342 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n"); 17343 } 17344 17345 17346 17347 17348 17349 /* 17350 * Function: sd_handle_request_sense 17351 * 17352 * Description: Processing for non-auto Request Sense command. 17353 * 17354 * Arguments: un - ptr to associated softstate 17355 * sense_bp - ptr to buf(9S) for the RQS command 17356 * sense_xp - ptr to the sd_xbuf for the RQS command 17357 * sense_pktp - ptr to the scsi_pkt(9S) for the RQS command 17358 * 17359 * Context: May be called under interrupt context 17360 */ 17361 17362 static void 17363 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp, 17364 struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp) 17365 { 17366 struct buf *cmd_bp; /* buf for the original command */ 17367 struct sd_xbuf *cmd_xp; /* sd_xbuf for the original command */ 17368 struct scsi_pkt *cmd_pktp; /* pkt for the original command */ 17369 size_t actual_len; /* actual sense data length */ 17370 17371 ASSERT(un != NULL); 17372 ASSERT(mutex_owned(SD_MUTEX(un))); 17373 ASSERT(sense_bp != NULL); 17374 ASSERT(sense_xp != NULL); 17375 ASSERT(sense_pktp != NULL); 17376 17377 /* 17378 * Note the sense_bp, sense_xp, and sense_pktp here are for the 17379 * RQS command and not the original command. 17380 */ 17381 ASSERT(sense_pktp == un->un_rqs_pktp); 17382 ASSERT(sense_bp == un->un_rqs_bp); 17383 ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) == 17384 (FLAG_SENSING | FLAG_HEAD)); 17385 ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) & 17386 FLAG_SENSING) == FLAG_SENSING); 17387 17388 /* These are the bp, xp, and pktp for the original command */ 17389 cmd_bp = sense_xp->xb_sense_bp; 17390 cmd_xp = SD_GET_XBUF(cmd_bp); 17391 cmd_pktp = SD_GET_PKTP(cmd_bp); 17392 17393 if (sense_pktp->pkt_reason != CMD_CMPLT) { 17394 /* 17395 * The REQUEST SENSE command failed. Release the REQUEST 17396 * SENSE command for re-use, get back the bp for the original 17397 * command, and attempt to re-try the original command if 17398 * FLAG_DIAGNOSE is not set in the original packet. 17399 */ 17400 SD_UPDATE_ERRSTATS(un, sd_harderrs); 17401 if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) { 17402 cmd_bp = sd_mark_rqs_idle(un, sense_xp); 17403 sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD, 17404 NULL, NULL, EIO, (clock_t)0, NULL); 17405 return; 17406 } 17407 } 17408 17409 /* 17410 * Save the relevant sense info into the xp for the original cmd. 17411 * 17412 * Note: if the request sense failed the state info will be zero 17413 * as set in sd_mark_rqs_busy() 17414 */ 17415 cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp); 17416 cmd_xp->xb_sense_state = sense_pktp->pkt_state; 17417 actual_len = MAX_SENSE_LENGTH - sense_pktp->pkt_resid; 17418 if ((cmd_xp->xb_pkt_flags & SD_XB_USCSICMD) && 17419 (((struct uscsi_cmd *)cmd_xp->xb_pktinfo)->uscsi_rqlen > 17420 SENSE_LENGTH)) { 17421 bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data, 17422 MAX_SENSE_LENGTH); 17423 cmd_xp->xb_sense_resid = sense_pktp->pkt_resid; 17424 } else { 17425 bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data, 17426 SENSE_LENGTH); 17427 if (actual_len < SENSE_LENGTH) { 17428 cmd_xp->xb_sense_resid = SENSE_LENGTH - actual_len; 17429 } else { 17430 cmd_xp->xb_sense_resid = 0; 17431 } 17432 } 17433 17434 /* 17435 * Free up the RQS command.... 17436 * NOTE: 17437 * Must do this BEFORE calling sd_validate_sense_data! 17438 * sd_validate_sense_data may return the original command in 17439 * which case the pkt will be freed and the flags can no 17440 * longer be touched. 17441 * SD_MUTEX is held through this process until the command 17442 * is dispatched based upon the sense data, so there are 17443 * no race conditions. 17444 */ 17445 (void) sd_mark_rqs_idle(un, sense_xp); 17446 17447 /* 17448 * For a retryable command see if we have valid sense data, if so then 17449 * turn it over to sd_decode_sense() to figure out the right course of 17450 * action. Just fail a non-retryable command. 17451 */ 17452 if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) { 17453 if (sd_validate_sense_data(un, cmd_bp, cmd_xp, actual_len) == 17454 SD_SENSE_DATA_IS_VALID) { 17455 sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp); 17456 } 17457 } else { 17458 SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB", 17459 (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX); 17460 SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data", 17461 (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX); 17462 sd_return_failed_command(un, cmd_bp, EIO); 17463 } 17464 } 17465 17466 17467 17468 17469 /* 17470 * Function: sd_handle_auto_request_sense 17471 * 17472 * Description: Processing for auto-request sense information. 17473 * 17474 * Arguments: un - ptr to associated softstate 17475 * bp - ptr to buf(9S) for the command 17476 * xp - ptr to the sd_xbuf for the command 17477 * pktp - ptr to the scsi_pkt(9S) for the command 17478 * 17479 * Context: May be called under interrupt context 17480 */ 17481 17482 static void 17483 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp, 17484 struct sd_xbuf *xp, struct scsi_pkt *pktp) 17485 { 17486 struct scsi_arq_status *asp; 17487 size_t actual_len; 17488 17489 ASSERT(un != NULL); 17490 ASSERT(mutex_owned(SD_MUTEX(un))); 17491 ASSERT(bp != NULL); 17492 ASSERT(xp != NULL); 17493 ASSERT(pktp != NULL); 17494 ASSERT(pktp != un->un_rqs_pktp); 17495 ASSERT(bp != un->un_rqs_bp); 17496 17497 /* 17498 * For auto-request sense, we get a scsi_arq_status back from 17499 * the HBA, with the sense data in the sts_sensedata member. 17500 * The pkt_scbp of the packet points to this scsi_arq_status. 17501 */ 17502 asp = (struct scsi_arq_status *)(pktp->pkt_scbp); 17503 17504 if (asp->sts_rqpkt_reason != CMD_CMPLT) { 17505 /* 17506 * The auto REQUEST SENSE failed; see if we can re-try 17507 * the original command. 17508 */ 17509 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17510 "auto request sense failed (reason=%s)\n", 17511 scsi_rname(asp->sts_rqpkt_reason)); 17512 17513 sd_reset_target(un, pktp); 17514 17515 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 17516 NULL, NULL, EIO, (clock_t)0, NULL); 17517 return; 17518 } 17519 17520 /* Save the relevant sense info into the xp for the original cmd. */ 17521 xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status))); 17522 xp->xb_sense_state = asp->sts_rqpkt_state; 17523 xp->xb_sense_resid = asp->sts_rqpkt_resid; 17524 if (xp->xb_sense_state & STATE_XARQ_DONE) { 17525 actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid; 17526 bcopy(&asp->sts_sensedata, xp->xb_sense_data, 17527 MAX_SENSE_LENGTH); 17528 } else { 17529 if (xp->xb_sense_resid > SENSE_LENGTH) { 17530 actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid; 17531 } else { 17532 actual_len = SENSE_LENGTH - xp->xb_sense_resid; 17533 } 17534 if (xp->xb_pkt_flags & SD_XB_USCSICMD) { 17535 if ((((struct uscsi_cmd *) 17536 (xp->xb_pktinfo))->uscsi_rqlen) > actual_len) { 17537 xp->xb_sense_resid = (((struct uscsi_cmd *) 17538 (xp->xb_pktinfo))->uscsi_rqlen) - 17539 actual_len; 17540 } else { 17541 xp->xb_sense_resid = 0; 17542 } 17543 } 17544 bcopy(&asp->sts_sensedata, xp->xb_sense_data, SENSE_LENGTH); 17545 } 17546 17547 /* 17548 * See if we have valid sense data, if so then turn it over to 17549 * sd_decode_sense() to figure out the right course of action. 17550 */ 17551 if (sd_validate_sense_data(un, bp, xp, actual_len) == 17552 SD_SENSE_DATA_IS_VALID) { 17553 sd_decode_sense(un, bp, xp, pktp); 17554 } 17555 } 17556 17557 17558 /* 17559 * Function: sd_print_sense_failed_msg 17560 * 17561 * Description: Print log message when RQS has failed. 17562 * 17563 * Arguments: un - ptr to associated softstate 17564 * bp - ptr to buf(9S) for the command 17565 * arg - generic message string ptr 17566 * code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 17567 * or SD_NO_RETRY_ISSUED 17568 * 17569 * Context: May be called from interrupt context 17570 */ 17571 17572 static void 17573 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg, 17574 int code) 17575 { 17576 char *msgp = arg; 17577 17578 ASSERT(un != NULL); 17579 ASSERT(mutex_owned(SD_MUTEX(un))); 17580 ASSERT(bp != NULL); 17581 17582 if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) { 17583 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp); 17584 } 17585 } 17586 17587 17588 /* 17589 * Function: sd_validate_sense_data 17590 * 17591 * Description: Check the given sense data for validity. 17592 * If the sense data is not valid, the command will 17593 * be either failed or retried! 17594 * 17595 * Return Code: SD_SENSE_DATA_IS_INVALID 17596 * SD_SENSE_DATA_IS_VALID 17597 * 17598 * Context: May be called from interrupt context 17599 */ 17600 17601 static int 17602 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 17603 size_t actual_len) 17604 { 17605 struct scsi_extended_sense *esp; 17606 struct scsi_pkt *pktp; 17607 char *msgp = NULL; 17608 sd_ssc_t *sscp; 17609 17610 ASSERT(un != NULL); 17611 ASSERT(mutex_owned(SD_MUTEX(un))); 17612 ASSERT(bp != NULL); 17613 ASSERT(bp != un->un_rqs_bp); 17614 ASSERT(xp != NULL); 17615 ASSERT(un->un_fm_private != NULL); 17616 17617 pktp = SD_GET_PKTP(bp); 17618 ASSERT(pktp != NULL); 17619 17620 sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc; 17621 ASSERT(sscp != NULL); 17622 17623 /* 17624 * Check the status of the RQS command (auto or manual). 17625 */ 17626 switch (xp->xb_sense_status & STATUS_MASK) { 17627 case STATUS_GOOD: 17628 break; 17629 17630 case STATUS_RESERVATION_CONFLICT: 17631 sd_pkt_status_reservation_conflict(un, bp, xp, pktp); 17632 return (SD_SENSE_DATA_IS_INVALID); 17633 17634 case STATUS_BUSY: 17635 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17636 "Busy Status on REQUEST SENSE\n"); 17637 sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL, 17638 NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter); 17639 return (SD_SENSE_DATA_IS_INVALID); 17640 17641 case STATUS_QFULL: 17642 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17643 "QFULL Status on REQUEST SENSE\n"); 17644 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, 17645 NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter); 17646 return (SD_SENSE_DATA_IS_INVALID); 17647 17648 case STATUS_CHECK: 17649 case STATUS_TERMINATED: 17650 msgp = "Check Condition on REQUEST SENSE\n"; 17651 goto sense_failed; 17652 17653 default: 17654 msgp = "Not STATUS_GOOD on REQUEST_SENSE\n"; 17655 goto sense_failed; 17656 } 17657 17658 /* 17659 * See if we got the minimum required amount of sense data. 17660 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes 17661 * or less. 17662 */ 17663 if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) || 17664 (actual_len == 0)) { 17665 msgp = "Request Sense couldn't get sense data\n"; 17666 goto sense_failed; 17667 } 17668 17669 if (actual_len < SUN_MIN_SENSE_LENGTH) { 17670 msgp = "Not enough sense information\n"; 17671 /* Mark the ssc_flags for detecting invalid sense data */ 17672 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 17673 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0, 17674 "sense-data"); 17675 } 17676 goto sense_failed; 17677 } 17678 17679 /* 17680 * We require the extended sense data 17681 */ 17682 esp = (struct scsi_extended_sense *)xp->xb_sense_data; 17683 if (esp->es_class != CLASS_EXTENDED_SENSE) { 17684 if ((pktp->pkt_flags & FLAG_SILENT) == 0) { 17685 static char tmp[8]; 17686 static char buf[148]; 17687 char *p = (char *)(xp->xb_sense_data); 17688 int i; 17689 17690 mutex_enter(&sd_sense_mutex); 17691 (void) strcpy(buf, "undecodable sense information:"); 17692 for (i = 0; i < actual_len; i++) { 17693 (void) sprintf(tmp, " 0x%x", *(p++)&0xff); 17694 (void) strcpy(&buf[strlen(buf)], tmp); 17695 } 17696 i = strlen(buf); 17697 (void) strcpy(&buf[i], "-(assumed fatal)\n"); 17698 17699 if (SD_FM_LOG(un) == SD_FM_LOG_NSUP) { 17700 scsi_log(SD_DEVINFO(un), sd_label, 17701 CE_WARN, buf); 17702 } 17703 mutex_exit(&sd_sense_mutex); 17704 } 17705 17706 /* Mark the ssc_flags for detecting invalid sense data */ 17707 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 17708 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0, 17709 "sense-data"); 17710 } 17711 17712 /* Note: Legacy behavior, fail the command with no retry */ 17713 sd_return_failed_command(un, bp, EIO); 17714 return (SD_SENSE_DATA_IS_INVALID); 17715 } 17716 17717 /* 17718 * Check that es_code is valid (es_class concatenated with es_code 17719 * make up the "response code" field. es_class will always be 7, so 17720 * make sure es_code is 0, 1, 2, 3 or 0xf. es_code will indicate the 17721 * format. 17722 */ 17723 if ((esp->es_code != CODE_FMT_FIXED_CURRENT) && 17724 (esp->es_code != CODE_FMT_FIXED_DEFERRED) && 17725 (esp->es_code != CODE_FMT_DESCR_CURRENT) && 17726 (esp->es_code != CODE_FMT_DESCR_DEFERRED) && 17727 (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) { 17728 /* Mark the ssc_flags for detecting invalid sense data */ 17729 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 17730 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0, 17731 "sense-data"); 17732 } 17733 goto sense_failed; 17734 } 17735 17736 return (SD_SENSE_DATA_IS_VALID); 17737 17738 sense_failed: 17739 /* 17740 * If the request sense failed (for whatever reason), attempt 17741 * to retry the original command. 17742 */ 17743 #if defined(__i386) || defined(__amd64) 17744 /* 17745 * SD_RETRY_DELAY is conditionally compile (#if fibre) in 17746 * sddef.h for Sparc platform, and x86 uses 1 binary 17747 * for both SCSI/FC. 17748 * The SD_RETRY_DELAY value need to be adjusted here 17749 * when SD_RETRY_DELAY change in sddef.h 17750 */ 17751 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 17752 sd_print_sense_failed_msg, msgp, EIO, 17753 un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL); 17754 #else 17755 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 17756 sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL); 17757 #endif 17758 17759 return (SD_SENSE_DATA_IS_INVALID); 17760 } 17761 17762 /* 17763 * Function: sd_decode_sense 17764 * 17765 * Description: Take recovery action(s) when SCSI Sense Data is received. 17766 * 17767 * Context: Interrupt context. 17768 */ 17769 17770 static void 17771 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 17772 struct scsi_pkt *pktp) 17773 { 17774 uint8_t sense_key; 17775 17776 ASSERT(un != NULL); 17777 ASSERT(mutex_owned(SD_MUTEX(un))); 17778 ASSERT(bp != NULL); 17779 ASSERT(bp != un->un_rqs_bp); 17780 ASSERT(xp != NULL); 17781 ASSERT(pktp != NULL); 17782 17783 sense_key = scsi_sense_key(xp->xb_sense_data); 17784 17785 switch (sense_key) { 17786 case KEY_NO_SENSE: 17787 sd_sense_key_no_sense(un, bp, xp, pktp); 17788 break; 17789 case KEY_RECOVERABLE_ERROR: 17790 sd_sense_key_recoverable_error(un, xp->xb_sense_data, 17791 bp, xp, pktp); 17792 break; 17793 case KEY_NOT_READY: 17794 sd_sense_key_not_ready(un, xp->xb_sense_data, 17795 bp, xp, pktp); 17796 break; 17797 case KEY_MEDIUM_ERROR: 17798 case KEY_HARDWARE_ERROR: 17799 sd_sense_key_medium_or_hardware_error(un, 17800 xp->xb_sense_data, bp, xp, pktp); 17801 break; 17802 case KEY_ILLEGAL_REQUEST: 17803 sd_sense_key_illegal_request(un, bp, xp, pktp); 17804 break; 17805 case KEY_UNIT_ATTENTION: 17806 sd_sense_key_unit_attention(un, xp->xb_sense_data, 17807 bp, xp, pktp); 17808 break; 17809 case KEY_WRITE_PROTECT: 17810 case KEY_VOLUME_OVERFLOW: 17811 case KEY_MISCOMPARE: 17812 sd_sense_key_fail_command(un, bp, xp, pktp); 17813 break; 17814 case KEY_BLANK_CHECK: 17815 sd_sense_key_blank_check(un, bp, xp, pktp); 17816 break; 17817 case KEY_ABORTED_COMMAND: 17818 sd_sense_key_aborted_command(un, bp, xp, pktp); 17819 break; 17820 case KEY_VENDOR_UNIQUE: 17821 case KEY_COPY_ABORTED: 17822 case KEY_EQUAL: 17823 case KEY_RESERVED: 17824 default: 17825 sd_sense_key_default(un, xp->xb_sense_data, 17826 bp, xp, pktp); 17827 break; 17828 } 17829 } 17830 17831 17832 /* 17833 * Function: sd_dump_memory 17834 * 17835 * Description: Debug logging routine to print the contents of a user provided 17836 * buffer. The output of the buffer is broken up into 256 byte 17837 * segments due to a size constraint of the scsi_log. 17838 * implementation. 17839 * 17840 * Arguments: un - ptr to softstate 17841 * comp - component mask 17842 * title - "title" string to preceed data when printed 17843 * data - ptr to data block to be printed 17844 * len - size of data block to be printed 17845 * fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c) 17846 * 17847 * Context: May be called from interrupt context 17848 */ 17849 17850 #define SD_DUMP_MEMORY_BUF_SIZE 256 17851 17852 static char *sd_dump_format_string[] = { 17853 " 0x%02x", 17854 " %c" 17855 }; 17856 17857 static void 17858 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data, 17859 int len, int fmt) 17860 { 17861 int i, j; 17862 int avail_count; 17863 int start_offset; 17864 int end_offset; 17865 size_t entry_len; 17866 char *bufp; 17867 char *local_buf; 17868 char *format_string; 17869 17870 ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR)); 17871 17872 /* 17873 * In the debug version of the driver, this function is called from a 17874 * number of places which are NOPs in the release driver. 17875 * The debug driver therefore has additional methods of filtering 17876 * debug output. 17877 */ 17878 #ifdef SDDEBUG 17879 /* 17880 * In the debug version of the driver we can reduce the amount of debug 17881 * messages by setting sd_error_level to something other than 17882 * SCSI_ERR_ALL and clearing bits in sd_level_mask and 17883 * sd_component_mask. 17884 */ 17885 if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) || 17886 (sd_error_level != SCSI_ERR_ALL)) { 17887 return; 17888 } 17889 if (((sd_component_mask & comp) == 0) || 17890 (sd_error_level != SCSI_ERR_ALL)) { 17891 return; 17892 } 17893 #else 17894 if (sd_error_level != SCSI_ERR_ALL) { 17895 return; 17896 } 17897 #endif 17898 17899 local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP); 17900 bufp = local_buf; 17901 /* 17902 * Available length is the length of local_buf[], minus the 17903 * length of the title string, minus one for the ":", minus 17904 * one for the newline, minus one for the NULL terminator. 17905 * This gives the #bytes available for holding the printed 17906 * values from the given data buffer. 17907 */ 17908 if (fmt == SD_LOG_HEX) { 17909 format_string = sd_dump_format_string[0]; 17910 } else /* SD_LOG_CHAR */ { 17911 format_string = sd_dump_format_string[1]; 17912 } 17913 /* 17914 * Available count is the number of elements from the given 17915 * data buffer that we can fit into the available length. 17916 * This is based upon the size of the format string used. 17917 * Make one entry and find it's size. 17918 */ 17919 (void) sprintf(bufp, format_string, data[0]); 17920 entry_len = strlen(bufp); 17921 avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len; 17922 17923 j = 0; 17924 while (j < len) { 17925 bufp = local_buf; 17926 bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE); 17927 start_offset = j; 17928 17929 end_offset = start_offset + avail_count; 17930 17931 (void) sprintf(bufp, "%s:", title); 17932 bufp += strlen(bufp); 17933 for (i = start_offset; ((i < end_offset) && (j < len)); 17934 i++, j++) { 17935 (void) sprintf(bufp, format_string, data[i]); 17936 bufp += entry_len; 17937 } 17938 (void) sprintf(bufp, "\n"); 17939 17940 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf); 17941 } 17942 kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE); 17943 } 17944 17945 /* 17946 * Function: sd_print_sense_msg 17947 * 17948 * Description: Log a message based upon the given sense data. 17949 * 17950 * Arguments: un - ptr to associated softstate 17951 * bp - ptr to buf(9S) for the command 17952 * arg - ptr to associate sd_sense_info struct 17953 * code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 17954 * or SD_NO_RETRY_ISSUED 17955 * 17956 * Context: May be called from interrupt context 17957 */ 17958 17959 static void 17960 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code) 17961 { 17962 struct sd_xbuf *xp; 17963 struct scsi_pkt *pktp; 17964 uint8_t *sensep; 17965 daddr_t request_blkno; 17966 diskaddr_t err_blkno; 17967 int severity; 17968 int pfa_flag; 17969 extern struct scsi_key_strings scsi_cmds[]; 17970 17971 ASSERT(un != NULL); 17972 ASSERT(mutex_owned(SD_MUTEX(un))); 17973 ASSERT(bp != NULL); 17974 xp = SD_GET_XBUF(bp); 17975 ASSERT(xp != NULL); 17976 pktp = SD_GET_PKTP(bp); 17977 ASSERT(pktp != NULL); 17978 ASSERT(arg != NULL); 17979 17980 severity = ((struct sd_sense_info *)(arg))->ssi_severity; 17981 pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag; 17982 17983 if ((code == SD_DELAYED_RETRY_ISSUED) || 17984 (code == SD_IMMEDIATE_RETRY_ISSUED)) { 17985 severity = SCSI_ERR_RETRYABLE; 17986 } 17987 17988 /* Use absolute block number for the request block number */ 17989 request_blkno = xp->xb_blkno; 17990 17991 /* 17992 * Now try to get the error block number from the sense data 17993 */ 17994 sensep = xp->xb_sense_data; 17995 17996 if (scsi_sense_info_uint64(sensep, SENSE_LENGTH, 17997 (uint64_t *)&err_blkno)) { 17998 /* 17999 * We retrieved the error block number from the information 18000 * portion of the sense data. 18001 * 18002 * For USCSI commands we are better off using the error 18003 * block no. as the requested block no. (This is the best 18004 * we can estimate.) 18005 */ 18006 if ((SD_IS_BUFIO(xp) == FALSE) && 18007 ((pktp->pkt_flags & FLAG_SILENT) == 0)) { 18008 request_blkno = err_blkno; 18009 } 18010 } else { 18011 /* 18012 * Without the es_valid bit set (for fixed format) or an 18013 * information descriptor (for descriptor format) we cannot 18014 * be certain of the error blkno, so just use the 18015 * request_blkno. 18016 */ 18017 err_blkno = (diskaddr_t)request_blkno; 18018 } 18019 18020 /* 18021 * The following will log the buffer contents for the release driver 18022 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error 18023 * level is set to verbose. 18024 */ 18025 sd_dump_memory(un, SD_LOG_IO, "Failed CDB", 18026 (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX); 18027 sd_dump_memory(un, SD_LOG_IO, "Sense Data", 18028 (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX); 18029 18030 if (pfa_flag == FALSE) { 18031 /* This is normally only set for USCSI */ 18032 if ((pktp->pkt_flags & FLAG_SILENT) != 0) { 18033 return; 18034 } 18035 18036 if ((SD_IS_BUFIO(xp) == TRUE) && 18037 (((sd_level_mask & SD_LOGMASK_DIAG) == 0) && 18038 (severity < sd_error_level))) { 18039 return; 18040 } 18041 } 18042 /* 18043 * Check for Sonoma Failover and keep a count of how many failed I/O's 18044 */ 18045 if ((SD_IS_LSI(un)) && 18046 (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) && 18047 (scsi_sense_asc(sensep) == 0x94) && 18048 (scsi_sense_ascq(sensep) == 0x01)) { 18049 un->un_sonoma_failure_count++; 18050 if (un->un_sonoma_failure_count > 1) { 18051 return; 18052 } 18053 } 18054 18055 if (SD_FM_LOG(un) == SD_FM_LOG_NSUP || 18056 ((scsi_sense_key(sensep) == KEY_RECOVERABLE_ERROR) && 18057 (pktp->pkt_resid == 0))) { 18058 scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity, 18059 request_blkno, err_blkno, scsi_cmds, 18060 (struct scsi_extended_sense *)sensep, 18061 un->un_additional_codes, NULL); 18062 } 18063 } 18064 18065 /* 18066 * Function: sd_sense_key_no_sense 18067 * 18068 * Description: Recovery action when sense data was not received. 18069 * 18070 * Context: May be called from interrupt context 18071 */ 18072 18073 static void 18074 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp, 18075 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18076 { 18077 struct sd_sense_info si; 18078 18079 ASSERT(un != NULL); 18080 ASSERT(mutex_owned(SD_MUTEX(un))); 18081 ASSERT(bp != NULL); 18082 ASSERT(xp != NULL); 18083 ASSERT(pktp != NULL); 18084 18085 si.ssi_severity = SCSI_ERR_FATAL; 18086 si.ssi_pfa_flag = FALSE; 18087 18088 SD_UPDATE_ERRSTATS(un, sd_softerrs); 18089 18090 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 18091 &si, EIO, (clock_t)0, NULL); 18092 } 18093 18094 18095 /* 18096 * Function: sd_sense_key_recoverable_error 18097 * 18098 * Description: Recovery actions for a SCSI "Recovered Error" sense key. 18099 * 18100 * Context: May be called from interrupt context 18101 */ 18102 18103 static void 18104 sd_sense_key_recoverable_error(struct sd_lun *un, 18105 uint8_t *sense_datap, 18106 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 18107 { 18108 struct sd_sense_info si; 18109 uint8_t asc = scsi_sense_asc(sense_datap); 18110 18111 ASSERT(un != NULL); 18112 ASSERT(mutex_owned(SD_MUTEX(un))); 18113 ASSERT(bp != NULL); 18114 ASSERT(xp != NULL); 18115 ASSERT(pktp != NULL); 18116 18117 /* 18118 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED 18119 */ 18120 if ((asc == 0x5D) && (sd_report_pfa != 0)) { 18121 SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err); 18122 si.ssi_severity = SCSI_ERR_INFO; 18123 si.ssi_pfa_flag = TRUE; 18124 } else { 18125 SD_UPDATE_ERRSTATS(un, sd_softerrs); 18126 SD_UPDATE_ERRSTATS(un, sd_rq_recov_err); 18127 si.ssi_severity = SCSI_ERR_RECOVERED; 18128 si.ssi_pfa_flag = FALSE; 18129 } 18130 18131 if (pktp->pkt_resid == 0) { 18132 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 18133 sd_return_command(un, bp); 18134 return; 18135 } 18136 18137 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 18138 &si, EIO, (clock_t)0, NULL); 18139 } 18140 18141 18142 18143 18144 /* 18145 * Function: sd_sense_key_not_ready 18146 * 18147 * Description: Recovery actions for a SCSI "Not Ready" sense key. 18148 * 18149 * Context: May be called from interrupt context 18150 */ 18151 18152 static void 18153 sd_sense_key_not_ready(struct sd_lun *un, 18154 uint8_t *sense_datap, 18155 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 18156 { 18157 struct sd_sense_info si; 18158 uint8_t asc = scsi_sense_asc(sense_datap); 18159 uint8_t ascq = scsi_sense_ascq(sense_datap); 18160 18161 ASSERT(un != NULL); 18162 ASSERT(mutex_owned(SD_MUTEX(un))); 18163 ASSERT(bp != NULL); 18164 ASSERT(xp != NULL); 18165 ASSERT(pktp != NULL); 18166 18167 si.ssi_severity = SCSI_ERR_FATAL; 18168 si.ssi_pfa_flag = FALSE; 18169 18170 /* 18171 * Update error stats after first NOT READY error. Disks may have 18172 * been powered down and may need to be restarted. For CDROMs, 18173 * report NOT READY errors only if media is present. 18174 */ 18175 if ((ISCD(un) && (asc == 0x3A)) || 18176 (xp->xb_nr_retry_count > 0)) { 18177 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18178 SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err); 18179 } 18180 18181 /* 18182 * Just fail if the "not ready" retry limit has been reached. 18183 */ 18184 if (xp->xb_nr_retry_count >= un->un_notready_retry_count) { 18185 /* Special check for error message printing for removables. */ 18186 if (un->un_f_has_removable_media && (asc == 0x04) && 18187 (ascq >= 0x04)) { 18188 si.ssi_severity = SCSI_ERR_ALL; 18189 } 18190 goto fail_command; 18191 } 18192 18193 /* 18194 * Check the ASC and ASCQ in the sense data as needed, to determine 18195 * what to do. 18196 */ 18197 switch (asc) { 18198 case 0x04: /* LOGICAL UNIT NOT READY */ 18199 /* 18200 * disk drives that don't spin up result in a very long delay 18201 * in format without warning messages. We will log a message 18202 * if the error level is set to verbose. 18203 */ 18204 if (sd_error_level < SCSI_ERR_RETRYABLE) { 18205 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18206 "logical unit not ready, resetting disk\n"); 18207 } 18208 18209 /* 18210 * There are different requirements for CDROMs and disks for 18211 * the number of retries. If a CD-ROM is giving this, it is 18212 * probably reading TOC and is in the process of getting 18213 * ready, so we should keep on trying for a long time to make 18214 * sure that all types of media are taken in account (for 18215 * some media the drive takes a long time to read TOC). For 18216 * disks we do not want to retry this too many times as this 18217 * can cause a long hang in format when the drive refuses to 18218 * spin up (a very common failure). 18219 */ 18220 switch (ascq) { 18221 case 0x00: /* LUN NOT READY, CAUSE NOT REPORTABLE */ 18222 /* 18223 * Disk drives frequently refuse to spin up which 18224 * results in a very long hang in format without 18225 * warning messages. 18226 * 18227 * Note: This code preserves the legacy behavior of 18228 * comparing xb_nr_retry_count against zero for fibre 18229 * channel targets instead of comparing against the 18230 * un_reset_retry_count value. The reason for this 18231 * discrepancy has been so utterly lost beneath the 18232 * Sands of Time that even Indiana Jones could not 18233 * find it. 18234 */ 18235 if (un->un_f_is_fibre == TRUE) { 18236 if (((sd_level_mask & SD_LOGMASK_DIAG) || 18237 (xp->xb_nr_retry_count > 0)) && 18238 (un->un_startstop_timeid == NULL)) { 18239 scsi_log(SD_DEVINFO(un), sd_label, 18240 CE_WARN, "logical unit not ready, " 18241 "resetting disk\n"); 18242 sd_reset_target(un, pktp); 18243 } 18244 } else { 18245 if (((sd_level_mask & SD_LOGMASK_DIAG) || 18246 (xp->xb_nr_retry_count > 18247 un->un_reset_retry_count)) && 18248 (un->un_startstop_timeid == NULL)) { 18249 scsi_log(SD_DEVINFO(un), sd_label, 18250 CE_WARN, "logical unit not ready, " 18251 "resetting disk\n"); 18252 sd_reset_target(un, pktp); 18253 } 18254 } 18255 break; 18256 18257 case 0x01: /* LUN IS IN PROCESS OF BECOMING READY */ 18258 /* 18259 * If the target is in the process of becoming 18260 * ready, just proceed with the retry. This can 18261 * happen with CD-ROMs that take a long time to 18262 * read TOC after a power cycle or reset. 18263 */ 18264 goto do_retry; 18265 18266 case 0x02: /* LUN NOT READY, INITITIALIZING CMD REQUIRED */ 18267 break; 18268 18269 case 0x03: /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */ 18270 /* 18271 * Retries cannot help here so just fail right away. 18272 */ 18273 goto fail_command; 18274 18275 case 0x88: 18276 /* 18277 * Vendor-unique code for T3/T4: it indicates a 18278 * path problem in a mutipathed config, but as far as 18279 * the target driver is concerned it equates to a fatal 18280 * error, so we should just fail the command right away 18281 * (without printing anything to the console). If this 18282 * is not a T3/T4, fall thru to the default recovery 18283 * action. 18284 * T3/T4 is FC only, don't need to check is_fibre 18285 */ 18286 if (SD_IS_T3(un) || SD_IS_T4(un)) { 18287 sd_return_failed_command(un, bp, EIO); 18288 return; 18289 } 18290 /* FALLTHRU */ 18291 18292 case 0x04: /* LUN NOT READY, FORMAT IN PROGRESS */ 18293 case 0x05: /* LUN NOT READY, REBUILD IN PROGRESS */ 18294 case 0x06: /* LUN NOT READY, RECALCULATION IN PROGRESS */ 18295 case 0x07: /* LUN NOT READY, OPERATION IN PROGRESS */ 18296 case 0x08: /* LUN NOT READY, LONG WRITE IN PROGRESS */ 18297 default: /* Possible future codes in SCSI spec? */ 18298 /* 18299 * For removable-media devices, do not retry if 18300 * ASCQ > 2 as these result mostly from USCSI commands 18301 * on MMC devices issued to check status of an 18302 * operation initiated in immediate mode. Also for 18303 * ASCQ >= 4 do not print console messages as these 18304 * mainly represent a user-initiated operation 18305 * instead of a system failure. 18306 */ 18307 if (un->un_f_has_removable_media) { 18308 si.ssi_severity = SCSI_ERR_ALL; 18309 goto fail_command; 18310 } 18311 break; 18312 } 18313 18314 /* 18315 * As part of our recovery attempt for the NOT READY 18316 * condition, we issue a START STOP UNIT command. However 18317 * we want to wait for a short delay before attempting this 18318 * as there may still be more commands coming back from the 18319 * target with the check condition. To do this we use 18320 * timeout(9F) to call sd_start_stop_unit_callback() after 18321 * the delay interval expires. (sd_start_stop_unit_callback() 18322 * dispatches sd_start_stop_unit_task(), which will issue 18323 * the actual START STOP UNIT command. The delay interval 18324 * is one-half of the delay that we will use to retry the 18325 * command that generated the NOT READY condition. 18326 * 18327 * Note that we could just dispatch sd_start_stop_unit_task() 18328 * from here and allow it to sleep for the delay interval, 18329 * but then we would be tying up the taskq thread 18330 * uncesessarily for the duration of the delay. 18331 * 18332 * Do not issue the START STOP UNIT if the current command 18333 * is already a START STOP UNIT. 18334 */ 18335 if (pktp->pkt_cdbp[0] == SCMD_START_STOP) { 18336 break; 18337 } 18338 18339 /* 18340 * Do not schedule the timeout if one is already pending. 18341 */ 18342 if (un->un_startstop_timeid != NULL) { 18343 SD_INFO(SD_LOG_ERROR, un, 18344 "sd_sense_key_not_ready: restart already issued to" 18345 " %s%d\n", ddi_driver_name(SD_DEVINFO(un)), 18346 ddi_get_instance(SD_DEVINFO(un))); 18347 break; 18348 } 18349 18350 /* 18351 * Schedule the START STOP UNIT command, then queue the command 18352 * for a retry. 18353 * 18354 * Note: A timeout is not scheduled for this retry because we 18355 * want the retry to be serial with the START_STOP_UNIT. The 18356 * retry will be started when the START_STOP_UNIT is completed 18357 * in sd_start_stop_unit_task. 18358 */ 18359 un->un_startstop_timeid = timeout(sd_start_stop_unit_callback, 18360 un, un->un_busy_timeout / 2); 18361 xp->xb_nr_retry_count++; 18362 sd_set_retry_bp(un, bp, 0, kstat_waitq_enter); 18363 return; 18364 18365 case 0x05: /* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */ 18366 if (sd_error_level < SCSI_ERR_RETRYABLE) { 18367 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18368 "unit does not respond to selection\n"); 18369 } 18370 break; 18371 18372 case 0x3A: /* MEDIUM NOT PRESENT */ 18373 if (sd_error_level >= SCSI_ERR_FATAL) { 18374 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18375 "Caddy not inserted in drive\n"); 18376 } 18377 18378 sr_ejected(un); 18379 un->un_mediastate = DKIO_EJECTED; 18380 /* The state has changed, inform the media watch routines */ 18381 cv_broadcast(&un->un_state_cv); 18382 /* Just fail if no media is present in the drive. */ 18383 goto fail_command; 18384 18385 default: 18386 if (sd_error_level < SCSI_ERR_RETRYABLE) { 18387 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, 18388 "Unit not Ready. Additional sense code 0x%x\n", 18389 asc); 18390 } 18391 break; 18392 } 18393 18394 do_retry: 18395 18396 /* 18397 * Retry the command, as some targets may report NOT READY for 18398 * several seconds after being reset. 18399 */ 18400 xp->xb_nr_retry_count++; 18401 si.ssi_severity = SCSI_ERR_RETRYABLE; 18402 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg, 18403 &si, EIO, un->un_busy_timeout, NULL); 18404 18405 return; 18406 18407 fail_command: 18408 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 18409 sd_return_failed_command(un, bp, EIO); 18410 } 18411 18412 18413 18414 /* 18415 * Function: sd_sense_key_medium_or_hardware_error 18416 * 18417 * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error" 18418 * sense key. 18419 * 18420 * Context: May be called from interrupt context 18421 */ 18422 18423 static void 18424 sd_sense_key_medium_or_hardware_error(struct sd_lun *un, 18425 uint8_t *sense_datap, 18426 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 18427 { 18428 struct sd_sense_info si; 18429 uint8_t sense_key = scsi_sense_key(sense_datap); 18430 uint8_t asc = scsi_sense_asc(sense_datap); 18431 18432 ASSERT(un != NULL); 18433 ASSERT(mutex_owned(SD_MUTEX(un))); 18434 ASSERT(bp != NULL); 18435 ASSERT(xp != NULL); 18436 ASSERT(pktp != NULL); 18437 18438 si.ssi_severity = SCSI_ERR_FATAL; 18439 si.ssi_pfa_flag = FALSE; 18440 18441 if (sense_key == KEY_MEDIUM_ERROR) { 18442 SD_UPDATE_ERRSTATS(un, sd_rq_media_err); 18443 } 18444 18445 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18446 18447 if ((un->un_reset_retry_count != 0) && 18448 (xp->xb_retry_count == un->un_reset_retry_count)) { 18449 mutex_exit(SD_MUTEX(un)); 18450 /* Do NOT do a RESET_ALL here: too intrusive. (4112858) */ 18451 if (un->un_f_allow_bus_device_reset == TRUE) { 18452 18453 boolean_t try_resetting_target = B_TRUE; 18454 18455 /* 18456 * We need to be able to handle specific ASC when we are 18457 * handling a KEY_HARDWARE_ERROR. In particular 18458 * taking the default action of resetting the target may 18459 * not be the appropriate way to attempt recovery. 18460 * Resetting a target because of a single LUN failure 18461 * victimizes all LUNs on that target. 18462 * 18463 * This is true for the LSI arrays, if an LSI 18464 * array controller returns an ASC of 0x84 (LUN Dead) we 18465 * should trust it. 18466 */ 18467 18468 if (sense_key == KEY_HARDWARE_ERROR) { 18469 switch (asc) { 18470 case 0x84: 18471 if (SD_IS_LSI(un)) { 18472 try_resetting_target = B_FALSE; 18473 } 18474 break; 18475 default: 18476 break; 18477 } 18478 } 18479 18480 if (try_resetting_target == B_TRUE) { 18481 int reset_retval = 0; 18482 if (un->un_f_lun_reset_enabled == TRUE) { 18483 SD_TRACE(SD_LOG_IO_CORE, un, 18484 "sd_sense_key_medium_or_hardware_" 18485 "error: issuing RESET_LUN\n"); 18486 reset_retval = 18487 scsi_reset(SD_ADDRESS(un), 18488 RESET_LUN); 18489 } 18490 if (reset_retval == 0) { 18491 SD_TRACE(SD_LOG_IO_CORE, un, 18492 "sd_sense_key_medium_or_hardware_" 18493 "error: issuing RESET_TARGET\n"); 18494 (void) scsi_reset(SD_ADDRESS(un), 18495 RESET_TARGET); 18496 } 18497 } 18498 } 18499 mutex_enter(SD_MUTEX(un)); 18500 } 18501 18502 /* 18503 * This really ought to be a fatal error, but we will retry anyway 18504 * as some drives report this as a spurious error. 18505 */ 18506 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 18507 &si, EIO, (clock_t)0, NULL); 18508 } 18509 18510 18511 18512 /* 18513 * Function: sd_sense_key_illegal_request 18514 * 18515 * Description: Recovery actions for a SCSI "Illegal Request" sense key. 18516 * 18517 * Context: May be called from interrupt context 18518 */ 18519 18520 static void 18521 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp, 18522 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18523 { 18524 struct sd_sense_info si; 18525 18526 ASSERT(un != NULL); 18527 ASSERT(mutex_owned(SD_MUTEX(un))); 18528 ASSERT(bp != NULL); 18529 ASSERT(xp != NULL); 18530 ASSERT(pktp != NULL); 18531 18532 SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err); 18533 18534 si.ssi_severity = SCSI_ERR_INFO; 18535 si.ssi_pfa_flag = FALSE; 18536 18537 /* Pointless to retry if the target thinks it's an illegal request */ 18538 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 18539 sd_return_failed_command(un, bp, EIO); 18540 } 18541 18542 18543 18544 18545 /* 18546 * Function: sd_sense_key_unit_attention 18547 * 18548 * Description: Recovery actions for a SCSI "Unit Attention" sense key. 18549 * 18550 * Context: May be called from interrupt context 18551 */ 18552 18553 static void 18554 sd_sense_key_unit_attention(struct sd_lun *un, 18555 uint8_t *sense_datap, 18556 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 18557 { 18558 /* 18559 * For UNIT ATTENTION we allow retries for one minute. Devices 18560 * like Sonoma can return UNIT ATTENTION close to a minute 18561 * under certain conditions. 18562 */ 18563 int retry_check_flag = SD_RETRIES_UA; 18564 boolean_t kstat_updated = B_FALSE; 18565 struct sd_sense_info si; 18566 uint8_t asc = scsi_sense_asc(sense_datap); 18567 uint8_t ascq = scsi_sense_ascq(sense_datap); 18568 18569 ASSERT(un != NULL); 18570 ASSERT(mutex_owned(SD_MUTEX(un))); 18571 ASSERT(bp != NULL); 18572 ASSERT(xp != NULL); 18573 ASSERT(pktp != NULL); 18574 18575 si.ssi_severity = SCSI_ERR_INFO; 18576 si.ssi_pfa_flag = FALSE; 18577 18578 18579 switch (asc) { 18580 case 0x5D: /* FAILURE PREDICTION THRESHOLD EXCEEDED */ 18581 if (sd_report_pfa != 0) { 18582 SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err); 18583 si.ssi_pfa_flag = TRUE; 18584 retry_check_flag = SD_RETRIES_STANDARD; 18585 goto do_retry; 18586 } 18587 18588 break; 18589 18590 case 0x29: /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */ 18591 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 18592 un->un_resvd_status |= 18593 (SD_LOST_RESERVE | SD_WANT_RESERVE); 18594 } 18595 #ifdef _LP64 18596 if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) { 18597 if (taskq_dispatch(sd_tq, sd_reenable_dsense_task, 18598 un, KM_NOSLEEP) == 0) { 18599 /* 18600 * If we can't dispatch the task we'll just 18601 * live without descriptor sense. We can 18602 * try again on the next "unit attention" 18603 */ 18604 SD_ERROR(SD_LOG_ERROR, un, 18605 "sd_sense_key_unit_attention: " 18606 "Could not dispatch " 18607 "sd_reenable_dsense_task\n"); 18608 } 18609 } 18610 #endif /* _LP64 */ 18611 /* FALLTHRU */ 18612 18613 case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */ 18614 if (!un->un_f_has_removable_media) { 18615 break; 18616 } 18617 18618 /* 18619 * When we get a unit attention from a removable-media device, 18620 * it may be in a state that will take a long time to recover 18621 * (e.g., from a reset). Since we are executing in interrupt 18622 * context here, we cannot wait around for the device to come 18623 * back. So hand this command off to sd_media_change_task() 18624 * for deferred processing under taskq thread context. (Note 18625 * that the command still may be failed if a problem is 18626 * encountered at a later time.) 18627 */ 18628 if (taskq_dispatch(sd_tq, sd_media_change_task, pktp, 18629 KM_NOSLEEP) == 0) { 18630 /* 18631 * Cannot dispatch the request so fail the command. 18632 */ 18633 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18634 SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err); 18635 si.ssi_severity = SCSI_ERR_FATAL; 18636 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 18637 sd_return_failed_command(un, bp, EIO); 18638 } 18639 18640 /* 18641 * If failed to dispatch sd_media_change_task(), we already 18642 * updated kstat. If succeed to dispatch sd_media_change_task(), 18643 * we should update kstat later if it encounters an error. So, 18644 * we update kstat_updated flag here. 18645 */ 18646 kstat_updated = B_TRUE; 18647 18648 /* 18649 * Either the command has been successfully dispatched to a 18650 * task Q for retrying, or the dispatch failed. In either case 18651 * do NOT retry again by calling sd_retry_command. This sets up 18652 * two retries of the same command and when one completes and 18653 * frees the resources the other will access freed memory, 18654 * a bad thing. 18655 */ 18656 return; 18657 18658 default: 18659 break; 18660 } 18661 18662 /* 18663 * ASC ASCQ 18664 * 2A 09 Capacity data has changed 18665 * 2A 01 Mode parameters changed 18666 * 3F 0E Reported luns data has changed 18667 * Arrays that support logical unit expansion should report 18668 * capacity changes(2Ah/09). Mode parameters changed and 18669 * reported luns data has changed are the approximation. 18670 */ 18671 if (((asc == 0x2a) && (ascq == 0x09)) || 18672 ((asc == 0x2a) && (ascq == 0x01)) || 18673 ((asc == 0x3f) && (ascq == 0x0e))) { 18674 if (taskq_dispatch(sd_tq, sd_target_change_task, un, 18675 KM_NOSLEEP) == 0) { 18676 SD_ERROR(SD_LOG_ERROR, un, 18677 "sd_sense_key_unit_attention: " 18678 "Could not dispatch sd_target_change_task\n"); 18679 } 18680 } 18681 18682 /* 18683 * Update kstat if we haven't done that. 18684 */ 18685 if (!kstat_updated) { 18686 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18687 SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err); 18688 } 18689 18690 do_retry: 18691 sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si, 18692 EIO, SD_UA_RETRY_DELAY, NULL); 18693 } 18694 18695 18696 18697 /* 18698 * Function: sd_sense_key_fail_command 18699 * 18700 * Description: Use to fail a command when we don't like the sense key that 18701 * was returned. 18702 * 18703 * Context: May be called from interrupt context 18704 */ 18705 18706 static void 18707 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp, 18708 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18709 { 18710 struct sd_sense_info si; 18711 18712 ASSERT(un != NULL); 18713 ASSERT(mutex_owned(SD_MUTEX(un))); 18714 ASSERT(bp != NULL); 18715 ASSERT(xp != NULL); 18716 ASSERT(pktp != NULL); 18717 18718 si.ssi_severity = SCSI_ERR_FATAL; 18719 si.ssi_pfa_flag = FALSE; 18720 18721 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 18722 sd_return_failed_command(un, bp, EIO); 18723 } 18724 18725 18726 18727 /* 18728 * Function: sd_sense_key_blank_check 18729 * 18730 * Description: Recovery actions for a SCSI "Blank Check" sense key. 18731 * Has no monetary connotation. 18732 * 18733 * Context: May be called from interrupt context 18734 */ 18735 18736 static void 18737 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp, 18738 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18739 { 18740 struct sd_sense_info si; 18741 18742 ASSERT(un != NULL); 18743 ASSERT(mutex_owned(SD_MUTEX(un))); 18744 ASSERT(bp != NULL); 18745 ASSERT(xp != NULL); 18746 ASSERT(pktp != NULL); 18747 18748 /* 18749 * Blank check is not fatal for removable devices, therefore 18750 * it does not require a console message. 18751 */ 18752 si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL : 18753 SCSI_ERR_FATAL; 18754 si.ssi_pfa_flag = FALSE; 18755 18756 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 18757 sd_return_failed_command(un, bp, EIO); 18758 } 18759 18760 18761 18762 18763 /* 18764 * Function: sd_sense_key_aborted_command 18765 * 18766 * Description: Recovery actions for a SCSI "Aborted Command" sense key. 18767 * 18768 * Context: May be called from interrupt context 18769 */ 18770 18771 static void 18772 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp, 18773 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18774 { 18775 struct sd_sense_info si; 18776 18777 ASSERT(un != NULL); 18778 ASSERT(mutex_owned(SD_MUTEX(un))); 18779 ASSERT(bp != NULL); 18780 ASSERT(xp != NULL); 18781 ASSERT(pktp != NULL); 18782 18783 si.ssi_severity = SCSI_ERR_FATAL; 18784 si.ssi_pfa_flag = FALSE; 18785 18786 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18787 18788 /* 18789 * This really ought to be a fatal error, but we will retry anyway 18790 * as some drives report this as a spurious error. 18791 */ 18792 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 18793 &si, EIO, drv_usectohz(100000), NULL); 18794 } 18795 18796 18797 18798 /* 18799 * Function: sd_sense_key_default 18800 * 18801 * Description: Default recovery action for several SCSI sense keys (basically 18802 * attempts a retry). 18803 * 18804 * Context: May be called from interrupt context 18805 */ 18806 18807 static void 18808 sd_sense_key_default(struct sd_lun *un, 18809 uint8_t *sense_datap, 18810 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 18811 { 18812 struct sd_sense_info si; 18813 uint8_t sense_key = scsi_sense_key(sense_datap); 18814 18815 ASSERT(un != NULL); 18816 ASSERT(mutex_owned(SD_MUTEX(un))); 18817 ASSERT(bp != NULL); 18818 ASSERT(xp != NULL); 18819 ASSERT(pktp != NULL); 18820 18821 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18822 18823 /* 18824 * Undecoded sense key. Attempt retries and hope that will fix 18825 * the problem. Otherwise, we're dead. 18826 */ 18827 if ((pktp->pkt_flags & FLAG_SILENT) == 0) { 18828 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18829 "Unhandled Sense Key '%s'\n", sense_keys[sense_key]); 18830 } 18831 18832 si.ssi_severity = SCSI_ERR_FATAL; 18833 si.ssi_pfa_flag = FALSE; 18834 18835 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 18836 &si, EIO, (clock_t)0, NULL); 18837 } 18838 18839 18840 18841 /* 18842 * Function: sd_print_retry_msg 18843 * 18844 * Description: Print a message indicating the retry action being taken. 18845 * 18846 * Arguments: un - ptr to associated softstate 18847 * bp - ptr to buf(9S) for the command 18848 * arg - not used. 18849 * flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 18850 * or SD_NO_RETRY_ISSUED 18851 * 18852 * Context: May be called from interrupt context 18853 */ 18854 /* ARGSUSED */ 18855 static void 18856 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag) 18857 { 18858 struct sd_xbuf *xp; 18859 struct scsi_pkt *pktp; 18860 char *reasonp; 18861 char *msgp; 18862 18863 ASSERT(un != NULL); 18864 ASSERT(mutex_owned(SD_MUTEX(un))); 18865 ASSERT(bp != NULL); 18866 pktp = SD_GET_PKTP(bp); 18867 ASSERT(pktp != NULL); 18868 xp = SD_GET_XBUF(bp); 18869 ASSERT(xp != NULL); 18870 18871 ASSERT(!mutex_owned(&un->un_pm_mutex)); 18872 mutex_enter(&un->un_pm_mutex); 18873 if ((un->un_state == SD_STATE_SUSPENDED) || 18874 (SD_DEVICE_IS_IN_LOW_POWER(un)) || 18875 (pktp->pkt_flags & FLAG_SILENT)) { 18876 mutex_exit(&un->un_pm_mutex); 18877 goto update_pkt_reason; 18878 } 18879 mutex_exit(&un->un_pm_mutex); 18880 18881 /* 18882 * Suppress messages if they are all the same pkt_reason; with 18883 * TQ, many (up to 256) are returned with the same pkt_reason. 18884 * If we are in panic, then suppress the retry messages. 18885 */ 18886 switch (flag) { 18887 case SD_NO_RETRY_ISSUED: 18888 msgp = "giving up"; 18889 break; 18890 case SD_IMMEDIATE_RETRY_ISSUED: 18891 case SD_DELAYED_RETRY_ISSUED: 18892 if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) || 18893 ((pktp->pkt_reason == un->un_last_pkt_reason) && 18894 (sd_error_level != SCSI_ERR_ALL))) { 18895 return; 18896 } 18897 msgp = "retrying command"; 18898 break; 18899 default: 18900 goto update_pkt_reason; 18901 } 18902 18903 reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" : 18904 scsi_rname(pktp->pkt_reason)); 18905 18906 if (SD_FM_LOG(un) == SD_FM_LOG_NSUP) { 18907 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18908 "SCSI transport failed: reason '%s': %s\n", reasonp, msgp); 18909 } 18910 18911 update_pkt_reason: 18912 /* 18913 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason. 18914 * This is to prevent multiple console messages for the same failure 18915 * condition. Note that un->un_last_pkt_reason is NOT restored if & 18916 * when the command is retried successfully because there still may be 18917 * more commands coming back with the same value of pktp->pkt_reason. 18918 */ 18919 if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) { 18920 un->un_last_pkt_reason = pktp->pkt_reason; 18921 } 18922 } 18923 18924 18925 /* 18926 * Function: sd_print_cmd_incomplete_msg 18927 * 18928 * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason. 18929 * 18930 * Arguments: un - ptr to associated softstate 18931 * bp - ptr to buf(9S) for the command 18932 * arg - passed to sd_print_retry_msg() 18933 * code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 18934 * or SD_NO_RETRY_ISSUED 18935 * 18936 * Context: May be called from interrupt context 18937 */ 18938 18939 static void 18940 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, 18941 int code) 18942 { 18943 dev_info_t *dip; 18944 18945 ASSERT(un != NULL); 18946 ASSERT(mutex_owned(SD_MUTEX(un))); 18947 ASSERT(bp != NULL); 18948 18949 switch (code) { 18950 case SD_NO_RETRY_ISSUED: 18951 /* Command was failed. Someone turned off this target? */ 18952 if (un->un_state != SD_STATE_OFFLINE) { 18953 /* 18954 * Suppress message if we are detaching and 18955 * device has been disconnected 18956 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation 18957 * private interface and not part of the DDI 18958 */ 18959 dip = un->un_sd->sd_dev; 18960 if (!(DEVI_IS_DETACHING(dip) && 18961 DEVI_IS_DEVICE_REMOVED(dip))) { 18962 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18963 "disk not responding to selection\n"); 18964 } 18965 New_state(un, SD_STATE_OFFLINE); 18966 } 18967 break; 18968 18969 case SD_DELAYED_RETRY_ISSUED: 18970 case SD_IMMEDIATE_RETRY_ISSUED: 18971 default: 18972 /* Command was successfully queued for retry */ 18973 sd_print_retry_msg(un, bp, arg, code); 18974 break; 18975 } 18976 } 18977 18978 18979 /* 18980 * Function: sd_pkt_reason_cmd_incomplete 18981 * 18982 * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason. 18983 * 18984 * Context: May be called from interrupt context 18985 */ 18986 18987 static void 18988 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp, 18989 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18990 { 18991 int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE; 18992 18993 ASSERT(un != NULL); 18994 ASSERT(mutex_owned(SD_MUTEX(un))); 18995 ASSERT(bp != NULL); 18996 ASSERT(xp != NULL); 18997 ASSERT(pktp != NULL); 18998 18999 /* Do not do a reset if selection did not complete */ 19000 /* Note: Should this not just check the bit? */ 19001 if (pktp->pkt_state != STATE_GOT_BUS) { 19002 SD_UPDATE_ERRSTATS(un, sd_transerrs); 19003 sd_reset_target(un, pktp); 19004 } 19005 19006 /* 19007 * If the target was not successfully selected, then set 19008 * SD_RETRIES_FAILFAST to indicate that we lost communication 19009 * with the target, and further retries and/or commands are 19010 * likely to take a long time. 19011 */ 19012 if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) { 19013 flag |= SD_RETRIES_FAILFAST; 19014 } 19015 19016 SD_UPDATE_RESERVATION_STATUS(un, pktp); 19017 19018 sd_retry_command(un, bp, flag, 19019 sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 19020 } 19021 19022 19023 19024 /* 19025 * Function: sd_pkt_reason_cmd_tran_err 19026 * 19027 * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason. 19028 * 19029 * Context: May be called from interrupt context 19030 */ 19031 19032 static void 19033 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp, 19034 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19035 { 19036 ASSERT(un != NULL); 19037 ASSERT(mutex_owned(SD_MUTEX(un))); 19038 ASSERT(bp != NULL); 19039 ASSERT(xp != NULL); 19040 ASSERT(pktp != NULL); 19041 19042 /* 19043 * Do not reset if we got a parity error, or if 19044 * selection did not complete. 19045 */ 19046 SD_UPDATE_ERRSTATS(un, sd_harderrs); 19047 /* Note: Should this not just check the bit for pkt_state? */ 19048 if (((pktp->pkt_statistics & STAT_PERR) == 0) && 19049 (pktp->pkt_state != STATE_GOT_BUS)) { 19050 SD_UPDATE_ERRSTATS(un, sd_transerrs); 19051 sd_reset_target(un, pktp); 19052 } 19053 19054 SD_UPDATE_RESERVATION_STATUS(un, pktp); 19055 19056 sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE), 19057 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 19058 } 19059 19060 19061 19062 /* 19063 * Function: sd_pkt_reason_cmd_reset 19064 * 19065 * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason. 19066 * 19067 * Context: May be called from interrupt context 19068 */ 19069 19070 static void 19071 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp, 19072 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19073 { 19074 ASSERT(un != NULL); 19075 ASSERT(mutex_owned(SD_MUTEX(un))); 19076 ASSERT(bp != NULL); 19077 ASSERT(xp != NULL); 19078 ASSERT(pktp != NULL); 19079 19080 /* The target may still be running the command, so try to reset. */ 19081 SD_UPDATE_ERRSTATS(un, sd_transerrs); 19082 sd_reset_target(un, pktp); 19083 19084 SD_UPDATE_RESERVATION_STATUS(un, pktp); 19085 19086 /* 19087 * If pkt_reason is CMD_RESET chances are that this pkt got 19088 * reset because another target on this bus caused it. The target 19089 * that caused it should get CMD_TIMEOUT with pkt_statistics 19090 * of STAT_TIMEOUT/STAT_DEV_RESET. 19091 */ 19092 19093 sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE), 19094 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 19095 } 19096 19097 19098 19099 19100 /* 19101 * Function: sd_pkt_reason_cmd_aborted 19102 * 19103 * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason. 19104 * 19105 * Context: May be called from interrupt context 19106 */ 19107 19108 static void 19109 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp, 19110 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19111 { 19112 ASSERT(un != NULL); 19113 ASSERT(mutex_owned(SD_MUTEX(un))); 19114 ASSERT(bp != NULL); 19115 ASSERT(xp != NULL); 19116 ASSERT(pktp != NULL); 19117 19118 /* The target may still be running the command, so try to reset. */ 19119 SD_UPDATE_ERRSTATS(un, sd_transerrs); 19120 sd_reset_target(un, pktp); 19121 19122 SD_UPDATE_RESERVATION_STATUS(un, pktp); 19123 19124 /* 19125 * If pkt_reason is CMD_ABORTED chances are that this pkt got 19126 * aborted because another target on this bus caused it. The target 19127 * that caused it should get CMD_TIMEOUT with pkt_statistics 19128 * of STAT_TIMEOUT/STAT_DEV_RESET. 19129 */ 19130 19131 sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE), 19132 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 19133 } 19134 19135 19136 19137 /* 19138 * Function: sd_pkt_reason_cmd_timeout 19139 * 19140 * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason. 19141 * 19142 * Context: May be called from interrupt context 19143 */ 19144 19145 static void 19146 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp, 19147 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19148 { 19149 ASSERT(un != NULL); 19150 ASSERT(mutex_owned(SD_MUTEX(un))); 19151 ASSERT(bp != NULL); 19152 ASSERT(xp != NULL); 19153 ASSERT(pktp != NULL); 19154 19155 19156 SD_UPDATE_ERRSTATS(un, sd_transerrs); 19157 sd_reset_target(un, pktp); 19158 19159 SD_UPDATE_RESERVATION_STATUS(un, pktp); 19160 19161 /* 19162 * A command timeout indicates that we could not establish 19163 * communication with the target, so set SD_RETRIES_FAILFAST 19164 * as further retries/commands are likely to take a long time. 19165 */ 19166 sd_retry_command(un, bp, 19167 (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST), 19168 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 19169 } 19170 19171 19172 19173 /* 19174 * Function: sd_pkt_reason_cmd_unx_bus_free 19175 * 19176 * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason. 19177 * 19178 * Context: May be called from interrupt context 19179 */ 19180 19181 static void 19182 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp, 19183 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19184 { 19185 void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code); 19186 19187 ASSERT(un != NULL); 19188 ASSERT(mutex_owned(SD_MUTEX(un))); 19189 ASSERT(bp != NULL); 19190 ASSERT(xp != NULL); 19191 ASSERT(pktp != NULL); 19192 19193 SD_UPDATE_ERRSTATS(un, sd_harderrs); 19194 SD_UPDATE_RESERVATION_STATUS(un, pktp); 19195 19196 funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ? 19197 sd_print_retry_msg : NULL; 19198 19199 sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE), 19200 funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 19201 } 19202 19203 19204 /* 19205 * Function: sd_pkt_reason_cmd_tag_reject 19206 * 19207 * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason. 19208 * 19209 * Context: May be called from interrupt context 19210 */ 19211 19212 static void 19213 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp, 19214 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19215 { 19216 ASSERT(un != NULL); 19217 ASSERT(mutex_owned(SD_MUTEX(un))); 19218 ASSERT(bp != NULL); 19219 ASSERT(xp != NULL); 19220 ASSERT(pktp != NULL); 19221 19222 SD_UPDATE_ERRSTATS(un, sd_harderrs); 19223 pktp->pkt_flags = 0; 19224 un->un_tagflags = 0; 19225 if (un->un_f_opt_queueing == TRUE) { 19226 un->un_throttle = min(un->un_throttle, 3); 19227 } else { 19228 un->un_throttle = 1; 19229 } 19230 mutex_exit(SD_MUTEX(un)); 19231 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 19232 mutex_enter(SD_MUTEX(un)); 19233 19234 SD_UPDATE_RESERVATION_STATUS(un, pktp); 19235 19236 /* Legacy behavior not to check retry counts here. */ 19237 sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE), 19238 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 19239 } 19240 19241 19242 /* 19243 * Function: sd_pkt_reason_default 19244 * 19245 * Description: Default recovery actions for SCSA pkt_reason values that 19246 * do not have more explicit recovery actions. 19247 * 19248 * Context: May be called from interrupt context 19249 */ 19250 19251 static void 19252 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp, 19253 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19254 { 19255 ASSERT(un != NULL); 19256 ASSERT(mutex_owned(SD_MUTEX(un))); 19257 ASSERT(bp != NULL); 19258 ASSERT(xp != NULL); 19259 ASSERT(pktp != NULL); 19260 19261 SD_UPDATE_ERRSTATS(un, sd_transerrs); 19262 sd_reset_target(un, pktp); 19263 19264 SD_UPDATE_RESERVATION_STATUS(un, pktp); 19265 19266 sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE), 19267 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 19268 } 19269 19270 19271 19272 /* 19273 * Function: sd_pkt_status_check_condition 19274 * 19275 * Description: Recovery actions for a "STATUS_CHECK" SCSI command status. 19276 * 19277 * Context: May be called from interrupt context 19278 */ 19279 19280 static void 19281 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp, 19282 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19283 { 19284 ASSERT(un != NULL); 19285 ASSERT(mutex_owned(SD_MUTEX(un))); 19286 ASSERT(bp != NULL); 19287 ASSERT(xp != NULL); 19288 ASSERT(pktp != NULL); 19289 19290 SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: " 19291 "entry: buf:0x%p xp:0x%p\n", bp, xp); 19292 19293 /* 19294 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the 19295 * command will be retried after the request sense). Otherwise, retry 19296 * the command. Note: we are issuing the request sense even though the 19297 * retry limit may have been reached for the failed command. 19298 */ 19299 if (un->un_f_arq_enabled == FALSE) { 19300 SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: " 19301 "no ARQ, sending request sense command\n"); 19302 sd_send_request_sense_command(un, bp, pktp); 19303 } else { 19304 SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: " 19305 "ARQ,retrying request sense command\n"); 19306 #if defined(__i386) || defined(__amd64) 19307 /* 19308 * The SD_RETRY_DELAY value need to be adjusted here 19309 * when SD_RETRY_DELAY change in sddef.h 19310 */ 19311 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO, 19312 un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, 19313 NULL); 19314 #else 19315 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, 19316 EIO, SD_RETRY_DELAY, NULL); 19317 #endif 19318 } 19319 19320 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n"); 19321 } 19322 19323 19324 /* 19325 * Function: sd_pkt_status_busy 19326 * 19327 * Description: Recovery actions for a "STATUS_BUSY" SCSI command status. 19328 * 19329 * Context: May be called from interrupt context 19330 */ 19331 19332 static void 19333 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 19334 struct scsi_pkt *pktp) 19335 { 19336 ASSERT(un != NULL); 19337 ASSERT(mutex_owned(SD_MUTEX(un))); 19338 ASSERT(bp != NULL); 19339 ASSERT(xp != NULL); 19340 ASSERT(pktp != NULL); 19341 19342 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19343 "sd_pkt_status_busy: entry\n"); 19344 19345 /* If retries are exhausted, just fail the command. */ 19346 if (xp->xb_retry_count >= un->un_busy_retry_count) { 19347 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 19348 "device busy too long\n"); 19349 sd_return_failed_command(un, bp, EIO); 19350 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19351 "sd_pkt_status_busy: exit\n"); 19352 return; 19353 } 19354 xp->xb_retry_count++; 19355 19356 /* 19357 * Try to reset the target. However, we do not want to perform 19358 * more than one reset if the device continues to fail. The reset 19359 * will be performed when the retry count reaches the reset 19360 * threshold. This threshold should be set such that at least 19361 * one retry is issued before the reset is performed. 19362 */ 19363 if (xp->xb_retry_count == 19364 ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) { 19365 int rval = 0; 19366 mutex_exit(SD_MUTEX(un)); 19367 if (un->un_f_allow_bus_device_reset == TRUE) { 19368 /* 19369 * First try to reset the LUN; if we cannot then 19370 * try to reset the target. 19371 */ 19372 if (un->un_f_lun_reset_enabled == TRUE) { 19373 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19374 "sd_pkt_status_busy: RESET_LUN\n"); 19375 rval = scsi_reset(SD_ADDRESS(un), RESET_LUN); 19376 } 19377 if (rval == 0) { 19378 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19379 "sd_pkt_status_busy: RESET_TARGET\n"); 19380 rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET); 19381 } 19382 } 19383 if (rval == 0) { 19384 /* 19385 * If the RESET_LUN and/or RESET_TARGET failed, 19386 * try RESET_ALL 19387 */ 19388 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19389 "sd_pkt_status_busy: RESET_ALL\n"); 19390 rval = scsi_reset(SD_ADDRESS(un), RESET_ALL); 19391 } 19392 mutex_enter(SD_MUTEX(un)); 19393 if (rval == 0) { 19394 /* 19395 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed. 19396 * At this point we give up & fail the command. 19397 */ 19398 sd_return_failed_command(un, bp, EIO); 19399 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19400 "sd_pkt_status_busy: exit (failed cmd)\n"); 19401 return; 19402 } 19403 } 19404 19405 /* 19406 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as 19407 * we have already checked the retry counts above. 19408 */ 19409 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 19410 EIO, un->un_busy_timeout, NULL); 19411 19412 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19413 "sd_pkt_status_busy: exit\n"); 19414 } 19415 19416 19417 /* 19418 * Function: sd_pkt_status_reservation_conflict 19419 * 19420 * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI 19421 * command status. 19422 * 19423 * Context: May be called from interrupt context 19424 */ 19425 19426 static void 19427 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp, 19428 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19429 { 19430 ASSERT(un != NULL); 19431 ASSERT(mutex_owned(SD_MUTEX(un))); 19432 ASSERT(bp != NULL); 19433 ASSERT(xp != NULL); 19434 ASSERT(pktp != NULL); 19435 19436 /* 19437 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation 19438 * conflict could be due to various reasons like incorrect keys, not 19439 * registered or not reserved etc. So, we return EACCES to the caller. 19440 */ 19441 if (un->un_reservation_type == SD_SCSI3_RESERVATION) { 19442 int cmd = SD_GET_PKT_OPCODE(pktp); 19443 if ((cmd == SCMD_PERSISTENT_RESERVE_IN) || 19444 (cmd == SCMD_PERSISTENT_RESERVE_OUT)) { 19445 sd_return_failed_command(un, bp, EACCES); 19446 return; 19447 } 19448 } 19449 19450 un->un_resvd_status |= SD_RESERVATION_CONFLICT; 19451 19452 if ((un->un_resvd_status & SD_FAILFAST) != 0) { 19453 if (sd_failfast_enable != 0) { 19454 /* By definition, we must panic here.... */ 19455 sd_panic_for_res_conflict(un); 19456 /*NOTREACHED*/ 19457 } 19458 SD_ERROR(SD_LOG_IO, un, 19459 "sd_handle_resv_conflict: Disk Reserved\n"); 19460 sd_return_failed_command(un, bp, EACCES); 19461 return; 19462 } 19463 19464 /* 19465 * 1147670: retry only if sd_retry_on_reservation_conflict 19466 * property is set (default is 1). Retries will not succeed 19467 * on a disk reserved by another initiator. HA systems 19468 * may reset this via sd.conf to avoid these retries. 19469 * 19470 * Note: The legacy return code for this failure is EIO, however EACCES 19471 * seems more appropriate for a reservation conflict. 19472 */ 19473 if (sd_retry_on_reservation_conflict == 0) { 19474 SD_ERROR(SD_LOG_IO, un, 19475 "sd_handle_resv_conflict: Device Reserved\n"); 19476 sd_return_failed_command(un, bp, EIO); 19477 return; 19478 } 19479 19480 /* 19481 * Retry the command if we can. 19482 * 19483 * Note: The legacy return code for this failure is EIO, however EACCES 19484 * seems more appropriate for a reservation conflict. 19485 */ 19486 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO, 19487 (clock_t)2, NULL); 19488 } 19489 19490 19491 19492 /* 19493 * Function: sd_pkt_status_qfull 19494 * 19495 * Description: Handle a QUEUE FULL condition from the target. This can 19496 * occur if the HBA does not handle the queue full condition. 19497 * (Basically this means third-party HBAs as Sun HBAs will 19498 * handle the queue full condition.) Note that if there are 19499 * some commands already in the transport, then the queue full 19500 * has occurred because the queue for this nexus is actually 19501 * full. If there are no commands in the transport, then the 19502 * queue full is resulting from some other initiator or lun 19503 * consuming all the resources at the target. 19504 * 19505 * Context: May be called from interrupt context 19506 */ 19507 19508 static void 19509 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp, 19510 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19511 { 19512 ASSERT(un != NULL); 19513 ASSERT(mutex_owned(SD_MUTEX(un))); 19514 ASSERT(bp != NULL); 19515 ASSERT(xp != NULL); 19516 ASSERT(pktp != NULL); 19517 19518 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19519 "sd_pkt_status_qfull: entry\n"); 19520 19521 /* 19522 * Just lower the QFULL throttle and retry the command. Note that 19523 * we do not limit the number of retries here. 19524 */ 19525 sd_reduce_throttle(un, SD_THROTTLE_QFULL); 19526 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0, 19527 SD_RESTART_TIMEOUT, NULL); 19528 19529 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19530 "sd_pkt_status_qfull: exit\n"); 19531 } 19532 19533 19534 /* 19535 * Function: sd_reset_target 19536 * 19537 * Description: Issue a scsi_reset(9F), with either RESET_LUN, 19538 * RESET_TARGET, or RESET_ALL. 19539 * 19540 * Context: May be called under interrupt context. 19541 */ 19542 19543 static void 19544 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp) 19545 { 19546 int rval = 0; 19547 19548 ASSERT(un != NULL); 19549 ASSERT(mutex_owned(SD_MUTEX(un))); 19550 ASSERT(pktp != NULL); 19551 19552 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n"); 19553 19554 /* 19555 * No need to reset if the transport layer has already done so. 19556 */ 19557 if ((pktp->pkt_statistics & 19558 (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) { 19559 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19560 "sd_reset_target: no reset\n"); 19561 return; 19562 } 19563 19564 mutex_exit(SD_MUTEX(un)); 19565 19566 if (un->un_f_allow_bus_device_reset == TRUE) { 19567 if (un->un_f_lun_reset_enabled == TRUE) { 19568 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19569 "sd_reset_target: RESET_LUN\n"); 19570 rval = scsi_reset(SD_ADDRESS(un), RESET_LUN); 19571 } 19572 if (rval == 0) { 19573 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19574 "sd_reset_target: RESET_TARGET\n"); 19575 rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET); 19576 } 19577 } 19578 19579 if (rval == 0) { 19580 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19581 "sd_reset_target: RESET_ALL\n"); 19582 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 19583 } 19584 19585 mutex_enter(SD_MUTEX(un)); 19586 19587 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n"); 19588 } 19589 19590 /* 19591 * Function: sd_target_change_task 19592 * 19593 * Description: Handle dynamic target change 19594 * 19595 * Context: Executes in a taskq() thread context 19596 */ 19597 static void 19598 sd_target_change_task(void *arg) 19599 { 19600 struct sd_lun *un = arg; 19601 uint64_t capacity; 19602 diskaddr_t label_cap; 19603 uint_t lbasize; 19604 sd_ssc_t *ssc; 19605 19606 ASSERT(un != NULL); 19607 ASSERT(!mutex_owned(SD_MUTEX(un))); 19608 19609 if ((un->un_f_blockcount_is_valid == FALSE) || 19610 (un->un_f_tgt_blocksize_is_valid == FALSE)) { 19611 return; 19612 } 19613 19614 ssc = sd_ssc_init(un); 19615 19616 if (sd_send_scsi_READ_CAPACITY(ssc, &capacity, 19617 &lbasize, SD_PATH_DIRECT) != 0) { 19618 SD_ERROR(SD_LOG_ERROR, un, 19619 "sd_target_change_task: fail to read capacity\n"); 19620 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 19621 goto task_exit; 19622 } 19623 19624 mutex_enter(SD_MUTEX(un)); 19625 if (capacity <= un->un_blockcount) { 19626 mutex_exit(SD_MUTEX(un)); 19627 goto task_exit; 19628 } 19629 19630 sd_update_block_info(un, lbasize, capacity); 19631 mutex_exit(SD_MUTEX(un)); 19632 19633 /* 19634 * If lun is EFI labeled and lun capacity is greater than the 19635 * capacity contained in the label, log a sys event. 19636 */ 19637 if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap, 19638 (void*)SD_PATH_DIRECT) == 0) { 19639 mutex_enter(SD_MUTEX(un)); 19640 if (un->un_f_blockcount_is_valid && 19641 un->un_blockcount > label_cap) { 19642 mutex_exit(SD_MUTEX(un)); 19643 sd_log_lun_expansion_event(un, KM_SLEEP); 19644 } else { 19645 mutex_exit(SD_MUTEX(un)); 19646 } 19647 } 19648 19649 task_exit: 19650 sd_ssc_fini(ssc); 19651 } 19652 19653 19654 /* 19655 * Function: sd_log_dev_status_event 19656 * 19657 * Description: Log EC_dev_status sysevent 19658 * 19659 * Context: Never called from interrupt context 19660 */ 19661 static void 19662 sd_log_dev_status_event(struct sd_lun *un, char *esc, int km_flag) 19663 { 19664 int err; 19665 char *path; 19666 nvlist_t *attr_list; 19667 19668 /* Allocate and build sysevent attribute list */ 19669 err = nvlist_alloc(&attr_list, NV_UNIQUE_NAME_TYPE, km_flag); 19670 if (err != 0) { 19671 SD_ERROR(SD_LOG_ERROR, un, 19672 "sd_log_dev_status_event: fail to allocate space\n"); 19673 return; 19674 } 19675 19676 path = kmem_alloc(MAXPATHLEN, km_flag); 19677 if (path == NULL) { 19678 nvlist_free(attr_list); 19679 SD_ERROR(SD_LOG_ERROR, un, 19680 "sd_log_dev_status_event: fail to allocate space\n"); 19681 return; 19682 } 19683 /* 19684 * Add path attribute to identify the lun. 19685 * We are using minor node 'a' as the sysevent attribute. 19686 */ 19687 (void) snprintf(path, MAXPATHLEN, "/devices"); 19688 (void) ddi_pathname(SD_DEVINFO(un), path + strlen(path)); 19689 (void) snprintf(path + strlen(path), MAXPATHLEN - strlen(path), 19690 ":a"); 19691 19692 err = nvlist_add_string(attr_list, DEV_PHYS_PATH, path); 19693 if (err != 0) { 19694 nvlist_free(attr_list); 19695 kmem_free(path, MAXPATHLEN); 19696 SD_ERROR(SD_LOG_ERROR, un, 19697 "sd_log_dev_status_event: fail to add attribute\n"); 19698 return; 19699 } 19700 19701 /* Log dynamic lun expansion sysevent */ 19702 err = ddi_log_sysevent(SD_DEVINFO(un), SUNW_VENDOR, EC_DEV_STATUS, 19703 esc, attr_list, NULL, km_flag); 19704 if (err != DDI_SUCCESS) { 19705 SD_ERROR(SD_LOG_ERROR, un, 19706 "sd_log_dev_status_event: fail to log sysevent\n"); 19707 } 19708 19709 nvlist_free(attr_list); 19710 kmem_free(path, MAXPATHLEN); 19711 } 19712 19713 19714 /* 19715 * Function: sd_log_lun_expansion_event 19716 * 19717 * Description: Log lun expansion sys event 19718 * 19719 * Context: Never called from interrupt context 19720 */ 19721 static void 19722 sd_log_lun_expansion_event(struct sd_lun *un, int km_flag) 19723 { 19724 sd_log_dev_status_event(un, ESC_DEV_DLE, km_flag); 19725 } 19726 19727 19728 /* 19729 * Function: sd_log_eject_request_event 19730 * 19731 * Description: Log eject request sysevent 19732 * 19733 * Context: Never called from interrupt context 19734 */ 19735 static void 19736 sd_log_eject_request_event(struct sd_lun *un, int km_flag) 19737 { 19738 sd_log_dev_status_event(un, ESC_DEV_EJECT_REQUEST, km_flag); 19739 } 19740 19741 19742 /* 19743 * Function: sd_media_change_task 19744 * 19745 * Description: Recovery action for CDROM to become available. 19746 * 19747 * Context: Executes in a taskq() thread context 19748 */ 19749 19750 static void 19751 sd_media_change_task(void *arg) 19752 { 19753 struct scsi_pkt *pktp = arg; 19754 struct sd_lun *un; 19755 struct buf *bp; 19756 struct sd_xbuf *xp; 19757 int err = 0; 19758 int retry_count = 0; 19759 int retry_limit = SD_UNIT_ATTENTION_RETRY/10; 19760 struct sd_sense_info si; 19761 19762 ASSERT(pktp != NULL); 19763 bp = (struct buf *)pktp->pkt_private; 19764 ASSERT(bp != NULL); 19765 xp = SD_GET_XBUF(bp); 19766 ASSERT(xp != NULL); 19767 un = SD_GET_UN(bp); 19768 ASSERT(un != NULL); 19769 ASSERT(!mutex_owned(SD_MUTEX(un))); 19770 ASSERT(un->un_f_monitor_media_state); 19771 19772 si.ssi_severity = SCSI_ERR_INFO; 19773 si.ssi_pfa_flag = FALSE; 19774 19775 /* 19776 * When a reset is issued on a CDROM, it takes a long time to 19777 * recover. First few attempts to read capacity and other things 19778 * related to handling unit attention fail (with a ASC 0x4 and 19779 * ASCQ 0x1). In that case we want to do enough retries and we want 19780 * to limit the retries in other cases of genuine failures like 19781 * no media in drive. 19782 */ 19783 while (retry_count++ < retry_limit) { 19784 if ((err = sd_handle_mchange(un)) == 0) { 19785 break; 19786 } 19787 if (err == EAGAIN) { 19788 retry_limit = SD_UNIT_ATTENTION_RETRY; 19789 } 19790 /* Sleep for 0.5 sec. & try again */ 19791 delay(drv_usectohz(500000)); 19792 } 19793 19794 /* 19795 * Dispatch (retry or fail) the original command here, 19796 * along with appropriate console messages.... 19797 * 19798 * Must grab the mutex before calling sd_retry_command, 19799 * sd_print_sense_msg and sd_return_failed_command. 19800 */ 19801 mutex_enter(SD_MUTEX(un)); 19802 if (err != SD_CMD_SUCCESS) { 19803 SD_UPDATE_ERRSTATS(un, sd_harderrs); 19804 SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err); 19805 si.ssi_severity = SCSI_ERR_FATAL; 19806 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 19807 sd_return_failed_command(un, bp, EIO); 19808 } else { 19809 sd_retry_command(un, bp, SD_RETRIES_UA, sd_print_sense_msg, 19810 &si, EIO, (clock_t)0, NULL); 19811 } 19812 mutex_exit(SD_MUTEX(un)); 19813 } 19814 19815 19816 19817 /* 19818 * Function: sd_handle_mchange 19819 * 19820 * Description: Perform geometry validation & other recovery when CDROM 19821 * has been removed from drive. 19822 * 19823 * Return Code: 0 for success 19824 * errno-type return code of either sd_send_scsi_DOORLOCK() or 19825 * sd_send_scsi_READ_CAPACITY() 19826 * 19827 * Context: Executes in a taskq() thread context 19828 */ 19829 19830 static int 19831 sd_handle_mchange(struct sd_lun *un) 19832 { 19833 uint64_t capacity; 19834 uint32_t lbasize; 19835 int rval; 19836 sd_ssc_t *ssc; 19837 19838 ASSERT(!mutex_owned(SD_MUTEX(un))); 19839 ASSERT(un->un_f_monitor_media_state); 19840 19841 ssc = sd_ssc_init(un); 19842 rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize, 19843 SD_PATH_DIRECT_PRIORITY); 19844 19845 if (rval != 0) 19846 goto failed; 19847 19848 mutex_enter(SD_MUTEX(un)); 19849 sd_update_block_info(un, lbasize, capacity); 19850 19851 if (un->un_errstats != NULL) { 19852 struct sd_errstats *stp = 19853 (struct sd_errstats *)un->un_errstats->ks_data; 19854 stp->sd_capacity.value.ui64 = (uint64_t) 19855 ((uint64_t)un->un_blockcount * 19856 (uint64_t)un->un_tgt_blocksize); 19857 } 19858 19859 /* 19860 * Check if the media in the device is writable or not 19861 */ 19862 if (ISCD(un)) { 19863 sd_check_for_writable_cd(ssc, SD_PATH_DIRECT_PRIORITY); 19864 } 19865 19866 /* 19867 * Note: Maybe let the strategy/partitioning chain worry about getting 19868 * valid geometry. 19869 */ 19870 mutex_exit(SD_MUTEX(un)); 19871 cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY); 19872 19873 19874 if (cmlb_validate(un->un_cmlbhandle, 0, 19875 (void *)SD_PATH_DIRECT_PRIORITY) != 0) { 19876 sd_ssc_fini(ssc); 19877 return (EIO); 19878 } else { 19879 if (un->un_f_pkstats_enabled) { 19880 sd_set_pstats(un); 19881 SD_TRACE(SD_LOG_IO_PARTITION, un, 19882 "sd_handle_mchange: un:0x%p pstats created and " 19883 "set\n", un); 19884 } 19885 } 19886 19887 /* 19888 * Try to lock the door 19889 */ 19890 rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT, 19891 SD_PATH_DIRECT_PRIORITY); 19892 failed: 19893 if (rval != 0) 19894 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 19895 sd_ssc_fini(ssc); 19896 return (rval); 19897 } 19898 19899 19900 /* 19901 * Function: sd_send_scsi_DOORLOCK 19902 * 19903 * Description: Issue the scsi DOOR LOCK command 19904 * 19905 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 19906 * structure for this target. 19907 * flag - SD_REMOVAL_ALLOW 19908 * SD_REMOVAL_PREVENT 19909 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 19910 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 19911 * to use the USCSI "direct" chain and bypass the normal 19912 * command waitq. SD_PATH_DIRECT_PRIORITY is used when this 19913 * command is issued as part of an error recovery action. 19914 * 19915 * Return Code: 0 - Success 19916 * errno return code from sd_ssc_send() 19917 * 19918 * Context: Can sleep. 19919 */ 19920 19921 static int 19922 sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag) 19923 { 19924 struct scsi_extended_sense sense_buf; 19925 union scsi_cdb cdb; 19926 struct uscsi_cmd ucmd_buf; 19927 int status; 19928 struct sd_lun *un; 19929 19930 ASSERT(ssc != NULL); 19931 un = ssc->ssc_un; 19932 ASSERT(un != NULL); 19933 ASSERT(!mutex_owned(SD_MUTEX(un))); 19934 19935 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un); 19936 19937 /* already determined doorlock is not supported, fake success */ 19938 if (un->un_f_doorlock_supported == FALSE) { 19939 return (0); 19940 } 19941 19942 /* 19943 * If we are ejecting and see an SD_REMOVAL_PREVENT 19944 * ignore the command so we can complete the eject 19945 * operation. 19946 */ 19947 if (flag == SD_REMOVAL_PREVENT) { 19948 mutex_enter(SD_MUTEX(un)); 19949 if (un->un_f_ejecting == TRUE) { 19950 mutex_exit(SD_MUTEX(un)); 19951 return (EAGAIN); 19952 } 19953 mutex_exit(SD_MUTEX(un)); 19954 } 19955 19956 bzero(&cdb, sizeof (cdb)); 19957 bzero(&ucmd_buf, sizeof (ucmd_buf)); 19958 19959 cdb.scc_cmd = SCMD_DOORLOCK; 19960 cdb.cdb_opaque[4] = (uchar_t)flag; 19961 19962 ucmd_buf.uscsi_cdb = (char *)&cdb; 19963 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 19964 ucmd_buf.uscsi_bufaddr = NULL; 19965 ucmd_buf.uscsi_buflen = 0; 19966 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 19967 ucmd_buf.uscsi_rqlen = sizeof (sense_buf); 19968 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 19969 ucmd_buf.uscsi_timeout = 15; 19970 19971 SD_TRACE(SD_LOG_IO, un, 19972 "sd_send_scsi_DOORLOCK: returning sd_ssc_send\n"); 19973 19974 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 19975 UIO_SYSSPACE, path_flag); 19976 19977 if (status == 0) 19978 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 19979 19980 if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) && 19981 (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 19982 (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) { 19983 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 19984 19985 /* fake success and skip subsequent doorlock commands */ 19986 un->un_f_doorlock_supported = FALSE; 19987 return (0); 19988 } 19989 19990 return (status); 19991 } 19992 19993 /* 19994 * Function: sd_send_scsi_READ_CAPACITY 19995 * 19996 * Description: This routine uses the scsi READ CAPACITY command to determine 19997 * the device capacity in number of blocks and the device native 19998 * block size. If this function returns a failure, then the 19999 * values in *capp and *lbap are undefined. If the capacity 20000 * returned is 0xffffffff then the lun is too large for a 20001 * normal READ CAPACITY command and the results of a 20002 * READ CAPACITY 16 will be used instead. 20003 * 20004 * Arguments: ssc - ssc contains ptr to soft state struct for the target 20005 * capp - ptr to unsigned 64-bit variable to receive the 20006 * capacity value from the command. 20007 * lbap - ptr to unsigned 32-bit varaible to receive the 20008 * block size value from the command 20009 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 20010 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 20011 * to use the USCSI "direct" chain and bypass the normal 20012 * command waitq. SD_PATH_DIRECT_PRIORITY is used when this 20013 * command is issued as part of an error recovery action. 20014 * 20015 * Return Code: 0 - Success 20016 * EIO - IO error 20017 * EACCES - Reservation conflict detected 20018 * EAGAIN - Device is becoming ready 20019 * errno return code from sd_ssc_send() 20020 * 20021 * Context: Can sleep. Blocks until command completes. 20022 */ 20023 20024 #define SD_CAPACITY_SIZE sizeof (struct scsi_capacity) 20025 20026 static int 20027 sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp, uint32_t *lbap, 20028 int path_flag) 20029 { 20030 struct scsi_extended_sense sense_buf; 20031 struct uscsi_cmd ucmd_buf; 20032 union scsi_cdb cdb; 20033 uint32_t *capacity_buf; 20034 uint64_t capacity; 20035 uint32_t lbasize; 20036 uint32_t pbsize; 20037 int status; 20038 struct sd_lun *un; 20039 20040 ASSERT(ssc != NULL); 20041 20042 un = ssc->ssc_un; 20043 ASSERT(un != NULL); 20044 ASSERT(!mutex_owned(SD_MUTEX(un))); 20045 ASSERT(capp != NULL); 20046 ASSERT(lbap != NULL); 20047 20048 SD_TRACE(SD_LOG_IO, un, 20049 "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un); 20050 20051 /* 20052 * First send a READ_CAPACITY command to the target. 20053 * (This command is mandatory under SCSI-2.) 20054 * 20055 * Set up the CDB for the READ_CAPACITY command. The Partial 20056 * Medium Indicator bit is cleared. The address field must be 20057 * zero if the PMI bit is zero. 20058 */ 20059 bzero(&cdb, sizeof (cdb)); 20060 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20061 20062 capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP); 20063 20064 cdb.scc_cmd = SCMD_READ_CAPACITY; 20065 20066 ucmd_buf.uscsi_cdb = (char *)&cdb; 20067 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 20068 ucmd_buf.uscsi_bufaddr = (caddr_t)capacity_buf; 20069 ucmd_buf.uscsi_buflen = SD_CAPACITY_SIZE; 20070 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20071 ucmd_buf.uscsi_rqlen = sizeof (sense_buf); 20072 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 20073 ucmd_buf.uscsi_timeout = 60; 20074 20075 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 20076 UIO_SYSSPACE, path_flag); 20077 20078 switch (status) { 20079 case 0: 20080 /* Return failure if we did not get valid capacity data. */ 20081 if (ucmd_buf.uscsi_resid != 0) { 20082 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1, 20083 "sd_send_scsi_READ_CAPACITY received invalid " 20084 "capacity data"); 20085 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 20086 return (EIO); 20087 } 20088 /* 20089 * Read capacity and block size from the READ CAPACITY 10 data. 20090 * This data may be adjusted later due to device specific 20091 * issues. 20092 * 20093 * According to the SCSI spec, the READ CAPACITY 10 20094 * command returns the following: 20095 * 20096 * bytes 0-3: Maximum logical block address available. 20097 * (MSB in byte:0 & LSB in byte:3) 20098 * 20099 * bytes 4-7: Block length in bytes 20100 * (MSB in byte:4 & LSB in byte:7) 20101 * 20102 */ 20103 capacity = BE_32(capacity_buf[0]); 20104 lbasize = BE_32(capacity_buf[1]); 20105 20106 /* 20107 * Done with capacity_buf 20108 */ 20109 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 20110 20111 /* 20112 * if the reported capacity is set to all 0xf's, then 20113 * this disk is too large and requires SBC-2 commands. 20114 * Reissue the request using READ CAPACITY 16. 20115 */ 20116 if (capacity == 0xffffffff) { 20117 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 20118 status = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity, 20119 &lbasize, &pbsize, path_flag); 20120 if (status != 0) { 20121 return (status); 20122 } else { 20123 goto rc16_done; 20124 } 20125 } 20126 break; /* Success! */ 20127 case EIO: 20128 switch (ucmd_buf.uscsi_status) { 20129 case STATUS_RESERVATION_CONFLICT: 20130 status = EACCES; 20131 break; 20132 case STATUS_CHECK: 20133 /* 20134 * Check condition; look for ASC/ASCQ of 0x04/0x01 20135 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY) 20136 */ 20137 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 20138 (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) && 20139 (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) { 20140 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 20141 return (EAGAIN); 20142 } 20143 break; 20144 default: 20145 break; 20146 } 20147 /* FALLTHRU */ 20148 default: 20149 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 20150 return (status); 20151 } 20152 20153 /* 20154 * Some ATAPI CD-ROM drives report inaccurate LBA size values 20155 * (2352 and 0 are common) so for these devices always force the value 20156 * to 2048 as required by the ATAPI specs. 20157 */ 20158 if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) { 20159 lbasize = 2048; 20160 } 20161 20162 /* 20163 * Get the maximum LBA value from the READ CAPACITY data. 20164 * Here we assume that the Partial Medium Indicator (PMI) bit 20165 * was cleared when issuing the command. This means that the LBA 20166 * returned from the device is the LBA of the last logical block 20167 * on the logical unit. The actual logical block count will be 20168 * this value plus one. 20169 */ 20170 capacity += 1; 20171 20172 /* 20173 * Currently, for removable media, the capacity is saved in terms 20174 * of un->un_sys_blocksize, so scale the capacity value to reflect this. 20175 */ 20176 if (un->un_f_has_removable_media) 20177 capacity *= (lbasize / un->un_sys_blocksize); 20178 20179 rc16_done: 20180 20181 /* 20182 * Copy the values from the READ CAPACITY command into the space 20183 * provided by the caller. 20184 */ 20185 *capp = capacity; 20186 *lbap = lbasize; 20187 20188 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: " 20189 "capacity:0x%llx lbasize:0x%x\n", capacity, lbasize); 20190 20191 /* 20192 * Both the lbasize and capacity from the device must be nonzero, 20193 * otherwise we assume that the values are not valid and return 20194 * failure to the caller. (4203735) 20195 */ 20196 if ((capacity == 0) || (lbasize == 0)) { 20197 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1, 20198 "sd_send_scsi_READ_CAPACITY received invalid value " 20199 "capacity %llu lbasize %d", capacity, lbasize); 20200 return (EIO); 20201 } 20202 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 20203 return (0); 20204 } 20205 20206 /* 20207 * Function: sd_send_scsi_READ_CAPACITY_16 20208 * 20209 * Description: This routine uses the scsi READ CAPACITY 16 command to 20210 * determine the device capacity in number of blocks and the 20211 * device native block size. If this function returns a failure, 20212 * then the values in *capp and *lbap are undefined. 20213 * This routine should be called by sd_send_scsi_READ_CAPACITY 20214 * which will apply any device specific adjustments to capacity 20215 * and lbasize. One exception is it is also called by 20216 * sd_get_media_info_ext. In that function, there is no need to 20217 * adjust the capacity and lbasize. 20218 * 20219 * Arguments: ssc - ssc contains ptr to soft state struct for the target 20220 * capp - ptr to unsigned 64-bit variable to receive the 20221 * capacity value from the command. 20222 * lbap - ptr to unsigned 32-bit varaible to receive the 20223 * block size value from the command 20224 * psp - ptr to unsigned 32-bit variable to receive the 20225 * physical block size value from the command 20226 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 20227 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 20228 * to use the USCSI "direct" chain and bypass the normal 20229 * command waitq. SD_PATH_DIRECT_PRIORITY is used when 20230 * this command is issued as part of an error recovery 20231 * action. 20232 * 20233 * Return Code: 0 - Success 20234 * EIO - IO error 20235 * EACCES - Reservation conflict detected 20236 * EAGAIN - Device is becoming ready 20237 * errno return code from sd_ssc_send() 20238 * 20239 * Context: Can sleep. Blocks until command completes. 20240 */ 20241 20242 #define SD_CAPACITY_16_SIZE sizeof (struct scsi_capacity_16) 20243 20244 static int 20245 sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp, 20246 uint32_t *lbap, uint32_t *psp, int path_flag) 20247 { 20248 struct scsi_extended_sense sense_buf; 20249 struct uscsi_cmd ucmd_buf; 20250 union scsi_cdb cdb; 20251 uint64_t *capacity16_buf; 20252 uint64_t capacity; 20253 uint32_t lbasize; 20254 uint32_t pbsize; 20255 uint32_t lbpb_exp; 20256 int status; 20257 struct sd_lun *un; 20258 20259 ASSERT(ssc != NULL); 20260 20261 un = ssc->ssc_un; 20262 ASSERT(un != NULL); 20263 ASSERT(!mutex_owned(SD_MUTEX(un))); 20264 ASSERT(capp != NULL); 20265 ASSERT(lbap != NULL); 20266 20267 SD_TRACE(SD_LOG_IO, un, 20268 "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un); 20269 20270 /* 20271 * First send a READ_CAPACITY_16 command to the target. 20272 * 20273 * Set up the CDB for the READ_CAPACITY_16 command. The Partial 20274 * Medium Indicator bit is cleared. The address field must be 20275 * zero if the PMI bit is zero. 20276 */ 20277 bzero(&cdb, sizeof (cdb)); 20278 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20279 20280 capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP); 20281 20282 ucmd_buf.uscsi_cdb = (char *)&cdb; 20283 ucmd_buf.uscsi_cdblen = CDB_GROUP4; 20284 ucmd_buf.uscsi_bufaddr = (caddr_t)capacity16_buf; 20285 ucmd_buf.uscsi_buflen = SD_CAPACITY_16_SIZE; 20286 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20287 ucmd_buf.uscsi_rqlen = sizeof (sense_buf); 20288 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 20289 ucmd_buf.uscsi_timeout = 60; 20290 20291 /* 20292 * Read Capacity (16) is a Service Action In command. One 20293 * command byte (0x9E) is overloaded for multiple operations, 20294 * with the second CDB byte specifying the desired operation 20295 */ 20296 cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4; 20297 cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4; 20298 20299 /* 20300 * Fill in allocation length field 20301 */ 20302 FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen); 20303 20304 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 20305 UIO_SYSSPACE, path_flag); 20306 20307 switch (status) { 20308 case 0: 20309 /* Return failure if we did not get valid capacity data. */ 20310 if (ucmd_buf.uscsi_resid > 20) { 20311 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1, 20312 "sd_send_scsi_READ_CAPACITY_16 received invalid " 20313 "capacity data"); 20314 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 20315 return (EIO); 20316 } 20317 20318 /* 20319 * Read capacity and block size from the READ CAPACITY 16 data. 20320 * This data may be adjusted later due to device specific 20321 * issues. 20322 * 20323 * According to the SCSI spec, the READ CAPACITY 16 20324 * command returns the following: 20325 * 20326 * bytes 0-7: Maximum logical block address available. 20327 * (MSB in byte:0 & LSB in byte:7) 20328 * 20329 * bytes 8-11: Block length in bytes 20330 * (MSB in byte:8 & LSB in byte:11) 20331 * 20332 * byte 13: LOGICAL BLOCKS PER PHYSICAL BLOCK EXPONENT 20333 */ 20334 capacity = BE_64(capacity16_buf[0]); 20335 lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]); 20336 lbpb_exp = (BE_64(capacity16_buf[1]) >> 16) & 0x0f; 20337 20338 pbsize = lbasize << lbpb_exp; 20339 20340 /* 20341 * Done with capacity16_buf 20342 */ 20343 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 20344 20345 /* 20346 * if the reported capacity is set to all 0xf's, then 20347 * this disk is too large. This could only happen with 20348 * a device that supports LBAs larger than 64 bits which 20349 * are not defined by any current T10 standards. 20350 */ 20351 if (capacity == 0xffffffffffffffff) { 20352 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1, 20353 "disk is too large"); 20354 return (EIO); 20355 } 20356 break; /* Success! */ 20357 case EIO: 20358 switch (ucmd_buf.uscsi_status) { 20359 case STATUS_RESERVATION_CONFLICT: 20360 status = EACCES; 20361 break; 20362 case STATUS_CHECK: 20363 /* 20364 * Check condition; look for ASC/ASCQ of 0x04/0x01 20365 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY) 20366 */ 20367 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 20368 (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) && 20369 (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) { 20370 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 20371 return (EAGAIN); 20372 } 20373 break; 20374 default: 20375 break; 20376 } 20377 /* FALLTHRU */ 20378 default: 20379 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 20380 return (status); 20381 } 20382 20383 /* 20384 * Some ATAPI CD-ROM drives report inaccurate LBA size values 20385 * (2352 and 0 are common) so for these devices always force the value 20386 * to 2048 as required by the ATAPI specs. 20387 */ 20388 if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) { 20389 lbasize = 2048; 20390 } 20391 20392 /* 20393 * Get the maximum LBA value from the READ CAPACITY 16 data. 20394 * Here we assume that the Partial Medium Indicator (PMI) bit 20395 * was cleared when issuing the command. This means that the LBA 20396 * returned from the device is the LBA of the last logical block 20397 * on the logical unit. The actual logical block count will be 20398 * this value plus one. 20399 */ 20400 capacity += 1; 20401 20402 /* 20403 * Currently, for removable media, the capacity is saved in terms 20404 * of un->un_sys_blocksize, so scale the capacity value to reflect this. 20405 */ 20406 if (un->un_f_has_removable_media) 20407 capacity *= (lbasize / un->un_sys_blocksize); 20408 20409 *capp = capacity; 20410 *lbap = lbasize; 20411 *psp = pbsize; 20412 20413 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: " 20414 "capacity:0x%llx lbasize:0x%x, pbsize: 0x%x\n", 20415 capacity, lbasize, pbsize); 20416 20417 if ((capacity == 0) || (lbasize == 0) || (pbsize == 0)) { 20418 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1, 20419 "sd_send_scsi_READ_CAPACITY_16 received invalid value " 20420 "capacity %llu lbasize %d pbsize %d", capacity, lbasize); 20421 return (EIO); 20422 } 20423 20424 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 20425 return (0); 20426 } 20427 20428 20429 /* 20430 * Function: sd_send_scsi_START_STOP_UNIT 20431 * 20432 * Description: Issue a scsi START STOP UNIT command to the target. 20433 * 20434 * Arguments: ssc - ssc contatins pointer to driver soft state (unit) 20435 * structure for this target. 20436 * pc_flag - SD_POWER_CONDITION 20437 * SD_START_STOP 20438 * flag - SD_TARGET_START 20439 * SD_TARGET_STOP 20440 * SD_TARGET_EJECT 20441 * SD_TARGET_CLOSE 20442 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 20443 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 20444 * to use the USCSI "direct" chain and bypass the normal 20445 * command waitq. SD_PATH_DIRECT_PRIORITY is used when this 20446 * command is issued as part of an error recovery action. 20447 * 20448 * Return Code: 0 - Success 20449 * EIO - IO error 20450 * EACCES - Reservation conflict detected 20451 * ENXIO - Not Ready, medium not present 20452 * errno return code from sd_ssc_send() 20453 * 20454 * Context: Can sleep. 20455 */ 20456 20457 static int 20458 sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int pc_flag, int flag, 20459 int path_flag) 20460 { 20461 struct scsi_extended_sense sense_buf; 20462 union scsi_cdb cdb; 20463 struct uscsi_cmd ucmd_buf; 20464 int status; 20465 struct sd_lun *un; 20466 20467 ASSERT(ssc != NULL); 20468 un = ssc->ssc_un; 20469 ASSERT(un != NULL); 20470 ASSERT(!mutex_owned(SD_MUTEX(un))); 20471 20472 SD_TRACE(SD_LOG_IO, un, 20473 "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un); 20474 20475 if (un->un_f_check_start_stop && 20476 (pc_flag == SD_START_STOP) && 20477 ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) && 20478 (un->un_f_start_stop_supported != TRUE)) { 20479 return (0); 20480 } 20481 20482 /* 20483 * If we are performing an eject operation and 20484 * we receive any command other than SD_TARGET_EJECT 20485 * we should immediately return. 20486 */ 20487 if (flag != SD_TARGET_EJECT) { 20488 mutex_enter(SD_MUTEX(un)); 20489 if (un->un_f_ejecting == TRUE) { 20490 mutex_exit(SD_MUTEX(un)); 20491 return (EAGAIN); 20492 } 20493 mutex_exit(SD_MUTEX(un)); 20494 } 20495 20496 bzero(&cdb, sizeof (cdb)); 20497 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20498 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 20499 20500 cdb.scc_cmd = SCMD_START_STOP; 20501 cdb.cdb_opaque[4] = (pc_flag == SD_POWER_CONDITION) ? 20502 (uchar_t)(flag << 4) : (uchar_t)flag; 20503 20504 ucmd_buf.uscsi_cdb = (char *)&cdb; 20505 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 20506 ucmd_buf.uscsi_bufaddr = NULL; 20507 ucmd_buf.uscsi_buflen = 0; 20508 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20509 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 20510 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 20511 ucmd_buf.uscsi_timeout = 200; 20512 20513 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 20514 UIO_SYSSPACE, path_flag); 20515 20516 switch (status) { 20517 case 0: 20518 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 20519 break; /* Success! */ 20520 case EIO: 20521 switch (ucmd_buf.uscsi_status) { 20522 case STATUS_RESERVATION_CONFLICT: 20523 status = EACCES; 20524 break; 20525 case STATUS_CHECK: 20526 if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) { 20527 switch (scsi_sense_key( 20528 (uint8_t *)&sense_buf)) { 20529 case KEY_ILLEGAL_REQUEST: 20530 status = ENOTSUP; 20531 break; 20532 case KEY_NOT_READY: 20533 if (scsi_sense_asc( 20534 (uint8_t *)&sense_buf) 20535 == 0x3A) { 20536 status = ENXIO; 20537 } 20538 break; 20539 default: 20540 break; 20541 } 20542 } 20543 break; 20544 default: 20545 break; 20546 } 20547 break; 20548 default: 20549 break; 20550 } 20551 20552 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n"); 20553 20554 return (status); 20555 } 20556 20557 20558 /* 20559 * Function: sd_start_stop_unit_callback 20560 * 20561 * Description: timeout(9F) callback to begin recovery process for a 20562 * device that has spun down. 20563 * 20564 * Arguments: arg - pointer to associated softstate struct. 20565 * 20566 * Context: Executes in a timeout(9F) thread context 20567 */ 20568 20569 static void 20570 sd_start_stop_unit_callback(void *arg) 20571 { 20572 struct sd_lun *un = arg; 20573 ASSERT(un != NULL); 20574 ASSERT(!mutex_owned(SD_MUTEX(un))); 20575 20576 SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n"); 20577 20578 (void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP); 20579 } 20580 20581 20582 /* 20583 * Function: sd_start_stop_unit_task 20584 * 20585 * Description: Recovery procedure when a drive is spun down. 20586 * 20587 * Arguments: arg - pointer to associated softstate struct. 20588 * 20589 * Context: Executes in a taskq() thread context 20590 */ 20591 20592 static void 20593 sd_start_stop_unit_task(void *arg) 20594 { 20595 struct sd_lun *un = arg; 20596 sd_ssc_t *ssc; 20597 int power_level; 20598 int rval; 20599 20600 ASSERT(un != NULL); 20601 ASSERT(!mutex_owned(SD_MUTEX(un))); 20602 20603 SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n"); 20604 20605 /* 20606 * Some unformatted drives report not ready error, no need to 20607 * restart if format has been initiated. 20608 */ 20609 mutex_enter(SD_MUTEX(un)); 20610 if (un->un_f_format_in_progress == TRUE) { 20611 mutex_exit(SD_MUTEX(un)); 20612 return; 20613 } 20614 mutex_exit(SD_MUTEX(un)); 20615 20616 ssc = sd_ssc_init(un); 20617 /* 20618 * When a START STOP command is issued from here, it is part of a 20619 * failure recovery operation and must be issued before any other 20620 * commands, including any pending retries. Thus it must be sent 20621 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up 20622 * succeeds or not, we will start I/O after the attempt. 20623 * If power condition is supported and the current power level 20624 * is capable of performing I/O, we should set the power condition 20625 * to that level. Otherwise, set the power condition to ACTIVE. 20626 */ 20627 if (un->un_f_power_condition_supported) { 20628 mutex_enter(SD_MUTEX(un)); 20629 ASSERT(SD_PM_IS_LEVEL_VALID(un, un->un_power_level)); 20630 power_level = sd_pwr_pc.ran_perf[un->un_power_level] 20631 > 0 ? un->un_power_level : SD_SPINDLE_ACTIVE; 20632 mutex_exit(SD_MUTEX(un)); 20633 rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_POWER_CONDITION, 20634 sd_pl2pc[power_level], SD_PATH_DIRECT_PRIORITY); 20635 } else { 20636 rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 20637 SD_TARGET_START, SD_PATH_DIRECT_PRIORITY); 20638 } 20639 20640 if (rval != 0) 20641 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 20642 sd_ssc_fini(ssc); 20643 /* 20644 * The above call blocks until the START_STOP_UNIT command completes. 20645 * Now that it has completed, we must re-try the original IO that 20646 * received the NOT READY condition in the first place. There are 20647 * three possible conditions here: 20648 * 20649 * (1) The original IO is on un_retry_bp. 20650 * (2) The original IO is on the regular wait queue, and un_retry_bp 20651 * is NULL. 20652 * (3) The original IO is on the regular wait queue, and un_retry_bp 20653 * points to some other, unrelated bp. 20654 * 20655 * For each case, we must call sd_start_cmds() with un_retry_bp 20656 * as the argument. If un_retry_bp is NULL, this will initiate 20657 * processing of the regular wait queue. If un_retry_bp is not NULL, 20658 * then this will process the bp on un_retry_bp. That may or may not 20659 * be the original IO, but that does not matter: the important thing 20660 * is to keep the IO processing going at this point. 20661 * 20662 * Note: This is a very specific error recovery sequence associated 20663 * with a drive that is not spun up. We attempt a START_STOP_UNIT and 20664 * serialize the I/O with completion of the spin-up. 20665 */ 20666 mutex_enter(SD_MUTEX(un)); 20667 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 20668 "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n", 20669 un, un->un_retry_bp); 20670 un->un_startstop_timeid = NULL; /* Timeout is no longer pending */ 20671 sd_start_cmds(un, un->un_retry_bp); 20672 mutex_exit(SD_MUTEX(un)); 20673 20674 SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n"); 20675 } 20676 20677 20678 /* 20679 * Function: sd_send_scsi_INQUIRY 20680 * 20681 * Description: Issue the scsi INQUIRY command. 20682 * 20683 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 20684 * structure for this target. 20685 * bufaddr 20686 * buflen 20687 * evpd 20688 * page_code 20689 * page_length 20690 * 20691 * Return Code: 0 - Success 20692 * errno return code from sd_ssc_send() 20693 * 20694 * Context: Can sleep. Does not return until command is completed. 20695 */ 20696 20697 static int 20698 sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr, size_t buflen, 20699 uchar_t evpd, uchar_t page_code, size_t *residp) 20700 { 20701 union scsi_cdb cdb; 20702 struct uscsi_cmd ucmd_buf; 20703 int status; 20704 struct sd_lun *un; 20705 20706 ASSERT(ssc != NULL); 20707 un = ssc->ssc_un; 20708 ASSERT(un != NULL); 20709 ASSERT(!mutex_owned(SD_MUTEX(un))); 20710 ASSERT(bufaddr != NULL); 20711 20712 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un); 20713 20714 bzero(&cdb, sizeof (cdb)); 20715 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20716 bzero(bufaddr, buflen); 20717 20718 cdb.scc_cmd = SCMD_INQUIRY; 20719 cdb.cdb_opaque[1] = evpd; 20720 cdb.cdb_opaque[2] = page_code; 20721 FORMG0COUNT(&cdb, buflen); 20722 20723 ucmd_buf.uscsi_cdb = (char *)&cdb; 20724 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 20725 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 20726 ucmd_buf.uscsi_buflen = buflen; 20727 ucmd_buf.uscsi_rqbuf = NULL; 20728 ucmd_buf.uscsi_rqlen = 0; 20729 ucmd_buf.uscsi_flags = USCSI_READ | USCSI_SILENT; 20730 ucmd_buf.uscsi_timeout = 200; /* Excessive legacy value */ 20731 20732 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 20733 UIO_SYSSPACE, SD_PATH_DIRECT); 20734 20735 /* 20736 * Only handle status == 0, the upper-level caller 20737 * will put different assessment based on the context. 20738 */ 20739 if (status == 0) 20740 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 20741 20742 if ((status == 0) && (residp != NULL)) { 20743 *residp = ucmd_buf.uscsi_resid; 20744 } 20745 20746 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n"); 20747 20748 return (status); 20749 } 20750 20751 20752 /* 20753 * Function: sd_send_scsi_TEST_UNIT_READY 20754 * 20755 * Description: Issue the scsi TEST UNIT READY command. 20756 * This routine can be told to set the flag USCSI_DIAGNOSE to 20757 * prevent retrying failed commands. Use this when the intent 20758 * is either to check for device readiness, to clear a Unit 20759 * Attention, or to clear any outstanding sense data. 20760 * However under specific conditions the expected behavior 20761 * is for retries to bring a device ready, so use the flag 20762 * with caution. 20763 * 20764 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 20765 * structure for this target. 20766 * flag: SD_CHECK_FOR_MEDIA: return ENXIO if no media present 20767 * SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE. 20768 * 0: dont check for media present, do retries on cmd. 20769 * 20770 * Return Code: 0 - Success 20771 * EIO - IO error 20772 * EACCES - Reservation conflict detected 20773 * ENXIO - Not Ready, medium not present 20774 * errno return code from sd_ssc_send() 20775 * 20776 * Context: Can sleep. Does not return until command is completed. 20777 */ 20778 20779 static int 20780 sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag) 20781 { 20782 struct scsi_extended_sense sense_buf; 20783 union scsi_cdb cdb; 20784 struct uscsi_cmd ucmd_buf; 20785 int status; 20786 struct sd_lun *un; 20787 20788 ASSERT(ssc != NULL); 20789 un = ssc->ssc_un; 20790 ASSERT(un != NULL); 20791 ASSERT(!mutex_owned(SD_MUTEX(un))); 20792 20793 SD_TRACE(SD_LOG_IO, un, 20794 "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un); 20795 20796 /* 20797 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect 20798 * timeouts when they receive a TUR and the queue is not empty. Check 20799 * the configuration flag set during attach (indicating the drive has 20800 * this firmware bug) and un_ncmds_in_transport before issuing the 20801 * TUR. If there are 20802 * pending commands return success, this is a bit arbitrary but is ok 20803 * for non-removables (i.e. the eliteI disks) and non-clustering 20804 * configurations. 20805 */ 20806 if (un->un_f_cfg_tur_check == TRUE) { 20807 mutex_enter(SD_MUTEX(un)); 20808 if (un->un_ncmds_in_transport != 0) { 20809 mutex_exit(SD_MUTEX(un)); 20810 return (0); 20811 } 20812 mutex_exit(SD_MUTEX(un)); 20813 } 20814 20815 bzero(&cdb, sizeof (cdb)); 20816 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20817 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 20818 20819 cdb.scc_cmd = SCMD_TEST_UNIT_READY; 20820 20821 ucmd_buf.uscsi_cdb = (char *)&cdb; 20822 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 20823 ucmd_buf.uscsi_bufaddr = NULL; 20824 ucmd_buf.uscsi_buflen = 0; 20825 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20826 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 20827 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 20828 20829 /* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */ 20830 if ((flag & SD_DONT_RETRY_TUR) != 0) { 20831 ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE; 20832 } 20833 ucmd_buf.uscsi_timeout = 60; 20834 20835 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 20836 UIO_SYSSPACE, ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT : 20837 SD_PATH_STANDARD)); 20838 20839 switch (status) { 20840 case 0: 20841 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 20842 break; /* Success! */ 20843 case EIO: 20844 switch (ucmd_buf.uscsi_status) { 20845 case STATUS_RESERVATION_CONFLICT: 20846 status = EACCES; 20847 break; 20848 case STATUS_CHECK: 20849 if ((flag & SD_CHECK_FOR_MEDIA) == 0) { 20850 break; 20851 } 20852 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 20853 (scsi_sense_key((uint8_t *)&sense_buf) == 20854 KEY_NOT_READY) && 20855 (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) { 20856 status = ENXIO; 20857 } 20858 break; 20859 default: 20860 break; 20861 } 20862 break; 20863 default: 20864 break; 20865 } 20866 20867 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n"); 20868 20869 return (status); 20870 } 20871 20872 /* 20873 * Function: sd_send_scsi_PERSISTENT_RESERVE_IN 20874 * 20875 * Description: Issue the scsi PERSISTENT RESERVE IN command. 20876 * 20877 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 20878 * structure for this target. 20879 * 20880 * Return Code: 0 - Success 20881 * EACCES 20882 * ENOTSUP 20883 * errno return code from sd_ssc_send() 20884 * 20885 * Context: Can sleep. Does not return until command is completed. 20886 */ 20887 20888 static int 20889 sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc, uchar_t usr_cmd, 20890 uint16_t data_len, uchar_t *data_bufp) 20891 { 20892 struct scsi_extended_sense sense_buf; 20893 union scsi_cdb cdb; 20894 struct uscsi_cmd ucmd_buf; 20895 int status; 20896 int no_caller_buf = FALSE; 20897 struct sd_lun *un; 20898 20899 ASSERT(ssc != NULL); 20900 un = ssc->ssc_un; 20901 ASSERT(un != NULL); 20902 ASSERT(!mutex_owned(SD_MUTEX(un))); 20903 ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV)); 20904 20905 SD_TRACE(SD_LOG_IO, un, 20906 "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un); 20907 20908 bzero(&cdb, sizeof (cdb)); 20909 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20910 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 20911 if (data_bufp == NULL) { 20912 /* Allocate a default buf if the caller did not give one */ 20913 ASSERT(data_len == 0); 20914 data_len = MHIOC_RESV_KEY_SIZE; 20915 data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP); 20916 no_caller_buf = TRUE; 20917 } 20918 20919 cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN; 20920 cdb.cdb_opaque[1] = usr_cmd; 20921 FORMG1COUNT(&cdb, data_len); 20922 20923 ucmd_buf.uscsi_cdb = (char *)&cdb; 20924 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 20925 ucmd_buf.uscsi_bufaddr = (caddr_t)data_bufp; 20926 ucmd_buf.uscsi_buflen = data_len; 20927 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20928 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 20929 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 20930 ucmd_buf.uscsi_timeout = 60; 20931 20932 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 20933 UIO_SYSSPACE, SD_PATH_STANDARD); 20934 20935 switch (status) { 20936 case 0: 20937 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 20938 20939 break; /* Success! */ 20940 case EIO: 20941 switch (ucmd_buf.uscsi_status) { 20942 case STATUS_RESERVATION_CONFLICT: 20943 status = EACCES; 20944 break; 20945 case STATUS_CHECK: 20946 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 20947 (scsi_sense_key((uint8_t *)&sense_buf) == 20948 KEY_ILLEGAL_REQUEST)) { 20949 status = ENOTSUP; 20950 } 20951 break; 20952 default: 20953 break; 20954 } 20955 break; 20956 default: 20957 break; 20958 } 20959 20960 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n"); 20961 20962 if (no_caller_buf == TRUE) { 20963 kmem_free(data_bufp, data_len); 20964 } 20965 20966 return (status); 20967 } 20968 20969 20970 /* 20971 * Function: sd_send_scsi_PERSISTENT_RESERVE_OUT 20972 * 20973 * Description: This routine is the driver entry point for handling CD-ROM 20974 * multi-host persistent reservation requests (MHIOCGRP_INKEYS, 20975 * MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the 20976 * device. 20977 * 20978 * Arguments: ssc - ssc contains un - pointer to soft state struct 20979 * for the target. 20980 * usr_cmd SCSI-3 reservation facility command (one of 20981 * SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE, 20982 * SD_SCSI3_PREEMPTANDABORT, SD_SCSI3_CLEAR) 20983 * usr_bufp - user provided pointer register, reserve descriptor or 20984 * preempt and abort structure (mhioc_register_t, 20985 * mhioc_resv_desc_t, mhioc_preemptandabort_t) 20986 * 20987 * Return Code: 0 - Success 20988 * EACCES 20989 * ENOTSUP 20990 * errno return code from sd_ssc_send() 20991 * 20992 * Context: Can sleep. Does not return until command is completed. 20993 */ 20994 20995 static int 20996 sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc, uchar_t usr_cmd, 20997 uchar_t *usr_bufp) 20998 { 20999 struct scsi_extended_sense sense_buf; 21000 union scsi_cdb cdb; 21001 struct uscsi_cmd ucmd_buf; 21002 int status; 21003 uchar_t data_len = sizeof (sd_prout_t); 21004 sd_prout_t *prp; 21005 struct sd_lun *un; 21006 21007 ASSERT(ssc != NULL); 21008 un = ssc->ssc_un; 21009 ASSERT(un != NULL); 21010 ASSERT(!mutex_owned(SD_MUTEX(un))); 21011 ASSERT(data_len == 24); /* required by scsi spec */ 21012 21013 SD_TRACE(SD_LOG_IO, un, 21014 "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un); 21015 21016 if (usr_bufp == NULL) { 21017 return (EINVAL); 21018 } 21019 21020 bzero(&cdb, sizeof (cdb)); 21021 bzero(&ucmd_buf, sizeof (ucmd_buf)); 21022 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 21023 prp = kmem_zalloc(data_len, KM_SLEEP); 21024 21025 cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT; 21026 cdb.cdb_opaque[1] = usr_cmd; 21027 FORMG1COUNT(&cdb, data_len); 21028 21029 ucmd_buf.uscsi_cdb = (char *)&cdb; 21030 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 21031 ucmd_buf.uscsi_bufaddr = (caddr_t)prp; 21032 ucmd_buf.uscsi_buflen = data_len; 21033 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 21034 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 21035 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT; 21036 ucmd_buf.uscsi_timeout = 60; 21037 21038 switch (usr_cmd) { 21039 case SD_SCSI3_REGISTER: { 21040 mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp; 21041 21042 bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE); 21043 bcopy(ptr->newkey.key, prp->service_key, 21044 MHIOC_RESV_KEY_SIZE); 21045 prp->aptpl = ptr->aptpl; 21046 break; 21047 } 21048 case SD_SCSI3_CLEAR: { 21049 mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp; 21050 21051 bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE); 21052 break; 21053 } 21054 case SD_SCSI3_RESERVE: 21055 case SD_SCSI3_RELEASE: { 21056 mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp; 21057 21058 bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE); 21059 prp->scope_address = BE_32(ptr->scope_specific_addr); 21060 cdb.cdb_opaque[2] = ptr->type; 21061 break; 21062 } 21063 case SD_SCSI3_PREEMPTANDABORT: { 21064 mhioc_preemptandabort_t *ptr = 21065 (mhioc_preemptandabort_t *)usr_bufp; 21066 21067 bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE); 21068 bcopy(ptr->victim_key.key, prp->service_key, 21069 MHIOC_RESV_KEY_SIZE); 21070 prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr); 21071 cdb.cdb_opaque[2] = ptr->resvdesc.type; 21072 ucmd_buf.uscsi_flags |= USCSI_HEAD; 21073 break; 21074 } 21075 case SD_SCSI3_REGISTERANDIGNOREKEY: 21076 { 21077 mhioc_registerandignorekey_t *ptr; 21078 ptr = (mhioc_registerandignorekey_t *)usr_bufp; 21079 bcopy(ptr->newkey.key, 21080 prp->service_key, MHIOC_RESV_KEY_SIZE); 21081 prp->aptpl = ptr->aptpl; 21082 break; 21083 } 21084 default: 21085 ASSERT(FALSE); 21086 break; 21087 } 21088 21089 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 21090 UIO_SYSSPACE, SD_PATH_STANDARD); 21091 21092 switch (status) { 21093 case 0: 21094 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 21095 break; /* Success! */ 21096 case EIO: 21097 switch (ucmd_buf.uscsi_status) { 21098 case STATUS_RESERVATION_CONFLICT: 21099 status = EACCES; 21100 break; 21101 case STATUS_CHECK: 21102 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 21103 (scsi_sense_key((uint8_t *)&sense_buf) == 21104 KEY_ILLEGAL_REQUEST)) { 21105 status = ENOTSUP; 21106 } 21107 break; 21108 default: 21109 break; 21110 } 21111 break; 21112 default: 21113 break; 21114 } 21115 21116 kmem_free(prp, data_len); 21117 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n"); 21118 return (status); 21119 } 21120 21121 21122 /* 21123 * Function: sd_send_scsi_SYNCHRONIZE_CACHE 21124 * 21125 * Description: Issues a scsi SYNCHRONIZE CACHE command to the target 21126 * 21127 * Arguments: un - pointer to the target's soft state struct 21128 * dkc - pointer to the callback structure 21129 * 21130 * Return Code: 0 - success 21131 * errno-type error code 21132 * 21133 * Context: kernel thread context only. 21134 * 21135 * _______________________________________________________________ 21136 * | dkc_flag & | dkc_callback | DKIOCFLUSHWRITECACHE | 21137 * |FLUSH_VOLATILE| | operation | 21138 * |______________|______________|_________________________________| 21139 * | 0 | NULL | Synchronous flush on both | 21140 * | | | volatile and non-volatile cache | 21141 * |______________|______________|_________________________________| 21142 * | 1 | NULL | Synchronous flush on volatile | 21143 * | | | cache; disk drivers may suppress| 21144 * | | | flush if disk table indicates | 21145 * | | | non-volatile cache | 21146 * |______________|______________|_________________________________| 21147 * | 0 | !NULL | Asynchronous flush on both | 21148 * | | | volatile and non-volatile cache;| 21149 * |______________|______________|_________________________________| 21150 * | 1 | !NULL | Asynchronous flush on volatile | 21151 * | | | cache; disk drivers may suppress| 21152 * | | | flush if disk table indicates | 21153 * | | | non-volatile cache | 21154 * |______________|______________|_________________________________| 21155 * 21156 */ 21157 21158 static int 21159 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc) 21160 { 21161 struct sd_uscsi_info *uip; 21162 struct uscsi_cmd *uscmd; 21163 union scsi_cdb *cdb; 21164 struct buf *bp; 21165 int rval = 0; 21166 int is_async; 21167 21168 SD_TRACE(SD_LOG_IO, un, 21169 "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un); 21170 21171 ASSERT(un != NULL); 21172 ASSERT(!mutex_owned(SD_MUTEX(un))); 21173 21174 if (dkc == NULL || dkc->dkc_callback == NULL) { 21175 is_async = FALSE; 21176 } else { 21177 is_async = TRUE; 21178 } 21179 21180 mutex_enter(SD_MUTEX(un)); 21181 /* check whether cache flush should be suppressed */ 21182 if (un->un_f_suppress_cache_flush == TRUE) { 21183 mutex_exit(SD_MUTEX(un)); 21184 /* 21185 * suppress the cache flush if the device is told to do 21186 * so by sd.conf or disk table 21187 */ 21188 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_SYNCHRONIZE_CACHE: \ 21189 skip the cache flush since suppress_cache_flush is %d!\n", 21190 un->un_f_suppress_cache_flush); 21191 21192 if (is_async == TRUE) { 21193 /* invoke callback for asynchronous flush */ 21194 (*dkc->dkc_callback)(dkc->dkc_cookie, 0); 21195 } 21196 return (rval); 21197 } 21198 mutex_exit(SD_MUTEX(un)); 21199 21200 /* 21201 * check dkc_flag & FLUSH_VOLATILE so SYNC_NV bit can be 21202 * set properly 21203 */ 21204 cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP); 21205 cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE; 21206 21207 mutex_enter(SD_MUTEX(un)); 21208 if (dkc != NULL && un->un_f_sync_nv_supported && 21209 (dkc->dkc_flag & FLUSH_VOLATILE)) { 21210 /* 21211 * if the device supports SYNC_NV bit, turn on 21212 * the SYNC_NV bit to only flush volatile cache 21213 */ 21214 cdb->cdb_un.tag |= SD_SYNC_NV_BIT; 21215 } 21216 mutex_exit(SD_MUTEX(un)); 21217 21218 /* 21219 * First get some memory for the uscsi_cmd struct and cdb 21220 * and initialize for SYNCHRONIZE_CACHE cmd. 21221 */ 21222 uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP); 21223 uscmd->uscsi_cdblen = CDB_GROUP1; 21224 uscmd->uscsi_cdb = (caddr_t)cdb; 21225 uscmd->uscsi_bufaddr = NULL; 21226 uscmd->uscsi_buflen = 0; 21227 uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 21228 uscmd->uscsi_rqlen = SENSE_LENGTH; 21229 uscmd->uscsi_rqresid = SENSE_LENGTH; 21230 uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 21231 uscmd->uscsi_timeout = sd_io_time; 21232 21233 /* 21234 * Allocate an sd_uscsi_info struct and fill it with the info 21235 * needed by sd_initpkt_for_uscsi(). Then put the pointer into 21236 * b_private in the buf for sd_initpkt_for_uscsi(). Note that 21237 * since we allocate the buf here in this function, we do not 21238 * need to preserve the prior contents of b_private. 21239 * The sd_uscsi_info struct is also used by sd_uscsi_strategy() 21240 */ 21241 uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP); 21242 uip->ui_flags = SD_PATH_DIRECT; 21243 uip->ui_cmdp = uscmd; 21244 21245 bp = getrbuf(KM_SLEEP); 21246 bp->b_private = uip; 21247 21248 /* 21249 * Setup buffer to carry uscsi request. 21250 */ 21251 bp->b_flags = B_BUSY; 21252 bp->b_bcount = 0; 21253 bp->b_blkno = 0; 21254 21255 if (is_async == TRUE) { 21256 bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone; 21257 uip->ui_dkc = *dkc; 21258 } 21259 21260 bp->b_edev = SD_GET_DEV(un); 21261 bp->b_dev = cmpdev(bp->b_edev); /* maybe unnecessary? */ 21262 21263 /* 21264 * Unset un_f_sync_cache_required flag 21265 */ 21266 mutex_enter(SD_MUTEX(un)); 21267 un->un_f_sync_cache_required = FALSE; 21268 mutex_exit(SD_MUTEX(un)); 21269 21270 (void) sd_uscsi_strategy(bp); 21271 21272 /* 21273 * If synchronous request, wait for completion 21274 * If async just return and let b_iodone callback 21275 * cleanup. 21276 * NOTE: On return, u_ncmds_in_driver will be decremented, 21277 * but it was also incremented in sd_uscsi_strategy(), so 21278 * we should be ok. 21279 */ 21280 if (is_async == FALSE) { 21281 (void) biowait(bp); 21282 rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp); 21283 } 21284 21285 return (rval); 21286 } 21287 21288 21289 static int 21290 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp) 21291 { 21292 struct sd_uscsi_info *uip; 21293 struct uscsi_cmd *uscmd; 21294 uint8_t *sense_buf; 21295 struct sd_lun *un; 21296 int status; 21297 union scsi_cdb *cdb; 21298 21299 uip = (struct sd_uscsi_info *)(bp->b_private); 21300 ASSERT(uip != NULL); 21301 21302 uscmd = uip->ui_cmdp; 21303 ASSERT(uscmd != NULL); 21304 21305 sense_buf = (uint8_t *)uscmd->uscsi_rqbuf; 21306 ASSERT(sense_buf != NULL); 21307 21308 un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp)); 21309 ASSERT(un != NULL); 21310 21311 cdb = (union scsi_cdb *)uscmd->uscsi_cdb; 21312 21313 status = geterror(bp); 21314 switch (status) { 21315 case 0: 21316 break; /* Success! */ 21317 case EIO: 21318 switch (uscmd->uscsi_status) { 21319 case STATUS_RESERVATION_CONFLICT: 21320 /* Ignore reservation conflict */ 21321 status = 0; 21322 goto done; 21323 21324 case STATUS_CHECK: 21325 if ((uscmd->uscsi_rqstatus == STATUS_GOOD) && 21326 (scsi_sense_key(sense_buf) == 21327 KEY_ILLEGAL_REQUEST)) { 21328 /* Ignore Illegal Request error */ 21329 if (cdb->cdb_un.tag&SD_SYNC_NV_BIT) { 21330 mutex_enter(SD_MUTEX(un)); 21331 un->un_f_sync_nv_supported = FALSE; 21332 mutex_exit(SD_MUTEX(un)); 21333 status = 0; 21334 SD_TRACE(SD_LOG_IO, un, 21335 "un_f_sync_nv_supported \ 21336 is set to false.\n"); 21337 goto done; 21338 } 21339 21340 mutex_enter(SD_MUTEX(un)); 21341 un->un_f_sync_cache_supported = FALSE; 21342 mutex_exit(SD_MUTEX(un)); 21343 SD_TRACE(SD_LOG_IO, un, 21344 "sd_send_scsi_SYNCHRONIZE_CACHE_biodone: \ 21345 un_f_sync_cache_supported set to false \ 21346 with asc = %x, ascq = %x\n", 21347 scsi_sense_asc(sense_buf), 21348 scsi_sense_ascq(sense_buf)); 21349 status = ENOTSUP; 21350 goto done; 21351 } 21352 break; 21353 default: 21354 break; 21355 } 21356 /* FALLTHRU */ 21357 default: 21358 /* 21359 * Turn on the un_f_sync_cache_required flag 21360 * since the SYNC CACHE command failed 21361 */ 21362 mutex_enter(SD_MUTEX(un)); 21363 un->un_f_sync_cache_required = TRUE; 21364 mutex_exit(SD_MUTEX(un)); 21365 21366 /* 21367 * Don't log an error message if this device 21368 * has removable media. 21369 */ 21370 if (!un->un_f_has_removable_media) { 21371 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 21372 "SYNCHRONIZE CACHE command failed (%d)\n", status); 21373 } 21374 break; 21375 } 21376 21377 done: 21378 if (uip->ui_dkc.dkc_callback != NULL) { 21379 (*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status); 21380 } 21381 21382 ASSERT((bp->b_flags & B_REMAPPED) == 0); 21383 freerbuf(bp); 21384 kmem_free(uip, sizeof (struct sd_uscsi_info)); 21385 kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH); 21386 kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen); 21387 kmem_free(uscmd, sizeof (struct uscsi_cmd)); 21388 21389 return (status); 21390 } 21391 21392 21393 /* 21394 * Function: sd_send_scsi_GET_CONFIGURATION 21395 * 21396 * Description: Issues the get configuration command to the device. 21397 * Called from sd_check_for_writable_cd & sd_get_media_info 21398 * caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN 21399 * Arguments: ssc 21400 * ucmdbuf 21401 * rqbuf 21402 * rqbuflen 21403 * bufaddr 21404 * buflen 21405 * path_flag 21406 * 21407 * Return Code: 0 - Success 21408 * errno return code from sd_ssc_send() 21409 * 21410 * Context: Can sleep. Does not return until command is completed. 21411 * 21412 */ 21413 21414 static int 21415 sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc, struct uscsi_cmd *ucmdbuf, 21416 uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen, 21417 int path_flag) 21418 { 21419 char cdb[CDB_GROUP1]; 21420 int status; 21421 struct sd_lun *un; 21422 21423 ASSERT(ssc != NULL); 21424 un = ssc->ssc_un; 21425 ASSERT(un != NULL); 21426 ASSERT(!mutex_owned(SD_MUTEX(un))); 21427 ASSERT(bufaddr != NULL); 21428 ASSERT(ucmdbuf != NULL); 21429 ASSERT(rqbuf != NULL); 21430 21431 SD_TRACE(SD_LOG_IO, un, 21432 "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un); 21433 21434 bzero(cdb, sizeof (cdb)); 21435 bzero(ucmdbuf, sizeof (struct uscsi_cmd)); 21436 bzero(rqbuf, rqbuflen); 21437 bzero(bufaddr, buflen); 21438 21439 /* 21440 * Set up cdb field for the get configuration command. 21441 */ 21442 cdb[0] = SCMD_GET_CONFIGURATION; 21443 cdb[1] = 0x02; /* Requested Type */ 21444 cdb[8] = SD_PROFILE_HEADER_LEN; 21445 ucmdbuf->uscsi_cdb = cdb; 21446 ucmdbuf->uscsi_cdblen = CDB_GROUP1; 21447 ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr; 21448 ucmdbuf->uscsi_buflen = buflen; 21449 ucmdbuf->uscsi_timeout = sd_io_time; 21450 ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf; 21451 ucmdbuf->uscsi_rqlen = rqbuflen; 21452 ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ; 21453 21454 status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL, 21455 UIO_SYSSPACE, path_flag); 21456 21457 switch (status) { 21458 case 0: 21459 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 21460 break; /* Success! */ 21461 case EIO: 21462 switch (ucmdbuf->uscsi_status) { 21463 case STATUS_RESERVATION_CONFLICT: 21464 status = EACCES; 21465 break; 21466 default: 21467 break; 21468 } 21469 break; 21470 default: 21471 break; 21472 } 21473 21474 if (status == 0) { 21475 SD_DUMP_MEMORY(un, SD_LOG_IO, 21476 "sd_send_scsi_GET_CONFIGURATION: data", 21477 (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX); 21478 } 21479 21480 SD_TRACE(SD_LOG_IO, un, 21481 "sd_send_scsi_GET_CONFIGURATION: exit\n"); 21482 21483 return (status); 21484 } 21485 21486 /* 21487 * Function: sd_send_scsi_feature_GET_CONFIGURATION 21488 * 21489 * Description: Issues the get configuration command to the device to 21490 * retrieve a specific feature. Called from 21491 * sd_check_for_writable_cd & sd_set_mmc_caps. 21492 * Arguments: ssc 21493 * ucmdbuf 21494 * rqbuf 21495 * rqbuflen 21496 * bufaddr 21497 * buflen 21498 * feature 21499 * 21500 * Return Code: 0 - Success 21501 * errno return code from sd_ssc_send() 21502 * 21503 * Context: Can sleep. Does not return until command is completed. 21504 * 21505 */ 21506 static int 21507 sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc, 21508 struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen, 21509 uchar_t *bufaddr, uint_t buflen, char feature, int path_flag) 21510 { 21511 char cdb[CDB_GROUP1]; 21512 int status; 21513 struct sd_lun *un; 21514 21515 ASSERT(ssc != NULL); 21516 un = ssc->ssc_un; 21517 ASSERT(un != NULL); 21518 ASSERT(!mutex_owned(SD_MUTEX(un))); 21519 ASSERT(bufaddr != NULL); 21520 ASSERT(ucmdbuf != NULL); 21521 ASSERT(rqbuf != NULL); 21522 21523 SD_TRACE(SD_LOG_IO, un, 21524 "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un); 21525 21526 bzero(cdb, sizeof (cdb)); 21527 bzero(ucmdbuf, sizeof (struct uscsi_cmd)); 21528 bzero(rqbuf, rqbuflen); 21529 bzero(bufaddr, buflen); 21530 21531 /* 21532 * Set up cdb field for the get configuration command. 21533 */ 21534 cdb[0] = SCMD_GET_CONFIGURATION; 21535 cdb[1] = 0x02; /* Requested Type */ 21536 cdb[3] = feature; 21537 cdb[8] = buflen; 21538 ucmdbuf->uscsi_cdb = cdb; 21539 ucmdbuf->uscsi_cdblen = CDB_GROUP1; 21540 ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr; 21541 ucmdbuf->uscsi_buflen = buflen; 21542 ucmdbuf->uscsi_timeout = sd_io_time; 21543 ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf; 21544 ucmdbuf->uscsi_rqlen = rqbuflen; 21545 ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ; 21546 21547 status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL, 21548 UIO_SYSSPACE, path_flag); 21549 21550 switch (status) { 21551 case 0: 21552 21553 break; /* Success! */ 21554 case EIO: 21555 switch (ucmdbuf->uscsi_status) { 21556 case STATUS_RESERVATION_CONFLICT: 21557 status = EACCES; 21558 break; 21559 default: 21560 break; 21561 } 21562 break; 21563 default: 21564 break; 21565 } 21566 21567 if (status == 0) { 21568 SD_DUMP_MEMORY(un, SD_LOG_IO, 21569 "sd_send_scsi_feature_GET_CONFIGURATION: data", 21570 (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX); 21571 } 21572 21573 SD_TRACE(SD_LOG_IO, un, 21574 "sd_send_scsi_feature_GET_CONFIGURATION: exit\n"); 21575 21576 return (status); 21577 } 21578 21579 21580 /* 21581 * Function: sd_send_scsi_MODE_SENSE 21582 * 21583 * Description: Utility function for issuing a scsi MODE SENSE command. 21584 * Note: This routine uses a consistent implementation for Group0, 21585 * Group1, and Group2 commands across all platforms. ATAPI devices 21586 * use Group 1 Read/Write commands and Group 2 Mode Sense/Select 21587 * 21588 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 21589 * structure for this target. 21590 * cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or 21591 * CDB_GROUP[1|2] (10 byte). 21592 * bufaddr - buffer for page data retrieved from the target. 21593 * buflen - size of page to be retrieved. 21594 * page_code - page code of data to be retrieved from the target. 21595 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 21596 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 21597 * to use the USCSI "direct" chain and bypass the normal 21598 * command waitq. 21599 * 21600 * Return Code: 0 - Success 21601 * errno return code from sd_ssc_send() 21602 * 21603 * Context: Can sleep. Does not return until command is completed. 21604 */ 21605 21606 static int 21607 sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr, 21608 size_t buflen, uchar_t page_code, int path_flag) 21609 { 21610 struct scsi_extended_sense sense_buf; 21611 union scsi_cdb cdb; 21612 struct uscsi_cmd ucmd_buf; 21613 int status; 21614 int headlen; 21615 struct sd_lun *un; 21616 21617 ASSERT(ssc != NULL); 21618 un = ssc->ssc_un; 21619 ASSERT(un != NULL); 21620 ASSERT(!mutex_owned(SD_MUTEX(un))); 21621 ASSERT(bufaddr != NULL); 21622 ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) || 21623 (cdbsize == CDB_GROUP2)); 21624 21625 SD_TRACE(SD_LOG_IO, un, 21626 "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un); 21627 21628 bzero(&cdb, sizeof (cdb)); 21629 bzero(&ucmd_buf, sizeof (ucmd_buf)); 21630 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 21631 bzero(bufaddr, buflen); 21632 21633 if (cdbsize == CDB_GROUP0) { 21634 cdb.scc_cmd = SCMD_MODE_SENSE; 21635 cdb.cdb_opaque[2] = page_code; 21636 FORMG0COUNT(&cdb, buflen); 21637 headlen = MODE_HEADER_LENGTH; 21638 } else { 21639 cdb.scc_cmd = SCMD_MODE_SENSE_G1; 21640 cdb.cdb_opaque[2] = page_code; 21641 FORMG1COUNT(&cdb, buflen); 21642 headlen = MODE_HEADER_LENGTH_GRP2; 21643 } 21644 21645 ASSERT(headlen <= buflen); 21646 SD_FILL_SCSI1_LUN_CDB(un, &cdb); 21647 21648 ucmd_buf.uscsi_cdb = (char *)&cdb; 21649 ucmd_buf.uscsi_cdblen = (uchar_t)cdbsize; 21650 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 21651 ucmd_buf.uscsi_buflen = buflen; 21652 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 21653 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 21654 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 21655 ucmd_buf.uscsi_timeout = 60; 21656 21657 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 21658 UIO_SYSSPACE, path_flag); 21659 21660 switch (status) { 21661 case 0: 21662 /* 21663 * sr_check_wp() uses 0x3f page code and check the header of 21664 * mode page to determine if target device is write-protected. 21665 * But some USB devices return 0 bytes for 0x3f page code. For 21666 * this case, make sure that mode page header is returned at 21667 * least. 21668 */ 21669 if (buflen - ucmd_buf.uscsi_resid < headlen) { 21670 status = EIO; 21671 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1, 21672 "mode page header is not returned"); 21673 } 21674 break; /* Success! */ 21675 case EIO: 21676 switch (ucmd_buf.uscsi_status) { 21677 case STATUS_RESERVATION_CONFLICT: 21678 status = EACCES; 21679 break; 21680 default: 21681 break; 21682 } 21683 break; 21684 default: 21685 break; 21686 } 21687 21688 if (status == 0) { 21689 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data", 21690 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 21691 } 21692 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n"); 21693 21694 return (status); 21695 } 21696 21697 21698 /* 21699 * Function: sd_send_scsi_MODE_SELECT 21700 * 21701 * Description: Utility function for issuing a scsi MODE SELECT command. 21702 * Note: This routine uses a consistent implementation for Group0, 21703 * Group1, and Group2 commands across all platforms. ATAPI devices 21704 * use Group 1 Read/Write commands and Group 2 Mode Sense/Select 21705 * 21706 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 21707 * structure for this target. 21708 * cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or 21709 * CDB_GROUP[1|2] (10 byte). 21710 * bufaddr - buffer for page data retrieved from the target. 21711 * buflen - size of page to be retrieved. 21712 * save_page - boolean to determin if SP bit should be set. 21713 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 21714 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 21715 * to use the USCSI "direct" chain and bypass the normal 21716 * command waitq. 21717 * 21718 * Return Code: 0 - Success 21719 * errno return code from sd_ssc_send() 21720 * 21721 * Context: Can sleep. Does not return until command is completed. 21722 */ 21723 21724 static int 21725 sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr, 21726 size_t buflen, uchar_t save_page, int path_flag) 21727 { 21728 struct scsi_extended_sense sense_buf; 21729 union scsi_cdb cdb; 21730 struct uscsi_cmd ucmd_buf; 21731 int status; 21732 struct sd_lun *un; 21733 21734 ASSERT(ssc != NULL); 21735 un = ssc->ssc_un; 21736 ASSERT(un != NULL); 21737 ASSERT(!mutex_owned(SD_MUTEX(un))); 21738 ASSERT(bufaddr != NULL); 21739 ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) || 21740 (cdbsize == CDB_GROUP2)); 21741 21742 SD_TRACE(SD_LOG_IO, un, 21743 "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un); 21744 21745 bzero(&cdb, sizeof (cdb)); 21746 bzero(&ucmd_buf, sizeof (ucmd_buf)); 21747 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 21748 21749 /* Set the PF bit for many third party drives */ 21750 cdb.cdb_opaque[1] = 0x10; 21751 21752 /* Set the savepage(SP) bit if given */ 21753 if (save_page == SD_SAVE_PAGE) { 21754 cdb.cdb_opaque[1] |= 0x01; 21755 } 21756 21757 if (cdbsize == CDB_GROUP0) { 21758 cdb.scc_cmd = SCMD_MODE_SELECT; 21759 FORMG0COUNT(&cdb, buflen); 21760 } else { 21761 cdb.scc_cmd = SCMD_MODE_SELECT_G1; 21762 FORMG1COUNT(&cdb, buflen); 21763 } 21764 21765 SD_FILL_SCSI1_LUN_CDB(un, &cdb); 21766 21767 ucmd_buf.uscsi_cdb = (char *)&cdb; 21768 ucmd_buf.uscsi_cdblen = (uchar_t)cdbsize; 21769 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 21770 ucmd_buf.uscsi_buflen = buflen; 21771 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 21772 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 21773 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT; 21774 ucmd_buf.uscsi_timeout = 60; 21775 21776 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 21777 UIO_SYSSPACE, path_flag); 21778 21779 switch (status) { 21780 case 0: 21781 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 21782 break; /* Success! */ 21783 case EIO: 21784 switch (ucmd_buf.uscsi_status) { 21785 case STATUS_RESERVATION_CONFLICT: 21786 status = EACCES; 21787 break; 21788 default: 21789 break; 21790 } 21791 break; 21792 default: 21793 break; 21794 } 21795 21796 if (status == 0) { 21797 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data", 21798 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 21799 } 21800 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n"); 21801 21802 return (status); 21803 } 21804 21805 21806 /* 21807 * Function: sd_send_scsi_RDWR 21808 * 21809 * Description: Issue a scsi READ or WRITE command with the given parameters. 21810 * 21811 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 21812 * structure for this target. 21813 * cmd: SCMD_READ or SCMD_WRITE 21814 * bufaddr: Address of caller's buffer to receive the RDWR data 21815 * buflen: Length of caller's buffer receive the RDWR data. 21816 * start_block: Block number for the start of the RDWR operation. 21817 * (Assumes target-native block size.) 21818 * residp: Pointer to variable to receive the redisual of the 21819 * RDWR operation (may be NULL of no residual requested). 21820 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 21821 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 21822 * to use the USCSI "direct" chain and bypass the normal 21823 * command waitq. 21824 * 21825 * Return Code: 0 - Success 21826 * errno return code from sd_ssc_send() 21827 * 21828 * Context: Can sleep. Does not return until command is completed. 21829 */ 21830 21831 static int 21832 sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr, 21833 size_t buflen, daddr_t start_block, int path_flag) 21834 { 21835 struct scsi_extended_sense sense_buf; 21836 union scsi_cdb cdb; 21837 struct uscsi_cmd ucmd_buf; 21838 uint32_t block_count; 21839 int status; 21840 int cdbsize; 21841 uchar_t flag; 21842 struct sd_lun *un; 21843 21844 ASSERT(ssc != NULL); 21845 un = ssc->ssc_un; 21846 ASSERT(un != NULL); 21847 ASSERT(!mutex_owned(SD_MUTEX(un))); 21848 ASSERT(bufaddr != NULL); 21849 ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE)); 21850 21851 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un); 21852 21853 if (un->un_f_tgt_blocksize_is_valid != TRUE) { 21854 return (EINVAL); 21855 } 21856 21857 mutex_enter(SD_MUTEX(un)); 21858 block_count = SD_BYTES2TGTBLOCKS(un, buflen); 21859 mutex_exit(SD_MUTEX(un)); 21860 21861 flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE; 21862 21863 SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: " 21864 "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n", 21865 bufaddr, buflen, start_block, block_count); 21866 21867 bzero(&cdb, sizeof (cdb)); 21868 bzero(&ucmd_buf, sizeof (ucmd_buf)); 21869 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 21870 21871 /* Compute CDB size to use */ 21872 if (start_block > 0xffffffff) 21873 cdbsize = CDB_GROUP4; 21874 else if ((start_block & 0xFFE00000) || 21875 (un->un_f_cfg_is_atapi == TRUE)) 21876 cdbsize = CDB_GROUP1; 21877 else 21878 cdbsize = CDB_GROUP0; 21879 21880 switch (cdbsize) { 21881 case CDB_GROUP0: /* 6-byte CDBs */ 21882 cdb.scc_cmd = cmd; 21883 FORMG0ADDR(&cdb, start_block); 21884 FORMG0COUNT(&cdb, block_count); 21885 break; 21886 case CDB_GROUP1: /* 10-byte CDBs */ 21887 cdb.scc_cmd = cmd | SCMD_GROUP1; 21888 FORMG1ADDR(&cdb, start_block); 21889 FORMG1COUNT(&cdb, block_count); 21890 break; 21891 case CDB_GROUP4: /* 16-byte CDBs */ 21892 cdb.scc_cmd = cmd | SCMD_GROUP4; 21893 FORMG4LONGADDR(&cdb, (uint64_t)start_block); 21894 FORMG4COUNT(&cdb, block_count); 21895 break; 21896 case CDB_GROUP5: /* 12-byte CDBs (currently unsupported) */ 21897 default: 21898 /* All others reserved */ 21899 return (EINVAL); 21900 } 21901 21902 /* Set LUN bit(s) in CDB if this is a SCSI-1 device */ 21903 SD_FILL_SCSI1_LUN_CDB(un, &cdb); 21904 21905 ucmd_buf.uscsi_cdb = (char *)&cdb; 21906 ucmd_buf.uscsi_cdblen = (uchar_t)cdbsize; 21907 ucmd_buf.uscsi_bufaddr = bufaddr; 21908 ucmd_buf.uscsi_buflen = buflen; 21909 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 21910 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 21911 ucmd_buf.uscsi_flags = flag | USCSI_RQENABLE | USCSI_SILENT; 21912 ucmd_buf.uscsi_timeout = 60; 21913 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 21914 UIO_SYSSPACE, path_flag); 21915 21916 switch (status) { 21917 case 0: 21918 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 21919 break; /* Success! */ 21920 case EIO: 21921 switch (ucmd_buf.uscsi_status) { 21922 case STATUS_RESERVATION_CONFLICT: 21923 status = EACCES; 21924 break; 21925 default: 21926 break; 21927 } 21928 break; 21929 default: 21930 break; 21931 } 21932 21933 if (status == 0) { 21934 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data", 21935 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 21936 } 21937 21938 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n"); 21939 21940 return (status); 21941 } 21942 21943 21944 /* 21945 * Function: sd_send_scsi_LOG_SENSE 21946 * 21947 * Description: Issue a scsi LOG_SENSE command with the given parameters. 21948 * 21949 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 21950 * structure for this target. 21951 * 21952 * Return Code: 0 - Success 21953 * errno return code from sd_ssc_send() 21954 * 21955 * Context: Can sleep. Does not return until command is completed. 21956 */ 21957 21958 static int 21959 sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr, uint16_t buflen, 21960 uchar_t page_code, uchar_t page_control, uint16_t param_ptr, 21961 int path_flag) 21962 21963 { 21964 struct scsi_extended_sense sense_buf; 21965 union scsi_cdb cdb; 21966 struct uscsi_cmd ucmd_buf; 21967 int status; 21968 struct sd_lun *un; 21969 21970 ASSERT(ssc != NULL); 21971 un = ssc->ssc_un; 21972 ASSERT(un != NULL); 21973 ASSERT(!mutex_owned(SD_MUTEX(un))); 21974 21975 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un); 21976 21977 bzero(&cdb, sizeof (cdb)); 21978 bzero(&ucmd_buf, sizeof (ucmd_buf)); 21979 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 21980 21981 cdb.scc_cmd = SCMD_LOG_SENSE_G1; 21982 cdb.cdb_opaque[2] = (page_control << 6) | page_code; 21983 cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8); 21984 cdb.cdb_opaque[6] = (uchar_t)(param_ptr & 0x00FF); 21985 FORMG1COUNT(&cdb, buflen); 21986 21987 ucmd_buf.uscsi_cdb = (char *)&cdb; 21988 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 21989 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 21990 ucmd_buf.uscsi_buflen = buflen; 21991 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 21992 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 21993 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 21994 ucmd_buf.uscsi_timeout = 60; 21995 21996 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 21997 UIO_SYSSPACE, path_flag); 21998 21999 switch (status) { 22000 case 0: 22001 break; 22002 case EIO: 22003 switch (ucmd_buf.uscsi_status) { 22004 case STATUS_RESERVATION_CONFLICT: 22005 status = EACCES; 22006 break; 22007 case STATUS_CHECK: 22008 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 22009 (scsi_sense_key((uint8_t *)&sense_buf) == 22010 KEY_ILLEGAL_REQUEST) && 22011 (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) { 22012 /* 22013 * ASC 0x24: INVALID FIELD IN CDB 22014 */ 22015 switch (page_code) { 22016 case START_STOP_CYCLE_PAGE: 22017 /* 22018 * The start stop cycle counter is 22019 * implemented as page 0x31 in earlier 22020 * generation disks. In new generation 22021 * disks the start stop cycle counter is 22022 * implemented as page 0xE. To properly 22023 * handle this case if an attempt for 22024 * log page 0xE is made and fails we 22025 * will try again using page 0x31. 22026 * 22027 * Network storage BU committed to 22028 * maintain the page 0x31 for this 22029 * purpose and will not have any other 22030 * page implemented with page code 0x31 22031 * until all disks transition to the 22032 * standard page. 22033 */ 22034 mutex_enter(SD_MUTEX(un)); 22035 un->un_start_stop_cycle_page = 22036 START_STOP_CYCLE_VU_PAGE; 22037 cdb.cdb_opaque[2] = 22038 (char)(page_control << 6) | 22039 un->un_start_stop_cycle_page; 22040 mutex_exit(SD_MUTEX(un)); 22041 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 22042 status = sd_ssc_send( 22043 ssc, &ucmd_buf, FKIOCTL, 22044 UIO_SYSSPACE, path_flag); 22045 22046 break; 22047 case TEMPERATURE_PAGE: 22048 status = ENOTTY; 22049 break; 22050 default: 22051 break; 22052 } 22053 } 22054 break; 22055 default: 22056 break; 22057 } 22058 break; 22059 default: 22060 break; 22061 } 22062 22063 if (status == 0) { 22064 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 22065 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data", 22066 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 22067 } 22068 22069 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n"); 22070 22071 return (status); 22072 } 22073 22074 22075 /* 22076 * Function: sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION 22077 * 22078 * Description: Issue the scsi GET EVENT STATUS NOTIFICATION command. 22079 * 22080 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 22081 * structure for this target. 22082 * bufaddr 22083 * buflen 22084 * class_req 22085 * 22086 * Return Code: 0 - Success 22087 * errno return code from sd_ssc_send() 22088 * 22089 * Context: Can sleep. Does not return until command is completed. 22090 */ 22091 22092 static int 22093 sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(sd_ssc_t *ssc, uchar_t *bufaddr, 22094 size_t buflen, uchar_t class_req) 22095 { 22096 union scsi_cdb cdb; 22097 struct uscsi_cmd ucmd_buf; 22098 int status; 22099 struct sd_lun *un; 22100 22101 ASSERT(ssc != NULL); 22102 un = ssc->ssc_un; 22103 ASSERT(un != NULL); 22104 ASSERT(!mutex_owned(SD_MUTEX(un))); 22105 ASSERT(bufaddr != NULL); 22106 22107 SD_TRACE(SD_LOG_IO, un, 22108 "sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION: entry: un:0x%p\n", un); 22109 22110 bzero(&cdb, sizeof (cdb)); 22111 bzero(&ucmd_buf, sizeof (ucmd_buf)); 22112 bzero(bufaddr, buflen); 22113 22114 cdb.scc_cmd = SCMD_GET_EVENT_STATUS_NOTIFICATION; 22115 cdb.cdb_opaque[1] = 1; /* polled */ 22116 cdb.cdb_opaque[4] = class_req; 22117 FORMG1COUNT(&cdb, buflen); 22118 22119 ucmd_buf.uscsi_cdb = (char *)&cdb; 22120 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 22121 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 22122 ucmd_buf.uscsi_buflen = buflen; 22123 ucmd_buf.uscsi_rqbuf = NULL; 22124 ucmd_buf.uscsi_rqlen = 0; 22125 ucmd_buf.uscsi_flags = USCSI_READ | USCSI_SILENT; 22126 ucmd_buf.uscsi_timeout = 60; 22127 22128 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 22129 UIO_SYSSPACE, SD_PATH_DIRECT); 22130 22131 /* 22132 * Only handle status == 0, the upper-level caller 22133 * will put different assessment based on the context. 22134 */ 22135 if (status == 0) { 22136 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 22137 22138 if (ucmd_buf.uscsi_resid != 0) { 22139 status = EIO; 22140 } 22141 } 22142 22143 SD_TRACE(SD_LOG_IO, un, 22144 "sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION: exit\n"); 22145 22146 return (status); 22147 } 22148 22149 22150 static boolean_t 22151 sd_gesn_media_data_valid(uchar_t *data) 22152 { 22153 uint16_t len; 22154 22155 len = (data[1] << 8) | data[0]; 22156 return ((len >= 6) && 22157 ((data[2] & SD_GESN_HEADER_NEA) == 0) && 22158 ((data[2] & SD_GESN_HEADER_CLASS) == SD_GESN_MEDIA_CLASS) && 22159 ((data[3] & (1 << SD_GESN_MEDIA_CLASS)) != 0)); 22160 } 22161 22162 22163 /* 22164 * Function: sdioctl 22165 * 22166 * Description: Driver's ioctl(9e) entry point function. 22167 * 22168 * Arguments: dev - device number 22169 * cmd - ioctl operation to be performed 22170 * arg - user argument, contains data to be set or reference 22171 * parameter for get 22172 * flag - bit flag, indicating open settings, 32/64 bit type 22173 * cred_p - user credential pointer 22174 * rval_p - calling process return value (OPT) 22175 * 22176 * Return Code: EINVAL 22177 * ENOTTY 22178 * ENXIO 22179 * EIO 22180 * EFAULT 22181 * ENOTSUP 22182 * EPERM 22183 * 22184 * Context: Called from the device switch at normal priority. 22185 */ 22186 22187 static int 22188 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p) 22189 { 22190 struct sd_lun *un = NULL; 22191 int err = 0; 22192 int i = 0; 22193 cred_t *cr; 22194 int tmprval = EINVAL; 22195 boolean_t is_valid; 22196 sd_ssc_t *ssc; 22197 22198 /* 22199 * All device accesses go thru sdstrategy where we check on suspend 22200 * status 22201 */ 22202 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 22203 return (ENXIO); 22204 } 22205 22206 ASSERT(!mutex_owned(SD_MUTEX(un))); 22207 22208 /* Initialize sd_ssc_t for internal uscsi commands */ 22209 ssc = sd_ssc_init(un); 22210 22211 is_valid = SD_IS_VALID_LABEL(un); 22212 22213 /* 22214 * Moved this wait from sd_uscsi_strategy to here for 22215 * reasons of deadlock prevention. Internal driver commands, 22216 * specifically those to change a devices power level, result 22217 * in a call to sd_uscsi_strategy. 22218 */ 22219 mutex_enter(SD_MUTEX(un)); 22220 while ((un->un_state == SD_STATE_SUSPENDED) || 22221 (un->un_state == SD_STATE_PM_CHANGING)) { 22222 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 22223 } 22224 /* 22225 * Twiddling the counter here protects commands from now 22226 * through to the top of sd_uscsi_strategy. Without the 22227 * counter inc. a power down, for example, could get in 22228 * after the above check for state is made and before 22229 * execution gets to the top of sd_uscsi_strategy. 22230 * That would cause problems. 22231 */ 22232 un->un_ncmds_in_driver++; 22233 22234 if (!is_valid && 22235 (flag & (FNDELAY | FNONBLOCK))) { 22236 switch (cmd) { 22237 case DKIOCGGEOM: /* SD_PATH_DIRECT */ 22238 case DKIOCGVTOC: 22239 case DKIOCGEXTVTOC: 22240 case DKIOCGAPART: 22241 case DKIOCPARTINFO: 22242 case DKIOCEXTPARTINFO: 22243 case DKIOCSGEOM: 22244 case DKIOCSAPART: 22245 case DKIOCGETEFI: 22246 case DKIOCPARTITION: 22247 case DKIOCSVTOC: 22248 case DKIOCSEXTVTOC: 22249 case DKIOCSETEFI: 22250 case DKIOCGMBOOT: 22251 case DKIOCSMBOOT: 22252 case DKIOCG_PHYGEOM: 22253 case DKIOCG_VIRTGEOM: 22254 #if defined(__i386) || defined(__amd64) 22255 case DKIOCSETEXTPART: 22256 #endif 22257 /* let cmlb handle it */ 22258 goto skip_ready_valid; 22259 22260 case CDROMPAUSE: 22261 case CDROMRESUME: 22262 case CDROMPLAYMSF: 22263 case CDROMPLAYTRKIND: 22264 case CDROMREADTOCHDR: 22265 case CDROMREADTOCENTRY: 22266 case CDROMSTOP: 22267 case CDROMSTART: 22268 case CDROMVOLCTRL: 22269 case CDROMSUBCHNL: 22270 case CDROMREADMODE2: 22271 case CDROMREADMODE1: 22272 case CDROMREADOFFSET: 22273 case CDROMSBLKMODE: 22274 case CDROMGBLKMODE: 22275 case CDROMGDRVSPEED: 22276 case CDROMSDRVSPEED: 22277 case CDROMCDDA: 22278 case CDROMCDXA: 22279 case CDROMSUBCODE: 22280 if (!ISCD(un)) { 22281 un->un_ncmds_in_driver--; 22282 ASSERT(un->un_ncmds_in_driver >= 0); 22283 mutex_exit(SD_MUTEX(un)); 22284 err = ENOTTY; 22285 goto done_without_assess; 22286 } 22287 break; 22288 case FDEJECT: 22289 case DKIOCEJECT: 22290 case CDROMEJECT: 22291 if (!un->un_f_eject_media_supported) { 22292 un->un_ncmds_in_driver--; 22293 ASSERT(un->un_ncmds_in_driver >= 0); 22294 mutex_exit(SD_MUTEX(un)); 22295 err = ENOTTY; 22296 goto done_without_assess; 22297 } 22298 break; 22299 case DKIOCFLUSHWRITECACHE: 22300 mutex_exit(SD_MUTEX(un)); 22301 err = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 22302 if (err != 0) { 22303 mutex_enter(SD_MUTEX(un)); 22304 un->un_ncmds_in_driver--; 22305 ASSERT(un->un_ncmds_in_driver >= 0); 22306 mutex_exit(SD_MUTEX(un)); 22307 err = EIO; 22308 goto done_quick_assess; 22309 } 22310 mutex_enter(SD_MUTEX(un)); 22311 /* FALLTHROUGH */ 22312 case DKIOCREMOVABLE: 22313 case DKIOCHOTPLUGGABLE: 22314 case DKIOCINFO: 22315 case DKIOCGMEDIAINFO: 22316 case DKIOCGMEDIAINFOEXT: 22317 case MHIOCENFAILFAST: 22318 case MHIOCSTATUS: 22319 case MHIOCTKOWN: 22320 case MHIOCRELEASE: 22321 case MHIOCGRP_INKEYS: 22322 case MHIOCGRP_INRESV: 22323 case MHIOCGRP_REGISTER: 22324 case MHIOCGRP_CLEAR: 22325 case MHIOCGRP_RESERVE: 22326 case MHIOCGRP_PREEMPTANDABORT: 22327 case MHIOCGRP_REGISTERANDIGNOREKEY: 22328 case CDROMCLOSETRAY: 22329 case USCSICMD: 22330 goto skip_ready_valid; 22331 default: 22332 break; 22333 } 22334 22335 mutex_exit(SD_MUTEX(un)); 22336 err = sd_ready_and_valid(ssc, SDPART(dev)); 22337 mutex_enter(SD_MUTEX(un)); 22338 22339 if (err != SD_READY_VALID) { 22340 switch (cmd) { 22341 case DKIOCSTATE: 22342 case CDROMGDRVSPEED: 22343 case CDROMSDRVSPEED: 22344 case FDEJECT: /* for eject command */ 22345 case DKIOCEJECT: 22346 case CDROMEJECT: 22347 case DKIOCREMOVABLE: 22348 case DKIOCHOTPLUGGABLE: 22349 break; 22350 default: 22351 if (un->un_f_has_removable_media) { 22352 err = ENXIO; 22353 } else { 22354 /* Do not map SD_RESERVED_BY_OTHERS to EIO */ 22355 if (err == SD_RESERVED_BY_OTHERS) { 22356 err = EACCES; 22357 } else { 22358 err = EIO; 22359 } 22360 } 22361 un->un_ncmds_in_driver--; 22362 ASSERT(un->un_ncmds_in_driver >= 0); 22363 mutex_exit(SD_MUTEX(un)); 22364 22365 goto done_without_assess; 22366 } 22367 } 22368 } 22369 22370 skip_ready_valid: 22371 mutex_exit(SD_MUTEX(un)); 22372 22373 switch (cmd) { 22374 case DKIOCINFO: 22375 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n"); 22376 err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag); 22377 break; 22378 22379 case DKIOCGMEDIAINFO: 22380 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n"); 22381 err = sd_get_media_info(dev, (caddr_t)arg, flag); 22382 break; 22383 22384 case DKIOCGMEDIAINFOEXT: 22385 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFOEXT\n"); 22386 err = sd_get_media_info_ext(dev, (caddr_t)arg, flag); 22387 break; 22388 22389 case DKIOCGGEOM: 22390 case DKIOCGVTOC: 22391 case DKIOCGEXTVTOC: 22392 case DKIOCGAPART: 22393 case DKIOCPARTINFO: 22394 case DKIOCEXTPARTINFO: 22395 case DKIOCSGEOM: 22396 case DKIOCSAPART: 22397 case DKIOCGETEFI: 22398 case DKIOCPARTITION: 22399 case DKIOCSVTOC: 22400 case DKIOCSEXTVTOC: 22401 case DKIOCSETEFI: 22402 case DKIOCGMBOOT: 22403 case DKIOCSMBOOT: 22404 case DKIOCG_PHYGEOM: 22405 case DKIOCG_VIRTGEOM: 22406 #if defined(__i386) || defined(__amd64) 22407 case DKIOCSETEXTPART: 22408 #endif 22409 SD_TRACE(SD_LOG_IOCTL, un, "DKIOC %d\n", cmd); 22410 22411 /* TUR should spin up */ 22412 22413 if (un->un_f_has_removable_media) 22414 err = sd_send_scsi_TEST_UNIT_READY(ssc, 22415 SD_CHECK_FOR_MEDIA); 22416 22417 else 22418 err = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 22419 22420 if (err != 0) 22421 goto done_with_assess; 22422 22423 err = cmlb_ioctl(un->un_cmlbhandle, dev, 22424 cmd, arg, flag, cred_p, rval_p, (void *)SD_PATH_DIRECT); 22425 22426 if ((err == 0) && 22427 ((cmd == DKIOCSETEFI) || 22428 (un->un_f_pkstats_enabled) && 22429 (cmd == DKIOCSAPART || cmd == DKIOCSVTOC || 22430 cmd == DKIOCSEXTVTOC))) { 22431 22432 tmprval = cmlb_validate(un->un_cmlbhandle, CMLB_SILENT, 22433 (void *)SD_PATH_DIRECT); 22434 if ((tmprval == 0) && un->un_f_pkstats_enabled) { 22435 sd_set_pstats(un); 22436 SD_TRACE(SD_LOG_IO_PARTITION, un, 22437 "sd_ioctl: un:0x%p pstats created and " 22438 "set\n", un); 22439 } 22440 } 22441 22442 if ((cmd == DKIOCSVTOC || cmd == DKIOCSEXTVTOC) || 22443 ((cmd == DKIOCSETEFI) && (tmprval == 0))) { 22444 22445 mutex_enter(SD_MUTEX(un)); 22446 if (un->un_f_devid_supported && 22447 (un->un_f_opt_fab_devid == TRUE)) { 22448 if (un->un_devid == NULL) { 22449 sd_register_devid(ssc, SD_DEVINFO(un), 22450 SD_TARGET_IS_UNRESERVED); 22451 } else { 22452 /* 22453 * The device id for this disk 22454 * has been fabricated. The 22455 * device id must be preserved 22456 * by writing it back out to 22457 * disk. 22458 */ 22459 if (sd_write_deviceid(ssc) != 0) { 22460 ddi_devid_free(un->un_devid); 22461 un->un_devid = NULL; 22462 } 22463 } 22464 } 22465 mutex_exit(SD_MUTEX(un)); 22466 } 22467 22468 break; 22469 22470 case DKIOCLOCK: 22471 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n"); 22472 err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT, 22473 SD_PATH_STANDARD); 22474 goto done_with_assess; 22475 22476 case DKIOCUNLOCK: 22477 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n"); 22478 err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW, 22479 SD_PATH_STANDARD); 22480 goto done_with_assess; 22481 22482 case DKIOCSTATE: { 22483 enum dkio_state state; 22484 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n"); 22485 22486 if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) { 22487 err = EFAULT; 22488 } else { 22489 err = sd_check_media(dev, state); 22490 if (err == 0) { 22491 if (ddi_copyout(&un->un_mediastate, (void *)arg, 22492 sizeof (int), flag) != 0) 22493 err = EFAULT; 22494 } 22495 } 22496 break; 22497 } 22498 22499 case DKIOCREMOVABLE: 22500 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n"); 22501 i = un->un_f_has_removable_media ? 1 : 0; 22502 if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) { 22503 err = EFAULT; 22504 } else { 22505 err = 0; 22506 } 22507 break; 22508 22509 case DKIOCHOTPLUGGABLE: 22510 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n"); 22511 i = un->un_f_is_hotpluggable ? 1 : 0; 22512 if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) { 22513 err = EFAULT; 22514 } else { 22515 err = 0; 22516 } 22517 break; 22518 22519 case DKIOCREADONLY: 22520 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREADONLY\n"); 22521 i = 0; 22522 if ((ISCD(un) && !un->un_f_mmc_writable_media) || 22523 (sr_check_wp(dev) != 0)) { 22524 i = 1; 22525 } 22526 if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) { 22527 err = EFAULT; 22528 } else { 22529 err = 0; 22530 } 22531 break; 22532 22533 case DKIOCGTEMPERATURE: 22534 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n"); 22535 err = sd_dkio_get_temp(dev, (caddr_t)arg, flag); 22536 break; 22537 22538 case MHIOCENFAILFAST: 22539 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n"); 22540 if ((err = drv_priv(cred_p)) == 0) { 22541 err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag); 22542 } 22543 break; 22544 22545 case MHIOCTKOWN: 22546 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n"); 22547 if ((err = drv_priv(cred_p)) == 0) { 22548 err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag); 22549 } 22550 break; 22551 22552 case MHIOCRELEASE: 22553 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n"); 22554 if ((err = drv_priv(cred_p)) == 0) { 22555 err = sd_mhdioc_release(dev); 22556 } 22557 break; 22558 22559 case MHIOCSTATUS: 22560 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n"); 22561 if ((err = drv_priv(cred_p)) == 0) { 22562 switch (sd_send_scsi_TEST_UNIT_READY(ssc, 0)) { 22563 case 0: 22564 err = 0; 22565 break; 22566 case EACCES: 22567 *rval_p = 1; 22568 err = 0; 22569 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 22570 break; 22571 default: 22572 err = EIO; 22573 goto done_with_assess; 22574 } 22575 } 22576 break; 22577 22578 case MHIOCQRESERVE: 22579 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n"); 22580 if ((err = drv_priv(cred_p)) == 0) { 22581 err = sd_reserve_release(dev, SD_RESERVE); 22582 } 22583 break; 22584 22585 case MHIOCREREGISTERDEVID: 22586 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n"); 22587 if (drv_priv(cred_p) == EPERM) { 22588 err = EPERM; 22589 } else if (!un->un_f_devid_supported) { 22590 err = ENOTTY; 22591 } else { 22592 err = sd_mhdioc_register_devid(dev); 22593 } 22594 break; 22595 22596 case MHIOCGRP_INKEYS: 22597 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n"); 22598 if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) { 22599 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 22600 err = ENOTSUP; 22601 } else { 22602 err = sd_mhdioc_inkeys(dev, (caddr_t)arg, 22603 flag); 22604 } 22605 } 22606 break; 22607 22608 case MHIOCGRP_INRESV: 22609 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n"); 22610 if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) { 22611 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 22612 err = ENOTSUP; 22613 } else { 22614 err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag); 22615 } 22616 } 22617 break; 22618 22619 case MHIOCGRP_REGISTER: 22620 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n"); 22621 if ((err = drv_priv(cred_p)) != EPERM) { 22622 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 22623 err = ENOTSUP; 22624 } else if (arg != NULL) { 22625 mhioc_register_t reg; 22626 if (ddi_copyin((void *)arg, ®, 22627 sizeof (mhioc_register_t), flag) != 0) { 22628 err = EFAULT; 22629 } else { 22630 err = 22631 sd_send_scsi_PERSISTENT_RESERVE_OUT( 22632 ssc, SD_SCSI3_REGISTER, 22633 (uchar_t *)®); 22634 if (err != 0) 22635 goto done_with_assess; 22636 } 22637 } 22638 } 22639 break; 22640 22641 case MHIOCGRP_CLEAR: 22642 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_CLEAR\n"); 22643 if ((err = drv_priv(cred_p)) != EPERM) { 22644 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 22645 err = ENOTSUP; 22646 } else if (arg != NULL) { 22647 mhioc_register_t reg; 22648 if (ddi_copyin((void *)arg, ®, 22649 sizeof (mhioc_register_t), flag) != 0) { 22650 err = EFAULT; 22651 } else { 22652 err = 22653 sd_send_scsi_PERSISTENT_RESERVE_OUT( 22654 ssc, SD_SCSI3_CLEAR, 22655 (uchar_t *)®); 22656 if (err != 0) 22657 goto done_with_assess; 22658 } 22659 } 22660 } 22661 break; 22662 22663 case MHIOCGRP_RESERVE: 22664 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n"); 22665 if ((err = drv_priv(cred_p)) != EPERM) { 22666 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 22667 err = ENOTSUP; 22668 } else if (arg != NULL) { 22669 mhioc_resv_desc_t resv_desc; 22670 if (ddi_copyin((void *)arg, &resv_desc, 22671 sizeof (mhioc_resv_desc_t), flag) != 0) { 22672 err = EFAULT; 22673 } else { 22674 err = 22675 sd_send_scsi_PERSISTENT_RESERVE_OUT( 22676 ssc, SD_SCSI3_RESERVE, 22677 (uchar_t *)&resv_desc); 22678 if (err != 0) 22679 goto done_with_assess; 22680 } 22681 } 22682 } 22683 break; 22684 22685 case MHIOCGRP_PREEMPTANDABORT: 22686 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n"); 22687 if ((err = drv_priv(cred_p)) != EPERM) { 22688 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 22689 err = ENOTSUP; 22690 } else if (arg != NULL) { 22691 mhioc_preemptandabort_t preempt_abort; 22692 if (ddi_copyin((void *)arg, &preempt_abort, 22693 sizeof (mhioc_preemptandabort_t), 22694 flag) != 0) { 22695 err = EFAULT; 22696 } else { 22697 err = 22698 sd_send_scsi_PERSISTENT_RESERVE_OUT( 22699 ssc, SD_SCSI3_PREEMPTANDABORT, 22700 (uchar_t *)&preempt_abort); 22701 if (err != 0) 22702 goto done_with_assess; 22703 } 22704 } 22705 } 22706 break; 22707 22708 case MHIOCGRP_REGISTERANDIGNOREKEY: 22709 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTERANDIGNOREKEY\n"); 22710 if ((err = drv_priv(cred_p)) != EPERM) { 22711 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 22712 err = ENOTSUP; 22713 } else if (arg != NULL) { 22714 mhioc_registerandignorekey_t r_and_i; 22715 if (ddi_copyin((void *)arg, (void *)&r_and_i, 22716 sizeof (mhioc_registerandignorekey_t), 22717 flag) != 0) { 22718 err = EFAULT; 22719 } else { 22720 err = 22721 sd_send_scsi_PERSISTENT_RESERVE_OUT( 22722 ssc, SD_SCSI3_REGISTERANDIGNOREKEY, 22723 (uchar_t *)&r_and_i); 22724 if (err != 0) 22725 goto done_with_assess; 22726 } 22727 } 22728 } 22729 break; 22730 22731 case USCSICMD: 22732 SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n"); 22733 cr = ddi_get_cred(); 22734 if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) { 22735 err = EPERM; 22736 } else { 22737 enum uio_seg uioseg; 22738 22739 uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE : 22740 UIO_USERSPACE; 22741 if (un->un_f_format_in_progress == TRUE) { 22742 err = EAGAIN; 22743 break; 22744 } 22745 22746 err = sd_ssc_send(ssc, 22747 (struct uscsi_cmd *)arg, 22748 flag, uioseg, SD_PATH_STANDARD); 22749 if (err != 0) 22750 goto done_with_assess; 22751 else 22752 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 22753 } 22754 break; 22755 22756 case CDROMPAUSE: 22757 case CDROMRESUME: 22758 SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n"); 22759 if (!ISCD(un)) { 22760 err = ENOTTY; 22761 } else { 22762 err = sr_pause_resume(dev, cmd); 22763 } 22764 break; 22765 22766 case CDROMPLAYMSF: 22767 SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n"); 22768 if (!ISCD(un)) { 22769 err = ENOTTY; 22770 } else { 22771 err = sr_play_msf(dev, (caddr_t)arg, flag); 22772 } 22773 break; 22774 22775 case CDROMPLAYTRKIND: 22776 SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n"); 22777 #if defined(__i386) || defined(__amd64) 22778 /* 22779 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead 22780 */ 22781 if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) { 22782 #else 22783 if (!ISCD(un)) { 22784 #endif 22785 err = ENOTTY; 22786 } else { 22787 err = sr_play_trkind(dev, (caddr_t)arg, flag); 22788 } 22789 break; 22790 22791 case CDROMREADTOCHDR: 22792 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n"); 22793 if (!ISCD(un)) { 22794 err = ENOTTY; 22795 } else { 22796 err = sr_read_tochdr(dev, (caddr_t)arg, flag); 22797 } 22798 break; 22799 22800 case CDROMREADTOCENTRY: 22801 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n"); 22802 if (!ISCD(un)) { 22803 err = ENOTTY; 22804 } else { 22805 err = sr_read_tocentry(dev, (caddr_t)arg, flag); 22806 } 22807 break; 22808 22809 case CDROMSTOP: 22810 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n"); 22811 if (!ISCD(un)) { 22812 err = ENOTTY; 22813 } else { 22814 err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 22815 SD_TARGET_STOP, SD_PATH_STANDARD); 22816 goto done_with_assess; 22817 } 22818 break; 22819 22820 case CDROMSTART: 22821 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n"); 22822 if (!ISCD(un)) { 22823 err = ENOTTY; 22824 } else { 22825 err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 22826 SD_TARGET_START, SD_PATH_STANDARD); 22827 goto done_with_assess; 22828 } 22829 break; 22830 22831 case CDROMCLOSETRAY: 22832 SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n"); 22833 if (!ISCD(un)) { 22834 err = ENOTTY; 22835 } else { 22836 err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 22837 SD_TARGET_CLOSE, SD_PATH_STANDARD); 22838 goto done_with_assess; 22839 } 22840 break; 22841 22842 case FDEJECT: /* for eject command */ 22843 case DKIOCEJECT: 22844 case CDROMEJECT: 22845 SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n"); 22846 if (!un->un_f_eject_media_supported) { 22847 err = ENOTTY; 22848 } else { 22849 err = sr_eject(dev); 22850 } 22851 break; 22852 22853 case CDROMVOLCTRL: 22854 SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n"); 22855 if (!ISCD(un)) { 22856 err = ENOTTY; 22857 } else { 22858 err = sr_volume_ctrl(dev, (caddr_t)arg, flag); 22859 } 22860 break; 22861 22862 case CDROMSUBCHNL: 22863 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n"); 22864 if (!ISCD(un)) { 22865 err = ENOTTY; 22866 } else { 22867 err = sr_read_subchannel(dev, (caddr_t)arg, flag); 22868 } 22869 break; 22870 22871 case CDROMREADMODE2: 22872 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n"); 22873 if (!ISCD(un)) { 22874 err = ENOTTY; 22875 } else if (un->un_f_cfg_is_atapi == TRUE) { 22876 /* 22877 * If the drive supports READ CD, use that instead of 22878 * switching the LBA size via a MODE SELECT 22879 * Block Descriptor 22880 */ 22881 err = sr_read_cd_mode2(dev, (caddr_t)arg, flag); 22882 } else { 22883 err = sr_read_mode2(dev, (caddr_t)arg, flag); 22884 } 22885 break; 22886 22887 case CDROMREADMODE1: 22888 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n"); 22889 if (!ISCD(un)) { 22890 err = ENOTTY; 22891 } else { 22892 err = sr_read_mode1(dev, (caddr_t)arg, flag); 22893 } 22894 break; 22895 22896 case CDROMREADOFFSET: 22897 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n"); 22898 if (!ISCD(un)) { 22899 err = ENOTTY; 22900 } else { 22901 err = sr_read_sony_session_offset(dev, (caddr_t)arg, 22902 flag); 22903 } 22904 break; 22905 22906 case CDROMSBLKMODE: 22907 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n"); 22908 /* 22909 * There is no means of changing block size in case of atapi 22910 * drives, thus return ENOTTY if drive type is atapi 22911 */ 22912 if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) { 22913 err = ENOTTY; 22914 } else if (un->un_f_mmc_cap == TRUE) { 22915 22916 /* 22917 * MMC Devices do not support changing the 22918 * logical block size 22919 * 22920 * Note: EINVAL is being returned instead of ENOTTY to 22921 * maintain consistancy with the original mmc 22922 * driver update. 22923 */ 22924 err = EINVAL; 22925 } else { 22926 mutex_enter(SD_MUTEX(un)); 22927 if ((!(un->un_exclopen & (1<<SDPART(dev)))) || 22928 (un->un_ncmds_in_transport > 0)) { 22929 mutex_exit(SD_MUTEX(un)); 22930 err = EINVAL; 22931 } else { 22932 mutex_exit(SD_MUTEX(un)); 22933 err = sr_change_blkmode(dev, cmd, arg, flag); 22934 } 22935 } 22936 break; 22937 22938 case CDROMGBLKMODE: 22939 SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n"); 22940 if (!ISCD(un)) { 22941 err = ENOTTY; 22942 } else if ((un->un_f_cfg_is_atapi != FALSE) && 22943 (un->un_f_blockcount_is_valid != FALSE)) { 22944 /* 22945 * Drive is an ATAPI drive so return target block 22946 * size for ATAPI drives since we cannot change the 22947 * blocksize on ATAPI drives. Used primarily to detect 22948 * if an ATAPI cdrom is present. 22949 */ 22950 if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg, 22951 sizeof (int), flag) != 0) { 22952 err = EFAULT; 22953 } else { 22954 err = 0; 22955 } 22956 22957 } else { 22958 /* 22959 * Drive supports changing block sizes via a Mode 22960 * Select. 22961 */ 22962 err = sr_change_blkmode(dev, cmd, arg, flag); 22963 } 22964 break; 22965 22966 case CDROMGDRVSPEED: 22967 case CDROMSDRVSPEED: 22968 SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n"); 22969 if (!ISCD(un)) { 22970 err = ENOTTY; 22971 } else if (un->un_f_mmc_cap == TRUE) { 22972 /* 22973 * Note: In the future the driver implementation 22974 * for getting and 22975 * setting cd speed should entail: 22976 * 1) If non-mmc try the Toshiba mode page 22977 * (sr_change_speed) 22978 * 2) If mmc but no support for Real Time Streaming try 22979 * the SET CD SPEED (0xBB) command 22980 * (sr_atapi_change_speed) 22981 * 3) If mmc and support for Real Time Streaming 22982 * try the GET PERFORMANCE and SET STREAMING 22983 * commands (not yet implemented, 4380808) 22984 */ 22985 /* 22986 * As per recent MMC spec, CD-ROM speed is variable 22987 * and changes with LBA. Since there is no such 22988 * things as drive speed now, fail this ioctl. 22989 * 22990 * Note: EINVAL is returned for consistancy of original 22991 * implementation which included support for getting 22992 * the drive speed of mmc devices but not setting 22993 * the drive speed. Thus EINVAL would be returned 22994 * if a set request was made for an mmc device. 22995 * We no longer support get or set speed for 22996 * mmc but need to remain consistent with regard 22997 * to the error code returned. 22998 */ 22999 err = EINVAL; 23000 } else if (un->un_f_cfg_is_atapi == TRUE) { 23001 err = sr_atapi_change_speed(dev, cmd, arg, flag); 23002 } else { 23003 err = sr_change_speed(dev, cmd, arg, flag); 23004 } 23005 break; 23006 23007 case CDROMCDDA: 23008 SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n"); 23009 if (!ISCD(un)) { 23010 err = ENOTTY; 23011 } else { 23012 err = sr_read_cdda(dev, (void *)arg, flag); 23013 } 23014 break; 23015 23016 case CDROMCDXA: 23017 SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n"); 23018 if (!ISCD(un)) { 23019 err = ENOTTY; 23020 } else { 23021 err = sr_read_cdxa(dev, (caddr_t)arg, flag); 23022 } 23023 break; 23024 23025 case CDROMSUBCODE: 23026 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n"); 23027 if (!ISCD(un)) { 23028 err = ENOTTY; 23029 } else { 23030 err = sr_read_all_subcodes(dev, (caddr_t)arg, flag); 23031 } 23032 break; 23033 23034 23035 #ifdef SDDEBUG 23036 /* RESET/ABORTS testing ioctls */ 23037 case DKIOCRESET: { 23038 int reset_level; 23039 23040 if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) { 23041 err = EFAULT; 23042 } else { 23043 SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: " 23044 "reset_level = 0x%lx\n", reset_level); 23045 if (scsi_reset(SD_ADDRESS(un), reset_level)) { 23046 err = 0; 23047 } else { 23048 err = EIO; 23049 } 23050 } 23051 break; 23052 } 23053 23054 case DKIOCABORT: 23055 SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n"); 23056 if (scsi_abort(SD_ADDRESS(un), NULL)) { 23057 err = 0; 23058 } else { 23059 err = EIO; 23060 } 23061 break; 23062 #endif 23063 23064 #ifdef SD_FAULT_INJECTION 23065 /* SDIOC FaultInjection testing ioctls */ 23066 case SDIOCSTART: 23067 case SDIOCSTOP: 23068 case SDIOCINSERTPKT: 23069 case SDIOCINSERTXB: 23070 case SDIOCINSERTUN: 23071 case SDIOCINSERTARQ: 23072 case SDIOCPUSH: 23073 case SDIOCRETRIEVE: 23074 case SDIOCRUN: 23075 SD_INFO(SD_LOG_SDTEST, un, "sdioctl:" 23076 "SDIOC detected cmd:0x%X:\n", cmd); 23077 /* call error generator */ 23078 sd_faultinjection_ioctl(cmd, arg, un); 23079 err = 0; 23080 break; 23081 23082 #endif /* SD_FAULT_INJECTION */ 23083 23084 case DKIOCFLUSHWRITECACHE: 23085 { 23086 struct dk_callback *dkc = (struct dk_callback *)arg; 23087 23088 mutex_enter(SD_MUTEX(un)); 23089 if (!un->un_f_sync_cache_supported || 23090 !un->un_f_write_cache_enabled) { 23091 err = un->un_f_sync_cache_supported ? 23092 0 : ENOTSUP; 23093 mutex_exit(SD_MUTEX(un)); 23094 if ((flag & FKIOCTL) && dkc != NULL && 23095 dkc->dkc_callback != NULL) { 23096 (*dkc->dkc_callback)(dkc->dkc_cookie, 23097 err); 23098 /* 23099 * Did callback and reported error. 23100 * Since we did a callback, ioctl 23101 * should return 0. 23102 */ 23103 err = 0; 23104 } 23105 break; 23106 } 23107 mutex_exit(SD_MUTEX(un)); 23108 23109 if ((flag & FKIOCTL) && dkc != NULL && 23110 dkc->dkc_callback != NULL) { 23111 /* async SYNC CACHE request */ 23112 err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc); 23113 } else { 23114 /* synchronous SYNC CACHE request */ 23115 err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL); 23116 } 23117 } 23118 break; 23119 23120 case DKIOCGETWCE: { 23121 23122 int wce; 23123 23124 if ((err = sd_get_write_cache_enabled(ssc, &wce)) != 0) { 23125 break; 23126 } 23127 23128 if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) { 23129 err = EFAULT; 23130 } 23131 break; 23132 } 23133 23134 case DKIOCSETWCE: { 23135 23136 int wce, sync_supported; 23137 int cur_wce = 0; 23138 23139 if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) { 23140 err = EFAULT; 23141 break; 23142 } 23143 23144 /* 23145 * Synchronize multiple threads trying to enable 23146 * or disable the cache via the un_f_wcc_cv 23147 * condition variable. 23148 */ 23149 mutex_enter(SD_MUTEX(un)); 23150 23151 /* 23152 * Don't allow the cache to be enabled if the 23153 * config file has it disabled. 23154 */ 23155 if (un->un_f_opt_disable_cache && wce) { 23156 mutex_exit(SD_MUTEX(un)); 23157 err = EINVAL; 23158 break; 23159 } 23160 23161 /* 23162 * Wait for write cache change in progress 23163 * bit to be clear before proceeding. 23164 */ 23165 while (un->un_f_wcc_inprog) 23166 cv_wait(&un->un_wcc_cv, SD_MUTEX(un)); 23167 23168 un->un_f_wcc_inprog = 1; 23169 23170 mutex_exit(SD_MUTEX(un)); 23171 23172 /* 23173 * Get the current write cache state 23174 */ 23175 if ((err = sd_get_write_cache_enabled(ssc, &cur_wce)) != 0) { 23176 mutex_enter(SD_MUTEX(un)); 23177 un->un_f_wcc_inprog = 0; 23178 cv_broadcast(&un->un_wcc_cv); 23179 mutex_exit(SD_MUTEX(un)); 23180 break; 23181 } 23182 23183 mutex_enter(SD_MUTEX(un)); 23184 un->un_f_write_cache_enabled = (cur_wce != 0); 23185 23186 if (un->un_f_write_cache_enabled && wce == 0) { 23187 /* 23188 * Disable the write cache. Don't clear 23189 * un_f_write_cache_enabled until after 23190 * the mode select and flush are complete. 23191 */ 23192 sync_supported = un->un_f_sync_cache_supported; 23193 23194 /* 23195 * If cache flush is suppressed, we assume that the 23196 * controller firmware will take care of managing the 23197 * write cache for us: no need to explicitly 23198 * disable it. 23199 */ 23200 if (!un->un_f_suppress_cache_flush) { 23201 mutex_exit(SD_MUTEX(un)); 23202 if ((err = sd_cache_control(ssc, 23203 SD_CACHE_NOCHANGE, 23204 SD_CACHE_DISABLE)) == 0 && 23205 sync_supported) { 23206 err = sd_send_scsi_SYNCHRONIZE_CACHE(un, 23207 NULL); 23208 } 23209 } else { 23210 mutex_exit(SD_MUTEX(un)); 23211 } 23212 23213 mutex_enter(SD_MUTEX(un)); 23214 if (err == 0) { 23215 un->un_f_write_cache_enabled = 0; 23216 } 23217 23218 } else if (!un->un_f_write_cache_enabled && wce != 0) { 23219 /* 23220 * Set un_f_write_cache_enabled first, so there is 23221 * no window where the cache is enabled, but the 23222 * bit says it isn't. 23223 */ 23224 un->un_f_write_cache_enabled = 1; 23225 23226 /* 23227 * If cache flush is suppressed, we assume that the 23228 * controller firmware will take care of managing the 23229 * write cache for us: no need to explicitly 23230 * enable it. 23231 */ 23232 if (!un->un_f_suppress_cache_flush) { 23233 mutex_exit(SD_MUTEX(un)); 23234 err = sd_cache_control(ssc, SD_CACHE_NOCHANGE, 23235 SD_CACHE_ENABLE); 23236 } else { 23237 mutex_exit(SD_MUTEX(un)); 23238 } 23239 23240 mutex_enter(SD_MUTEX(un)); 23241 23242 if (err) { 23243 un->un_f_write_cache_enabled = 0; 23244 } 23245 } 23246 23247 un->un_f_wcc_inprog = 0; 23248 cv_broadcast(&un->un_wcc_cv); 23249 mutex_exit(SD_MUTEX(un)); 23250 break; 23251 } 23252 23253 default: 23254 err = ENOTTY; 23255 break; 23256 } 23257 mutex_enter(SD_MUTEX(un)); 23258 un->un_ncmds_in_driver--; 23259 ASSERT(un->un_ncmds_in_driver >= 0); 23260 mutex_exit(SD_MUTEX(un)); 23261 23262 23263 done_without_assess: 23264 sd_ssc_fini(ssc); 23265 23266 SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err); 23267 return (err); 23268 23269 done_with_assess: 23270 mutex_enter(SD_MUTEX(un)); 23271 un->un_ncmds_in_driver--; 23272 ASSERT(un->un_ncmds_in_driver >= 0); 23273 mutex_exit(SD_MUTEX(un)); 23274 23275 done_quick_assess: 23276 if (err != 0) 23277 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23278 /* Uninitialize sd_ssc_t pointer */ 23279 sd_ssc_fini(ssc); 23280 23281 SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err); 23282 return (err); 23283 } 23284 23285 23286 /* 23287 * Function: sd_dkio_ctrl_info 23288 * 23289 * Description: This routine is the driver entry point for handling controller 23290 * information ioctl requests (DKIOCINFO). 23291 * 23292 * Arguments: dev - the device number 23293 * arg - pointer to user provided dk_cinfo structure 23294 * specifying the controller type and attributes. 23295 * flag - this argument is a pass through to ddi_copyxxx() 23296 * directly from the mode argument of ioctl(). 23297 * 23298 * Return Code: 0 23299 * EFAULT 23300 * ENXIO 23301 */ 23302 23303 static int 23304 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag) 23305 { 23306 struct sd_lun *un = NULL; 23307 struct dk_cinfo *info; 23308 dev_info_t *pdip; 23309 int lun, tgt; 23310 23311 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 23312 return (ENXIO); 23313 } 23314 23315 info = (struct dk_cinfo *) 23316 kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP); 23317 23318 switch (un->un_ctype) { 23319 case CTYPE_CDROM: 23320 info->dki_ctype = DKC_CDROM; 23321 break; 23322 default: 23323 info->dki_ctype = DKC_SCSI_CCS; 23324 break; 23325 } 23326 pdip = ddi_get_parent(SD_DEVINFO(un)); 23327 info->dki_cnum = ddi_get_instance(pdip); 23328 if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) { 23329 (void) strcpy(info->dki_cname, ddi_get_name(pdip)); 23330 } else { 23331 (void) strncpy(info->dki_cname, ddi_node_name(pdip), 23332 DK_DEVLEN - 1); 23333 } 23334 23335 lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un), 23336 DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0); 23337 tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un), 23338 DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0); 23339 23340 /* Unit Information */ 23341 info->dki_unit = ddi_get_instance(SD_DEVINFO(un)); 23342 info->dki_slave = ((tgt << 3) | lun); 23343 (void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)), 23344 DK_DEVLEN - 1); 23345 info->dki_flags = DKI_FMTVOL; 23346 info->dki_partition = SDPART(dev); 23347 23348 /* Max Transfer size of this device in blocks */ 23349 info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize; 23350 info->dki_addr = 0; 23351 info->dki_space = 0; 23352 info->dki_prio = 0; 23353 info->dki_vec = 0; 23354 23355 if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) { 23356 kmem_free(info, sizeof (struct dk_cinfo)); 23357 return (EFAULT); 23358 } else { 23359 kmem_free(info, sizeof (struct dk_cinfo)); 23360 return (0); 23361 } 23362 } 23363 23364 /* 23365 * Function: sd_get_media_info_com 23366 * 23367 * Description: This routine returns the information required to populate 23368 * the fields for the dk_minfo/dk_minfo_ext structures. 23369 * 23370 * Arguments: dev - the device number 23371 * dki_media_type - media_type 23372 * dki_lbsize - logical block size 23373 * dki_capacity - capacity in blocks 23374 * dki_pbsize - physical block size (if requested) 23375 * 23376 * Return Code: 0 23377 * EACCESS 23378 * EFAULT 23379 * ENXIO 23380 * EIO 23381 */ 23382 static int 23383 sd_get_media_info_com(dev_t dev, uint_t *dki_media_type, uint_t *dki_lbsize, 23384 diskaddr_t *dki_capacity, uint_t *dki_pbsize) 23385 { 23386 struct sd_lun *un = NULL; 23387 struct uscsi_cmd com; 23388 struct scsi_inquiry *sinq; 23389 u_longlong_t media_capacity; 23390 uint64_t capacity; 23391 uint_t lbasize; 23392 uint_t pbsize; 23393 uchar_t *out_data; 23394 uchar_t *rqbuf; 23395 int rval = 0; 23396 int rtn; 23397 sd_ssc_t *ssc; 23398 23399 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 23400 (un->un_state == SD_STATE_OFFLINE)) { 23401 return (ENXIO); 23402 } 23403 23404 SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info_com: entry\n"); 23405 23406 out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP); 23407 rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 23408 ssc = sd_ssc_init(un); 23409 23410 /* Issue a TUR to determine if the drive is ready with media present */ 23411 rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_CHECK_FOR_MEDIA); 23412 if (rval == ENXIO) { 23413 goto done; 23414 } else if (rval != 0) { 23415 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23416 } 23417 23418 /* Now get configuration data */ 23419 if (ISCD(un)) { 23420 *dki_media_type = DK_CDROM; 23421 23422 /* Allow SCMD_GET_CONFIGURATION to MMC devices only */ 23423 if (un->un_f_mmc_cap == TRUE) { 23424 rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf, 23425 SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN, 23426 SD_PATH_STANDARD); 23427 23428 if (rtn) { 23429 /* 23430 * We ignore all failures for CD and need to 23431 * put the assessment before processing code 23432 * to avoid missing assessment for FMA. 23433 */ 23434 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23435 /* 23436 * Failed for other than an illegal request 23437 * or command not supported 23438 */ 23439 if ((com.uscsi_status == STATUS_CHECK) && 23440 (com.uscsi_rqstatus == STATUS_GOOD)) { 23441 if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) || 23442 (rqbuf[12] != 0x20)) { 23443 rval = EIO; 23444 goto no_assessment; 23445 } 23446 } 23447 } else { 23448 /* 23449 * The GET CONFIGURATION command succeeded 23450 * so set the media type according to the 23451 * returned data 23452 */ 23453 *dki_media_type = out_data[6]; 23454 *dki_media_type <<= 8; 23455 *dki_media_type |= out_data[7]; 23456 } 23457 } 23458 } else { 23459 /* 23460 * The profile list is not available, so we attempt to identify 23461 * the media type based on the inquiry data 23462 */ 23463 sinq = un->un_sd->sd_inq; 23464 if ((sinq->inq_dtype == DTYPE_DIRECT) || 23465 (sinq->inq_dtype == DTYPE_OPTICAL)) { 23466 /* This is a direct access device or optical disk */ 23467 *dki_media_type = DK_FIXED_DISK; 23468 23469 if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) || 23470 (bcmp(sinq->inq_vid, "iomega", 6) == 0)) { 23471 if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) { 23472 *dki_media_type = DK_ZIP; 23473 } else if ( 23474 (bcmp(sinq->inq_pid, "jaz", 3) == 0)) { 23475 *dki_media_type = DK_JAZ; 23476 } 23477 } 23478 } else { 23479 /* 23480 * Not a CD, direct access or optical disk so return 23481 * unknown media 23482 */ 23483 *dki_media_type = DK_UNKNOWN; 23484 } 23485 } 23486 23487 /* 23488 * Now read the capacity so we can provide the lbasize, 23489 * pbsize and capacity. 23490 */ 23491 if (dki_pbsize && un->un_f_descr_format_supported) { 23492 rval = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity, &lbasize, 23493 &pbsize, SD_PATH_DIRECT); 23494 23495 /* 23496 * Override the physical blocksize if the instance already 23497 * has a larger value. 23498 */ 23499 pbsize = MAX(pbsize, un->un_phy_blocksize); 23500 } 23501 23502 if (dki_pbsize == NULL || rval != 0 || 23503 !un->un_f_descr_format_supported) { 23504 rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize, 23505 SD_PATH_DIRECT); 23506 23507 switch (rval) { 23508 case 0: 23509 if (un->un_f_enable_rmw && 23510 un->un_phy_blocksize != 0) { 23511 pbsize = un->un_phy_blocksize; 23512 } else { 23513 pbsize = lbasize; 23514 } 23515 media_capacity = capacity; 23516 23517 /* 23518 * sd_send_scsi_READ_CAPACITY() reports capacity in 23519 * un->un_sys_blocksize chunks. So we need to convert 23520 * it into cap.lbsize chunks. 23521 */ 23522 if (un->un_f_has_removable_media) { 23523 media_capacity *= un->un_sys_blocksize; 23524 media_capacity /= lbasize; 23525 } 23526 break; 23527 case EACCES: 23528 rval = EACCES; 23529 goto done; 23530 default: 23531 rval = EIO; 23532 goto done; 23533 } 23534 } else { 23535 if (un->un_f_enable_rmw && 23536 !ISP2(pbsize % DEV_BSIZE)) { 23537 pbsize = SSD_SECSIZE; 23538 } else if (!ISP2(lbasize % DEV_BSIZE) || 23539 !ISP2(pbsize % DEV_BSIZE)) { 23540 pbsize = lbasize = DEV_BSIZE; 23541 } 23542 media_capacity = capacity; 23543 } 23544 23545 /* 23546 * If lun is expanded dynamically, update the un structure. 23547 */ 23548 mutex_enter(SD_MUTEX(un)); 23549 if ((un->un_f_blockcount_is_valid == TRUE) && 23550 (un->un_f_tgt_blocksize_is_valid == TRUE) && 23551 (capacity > un->un_blockcount)) { 23552 un->un_f_expnevent = B_FALSE; 23553 sd_update_block_info(un, lbasize, capacity); 23554 } 23555 mutex_exit(SD_MUTEX(un)); 23556 23557 *dki_lbsize = lbasize; 23558 *dki_capacity = media_capacity; 23559 if (dki_pbsize) 23560 *dki_pbsize = pbsize; 23561 23562 done: 23563 if (rval != 0) { 23564 if (rval == EIO) 23565 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 23566 else 23567 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23568 } 23569 no_assessment: 23570 sd_ssc_fini(ssc); 23571 kmem_free(out_data, SD_PROFILE_HEADER_LEN); 23572 kmem_free(rqbuf, SENSE_LENGTH); 23573 return (rval); 23574 } 23575 23576 /* 23577 * Function: sd_get_media_info 23578 * 23579 * Description: This routine is the driver entry point for handling ioctl 23580 * requests for the media type or command set profile used by the 23581 * drive to operate on the media (DKIOCGMEDIAINFO). 23582 * 23583 * Arguments: dev - the device number 23584 * arg - pointer to user provided dk_minfo structure 23585 * specifying the media type, logical block size and 23586 * drive capacity. 23587 * flag - this argument is a pass through to ddi_copyxxx() 23588 * directly from the mode argument of ioctl(). 23589 * 23590 * Return Code: returns the value from sd_get_media_info_com 23591 */ 23592 static int 23593 sd_get_media_info(dev_t dev, caddr_t arg, int flag) 23594 { 23595 struct dk_minfo mi; 23596 int rval; 23597 23598 rval = sd_get_media_info_com(dev, &mi.dki_media_type, 23599 &mi.dki_lbsize, &mi.dki_capacity, NULL); 23600 23601 if (rval) 23602 return (rval); 23603 if (ddi_copyout(&mi, arg, sizeof (struct dk_minfo), flag)) 23604 rval = EFAULT; 23605 return (rval); 23606 } 23607 23608 /* 23609 * Function: sd_get_media_info_ext 23610 * 23611 * Description: This routine is the driver entry point for handling ioctl 23612 * requests for the media type or command set profile used by the 23613 * drive to operate on the media (DKIOCGMEDIAINFOEXT). The 23614 * difference this ioctl and DKIOCGMEDIAINFO is the return value 23615 * of this ioctl contains both logical block size and physical 23616 * block size. 23617 * 23618 * 23619 * Arguments: dev - the device number 23620 * arg - pointer to user provided dk_minfo_ext structure 23621 * specifying the media type, logical block size, 23622 * physical block size and disk capacity. 23623 * flag - this argument is a pass through to ddi_copyxxx() 23624 * directly from the mode argument of ioctl(). 23625 * 23626 * Return Code: returns the value from sd_get_media_info_com 23627 */ 23628 static int 23629 sd_get_media_info_ext(dev_t dev, caddr_t arg, int flag) 23630 { 23631 struct dk_minfo_ext mie; 23632 int rval = 0; 23633 23634 rval = sd_get_media_info_com(dev, &mie.dki_media_type, 23635 &mie.dki_lbsize, &mie.dki_capacity, &mie.dki_pbsize); 23636 23637 if (rval) 23638 return (rval); 23639 if (ddi_copyout(&mie, arg, sizeof (struct dk_minfo_ext), flag)) 23640 rval = EFAULT; 23641 return (rval); 23642 23643 } 23644 23645 /* 23646 * Function: sd_watch_request_submit 23647 * 23648 * Description: Call scsi_watch_request_submit or scsi_mmc_watch_request_submit 23649 * depending on which is supported by device. 23650 */ 23651 static opaque_t 23652 sd_watch_request_submit(struct sd_lun *un) 23653 { 23654 dev_t dev; 23655 23656 /* All submissions are unified to use same device number */ 23657 dev = sd_make_device(SD_DEVINFO(un)); 23658 23659 if (un->un_f_mmc_cap && un->un_f_mmc_gesn_polling) { 23660 return (scsi_mmc_watch_request_submit(SD_SCSI_DEVP(un), 23661 sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb, 23662 (caddr_t)dev)); 23663 } else { 23664 return (scsi_watch_request_submit(SD_SCSI_DEVP(un), 23665 sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb, 23666 (caddr_t)dev)); 23667 } 23668 } 23669 23670 23671 /* 23672 * Function: sd_check_media 23673 * 23674 * Description: This utility routine implements the functionality for the 23675 * DKIOCSTATE ioctl. This ioctl blocks the user thread until the 23676 * driver state changes from that specified by the user 23677 * (inserted or ejected). For example, if the user specifies 23678 * DKIO_EJECTED and the current media state is inserted this 23679 * routine will immediately return DKIO_INSERTED. However, if the 23680 * current media state is not inserted the user thread will be 23681 * blocked until the drive state changes. If DKIO_NONE is specified 23682 * the user thread will block until a drive state change occurs. 23683 * 23684 * Arguments: dev - the device number 23685 * state - user pointer to a dkio_state, updated with the current 23686 * drive state at return. 23687 * 23688 * Return Code: ENXIO 23689 * EIO 23690 * EAGAIN 23691 * EINTR 23692 */ 23693 23694 static int 23695 sd_check_media(dev_t dev, enum dkio_state state) 23696 { 23697 struct sd_lun *un = NULL; 23698 enum dkio_state prev_state; 23699 opaque_t token = NULL; 23700 int rval = 0; 23701 sd_ssc_t *ssc; 23702 23703 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 23704 return (ENXIO); 23705 } 23706 23707 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n"); 23708 23709 ssc = sd_ssc_init(un); 23710 23711 mutex_enter(SD_MUTEX(un)); 23712 23713 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: " 23714 "state=%x, mediastate=%x\n", state, un->un_mediastate); 23715 23716 prev_state = un->un_mediastate; 23717 23718 /* is there anything to do? */ 23719 if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) { 23720 /* 23721 * submit the request to the scsi_watch service; 23722 * scsi_media_watch_cb() does the real work 23723 */ 23724 mutex_exit(SD_MUTEX(un)); 23725 23726 /* 23727 * This change handles the case where a scsi watch request is 23728 * added to a device that is powered down. To accomplish this 23729 * we power up the device before adding the scsi watch request, 23730 * since the scsi watch sends a TUR directly to the device 23731 * which the device cannot handle if it is powered down. 23732 */ 23733 if (sd_pm_entry(un) != DDI_SUCCESS) { 23734 mutex_enter(SD_MUTEX(un)); 23735 goto done; 23736 } 23737 23738 token = sd_watch_request_submit(un); 23739 23740 sd_pm_exit(un); 23741 23742 mutex_enter(SD_MUTEX(un)); 23743 if (token == NULL) { 23744 rval = EAGAIN; 23745 goto done; 23746 } 23747 23748 /* 23749 * This is a special case IOCTL that doesn't return 23750 * until the media state changes. Routine sdpower 23751 * knows about and handles this so don't count it 23752 * as an active cmd in the driver, which would 23753 * keep the device busy to the pm framework. 23754 * If the count isn't decremented the device can't 23755 * be powered down. 23756 */ 23757 un->un_ncmds_in_driver--; 23758 ASSERT(un->un_ncmds_in_driver >= 0); 23759 23760 /* 23761 * if a prior request had been made, this will be the same 23762 * token, as scsi_watch was designed that way. 23763 */ 23764 un->un_swr_token = token; 23765 un->un_specified_mediastate = state; 23766 23767 /* 23768 * now wait for media change 23769 * we will not be signalled unless mediastate == state but it is 23770 * still better to test for this condition, since there is a 23771 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED 23772 */ 23773 SD_TRACE(SD_LOG_COMMON, un, 23774 "sd_check_media: waiting for media state change\n"); 23775 while (un->un_mediastate == state) { 23776 if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) { 23777 SD_TRACE(SD_LOG_COMMON, un, 23778 "sd_check_media: waiting for media state " 23779 "was interrupted\n"); 23780 un->un_ncmds_in_driver++; 23781 rval = EINTR; 23782 goto done; 23783 } 23784 SD_TRACE(SD_LOG_COMMON, un, 23785 "sd_check_media: received signal, state=%x\n", 23786 un->un_mediastate); 23787 } 23788 /* 23789 * Inc the counter to indicate the device once again 23790 * has an active outstanding cmd. 23791 */ 23792 un->un_ncmds_in_driver++; 23793 } 23794 23795 /* invalidate geometry */ 23796 if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) { 23797 sr_ejected(un); 23798 } 23799 23800 if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) { 23801 uint64_t capacity; 23802 uint_t lbasize; 23803 23804 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n"); 23805 mutex_exit(SD_MUTEX(un)); 23806 /* 23807 * Since the following routines use SD_PATH_DIRECT, we must 23808 * call PM directly before the upcoming disk accesses. This 23809 * may cause the disk to be power/spin up. 23810 */ 23811 23812 if (sd_pm_entry(un) == DDI_SUCCESS) { 23813 rval = sd_send_scsi_READ_CAPACITY(ssc, 23814 &capacity, &lbasize, SD_PATH_DIRECT); 23815 if (rval != 0) { 23816 sd_pm_exit(un); 23817 if (rval == EIO) 23818 sd_ssc_assessment(ssc, 23819 SD_FMT_STATUS_CHECK); 23820 else 23821 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23822 mutex_enter(SD_MUTEX(un)); 23823 goto done; 23824 } 23825 } else { 23826 rval = EIO; 23827 mutex_enter(SD_MUTEX(un)); 23828 goto done; 23829 } 23830 mutex_enter(SD_MUTEX(un)); 23831 23832 sd_update_block_info(un, lbasize, capacity); 23833 23834 /* 23835 * Check if the media in the device is writable or not 23836 */ 23837 if (ISCD(un)) { 23838 sd_check_for_writable_cd(ssc, SD_PATH_DIRECT); 23839 } 23840 23841 mutex_exit(SD_MUTEX(un)); 23842 cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT); 23843 if ((cmlb_validate(un->un_cmlbhandle, 0, 23844 (void *)SD_PATH_DIRECT) == 0) && un->un_f_pkstats_enabled) { 23845 sd_set_pstats(un); 23846 SD_TRACE(SD_LOG_IO_PARTITION, un, 23847 "sd_check_media: un:0x%p pstats created and " 23848 "set\n", un); 23849 } 23850 23851 rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT, 23852 SD_PATH_DIRECT); 23853 23854 sd_pm_exit(un); 23855 23856 if (rval != 0) { 23857 if (rval == EIO) 23858 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 23859 else 23860 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23861 } 23862 23863 mutex_enter(SD_MUTEX(un)); 23864 } 23865 done: 23866 sd_ssc_fini(ssc); 23867 un->un_f_watcht_stopped = FALSE; 23868 if (token != NULL && un->un_swr_token != NULL) { 23869 /* 23870 * Use of this local token and the mutex ensures that we avoid 23871 * some race conditions associated with terminating the 23872 * scsi watch. 23873 */ 23874 token = un->un_swr_token; 23875 mutex_exit(SD_MUTEX(un)); 23876 (void) scsi_watch_request_terminate(token, 23877 SCSI_WATCH_TERMINATE_WAIT); 23878 if (scsi_watch_get_ref_count(token) == 0) { 23879 mutex_enter(SD_MUTEX(un)); 23880 un->un_swr_token = (opaque_t)NULL; 23881 } else { 23882 mutex_enter(SD_MUTEX(un)); 23883 } 23884 } 23885 23886 /* 23887 * Update the capacity kstat value, if no media previously 23888 * (capacity kstat is 0) and a media has been inserted 23889 * (un_f_blockcount_is_valid == TRUE) 23890 */ 23891 if (un->un_errstats) { 23892 struct sd_errstats *stp = NULL; 23893 23894 stp = (struct sd_errstats *)un->un_errstats->ks_data; 23895 if ((stp->sd_capacity.value.ui64 == 0) && 23896 (un->un_f_blockcount_is_valid == TRUE)) { 23897 stp->sd_capacity.value.ui64 = 23898 (uint64_t)((uint64_t)un->un_blockcount * 23899 un->un_sys_blocksize); 23900 } 23901 } 23902 mutex_exit(SD_MUTEX(un)); 23903 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n"); 23904 return (rval); 23905 } 23906 23907 23908 /* 23909 * Function: sd_delayed_cv_broadcast 23910 * 23911 * Description: Delayed cv_broadcast to allow for target to recover from media 23912 * insertion. 23913 * 23914 * Arguments: arg - driver soft state (unit) structure 23915 */ 23916 23917 static void 23918 sd_delayed_cv_broadcast(void *arg) 23919 { 23920 struct sd_lun *un = arg; 23921 23922 SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n"); 23923 23924 mutex_enter(SD_MUTEX(un)); 23925 un->un_dcvb_timeid = NULL; 23926 cv_broadcast(&un->un_state_cv); 23927 mutex_exit(SD_MUTEX(un)); 23928 } 23929 23930 23931 /* 23932 * Function: sd_media_watch_cb 23933 * 23934 * Description: Callback routine used for support of the DKIOCSTATE ioctl. This 23935 * routine processes the TUR sense data and updates the driver 23936 * state if a transition has occurred. The user thread 23937 * (sd_check_media) is then signalled. 23938 * 23939 * Arguments: arg - the device 'dev_t' is used for context to discriminate 23940 * among multiple watches that share this callback function 23941 * resultp - scsi watch facility result packet containing scsi 23942 * packet, status byte and sense data 23943 * 23944 * Return Code: 0 for success, -1 for failure 23945 */ 23946 23947 static int 23948 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp) 23949 { 23950 struct sd_lun *un; 23951 struct scsi_status *statusp = resultp->statusp; 23952 uint8_t *sensep = (uint8_t *)resultp->sensep; 23953 enum dkio_state state = DKIO_NONE; 23954 dev_t dev = (dev_t)arg; 23955 uchar_t actual_sense_length; 23956 uint8_t skey, asc, ascq; 23957 23958 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 23959 return (-1); 23960 } 23961 actual_sense_length = resultp->actual_sense_length; 23962 23963 mutex_enter(SD_MUTEX(un)); 23964 SD_TRACE(SD_LOG_COMMON, un, 23965 "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n", 23966 *((char *)statusp), (void *)sensep, actual_sense_length); 23967 23968 if (resultp->pkt->pkt_reason == CMD_DEV_GONE) { 23969 un->un_mediastate = DKIO_DEV_GONE; 23970 cv_broadcast(&un->un_state_cv); 23971 mutex_exit(SD_MUTEX(un)); 23972 23973 return (0); 23974 } 23975 23976 if (un->un_f_mmc_cap && un->un_f_mmc_gesn_polling) { 23977 if (sd_gesn_media_data_valid(resultp->mmc_data)) { 23978 if ((resultp->mmc_data[5] & 23979 SD_GESN_MEDIA_EVENT_STATUS_PRESENT) != 0) { 23980 state = DKIO_INSERTED; 23981 } else { 23982 state = DKIO_EJECTED; 23983 } 23984 if ((resultp->mmc_data[4] & SD_GESN_MEDIA_EVENT_CODE) == 23985 SD_GESN_MEDIA_EVENT_EJECTREQUEST) { 23986 sd_log_eject_request_event(un, KM_NOSLEEP); 23987 } 23988 } 23989 } else if (sensep != NULL) { 23990 /* 23991 * If there was a check condition then sensep points to valid 23992 * sense data. If status was not a check condition but a 23993 * reservation or busy status then the new state is DKIO_NONE. 23994 */ 23995 skey = scsi_sense_key(sensep); 23996 asc = scsi_sense_asc(sensep); 23997 ascq = scsi_sense_ascq(sensep); 23998 23999 SD_INFO(SD_LOG_COMMON, un, 24000 "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n", 24001 skey, asc, ascq); 24002 /* This routine only uses up to 13 bytes of sense data. */ 24003 if (actual_sense_length >= 13) { 24004 if (skey == KEY_UNIT_ATTENTION) { 24005 if (asc == 0x28) { 24006 state = DKIO_INSERTED; 24007 } 24008 } else if (skey == KEY_NOT_READY) { 24009 /* 24010 * Sense data of 02/06/00 means that the 24011 * drive could not read the media (No 24012 * reference position found). In this case 24013 * to prevent a hang on the DKIOCSTATE IOCTL 24014 * we set the media state to DKIO_INSERTED. 24015 */ 24016 if (asc == 0x06 && ascq == 0x00) 24017 state = DKIO_INSERTED; 24018 24019 /* 24020 * if 02/04/02 means that the host 24021 * should send start command. Explicitly 24022 * leave the media state as is 24023 * (inserted) as the media is inserted 24024 * and host has stopped device for PM 24025 * reasons. Upon next true read/write 24026 * to this media will bring the 24027 * device to the right state good for 24028 * media access. 24029 */ 24030 if (asc == 0x3a) { 24031 state = DKIO_EJECTED; 24032 } else { 24033 /* 24034 * If the drive is busy with an 24035 * operation or long write, keep the 24036 * media in an inserted state. 24037 */ 24038 24039 if ((asc == 0x04) && 24040 ((ascq == 0x02) || 24041 (ascq == 0x07) || 24042 (ascq == 0x08))) { 24043 state = DKIO_INSERTED; 24044 } 24045 } 24046 } else if (skey == KEY_NO_SENSE) { 24047 if ((asc == 0x00) && (ascq == 0x00)) { 24048 /* 24049 * Sense Data 00/00/00 does not provide 24050 * any information about the state of 24051 * the media. Ignore it. 24052 */ 24053 mutex_exit(SD_MUTEX(un)); 24054 return (0); 24055 } 24056 } 24057 } 24058 } else if ((*((char *)statusp) == STATUS_GOOD) && 24059 (resultp->pkt->pkt_reason == CMD_CMPLT)) { 24060 state = DKIO_INSERTED; 24061 } 24062 24063 SD_TRACE(SD_LOG_COMMON, un, 24064 "sd_media_watch_cb: state=%x, specified=%x\n", 24065 state, un->un_specified_mediastate); 24066 24067 /* 24068 * now signal the waiting thread if this is *not* the specified state; 24069 * delay the signal if the state is DKIO_INSERTED to allow the target 24070 * to recover 24071 */ 24072 if (state != un->un_specified_mediastate) { 24073 un->un_mediastate = state; 24074 if (state == DKIO_INSERTED) { 24075 /* 24076 * delay the signal to give the drive a chance 24077 * to do what it apparently needs to do 24078 */ 24079 SD_TRACE(SD_LOG_COMMON, un, 24080 "sd_media_watch_cb: delayed cv_broadcast\n"); 24081 if (un->un_dcvb_timeid == NULL) { 24082 un->un_dcvb_timeid = 24083 timeout(sd_delayed_cv_broadcast, un, 24084 drv_usectohz((clock_t)MEDIA_ACCESS_DELAY)); 24085 } 24086 } else { 24087 SD_TRACE(SD_LOG_COMMON, un, 24088 "sd_media_watch_cb: immediate cv_broadcast\n"); 24089 cv_broadcast(&un->un_state_cv); 24090 } 24091 } 24092 mutex_exit(SD_MUTEX(un)); 24093 return (0); 24094 } 24095 24096 24097 /* 24098 * Function: sd_dkio_get_temp 24099 * 24100 * Description: This routine is the driver entry point for handling ioctl 24101 * requests to get the disk temperature. 24102 * 24103 * Arguments: dev - the device number 24104 * arg - pointer to user provided dk_temperature structure. 24105 * flag - this argument is a pass through to ddi_copyxxx() 24106 * directly from the mode argument of ioctl(). 24107 * 24108 * Return Code: 0 24109 * EFAULT 24110 * ENXIO 24111 * EAGAIN 24112 */ 24113 24114 static int 24115 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag) 24116 { 24117 struct sd_lun *un = NULL; 24118 struct dk_temperature *dktemp = NULL; 24119 uchar_t *temperature_page; 24120 int rval = 0; 24121 int path_flag = SD_PATH_STANDARD; 24122 sd_ssc_t *ssc; 24123 24124 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24125 return (ENXIO); 24126 } 24127 24128 ssc = sd_ssc_init(un); 24129 dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP); 24130 24131 /* copyin the disk temp argument to get the user flags */ 24132 if (ddi_copyin((void *)arg, dktemp, 24133 sizeof (struct dk_temperature), flag) != 0) { 24134 rval = EFAULT; 24135 goto done; 24136 } 24137 24138 /* Initialize the temperature to invalid. */ 24139 dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP; 24140 dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP; 24141 24142 /* 24143 * Note: Investigate removing the "bypass pm" semantic. 24144 * Can we just bypass PM always? 24145 */ 24146 if (dktemp->dkt_flags & DKT_BYPASS_PM) { 24147 path_flag = SD_PATH_DIRECT; 24148 ASSERT(!mutex_owned(&un->un_pm_mutex)); 24149 mutex_enter(&un->un_pm_mutex); 24150 if (SD_DEVICE_IS_IN_LOW_POWER(un)) { 24151 /* 24152 * If DKT_BYPASS_PM is set, and the drive happens to be 24153 * in low power mode, we can not wake it up, Need to 24154 * return EAGAIN. 24155 */ 24156 mutex_exit(&un->un_pm_mutex); 24157 rval = EAGAIN; 24158 goto done; 24159 } else { 24160 /* 24161 * Indicate to PM the device is busy. This is required 24162 * to avoid a race - i.e. the ioctl is issuing a 24163 * command and the pm framework brings down the device 24164 * to low power mode (possible power cut-off on some 24165 * platforms). 24166 */ 24167 mutex_exit(&un->un_pm_mutex); 24168 if (sd_pm_entry(un) != DDI_SUCCESS) { 24169 rval = EAGAIN; 24170 goto done; 24171 } 24172 } 24173 } 24174 24175 temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP); 24176 24177 rval = sd_send_scsi_LOG_SENSE(ssc, temperature_page, 24178 TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag); 24179 if (rval != 0) 24180 goto done2; 24181 24182 /* 24183 * For the current temperature verify that the parameter length is 0x02 24184 * and the parameter code is 0x00 24185 */ 24186 if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) && 24187 (temperature_page[5] == 0x00)) { 24188 if (temperature_page[9] == 0xFF) { 24189 dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP; 24190 } else { 24191 dktemp->dkt_cur_temp = (short)(temperature_page[9]); 24192 } 24193 } 24194 24195 /* 24196 * For the reference temperature verify that the parameter 24197 * length is 0x02 and the parameter code is 0x01 24198 */ 24199 if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) && 24200 (temperature_page[11] == 0x01)) { 24201 if (temperature_page[15] == 0xFF) { 24202 dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP; 24203 } else { 24204 dktemp->dkt_ref_temp = (short)(temperature_page[15]); 24205 } 24206 } 24207 24208 /* Do the copyout regardless of the temperature commands status. */ 24209 if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature), 24210 flag) != 0) { 24211 rval = EFAULT; 24212 goto done1; 24213 } 24214 24215 done2: 24216 if (rval != 0) { 24217 if (rval == EIO) 24218 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 24219 else 24220 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 24221 } 24222 done1: 24223 if (path_flag == SD_PATH_DIRECT) { 24224 sd_pm_exit(un); 24225 } 24226 24227 kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE); 24228 done: 24229 sd_ssc_fini(ssc); 24230 if (dktemp != NULL) { 24231 kmem_free(dktemp, sizeof (struct dk_temperature)); 24232 } 24233 24234 return (rval); 24235 } 24236 24237 24238 /* 24239 * Function: sd_log_page_supported 24240 * 24241 * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of 24242 * supported log pages. 24243 * 24244 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 24245 * structure for this target. 24246 * log_page - 24247 * 24248 * Return Code: -1 - on error (log sense is optional and may not be supported). 24249 * 0 - log page not found. 24250 * 1 - log page found. 24251 */ 24252 24253 static int 24254 sd_log_page_supported(sd_ssc_t *ssc, int log_page) 24255 { 24256 uchar_t *log_page_data; 24257 int i; 24258 int match = 0; 24259 int log_size; 24260 int status = 0; 24261 struct sd_lun *un; 24262 24263 ASSERT(ssc != NULL); 24264 un = ssc->ssc_un; 24265 ASSERT(un != NULL); 24266 24267 log_page_data = kmem_zalloc(0xFF, KM_SLEEP); 24268 24269 status = sd_send_scsi_LOG_SENSE(ssc, log_page_data, 0xFF, 0, 0x01, 0, 24270 SD_PATH_DIRECT); 24271 24272 if (status != 0) { 24273 if (status == EIO) { 24274 /* 24275 * Some disks do not support log sense, we 24276 * should ignore this kind of error(sense key is 24277 * 0x5 - illegal request). 24278 */ 24279 uint8_t *sensep; 24280 int senlen; 24281 24282 sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf; 24283 senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen - 24284 ssc->ssc_uscsi_cmd->uscsi_rqresid); 24285 24286 if (senlen > 0 && 24287 scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) { 24288 sd_ssc_assessment(ssc, 24289 SD_FMT_IGNORE_COMPROMISE); 24290 } else { 24291 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 24292 } 24293 } else { 24294 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 24295 } 24296 24297 SD_ERROR(SD_LOG_COMMON, un, 24298 "sd_log_page_supported: failed log page retrieval\n"); 24299 kmem_free(log_page_data, 0xFF); 24300 return (-1); 24301 } 24302 24303 log_size = log_page_data[3]; 24304 24305 /* 24306 * The list of supported log pages start from the fourth byte. Check 24307 * until we run out of log pages or a match is found. 24308 */ 24309 for (i = 4; (i < (log_size + 4)) && !match; i++) { 24310 if (log_page_data[i] == log_page) { 24311 match++; 24312 } 24313 } 24314 kmem_free(log_page_data, 0xFF); 24315 return (match); 24316 } 24317 24318 24319 /* 24320 * Function: sd_mhdioc_failfast 24321 * 24322 * Description: This routine is the driver entry point for handling ioctl 24323 * requests to enable/disable the multihost failfast option. 24324 * (MHIOCENFAILFAST) 24325 * 24326 * Arguments: dev - the device number 24327 * arg - user specified probing interval. 24328 * flag - this argument is a pass through to ddi_copyxxx() 24329 * directly from the mode argument of ioctl(). 24330 * 24331 * Return Code: 0 24332 * EFAULT 24333 * ENXIO 24334 */ 24335 24336 static int 24337 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag) 24338 { 24339 struct sd_lun *un = NULL; 24340 int mh_time; 24341 int rval = 0; 24342 24343 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24344 return (ENXIO); 24345 } 24346 24347 if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag)) 24348 return (EFAULT); 24349 24350 if (mh_time) { 24351 mutex_enter(SD_MUTEX(un)); 24352 un->un_resvd_status |= SD_FAILFAST; 24353 mutex_exit(SD_MUTEX(un)); 24354 /* 24355 * If mh_time is INT_MAX, then this ioctl is being used for 24356 * SCSI-3 PGR purposes, and we don't need to spawn watch thread. 24357 */ 24358 if (mh_time != INT_MAX) { 24359 rval = sd_check_mhd(dev, mh_time); 24360 } 24361 } else { 24362 (void) sd_check_mhd(dev, 0); 24363 mutex_enter(SD_MUTEX(un)); 24364 un->un_resvd_status &= ~SD_FAILFAST; 24365 mutex_exit(SD_MUTEX(un)); 24366 } 24367 return (rval); 24368 } 24369 24370 24371 /* 24372 * Function: sd_mhdioc_takeown 24373 * 24374 * Description: This routine is the driver entry point for handling ioctl 24375 * requests to forcefully acquire exclusive access rights to the 24376 * multihost disk (MHIOCTKOWN). 24377 * 24378 * Arguments: dev - the device number 24379 * arg - user provided structure specifying the delay 24380 * parameters in milliseconds 24381 * flag - this argument is a pass through to ddi_copyxxx() 24382 * directly from the mode argument of ioctl(). 24383 * 24384 * Return Code: 0 24385 * EFAULT 24386 * ENXIO 24387 */ 24388 24389 static int 24390 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag) 24391 { 24392 struct sd_lun *un = NULL; 24393 struct mhioctkown *tkown = NULL; 24394 int rval = 0; 24395 24396 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24397 return (ENXIO); 24398 } 24399 24400 if (arg != NULL) { 24401 tkown = (struct mhioctkown *) 24402 kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP); 24403 rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag); 24404 if (rval != 0) { 24405 rval = EFAULT; 24406 goto error; 24407 } 24408 } 24409 24410 rval = sd_take_ownership(dev, tkown); 24411 mutex_enter(SD_MUTEX(un)); 24412 if (rval == 0) { 24413 un->un_resvd_status |= SD_RESERVE; 24414 if (tkown != NULL && tkown->reinstate_resv_delay != 0) { 24415 sd_reinstate_resv_delay = 24416 tkown->reinstate_resv_delay * 1000; 24417 } else { 24418 sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY; 24419 } 24420 /* 24421 * Give the scsi_watch routine interval set by 24422 * the MHIOCENFAILFAST ioctl precedence here. 24423 */ 24424 if ((un->un_resvd_status & SD_FAILFAST) == 0) { 24425 mutex_exit(SD_MUTEX(un)); 24426 (void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000); 24427 SD_TRACE(SD_LOG_IOCTL_MHD, un, 24428 "sd_mhdioc_takeown : %d\n", 24429 sd_reinstate_resv_delay); 24430 } else { 24431 mutex_exit(SD_MUTEX(un)); 24432 } 24433 (void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY, 24434 sd_mhd_reset_notify_cb, (caddr_t)un); 24435 } else { 24436 un->un_resvd_status &= ~SD_RESERVE; 24437 mutex_exit(SD_MUTEX(un)); 24438 } 24439 24440 error: 24441 if (tkown != NULL) { 24442 kmem_free(tkown, sizeof (struct mhioctkown)); 24443 } 24444 return (rval); 24445 } 24446 24447 24448 /* 24449 * Function: sd_mhdioc_release 24450 * 24451 * Description: This routine is the driver entry point for handling ioctl 24452 * requests to release exclusive access rights to the multihost 24453 * disk (MHIOCRELEASE). 24454 * 24455 * Arguments: dev - the device number 24456 * 24457 * Return Code: 0 24458 * ENXIO 24459 */ 24460 24461 static int 24462 sd_mhdioc_release(dev_t dev) 24463 { 24464 struct sd_lun *un = NULL; 24465 timeout_id_t resvd_timeid_save; 24466 int resvd_status_save; 24467 int rval = 0; 24468 24469 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24470 return (ENXIO); 24471 } 24472 24473 mutex_enter(SD_MUTEX(un)); 24474 resvd_status_save = un->un_resvd_status; 24475 un->un_resvd_status &= 24476 ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE); 24477 if (un->un_resvd_timeid) { 24478 resvd_timeid_save = un->un_resvd_timeid; 24479 un->un_resvd_timeid = NULL; 24480 mutex_exit(SD_MUTEX(un)); 24481 (void) untimeout(resvd_timeid_save); 24482 } else { 24483 mutex_exit(SD_MUTEX(un)); 24484 } 24485 24486 /* 24487 * destroy any pending timeout thread that may be attempting to 24488 * reinstate reservation on this device. 24489 */ 24490 sd_rmv_resv_reclaim_req(dev); 24491 24492 if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) { 24493 mutex_enter(SD_MUTEX(un)); 24494 if ((un->un_mhd_token) && 24495 ((un->un_resvd_status & SD_FAILFAST) == 0)) { 24496 mutex_exit(SD_MUTEX(un)); 24497 (void) sd_check_mhd(dev, 0); 24498 } else { 24499 mutex_exit(SD_MUTEX(un)); 24500 } 24501 (void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL, 24502 sd_mhd_reset_notify_cb, (caddr_t)un); 24503 } else { 24504 /* 24505 * sd_mhd_watch_cb will restart the resvd recover timeout thread 24506 */ 24507 mutex_enter(SD_MUTEX(un)); 24508 un->un_resvd_status = resvd_status_save; 24509 mutex_exit(SD_MUTEX(un)); 24510 } 24511 return (rval); 24512 } 24513 24514 24515 /* 24516 * Function: sd_mhdioc_register_devid 24517 * 24518 * Description: This routine is the driver entry point for handling ioctl 24519 * requests to register the device id (MHIOCREREGISTERDEVID). 24520 * 24521 * Note: The implementation for this ioctl has been updated to 24522 * be consistent with the original PSARC case (1999/357) 24523 * (4375899, 4241671, 4220005) 24524 * 24525 * Arguments: dev - the device number 24526 * 24527 * Return Code: 0 24528 * ENXIO 24529 */ 24530 24531 static int 24532 sd_mhdioc_register_devid(dev_t dev) 24533 { 24534 struct sd_lun *un = NULL; 24535 int rval = 0; 24536 sd_ssc_t *ssc; 24537 24538 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24539 return (ENXIO); 24540 } 24541 24542 ASSERT(!mutex_owned(SD_MUTEX(un))); 24543 24544 mutex_enter(SD_MUTEX(un)); 24545 24546 /* If a devid already exists, de-register it */ 24547 if (un->un_devid != NULL) { 24548 ddi_devid_unregister(SD_DEVINFO(un)); 24549 /* 24550 * After unregister devid, needs to free devid memory 24551 */ 24552 ddi_devid_free(un->un_devid); 24553 un->un_devid = NULL; 24554 } 24555 24556 /* Check for reservation conflict */ 24557 mutex_exit(SD_MUTEX(un)); 24558 ssc = sd_ssc_init(un); 24559 rval = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 24560 mutex_enter(SD_MUTEX(un)); 24561 24562 switch (rval) { 24563 case 0: 24564 sd_register_devid(ssc, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED); 24565 break; 24566 case EACCES: 24567 break; 24568 default: 24569 rval = EIO; 24570 } 24571 24572 mutex_exit(SD_MUTEX(un)); 24573 if (rval != 0) { 24574 if (rval == EIO) 24575 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 24576 else 24577 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 24578 } 24579 sd_ssc_fini(ssc); 24580 return (rval); 24581 } 24582 24583 24584 /* 24585 * Function: sd_mhdioc_inkeys 24586 * 24587 * Description: This routine is the driver entry point for handling ioctl 24588 * requests to issue the SCSI-3 Persistent In Read Keys command 24589 * to the device (MHIOCGRP_INKEYS). 24590 * 24591 * Arguments: dev - the device number 24592 * arg - user provided in_keys structure 24593 * flag - this argument is a pass through to ddi_copyxxx() 24594 * directly from the mode argument of ioctl(). 24595 * 24596 * Return Code: code returned by sd_persistent_reservation_in_read_keys() 24597 * ENXIO 24598 * EFAULT 24599 */ 24600 24601 static int 24602 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag) 24603 { 24604 struct sd_lun *un; 24605 mhioc_inkeys_t inkeys; 24606 int rval = 0; 24607 24608 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24609 return (ENXIO); 24610 } 24611 24612 #ifdef _MULTI_DATAMODEL 24613 switch (ddi_model_convert_from(flag & FMODELS)) { 24614 case DDI_MODEL_ILP32: { 24615 struct mhioc_inkeys32 inkeys32; 24616 24617 if (ddi_copyin(arg, &inkeys32, 24618 sizeof (struct mhioc_inkeys32), flag) != 0) { 24619 return (EFAULT); 24620 } 24621 inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li; 24622 if ((rval = sd_persistent_reservation_in_read_keys(un, 24623 &inkeys, flag)) != 0) { 24624 return (rval); 24625 } 24626 inkeys32.generation = inkeys.generation; 24627 if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32), 24628 flag) != 0) { 24629 return (EFAULT); 24630 } 24631 break; 24632 } 24633 case DDI_MODEL_NONE: 24634 if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), 24635 flag) != 0) { 24636 return (EFAULT); 24637 } 24638 if ((rval = sd_persistent_reservation_in_read_keys(un, 24639 &inkeys, flag)) != 0) { 24640 return (rval); 24641 } 24642 if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), 24643 flag) != 0) { 24644 return (EFAULT); 24645 } 24646 break; 24647 } 24648 24649 #else /* ! _MULTI_DATAMODEL */ 24650 24651 if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) { 24652 return (EFAULT); 24653 } 24654 rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag); 24655 if (rval != 0) { 24656 return (rval); 24657 } 24658 if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) { 24659 return (EFAULT); 24660 } 24661 24662 #endif /* _MULTI_DATAMODEL */ 24663 24664 return (rval); 24665 } 24666 24667 24668 /* 24669 * Function: sd_mhdioc_inresv 24670 * 24671 * Description: This routine is the driver entry point for handling ioctl 24672 * requests to issue the SCSI-3 Persistent In Read Reservations 24673 * command to the device (MHIOCGRP_INKEYS). 24674 * 24675 * Arguments: dev - the device number 24676 * arg - user provided in_resv structure 24677 * flag - this argument is a pass through to ddi_copyxxx() 24678 * directly from the mode argument of ioctl(). 24679 * 24680 * Return Code: code returned by sd_persistent_reservation_in_read_resv() 24681 * ENXIO 24682 * EFAULT 24683 */ 24684 24685 static int 24686 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag) 24687 { 24688 struct sd_lun *un; 24689 mhioc_inresvs_t inresvs; 24690 int rval = 0; 24691 24692 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24693 return (ENXIO); 24694 } 24695 24696 #ifdef _MULTI_DATAMODEL 24697 24698 switch (ddi_model_convert_from(flag & FMODELS)) { 24699 case DDI_MODEL_ILP32: { 24700 struct mhioc_inresvs32 inresvs32; 24701 24702 if (ddi_copyin(arg, &inresvs32, 24703 sizeof (struct mhioc_inresvs32), flag) != 0) { 24704 return (EFAULT); 24705 } 24706 inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li; 24707 if ((rval = sd_persistent_reservation_in_read_resv(un, 24708 &inresvs, flag)) != 0) { 24709 return (rval); 24710 } 24711 inresvs32.generation = inresvs.generation; 24712 if (ddi_copyout(&inresvs32, arg, 24713 sizeof (struct mhioc_inresvs32), flag) != 0) { 24714 return (EFAULT); 24715 } 24716 break; 24717 } 24718 case DDI_MODEL_NONE: 24719 if (ddi_copyin(arg, &inresvs, 24720 sizeof (mhioc_inresvs_t), flag) != 0) { 24721 return (EFAULT); 24722 } 24723 if ((rval = sd_persistent_reservation_in_read_resv(un, 24724 &inresvs, flag)) != 0) { 24725 return (rval); 24726 } 24727 if (ddi_copyout(&inresvs, arg, 24728 sizeof (mhioc_inresvs_t), flag) != 0) { 24729 return (EFAULT); 24730 } 24731 break; 24732 } 24733 24734 #else /* ! _MULTI_DATAMODEL */ 24735 24736 if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) { 24737 return (EFAULT); 24738 } 24739 rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag); 24740 if (rval != 0) { 24741 return (rval); 24742 } 24743 if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) { 24744 return (EFAULT); 24745 } 24746 24747 #endif /* ! _MULTI_DATAMODEL */ 24748 24749 return (rval); 24750 } 24751 24752 24753 /* 24754 * The following routines support the clustering functionality described below 24755 * and implement lost reservation reclaim functionality. 24756 * 24757 * Clustering 24758 * ---------- 24759 * The clustering code uses two different, independent forms of SCSI 24760 * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3 24761 * Persistent Group Reservations. For any particular disk, it will use either 24762 * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk. 24763 * 24764 * SCSI-2 24765 * The cluster software takes ownership of a multi-hosted disk by issuing the 24766 * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the 24767 * MHIOCRELEASE ioctl. Closely related is the MHIOCENFAILFAST ioctl -- a 24768 * cluster, just after taking ownership of the disk with the MHIOCTKOWN ioctl 24769 * then issues the MHIOCENFAILFAST ioctl. This ioctl "enables failfast" in the 24770 * driver. The meaning of failfast is that if the driver (on this host) ever 24771 * encounters the scsi error return code RESERVATION_CONFLICT from the device, 24772 * it should immediately panic the host. The motivation for this ioctl is that 24773 * if this host does encounter reservation conflict, the underlying cause is 24774 * that some other host of the cluster has decided that this host is no longer 24775 * in the cluster and has seized control of the disks for itself. Since this 24776 * host is no longer in the cluster, it ought to panic itself. The 24777 * MHIOCENFAILFAST ioctl does two things: 24778 * (a) it sets a flag that will cause any returned RESERVATION_CONFLICT 24779 * error to panic the host 24780 * (b) it sets up a periodic timer to test whether this host still has 24781 * "access" (in that no other host has reserved the device): if the 24782 * periodic timer gets RESERVATION_CONFLICT, the host is panicked. The 24783 * purpose of that periodic timer is to handle scenarios where the host is 24784 * otherwise temporarily quiescent, temporarily doing no real i/o. 24785 * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host, 24786 * by issuing a SCSI Bus Device Reset. It will then issue a SCSI Reserve for 24787 * the device itself. 24788 * 24789 * SCSI-3 PGR 24790 * A direct semantic implementation of the SCSI-3 Persistent Reservation 24791 * facility is supported through the shared multihost disk ioctls 24792 * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE, 24793 * MHIOCGRP_PREEMPTANDABORT, MHIOCGRP_CLEAR) 24794 * 24795 * Reservation Reclaim: 24796 * -------------------- 24797 * To support the lost reservation reclaim operations this driver creates a 24798 * single thread to handle reinstating reservations on all devices that have 24799 * lost reservations sd_resv_reclaim_requests are logged for all devices that 24800 * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb 24801 * and the reservation reclaim thread loops through the requests to regain the 24802 * lost reservations. 24803 */ 24804 24805 /* 24806 * Function: sd_check_mhd() 24807 * 24808 * Description: This function sets up and submits a scsi watch request or 24809 * terminates an existing watch request. This routine is used in 24810 * support of reservation reclaim. 24811 * 24812 * Arguments: dev - the device 'dev_t' is used for context to discriminate 24813 * among multiple watches that share the callback function 24814 * interval - the number of microseconds specifying the watch 24815 * interval for issuing TEST UNIT READY commands. If 24816 * set to 0 the watch should be terminated. If the 24817 * interval is set to 0 and if the device is required 24818 * to hold reservation while disabling failfast, the 24819 * watch is restarted with an interval of 24820 * reinstate_resv_delay. 24821 * 24822 * Return Code: 0 - Successful submit/terminate of scsi watch request 24823 * ENXIO - Indicates an invalid device was specified 24824 * EAGAIN - Unable to submit the scsi watch request 24825 */ 24826 24827 static int 24828 sd_check_mhd(dev_t dev, int interval) 24829 { 24830 struct sd_lun *un; 24831 opaque_t token; 24832 24833 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24834 return (ENXIO); 24835 } 24836 24837 /* is this a watch termination request? */ 24838 if (interval == 0) { 24839 mutex_enter(SD_MUTEX(un)); 24840 /* if there is an existing watch task then terminate it */ 24841 if (un->un_mhd_token) { 24842 token = un->un_mhd_token; 24843 un->un_mhd_token = NULL; 24844 mutex_exit(SD_MUTEX(un)); 24845 (void) scsi_watch_request_terminate(token, 24846 SCSI_WATCH_TERMINATE_ALL_WAIT); 24847 mutex_enter(SD_MUTEX(un)); 24848 } else { 24849 mutex_exit(SD_MUTEX(un)); 24850 /* 24851 * Note: If we return here we don't check for the 24852 * failfast case. This is the original legacy 24853 * implementation but perhaps we should be checking 24854 * the failfast case. 24855 */ 24856 return (0); 24857 } 24858 /* 24859 * If the device is required to hold reservation while 24860 * disabling failfast, we need to restart the scsi_watch 24861 * routine with an interval of reinstate_resv_delay. 24862 */ 24863 if (un->un_resvd_status & SD_RESERVE) { 24864 interval = sd_reinstate_resv_delay/1000; 24865 } else { 24866 /* no failfast so bail */ 24867 mutex_exit(SD_MUTEX(un)); 24868 return (0); 24869 } 24870 mutex_exit(SD_MUTEX(un)); 24871 } 24872 24873 /* 24874 * adjust minimum time interval to 1 second, 24875 * and convert from msecs to usecs 24876 */ 24877 if (interval > 0 && interval < 1000) { 24878 interval = 1000; 24879 } 24880 interval *= 1000; 24881 24882 /* 24883 * submit the request to the scsi_watch service 24884 */ 24885 token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval, 24886 SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev); 24887 if (token == NULL) { 24888 return (EAGAIN); 24889 } 24890 24891 /* 24892 * save token for termination later on 24893 */ 24894 mutex_enter(SD_MUTEX(un)); 24895 un->un_mhd_token = token; 24896 mutex_exit(SD_MUTEX(un)); 24897 return (0); 24898 } 24899 24900 24901 /* 24902 * Function: sd_mhd_watch_cb() 24903 * 24904 * Description: This function is the call back function used by the scsi watch 24905 * facility. The scsi watch facility sends the "Test Unit Ready" 24906 * and processes the status. If applicable (i.e. a "Unit Attention" 24907 * status and automatic "Request Sense" not used) the scsi watch 24908 * facility will send a "Request Sense" and retrieve the sense data 24909 * to be passed to this callback function. In either case the 24910 * automatic "Request Sense" or the facility submitting one, this 24911 * callback is passed the status and sense data. 24912 * 24913 * Arguments: arg - the device 'dev_t' is used for context to discriminate 24914 * among multiple watches that share this callback function 24915 * resultp - scsi watch facility result packet containing scsi 24916 * packet, status byte and sense data 24917 * 24918 * Return Code: 0 - continue the watch task 24919 * non-zero - terminate the watch task 24920 */ 24921 24922 static int 24923 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp) 24924 { 24925 struct sd_lun *un; 24926 struct scsi_status *statusp; 24927 uint8_t *sensep; 24928 struct scsi_pkt *pkt; 24929 uchar_t actual_sense_length; 24930 dev_t dev = (dev_t)arg; 24931 24932 ASSERT(resultp != NULL); 24933 statusp = resultp->statusp; 24934 sensep = (uint8_t *)resultp->sensep; 24935 pkt = resultp->pkt; 24936 actual_sense_length = resultp->actual_sense_length; 24937 24938 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24939 return (ENXIO); 24940 } 24941 24942 SD_TRACE(SD_LOG_IOCTL_MHD, un, 24943 "sd_mhd_watch_cb: reason '%s', status '%s'\n", 24944 scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp))); 24945 24946 /* Begin processing of the status and/or sense data */ 24947 if (pkt->pkt_reason != CMD_CMPLT) { 24948 /* Handle the incomplete packet */ 24949 sd_mhd_watch_incomplete(un, pkt); 24950 return (0); 24951 } else if (*((unsigned char *)statusp) != STATUS_GOOD) { 24952 if (*((unsigned char *)statusp) 24953 == STATUS_RESERVATION_CONFLICT) { 24954 /* 24955 * Handle a reservation conflict by panicking if 24956 * configured for failfast or by logging the conflict 24957 * and updating the reservation status 24958 */ 24959 mutex_enter(SD_MUTEX(un)); 24960 if ((un->un_resvd_status & SD_FAILFAST) && 24961 (sd_failfast_enable)) { 24962 sd_panic_for_res_conflict(un); 24963 /*NOTREACHED*/ 24964 } 24965 SD_INFO(SD_LOG_IOCTL_MHD, un, 24966 "sd_mhd_watch_cb: Reservation Conflict\n"); 24967 un->un_resvd_status |= SD_RESERVATION_CONFLICT; 24968 mutex_exit(SD_MUTEX(un)); 24969 } 24970 } 24971 24972 if (sensep != NULL) { 24973 if (actual_sense_length >= (SENSE_LENGTH - 2)) { 24974 mutex_enter(SD_MUTEX(un)); 24975 if ((scsi_sense_asc(sensep) == 24976 SD_SCSI_RESET_SENSE_CODE) && 24977 (un->un_resvd_status & SD_RESERVE)) { 24978 /* 24979 * The additional sense code indicates a power 24980 * on or bus device reset has occurred; update 24981 * the reservation status. 24982 */ 24983 un->un_resvd_status |= 24984 (SD_LOST_RESERVE | SD_WANT_RESERVE); 24985 SD_INFO(SD_LOG_IOCTL_MHD, un, 24986 "sd_mhd_watch_cb: Lost Reservation\n"); 24987 } 24988 } else { 24989 return (0); 24990 } 24991 } else { 24992 mutex_enter(SD_MUTEX(un)); 24993 } 24994 24995 if ((un->un_resvd_status & SD_RESERVE) && 24996 (un->un_resvd_status & SD_LOST_RESERVE)) { 24997 if (un->un_resvd_status & SD_WANT_RESERVE) { 24998 /* 24999 * A reset occurred in between the last probe and this 25000 * one so if a timeout is pending cancel it. 25001 */ 25002 if (un->un_resvd_timeid) { 25003 timeout_id_t temp_id = un->un_resvd_timeid; 25004 un->un_resvd_timeid = NULL; 25005 mutex_exit(SD_MUTEX(un)); 25006 (void) untimeout(temp_id); 25007 mutex_enter(SD_MUTEX(un)); 25008 } 25009 un->un_resvd_status &= ~SD_WANT_RESERVE; 25010 } 25011 if (un->un_resvd_timeid == 0) { 25012 /* Schedule a timeout to handle the lost reservation */ 25013 un->un_resvd_timeid = timeout(sd_mhd_resvd_recover, 25014 (void *)dev, 25015 drv_usectohz(sd_reinstate_resv_delay)); 25016 } 25017 } 25018 mutex_exit(SD_MUTEX(un)); 25019 return (0); 25020 } 25021 25022 25023 /* 25024 * Function: sd_mhd_watch_incomplete() 25025 * 25026 * Description: This function is used to find out why a scsi pkt sent by the 25027 * scsi watch facility was not completed. Under some scenarios this 25028 * routine will return. Otherwise it will send a bus reset to see 25029 * if the drive is still online. 25030 * 25031 * Arguments: un - driver soft state (unit) structure 25032 * pkt - incomplete scsi pkt 25033 */ 25034 25035 static void 25036 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt) 25037 { 25038 int be_chatty; 25039 int perr; 25040 25041 ASSERT(pkt != NULL); 25042 ASSERT(un != NULL); 25043 be_chatty = (!(pkt->pkt_flags & FLAG_SILENT)); 25044 perr = (pkt->pkt_statistics & STAT_PERR); 25045 25046 mutex_enter(SD_MUTEX(un)); 25047 if (un->un_state == SD_STATE_DUMPING) { 25048 mutex_exit(SD_MUTEX(un)); 25049 return; 25050 } 25051 25052 switch (pkt->pkt_reason) { 25053 case CMD_UNX_BUS_FREE: 25054 /* 25055 * If we had a parity error that caused the target to drop BSY*, 25056 * don't be chatty about it. 25057 */ 25058 if (perr && be_chatty) { 25059 be_chatty = 0; 25060 } 25061 break; 25062 case CMD_TAG_REJECT: 25063 /* 25064 * The SCSI-2 spec states that a tag reject will be sent by the 25065 * target if tagged queuing is not supported. A tag reject may 25066 * also be sent during certain initialization periods or to 25067 * control internal resources. For the latter case the target 25068 * may also return Queue Full. 25069 * 25070 * If this driver receives a tag reject from a target that is 25071 * going through an init period or controlling internal 25072 * resources tagged queuing will be disabled. This is a less 25073 * than optimal behavior but the driver is unable to determine 25074 * the target state and assumes tagged queueing is not supported 25075 */ 25076 pkt->pkt_flags = 0; 25077 un->un_tagflags = 0; 25078 25079 if (un->un_f_opt_queueing == TRUE) { 25080 un->un_throttle = min(un->un_throttle, 3); 25081 } else { 25082 un->un_throttle = 1; 25083 } 25084 mutex_exit(SD_MUTEX(un)); 25085 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 25086 mutex_enter(SD_MUTEX(un)); 25087 break; 25088 case CMD_INCOMPLETE: 25089 /* 25090 * The transport stopped with an abnormal state, fallthrough and 25091 * reset the target and/or bus unless selection did not complete 25092 * (indicated by STATE_GOT_BUS) in which case we don't want to 25093 * go through a target/bus reset 25094 */ 25095 if (pkt->pkt_state == STATE_GOT_BUS) { 25096 break; 25097 } 25098 /*FALLTHROUGH*/ 25099 25100 case CMD_TIMEOUT: 25101 default: 25102 /* 25103 * The lun may still be running the command, so a lun reset 25104 * should be attempted. If the lun reset fails or cannot be 25105 * issued, than try a target reset. Lastly try a bus reset. 25106 */ 25107 if ((pkt->pkt_statistics & 25108 (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) { 25109 int reset_retval = 0; 25110 mutex_exit(SD_MUTEX(un)); 25111 if (un->un_f_allow_bus_device_reset == TRUE) { 25112 if (un->un_f_lun_reset_enabled == TRUE) { 25113 reset_retval = 25114 scsi_reset(SD_ADDRESS(un), 25115 RESET_LUN); 25116 } 25117 if (reset_retval == 0) { 25118 reset_retval = 25119 scsi_reset(SD_ADDRESS(un), 25120 RESET_TARGET); 25121 } 25122 } 25123 if (reset_retval == 0) { 25124 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 25125 } 25126 mutex_enter(SD_MUTEX(un)); 25127 } 25128 break; 25129 } 25130 25131 /* A device/bus reset has occurred; update the reservation status. */ 25132 if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics & 25133 (STAT_BUS_RESET | STAT_DEV_RESET))) { 25134 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 25135 un->un_resvd_status |= 25136 (SD_LOST_RESERVE | SD_WANT_RESERVE); 25137 SD_INFO(SD_LOG_IOCTL_MHD, un, 25138 "sd_mhd_watch_incomplete: Lost Reservation\n"); 25139 } 25140 } 25141 25142 /* 25143 * The disk has been turned off; Update the device state. 25144 * 25145 * Note: Should we be offlining the disk here? 25146 */ 25147 if (pkt->pkt_state == STATE_GOT_BUS) { 25148 SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: " 25149 "Disk not responding to selection\n"); 25150 if (un->un_state != SD_STATE_OFFLINE) { 25151 New_state(un, SD_STATE_OFFLINE); 25152 } 25153 } else if (be_chatty) { 25154 /* 25155 * suppress messages if they are all the same pkt reason; 25156 * with TQ, many (up to 256) are returned with the same 25157 * pkt_reason 25158 */ 25159 if (pkt->pkt_reason != un->un_last_pkt_reason) { 25160 SD_ERROR(SD_LOG_IOCTL_MHD, un, 25161 "sd_mhd_watch_incomplete: " 25162 "SCSI transport failed: reason '%s'\n", 25163 scsi_rname(pkt->pkt_reason)); 25164 } 25165 } 25166 un->un_last_pkt_reason = pkt->pkt_reason; 25167 mutex_exit(SD_MUTEX(un)); 25168 } 25169 25170 25171 /* 25172 * Function: sd_sname() 25173 * 25174 * Description: This is a simple little routine to return a string containing 25175 * a printable description of command status byte for use in 25176 * logging. 25177 * 25178 * Arguments: status - pointer to a status byte 25179 * 25180 * Return Code: char * - string containing status description. 25181 */ 25182 25183 static char * 25184 sd_sname(uchar_t status) 25185 { 25186 switch (status & STATUS_MASK) { 25187 case STATUS_GOOD: 25188 return ("good status"); 25189 case STATUS_CHECK: 25190 return ("check condition"); 25191 case STATUS_MET: 25192 return ("condition met"); 25193 case STATUS_BUSY: 25194 return ("busy"); 25195 case STATUS_INTERMEDIATE: 25196 return ("intermediate"); 25197 case STATUS_INTERMEDIATE_MET: 25198 return ("intermediate - condition met"); 25199 case STATUS_RESERVATION_CONFLICT: 25200 return ("reservation_conflict"); 25201 case STATUS_TERMINATED: 25202 return ("command terminated"); 25203 case STATUS_QFULL: 25204 return ("queue full"); 25205 default: 25206 return ("<unknown status>"); 25207 } 25208 } 25209 25210 25211 /* 25212 * Function: sd_mhd_resvd_recover() 25213 * 25214 * Description: This function adds a reservation entry to the 25215 * sd_resv_reclaim_request list and signals the reservation 25216 * reclaim thread that there is work pending. If the reservation 25217 * reclaim thread has not been previously created this function 25218 * will kick it off. 25219 * 25220 * Arguments: arg - the device 'dev_t' is used for context to discriminate 25221 * among multiple watches that share this callback function 25222 * 25223 * Context: This routine is called by timeout() and is run in interrupt 25224 * context. It must not sleep or call other functions which may 25225 * sleep. 25226 */ 25227 25228 static void 25229 sd_mhd_resvd_recover(void *arg) 25230 { 25231 dev_t dev = (dev_t)arg; 25232 struct sd_lun *un; 25233 struct sd_thr_request *sd_treq = NULL; 25234 struct sd_thr_request *sd_cur = NULL; 25235 struct sd_thr_request *sd_prev = NULL; 25236 int already_there = 0; 25237 25238 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 25239 return; 25240 } 25241 25242 mutex_enter(SD_MUTEX(un)); 25243 un->un_resvd_timeid = NULL; 25244 if (un->un_resvd_status & SD_WANT_RESERVE) { 25245 /* 25246 * There was a reset so don't issue the reserve, allow the 25247 * sd_mhd_watch_cb callback function to notice this and 25248 * reschedule the timeout for reservation. 25249 */ 25250 mutex_exit(SD_MUTEX(un)); 25251 return; 25252 } 25253 mutex_exit(SD_MUTEX(un)); 25254 25255 /* 25256 * Add this device to the sd_resv_reclaim_request list and the 25257 * sd_resv_reclaim_thread should take care of the rest. 25258 * 25259 * Note: We can't sleep in this context so if the memory allocation 25260 * fails allow the sd_mhd_watch_cb callback function to notice this and 25261 * reschedule the timeout for reservation. (4378460) 25262 */ 25263 sd_treq = (struct sd_thr_request *) 25264 kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP); 25265 if (sd_treq == NULL) { 25266 return; 25267 } 25268 25269 sd_treq->sd_thr_req_next = NULL; 25270 sd_treq->dev = dev; 25271 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 25272 if (sd_tr.srq_thr_req_head == NULL) { 25273 sd_tr.srq_thr_req_head = sd_treq; 25274 } else { 25275 sd_cur = sd_prev = sd_tr.srq_thr_req_head; 25276 for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) { 25277 if (sd_cur->dev == dev) { 25278 /* 25279 * already in Queue so don't log 25280 * another request for the device 25281 */ 25282 already_there = 1; 25283 break; 25284 } 25285 sd_prev = sd_cur; 25286 } 25287 if (!already_there) { 25288 SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: " 25289 "logging request for %lx\n", dev); 25290 sd_prev->sd_thr_req_next = sd_treq; 25291 } else { 25292 kmem_free(sd_treq, sizeof (struct sd_thr_request)); 25293 } 25294 } 25295 25296 /* 25297 * Create a kernel thread to do the reservation reclaim and free up this 25298 * thread. We cannot block this thread while we go away to do the 25299 * reservation reclaim 25300 */ 25301 if (sd_tr.srq_resv_reclaim_thread == NULL) 25302 sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0, 25303 sd_resv_reclaim_thread, NULL, 25304 0, &p0, TS_RUN, v.v_maxsyspri - 2); 25305 25306 /* Tell the reservation reclaim thread that it has work to do */ 25307 cv_signal(&sd_tr.srq_resv_reclaim_cv); 25308 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25309 } 25310 25311 /* 25312 * Function: sd_resv_reclaim_thread() 25313 * 25314 * Description: This function implements the reservation reclaim operations 25315 * 25316 * Arguments: arg - the device 'dev_t' is used for context to discriminate 25317 * among multiple watches that share this callback function 25318 */ 25319 25320 static void 25321 sd_resv_reclaim_thread() 25322 { 25323 struct sd_lun *un; 25324 struct sd_thr_request *sd_mhreq; 25325 25326 /* Wait for work */ 25327 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 25328 if (sd_tr.srq_thr_req_head == NULL) { 25329 cv_wait(&sd_tr.srq_resv_reclaim_cv, 25330 &sd_tr.srq_resv_reclaim_mutex); 25331 } 25332 25333 /* Loop while we have work */ 25334 while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) { 25335 un = ddi_get_soft_state(sd_state, 25336 SDUNIT(sd_tr.srq_thr_cur_req->dev)); 25337 if (un == NULL) { 25338 /* 25339 * softstate structure is NULL so just 25340 * dequeue the request and continue 25341 */ 25342 sd_tr.srq_thr_req_head = 25343 sd_tr.srq_thr_cur_req->sd_thr_req_next; 25344 kmem_free(sd_tr.srq_thr_cur_req, 25345 sizeof (struct sd_thr_request)); 25346 continue; 25347 } 25348 25349 /* dequeue the request */ 25350 sd_mhreq = sd_tr.srq_thr_cur_req; 25351 sd_tr.srq_thr_req_head = 25352 sd_tr.srq_thr_cur_req->sd_thr_req_next; 25353 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25354 25355 /* 25356 * Reclaim reservation only if SD_RESERVE is still set. There 25357 * may have been a call to MHIOCRELEASE before we got here. 25358 */ 25359 mutex_enter(SD_MUTEX(un)); 25360 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 25361 /* 25362 * Note: The SD_LOST_RESERVE flag is cleared before 25363 * reclaiming the reservation. If this is done after the 25364 * call to sd_reserve_release a reservation loss in the 25365 * window between pkt completion of reserve cmd and 25366 * mutex_enter below may not be recognized 25367 */ 25368 un->un_resvd_status &= ~SD_LOST_RESERVE; 25369 mutex_exit(SD_MUTEX(un)); 25370 25371 if (sd_reserve_release(sd_mhreq->dev, 25372 SD_RESERVE) == 0) { 25373 mutex_enter(SD_MUTEX(un)); 25374 un->un_resvd_status |= SD_RESERVE; 25375 mutex_exit(SD_MUTEX(un)); 25376 SD_INFO(SD_LOG_IOCTL_MHD, un, 25377 "sd_resv_reclaim_thread: " 25378 "Reservation Recovered\n"); 25379 } else { 25380 mutex_enter(SD_MUTEX(un)); 25381 un->un_resvd_status |= SD_LOST_RESERVE; 25382 mutex_exit(SD_MUTEX(un)); 25383 SD_INFO(SD_LOG_IOCTL_MHD, un, 25384 "sd_resv_reclaim_thread: Failed " 25385 "Reservation Recovery\n"); 25386 } 25387 } else { 25388 mutex_exit(SD_MUTEX(un)); 25389 } 25390 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 25391 ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req); 25392 kmem_free(sd_mhreq, sizeof (struct sd_thr_request)); 25393 sd_mhreq = sd_tr.srq_thr_cur_req = NULL; 25394 /* 25395 * wakeup the destroy thread if anyone is waiting on 25396 * us to complete. 25397 */ 25398 cv_signal(&sd_tr.srq_inprocess_cv); 25399 SD_TRACE(SD_LOG_IOCTL_MHD, un, 25400 "sd_resv_reclaim_thread: cv_signalling current request \n"); 25401 } 25402 25403 /* 25404 * cleanup the sd_tr structure now that this thread will not exist 25405 */ 25406 ASSERT(sd_tr.srq_thr_req_head == NULL); 25407 ASSERT(sd_tr.srq_thr_cur_req == NULL); 25408 sd_tr.srq_resv_reclaim_thread = NULL; 25409 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25410 thread_exit(); 25411 } 25412 25413 25414 /* 25415 * Function: sd_rmv_resv_reclaim_req() 25416 * 25417 * Description: This function removes any pending reservation reclaim requests 25418 * for the specified device. 25419 * 25420 * Arguments: dev - the device 'dev_t' 25421 */ 25422 25423 static void 25424 sd_rmv_resv_reclaim_req(dev_t dev) 25425 { 25426 struct sd_thr_request *sd_mhreq; 25427 struct sd_thr_request *sd_prev; 25428 25429 /* Remove a reservation reclaim request from the list */ 25430 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 25431 if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) { 25432 /* 25433 * We are attempting to reinstate reservation for 25434 * this device. We wait for sd_reserve_release() 25435 * to return before we return. 25436 */ 25437 cv_wait(&sd_tr.srq_inprocess_cv, 25438 &sd_tr.srq_resv_reclaim_mutex); 25439 } else { 25440 sd_prev = sd_mhreq = sd_tr.srq_thr_req_head; 25441 if (sd_mhreq && sd_mhreq->dev == dev) { 25442 sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next; 25443 kmem_free(sd_mhreq, sizeof (struct sd_thr_request)); 25444 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25445 return; 25446 } 25447 for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) { 25448 if (sd_mhreq && sd_mhreq->dev == dev) { 25449 break; 25450 } 25451 sd_prev = sd_mhreq; 25452 } 25453 if (sd_mhreq != NULL) { 25454 sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next; 25455 kmem_free(sd_mhreq, sizeof (struct sd_thr_request)); 25456 } 25457 } 25458 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25459 } 25460 25461 25462 /* 25463 * Function: sd_mhd_reset_notify_cb() 25464 * 25465 * Description: This is a call back function for scsi_reset_notify. This 25466 * function updates the softstate reserved status and logs the 25467 * reset. The driver scsi watch facility callback function 25468 * (sd_mhd_watch_cb) and reservation reclaim thread functionality 25469 * will reclaim the reservation. 25470 * 25471 * Arguments: arg - driver soft state (unit) structure 25472 */ 25473 25474 static void 25475 sd_mhd_reset_notify_cb(caddr_t arg) 25476 { 25477 struct sd_lun *un = (struct sd_lun *)arg; 25478 25479 mutex_enter(SD_MUTEX(un)); 25480 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 25481 un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE); 25482 SD_INFO(SD_LOG_IOCTL_MHD, un, 25483 "sd_mhd_reset_notify_cb: Lost Reservation\n"); 25484 } 25485 mutex_exit(SD_MUTEX(un)); 25486 } 25487 25488 25489 /* 25490 * Function: sd_take_ownership() 25491 * 25492 * Description: This routine implements an algorithm to achieve a stable 25493 * reservation on disks which don't implement priority reserve, 25494 * and makes sure that other host lose re-reservation attempts. 25495 * This algorithm contains of a loop that keeps issuing the RESERVE 25496 * for some period of time (min_ownership_delay, default 6 seconds) 25497 * During that loop, it looks to see if there has been a bus device 25498 * reset or bus reset (both of which cause an existing reservation 25499 * to be lost). If the reservation is lost issue RESERVE until a 25500 * period of min_ownership_delay with no resets has gone by, or 25501 * until max_ownership_delay has expired. This loop ensures that 25502 * the host really did manage to reserve the device, in spite of 25503 * resets. The looping for min_ownership_delay (default six 25504 * seconds) is important to early generation clustering products, 25505 * Solstice HA 1.x and Sun Cluster 2.x. Those products use an 25506 * MHIOCENFAILFAST periodic timer of two seconds. By having 25507 * MHIOCTKOWN issue Reserves in a loop for six seconds, and having 25508 * MHIOCENFAILFAST poll every two seconds, the idea is that by the 25509 * time the MHIOCTKOWN ioctl returns, the other host (if any) will 25510 * have already noticed, via the MHIOCENFAILFAST polling, that it 25511 * no longer "owns" the disk and will have panicked itself. Thus, 25512 * the host issuing the MHIOCTKOWN is assured (with timing 25513 * dependencies) that by the time it actually starts to use the 25514 * disk for real work, the old owner is no longer accessing it. 25515 * 25516 * min_ownership_delay is the minimum amount of time for which the 25517 * disk must be reserved continuously devoid of resets before the 25518 * MHIOCTKOWN ioctl will return success. 25519 * 25520 * max_ownership_delay indicates the amount of time by which the 25521 * take ownership should succeed or timeout with an error. 25522 * 25523 * Arguments: dev - the device 'dev_t' 25524 * *p - struct containing timing info. 25525 * 25526 * Return Code: 0 for success or error code 25527 */ 25528 25529 static int 25530 sd_take_ownership(dev_t dev, struct mhioctkown *p) 25531 { 25532 struct sd_lun *un; 25533 int rval; 25534 int err; 25535 int reservation_count = 0; 25536 int min_ownership_delay = 6000000; /* in usec */ 25537 int max_ownership_delay = 30000000; /* in usec */ 25538 clock_t start_time; /* starting time of this algorithm */ 25539 clock_t end_time; /* time limit for giving up */ 25540 clock_t ownership_time; /* time limit for stable ownership */ 25541 clock_t current_time; 25542 clock_t previous_current_time; 25543 25544 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 25545 return (ENXIO); 25546 } 25547 25548 /* 25549 * Attempt a device reservation. A priority reservation is requested. 25550 */ 25551 if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE)) 25552 != SD_SUCCESS) { 25553 SD_ERROR(SD_LOG_IOCTL_MHD, un, 25554 "sd_take_ownership: return(1)=%d\n", rval); 25555 return (rval); 25556 } 25557 25558 /* Update the softstate reserved status to indicate the reservation */ 25559 mutex_enter(SD_MUTEX(un)); 25560 un->un_resvd_status |= SD_RESERVE; 25561 un->un_resvd_status &= 25562 ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT); 25563 mutex_exit(SD_MUTEX(un)); 25564 25565 if (p != NULL) { 25566 if (p->min_ownership_delay != 0) { 25567 min_ownership_delay = p->min_ownership_delay * 1000; 25568 } 25569 if (p->max_ownership_delay != 0) { 25570 max_ownership_delay = p->max_ownership_delay * 1000; 25571 } 25572 } 25573 SD_INFO(SD_LOG_IOCTL_MHD, un, 25574 "sd_take_ownership: min, max delays: %d, %d\n", 25575 min_ownership_delay, max_ownership_delay); 25576 25577 start_time = ddi_get_lbolt(); 25578 current_time = start_time; 25579 ownership_time = current_time + drv_usectohz(min_ownership_delay); 25580 end_time = start_time + drv_usectohz(max_ownership_delay); 25581 25582 while (current_time - end_time < 0) { 25583 delay(drv_usectohz(500000)); 25584 25585 if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) { 25586 if ((sd_reserve_release(dev, SD_RESERVE)) != 0) { 25587 mutex_enter(SD_MUTEX(un)); 25588 rval = (un->un_resvd_status & 25589 SD_RESERVATION_CONFLICT) ? EACCES : EIO; 25590 mutex_exit(SD_MUTEX(un)); 25591 break; 25592 } 25593 } 25594 previous_current_time = current_time; 25595 current_time = ddi_get_lbolt(); 25596 mutex_enter(SD_MUTEX(un)); 25597 if (err || (un->un_resvd_status & SD_LOST_RESERVE)) { 25598 ownership_time = ddi_get_lbolt() + 25599 drv_usectohz(min_ownership_delay); 25600 reservation_count = 0; 25601 } else { 25602 reservation_count++; 25603 } 25604 un->un_resvd_status |= SD_RESERVE; 25605 un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE); 25606 mutex_exit(SD_MUTEX(un)); 25607 25608 SD_INFO(SD_LOG_IOCTL_MHD, un, 25609 "sd_take_ownership: ticks for loop iteration=%ld, " 25610 "reservation=%s\n", (current_time - previous_current_time), 25611 reservation_count ? "ok" : "reclaimed"); 25612 25613 if (current_time - ownership_time >= 0 && 25614 reservation_count >= 4) { 25615 rval = 0; /* Achieved a stable ownership */ 25616 break; 25617 } 25618 if (current_time - end_time >= 0) { 25619 rval = EACCES; /* No ownership in max possible time */ 25620 break; 25621 } 25622 } 25623 SD_TRACE(SD_LOG_IOCTL_MHD, un, 25624 "sd_take_ownership: return(2)=%d\n", rval); 25625 return (rval); 25626 } 25627 25628 25629 /* 25630 * Function: sd_reserve_release() 25631 * 25632 * Description: This function builds and sends scsi RESERVE, RELEASE, and 25633 * PRIORITY RESERVE commands based on a user specified command type 25634 * 25635 * Arguments: dev - the device 'dev_t' 25636 * cmd - user specified command type; one of SD_PRIORITY_RESERVE, 25637 * SD_RESERVE, SD_RELEASE 25638 * 25639 * Return Code: 0 or Error Code 25640 */ 25641 25642 static int 25643 sd_reserve_release(dev_t dev, int cmd) 25644 { 25645 struct uscsi_cmd *com = NULL; 25646 struct sd_lun *un = NULL; 25647 char cdb[CDB_GROUP0]; 25648 int rval; 25649 25650 ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) || 25651 (cmd == SD_PRIORITY_RESERVE)); 25652 25653 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 25654 return (ENXIO); 25655 } 25656 25657 /* instantiate and initialize the command and cdb */ 25658 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 25659 bzero(cdb, CDB_GROUP0); 25660 com->uscsi_flags = USCSI_SILENT; 25661 com->uscsi_timeout = un->un_reserve_release_time; 25662 com->uscsi_cdblen = CDB_GROUP0; 25663 com->uscsi_cdb = cdb; 25664 if (cmd == SD_RELEASE) { 25665 cdb[0] = SCMD_RELEASE; 25666 } else { 25667 cdb[0] = SCMD_RESERVE; 25668 } 25669 25670 /* Send the command. */ 25671 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 25672 SD_PATH_STANDARD); 25673 25674 /* 25675 * "break" a reservation that is held by another host, by issuing a 25676 * reset if priority reserve is desired, and we could not get the 25677 * device. 25678 */ 25679 if ((cmd == SD_PRIORITY_RESERVE) && 25680 (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) { 25681 /* 25682 * First try to reset the LUN. If we cannot, then try a target 25683 * reset, followed by a bus reset if the target reset fails. 25684 */ 25685 int reset_retval = 0; 25686 if (un->un_f_lun_reset_enabled == TRUE) { 25687 reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN); 25688 } 25689 if (reset_retval == 0) { 25690 /* The LUN reset either failed or was not issued */ 25691 reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET); 25692 } 25693 if ((reset_retval == 0) && 25694 (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) { 25695 rval = EIO; 25696 kmem_free(com, sizeof (*com)); 25697 return (rval); 25698 } 25699 25700 bzero(com, sizeof (struct uscsi_cmd)); 25701 com->uscsi_flags = USCSI_SILENT; 25702 com->uscsi_cdb = cdb; 25703 com->uscsi_cdblen = CDB_GROUP0; 25704 com->uscsi_timeout = 5; 25705 25706 /* 25707 * Reissue the last reserve command, this time without request 25708 * sense. Assume that it is just a regular reserve command. 25709 */ 25710 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 25711 SD_PATH_STANDARD); 25712 } 25713 25714 /* Return an error if still getting a reservation conflict. */ 25715 if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) { 25716 rval = EACCES; 25717 } 25718 25719 kmem_free(com, sizeof (*com)); 25720 return (rval); 25721 } 25722 25723 25724 #define SD_NDUMP_RETRIES 12 25725 /* 25726 * System Crash Dump routine 25727 */ 25728 25729 static int 25730 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk) 25731 { 25732 int instance; 25733 int partition; 25734 int i; 25735 int err; 25736 struct sd_lun *un; 25737 struct scsi_pkt *wr_pktp; 25738 struct buf *wr_bp; 25739 struct buf wr_buf; 25740 daddr_t tgt_byte_offset; /* rmw - byte offset for target */ 25741 daddr_t tgt_blkno; /* rmw - blkno for target */ 25742 size_t tgt_byte_count; /* rmw - # of bytes to xfer */ 25743 size_t tgt_nblk; /* rmw - # of tgt blks to xfer */ 25744 size_t io_start_offset; 25745 int doing_rmw = FALSE; 25746 int rval; 25747 ssize_t dma_resid; 25748 daddr_t oblkno; 25749 diskaddr_t nblks = 0; 25750 diskaddr_t start_block; 25751 25752 instance = SDUNIT(dev); 25753 if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) || 25754 !SD_IS_VALID_LABEL(un) || ISCD(un)) { 25755 return (ENXIO); 25756 } 25757 25758 _NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un)) 25759 25760 SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n"); 25761 25762 partition = SDPART(dev); 25763 SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition); 25764 25765 if (!(NOT_DEVBSIZE(un))) { 25766 int secmask = 0; 25767 int blknomask = 0; 25768 25769 blknomask = (un->un_tgt_blocksize / DEV_BSIZE) - 1; 25770 secmask = un->un_tgt_blocksize - 1; 25771 25772 if (blkno & blknomask) { 25773 SD_TRACE(SD_LOG_DUMP, un, 25774 "sddump: dump start block not modulo %d\n", 25775 un->un_tgt_blocksize); 25776 return (EINVAL); 25777 } 25778 25779 if ((nblk * DEV_BSIZE) & secmask) { 25780 SD_TRACE(SD_LOG_DUMP, un, 25781 "sddump: dump length not modulo %d\n", 25782 un->un_tgt_blocksize); 25783 return (EINVAL); 25784 } 25785 25786 } 25787 25788 /* Validate blocks to dump at against partition size. */ 25789 25790 (void) cmlb_partinfo(un->un_cmlbhandle, partition, 25791 &nblks, &start_block, NULL, NULL, (void *)SD_PATH_DIRECT); 25792 25793 if (NOT_DEVBSIZE(un)) { 25794 if ((blkno + nblk) > nblks) { 25795 SD_TRACE(SD_LOG_DUMP, un, 25796 "sddump: dump range larger than partition: " 25797 "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n", 25798 blkno, nblk, nblks); 25799 return (EINVAL); 25800 } 25801 } else { 25802 if (((blkno / (un->un_tgt_blocksize / DEV_BSIZE)) + 25803 (nblk / (un->un_tgt_blocksize / DEV_BSIZE))) > nblks) { 25804 SD_TRACE(SD_LOG_DUMP, un, 25805 "sddump: dump range larger than partition: " 25806 "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n", 25807 blkno, nblk, nblks); 25808 return (EINVAL); 25809 } 25810 } 25811 25812 mutex_enter(&un->un_pm_mutex); 25813 if (SD_DEVICE_IS_IN_LOW_POWER(un)) { 25814 struct scsi_pkt *start_pktp; 25815 25816 mutex_exit(&un->un_pm_mutex); 25817 25818 /* 25819 * use pm framework to power on HBA 1st 25820 */ 25821 (void) pm_raise_power(SD_DEVINFO(un), 0, 25822 SD_PM_STATE_ACTIVE(un)); 25823 25824 /* 25825 * Dump no long uses sdpower to power on a device, it's 25826 * in-line here so it can be done in polled mode. 25827 */ 25828 25829 SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n"); 25830 25831 start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL, 25832 CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL); 25833 25834 if (start_pktp == NULL) { 25835 /* We were not given a SCSI packet, fail. */ 25836 return (EIO); 25837 } 25838 bzero(start_pktp->pkt_cdbp, CDB_GROUP0); 25839 start_pktp->pkt_cdbp[0] = SCMD_START_STOP; 25840 start_pktp->pkt_cdbp[4] = SD_TARGET_START; 25841 start_pktp->pkt_flags = FLAG_NOINTR; 25842 25843 mutex_enter(SD_MUTEX(un)); 25844 SD_FILL_SCSI1_LUN(un, start_pktp); 25845 mutex_exit(SD_MUTEX(un)); 25846 /* 25847 * Scsi_poll returns 0 (success) if the command completes and 25848 * the status block is STATUS_GOOD. 25849 */ 25850 if (sd_scsi_poll(un, start_pktp) != 0) { 25851 scsi_destroy_pkt(start_pktp); 25852 return (EIO); 25853 } 25854 scsi_destroy_pkt(start_pktp); 25855 (void) sd_pm_state_change(un, SD_PM_STATE_ACTIVE(un), 25856 SD_PM_STATE_CHANGE); 25857 } else { 25858 mutex_exit(&un->un_pm_mutex); 25859 } 25860 25861 mutex_enter(SD_MUTEX(un)); 25862 un->un_throttle = 0; 25863 25864 /* 25865 * The first time through, reset the specific target device. 25866 * However, when cpr calls sddump we know that sd is in a 25867 * a good state so no bus reset is required. 25868 * Clear sense data via Request Sense cmd. 25869 * In sddump we don't care about allow_bus_device_reset anymore 25870 */ 25871 25872 if ((un->un_state != SD_STATE_SUSPENDED) && 25873 (un->un_state != SD_STATE_DUMPING)) { 25874 25875 New_state(un, SD_STATE_DUMPING); 25876 25877 if (un->un_f_is_fibre == FALSE) { 25878 mutex_exit(SD_MUTEX(un)); 25879 /* 25880 * Attempt a bus reset for parallel scsi. 25881 * 25882 * Note: A bus reset is required because on some host 25883 * systems (i.e. E420R) a bus device reset is 25884 * insufficient to reset the state of the target. 25885 * 25886 * Note: Don't issue the reset for fibre-channel, 25887 * because this tends to hang the bus (loop) for 25888 * too long while everyone is logging out and in 25889 * and the deadman timer for dumping will fire 25890 * before the dump is complete. 25891 */ 25892 if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) { 25893 mutex_enter(SD_MUTEX(un)); 25894 Restore_state(un); 25895 mutex_exit(SD_MUTEX(un)); 25896 return (EIO); 25897 } 25898 25899 /* Delay to give the device some recovery time. */ 25900 drv_usecwait(10000); 25901 25902 if (sd_send_polled_RQS(un) == SD_FAILURE) { 25903 SD_INFO(SD_LOG_DUMP, un, 25904 "sddump: sd_send_polled_RQS failed\n"); 25905 } 25906 mutex_enter(SD_MUTEX(un)); 25907 } 25908 } 25909 25910 /* 25911 * Convert the partition-relative block number to a 25912 * disk physical block number. 25913 */ 25914 if (NOT_DEVBSIZE(un)) { 25915 blkno += start_block; 25916 } else { 25917 blkno = blkno / (un->un_tgt_blocksize / DEV_BSIZE); 25918 blkno += start_block; 25919 } 25920 25921 SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno); 25922 25923 25924 /* 25925 * Check if the device has a non-512 block size. 25926 */ 25927 wr_bp = NULL; 25928 if (NOT_DEVBSIZE(un)) { 25929 tgt_byte_offset = blkno * un->un_sys_blocksize; 25930 tgt_byte_count = nblk * un->un_sys_blocksize; 25931 if ((tgt_byte_offset % un->un_tgt_blocksize) || 25932 (tgt_byte_count % un->un_tgt_blocksize)) { 25933 doing_rmw = TRUE; 25934 /* 25935 * Calculate the block number and number of block 25936 * in terms of the media block size. 25937 */ 25938 tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize; 25939 tgt_nblk = 25940 ((tgt_byte_offset + tgt_byte_count + 25941 (un->un_tgt_blocksize - 1)) / 25942 un->un_tgt_blocksize) - tgt_blkno; 25943 25944 /* 25945 * Invoke the routine which is going to do read part 25946 * of read-modify-write. 25947 * Note that this routine returns a pointer to 25948 * a valid bp in wr_bp. 25949 */ 25950 err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk, 25951 &wr_bp); 25952 if (err) { 25953 mutex_exit(SD_MUTEX(un)); 25954 return (err); 25955 } 25956 /* 25957 * Offset is being calculated as - 25958 * (original block # * system block size) - 25959 * (new block # * target block size) 25960 */ 25961 io_start_offset = 25962 ((uint64_t)(blkno * un->un_sys_blocksize)) - 25963 ((uint64_t)(tgt_blkno * un->un_tgt_blocksize)); 25964 25965 ASSERT((io_start_offset >= 0) && 25966 (io_start_offset < un->un_tgt_blocksize)); 25967 /* 25968 * Do the modify portion of read modify write. 25969 */ 25970 bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset], 25971 (size_t)nblk * un->un_sys_blocksize); 25972 } else { 25973 doing_rmw = FALSE; 25974 tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize; 25975 tgt_nblk = tgt_byte_count / un->un_tgt_blocksize; 25976 } 25977 25978 /* Convert blkno and nblk to target blocks */ 25979 blkno = tgt_blkno; 25980 nblk = tgt_nblk; 25981 } else { 25982 wr_bp = &wr_buf; 25983 bzero(wr_bp, sizeof (struct buf)); 25984 wr_bp->b_flags = B_BUSY; 25985 wr_bp->b_un.b_addr = addr; 25986 wr_bp->b_bcount = nblk << DEV_BSHIFT; 25987 wr_bp->b_resid = 0; 25988 } 25989 25990 mutex_exit(SD_MUTEX(un)); 25991 25992 /* 25993 * Obtain a SCSI packet for the write command. 25994 * It should be safe to call the allocator here without 25995 * worrying about being locked for DVMA mapping because 25996 * the address we're passed is already a DVMA mapping 25997 * 25998 * We are also not going to worry about semaphore ownership 25999 * in the dump buffer. Dumping is single threaded at present. 26000 */ 26001 26002 wr_pktp = NULL; 26003 26004 dma_resid = wr_bp->b_bcount; 26005 oblkno = blkno; 26006 26007 if (!(NOT_DEVBSIZE(un))) { 26008 nblk = nblk / (un->un_tgt_blocksize / DEV_BSIZE); 26009 } 26010 26011 while (dma_resid != 0) { 26012 26013 for (i = 0; i < SD_NDUMP_RETRIES; i++) { 26014 wr_bp->b_flags &= ~B_ERROR; 26015 26016 if (un->un_partial_dma_supported == 1) { 26017 blkno = oblkno + 26018 ((wr_bp->b_bcount - dma_resid) / 26019 un->un_tgt_blocksize); 26020 nblk = dma_resid / un->un_tgt_blocksize; 26021 26022 if (wr_pktp) { 26023 /* 26024 * Partial DMA transfers after initial transfer 26025 */ 26026 rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp, 26027 blkno, nblk); 26028 } else { 26029 /* Initial transfer */ 26030 rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp, 26031 un->un_pkt_flags, NULL_FUNC, NULL, 26032 blkno, nblk); 26033 } 26034 } else { 26035 rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp, 26036 0, NULL_FUNC, NULL, blkno, nblk); 26037 } 26038 26039 if (rval == 0) { 26040 /* We were given a SCSI packet, continue. */ 26041 break; 26042 } 26043 26044 if (i == 0) { 26045 if (wr_bp->b_flags & B_ERROR) { 26046 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26047 "no resources for dumping; " 26048 "error code: 0x%x, retrying", 26049 geterror(wr_bp)); 26050 } else { 26051 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26052 "no resources for dumping; retrying"); 26053 } 26054 } else if (i != (SD_NDUMP_RETRIES - 1)) { 26055 if (wr_bp->b_flags & B_ERROR) { 26056 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 26057 "no resources for dumping; error code: " 26058 "0x%x, retrying\n", geterror(wr_bp)); 26059 } 26060 } else { 26061 if (wr_bp->b_flags & B_ERROR) { 26062 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 26063 "no resources for dumping; " 26064 "error code: 0x%x, retries failed, " 26065 "giving up.\n", geterror(wr_bp)); 26066 } else { 26067 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 26068 "no resources for dumping; " 26069 "retries failed, giving up.\n"); 26070 } 26071 mutex_enter(SD_MUTEX(un)); 26072 Restore_state(un); 26073 if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) { 26074 mutex_exit(SD_MUTEX(un)); 26075 scsi_free_consistent_buf(wr_bp); 26076 } else { 26077 mutex_exit(SD_MUTEX(un)); 26078 } 26079 return (EIO); 26080 } 26081 drv_usecwait(10000); 26082 } 26083 26084 if (un->un_partial_dma_supported == 1) { 26085 /* 26086 * save the resid from PARTIAL_DMA 26087 */ 26088 dma_resid = wr_pktp->pkt_resid; 26089 if (dma_resid != 0) 26090 nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid); 26091 wr_pktp->pkt_resid = 0; 26092 } else { 26093 dma_resid = 0; 26094 } 26095 26096 /* SunBug 1222170 */ 26097 wr_pktp->pkt_flags = FLAG_NOINTR; 26098 26099 err = EIO; 26100 for (i = 0; i < SD_NDUMP_RETRIES; i++) { 26101 26102 /* 26103 * Scsi_poll returns 0 (success) if the command completes and 26104 * the status block is STATUS_GOOD. We should only check 26105 * errors if this condition is not true. Even then we should 26106 * send our own request sense packet only if we have a check 26107 * condition and auto request sense has not been performed by 26108 * the hba. 26109 */ 26110 SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n"); 26111 26112 if ((sd_scsi_poll(un, wr_pktp) == 0) && 26113 (wr_pktp->pkt_resid == 0)) { 26114 err = SD_SUCCESS; 26115 break; 26116 } 26117 26118 /* 26119 * Check CMD_DEV_GONE 1st, give up if device is gone. 26120 */ 26121 if (wr_pktp->pkt_reason == CMD_DEV_GONE) { 26122 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26123 "Error while dumping state...Device is gone\n"); 26124 break; 26125 } 26126 26127 if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) { 26128 SD_INFO(SD_LOG_DUMP, un, 26129 "sddump: write failed with CHECK, try # %d\n", i); 26130 if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) { 26131 (void) sd_send_polled_RQS(un); 26132 } 26133 26134 continue; 26135 } 26136 26137 if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) { 26138 int reset_retval = 0; 26139 26140 SD_INFO(SD_LOG_DUMP, un, 26141 "sddump: write failed with BUSY, try # %d\n", i); 26142 26143 if (un->un_f_lun_reset_enabled == TRUE) { 26144 reset_retval = scsi_reset(SD_ADDRESS(un), 26145 RESET_LUN); 26146 } 26147 if (reset_retval == 0) { 26148 (void) scsi_reset(SD_ADDRESS(un), RESET_TARGET); 26149 } 26150 (void) sd_send_polled_RQS(un); 26151 26152 } else { 26153 SD_INFO(SD_LOG_DUMP, un, 26154 "sddump: write failed with 0x%x, try # %d\n", 26155 SD_GET_PKT_STATUS(wr_pktp), i); 26156 mutex_enter(SD_MUTEX(un)); 26157 sd_reset_target(un, wr_pktp); 26158 mutex_exit(SD_MUTEX(un)); 26159 } 26160 26161 /* 26162 * If we are not getting anywhere with lun/target resets, 26163 * let's reset the bus. 26164 */ 26165 if (i == SD_NDUMP_RETRIES/2) { 26166 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 26167 (void) sd_send_polled_RQS(un); 26168 } 26169 } 26170 } 26171 26172 scsi_destroy_pkt(wr_pktp); 26173 mutex_enter(SD_MUTEX(un)); 26174 if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) { 26175 mutex_exit(SD_MUTEX(un)); 26176 scsi_free_consistent_buf(wr_bp); 26177 } else { 26178 mutex_exit(SD_MUTEX(un)); 26179 } 26180 SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err); 26181 return (err); 26182 } 26183 26184 /* 26185 * Function: sd_scsi_poll() 26186 * 26187 * Description: This is a wrapper for the scsi_poll call. 26188 * 26189 * Arguments: sd_lun - The unit structure 26190 * scsi_pkt - The scsi packet being sent to the device. 26191 * 26192 * Return Code: 0 - Command completed successfully with good status 26193 * -1 - Command failed. This could indicate a check condition 26194 * or other status value requiring recovery action. 26195 * 26196 * NOTE: This code is only called off sddump(). 26197 */ 26198 26199 static int 26200 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp) 26201 { 26202 int status; 26203 26204 ASSERT(un != NULL); 26205 ASSERT(!mutex_owned(SD_MUTEX(un))); 26206 ASSERT(pktp != NULL); 26207 26208 status = SD_SUCCESS; 26209 26210 if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) { 26211 pktp->pkt_flags |= un->un_tagflags; 26212 pktp->pkt_flags &= ~FLAG_NODISCON; 26213 } 26214 26215 status = sd_ddi_scsi_poll(pktp); 26216 /* 26217 * Scsi_poll returns 0 (success) if the command completes and the 26218 * status block is STATUS_GOOD. We should only check errors if this 26219 * condition is not true. Even then we should send our own request 26220 * sense packet only if we have a check condition and auto 26221 * request sense has not been performed by the hba. 26222 * Don't get RQS data if pkt_reason is CMD_DEV_GONE. 26223 */ 26224 if ((status != SD_SUCCESS) && 26225 (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) && 26226 (pktp->pkt_state & STATE_ARQ_DONE) == 0 && 26227 (pktp->pkt_reason != CMD_DEV_GONE)) 26228 (void) sd_send_polled_RQS(un); 26229 26230 return (status); 26231 } 26232 26233 /* 26234 * Function: sd_send_polled_RQS() 26235 * 26236 * Description: This sends the request sense command to a device. 26237 * 26238 * Arguments: sd_lun - The unit structure 26239 * 26240 * Return Code: 0 - Command completed successfully with good status 26241 * -1 - Command failed. 26242 * 26243 */ 26244 26245 static int 26246 sd_send_polled_RQS(struct sd_lun *un) 26247 { 26248 int ret_val; 26249 struct scsi_pkt *rqs_pktp; 26250 struct buf *rqs_bp; 26251 26252 ASSERT(un != NULL); 26253 ASSERT(!mutex_owned(SD_MUTEX(un))); 26254 26255 ret_val = SD_SUCCESS; 26256 26257 rqs_pktp = un->un_rqs_pktp; 26258 rqs_bp = un->un_rqs_bp; 26259 26260 mutex_enter(SD_MUTEX(un)); 26261 26262 if (un->un_sense_isbusy) { 26263 ret_val = SD_FAILURE; 26264 mutex_exit(SD_MUTEX(un)); 26265 return (ret_val); 26266 } 26267 26268 /* 26269 * If the request sense buffer (and packet) is not in use, 26270 * let's set the un_sense_isbusy and send our packet 26271 */ 26272 un->un_sense_isbusy = 1; 26273 rqs_pktp->pkt_resid = 0; 26274 rqs_pktp->pkt_reason = 0; 26275 rqs_pktp->pkt_flags |= FLAG_NOINTR; 26276 bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH); 26277 26278 mutex_exit(SD_MUTEX(un)); 26279 26280 SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at" 26281 " 0x%p\n", rqs_bp->b_un.b_addr); 26282 26283 /* 26284 * Can't send this to sd_scsi_poll, we wrap ourselves around the 26285 * axle - it has a call into us! 26286 */ 26287 if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) { 26288 SD_INFO(SD_LOG_COMMON, un, 26289 "sd_send_polled_RQS: RQS failed\n"); 26290 } 26291 26292 SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:", 26293 (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX); 26294 26295 mutex_enter(SD_MUTEX(un)); 26296 un->un_sense_isbusy = 0; 26297 mutex_exit(SD_MUTEX(un)); 26298 26299 return (ret_val); 26300 } 26301 26302 /* 26303 * Defines needed for localized version of the scsi_poll routine. 26304 */ 26305 #define CSEC 10000 /* usecs */ 26306 #define SEC_TO_CSEC (1000000/CSEC) 26307 26308 /* 26309 * Function: sd_ddi_scsi_poll() 26310 * 26311 * Description: Localized version of the scsi_poll routine. The purpose is to 26312 * send a scsi_pkt to a device as a polled command. This version 26313 * is to ensure more robust handling of transport errors. 26314 * Specifically this routine cures not ready, coming ready 26315 * transition for power up and reset of sonoma's. This can take 26316 * up to 45 seconds for power-on and 20 seconds for reset of a 26317 * sonoma lun. 26318 * 26319 * Arguments: scsi_pkt - The scsi_pkt being sent to a device 26320 * 26321 * Return Code: 0 - Command completed successfully with good status 26322 * -1 - Command failed. 26323 * 26324 * NOTE: This code is almost identical to scsi_poll, however before 6668774 can 26325 * be fixed (removing this code), we need to determine how to handle the 26326 * KEY_UNIT_ATTENTION condition below in conditions not as limited as sddump(). 26327 * 26328 * NOTE: This code is only called off sddump(). 26329 */ 26330 static int 26331 sd_ddi_scsi_poll(struct scsi_pkt *pkt) 26332 { 26333 int rval = -1; 26334 int savef; 26335 long savet; 26336 void (*savec)(); 26337 int timeout; 26338 int busy_count; 26339 int poll_delay; 26340 int rc; 26341 uint8_t *sensep; 26342 struct scsi_arq_status *arqstat; 26343 extern int do_polled_io; 26344 26345 ASSERT(pkt->pkt_scbp); 26346 26347 /* 26348 * save old flags.. 26349 */ 26350 savef = pkt->pkt_flags; 26351 savec = pkt->pkt_comp; 26352 savet = pkt->pkt_time; 26353 26354 pkt->pkt_flags |= FLAG_NOINTR; 26355 26356 /* 26357 * XXX there is nothing in the SCSA spec that states that we should not 26358 * do a callback for polled cmds; however, removing this will break sd 26359 * and probably other target drivers 26360 */ 26361 pkt->pkt_comp = NULL; 26362 26363 /* 26364 * we don't like a polled command without timeout. 26365 * 60 seconds seems long enough. 26366 */ 26367 if (pkt->pkt_time == 0) 26368 pkt->pkt_time = SCSI_POLL_TIMEOUT; 26369 26370 /* 26371 * Send polled cmd. 26372 * 26373 * We do some error recovery for various errors. Tran_busy, 26374 * queue full, and non-dispatched commands are retried every 10 msec. 26375 * as they are typically transient failures. Busy status and Not 26376 * Ready are retried every second as this status takes a while to 26377 * change. 26378 */ 26379 timeout = pkt->pkt_time * SEC_TO_CSEC; 26380 26381 for (busy_count = 0; busy_count < timeout; busy_count++) { 26382 /* 26383 * Initialize pkt status variables. 26384 */ 26385 *pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0; 26386 26387 if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) { 26388 if (rc != TRAN_BUSY) { 26389 /* Transport failed - give up. */ 26390 break; 26391 } else { 26392 /* Transport busy - try again. */ 26393 poll_delay = 1 * CSEC; /* 10 msec. */ 26394 } 26395 } else { 26396 /* 26397 * Transport accepted - check pkt status. 26398 */ 26399 rc = (*pkt->pkt_scbp) & STATUS_MASK; 26400 if ((pkt->pkt_reason == CMD_CMPLT) && 26401 (rc == STATUS_CHECK) && 26402 (pkt->pkt_state & STATE_ARQ_DONE)) { 26403 arqstat = 26404 (struct scsi_arq_status *)(pkt->pkt_scbp); 26405 sensep = (uint8_t *)&arqstat->sts_sensedata; 26406 } else { 26407 sensep = NULL; 26408 } 26409 26410 if ((pkt->pkt_reason == CMD_CMPLT) && 26411 (rc == STATUS_GOOD)) { 26412 /* No error - we're done */ 26413 rval = 0; 26414 break; 26415 26416 } else if (pkt->pkt_reason == CMD_DEV_GONE) { 26417 /* Lost connection - give up */ 26418 break; 26419 26420 } else if ((pkt->pkt_reason == CMD_INCOMPLETE) && 26421 (pkt->pkt_state == 0)) { 26422 /* Pkt not dispatched - try again. */ 26423 poll_delay = 1 * CSEC; /* 10 msec. */ 26424 26425 } else if ((pkt->pkt_reason == CMD_CMPLT) && 26426 (rc == STATUS_QFULL)) { 26427 /* Queue full - try again. */ 26428 poll_delay = 1 * CSEC; /* 10 msec. */ 26429 26430 } else if ((pkt->pkt_reason == CMD_CMPLT) && 26431 (rc == STATUS_BUSY)) { 26432 /* Busy - try again. */ 26433 poll_delay = 100 * CSEC; /* 1 sec. */ 26434 busy_count += (SEC_TO_CSEC - 1); 26435 26436 } else if ((sensep != NULL) && 26437 (scsi_sense_key(sensep) == KEY_UNIT_ATTENTION)) { 26438 /* 26439 * Unit Attention - try again. 26440 * Pretend it took 1 sec. 26441 * NOTE: 'continue' avoids poll_delay 26442 */ 26443 busy_count += (SEC_TO_CSEC - 1); 26444 continue; 26445 26446 } else if ((sensep != NULL) && 26447 (scsi_sense_key(sensep) == KEY_NOT_READY) && 26448 (scsi_sense_asc(sensep) == 0x04) && 26449 (scsi_sense_ascq(sensep) == 0x01)) { 26450 /* 26451 * Not ready -> ready - try again. 26452 * 04h/01h: LUN IS IN PROCESS OF BECOMING READY 26453 * ...same as STATUS_BUSY 26454 */ 26455 poll_delay = 100 * CSEC; /* 1 sec. */ 26456 busy_count += (SEC_TO_CSEC - 1); 26457 26458 } else { 26459 /* BAD status - give up. */ 26460 break; 26461 } 26462 } 26463 26464 if (((curthread->t_flag & T_INTR_THREAD) == 0) && 26465 !do_polled_io) { 26466 delay(drv_usectohz(poll_delay)); 26467 } else { 26468 /* we busy wait during cpr_dump or interrupt threads */ 26469 drv_usecwait(poll_delay); 26470 } 26471 } 26472 26473 pkt->pkt_flags = savef; 26474 pkt->pkt_comp = savec; 26475 pkt->pkt_time = savet; 26476 26477 /* return on error */ 26478 if (rval) 26479 return (rval); 26480 26481 /* 26482 * This is not a performance critical code path. 26483 * 26484 * As an accommodation for scsi_poll callers, to avoid ddi_dma_sync() 26485 * issues associated with looking at DMA memory prior to 26486 * scsi_pkt_destroy(), we scsi_sync_pkt() prior to return. 26487 */ 26488 scsi_sync_pkt(pkt); 26489 return (0); 26490 } 26491 26492 26493 26494 /* 26495 * Function: sd_persistent_reservation_in_read_keys 26496 * 26497 * Description: This routine is the driver entry point for handling CD-ROM 26498 * multi-host persistent reservation requests (MHIOCGRP_INKEYS) 26499 * by sending the SCSI-3 PRIN commands to the device. 26500 * Processes the read keys command response by copying the 26501 * reservation key information into the user provided buffer. 26502 * Support for the 32/64 bit _MULTI_DATAMODEL is implemented. 26503 * 26504 * Arguments: un - Pointer to soft state struct for the target. 26505 * usrp - user provided pointer to multihost Persistent In Read 26506 * Keys structure (mhioc_inkeys_t) 26507 * flag - this argument is a pass through to ddi_copyxxx() 26508 * directly from the mode argument of ioctl(). 26509 * 26510 * Return Code: 0 - Success 26511 * EACCES 26512 * ENOTSUP 26513 * errno return code from sd_send_scsi_cmd() 26514 * 26515 * Context: Can sleep. Does not return until command is completed. 26516 */ 26517 26518 static int 26519 sd_persistent_reservation_in_read_keys(struct sd_lun *un, 26520 mhioc_inkeys_t *usrp, int flag) 26521 { 26522 #ifdef _MULTI_DATAMODEL 26523 struct mhioc_key_list32 li32; 26524 #endif 26525 sd_prin_readkeys_t *in; 26526 mhioc_inkeys_t *ptr; 26527 mhioc_key_list_t li; 26528 uchar_t *data_bufp; 26529 int data_len; 26530 int rval = 0; 26531 size_t copysz; 26532 sd_ssc_t *ssc; 26533 26534 if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) { 26535 return (EINVAL); 26536 } 26537 bzero(&li, sizeof (mhioc_key_list_t)); 26538 26539 ssc = sd_ssc_init(un); 26540 26541 /* 26542 * Get the listsize from user 26543 */ 26544 #ifdef _MULTI_DATAMODEL 26545 26546 switch (ddi_model_convert_from(flag & FMODELS)) { 26547 case DDI_MODEL_ILP32: 26548 copysz = sizeof (struct mhioc_key_list32); 26549 if (ddi_copyin(ptr->li, &li32, copysz, flag)) { 26550 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26551 "sd_persistent_reservation_in_read_keys: " 26552 "failed ddi_copyin: mhioc_key_list32_t\n"); 26553 rval = EFAULT; 26554 goto done; 26555 } 26556 li.listsize = li32.listsize; 26557 li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list; 26558 break; 26559 26560 case DDI_MODEL_NONE: 26561 copysz = sizeof (mhioc_key_list_t); 26562 if (ddi_copyin(ptr->li, &li, copysz, flag)) { 26563 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26564 "sd_persistent_reservation_in_read_keys: " 26565 "failed ddi_copyin: mhioc_key_list_t\n"); 26566 rval = EFAULT; 26567 goto done; 26568 } 26569 break; 26570 } 26571 26572 #else /* ! _MULTI_DATAMODEL */ 26573 copysz = sizeof (mhioc_key_list_t); 26574 if (ddi_copyin(ptr->li, &li, copysz, flag)) { 26575 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26576 "sd_persistent_reservation_in_read_keys: " 26577 "failed ddi_copyin: mhioc_key_list_t\n"); 26578 rval = EFAULT; 26579 goto done; 26580 } 26581 #endif 26582 26583 data_len = li.listsize * MHIOC_RESV_KEY_SIZE; 26584 data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t)); 26585 data_bufp = kmem_zalloc(data_len, KM_SLEEP); 26586 26587 rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS, 26588 data_len, data_bufp); 26589 if (rval != 0) { 26590 if (rval == EIO) 26591 sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE); 26592 else 26593 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 26594 goto done; 26595 } 26596 in = (sd_prin_readkeys_t *)data_bufp; 26597 ptr->generation = BE_32(in->generation); 26598 li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE; 26599 26600 /* 26601 * Return the min(listsize, listlen) keys 26602 */ 26603 #ifdef _MULTI_DATAMODEL 26604 26605 switch (ddi_model_convert_from(flag & FMODELS)) { 26606 case DDI_MODEL_ILP32: 26607 li32.listlen = li.listlen; 26608 if (ddi_copyout(&li32, ptr->li, copysz, flag)) { 26609 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26610 "sd_persistent_reservation_in_read_keys: " 26611 "failed ddi_copyout: mhioc_key_list32_t\n"); 26612 rval = EFAULT; 26613 goto done; 26614 } 26615 break; 26616 26617 case DDI_MODEL_NONE: 26618 if (ddi_copyout(&li, ptr->li, copysz, flag)) { 26619 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26620 "sd_persistent_reservation_in_read_keys: " 26621 "failed ddi_copyout: mhioc_key_list_t\n"); 26622 rval = EFAULT; 26623 goto done; 26624 } 26625 break; 26626 } 26627 26628 #else /* ! _MULTI_DATAMODEL */ 26629 26630 if (ddi_copyout(&li, ptr->li, copysz, flag)) { 26631 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26632 "sd_persistent_reservation_in_read_keys: " 26633 "failed ddi_copyout: mhioc_key_list_t\n"); 26634 rval = EFAULT; 26635 goto done; 26636 } 26637 26638 #endif /* _MULTI_DATAMODEL */ 26639 26640 copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE, 26641 li.listsize * MHIOC_RESV_KEY_SIZE); 26642 if (ddi_copyout(&in->keylist, li.list, copysz, flag)) { 26643 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26644 "sd_persistent_reservation_in_read_keys: " 26645 "failed ddi_copyout: keylist\n"); 26646 rval = EFAULT; 26647 } 26648 done: 26649 sd_ssc_fini(ssc); 26650 kmem_free(data_bufp, data_len); 26651 return (rval); 26652 } 26653 26654 26655 /* 26656 * Function: sd_persistent_reservation_in_read_resv 26657 * 26658 * Description: This routine is the driver entry point for handling CD-ROM 26659 * multi-host persistent reservation requests (MHIOCGRP_INRESV) 26660 * by sending the SCSI-3 PRIN commands to the device. 26661 * Process the read persistent reservations command response by 26662 * copying the reservation information into the user provided 26663 * buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented. 26664 * 26665 * Arguments: un - Pointer to soft state struct for the target. 26666 * usrp - user provided pointer to multihost Persistent In Read 26667 * Keys structure (mhioc_inkeys_t) 26668 * flag - this argument is a pass through to ddi_copyxxx() 26669 * directly from the mode argument of ioctl(). 26670 * 26671 * Return Code: 0 - Success 26672 * EACCES 26673 * ENOTSUP 26674 * errno return code from sd_send_scsi_cmd() 26675 * 26676 * Context: Can sleep. Does not return until command is completed. 26677 */ 26678 26679 static int 26680 sd_persistent_reservation_in_read_resv(struct sd_lun *un, 26681 mhioc_inresvs_t *usrp, int flag) 26682 { 26683 #ifdef _MULTI_DATAMODEL 26684 struct mhioc_resv_desc_list32 resvlist32; 26685 #endif 26686 sd_prin_readresv_t *in; 26687 mhioc_inresvs_t *ptr; 26688 sd_readresv_desc_t *readresv_ptr; 26689 mhioc_resv_desc_list_t resvlist; 26690 mhioc_resv_desc_t resvdesc; 26691 uchar_t *data_bufp = NULL; 26692 int data_len; 26693 int rval = 0; 26694 int i; 26695 size_t copysz; 26696 mhioc_resv_desc_t *bufp; 26697 sd_ssc_t *ssc; 26698 26699 if ((ptr = usrp) == NULL) { 26700 return (EINVAL); 26701 } 26702 26703 ssc = sd_ssc_init(un); 26704 26705 /* 26706 * Get the listsize from user 26707 */ 26708 #ifdef _MULTI_DATAMODEL 26709 switch (ddi_model_convert_from(flag & FMODELS)) { 26710 case DDI_MODEL_ILP32: 26711 copysz = sizeof (struct mhioc_resv_desc_list32); 26712 if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) { 26713 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26714 "sd_persistent_reservation_in_read_resv: " 26715 "failed ddi_copyin: mhioc_resv_desc_list_t\n"); 26716 rval = EFAULT; 26717 goto done; 26718 } 26719 resvlist.listsize = resvlist32.listsize; 26720 resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list; 26721 break; 26722 26723 case DDI_MODEL_NONE: 26724 copysz = sizeof (mhioc_resv_desc_list_t); 26725 if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) { 26726 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26727 "sd_persistent_reservation_in_read_resv: " 26728 "failed ddi_copyin: mhioc_resv_desc_list_t\n"); 26729 rval = EFAULT; 26730 goto done; 26731 } 26732 break; 26733 } 26734 #else /* ! _MULTI_DATAMODEL */ 26735 copysz = sizeof (mhioc_resv_desc_list_t); 26736 if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) { 26737 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26738 "sd_persistent_reservation_in_read_resv: " 26739 "failed ddi_copyin: mhioc_resv_desc_list_t\n"); 26740 rval = EFAULT; 26741 goto done; 26742 } 26743 #endif /* ! _MULTI_DATAMODEL */ 26744 26745 data_len = resvlist.listsize * SCSI3_RESV_DESC_LEN; 26746 data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t)); 26747 data_bufp = kmem_zalloc(data_len, KM_SLEEP); 26748 26749 rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_RESV, 26750 data_len, data_bufp); 26751 if (rval != 0) { 26752 if (rval == EIO) 26753 sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE); 26754 else 26755 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 26756 goto done; 26757 } 26758 in = (sd_prin_readresv_t *)data_bufp; 26759 ptr->generation = BE_32(in->generation); 26760 resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN; 26761 26762 /* 26763 * Return the min(listsize, listlen( keys 26764 */ 26765 #ifdef _MULTI_DATAMODEL 26766 26767 switch (ddi_model_convert_from(flag & FMODELS)) { 26768 case DDI_MODEL_ILP32: 26769 resvlist32.listlen = resvlist.listlen; 26770 if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) { 26771 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26772 "sd_persistent_reservation_in_read_resv: " 26773 "failed ddi_copyout: mhioc_resv_desc_list_t\n"); 26774 rval = EFAULT; 26775 goto done; 26776 } 26777 break; 26778 26779 case DDI_MODEL_NONE: 26780 if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) { 26781 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26782 "sd_persistent_reservation_in_read_resv: " 26783 "failed ddi_copyout: mhioc_resv_desc_list_t\n"); 26784 rval = EFAULT; 26785 goto done; 26786 } 26787 break; 26788 } 26789 26790 #else /* ! _MULTI_DATAMODEL */ 26791 26792 if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) { 26793 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26794 "sd_persistent_reservation_in_read_resv: " 26795 "failed ddi_copyout: mhioc_resv_desc_list_t\n"); 26796 rval = EFAULT; 26797 goto done; 26798 } 26799 26800 #endif /* ! _MULTI_DATAMODEL */ 26801 26802 readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc; 26803 bufp = resvlist.list; 26804 copysz = sizeof (mhioc_resv_desc_t); 26805 for (i = 0; i < min(resvlist.listlen, resvlist.listsize); 26806 i++, readresv_ptr++, bufp++) { 26807 26808 bcopy(&readresv_ptr->resvkey, &resvdesc.key, 26809 MHIOC_RESV_KEY_SIZE); 26810 resvdesc.type = readresv_ptr->type; 26811 resvdesc.scope = readresv_ptr->scope; 26812 resvdesc.scope_specific_addr = 26813 BE_32(readresv_ptr->scope_specific_addr); 26814 26815 if (ddi_copyout(&resvdesc, bufp, copysz, flag)) { 26816 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26817 "sd_persistent_reservation_in_read_resv: " 26818 "failed ddi_copyout: resvlist\n"); 26819 rval = EFAULT; 26820 goto done; 26821 } 26822 } 26823 done: 26824 sd_ssc_fini(ssc); 26825 /* only if data_bufp is allocated, we need to free it */ 26826 if (data_bufp) { 26827 kmem_free(data_bufp, data_len); 26828 } 26829 return (rval); 26830 } 26831 26832 26833 /* 26834 * Function: sr_change_blkmode() 26835 * 26836 * Description: This routine is the driver entry point for handling CD-ROM 26837 * block mode ioctl requests. Support for returning and changing 26838 * the current block size in use by the device is implemented. The 26839 * LBA size is changed via a MODE SELECT Block Descriptor. 26840 * 26841 * This routine issues a mode sense with an allocation length of 26842 * 12 bytes for the mode page header and a single block descriptor. 26843 * 26844 * Arguments: dev - the device 'dev_t' 26845 * cmd - the request type; one of CDROMGBLKMODE (get) or 26846 * CDROMSBLKMODE (set) 26847 * data - current block size or requested block size 26848 * flag - this argument is a pass through to ddi_copyxxx() directly 26849 * from the mode argument of ioctl(). 26850 * 26851 * Return Code: the code returned by sd_send_scsi_cmd() 26852 * EINVAL if invalid arguments are provided 26853 * EFAULT if ddi_copyxxx() fails 26854 * ENXIO if fail ddi_get_soft_state 26855 * EIO if invalid mode sense block descriptor length 26856 * 26857 */ 26858 26859 static int 26860 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag) 26861 { 26862 struct sd_lun *un = NULL; 26863 struct mode_header *sense_mhp, *select_mhp; 26864 struct block_descriptor *sense_desc, *select_desc; 26865 int current_bsize; 26866 int rval = EINVAL; 26867 uchar_t *sense = NULL; 26868 uchar_t *select = NULL; 26869 sd_ssc_t *ssc; 26870 26871 ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE)); 26872 26873 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 26874 return (ENXIO); 26875 } 26876 26877 /* 26878 * The block length is changed via the Mode Select block descriptor, the 26879 * "Read/Write Error Recovery" mode page (0x1) contents are not actually 26880 * required as part of this routine. Therefore the mode sense allocation 26881 * length is specified to be the length of a mode page header and a 26882 * block descriptor. 26883 */ 26884 sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP); 26885 26886 ssc = sd_ssc_init(un); 26887 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 26888 BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD); 26889 sd_ssc_fini(ssc); 26890 if (rval != 0) { 26891 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26892 "sr_change_blkmode: Mode Sense Failed\n"); 26893 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 26894 return (rval); 26895 } 26896 26897 /* Check the block descriptor len to handle only 1 block descriptor */ 26898 sense_mhp = (struct mode_header *)sense; 26899 if ((sense_mhp->bdesc_length == 0) || 26900 (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) { 26901 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26902 "sr_change_blkmode: Mode Sense returned invalid block" 26903 " descriptor length\n"); 26904 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 26905 return (EIO); 26906 } 26907 sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH); 26908 current_bsize = ((sense_desc->blksize_hi << 16) | 26909 (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo); 26910 26911 /* Process command */ 26912 switch (cmd) { 26913 case CDROMGBLKMODE: 26914 /* Return the block size obtained during the mode sense */ 26915 if (ddi_copyout(¤t_bsize, (void *)data, 26916 sizeof (int), flag) != 0) 26917 rval = EFAULT; 26918 break; 26919 case CDROMSBLKMODE: 26920 /* Validate the requested block size */ 26921 switch (data) { 26922 case CDROM_BLK_512: 26923 case CDROM_BLK_1024: 26924 case CDROM_BLK_2048: 26925 case CDROM_BLK_2056: 26926 case CDROM_BLK_2336: 26927 case CDROM_BLK_2340: 26928 case CDROM_BLK_2352: 26929 case CDROM_BLK_2368: 26930 case CDROM_BLK_2448: 26931 case CDROM_BLK_2646: 26932 case CDROM_BLK_2647: 26933 break; 26934 default: 26935 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26936 "sr_change_blkmode: " 26937 "Block Size '%ld' Not Supported\n", data); 26938 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 26939 return (EINVAL); 26940 } 26941 26942 /* 26943 * The current block size matches the requested block size so 26944 * there is no need to send the mode select to change the size 26945 */ 26946 if (current_bsize == data) { 26947 break; 26948 } 26949 26950 /* Build the select data for the requested block size */ 26951 select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP); 26952 select_mhp = (struct mode_header *)select; 26953 select_desc = 26954 (struct block_descriptor *)(select + MODE_HEADER_LENGTH); 26955 /* 26956 * The LBA size is changed via the block descriptor, so the 26957 * descriptor is built according to the user data 26958 */ 26959 select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH; 26960 select_desc->blksize_hi = (char)(((data) & 0x00ff0000) >> 16); 26961 select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8); 26962 select_desc->blksize_lo = (char)((data) & 0x000000ff); 26963 26964 /* Send the mode select for the requested block size */ 26965 ssc = sd_ssc_init(un); 26966 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, 26967 select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE, 26968 SD_PATH_STANDARD); 26969 sd_ssc_fini(ssc); 26970 if (rval != 0) { 26971 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26972 "sr_change_blkmode: Mode Select Failed\n"); 26973 /* 26974 * The mode select failed for the requested block size, 26975 * so reset the data for the original block size and 26976 * send it to the target. The error is indicated by the 26977 * return value for the failed mode select. 26978 */ 26979 select_desc->blksize_hi = sense_desc->blksize_hi; 26980 select_desc->blksize_mid = sense_desc->blksize_mid; 26981 select_desc->blksize_lo = sense_desc->blksize_lo; 26982 ssc = sd_ssc_init(un); 26983 (void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, 26984 select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE, 26985 SD_PATH_STANDARD); 26986 sd_ssc_fini(ssc); 26987 } else { 26988 ASSERT(!mutex_owned(SD_MUTEX(un))); 26989 mutex_enter(SD_MUTEX(un)); 26990 sd_update_block_info(un, (uint32_t)data, 0); 26991 mutex_exit(SD_MUTEX(un)); 26992 } 26993 break; 26994 default: 26995 /* should not reach here, but check anyway */ 26996 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26997 "sr_change_blkmode: Command '%x' Not Supported\n", cmd); 26998 rval = EINVAL; 26999 break; 27000 } 27001 27002 if (select) { 27003 kmem_free(select, BUFLEN_CHG_BLK_MODE); 27004 } 27005 if (sense) { 27006 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 27007 } 27008 return (rval); 27009 } 27010 27011 27012 /* 27013 * Note: The following sr_change_speed() and sr_atapi_change_speed() routines 27014 * implement driver support for getting and setting the CD speed. The command 27015 * set used will be based on the device type. If the device has not been 27016 * identified as MMC the Toshiba vendor specific mode page will be used. If 27017 * the device is MMC but does not support the Real Time Streaming feature 27018 * the SET CD SPEED command will be used to set speed and mode page 0x2A will 27019 * be used to read the speed. 27020 */ 27021 27022 /* 27023 * Function: sr_change_speed() 27024 * 27025 * Description: This routine is the driver entry point for handling CD-ROM 27026 * drive speed ioctl requests for devices supporting the Toshiba 27027 * vendor specific drive speed mode page. Support for returning 27028 * and changing the current drive speed in use by the device is 27029 * implemented. 27030 * 27031 * Arguments: dev - the device 'dev_t' 27032 * cmd - the request type; one of CDROMGDRVSPEED (get) or 27033 * CDROMSDRVSPEED (set) 27034 * data - current drive speed or requested drive speed 27035 * flag - this argument is a pass through to ddi_copyxxx() directly 27036 * from the mode argument of ioctl(). 27037 * 27038 * Return Code: the code returned by sd_send_scsi_cmd() 27039 * EINVAL if invalid arguments are provided 27040 * EFAULT if ddi_copyxxx() fails 27041 * ENXIO if fail ddi_get_soft_state 27042 * EIO if invalid mode sense block descriptor length 27043 */ 27044 27045 static int 27046 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag) 27047 { 27048 struct sd_lun *un = NULL; 27049 struct mode_header *sense_mhp, *select_mhp; 27050 struct mode_speed *sense_page, *select_page; 27051 int current_speed; 27052 int rval = EINVAL; 27053 int bd_len; 27054 uchar_t *sense = NULL; 27055 uchar_t *select = NULL; 27056 sd_ssc_t *ssc; 27057 27058 ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED)); 27059 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27060 return (ENXIO); 27061 } 27062 27063 /* 27064 * Note: The drive speed is being modified here according to a Toshiba 27065 * vendor specific mode page (0x31). 27066 */ 27067 sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP); 27068 27069 ssc = sd_ssc_init(un); 27070 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 27071 BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED, 27072 SD_PATH_STANDARD); 27073 sd_ssc_fini(ssc); 27074 if (rval != 0) { 27075 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27076 "sr_change_speed: Mode Sense Failed\n"); 27077 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 27078 return (rval); 27079 } 27080 sense_mhp = (struct mode_header *)sense; 27081 27082 /* Check the block descriptor len to handle only 1 block descriptor */ 27083 bd_len = sense_mhp->bdesc_length; 27084 if (bd_len > MODE_BLK_DESC_LENGTH) { 27085 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27086 "sr_change_speed: Mode Sense returned invalid block " 27087 "descriptor length\n"); 27088 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 27089 return (EIO); 27090 } 27091 27092 sense_page = (struct mode_speed *) 27093 (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length); 27094 current_speed = sense_page->speed; 27095 27096 /* Process command */ 27097 switch (cmd) { 27098 case CDROMGDRVSPEED: 27099 /* Return the drive speed obtained during the mode sense */ 27100 if (current_speed == 0x2) { 27101 current_speed = CDROM_TWELVE_SPEED; 27102 } 27103 if (ddi_copyout(¤t_speed, (void *)data, 27104 sizeof (int), flag) != 0) { 27105 rval = EFAULT; 27106 } 27107 break; 27108 case CDROMSDRVSPEED: 27109 /* Validate the requested drive speed */ 27110 switch ((uchar_t)data) { 27111 case CDROM_TWELVE_SPEED: 27112 data = 0x2; 27113 /*FALLTHROUGH*/ 27114 case CDROM_NORMAL_SPEED: 27115 case CDROM_DOUBLE_SPEED: 27116 case CDROM_QUAD_SPEED: 27117 case CDROM_MAXIMUM_SPEED: 27118 break; 27119 default: 27120 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27121 "sr_change_speed: " 27122 "Drive Speed '%d' Not Supported\n", (uchar_t)data); 27123 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 27124 return (EINVAL); 27125 } 27126 27127 /* 27128 * The current drive speed matches the requested drive speed so 27129 * there is no need to send the mode select to change the speed 27130 */ 27131 if (current_speed == data) { 27132 break; 27133 } 27134 27135 /* Build the select data for the requested drive speed */ 27136 select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP); 27137 select_mhp = (struct mode_header *)select; 27138 select_mhp->bdesc_length = 0; 27139 select_page = 27140 (struct mode_speed *)(select + MODE_HEADER_LENGTH); 27141 select_page = 27142 (struct mode_speed *)(select + MODE_HEADER_LENGTH); 27143 select_page->mode_page.code = CDROM_MODE_SPEED; 27144 select_page->mode_page.length = 2; 27145 select_page->speed = (uchar_t)data; 27146 27147 /* Send the mode select for the requested block size */ 27148 ssc = sd_ssc_init(un); 27149 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 27150 MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH, 27151 SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 27152 sd_ssc_fini(ssc); 27153 if (rval != 0) { 27154 /* 27155 * The mode select failed for the requested drive speed, 27156 * so reset the data for the original drive speed and 27157 * send it to the target. The error is indicated by the 27158 * return value for the failed mode select. 27159 */ 27160 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27161 "sr_drive_speed: Mode Select Failed\n"); 27162 select_page->speed = sense_page->speed; 27163 ssc = sd_ssc_init(un); 27164 (void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 27165 MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH, 27166 SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 27167 sd_ssc_fini(ssc); 27168 } 27169 break; 27170 default: 27171 /* should not reach here, but check anyway */ 27172 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27173 "sr_change_speed: Command '%x' Not Supported\n", cmd); 27174 rval = EINVAL; 27175 break; 27176 } 27177 27178 if (select) { 27179 kmem_free(select, BUFLEN_MODE_CDROM_SPEED); 27180 } 27181 if (sense) { 27182 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 27183 } 27184 27185 return (rval); 27186 } 27187 27188 27189 /* 27190 * Function: sr_atapi_change_speed() 27191 * 27192 * Description: This routine is the driver entry point for handling CD-ROM 27193 * drive speed ioctl requests for MMC devices that do not support 27194 * the Real Time Streaming feature (0x107). 27195 * 27196 * Note: This routine will use the SET SPEED command which may not 27197 * be supported by all devices. 27198 * 27199 * Arguments: dev- the device 'dev_t' 27200 * cmd- the request type; one of CDROMGDRVSPEED (get) or 27201 * CDROMSDRVSPEED (set) 27202 * data- current drive speed or requested drive speed 27203 * flag- this argument is a pass through to ddi_copyxxx() directly 27204 * from the mode argument of ioctl(). 27205 * 27206 * Return Code: the code returned by sd_send_scsi_cmd() 27207 * EINVAL if invalid arguments are provided 27208 * EFAULT if ddi_copyxxx() fails 27209 * ENXIO if fail ddi_get_soft_state 27210 * EIO if invalid mode sense block descriptor length 27211 */ 27212 27213 static int 27214 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag) 27215 { 27216 struct sd_lun *un; 27217 struct uscsi_cmd *com = NULL; 27218 struct mode_header_grp2 *sense_mhp; 27219 uchar_t *sense_page; 27220 uchar_t *sense = NULL; 27221 char cdb[CDB_GROUP5]; 27222 int bd_len; 27223 int current_speed = 0; 27224 int max_speed = 0; 27225 int rval; 27226 sd_ssc_t *ssc; 27227 27228 ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED)); 27229 27230 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27231 return (ENXIO); 27232 } 27233 27234 sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP); 27235 27236 ssc = sd_ssc_init(un); 27237 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense, 27238 BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, 27239 SD_PATH_STANDARD); 27240 sd_ssc_fini(ssc); 27241 if (rval != 0) { 27242 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27243 "sr_atapi_change_speed: Mode Sense Failed\n"); 27244 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 27245 return (rval); 27246 } 27247 27248 /* Check the block descriptor len to handle only 1 block descriptor */ 27249 sense_mhp = (struct mode_header_grp2 *)sense; 27250 bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo; 27251 if (bd_len > MODE_BLK_DESC_LENGTH) { 27252 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27253 "sr_atapi_change_speed: Mode Sense returned invalid " 27254 "block descriptor length\n"); 27255 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 27256 return (EIO); 27257 } 27258 27259 /* Calculate the current and maximum drive speeds */ 27260 sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len); 27261 current_speed = (sense_page[14] << 8) | sense_page[15]; 27262 max_speed = (sense_page[8] << 8) | sense_page[9]; 27263 27264 /* Process the command */ 27265 switch (cmd) { 27266 case CDROMGDRVSPEED: 27267 current_speed /= SD_SPEED_1X; 27268 if (ddi_copyout(¤t_speed, (void *)data, 27269 sizeof (int), flag) != 0) 27270 rval = EFAULT; 27271 break; 27272 case CDROMSDRVSPEED: 27273 /* Convert the speed code to KB/sec */ 27274 switch ((uchar_t)data) { 27275 case CDROM_NORMAL_SPEED: 27276 current_speed = SD_SPEED_1X; 27277 break; 27278 case CDROM_DOUBLE_SPEED: 27279 current_speed = 2 * SD_SPEED_1X; 27280 break; 27281 case CDROM_QUAD_SPEED: 27282 current_speed = 4 * SD_SPEED_1X; 27283 break; 27284 case CDROM_TWELVE_SPEED: 27285 current_speed = 12 * SD_SPEED_1X; 27286 break; 27287 case CDROM_MAXIMUM_SPEED: 27288 current_speed = 0xffff; 27289 break; 27290 default: 27291 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27292 "sr_atapi_change_speed: invalid drive speed %d\n", 27293 (uchar_t)data); 27294 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 27295 return (EINVAL); 27296 } 27297 27298 /* Check the request against the drive's max speed. */ 27299 if (current_speed != 0xffff) { 27300 if (current_speed > max_speed) { 27301 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 27302 return (EINVAL); 27303 } 27304 } 27305 27306 /* 27307 * Build and send the SET SPEED command 27308 * 27309 * Note: The SET SPEED (0xBB) command used in this routine is 27310 * obsolete per the SCSI MMC spec but still supported in the 27311 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI 27312 * therefore the command is still implemented in this routine. 27313 */ 27314 bzero(cdb, sizeof (cdb)); 27315 cdb[0] = (char)SCMD_SET_CDROM_SPEED; 27316 cdb[2] = (uchar_t)(current_speed >> 8); 27317 cdb[3] = (uchar_t)current_speed; 27318 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27319 com->uscsi_cdb = (caddr_t)cdb; 27320 com->uscsi_cdblen = CDB_GROUP5; 27321 com->uscsi_bufaddr = NULL; 27322 com->uscsi_buflen = 0; 27323 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 27324 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, 0, SD_PATH_STANDARD); 27325 break; 27326 default: 27327 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27328 "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd); 27329 rval = EINVAL; 27330 } 27331 27332 if (sense) { 27333 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 27334 } 27335 if (com) { 27336 kmem_free(com, sizeof (*com)); 27337 } 27338 return (rval); 27339 } 27340 27341 27342 /* 27343 * Function: sr_pause_resume() 27344 * 27345 * Description: This routine is the driver entry point for handling CD-ROM 27346 * pause/resume ioctl requests. This only affects the audio play 27347 * operation. 27348 * 27349 * Arguments: dev - the device 'dev_t' 27350 * cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used 27351 * for setting the resume bit of the cdb. 27352 * 27353 * Return Code: the code returned by sd_send_scsi_cmd() 27354 * EINVAL if invalid mode specified 27355 * 27356 */ 27357 27358 static int 27359 sr_pause_resume(dev_t dev, int cmd) 27360 { 27361 struct sd_lun *un; 27362 struct uscsi_cmd *com; 27363 char cdb[CDB_GROUP1]; 27364 int rval; 27365 27366 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27367 return (ENXIO); 27368 } 27369 27370 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27371 bzero(cdb, CDB_GROUP1); 27372 cdb[0] = SCMD_PAUSE_RESUME; 27373 switch (cmd) { 27374 case CDROMRESUME: 27375 cdb[8] = 1; 27376 break; 27377 case CDROMPAUSE: 27378 cdb[8] = 0; 27379 break; 27380 default: 27381 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:" 27382 " Command '%x' Not Supported\n", cmd); 27383 rval = EINVAL; 27384 goto done; 27385 } 27386 27387 com->uscsi_cdb = cdb; 27388 com->uscsi_cdblen = CDB_GROUP1; 27389 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 27390 27391 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27392 SD_PATH_STANDARD); 27393 27394 done: 27395 kmem_free(com, sizeof (*com)); 27396 return (rval); 27397 } 27398 27399 27400 /* 27401 * Function: sr_play_msf() 27402 * 27403 * Description: This routine is the driver entry point for handling CD-ROM 27404 * ioctl requests to output the audio signals at the specified 27405 * starting address and continue the audio play until the specified 27406 * ending address (CDROMPLAYMSF) The address is in Minute Second 27407 * Frame (MSF) format. 27408 * 27409 * Arguments: dev - the device 'dev_t' 27410 * data - pointer to user provided audio msf structure, 27411 * specifying start/end addresses. 27412 * flag - this argument is a pass through to ddi_copyxxx() 27413 * directly from the mode argument of ioctl(). 27414 * 27415 * Return Code: the code returned by sd_send_scsi_cmd() 27416 * EFAULT if ddi_copyxxx() fails 27417 * ENXIO if fail ddi_get_soft_state 27418 * EINVAL if data pointer is NULL 27419 */ 27420 27421 static int 27422 sr_play_msf(dev_t dev, caddr_t data, int flag) 27423 { 27424 struct sd_lun *un; 27425 struct uscsi_cmd *com; 27426 struct cdrom_msf msf_struct; 27427 struct cdrom_msf *msf = &msf_struct; 27428 char cdb[CDB_GROUP1]; 27429 int rval; 27430 27431 if (data == NULL) { 27432 return (EINVAL); 27433 } 27434 27435 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27436 return (ENXIO); 27437 } 27438 27439 if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) { 27440 return (EFAULT); 27441 } 27442 27443 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27444 bzero(cdb, CDB_GROUP1); 27445 cdb[0] = SCMD_PLAYAUDIO_MSF; 27446 if (un->un_f_cfg_playmsf_bcd == TRUE) { 27447 cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0); 27448 cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0); 27449 cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0); 27450 cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1); 27451 cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1); 27452 cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1); 27453 } else { 27454 cdb[3] = msf->cdmsf_min0; 27455 cdb[4] = msf->cdmsf_sec0; 27456 cdb[5] = msf->cdmsf_frame0; 27457 cdb[6] = msf->cdmsf_min1; 27458 cdb[7] = msf->cdmsf_sec1; 27459 cdb[8] = msf->cdmsf_frame1; 27460 } 27461 com->uscsi_cdb = cdb; 27462 com->uscsi_cdblen = CDB_GROUP1; 27463 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 27464 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27465 SD_PATH_STANDARD); 27466 kmem_free(com, sizeof (*com)); 27467 return (rval); 27468 } 27469 27470 27471 /* 27472 * Function: sr_play_trkind() 27473 * 27474 * Description: This routine is the driver entry point for handling CD-ROM 27475 * ioctl requests to output the audio signals at the specified 27476 * starting address and continue the audio play until the specified 27477 * ending address (CDROMPLAYTRKIND). The address is in Track Index 27478 * format. 27479 * 27480 * Arguments: dev - the device 'dev_t' 27481 * data - pointer to user provided audio track/index structure, 27482 * specifying start/end addresses. 27483 * flag - this argument is a pass through to ddi_copyxxx() 27484 * directly from the mode argument of ioctl(). 27485 * 27486 * Return Code: the code returned by sd_send_scsi_cmd() 27487 * EFAULT if ddi_copyxxx() fails 27488 * ENXIO if fail ddi_get_soft_state 27489 * EINVAL if data pointer is NULL 27490 */ 27491 27492 static int 27493 sr_play_trkind(dev_t dev, caddr_t data, int flag) 27494 { 27495 struct cdrom_ti ti_struct; 27496 struct cdrom_ti *ti = &ti_struct; 27497 struct uscsi_cmd *com = NULL; 27498 char cdb[CDB_GROUP1]; 27499 int rval; 27500 27501 if (data == NULL) { 27502 return (EINVAL); 27503 } 27504 27505 if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) { 27506 return (EFAULT); 27507 } 27508 27509 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27510 bzero(cdb, CDB_GROUP1); 27511 cdb[0] = SCMD_PLAYAUDIO_TI; 27512 cdb[4] = ti->cdti_trk0; 27513 cdb[5] = ti->cdti_ind0; 27514 cdb[7] = ti->cdti_trk1; 27515 cdb[8] = ti->cdti_ind1; 27516 com->uscsi_cdb = cdb; 27517 com->uscsi_cdblen = CDB_GROUP1; 27518 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 27519 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27520 SD_PATH_STANDARD); 27521 kmem_free(com, sizeof (*com)); 27522 return (rval); 27523 } 27524 27525 27526 /* 27527 * Function: sr_read_all_subcodes() 27528 * 27529 * Description: This routine is the driver entry point for handling CD-ROM 27530 * ioctl requests to return raw subcode data while the target is 27531 * playing audio (CDROMSUBCODE). 27532 * 27533 * Arguments: dev - the device 'dev_t' 27534 * data - pointer to user provided cdrom subcode structure, 27535 * specifying the transfer length and address. 27536 * flag - this argument is a pass through to ddi_copyxxx() 27537 * directly from the mode argument of ioctl(). 27538 * 27539 * Return Code: the code returned by sd_send_scsi_cmd() 27540 * EFAULT if ddi_copyxxx() fails 27541 * ENXIO if fail ddi_get_soft_state 27542 * EINVAL if data pointer is NULL 27543 */ 27544 27545 static int 27546 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag) 27547 { 27548 struct sd_lun *un = NULL; 27549 struct uscsi_cmd *com = NULL; 27550 struct cdrom_subcode *subcode = NULL; 27551 int rval; 27552 size_t buflen; 27553 char cdb[CDB_GROUP5]; 27554 27555 #ifdef _MULTI_DATAMODEL 27556 /* To support ILP32 applications in an LP64 world */ 27557 struct cdrom_subcode32 cdrom_subcode32; 27558 struct cdrom_subcode32 *cdsc32 = &cdrom_subcode32; 27559 #endif 27560 if (data == NULL) { 27561 return (EINVAL); 27562 } 27563 27564 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27565 return (ENXIO); 27566 } 27567 27568 subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP); 27569 27570 #ifdef _MULTI_DATAMODEL 27571 switch (ddi_model_convert_from(flag & FMODELS)) { 27572 case DDI_MODEL_ILP32: 27573 if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) { 27574 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27575 "sr_read_all_subcodes: ddi_copyin Failed\n"); 27576 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27577 return (EFAULT); 27578 } 27579 /* Convert the ILP32 uscsi data from the application to LP64 */ 27580 cdrom_subcode32tocdrom_subcode(cdsc32, subcode); 27581 break; 27582 case DDI_MODEL_NONE: 27583 if (ddi_copyin(data, subcode, 27584 sizeof (struct cdrom_subcode), flag)) { 27585 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27586 "sr_read_all_subcodes: ddi_copyin Failed\n"); 27587 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27588 return (EFAULT); 27589 } 27590 break; 27591 } 27592 #else /* ! _MULTI_DATAMODEL */ 27593 if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) { 27594 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27595 "sr_read_all_subcodes: ddi_copyin Failed\n"); 27596 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27597 return (EFAULT); 27598 } 27599 #endif /* _MULTI_DATAMODEL */ 27600 27601 /* 27602 * Since MMC-2 expects max 3 bytes for length, check if the 27603 * length input is greater than 3 bytes 27604 */ 27605 if ((subcode->cdsc_length & 0xFF000000) != 0) { 27606 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27607 "sr_read_all_subcodes: " 27608 "cdrom transfer length too large: %d (limit %d)\n", 27609 subcode->cdsc_length, 0xFFFFFF); 27610 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27611 return (EINVAL); 27612 } 27613 27614 buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length; 27615 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27616 bzero(cdb, CDB_GROUP5); 27617 27618 if (un->un_f_mmc_cap == TRUE) { 27619 cdb[0] = (char)SCMD_READ_CD; 27620 cdb[2] = (char)0xff; 27621 cdb[3] = (char)0xff; 27622 cdb[4] = (char)0xff; 27623 cdb[5] = (char)0xff; 27624 cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16); 27625 cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8); 27626 cdb[8] = ((subcode->cdsc_length) & 0x000000ff); 27627 cdb[10] = 1; 27628 } else { 27629 /* 27630 * Note: A vendor specific command (0xDF) is being used her to 27631 * request a read of all subcodes. 27632 */ 27633 cdb[0] = (char)SCMD_READ_ALL_SUBCODES; 27634 cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24); 27635 cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16); 27636 cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8); 27637 cdb[9] = ((subcode->cdsc_length) & 0x000000ff); 27638 } 27639 com->uscsi_cdb = cdb; 27640 com->uscsi_cdblen = CDB_GROUP5; 27641 com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr; 27642 com->uscsi_buflen = buflen; 27643 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 27644 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 27645 SD_PATH_STANDARD); 27646 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27647 kmem_free(com, sizeof (*com)); 27648 return (rval); 27649 } 27650 27651 27652 /* 27653 * Function: sr_read_subchannel() 27654 * 27655 * Description: This routine is the driver entry point for handling CD-ROM 27656 * ioctl requests to return the Q sub-channel data of the CD 27657 * current position block. (CDROMSUBCHNL) The data includes the 27658 * track number, index number, absolute CD-ROM address (LBA or MSF 27659 * format per the user) , track relative CD-ROM address (LBA or MSF 27660 * format per the user), control data and audio status. 27661 * 27662 * Arguments: dev - the device 'dev_t' 27663 * data - pointer to user provided cdrom sub-channel structure 27664 * flag - this argument is a pass through to ddi_copyxxx() 27665 * directly from the mode argument of ioctl(). 27666 * 27667 * Return Code: the code returned by sd_send_scsi_cmd() 27668 * EFAULT if ddi_copyxxx() fails 27669 * ENXIO if fail ddi_get_soft_state 27670 * EINVAL if data pointer is NULL 27671 */ 27672 27673 static int 27674 sr_read_subchannel(dev_t dev, caddr_t data, int flag) 27675 { 27676 struct sd_lun *un; 27677 struct uscsi_cmd *com; 27678 struct cdrom_subchnl subchanel; 27679 struct cdrom_subchnl *subchnl = &subchanel; 27680 char cdb[CDB_GROUP1]; 27681 caddr_t buffer; 27682 int rval; 27683 27684 if (data == NULL) { 27685 return (EINVAL); 27686 } 27687 27688 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 27689 (un->un_state == SD_STATE_OFFLINE)) { 27690 return (ENXIO); 27691 } 27692 27693 if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) { 27694 return (EFAULT); 27695 } 27696 27697 buffer = kmem_zalloc((size_t)16, KM_SLEEP); 27698 bzero(cdb, CDB_GROUP1); 27699 cdb[0] = SCMD_READ_SUBCHANNEL; 27700 /* Set the MSF bit based on the user requested address format */ 27701 cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02; 27702 /* 27703 * Set the Q bit in byte 2 to indicate that Q sub-channel data be 27704 * returned 27705 */ 27706 cdb[2] = 0x40; 27707 /* 27708 * Set byte 3 to specify the return data format. A value of 0x01 27709 * indicates that the CD-ROM current position should be returned. 27710 */ 27711 cdb[3] = 0x01; 27712 cdb[8] = 0x10; 27713 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27714 com->uscsi_cdb = cdb; 27715 com->uscsi_cdblen = CDB_GROUP1; 27716 com->uscsi_bufaddr = buffer; 27717 com->uscsi_buflen = 16; 27718 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 27719 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27720 SD_PATH_STANDARD); 27721 if (rval != 0) { 27722 kmem_free(buffer, 16); 27723 kmem_free(com, sizeof (*com)); 27724 return (rval); 27725 } 27726 27727 /* Process the returned Q sub-channel data */ 27728 subchnl->cdsc_audiostatus = buffer[1]; 27729 subchnl->cdsc_adr = (buffer[5] & 0xF0) >> 4; 27730 subchnl->cdsc_ctrl = (buffer[5] & 0x0F); 27731 subchnl->cdsc_trk = buffer[6]; 27732 subchnl->cdsc_ind = buffer[7]; 27733 if (subchnl->cdsc_format & CDROM_LBA) { 27734 subchnl->cdsc_absaddr.lba = 27735 ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) + 27736 ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]); 27737 subchnl->cdsc_reladdr.lba = 27738 ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) + 27739 ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]); 27740 } else if (un->un_f_cfg_readsub_bcd == TRUE) { 27741 subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]); 27742 subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]); 27743 subchnl->cdsc_absaddr.msf.frame = BCD_TO_BYTE(buffer[11]); 27744 subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]); 27745 subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]); 27746 subchnl->cdsc_reladdr.msf.frame = BCD_TO_BYTE(buffer[15]); 27747 } else { 27748 subchnl->cdsc_absaddr.msf.minute = buffer[9]; 27749 subchnl->cdsc_absaddr.msf.second = buffer[10]; 27750 subchnl->cdsc_absaddr.msf.frame = buffer[11]; 27751 subchnl->cdsc_reladdr.msf.minute = buffer[13]; 27752 subchnl->cdsc_reladdr.msf.second = buffer[14]; 27753 subchnl->cdsc_reladdr.msf.frame = buffer[15]; 27754 } 27755 kmem_free(buffer, 16); 27756 kmem_free(com, sizeof (*com)); 27757 if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag) 27758 != 0) { 27759 return (EFAULT); 27760 } 27761 return (rval); 27762 } 27763 27764 27765 /* 27766 * Function: sr_read_tocentry() 27767 * 27768 * Description: This routine is the driver entry point for handling CD-ROM 27769 * ioctl requests to read from the Table of Contents (TOC) 27770 * (CDROMREADTOCENTRY). This routine provides the ADR and CTRL 27771 * fields, the starting address (LBA or MSF format per the user) 27772 * and the data mode if the user specified track is a data track. 27773 * 27774 * Note: The READ HEADER (0x44) command used in this routine is 27775 * obsolete per the SCSI MMC spec but still supported in the 27776 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI 27777 * therefore the command is still implemented in this routine. 27778 * 27779 * Arguments: dev - the device 'dev_t' 27780 * data - pointer to user provided toc entry structure, 27781 * specifying the track # and the address format 27782 * (LBA or MSF). 27783 * flag - this argument is a pass through to ddi_copyxxx() 27784 * directly from the mode argument of ioctl(). 27785 * 27786 * Return Code: the code returned by sd_send_scsi_cmd() 27787 * EFAULT if ddi_copyxxx() fails 27788 * ENXIO if fail ddi_get_soft_state 27789 * EINVAL if data pointer is NULL 27790 */ 27791 27792 static int 27793 sr_read_tocentry(dev_t dev, caddr_t data, int flag) 27794 { 27795 struct sd_lun *un = NULL; 27796 struct uscsi_cmd *com; 27797 struct cdrom_tocentry toc_entry; 27798 struct cdrom_tocentry *entry = &toc_entry; 27799 caddr_t buffer; 27800 int rval; 27801 char cdb[CDB_GROUP1]; 27802 27803 if (data == NULL) { 27804 return (EINVAL); 27805 } 27806 27807 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 27808 (un->un_state == SD_STATE_OFFLINE)) { 27809 return (ENXIO); 27810 } 27811 27812 if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) { 27813 return (EFAULT); 27814 } 27815 27816 /* Validate the requested track and address format */ 27817 if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) { 27818 return (EINVAL); 27819 } 27820 27821 if (entry->cdte_track == 0) { 27822 return (EINVAL); 27823 } 27824 27825 buffer = kmem_zalloc((size_t)12, KM_SLEEP); 27826 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27827 bzero(cdb, CDB_GROUP1); 27828 27829 cdb[0] = SCMD_READ_TOC; 27830 /* Set the MSF bit based on the user requested address format */ 27831 cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2); 27832 if (un->un_f_cfg_read_toc_trk_bcd == TRUE) { 27833 cdb[6] = BYTE_TO_BCD(entry->cdte_track); 27834 } else { 27835 cdb[6] = entry->cdte_track; 27836 } 27837 27838 /* 27839 * Bytes 7 & 8 are the 12 byte allocation length for a single entry. 27840 * (4 byte TOC response header + 8 byte track descriptor) 27841 */ 27842 cdb[8] = 12; 27843 com->uscsi_cdb = cdb; 27844 com->uscsi_cdblen = CDB_GROUP1; 27845 com->uscsi_bufaddr = buffer; 27846 com->uscsi_buflen = 0x0C; 27847 com->uscsi_flags = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ); 27848 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27849 SD_PATH_STANDARD); 27850 if (rval != 0) { 27851 kmem_free(buffer, 12); 27852 kmem_free(com, sizeof (*com)); 27853 return (rval); 27854 } 27855 27856 /* Process the toc entry */ 27857 entry->cdte_adr = (buffer[5] & 0xF0) >> 4; 27858 entry->cdte_ctrl = (buffer[5] & 0x0F); 27859 if (entry->cdte_format & CDROM_LBA) { 27860 entry->cdte_addr.lba = 27861 ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) + 27862 ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]); 27863 } else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) { 27864 entry->cdte_addr.msf.minute = BCD_TO_BYTE(buffer[9]); 27865 entry->cdte_addr.msf.second = BCD_TO_BYTE(buffer[10]); 27866 entry->cdte_addr.msf.frame = BCD_TO_BYTE(buffer[11]); 27867 /* 27868 * Send a READ TOC command using the LBA address format to get 27869 * the LBA for the track requested so it can be used in the 27870 * READ HEADER request 27871 * 27872 * Note: The MSF bit of the READ HEADER command specifies the 27873 * output format. The block address specified in that command 27874 * must be in LBA format. 27875 */ 27876 cdb[1] = 0; 27877 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27878 SD_PATH_STANDARD); 27879 if (rval != 0) { 27880 kmem_free(buffer, 12); 27881 kmem_free(com, sizeof (*com)); 27882 return (rval); 27883 } 27884 } else { 27885 entry->cdte_addr.msf.minute = buffer[9]; 27886 entry->cdte_addr.msf.second = buffer[10]; 27887 entry->cdte_addr.msf.frame = buffer[11]; 27888 /* 27889 * Send a READ TOC command using the LBA address format to get 27890 * the LBA for the track requested so it can be used in the 27891 * READ HEADER request 27892 * 27893 * Note: The MSF bit of the READ HEADER command specifies the 27894 * output format. The block address specified in that command 27895 * must be in LBA format. 27896 */ 27897 cdb[1] = 0; 27898 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27899 SD_PATH_STANDARD); 27900 if (rval != 0) { 27901 kmem_free(buffer, 12); 27902 kmem_free(com, sizeof (*com)); 27903 return (rval); 27904 } 27905 } 27906 27907 /* 27908 * Build and send the READ HEADER command to determine the data mode of 27909 * the user specified track. 27910 */ 27911 if ((entry->cdte_ctrl & CDROM_DATA_TRACK) && 27912 (entry->cdte_track != CDROM_LEADOUT)) { 27913 bzero(cdb, CDB_GROUP1); 27914 cdb[0] = SCMD_READ_HEADER; 27915 cdb[2] = buffer[8]; 27916 cdb[3] = buffer[9]; 27917 cdb[4] = buffer[10]; 27918 cdb[5] = buffer[11]; 27919 cdb[8] = 0x08; 27920 com->uscsi_buflen = 0x08; 27921 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27922 SD_PATH_STANDARD); 27923 if (rval == 0) { 27924 entry->cdte_datamode = buffer[0]; 27925 } else { 27926 /* 27927 * READ HEADER command failed, since this is 27928 * obsoleted in one spec, its better to return 27929 * -1 for an invlid track so that we can still 27930 * receive the rest of the TOC data. 27931 */ 27932 entry->cdte_datamode = (uchar_t)-1; 27933 } 27934 } else { 27935 entry->cdte_datamode = (uchar_t)-1; 27936 } 27937 27938 kmem_free(buffer, 12); 27939 kmem_free(com, sizeof (*com)); 27940 if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0) 27941 return (EFAULT); 27942 27943 return (rval); 27944 } 27945 27946 27947 /* 27948 * Function: sr_read_tochdr() 27949 * 27950 * Description: This routine is the driver entry point for handling CD-ROM 27951 * ioctl requests to read the Table of Contents (TOC) header 27952 * (CDROMREADTOHDR). The TOC header consists of the disk starting 27953 * and ending track numbers 27954 * 27955 * Arguments: dev - the device 'dev_t' 27956 * data - pointer to user provided toc header structure, 27957 * specifying the starting and ending track numbers. 27958 * flag - this argument is a pass through to ddi_copyxxx() 27959 * directly from the mode argument of ioctl(). 27960 * 27961 * Return Code: the code returned by sd_send_scsi_cmd() 27962 * EFAULT if ddi_copyxxx() fails 27963 * ENXIO if fail ddi_get_soft_state 27964 * EINVAL if data pointer is NULL 27965 */ 27966 27967 static int 27968 sr_read_tochdr(dev_t dev, caddr_t data, int flag) 27969 { 27970 struct sd_lun *un; 27971 struct uscsi_cmd *com; 27972 struct cdrom_tochdr toc_header; 27973 struct cdrom_tochdr *hdr = &toc_header; 27974 char cdb[CDB_GROUP1]; 27975 int rval; 27976 caddr_t buffer; 27977 27978 if (data == NULL) { 27979 return (EINVAL); 27980 } 27981 27982 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 27983 (un->un_state == SD_STATE_OFFLINE)) { 27984 return (ENXIO); 27985 } 27986 27987 buffer = kmem_zalloc(4, KM_SLEEP); 27988 bzero(cdb, CDB_GROUP1); 27989 cdb[0] = SCMD_READ_TOC; 27990 /* 27991 * Specifying a track number of 0x00 in the READ TOC command indicates 27992 * that the TOC header should be returned 27993 */ 27994 cdb[6] = 0x00; 27995 /* 27996 * Bytes 7 & 8 are the 4 byte allocation length for TOC header. 27997 * (2 byte data len + 1 byte starting track # + 1 byte ending track #) 27998 */ 27999 cdb[8] = 0x04; 28000 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28001 com->uscsi_cdb = cdb; 28002 com->uscsi_cdblen = CDB_GROUP1; 28003 com->uscsi_bufaddr = buffer; 28004 com->uscsi_buflen = 0x04; 28005 com->uscsi_timeout = 300; 28006 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28007 28008 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 28009 SD_PATH_STANDARD); 28010 if (un->un_f_cfg_read_toc_trk_bcd == TRUE) { 28011 hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]); 28012 hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]); 28013 } else { 28014 hdr->cdth_trk0 = buffer[2]; 28015 hdr->cdth_trk1 = buffer[3]; 28016 } 28017 kmem_free(buffer, 4); 28018 kmem_free(com, sizeof (*com)); 28019 if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) { 28020 return (EFAULT); 28021 } 28022 return (rval); 28023 } 28024 28025 28026 /* 28027 * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(), 28028 * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for 28029 * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data, 28030 * digital audio and extended architecture digital audio. These modes are 28031 * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3 28032 * MMC specs. 28033 * 28034 * In addition to support for the various data formats these routines also 28035 * include support for devices that implement only the direct access READ 28036 * commands (0x08, 0x28), devices that implement the READ_CD commands 28037 * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and 28038 * READ CDXA commands (0xD8, 0xDB) 28039 */ 28040 28041 /* 28042 * Function: sr_read_mode1() 28043 * 28044 * Description: This routine is the driver entry point for handling CD-ROM 28045 * ioctl read mode1 requests (CDROMREADMODE1). 28046 * 28047 * Arguments: dev - the device 'dev_t' 28048 * data - pointer to user provided cd read structure specifying 28049 * the lba buffer address and length. 28050 * flag - this argument is a pass through to ddi_copyxxx() 28051 * directly from the mode argument of ioctl(). 28052 * 28053 * Return Code: the code returned by sd_send_scsi_cmd() 28054 * EFAULT if ddi_copyxxx() fails 28055 * ENXIO if fail ddi_get_soft_state 28056 * EINVAL if data pointer is NULL 28057 */ 28058 28059 static int 28060 sr_read_mode1(dev_t dev, caddr_t data, int flag) 28061 { 28062 struct sd_lun *un; 28063 struct cdrom_read mode1_struct; 28064 struct cdrom_read *mode1 = &mode1_struct; 28065 int rval; 28066 sd_ssc_t *ssc; 28067 28068 #ifdef _MULTI_DATAMODEL 28069 /* To support ILP32 applications in an LP64 world */ 28070 struct cdrom_read32 cdrom_read32; 28071 struct cdrom_read32 *cdrd32 = &cdrom_read32; 28072 #endif /* _MULTI_DATAMODEL */ 28073 28074 if (data == NULL) { 28075 return (EINVAL); 28076 } 28077 28078 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28079 (un->un_state == SD_STATE_OFFLINE)) { 28080 return (ENXIO); 28081 } 28082 28083 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 28084 "sd_read_mode1: entry: un:0x%p\n", un); 28085 28086 #ifdef _MULTI_DATAMODEL 28087 switch (ddi_model_convert_from(flag & FMODELS)) { 28088 case DDI_MODEL_ILP32: 28089 if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) { 28090 return (EFAULT); 28091 } 28092 /* Convert the ILP32 uscsi data from the application to LP64 */ 28093 cdrom_read32tocdrom_read(cdrd32, mode1); 28094 break; 28095 case DDI_MODEL_NONE: 28096 if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) { 28097 return (EFAULT); 28098 } 28099 } 28100 #else /* ! _MULTI_DATAMODEL */ 28101 if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) { 28102 return (EFAULT); 28103 } 28104 #endif /* _MULTI_DATAMODEL */ 28105 28106 ssc = sd_ssc_init(un); 28107 rval = sd_send_scsi_READ(ssc, mode1->cdread_bufaddr, 28108 mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD); 28109 sd_ssc_fini(ssc); 28110 28111 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 28112 "sd_read_mode1: exit: un:0x%p\n", un); 28113 28114 return (rval); 28115 } 28116 28117 28118 /* 28119 * Function: sr_read_cd_mode2() 28120 * 28121 * Description: This routine is the driver entry point for handling CD-ROM 28122 * ioctl read mode2 requests (CDROMREADMODE2) for devices that 28123 * support the READ CD (0xBE) command or the 1st generation 28124 * READ CD (0xD4) command. 28125 * 28126 * Arguments: dev - the device 'dev_t' 28127 * data - pointer to user provided cd read structure specifying 28128 * the lba buffer address and length. 28129 * flag - this argument is a pass through to ddi_copyxxx() 28130 * directly from the mode argument of ioctl(). 28131 * 28132 * Return Code: the code returned by sd_send_scsi_cmd() 28133 * EFAULT if ddi_copyxxx() fails 28134 * ENXIO if fail ddi_get_soft_state 28135 * EINVAL if data pointer is NULL 28136 */ 28137 28138 static int 28139 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag) 28140 { 28141 struct sd_lun *un; 28142 struct uscsi_cmd *com; 28143 struct cdrom_read mode2_struct; 28144 struct cdrom_read *mode2 = &mode2_struct; 28145 uchar_t cdb[CDB_GROUP5]; 28146 int nblocks; 28147 int rval; 28148 #ifdef _MULTI_DATAMODEL 28149 /* To support ILP32 applications in an LP64 world */ 28150 struct cdrom_read32 cdrom_read32; 28151 struct cdrom_read32 *cdrd32 = &cdrom_read32; 28152 #endif /* _MULTI_DATAMODEL */ 28153 28154 if (data == NULL) { 28155 return (EINVAL); 28156 } 28157 28158 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28159 (un->un_state == SD_STATE_OFFLINE)) { 28160 return (ENXIO); 28161 } 28162 28163 #ifdef _MULTI_DATAMODEL 28164 switch (ddi_model_convert_from(flag & FMODELS)) { 28165 case DDI_MODEL_ILP32: 28166 if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) { 28167 return (EFAULT); 28168 } 28169 /* Convert the ILP32 uscsi data from the application to LP64 */ 28170 cdrom_read32tocdrom_read(cdrd32, mode2); 28171 break; 28172 case DDI_MODEL_NONE: 28173 if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) { 28174 return (EFAULT); 28175 } 28176 break; 28177 } 28178 28179 #else /* ! _MULTI_DATAMODEL */ 28180 if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) { 28181 return (EFAULT); 28182 } 28183 #endif /* _MULTI_DATAMODEL */ 28184 28185 bzero(cdb, sizeof (cdb)); 28186 if (un->un_f_cfg_read_cd_xd4 == TRUE) { 28187 /* Read command supported by 1st generation atapi drives */ 28188 cdb[0] = SCMD_READ_CDD4; 28189 } else { 28190 /* Universal CD Access Command */ 28191 cdb[0] = SCMD_READ_CD; 28192 } 28193 28194 /* 28195 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book 28196 */ 28197 cdb[1] = CDROM_SECTOR_TYPE_MODE2; 28198 28199 /* set the start address */ 28200 cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF); 28201 cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF); 28202 cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF); 28203 cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF); 28204 28205 /* set the transfer length */ 28206 nblocks = mode2->cdread_buflen / 2336; 28207 cdb[6] = (uchar_t)(nblocks >> 16); 28208 cdb[7] = (uchar_t)(nblocks >> 8); 28209 cdb[8] = (uchar_t)nblocks; 28210 28211 /* set the filter bits */ 28212 cdb[9] = CDROM_READ_CD_USERDATA; 28213 28214 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28215 com->uscsi_cdb = (caddr_t)cdb; 28216 com->uscsi_cdblen = sizeof (cdb); 28217 com->uscsi_bufaddr = mode2->cdread_bufaddr; 28218 com->uscsi_buflen = mode2->cdread_buflen; 28219 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28220 28221 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 28222 SD_PATH_STANDARD); 28223 kmem_free(com, sizeof (*com)); 28224 return (rval); 28225 } 28226 28227 28228 /* 28229 * Function: sr_read_mode2() 28230 * 28231 * Description: This routine is the driver entry point for handling CD-ROM 28232 * ioctl read mode2 requests (CDROMREADMODE2) for devices that 28233 * do not support the READ CD (0xBE) command. 28234 * 28235 * Arguments: dev - the device 'dev_t' 28236 * data - pointer to user provided cd read structure specifying 28237 * the lba buffer address and length. 28238 * flag - this argument is a pass through to ddi_copyxxx() 28239 * directly from the mode argument of ioctl(). 28240 * 28241 * Return Code: the code returned by sd_send_scsi_cmd() 28242 * EFAULT if ddi_copyxxx() fails 28243 * ENXIO if fail ddi_get_soft_state 28244 * EINVAL if data pointer is NULL 28245 * EIO if fail to reset block size 28246 * EAGAIN if commands are in progress in the driver 28247 */ 28248 28249 static int 28250 sr_read_mode2(dev_t dev, caddr_t data, int flag) 28251 { 28252 struct sd_lun *un; 28253 struct cdrom_read mode2_struct; 28254 struct cdrom_read *mode2 = &mode2_struct; 28255 int rval; 28256 uint32_t restore_blksize; 28257 struct uscsi_cmd *com; 28258 uchar_t cdb[CDB_GROUP0]; 28259 int nblocks; 28260 28261 #ifdef _MULTI_DATAMODEL 28262 /* To support ILP32 applications in an LP64 world */ 28263 struct cdrom_read32 cdrom_read32; 28264 struct cdrom_read32 *cdrd32 = &cdrom_read32; 28265 #endif /* _MULTI_DATAMODEL */ 28266 28267 if (data == NULL) { 28268 return (EINVAL); 28269 } 28270 28271 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28272 (un->un_state == SD_STATE_OFFLINE)) { 28273 return (ENXIO); 28274 } 28275 28276 /* 28277 * Because this routine will update the device and driver block size 28278 * being used we want to make sure there are no commands in progress. 28279 * If commands are in progress the user will have to try again. 28280 * 28281 * We check for 1 instead of 0 because we increment un_ncmds_in_driver 28282 * in sdioctl to protect commands from sdioctl through to the top of 28283 * sd_uscsi_strategy. See sdioctl for details. 28284 */ 28285 mutex_enter(SD_MUTEX(un)); 28286 if (un->un_ncmds_in_driver != 1) { 28287 mutex_exit(SD_MUTEX(un)); 28288 return (EAGAIN); 28289 } 28290 mutex_exit(SD_MUTEX(un)); 28291 28292 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 28293 "sd_read_mode2: entry: un:0x%p\n", un); 28294 28295 #ifdef _MULTI_DATAMODEL 28296 switch (ddi_model_convert_from(flag & FMODELS)) { 28297 case DDI_MODEL_ILP32: 28298 if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) { 28299 return (EFAULT); 28300 } 28301 /* Convert the ILP32 uscsi data from the application to LP64 */ 28302 cdrom_read32tocdrom_read(cdrd32, mode2); 28303 break; 28304 case DDI_MODEL_NONE: 28305 if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) { 28306 return (EFAULT); 28307 } 28308 break; 28309 } 28310 #else /* ! _MULTI_DATAMODEL */ 28311 if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) { 28312 return (EFAULT); 28313 } 28314 #endif /* _MULTI_DATAMODEL */ 28315 28316 /* Store the current target block size for restoration later */ 28317 restore_blksize = un->un_tgt_blocksize; 28318 28319 /* Change the device and soft state target block size to 2336 */ 28320 if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) { 28321 rval = EIO; 28322 goto done; 28323 } 28324 28325 28326 bzero(cdb, sizeof (cdb)); 28327 28328 /* set READ operation */ 28329 cdb[0] = SCMD_READ; 28330 28331 /* adjust lba for 2kbyte blocks from 512 byte blocks */ 28332 mode2->cdread_lba >>= 2; 28333 28334 /* set the start address */ 28335 cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F); 28336 cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF); 28337 cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF); 28338 28339 /* set the transfer length */ 28340 nblocks = mode2->cdread_buflen / 2336; 28341 cdb[4] = (uchar_t)nblocks & 0xFF; 28342 28343 /* build command */ 28344 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28345 com->uscsi_cdb = (caddr_t)cdb; 28346 com->uscsi_cdblen = sizeof (cdb); 28347 com->uscsi_bufaddr = mode2->cdread_bufaddr; 28348 com->uscsi_buflen = mode2->cdread_buflen; 28349 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28350 28351 /* 28352 * Issue SCSI command with user space address for read buffer. 28353 * 28354 * This sends the command through main channel in the driver. 28355 * 28356 * Since this is accessed via an IOCTL call, we go through the 28357 * standard path, so that if the device was powered down, then 28358 * it would be 'awakened' to handle the command. 28359 */ 28360 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 28361 SD_PATH_STANDARD); 28362 28363 kmem_free(com, sizeof (*com)); 28364 28365 /* Restore the device and soft state target block size */ 28366 if (sr_sector_mode(dev, restore_blksize) != 0) { 28367 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28368 "can't do switch back to mode 1\n"); 28369 /* 28370 * If sd_send_scsi_READ succeeded we still need to report 28371 * an error because we failed to reset the block size 28372 */ 28373 if (rval == 0) { 28374 rval = EIO; 28375 } 28376 } 28377 28378 done: 28379 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 28380 "sd_read_mode2: exit: un:0x%p\n", un); 28381 28382 return (rval); 28383 } 28384 28385 28386 /* 28387 * Function: sr_sector_mode() 28388 * 28389 * Description: This utility function is used by sr_read_mode2 to set the target 28390 * block size based on the user specified size. This is a legacy 28391 * implementation based upon a vendor specific mode page 28392 * 28393 * Arguments: dev - the device 'dev_t' 28394 * data - flag indicating if block size is being set to 2336 or 28395 * 512. 28396 * 28397 * Return Code: the code returned by sd_send_scsi_cmd() 28398 * EFAULT if ddi_copyxxx() fails 28399 * ENXIO if fail ddi_get_soft_state 28400 * EINVAL if data pointer is NULL 28401 */ 28402 28403 static int 28404 sr_sector_mode(dev_t dev, uint32_t blksize) 28405 { 28406 struct sd_lun *un; 28407 uchar_t *sense; 28408 uchar_t *select; 28409 int rval; 28410 sd_ssc_t *ssc; 28411 28412 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28413 (un->un_state == SD_STATE_OFFLINE)) { 28414 return (ENXIO); 28415 } 28416 28417 sense = kmem_zalloc(20, KM_SLEEP); 28418 28419 /* Note: This is a vendor specific mode page (0x81) */ 28420 ssc = sd_ssc_init(un); 28421 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 20, 0x81, 28422 SD_PATH_STANDARD); 28423 sd_ssc_fini(ssc); 28424 if (rval != 0) { 28425 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 28426 "sr_sector_mode: Mode Sense failed\n"); 28427 kmem_free(sense, 20); 28428 return (rval); 28429 } 28430 select = kmem_zalloc(20, KM_SLEEP); 28431 select[3] = 0x08; 28432 select[10] = ((blksize >> 8) & 0xff); 28433 select[11] = (blksize & 0xff); 28434 select[12] = 0x01; 28435 select[13] = 0x06; 28436 select[14] = sense[14]; 28437 select[15] = sense[15]; 28438 if (blksize == SD_MODE2_BLKSIZE) { 28439 select[14] |= 0x01; 28440 } 28441 28442 ssc = sd_ssc_init(un); 28443 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 20, 28444 SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 28445 sd_ssc_fini(ssc); 28446 if (rval != 0) { 28447 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 28448 "sr_sector_mode: Mode Select failed\n"); 28449 } else { 28450 /* 28451 * Only update the softstate block size if we successfully 28452 * changed the device block mode. 28453 */ 28454 mutex_enter(SD_MUTEX(un)); 28455 sd_update_block_info(un, blksize, 0); 28456 mutex_exit(SD_MUTEX(un)); 28457 } 28458 kmem_free(sense, 20); 28459 kmem_free(select, 20); 28460 return (rval); 28461 } 28462 28463 28464 /* 28465 * Function: sr_read_cdda() 28466 * 28467 * Description: This routine is the driver entry point for handling CD-ROM 28468 * ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If 28469 * the target supports CDDA these requests are handled via a vendor 28470 * specific command (0xD8) If the target does not support CDDA 28471 * these requests are handled via the READ CD command (0xBE). 28472 * 28473 * Arguments: dev - the device 'dev_t' 28474 * data - pointer to user provided CD-DA structure specifying 28475 * the track starting address, transfer length, and 28476 * subcode options. 28477 * flag - this argument is a pass through to ddi_copyxxx() 28478 * directly from the mode argument of ioctl(). 28479 * 28480 * Return Code: the code returned by sd_send_scsi_cmd() 28481 * EFAULT if ddi_copyxxx() fails 28482 * ENXIO if fail ddi_get_soft_state 28483 * EINVAL if invalid arguments are provided 28484 * ENOTTY 28485 */ 28486 28487 static int 28488 sr_read_cdda(dev_t dev, caddr_t data, int flag) 28489 { 28490 struct sd_lun *un; 28491 struct uscsi_cmd *com; 28492 struct cdrom_cdda *cdda; 28493 int rval; 28494 size_t buflen; 28495 char cdb[CDB_GROUP5]; 28496 28497 #ifdef _MULTI_DATAMODEL 28498 /* To support ILP32 applications in an LP64 world */ 28499 struct cdrom_cdda32 cdrom_cdda32; 28500 struct cdrom_cdda32 *cdda32 = &cdrom_cdda32; 28501 #endif /* _MULTI_DATAMODEL */ 28502 28503 if (data == NULL) { 28504 return (EINVAL); 28505 } 28506 28507 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 28508 return (ENXIO); 28509 } 28510 28511 cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP); 28512 28513 #ifdef _MULTI_DATAMODEL 28514 switch (ddi_model_convert_from(flag & FMODELS)) { 28515 case DDI_MODEL_ILP32: 28516 if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) { 28517 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28518 "sr_read_cdda: ddi_copyin Failed\n"); 28519 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28520 return (EFAULT); 28521 } 28522 /* Convert the ILP32 uscsi data from the application to LP64 */ 28523 cdrom_cdda32tocdrom_cdda(cdda32, cdda); 28524 break; 28525 case DDI_MODEL_NONE: 28526 if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) { 28527 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28528 "sr_read_cdda: ddi_copyin Failed\n"); 28529 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28530 return (EFAULT); 28531 } 28532 break; 28533 } 28534 #else /* ! _MULTI_DATAMODEL */ 28535 if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) { 28536 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28537 "sr_read_cdda: ddi_copyin Failed\n"); 28538 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28539 return (EFAULT); 28540 } 28541 #endif /* _MULTI_DATAMODEL */ 28542 28543 /* 28544 * Since MMC-2 expects max 3 bytes for length, check if the 28545 * length input is greater than 3 bytes 28546 */ 28547 if ((cdda->cdda_length & 0xFF000000) != 0) { 28548 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: " 28549 "cdrom transfer length too large: %d (limit %d)\n", 28550 cdda->cdda_length, 0xFFFFFF); 28551 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28552 return (EINVAL); 28553 } 28554 28555 switch (cdda->cdda_subcode) { 28556 case CDROM_DA_NO_SUBCODE: 28557 buflen = CDROM_BLK_2352 * cdda->cdda_length; 28558 break; 28559 case CDROM_DA_SUBQ: 28560 buflen = CDROM_BLK_2368 * cdda->cdda_length; 28561 break; 28562 case CDROM_DA_ALL_SUBCODE: 28563 buflen = CDROM_BLK_2448 * cdda->cdda_length; 28564 break; 28565 case CDROM_DA_SUBCODE_ONLY: 28566 buflen = CDROM_BLK_SUBCODE * cdda->cdda_length; 28567 break; 28568 default: 28569 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28570 "sr_read_cdda: Subcode '0x%x' Not Supported\n", 28571 cdda->cdda_subcode); 28572 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28573 return (EINVAL); 28574 } 28575 28576 /* Build and send the command */ 28577 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28578 bzero(cdb, CDB_GROUP5); 28579 28580 if (un->un_f_cfg_cdda == TRUE) { 28581 cdb[0] = (char)SCMD_READ_CD; 28582 cdb[1] = 0x04; 28583 cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24); 28584 cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16); 28585 cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8); 28586 cdb[5] = ((cdda->cdda_addr) & 0x000000ff); 28587 cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16); 28588 cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8); 28589 cdb[8] = ((cdda->cdda_length) & 0x000000ff); 28590 cdb[9] = 0x10; 28591 switch (cdda->cdda_subcode) { 28592 case CDROM_DA_NO_SUBCODE : 28593 cdb[10] = 0x0; 28594 break; 28595 case CDROM_DA_SUBQ : 28596 cdb[10] = 0x2; 28597 break; 28598 case CDROM_DA_ALL_SUBCODE : 28599 cdb[10] = 0x1; 28600 break; 28601 case CDROM_DA_SUBCODE_ONLY : 28602 /* FALLTHROUGH */ 28603 default : 28604 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28605 kmem_free(com, sizeof (*com)); 28606 return (ENOTTY); 28607 } 28608 } else { 28609 cdb[0] = (char)SCMD_READ_CDDA; 28610 cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24); 28611 cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16); 28612 cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8); 28613 cdb[5] = ((cdda->cdda_addr) & 0x000000ff); 28614 cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24); 28615 cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16); 28616 cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8); 28617 cdb[9] = ((cdda->cdda_length) & 0x000000ff); 28618 cdb[10] = cdda->cdda_subcode; 28619 } 28620 28621 com->uscsi_cdb = cdb; 28622 com->uscsi_cdblen = CDB_GROUP5; 28623 com->uscsi_bufaddr = (caddr_t)cdda->cdda_data; 28624 com->uscsi_buflen = buflen; 28625 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28626 28627 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 28628 SD_PATH_STANDARD); 28629 28630 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28631 kmem_free(com, sizeof (*com)); 28632 return (rval); 28633 } 28634 28635 28636 /* 28637 * Function: sr_read_cdxa() 28638 * 28639 * Description: This routine is the driver entry point for handling CD-ROM 28640 * ioctl requests to return CD-XA (Extended Architecture) data. 28641 * (CDROMCDXA). 28642 * 28643 * Arguments: dev - the device 'dev_t' 28644 * data - pointer to user provided CD-XA structure specifying 28645 * the data starting address, transfer length, and format 28646 * flag - this argument is a pass through to ddi_copyxxx() 28647 * directly from the mode argument of ioctl(). 28648 * 28649 * Return Code: the code returned by sd_send_scsi_cmd() 28650 * EFAULT if ddi_copyxxx() fails 28651 * ENXIO if fail ddi_get_soft_state 28652 * EINVAL if data pointer is NULL 28653 */ 28654 28655 static int 28656 sr_read_cdxa(dev_t dev, caddr_t data, int flag) 28657 { 28658 struct sd_lun *un; 28659 struct uscsi_cmd *com; 28660 struct cdrom_cdxa *cdxa; 28661 int rval; 28662 size_t buflen; 28663 char cdb[CDB_GROUP5]; 28664 uchar_t read_flags; 28665 28666 #ifdef _MULTI_DATAMODEL 28667 /* To support ILP32 applications in an LP64 world */ 28668 struct cdrom_cdxa32 cdrom_cdxa32; 28669 struct cdrom_cdxa32 *cdxa32 = &cdrom_cdxa32; 28670 #endif /* _MULTI_DATAMODEL */ 28671 28672 if (data == NULL) { 28673 return (EINVAL); 28674 } 28675 28676 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 28677 return (ENXIO); 28678 } 28679 28680 cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP); 28681 28682 #ifdef _MULTI_DATAMODEL 28683 switch (ddi_model_convert_from(flag & FMODELS)) { 28684 case DDI_MODEL_ILP32: 28685 if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) { 28686 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28687 return (EFAULT); 28688 } 28689 /* 28690 * Convert the ILP32 uscsi data from the 28691 * application to LP64 for internal use. 28692 */ 28693 cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa); 28694 break; 28695 case DDI_MODEL_NONE: 28696 if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) { 28697 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28698 return (EFAULT); 28699 } 28700 break; 28701 } 28702 #else /* ! _MULTI_DATAMODEL */ 28703 if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) { 28704 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28705 return (EFAULT); 28706 } 28707 #endif /* _MULTI_DATAMODEL */ 28708 28709 /* 28710 * Since MMC-2 expects max 3 bytes for length, check if the 28711 * length input is greater than 3 bytes 28712 */ 28713 if ((cdxa->cdxa_length & 0xFF000000) != 0) { 28714 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: " 28715 "cdrom transfer length too large: %d (limit %d)\n", 28716 cdxa->cdxa_length, 0xFFFFFF); 28717 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28718 return (EINVAL); 28719 } 28720 28721 switch (cdxa->cdxa_format) { 28722 case CDROM_XA_DATA: 28723 buflen = CDROM_BLK_2048 * cdxa->cdxa_length; 28724 read_flags = 0x10; 28725 break; 28726 case CDROM_XA_SECTOR_DATA: 28727 buflen = CDROM_BLK_2352 * cdxa->cdxa_length; 28728 read_flags = 0xf8; 28729 break; 28730 case CDROM_XA_DATA_W_ERROR: 28731 buflen = CDROM_BLK_2646 * cdxa->cdxa_length; 28732 read_flags = 0xfc; 28733 break; 28734 default: 28735 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28736 "sr_read_cdxa: Format '0x%x' Not Supported\n", 28737 cdxa->cdxa_format); 28738 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28739 return (EINVAL); 28740 } 28741 28742 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28743 bzero(cdb, CDB_GROUP5); 28744 if (un->un_f_mmc_cap == TRUE) { 28745 cdb[0] = (char)SCMD_READ_CD; 28746 cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24); 28747 cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16); 28748 cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8); 28749 cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff); 28750 cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16); 28751 cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8); 28752 cdb[8] = ((cdxa->cdxa_length) & 0x000000ff); 28753 cdb[9] = (char)read_flags; 28754 } else { 28755 /* 28756 * Note: A vendor specific command (0xDB) is being used her to 28757 * request a read of all subcodes. 28758 */ 28759 cdb[0] = (char)SCMD_READ_CDXA; 28760 cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24); 28761 cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16); 28762 cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8); 28763 cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff); 28764 cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24); 28765 cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16); 28766 cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8); 28767 cdb[9] = ((cdxa->cdxa_length) & 0x000000ff); 28768 cdb[10] = cdxa->cdxa_format; 28769 } 28770 com->uscsi_cdb = cdb; 28771 com->uscsi_cdblen = CDB_GROUP5; 28772 com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data; 28773 com->uscsi_buflen = buflen; 28774 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28775 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 28776 SD_PATH_STANDARD); 28777 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28778 kmem_free(com, sizeof (*com)); 28779 return (rval); 28780 } 28781 28782 28783 /* 28784 * Function: sr_eject() 28785 * 28786 * Description: This routine is the driver entry point for handling CD-ROM 28787 * eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT) 28788 * 28789 * Arguments: dev - the device 'dev_t' 28790 * 28791 * Return Code: the code returned by sd_send_scsi_cmd() 28792 */ 28793 28794 static int 28795 sr_eject(dev_t dev) 28796 { 28797 struct sd_lun *un; 28798 int rval; 28799 sd_ssc_t *ssc; 28800 28801 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28802 (un->un_state == SD_STATE_OFFLINE)) { 28803 return (ENXIO); 28804 } 28805 28806 /* 28807 * To prevent race conditions with the eject 28808 * command, keep track of an eject command as 28809 * it progresses. If we are already handling 28810 * an eject command in the driver for the given 28811 * unit and another request to eject is received 28812 * immediately return EAGAIN so we don't lose 28813 * the command if the current eject command fails. 28814 */ 28815 mutex_enter(SD_MUTEX(un)); 28816 if (un->un_f_ejecting == TRUE) { 28817 mutex_exit(SD_MUTEX(un)); 28818 return (EAGAIN); 28819 } 28820 un->un_f_ejecting = TRUE; 28821 mutex_exit(SD_MUTEX(un)); 28822 28823 ssc = sd_ssc_init(un); 28824 rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW, 28825 SD_PATH_STANDARD); 28826 sd_ssc_fini(ssc); 28827 28828 if (rval != 0) { 28829 mutex_enter(SD_MUTEX(un)); 28830 un->un_f_ejecting = FALSE; 28831 mutex_exit(SD_MUTEX(un)); 28832 return (rval); 28833 } 28834 28835 ssc = sd_ssc_init(un); 28836 rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 28837 SD_TARGET_EJECT, SD_PATH_STANDARD); 28838 sd_ssc_fini(ssc); 28839 28840 if (rval == 0) { 28841 mutex_enter(SD_MUTEX(un)); 28842 sr_ejected(un); 28843 un->un_mediastate = DKIO_EJECTED; 28844 un->un_f_ejecting = FALSE; 28845 cv_broadcast(&un->un_state_cv); 28846 mutex_exit(SD_MUTEX(un)); 28847 } else { 28848 mutex_enter(SD_MUTEX(un)); 28849 un->un_f_ejecting = FALSE; 28850 mutex_exit(SD_MUTEX(un)); 28851 } 28852 return (rval); 28853 } 28854 28855 28856 /* 28857 * Function: sr_ejected() 28858 * 28859 * Description: This routine updates the soft state structure to invalidate the 28860 * geometry information after the media has been ejected or a 28861 * media eject has been detected. 28862 * 28863 * Arguments: un - driver soft state (unit) structure 28864 */ 28865 28866 static void 28867 sr_ejected(struct sd_lun *un) 28868 { 28869 struct sd_errstats *stp; 28870 28871 ASSERT(un != NULL); 28872 ASSERT(mutex_owned(SD_MUTEX(un))); 28873 28874 un->un_f_blockcount_is_valid = FALSE; 28875 un->un_f_tgt_blocksize_is_valid = FALSE; 28876 mutex_exit(SD_MUTEX(un)); 28877 cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY); 28878 mutex_enter(SD_MUTEX(un)); 28879 28880 if (un->un_errstats != NULL) { 28881 stp = (struct sd_errstats *)un->un_errstats->ks_data; 28882 stp->sd_capacity.value.ui64 = 0; 28883 } 28884 } 28885 28886 28887 /* 28888 * Function: sr_check_wp() 28889 * 28890 * Description: This routine checks the write protection of a removable 28891 * media disk and hotpluggable devices via the write protect bit of 28892 * the Mode Page Header device specific field. Some devices choke 28893 * on unsupported mode page. In order to workaround this issue, 28894 * this routine has been implemented to use 0x3f mode page(request 28895 * for all pages) for all device types. 28896 * 28897 * Arguments: dev - the device 'dev_t' 28898 * 28899 * Return Code: int indicating if the device is write protected (1) or not (0) 28900 * 28901 * Context: Kernel thread. 28902 * 28903 */ 28904 28905 static int 28906 sr_check_wp(dev_t dev) 28907 { 28908 struct sd_lun *un; 28909 uchar_t device_specific; 28910 uchar_t *sense; 28911 int hdrlen; 28912 int rval = FALSE; 28913 int status; 28914 sd_ssc_t *ssc; 28915 28916 /* 28917 * Note: The return codes for this routine should be reworked to 28918 * properly handle the case of a NULL softstate. 28919 */ 28920 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 28921 return (FALSE); 28922 } 28923 28924 if (un->un_f_cfg_is_atapi == TRUE) { 28925 /* 28926 * The mode page contents are not required; set the allocation 28927 * length for the mode page header only 28928 */ 28929 hdrlen = MODE_HEADER_LENGTH_GRP2; 28930 sense = kmem_zalloc(hdrlen, KM_SLEEP); 28931 ssc = sd_ssc_init(un); 28932 status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense, hdrlen, 28933 MODEPAGE_ALLPAGES, SD_PATH_STANDARD); 28934 sd_ssc_fini(ssc); 28935 if (status != 0) 28936 goto err_exit; 28937 device_specific = 28938 ((struct mode_header_grp2 *)sense)->device_specific; 28939 } else { 28940 hdrlen = MODE_HEADER_LENGTH; 28941 sense = kmem_zalloc(hdrlen, KM_SLEEP); 28942 ssc = sd_ssc_init(un); 28943 status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, hdrlen, 28944 MODEPAGE_ALLPAGES, SD_PATH_STANDARD); 28945 sd_ssc_fini(ssc); 28946 if (status != 0) 28947 goto err_exit; 28948 device_specific = 28949 ((struct mode_header *)sense)->device_specific; 28950 } 28951 28952 28953 /* 28954 * Write protect mode sense failed; not all disks 28955 * understand this query. Return FALSE assuming that 28956 * these devices are not writable. 28957 */ 28958 if (device_specific & WRITE_PROTECT) { 28959 rval = TRUE; 28960 } 28961 28962 err_exit: 28963 kmem_free(sense, hdrlen); 28964 return (rval); 28965 } 28966 28967 /* 28968 * Function: sr_volume_ctrl() 28969 * 28970 * Description: This routine is the driver entry point for handling CD-ROM 28971 * audio output volume ioctl requests. (CDROMVOLCTRL) 28972 * 28973 * Arguments: dev - the device 'dev_t' 28974 * data - pointer to user audio volume control structure 28975 * flag - this argument is a pass through to ddi_copyxxx() 28976 * directly from the mode argument of ioctl(). 28977 * 28978 * Return Code: the code returned by sd_send_scsi_cmd() 28979 * EFAULT if ddi_copyxxx() fails 28980 * ENXIO if fail ddi_get_soft_state 28981 * EINVAL if data pointer is NULL 28982 * 28983 */ 28984 28985 static int 28986 sr_volume_ctrl(dev_t dev, caddr_t data, int flag) 28987 { 28988 struct sd_lun *un; 28989 struct cdrom_volctrl volume; 28990 struct cdrom_volctrl *vol = &volume; 28991 uchar_t *sense_page; 28992 uchar_t *select_page; 28993 uchar_t *sense; 28994 uchar_t *select; 28995 int sense_buflen; 28996 int select_buflen; 28997 int rval; 28998 sd_ssc_t *ssc; 28999 29000 if (data == NULL) { 29001 return (EINVAL); 29002 } 29003 29004 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 29005 (un->un_state == SD_STATE_OFFLINE)) { 29006 return (ENXIO); 29007 } 29008 29009 if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) { 29010 return (EFAULT); 29011 } 29012 29013 if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) { 29014 struct mode_header_grp2 *sense_mhp; 29015 struct mode_header_grp2 *select_mhp; 29016 int bd_len; 29017 29018 sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN; 29019 select_buflen = MODE_HEADER_LENGTH_GRP2 + 29020 MODEPAGE_AUDIO_CTRL_LEN; 29021 sense = kmem_zalloc(sense_buflen, KM_SLEEP); 29022 select = kmem_zalloc(select_buflen, KM_SLEEP); 29023 ssc = sd_ssc_init(un); 29024 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense, 29025 sense_buflen, MODEPAGE_AUDIO_CTRL, 29026 SD_PATH_STANDARD); 29027 sd_ssc_fini(ssc); 29028 29029 if (rval != 0) { 29030 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 29031 "sr_volume_ctrl: Mode Sense Failed\n"); 29032 kmem_free(sense, sense_buflen); 29033 kmem_free(select, select_buflen); 29034 return (rval); 29035 } 29036 sense_mhp = (struct mode_header_grp2 *)sense; 29037 select_mhp = (struct mode_header_grp2 *)select; 29038 bd_len = (sense_mhp->bdesc_length_hi << 8) | 29039 sense_mhp->bdesc_length_lo; 29040 if (bd_len > MODE_BLK_DESC_LENGTH) { 29041 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 29042 "sr_volume_ctrl: Mode Sense returned invalid " 29043 "block descriptor length\n"); 29044 kmem_free(sense, sense_buflen); 29045 kmem_free(select, select_buflen); 29046 return (EIO); 29047 } 29048 sense_page = (uchar_t *) 29049 (sense + MODE_HEADER_LENGTH_GRP2 + bd_len); 29050 select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2); 29051 select_mhp->length_msb = 0; 29052 select_mhp->length_lsb = 0; 29053 select_mhp->bdesc_length_hi = 0; 29054 select_mhp->bdesc_length_lo = 0; 29055 } else { 29056 struct mode_header *sense_mhp, *select_mhp; 29057 29058 sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN; 29059 select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN; 29060 sense = kmem_zalloc(sense_buflen, KM_SLEEP); 29061 select = kmem_zalloc(select_buflen, KM_SLEEP); 29062 ssc = sd_ssc_init(un); 29063 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 29064 sense_buflen, MODEPAGE_AUDIO_CTRL, 29065 SD_PATH_STANDARD); 29066 sd_ssc_fini(ssc); 29067 29068 if (rval != 0) { 29069 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 29070 "sr_volume_ctrl: Mode Sense Failed\n"); 29071 kmem_free(sense, sense_buflen); 29072 kmem_free(select, select_buflen); 29073 return (rval); 29074 } 29075 sense_mhp = (struct mode_header *)sense; 29076 select_mhp = (struct mode_header *)select; 29077 if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) { 29078 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 29079 "sr_volume_ctrl: Mode Sense returned invalid " 29080 "block descriptor length\n"); 29081 kmem_free(sense, sense_buflen); 29082 kmem_free(select, select_buflen); 29083 return (EIO); 29084 } 29085 sense_page = (uchar_t *) 29086 (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length); 29087 select_page = (uchar_t *)(select + MODE_HEADER_LENGTH); 29088 select_mhp->length = 0; 29089 select_mhp->bdesc_length = 0; 29090 } 29091 /* 29092 * Note: An audio control data structure could be created and overlayed 29093 * on the following in place of the array indexing method implemented. 29094 */ 29095 29096 /* Build the select data for the user volume data */ 29097 select_page[0] = MODEPAGE_AUDIO_CTRL; 29098 select_page[1] = 0xE; 29099 /* Set the immediate bit */ 29100 select_page[2] = 0x04; 29101 /* Zero out reserved fields */ 29102 select_page[3] = 0x00; 29103 select_page[4] = 0x00; 29104 /* Return sense data for fields not to be modified */ 29105 select_page[5] = sense_page[5]; 29106 select_page[6] = sense_page[6]; 29107 select_page[7] = sense_page[7]; 29108 /* Set the user specified volume levels for channel 0 and 1 */ 29109 select_page[8] = 0x01; 29110 select_page[9] = vol->channel0; 29111 select_page[10] = 0x02; 29112 select_page[11] = vol->channel1; 29113 /* Channel 2 and 3 are currently unsupported so return the sense data */ 29114 select_page[12] = sense_page[12]; 29115 select_page[13] = sense_page[13]; 29116 select_page[14] = sense_page[14]; 29117 select_page[15] = sense_page[15]; 29118 29119 ssc = sd_ssc_init(un); 29120 if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) { 29121 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, select, 29122 select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 29123 } else { 29124 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 29125 select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 29126 } 29127 sd_ssc_fini(ssc); 29128 29129 kmem_free(sense, sense_buflen); 29130 kmem_free(select, select_buflen); 29131 return (rval); 29132 } 29133 29134 29135 /* 29136 * Function: sr_read_sony_session_offset() 29137 * 29138 * Description: This routine is the driver entry point for handling CD-ROM 29139 * ioctl requests for session offset information. (CDROMREADOFFSET) 29140 * The address of the first track in the last session of a 29141 * multi-session CD-ROM is returned 29142 * 29143 * Note: This routine uses a vendor specific key value in the 29144 * command control field without implementing any vendor check here 29145 * or in the ioctl routine. 29146 * 29147 * Arguments: dev - the device 'dev_t' 29148 * data - pointer to an int to hold the requested address 29149 * flag - this argument is a pass through to ddi_copyxxx() 29150 * directly from the mode argument of ioctl(). 29151 * 29152 * Return Code: the code returned by sd_send_scsi_cmd() 29153 * EFAULT if ddi_copyxxx() fails 29154 * ENXIO if fail ddi_get_soft_state 29155 * EINVAL if data pointer is NULL 29156 */ 29157 29158 static int 29159 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag) 29160 { 29161 struct sd_lun *un; 29162 struct uscsi_cmd *com; 29163 caddr_t buffer; 29164 char cdb[CDB_GROUP1]; 29165 int session_offset = 0; 29166 int rval; 29167 29168 if (data == NULL) { 29169 return (EINVAL); 29170 } 29171 29172 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 29173 (un->un_state == SD_STATE_OFFLINE)) { 29174 return (ENXIO); 29175 } 29176 29177 buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP); 29178 bzero(cdb, CDB_GROUP1); 29179 cdb[0] = SCMD_READ_TOC; 29180 /* 29181 * Bytes 7 & 8 are the 12 byte allocation length for a single entry. 29182 * (4 byte TOC response header + 8 byte response data) 29183 */ 29184 cdb[8] = SONY_SESSION_OFFSET_LEN; 29185 /* Byte 9 is the control byte. A vendor specific value is used */ 29186 cdb[9] = SONY_SESSION_OFFSET_KEY; 29187 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 29188 com->uscsi_cdb = cdb; 29189 com->uscsi_cdblen = CDB_GROUP1; 29190 com->uscsi_bufaddr = buffer; 29191 com->uscsi_buflen = SONY_SESSION_OFFSET_LEN; 29192 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 29193 29194 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 29195 SD_PATH_STANDARD); 29196 if (rval != 0) { 29197 kmem_free(buffer, SONY_SESSION_OFFSET_LEN); 29198 kmem_free(com, sizeof (*com)); 29199 return (rval); 29200 } 29201 if (buffer[1] == SONY_SESSION_OFFSET_VALID) { 29202 session_offset = 29203 ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) + 29204 ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]); 29205 /* 29206 * Offset returned offset in current lbasize block's. Convert to 29207 * 2k block's to return to the user 29208 */ 29209 if (un->un_tgt_blocksize == CDROM_BLK_512) { 29210 session_offset >>= 2; 29211 } else if (un->un_tgt_blocksize == CDROM_BLK_1024) { 29212 session_offset >>= 1; 29213 } 29214 } 29215 29216 if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) { 29217 rval = EFAULT; 29218 } 29219 29220 kmem_free(buffer, SONY_SESSION_OFFSET_LEN); 29221 kmem_free(com, sizeof (*com)); 29222 return (rval); 29223 } 29224 29225 29226 /* 29227 * Function: sd_wm_cache_constructor() 29228 * 29229 * Description: Cache Constructor for the wmap cache for the read/modify/write 29230 * devices. 29231 * 29232 * Arguments: wm - A pointer to the sd_w_map to be initialized. 29233 * un - sd_lun structure for the device. 29234 * flag - the km flags passed to constructor 29235 * 29236 * Return Code: 0 on success. 29237 * -1 on failure. 29238 */ 29239 29240 /*ARGSUSED*/ 29241 static int 29242 sd_wm_cache_constructor(void *wm, void *un, int flags) 29243 { 29244 bzero(wm, sizeof (struct sd_w_map)); 29245 cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL); 29246 return (0); 29247 } 29248 29249 29250 /* 29251 * Function: sd_wm_cache_destructor() 29252 * 29253 * Description: Cache destructor for the wmap cache for the read/modify/write 29254 * devices. 29255 * 29256 * Arguments: wm - A pointer to the sd_w_map to be initialized. 29257 * un - sd_lun structure for the device. 29258 */ 29259 /*ARGSUSED*/ 29260 static void 29261 sd_wm_cache_destructor(void *wm, void *un) 29262 { 29263 cv_destroy(&((struct sd_w_map *)wm)->wm_avail); 29264 } 29265 29266 29267 /* 29268 * Function: sd_range_lock() 29269 * 29270 * Description: Lock the range of blocks specified as parameter to ensure 29271 * that read, modify write is atomic and no other i/o writes 29272 * to the same location. The range is specified in terms 29273 * of start and end blocks. Block numbers are the actual 29274 * media block numbers and not system. 29275 * 29276 * Arguments: un - sd_lun structure for the device. 29277 * startb - The starting block number 29278 * endb - The end block number 29279 * typ - type of i/o - simple/read_modify_write 29280 * 29281 * Return Code: wm - pointer to the wmap structure. 29282 * 29283 * Context: This routine can sleep. 29284 */ 29285 29286 static struct sd_w_map * 29287 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ) 29288 { 29289 struct sd_w_map *wmp = NULL; 29290 struct sd_w_map *sl_wmp = NULL; 29291 struct sd_w_map *tmp_wmp; 29292 wm_state state = SD_WM_CHK_LIST; 29293 29294 29295 ASSERT(un != NULL); 29296 ASSERT(!mutex_owned(SD_MUTEX(un))); 29297 29298 mutex_enter(SD_MUTEX(un)); 29299 29300 while (state != SD_WM_DONE) { 29301 29302 switch (state) { 29303 case SD_WM_CHK_LIST: 29304 /* 29305 * This is the starting state. Check the wmap list 29306 * to see if the range is currently available. 29307 */ 29308 if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) { 29309 /* 29310 * If this is a simple write and no rmw 29311 * i/o is pending then try to lock the 29312 * range as the range should be available. 29313 */ 29314 state = SD_WM_LOCK_RANGE; 29315 } else { 29316 tmp_wmp = sd_get_range(un, startb, endb); 29317 if (tmp_wmp != NULL) { 29318 if ((wmp != NULL) && ONLIST(un, wmp)) { 29319 /* 29320 * Should not keep onlist wmps 29321 * while waiting this macro 29322 * will also do wmp = NULL; 29323 */ 29324 FREE_ONLIST_WMAP(un, wmp); 29325 } 29326 /* 29327 * sl_wmp is the wmap on which wait 29328 * is done, since the tmp_wmp points 29329 * to the inuse wmap, set sl_wmp to 29330 * tmp_wmp and change the state to sleep 29331 */ 29332 sl_wmp = tmp_wmp; 29333 state = SD_WM_WAIT_MAP; 29334 } else { 29335 state = SD_WM_LOCK_RANGE; 29336 } 29337 29338 } 29339 break; 29340 29341 case SD_WM_LOCK_RANGE: 29342 ASSERT(un->un_wm_cache); 29343 /* 29344 * The range need to be locked, try to get a wmap. 29345 * First attempt it with NO_SLEEP, want to avoid a sleep 29346 * if possible as we will have to release the sd mutex 29347 * if we have to sleep. 29348 */ 29349 if (wmp == NULL) 29350 wmp = kmem_cache_alloc(un->un_wm_cache, 29351 KM_NOSLEEP); 29352 if (wmp == NULL) { 29353 mutex_exit(SD_MUTEX(un)); 29354 _NOTE(DATA_READABLE_WITHOUT_LOCK 29355 (sd_lun::un_wm_cache)) 29356 wmp = kmem_cache_alloc(un->un_wm_cache, 29357 KM_SLEEP); 29358 mutex_enter(SD_MUTEX(un)); 29359 /* 29360 * we released the mutex so recheck and go to 29361 * check list state. 29362 */ 29363 state = SD_WM_CHK_LIST; 29364 } else { 29365 /* 29366 * We exit out of state machine since we 29367 * have the wmap. Do the housekeeping first. 29368 * place the wmap on the wmap list if it is not 29369 * on it already and then set the state to done. 29370 */ 29371 wmp->wm_start = startb; 29372 wmp->wm_end = endb; 29373 wmp->wm_flags = typ | SD_WM_BUSY; 29374 if (typ & SD_WTYPE_RMW) { 29375 un->un_rmw_count++; 29376 } 29377 /* 29378 * If not already on the list then link 29379 */ 29380 if (!ONLIST(un, wmp)) { 29381 wmp->wm_next = un->un_wm; 29382 wmp->wm_prev = NULL; 29383 if (wmp->wm_next) 29384 wmp->wm_next->wm_prev = wmp; 29385 un->un_wm = wmp; 29386 } 29387 state = SD_WM_DONE; 29388 } 29389 break; 29390 29391 case SD_WM_WAIT_MAP: 29392 ASSERT(sl_wmp->wm_flags & SD_WM_BUSY); 29393 /* 29394 * Wait is done on sl_wmp, which is set in the 29395 * check_list state. 29396 */ 29397 sl_wmp->wm_wanted_count++; 29398 cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un)); 29399 sl_wmp->wm_wanted_count--; 29400 /* 29401 * We can reuse the memory from the completed sl_wmp 29402 * lock range for our new lock, but only if noone is 29403 * waiting for it. 29404 */ 29405 ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY)); 29406 if (sl_wmp->wm_wanted_count == 0) { 29407 if (wmp != NULL) 29408 CHK_N_FREEWMP(un, wmp); 29409 wmp = sl_wmp; 29410 } 29411 sl_wmp = NULL; 29412 /* 29413 * After waking up, need to recheck for availability of 29414 * range. 29415 */ 29416 state = SD_WM_CHK_LIST; 29417 break; 29418 29419 default: 29420 panic("sd_range_lock: " 29421 "Unknown state %d in sd_range_lock", state); 29422 /*NOTREACHED*/ 29423 } /* switch(state) */ 29424 29425 } /* while(state != SD_WM_DONE) */ 29426 29427 mutex_exit(SD_MUTEX(un)); 29428 29429 ASSERT(wmp != NULL); 29430 29431 return (wmp); 29432 } 29433 29434 29435 /* 29436 * Function: sd_get_range() 29437 * 29438 * Description: Find if there any overlapping I/O to this one 29439 * Returns the write-map of 1st such I/O, NULL otherwise. 29440 * 29441 * Arguments: un - sd_lun structure for the device. 29442 * startb - The starting block number 29443 * endb - The end block number 29444 * 29445 * Return Code: wm - pointer to the wmap structure. 29446 */ 29447 29448 static struct sd_w_map * 29449 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb) 29450 { 29451 struct sd_w_map *wmp; 29452 29453 ASSERT(un != NULL); 29454 29455 for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) { 29456 if (!(wmp->wm_flags & SD_WM_BUSY)) { 29457 continue; 29458 } 29459 if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) { 29460 break; 29461 } 29462 if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) { 29463 break; 29464 } 29465 } 29466 29467 return (wmp); 29468 } 29469 29470 29471 /* 29472 * Function: sd_free_inlist_wmap() 29473 * 29474 * Description: Unlink and free a write map struct. 29475 * 29476 * Arguments: un - sd_lun structure for the device. 29477 * wmp - sd_w_map which needs to be unlinked. 29478 */ 29479 29480 static void 29481 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp) 29482 { 29483 ASSERT(un != NULL); 29484 29485 if (un->un_wm == wmp) { 29486 un->un_wm = wmp->wm_next; 29487 } else { 29488 wmp->wm_prev->wm_next = wmp->wm_next; 29489 } 29490 29491 if (wmp->wm_next) { 29492 wmp->wm_next->wm_prev = wmp->wm_prev; 29493 } 29494 29495 wmp->wm_next = wmp->wm_prev = NULL; 29496 29497 kmem_cache_free(un->un_wm_cache, wmp); 29498 } 29499 29500 29501 /* 29502 * Function: sd_range_unlock() 29503 * 29504 * Description: Unlock the range locked by wm. 29505 * Free write map if nobody else is waiting on it. 29506 * 29507 * Arguments: un - sd_lun structure for the device. 29508 * wmp - sd_w_map which needs to be unlinked. 29509 */ 29510 29511 static void 29512 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm) 29513 { 29514 ASSERT(un != NULL); 29515 ASSERT(wm != NULL); 29516 ASSERT(!mutex_owned(SD_MUTEX(un))); 29517 29518 mutex_enter(SD_MUTEX(un)); 29519 29520 if (wm->wm_flags & SD_WTYPE_RMW) { 29521 un->un_rmw_count--; 29522 } 29523 29524 if (wm->wm_wanted_count) { 29525 wm->wm_flags = 0; 29526 /* 29527 * Broadcast that the wmap is available now. 29528 */ 29529 cv_broadcast(&wm->wm_avail); 29530 } else { 29531 /* 29532 * If no one is waiting on the map, it should be free'ed. 29533 */ 29534 sd_free_inlist_wmap(un, wm); 29535 } 29536 29537 mutex_exit(SD_MUTEX(un)); 29538 } 29539 29540 29541 /* 29542 * Function: sd_read_modify_write_task 29543 * 29544 * Description: Called from a taskq thread to initiate the write phase of 29545 * a read-modify-write request. This is used for targets where 29546 * un->un_sys_blocksize != un->un_tgt_blocksize. 29547 * 29548 * Arguments: arg - a pointer to the buf(9S) struct for the write command. 29549 * 29550 * Context: Called under taskq thread context. 29551 */ 29552 29553 static void 29554 sd_read_modify_write_task(void *arg) 29555 { 29556 struct sd_mapblocksize_info *bsp; 29557 struct buf *bp; 29558 struct sd_xbuf *xp; 29559 struct sd_lun *un; 29560 29561 bp = arg; /* The bp is given in arg */ 29562 ASSERT(bp != NULL); 29563 29564 /* Get the pointer to the layer-private data struct */ 29565 xp = SD_GET_XBUF(bp); 29566 ASSERT(xp != NULL); 29567 bsp = xp->xb_private; 29568 ASSERT(bsp != NULL); 29569 29570 un = SD_GET_UN(bp); 29571 ASSERT(un != NULL); 29572 ASSERT(!mutex_owned(SD_MUTEX(un))); 29573 29574 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 29575 "sd_read_modify_write_task: entry: buf:0x%p\n", bp); 29576 29577 /* 29578 * This is the write phase of a read-modify-write request, called 29579 * under the context of a taskq thread in response to the completion 29580 * of the read portion of the rmw request completing under interrupt 29581 * context. The write request must be sent from here down the iostart 29582 * chain as if it were being sent from sd_mapblocksize_iostart(), so 29583 * we use the layer index saved in the layer-private data area. 29584 */ 29585 SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp); 29586 29587 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 29588 "sd_read_modify_write_task: exit: buf:0x%p\n", bp); 29589 } 29590 29591 29592 /* 29593 * Function: sddump_do_read_of_rmw() 29594 * 29595 * Description: This routine will be called from sddump, If sddump is called 29596 * with an I/O which not aligned on device blocksize boundary 29597 * then the write has to be converted to read-modify-write. 29598 * Do the read part here in order to keep sddump simple. 29599 * Note - That the sd_mutex is held across the call to this 29600 * routine. 29601 * 29602 * Arguments: un - sd_lun 29603 * blkno - block number in terms of media block size. 29604 * nblk - number of blocks. 29605 * bpp - pointer to pointer to the buf structure. On return 29606 * from this function, *bpp points to the valid buffer 29607 * to which the write has to be done. 29608 * 29609 * Return Code: 0 for success or errno-type return code 29610 */ 29611 29612 static int 29613 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk, 29614 struct buf **bpp) 29615 { 29616 int err; 29617 int i; 29618 int rval; 29619 struct buf *bp; 29620 struct scsi_pkt *pkt = NULL; 29621 uint32_t target_blocksize; 29622 29623 ASSERT(un != NULL); 29624 ASSERT(mutex_owned(SD_MUTEX(un))); 29625 29626 target_blocksize = un->un_tgt_blocksize; 29627 29628 mutex_exit(SD_MUTEX(un)); 29629 29630 bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL, 29631 (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL); 29632 if (bp == NULL) { 29633 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 29634 "no resources for dumping; giving up"); 29635 err = ENOMEM; 29636 goto done; 29637 } 29638 29639 rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL, 29640 blkno, nblk); 29641 if (rval != 0) { 29642 scsi_free_consistent_buf(bp); 29643 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 29644 "no resources for dumping; giving up"); 29645 err = ENOMEM; 29646 goto done; 29647 } 29648 29649 pkt->pkt_flags |= FLAG_NOINTR; 29650 29651 err = EIO; 29652 for (i = 0; i < SD_NDUMP_RETRIES; i++) { 29653 29654 /* 29655 * Scsi_poll returns 0 (success) if the command completes and 29656 * the status block is STATUS_GOOD. We should only check 29657 * errors if this condition is not true. Even then we should 29658 * send our own request sense packet only if we have a check 29659 * condition and auto request sense has not been performed by 29660 * the hba. 29661 */ 29662 SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n"); 29663 29664 if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) { 29665 err = 0; 29666 break; 29667 } 29668 29669 /* 29670 * Check CMD_DEV_GONE 1st, give up if device is gone, 29671 * no need to read RQS data. 29672 */ 29673 if (pkt->pkt_reason == CMD_DEV_GONE) { 29674 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 29675 "Error while dumping state with rmw..." 29676 "Device is gone\n"); 29677 break; 29678 } 29679 29680 if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) { 29681 SD_INFO(SD_LOG_DUMP, un, 29682 "sddump: read failed with CHECK, try # %d\n", i); 29683 if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) { 29684 (void) sd_send_polled_RQS(un); 29685 } 29686 29687 continue; 29688 } 29689 29690 if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) { 29691 int reset_retval = 0; 29692 29693 SD_INFO(SD_LOG_DUMP, un, 29694 "sddump: read failed with BUSY, try # %d\n", i); 29695 29696 if (un->un_f_lun_reset_enabled == TRUE) { 29697 reset_retval = scsi_reset(SD_ADDRESS(un), 29698 RESET_LUN); 29699 } 29700 if (reset_retval == 0) { 29701 (void) scsi_reset(SD_ADDRESS(un), RESET_TARGET); 29702 } 29703 (void) sd_send_polled_RQS(un); 29704 29705 } else { 29706 SD_INFO(SD_LOG_DUMP, un, 29707 "sddump: read failed with 0x%x, try # %d\n", 29708 SD_GET_PKT_STATUS(pkt), i); 29709 mutex_enter(SD_MUTEX(un)); 29710 sd_reset_target(un, pkt); 29711 mutex_exit(SD_MUTEX(un)); 29712 } 29713 29714 /* 29715 * If we are not getting anywhere with lun/target resets, 29716 * let's reset the bus. 29717 */ 29718 if (i > SD_NDUMP_RETRIES/2) { 29719 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 29720 (void) sd_send_polled_RQS(un); 29721 } 29722 29723 } 29724 scsi_destroy_pkt(pkt); 29725 29726 if (err != 0) { 29727 scsi_free_consistent_buf(bp); 29728 *bpp = NULL; 29729 } else { 29730 *bpp = bp; 29731 } 29732 29733 done: 29734 mutex_enter(SD_MUTEX(un)); 29735 return (err); 29736 } 29737 29738 29739 /* 29740 * Function: sd_failfast_flushq 29741 * 29742 * Description: Take all bp's on the wait queue that have B_FAILFAST set 29743 * in b_flags and move them onto the failfast queue, then kick 29744 * off a thread to return all bp's on the failfast queue to 29745 * their owners with an error set. 29746 * 29747 * Arguments: un - pointer to the soft state struct for the instance. 29748 * 29749 * Context: may execute in interrupt context. 29750 */ 29751 29752 static void 29753 sd_failfast_flushq(struct sd_lun *un) 29754 { 29755 struct buf *bp; 29756 struct buf *next_waitq_bp; 29757 struct buf *prev_waitq_bp = NULL; 29758 29759 ASSERT(un != NULL); 29760 ASSERT(mutex_owned(SD_MUTEX(un))); 29761 ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE); 29762 ASSERT(un->un_failfast_bp == NULL); 29763 29764 SD_TRACE(SD_LOG_IO_FAILFAST, un, 29765 "sd_failfast_flushq: entry: un:0x%p\n", un); 29766 29767 /* 29768 * Check if we should flush all bufs when entering failfast state, or 29769 * just those with B_FAILFAST set. 29770 */ 29771 if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) { 29772 /* 29773 * Move *all* bp's on the wait queue to the failfast flush 29774 * queue, including those that do NOT have B_FAILFAST set. 29775 */ 29776 if (un->un_failfast_headp == NULL) { 29777 ASSERT(un->un_failfast_tailp == NULL); 29778 un->un_failfast_headp = un->un_waitq_headp; 29779 } else { 29780 ASSERT(un->un_failfast_tailp != NULL); 29781 un->un_failfast_tailp->av_forw = un->un_waitq_headp; 29782 } 29783 29784 un->un_failfast_tailp = un->un_waitq_tailp; 29785 29786 /* update kstat for each bp moved out of the waitq */ 29787 for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) { 29788 SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp); 29789 } 29790 29791 /* empty the waitq */ 29792 un->un_waitq_headp = un->un_waitq_tailp = NULL; 29793 29794 } else { 29795 /* 29796 * Go thru the wait queue, pick off all entries with 29797 * B_FAILFAST set, and move these onto the failfast queue. 29798 */ 29799 for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) { 29800 /* 29801 * Save the pointer to the next bp on the wait queue, 29802 * so we get to it on the next iteration of this loop. 29803 */ 29804 next_waitq_bp = bp->av_forw; 29805 29806 /* 29807 * If this bp from the wait queue does NOT have 29808 * B_FAILFAST set, just move on to the next element 29809 * in the wait queue. Note, this is the only place 29810 * where it is correct to set prev_waitq_bp. 29811 */ 29812 if ((bp->b_flags & B_FAILFAST) == 0) { 29813 prev_waitq_bp = bp; 29814 continue; 29815 } 29816 29817 /* 29818 * Remove the bp from the wait queue. 29819 */ 29820 if (bp == un->un_waitq_headp) { 29821 /* The bp is the first element of the waitq. */ 29822 un->un_waitq_headp = next_waitq_bp; 29823 if (un->un_waitq_headp == NULL) { 29824 /* The wait queue is now empty */ 29825 un->un_waitq_tailp = NULL; 29826 } 29827 } else { 29828 /* 29829 * The bp is either somewhere in the middle 29830 * or at the end of the wait queue. 29831 */ 29832 ASSERT(un->un_waitq_headp != NULL); 29833 ASSERT(prev_waitq_bp != NULL); 29834 ASSERT((prev_waitq_bp->b_flags & B_FAILFAST) 29835 == 0); 29836 if (bp == un->un_waitq_tailp) { 29837 /* bp is the last entry on the waitq. */ 29838 ASSERT(next_waitq_bp == NULL); 29839 un->un_waitq_tailp = prev_waitq_bp; 29840 } 29841 prev_waitq_bp->av_forw = next_waitq_bp; 29842 } 29843 bp->av_forw = NULL; 29844 29845 /* 29846 * update kstat since the bp is moved out of 29847 * the waitq 29848 */ 29849 SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp); 29850 29851 /* 29852 * Now put the bp onto the failfast queue. 29853 */ 29854 if (un->un_failfast_headp == NULL) { 29855 /* failfast queue is currently empty */ 29856 ASSERT(un->un_failfast_tailp == NULL); 29857 un->un_failfast_headp = 29858 un->un_failfast_tailp = bp; 29859 } else { 29860 /* Add the bp to the end of the failfast q */ 29861 ASSERT(un->un_failfast_tailp != NULL); 29862 ASSERT(un->un_failfast_tailp->b_flags & 29863 B_FAILFAST); 29864 un->un_failfast_tailp->av_forw = bp; 29865 un->un_failfast_tailp = bp; 29866 } 29867 } 29868 } 29869 29870 /* 29871 * Now return all bp's on the failfast queue to their owners. 29872 */ 29873 while ((bp = un->un_failfast_headp) != NULL) { 29874 29875 un->un_failfast_headp = bp->av_forw; 29876 if (un->un_failfast_headp == NULL) { 29877 un->un_failfast_tailp = NULL; 29878 } 29879 29880 /* 29881 * We want to return the bp with a failure error code, but 29882 * we do not want a call to sd_start_cmds() to occur here, 29883 * so use sd_return_failed_command_no_restart() instead of 29884 * sd_return_failed_command(). 29885 */ 29886 sd_return_failed_command_no_restart(un, bp, EIO); 29887 } 29888 29889 /* Flush the xbuf queues if required. */ 29890 if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) { 29891 ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback); 29892 } 29893 29894 SD_TRACE(SD_LOG_IO_FAILFAST, un, 29895 "sd_failfast_flushq: exit: un:0x%p\n", un); 29896 } 29897 29898 29899 /* 29900 * Function: sd_failfast_flushq_callback 29901 * 29902 * Description: Return TRUE if the given bp meets the criteria for failfast 29903 * flushing. Used with ddi_xbuf_flushq(9F). 29904 * 29905 * Arguments: bp - ptr to buf struct to be examined. 29906 * 29907 * Context: Any 29908 */ 29909 29910 static int 29911 sd_failfast_flushq_callback(struct buf *bp) 29912 { 29913 /* 29914 * Return TRUE if (1) we want to flush ALL bufs when the failfast 29915 * state is entered; OR (2) the given bp has B_FAILFAST set. 29916 */ 29917 return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) || 29918 (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE); 29919 } 29920 29921 29922 29923 /* 29924 * Function: sd_setup_next_xfer 29925 * 29926 * Description: Prepare next I/O operation using DMA_PARTIAL 29927 * 29928 */ 29929 29930 static int 29931 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp, 29932 struct scsi_pkt *pkt, struct sd_xbuf *xp) 29933 { 29934 ssize_t num_blks_not_xfered; 29935 daddr_t strt_blk_num; 29936 ssize_t bytes_not_xfered; 29937 int rval; 29938 29939 ASSERT(pkt->pkt_resid == 0); 29940 29941 /* 29942 * Calculate next block number and amount to be transferred. 29943 * 29944 * How much data NOT transfered to the HBA yet. 29945 */ 29946 bytes_not_xfered = xp->xb_dma_resid; 29947 29948 /* 29949 * figure how many blocks NOT transfered to the HBA yet. 29950 */ 29951 num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered); 29952 29953 /* 29954 * set starting block number to the end of what WAS transfered. 29955 */ 29956 strt_blk_num = xp->xb_blkno + 29957 SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered); 29958 29959 /* 29960 * Move pkt to the next portion of the xfer. sd_setup_next_rw_pkt 29961 * will call scsi_initpkt with NULL_FUNC so we do not have to release 29962 * the disk mutex here. 29963 */ 29964 rval = sd_setup_next_rw_pkt(un, pkt, bp, 29965 strt_blk_num, num_blks_not_xfered); 29966 29967 if (rval == 0) { 29968 29969 /* 29970 * Success. 29971 * 29972 * Adjust things if there are still more blocks to be 29973 * transfered. 29974 */ 29975 xp->xb_dma_resid = pkt->pkt_resid; 29976 pkt->pkt_resid = 0; 29977 29978 return (1); 29979 } 29980 29981 /* 29982 * There's really only one possible return value from 29983 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt 29984 * returns NULL. 29985 */ 29986 ASSERT(rval == SD_PKT_ALLOC_FAILURE); 29987 29988 bp->b_resid = bp->b_bcount; 29989 bp->b_flags |= B_ERROR; 29990 29991 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 29992 "Error setting up next portion of DMA transfer\n"); 29993 29994 return (0); 29995 } 29996 29997 /* 29998 * Function: sd_panic_for_res_conflict 29999 * 30000 * Description: Call panic with a string formatted with "Reservation Conflict" 30001 * and a human readable identifier indicating the SD instance 30002 * that experienced the reservation conflict. 30003 * 30004 * Arguments: un - pointer to the soft state struct for the instance. 30005 * 30006 * Context: may execute in interrupt context. 30007 */ 30008 30009 #define SD_RESV_CONFLICT_FMT_LEN 40 30010 void 30011 sd_panic_for_res_conflict(struct sd_lun *un) 30012 { 30013 char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN]; 30014 char path_str[MAXPATHLEN]; 30015 30016 (void) snprintf(panic_str, sizeof (panic_str), 30017 "Reservation Conflict\nDisk: %s", 30018 ddi_pathname(SD_DEVINFO(un), path_str)); 30019 30020 panic(panic_str); 30021 } 30022 30023 /* 30024 * Note: The following sd_faultinjection_ioctl( ) routines implement 30025 * driver support for handling fault injection for error analysis 30026 * causing faults in multiple layers of the driver. 30027 * 30028 */ 30029 30030 #ifdef SD_FAULT_INJECTION 30031 static uint_t sd_fault_injection_on = 0; 30032 30033 /* 30034 * Function: sd_faultinjection_ioctl() 30035 * 30036 * Description: This routine is the driver entry point for handling 30037 * faultinjection ioctls to inject errors into the 30038 * layer model 30039 * 30040 * Arguments: cmd - the ioctl cmd received 30041 * arg - the arguments from user and returns 30042 */ 30043 30044 static void 30045 sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un) { 30046 30047 uint_t i = 0; 30048 uint_t rval; 30049 30050 SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n"); 30051 30052 mutex_enter(SD_MUTEX(un)); 30053 30054 switch (cmd) { 30055 case SDIOCRUN: 30056 /* Allow pushed faults to be injected */ 30057 SD_INFO(SD_LOG_SDTEST, un, 30058 "sd_faultinjection_ioctl: Injecting Fault Run\n"); 30059 30060 sd_fault_injection_on = 1; 30061 30062 SD_INFO(SD_LOG_IOERR, un, 30063 "sd_faultinjection_ioctl: run finished\n"); 30064 break; 30065 30066 case SDIOCSTART: 30067 /* Start Injection Session */ 30068 SD_INFO(SD_LOG_SDTEST, un, 30069 "sd_faultinjection_ioctl: Injecting Fault Start\n"); 30070 30071 sd_fault_injection_on = 0; 30072 un->sd_injection_mask = 0xFFFFFFFF; 30073 for (i = 0; i < SD_FI_MAX_ERROR; i++) { 30074 un->sd_fi_fifo_pkt[i] = NULL; 30075 un->sd_fi_fifo_xb[i] = NULL; 30076 un->sd_fi_fifo_un[i] = NULL; 30077 un->sd_fi_fifo_arq[i] = NULL; 30078 } 30079 un->sd_fi_fifo_start = 0; 30080 un->sd_fi_fifo_end = 0; 30081 30082 mutex_enter(&(un->un_fi_mutex)); 30083 un->sd_fi_log[0] = '\0'; 30084 un->sd_fi_buf_len = 0; 30085 mutex_exit(&(un->un_fi_mutex)); 30086 30087 SD_INFO(SD_LOG_IOERR, un, 30088 "sd_faultinjection_ioctl: start finished\n"); 30089 break; 30090 30091 case SDIOCSTOP: 30092 /* Stop Injection Session */ 30093 SD_INFO(SD_LOG_SDTEST, un, 30094 "sd_faultinjection_ioctl: Injecting Fault Stop\n"); 30095 sd_fault_injection_on = 0; 30096 un->sd_injection_mask = 0x0; 30097 30098 /* Empty stray or unuseds structs from fifo */ 30099 for (i = 0; i < SD_FI_MAX_ERROR; i++) { 30100 if (un->sd_fi_fifo_pkt[i] != NULL) { 30101 kmem_free(un->sd_fi_fifo_pkt[i], 30102 sizeof (struct sd_fi_pkt)); 30103 } 30104 if (un->sd_fi_fifo_xb[i] != NULL) { 30105 kmem_free(un->sd_fi_fifo_xb[i], 30106 sizeof (struct sd_fi_xb)); 30107 } 30108 if (un->sd_fi_fifo_un[i] != NULL) { 30109 kmem_free(un->sd_fi_fifo_un[i], 30110 sizeof (struct sd_fi_un)); 30111 } 30112 if (un->sd_fi_fifo_arq[i] != NULL) { 30113 kmem_free(un->sd_fi_fifo_arq[i], 30114 sizeof (struct sd_fi_arq)); 30115 } 30116 un->sd_fi_fifo_pkt[i] = NULL; 30117 un->sd_fi_fifo_un[i] = NULL; 30118 un->sd_fi_fifo_xb[i] = NULL; 30119 un->sd_fi_fifo_arq[i] = NULL; 30120 } 30121 un->sd_fi_fifo_start = 0; 30122 un->sd_fi_fifo_end = 0; 30123 30124 SD_INFO(SD_LOG_IOERR, un, 30125 "sd_faultinjection_ioctl: stop finished\n"); 30126 break; 30127 30128 case SDIOCINSERTPKT: 30129 /* Store a packet struct to be pushed onto fifo */ 30130 SD_INFO(SD_LOG_SDTEST, un, 30131 "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n"); 30132 30133 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 30134 30135 sd_fault_injection_on = 0; 30136 30137 /* No more that SD_FI_MAX_ERROR allowed in Queue */ 30138 if (un->sd_fi_fifo_pkt[i] != NULL) { 30139 kmem_free(un->sd_fi_fifo_pkt[i], 30140 sizeof (struct sd_fi_pkt)); 30141 } 30142 if (arg != NULL) { 30143 un->sd_fi_fifo_pkt[i] = 30144 kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP); 30145 if (un->sd_fi_fifo_pkt[i] == NULL) { 30146 /* Alloc failed don't store anything */ 30147 break; 30148 } 30149 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i], 30150 sizeof (struct sd_fi_pkt), 0); 30151 if (rval == -1) { 30152 kmem_free(un->sd_fi_fifo_pkt[i], 30153 sizeof (struct sd_fi_pkt)); 30154 un->sd_fi_fifo_pkt[i] = NULL; 30155 } 30156 } else { 30157 SD_INFO(SD_LOG_IOERR, un, 30158 "sd_faultinjection_ioctl: pkt null\n"); 30159 } 30160 break; 30161 30162 case SDIOCINSERTXB: 30163 /* Store a xb struct to be pushed onto fifo */ 30164 SD_INFO(SD_LOG_SDTEST, un, 30165 "sd_faultinjection_ioctl: Injecting Fault Insert XB\n"); 30166 30167 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 30168 30169 sd_fault_injection_on = 0; 30170 30171 if (un->sd_fi_fifo_xb[i] != NULL) { 30172 kmem_free(un->sd_fi_fifo_xb[i], 30173 sizeof (struct sd_fi_xb)); 30174 un->sd_fi_fifo_xb[i] = NULL; 30175 } 30176 if (arg != NULL) { 30177 un->sd_fi_fifo_xb[i] = 30178 kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP); 30179 if (un->sd_fi_fifo_xb[i] == NULL) { 30180 /* Alloc failed don't store anything */ 30181 break; 30182 } 30183 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i], 30184 sizeof (struct sd_fi_xb), 0); 30185 30186 if (rval == -1) { 30187 kmem_free(un->sd_fi_fifo_xb[i], 30188 sizeof (struct sd_fi_xb)); 30189 un->sd_fi_fifo_xb[i] = NULL; 30190 } 30191 } else { 30192 SD_INFO(SD_LOG_IOERR, un, 30193 "sd_faultinjection_ioctl: xb null\n"); 30194 } 30195 break; 30196 30197 case SDIOCINSERTUN: 30198 /* Store a un struct to be pushed onto fifo */ 30199 SD_INFO(SD_LOG_SDTEST, un, 30200 "sd_faultinjection_ioctl: Injecting Fault Insert UN\n"); 30201 30202 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 30203 30204 sd_fault_injection_on = 0; 30205 30206 if (un->sd_fi_fifo_un[i] != NULL) { 30207 kmem_free(un->sd_fi_fifo_un[i], 30208 sizeof (struct sd_fi_un)); 30209 un->sd_fi_fifo_un[i] = NULL; 30210 } 30211 if (arg != NULL) { 30212 un->sd_fi_fifo_un[i] = 30213 kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP); 30214 if (un->sd_fi_fifo_un[i] == NULL) { 30215 /* Alloc failed don't store anything */ 30216 break; 30217 } 30218 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i], 30219 sizeof (struct sd_fi_un), 0); 30220 if (rval == -1) { 30221 kmem_free(un->sd_fi_fifo_un[i], 30222 sizeof (struct sd_fi_un)); 30223 un->sd_fi_fifo_un[i] = NULL; 30224 } 30225 30226 } else { 30227 SD_INFO(SD_LOG_IOERR, un, 30228 "sd_faultinjection_ioctl: un null\n"); 30229 } 30230 30231 break; 30232 30233 case SDIOCINSERTARQ: 30234 /* Store a arq struct to be pushed onto fifo */ 30235 SD_INFO(SD_LOG_SDTEST, un, 30236 "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n"); 30237 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 30238 30239 sd_fault_injection_on = 0; 30240 30241 if (un->sd_fi_fifo_arq[i] != NULL) { 30242 kmem_free(un->sd_fi_fifo_arq[i], 30243 sizeof (struct sd_fi_arq)); 30244 un->sd_fi_fifo_arq[i] = NULL; 30245 } 30246 if (arg != NULL) { 30247 un->sd_fi_fifo_arq[i] = 30248 kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP); 30249 if (un->sd_fi_fifo_arq[i] == NULL) { 30250 /* Alloc failed don't store anything */ 30251 break; 30252 } 30253 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i], 30254 sizeof (struct sd_fi_arq), 0); 30255 if (rval == -1) { 30256 kmem_free(un->sd_fi_fifo_arq[i], 30257 sizeof (struct sd_fi_arq)); 30258 un->sd_fi_fifo_arq[i] = NULL; 30259 } 30260 30261 } else { 30262 SD_INFO(SD_LOG_IOERR, un, 30263 "sd_faultinjection_ioctl: arq null\n"); 30264 } 30265 30266 break; 30267 30268 case SDIOCPUSH: 30269 /* Push stored xb, pkt, un, and arq onto fifo */ 30270 sd_fault_injection_on = 0; 30271 30272 if (arg != NULL) { 30273 rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0); 30274 if (rval != -1 && 30275 un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) { 30276 un->sd_fi_fifo_end += i; 30277 } 30278 } else { 30279 SD_INFO(SD_LOG_IOERR, un, 30280 "sd_faultinjection_ioctl: push arg null\n"); 30281 if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) { 30282 un->sd_fi_fifo_end++; 30283 } 30284 } 30285 SD_INFO(SD_LOG_IOERR, un, 30286 "sd_faultinjection_ioctl: push to end=%d\n", 30287 un->sd_fi_fifo_end); 30288 break; 30289 30290 case SDIOCRETRIEVE: 30291 /* Return buffer of log from Injection session */ 30292 SD_INFO(SD_LOG_SDTEST, un, 30293 "sd_faultinjection_ioctl: Injecting Fault Retreive"); 30294 30295 sd_fault_injection_on = 0; 30296 30297 mutex_enter(&(un->un_fi_mutex)); 30298 rval = ddi_copyout(un->sd_fi_log, (void *)arg, 30299 un->sd_fi_buf_len+1, 0); 30300 mutex_exit(&(un->un_fi_mutex)); 30301 30302 if (rval == -1) { 30303 /* 30304 * arg is possibly invalid setting 30305 * it to NULL for return 30306 */ 30307 arg = NULL; 30308 } 30309 break; 30310 } 30311 30312 mutex_exit(SD_MUTEX(un)); 30313 SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:" 30314 " exit\n"); 30315 } 30316 30317 30318 /* 30319 * Function: sd_injection_log() 30320 * 30321 * Description: This routine adds buff to the already existing injection log 30322 * for retrieval via faultinjection_ioctl for use in fault 30323 * detection and recovery 30324 * 30325 * Arguments: buf - the string to add to the log 30326 */ 30327 30328 static void 30329 sd_injection_log(char *buf, struct sd_lun *un) 30330 { 30331 uint_t len; 30332 30333 ASSERT(un != NULL); 30334 ASSERT(buf != NULL); 30335 30336 mutex_enter(&(un->un_fi_mutex)); 30337 30338 len = min(strlen(buf), 255); 30339 /* Add logged value to Injection log to be returned later */ 30340 if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) { 30341 uint_t offset = strlen((char *)un->sd_fi_log); 30342 char *destp = (char *)un->sd_fi_log + offset; 30343 int i; 30344 for (i = 0; i < len; i++) { 30345 *destp++ = *buf++; 30346 } 30347 un->sd_fi_buf_len += len; 30348 un->sd_fi_log[un->sd_fi_buf_len] = '\0'; 30349 } 30350 30351 mutex_exit(&(un->un_fi_mutex)); 30352 } 30353 30354 30355 /* 30356 * Function: sd_faultinjection() 30357 * 30358 * Description: This routine takes the pkt and changes its 30359 * content based on error injection scenerio. 30360 * 30361 * Arguments: pktp - packet to be changed 30362 */ 30363 30364 static void 30365 sd_faultinjection(struct scsi_pkt *pktp) 30366 { 30367 uint_t i; 30368 struct sd_fi_pkt *fi_pkt; 30369 struct sd_fi_xb *fi_xb; 30370 struct sd_fi_un *fi_un; 30371 struct sd_fi_arq *fi_arq; 30372 struct buf *bp; 30373 struct sd_xbuf *xb; 30374 struct sd_lun *un; 30375 30376 ASSERT(pktp != NULL); 30377 30378 /* pull bp xb and un from pktp */ 30379 bp = (struct buf *)pktp->pkt_private; 30380 xb = SD_GET_XBUF(bp); 30381 un = SD_GET_UN(bp); 30382 30383 ASSERT(un != NULL); 30384 30385 mutex_enter(SD_MUTEX(un)); 30386 30387 SD_TRACE(SD_LOG_SDTEST, un, 30388 "sd_faultinjection: entry Injection from sdintr\n"); 30389 30390 /* if injection is off return */ 30391 if (sd_fault_injection_on == 0 || 30392 un->sd_fi_fifo_start == un->sd_fi_fifo_end) { 30393 mutex_exit(SD_MUTEX(un)); 30394 return; 30395 } 30396 30397 SD_INFO(SD_LOG_SDTEST, un, 30398 "sd_faultinjection: is working for copying\n"); 30399 30400 /* take next set off fifo */ 30401 i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR; 30402 30403 fi_pkt = un->sd_fi_fifo_pkt[i]; 30404 fi_xb = un->sd_fi_fifo_xb[i]; 30405 fi_un = un->sd_fi_fifo_un[i]; 30406 fi_arq = un->sd_fi_fifo_arq[i]; 30407 30408 30409 /* set variables accordingly */ 30410 /* set pkt if it was on fifo */ 30411 if (fi_pkt != NULL) { 30412 SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags"); 30413 SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp"); 30414 if (fi_pkt->pkt_cdbp != 0xff) 30415 SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp"); 30416 SD_CONDSET(pktp, pkt, pkt_state, "pkt_state"); 30417 SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics"); 30418 SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason"); 30419 30420 } 30421 /* set xb if it was on fifo */ 30422 if (fi_xb != NULL) { 30423 SD_CONDSET(xb, xb, xb_blkno, "xb_blkno"); 30424 SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid"); 30425 if (fi_xb->xb_retry_count != 0) 30426 SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count"); 30427 SD_CONDSET(xb, xb, xb_victim_retry_count, 30428 "xb_victim_retry_count"); 30429 SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status"); 30430 SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state"); 30431 SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid"); 30432 30433 /* copy in block data from sense */ 30434 /* 30435 * if (fi_xb->xb_sense_data[0] != -1) { 30436 * bcopy(fi_xb->xb_sense_data, xb->xb_sense_data, 30437 * SENSE_LENGTH); 30438 * } 30439 */ 30440 bcopy(fi_xb->xb_sense_data, xb->xb_sense_data, SENSE_LENGTH); 30441 30442 /* copy in extended sense codes */ 30443 SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data), 30444 xb, es_code, "es_code"); 30445 SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data), 30446 xb, es_key, "es_key"); 30447 SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data), 30448 xb, es_add_code, "es_add_code"); 30449 SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data), 30450 xb, es_qual_code, "es_qual_code"); 30451 struct scsi_extended_sense *esp; 30452 esp = (struct scsi_extended_sense *)xb->xb_sense_data; 30453 esp->es_class = CLASS_EXTENDED_SENSE; 30454 } 30455 30456 /* set un if it was on fifo */ 30457 if (fi_un != NULL) { 30458 SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb"); 30459 SD_CONDSET(un, un, un_ctype, "un_ctype"); 30460 SD_CONDSET(un, un, un_reset_retry_count, 30461 "un_reset_retry_count"); 30462 SD_CONDSET(un, un, un_reservation_type, "un_reservation_type"); 30463 SD_CONDSET(un, un, un_resvd_status, "un_resvd_status"); 30464 SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled"); 30465 SD_CONDSET(un, un, un_f_allow_bus_device_reset, 30466 "un_f_allow_bus_device_reset"); 30467 SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing"); 30468 30469 } 30470 30471 /* copy in auto request sense if it was on fifo */ 30472 if (fi_arq != NULL) { 30473 bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq)); 30474 } 30475 30476 /* free structs */ 30477 if (un->sd_fi_fifo_pkt[i] != NULL) { 30478 kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt)); 30479 } 30480 if (un->sd_fi_fifo_xb[i] != NULL) { 30481 kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb)); 30482 } 30483 if (un->sd_fi_fifo_un[i] != NULL) { 30484 kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un)); 30485 } 30486 if (un->sd_fi_fifo_arq[i] != NULL) { 30487 kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq)); 30488 } 30489 30490 /* 30491 * kmem_free does not gurantee to set to NULL 30492 * since we uses these to determine if we set 30493 * values or not lets confirm they are always 30494 * NULL after free 30495 */ 30496 un->sd_fi_fifo_pkt[i] = NULL; 30497 un->sd_fi_fifo_un[i] = NULL; 30498 un->sd_fi_fifo_xb[i] = NULL; 30499 un->sd_fi_fifo_arq[i] = NULL; 30500 30501 un->sd_fi_fifo_start++; 30502 30503 mutex_exit(SD_MUTEX(un)); 30504 30505 SD_INFO(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n"); 30506 } 30507 30508 #endif /* SD_FAULT_INJECTION */ 30509 30510 /* 30511 * This routine is invoked in sd_unit_attach(). Before calling it, the 30512 * properties in conf file should be processed already, and "hotpluggable" 30513 * property was processed also. 30514 * 30515 * The sd driver distinguishes 3 different type of devices: removable media, 30516 * non-removable media, and hotpluggable. Below the differences are defined: 30517 * 30518 * 1. Device ID 30519 * 30520 * The device ID of a device is used to identify this device. Refer to 30521 * ddi_devid_register(9F). 30522 * 30523 * For a non-removable media disk device which can provide 0x80 or 0x83 30524 * VPD page (refer to INQUIRY command of SCSI SPC specification), a unique 30525 * device ID is created to identify this device. For other non-removable 30526 * media devices, a default device ID is created only if this device has 30527 * at least 2 alter cylinders. Otherwise, this device has no devid. 30528 * 30529 * ------------------------------------------------------- 30530 * removable media hotpluggable | Can Have Device ID 30531 * ------------------------------------------------------- 30532 * false false | Yes 30533 * false true | Yes 30534 * true x | No 30535 * ------------------------------------------------------ 30536 * 30537 * 30538 * 2. SCSI group 4 commands 30539 * 30540 * In SCSI specs, only some commands in group 4 command set can use 30541 * 8-byte addresses that can be used to access >2TB storage spaces. 30542 * Other commands have no such capability. Without supporting group4, 30543 * it is impossible to make full use of storage spaces of a disk with 30544 * capacity larger than 2TB. 30545 * 30546 * ----------------------------------------------- 30547 * removable media hotpluggable LP64 | Group 30548 * ----------------------------------------------- 30549 * false false false | 1 30550 * false false true | 4 30551 * false true false | 1 30552 * false true true | 4 30553 * true x x | 5 30554 * ----------------------------------------------- 30555 * 30556 * 30557 * 3. Check for VTOC Label 30558 * 30559 * If a direct-access disk has no EFI label, sd will check if it has a 30560 * valid VTOC label. Now, sd also does that check for removable media 30561 * and hotpluggable devices. 30562 * 30563 * -------------------------------------------------------------- 30564 * Direct-Access removable media hotpluggable | Check Label 30565 * ------------------------------------------------------------- 30566 * false false false | No 30567 * false false true | No 30568 * false true false | Yes 30569 * false true true | Yes 30570 * true x x | Yes 30571 * -------------------------------------------------------------- 30572 * 30573 * 30574 * 4. Building default VTOC label 30575 * 30576 * As section 3 says, sd checks if some kinds of devices have VTOC label. 30577 * If those devices have no valid VTOC label, sd(7d) will attempt to 30578 * create default VTOC for them. Currently sd creates default VTOC label 30579 * for all devices on x86 platform (VTOC_16), but only for removable 30580 * media devices on SPARC (VTOC_8). 30581 * 30582 * ----------------------------------------------------------- 30583 * removable media hotpluggable platform | Default Label 30584 * ----------------------------------------------------------- 30585 * false false sparc | No 30586 * false true x86 | Yes 30587 * false true sparc | Yes 30588 * true x x | Yes 30589 * ---------------------------------------------------------- 30590 * 30591 * 30592 * 5. Supported blocksizes of target devices 30593 * 30594 * Sd supports non-512-byte blocksize for removable media devices only. 30595 * For other devices, only 512-byte blocksize is supported. This may be 30596 * changed in near future because some RAID devices require non-512-byte 30597 * blocksize 30598 * 30599 * ----------------------------------------------------------- 30600 * removable media hotpluggable | non-512-byte blocksize 30601 * ----------------------------------------------------------- 30602 * false false | No 30603 * false true | No 30604 * true x | Yes 30605 * ----------------------------------------------------------- 30606 * 30607 * 30608 * 6. Automatic mount & unmount 30609 * 30610 * Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query 30611 * if a device is removable media device. It return 1 for removable media 30612 * devices, and 0 for others. 30613 * 30614 * The automatic mounting subsystem should distinguish between the types 30615 * of devices and apply automounting policies to each. 30616 * 30617 * 30618 * 7. fdisk partition management 30619 * 30620 * Fdisk is traditional partition method on x86 platform. Sd(7d) driver 30621 * just supports fdisk partitions on x86 platform. On sparc platform, sd 30622 * doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize 30623 * fdisk partitions on both x86 and SPARC platform. 30624 * 30625 * ----------------------------------------------------------- 30626 * platform removable media USB/1394 | fdisk supported 30627 * ----------------------------------------------------------- 30628 * x86 X X | true 30629 * ------------------------------------------------------------ 30630 * sparc X X | false 30631 * ------------------------------------------------------------ 30632 * 30633 * 30634 * 8. MBOOT/MBR 30635 * 30636 * Although sd(7d) doesn't support fdisk on SPARC platform, it does support 30637 * read/write mboot for removable media devices on sparc platform. 30638 * 30639 * ----------------------------------------------------------- 30640 * platform removable media USB/1394 | mboot supported 30641 * ----------------------------------------------------------- 30642 * x86 X X | true 30643 * ------------------------------------------------------------ 30644 * sparc false false | false 30645 * sparc false true | true 30646 * sparc true false | true 30647 * sparc true true | true 30648 * ------------------------------------------------------------ 30649 * 30650 * 30651 * 9. error handling during opening device 30652 * 30653 * If failed to open a disk device, an errno is returned. For some kinds 30654 * of errors, different errno is returned depending on if this device is 30655 * a removable media device. This brings USB/1394 hard disks in line with 30656 * expected hard disk behavior. It is not expected that this breaks any 30657 * application. 30658 * 30659 * ------------------------------------------------------ 30660 * removable media hotpluggable | errno 30661 * ------------------------------------------------------ 30662 * false false | EIO 30663 * false true | EIO 30664 * true x | ENXIO 30665 * ------------------------------------------------------ 30666 * 30667 * 30668 * 11. ioctls: DKIOCEJECT, CDROMEJECT 30669 * 30670 * These IOCTLs are applicable only to removable media devices. 30671 * 30672 * ----------------------------------------------------------- 30673 * removable media hotpluggable |DKIOCEJECT, CDROMEJECT 30674 * ----------------------------------------------------------- 30675 * false false | No 30676 * false true | No 30677 * true x | Yes 30678 * ----------------------------------------------------------- 30679 * 30680 * 30681 * 12. Kstats for partitions 30682 * 30683 * sd creates partition kstat for non-removable media devices. USB and 30684 * Firewire hard disks now have partition kstats 30685 * 30686 * ------------------------------------------------------ 30687 * removable media hotpluggable | kstat 30688 * ------------------------------------------------------ 30689 * false false | Yes 30690 * false true | Yes 30691 * true x | No 30692 * ------------------------------------------------------ 30693 * 30694 * 30695 * 13. Removable media & hotpluggable properties 30696 * 30697 * Sd driver creates a "removable-media" property for removable media 30698 * devices. Parent nexus drivers create a "hotpluggable" property if 30699 * it supports hotplugging. 30700 * 30701 * --------------------------------------------------------------------- 30702 * removable media hotpluggable | "removable-media" " hotpluggable" 30703 * --------------------------------------------------------------------- 30704 * false false | No No 30705 * false true | No Yes 30706 * true false | Yes No 30707 * true true | Yes Yes 30708 * --------------------------------------------------------------------- 30709 * 30710 * 30711 * 14. Power Management 30712 * 30713 * sd only power manages removable media devices or devices that support 30714 * LOG_SENSE or have a "pm-capable" property (PSARC/2002/250) 30715 * 30716 * A parent nexus that supports hotplugging can also set "pm-capable" 30717 * if the disk can be power managed. 30718 * 30719 * ------------------------------------------------------------ 30720 * removable media hotpluggable pm-capable | power manage 30721 * ------------------------------------------------------------ 30722 * false false false | No 30723 * false false true | Yes 30724 * false true false | No 30725 * false true true | Yes 30726 * true x x | Yes 30727 * ------------------------------------------------------------ 30728 * 30729 * USB and firewire hard disks can now be power managed independently 30730 * of the framebuffer 30731 * 30732 * 30733 * 15. Support for USB disks with capacity larger than 1TB 30734 * 30735 * Currently, sd doesn't permit a fixed disk device with capacity 30736 * larger than 1TB to be used in a 32-bit operating system environment. 30737 * However, sd doesn't do that for removable media devices. Instead, it 30738 * assumes that removable media devices cannot have a capacity larger 30739 * than 1TB. Therefore, using those devices on 32-bit system is partially 30740 * supported, which can cause some unexpected results. 30741 * 30742 * --------------------------------------------------------------------- 30743 * removable media USB/1394 | Capacity > 1TB | Used in 32-bit env 30744 * --------------------------------------------------------------------- 30745 * false false | true | no 30746 * false true | true | no 30747 * true false | true | Yes 30748 * true true | true | Yes 30749 * --------------------------------------------------------------------- 30750 * 30751 * 30752 * 16. Check write-protection at open time 30753 * 30754 * When a removable media device is being opened for writing without NDELAY 30755 * flag, sd will check if this device is writable. If attempting to open 30756 * without NDELAY flag a write-protected device, this operation will abort. 30757 * 30758 * ------------------------------------------------------------ 30759 * removable media USB/1394 | WP Check 30760 * ------------------------------------------------------------ 30761 * false false | No 30762 * false true | No 30763 * true false | Yes 30764 * true true | Yes 30765 * ------------------------------------------------------------ 30766 * 30767 * 30768 * 17. syslog when corrupted VTOC is encountered 30769 * 30770 * Currently, if an invalid VTOC is encountered, sd only print syslog 30771 * for fixed SCSI disks. 30772 * ------------------------------------------------------------ 30773 * removable media USB/1394 | print syslog 30774 * ------------------------------------------------------------ 30775 * false false | Yes 30776 * false true | No 30777 * true false | No 30778 * true true | No 30779 * ------------------------------------------------------------ 30780 */ 30781 static void 30782 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi) 30783 { 30784 int pm_cap; 30785 30786 ASSERT(un->un_sd); 30787 ASSERT(un->un_sd->sd_inq); 30788 30789 /* 30790 * Enable SYNC CACHE support for all devices. 30791 */ 30792 un->un_f_sync_cache_supported = TRUE; 30793 30794 /* 30795 * Set the sync cache required flag to false. 30796 * This would ensure that there is no SYNC CACHE 30797 * sent when there are no writes 30798 */ 30799 un->un_f_sync_cache_required = FALSE; 30800 30801 if (un->un_sd->sd_inq->inq_rmb) { 30802 /* 30803 * The media of this device is removable. And for this kind 30804 * of devices, it is possible to change medium after opening 30805 * devices. Thus we should support this operation. 30806 */ 30807 un->un_f_has_removable_media = TRUE; 30808 30809 /* 30810 * support non-512-byte blocksize of removable media devices 30811 */ 30812 un->un_f_non_devbsize_supported = TRUE; 30813 30814 /* 30815 * Assume that all removable media devices support DOOR_LOCK 30816 */ 30817 un->un_f_doorlock_supported = TRUE; 30818 30819 /* 30820 * For a removable media device, it is possible to be opened 30821 * with NDELAY flag when there is no media in drive, in this 30822 * case we don't care if device is writable. But if without 30823 * NDELAY flag, we need to check if media is write-protected. 30824 */ 30825 un->un_f_chk_wp_open = TRUE; 30826 30827 /* 30828 * need to start a SCSI watch thread to monitor media state, 30829 * when media is being inserted or ejected, notify syseventd. 30830 */ 30831 un->un_f_monitor_media_state = TRUE; 30832 30833 /* 30834 * Some devices don't support START_STOP_UNIT command. 30835 * Therefore, we'd better check if a device supports it 30836 * before sending it. 30837 */ 30838 un->un_f_check_start_stop = TRUE; 30839 30840 /* 30841 * support eject media ioctl: 30842 * FDEJECT, DKIOCEJECT, CDROMEJECT 30843 */ 30844 un->un_f_eject_media_supported = TRUE; 30845 30846 /* 30847 * Because many removable-media devices don't support 30848 * LOG_SENSE, we couldn't use this command to check if 30849 * a removable media device support power-management. 30850 * We assume that they support power-management via 30851 * START_STOP_UNIT command and can be spun up and down 30852 * without limitations. 30853 */ 30854 un->un_f_pm_supported = TRUE; 30855 30856 /* 30857 * Need to create a zero length (Boolean) property 30858 * removable-media for the removable media devices. 30859 * Note that the return value of the property is not being 30860 * checked, since if unable to create the property 30861 * then do not want the attach to fail altogether. Consistent 30862 * with other property creation in attach. 30863 */ 30864 (void) ddi_prop_create(DDI_DEV_T_NONE, devi, 30865 DDI_PROP_CANSLEEP, "removable-media", NULL, 0); 30866 30867 } else { 30868 /* 30869 * create device ID for device 30870 */ 30871 un->un_f_devid_supported = TRUE; 30872 30873 /* 30874 * Spin up non-removable-media devices once it is attached 30875 */ 30876 un->un_f_attach_spinup = TRUE; 30877 30878 /* 30879 * According to SCSI specification, Sense data has two kinds of 30880 * format: fixed format, and descriptor format. At present, we 30881 * don't support descriptor format sense data for removable 30882 * media. 30883 */ 30884 if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) { 30885 un->un_f_descr_format_supported = TRUE; 30886 } 30887 30888 /* 30889 * kstats are created only for non-removable media devices. 30890 * 30891 * Set this in sd.conf to 0 in order to disable kstats. The 30892 * default is 1, so they are enabled by default. 30893 */ 30894 un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY, 30895 SD_DEVINFO(un), DDI_PROP_DONTPASS, 30896 "enable-partition-kstats", 1)); 30897 30898 /* 30899 * Check if HBA has set the "pm-capable" property. 30900 * If "pm-capable" exists and is non-zero then we can 30901 * power manage the device without checking the start/stop 30902 * cycle count log sense page. 30903 * 30904 * If "pm-capable" exists and is set to be false (0), 30905 * then we should not power manage the device. 30906 * 30907 * If "pm-capable" doesn't exist then pm_cap will 30908 * be set to SD_PM_CAPABLE_UNDEFINED (-1). In this case, 30909 * sd will check the start/stop cycle count log sense page 30910 * and power manage the device if the cycle count limit has 30911 * not been exceeded. 30912 */ 30913 pm_cap = ddi_prop_get_int(DDI_DEV_T_ANY, devi, 30914 DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED); 30915 if (SD_PM_CAPABLE_IS_UNDEFINED(pm_cap)) { 30916 un->un_f_log_sense_supported = TRUE; 30917 if (!un->un_f_power_condition_disabled && 30918 SD_INQUIRY(un)->inq_ansi == 6) { 30919 un->un_f_power_condition_supported = TRUE; 30920 } 30921 } else { 30922 /* 30923 * pm-capable property exists. 30924 * 30925 * Convert "TRUE" values for pm_cap to 30926 * SD_PM_CAPABLE_IS_TRUE to make it easier to check 30927 * later. "TRUE" values are any values defined in 30928 * inquiry.h. 30929 */ 30930 if (SD_PM_CAPABLE_IS_FALSE(pm_cap)) { 30931 un->un_f_log_sense_supported = FALSE; 30932 } else { 30933 /* SD_PM_CAPABLE_IS_TRUE case */ 30934 un->un_f_pm_supported = TRUE; 30935 if (!un->un_f_power_condition_disabled && 30936 SD_PM_CAPABLE_IS_SPC_4(pm_cap)) { 30937 un->un_f_power_condition_supported = 30938 TRUE; 30939 } 30940 if (SD_PM_CAP_LOG_SUPPORTED(pm_cap)) { 30941 un->un_f_log_sense_supported = TRUE; 30942 un->un_f_pm_log_sense_smart = 30943 SD_PM_CAP_SMART_LOG(pm_cap); 30944 } 30945 } 30946 30947 SD_INFO(SD_LOG_ATTACH_DETACH, un, 30948 "sd_unit_attach: un:0x%p pm-capable " 30949 "property set to %d.\n", un, un->un_f_pm_supported); 30950 } 30951 } 30952 30953 if (un->un_f_is_hotpluggable) { 30954 30955 /* 30956 * Have to watch hotpluggable devices as well, since 30957 * that's the only way for userland applications to 30958 * detect hot removal while device is busy/mounted. 30959 */ 30960 un->un_f_monitor_media_state = TRUE; 30961 30962 un->un_f_check_start_stop = TRUE; 30963 30964 } 30965 } 30966 30967 /* 30968 * sd_tg_rdwr: 30969 * Provides rdwr access for cmlb via sd_tgops. The start_block is 30970 * in sys block size, req_length in bytes. 30971 * 30972 */ 30973 static int 30974 sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr, 30975 diskaddr_t start_block, size_t reqlength, void *tg_cookie) 30976 { 30977 struct sd_lun *un; 30978 int path_flag = (int)(uintptr_t)tg_cookie; 30979 char *dkl = NULL; 30980 diskaddr_t real_addr = start_block; 30981 diskaddr_t first_byte, end_block; 30982 30983 size_t buffer_size = reqlength; 30984 int rval = 0; 30985 diskaddr_t cap; 30986 uint32_t lbasize; 30987 sd_ssc_t *ssc; 30988 30989 un = ddi_get_soft_state(sd_state, ddi_get_instance(devi)); 30990 if (un == NULL) 30991 return (ENXIO); 30992 30993 if (cmd != TG_READ && cmd != TG_WRITE) 30994 return (EINVAL); 30995 30996 ssc = sd_ssc_init(un); 30997 mutex_enter(SD_MUTEX(un)); 30998 if (un->un_f_tgt_blocksize_is_valid == FALSE) { 30999 mutex_exit(SD_MUTEX(un)); 31000 rval = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap, 31001 &lbasize, path_flag); 31002 if (rval != 0) 31003 goto done1; 31004 mutex_enter(SD_MUTEX(un)); 31005 sd_update_block_info(un, lbasize, cap); 31006 if ((un->un_f_tgt_blocksize_is_valid == FALSE)) { 31007 mutex_exit(SD_MUTEX(un)); 31008 rval = EIO; 31009 goto done; 31010 } 31011 } 31012 31013 if (NOT_DEVBSIZE(un)) { 31014 /* 31015 * sys_blocksize != tgt_blocksize, need to re-adjust 31016 * blkno and save the index to beginning of dk_label 31017 */ 31018 first_byte = SD_SYSBLOCKS2BYTES(start_block); 31019 real_addr = first_byte / un->un_tgt_blocksize; 31020 31021 end_block = (first_byte + reqlength + 31022 un->un_tgt_blocksize - 1) / un->un_tgt_blocksize; 31023 31024 /* round up buffer size to multiple of target block size */ 31025 buffer_size = (end_block - real_addr) * un->un_tgt_blocksize; 31026 31027 SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_tg_rdwr", 31028 "label_addr: 0x%x allocation size: 0x%x\n", 31029 real_addr, buffer_size); 31030 31031 if (((first_byte % un->un_tgt_blocksize) != 0) || 31032 (reqlength % un->un_tgt_blocksize) != 0) 31033 /* the request is not aligned */ 31034 dkl = kmem_zalloc(buffer_size, KM_SLEEP); 31035 } 31036 31037 /* 31038 * The MMC standard allows READ CAPACITY to be 31039 * inaccurate by a bounded amount (in the interest of 31040 * response latency). As a result, failed READs are 31041 * commonplace (due to the reading of metadata and not 31042 * data). Depending on the per-Vendor/drive Sense data, 31043 * the failed READ can cause many (unnecessary) retries. 31044 */ 31045 31046 if (ISCD(un) && (cmd == TG_READ) && 31047 (un->un_f_blockcount_is_valid == TRUE) && 31048 ((start_block == (un->un_blockcount - 1))|| 31049 (start_block == (un->un_blockcount - 2)))) { 31050 path_flag = SD_PATH_DIRECT_PRIORITY; 31051 } 31052 31053 mutex_exit(SD_MUTEX(un)); 31054 if (cmd == TG_READ) { 31055 rval = sd_send_scsi_READ(ssc, (dkl != NULL)? dkl: bufaddr, 31056 buffer_size, real_addr, path_flag); 31057 if (dkl != NULL) 31058 bcopy(dkl + SD_TGTBYTEOFFSET(un, start_block, 31059 real_addr), bufaddr, reqlength); 31060 } else { 31061 if (dkl) { 31062 rval = sd_send_scsi_READ(ssc, dkl, buffer_size, 31063 real_addr, path_flag); 31064 if (rval) { 31065 goto done1; 31066 } 31067 bcopy(bufaddr, dkl + SD_TGTBYTEOFFSET(un, start_block, 31068 real_addr), reqlength); 31069 } 31070 rval = sd_send_scsi_WRITE(ssc, (dkl != NULL)? dkl: bufaddr, 31071 buffer_size, real_addr, path_flag); 31072 } 31073 31074 done1: 31075 if (dkl != NULL) 31076 kmem_free(dkl, buffer_size); 31077 31078 if (rval != 0) { 31079 if (rval == EIO) 31080 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 31081 else 31082 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 31083 } 31084 done: 31085 sd_ssc_fini(ssc); 31086 return (rval); 31087 } 31088 31089 31090 static int 31091 sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie) 31092 { 31093 31094 struct sd_lun *un; 31095 diskaddr_t cap; 31096 uint32_t lbasize; 31097 int path_flag = (int)(uintptr_t)tg_cookie; 31098 int ret = 0; 31099 31100 un = ddi_get_soft_state(sd_state, ddi_get_instance(devi)); 31101 if (un == NULL) 31102 return (ENXIO); 31103 31104 switch (cmd) { 31105 case TG_GETPHYGEOM: 31106 case TG_GETVIRTGEOM: 31107 case TG_GETCAPACITY: 31108 case TG_GETBLOCKSIZE: 31109 mutex_enter(SD_MUTEX(un)); 31110 31111 if ((un->un_f_blockcount_is_valid == TRUE) && 31112 (un->un_f_tgt_blocksize_is_valid == TRUE)) { 31113 cap = un->un_blockcount; 31114 lbasize = un->un_tgt_blocksize; 31115 mutex_exit(SD_MUTEX(un)); 31116 } else { 31117 sd_ssc_t *ssc; 31118 mutex_exit(SD_MUTEX(un)); 31119 ssc = sd_ssc_init(un); 31120 ret = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap, 31121 &lbasize, path_flag); 31122 if (ret != 0) { 31123 if (ret == EIO) 31124 sd_ssc_assessment(ssc, 31125 SD_FMT_STATUS_CHECK); 31126 else 31127 sd_ssc_assessment(ssc, 31128 SD_FMT_IGNORE); 31129 sd_ssc_fini(ssc); 31130 return (ret); 31131 } 31132 sd_ssc_fini(ssc); 31133 mutex_enter(SD_MUTEX(un)); 31134 sd_update_block_info(un, lbasize, cap); 31135 if ((un->un_f_blockcount_is_valid == FALSE) || 31136 (un->un_f_tgt_blocksize_is_valid == FALSE)) { 31137 mutex_exit(SD_MUTEX(un)); 31138 return (EIO); 31139 } 31140 mutex_exit(SD_MUTEX(un)); 31141 } 31142 31143 if (cmd == TG_GETCAPACITY) { 31144 *(diskaddr_t *)arg = cap; 31145 return (0); 31146 } 31147 31148 if (cmd == TG_GETBLOCKSIZE) { 31149 *(uint32_t *)arg = lbasize; 31150 return (0); 31151 } 31152 31153 if (cmd == TG_GETPHYGEOM) 31154 ret = sd_get_physical_geometry(un, (cmlb_geom_t *)arg, 31155 cap, lbasize, path_flag); 31156 else 31157 /* TG_GETVIRTGEOM */ 31158 ret = sd_get_virtual_geometry(un, 31159 (cmlb_geom_t *)arg, cap, lbasize); 31160 31161 return (ret); 31162 31163 case TG_GETATTR: 31164 mutex_enter(SD_MUTEX(un)); 31165 ((tg_attribute_t *)arg)->media_is_writable = 31166 un->un_f_mmc_writable_media; 31167 ((tg_attribute_t *)arg)->media_is_solid_state = 31168 un->un_f_is_solid_state; 31169 mutex_exit(SD_MUTEX(un)); 31170 return (0); 31171 default: 31172 return (ENOTTY); 31173 31174 } 31175 } 31176 31177 /* 31178 * Function: sd_ssc_ereport_post 31179 * 31180 * Description: Will be called when SD driver need to post an ereport. 31181 * 31182 * Context: Kernel thread or interrupt context. 31183 */ 31184 31185 #define DEVID_IF_KNOWN(d) "devid", DATA_TYPE_STRING, (d) ? (d) : "unknown" 31186 31187 static void 31188 sd_ssc_ereport_post(sd_ssc_t *ssc, enum sd_driver_assessment drv_assess) 31189 { 31190 int uscsi_path_instance = 0; 31191 uchar_t uscsi_pkt_reason; 31192 uint32_t uscsi_pkt_state; 31193 uint32_t uscsi_pkt_statistics; 31194 uint64_t uscsi_ena; 31195 uchar_t op_code; 31196 uint8_t *sensep; 31197 union scsi_cdb *cdbp; 31198 uint_t cdblen = 0; 31199 uint_t senlen = 0; 31200 struct sd_lun *un; 31201 dev_info_t *dip; 31202 char *devid; 31203 int ssc_invalid_flags = SSC_FLAGS_INVALID_PKT_REASON | 31204 SSC_FLAGS_INVALID_STATUS | 31205 SSC_FLAGS_INVALID_SENSE | 31206 SSC_FLAGS_INVALID_DATA; 31207 char assessment[16]; 31208 31209 ASSERT(ssc != NULL); 31210 ASSERT(ssc->ssc_uscsi_cmd != NULL); 31211 ASSERT(ssc->ssc_uscsi_info != NULL); 31212 31213 un = ssc->ssc_un; 31214 ASSERT(un != NULL); 31215 31216 dip = un->un_sd->sd_dev; 31217 31218 /* 31219 * Get the devid: 31220 * devid will only be passed to non-transport error reports. 31221 */ 31222 devid = DEVI(dip)->devi_devid_str; 31223 31224 /* 31225 * If we are syncing or dumping, the command will not be executed 31226 * so we bypass this situation. 31227 */ 31228 if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) || 31229 (un->un_state == SD_STATE_DUMPING)) 31230 return; 31231 31232 uscsi_pkt_reason = ssc->ssc_uscsi_info->ui_pkt_reason; 31233 uscsi_path_instance = ssc->ssc_uscsi_cmd->uscsi_path_instance; 31234 uscsi_pkt_state = ssc->ssc_uscsi_info->ui_pkt_state; 31235 uscsi_pkt_statistics = ssc->ssc_uscsi_info->ui_pkt_statistics; 31236 uscsi_ena = ssc->ssc_uscsi_info->ui_ena; 31237 31238 sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf; 31239 cdbp = (union scsi_cdb *)ssc->ssc_uscsi_cmd->uscsi_cdb; 31240 31241 /* In rare cases, EG:DOORLOCK, the cdb could be NULL */ 31242 if (cdbp == NULL) { 31243 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 31244 "sd_ssc_ereport_post meet empty cdb\n"); 31245 return; 31246 } 31247 31248 op_code = cdbp->scc_cmd; 31249 31250 cdblen = (int)ssc->ssc_uscsi_cmd->uscsi_cdblen; 31251 senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen - 31252 ssc->ssc_uscsi_cmd->uscsi_rqresid); 31253 31254 if (senlen > 0) 31255 ASSERT(sensep != NULL); 31256 31257 /* 31258 * Initialize drv_assess to corresponding values. 31259 * SD_FM_DRV_FATAL will be mapped to "fail" or "fatal" depending 31260 * on the sense-key returned back. 31261 */ 31262 switch (drv_assess) { 31263 case SD_FM_DRV_RECOVERY: 31264 (void) sprintf(assessment, "%s", "recovered"); 31265 break; 31266 case SD_FM_DRV_RETRY: 31267 (void) sprintf(assessment, "%s", "retry"); 31268 break; 31269 case SD_FM_DRV_NOTICE: 31270 (void) sprintf(assessment, "%s", "info"); 31271 break; 31272 case SD_FM_DRV_FATAL: 31273 default: 31274 (void) sprintf(assessment, "%s", "unknown"); 31275 } 31276 /* 31277 * If drv_assess == SD_FM_DRV_RECOVERY, this should be a recovered 31278 * command, we will post ereport.io.scsi.cmd.disk.recovered. 31279 * driver-assessment will always be "recovered" here. 31280 */ 31281 if (drv_assess == SD_FM_DRV_RECOVERY) { 31282 scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, NULL, 31283 "cmd.disk.recovered", uscsi_ena, devid, NULL, 31284 DDI_NOSLEEP, NULL, 31285 FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, 31286 DEVID_IF_KNOWN(devid), 31287 "driver-assessment", DATA_TYPE_STRING, assessment, 31288 "op-code", DATA_TYPE_UINT8, op_code, 31289 "cdb", DATA_TYPE_UINT8_ARRAY, 31290 cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb, 31291 "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason, 31292 "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state, 31293 "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics, 31294 NULL); 31295 return; 31296 } 31297 31298 /* 31299 * If there is un-expected/un-decodable data, we should post 31300 * ereport.io.scsi.cmd.disk.dev.uderr. 31301 * driver-assessment will be set based on parameter drv_assess. 31302 * SSC_FLAGS_INVALID_SENSE - invalid sense data sent back. 31303 * SSC_FLAGS_INVALID_PKT_REASON - invalid pkt-reason encountered. 31304 * SSC_FLAGS_INVALID_STATUS - invalid stat-code encountered. 31305 * SSC_FLAGS_INVALID_DATA - invalid data sent back. 31306 */ 31307 if (ssc->ssc_flags & ssc_invalid_flags) { 31308 if (ssc->ssc_flags & SSC_FLAGS_INVALID_SENSE) { 31309 scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, 31310 NULL, "cmd.disk.dev.uderr", uscsi_ena, devid, 31311 NULL, DDI_NOSLEEP, NULL, 31312 FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, 31313 DEVID_IF_KNOWN(devid), 31314 "driver-assessment", DATA_TYPE_STRING, 31315 drv_assess == SD_FM_DRV_FATAL ? 31316 "fail" : assessment, 31317 "op-code", DATA_TYPE_UINT8, op_code, 31318 "cdb", DATA_TYPE_UINT8_ARRAY, 31319 cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb, 31320 "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason, 31321 "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state, 31322 "pkt-stats", DATA_TYPE_UINT32, 31323 uscsi_pkt_statistics, 31324 "stat-code", DATA_TYPE_UINT8, 31325 ssc->ssc_uscsi_cmd->uscsi_status, 31326 "un-decode-info", DATA_TYPE_STRING, 31327 ssc->ssc_info, 31328 "un-decode-value", DATA_TYPE_UINT8_ARRAY, 31329 senlen, sensep, 31330 NULL); 31331 } else { 31332 /* 31333 * For other type of invalid data, the 31334 * un-decode-value field would be empty because the 31335 * un-decodable content could be seen from upper 31336 * level payload or inside un-decode-info. 31337 */ 31338 scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, 31339 NULL, 31340 "cmd.disk.dev.uderr", uscsi_ena, devid, 31341 NULL, DDI_NOSLEEP, NULL, 31342 FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, 31343 DEVID_IF_KNOWN(devid), 31344 "driver-assessment", DATA_TYPE_STRING, 31345 drv_assess == SD_FM_DRV_FATAL ? 31346 "fail" : assessment, 31347 "op-code", DATA_TYPE_UINT8, op_code, 31348 "cdb", DATA_TYPE_UINT8_ARRAY, 31349 cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb, 31350 "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason, 31351 "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state, 31352 "pkt-stats", DATA_TYPE_UINT32, 31353 uscsi_pkt_statistics, 31354 "stat-code", DATA_TYPE_UINT8, 31355 ssc->ssc_uscsi_cmd->uscsi_status, 31356 "un-decode-info", DATA_TYPE_STRING, 31357 ssc->ssc_info, 31358 "un-decode-value", DATA_TYPE_UINT8_ARRAY, 31359 0, NULL, 31360 NULL); 31361 } 31362 ssc->ssc_flags &= ~ssc_invalid_flags; 31363 return; 31364 } 31365 31366 if (uscsi_pkt_reason != CMD_CMPLT || 31367 (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT)) { 31368 /* 31369 * pkt-reason != CMD_CMPLT or SSC_FLAGS_TRAN_ABORT was 31370 * set inside sd_start_cmds due to errors(bad packet or 31371 * fatal transport error), we should take it as a 31372 * transport error, so we post ereport.io.scsi.cmd.disk.tran. 31373 * driver-assessment will be set based on drv_assess. 31374 * We will set devid to NULL because it is a transport 31375 * error. 31376 */ 31377 if (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT) 31378 ssc->ssc_flags &= ~SSC_FLAGS_TRAN_ABORT; 31379 31380 scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, NULL, 31381 "cmd.disk.tran", uscsi_ena, NULL, NULL, DDI_NOSLEEP, NULL, 31382 FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, 31383 DEVID_IF_KNOWN(devid), 31384 "driver-assessment", DATA_TYPE_STRING, 31385 drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment, 31386 "op-code", DATA_TYPE_UINT8, op_code, 31387 "cdb", DATA_TYPE_UINT8_ARRAY, 31388 cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb, 31389 "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason, 31390 "pkt-state", DATA_TYPE_UINT8, uscsi_pkt_state, 31391 "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics, 31392 NULL); 31393 } else { 31394 /* 31395 * If we got here, we have a completed command, and we need 31396 * to further investigate the sense data to see what kind 31397 * of ereport we should post. 31398 * Post ereport.io.scsi.cmd.disk.dev.rqs.merr 31399 * if sense-key == 0x3. 31400 * Post ereport.io.scsi.cmd.disk.dev.rqs.derr otherwise. 31401 * driver-assessment will be set based on the parameter 31402 * drv_assess. 31403 */ 31404 if (senlen > 0) { 31405 /* 31406 * Here we have sense data available. 31407 */ 31408 uint8_t sense_key; 31409 sense_key = scsi_sense_key(sensep); 31410 if (sense_key == 0x3) { 31411 /* 31412 * sense-key == 0x3(medium error), 31413 * driver-assessment should be "fatal" if 31414 * drv_assess is SD_FM_DRV_FATAL. 31415 */ 31416 scsi_fm_ereport_post(un->un_sd, 31417 uscsi_path_instance, NULL, 31418 "cmd.disk.dev.rqs.merr", 31419 uscsi_ena, devid, NULL, DDI_NOSLEEP, NULL, 31420 FM_VERSION, DATA_TYPE_UINT8, 31421 FM_EREPORT_VERS0, 31422 DEVID_IF_KNOWN(devid), 31423 "driver-assessment", 31424 DATA_TYPE_STRING, 31425 drv_assess == SD_FM_DRV_FATAL ? 31426 "fatal" : assessment, 31427 "op-code", 31428 DATA_TYPE_UINT8, op_code, 31429 "cdb", 31430 DATA_TYPE_UINT8_ARRAY, cdblen, 31431 ssc->ssc_uscsi_cmd->uscsi_cdb, 31432 "pkt-reason", 31433 DATA_TYPE_UINT8, uscsi_pkt_reason, 31434 "pkt-state", 31435 DATA_TYPE_UINT8, uscsi_pkt_state, 31436 "pkt-stats", 31437 DATA_TYPE_UINT32, 31438 uscsi_pkt_statistics, 31439 "stat-code", 31440 DATA_TYPE_UINT8, 31441 ssc->ssc_uscsi_cmd->uscsi_status, 31442 "key", 31443 DATA_TYPE_UINT8, 31444 scsi_sense_key(sensep), 31445 "asc", 31446 DATA_TYPE_UINT8, 31447 scsi_sense_asc(sensep), 31448 "ascq", 31449 DATA_TYPE_UINT8, 31450 scsi_sense_ascq(sensep), 31451 "sense-data", 31452 DATA_TYPE_UINT8_ARRAY, 31453 senlen, sensep, 31454 "lba", 31455 DATA_TYPE_UINT64, 31456 ssc->ssc_uscsi_info->ui_lba, 31457 NULL); 31458 } else { 31459 /* 31460 * if sense-key == 0x4(hardware 31461 * error), driver-assessment should 31462 * be "fatal" if drv_assess is 31463 * SD_FM_DRV_FATAL. 31464 */ 31465 scsi_fm_ereport_post(un->un_sd, 31466 uscsi_path_instance, NULL, 31467 "cmd.disk.dev.rqs.derr", 31468 uscsi_ena, devid, 31469 NULL, DDI_NOSLEEP, NULL, 31470 FM_VERSION, 31471 DATA_TYPE_UINT8, FM_EREPORT_VERS0, 31472 DEVID_IF_KNOWN(devid), 31473 "driver-assessment", 31474 DATA_TYPE_STRING, 31475 drv_assess == SD_FM_DRV_FATAL ? 31476 (sense_key == 0x4 ? 31477 "fatal" : "fail") : assessment, 31478 "op-code", 31479 DATA_TYPE_UINT8, op_code, 31480 "cdb", 31481 DATA_TYPE_UINT8_ARRAY, cdblen, 31482 ssc->ssc_uscsi_cmd->uscsi_cdb, 31483 "pkt-reason", 31484 DATA_TYPE_UINT8, uscsi_pkt_reason, 31485 "pkt-state", 31486 DATA_TYPE_UINT8, uscsi_pkt_state, 31487 "pkt-stats", 31488 DATA_TYPE_UINT32, 31489 uscsi_pkt_statistics, 31490 "stat-code", 31491 DATA_TYPE_UINT8, 31492 ssc->ssc_uscsi_cmd->uscsi_status, 31493 "key", 31494 DATA_TYPE_UINT8, 31495 scsi_sense_key(sensep), 31496 "asc", 31497 DATA_TYPE_UINT8, 31498 scsi_sense_asc(sensep), 31499 "ascq", 31500 DATA_TYPE_UINT8, 31501 scsi_sense_ascq(sensep), 31502 "sense-data", 31503 DATA_TYPE_UINT8_ARRAY, 31504 senlen, sensep, 31505 NULL); 31506 } 31507 } else { 31508 /* 31509 * For stat_code == STATUS_GOOD, this is not a 31510 * hardware error. 31511 */ 31512 if (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD) 31513 return; 31514 31515 /* 31516 * Post ereport.io.scsi.cmd.disk.dev.serr if we got the 31517 * stat-code but with sense data unavailable. 31518 * driver-assessment will be set based on parameter 31519 * drv_assess. 31520 */ 31521 scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, 31522 NULL, 31523 "cmd.disk.dev.serr", uscsi_ena, 31524 devid, NULL, DDI_NOSLEEP, NULL, 31525 FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, 31526 DEVID_IF_KNOWN(devid), 31527 "driver-assessment", DATA_TYPE_STRING, 31528 drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment, 31529 "op-code", DATA_TYPE_UINT8, op_code, 31530 "cdb", 31531 DATA_TYPE_UINT8_ARRAY, 31532 cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb, 31533 "pkt-reason", 31534 DATA_TYPE_UINT8, uscsi_pkt_reason, 31535 "pkt-state", 31536 DATA_TYPE_UINT8, uscsi_pkt_state, 31537 "pkt-stats", 31538 DATA_TYPE_UINT32, uscsi_pkt_statistics, 31539 "stat-code", 31540 DATA_TYPE_UINT8, 31541 ssc->ssc_uscsi_cmd->uscsi_status, 31542 NULL); 31543 } 31544 } 31545 } 31546 31547 /* 31548 * Function: sd_ssc_extract_info 31549 * 31550 * Description: Extract information available to help generate ereport. 31551 * 31552 * Context: Kernel thread or interrupt context. 31553 */ 31554 static void 31555 sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un, struct scsi_pkt *pktp, 31556 struct buf *bp, struct sd_xbuf *xp) 31557 { 31558 size_t senlen = 0; 31559 union scsi_cdb *cdbp; 31560 int path_instance; 31561 /* 31562 * Need scsi_cdb_size array to determine the cdb length. 31563 */ 31564 extern uchar_t scsi_cdb_size[]; 31565 31566 ASSERT(un != NULL); 31567 ASSERT(pktp != NULL); 31568 ASSERT(bp != NULL); 31569 ASSERT(xp != NULL); 31570 ASSERT(ssc != NULL); 31571 ASSERT(mutex_owned(SD_MUTEX(un))); 31572 31573 /* 31574 * Transfer the cdb buffer pointer here. 31575 */ 31576 cdbp = (union scsi_cdb *)pktp->pkt_cdbp; 31577 31578 ssc->ssc_uscsi_cmd->uscsi_cdblen = scsi_cdb_size[GETGROUP(cdbp)]; 31579 ssc->ssc_uscsi_cmd->uscsi_cdb = (caddr_t)cdbp; 31580 31581 /* 31582 * Transfer the sense data buffer pointer if sense data is available, 31583 * calculate the sense data length first. 31584 */ 31585 if ((xp->xb_sense_state & STATE_XARQ_DONE) || 31586 (xp->xb_sense_state & STATE_ARQ_DONE)) { 31587 /* 31588 * For arq case, we will enter here. 31589 */ 31590 if (xp->xb_sense_state & STATE_XARQ_DONE) { 31591 senlen = MAX_SENSE_LENGTH - xp->xb_sense_resid; 31592 } else { 31593 senlen = SENSE_LENGTH; 31594 } 31595 } else { 31596 /* 31597 * For non-arq case, we will enter this branch. 31598 */ 31599 if (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK && 31600 (xp->xb_sense_state & STATE_XFERRED_DATA)) { 31601 senlen = SENSE_LENGTH - xp->xb_sense_resid; 31602 } 31603 31604 } 31605 31606 ssc->ssc_uscsi_cmd->uscsi_rqlen = (senlen & 0xff); 31607 ssc->ssc_uscsi_cmd->uscsi_rqresid = 0; 31608 ssc->ssc_uscsi_cmd->uscsi_rqbuf = (caddr_t)xp->xb_sense_data; 31609 31610 ssc->ssc_uscsi_cmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK); 31611 31612 /* 31613 * Only transfer path_instance when scsi_pkt was properly allocated. 31614 */ 31615 path_instance = pktp->pkt_path_instance; 31616 if (scsi_pkt_allocated_correctly(pktp) && path_instance) 31617 ssc->ssc_uscsi_cmd->uscsi_path_instance = path_instance; 31618 else 31619 ssc->ssc_uscsi_cmd->uscsi_path_instance = 0; 31620 31621 /* 31622 * Copy in the other fields we may need when posting ereport. 31623 */ 31624 ssc->ssc_uscsi_info->ui_pkt_reason = pktp->pkt_reason; 31625 ssc->ssc_uscsi_info->ui_pkt_state = pktp->pkt_state; 31626 ssc->ssc_uscsi_info->ui_pkt_statistics = pktp->pkt_statistics; 31627 ssc->ssc_uscsi_info->ui_lba = (uint64_t)SD_GET_BLKNO(bp); 31628 31629 /* 31630 * For partially read/write command, we will not create ena 31631 * in case of a successful command be reconized as recovered. 31632 */ 31633 if ((pktp->pkt_reason == CMD_CMPLT) && 31634 (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD) && 31635 (senlen == 0)) { 31636 return; 31637 } 31638 31639 /* 31640 * To associate ereports of a single command execution flow, we 31641 * need a shared ena for a specific command. 31642 */ 31643 if (xp->xb_ena == 0) 31644 xp->xb_ena = fm_ena_generate(0, FM_ENA_FMT1); 31645 ssc->ssc_uscsi_info->ui_ena = xp->xb_ena; 31646 } 31647 31648 31649 /* 31650 * Function: sd_check_solid_state 31651 * 31652 * Description: Query the optional INQUIRY VPD page 0xb1. If the device 31653 * supports VPD page 0xb1, sd examines the MEDIUM ROTATION 31654 * RATE. If the MEDIUM ROTATION RATE is 1, sd assumes the 31655 * device is a solid state drive. 31656 * 31657 * Context: Kernel thread or interrupt context. 31658 */ 31659 31660 static void 31661 sd_check_solid_state(sd_ssc_t *ssc) 31662 { 31663 int rval = 0; 31664 uchar_t *inqb1 = NULL; 31665 size_t inqb1_len = MAX_INQUIRY_SIZE; 31666 size_t inqb1_resid = 0; 31667 struct sd_lun *un; 31668 31669 ASSERT(ssc != NULL); 31670 un = ssc->ssc_un; 31671 ASSERT(un != NULL); 31672 ASSERT(!mutex_owned(SD_MUTEX(un))); 31673 31674 mutex_enter(SD_MUTEX(un)); 31675 un->un_f_is_solid_state = FALSE; 31676 31677 if (ISCD(un)) { 31678 mutex_exit(SD_MUTEX(un)); 31679 return; 31680 } 31681 31682 if (sd_check_vpd_page_support(ssc) == 0 && 31683 un->un_vpd_page_mask & SD_VPD_DEV_CHARACTER_PG) { 31684 mutex_exit(SD_MUTEX(un)); 31685 /* collect page b1 data */ 31686 inqb1 = kmem_zalloc(inqb1_len, KM_SLEEP); 31687 31688 rval = sd_send_scsi_INQUIRY(ssc, inqb1, inqb1_len, 31689 0x01, 0xB1, &inqb1_resid); 31690 31691 if (rval == 0 && (inqb1_len - inqb1_resid > 5)) { 31692 SD_TRACE(SD_LOG_COMMON, un, 31693 "sd_check_solid_state: \ 31694 successfully get VPD page: %x \ 31695 PAGE LENGTH: %x BYTE 4: %x \ 31696 BYTE 5: %x", inqb1[1], inqb1[3], inqb1[4], 31697 inqb1[5]); 31698 31699 mutex_enter(SD_MUTEX(un)); 31700 /* 31701 * Check the MEDIUM ROTATION RATE. If it is set 31702 * to 1, the device is a solid state drive. 31703 */ 31704 if (inqb1[4] == 0 && inqb1[5] == 1) { 31705 un->un_f_is_solid_state = TRUE; 31706 /* solid state drives don't need disksort */ 31707 un->un_f_disksort_disabled = TRUE; 31708 } 31709 mutex_exit(SD_MUTEX(un)); 31710 } else if (rval != 0) { 31711 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 31712 } 31713 31714 kmem_free(inqb1, inqb1_len); 31715 } else { 31716 mutex_exit(SD_MUTEX(un)); 31717 } 31718 } 31719 31720 /* 31721 * Function: sd_check_emulation_mode 31722 * 31723 * Description: Check whether the SSD is at emulation mode 31724 * by issuing READ_CAPACITY_16 to see whether 31725 * we can get physical block size of the drive. 31726 * 31727 * Context: Kernel thread or interrupt context. 31728 */ 31729 31730 static void 31731 sd_check_emulation_mode(sd_ssc_t *ssc) 31732 { 31733 int rval = 0; 31734 uint64_t capacity; 31735 uint_t lbasize; 31736 uint_t pbsize; 31737 int i; 31738 int devid_len; 31739 struct sd_lun *un; 31740 31741 ASSERT(ssc != NULL); 31742 un = ssc->ssc_un; 31743 ASSERT(un != NULL); 31744 ASSERT(!mutex_owned(SD_MUTEX(un))); 31745 31746 mutex_enter(SD_MUTEX(un)); 31747 if (ISCD(un)) { 31748 mutex_exit(SD_MUTEX(un)); 31749 return; 31750 } 31751 31752 if (un->un_f_descr_format_supported) { 31753 mutex_exit(SD_MUTEX(un)); 31754 rval = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity, &lbasize, 31755 &pbsize, SD_PATH_DIRECT); 31756 mutex_enter(SD_MUTEX(un)); 31757 31758 if (rval != 0) { 31759 un->un_phy_blocksize = DEV_BSIZE; 31760 } else { 31761 if (!ISP2(pbsize % DEV_BSIZE) || pbsize == 0) { 31762 un->un_phy_blocksize = DEV_BSIZE; 31763 } else if (pbsize > un->un_phy_blocksize) { 31764 /* 31765 * Don't reset the physical blocksize 31766 * unless we've detected a larger value. 31767 */ 31768 un->un_phy_blocksize = pbsize; 31769 } 31770 } 31771 } 31772 31773 for (i = 0; i < sd_flash_dev_table_size; i++) { 31774 devid_len = (int)strlen(sd_flash_dev_table[i]); 31775 if (sd_sdconf_id_match(un, sd_flash_dev_table[i], devid_len) 31776 == SD_SUCCESS) { 31777 un->un_phy_blocksize = SSD_SECSIZE; 31778 if (un->un_f_is_solid_state && 31779 un->un_phy_blocksize != un->un_tgt_blocksize) 31780 un->un_f_enable_rmw = TRUE; 31781 } 31782 } 31783 31784 mutex_exit(SD_MUTEX(un)); 31785 }