3492 some e1000g devices don't support 15 unicast addresses
1 /*
2 * This file is provided under a CDDLv1 license. When using or
3 * redistributing this file, you may do so under this license.
4 * In redistributing this file this license must be included
5 * and no other modification of this header file is permitted.
6 *
7 * CDDL LICENSE SUMMARY
8 *
9 * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved.
10 *
11 * The contents of this file are subject to the terms of Version
12 * 1.0 of the Common Development and Distribution License (the "License").
13 *
14 * You should have received a copy of the License with this software.
15 * You can obtain a copy of the License at
16 * http://www.opensolaris.org/os/licensing.
17 * See the License for the specific language governing permissions
18 * and limitations under the License.
19 */
20
21 /*
22 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 /*
26 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
27 * Copyright 2012 DEY Storage Systems, Inc. All rights reserved.
28 */
29
30 /*
31 * **********************************************************************
32 * *
33 * Module Name: *
34 * e1000g_main.c *
35 * *
36 * Abstract: *
37 * This file contains the interface routines for the solaris OS. *
38 * It has all DDI entry point routines and GLD entry point routines. *
39 * *
40 * This file also contains routines that take care of initialization *
41 * uninit routine and interrupt routine. *
42 * *
43 * **********************************************************************
44 */
45
46 #include <sys/dlpi.h>
47 #include <sys/mac.h>
48 #include "e1000g_sw.h"
49 #include "e1000g_debug.h"
50
51 static char ident[] = "Intel PRO/1000 Ethernet";
52 /* LINTED E_STATIC_UNUSED */
53 static char e1000g_version[] = "Driver Ver. 5.3.24";
54
55 /*
56 * Proto types for DDI entry points
57 */
58 static int e1000g_attach(dev_info_t *, ddi_attach_cmd_t);
59 static int e1000g_detach(dev_info_t *, ddi_detach_cmd_t);
60 static int e1000g_quiesce(dev_info_t *);
61
62 /*
63 * init and intr routines prototype
64 */
65 static int e1000g_resume(dev_info_t *);
66 static int e1000g_suspend(dev_info_t *);
67 static uint_t e1000g_intr_pciexpress(caddr_t);
68 static uint_t e1000g_intr(caddr_t);
69 static void e1000g_intr_work(struct e1000g *, uint32_t);
70 #pragma inline(e1000g_intr_work)
71 static int e1000g_init(struct e1000g *);
72 static int e1000g_start(struct e1000g *, boolean_t);
73 static void e1000g_stop(struct e1000g *, boolean_t);
74 static int e1000g_m_start(void *);
75 static void e1000g_m_stop(void *);
76 static int e1000g_m_promisc(void *, boolean_t);
77 static boolean_t e1000g_m_getcapab(void *, mac_capab_t, void *);
78 static int e1000g_m_multicst(void *, boolean_t, const uint8_t *);
79 static void e1000g_m_ioctl(void *, queue_t *, mblk_t *);
80 static int e1000g_m_setprop(void *, const char *, mac_prop_id_t,
81 uint_t, const void *);
82 static int e1000g_m_getprop(void *, const char *, mac_prop_id_t,
83 uint_t, void *);
84 static void e1000g_m_propinfo(void *, const char *, mac_prop_id_t,
85 mac_prop_info_handle_t);
86 static int e1000g_set_priv_prop(struct e1000g *, const char *, uint_t,
87 const void *);
88 static int e1000g_get_priv_prop(struct e1000g *, const char *, uint_t, void *);
89 static void e1000g_init_locks(struct e1000g *);
90 static void e1000g_destroy_locks(struct e1000g *);
91 static int e1000g_identify_hardware(struct e1000g *);
92 static int e1000g_regs_map(struct e1000g *);
93 static int e1000g_set_driver_params(struct e1000g *);
94 static void e1000g_set_bufsize(struct e1000g *);
95 static int e1000g_register_mac(struct e1000g *);
96 static boolean_t e1000g_rx_drain(struct e1000g *);
97 static boolean_t e1000g_tx_drain(struct e1000g *);
98 static void e1000g_init_unicst(struct e1000g *);
99 static int e1000g_unicst_set(struct e1000g *, const uint8_t *, int);
100 static int e1000g_alloc_rx_data(struct e1000g *);
101 static void e1000g_release_multicast(struct e1000g *);
102 static void e1000g_pch_limits(struct e1000g *);
103 static uint32_t e1000g_mtu2maxframe(uint32_t);
104
105 /*
106 * Local routines
107 */
108 static boolean_t e1000g_reset_adapter(struct e1000g *);
109 static void e1000g_tx_clean(struct e1000g *);
110 static void e1000g_rx_clean(struct e1000g *);
111 static void e1000g_link_timer(void *);
112 static void e1000g_local_timer(void *);
113 static boolean_t e1000g_link_check(struct e1000g *);
114 static boolean_t e1000g_stall_check(struct e1000g *);
115 static void e1000g_smartspeed(struct e1000g *);
116 static void e1000g_get_conf(struct e1000g *);
117 static boolean_t e1000g_get_prop(struct e1000g *, char *, int, int, int,
118 int *);
119 static void enable_watchdog_timer(struct e1000g *);
120 static void disable_watchdog_timer(struct e1000g *);
121 static void start_watchdog_timer(struct e1000g *);
122 static void restart_watchdog_timer(struct e1000g *);
123 static void stop_watchdog_timer(struct e1000g *);
124 static void stop_link_timer(struct e1000g *);
125 static void stop_82547_timer(e1000g_tx_ring_t *);
126 static void e1000g_force_speed_duplex(struct e1000g *);
127 static void e1000g_setup_max_mtu(struct e1000g *);
128 static void e1000g_get_max_frame_size(struct e1000g *);
129 static boolean_t is_valid_mac_addr(uint8_t *);
130 static void e1000g_unattach(dev_info_t *, struct e1000g *);
131 static int e1000g_get_bar_info(dev_info_t *, int, bar_info_t *);
132 #ifdef E1000G_DEBUG
133 static void e1000g_ioc_peek_reg(struct e1000g *, e1000g_peekpoke_t *);
134 static void e1000g_ioc_poke_reg(struct e1000g *, e1000g_peekpoke_t *);
135 static void e1000g_ioc_peek_mem(struct e1000g *, e1000g_peekpoke_t *);
136 static void e1000g_ioc_poke_mem(struct e1000g *, e1000g_peekpoke_t *);
137 static enum ioc_reply e1000g_pp_ioctl(struct e1000g *,
138 struct iocblk *, mblk_t *);
139 #endif
140 static enum ioc_reply e1000g_loopback_ioctl(struct e1000g *,
141 struct iocblk *, mblk_t *);
142 static boolean_t e1000g_check_loopback_support(struct e1000_hw *);
143 static boolean_t e1000g_set_loopback_mode(struct e1000g *, uint32_t);
144 static void e1000g_set_internal_loopback(struct e1000g *);
145 static void e1000g_set_external_loopback_1000(struct e1000g *);
146 static void e1000g_set_external_loopback_100(struct e1000g *);
147 static void e1000g_set_external_loopback_10(struct e1000g *);
148 static int e1000g_add_intrs(struct e1000g *);
149 static int e1000g_intr_add(struct e1000g *, int);
150 static int e1000g_rem_intrs(struct e1000g *);
151 static int e1000g_enable_intrs(struct e1000g *);
152 static int e1000g_disable_intrs(struct e1000g *);
153 static boolean_t e1000g_link_up(struct e1000g *);
154 #ifdef __sparc
155 static boolean_t e1000g_find_mac_address(struct e1000g *);
156 #endif
157 static void e1000g_get_phy_state(struct e1000g *);
158 static int e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err,
159 const void *impl_data);
160 static void e1000g_fm_init(struct e1000g *Adapter);
161 static void e1000g_fm_fini(struct e1000g *Adapter);
162 static void e1000g_param_sync(struct e1000g *);
163 static void e1000g_get_driver_control(struct e1000_hw *);
164 static void e1000g_release_driver_control(struct e1000_hw *);
165 static void e1000g_restore_promisc(struct e1000g *Adapter);
166
167 char *e1000g_priv_props[] = {
168 "_tx_bcopy_threshold",
169 "_tx_interrupt_enable",
170 "_tx_intr_delay",
171 "_tx_intr_abs_delay",
172 "_rx_bcopy_threshold",
173 "_max_num_rcv_packets",
174 "_rx_intr_delay",
175 "_rx_intr_abs_delay",
176 "_intr_throttling_rate",
177 "_intr_adaptive",
178 "_adv_pause_cap",
179 "_adv_asym_pause_cap",
180 NULL
181 };
182
183 static struct cb_ops cb_ws_ops = {
184 nulldev, /* cb_open */
185 nulldev, /* cb_close */
186 nodev, /* cb_strategy */
187 nodev, /* cb_print */
188 nodev, /* cb_dump */
189 nodev, /* cb_read */
190 nodev, /* cb_write */
191 nodev, /* cb_ioctl */
192 nodev, /* cb_devmap */
193 nodev, /* cb_mmap */
194 nodev, /* cb_segmap */
195 nochpoll, /* cb_chpoll */
196 ddi_prop_op, /* cb_prop_op */
197 NULL, /* cb_stream */
198 D_MP | D_HOTPLUG, /* cb_flag */
199 CB_REV, /* cb_rev */
200 nodev, /* cb_aread */
201 nodev /* cb_awrite */
202 };
203
204 static struct dev_ops ws_ops = {
205 DEVO_REV, /* devo_rev */
206 0, /* devo_refcnt */
207 NULL, /* devo_getinfo */
208 nulldev, /* devo_identify */
209 nulldev, /* devo_probe */
210 e1000g_attach, /* devo_attach */
211 e1000g_detach, /* devo_detach */
212 nodev, /* devo_reset */
213 &cb_ws_ops, /* devo_cb_ops */
214 NULL, /* devo_bus_ops */
215 ddi_power, /* devo_power */
216 e1000g_quiesce /* devo_quiesce */
217 };
218
219 static struct modldrv modldrv = {
220 &mod_driverops, /* Type of module. This one is a driver */
221 ident, /* Discription string */
222 &ws_ops, /* driver ops */
223 };
224
225 static struct modlinkage modlinkage = {
226 MODREV_1, &modldrv, NULL
227 };
228
229 /* Access attributes for register mapping */
230 static ddi_device_acc_attr_t e1000g_regs_acc_attr = {
231 DDI_DEVICE_ATTR_V1,
232 DDI_STRUCTURE_LE_ACC,
233 DDI_STRICTORDER_ACC,
234 DDI_FLAGERR_ACC
235 };
236
237 #define E1000G_M_CALLBACK_FLAGS \
238 (MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP | MC_PROPINFO)
239
240 static mac_callbacks_t e1000g_m_callbacks = {
241 E1000G_M_CALLBACK_FLAGS,
242 e1000g_m_stat,
243 e1000g_m_start,
244 e1000g_m_stop,
245 e1000g_m_promisc,
246 e1000g_m_multicst,
247 NULL,
248 e1000g_m_tx,
249 NULL,
250 e1000g_m_ioctl,
251 e1000g_m_getcapab,
252 NULL,
253 NULL,
254 e1000g_m_setprop,
255 e1000g_m_getprop,
256 e1000g_m_propinfo
257 };
258
259 /*
260 * Global variables
261 */
262 uint32_t e1000g_jumbo_mtu = MAXIMUM_MTU_9K;
263 uint32_t e1000g_mblks_pending = 0;
264 /*
265 * Workaround for Dynamic Reconfiguration support, for x86 platform only.
266 * Here we maintain a private dev_info list if e1000g_force_detach is
267 * enabled. If we force the driver to detach while there are still some
268 * rx buffers retained in the upper layer, we have to keep a copy of the
269 * dev_info. In some cases (Dynamic Reconfiguration), the dev_info data
270 * structure will be freed after the driver is detached. However when we
271 * finally free those rx buffers released by the upper layer, we need to
272 * refer to the dev_info to free the dma buffers. So we save a copy of
273 * the dev_info for this purpose. On x86 platform, we assume this copy
274 * of dev_info is always valid, but on SPARC platform, it could be invalid
275 * after the system board level DR operation. For this reason, the global
276 * variable e1000g_force_detach must be B_FALSE on SPARC platform.
277 */
278 #ifdef __sparc
279 boolean_t e1000g_force_detach = B_FALSE;
280 #else
281 boolean_t e1000g_force_detach = B_TRUE;
282 #endif
283 private_devi_list_t *e1000g_private_devi_list = NULL;
284
285 /*
286 * The mutex e1000g_rx_detach_lock is defined to protect the processing of
287 * the private dev_info list, and to serialize the processing of rx buffer
288 * freeing and rx buffer recycling.
289 */
290 kmutex_t e1000g_rx_detach_lock;
291 /*
292 * The rwlock e1000g_dma_type_lock is defined to protect the global flag
293 * e1000g_dma_type. For SPARC, the initial value of the flag is "USE_DVMA".
294 * If there are many e1000g instances, the system may run out of DVMA
295 * resources during the initialization of the instances, then the flag will
296 * be changed to "USE_DMA". Because different e1000g instances are initialized
297 * in parallel, we need to use this lock to protect the flag.
298 */
299 krwlock_t e1000g_dma_type_lock;
300
301 /*
302 * The 82546 chipset is a dual-port device, both the ports share one eeprom.
303 * Based on the information from Intel, the 82546 chipset has some hardware
304 * problem. When one port is being reset and the other port is trying to
305 * access the eeprom, it could cause system hang or panic. To workaround this
306 * hardware problem, we use a global mutex to prevent such operations from
307 * happening simultaneously on different instances. This workaround is applied
308 * to all the devices supported by this driver.
309 */
310 kmutex_t e1000g_nvm_lock;
311
312 /*
313 * Loadable module configuration entry points for the driver
314 */
315
316 /*
317 * _init - module initialization
318 */
319 int
320 _init(void)
321 {
322 int status;
323
324 mac_init_ops(&ws_ops, WSNAME);
325 status = mod_install(&modlinkage);
326 if (status != DDI_SUCCESS)
327 mac_fini_ops(&ws_ops);
328 else {
329 mutex_init(&e1000g_rx_detach_lock, NULL, MUTEX_DRIVER, NULL);
330 rw_init(&e1000g_dma_type_lock, NULL, RW_DRIVER, NULL);
331 mutex_init(&e1000g_nvm_lock, NULL, MUTEX_DRIVER, NULL);
332 }
333
334 return (status);
335 }
336
337 /*
338 * _fini - module finalization
339 */
340 int
341 _fini(void)
342 {
343 int status;
344
345 if (e1000g_mblks_pending != 0)
346 return (EBUSY);
347
348 status = mod_remove(&modlinkage);
349 if (status == DDI_SUCCESS) {
350 mac_fini_ops(&ws_ops);
351
352 if (e1000g_force_detach) {
353 private_devi_list_t *devi_node;
354
355 mutex_enter(&e1000g_rx_detach_lock);
356 while (e1000g_private_devi_list != NULL) {
357 devi_node = e1000g_private_devi_list;
358 e1000g_private_devi_list =
359 e1000g_private_devi_list->next;
360
361 kmem_free(devi_node->priv_dip,
362 sizeof (struct dev_info));
363 kmem_free(devi_node,
364 sizeof (private_devi_list_t));
365 }
366 mutex_exit(&e1000g_rx_detach_lock);
367 }
368
369 mutex_destroy(&e1000g_rx_detach_lock);
370 rw_destroy(&e1000g_dma_type_lock);
371 mutex_destroy(&e1000g_nvm_lock);
372 }
373
374 return (status);
375 }
376
377 /*
378 * _info - module information
379 */
380 int
381 _info(struct modinfo *modinfop)
382 {
383 return (mod_info(&modlinkage, modinfop));
384 }
385
386 /*
387 * e1000g_attach - driver attach
388 *
389 * This function is the device-specific initialization entry
390 * point. This entry point is required and must be written.
391 * The DDI_ATTACH command must be provided in the attach entry
392 * point. When attach() is called with cmd set to DDI_ATTACH,
393 * all normal kernel services (such as kmem_alloc(9F)) are
394 * available for use by the driver.
395 *
396 * The attach() function will be called once for each instance
397 * of the device on the system with cmd set to DDI_ATTACH.
398 * Until attach() succeeds, the only driver entry points which
399 * may be called are open(9E) and getinfo(9E).
400 */
401 static int
402 e1000g_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
403 {
404 struct e1000g *Adapter;
405 struct e1000_hw *hw;
406 struct e1000g_osdep *osdep;
407 int instance;
408
409 switch (cmd) {
410 default:
411 e1000g_log(NULL, CE_WARN,
412 "Unsupported command send to e1000g_attach... ");
413 return (DDI_FAILURE);
414
415 case DDI_RESUME:
416 return (e1000g_resume(devinfo));
417
418 case DDI_ATTACH:
419 break;
420 }
421
422 /*
423 * get device instance number
424 */
425 instance = ddi_get_instance(devinfo);
426
427 /*
428 * Allocate soft data structure
429 */
430 Adapter =
431 (struct e1000g *)kmem_zalloc(sizeof (*Adapter), KM_SLEEP);
432
433 Adapter->dip = devinfo;
434 Adapter->instance = instance;
435 Adapter->tx_ring->adapter = Adapter;
436 Adapter->rx_ring->adapter = Adapter;
437
438 hw = &Adapter->shared;
439 osdep = &Adapter->osdep;
440 hw->back = osdep;
441 osdep->adapter = Adapter;
442
443 ddi_set_driver_private(devinfo, (caddr_t)Adapter);
444
445 /*
446 * Initialize for fma support
447 */
448 (void) e1000g_get_prop(Adapter, "fm-capable",
449 0, 0x0f,
450 DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
451 DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE,
452 &Adapter->fm_capabilities);
453 e1000g_fm_init(Adapter);
454 Adapter->attach_progress |= ATTACH_PROGRESS_FMINIT;
455
456 /*
457 * PCI Configure
458 */
459 if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
460 e1000g_log(Adapter, CE_WARN, "PCI configuration failed");
461 goto attach_fail;
462 }
463 Adapter->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
464
465 /*
466 * Setup hardware
467 */
468 if (e1000g_identify_hardware(Adapter) != DDI_SUCCESS) {
469 e1000g_log(Adapter, CE_WARN, "Identify hardware failed");
470 goto attach_fail;
471 }
472
473 /*
474 * Map in the device registers.
475 */
476 if (e1000g_regs_map(Adapter) != DDI_SUCCESS) {
477 e1000g_log(Adapter, CE_WARN, "Mapping registers failed");
478 goto attach_fail;
479 }
480 Adapter->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
481
482 /*
483 * Initialize driver parameters
484 */
485 if (e1000g_set_driver_params(Adapter) != DDI_SUCCESS) {
486 goto attach_fail;
487 }
488 Adapter->attach_progress |= ATTACH_PROGRESS_SETUP;
489
490 if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
491 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
492 goto attach_fail;
493 }
494
495 /*
496 * Initialize interrupts
497 */
498 if (e1000g_add_intrs(Adapter) != DDI_SUCCESS) {
499 e1000g_log(Adapter, CE_WARN, "Add interrupts failed");
500 goto attach_fail;
501 }
502 Adapter->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
503
504 /*
505 * Initialize mutex's for this device.
506 * Do this before enabling the interrupt handler and
507 * register the softint to avoid the condition where
508 * interrupt handler can try using uninitialized mutex
509 */
510 e1000g_init_locks(Adapter);
511 Adapter->attach_progress |= ATTACH_PROGRESS_LOCKS;
512
513 /*
514 * Initialize Driver Counters
515 */
516 if (e1000g_init_stats(Adapter) != DDI_SUCCESS) {
517 e1000g_log(Adapter, CE_WARN, "Init stats failed");
518 goto attach_fail;
519 }
520 Adapter->attach_progress |= ATTACH_PROGRESS_KSTATS;
521
522 /*
523 * Initialize chip hardware and software structures
524 */
525 rw_enter(&Adapter->chip_lock, RW_WRITER);
526 if (e1000g_init(Adapter) != DDI_SUCCESS) {
527 rw_exit(&Adapter->chip_lock);
528 e1000g_log(Adapter, CE_WARN, "Adapter initialization failed");
529 goto attach_fail;
530 }
531 rw_exit(&Adapter->chip_lock);
532 Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
533
534 /*
535 * Register the driver to the MAC
536 */
537 if (e1000g_register_mac(Adapter) != DDI_SUCCESS) {
538 e1000g_log(Adapter, CE_WARN, "Register MAC failed");
539 goto attach_fail;
540 }
541 Adapter->attach_progress |= ATTACH_PROGRESS_MAC;
542
543 /*
544 * Now that mutex locks are initialized, and the chip is also
545 * initialized, enable interrupts.
546 */
547 if (e1000g_enable_intrs(Adapter) != DDI_SUCCESS) {
548 e1000g_log(Adapter, CE_WARN, "Enable DDI interrupts failed");
549 goto attach_fail;
550 }
551 Adapter->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
552
553 /*
554 * If e1000g_force_detach is enabled, in global private dip list,
555 * we will create a new entry, which maintains the priv_dip for DR
556 * supports after driver detached.
557 */
558 if (e1000g_force_detach) {
559 private_devi_list_t *devi_node;
560
561 Adapter->priv_dip =
562 kmem_zalloc(sizeof (struct dev_info), KM_SLEEP);
563 bcopy(DEVI(devinfo), DEVI(Adapter->priv_dip),
564 sizeof (struct dev_info));
565
566 devi_node =
567 kmem_zalloc(sizeof (private_devi_list_t), KM_SLEEP);
568
569 mutex_enter(&e1000g_rx_detach_lock);
570 devi_node->priv_dip = Adapter->priv_dip;
571 devi_node->flag = E1000G_PRIV_DEVI_ATTACH;
572 devi_node->pending_rx_count = 0;
573
574 Adapter->priv_devi_node = devi_node;
575
576 if (e1000g_private_devi_list == NULL) {
577 devi_node->prev = NULL;
578 devi_node->next = NULL;
579 e1000g_private_devi_list = devi_node;
580 } else {
581 devi_node->prev = NULL;
582 devi_node->next = e1000g_private_devi_list;
583 e1000g_private_devi_list->prev = devi_node;
584 e1000g_private_devi_list = devi_node;
585 }
586 mutex_exit(&e1000g_rx_detach_lock);
587 }
588
589 Adapter->e1000g_state = E1000G_INITIALIZED;
590 return (DDI_SUCCESS);
591
592 attach_fail:
593 e1000g_unattach(devinfo, Adapter);
594 return (DDI_FAILURE);
595 }
596
597 static int
598 e1000g_register_mac(struct e1000g *Adapter)
599 {
600 struct e1000_hw *hw = &Adapter->shared;
601 mac_register_t *mac;
602 int err;
603
604 if ((mac = mac_alloc(MAC_VERSION)) == NULL)
605 return (DDI_FAILURE);
606
607 mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
608 mac->m_driver = Adapter;
609 mac->m_dip = Adapter->dip;
610 mac->m_src_addr = hw->mac.addr;
611 mac->m_callbacks = &e1000g_m_callbacks;
612 mac->m_min_sdu = 0;
613 mac->m_max_sdu = Adapter->default_mtu;
614 mac->m_margin = VLAN_TAGSZ;
615 mac->m_priv_props = e1000g_priv_props;
616 mac->m_v12n = MAC_VIRT_LEVEL1;
617
618 err = mac_register(mac, &Adapter->mh);
619 mac_free(mac);
620
621 return (err == 0 ? DDI_SUCCESS : DDI_FAILURE);
622 }
623
624 static int
625 e1000g_identify_hardware(struct e1000g *Adapter)
626 {
627 struct e1000_hw *hw = &Adapter->shared;
628 struct e1000g_osdep *osdep = &Adapter->osdep;
629
630 /* Get the device id */
631 hw->vendor_id =
632 pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
633 hw->device_id =
634 pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
635 hw->revision_id =
636 pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
637 hw->subsystem_device_id =
638 pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
639 hw->subsystem_vendor_id =
640 pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
641
642 if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
643 E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
644 "MAC type could not be set properly.");
645 return (DDI_FAILURE);
646 }
647
648 return (DDI_SUCCESS);
649 }
650
651 static int
652 e1000g_regs_map(struct e1000g *Adapter)
653 {
654 dev_info_t *devinfo = Adapter->dip;
655 struct e1000_hw *hw = &Adapter->shared;
656 struct e1000g_osdep *osdep = &Adapter->osdep;
657 off_t mem_size;
658 bar_info_t bar_info;
659 int offset, rnumber;
660
661 rnumber = ADAPTER_REG_SET;
662 /* Get size of adapter register memory */
663 if (ddi_dev_regsize(devinfo, rnumber, &mem_size) !=
664 DDI_SUCCESS) {
665 E1000G_DEBUGLOG_0(Adapter, CE_WARN,
666 "ddi_dev_regsize for registers failed");
667 return (DDI_FAILURE);
668 }
669
670 /* Map adapter register memory */
671 if ((ddi_regs_map_setup(devinfo, rnumber,
672 (caddr_t *)&hw->hw_addr, 0, mem_size, &e1000g_regs_acc_attr,
673 &osdep->reg_handle)) != DDI_SUCCESS) {
674 E1000G_DEBUGLOG_0(Adapter, CE_WARN,
675 "ddi_regs_map_setup for registers failed");
676 goto regs_map_fail;
677 }
678
679 /* ICH needs to map flash memory */
680 switch (hw->mac.type) {
681 case e1000_ich8lan:
682 case e1000_ich9lan:
683 case e1000_ich10lan:
684 case e1000_pchlan:
685 case e1000_pch2lan:
686 rnumber = ICH_FLASH_REG_SET;
687
688 /* get flash size */
689 if (ddi_dev_regsize(devinfo, rnumber,
690 &mem_size) != DDI_SUCCESS) {
691 E1000G_DEBUGLOG_0(Adapter, CE_WARN,
692 "ddi_dev_regsize for ICH flash failed");
693 goto regs_map_fail;
694 }
695
696 /* map flash in */
697 if (ddi_regs_map_setup(devinfo, rnumber,
698 (caddr_t *)&hw->flash_address, 0,
699 mem_size, &e1000g_regs_acc_attr,
700 &osdep->ich_flash_handle) != DDI_SUCCESS) {
701 E1000G_DEBUGLOG_0(Adapter, CE_WARN,
702 "ddi_regs_map_setup for ICH flash failed");
703 goto regs_map_fail;
704 }
705 break;
706 default:
707 break;
708 }
709
710 /* map io space */
711 switch (hw->mac.type) {
712 case e1000_82544:
713 case e1000_82540:
714 case e1000_82545:
715 case e1000_82546:
716 case e1000_82541:
717 case e1000_82541_rev_2:
718 /* find the IO bar */
719 rnumber = -1;
720 for (offset = PCI_CONF_BASE1;
721 offset <= PCI_CONF_BASE5; offset += 4) {
722 if (e1000g_get_bar_info(devinfo, offset, &bar_info)
723 != DDI_SUCCESS)
724 continue;
725 if (bar_info.type == E1000G_BAR_IO) {
726 rnumber = bar_info.rnumber;
727 break;
728 }
729 }
730
731 if (rnumber < 0) {
732 E1000G_DEBUGLOG_0(Adapter, CE_WARN,
733 "No io space is found");
734 goto regs_map_fail;
735 }
736
737 /* get io space size */
738 if (ddi_dev_regsize(devinfo, rnumber,
739 &mem_size) != DDI_SUCCESS) {
740 E1000G_DEBUGLOG_0(Adapter, CE_WARN,
741 "ddi_dev_regsize for io space failed");
742 goto regs_map_fail;
743 }
744
745 /* map io space */
746 if ((ddi_regs_map_setup(devinfo, rnumber,
747 (caddr_t *)&hw->io_base, 0, mem_size,
748 &e1000g_regs_acc_attr,
749 &osdep->io_reg_handle)) != DDI_SUCCESS) {
750 E1000G_DEBUGLOG_0(Adapter, CE_WARN,
751 "ddi_regs_map_setup for io space failed");
752 goto regs_map_fail;
753 }
754 break;
755 default:
756 hw->io_base = 0;
757 break;
758 }
759
760 return (DDI_SUCCESS);
761
762 regs_map_fail:
763 if (osdep->reg_handle != NULL)
764 ddi_regs_map_free(&osdep->reg_handle);
765 if (osdep->ich_flash_handle != NULL)
766 ddi_regs_map_free(&osdep->ich_flash_handle);
767 return (DDI_FAILURE);
768 }
769
770 static int
771 e1000g_set_driver_params(struct e1000g *Adapter)
772 {
773 struct e1000_hw *hw;
774
775 hw = &Adapter->shared;
776
777 /* Set MAC type and initialize hardware functions */
778 if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
779 E1000G_DEBUGLOG_0(Adapter, CE_WARN,
780 "Could not setup hardware functions");
781 return (DDI_FAILURE);
782 }
783
784 /* Get bus information */
785 if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
786 E1000G_DEBUGLOG_0(Adapter, CE_WARN,
787 "Could not get bus information");
788 return (DDI_FAILURE);
789 }
790
791 e1000_read_pci_cfg(hw, PCI_COMMAND_REGISTER, &hw->bus.pci_cmd_word);
792
793 hw->mac.autoneg_failed = B_TRUE;
794
795 /* Set the autoneg_wait_to_complete flag to B_FALSE */
796 hw->phy.autoneg_wait_to_complete = B_FALSE;
797
798 /* Adaptive IFS related changes */
799 hw->mac.adaptive_ifs = B_TRUE;
800
801 /* Enable phy init script for IGP phy of 82541/82547 */
802 if ((hw->mac.type == e1000_82547) ||
803 (hw->mac.type == e1000_82541) ||
804 (hw->mac.type == e1000_82547_rev_2) ||
805 (hw->mac.type == e1000_82541_rev_2))
806 e1000_init_script_state_82541(hw, B_TRUE);
807
808 /* Enable the TTL workaround for 82541/82547 */
809 e1000_set_ttl_workaround_state_82541(hw, B_TRUE);
810
811 #ifdef __sparc
812 Adapter->strip_crc = B_TRUE;
813 #else
814 Adapter->strip_crc = B_FALSE;
815 #endif
816
817 /* setup the maximum MTU size of the chip */
818 e1000g_setup_max_mtu(Adapter);
819
820 /* Get speed/duplex settings in conf file */
821 hw->mac.forced_speed_duplex = ADVERTISE_100_FULL;
822 hw->phy.autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
823 e1000g_force_speed_duplex(Adapter);
824
825 /* Get Jumbo Frames settings in conf file */
826 e1000g_get_max_frame_size(Adapter);
827
828 /* Get conf file properties */
829 e1000g_get_conf(Adapter);
830
831 /* enforce PCH limits */
832 e1000g_pch_limits(Adapter);
833
834 /* Set Rx/Tx buffer size */
835 e1000g_set_bufsize(Adapter);
836
837 /* Master Latency Timer */
838 Adapter->master_latency_timer = DEFAULT_MASTER_LATENCY_TIMER;
839
840 /* copper options */
841 if (hw->phy.media_type == e1000_media_type_copper) {
842 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
843 hw->phy.disable_polarity_correction = B_FALSE;
844 hw->phy.ms_type = e1000_ms_hw_default; /* E1000_MASTER_SLAVE */
845 }
846
847 /* The initial link state should be "unknown" */
848 Adapter->link_state = LINK_STATE_UNKNOWN;
849
850 /* Initialize rx parameters */
851 Adapter->rx_intr_delay = DEFAULT_RX_INTR_DELAY;
852 Adapter->rx_intr_abs_delay = DEFAULT_RX_INTR_ABS_DELAY;
853
854 /* Initialize tx parameters */
855 Adapter->tx_intr_enable = DEFAULT_TX_INTR_ENABLE;
856 Adapter->tx_bcopy_thresh = DEFAULT_TX_BCOPY_THRESHOLD;
857 Adapter->tx_intr_delay = DEFAULT_TX_INTR_DELAY;
858 Adapter->tx_intr_abs_delay = DEFAULT_TX_INTR_ABS_DELAY;
859
860 /* Initialize rx parameters */
861 Adapter->rx_bcopy_thresh = DEFAULT_RX_BCOPY_THRESHOLD;
862
863 return (DDI_SUCCESS);
864 }
865
866 static void
867 e1000g_setup_max_mtu(struct e1000g *Adapter)
868 {
869 struct e1000_mac_info *mac = &Adapter->shared.mac;
870 struct e1000_phy_info *phy = &Adapter->shared.phy;
871
872 switch (mac->type) {
873 /* types that do not support jumbo frames */
874 case e1000_ich8lan:
875 case e1000_82573:
876 case e1000_82583:
877 Adapter->max_mtu = ETHERMTU;
878 break;
879 /* ich9 supports jumbo frames except on one phy type */
880 case e1000_ich9lan:
881 if (phy->type == e1000_phy_ife)
882 Adapter->max_mtu = ETHERMTU;
883 else
884 Adapter->max_mtu = MAXIMUM_MTU_9K;
885 break;
886 /* pch can do jumbo frames up to 4K */
887 case e1000_pchlan:
888 Adapter->max_mtu = MAXIMUM_MTU_4K;
889 break;
890 /* pch2 can do jumbo frames up to 9K */
891 case e1000_pch2lan:
892 Adapter->max_mtu = MAXIMUM_MTU_9K;
893 break;
894 /* types with a special limit */
895 case e1000_82571:
896 case e1000_82572:
897 case e1000_82574:
898 case e1000_80003es2lan:
899 case e1000_ich10lan:
900 if (e1000g_jumbo_mtu >= ETHERMTU &&
901 e1000g_jumbo_mtu <= MAXIMUM_MTU_9K) {
902 Adapter->max_mtu = e1000g_jumbo_mtu;
903 } else {
904 Adapter->max_mtu = MAXIMUM_MTU_9K;
905 }
906 break;
907 /* default limit is 16K */
908 default:
909 Adapter->max_mtu = FRAME_SIZE_UPTO_16K -
910 sizeof (struct ether_vlan_header) - ETHERFCSL;
911 break;
912 }
913 }
914
915 static void
916 e1000g_set_bufsize(struct e1000g *Adapter)
917 {
918 struct e1000_mac_info *mac = &Adapter->shared.mac;
919 uint64_t rx_size;
920 uint64_t tx_size;
921
922 dev_info_t *devinfo = Adapter->dip;
923 #ifdef __sparc
924 ulong_t iommu_pagesize;
925 #endif
926 /* Get the system page size */
927 Adapter->sys_page_sz = ddi_ptob(devinfo, (ulong_t)1);
928
929 #ifdef __sparc
930 iommu_pagesize = dvma_pagesize(devinfo);
931 if (iommu_pagesize != 0) {
932 if (Adapter->sys_page_sz == iommu_pagesize) {
933 if (iommu_pagesize > 0x4000)
934 Adapter->sys_page_sz = 0x4000;
935 } else {
936 if (Adapter->sys_page_sz > iommu_pagesize)
937 Adapter->sys_page_sz = iommu_pagesize;
938 }
939 }
940 if (Adapter->lso_enable) {
941 Adapter->dvma_page_num = E1000_LSO_MAXLEN /
942 Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
943 } else {
944 Adapter->dvma_page_num = Adapter->max_frame_size /
945 Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
946 }
947 ASSERT(Adapter->dvma_page_num >= E1000G_DEFAULT_DVMA_PAGE_NUM);
948 #endif
949
950 Adapter->min_frame_size = ETHERMIN + ETHERFCSL;
951
952 if (Adapter->mem_workaround_82546 &&
953 ((mac->type == e1000_82545) ||
954 (mac->type == e1000_82546) ||
955 (mac->type == e1000_82546_rev_3))) {
956 Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
957 } else {
958 rx_size = Adapter->max_frame_size;
959 if ((rx_size > FRAME_SIZE_UPTO_2K) &&
960 (rx_size <= FRAME_SIZE_UPTO_4K))
961 Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_4K;
962 else if ((rx_size > FRAME_SIZE_UPTO_4K) &&
963 (rx_size <= FRAME_SIZE_UPTO_8K))
964 Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_8K;
965 else if ((rx_size > FRAME_SIZE_UPTO_8K) &&
966 (rx_size <= FRAME_SIZE_UPTO_16K))
967 Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_16K;
968 else
969 Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
970 }
971 Adapter->rx_buffer_size += E1000G_IPALIGNROOM;
972
973 tx_size = Adapter->max_frame_size;
974 if ((tx_size > FRAME_SIZE_UPTO_2K) && (tx_size <= FRAME_SIZE_UPTO_4K))
975 Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_4K;
976 else if ((tx_size > FRAME_SIZE_UPTO_4K) &&
977 (tx_size <= FRAME_SIZE_UPTO_8K))
978 Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_8K;
979 else if ((tx_size > FRAME_SIZE_UPTO_8K) &&
980 (tx_size <= FRAME_SIZE_UPTO_16K))
981 Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_16K;
982 else
983 Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_2K;
984
985 /*
986 * For Wiseman adapters we have an requirement of having receive
987 * buffers aligned at 256 byte boundary. Since Livengood does not
988 * require this and forcing it for all hardwares will have
989 * performance implications, I am making it applicable only for
990 * Wiseman and for Jumbo frames enabled mode as rest of the time,
991 * it is okay to have normal frames...but it does involve a
992 * potential risk where we may loose data if buffer is not
993 * aligned...so all wiseman boards to have 256 byte aligned
994 * buffers
995 */
996 if (mac->type < e1000_82543)
997 Adapter->rx_buf_align = RECEIVE_BUFFER_ALIGN_SIZE;
998 else
999 Adapter->rx_buf_align = 1;
1000 }
1001
1002 /*
1003 * e1000g_detach - driver detach
1004 *
1005 * The detach() function is the complement of the attach routine.
1006 * If cmd is set to DDI_DETACH, detach() is used to remove the
1007 * state associated with a given instance of a device node
1008 * prior to the removal of that instance from the system.
1009 *
1010 * The detach() function will be called once for each instance
1011 * of the device for which there has been a successful attach()
1012 * once there are no longer any opens on the device.
1013 *
1014 * Interrupts routine are disabled, All memory allocated by this
1015 * driver are freed.
1016 */
1017 static int
1018 e1000g_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
1019 {
1020 struct e1000g *Adapter;
1021 boolean_t rx_drain;
1022
1023 switch (cmd) {
1024 default:
1025 return (DDI_FAILURE);
1026
1027 case DDI_SUSPEND:
1028 return (e1000g_suspend(devinfo));
1029
1030 case DDI_DETACH:
1031 break;
1032 }
1033
1034 Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1035 if (Adapter == NULL)
1036 return (DDI_FAILURE);
1037
1038 rx_drain = e1000g_rx_drain(Adapter);
1039 if (!rx_drain && !e1000g_force_detach)
1040 return (DDI_FAILURE);
1041
1042 if (mac_unregister(Adapter->mh) != 0) {
1043 e1000g_log(Adapter, CE_WARN, "Unregister MAC failed");
1044 return (DDI_FAILURE);
1045 }
1046 Adapter->attach_progress &= ~ATTACH_PROGRESS_MAC;
1047
1048 ASSERT(!(Adapter->e1000g_state & E1000G_STARTED));
1049
1050 if (!e1000g_force_detach && !rx_drain)
1051 return (DDI_FAILURE);
1052
1053 e1000g_unattach(devinfo, Adapter);
1054
1055 return (DDI_SUCCESS);
1056 }
1057
1058 /*
1059 * e1000g_free_priv_devi_node - free a priv_dip entry for driver instance
1060 */
1061 void
1062 e1000g_free_priv_devi_node(private_devi_list_t *devi_node)
1063 {
1064 ASSERT(e1000g_private_devi_list != NULL);
1065 ASSERT(devi_node != NULL);
1066
1067 if (devi_node->prev != NULL)
1068 devi_node->prev->next = devi_node->next;
1069 if (devi_node->next != NULL)
1070 devi_node->next->prev = devi_node->prev;
1071 if (devi_node == e1000g_private_devi_list)
1072 e1000g_private_devi_list = devi_node->next;
1073
1074 kmem_free(devi_node->priv_dip,
1075 sizeof (struct dev_info));
1076 kmem_free(devi_node,
1077 sizeof (private_devi_list_t));
1078 }
1079
1080 static void
1081 e1000g_unattach(dev_info_t *devinfo, struct e1000g *Adapter)
1082 {
1083 private_devi_list_t *devi_node;
1084 int result;
1085
1086 if (Adapter->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1087 (void) e1000g_disable_intrs(Adapter);
1088 }
1089
1090 if (Adapter->attach_progress & ATTACH_PROGRESS_MAC) {
1091 (void) mac_unregister(Adapter->mh);
1092 }
1093
1094 if (Adapter->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
1095 (void) e1000g_rem_intrs(Adapter);
1096 }
1097
1098 if (Adapter->attach_progress & ATTACH_PROGRESS_SETUP) {
1099 (void) ddi_prop_remove_all(devinfo);
1100 }
1101
1102 if (Adapter->attach_progress & ATTACH_PROGRESS_KSTATS) {
1103 kstat_delete((kstat_t *)Adapter->e1000g_ksp);
1104 }
1105
1106 if (Adapter->attach_progress & ATTACH_PROGRESS_INIT) {
1107 stop_link_timer(Adapter);
1108
1109 mutex_enter(&e1000g_nvm_lock);
1110 result = e1000_reset_hw(&Adapter->shared);
1111 mutex_exit(&e1000g_nvm_lock);
1112
1113 if (result != E1000_SUCCESS) {
1114 e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1115 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1116 }
1117 }
1118
1119 e1000g_release_multicast(Adapter);
1120
1121 if (Adapter->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
1122 if (Adapter->osdep.reg_handle != NULL)
1123 ddi_regs_map_free(&Adapter->osdep.reg_handle);
1124 if (Adapter->osdep.ich_flash_handle != NULL)
1125 ddi_regs_map_free(&Adapter->osdep.ich_flash_handle);
1126 if (Adapter->osdep.io_reg_handle != NULL)
1127 ddi_regs_map_free(&Adapter->osdep.io_reg_handle);
1128 }
1129
1130 if (Adapter->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
1131 if (Adapter->osdep.cfg_handle != NULL)
1132 pci_config_teardown(&Adapter->osdep.cfg_handle);
1133 }
1134
1135 if (Adapter->attach_progress & ATTACH_PROGRESS_LOCKS) {
1136 e1000g_destroy_locks(Adapter);
1137 }
1138
1139 if (Adapter->attach_progress & ATTACH_PROGRESS_FMINIT) {
1140 e1000g_fm_fini(Adapter);
1141 }
1142
1143 mutex_enter(&e1000g_rx_detach_lock);
1144 if (e1000g_force_detach && (Adapter->priv_devi_node != NULL)) {
1145 devi_node = Adapter->priv_devi_node;
1146 devi_node->flag |= E1000G_PRIV_DEVI_DETACH;
1147
1148 if (devi_node->pending_rx_count == 0) {
1149 e1000g_free_priv_devi_node(devi_node);
1150 }
1151 }
1152 mutex_exit(&e1000g_rx_detach_lock);
1153
1154 kmem_free((caddr_t)Adapter, sizeof (struct e1000g));
1155
1156 /*
1157 * Another hotplug spec requirement,
1158 * run ddi_set_driver_private(devinfo, null);
1159 */
1160 ddi_set_driver_private(devinfo, NULL);
1161 }
1162
1163 /*
1164 * Get the BAR type and rnumber for a given PCI BAR offset
1165 */
1166 static int
1167 e1000g_get_bar_info(dev_info_t *dip, int bar_offset, bar_info_t *bar_info)
1168 {
1169 pci_regspec_t *regs;
1170 uint_t regs_length;
1171 int type, rnumber, rcount;
1172
1173 ASSERT((bar_offset >= PCI_CONF_BASE0) &&
1174 (bar_offset <= PCI_CONF_BASE5));
1175
1176 /*
1177 * Get the DDI "reg" property
1178 */
1179 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip,
1180 DDI_PROP_DONTPASS, "reg", (int **)®s,
1181 ®s_length) != DDI_PROP_SUCCESS) {
1182 return (DDI_FAILURE);
1183 }
1184
1185 rcount = regs_length * sizeof (int) / sizeof (pci_regspec_t);
1186 /*
1187 * Check the BAR offset
1188 */
1189 for (rnumber = 0; rnumber < rcount; ++rnumber) {
1190 if (PCI_REG_REG_G(regs[rnumber].pci_phys_hi) == bar_offset) {
1191 type = regs[rnumber].pci_phys_hi & PCI_ADDR_MASK;
1192 break;
1193 }
1194 }
1195
1196 ddi_prop_free(regs);
1197
1198 if (rnumber >= rcount)
1199 return (DDI_FAILURE);
1200
1201 switch (type) {
1202 case PCI_ADDR_CONFIG:
1203 bar_info->type = E1000G_BAR_CONFIG;
1204 break;
1205 case PCI_ADDR_IO:
1206 bar_info->type = E1000G_BAR_IO;
1207 break;
1208 case PCI_ADDR_MEM32:
1209 bar_info->type = E1000G_BAR_MEM32;
1210 break;
1211 case PCI_ADDR_MEM64:
1212 bar_info->type = E1000G_BAR_MEM64;
1213 break;
1214 default:
1215 return (DDI_FAILURE);
1216 }
1217 bar_info->rnumber = rnumber;
1218 return (DDI_SUCCESS);
1219 }
1220
1221 static void
1222 e1000g_init_locks(struct e1000g *Adapter)
1223 {
1224 e1000g_tx_ring_t *tx_ring;
1225 e1000g_rx_ring_t *rx_ring;
1226
1227 rw_init(&Adapter->chip_lock, NULL,
1228 RW_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1229 mutex_init(&Adapter->link_lock, NULL,
1230 MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1231 mutex_init(&Adapter->watchdog_lock, NULL,
1232 MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1233
1234 tx_ring = Adapter->tx_ring;
1235
1236 mutex_init(&tx_ring->tx_lock, NULL,
1237 MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1238 mutex_init(&tx_ring->usedlist_lock, NULL,
1239 MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1240 mutex_init(&tx_ring->freelist_lock, NULL,
1241 MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1242
1243 rx_ring = Adapter->rx_ring;
1244
1245 mutex_init(&rx_ring->rx_lock, NULL,
1246 MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1247 }
1248
1249 static void
1250 e1000g_destroy_locks(struct e1000g *Adapter)
1251 {
1252 e1000g_tx_ring_t *tx_ring;
1253 e1000g_rx_ring_t *rx_ring;
1254
1255 tx_ring = Adapter->tx_ring;
1256 mutex_destroy(&tx_ring->tx_lock);
1257 mutex_destroy(&tx_ring->usedlist_lock);
1258 mutex_destroy(&tx_ring->freelist_lock);
1259
1260 rx_ring = Adapter->rx_ring;
1261 mutex_destroy(&rx_ring->rx_lock);
1262
1263 mutex_destroy(&Adapter->link_lock);
1264 mutex_destroy(&Adapter->watchdog_lock);
1265 rw_destroy(&Adapter->chip_lock);
1266
1267 /* destory mutex initialized in shared code */
1268 e1000_destroy_hw_mutex(&Adapter->shared);
1269 }
1270
1271 static int
1272 e1000g_resume(dev_info_t *devinfo)
1273 {
1274 struct e1000g *Adapter;
1275
1276 Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1277 if (Adapter == NULL)
1278 e1000g_log(Adapter, CE_PANIC,
1279 "Instance pointer is null\n");
1280
1281 if (Adapter->dip != devinfo)
1282 e1000g_log(Adapter, CE_PANIC,
1283 "Devinfo is not the same as saved devinfo\n");
1284
1285 rw_enter(&Adapter->chip_lock, RW_WRITER);
1286
1287 if (Adapter->e1000g_state & E1000G_STARTED) {
1288 if (e1000g_start(Adapter, B_FALSE) != DDI_SUCCESS) {
1289 rw_exit(&Adapter->chip_lock);
1290 /*
1291 * We note the failure, but return success, as the
1292 * system is still usable without this controller.
1293 */
1294 e1000g_log(Adapter, CE_WARN,
1295 "e1000g_resume: failed to restart controller\n");
1296 return (DDI_SUCCESS);
1297 }
1298 /* Enable and start the watchdog timer */
1299 enable_watchdog_timer(Adapter);
1300 }
1301
1302 Adapter->e1000g_state &= ~E1000G_SUSPENDED;
1303
1304 rw_exit(&Adapter->chip_lock);
1305
1306 return (DDI_SUCCESS);
1307 }
1308
1309 static int
1310 e1000g_suspend(dev_info_t *devinfo)
1311 {
1312 struct e1000g *Adapter;
1313
1314 Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1315 if (Adapter == NULL)
1316 return (DDI_FAILURE);
1317
1318 rw_enter(&Adapter->chip_lock, RW_WRITER);
1319
1320 Adapter->e1000g_state |= E1000G_SUSPENDED;
1321
1322 /* if the port isn't plumbed, we can simply return */
1323 if (!(Adapter->e1000g_state & E1000G_STARTED)) {
1324 rw_exit(&Adapter->chip_lock);
1325 return (DDI_SUCCESS);
1326 }
1327
1328 e1000g_stop(Adapter, B_FALSE);
1329
1330 rw_exit(&Adapter->chip_lock);
1331
1332 /* Disable and stop all the timers */
1333 disable_watchdog_timer(Adapter);
1334 stop_link_timer(Adapter);
1335 stop_82547_timer(Adapter->tx_ring);
1336
1337 return (DDI_SUCCESS);
1338 }
1339
1340 static int
1341 e1000g_init(struct e1000g *Adapter)
1342 {
1343 uint32_t pba;
1344 uint32_t high_water;
1345 struct e1000_hw *hw;
1346 clock_t link_timeout;
1347 int result;
1348
1349 hw = &Adapter->shared;
1350
1351 /*
1352 * reset to put the hardware in a known state
1353 * before we try to do anything with the eeprom
1354 */
1355 mutex_enter(&e1000g_nvm_lock);
1356 result = e1000_reset_hw(hw);
1357 mutex_exit(&e1000g_nvm_lock);
1358
1359 if (result != E1000_SUCCESS) {
1360 e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1361 goto init_fail;
1362 }
1363
1364 mutex_enter(&e1000g_nvm_lock);
1365 result = e1000_validate_nvm_checksum(hw);
1366 if (result < E1000_SUCCESS) {
1367 /*
1368 * Some PCI-E parts fail the first check due to
1369 * the link being in sleep state. Call it again,
1370 * if it fails a second time its a real issue.
1371 */
1372 result = e1000_validate_nvm_checksum(hw);
1373 }
1374 mutex_exit(&e1000g_nvm_lock);
1375
1376 if (result < E1000_SUCCESS) {
1377 e1000g_log(Adapter, CE_WARN,
1378 "Invalid NVM checksum. Please contact "
1379 "the vendor to update the NVM.");
1380 e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1381 goto init_fail;
1382 }
1383
1384 result = 0;
1385 #ifdef __sparc
1386 /*
1387 * First, we try to get the local ethernet address from OBP. If
1388 * failed, then we get it from the EEPROM of NIC card.
1389 */
1390 result = e1000g_find_mac_address(Adapter);
1391 #endif
1392 /* Get the local ethernet address. */
1393 if (!result) {
1394 mutex_enter(&e1000g_nvm_lock);
1395 result = e1000_read_mac_addr(hw);
1396 mutex_exit(&e1000g_nvm_lock);
1397 }
1398
1399 if (result < E1000_SUCCESS) {
1400 e1000g_log(Adapter, CE_WARN, "Read mac addr failed");
1401 e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1402 goto init_fail;
1403 }
1404
1405 /* check for valid mac address */
1406 if (!is_valid_mac_addr(hw->mac.addr)) {
1407 e1000g_log(Adapter, CE_WARN, "Invalid mac addr");
1408 e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1409 goto init_fail;
1410 }
1411
1412 /* Set LAA state for 82571 chipset */
1413 e1000_set_laa_state_82571(hw, B_TRUE);
1414
1415 /* Master Latency Timer implementation */
1416 if (Adapter->master_latency_timer) {
1417 pci_config_put8(Adapter->osdep.cfg_handle,
1418 PCI_CONF_LATENCY_TIMER, Adapter->master_latency_timer);
1419 }
1420
1421 if (hw->mac.type < e1000_82547) {
1422 /*
1423 * Total FIFO is 64K
1424 */
1425 if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1426 pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1427 else
1428 pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1429 } else if ((hw->mac.type == e1000_82571) ||
1430 (hw->mac.type == e1000_82572) ||
1431 (hw->mac.type == e1000_80003es2lan)) {
1432 /*
1433 * Total FIFO is 48K
1434 */
1435 if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1436 pba = E1000_PBA_30K; /* 30K for Rx, 18K for Tx */
1437 else
1438 pba = E1000_PBA_38K; /* 38K for Rx, 10K for Tx */
1439 } else if (hw->mac.type == e1000_82573) {
1440 pba = E1000_PBA_20K; /* 20K for Rx, 12K for Tx */
1441 } else if (hw->mac.type == e1000_82574) {
1442 /* Keep adapter default: 20K for Rx, 20K for Tx */
1443 pba = E1000_READ_REG(hw, E1000_PBA);
1444 } else if (hw->mac.type == e1000_ich8lan) {
1445 pba = E1000_PBA_8K; /* 8K for Rx, 12K for Tx */
1446 } else if (hw->mac.type == e1000_ich9lan) {
1447 pba = E1000_PBA_10K;
1448 } else if (hw->mac.type == e1000_ich10lan) {
1449 pba = E1000_PBA_10K;
1450 } else if (hw->mac.type == e1000_pchlan) {
1451 pba = E1000_PBA_26K;
1452 } else if (hw->mac.type == e1000_pch2lan) {
1453 pba = E1000_PBA_26K;
1454 } else {
1455 /*
1456 * Total FIFO is 40K
1457 */
1458 if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1459 pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
1460 else
1461 pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
1462 }
1463 E1000_WRITE_REG(hw, E1000_PBA, pba);
1464
1465 /*
1466 * These parameters set thresholds for the adapter's generation(Tx)
1467 * and response(Rx) to Ethernet PAUSE frames. These are just threshold
1468 * settings. Flow control is enabled or disabled in the configuration
1469 * file.
1470 * High-water mark is set down from the top of the rx fifo (not
1471 * sensitive to max_frame_size) and low-water is set just below
1472 * high-water mark.
1473 * The high water mark must be low enough to fit one full frame above
1474 * it in the rx FIFO. Should be the lower of:
1475 * 90% of the Rx FIFO size and the full Rx FIFO size minus the early
1476 * receive size (assuming ERT set to E1000_ERT_2048), or the full
1477 * Rx FIFO size minus one full frame.
1478 */
1479 high_water = min(((pba << 10) * 9 / 10),
1480 ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574 ||
1481 hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_ich10lan) ?
1482 ((pba << 10) - (E1000_ERT_2048 << 3)) :
1483 ((pba << 10) - Adapter->max_frame_size)));
1484
1485 hw->fc.high_water = high_water & 0xFFF8;
1486 hw->fc.low_water = hw->fc.high_water - 8;
1487
1488 if (hw->mac.type == e1000_80003es2lan)
1489 hw->fc.pause_time = 0xFFFF;
1490 else
1491 hw->fc.pause_time = E1000_FC_PAUSE_TIME;
1492 hw->fc.send_xon = B_TRUE;
1493
1494 /*
1495 * Reset the adapter hardware the second time.
1496 */
1497 mutex_enter(&e1000g_nvm_lock);
1498 result = e1000_reset_hw(hw);
1499 mutex_exit(&e1000g_nvm_lock);
1500
1501 if (result != E1000_SUCCESS) {
1502 e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1503 goto init_fail;
1504 }
1505
1506 /* disable wakeup control by default */
1507 if (hw->mac.type >= e1000_82544)
1508 E1000_WRITE_REG(hw, E1000_WUC, 0);
1509
1510 /*
1511 * MWI should be disabled on 82546.
1512 */
1513 if (hw->mac.type == e1000_82546)
1514 e1000_pci_clear_mwi(hw);
1515 else
1516 e1000_pci_set_mwi(hw);
1517
1518 /*
1519 * Configure/Initialize hardware
1520 */
1521 mutex_enter(&e1000g_nvm_lock);
1522 result = e1000_init_hw(hw);
1523 mutex_exit(&e1000g_nvm_lock);
1524
1525 if (result < E1000_SUCCESS) {
1526 e1000g_log(Adapter, CE_WARN, "Initialize hw failed");
1527 e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1528 goto init_fail;
1529 }
1530
1531 /*
1532 * Restore LED settings to the default from EEPROM
1533 * to meet the standard for Sun platforms.
1534 */
1535 (void) e1000_cleanup_led(hw);
1536
1537 /* Disable Smart Power Down */
1538 phy_spd_state(hw, B_FALSE);
1539
1540 /* Make sure driver has control */
1541 e1000g_get_driver_control(hw);
1542
1543 /*
1544 * Initialize unicast addresses.
1545 */
1546 e1000g_init_unicst(Adapter);
1547
1548 /*
1549 * Setup and initialize the mctable structures. After this routine
1550 * completes Multicast table will be set
1551 */
1552 e1000_update_mc_addr_list(hw,
1553 (uint8_t *)Adapter->mcast_table, Adapter->mcast_count);
1554 msec_delay(5);
1555
1556 /*
1557 * Implement Adaptive IFS
1558 */
1559 e1000_reset_adaptive(hw);
1560
1561 /* Setup Interrupt Throttling Register */
1562 if (hw->mac.type >= e1000_82540) {
1563 E1000_WRITE_REG(hw, E1000_ITR, Adapter->intr_throttling_rate);
1564 } else
1565 Adapter->intr_adaptive = B_FALSE;
1566
1567 /* Start the timer for link setup */
1568 if (hw->mac.autoneg)
1569 link_timeout = PHY_AUTO_NEG_LIMIT * drv_usectohz(100000);
1570 else
1571 link_timeout = PHY_FORCE_LIMIT * drv_usectohz(100000);
1572
1573 mutex_enter(&Adapter->link_lock);
1574 if (hw->phy.autoneg_wait_to_complete) {
1575 Adapter->link_complete = B_TRUE;
1576 } else {
1577 Adapter->link_complete = B_FALSE;
1578 Adapter->link_tid = timeout(e1000g_link_timer,
1579 (void *)Adapter, link_timeout);
1580 }
1581 mutex_exit(&Adapter->link_lock);
1582
1583 /* Save the state of the phy */
1584 e1000g_get_phy_state(Adapter);
1585
1586 e1000g_param_sync(Adapter);
1587
1588 Adapter->init_count++;
1589
1590 if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
1591 goto init_fail;
1592 }
1593 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1594 goto init_fail;
1595 }
1596
1597 Adapter->poll_mode = e1000g_poll_mode;
1598
1599 return (DDI_SUCCESS);
1600
1601 init_fail:
1602 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1603 return (DDI_FAILURE);
1604 }
1605
1606 static int
1607 e1000g_alloc_rx_data(struct e1000g *Adapter)
1608 {
1609 e1000g_rx_ring_t *rx_ring;
1610 e1000g_rx_data_t *rx_data;
1611
1612 rx_ring = Adapter->rx_ring;
1613
1614 rx_data = kmem_zalloc(sizeof (e1000g_rx_data_t), KM_NOSLEEP);
1615
1616 if (rx_data == NULL)
1617 return (DDI_FAILURE);
1618
1619 rx_data->priv_devi_node = Adapter->priv_devi_node;
1620 rx_data->rx_ring = rx_ring;
1621
1622 mutex_init(&rx_data->freelist_lock, NULL,
1623 MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1624 mutex_init(&rx_data->recycle_lock, NULL,
1625 MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1626
1627 rx_ring->rx_data = rx_data;
1628
1629 return (DDI_SUCCESS);
1630 }
1631
1632 void
1633 e1000g_free_rx_pending_buffers(e1000g_rx_data_t *rx_data)
1634 {
1635 rx_sw_packet_t *packet, *next_packet;
1636
1637 if (rx_data == NULL)
1638 return;
1639
1640 packet = rx_data->packet_area;
1641 while (packet != NULL) {
1642 next_packet = packet->next;
1643 e1000g_free_rx_sw_packet(packet, B_TRUE);
1644 packet = next_packet;
1645 }
1646 rx_data->packet_area = NULL;
1647 }
1648
1649 void
1650 e1000g_free_rx_data(e1000g_rx_data_t *rx_data)
1651 {
1652 if (rx_data == NULL)
1653 return;
1654
1655 mutex_destroy(&rx_data->freelist_lock);
1656 mutex_destroy(&rx_data->recycle_lock);
1657
1658 kmem_free(rx_data, sizeof (e1000g_rx_data_t));
1659 }
1660
1661 /*
1662 * Check if the link is up
1663 */
1664 static boolean_t
1665 e1000g_link_up(struct e1000g *Adapter)
1666 {
1667 struct e1000_hw *hw = &Adapter->shared;
1668 boolean_t link_up = B_FALSE;
1669
1670 /*
1671 * get_link_status is set in the interrupt handler on link-status-change
1672 * or rx sequence error interrupt. get_link_status will stay
1673 * false until the e1000_check_for_link establishes link only
1674 * for copper adapters.
1675 */
1676 switch (hw->phy.media_type) {
1677 case e1000_media_type_copper:
1678 if (hw->mac.get_link_status) {
1679 (void) e1000_check_for_link(hw);
1680 if ((E1000_READ_REG(hw, E1000_STATUS) &
1681 E1000_STATUS_LU)) {
1682 link_up = B_TRUE;
1683 } else {
1684 link_up = !hw->mac.get_link_status;
1685 }
1686 } else {
1687 link_up = B_TRUE;
1688 }
1689 break;
1690 case e1000_media_type_fiber:
1691 (void) e1000_check_for_link(hw);
1692 link_up = (E1000_READ_REG(hw, E1000_STATUS) &
1693 E1000_STATUS_LU);
1694 break;
1695 case e1000_media_type_internal_serdes:
1696 (void) e1000_check_for_link(hw);
1697 link_up = hw->mac.serdes_has_link;
1698 break;
1699 }
1700
1701 return (link_up);
1702 }
1703
1704 static void
1705 e1000g_m_ioctl(void *arg, queue_t *q, mblk_t *mp)
1706 {
1707 struct iocblk *iocp;
1708 struct e1000g *e1000gp;
1709 enum ioc_reply status;
1710
1711 iocp = (struct iocblk *)(uintptr_t)mp->b_rptr;
1712 iocp->ioc_error = 0;
1713 e1000gp = (struct e1000g *)arg;
1714
1715 ASSERT(e1000gp);
1716 if (e1000gp == NULL) {
1717 miocnak(q, mp, 0, EINVAL);
1718 return;
1719 }
1720
1721 rw_enter(&e1000gp->chip_lock, RW_READER);
1722 if (e1000gp->e1000g_state & E1000G_SUSPENDED) {
1723 rw_exit(&e1000gp->chip_lock);
1724 miocnak(q, mp, 0, EINVAL);
1725 return;
1726 }
1727 rw_exit(&e1000gp->chip_lock);
1728
1729 switch (iocp->ioc_cmd) {
1730
1731 case LB_GET_INFO_SIZE:
1732 case LB_GET_INFO:
1733 case LB_GET_MODE:
1734 case LB_SET_MODE:
1735 status = e1000g_loopback_ioctl(e1000gp, iocp, mp);
1736 break;
1737
1738
1739 #ifdef E1000G_DEBUG
1740 case E1000G_IOC_REG_PEEK:
1741 case E1000G_IOC_REG_POKE:
1742 status = e1000g_pp_ioctl(e1000gp, iocp, mp);
1743 break;
1744 case E1000G_IOC_CHIP_RESET:
1745 e1000gp->reset_count++;
1746 if (e1000g_reset_adapter(e1000gp))
1747 status = IOC_ACK;
1748 else
1749 status = IOC_INVAL;
1750 break;
1751 #endif
1752 default:
1753 status = IOC_INVAL;
1754 break;
1755 }
1756
1757 /*
1758 * Decide how to reply
1759 */
1760 switch (status) {
1761 default:
1762 case IOC_INVAL:
1763 /*
1764 * Error, reply with a NAK and EINVAL or the specified error
1765 */
1766 miocnak(q, mp, 0, iocp->ioc_error == 0 ?
1767 EINVAL : iocp->ioc_error);
1768 break;
1769
1770 case IOC_DONE:
1771 /*
1772 * OK, reply already sent
1773 */
1774 break;
1775
1776 case IOC_ACK:
1777 /*
1778 * OK, reply with an ACK
1779 */
1780 miocack(q, mp, 0, 0);
1781 break;
1782
1783 case IOC_REPLY:
1784 /*
1785 * OK, send prepared reply as ACK or NAK
1786 */
1787 mp->b_datap->db_type = iocp->ioc_error == 0 ?
1788 M_IOCACK : M_IOCNAK;
1789 qreply(q, mp);
1790 break;
1791 }
1792 }
1793
1794 /*
1795 * The default value of e1000g_poll_mode == 0 assumes that the NIC is
1796 * capable of supporting only one interrupt and we shouldn't disable
1797 * the physical interrupt. In this case we let the interrupt come and
1798 * we queue the packets in the rx ring itself in case we are in polling
1799 * mode (better latency but slightly lower performance and a very
1800 * high intrrupt count in mpstat which is harmless).
1801 *
1802 * e1000g_poll_mode == 1 assumes that we have per Rx ring interrupt
1803 * which can be disabled in poll mode. This gives better overall
1804 * throughput (compared to the mode above), shows very low interrupt
1805 * count but has slightly higher latency since we pick the packets when
1806 * the poll thread does polling.
1807 *
1808 * Currently, this flag should be enabled only while doing performance
1809 * measurement or when it can be guaranteed that entire NIC going
1810 * in poll mode will not harm any traffic like cluster heartbeat etc.
1811 */
1812 int e1000g_poll_mode = 0;
1813
1814 /*
1815 * Called from the upper layers when driver is in polling mode to
1816 * pick up any queued packets. Care should be taken to not block
1817 * this thread.
1818 */
1819 static mblk_t *e1000g_poll_ring(void *arg, int bytes_to_pickup)
1820 {
1821 e1000g_rx_ring_t *rx_ring = (e1000g_rx_ring_t *)arg;
1822 mblk_t *mp = NULL;
1823 mblk_t *tail;
1824 struct e1000g *adapter;
1825
1826 adapter = rx_ring->adapter;
1827
1828 rw_enter(&adapter->chip_lock, RW_READER);
1829
1830 if (adapter->e1000g_state & E1000G_SUSPENDED) {
1831 rw_exit(&adapter->chip_lock);
1832 return (NULL);
1833 }
1834
1835 mutex_enter(&rx_ring->rx_lock);
1836 mp = e1000g_receive(rx_ring, &tail, bytes_to_pickup);
1837 mutex_exit(&rx_ring->rx_lock);
1838 rw_exit(&adapter->chip_lock);
1839 return (mp);
1840 }
1841
1842 static int
1843 e1000g_m_start(void *arg)
1844 {
1845 struct e1000g *Adapter = (struct e1000g *)arg;
1846
1847 rw_enter(&Adapter->chip_lock, RW_WRITER);
1848
1849 if (Adapter->e1000g_state & E1000G_SUSPENDED) {
1850 rw_exit(&Adapter->chip_lock);
1851 return (ECANCELED);
1852 }
1853
1854 if (e1000g_start(Adapter, B_TRUE) != DDI_SUCCESS) {
1855 rw_exit(&Adapter->chip_lock);
1856 return (ENOTACTIVE);
1857 }
1858
1859 Adapter->e1000g_state |= E1000G_STARTED;
1860
1861 rw_exit(&Adapter->chip_lock);
1862
1863 /* Enable and start the watchdog timer */
1864 enable_watchdog_timer(Adapter);
1865
1866 return (0);
1867 }
1868
1869 static int
1870 e1000g_start(struct e1000g *Adapter, boolean_t global)
1871 {
1872 e1000g_rx_data_t *rx_data;
1873
1874 if (global) {
1875 if (e1000g_alloc_rx_data(Adapter) != DDI_SUCCESS) {
1876 e1000g_log(Adapter, CE_WARN, "Allocate rx data failed");
1877 goto start_fail;
1878 }
1879
1880 /* Allocate dma resources for descriptors and buffers */
1881 if (e1000g_alloc_dma_resources(Adapter) != DDI_SUCCESS) {
1882 e1000g_log(Adapter, CE_WARN,
1883 "Alloc DMA resources failed");
1884 goto start_fail;
1885 }
1886 Adapter->rx_buffer_setup = B_FALSE;
1887 }
1888
1889 if (!(Adapter->attach_progress & ATTACH_PROGRESS_INIT)) {
1890 if (e1000g_init(Adapter) != DDI_SUCCESS) {
1891 e1000g_log(Adapter, CE_WARN,
1892 "Adapter initialization failed");
1893 goto start_fail;
1894 }
1895 }
1896
1897 /* Setup and initialize the transmit structures */
1898 e1000g_tx_setup(Adapter);
1899 msec_delay(5);
1900
1901 /* Setup and initialize the receive structures */
1902 e1000g_rx_setup(Adapter);
1903 msec_delay(5);
1904
1905 /* Restore the e1000g promiscuous mode */
1906 e1000g_restore_promisc(Adapter);
1907
1908 e1000g_mask_interrupt(Adapter);
1909
1910 Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
1911
1912 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1913 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1914 goto start_fail;
1915 }
1916
1917 return (DDI_SUCCESS);
1918
1919 start_fail:
1920 rx_data = Adapter->rx_ring->rx_data;
1921
1922 if (global) {
1923 e1000g_release_dma_resources(Adapter);
1924 e1000g_free_rx_pending_buffers(rx_data);
1925 e1000g_free_rx_data(rx_data);
1926 }
1927
1928 mutex_enter(&e1000g_nvm_lock);
1929 (void) e1000_reset_hw(&Adapter->shared);
1930 mutex_exit(&e1000g_nvm_lock);
1931
1932 return (DDI_FAILURE);
1933 }
1934
1935 static void
1936 e1000g_m_stop(void *arg)
1937 {
1938 struct e1000g *Adapter = (struct e1000g *)arg;
1939
1940 /* Drain tx sessions */
1941 (void) e1000g_tx_drain(Adapter);
1942
1943 rw_enter(&Adapter->chip_lock, RW_WRITER);
1944
1945 if (Adapter->e1000g_state & E1000G_SUSPENDED) {
1946 rw_exit(&Adapter->chip_lock);
1947 return;
1948 }
1949 Adapter->e1000g_state &= ~E1000G_STARTED;
1950 e1000g_stop(Adapter, B_TRUE);
1951
1952 rw_exit(&Adapter->chip_lock);
1953
1954 /* Disable and stop all the timers */
1955 disable_watchdog_timer(Adapter);
1956 stop_link_timer(Adapter);
1957 stop_82547_timer(Adapter->tx_ring);
1958 }
1959
1960 static void
1961 e1000g_stop(struct e1000g *Adapter, boolean_t global)
1962 {
1963 private_devi_list_t *devi_node;
1964 e1000g_rx_data_t *rx_data;
1965 int result;
1966
1967 Adapter->attach_progress &= ~ATTACH_PROGRESS_INIT;
1968
1969 /* Stop the chip and release pending resources */
1970
1971 /* Tell firmware driver is no longer in control */
1972 e1000g_release_driver_control(&Adapter->shared);
1973
1974 e1000g_clear_all_interrupts(Adapter);
1975
1976 mutex_enter(&e1000g_nvm_lock);
1977 result = e1000_reset_hw(&Adapter->shared);
1978 mutex_exit(&e1000g_nvm_lock);
1979
1980 if (result != E1000_SUCCESS) {
1981 e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1982 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1983 }
1984
1985 mutex_enter(&Adapter->link_lock);
1986 Adapter->link_complete = B_FALSE;
1987 mutex_exit(&Adapter->link_lock);
1988
1989 /* Release resources still held by the TX descriptors */
1990 e1000g_tx_clean(Adapter);
1991
1992 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1993 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1994
1995 /* Clean the pending rx jumbo packet fragment */
1996 e1000g_rx_clean(Adapter);
1997
1998 if (global) {
1999 e1000g_release_dma_resources(Adapter);
2000
2001 mutex_enter(&e1000g_rx_detach_lock);
2002 rx_data = Adapter->rx_ring->rx_data;
2003 rx_data->flag |= E1000G_RX_STOPPED;
2004
2005 if (rx_data->pending_count == 0) {
2006 e1000g_free_rx_pending_buffers(rx_data);
2007 e1000g_free_rx_data(rx_data);
2008 } else {
2009 devi_node = rx_data->priv_devi_node;
2010 if (devi_node != NULL)
2011 atomic_inc_32(&devi_node->pending_rx_count);
2012 else
2013 atomic_inc_32(&Adapter->pending_rx_count);
2014 }
2015 mutex_exit(&e1000g_rx_detach_lock);
2016 }
2017
2018 if (Adapter->link_state != LINK_STATE_UNKNOWN) {
2019 Adapter->link_state = LINK_STATE_UNKNOWN;
2020 if (!Adapter->reset_flag)
2021 mac_link_update(Adapter->mh, Adapter->link_state);
2022 }
2023 }
2024
2025 static void
2026 e1000g_rx_clean(struct e1000g *Adapter)
2027 {
2028 e1000g_rx_data_t *rx_data = Adapter->rx_ring->rx_data;
2029
2030 if (rx_data == NULL)
2031 return;
2032
2033 if (rx_data->rx_mblk != NULL) {
2034 freemsg(rx_data->rx_mblk);
2035 rx_data->rx_mblk = NULL;
2036 rx_data->rx_mblk_tail = NULL;
2037 rx_data->rx_mblk_len = 0;
2038 }
2039 }
2040
2041 static void
2042 e1000g_tx_clean(struct e1000g *Adapter)
2043 {
2044 e1000g_tx_ring_t *tx_ring;
2045 p_tx_sw_packet_t packet;
2046 mblk_t *mp;
2047 mblk_t *nmp;
2048 uint32_t packet_count;
2049
2050 tx_ring = Adapter->tx_ring;
2051
2052 /*
2053 * Here we don't need to protect the lists using
2054 * the usedlist_lock and freelist_lock, for they
2055 * have been protected by the chip_lock.
2056 */
2057 mp = NULL;
2058 nmp = NULL;
2059 packet_count = 0;
2060 packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(&tx_ring->used_list);
2061 while (packet != NULL) {
2062 if (packet->mp != NULL) {
2063 /* Assemble the message chain */
2064 if (mp == NULL) {
2065 mp = packet->mp;
2066 nmp = packet->mp;
2067 } else {
2068 nmp->b_next = packet->mp;
2069 nmp = packet->mp;
2070 }
2071 /* Disconnect the message from the sw packet */
2072 packet->mp = NULL;
2073 }
2074
2075 e1000g_free_tx_swpkt(packet);
2076 packet_count++;
2077
2078 packet = (p_tx_sw_packet_t)
2079 QUEUE_GET_NEXT(&tx_ring->used_list, &packet->Link);
2080 }
2081
2082 if (mp != NULL)
2083 freemsgchain(mp);
2084
2085 if (packet_count > 0) {
2086 QUEUE_APPEND(&tx_ring->free_list, &tx_ring->used_list);
2087 QUEUE_INIT_LIST(&tx_ring->used_list);
2088
2089 /* Setup TX descriptor pointers */
2090 tx_ring->tbd_next = tx_ring->tbd_first;
2091 tx_ring->tbd_oldest = tx_ring->tbd_first;
2092
2093 /* Setup our HW Tx Head & Tail descriptor pointers */
2094 E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
2095 E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
2096 }
2097 }
2098
2099 static boolean_t
2100 e1000g_tx_drain(struct e1000g *Adapter)
2101 {
2102 int i;
2103 boolean_t done;
2104 e1000g_tx_ring_t *tx_ring;
2105
2106 tx_ring = Adapter->tx_ring;
2107
2108 /* Allow up to 'wsdraintime' for pending xmit's to complete. */
2109 for (i = 0; i < TX_DRAIN_TIME; i++) {
2110 mutex_enter(&tx_ring->usedlist_lock);
2111 done = IS_QUEUE_EMPTY(&tx_ring->used_list);
2112 mutex_exit(&tx_ring->usedlist_lock);
2113
2114 if (done)
2115 break;
2116
2117 msec_delay(1);
2118 }
2119
2120 return (done);
2121 }
2122
2123 static boolean_t
2124 e1000g_rx_drain(struct e1000g *Adapter)
2125 {
2126 int i;
2127 boolean_t done;
2128
2129 /*
2130 * Allow up to RX_DRAIN_TIME for pending received packets to complete.
2131 */
2132 for (i = 0; i < RX_DRAIN_TIME; i++) {
2133 done = (Adapter->pending_rx_count == 0);
2134
2135 if (done)
2136 break;
2137
2138 msec_delay(1);
2139 }
2140
2141 return (done);
2142 }
2143
2144 static boolean_t
2145 e1000g_reset_adapter(struct e1000g *Adapter)
2146 {
2147 /* Disable and stop all the timers */
2148 disable_watchdog_timer(Adapter);
2149 stop_link_timer(Adapter);
2150 stop_82547_timer(Adapter->tx_ring);
2151
2152 rw_enter(&Adapter->chip_lock, RW_WRITER);
2153
2154 if (Adapter->stall_flag) {
2155 Adapter->stall_flag = B_FALSE;
2156 Adapter->reset_flag = B_TRUE;
2157 }
2158
2159 if (!(Adapter->e1000g_state & E1000G_STARTED)) {
2160 rw_exit(&Adapter->chip_lock);
2161 return (B_TRUE);
2162 }
2163
2164 e1000g_stop(Adapter, B_FALSE);
2165
2166 if (e1000g_start(Adapter, B_FALSE) != DDI_SUCCESS) {
2167 rw_exit(&Adapter->chip_lock);
2168 e1000g_log(Adapter, CE_WARN, "Reset failed");
2169 return (B_FALSE);
2170 }
2171
2172 rw_exit(&Adapter->chip_lock);
2173
2174 /* Enable and start the watchdog timer */
2175 enable_watchdog_timer(Adapter);
2176
2177 return (B_TRUE);
2178 }
2179
2180 boolean_t
2181 e1000g_global_reset(struct e1000g *Adapter)
2182 {
2183 /* Disable and stop all the timers */
2184 disable_watchdog_timer(Adapter);
2185 stop_link_timer(Adapter);
2186 stop_82547_timer(Adapter->tx_ring);
2187
2188 rw_enter(&Adapter->chip_lock, RW_WRITER);
2189
2190 e1000g_stop(Adapter, B_TRUE);
2191
2192 Adapter->init_count = 0;
2193
2194 if (e1000g_start(Adapter, B_TRUE) != DDI_SUCCESS) {
2195 rw_exit(&Adapter->chip_lock);
2196 e1000g_log(Adapter, CE_WARN, "Reset failed");
2197 return (B_FALSE);
2198 }
2199
2200 rw_exit(&Adapter->chip_lock);
2201
2202 /* Enable and start the watchdog timer */
2203 enable_watchdog_timer(Adapter);
2204
2205 return (B_TRUE);
2206 }
2207
2208 /*
2209 * e1000g_intr_pciexpress - ISR for PCI Express chipsets
2210 *
2211 * This interrupt service routine is for PCI-Express adapters.
2212 * The ICR contents is valid only when the E1000_ICR_INT_ASSERTED
2213 * bit is set.
2214 */
2215 static uint_t
2216 e1000g_intr_pciexpress(caddr_t arg)
2217 {
2218 struct e1000g *Adapter;
2219 uint32_t icr;
2220
2221 Adapter = (struct e1000g *)(uintptr_t)arg;
2222 icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
2223
2224 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2225 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2226 return (DDI_INTR_CLAIMED);
2227 }
2228
2229 if (icr & E1000_ICR_INT_ASSERTED) {
2230 /*
2231 * E1000_ICR_INT_ASSERTED bit was set:
2232 * Read(Clear) the ICR, claim this interrupt,
2233 * look for work to do.
2234 */
2235 e1000g_intr_work(Adapter, icr);
2236 return (DDI_INTR_CLAIMED);
2237 } else {
2238 /*
2239 * E1000_ICR_INT_ASSERTED bit was not set:
2240 * Don't claim this interrupt, return immediately.
2241 */
2242 return (DDI_INTR_UNCLAIMED);
2243 }
2244 }
2245
2246 /*
2247 * e1000g_intr - ISR for PCI/PCI-X chipsets
2248 *
2249 * This interrupt service routine is for PCI/PCI-X adapters.
2250 * We check the ICR contents no matter the E1000_ICR_INT_ASSERTED
2251 * bit is set or not.
2252 */
2253 static uint_t
2254 e1000g_intr(caddr_t arg)
2255 {
2256 struct e1000g *Adapter;
2257 uint32_t icr;
2258
2259 Adapter = (struct e1000g *)(uintptr_t)arg;
2260 icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
2261
2262 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2263 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2264 return (DDI_INTR_CLAIMED);
2265 }
2266
2267 if (icr) {
2268 /*
2269 * Any bit was set in ICR:
2270 * Read(Clear) the ICR, claim this interrupt,
2271 * look for work to do.
2272 */
2273 e1000g_intr_work(Adapter, icr);
2274 return (DDI_INTR_CLAIMED);
2275 } else {
2276 /*
2277 * No bit was set in ICR:
2278 * Don't claim this interrupt, return immediately.
2279 */
2280 return (DDI_INTR_UNCLAIMED);
2281 }
2282 }
2283
2284 /*
2285 * e1000g_intr_work - actual processing of ISR
2286 *
2287 * Read(clear) the ICR contents and call appropriate interrupt
2288 * processing routines.
2289 */
2290 static void
2291 e1000g_intr_work(struct e1000g *Adapter, uint32_t icr)
2292 {
2293 struct e1000_hw *hw;
2294 hw = &Adapter->shared;
2295 e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
2296
2297 Adapter->rx_pkt_cnt = 0;
2298 Adapter->tx_pkt_cnt = 0;
2299
2300 rw_enter(&Adapter->chip_lock, RW_READER);
2301
2302 if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2303 rw_exit(&Adapter->chip_lock);
2304 return;
2305 }
2306 /*
2307 * Here we need to check the "e1000g_state" flag within the chip_lock to
2308 * ensure the receive routine will not execute when the adapter is
2309 * being reset.
2310 */
2311 if (!(Adapter->e1000g_state & E1000G_STARTED)) {
2312 rw_exit(&Adapter->chip_lock);
2313 return;
2314 }
2315
2316 if (icr & E1000_ICR_RXT0) {
2317 mblk_t *mp = NULL;
2318 mblk_t *tail = NULL;
2319 e1000g_rx_ring_t *rx_ring;
2320
2321 rx_ring = Adapter->rx_ring;
2322 mutex_enter(&rx_ring->rx_lock);
2323 /*
2324 * Sometimes with legacy interrupts, it possible that
2325 * there is a single interrupt for Rx/Tx. In which
2326 * case, if poll flag is set, we shouldn't really
2327 * be doing Rx processing.
2328 */
2329 if (!rx_ring->poll_flag)
2330 mp = e1000g_receive(rx_ring, &tail,
2331 E1000G_CHAIN_NO_LIMIT);
2332 mutex_exit(&rx_ring->rx_lock);
2333 rw_exit(&Adapter->chip_lock);
2334 if (mp != NULL)
2335 mac_rx_ring(Adapter->mh, rx_ring->mrh,
2336 mp, rx_ring->ring_gen_num);
2337 } else
2338 rw_exit(&Adapter->chip_lock);
2339
2340 if (icr & E1000_ICR_TXDW) {
2341 if (!Adapter->tx_intr_enable)
2342 e1000g_clear_tx_interrupt(Adapter);
2343
2344 /* Recycle the tx descriptors */
2345 rw_enter(&Adapter->chip_lock, RW_READER);
2346 (void) e1000g_recycle(tx_ring);
2347 E1000G_DEBUG_STAT(tx_ring->stat_recycle_intr);
2348 rw_exit(&Adapter->chip_lock);
2349
2350 if (tx_ring->resched_needed &&
2351 (tx_ring->tbd_avail > DEFAULT_TX_UPDATE_THRESHOLD)) {
2352 tx_ring->resched_needed = B_FALSE;
2353 mac_tx_update(Adapter->mh);
2354 E1000G_STAT(tx_ring->stat_reschedule);
2355 }
2356 }
2357
2358 /*
2359 * The Receive Sequence errors RXSEQ and the link status change LSC
2360 * are checked to detect that the cable has been pulled out. For
2361 * the Wiseman 2.0 silicon, the receive sequence errors interrupt
2362 * are an indication that cable is not connected.
2363 */
2364 if ((icr & E1000_ICR_RXSEQ) ||
2365 (icr & E1000_ICR_LSC) ||
2366 (icr & E1000_ICR_GPI_EN1)) {
2367 boolean_t link_changed;
2368 timeout_id_t tid = 0;
2369
2370 stop_watchdog_timer(Adapter);
2371
2372 rw_enter(&Adapter->chip_lock, RW_WRITER);
2373
2374 /*
2375 * Because we got a link-status-change interrupt, force
2376 * e1000_check_for_link() to look at phy
2377 */
2378 Adapter->shared.mac.get_link_status = B_TRUE;
2379
2380 /* e1000g_link_check takes care of link status change */
2381 link_changed = e1000g_link_check(Adapter);
2382
2383 /* Get new phy state */
2384 e1000g_get_phy_state(Adapter);
2385
2386 /*
2387 * If the link timer has not timed out, we'll not notify
2388 * the upper layer with any link state until the link is up.
2389 */
2390 if (link_changed && !Adapter->link_complete) {
2391 if (Adapter->link_state == LINK_STATE_UP) {
2392 mutex_enter(&Adapter->link_lock);
2393 Adapter->link_complete = B_TRUE;
2394 tid = Adapter->link_tid;
2395 Adapter->link_tid = 0;
2396 mutex_exit(&Adapter->link_lock);
2397 } else {
2398 link_changed = B_FALSE;
2399 }
2400 }
2401 rw_exit(&Adapter->chip_lock);
2402
2403 if (link_changed) {
2404 if (tid != 0)
2405 (void) untimeout(tid);
2406
2407 /*
2408 * Workaround for esb2. Data stuck in fifo on a link
2409 * down event. Stop receiver here and reset in watchdog.
2410 */
2411 if ((Adapter->link_state == LINK_STATE_DOWN) &&
2412 (Adapter->shared.mac.type == e1000_80003es2lan)) {
2413 uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
2414 E1000_WRITE_REG(hw, E1000_RCTL,
2415 rctl & ~E1000_RCTL_EN);
2416 e1000g_log(Adapter, CE_WARN,
2417 "ESB2 receiver disabled");
2418 Adapter->esb2_workaround = B_TRUE;
2419 }
2420 if (!Adapter->reset_flag)
2421 mac_link_update(Adapter->mh,
2422 Adapter->link_state);
2423 if (Adapter->link_state == LINK_STATE_UP)
2424 Adapter->reset_flag = B_FALSE;
2425 }
2426
2427 start_watchdog_timer(Adapter);
2428 }
2429 }
2430
2431 static void
2432 e1000g_init_unicst(struct e1000g *Adapter)
2433 {
2434 struct e1000_hw *hw;
2435 int slot;
2436
2437 hw = &Adapter->shared;
2438
2439 if (Adapter->init_count == 0) {
2440 /* Initialize the multiple unicast addresses */
2441 Adapter->unicst_total = MAX_NUM_UNICAST_ADDRESSES;
2442
2443 /* Workaround for an erratum of 82571 chipst */
2444 if ((hw->mac.type == e1000_82571) &&
2445 (e1000_get_laa_state_82571(hw) == B_TRUE))
2446 Adapter->unicst_total--;
2447
2448 /* VMware doesn't support multiple mac addresses properly */
2449 if (hw->subsystem_vendor_id == 0x15ad)
2450 Adapter->unicst_total = 1;
2451
2452 Adapter->unicst_avail = Adapter->unicst_total;
2453
2454 for (slot = 0; slot < Adapter->unicst_total; slot++) {
2455 /* Clear both the flag and MAC address */
2456 Adapter->unicst_addr[slot].reg.high = 0;
2457 Adapter->unicst_addr[slot].reg.low = 0;
2458 }
2459 } else {
2460 /* Workaround for an erratum of 82571 chipst */
2461 if ((hw->mac.type == e1000_82571) &&
2462 (e1000_get_laa_state_82571(hw) == B_TRUE))
2463 e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
2464
2465 /* Re-configure the RAR registers */
2466 for (slot = 0; slot < Adapter->unicst_total; slot++)
2467 if (Adapter->unicst_addr[slot].mac.set == 1)
2468 e1000_rar_set(hw,
2469 Adapter->unicst_addr[slot].mac.addr, slot);
2470 }
2471
2472 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2473 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2474 }
2475
2476 static int
2477 e1000g_unicst_set(struct e1000g *Adapter, const uint8_t *mac_addr,
2478 int slot)
2479 {
2480 struct e1000_hw *hw;
2481
2482 hw = &Adapter->shared;
2483
2484 /*
2485 * The first revision of Wiseman silicon (rev 2.0) has an errata
2486 * that requires the receiver to be in reset when any of the
2487 * receive address registers (RAR regs) are accessed. The first
2488 * rev of Wiseman silicon also requires MWI to be disabled when
2489 * a global reset or a receive reset is issued. So before we
2490 * initialize the RARs, we check the rev of the Wiseman controller
2491 * and work around any necessary HW errata.
2492 */
2493 if ((hw->mac.type == e1000_82542) &&
2494 (hw->revision_id == E1000_REVISION_2)) {
2495 e1000_pci_clear_mwi(hw);
2496 E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2497 msec_delay(5);
2498 }
2499 if (mac_addr == NULL) {
2500 E1000_WRITE_REG_ARRAY(hw, E1000_RA, slot << 1, 0);
2501 E1000_WRITE_FLUSH(hw);
2502 E1000_WRITE_REG_ARRAY(hw, E1000_RA, (slot << 1) + 1, 0);
2503 E1000_WRITE_FLUSH(hw);
2504 /* Clear both the flag and MAC address */
2505 Adapter->unicst_addr[slot].reg.high = 0;
2506 Adapter->unicst_addr[slot].reg.low = 0;
2507 } else {
2508 bcopy(mac_addr, Adapter->unicst_addr[slot].mac.addr,
2509 ETHERADDRL);
2510 e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
2511 Adapter->unicst_addr[slot].mac.set = 1;
2512 }
2513
2514 /* Workaround for an erratum of 82571 chipst */
2515 if (slot == 0) {
2516 if ((hw->mac.type == e1000_82571) &&
2517 (e1000_get_laa_state_82571(hw) == B_TRUE))
2518 if (mac_addr == NULL) {
2519 E1000_WRITE_REG_ARRAY(hw, E1000_RA,
2520 slot << 1, 0);
2521 E1000_WRITE_FLUSH(hw);
2522 E1000_WRITE_REG_ARRAY(hw, E1000_RA,
2523 (slot << 1) + 1, 0);
2524 E1000_WRITE_FLUSH(hw);
2525 } else {
2526 e1000_rar_set(hw, (uint8_t *)mac_addr,
2527 LAST_RAR_ENTRY);
2528 }
2529 }
2530
2531 /*
2532 * If we are using Wiseman rev 2.0 silicon, we will have previously
2533 * put the receive in reset, and disabled MWI, to work around some
2534 * HW errata. Now we should take the receiver out of reset, and
2535 * re-enabled if MWI if it was previously enabled by the PCI BIOS.
2536 */
2537 if ((hw->mac.type == e1000_82542) &&
2538 (hw->revision_id == E1000_REVISION_2)) {
2539 E1000_WRITE_REG(hw, E1000_RCTL, 0);
2540 msec_delay(1);
2541 if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2542 e1000_pci_set_mwi(hw);
2543 e1000g_rx_setup(Adapter);
2544 }
2545
2546 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2547 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2548 return (EIO);
2549 }
2550
2551 return (0);
2552 }
2553
2554 static int
2555 multicst_add(struct e1000g *Adapter, const uint8_t *multiaddr)
2556 {
2557 struct e1000_hw *hw = &Adapter->shared;
2558 struct ether_addr *newtable;
2559 size_t new_len;
2560 size_t old_len;
2561 int res = 0;
2562
2563 if ((multiaddr[0] & 01) == 0) {
2564 res = EINVAL;
2565 e1000g_log(Adapter, CE_WARN, "Illegal multicast address");
2566 goto done;
2567 }
2568
2569 if (Adapter->mcast_count >= Adapter->mcast_max_num) {
2570 res = ENOENT;
2571 e1000g_log(Adapter, CE_WARN,
2572 "Adapter requested more than %d mcast addresses",
2573 Adapter->mcast_max_num);
2574 goto done;
2575 }
2576
2577
2578 if (Adapter->mcast_count == Adapter->mcast_alloc_count) {
2579 old_len = Adapter->mcast_alloc_count *
2580 sizeof (struct ether_addr);
2581 new_len = (Adapter->mcast_alloc_count + MCAST_ALLOC_SIZE) *
2582 sizeof (struct ether_addr);
2583
2584 newtable = kmem_alloc(new_len, KM_NOSLEEP);
2585 if (newtable == NULL) {
2586 res = ENOMEM;
2587 e1000g_log(Adapter, CE_WARN,
2588 "Not enough memory to alloc mcast table");
2589 goto done;
2590 }
2591
2592 if (Adapter->mcast_table != NULL) {
2593 bcopy(Adapter->mcast_table, newtable, old_len);
2594 kmem_free(Adapter->mcast_table, old_len);
2595 }
2596 Adapter->mcast_alloc_count += MCAST_ALLOC_SIZE;
2597 Adapter->mcast_table = newtable;
2598 }
2599
2600 bcopy(multiaddr,
2601 &Adapter->mcast_table[Adapter->mcast_count], ETHERADDRL);
2602 Adapter->mcast_count++;
2603
2604 /*
2605 * Update the MC table in the hardware
2606 */
2607 e1000g_clear_interrupt(Adapter);
2608
2609 e1000_update_mc_addr_list(hw,
2610 (uint8_t *)Adapter->mcast_table, Adapter->mcast_count);
2611
2612 e1000g_mask_interrupt(Adapter);
2613
2614 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2615 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2616 res = EIO;
2617 }
2618
2619 done:
2620 return (res);
2621 }
2622
2623 static int
2624 multicst_remove(struct e1000g *Adapter, const uint8_t *multiaddr)
2625 {
2626 struct e1000_hw *hw = &Adapter->shared;
2627 struct ether_addr *newtable;
2628 size_t new_len;
2629 size_t old_len;
2630 unsigned i;
2631
2632 for (i = 0; i < Adapter->mcast_count; i++) {
2633 if (bcmp(multiaddr, &Adapter->mcast_table[i],
2634 ETHERADDRL) == 0) {
2635 for (i++; i < Adapter->mcast_count; i++) {
2636 Adapter->mcast_table[i - 1] =
2637 Adapter->mcast_table[i];
2638 }
2639 Adapter->mcast_count--;
2640 break;
2641 }
2642 }
2643
2644 if ((Adapter->mcast_alloc_count - Adapter->mcast_count) >
2645 MCAST_ALLOC_SIZE) {
2646 old_len = Adapter->mcast_alloc_count *
2647 sizeof (struct ether_addr);
2648 new_len = (Adapter->mcast_alloc_count - MCAST_ALLOC_SIZE) *
2649 sizeof (struct ether_addr);
2650
2651 newtable = kmem_alloc(new_len, KM_NOSLEEP);
2652 if (newtable != NULL) {
2653 bcopy(Adapter->mcast_table, newtable, new_len);
2654 kmem_free(Adapter->mcast_table, old_len);
2655
2656 Adapter->mcast_alloc_count -= MCAST_ALLOC_SIZE;
2657 Adapter->mcast_table = newtable;
2658 }
2659 }
2660
2661 /*
2662 * Update the MC table in the hardware
2663 */
2664 e1000g_clear_interrupt(Adapter);
2665
2666 e1000_update_mc_addr_list(hw,
2667 (uint8_t *)Adapter->mcast_table, Adapter->mcast_count);
2668
2669 e1000g_mask_interrupt(Adapter);
2670
2671 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2672 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2673 return (EIO);
2674 }
2675
2676 return (0);
2677 }
2678
2679 static void
2680 e1000g_release_multicast(struct e1000g *Adapter)
2681 {
2682 if (Adapter->mcast_table != NULL) {
2683 kmem_free(Adapter->mcast_table,
2684 Adapter->mcast_alloc_count * sizeof (struct ether_addr));
2685 Adapter->mcast_table = NULL;
2686 }
2687 }
2688
2689 int
2690 e1000g_m_multicst(void *arg, boolean_t add, const uint8_t *addr)
2691 {
2692 struct e1000g *Adapter = (struct e1000g *)arg;
2693 int result;
2694
2695 rw_enter(&Adapter->chip_lock, RW_WRITER);
2696
2697 if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2698 result = ECANCELED;
2699 goto done;
2700 }
2701
2702 result = (add) ? multicst_add(Adapter, addr)
2703 : multicst_remove(Adapter, addr);
2704
2705 done:
2706 rw_exit(&Adapter->chip_lock);
2707 return (result);
2708
2709 }
2710
2711 int
2712 e1000g_m_promisc(void *arg, boolean_t on)
2713 {
2714 struct e1000g *Adapter = (struct e1000g *)arg;
2715 uint32_t rctl;
2716
2717 rw_enter(&Adapter->chip_lock, RW_WRITER);
2718
2719 if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2720 rw_exit(&Adapter->chip_lock);
2721 return (ECANCELED);
2722 }
2723
2724 rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
2725
2726 if (on)
2727 rctl |=
2728 (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
2729 else
2730 rctl &= (~(E1000_RCTL_UPE | E1000_RCTL_MPE));
2731
2732 E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
2733
2734 Adapter->e1000g_promisc = on;
2735
2736 rw_exit(&Adapter->chip_lock);
2737
2738 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2739 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2740 return (EIO);
2741 }
2742
2743 return (0);
2744 }
2745
2746 /*
2747 * Entry points to enable and disable interrupts at the granularity of
2748 * a group.
2749 * Turns the poll_mode for the whole adapter on and off to enable or
2750 * override the ring level polling control over the hardware interrupts.
2751 */
2752 static int
2753 e1000g_rx_group_intr_enable(mac_intr_handle_t arg)
2754 {
2755 struct e1000g *adapter = (struct e1000g *)arg;
2756 e1000g_rx_ring_t *rx_ring = adapter->rx_ring;
2757
2758 /*
2759 * Later interrupts at the granularity of the this ring will
2760 * invoke mac_rx() with NULL, indicating the need for another
2761 * software classification.
2762 * We have a single ring usable per adapter now, so we only need to
2763 * reset the rx handle for that one.
2764 * When more RX rings can be used, we should update each one of them.
2765 */
2766 mutex_enter(&rx_ring->rx_lock);
2767 rx_ring->mrh = NULL;
2768 adapter->poll_mode = B_FALSE;
2769 mutex_exit(&rx_ring->rx_lock);
2770 return (0);
2771 }
2772
2773 static int
2774 e1000g_rx_group_intr_disable(mac_intr_handle_t arg)
2775 {
2776 struct e1000g *adapter = (struct e1000g *)arg;
2777 e1000g_rx_ring_t *rx_ring = adapter->rx_ring;
2778
2779 mutex_enter(&rx_ring->rx_lock);
2780
2781 /*
2782 * Later interrupts at the granularity of the this ring will
2783 * invoke mac_rx() with the handle for this ring;
2784 */
2785 adapter->poll_mode = B_TRUE;
2786 rx_ring->mrh = rx_ring->mrh_init;
2787 mutex_exit(&rx_ring->rx_lock);
2788 return (0);
2789 }
2790
2791 /*
2792 * Entry points to enable and disable interrupts at the granularity of
2793 * a ring.
2794 * adapter poll_mode controls whether we actually proceed with hardware
2795 * interrupt toggling.
2796 */
2797 static int
2798 e1000g_rx_ring_intr_enable(mac_intr_handle_t intrh)
2799 {
2800 e1000g_rx_ring_t *rx_ring = (e1000g_rx_ring_t *)intrh;
2801 struct e1000g *adapter = rx_ring->adapter;
2802 struct e1000_hw *hw = &adapter->shared;
2803 uint32_t intr_mask;
2804
2805 rw_enter(&adapter->chip_lock, RW_READER);
2806
2807 if (adapter->e1000g_state & E1000G_SUSPENDED) {
2808 rw_exit(&adapter->chip_lock);
2809 return (0);
2810 }
2811
2812 mutex_enter(&rx_ring->rx_lock);
2813 rx_ring->poll_flag = 0;
2814 mutex_exit(&rx_ring->rx_lock);
2815
2816 /* Rx interrupt enabling for MSI and legacy */
2817 intr_mask = E1000_READ_REG(hw, E1000_IMS);
2818 intr_mask |= E1000_IMS_RXT0;
2819 E1000_WRITE_REG(hw, E1000_IMS, intr_mask);
2820 E1000_WRITE_FLUSH(hw);
2821
2822 /* Trigger a Rx interrupt to check Rx ring */
2823 E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
2824 E1000_WRITE_FLUSH(hw);
2825
2826 rw_exit(&adapter->chip_lock);
2827 return (0);
2828 }
2829
2830 static int
2831 e1000g_rx_ring_intr_disable(mac_intr_handle_t intrh)
2832 {
2833 e1000g_rx_ring_t *rx_ring = (e1000g_rx_ring_t *)intrh;
2834 struct e1000g *adapter = rx_ring->adapter;
2835 struct e1000_hw *hw = &adapter->shared;
2836
2837 rw_enter(&adapter->chip_lock, RW_READER);
2838
2839 if (adapter->e1000g_state & E1000G_SUSPENDED) {
2840 rw_exit(&adapter->chip_lock);
2841 return (0);
2842 }
2843 mutex_enter(&rx_ring->rx_lock);
2844 rx_ring->poll_flag = 1;
2845 mutex_exit(&rx_ring->rx_lock);
2846
2847 /* Rx interrupt disabling for MSI and legacy */
2848 E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
2849 E1000_WRITE_FLUSH(hw);
2850
2851 rw_exit(&adapter->chip_lock);
2852 return (0);
2853 }
2854
2855 /*
2856 * e1000g_unicst_find - Find the slot for the specified unicast address
2857 */
2858 static int
2859 e1000g_unicst_find(struct e1000g *Adapter, const uint8_t *mac_addr)
2860 {
2861 int slot;
2862
2863 for (slot = 0; slot < Adapter->unicst_total; slot++) {
2864 if ((Adapter->unicst_addr[slot].mac.set == 1) &&
2865 (bcmp(Adapter->unicst_addr[slot].mac.addr,
2866 mac_addr, ETHERADDRL) == 0))
2867 return (slot);
2868 }
2869
2870 return (-1);
2871 }
2872
2873 /*
2874 * Entry points to add and remove a MAC address to a ring group.
2875 * The caller takes care of adding and removing the MAC addresses
2876 * to the filter via these two routines.
2877 */
2878
2879 static int
2880 e1000g_addmac(void *arg, const uint8_t *mac_addr)
2881 {
2882 struct e1000g *Adapter = (struct e1000g *)arg;
2883 int slot, err;
2884
2885 rw_enter(&Adapter->chip_lock, RW_WRITER);
2886
2887 if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2888 rw_exit(&Adapter->chip_lock);
2889 return (ECANCELED);
2890 }
2891
2892 if (e1000g_unicst_find(Adapter, mac_addr) != -1) {
2893 /* The same address is already in slot */
2894 rw_exit(&Adapter->chip_lock);
2895 return (0);
2896 }
2897
2898 if (Adapter->unicst_avail == 0) {
2899 /* no slots available */
2900 rw_exit(&Adapter->chip_lock);
2901 return (ENOSPC);
2902 }
2903
2904 /* Search for a free slot */
2905 for (slot = 0; slot < Adapter->unicst_total; slot++) {
2906 if (Adapter->unicst_addr[slot].mac.set == 0)
2907 break;
2908 }
2909 ASSERT(slot < Adapter->unicst_total);
2910
2911 err = e1000g_unicst_set(Adapter, mac_addr, slot);
2912 if (err == 0)
2913 Adapter->unicst_avail--;
2914
2915 rw_exit(&Adapter->chip_lock);
2916
2917 return (err);
2918 }
2919
2920 static int
2921 e1000g_remmac(void *arg, const uint8_t *mac_addr)
2922 {
2923 struct e1000g *Adapter = (struct e1000g *)arg;
2924 int slot, err;
2925
2926 rw_enter(&Adapter->chip_lock, RW_WRITER);
2927
2928 if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2929 rw_exit(&Adapter->chip_lock);
2930 return (ECANCELED);
2931 }
2932
2933 slot = e1000g_unicst_find(Adapter, mac_addr);
2934 if (slot == -1) {
2935 rw_exit(&Adapter->chip_lock);
2936 return (EINVAL);
2937 }
2938
2939 ASSERT(Adapter->unicst_addr[slot].mac.set);
2940
2941 /* Clear this slot */
2942 err = e1000g_unicst_set(Adapter, NULL, slot);
2943 if (err == 0)
2944 Adapter->unicst_avail++;
2945
2946 rw_exit(&Adapter->chip_lock);
2947
2948 return (err);
2949 }
2950
2951 static int
2952 e1000g_ring_start(mac_ring_driver_t rh, uint64_t mr_gen_num)
2953 {
2954 e1000g_rx_ring_t *rx_ring = (e1000g_rx_ring_t *)rh;
2955
2956 mutex_enter(&rx_ring->rx_lock);
2957 rx_ring->ring_gen_num = mr_gen_num;
2958 mutex_exit(&rx_ring->rx_lock);
2959 return (0);
2960 }
2961
2962 /*
2963 * Callback funtion for MAC layer to register all rings.
2964 *
2965 * The hardware supports a single group with currently only one ring
2966 * available.
2967 * Though not offering virtualization ability per se, exposing the
2968 * group/ring still enables the polling and interrupt toggling.
2969 */
2970 /* ARGSUSED */
2971 void
2972 e1000g_fill_ring(void *arg, mac_ring_type_t rtype, const int grp_index,
2973 const int ring_index, mac_ring_info_t *infop, mac_ring_handle_t rh)
2974 {
2975 struct e1000g *Adapter = (struct e1000g *)arg;
2976 e1000g_rx_ring_t *rx_ring = Adapter->rx_ring;
2977 mac_intr_t *mintr;
2978
2979 /*
2980 * We advertised only RX group/rings, so the MAC framework shouldn't
2981 * ask for any thing else.
2982 */
2983 ASSERT(rtype == MAC_RING_TYPE_RX && grp_index == 0 && ring_index == 0);
2984
2985 rx_ring->mrh = rx_ring->mrh_init = rh;
2986 infop->mri_driver = (mac_ring_driver_t)rx_ring;
2987 infop->mri_start = e1000g_ring_start;
2988 infop->mri_stop = NULL;
2989 infop->mri_poll = e1000g_poll_ring;
2990 infop->mri_stat = e1000g_rx_ring_stat;
2991
2992 /* Ring level interrupts */
2993 mintr = &infop->mri_intr;
2994 mintr->mi_handle = (mac_intr_handle_t)rx_ring;
2995 mintr->mi_enable = e1000g_rx_ring_intr_enable;
2996 mintr->mi_disable = e1000g_rx_ring_intr_disable;
2997 if (Adapter->msi_enable)
2998 mintr->mi_ddi_handle = Adapter->htable[0];
2999 }
3000
3001 /* ARGSUSED */
3002 static void
3003 e1000g_fill_group(void *arg, mac_ring_type_t rtype, const int grp_index,
3004 mac_group_info_t *infop, mac_group_handle_t gh)
3005 {
3006 struct e1000g *Adapter = (struct e1000g *)arg;
3007 mac_intr_t *mintr;
3008
3009 /*
3010 * We advertised a single RX ring. Getting a request for anything else
3011 * signifies a bug in the MAC framework.
3012 */
3013 ASSERT(rtype == MAC_RING_TYPE_RX && grp_index == 0);
3014
3015 Adapter->rx_group = gh;
3016
3017 infop->mgi_driver = (mac_group_driver_t)Adapter;
3018 infop->mgi_start = NULL;
3019 infop->mgi_stop = NULL;
3020 infop->mgi_addmac = e1000g_addmac;
3021 infop->mgi_remmac = e1000g_remmac;
3022 infop->mgi_count = 1;
3023
3024 /* Group level interrupts */
3025 mintr = &infop->mgi_intr;
3026 mintr->mi_handle = (mac_intr_handle_t)Adapter;
3027 mintr->mi_enable = e1000g_rx_group_intr_enable;
3028 mintr->mi_disable = e1000g_rx_group_intr_disable;
3029 }
3030
3031 static boolean_t
3032 e1000g_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
3033 {
3034 struct e1000g *Adapter = (struct e1000g *)arg;
3035
3036 switch (cap) {
3037 case MAC_CAPAB_HCKSUM: {
3038 uint32_t *txflags = cap_data;
3039
3040 if (Adapter->tx_hcksum_enable)
3041 *txflags = HCKSUM_IPHDRCKSUM |
3042 HCKSUM_INET_PARTIAL;
3043 else
3044 return (B_FALSE);
3045 break;
3046 }
3047
3048 case MAC_CAPAB_LSO: {
3049 mac_capab_lso_t *cap_lso = cap_data;
3050
3051 if (Adapter->lso_enable) {
3052 cap_lso->lso_flags = LSO_TX_BASIC_TCP_IPV4;
3053 cap_lso->lso_basic_tcp_ipv4.lso_max =
3054 E1000_LSO_MAXLEN;
3055 } else
3056 return (B_FALSE);
3057 break;
3058 }
3059 case MAC_CAPAB_RINGS: {
3060 mac_capab_rings_t *cap_rings = cap_data;
3061
3062 /* No TX rings exposed yet */
3063 if (cap_rings->mr_type != MAC_RING_TYPE_RX)
3064 return (B_FALSE);
3065
3066 cap_rings->mr_group_type = MAC_GROUP_TYPE_STATIC;
3067 cap_rings->mr_rnum = 1;
3068 cap_rings->mr_gnum = 1;
3069 cap_rings->mr_rget = e1000g_fill_ring;
3070 cap_rings->mr_gget = e1000g_fill_group;
3071 break;
3072 }
3073 default:
3074 return (B_FALSE);
3075 }
3076 return (B_TRUE);
3077 }
3078
3079 static boolean_t
3080 e1000g_param_locked(mac_prop_id_t pr_num)
3081 {
3082 /*
3083 * All en_* parameters are locked (read-only) while
3084 * the device is in any sort of loopback mode ...
3085 */
3086 switch (pr_num) {
3087 case MAC_PROP_EN_1000FDX_CAP:
3088 case MAC_PROP_EN_1000HDX_CAP:
3089 case MAC_PROP_EN_100FDX_CAP:
3090 case MAC_PROP_EN_100HDX_CAP:
3091 case MAC_PROP_EN_10FDX_CAP:
3092 case MAC_PROP_EN_10HDX_CAP:
3093 case MAC_PROP_AUTONEG:
3094 case MAC_PROP_FLOWCTRL:
3095 return (B_TRUE);
3096 }
3097 return (B_FALSE);
3098 }
3099
3100 /*
3101 * callback function for set/get of properties
3102 */
3103 static int
3104 e1000g_m_setprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3105 uint_t pr_valsize, const void *pr_val)
3106 {
3107 struct e1000g *Adapter = arg;
3108 struct e1000_hw *hw = &Adapter->shared;
3109 struct e1000_fc_info *fc = &Adapter->shared.fc;
3110 int err = 0;
3111 link_flowctrl_t flowctrl;
3112 uint32_t cur_mtu, new_mtu;
3113
3114 rw_enter(&Adapter->chip_lock, RW_WRITER);
3115
3116 if (Adapter->e1000g_state & E1000G_SUSPENDED) {
3117 rw_exit(&Adapter->chip_lock);
3118 return (ECANCELED);
3119 }
3120
3121 if (Adapter->loopback_mode != E1000G_LB_NONE &&
3122 e1000g_param_locked(pr_num)) {
3123 /*
3124 * All en_* parameters are locked (read-only)
3125 * while the device is in any sort of loopback mode.
3126 */
3127 rw_exit(&Adapter->chip_lock);
3128 return (EBUSY);
3129 }
3130
3131 switch (pr_num) {
3132 case MAC_PROP_EN_1000FDX_CAP:
3133 if (hw->phy.media_type != e1000_media_type_copper) {
3134 err = ENOTSUP;
3135 break;
3136 }
3137 Adapter->param_en_1000fdx = *(uint8_t *)pr_val;
3138 Adapter->param_adv_1000fdx = *(uint8_t *)pr_val;
3139 goto reset;
3140 case MAC_PROP_EN_100FDX_CAP:
3141 if (hw->phy.media_type != e1000_media_type_copper) {
3142 err = ENOTSUP;
3143 break;
3144 }
3145 Adapter->param_en_100fdx = *(uint8_t *)pr_val;
3146 Adapter->param_adv_100fdx = *(uint8_t *)pr_val;
3147 goto reset;
3148 case MAC_PROP_EN_100HDX_CAP:
3149 if (hw->phy.media_type != e1000_media_type_copper) {
3150 err = ENOTSUP;
3151 break;
3152 }
3153 Adapter->param_en_100hdx = *(uint8_t *)pr_val;
3154 Adapter->param_adv_100hdx = *(uint8_t *)pr_val;
3155 goto reset;
3156 case MAC_PROP_EN_10FDX_CAP:
3157 if (hw->phy.media_type != e1000_media_type_copper) {
3158 err = ENOTSUP;
3159 break;
3160 }
3161 Adapter->param_en_10fdx = *(uint8_t *)pr_val;
3162 Adapter->param_adv_10fdx = *(uint8_t *)pr_val;
3163 goto reset;
3164 case MAC_PROP_EN_10HDX_CAP:
3165 if (hw->phy.media_type != e1000_media_type_copper) {
3166 err = ENOTSUP;
3167 break;
3168 }
3169 Adapter->param_en_10hdx = *(uint8_t *)pr_val;
3170 Adapter->param_adv_10hdx = *(uint8_t *)pr_val;
3171 goto reset;
3172 case MAC_PROP_AUTONEG:
3173 if (hw->phy.media_type != e1000_media_type_copper) {
3174 err = ENOTSUP;
3175 break;
3176 }
3177 Adapter->param_adv_autoneg = *(uint8_t *)pr_val;
3178 goto reset;
3179 case MAC_PROP_FLOWCTRL:
3180 fc->send_xon = B_TRUE;
3181 bcopy(pr_val, &flowctrl, sizeof (flowctrl));
3182
3183 switch (flowctrl) {
3184 default:
3185 err = EINVAL;
3186 break;
3187 case LINK_FLOWCTRL_NONE:
3188 fc->requested_mode = e1000_fc_none;
3189 break;
3190 case LINK_FLOWCTRL_RX:
3191 fc->requested_mode = e1000_fc_rx_pause;
3192 break;
3193 case LINK_FLOWCTRL_TX:
3194 fc->requested_mode = e1000_fc_tx_pause;
3195 break;
3196 case LINK_FLOWCTRL_BI:
3197 fc->requested_mode = e1000_fc_full;
3198 break;
3199 }
3200 reset:
3201 if (err == 0) {
3202 /* check PCH limits & reset the link */
3203 e1000g_pch_limits(Adapter);
3204 if (e1000g_reset_link(Adapter) != DDI_SUCCESS)
3205 err = EINVAL;
3206 }
3207 break;
3208 case MAC_PROP_ADV_1000FDX_CAP:
3209 case MAC_PROP_ADV_1000HDX_CAP:
3210 case MAC_PROP_ADV_100FDX_CAP:
3211 case MAC_PROP_ADV_100HDX_CAP:
3212 case MAC_PROP_ADV_10FDX_CAP:
3213 case MAC_PROP_ADV_10HDX_CAP:
3214 case MAC_PROP_EN_1000HDX_CAP:
3215 case MAC_PROP_STATUS:
3216 case MAC_PROP_SPEED:
3217 case MAC_PROP_DUPLEX:
3218 err = ENOTSUP; /* read-only prop. Can't set this. */
3219 break;
3220 case MAC_PROP_MTU:
3221 /* adapter must be stopped for an MTU change */
3222 if (Adapter->e1000g_state & E1000G_STARTED) {
3223 err = EBUSY;
3224 break;
3225 }
3226
3227 cur_mtu = Adapter->default_mtu;
3228
3229 /* get new requested MTU */
3230 bcopy(pr_val, &new_mtu, sizeof (new_mtu));
3231 if (new_mtu == cur_mtu) {
3232 err = 0;
3233 break;
3234 }
3235
3236 if ((new_mtu < DEFAULT_MTU) ||
3237 (new_mtu > Adapter->max_mtu)) {
3238 err = EINVAL;
3239 break;
3240 }
3241
3242 /* inform MAC framework of new MTU */
3243 err = mac_maxsdu_update(Adapter->mh, new_mtu);
3244
3245 if (err == 0) {
3246 Adapter->default_mtu = new_mtu;
3247 Adapter->max_frame_size =
3248 e1000g_mtu2maxframe(new_mtu);
3249
3250 /*
3251 * check PCH limits & set buffer sizes to
3252 * match new MTU
3253 */
3254 e1000g_pch_limits(Adapter);
3255 e1000g_set_bufsize(Adapter);
3256
3257 /*
3258 * decrease the number of descriptors and free
3259 * packets for jumbo frames to reduce tx/rx
3260 * resource consumption
3261 */
3262 if (Adapter->max_frame_size >=
3263 (FRAME_SIZE_UPTO_4K)) {
3264 if (Adapter->tx_desc_num_flag == 0)
3265 Adapter->tx_desc_num =
3266 DEFAULT_JUMBO_NUM_TX_DESC;
3267
3268 if (Adapter->rx_desc_num_flag == 0)
3269 Adapter->rx_desc_num =
3270 DEFAULT_JUMBO_NUM_RX_DESC;
3271
3272 if (Adapter->tx_buf_num_flag == 0)
3273 Adapter->tx_freelist_num =
3274 DEFAULT_JUMBO_NUM_TX_BUF;
3275
3276 if (Adapter->rx_buf_num_flag == 0)
3277 Adapter->rx_freelist_limit =
3278 DEFAULT_JUMBO_NUM_RX_BUF;
3279 } else {
3280 if (Adapter->tx_desc_num_flag == 0)
3281 Adapter->tx_desc_num =
3282 DEFAULT_NUM_TX_DESCRIPTOR;
3283
3284 if (Adapter->rx_desc_num_flag == 0)
3285 Adapter->rx_desc_num =
3286 DEFAULT_NUM_RX_DESCRIPTOR;
3287
3288 if (Adapter->tx_buf_num_flag == 0)
3289 Adapter->tx_freelist_num =
3290 DEFAULT_NUM_TX_FREELIST;
3291
3292 if (Adapter->rx_buf_num_flag == 0)
3293 Adapter->rx_freelist_limit =
3294 DEFAULT_NUM_RX_FREELIST;
3295 }
3296 }
3297 break;
3298 case MAC_PROP_PRIVATE:
3299 err = e1000g_set_priv_prop(Adapter, pr_name,
3300 pr_valsize, pr_val);
3301 break;
3302 default:
3303 err = ENOTSUP;
3304 break;
3305 }
3306 rw_exit(&Adapter->chip_lock);
3307 return (err);
3308 }
3309
3310 static int
3311 e1000g_m_getprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3312 uint_t pr_valsize, void *pr_val)
3313 {
3314 struct e1000g *Adapter = arg;
3315 struct e1000_fc_info *fc = &Adapter->shared.fc;
3316 int err = 0;
3317 link_flowctrl_t flowctrl;
3318 uint64_t tmp = 0;
3319
3320 switch (pr_num) {
3321 case MAC_PROP_DUPLEX:
3322 ASSERT(pr_valsize >= sizeof (link_duplex_t));
3323 bcopy(&Adapter->link_duplex, pr_val,
3324 sizeof (link_duplex_t));
3325 break;
3326 case MAC_PROP_SPEED:
3327 ASSERT(pr_valsize >= sizeof (uint64_t));
3328 tmp = Adapter->link_speed * 1000000ull;
3329 bcopy(&tmp, pr_val, sizeof (tmp));
3330 break;
3331 case MAC_PROP_AUTONEG:
3332 *(uint8_t *)pr_val = Adapter->param_adv_autoneg;
3333 break;
3334 case MAC_PROP_FLOWCTRL:
3335 ASSERT(pr_valsize >= sizeof (link_flowctrl_t));
3336 switch (fc->current_mode) {
3337 case e1000_fc_none:
3338 flowctrl = LINK_FLOWCTRL_NONE;
3339 break;
3340 case e1000_fc_rx_pause:
3341 flowctrl = LINK_FLOWCTRL_RX;
3342 break;
3343 case e1000_fc_tx_pause:
3344 flowctrl = LINK_FLOWCTRL_TX;
3345 break;
3346 case e1000_fc_full:
3347 flowctrl = LINK_FLOWCTRL_BI;
3348 break;
3349 }
3350 bcopy(&flowctrl, pr_val, sizeof (flowctrl));
3351 break;
3352 case MAC_PROP_ADV_1000FDX_CAP:
3353 *(uint8_t *)pr_val = Adapter->param_adv_1000fdx;
3354 break;
3355 case MAC_PROP_EN_1000FDX_CAP:
3356 *(uint8_t *)pr_val = Adapter->param_en_1000fdx;
3357 break;
3358 case MAC_PROP_ADV_1000HDX_CAP:
3359 *(uint8_t *)pr_val = Adapter->param_adv_1000hdx;
3360 break;
3361 case MAC_PROP_EN_1000HDX_CAP:
3362 *(uint8_t *)pr_val = Adapter->param_en_1000hdx;
3363 break;
3364 case MAC_PROP_ADV_100FDX_CAP:
3365 *(uint8_t *)pr_val = Adapter->param_adv_100fdx;
3366 break;
3367 case MAC_PROP_EN_100FDX_CAP:
3368 *(uint8_t *)pr_val = Adapter->param_en_100fdx;
3369 break;
3370 case MAC_PROP_ADV_100HDX_CAP:
3371 *(uint8_t *)pr_val = Adapter->param_adv_100hdx;
3372 break;
3373 case MAC_PROP_EN_100HDX_CAP:
3374 *(uint8_t *)pr_val = Adapter->param_en_100hdx;
3375 break;
3376 case MAC_PROP_ADV_10FDX_CAP:
3377 *(uint8_t *)pr_val = Adapter->param_adv_10fdx;
3378 break;
3379 case MAC_PROP_EN_10FDX_CAP:
3380 *(uint8_t *)pr_val = Adapter->param_en_10fdx;
3381 break;
3382 case MAC_PROP_ADV_10HDX_CAP:
3383 *(uint8_t *)pr_val = Adapter->param_adv_10hdx;
3384 break;
3385 case MAC_PROP_EN_10HDX_CAP:
3386 *(uint8_t *)pr_val = Adapter->param_en_10hdx;
3387 break;
3388 case MAC_PROP_ADV_100T4_CAP:
3389 case MAC_PROP_EN_100T4_CAP:
3390 *(uint8_t *)pr_val = Adapter->param_adv_100t4;
3391 break;
3392 case MAC_PROP_PRIVATE:
3393 err = e1000g_get_priv_prop(Adapter, pr_name,
3394 pr_valsize, pr_val);
3395 break;
3396 default:
3397 err = ENOTSUP;
3398 break;
3399 }
3400
3401 return (err);
3402 }
3403
3404 static void
3405 e1000g_m_propinfo(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3406 mac_prop_info_handle_t prh)
3407 {
3408 struct e1000g *Adapter = arg;
3409 struct e1000_hw *hw = &Adapter->shared;
3410
3411 switch (pr_num) {
3412 case MAC_PROP_DUPLEX:
3413 case MAC_PROP_SPEED:
3414 case MAC_PROP_ADV_1000FDX_CAP:
3415 case MAC_PROP_ADV_1000HDX_CAP:
3416 case MAC_PROP_ADV_100FDX_CAP:
3417 case MAC_PROP_ADV_100HDX_CAP:
3418 case MAC_PROP_ADV_10FDX_CAP:
3419 case MAC_PROP_ADV_10HDX_CAP:
3420 case MAC_PROP_ADV_100T4_CAP:
3421 case MAC_PROP_EN_100T4_CAP:
3422 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3423 break;
3424
3425 case MAC_PROP_EN_1000FDX_CAP:
3426 if (hw->phy.media_type != e1000_media_type_copper) {
3427 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3428 } else {
3429 mac_prop_info_set_default_uint8(prh,
3430 ((Adapter->phy_ext_status &
3431 IEEE_ESR_1000T_FD_CAPS) ||
3432 (Adapter->phy_ext_status &
3433 IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0);
3434 }
3435 break;
3436
3437 case MAC_PROP_EN_100FDX_CAP:
3438 if (hw->phy.media_type != e1000_media_type_copper) {
3439 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3440 } else {
3441 mac_prop_info_set_default_uint8(prh,
3442 ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
3443 (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
3444 ? 1 : 0);
3445 }
3446 break;
3447
3448 case MAC_PROP_EN_100HDX_CAP:
3449 if (hw->phy.media_type != e1000_media_type_copper) {
3450 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3451 } else {
3452 mac_prop_info_set_default_uint8(prh,
3453 ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
3454 (Adapter->phy_status & MII_SR_100T2_HD_CAPS))
3455 ? 1 : 0);
3456 }
3457 break;
3458
3459 case MAC_PROP_EN_10FDX_CAP:
3460 if (hw->phy.media_type != e1000_media_type_copper) {
3461 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3462 } else {
3463 mac_prop_info_set_default_uint8(prh,
3464 (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0);
3465 }
3466 break;
3467
3468 case MAC_PROP_EN_10HDX_CAP:
3469 if (hw->phy.media_type != e1000_media_type_copper) {
3470 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3471 } else {
3472 mac_prop_info_set_default_uint8(prh,
3473 (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0);
3474 }
3475 break;
3476
3477 case MAC_PROP_EN_1000HDX_CAP:
3478 if (hw->phy.media_type != e1000_media_type_copper)
3479 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3480 break;
3481
3482 case MAC_PROP_AUTONEG:
3483 if (hw->phy.media_type != e1000_media_type_copper) {
3484 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3485 } else {
3486 mac_prop_info_set_default_uint8(prh,
3487 (Adapter->phy_status & MII_SR_AUTONEG_CAPS)
3488 ? 1 : 0);
3489 }
3490 break;
3491
3492 case MAC_PROP_FLOWCTRL:
3493 mac_prop_info_set_default_link_flowctrl(prh, LINK_FLOWCTRL_BI);
3494 break;
3495
3496 case MAC_PROP_MTU: {
3497 struct e1000_mac_info *mac = &Adapter->shared.mac;
3498 struct e1000_phy_info *phy = &Adapter->shared.phy;
3499 uint32_t max;
3500
3501 /* some MAC types do not support jumbo frames */
3502 if ((mac->type == e1000_ich8lan) ||
3503 ((mac->type == e1000_ich9lan) && (phy->type ==
3504 e1000_phy_ife))) {
3505 max = DEFAULT_MTU;
3506 } else {
3507 max = Adapter->max_mtu;
3508 }
3509
3510 mac_prop_info_set_range_uint32(prh, DEFAULT_MTU, max);
3511 break;
3512 }
3513 case MAC_PROP_PRIVATE: {
3514 char valstr[64];
3515 int value;
3516
3517 if (strcmp(pr_name, "_adv_pause_cap") == 0 ||
3518 strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
3519 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3520 return;
3521 } else if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3522 value = DEFAULT_TX_BCOPY_THRESHOLD;
3523 } else if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3524 value = DEFAULT_TX_INTR_ENABLE;
3525 } else if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3526 value = DEFAULT_TX_INTR_DELAY;
3527 } else if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3528 value = DEFAULT_TX_INTR_ABS_DELAY;
3529 } else if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3530 value = DEFAULT_RX_BCOPY_THRESHOLD;
3531 } else if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3532 value = DEFAULT_RX_LIMIT_ON_INTR;
3533 } else if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3534 value = DEFAULT_RX_INTR_DELAY;
3535 } else if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3536 value = DEFAULT_RX_INTR_ABS_DELAY;
3537 } else if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3538 value = DEFAULT_INTR_THROTTLING;
3539 } else if (strcmp(pr_name, "_intr_adaptive") == 0) {
3540 value = 1;
3541 } else {
3542 return;
3543 }
3544
3545 (void) snprintf(valstr, sizeof (valstr), "%d", value);
3546 mac_prop_info_set_default_str(prh, valstr);
3547 break;
3548 }
3549 }
3550 }
3551
3552 /* ARGSUSED2 */
3553 static int
3554 e1000g_set_priv_prop(struct e1000g *Adapter, const char *pr_name,
3555 uint_t pr_valsize, const void *pr_val)
3556 {
3557 int err = 0;
3558 long result;
3559 struct e1000_hw *hw = &Adapter->shared;
3560
3561 if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3562 if (pr_val == NULL) {
3563 err = EINVAL;
3564 return (err);
3565 }
3566 (void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3567 if (result < MIN_TX_BCOPY_THRESHOLD ||
3568 result > MAX_TX_BCOPY_THRESHOLD)
3569 err = EINVAL;
3570 else {
3571 Adapter->tx_bcopy_thresh = (uint32_t)result;
3572 }
3573 return (err);
3574 }
3575 if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3576 if (pr_val == NULL) {
3577 err = EINVAL;
3578 return (err);
3579 }
3580 (void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3581 if (result < 0 || result > 1)
3582 err = EINVAL;
3583 else {
3584 Adapter->tx_intr_enable = (result == 1) ?
3585 B_TRUE: B_FALSE;
3586 if (Adapter->tx_intr_enable)
3587 e1000g_mask_tx_interrupt(Adapter);
3588 else
3589 e1000g_clear_tx_interrupt(Adapter);
3590 if (e1000g_check_acc_handle(
3591 Adapter->osdep.reg_handle) != DDI_FM_OK) {
3592 ddi_fm_service_impact(Adapter->dip,
3593 DDI_SERVICE_DEGRADED);
3594 err = EIO;
3595 }
3596 }
3597 return (err);
3598 }
3599 if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3600 if (pr_val == NULL) {
3601 err = EINVAL;
3602 return (err);
3603 }
3604 (void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3605 if (result < MIN_TX_INTR_DELAY ||
3606 result > MAX_TX_INTR_DELAY)
3607 err = EINVAL;
3608 else {
3609 Adapter->tx_intr_delay = (uint32_t)result;
3610 E1000_WRITE_REG(hw, E1000_TIDV, Adapter->tx_intr_delay);
3611 if (e1000g_check_acc_handle(
3612 Adapter->osdep.reg_handle) != DDI_FM_OK) {
3613 ddi_fm_service_impact(Adapter->dip,
3614 DDI_SERVICE_DEGRADED);
3615 err = EIO;
3616 }
3617 }
3618 return (err);
3619 }
3620 if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3621 if (pr_val == NULL) {
3622 err = EINVAL;
3623 return (err);
3624 }
3625 (void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3626 if (result < MIN_TX_INTR_ABS_DELAY ||
3627 result > MAX_TX_INTR_ABS_DELAY)
3628 err = EINVAL;
3629 else {
3630 Adapter->tx_intr_abs_delay = (uint32_t)result;
3631 E1000_WRITE_REG(hw, E1000_TADV,
3632 Adapter->tx_intr_abs_delay);
3633 if (e1000g_check_acc_handle(
3634 Adapter->osdep.reg_handle) != DDI_FM_OK) {
3635 ddi_fm_service_impact(Adapter->dip,
3636 DDI_SERVICE_DEGRADED);
3637 err = EIO;
3638 }
3639 }
3640 return (err);
3641 }
3642 if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3643 if (pr_val == NULL) {
3644 err = EINVAL;
3645 return (err);
3646 }
3647 (void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3648 if (result < MIN_RX_BCOPY_THRESHOLD ||
3649 result > MAX_RX_BCOPY_THRESHOLD)
3650 err = EINVAL;
3651 else
3652 Adapter->rx_bcopy_thresh = (uint32_t)result;
3653 return (err);
3654 }
3655 if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3656 if (pr_val == NULL) {
3657 err = EINVAL;
3658 return (err);
3659 }
3660 (void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3661 if (result < MIN_RX_LIMIT_ON_INTR ||
3662 result > MAX_RX_LIMIT_ON_INTR)
3663 err = EINVAL;
3664 else
3665 Adapter->rx_limit_onintr = (uint32_t)result;
3666 return (err);
3667 }
3668 if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3669 if (pr_val == NULL) {
3670 err = EINVAL;
3671 return (err);
3672 }
3673 (void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3674 if (result < MIN_RX_INTR_DELAY ||
3675 result > MAX_RX_INTR_DELAY)
3676 err = EINVAL;
3677 else {
3678 Adapter->rx_intr_delay = (uint32_t)result;
3679 E1000_WRITE_REG(hw, E1000_RDTR, Adapter->rx_intr_delay);
3680 if (e1000g_check_acc_handle(
3681 Adapter->osdep.reg_handle) != DDI_FM_OK) {
3682 ddi_fm_service_impact(Adapter->dip,
3683 DDI_SERVICE_DEGRADED);
3684 err = EIO;
3685 }
3686 }
3687 return (err);
3688 }
3689 if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3690 if (pr_val == NULL) {
3691 err = EINVAL;
3692 return (err);
3693 }
3694 (void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3695 if (result < MIN_RX_INTR_ABS_DELAY ||
3696 result > MAX_RX_INTR_ABS_DELAY)
3697 err = EINVAL;
3698 else {
3699 Adapter->rx_intr_abs_delay = (uint32_t)result;
3700 E1000_WRITE_REG(hw, E1000_RADV,
3701 Adapter->rx_intr_abs_delay);
3702 if (e1000g_check_acc_handle(
3703 Adapter->osdep.reg_handle) != DDI_FM_OK) {
3704 ddi_fm_service_impact(Adapter->dip,
3705 DDI_SERVICE_DEGRADED);
3706 err = EIO;
3707 }
3708 }
3709 return (err);
3710 }
3711 if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3712 if (pr_val == NULL) {
3713 err = EINVAL;
3714 return (err);
3715 }
3716 (void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3717 if (result < MIN_INTR_THROTTLING ||
3718 result > MAX_INTR_THROTTLING)
3719 err = EINVAL;
3720 else {
3721 if (hw->mac.type >= e1000_82540) {
3722 Adapter->intr_throttling_rate =
3723 (uint32_t)result;
3724 E1000_WRITE_REG(hw, E1000_ITR,
3725 Adapter->intr_throttling_rate);
3726 if (e1000g_check_acc_handle(
3727 Adapter->osdep.reg_handle) != DDI_FM_OK) {
3728 ddi_fm_service_impact(Adapter->dip,
3729 DDI_SERVICE_DEGRADED);
3730 err = EIO;
3731 }
3732 } else
3733 err = EINVAL;
3734 }
3735 return (err);
3736 }
3737 if (strcmp(pr_name, "_intr_adaptive") == 0) {
3738 if (pr_val == NULL) {
3739 err = EINVAL;
3740 return (err);
3741 }
3742 (void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3743 if (result < 0 || result > 1)
3744 err = EINVAL;
3745 else {
3746 if (hw->mac.type >= e1000_82540) {
3747 Adapter->intr_adaptive = (result == 1) ?
3748 B_TRUE : B_FALSE;
3749 } else {
3750 err = EINVAL;
3751 }
3752 }
3753 return (err);
3754 }
3755 return (ENOTSUP);
3756 }
3757
3758 static int
3759 e1000g_get_priv_prop(struct e1000g *Adapter, const char *pr_name,
3760 uint_t pr_valsize, void *pr_val)
3761 {
3762 int err = ENOTSUP;
3763 int value;
3764
3765 if (strcmp(pr_name, "_adv_pause_cap") == 0) {
3766 value = Adapter->param_adv_pause;
3767 err = 0;
3768 goto done;
3769 }
3770 if (strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
3771 value = Adapter->param_adv_asym_pause;
3772 err = 0;
3773 goto done;
3774 }
3775 if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3776 value = Adapter->tx_bcopy_thresh;
3777 err = 0;
3778 goto done;
3779 }
3780 if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3781 value = Adapter->tx_intr_enable;
3782 err = 0;
3783 goto done;
3784 }
3785 if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3786 value = Adapter->tx_intr_delay;
3787 err = 0;
3788 goto done;
3789 }
3790 if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3791 value = Adapter->tx_intr_abs_delay;
3792 err = 0;
3793 goto done;
3794 }
3795 if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3796 value = Adapter->rx_bcopy_thresh;
3797 err = 0;
3798 goto done;
3799 }
3800 if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3801 value = Adapter->rx_limit_onintr;
3802 err = 0;
3803 goto done;
3804 }
3805 if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3806 value = Adapter->rx_intr_delay;
3807 err = 0;
3808 goto done;
3809 }
3810 if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3811 value = Adapter->rx_intr_abs_delay;
3812 err = 0;
3813 goto done;
3814 }
3815 if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3816 value = Adapter->intr_throttling_rate;
3817 err = 0;
3818 goto done;
3819 }
3820 if (strcmp(pr_name, "_intr_adaptive") == 0) {
3821 value = Adapter->intr_adaptive;
3822 err = 0;
3823 goto done;
3824 }
3825 done:
3826 if (err == 0) {
3827 (void) snprintf(pr_val, pr_valsize, "%d", value);
3828 }
3829 return (err);
3830 }
3831
3832 /*
3833 * e1000g_get_conf - get configurations set in e1000g.conf
3834 * This routine gets user-configured values out of the configuration
3835 * file e1000g.conf.
3836 *
3837 * For each configurable value, there is a minimum, a maximum, and a
3838 * default.
3839 * If user does not configure a value, use the default.
3840 * If user configures below the minimum, use the minumum.
3841 * If user configures above the maximum, use the maxumum.
3842 */
3843 static void
3844 e1000g_get_conf(struct e1000g *Adapter)
3845 {
3846 struct e1000_hw *hw = &Adapter->shared;
3847 boolean_t tbi_compatibility = B_FALSE;
3848 boolean_t is_jumbo = B_FALSE;
3849 int propval;
3850 /*
3851 * decrease the number of descriptors and free packets
3852 * for jumbo frames to reduce tx/rx resource consumption
3853 */
3854 if (Adapter->max_frame_size >= FRAME_SIZE_UPTO_4K) {
3855 is_jumbo = B_TRUE;
3856 }
3857
3858 /*
3859 * get each configurable property from e1000g.conf
3860 */
3861
3862 /*
3863 * NumTxDescriptors
3864 */
3865 Adapter->tx_desc_num_flag =
3866 e1000g_get_prop(Adapter, "NumTxDescriptors",
3867 MIN_NUM_TX_DESCRIPTOR, MAX_NUM_TX_DESCRIPTOR,
3868 is_jumbo ? DEFAULT_JUMBO_NUM_TX_DESC
3869 : DEFAULT_NUM_TX_DESCRIPTOR, &propval);
3870 Adapter->tx_desc_num = propval;
3871
3872 /*
3873 * NumRxDescriptors
3874 */
3875 Adapter->rx_desc_num_flag =
3876 e1000g_get_prop(Adapter, "NumRxDescriptors",
3877 MIN_NUM_RX_DESCRIPTOR, MAX_NUM_RX_DESCRIPTOR,
3878 is_jumbo ? DEFAULT_JUMBO_NUM_RX_DESC
3879 : DEFAULT_NUM_RX_DESCRIPTOR, &propval);
3880 Adapter->rx_desc_num = propval;
3881
3882 /*
3883 * NumRxFreeList
3884 */
3885 Adapter->rx_buf_num_flag =
3886 e1000g_get_prop(Adapter, "NumRxFreeList",
3887 MIN_NUM_RX_FREELIST, MAX_NUM_RX_FREELIST,
3888 is_jumbo ? DEFAULT_JUMBO_NUM_RX_BUF
3889 : DEFAULT_NUM_RX_FREELIST, &propval);
3890 Adapter->rx_freelist_limit = propval;
3891
3892 /*
3893 * NumTxPacketList
3894 */
3895 Adapter->tx_buf_num_flag =
3896 e1000g_get_prop(Adapter, "NumTxPacketList",
3897 MIN_NUM_TX_FREELIST, MAX_NUM_TX_FREELIST,
3898 is_jumbo ? DEFAULT_JUMBO_NUM_TX_BUF
3899 : DEFAULT_NUM_TX_FREELIST, &propval);
3900 Adapter->tx_freelist_num = propval;
3901
3902 /*
3903 * FlowControl
3904 */
3905 hw->fc.send_xon = B_TRUE;
3906 (void) e1000g_get_prop(Adapter, "FlowControl",
3907 e1000_fc_none, 4, DEFAULT_FLOW_CONTROL, &propval);
3908 hw->fc.requested_mode = propval;
3909 /* 4 is the setting that says "let the eeprom decide" */
3910 if (hw->fc.requested_mode == 4)
3911 hw->fc.requested_mode = e1000_fc_default;
3912
3913 /*
3914 * Max Num Receive Packets on Interrupt
3915 */
3916 (void) e1000g_get_prop(Adapter, "MaxNumReceivePackets",
3917 MIN_RX_LIMIT_ON_INTR, MAX_RX_LIMIT_ON_INTR,
3918 DEFAULT_RX_LIMIT_ON_INTR, &propval);
3919 Adapter->rx_limit_onintr = propval;
3920
3921 /*
3922 * PHY master slave setting
3923 */
3924 (void) e1000g_get_prop(Adapter, "SetMasterSlave",
3925 e1000_ms_hw_default, e1000_ms_auto,
3926 e1000_ms_hw_default, &propval);
3927 hw->phy.ms_type = propval;
3928
3929 /*
3930 * Parameter which controls TBI mode workaround, which is only
3931 * needed on certain switches such as Cisco 6500/Foundry
3932 */
3933 (void) e1000g_get_prop(Adapter, "TbiCompatibilityEnable",
3934 0, 1, DEFAULT_TBI_COMPAT_ENABLE, &propval);
3935 tbi_compatibility = (propval == 1);
3936 e1000_set_tbi_compatibility_82543(hw, tbi_compatibility);
3937
3938 /*
3939 * MSI Enable
3940 */
3941 (void) e1000g_get_prop(Adapter, "MSIEnable",
3942 0, 1, DEFAULT_MSI_ENABLE, &propval);
3943 Adapter->msi_enable = (propval == 1);
3944
3945 /*
3946 * Interrupt Throttling Rate
3947 */
3948 (void) e1000g_get_prop(Adapter, "intr_throttling_rate",
3949 MIN_INTR_THROTTLING, MAX_INTR_THROTTLING,
3950 DEFAULT_INTR_THROTTLING, &propval);
3951 Adapter->intr_throttling_rate = propval;
3952
3953 /*
3954 * Adaptive Interrupt Blanking Enable/Disable
3955 * It is enabled by default
3956 */
3957 (void) e1000g_get_prop(Adapter, "intr_adaptive", 0, 1, 1,
3958 &propval);
3959 Adapter->intr_adaptive = (propval == 1);
3960
3961 /*
3962 * Hardware checksum enable/disable parameter
3963 */
3964 (void) e1000g_get_prop(Adapter, "tx_hcksum_enable",
3965 0, 1, DEFAULT_TX_HCKSUM_ENABLE, &propval);
3966 Adapter->tx_hcksum_enable = (propval == 1);
3967 /*
3968 * Checksum on/off selection via global parameters.
3969 *
3970 * If the chip is flagged as not capable of (correctly)
3971 * handling checksumming, we don't enable it on either
3972 * Rx or Tx side. Otherwise, we take this chip's settings
3973 * from the patchable global defaults.
3974 *
3975 * We advertise our capabilities only if TX offload is
3976 * enabled. On receive, the stack will accept checksummed
3977 * packets anyway, even if we haven't said we can deliver
3978 * them.
3979 */
3980 switch (hw->mac.type) {
3981 case e1000_82540:
3982 case e1000_82544:
3983 case e1000_82545:
3984 case e1000_82545_rev_3:
3985 case e1000_82546:
3986 case e1000_82546_rev_3:
3987 case e1000_82571:
3988 case e1000_82572:
3989 case e1000_82573:
3990 case e1000_80003es2lan:
3991 break;
3992 /*
3993 * For the following Intel PRO/1000 chipsets, we have not
3994 * tested the hardware checksum offload capability, so we
3995 * disable the capability for them.
3996 * e1000_82542,
3997 * e1000_82543,
3998 * e1000_82541,
3999 * e1000_82541_rev_2,
4000 * e1000_82547,
4001 * e1000_82547_rev_2,
4002 */
4003 default:
4004 Adapter->tx_hcksum_enable = B_FALSE;
4005 }
4006
4007 /*
4008 * Large Send Offloading(LSO) Enable/Disable
4009 * If the tx hardware checksum is not enabled, LSO should be
4010 * disabled.
4011 */
4012 (void) e1000g_get_prop(Adapter, "lso_enable",
4013 0, 1, DEFAULT_LSO_ENABLE, &propval);
4014 Adapter->lso_enable = (propval == 1);
4015
4016 switch (hw->mac.type) {
4017 case e1000_82546:
4018 case e1000_82546_rev_3:
4019 if (Adapter->lso_enable)
4020 Adapter->lso_premature_issue = B_TRUE;
4021 /* FALLTHRU */
4022 case e1000_82571:
4023 case e1000_82572:
4024 case e1000_82573:
4025 case e1000_80003es2lan:
4026 break;
4027 default:
4028 Adapter->lso_enable = B_FALSE;
4029 }
4030
4031 if (!Adapter->tx_hcksum_enable) {
4032 Adapter->lso_premature_issue = B_FALSE;
4033 Adapter->lso_enable = B_FALSE;
4034 }
4035
4036 /*
4037 * If mem_workaround_82546 is enabled, the rx buffer allocated by
4038 * e1000_82545, e1000_82546 and e1000_82546_rev_3
4039 * will not cross 64k boundary.
4040 */
4041 (void) e1000g_get_prop(Adapter, "mem_workaround_82546",
4042 0, 1, DEFAULT_MEM_WORKAROUND_82546, &propval);
4043 Adapter->mem_workaround_82546 = (propval == 1);
4044
4045 /*
4046 * Max number of multicast addresses
4047 */
4048 (void) e1000g_get_prop(Adapter, "mcast_max_num",
4049 MIN_MCAST_NUM, MAX_MCAST_NUM, hw->mac.mta_reg_count * 32,
4050 &propval);
4051 Adapter->mcast_max_num = propval;
4052 }
4053
4054 /*
4055 * e1000g_get_prop - routine to read properties
4056 *
4057 * Get a user-configure property value out of the configuration
4058 * file e1000g.conf.
4059 *
4060 * Caller provides name of the property, a default value, a minimum
4061 * value, a maximum value and a pointer to the returned property
4062 * value.
4063 *
4064 * Return B_TRUE if the configured value of the property is not a default
4065 * value, otherwise return B_FALSE.
4066 */
4067 static boolean_t
4068 e1000g_get_prop(struct e1000g *Adapter, /* point to per-adapter structure */
4069 char *propname, /* name of the property */
4070 int minval, /* minimum acceptable value */
4071 int maxval, /* maximim acceptable value */
4072 int defval, /* default value */
4073 int *propvalue) /* property value return to caller */
4074 {
4075 int propval; /* value returned for requested property */
4076 int *props; /* point to array of properties returned */
4077 uint_t nprops; /* number of property value returned */
4078 boolean_t ret = B_TRUE;
4079
4080 /*
4081 * get the array of properties from the config file
4082 */
4083 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, Adapter->dip,
4084 DDI_PROP_DONTPASS, propname, &props, &nprops) == DDI_PROP_SUCCESS) {
4085 /* got some properties, test if we got enough */
4086 if (Adapter->instance < nprops) {
4087 propval = props[Adapter->instance];
4088 } else {
4089 /* not enough properties configured */
4090 propval = defval;
4091 E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
4092 "Not Enough %s values found in e1000g.conf"
4093 " - set to %d\n",
4094 propname, propval);
4095 ret = B_FALSE;
4096 }
4097
4098 /* free memory allocated for properties */
4099 ddi_prop_free(props);
4100
4101 } else {
4102 propval = defval;
4103 ret = B_FALSE;
4104 }
4105
4106 /*
4107 * enforce limits
4108 */
4109 if (propval > maxval) {
4110 propval = maxval;
4111 E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
4112 "Too High %s value in e1000g.conf - set to %d\n",
4113 propname, propval);
4114 }
4115
4116 if (propval < minval) {
4117 propval = minval;
4118 E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
4119 "Too Low %s value in e1000g.conf - set to %d\n",
4120 propname, propval);
4121 }
4122
4123 *propvalue = propval;
4124 return (ret);
4125 }
4126
4127 static boolean_t
4128 e1000g_link_check(struct e1000g *Adapter)
4129 {
4130 uint16_t speed, duplex, phydata;
4131 boolean_t link_changed = B_FALSE;
4132 struct e1000_hw *hw;
4133 uint32_t reg_tarc;
4134
4135 hw = &Adapter->shared;
4136
4137 if (e1000g_link_up(Adapter)) {
4138 /*
4139 * The Link is up, check whether it was marked as down earlier
4140 */
4141 if (Adapter->link_state != LINK_STATE_UP) {
4142 (void) e1000_get_speed_and_duplex(hw, &speed, &duplex);
4143 Adapter->link_speed = speed;
4144 Adapter->link_duplex = duplex;
4145 Adapter->link_state = LINK_STATE_UP;
4146 link_changed = B_TRUE;
4147
4148 if (Adapter->link_speed == SPEED_1000)
4149 Adapter->stall_threshold = TX_STALL_TIME_2S;
4150 else
4151 Adapter->stall_threshold = TX_STALL_TIME_8S;
4152
4153 Adapter->tx_link_down_timeout = 0;
4154
4155 if ((hw->mac.type == e1000_82571) ||
4156 (hw->mac.type == e1000_82572)) {
4157 reg_tarc = E1000_READ_REG(hw, E1000_TARC(0));
4158 if (speed == SPEED_1000)
4159 reg_tarc |= (1 << 21);
4160 else
4161 reg_tarc &= ~(1 << 21);
4162 E1000_WRITE_REG(hw, E1000_TARC(0), reg_tarc);
4163 }
4164 }
4165 Adapter->smartspeed = 0;
4166 } else {
4167 if (Adapter->link_state != LINK_STATE_DOWN) {
4168 Adapter->link_speed = 0;
4169 Adapter->link_duplex = 0;
4170 Adapter->link_state = LINK_STATE_DOWN;
4171 link_changed = B_TRUE;
4172
4173 /*
4174 * SmartSpeed workaround for Tabor/TanaX, When the
4175 * driver loses link disable auto master/slave
4176 * resolution.
4177 */
4178 if (hw->phy.type == e1000_phy_igp) {
4179 (void) e1000_read_phy_reg(hw,
4180 PHY_1000T_CTRL, &phydata);
4181 phydata |= CR_1000T_MS_ENABLE;
4182 (void) e1000_write_phy_reg(hw,
4183 PHY_1000T_CTRL, phydata);
4184 }
4185 } else {
4186 e1000g_smartspeed(Adapter);
4187 }
4188
4189 if (Adapter->e1000g_state & E1000G_STARTED) {
4190 if (Adapter->tx_link_down_timeout <
4191 MAX_TX_LINK_DOWN_TIMEOUT) {
4192 Adapter->tx_link_down_timeout++;
4193 } else if (Adapter->tx_link_down_timeout ==
4194 MAX_TX_LINK_DOWN_TIMEOUT) {
4195 e1000g_tx_clean(Adapter);
4196 Adapter->tx_link_down_timeout++;
4197 }
4198 }
4199 }
4200
4201 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
4202 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
4203
4204 return (link_changed);
4205 }
4206
4207 /*
4208 * e1000g_reset_link - Using the link properties to setup the link
4209 */
4210 int
4211 e1000g_reset_link(struct e1000g *Adapter)
4212 {
4213 struct e1000_mac_info *mac;
4214 struct e1000_phy_info *phy;
4215 struct e1000_hw *hw;
4216 boolean_t invalid;
4217
4218 mac = &Adapter->shared.mac;
4219 phy = &Adapter->shared.phy;
4220 hw = &Adapter->shared;
4221 invalid = B_FALSE;
4222
4223 if (hw->phy.media_type != e1000_media_type_copper)
4224 goto out;
4225
4226 if (Adapter->param_adv_autoneg == 1) {
4227 mac->autoneg = B_TRUE;
4228 phy->autoneg_advertised = 0;
4229
4230 /*
4231 * 1000hdx is not supported for autonegotiation
4232 */
4233 if (Adapter->param_adv_1000fdx == 1)
4234 phy->autoneg_advertised |= ADVERTISE_1000_FULL;
4235
4236 if (Adapter->param_adv_100fdx == 1)
4237 phy->autoneg_advertised |= ADVERTISE_100_FULL;
4238
4239 if (Adapter->param_adv_100hdx == 1)
4240 phy->autoneg_advertised |= ADVERTISE_100_HALF;
4241
4242 if (Adapter->param_adv_10fdx == 1)
4243 phy->autoneg_advertised |= ADVERTISE_10_FULL;
4244
4245 if (Adapter->param_adv_10hdx == 1)
4246 phy->autoneg_advertised |= ADVERTISE_10_HALF;
4247
4248 if (phy->autoneg_advertised == 0)
4249 invalid = B_TRUE;
4250 } else {
4251 mac->autoneg = B_FALSE;
4252
4253 /*
4254 * For Intel copper cards, 1000fdx and 1000hdx are not
4255 * supported for forced link
4256 */
4257 if (Adapter->param_adv_100fdx == 1)
4258 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4259 else if (Adapter->param_adv_100hdx == 1)
4260 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4261 else if (Adapter->param_adv_10fdx == 1)
4262 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4263 else if (Adapter->param_adv_10hdx == 1)
4264 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4265 else
4266 invalid = B_TRUE;
4267
4268 }
4269
4270 if (invalid) {
4271 e1000g_log(Adapter, CE_WARN,
4272 "Invalid link settings. Setup link to "
4273 "support autonegotiation with all link capabilities.");
4274 mac->autoneg = B_TRUE;
4275 phy->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
4276 }
4277
4278 out:
4279 return (e1000_setup_link(&Adapter->shared));
4280 }
4281
4282 static void
4283 e1000g_timer_tx_resched(struct e1000g *Adapter)
4284 {
4285 e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
4286
4287 rw_enter(&Adapter->chip_lock, RW_READER);
4288
4289 if (tx_ring->resched_needed &&
4290 ((ddi_get_lbolt() - tx_ring->resched_timestamp) >
4291 drv_usectohz(1000000)) &&
4292 (Adapter->e1000g_state & E1000G_STARTED) &&
4293 (tx_ring->tbd_avail >= DEFAULT_TX_NO_RESOURCE)) {
4294 tx_ring->resched_needed = B_FALSE;
4295 mac_tx_update(Adapter->mh);
4296 E1000G_STAT(tx_ring->stat_reschedule);
4297 E1000G_STAT(tx_ring->stat_timer_reschedule);
4298 }
4299
4300 rw_exit(&Adapter->chip_lock);
4301 }
4302
4303 static void
4304 e1000g_local_timer(void *ws)
4305 {
4306 struct e1000g *Adapter = (struct e1000g *)ws;
4307 struct e1000_hw *hw;
4308 e1000g_ether_addr_t ether_addr;
4309 boolean_t link_changed;
4310
4311 hw = &Adapter->shared;
4312
4313 if (Adapter->e1000g_state & E1000G_ERROR) {
4314 rw_enter(&Adapter->chip_lock, RW_WRITER);
4315 Adapter->e1000g_state &= ~E1000G_ERROR;
4316 rw_exit(&Adapter->chip_lock);
4317
4318 Adapter->reset_count++;
4319 if (e1000g_global_reset(Adapter)) {
4320 ddi_fm_service_impact(Adapter->dip,
4321 DDI_SERVICE_RESTORED);
4322 e1000g_timer_tx_resched(Adapter);
4323 } else
4324 ddi_fm_service_impact(Adapter->dip,
4325 DDI_SERVICE_LOST);
4326 return;
4327 }
4328
4329 if (e1000g_stall_check(Adapter)) {
4330 E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
4331 "Tx stall detected. Activate automatic recovery.\n");
4332 e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_STALL);
4333 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
4334 Adapter->reset_count++;
4335 if (e1000g_reset_adapter(Adapter)) {
4336 ddi_fm_service_impact(Adapter->dip,
4337 DDI_SERVICE_RESTORED);
4338 e1000g_timer_tx_resched(Adapter);
4339 }
4340 return;
4341 }
4342
4343 link_changed = B_FALSE;
4344 rw_enter(&Adapter->chip_lock, RW_READER);
4345 if (Adapter->link_complete)
4346 link_changed = e1000g_link_check(Adapter);
4347 rw_exit(&Adapter->chip_lock);
4348
4349 if (link_changed) {
4350 if (!Adapter->reset_flag &&
4351 (Adapter->e1000g_state & E1000G_STARTED) &&
4352 !(Adapter->e1000g_state & E1000G_SUSPENDED))
4353 mac_link_update(Adapter->mh, Adapter->link_state);
4354 if (Adapter->link_state == LINK_STATE_UP)
4355 Adapter->reset_flag = B_FALSE;
4356 }
4357 /*
4358 * Workaround for esb2. Data stuck in fifo on a link
4359 * down event. Reset the adapter to recover it.
4360 */
4361 if (Adapter->esb2_workaround) {
4362 Adapter->esb2_workaround = B_FALSE;
4363 (void) e1000g_reset_adapter(Adapter);
4364 return;
4365 }
4366
4367 /*
4368 * With 82571 controllers, any locally administered address will
4369 * be overwritten when there is a reset on the other port.
4370 * Detect this circumstance and correct it.
4371 */
4372 if ((hw->mac.type == e1000_82571) &&
4373 (e1000_get_laa_state_82571(hw) == B_TRUE)) {
4374 ether_addr.reg.low = E1000_READ_REG_ARRAY(hw, E1000_RA, 0);
4375 ether_addr.reg.high = E1000_READ_REG_ARRAY(hw, E1000_RA, 1);
4376
4377 ether_addr.reg.low = ntohl(ether_addr.reg.low);
4378 ether_addr.reg.high = ntohl(ether_addr.reg.high);
4379
4380 if ((ether_addr.mac.addr[5] != hw->mac.addr[0]) ||
4381 (ether_addr.mac.addr[4] != hw->mac.addr[1]) ||
4382 (ether_addr.mac.addr[3] != hw->mac.addr[2]) ||
4383 (ether_addr.mac.addr[2] != hw->mac.addr[3]) ||
4384 (ether_addr.mac.addr[1] != hw->mac.addr[4]) ||
4385 (ether_addr.mac.addr[0] != hw->mac.addr[5])) {
4386 e1000_rar_set(hw, hw->mac.addr, 0);
4387 }
4388 }
4389
4390 /*
4391 * Long TTL workaround for 82541/82547
4392 */
4393 (void) e1000_igp_ttl_workaround_82547(hw);
4394
4395 /*
4396 * Check for Adaptive IFS settings If there are lots of collisions
4397 * change the value in steps...
4398 * These properties should only be set for 10/100
4399 */
4400 if ((hw->phy.media_type == e1000_media_type_copper) &&
4401 ((Adapter->link_speed == SPEED_100) ||
4402 (Adapter->link_speed == SPEED_10))) {
4403 e1000_update_adaptive(hw);
4404 }
4405 /*
4406 * Set Timer Interrupts
4407 */
4408 E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
4409
4410 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
4411 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
4412 else
4413 e1000g_timer_tx_resched(Adapter);
4414
4415 restart_watchdog_timer(Adapter);
4416 }
4417
4418 /*
4419 * The function e1000g_link_timer() is called when the timer for link setup
4420 * is expired, which indicates the completion of the link setup. The link
4421 * state will not be updated until the link setup is completed. And the
4422 * link state will not be sent to the upper layer through mac_link_update()
4423 * in this function. It will be updated in the local timer routine or the
4424 * interrupt service routine after the interface is started (plumbed).
4425 */
4426 static void
4427 e1000g_link_timer(void *arg)
4428 {
4429 struct e1000g *Adapter = (struct e1000g *)arg;
4430
4431 mutex_enter(&Adapter->link_lock);
4432 Adapter->link_complete = B_TRUE;
4433 Adapter->link_tid = 0;
4434 mutex_exit(&Adapter->link_lock);
4435 }
4436
4437 /*
4438 * e1000g_force_speed_duplex - read forced speed/duplex out of e1000g.conf
4439 *
4440 * This function read the forced speed and duplex for 10/100 Mbps speeds
4441 * and also for 1000 Mbps speeds from the e1000g.conf file
4442 */
4443 static void
4444 e1000g_force_speed_duplex(struct e1000g *Adapter)
4445 {
4446 int forced;
4447 int propval;
4448 struct e1000_mac_info *mac = &Adapter->shared.mac;
4449 struct e1000_phy_info *phy = &Adapter->shared.phy;
4450
4451 /*
4452 * get value out of config file
4453 */
4454 (void) e1000g_get_prop(Adapter, "ForceSpeedDuplex",
4455 GDIAG_10_HALF, GDIAG_ANY, GDIAG_ANY, &forced);
4456
4457 switch (forced) {
4458 case GDIAG_10_HALF:
4459 /*
4460 * Disable Auto Negotiation
4461 */
4462 mac->autoneg = B_FALSE;
4463 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4464 break;
4465 case GDIAG_10_FULL:
4466 /*
4467 * Disable Auto Negotiation
4468 */
4469 mac->autoneg = B_FALSE;
4470 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4471 break;
4472 case GDIAG_100_HALF:
4473 /*
4474 * Disable Auto Negotiation
4475 */
4476 mac->autoneg = B_FALSE;
4477 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4478 break;
4479 case GDIAG_100_FULL:
4480 /*
4481 * Disable Auto Negotiation
4482 */
4483 mac->autoneg = B_FALSE;
4484 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4485 break;
4486 case GDIAG_1000_FULL:
4487 /*
4488 * The gigabit spec requires autonegotiation. Therefore,
4489 * when the user wants to force the speed to 1000Mbps, we
4490 * enable AutoNeg, but only allow the harware to advertise
4491 * 1000Mbps. This is different from 10/100 operation, where
4492 * we are allowed to link without any negotiation.
4493 */
4494 mac->autoneg = B_TRUE;
4495 phy->autoneg_advertised = ADVERTISE_1000_FULL;
4496 break;
4497 default: /* obey the setting of AutoNegAdvertised */
4498 mac->autoneg = B_TRUE;
4499 (void) e1000g_get_prop(Adapter, "AutoNegAdvertised",
4500 0, AUTONEG_ADVERTISE_SPEED_DEFAULT,
4501 AUTONEG_ADVERTISE_SPEED_DEFAULT, &propval);
4502 phy->autoneg_advertised = (uint16_t)propval;
4503 break;
4504 } /* switch */
4505 }
4506
4507 /*
4508 * e1000g_get_max_frame_size - get jumbo frame setting from e1000g.conf
4509 *
4510 * This function reads MaxFrameSize from e1000g.conf
4511 */
4512 static void
4513 e1000g_get_max_frame_size(struct e1000g *Adapter)
4514 {
4515 int max_frame;
4516
4517 /*
4518 * get value out of config file
4519 */
4520 (void) e1000g_get_prop(Adapter, "MaxFrameSize", 0, 3, 0,
4521 &max_frame);
4522
4523 switch (max_frame) {
4524 case 0:
4525 Adapter->default_mtu = ETHERMTU;
4526 break;
4527 case 1:
4528 Adapter->default_mtu = FRAME_SIZE_UPTO_4K -
4529 sizeof (struct ether_vlan_header) - ETHERFCSL;
4530 break;
4531 case 2:
4532 Adapter->default_mtu = FRAME_SIZE_UPTO_8K -
4533 sizeof (struct ether_vlan_header) - ETHERFCSL;
4534 break;
4535 case 3:
4536 Adapter->default_mtu = FRAME_SIZE_UPTO_16K -
4537 sizeof (struct ether_vlan_header) - ETHERFCSL;
4538 break;
4539 default:
4540 Adapter->default_mtu = ETHERMTU;
4541 break;
4542 } /* switch */
4543
4544 /*
4545 * If the user configed MTU is larger than the deivce's maximum MTU,
4546 * the MTU is set to the deivce's maximum value.
4547 */
4548 if (Adapter->default_mtu > Adapter->max_mtu)
4549 Adapter->default_mtu = Adapter->max_mtu;
4550
4551 Adapter->max_frame_size = e1000g_mtu2maxframe(Adapter->default_mtu);
4552 }
4553
4554 /*
4555 * e1000g_pch_limits - Apply limits of the PCH silicon type
4556 *
4557 * At any frame size larger than the ethernet default,
4558 * prevent linking at 10/100 speeds.
4559 */
4560 static void
4561 e1000g_pch_limits(struct e1000g *Adapter)
4562 {
4563 struct e1000_hw *hw = &Adapter->shared;
4564
4565 /* only applies to PCH silicon type */
4566 if (hw->mac.type != e1000_pchlan && hw->mac.type != e1000_pch2lan)
4567 return;
4568
4569 /* only applies to frames larger than ethernet default */
4570 if (Adapter->max_frame_size > DEFAULT_FRAME_SIZE) {
4571 hw->mac.autoneg = B_TRUE;
4572 hw->phy.autoneg_advertised = ADVERTISE_1000_FULL;
4573
4574 Adapter->param_adv_autoneg = 1;
4575 Adapter->param_adv_1000fdx = 1;
4576
4577 Adapter->param_adv_100fdx = 0;
4578 Adapter->param_adv_100hdx = 0;
4579 Adapter->param_adv_10fdx = 0;
4580 Adapter->param_adv_10hdx = 0;
4581
4582 e1000g_param_sync(Adapter);
4583 }
4584 }
4585
4586 /*
4587 * e1000g_mtu2maxframe - convert given MTU to maximum frame size
4588 */
4589 static uint32_t
4590 e1000g_mtu2maxframe(uint32_t mtu)
4591 {
4592 uint32_t maxframe;
4593
4594 maxframe = mtu + sizeof (struct ether_vlan_header) + ETHERFCSL;
4595
4596 return (maxframe);
4597 }
4598
4599 static void
4600 arm_watchdog_timer(struct e1000g *Adapter)
4601 {
4602 Adapter->watchdog_tid =
4603 timeout(e1000g_local_timer,
4604 (void *)Adapter, 1 * drv_usectohz(1000000));
4605 }
4606 #pragma inline(arm_watchdog_timer)
4607
4608 static void
4609 enable_watchdog_timer(struct e1000g *Adapter)
4610 {
4611 mutex_enter(&Adapter->watchdog_lock);
4612
4613 if (!Adapter->watchdog_timer_enabled) {
4614 Adapter->watchdog_timer_enabled = B_TRUE;
4615 Adapter->watchdog_timer_started = B_TRUE;
4616 arm_watchdog_timer(Adapter);
4617 }
4618
4619 mutex_exit(&Adapter->watchdog_lock);
4620 }
4621
4622 static void
4623 disable_watchdog_timer(struct e1000g *Adapter)
4624 {
4625 timeout_id_t tid;
4626
4627 mutex_enter(&Adapter->watchdog_lock);
4628
4629 Adapter->watchdog_timer_enabled = B_FALSE;
4630 Adapter->watchdog_timer_started = B_FALSE;
4631 tid = Adapter->watchdog_tid;
4632 Adapter->watchdog_tid = 0;
4633
4634 mutex_exit(&Adapter->watchdog_lock);
4635
4636 if (tid != 0)
4637 (void) untimeout(tid);
4638 }
4639
4640 static void
4641 start_watchdog_timer(struct e1000g *Adapter)
4642 {
4643 mutex_enter(&Adapter->watchdog_lock);
4644
4645 if (Adapter->watchdog_timer_enabled) {
4646 if (!Adapter->watchdog_timer_started) {
4647 Adapter->watchdog_timer_started = B_TRUE;
4648 arm_watchdog_timer(Adapter);
4649 }
4650 }
4651
4652 mutex_exit(&Adapter->watchdog_lock);
4653 }
4654
4655 static void
4656 restart_watchdog_timer(struct e1000g *Adapter)
4657 {
4658 mutex_enter(&Adapter->watchdog_lock);
4659
4660 if (Adapter->watchdog_timer_started)
4661 arm_watchdog_timer(Adapter);
4662
4663 mutex_exit(&Adapter->watchdog_lock);
4664 }
4665
4666 static void
4667 stop_watchdog_timer(struct e1000g *Adapter)
4668 {
4669 timeout_id_t tid;
4670
4671 mutex_enter(&Adapter->watchdog_lock);
4672
4673 Adapter->watchdog_timer_started = B_FALSE;
4674 tid = Adapter->watchdog_tid;
4675 Adapter->watchdog_tid = 0;
4676
4677 mutex_exit(&Adapter->watchdog_lock);
4678
4679 if (tid != 0)
4680 (void) untimeout(tid);
4681 }
4682
4683 static void
4684 stop_link_timer(struct e1000g *Adapter)
4685 {
4686 timeout_id_t tid;
4687
4688 /* Disable the link timer */
4689 mutex_enter(&Adapter->link_lock);
4690
4691 tid = Adapter->link_tid;
4692 Adapter->link_tid = 0;
4693
4694 mutex_exit(&Adapter->link_lock);
4695
4696 if (tid != 0)
4697 (void) untimeout(tid);
4698 }
4699
4700 static void
4701 stop_82547_timer(e1000g_tx_ring_t *tx_ring)
4702 {
4703 timeout_id_t tid;
4704
4705 /* Disable the tx timer for 82547 chipset */
4706 mutex_enter(&tx_ring->tx_lock);
4707
4708 tx_ring->timer_enable_82547 = B_FALSE;
4709 tid = tx_ring->timer_id_82547;
4710 tx_ring->timer_id_82547 = 0;
4711
4712 mutex_exit(&tx_ring->tx_lock);
4713
4714 if (tid != 0)
4715 (void) untimeout(tid);
4716 }
4717
4718 void
4719 e1000g_clear_interrupt(struct e1000g *Adapter)
4720 {
4721 E1000_WRITE_REG(&Adapter->shared, E1000_IMC,
4722 0xffffffff & ~E1000_IMS_RXSEQ);
4723 }
4724
4725 void
4726 e1000g_mask_interrupt(struct e1000g *Adapter)
4727 {
4728 E1000_WRITE_REG(&Adapter->shared, E1000_IMS,
4729 IMS_ENABLE_MASK & ~E1000_IMS_TXDW);
4730
4731 if (Adapter->tx_intr_enable)
4732 e1000g_mask_tx_interrupt(Adapter);
4733 }
4734
4735 /*
4736 * This routine is called by e1000g_quiesce(), therefore must not block.
4737 */
4738 void
4739 e1000g_clear_all_interrupts(struct e1000g *Adapter)
4740 {
4741 E1000_WRITE_REG(&Adapter->shared, E1000_IMC, 0xffffffff);
4742 }
4743
4744 void
4745 e1000g_mask_tx_interrupt(struct e1000g *Adapter)
4746 {
4747 E1000_WRITE_REG(&Adapter->shared, E1000_IMS, E1000_IMS_TXDW);
4748 }
4749
4750 void
4751 e1000g_clear_tx_interrupt(struct e1000g *Adapter)
4752 {
4753 E1000_WRITE_REG(&Adapter->shared, E1000_IMC, E1000_IMS_TXDW);
4754 }
4755
4756 static void
4757 e1000g_smartspeed(struct e1000g *Adapter)
4758 {
4759 struct e1000_hw *hw = &Adapter->shared;
4760 uint16_t phy_status;
4761 uint16_t phy_ctrl;
4762
4763 /*
4764 * If we're not T-or-T, or we're not autoneg'ing, or we're not
4765 * advertising 1000Full, we don't even use the workaround
4766 */
4767 if ((hw->phy.type != e1000_phy_igp) ||
4768 !hw->mac.autoneg ||
4769 !(hw->phy.autoneg_advertised & ADVERTISE_1000_FULL))
4770 return;
4771
4772 /*
4773 * True if this is the first call of this function or after every
4774 * 30 seconds of not having link
4775 */
4776 if (Adapter->smartspeed == 0) {
4777 /*
4778 * If Master/Slave config fault is asserted twice, we
4779 * assume back-to-back
4780 */
4781 (void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4782 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4783 return;
4784
4785 (void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4786 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4787 return;
4788 /*
4789 * We're assuming back-2-back because our status register
4790 * insists! there's a fault in the master/slave
4791 * relationship that was "negotiated"
4792 */
4793 (void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4794 /*
4795 * Is the phy configured for manual configuration of
4796 * master/slave?
4797 */
4798 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4799 /*
4800 * Yes. Then disable manual configuration (enable
4801 * auto configuration) of master/slave
4802 */
4803 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4804 (void) e1000_write_phy_reg(hw,
4805 PHY_1000T_CTRL, phy_ctrl);
4806 /*
4807 * Effectively starting the clock
4808 */
4809 Adapter->smartspeed++;
4810 /*
4811 * Restart autonegotiation
4812 */
4813 if (!e1000_phy_setup_autoneg(hw) &&
4814 !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
4815 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4816 MII_CR_RESTART_AUTO_NEG);
4817 (void) e1000_write_phy_reg(hw,
4818 PHY_CONTROL, phy_ctrl);
4819 }
4820 }
4821 return;
4822 /*
4823 * Has 6 seconds transpired still without link? Remember,
4824 * you should reset the smartspeed counter once you obtain
4825 * link
4826 */
4827 } else if (Adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4828 /*
4829 * Yes. Remember, we did at the start determine that
4830 * there's a master/slave configuration fault, so we're
4831 * still assuming there's someone on the other end, but we
4832 * just haven't yet been able to talk to it. We then
4833 * re-enable auto configuration of master/slave to see if
4834 * we're running 2/3 pair cables.
4835 */
4836 /*
4837 * If still no link, perhaps using 2/3 pair cable
4838 */
4839 (void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4840 phy_ctrl |= CR_1000T_MS_ENABLE;
4841 (void) e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4842 /*
4843 * Restart autoneg with phy enabled for manual
4844 * configuration of master/slave
4845 */
4846 if (!e1000_phy_setup_autoneg(hw) &&
4847 !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
4848 phy_ctrl |=
4849 (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
4850 (void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
4851 }
4852 /*
4853 * Hopefully, there are no more faults and we've obtained
4854 * link as a result.
4855 */
4856 }
4857 /*
4858 * Restart process after E1000_SMARTSPEED_MAX iterations (30
4859 * seconds)
4860 */
4861 if (Adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4862 Adapter->smartspeed = 0;
4863 }
4864
4865 static boolean_t
4866 is_valid_mac_addr(uint8_t *mac_addr)
4867 {
4868 const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
4869 const uint8_t addr_test2[6] =
4870 { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
4871
4872 if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
4873 !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
4874 return (B_FALSE);
4875
4876 return (B_TRUE);
4877 }
4878
4879 /*
4880 * e1000g_stall_check - check for tx stall
4881 *
4882 * This function checks if the adapter is stalled (in transmit).
4883 *
4884 * It is called each time the watchdog timeout is invoked.
4885 * If the transmit descriptor reclaim continuously fails,
4886 * the watchdog value will increment by 1. If the watchdog
4887 * value exceeds the threshold, the adapter is assumed to
4888 * have stalled and need to be reset.
4889 */
4890 static boolean_t
4891 e1000g_stall_check(struct e1000g *Adapter)
4892 {
4893 e1000g_tx_ring_t *tx_ring;
4894
4895 tx_ring = Adapter->tx_ring;
4896
4897 if (Adapter->link_state != LINK_STATE_UP)
4898 return (B_FALSE);
4899
4900 (void) e1000g_recycle(tx_ring);
4901
4902 if (Adapter->stall_flag)
4903 return (B_TRUE);
4904
4905 return (B_FALSE);
4906 }
4907
4908 #ifdef E1000G_DEBUG
4909 static enum ioc_reply
4910 e1000g_pp_ioctl(struct e1000g *e1000gp, struct iocblk *iocp, mblk_t *mp)
4911 {
4912 void (*ppfn)(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
4913 e1000g_peekpoke_t *ppd;
4914 uint64_t mem_va;
4915 uint64_t maxoff;
4916 boolean_t peek;
4917
4918 switch (iocp->ioc_cmd) {
4919
4920 case E1000G_IOC_REG_PEEK:
4921 peek = B_TRUE;
4922 break;
4923
4924 case E1000G_IOC_REG_POKE:
4925 peek = B_FALSE;
4926 break;
4927
4928 deault:
4929 E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
4930 "e1000g_diag_ioctl: invalid ioctl command 0x%X\n",
4931 iocp->ioc_cmd);
4932 return (IOC_INVAL);
4933 }
4934
4935 /*
4936 * Validate format of ioctl
4937 */
4938 if (iocp->ioc_count != sizeof (e1000g_peekpoke_t))
4939 return (IOC_INVAL);
4940 if (mp->b_cont == NULL)
4941 return (IOC_INVAL);
4942
4943 ppd = (e1000g_peekpoke_t *)(uintptr_t)mp->b_cont->b_rptr;
4944
4945 /*
4946 * Validate request parameters
4947 */
4948 switch (ppd->pp_acc_space) {
4949
4950 default:
4951 E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
4952 "e1000g_diag_ioctl: invalid access space 0x%X\n",
4953 ppd->pp_acc_space);
4954 return (IOC_INVAL);
4955
4956 case E1000G_PP_SPACE_REG:
4957 /*
4958 * Memory-mapped I/O space
4959 */
4960 ASSERT(ppd->pp_acc_size == 4);
4961 if (ppd->pp_acc_size != 4)
4962 return (IOC_INVAL);
4963
4964 if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
4965 return (IOC_INVAL);
4966
4967 mem_va = 0;
4968 maxoff = 0x10000;
4969 ppfn = peek ? e1000g_ioc_peek_reg : e1000g_ioc_poke_reg;
4970 break;
4971
4972 case E1000G_PP_SPACE_E1000G:
4973 /*
4974 * E1000g data structure!
4975 */
4976 mem_va = (uintptr_t)e1000gp;
4977 maxoff = sizeof (struct e1000g);
4978 ppfn = peek ? e1000g_ioc_peek_mem : e1000g_ioc_poke_mem;
4979 break;
4980
4981 }
4982
4983 if (ppd->pp_acc_offset >= maxoff)
4984 return (IOC_INVAL);
4985
4986 if (ppd->pp_acc_offset + ppd->pp_acc_size > maxoff)
4987 return (IOC_INVAL);
4988
4989 /*
4990 * All OK - go!
4991 */
4992 ppd->pp_acc_offset += mem_va;
4993 (*ppfn)(e1000gp, ppd);
4994 return (peek ? IOC_REPLY : IOC_ACK);
4995 }
4996
4997 static void
4998 e1000g_ioc_peek_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4999 {
5000 ddi_acc_handle_t handle;
5001 uint32_t *regaddr;
5002
5003 handle = e1000gp->osdep.reg_handle;
5004 regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
5005 (uintptr_t)ppd->pp_acc_offset);
5006
5007 ppd->pp_acc_data = ddi_get32(handle, regaddr);
5008 }
5009
5010 static void
5011 e1000g_ioc_poke_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
5012 {
5013 ddi_acc_handle_t handle;
5014 uint32_t *regaddr;
5015 uint32_t value;
5016
5017 handle = e1000gp->osdep.reg_handle;
5018 regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
5019 (uintptr_t)ppd->pp_acc_offset);
5020 value = (uint32_t)ppd->pp_acc_data;
5021
5022 ddi_put32(handle, regaddr, value);
5023 }
5024
5025 static void
5026 e1000g_ioc_peek_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
5027 {
5028 uint64_t value;
5029 void *vaddr;
5030
5031 vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
5032
5033 switch (ppd->pp_acc_size) {
5034 case 1:
5035 value = *(uint8_t *)vaddr;
5036 break;
5037
5038 case 2:
5039 value = *(uint16_t *)vaddr;
5040 break;
5041
5042 case 4:
5043 value = *(uint32_t *)vaddr;
5044 break;
5045
5046 case 8:
5047 value = *(uint64_t *)vaddr;
5048 break;
5049 }
5050
5051 E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
5052 "e1000g_ioc_peek_mem($%p, $%p) peeked 0x%llx from $%p\n",
5053 (void *)e1000gp, (void *)ppd, value, vaddr);
5054
5055 ppd->pp_acc_data = value;
5056 }
5057
5058 static void
5059 e1000g_ioc_poke_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
5060 {
5061 uint64_t value;
5062 void *vaddr;
5063
5064 vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
5065 value = ppd->pp_acc_data;
5066
5067 E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
5068 "e1000g_ioc_poke_mem($%p, $%p) poking 0x%llx at $%p\n",
5069 (void *)e1000gp, (void *)ppd, value, vaddr);
5070
5071 switch (ppd->pp_acc_size) {
5072 case 1:
5073 *(uint8_t *)vaddr = (uint8_t)value;
5074 break;
5075
5076 case 2:
5077 *(uint16_t *)vaddr = (uint16_t)value;
5078 break;
5079
5080 case 4:
5081 *(uint32_t *)vaddr = (uint32_t)value;
5082 break;
5083
5084 case 8:
5085 *(uint64_t *)vaddr = (uint64_t)value;
5086 break;
5087 }
5088 }
5089 #endif
5090
5091 /*
5092 * Loopback Support
5093 */
5094 static lb_property_t lb_normal =
5095 { normal, "normal", E1000G_LB_NONE };
5096 static lb_property_t lb_external1000 =
5097 { external, "1000Mbps", E1000G_LB_EXTERNAL_1000 };
5098 static lb_property_t lb_external100 =
5099 { external, "100Mbps", E1000G_LB_EXTERNAL_100 };
5100 static lb_property_t lb_external10 =
5101 { external, "10Mbps", E1000G_LB_EXTERNAL_10 };
5102 static lb_property_t lb_phy =
5103 { internal, "PHY", E1000G_LB_INTERNAL_PHY };
5104
5105 static enum ioc_reply
5106 e1000g_loopback_ioctl(struct e1000g *Adapter, struct iocblk *iocp, mblk_t *mp)
5107 {
5108 lb_info_sz_t *lbsp;
5109 lb_property_t *lbpp;
5110 struct e1000_hw *hw;
5111 uint32_t *lbmp;
5112 uint32_t size;
5113 uint32_t value;
5114
5115 hw = &Adapter->shared;
5116
5117 if (mp->b_cont == NULL)
5118 return (IOC_INVAL);
5119
5120 if (!e1000g_check_loopback_support(hw)) {
5121 e1000g_log(NULL, CE_WARN,
5122 "Loopback is not supported on e1000g%d", Adapter->instance);
5123 return (IOC_INVAL);
5124 }
5125
5126 switch (iocp->ioc_cmd) {
5127 default:
5128 return (IOC_INVAL);
5129
5130 case LB_GET_INFO_SIZE:
5131 size = sizeof (lb_info_sz_t);
5132 if (iocp->ioc_count != size)
5133 return (IOC_INVAL);
5134
5135 rw_enter(&Adapter->chip_lock, RW_WRITER);
5136 e1000g_get_phy_state(Adapter);
5137
5138 /*
5139 * Workaround for hardware faults. In order to get a stable
5140 * state of phy, we will wait for a specific interval and
5141 * try again. The time delay is an experiential value based
5142 * on our testing.
5143 */
5144 msec_delay(100);
5145 e1000g_get_phy_state(Adapter);
5146 rw_exit(&Adapter->chip_lock);
5147
5148 value = sizeof (lb_normal);
5149 if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5150 (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
5151 (hw->phy.media_type == e1000_media_type_fiber) ||
5152 (hw->phy.media_type == e1000_media_type_internal_serdes)) {
5153 value += sizeof (lb_phy);
5154 switch (hw->mac.type) {
5155 case e1000_82571:
5156 case e1000_82572:
5157 case e1000_80003es2lan:
5158 value += sizeof (lb_external1000);
5159 break;
5160 }
5161 }
5162 if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5163 (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
5164 value += sizeof (lb_external100);
5165 if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
5166 value += sizeof (lb_external10);
5167
5168 lbsp = (lb_info_sz_t *)(uintptr_t)mp->b_cont->b_rptr;
5169 *lbsp = value;
5170 break;
5171
5172 case LB_GET_INFO:
5173 value = sizeof (lb_normal);
5174 if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5175 (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
5176 (hw->phy.media_type == e1000_media_type_fiber) ||
5177 (hw->phy.media_type == e1000_media_type_internal_serdes)) {
5178 value += sizeof (lb_phy);
5179 switch (hw->mac.type) {
5180 case e1000_82571:
5181 case e1000_82572:
5182 case e1000_80003es2lan:
5183 value += sizeof (lb_external1000);
5184 break;
5185 }
5186 }
5187 if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5188 (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
5189 value += sizeof (lb_external100);
5190 if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
5191 value += sizeof (lb_external10);
5192
5193 size = value;
5194 if (iocp->ioc_count != size)
5195 return (IOC_INVAL);
5196
5197 value = 0;
5198 lbpp = (lb_property_t *)(uintptr_t)mp->b_cont->b_rptr;
5199 lbpp[value++] = lb_normal;
5200 if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5201 (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
5202 (hw->phy.media_type == e1000_media_type_fiber) ||
5203 (hw->phy.media_type == e1000_media_type_internal_serdes)) {
5204 lbpp[value++] = lb_phy;
5205 switch (hw->mac.type) {
5206 case e1000_82571:
5207 case e1000_82572:
5208 case e1000_80003es2lan:
5209 lbpp[value++] = lb_external1000;
5210 break;
5211 }
5212 }
5213 if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5214 (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
5215 lbpp[value++] = lb_external100;
5216 if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
5217 lbpp[value++] = lb_external10;
5218 break;
5219
5220 case LB_GET_MODE:
5221 size = sizeof (uint32_t);
5222 if (iocp->ioc_count != size)
5223 return (IOC_INVAL);
5224
5225 lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
5226 *lbmp = Adapter->loopback_mode;
5227 break;
5228
5229 case LB_SET_MODE:
5230 size = 0;
5231 if (iocp->ioc_count != sizeof (uint32_t))
5232 return (IOC_INVAL);
5233
5234 lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
5235 if (!e1000g_set_loopback_mode(Adapter, *lbmp))
5236 return (IOC_INVAL);
5237 break;
5238 }
5239
5240 iocp->ioc_count = size;
5241 iocp->ioc_error = 0;
5242
5243 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
5244 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
5245 return (IOC_INVAL);
5246 }
5247
5248 return (IOC_REPLY);
5249 }
5250
5251 static boolean_t
5252 e1000g_check_loopback_support(struct e1000_hw *hw)
5253 {
5254 switch (hw->mac.type) {
5255 case e1000_82540:
5256 case e1000_82545:
5257 case e1000_82545_rev_3:
5258 case e1000_82546:
5259 case e1000_82546_rev_3:
5260 case e1000_82541:
5261 case e1000_82541_rev_2:
5262 case e1000_82547:
5263 case e1000_82547_rev_2:
5264 case e1000_82571:
5265 case e1000_82572:
5266 case e1000_82573:
5267 case e1000_82574:
5268 case e1000_80003es2lan:
5269 case e1000_ich9lan:
5270 case e1000_ich10lan:
5271 return (B_TRUE);
5272 }
5273 return (B_FALSE);
5274 }
5275
5276 static boolean_t
5277 e1000g_set_loopback_mode(struct e1000g *Adapter, uint32_t mode)
5278 {
5279 struct e1000_hw *hw;
5280 int i, times;
5281 boolean_t link_up;
5282
5283 if (mode == Adapter->loopback_mode)
5284 return (B_TRUE);
5285
5286 hw = &Adapter->shared;
5287 times = 0;
5288
5289 Adapter->loopback_mode = mode;
5290
5291 if (mode == E1000G_LB_NONE) {
5292 /* Reset the chip */
5293 hw->phy.autoneg_wait_to_complete = B_TRUE;
5294 (void) e1000g_reset_adapter(Adapter);
5295 hw->phy.autoneg_wait_to_complete = B_FALSE;
5296 return (B_TRUE);
5297 }
5298
5299 again:
5300
5301 rw_enter(&Adapter->chip_lock, RW_WRITER);
5302
5303 switch (mode) {
5304 default:
5305 rw_exit(&Adapter->chip_lock);
5306 return (B_FALSE);
5307
5308 case E1000G_LB_EXTERNAL_1000:
5309 e1000g_set_external_loopback_1000(Adapter);
5310 break;
5311
5312 case E1000G_LB_EXTERNAL_100:
5313 e1000g_set_external_loopback_100(Adapter);
5314 break;
5315
5316 case E1000G_LB_EXTERNAL_10:
5317 e1000g_set_external_loopback_10(Adapter);
5318 break;
5319
5320 case E1000G_LB_INTERNAL_PHY:
5321 e1000g_set_internal_loopback(Adapter);
5322 break;
5323 }
5324
5325 times++;
5326
5327 rw_exit(&Adapter->chip_lock);
5328
5329 /* Wait for link up */
5330 for (i = (PHY_FORCE_LIMIT * 2); i > 0; i--)
5331 msec_delay(100);
5332
5333 rw_enter(&Adapter->chip_lock, RW_WRITER);
5334
5335 link_up = e1000g_link_up(Adapter);
5336
5337 rw_exit(&Adapter->chip_lock);
5338
5339 if (!link_up) {
5340 E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
5341 "Failed to get the link up");
5342 if (times < 2) {
5343 /* Reset the link */
5344 E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
5345 "Reset the link ...");
5346 (void) e1000g_reset_adapter(Adapter);
5347 goto again;
5348 }
5349
5350 /*
5351 * Reset driver to loopback none when set loopback failed
5352 * for the second time.
5353 */
5354 Adapter->loopback_mode = E1000G_LB_NONE;
5355
5356 /* Reset the chip */
5357 hw->phy.autoneg_wait_to_complete = B_TRUE;
5358 (void) e1000g_reset_adapter(Adapter);
5359 hw->phy.autoneg_wait_to_complete = B_FALSE;
5360
5361 E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
5362 "Set loopback mode failed, reset to loopback none");
5363
5364 return (B_FALSE);
5365 }
5366
5367 return (B_TRUE);
5368 }
5369
5370 /*
5371 * The following loopback settings are from Intel's technical
5372 * document - "How To Loopback". All the register settings and
5373 * time delay values are directly inherited from the document
5374 * without more explanations available.
5375 */
5376 static void
5377 e1000g_set_internal_loopback(struct e1000g *Adapter)
5378 {
5379 struct e1000_hw *hw;
5380 uint32_t ctrl;
5381 uint32_t status;
5382 uint16_t phy_ctrl;
5383 uint16_t phy_reg;
5384 uint32_t txcw;
5385
5386 hw = &Adapter->shared;
5387
5388 /* Disable Smart Power Down */
5389 phy_spd_state(hw, B_FALSE);
5390
5391 (void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
5392 phy_ctrl &= ~(MII_CR_AUTO_NEG_EN | MII_CR_SPEED_100 | MII_CR_SPEED_10);
5393 phy_ctrl |= MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000;
5394
5395 switch (hw->mac.type) {
5396 case e1000_82540:
5397 case e1000_82545:
5398 case e1000_82545_rev_3:
5399 case e1000_82546:
5400 case e1000_82546_rev_3:
5401 case e1000_82573:
5402 /* Auto-MDI/MDIX off */
5403 (void) e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
5404 /* Reset PHY to update Auto-MDI/MDIX */
5405 (void) e1000_write_phy_reg(hw, PHY_CONTROL,
5406 phy_ctrl | MII_CR_RESET | MII_CR_AUTO_NEG_EN);
5407 /* Reset PHY to auto-neg off and force 1000 */
5408 (void) e1000_write_phy_reg(hw, PHY_CONTROL,
5409 phy_ctrl | MII_CR_RESET);
5410 /*
5411 * Disable PHY receiver for 82540/545/546 and 82573 Family.
5412 * See comments above e1000g_set_internal_loopback() for the
5413 * background.
5414 */
5415 (void) e1000_write_phy_reg(hw, 29, 0x001F);
5416 (void) e1000_write_phy_reg(hw, 30, 0x8FFC);
5417 (void) e1000_write_phy_reg(hw, 29, 0x001A);
5418 (void) e1000_write_phy_reg(hw, 30, 0x8FF0);
5419 break;
5420 case e1000_80003es2lan:
5421 /* Force Link Up */
5422 (void) e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
5423 0x1CC);
5424 /* Sets PCS loopback at 1Gbs */
5425 (void) e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
5426 0x1046);
5427 break;
5428 }
5429
5430 /*
5431 * The following registers should be set for e1000_phy_bm phy type.
5432 * e1000_82574, e1000_ich10lan and some e1000_ich9lan use this phy.
5433 * For others, we do not need to set these registers.
5434 */
5435 if (hw->phy.type == e1000_phy_bm) {
5436 /* Set Default MAC Interface speed to 1GB */
5437 (void) e1000_read_phy_reg(hw, PHY_REG(2, 21), &phy_reg);
5438 phy_reg &= ~0x0007;
5439 phy_reg |= 0x006;
5440 (void) e1000_write_phy_reg(hw, PHY_REG(2, 21), phy_reg);
5441 /* Assert SW reset for above settings to take effect */
5442 (void) e1000_phy_commit(hw);
5443 msec_delay(1);
5444 /* Force Full Duplex */
5445 (void) e1000_read_phy_reg(hw, PHY_REG(769, 16), &phy_reg);
5446 (void) e1000_write_phy_reg(hw, PHY_REG(769, 16),
5447 phy_reg | 0x000C);
5448 /* Set Link Up (in force link) */
5449 (void) e1000_read_phy_reg(hw, PHY_REG(776, 16), &phy_reg);
5450 (void) e1000_write_phy_reg(hw, PHY_REG(776, 16),
5451 phy_reg | 0x0040);
5452 /* Force Link */
5453 (void) e1000_read_phy_reg(hw, PHY_REG(769, 16), &phy_reg);
5454 (void) e1000_write_phy_reg(hw, PHY_REG(769, 16),
5455 phy_reg | 0x0040);
5456 /* Set Early Link Enable */
5457 (void) e1000_read_phy_reg(hw, PHY_REG(769, 20), &phy_reg);
5458 (void) e1000_write_phy_reg(hw, PHY_REG(769, 20),
5459 phy_reg | 0x0400);
5460 }
5461
5462 /* Set loopback */
5463 (void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl | MII_CR_LOOPBACK);
5464
5465 msec_delay(250);
5466
5467 /* Now set up the MAC to the same speed/duplex as the PHY. */
5468 ctrl = E1000_READ_REG(hw, E1000_CTRL);
5469 ctrl &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
5470 ctrl |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
5471 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
5472 E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
5473 E1000_CTRL_FD); /* Force Duplex to FULL */
5474
5475 switch (hw->mac.type) {
5476 case e1000_82540:
5477 case e1000_82545:
5478 case e1000_82545_rev_3:
5479 case e1000_82546:
5480 case e1000_82546_rev_3:
5481 /*
5482 * For some serdes we'll need to commit the writes now
5483 * so that the status is updated on link
5484 */
5485 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
5486 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5487 msec_delay(100);
5488 ctrl = E1000_READ_REG(hw, E1000_CTRL);
5489 }
5490
5491 if (hw->phy.media_type == e1000_media_type_copper) {
5492 /* Invert Loss of Signal */
5493 ctrl |= E1000_CTRL_ILOS;
5494 } else {
5495 /* Set ILOS on fiber nic if half duplex is detected */
5496 status = E1000_READ_REG(hw, E1000_STATUS);
5497 if ((status & E1000_STATUS_FD) == 0)
5498 ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5499 }
5500 break;
5501
5502 case e1000_82571:
5503 case e1000_82572:
5504 /*
5505 * The fiber/SerDes versions of this adapter do not contain an
5506 * accessible PHY. Therefore, loopback beyond MAC must be done
5507 * using SerDes analog loopback.
5508 */
5509 if (hw->phy.media_type != e1000_media_type_copper) {
5510 /* Disable autoneg by setting bit 31 of TXCW to zero */
5511 txcw = E1000_READ_REG(hw, E1000_TXCW);
5512 txcw &= ~((uint32_t)1 << 31);
5513 E1000_WRITE_REG(hw, E1000_TXCW, txcw);
5514
5515 /*
5516 * Write 0x410 to Serdes Control register
5517 * to enable Serdes analog loopback
5518 */
5519 E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
5520 msec_delay(10);
5521 }
5522
5523 status = E1000_READ_REG(hw, E1000_STATUS);
5524 /* Set ILOS on fiber nic if half duplex is detected */
5525 if ((hw->phy.media_type == e1000_media_type_fiber) &&
5526 ((status & E1000_STATUS_FD) == 0 ||
5527 (status & E1000_STATUS_LU) == 0))
5528 ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5529 else if (hw->phy.media_type == e1000_media_type_internal_serdes)
5530 ctrl |= E1000_CTRL_SLU;
5531 break;
5532
5533 case e1000_82573:
5534 ctrl |= E1000_CTRL_ILOS;
5535 break;
5536 case e1000_ich9lan:
5537 case e1000_ich10lan:
5538 ctrl |= E1000_CTRL_SLU;
5539 break;
5540 }
5541 if (hw->phy.type == e1000_phy_bm)
5542 ctrl |= E1000_CTRL_SLU | E1000_CTRL_ILOS;
5543
5544 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5545 }
5546
5547 static void
5548 e1000g_set_external_loopback_1000(struct e1000g *Adapter)
5549 {
5550 struct e1000_hw *hw;
5551 uint32_t rctl;
5552 uint32_t ctrl_ext;
5553 uint32_t ctrl;
5554 uint32_t status;
5555 uint32_t txcw;
5556 uint16_t phydata;
5557
5558 hw = &Adapter->shared;
5559
5560 /* Disable Smart Power Down */
5561 phy_spd_state(hw, B_FALSE);
5562
5563 switch (hw->mac.type) {
5564 case e1000_82571:
5565 case e1000_82572:
5566 switch (hw->phy.media_type) {
5567 case e1000_media_type_copper:
5568 /* Force link up (Must be done before the PHY writes) */
5569 ctrl = E1000_READ_REG(hw, E1000_CTRL);
5570 ctrl |= E1000_CTRL_SLU; /* Force Link Up */
5571 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5572
5573 rctl = E1000_READ_REG(hw, E1000_RCTL);
5574 rctl |= (E1000_RCTL_EN |
5575 E1000_RCTL_SBP |
5576 E1000_RCTL_UPE |
5577 E1000_RCTL_MPE |
5578 E1000_RCTL_LPE |
5579 E1000_RCTL_BAM); /* 0x803E */
5580 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
5581
5582 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5583 ctrl_ext |= (E1000_CTRL_EXT_SDP4_DATA |
5584 E1000_CTRL_EXT_SDP6_DATA |
5585 E1000_CTRL_EXT_SDP3_DATA |
5586 E1000_CTRL_EXT_SDP4_DIR |
5587 E1000_CTRL_EXT_SDP6_DIR |
5588 E1000_CTRL_EXT_SDP3_DIR); /* 0x0DD0 */
5589 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5590
5591 /*
5592 * This sequence tunes the PHY's SDP and no customer
5593 * settable values. For background, see comments above
5594 * e1000g_set_internal_loopback().
5595 */
5596 (void) e1000_write_phy_reg(hw, 0x0, 0x140);
5597 msec_delay(10);
5598 (void) e1000_write_phy_reg(hw, 0x9, 0x1A00);
5599 (void) e1000_write_phy_reg(hw, 0x12, 0xC10);
5600 (void) e1000_write_phy_reg(hw, 0x12, 0x1C10);
5601 (void) e1000_write_phy_reg(hw, 0x1F37, 0x76);
5602 (void) e1000_write_phy_reg(hw, 0x1F33, 0x1);
5603 (void) e1000_write_phy_reg(hw, 0x1F33, 0x0);
5604
5605 (void) e1000_write_phy_reg(hw, 0x1F35, 0x65);
5606 (void) e1000_write_phy_reg(hw, 0x1837, 0x3F7C);
5607 (void) e1000_write_phy_reg(hw, 0x1437, 0x3FDC);
5608 (void) e1000_write_phy_reg(hw, 0x1237, 0x3F7C);
5609 (void) e1000_write_phy_reg(hw, 0x1137, 0x3FDC);
5610
5611 msec_delay(50);
5612 break;
5613 case e1000_media_type_fiber:
5614 case e1000_media_type_internal_serdes:
5615 status = E1000_READ_REG(hw, E1000_STATUS);
5616 if (((status & E1000_STATUS_LU) == 0) ||
5617 (hw->phy.media_type ==
5618 e1000_media_type_internal_serdes)) {
5619 ctrl = E1000_READ_REG(hw, E1000_CTRL);
5620 ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5621 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5622 }
5623
5624 /* Disable autoneg by setting bit 31 of TXCW to zero */
5625 txcw = E1000_READ_REG(hw, E1000_TXCW);
5626 txcw &= ~((uint32_t)1 << 31);
5627 E1000_WRITE_REG(hw, E1000_TXCW, txcw);
5628
5629 /*
5630 * Write 0x410 to Serdes Control register
5631 * to enable Serdes analog loopback
5632 */
5633 E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
5634 msec_delay(10);
5635 break;
5636 default:
5637 break;
5638 }
5639 break;
5640 case e1000_82574:
5641 case e1000_80003es2lan:
5642 case e1000_ich9lan:
5643 case e1000_ich10lan:
5644 (void) e1000_read_phy_reg(hw, GG82563_REG(6, 16), &phydata);
5645 (void) e1000_write_phy_reg(hw, GG82563_REG(6, 16),
5646 phydata | (1 << 5));
5647 Adapter->param_adv_autoneg = 1;
5648 Adapter->param_adv_1000fdx = 1;
5649 (void) e1000g_reset_link(Adapter);
5650 break;
5651 }
5652 }
5653
5654 static void
5655 e1000g_set_external_loopback_100(struct e1000g *Adapter)
5656 {
5657 struct e1000_hw *hw;
5658 uint32_t ctrl;
5659 uint16_t phy_ctrl;
5660
5661 hw = &Adapter->shared;
5662
5663 /* Disable Smart Power Down */
5664 phy_spd_state(hw, B_FALSE);
5665
5666 phy_ctrl = (MII_CR_FULL_DUPLEX |
5667 MII_CR_SPEED_100);
5668
5669 /* Force 100/FD, reset PHY */
5670 (void) e1000_write_phy_reg(hw, PHY_CONTROL,
5671 phy_ctrl | MII_CR_RESET); /* 0xA100 */
5672 msec_delay(10);
5673
5674 /* Force 100/FD */
5675 (void) e1000_write_phy_reg(hw, PHY_CONTROL,
5676 phy_ctrl); /* 0x2100 */
5677 msec_delay(10);
5678
5679 /* Now setup the MAC to the same speed/duplex as the PHY. */
5680 ctrl = E1000_READ_REG(hw, E1000_CTRL);
5681 ctrl &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
5682 ctrl |= (E1000_CTRL_SLU | /* Force Link Up */
5683 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
5684 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
5685 E1000_CTRL_SPD_100 | /* Force Speed to 100 */
5686 E1000_CTRL_FD); /* Force Duplex to FULL */
5687
5688 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5689 }
5690
5691 static void
5692 e1000g_set_external_loopback_10(struct e1000g *Adapter)
5693 {
5694 struct e1000_hw *hw;
5695 uint32_t ctrl;
5696 uint16_t phy_ctrl;
5697
5698 hw = &Adapter->shared;
5699
5700 /* Disable Smart Power Down */
5701 phy_spd_state(hw, B_FALSE);
5702
5703 phy_ctrl = (MII_CR_FULL_DUPLEX |
5704 MII_CR_SPEED_10);
5705
5706 /* Force 10/FD, reset PHY */
5707 (void) e1000_write_phy_reg(hw, PHY_CONTROL,
5708 phy_ctrl | MII_CR_RESET); /* 0x8100 */
5709 msec_delay(10);
5710
5711 /* Force 10/FD */
5712 (void) e1000_write_phy_reg(hw, PHY_CONTROL,
5713 phy_ctrl); /* 0x0100 */
5714 msec_delay(10);
5715
5716 /* Now setup the MAC to the same speed/duplex as the PHY. */
5717 ctrl = E1000_READ_REG(hw, E1000_CTRL);
5718 ctrl &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
5719 ctrl |= (E1000_CTRL_SLU | /* Force Link Up */
5720 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
5721 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
5722 E1000_CTRL_SPD_10 | /* Force Speed to 10 */
5723 E1000_CTRL_FD); /* Force Duplex to FULL */
5724
5725 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5726 }
5727
5728 #ifdef __sparc
5729 static boolean_t
5730 e1000g_find_mac_address(struct e1000g *Adapter)
5731 {
5732 struct e1000_hw *hw = &Adapter->shared;
5733 uchar_t *bytes;
5734 struct ether_addr sysaddr;
5735 uint_t nelts;
5736 int err;
5737 boolean_t found = B_FALSE;
5738
5739 /*
5740 * The "vendor's factory-set address" may already have
5741 * been extracted from the chip, but if the property
5742 * "local-mac-address" is set we use that instead.
5743 *
5744 * We check whether it looks like an array of 6
5745 * bytes (which it should, if OBP set it). If we can't
5746 * make sense of it this way, we'll ignore it.
5747 */
5748 err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
5749 DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
5750 if (err == DDI_PROP_SUCCESS) {
5751 if (nelts == ETHERADDRL) {
5752 while (nelts--)
5753 hw->mac.addr[nelts] = bytes[nelts];
5754 found = B_TRUE;
5755 }
5756 ddi_prop_free(bytes);
5757 }
5758
5759 /*
5760 * Look up the OBP property "local-mac-address?". If the user has set
5761 * 'local-mac-address? = false', use "the system address" instead.
5762 */
5763 if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip, 0,
5764 "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
5765 if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
5766 if (localetheraddr(NULL, &sysaddr) != 0) {
5767 bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
5768 found = B_TRUE;
5769 }
5770 }
5771 ddi_prop_free(bytes);
5772 }
5773
5774 /*
5775 * Finally(!), if there's a valid "mac-address" property (created
5776 * if we netbooted from this interface), we must use this instead
5777 * of any of the above to ensure that the NFS/install server doesn't
5778 * get confused by the address changing as Solaris takes over!
5779 */
5780 err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
5781 DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
5782 if (err == DDI_PROP_SUCCESS) {
5783 if (nelts == ETHERADDRL) {
5784 while (nelts--)
5785 hw->mac.addr[nelts] = bytes[nelts];
5786 found = B_TRUE;
5787 }
5788 ddi_prop_free(bytes);
5789 }
5790
5791 if (found) {
5792 bcopy(hw->mac.addr, hw->mac.perm_addr,
5793 ETHERADDRL);
5794 }
5795
5796 return (found);
5797 }
5798 #endif
5799
5800 static int
5801 e1000g_add_intrs(struct e1000g *Adapter)
5802 {
5803 dev_info_t *devinfo;
5804 int intr_types;
5805 int rc;
5806
5807 devinfo = Adapter->dip;
5808
5809 /* Get supported interrupt types */
5810 rc = ddi_intr_get_supported_types(devinfo, &intr_types);
5811
5812 if (rc != DDI_SUCCESS) {
5813 E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5814 "Get supported interrupt types failed: %d\n", rc);
5815 return (DDI_FAILURE);
5816 }
5817
5818 /*
5819 * Based on Intel Technical Advisory document (TA-160), there are some
5820 * cases where some older Intel PCI-X NICs may "advertise" to the OS
5821 * that it supports MSI, but in fact has problems.
5822 * So we should only enable MSI for PCI-E NICs and disable MSI for old
5823 * PCI/PCI-X NICs.
5824 */
5825 if (Adapter->shared.mac.type < e1000_82571)
5826 Adapter->msi_enable = B_FALSE;
5827
5828 if ((intr_types & DDI_INTR_TYPE_MSI) && Adapter->msi_enable) {
5829 rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_MSI);
5830
5831 if (rc != DDI_SUCCESS) {
5832 /* EMPTY */
5833 E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5834 "Add MSI failed, trying Legacy interrupts\n");
5835 } else {
5836 Adapter->intr_type = DDI_INTR_TYPE_MSI;
5837 }
5838 }
5839
5840 if ((Adapter->intr_type == 0) &&
5841 (intr_types & DDI_INTR_TYPE_FIXED)) {
5842 rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_FIXED);
5843
5844 if (rc != DDI_SUCCESS) {
5845 E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5846 "Add Legacy interrupts failed\n");
5847 return (DDI_FAILURE);
5848 }
5849
5850 Adapter->intr_type = DDI_INTR_TYPE_FIXED;
5851 }
5852
5853 if (Adapter->intr_type == 0) {
5854 E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5855 "No interrupts registered\n");
5856 return (DDI_FAILURE);
5857 }
5858
5859 return (DDI_SUCCESS);
5860 }
5861
5862 /*
5863 * e1000g_intr_add() handles MSI/Legacy interrupts
5864 */
5865 static int
5866 e1000g_intr_add(struct e1000g *Adapter, int intr_type)
5867 {
5868 dev_info_t *devinfo;
5869 int count, avail, actual;
5870 int x, y, rc, inum = 0;
5871 int flag;
5872 ddi_intr_handler_t *intr_handler;
5873
5874 devinfo = Adapter->dip;
5875
5876 /* get number of interrupts */
5877 rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
5878 if ((rc != DDI_SUCCESS) || (count == 0)) {
5879 E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5880 "Get interrupt number failed. Return: %d, count: %d\n",
5881 rc, count);
5882 return (DDI_FAILURE);
5883 }
5884
5885 /* get number of available interrupts */
5886 rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
5887 if ((rc != DDI_SUCCESS) || (avail == 0)) {
5888 E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5889 "Get interrupt available number failed. "
5890 "Return: %d, available: %d\n", rc, avail);
5891 return (DDI_FAILURE);
5892 }
5893
5894 if (avail < count) {
5895 /* EMPTY */
5896 E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5897 "Interrupts count: %d, available: %d\n",
5898 count, avail);
5899 }
5900
5901 /* Allocate an array of interrupt handles */
5902 Adapter->intr_size = count * sizeof (ddi_intr_handle_t);
5903 Adapter->htable = kmem_alloc(Adapter->intr_size, KM_SLEEP);
5904
5905 /* Set NORMAL behavior for both MSI and FIXED interrupt */
5906 flag = DDI_INTR_ALLOC_NORMAL;
5907
5908 /* call ddi_intr_alloc() */
5909 rc = ddi_intr_alloc(devinfo, Adapter->htable, intr_type, inum,
5910 count, &actual, flag);
5911
5912 if ((rc != DDI_SUCCESS) || (actual == 0)) {
5913 E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5914 "Allocate interrupts failed: %d\n", rc);
5915
5916 kmem_free(Adapter->htable, Adapter->intr_size);
5917 return (DDI_FAILURE);
5918 }
5919
5920 if (actual < count) {
5921 /* EMPTY */
5922 E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5923 "Interrupts requested: %d, received: %d\n",
5924 count, actual);
5925 }
5926
5927 Adapter->intr_cnt = actual;
5928
5929 /* Get priority for first msi, assume remaining are all the same */
5930 rc = ddi_intr_get_pri(Adapter->htable[0], &Adapter->intr_pri);
5931
5932 if (rc != DDI_SUCCESS) {
5933 E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5934 "Get interrupt priority failed: %d\n", rc);
5935
5936 /* Free already allocated intr */
5937 for (y = 0; y < actual; y++)
5938 (void) ddi_intr_free(Adapter->htable[y]);
5939
5940 kmem_free(Adapter->htable, Adapter->intr_size);
5941 return (DDI_FAILURE);
5942 }
5943
5944 /*
5945 * In Legacy Interrupt mode, for PCI-Express adapters, we should
5946 * use the interrupt service routine e1000g_intr_pciexpress()
5947 * to avoid interrupt stealing when sharing interrupt with other
5948 * devices.
5949 */
5950 if (Adapter->shared.mac.type < e1000_82571)
5951 intr_handler = (ddi_intr_handler_t *)e1000g_intr;
5952 else
5953 intr_handler = (ddi_intr_handler_t *)e1000g_intr_pciexpress;
5954
5955 /* Call ddi_intr_add_handler() */
5956 for (x = 0; x < actual; x++) {
5957 rc = ddi_intr_add_handler(Adapter->htable[x],
5958 intr_handler, (caddr_t)Adapter, NULL);
5959
5960 if (rc != DDI_SUCCESS) {
5961 E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5962 "Add interrupt handler failed: %d\n", rc);
5963
5964 /* Remove already added handler */
5965 for (y = 0; y < x; y++)
5966 (void) ddi_intr_remove_handler(
5967 Adapter->htable[y]);
5968
5969 /* Free already allocated intr */
5970 for (y = 0; y < actual; y++)
5971 (void) ddi_intr_free(Adapter->htable[y]);
5972
5973 kmem_free(Adapter->htable, Adapter->intr_size);
5974 return (DDI_FAILURE);
5975 }
5976 }
5977
5978 rc = ddi_intr_get_cap(Adapter->htable[0], &Adapter->intr_cap);
5979
5980 if (rc != DDI_SUCCESS) {
5981 E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5982 "Get interrupt cap failed: %d\n", rc);
5983
5984 /* Free already allocated intr */
5985 for (y = 0; y < actual; y++) {
5986 (void) ddi_intr_remove_handler(Adapter->htable[y]);
5987 (void) ddi_intr_free(Adapter->htable[y]);
5988 }
5989
5990 kmem_free(Adapter->htable, Adapter->intr_size);
5991 return (DDI_FAILURE);
5992 }
5993
5994 return (DDI_SUCCESS);
5995 }
5996
5997 static int
5998 e1000g_rem_intrs(struct e1000g *Adapter)
5999 {
6000 int x;
6001 int rc;
6002
6003 for (x = 0; x < Adapter->intr_cnt; x++) {
6004 rc = ddi_intr_remove_handler(Adapter->htable[x]);
6005 if (rc != DDI_SUCCESS) {
6006 E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6007 "Remove intr handler failed: %d\n", rc);
6008 return (DDI_FAILURE);
6009 }
6010
6011 rc = ddi_intr_free(Adapter->htable[x]);
6012 if (rc != DDI_SUCCESS) {
6013 E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6014 "Free intr failed: %d\n", rc);
6015 return (DDI_FAILURE);
6016 }
6017 }
6018
6019 kmem_free(Adapter->htable, Adapter->intr_size);
6020
6021 return (DDI_SUCCESS);
6022 }
6023
6024 static int
6025 e1000g_enable_intrs(struct e1000g *Adapter)
6026 {
6027 int x;
6028 int rc;
6029
6030 /* Enable interrupts */
6031 if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
6032 /* Call ddi_intr_block_enable() for MSI */
6033 rc = ddi_intr_block_enable(Adapter->htable,
6034 Adapter->intr_cnt);
6035 if (rc != DDI_SUCCESS) {
6036 E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6037 "Enable block intr failed: %d\n", rc);
6038 return (DDI_FAILURE);
6039 }
6040 } else {
6041 /* Call ddi_intr_enable() for Legacy/MSI non block enable */
6042 for (x = 0; x < Adapter->intr_cnt; x++) {
6043 rc = ddi_intr_enable(Adapter->htable[x]);
6044 if (rc != DDI_SUCCESS) {
6045 E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6046 "Enable intr failed: %d\n", rc);
6047 return (DDI_FAILURE);
6048 }
6049 }
6050 }
6051
6052 return (DDI_SUCCESS);
6053 }
6054
6055 static int
6056 e1000g_disable_intrs(struct e1000g *Adapter)
6057 {
6058 int x;
6059 int rc;
6060
6061 /* Disable all interrupts */
6062 if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
6063 rc = ddi_intr_block_disable(Adapter->htable,
6064 Adapter->intr_cnt);
6065 if (rc != DDI_SUCCESS) {
6066 E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6067 "Disable block intr failed: %d\n", rc);
6068 return (DDI_FAILURE);
6069 }
6070 } else {
6071 for (x = 0; x < Adapter->intr_cnt; x++) {
6072 rc = ddi_intr_disable(Adapter->htable[x]);
6073 if (rc != DDI_SUCCESS) {
6074 E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6075 "Disable intr failed: %d\n", rc);
6076 return (DDI_FAILURE);
6077 }
6078 }
6079 }
6080
6081 return (DDI_SUCCESS);
6082 }
6083
6084 /*
6085 * e1000g_get_phy_state - get the state of PHY registers, save in the adapter
6086 */
6087 static void
6088 e1000g_get_phy_state(struct e1000g *Adapter)
6089 {
6090 struct e1000_hw *hw = &Adapter->shared;
6091
6092 if (hw->phy.media_type == e1000_media_type_copper) {
6093 (void) e1000_read_phy_reg(hw, PHY_CONTROL, &Adapter->phy_ctrl);
6094 (void) e1000_read_phy_reg(hw, PHY_STATUS, &Adapter->phy_status);
6095 (void) e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
6096 &Adapter->phy_an_adv);
6097 (void) e1000_read_phy_reg(hw, PHY_AUTONEG_EXP,
6098 &Adapter->phy_an_exp);
6099 (void) e1000_read_phy_reg(hw, PHY_EXT_STATUS,
6100 &Adapter->phy_ext_status);
6101 (void) e1000_read_phy_reg(hw, PHY_1000T_CTRL,
6102 &Adapter->phy_1000t_ctrl);
6103 (void) e1000_read_phy_reg(hw, PHY_1000T_STATUS,
6104 &Adapter->phy_1000t_status);
6105 (void) e1000_read_phy_reg(hw, PHY_LP_ABILITY,
6106 &Adapter->phy_lp_able);
6107
6108 Adapter->param_autoneg_cap =
6109 (Adapter->phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0;
6110 Adapter->param_pause_cap =
6111 (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
6112 Adapter->param_asym_pause_cap =
6113 (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
6114 Adapter->param_1000fdx_cap =
6115 ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
6116 (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
6117 Adapter->param_1000hdx_cap =
6118 ((Adapter->phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
6119 (Adapter->phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
6120 Adapter->param_100t4_cap =
6121 (Adapter->phy_status & MII_SR_100T4_CAPS) ? 1 : 0;
6122 Adapter->param_100fdx_cap =
6123 ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
6124 (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
6125 Adapter->param_100hdx_cap =
6126 ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
6127 (Adapter->phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
6128 Adapter->param_10fdx_cap =
6129 (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
6130 Adapter->param_10hdx_cap =
6131 (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
6132
6133 Adapter->param_adv_autoneg = hw->mac.autoneg;
6134 Adapter->param_adv_pause =
6135 (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
6136 Adapter->param_adv_asym_pause =
6137 (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
6138 Adapter->param_adv_1000hdx =
6139 (Adapter->phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0;
6140 Adapter->param_adv_100t4 =
6141 (Adapter->phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0;
6142 if (Adapter->param_adv_autoneg == 1) {
6143 Adapter->param_adv_1000fdx =
6144 (Adapter->phy_1000t_ctrl & CR_1000T_FD_CAPS)
6145 ? 1 : 0;
6146 Adapter->param_adv_100fdx =
6147 (Adapter->phy_an_adv & NWAY_AR_100TX_FD_CAPS)
6148 ? 1 : 0;
6149 Adapter->param_adv_100hdx =
6150 (Adapter->phy_an_adv & NWAY_AR_100TX_HD_CAPS)
6151 ? 1 : 0;
6152 Adapter->param_adv_10fdx =
6153 (Adapter->phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
6154 Adapter->param_adv_10hdx =
6155 (Adapter->phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
6156 }
6157
6158 Adapter->param_lp_autoneg =
6159 (Adapter->phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
6160 Adapter->param_lp_pause =
6161 (Adapter->phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0;
6162 Adapter->param_lp_asym_pause =
6163 (Adapter->phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0;
6164 Adapter->param_lp_1000fdx =
6165 (Adapter->phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0;
6166 Adapter->param_lp_1000hdx =
6167 (Adapter->phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0;
6168 Adapter->param_lp_100t4 =
6169 (Adapter->phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0;
6170 Adapter->param_lp_100fdx =
6171 (Adapter->phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
6172 Adapter->param_lp_100hdx =
6173 (Adapter->phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
6174 Adapter->param_lp_10fdx =
6175 (Adapter->phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
6176 Adapter->param_lp_10hdx =
6177 (Adapter->phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
6178 } else {
6179 /*
6180 * 1Gig Fiber adapter only offers 1Gig Full Duplex. Meaning,
6181 * it can only work with 1Gig Full Duplex Link Partner.
6182 */
6183 Adapter->param_autoneg_cap = 0;
6184 Adapter->param_pause_cap = 1;
6185 Adapter->param_asym_pause_cap = 1;
6186 Adapter->param_1000fdx_cap = 1;
6187 Adapter->param_1000hdx_cap = 0;
6188 Adapter->param_100t4_cap = 0;
6189 Adapter->param_100fdx_cap = 0;
6190 Adapter->param_100hdx_cap = 0;
6191 Adapter->param_10fdx_cap = 0;
6192 Adapter->param_10hdx_cap = 0;
6193
6194 Adapter->param_adv_autoneg = 0;
6195 Adapter->param_adv_pause = 1;
6196 Adapter->param_adv_asym_pause = 1;
6197 Adapter->param_adv_1000fdx = 1;
6198 Adapter->param_adv_1000hdx = 0;
6199 Adapter->param_adv_100t4 = 0;
6200 Adapter->param_adv_100fdx = 0;
6201 Adapter->param_adv_100hdx = 0;
6202 Adapter->param_adv_10fdx = 0;
6203 Adapter->param_adv_10hdx = 0;
6204
6205 Adapter->param_lp_autoneg = 0;
6206 Adapter->param_lp_pause = 0;
6207 Adapter->param_lp_asym_pause = 0;
6208 Adapter->param_lp_1000fdx = 0;
6209 Adapter->param_lp_1000hdx = 0;
6210 Adapter->param_lp_100t4 = 0;
6211 Adapter->param_lp_100fdx = 0;
6212 Adapter->param_lp_100hdx = 0;
6213 Adapter->param_lp_10fdx = 0;
6214 Adapter->param_lp_10hdx = 0;
6215 }
6216 }
6217
6218 /*
6219 * FMA support
6220 */
6221
6222 int
6223 e1000g_check_acc_handle(ddi_acc_handle_t handle)
6224 {
6225 ddi_fm_error_t de;
6226
6227 ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
6228 ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
6229 return (de.fme_status);
6230 }
6231
6232 int
6233 e1000g_check_dma_handle(ddi_dma_handle_t handle)
6234 {
6235 ddi_fm_error_t de;
6236
6237 ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
6238 return (de.fme_status);
6239 }
6240
6241 /*
6242 * The IO fault service error handling callback function
6243 */
6244 /* ARGSUSED2 */
6245 static int
6246 e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
6247 {
6248 /*
6249 * as the driver can always deal with an error in any dma or
6250 * access handle, we can just return the fme_status value.
6251 */
6252 pci_ereport_post(dip, err, NULL);
6253 return (err->fme_status);
6254 }
6255
6256 static void
6257 e1000g_fm_init(struct e1000g *Adapter)
6258 {
6259 ddi_iblock_cookie_t iblk;
6260 int fma_dma_flag;
6261
6262 /* Only register with IO Fault Services if we have some capability */
6263 if (Adapter->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
6264 e1000g_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
6265 } else {
6266 e1000g_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
6267 }
6268
6269 if (Adapter->fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
6270 fma_dma_flag = 1;
6271 } else {
6272 fma_dma_flag = 0;
6273 }
6274
6275 (void) e1000g_set_fma_flags(fma_dma_flag);
6276
6277 if (Adapter->fm_capabilities) {
6278
6279 /* Register capabilities with IO Fault Services */
6280 ddi_fm_init(Adapter->dip, &Adapter->fm_capabilities, &iblk);
6281
6282 /*
6283 * Initialize pci ereport capabilities if ereport capable
6284 */
6285 if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
6286 DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6287 pci_ereport_setup(Adapter->dip);
6288
6289 /*
6290 * Register error callback if error callback capable
6291 */
6292 if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6293 ddi_fm_handler_register(Adapter->dip,
6294 e1000g_fm_error_cb, (void*) Adapter);
6295 }
6296 }
6297
6298 static void
6299 e1000g_fm_fini(struct e1000g *Adapter)
6300 {
6301 /* Only unregister FMA capabilities if we registered some */
6302 if (Adapter->fm_capabilities) {
6303
6304 /*
6305 * Release any resources allocated by pci_ereport_setup()
6306 */
6307 if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
6308 DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6309 pci_ereport_teardown(Adapter->dip);
6310
6311 /*
6312 * Un-register error callback if error callback capable
6313 */
6314 if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6315 ddi_fm_handler_unregister(Adapter->dip);
6316
6317 /* Unregister from IO Fault Services */
6318 mutex_enter(&e1000g_rx_detach_lock);
6319 ddi_fm_fini(Adapter->dip);
6320 if (Adapter->priv_dip != NULL) {
6321 DEVI(Adapter->priv_dip)->devi_fmhdl = NULL;
6322 }
6323 mutex_exit(&e1000g_rx_detach_lock);
6324 }
6325 }
6326
6327 void
6328 e1000g_fm_ereport(struct e1000g *Adapter, char *detail)
6329 {
6330 uint64_t ena;
6331 char buf[FM_MAX_CLASS];
6332
6333 (void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
6334 ena = fm_ena_generate(0, FM_ENA_FMT1);
6335 if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities)) {
6336 ddi_fm_ereport_post(Adapter->dip, buf, ena, DDI_NOSLEEP,
6337 FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
6338 }
6339 }
6340
6341 /*
6342 * quiesce(9E) entry point.
6343 *
6344 * This function is called when the system is single-threaded at high
6345 * PIL with preemption disabled. Therefore, this function must not be
6346 * blocked.
6347 *
6348 * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
6349 * DDI_FAILURE indicates an error condition and should almost never happen.
6350 */
6351 static int
6352 e1000g_quiesce(dev_info_t *devinfo)
6353 {
6354 struct e1000g *Adapter;
6355
6356 Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
6357
6358 if (Adapter == NULL)
6359 return (DDI_FAILURE);
6360
6361 e1000g_clear_all_interrupts(Adapter);
6362
6363 (void) e1000_reset_hw(&Adapter->shared);
6364
6365 /* Setup our HW Tx Head & Tail descriptor pointers */
6366 E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
6367 E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
6368
6369 /* Setup our HW Rx Head & Tail descriptor pointers */
6370 E1000_WRITE_REG(&Adapter->shared, E1000_RDH(0), 0);
6371 E1000_WRITE_REG(&Adapter->shared, E1000_RDT(0), 0);
6372
6373 return (DDI_SUCCESS);
6374 }
6375
6376 /*
6377 * synchronize the adv* and en* parameters.
6378 *
6379 * See comments in <sys/dld.h> for details of the *_en_*
6380 * parameters. The usage of ndd for setting adv parameters will
6381 * synchronize all the en parameters with the e1000g parameters,
6382 * implicitly disabling any settings made via dladm.
6383 */
6384 static void
6385 e1000g_param_sync(struct e1000g *Adapter)
6386 {
6387 Adapter->param_en_1000fdx = Adapter->param_adv_1000fdx;
6388 Adapter->param_en_1000hdx = Adapter->param_adv_1000hdx;
6389 Adapter->param_en_100fdx = Adapter->param_adv_100fdx;
6390 Adapter->param_en_100hdx = Adapter->param_adv_100hdx;
6391 Adapter->param_en_10fdx = Adapter->param_adv_10fdx;
6392 Adapter->param_en_10hdx = Adapter->param_adv_10hdx;
6393 }
6394
6395 /*
6396 * e1000g_get_driver_control - tell manageability firmware that the driver
6397 * has control.
6398 */
6399 static void
6400 e1000g_get_driver_control(struct e1000_hw *hw)
6401 {
6402 uint32_t ctrl_ext;
6403 uint32_t swsm;
6404
6405 /* tell manageability firmware the driver has taken over */
6406 switch (hw->mac.type) {
6407 case e1000_82573:
6408 swsm = E1000_READ_REG(hw, E1000_SWSM);
6409 E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
6410 break;
6411 case e1000_82571:
6412 case e1000_82572:
6413 case e1000_82574:
6414 case e1000_80003es2lan:
6415 case e1000_ich8lan:
6416 case e1000_ich9lan:
6417 case e1000_ich10lan:
6418 case e1000_pchlan:
6419 case e1000_pch2lan:
6420 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
6421 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
6422 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
6423 break;
6424 default:
6425 /* no manageability firmware: do nothing */
6426 break;
6427 }
6428 }
6429
6430 /*
6431 * e1000g_release_driver_control - tell manageability firmware that the driver
6432 * has released control.
6433 */
6434 static void
6435 e1000g_release_driver_control(struct e1000_hw *hw)
6436 {
6437 uint32_t ctrl_ext;
6438 uint32_t swsm;
6439
6440 /* tell manageability firmware the driver has released control */
6441 switch (hw->mac.type) {
6442 case e1000_82573:
6443 swsm = E1000_READ_REG(hw, E1000_SWSM);
6444 E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
6445 break;
6446 case e1000_82571:
6447 case e1000_82572:
6448 case e1000_82574:
6449 case e1000_80003es2lan:
6450 case e1000_ich8lan:
6451 case e1000_ich9lan:
6452 case e1000_ich10lan:
6453 case e1000_pchlan:
6454 case e1000_pch2lan:
6455 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
6456 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
6457 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
6458 break;
6459 default:
6460 /* no manageability firmware: do nothing */
6461 break;
6462 }
6463 }
6464
6465 /*
6466 * Restore e1000g promiscuous mode.
6467 */
6468 static void
6469 e1000g_restore_promisc(struct e1000g *Adapter)
6470 {
6471 if (Adapter->e1000g_promisc) {
6472 uint32_t rctl;
6473
6474 rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
6475 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
6476 E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
6477 }
6478 }
--- EOF ---