
new/usr/src/uts/i86pc/io/apix/apix_utils.c 1

**
 48536 Sat Feb 23 00:30:14 2013
new/usr/src/uts/i86pc/io/apix/apix_utils.c
3426 assertion failed: irq < 16 on VMware hardware version 9 (apix related)
Reviewed by: Albert Lee <trisk@nexenta.com>
Reviewed by: Dan McDonald <danmcd@nexenta.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25 /*
26 * Copyright (c) 2010, Intel Corporation.
27 * All rights reserved.
28 */
29 /*
30 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
31 */

33 #include <sys/processor.h>
34 #include <sys/time.h>
35 #include <sys/psm.h>
36 #include <sys/smp_impldefs.h>
37 #include <sys/cram.h>
38 #include <sys/acpi/acpi.h>
39 #include <sys/acpica.h>
40 #include <sys/psm_common.h>
41 #include <sys/pit.h>
42 #include <sys/ddi.h>
43 #include <sys/sunddi.h>
44 #include <sys/ddi_impldefs.h>
45 #include <sys/pci.h>
46 #include <sys/promif.h>
47 #include <sys/x86_archext.h>
48 #include <sys/cpc_impl.h>
49 #include <sys/uadmin.h>
50 #include <sys/panic.h>
51 #include <sys/debug.h>
52 #include <sys/archsystm.h>
53 #include <sys/trap.h>
54 #include <sys/machsystm.h>
55 #include <sys/sysmacros.h>
56 #include <sys/cpuvar.h>
57 #include <sys/rm_platter.h>
58 #include <sys/privregs.h>
59 #include <sys/note.h>

new/usr/src/uts/i86pc/io/apix/apix_utils.c 2

60 #include <sys/pci_intr_lib.h>
61 #include <sys/spl.h>
62 #include <sys/clock.h>
63 #include <sys/dditypes.h>
64 #include <sys/sunddi.h>
65 #include <sys/x_call.h>
66 #include <sys/reboot.h>
67 #include <sys/apix.h>

69 static int apix_get_avail_vector_oncpu(uint32_t, int, int);
70 static apix_vector_t *apix_init_vector(processorid_t, uchar_t);
71 static void apix_cleanup_vector(apix_vector_t *);
72 static void apix_insert_av(apix_vector_t *, void *, avfunc, caddr_t, caddr_t,
73 uint64_t *, int, dev_info_t *);
74 static void apix_remove_av(apix_vector_t *, struct autovec *);
75 static void apix_clear_dev_map(dev_info_t *, int, int);
76 static boolean_t apix_is_cpu_enabled(processorid_t);
77 static void apix_wait_till_seen(processorid_t, int);

79 #define GET_INTR_INUM(ihdlp) \
80 (((ihdlp) != NULL) ? ((ddi_intr_handle_impl_t *)(ihdlp))->ih_inum : 0)

82 apix_rebind_info_t apix_rebindinfo = {0, 0, 0, NULL, 0, NULL};

84 /*
85 * Allocate IPI
86 *
87 * Return vector number or 0 on error
88 */
89 uchar_t
90 apix_alloc_ipi(int ipl)
91 {
92 apix_vector_t *vecp;
93 uchar_t vector;
94 int cpun;
95 int nproc;

97 APIX_ENTER_CPU_LOCK(0);

99 vector = apix_get_avail_vector_oncpu(0, APIX_IPI_MIN, APIX_IPI_MAX);
100 if (vector == 0) {
101 APIX_LEAVE_CPU_LOCK(0);
102 cmn_err(CE_WARN, "apix: no available IPI\n");
103 apic_error |= APIC_ERR_GET_IPIVECT_FAIL;
104 return (0);
105 }

107 nproc = max(apic_nproc, apic_max_nproc);
108 for (cpun = 0; cpun < nproc; cpun++) {
109 vecp = xv_vector(cpun, vector);
110 if (vecp == NULL) {
111 vecp = kmem_zalloc(sizeof (apix_vector_t), KM_NOSLEEP);
112 if (vecp == NULL) {
113 cmn_err(CE_WARN, "apix: No memory for ipi");
114 goto fail;
115 }
116 xv_vector(cpun, vector) = vecp;
117 }
118 vecp->v_state = APIX_STATE_ALLOCED;
119 vecp->v_type = APIX_TYPE_IPI;
120 vecp->v_cpuid = vecp->v_bound_cpuid = cpun;
121 vecp->v_vector = vector;
122 vecp->v_pri = ipl;
123 }
124 APIX_LEAVE_CPU_LOCK(0);
125 return (vector);

new/usr/src/uts/i86pc/io/apix/apix_utils.c 3

127 fail:
128 while (--cpun >= 0)
129 apix_cleanup_vector(xv_vector(cpun, vector));
130 APIX_LEAVE_CPU_LOCK(0);
131 return (0);
132 }

______unchanged_portion_omitted_

1819 /*
1820 * For interrupts which call add_avintr() before apic is initialized.
1821 * ioapix_setup_intr() will
1822 * - allocate vector
1823 * - copy over ISR
1824 */
1825 static void
1826 ioapix_setup_intr(int irqno, iflag_t *flagp)
1827 {
1828 extern struct av_head autovect[];
1829 apix_vector_t *vecp;
1830 apic_irq_t *irqp;
1831 uchar_t ioapicindex, ipin;
1832 ulong_t iflag;
1833 struct autovec *avp;

1832 irqp = apic_irq_table[irqno];
1835 ioapicindex = acpi_find_ioapic(irqno);
1836 ASSERT(ioapicindex != 0xFF);
1837 ipin = irqno - apic_io_vectbase[ioapicindex];

1839 mutex_enter(&airq_mutex);
1840 irqp = apic_irq_table[irqno];

1842 /*
1843 * The irq table entry should not exist unless the interrupts are shared
1844 * In that case, make sure it matches what we would initialize it to.
1845 */
1846 if (irqp != NULL) {
1847 ASSERT(irqp->airq_mps_intr_index == ACPI_INDEX);
1837 if ((irqp != NULL) && (irqp->airq_mps_intr_index == ACPI_INDEX)) {
1848 ASSERT(irqp->airq_intin_no == ipin &&
1849 irqp->airq_ioapicindex == ioapicindex);
1850 vecp = xv_vector(irqp->airq_cpu, irqp->airq_vector);
1851 ASSERT(!IS_VECT_FREE(vecp));
1852 mutex_exit(&airq_mutex);
1853 } else {
1854 irqp = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP);
1843 vecp = apix_alloc_intx(NULL, 0, irqno);

1856 irqp->airq_cpu = IRQ_UNINIT;
1857 irqp->airq_origirq = (uchar_t)irqno;
1845 irqp = apic_irq_table[irqno];
1858 irqp->airq_mps_intr_index = ACPI_INDEX;
1859 irqp->airq_ioapicindex = ioapicindex;
1860 irqp->airq_intin_no = ipin;
1861 irqp->airq_iflag = *flagp;
1862 irqp->airq_share++;

1864 apic_irq_table[irqno] = irqp;
1865 mutex_exit(&airq_mutex);

1867 vecp = apix_alloc_intx(NULL, 0, irqno);
1851 apic_record_rdt_entry(irqp, irqno);
1868 }

1870 /* copy over autovect */

new/usr/src/uts/i86pc/io/apix/apix_utils.c 4

1871 for (avp = autovect[irqno].avh_link; avp; avp = avp->av_link)
1872 apix_insert_av(vecp, avp->av_intr_id, avp->av_vector,
1873 avp->av_intarg1, avp->av_intarg2, avp->av_ticksp,
1874 avp->av_prilevel, avp->av_dip);

1876 /* Program I/O APIC */
1877 iflag = intr_clear();
1878 lock_set(&apix_lock);

1880 (void) apix_setup_io_intr(vecp);

1882 lock_clear(&apix_lock);
1883 intr_restore(iflag);

1885 APIC_VERBOSE_IOAPIC((CE_CONT, "apix: setup ioapic, irqno %x "
1886 "(ioapic %x, ipin %x) is bound to cpu %x, vector %x\n",
1887 irqno, ioapicindex, ipin, irqp->airq_cpu, irqp->airq_vector));
1888 }
______unchanged_portion_omitted_

