new usr/src/uts/i86pc/iolapix/apix_utils.c

R R R R

48536 Sat Feb 23 00:30: 14 2013
new usr/src/uts/i86pc/iolapix/apix_utils.c
3426 assertion failed: irq < 16 on VMware hardware version 9 (apix rel ated)
Revi ewed by: Al bert Lee <trisk@exenta.con>
Revi ewed by: Dan MDonal d <danntd@exent a. con»
IR EEEEEEEEEEE SRS RS RS SRS RS R R RS E R R REEEEREEEEEEEEEEESESESESE]
1/*
* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing

* See the License for the specific |anguage governing perm ssions

* and limtations under the License
*
*
*
*
*
*
*
*
*

When distributing Covered Code, include this CDDL HEADER i n each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE

| f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

NRERRRERRRR R
COONOUITAWNROW©O~NOUTSWN

23 * Copyright (c) 2010, O acle and/or its affiliates. Al rights reserved
*
/

25 /| *
* Copyright (c) 2010, Intel Corporation

27 * Al rights reserved

*

/

29 /*
* Copyright 2013 Nexenta Systens, Inc. Al rights reserved

*/

33 #include <sys/processor. h>
34 #include <sys/tinme. h>

35 #include <sys/psm h>

36 #i nclude <sys/snp_inpl defs. h>
37 #include <sys/cram h>

38 #include <sys/acpi/acpi.h>
39 #include <sys/acpi ca. h>

40 #i ncl ude <sys/psm common. h>
41 #include <sys/pit.h>

42 #include <sys/ddi.h>

43 #incl ude <sys/sunddi . h>

44 #incl ude <sys/ddi _i npl defs. h>
45 #incl ude <sys/pci.h>

46 #include <sys/prom f.h>

47 #include <sys/x86_archext. h>
48 #i ncl ude <sys/cpc_inpl.h>

49 #i ncl ude <sys/uadm n. h>

50 #i ncl ude <sys/panic. h>

51 #i ncl ude <sys/debug. h>

52 #include <sys/archsystm h>
53 #include <sys/trap. h>

54 #include <sys/machsystm h>
55 #include <sys/sysnmacros. h>
56 #incl ude <sys/cpuvar. h>

57 #include <sys/rmplatter.h>
58 #include <sys/privregs. h>

59 #include <sys/note. h>

new usr/src/uts/i86pc/iolapix/apix_utils.c

105

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

#
#
#
#
#
#
#i
#i

ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude

<sys/pci_intr_lib.h>
<sys/spl . h>
<sys/ cl ock. h>
<sys/dditypes. h>
<sys/sunddi . h>
<sys/x_call . h>
<sys/reboot. h>
<sys/ api x. h>

static int apix_get_avail _vector_oncpu(uint32_t, int, int)

static apix_vector_t *apix_init_vector(processorid_t, uchar_t)

static void api x_cl eanup_vect or (api x_vector _t

static void apix_insert_av(apix_vector_t *, void *, avfunc, caddr_t, caddr_t

ui nt

64_t *, int, dev_info_t *)

static void api x_renove_av(api x_vector_t *, struct autovec *)
static void apix_clear_dev_map(dev_info_t *, int, int)

static bool ean_t api x_i s_cpu_enabl ed(processorid_t)
static void apix_wait_till_seen(processorid_t, int)

#define GET_I NTR_I NUM i hdl p)
(«

\
(Thdl p) !'= NULL) ? ((ddi_intr_handle_inpl _t *)(ihdlp))->ih_inum: 0)

api x_rebind_info_t apix_rebindinfo = {0, 0, 0, NULL, 0, NULL};

| *

* Allocate IP
*

*

Ret ur

*/
uchar _t
api x_al loc_ipi (int ipl)

n vector nunber or 0 on error

api x_vector _t *vecp
uchar _t vector;

int cpun;

int nproc;

APl X_ENTER _CPU_LOCK(0) ;

vector = apix_get_avail _vector_oncpu(0, APIX_IPI_MN, APIX_|IPl_MAX);
if (vector == 0)

APl X_LEAVE_CPU_LOCK(0)

crm_err (CE_WARN, "api x: no available IPI\n")

api c_error |= APIC_ERR GET_I PI VECT_FAI L

return (0)

}

nproc = max(api c_nproc, api c_max_nproc)
for (cpun = 0; cpun < nproc; cpun++) {
vecp = xv_vector(cpun, vector);
if (vecp == NULL) {
vecp = knem zal | oc(si zeof (apix_vector_t), KM NOSLEEP)
if (vecp == NULL) {
com_err (CE_WARN, "apix: No nenory for ipi");
goto fail;

Xv_vector (cpun, vector) = vecp

}

vecp->v_state = APl X _STATE_ALLOCED,
vecp->v_type = API X_TYPE | PI;
vecp->v_cpuid = vecp->v_bound_cpuid = cpun
vecp->v_vector = vector;

vecp->v_pri = ipl

}
APl X_LEAVE_CPU_LOCK(0) ;
return (vector)

new usr/src/uts/i86pc/iolapix/apix_utils.c 3

127 fail:
128 while (--cpun >= 0)
129 api x_cl eanup_vect or (xv_vector(cpun, vector));
130 APl X_LEAVE_CPU_LOCK(0) ;
131 return (0);
132 }
__unchanged_portion_omtted_
1819 /*
1820 * For interrupts which call add_avintr() before apic is initialized.
1821 * ioapix_setup_intr() wll
1822 * - allocate vector
1823 * - copy over ISR
1824 */

1825 static void
1826 ioapi x_setup_intr(int irqgno, iflag_t *flagp)
1827 {

1828 extern struct av_head autovect[];

1829 api x_vector_t *vecp;

1830 apic_irqg_t *irgp;

1831 uchar _t 1 oapi ci ndex, ipin;

1832 ulong_t iflag;

1833 struct autovec *avp;

1832 irqp = api c_i rq_table[irqgno];

1835 i oapi ci ndex = acpi _find_i oapi c(irqgno);

1836 ASSERT(i oapi ci ndex ! = OxFF);

1837 ipin =irqgno - apic_io_vect base[l oapi ci ndex] ;

1839 mut ex_ent er (&ai r g_nut ex) ;

1840 irgp = apic_irqg_table[irqgno];

1842 /*

1843 * The irq table entry should not exist unless the interrupts are shared
1844 * In that case, nmake sure it matches what we would initialize it to.
1845 */

1846 if (irgp !'= NULL) {

1847 ASSERT(i rqp->ai rq_nps_i ntr_i ndex == ACPI| _| NDEX) ;
1837 if ((irgp !'= NULL) && (irqp->airq_nps_intr_index == ACPI _INDEX)) {
1848 ASSERT(i rgp->ai rq_i ntin_no ——|p|n&&

1849 i rgp->airq_i oapi ci ndex == i oapi ci ndex);

1850 vecp = xv_vector(irqgp->airqg_cpu, I1rqgp->airqg_vector);
1851 ASSERT(!|'S_VECT_FREE(vecp));

1852 nmut ex_exi t (&ai rq_nut ex) ;

1853 } else {

1854 irgp = knem zal | oc(sizeof (apic_irqg_t), KM SLEEP);
1843 vecp = apix_al loc_intx(NULL, O, irgno);

1856 irgp->airg_cpu = IRQUNINIT;

1857 irgp->airg_origirg = (uchar_t)irqno;

1845 irqp = apic_irq_table[i rqno]

1858 irgqp->airqg_mps_intr_index = ACPI _I NDEX;

1859 i rqp->airq_i oapi ci ndex =_i oapi ci ndex;

1860 irgp->airq_intin_no = ipin;

1861 irqp—>airq|f|ag: *flagp;

1862 irgp->airq_share++

1864 apic_irq_table[irgno] = irgp;

1865 mut ex_exi t (&ai rq_nut ex) ;

1867 vecp = apix_alloc_intx(NULL, 0, irgno);

1851 apic_record_rdt_entry(irqp, irqgno);

1868 }

1870 /* copy over autovect */

new usr/src/uts/i86pc/iolapix/apix_utils.c

1871 for (avp = autovect[irgno].avh_link; avp; avp = avp->av_link)
1872 api x_i nsert_av(vecp, avp->av_intr_id, avp->av_vector,
1873 avp->av_intargl, avp->av_intarg2, avp->av_ticksp,
1874 avp->av_pril evel, avp->av_dip);

1876 /* Program1/0O APIC */

1877 iflag = intr_clear();

1878 | ock_set (&api x_| ock) ;

1880 (void) apix_setup_io_intr(vecp);

1882 | ock_cl ear (&api x_I ock) ;

1883 intr_restore(iflag);

1885 API C VERBOSE_| OAPI C((CE_CONT, "api x: setup ioapic, irgno % "
1886 (|0ap|c %, ipin %) is bound to cpu %, vector %\n",
1887 irqno, ioapicindex, Ipin, irqp->airq_cpu, irqgp->airqg_vector));
1888 }

__unchanged_portion_onitted_

