new usr/src/uts/comon/fs/snbcl nt/snbfs/snbfs_client.c

R R R R

17940 Tue Aug 31 13:02: 02 2010
new usr/src/uts/comon/fs/snbcl nt/snbfs/snbfs_client.c
6879933 Let SMBFS support extensible attributes per. PSARC 2007/ 315

R R R

1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *
19 * CDDL HEADER END
20 */
22 /*
23 * Copyright (c) 2008, 2010, Oacle and/or its affiliates. Al rights reserved.
24 *
25 * Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T.
26 * Al rights reserved.
27 */

29 #incl ude <sys/param h>
30 #include <sys/systm h>
31 #include <sys/thread. h>
32 #include <sys/t_| ock. h>
33 #include <sys/tine. h>

34 #include <sys/vnode. h>
35 #include <sys/vfs.h>

36 #include <sys/errno. h>
37 #include <sys/buf.h>

38 #include <sys/stat.h>

39 #include <sys/cred. h>

40 #i ncl ude <sys/knmem h>

41 #i ncl ude <sys/debug. h>
42 #include <sys/vnsystm h>
43 #include <sys/flock. h>
44 #include <sys/share. h>
45 #incl ude <sys/cm_err. h>
46 #include <sys/tiuser.h>
47 #include <sys/sysnacros. h>
48 #include <sys/callb. h>
49 #include <sys/acl.h>

50 #include <sys/kstat.h>
51 #include <sys/signal.h>
52 #include <sys/list.h>

53 #include <sys/zone. h>

55 #i nclude <netsnb/snb. h>
56 #i nclude <netsnb/snb_conn. h>
57 #include <netsnb/snb_subr. h>

59 #include <snbfs/snbfs. h>
60 #i ncl ude <snbfs/snbfs_node. h>
61 #include <snbfs/snbfs_subr. h>

new usr/src/uts/comon/fs/snbcl nt/snbfs/snbfs_client.c

63 #include <vni hat. h>

64 #include <vnlas. h>

65 #i nclude <vni page. h>

66 #i nclude <vnl pvn. h>

67 #include <vniseg. h>

68 #i nclude <vn seg_map. h>
69 #include <vnfseg_vn. h>

71 static int snbfs_getattr_cache(vnode_t *, snbfattr_t *);

72 static void snbfattr_to_vattr(vnode_t *, snbfattr_t *, vattr_t *)
73 static void snbfattr_to_xvattr(vnode_t *, snbfattr_t *, vattr_t *
71 static int snbfs_getattr_cache(vnode_t *, struct snmbfattr *);

72 static int snbfattr_to_vattr(vnode_t *, struct snmbfattr *,

73 struct vattr *);

);

*
76 * The follow ng code provide zone support in order to performan action

77 * for each snbfs nount in a zone. This is also where we would add
78 * per-zone globals and kernel threads for the snbfs nodul e (since
79 * they nmust be terminated by the shutdown call back).

*/

82 struct sm _globals {

83 kmut ex_t sng_l ock; /* lock protecting sng_list */

84 list_t sng_list; /* list of SMBFS nounts in zone */
85 bool ean_t sng_destructor_cal | ed;

86

b
__unchanged_portion_omtted_

404 | *
405 * Return either cached or rempte attributes. If get renote attr

406 * use themto check and invalidate caches, then cache the new attri butes.
*

407

408 * From NFS: nfsgetattr()

409 */

410 int

411 snbfsgetattr(vnode_t *vp, struct vattr *vap, cred_t *cr)
412 {

413 struct snbfattr fa;

414 smbmtinfo_t *sm;

415 uint_t mask;

416 int error;

418 sm = VIOSM (vp);

420 ASSERT(cur proc->p_zone == smi->sm _zone_ref.zref_zone);
422 /*

423 * |f asked for UDor G D, update n_uid, n_gid.
424 */

425 mask = AT_ALL;

426 if (vap->va_mask & (AT_UD| AT_GD) {

427 if (sm->sm_flags & SM _ACL)

428 (void) snbfs_acl _getids(vp, cr);
429 /* else | eave as set in nake_snbnode */
430 } else {

431 mask & ~(AT_UD | AT_GD);

432 }

434 I*

435 * |f we’ve got cached attributes, just use them
436 * otherwise go to the server to get attributes,
437 * which will update the cache in the process.
438 */

439 error = snbfs_getattr_cache(vp, &fa);

new usr/src/uts/comon/fs/snbcl nt/snbfs/snbfs_client.c

440 if (error)

441 error = snbfs_getattr_otw(vp, & a, cr);
442 if (error)

443 return (error);

444 vap- >va_mask | = mask;

446 /*

447 * Re. client’s view of the file size, see:

448 * snbfs_attrcache_fa, snbfs_getattr_otw

449 */

450 snbfattr_to_vattr(vp, &a, vap);

451 if (vap->va_mask & AT XVATTR)

452 snbfattr_to_xvattr(vp, & a, vap);

453

454 return (0);

450 error = snbfattr_to_vattr(vp, & a, vap);

451 vap- >va_mask = mask;

453 return (error);

455 }

458 | *

459 * Convert SMB over the wire attributes to vnode form
460 * Returns 0 for success, error if failed (overflow, etc).
461 * From NFS: nattr_to_vattr()

462 */

463 void

462 int

464 snbfattr_to_vattr(vnode_t *vp, struct snbfattr *fa, struct vattr *vap)
465 {

466 struct snbnode *np = VTOSMB(vp);

467 /* Set va_mask in caller */

468 I*

469 * Take type, node, uid, gid fromthe snbfs node,
470 * whi ch has have been updated by _getattr_otw.
471 */

472 vap->va_type = vp->v_type,

473 vap->va_node = np->n_node;

475 vap->va_uid = np->n_uid;

476 vap->va_gid = np->n_gid;

478 vap->va_fsid = vp->v_vfsp->vfs_dev;

479 vap->va_nodei d = np->n_i no;

480 vap->va_nlink = 1;

482 I

483 * Difference from NFS here: W cache attributes as
484 * reported by the server, so r_attr.fa_size is the
485 * server’s idea of the file size. This is called
486 * for getattr, so we want to return the client’s
487 * jdea of the file size. NFS deals with that i
488 * nfsgetattr(), the equivalent of our caller.
489 */

490 vap->va_si ze = np->r_size;

492 /*

493 * Tines. Note, already converted fromNT to
494 * Unix form(in the unmarshalling code).

495 */

496 vap->va_atinme = fa->fa_atime;

497 vap->va_ntinme = fa->fa_nting;

498 vap->va_ctinme = fa->fa_ctinme;

new usr/src/uts/comon/fs/snbcl nt/snbfs/snbfs_client.c

500 I*

501 * rdev, blksize, seq are nade up.

502 * va_nbl ocks is 512 byte bl ocks.

503 */

504 vap->va_rdev = vp->v_rdev;

505 vap->va_bl ksi ze = MAXBSI ZE

506 vap->va_nbl ocks = (fsbl kent 64_t)btod(np->r_attr.fa_allocsz);
507 vap->va_seq = 0;

508 }

510 /*

511 * snbfattr_to_xvattr: like snbfattr_to_vattr but for

512 * Extensible systemattributes (PSARC 2007/ 315)
513 */
514 static void

515 snbfattr_to_xvattr(vnode_t *vp, struct snbfattr *fa,

struct vattr *vap)

516 {

517 struct snbnode *np = VTOSMB(vp);

518 xvattr_t *xvap = (xvattr_t *)vap; /* *vap may be xvattr_t
519 xoptattr_t *xoap = NULL;

521 if ((xoap = xva_getxoptattr(xvap)) == NULL)

522 return;

524 if (XVA_I SSET_REQ xvap, XAT_CREATETI ME)) {

525 xoap->xoa_createtine = fa->fa_createtine;
526 XVA_SET_RTN(xvap, XAT_CREATETI ME);

527 }

529 if (XVA_I SSET_REQ xvap, XAT ARCHI VE)) {

530 xoap- >xoa_ar chive =

531 ((fa->fa_attr & SMB_FA ARCHI VE) != 0);
532 XVA_SET_RTN(xvap, XAT_ARCHI VE);

533 }

535 if (XVA_I SSET_REQ xvap, XAT_SYSTEM) {

536 xoap- >xoa_system =

537 ((fa->fa_attr & SMB_FA_SYSTEM != 0);
538 XVA_SET_RTN(xvap, XAT_SYSTEM;

539 }

541 if (XVA_I SSET_REQ(xvap, XAT_READONLY)) {

542 xoap- >xoa_r eadonly =

543 ((fa->fa_attr & SMB_FA RDONLY) != 0);
544 XVA_SET_RTN(xvap, XAT_READONLY);

545 }

547 if (XVA_I SSET_REQ xvap, XAT_H DDEN)) {

548 xoap- >xoa_hi dden =

549 ((fa->fa_attr & SMB_FA H DDEN) != 0);
550 XVA_SET_RTN(xvap, XAT_HI DDEN) ;

558 }

510 return (0);

552 }

554 [*

555 * SMB Client initialization and cl eanup.
556 * Much of it is per-zone now.
557 */

560 /* ARGSUSED */
561 static void *
562 snbfs_zone_init(zoneid_t zoneid)

*/

new usr/src/uts/comon/fs/snbcl nt/snbfs/snbfs_client.c

563 {

564 sm _gl obal s_t *sny;

566 snmg = kmem al | oc(sizeof (*snmg), KM SLEEP);

567 mut ex_i ni t (& ng->sng_| ock, NULL, MJUTEX_DEFAULT, NULL);
568 list_create(&sng->sng_list, sizeof (snbmtinfo_t),

569 of fsetof (snbrmtinfo_t, smi_zone_node));

570 sng- >sng_destructor _call ed = B_FALSE;

571 return (sng);

572 }

____unchanged_portion_onitted_

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vfsops.c

R R R R

24755 Tue Aug 31 13:02:03 2010
new usr/src/uts/comon/fs/snbcl nt/snbf s/ snbfs_vfsops.c
6879933 Let SMBFS support extensible attributes per. PSARC 2007/ 315

R R R

__unchanged_portion_onitted_

331 /*

332 * snbfs mount vfsop

333 * Set up nmount info record and attach it to vfs struct.

334 */

335 static int

336 snbfs_nount (vfs_t *vfsp, vnode_t *mvp, struct nounta *uap, cred_t *cr)

337 {

338 char *data = uap->dataptr;

339 int error;

340 snmbnode_t *rtnp = NULL; /* root of this fs */
341 smbmti nfo_t *sm = NULL;

342 dev_t snbf s_dev;

343 int ver sion;

344 int devfd;

345 zone_t *zone = curproc->p_zone;

346 zone_t *mt zone = NULL;

347 snb_share_t *ssp = NULL;

348 smb_cred_t scred;

349 int flags, sec;

351 STRUCT_DECL(snbfs_args, args); /* snbfs nount argunents */
353 if ((error = secpolicy_fs_mount(cr, nvp, visp)) != 0)
354 return (error);

356 if (nvp->v_type != VDIR)

357 return (ENOTDI R);

359 /*

360 * get argunents

361 *

362 * uap->datal en mght be different from sizeof (args)
363 * in a conpatible situation.

364 */

365 STRUCT_I NI T(args, get_udatanodel ());

366 bzer o(STRUCT_BUF(ar gs), SIZEOF_STRUCT(snbfs_args, DATAMODEL_NATI VE));
367 if (copyin(data, STRUCT_BUF(args), M N(uap->datal en,
368 S| ZEOF_STRUCT(snbf s_args, DATAMODEL_NATI VE))))
369 return (EFAULT);

371 I*

372 * Check nount program version

373 */

374 version = STRUCT_FGET(args, version);

375 if (version != SMBFS_VERSI ON) {

376 crm_err (CE_WARN, "nount version misnmatch:"
377 " kernel =%, nount =%\ n",

378 SMBFS_VERSI ON, version);

379 return (EINVAL);

380 1

382 /*

383 * Deal with re-nount requests.

384 */

385 if (uap->flags & M5_REMOUNT) {

386 cmm_err (CE_WARN, "MS_REMOUNT not inplenmented");
387 return (ENOTSUP);

388 1

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vfsops.c

390
391
392
393
394
395
396
397
398
399

401
402
403
404
405
406
407
408
409
410
411
412
413

415
416
417
418

420
421
422
423
424
425
426
427
428
429
430
431
432

434
435
436
437
438
439
440

442
443
444
445
446
447
448
449

451
452
453

455

*

* Check for busy
*/
nmut ex_ent er (&mp- >v Iock)
if ('(uap >flags & MS OJERLAY) &&
(mvp->v_count !'=1 || (nvp->v_flag & VROOT))) {
mut ex_exi t (&mwp->v_| ock);
return (EBUSY);

}
mut ex_exi t (&mp->v_| ock);

/*

* Get the "share" fromthe netsnb driver (ssp).
* It is returned with a "ref" (hold) for us

* Release this hold: at errout below, or in

*/snhfs_freevfs().
*
devfd = STRUCT_FCET(args, devfd);
error = snb_dev2shar e(devfd, &ssp)
if (error) {
com_err (CE_WARN, "invalid device handle % (%l)\n",
devfd, error);
return (error);

}

/*

* Use "goto errout"” from here on.
* See: ssp, sm, rtnp, mmtzone
*/

/*
* Determ ne the zone we're being nounted into.
*
zone_hol d(mt zone = zone);
if (getzoneid() == GLOBAL_ZONEID) {
zone_rel e(mt zone) ;
mt zone = zone_fi nd _by path(refstr_val ue(vfsp->vfs_mtpt));
ASSERT(mt zone ! = NULL);
if (mtzone !'= zone) {
error = EBUSY;
goto errout;

/* start with this assunption */

}

*

* Stop the nount from going any further if the zone is going away.
*/

if (zone_status_get(mtzone) >= ZONE_|I S_SHUTTI NG DOMWN) {
error = EBUSY;
goto errout;

}

/*
* On a Trusted Extensions client, we may have to force read-only
* for read-down nounts.
*/
if (is system | abel ed()) {
voi d *addr;
int ipvers = 0;
struct snb_vc *vcp;

vcp = SSTOVC(ssp);
addr = snb_vc_getipaddr(vcp, & pvers);
error = snbfs_nount _| abel _policy(vfsp, addr, ipvers, cr);

if (error > 0)

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vfsops.c

456

458
459
460
461
462

464
465

467
468
469
470
471
472
473
474

476
477

479
480

482
483

485
486
487
488
489
490
491
492

494
495
496
497
498
499
500
501

503
504
505
506
507
508
509
510
511

513
514
515
516
517
518
519
520
521

goto errout;

if (error == -1)
/* change nmount to read-only to prevent wite-down */
vfs_setmtopt (vfsp, MNTOPT_RO NULL, 0);

}

/* Prevent unload. */
atom c_i nc_32(&nbf s_nount count) ;

/
Create a mount record and link it to the vfs struct.
No nore possiblities for errors fromhere on.
Tear-down of this stuff is in snbfs_free_sm ()

T

Conpare with NFS: nfsrootvp()
sm = kmem zal | oc(sizeof (*sm), KM SLEEP);

mut ex_ini t (& m ->sm _| ock, NULL, MJUTEX_DEFAULT, NULL);
cv_init(&m->snmi _statvfs_cv, NULL, CV_DEFAULT, NULL);

rw_init(&m->sm _hash_| k, NULL, RWDEFAULT, NULL);
snbf s_i nit _hash_avl (&smi - >smi hash _avl);

sm ->sm _share = ssp;
ssp = NULL;

/*
* Convert the anonynous zone hold acquired via zone_hol d() above
* into a zone reference.
*
/
zone_init_ref(&sm->sm _zone_ref);
zone_hol d_ref (rmt zone, &sni - >sni _zone_ref, ZONE_REF_SMBFS) ;
zone_rel e(mt zone) ;
mt zone = NULL;

/*
* Initialize option defaults
*

sm->sm _flags = SM _LLOCK;

sm ->smi _acregnmi n = SEC2HR(SMBFS_ACREGM N) ;
sm ->sm _acregmax = SEC2HR(SMBFS_ACREGVAX) ;
sm ->sm _acdirm n = SEC2HR(SMBFS_ACDI RM N) ;
smi ->smi _acdi rmax = SEC2HR(SMBFS_ACDI RVAX) ;

/*

* Al "generic" nount options have al ready been

* handl ed in vfs.c:domount() - see mtopts stuff.
* Query generic options using vfs_optionisset().
*

if (vfs_optionisset(vfsp, MNTOPT_INTR, NULL))
sm->smi_flags |[= SM _INT;

if (vfs_optionisset(vfsp, MNTOPT_ACL, NULL))
smi->smi _flags |= SM _ACL;

/'k
* Get the nount options that cone in as snbfs_args,
* starting with args.flags (SVMBFS_MF_xxX)
*
/

flags = STRUCT_FGET(args, flags);

sm ->sm _uid STRUCT_FGET(args, uid);
sm ->smi _gid STRUCT_FCGET(args, gid);

sm ->sm _f node STRUCT_FCET(args, file_node) & 0777;
sm - >sm _dnode STRUCT_FCET(args, dir_node) & 0777;

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vfsops.c

523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551

553
554
555
556
557
558
559
560
561
562

564
565
566
567
568
569
570
571

573
574
575
576
577
578
579

581
582
583
584
585
586
587

/*
* Hande the SMBFS_MF_xxx fl ags.
*
if (flags & SMBFS_M-_NOAC)
smi->smi_flags | = SM _NOAC,
if (flags & SMBFS_MF_ACREGM N) {
sec = STRUCT_FGET(args, acregmn);
if (sec <0 || sec > SMBFS_ACM NVAX)
sec = SMBFS_ACM NVAX;
sm ->sm _acregm n = SEC2HR(sec);

}
if (flags & SMBFS_M-_ACRE
sec = STRUCT_FGET(args, acregmax);
if (sec <0 || sec > SMBFS_ACNMAXMAX)
sec SMBFS_ ACVAXNMAX;
sm ->sm _acregmax = SEC2HR(sec);

}
if (flags & SMBFS MF_ACDI RM N)
sec = STRUCT_FGET(args, acdirmn);
if (sec <0 || sec > SMBFS_ACM NVAX)
sec = SMBFS_ACM NVAX;
sm ->sni _acdi rm n = SEC2HR(sec);

}
if (flags & SMBFS_M-_ACDI RVAX)
sec = STRUCT_FGET(args, acdirmax);
if (sec < 0]| sec > SMBFS_ACMAXMAX)
sec = SMBFS_ACMAXMAX;
sm ->sm _acdi rmax = SEC2HR(sec);

}

/*

* Get attributes of the renpte file system

* j.e. ACL support, naned streans, etc.

*

/
snb_credinit(&scred, cr);
error = snbfs_snb_qfsattr(sm ->sm _share, &sm->sni _fsa, &scred);
snmb_credrel e(&scred);
if (error) {

SMBVDEBUG "snbf s_snb_qf sattr error %\ n", error);

}

/
enabl e XATTR by default (via snbfs_mtopts)
if the share does not support naned streans,
ce the NOXATTR option (also clears XATTR).
ler will set or clear VFS_XATTR after this.

if ((sm->sm_fsattr & FILE_NAMED STREAMS) == 0)
vfs_setmtopt (vfsp, MNTOPT_NOXATTR, NULL, 0);

/*
* Ditto ACLs (disable if not supported on this share)
*
/
if ((sm->smi_fsattr & FILE_PERSI STENT_ACLS) == 0) {

vfs_set mtopt (vfsp, MTOPT_NOACL, NULL 0);
sm ->sm _flags & ~SM _ACL;

}
/*
* Assign a unique device id to the nount
*
/
nmut ex_ent er (&snbf s_mi nor _| ock);
do {

smbfs_mnor = (snbfs_mnor + 1) & MAXM N32;
snbfs_dev = makedevi ce(snbfs_maj or, snbfs_minor);

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vfsops.c

588 } while (vfs_devi snounted(snbfs_dev));

589 mut ex_exi t (&snbfs_m nor _| ock);

591 vfsp->vfs_dev = snbfs_dev;

592 vfs_make_fsi d(&vfsp >vfs fSI d, snbfs_dev, snbfsfstyp);
593 visp->vfs_data = (caddr_t)sm;

594 vfsp->vfs_fstype = snbfsfstyp;

595 vfsp->vfs_bsize = MAXBSI ZE;

596 vfsp->vfs_bcount = 0;

598 sm ->sm _vfsp = vfsp;

599 snbf s_zonel i st _add(sm); /* undo in snbfs_freevfs */
601 /* PSARC 2007/ 227 VFS Feature Registration */
602 vfs_set _feature(vfsp, VFSFT_XVATTR);

603 vfs_set_feature(vfsp, VFSFT_SYSATTR VI EWS);
605 /*

606 * Create the root vnode, which we need in unnount
607 * for the call to snbfs_check_table(), etc.
608 * Rel ease this hold in snbfs_unnount.

609 */

610 rtnp = snbfs_node_findcreate(sm, "\\", 1, NULL, 0, O,
611 &nbfs fattr0);

612 ASSERT(rtnp != NULL)

613 rtnp->r_vnode->v_type = VDI R

614 rtnp->r “vnode->v_flag | = VROOT;

615 smi->sm _root = rtnp;

617 /*

618 * NFS does other stuff here too:

619 * async wor ker threads

620 * init kstats

621 *

622 * End of code from NFS nfsrootvp()

623 */

624 return (0);

626 errout:

627 vfsp->vfs_data = NULL;

628 if (smi !'= NULL)

629 snbfs_free_sm (sm);

631 if (mtzone !'= NULL)

632 zone_rel e(mt zone) ;

634 if (ssp !'= NULL)

635 snb_share_rel e(ssp);

637 return (error);

638 }

__unchanged_portion_onitted_

new

* ok kK

7
new/
6879

* ok kK

usr/src/ uts/ common/ f s/ snbcl nt/ snbf s/ snbf s_vnops. ¢

B R

8744 Tue Aug 31 13:02: 04 2010
usr/src/ uts/ comon/ fs/snbcl nt/snbf s/ snbf s_vnops. ¢
933 Let SMBFS support extensible attributes per. PSARC 2007/ 315

B R R R

__unchanged_portion_onitted_

117

119
120
121
122
123
124
125
126
127
128
129

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

/*

* Turning this on causes nodes to be created in the cache

* during directory listings, normally avoiding a second

* XWattribute fetch just after a readdir.

*

/

int snbfs_fastlookup = 1;

/* local static function defines */

static int snbf sl ookup_cache(vnode_t *, char *, int, vnode_t **,
cred_t *);

static int snbf sl ookup(vnode_t *dvp, char *nm vnode_t **vpp, cred_t *cr,
int cache_ok, caller_context_t *);

static int snmbf srename(vnode_t *odvp, char *onm vnode_t *ndvp, char *nnm
cred_t *cr, caller_context_t *);

static int snbf ssetattr(vnode_t *, struct vattr *, int, cred_t *);

static int snbfs_accessx(void *, int, cred_t *);

static int snbf s_readvdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
cal ler_context_t *);

static void snbfs_rele_fid(snbnode_t *, struct snb_cred *);

static uint32_t xvattr_to_dosattr(snbnode_t *, struct vattr *);

/*

* These are the vnode ops routines which inplement the vnode interface to

* the networked file system These routines just take their paraneters,

* make them | ook networkish by putting the right info into interface structs,

* and then calling the appropriate renpte routine(s) to do the work.

*

* Note on directory nane | ookup cacheing: |f we detect a stale fhandle,

* we purge the directory cache relative to that vnode. This way, the

* user won't get burned by the cache repeatedly. See <snbfs/snbnode. h> for

* nore details on snbnode | ocking.

*

/

static int snbfs_open(vnode_t **, int, cred_t *, caller_context_t *);

static int snbfs_cl ose(vnode_t *, int, int, offset_t, cred_t *,
call er_context_t *);

static int snbfs_read(vnode_t *, struct uio *, int, cred_t *,
cal ler_context_t *);

static int snbfs_write(vnode_t *, struct uio *, int, cred_t *,
call er_context_t *);

static int snbfs_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *,
cal ler_context_t *);

static int smbfs_getattr(vnode_t *, struct vattr *, int, cred_t *,
call er_context_t *);

static int smbfs_setattr(vnode_t *, struct vattr *, int, cred_t *,
cal ler_context_t *);

static int snmbfs_access(vnode_t *, int, int, cred_t *, caller_context_t *);

static int snbfs_fsync(vnode_t *, int, cred_t *, caller_context_t *);

static void snbf s_i nactive(vnode_t *, cred_t *, caller_context_t *);

static int smbf s_| ookup(vnode_t *, char *, vnode_t **, struct pathnane *,
int, vnode_t cred_t *, caller_context_t *,
int *, pathname_t *);

static int snbfs_create(vnode_t *, char *, struct vattr *, enum vcexcl,
int, vnode_t **, cred_t *, int, caller_context_t *,
vsecattr_t *);

static int snbf s_renove(vnode_t *, char *, cred_t *, caller_context_t *,
int);

static int snbf s_renane(vnode_t *, char *, vnode_t *, char *, cred_t *,

*);

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbf s_vnops. ¢
156 caller_context_t *, int);
157 static int snbf s_nkdir(vnode_t *, char *, struct vattr *, vnode_t **,
158 cred_t *, caller_context_t *, int, vsecattr_t *);
159 static int snbfs_rndir(vnode_t *, char vnode_t *, cred_t *,
160 cal ler_context_t *, int);
161 static int snbf s_readdir(vnode_t *, struct uio *, cred_t *, int *,
162 caller_context_t *, int);
163 static int smbfs_rw ock(vnode_t *, int, caller_context_t *);
164 static void snmbf s_rwunl ock(vnode_t *, int, caller_context_t *);
165 static int snbf s_seek(vnode_t *, offset_t, offset_t *, caller_context_t
166 static int snbfs_frlock(vnode_t *, int, struct flock64 *, int, offset_t,
167 struct flk_callback *, cred_t *, caller_context_t *);
168 static int snbfs_space(vnode_t *, int, struct flock64 *, int, offset_t,
169 cred_t *, caller_context_t *);
170 static int snbf s_pat hconf (vnode_t *, int, ulong_t *, cred_t *,
171 call er_context_t *);
172 static int snbfs_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
173 cal l er_context_t *);
174 static int snbf s_get secattr(vnode_t *, vsecattr_t *, int, cred_t *,
175 call er_context_t *);
176 static int snmbfs_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *,
177 cal l er_context_t *);
179 /* Durmmy function to use until correct function is ported in */
180 int noop_vnodeop()
181 return (0);
182 }
__unchanged_portion_onitted_
839 /*
840 * Return either cached or renpote attributes. If get rempte attr
841 * use themto check and invalidate caches, then cache the new attributes.
841 *
842 * XXX
843 * This op should eventual |y support PSARC 2007/315, Extensible Attribute
844 * |nterfaces, for richer netadata.
842 */
843 /* ARGSUSED */
844 static int
845 snbfs_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
846 caller_context_t *ct)
847 {
848 smbnode_t *np;
849 smbmtinfo_t *sm;
851 sm = VTIOSM (vp);
853 if (curproc->p_zone != sm->sm _zone_ref.zref_zone)
854 return (EIO;
856 if (sm->sm_flags & SM_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
857 return (EIO;
859 /*
860 * If it has been specified that the return value wll
861 * just be used as a hint, and we are only being asked
862 * for size, fsid or rdevid, then return the client’s
863 * notion of these values without checking to nake sure
864 * that the attribute cache is up to date.
865 * The whole point is to avoid an over the wire GETATTR
866 * call.
867 */
868 np = VTOSMB(vp);
869 if (flags & ATTR HINT) {
870 if (vap->va_mask ==

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢ 3 new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbf s_vnops. ¢
871 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) { 932 snmbf s_accessx, vp);
872 mut ex_ent er (&p- >r_st at el ock) ; 933 if (error)
873 if (vap->va_mask | AT_SIZE) 934 return (error);
874 vap- >va_si ze = np->r_si ze;
875 if (vap->va_mask | AT_FSID) 936 if (msk & (AT_UD| AT_GD) {
876 vap->va_fsid = vp->v_vfsp->vfs_deyv; 937 if (sm->sm_flags & SM _ACL)
877 if (vap->va_mask | AT_RDEV) 938 error = snbfs_acl _setids(vp, vap, cr);
878 vap->va_rdev = vp->v_rdev; 939 el se
879 nut ex_exi t (&np->r_st at el ock) ; 940 error = ENOSYS;
880 return (0); 941 if (error 1= 0)
881 } 942 SMBVDEBUG("error % seting UD AD on %",
882 } 943 error, VTOSMB(vp)->n_rpath);
944 /*
884 return (snmbfsgetattr(vp, vap, cr)); 945 * It might be nore correct to return the
885 } 946 * error here, but that causes conplaints
947 * when root extracts a cpio archive, etc.
887 /* snbfsgetattr() in snbfs_client.c */ 948 * So ignore this error, and go ahead with
949 * the rest of the setattr work.
892 /* 950 */
893 * XXX 951 }
894 * This op should eventually support PSARC 2007/315, Extensible Attribute 952 }
895 * |Interfaces, for richer netadata.
896 */ 954 return (snbfssetattr(vp, vap, flags, cr));
889 /* ARGSUSED4*/ 955 }
890 static int
891 snbfs_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 957 | *
892 call er_context_t *ct) 958 * Mostly fromDarwin snbfs_setattr()
893 { 959 * but then nodified a lot.
894 vfs_t *vf sp; 960 *
895 snmbmtinfo_t *smi; 961 /* ARGSUSED */
896 int error; 962 static int
897 uint_t mask; 963 snbfssetattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr)
898 struct vattr ol dva; 964 {
965 int error = 0;
900 vfsp = vp->v_vfsp; 966 smbnode_t *np = VTOSMB(vp);
901 sm = VFTOSM (vfsp); 967 ui nt _t mask = vap->va_nask;
968 struct tinespec *ntine, *atine;
903 if (curproc->p_zone != sm->sm _zone_ref.zref_zone) 969 struct snmb_cred scred;
904 return (ElIO; 970 int cerror, nodified = 0;
971 unsi gned short fid;
906 if (sm->sm_flags & SM_DEAD || vfsp->vfs_flag & VFS_UNMOUNTED) 972 int have_fid = 0O;
907 return (EIO; 973 uint32_t rights = 0;
974 uint32_t dosattr = 0;
909 mask = vap->va_nask;
910 if (mask & AT_NOSET) 976 ASSERT(cur proc->p_zone == VTOSM (vp)->sm _zone_ref.zref_zone);
911 return (EINVAL);
978 I
913 if (vfsp->vfs_flag & VFS_RDONLY) 979 * There are no settable attributes on the XATTR dir,
914 return (EROFS); 980 * so just silently ignore these. On XATTR files,
981 * you can set the size but nothing else.
916 /* 982 */
917 * This is a _local _ access check so that only the owner of 983 if (vp->v_flag & V_XATTRDI R)
918 * this nount can set attributes. Wth ACLs enabled, the 984 return (0);
919 * file owner can be different fromthe nmount owner, and we 985 if (np->n_flag & N_XATTR) {
920 * need to check the _nmount_ owner here. See _access_rwx 986 if (mask & AT_TI MES)
921 */ 987 SMBVDEBUG("1 gnore set tine on xattr\n");
922 bzero(&ol dva, sizeof (oldva)); 988 mask &= AT_SI ZE;
923 ol dva.va_nmask = AT_TYPE | AT_MODE; 989 }
924 error = snbfsgetattr(vp, &oldva, cr);
925 if (error) 991 I*
926 return (error); 992 * |f our caller is trying to set multiple attributes, they
927 oldva.va_mask |= AT_U D | AT QD 993 * can make no assunption about what order they are done in.
928 oldva.va_uid = sm->sm _uid; 994 * Here we try to do themin order of decreasing |ikelihood
929 ol dva.va_gid = snmi->sm _gid; 995 * of failure, just to minimze the chance we’ll w nd up
996 * with a partially conplete request.
931 error = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 997 */

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢

999
1000
1001
1002

1004
1005
1006
1007
1008
1009
1010

1012
1013
1014
1015
1016
1015
1017
1018
1019
1020
1021
1022
1023
1024

1026
1027
1028
1029
1030
1031
1032
1031
1033
1034
1035
1036
1037
1038
1039
1040

1042
1043
1044
1045
1046

1048
1049
1050
1051
1052
1053
1054
1055

1057
1058
1059
1060
1061

/* Shared | ock for (possible) n_fid use. */

if (smbfs_rw enter_sig(&p->r_| kserlock, RWREADER, SMBINTR(vp)))
return (EINTR);

snmb_credinit(&scred, cr);

/*
* |If the caller has provided extensible attributes,
* map those into DOS attributes supported by SMB.

* Note: zero neans "no change".
5
if (mask & AT_XVATTR)
dosattr = xvattr_to_dosattr(np, vap);

WIIl we need an open handle for this setattr?
If so, what rights will we need?
/
(dosattr || (mask & (AT_ATIME | AT_MIIME))) {
(mask & (AT_ATIME | AT_MIIME)) {
rights | =
SA_RI GHT_FI LE_WRI TE_ATTRI BUTES;

—h = % ok *

*
* Only SIZE really requires a handle, but it's
* sinpler and nore reliable to set via a handle.
* Some servers like NT4 won't set times by path.
* Also, we're usually setting everything anyway.
*
/
f (rights '=0) {
f (mask & (AT_SIZE | AT_ATIME | AT_MI ME))
error = snbfs_snb_tmpopen(np, rights, &scred, &fid);
if (error) {
SMBVDEBUG("error % openi ng %s\n",
error, np->n_rpath)

goto out;

}

have _fid = 1;
}
/*
* |f the server supports the UNI X extensions, right here is where
* we'd support changes to uid, gid, node, and possibly va_flags.
* For now we claimto have made any such changes.
*

/

if (mask & AT_SIZE) {
/*

* |f the newfile size is less than what the client sees as

* the file size, then just change the size and invalidate

* the pages.

* | amcommenting this code at present because the function

* snbfs_putapage() is not yet inplenented.

*

/

/*

* Set the file size to vap->va_size.

*]

ASSERT(have_fid);

error = snbfs_snb_setfsize(np, fid, vap->va_size, &scred);

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbf s_vnops. ¢

1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

1082
1083
1084
1085
1086
1087

1089
1088
1090
1091
1092
1093
1094
1095
1096
1095
1097
1098
1099
1100
1101
1102
1103

1105 out:

1106
1107
1108
1109
1110
1111
1112

1114
1115
1116
1117
1118
1119

1121
1122

1124
1125 }

if (error) {
SMBVDEBUG "setsize error % file 9%\n",

error, np->n_rpath);

} else {
/*

* Darwin had code here to zero-extend.

* Tests indicate the server will zero-fill,

* so |ooks like we don’t need to do this.

* Good thing, as this could take forever.

*

*

*

*

XXX: Reportedly, witing one byte of zero
at the end offset avoids problems here.

nmut ex_ent er (&np- >r_st at el ock) ;
np->r_si ze = vap->va_si ze;

mut ex_exi t (&np- >r_st at el ock) ;
nodi fied = 1;

*

~

XXX: When Sol aris has create_tine, set that too.
te: create_tine is different fromctine.

3)(-)(-*

No
/

inme ((mask & AT_MII ME) ? &vap->va_ntinme : 0);
inme ((mask & AT_ATIME) ? &vap->va_atinme : 0);

QD

t

dosattr || ntine || atine) {
ntime || atime) {
/

—~

if
if
*
* Always use the handl e-based set attr call now

* Not trying to set DOS attributes here so pass zero.
*

ASSERT(have_fid);
error = snbfs_snb_setfattr(np, fid,
dosattr, ntinme, atinme, &scred);
0, ntinme, atinme, &scred);
if (error) {
SMBVDEBUG("set tinmes error % file 9%\n",
error, np->n_rpath);
} else {
nodi fied = 1;
}

if (rmdi;ied){

* Invalidate attribute cache in case the server
* doesn’t set exactly the attributes we asked.
*/

snbf s_attrcache_renove(np);

}

if (have_fid) {
cerror = snbfs_snb_tnpcl ose(np, fid, &scred);
if (cerror)
SMBVDEBUG("error %l cl osing %\n"
cerror, np->n_rpath);

}

snb_credrel e(&scred);
snmbfs_rw_exi t (&p->r_| kser| ock);

return (error);

new usr/ src/ uts/ comon/ fs/snbcl nt/snbf s/ snbfs_vnops. c 7

1127 /| *

1128 * Hel per function for extensible systemattributes (PSARC 2007/ 315)
1129 * Conpute the DOS attribute word to pass to _setfattr (see above).
1130 * This returns zero |FF no change is being nade to attributes.

1131 * Otherwise return the new attributes or SVMB_EFA NORVAL.

1132 */

1133 static uint32_t

1134 xvattr_to_dosattr(snbnode_t *np, struct vattr *vap)

1135 {

1136 xvattr_t *xvap = (xvattr_t *)vap;

1137 xoptattr_t *xoap = NULL;

1138 uint32_t attr = np->r_attr.fa_attr;

1139 bool ean_t anyset = B_FALSE;

1141 if ((xoap = xva_getxoptattr(xvap)) == NULL)
1142 return (0);

1144 if (XVA | SSET_REQ xvap, XAT_ARCHI VE)) {
1145 if (xoap->xoa_archive)

1146 attr | = SMB_FA_ARCH VE;
1147 el se

1148 attr & ~SMB_FA ARCH VE;
1149 XVA_SET_RTN(xvap, XAT_ARCHI VE);
1150 anyset = B_TRUE,

1151 1

1152 i f (XVA | SSET_REQ(xvap, XAT_SYSTEM) {
1153 if (xoap->xoa_syste

1154 attr | = SMB_FA SYSTEM
1155 el se

1156 attr & ~SMB_FA_SYSTEM
1157 XVA_SET_RTN(xvap, XAT SYSTEM ;
1158 anyset = B_TRUE

1159 }

1160 if (XVA_I SSET_REQ(xvap, XAT_READONLY)) {
1161 if (xoap->xoa_readonly)

1162 attr | = SMB_FA RDONLY;
1163 el se

1164 attr & ~SMB_FA RDONLY;
1165 XVA SET_RTN(xvap, XAT READONLY);
1166 anyset = B_TRUE;

1167 }

1168 i f (XVA | SSET_REQxvap, XAT_H DDEN)) {
1169 if (xoap->xoa_hi dden)

1170 attr | = SMB_FA HI DDEN,
1171 el se

1172 attr & ~SMB_FA Hi DDEN;
1173 XVA SET_RTN(xvap, XAT HI DDEN);
1174 anyset = B_TRUE;

1175 }

1177 if (anyset == B_FALSE)

1178 return (0); /* no change */
1179 if (attr == 0)

1180 attr = SMB_EFA NORMAL;

1182 return (attr);

1183 }

1185 /*

1186 * snbfs_access_rwx()

1187 * Common function for snbfs_access, etc.

1188 *

1189 * The security nodel |an emented by the FS is unusual
1190 * due to the current "single user nounts" restriction:
1191 * Al access under a given nount point uses the CFS

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbf s_vnops. ¢

1192 * credentials established by the owner of the nount.
1193 *

1194 * Most access checking is handled by the C FS server,
1195 * but we need sufficient Unix access checks here to
1196 * prevent other local Unix users from having access
1197 * to objects under this nount that the uid/gid/ node
1198 * settings in the mount would not allow

1199 *

1200 * Wth this nodel, there is a case where we need the
1201 * ability to do an access check before we have the
1202 * vnode for an object. This function takes advantage
1203 * of the fact that the uid/gid/ node is per nount, and
1204 * avoids the need for a vnode.

1205 *

1206 * We still (sort of) need a vnode when we call

1207 * secpolicy_vnode_access, but that only uses

1208 * the vtype field, so we can use a pair of fake

1209 * vnodes that have only v_type filled in.

1210 *

1211 * XXX: Later, add a new secpolicy_vtype_access()
1212 * that takes the vtype instead of a vnode, and

1213 * get rid of the tnpl_vxxx fake vnodes bel ow.

1214 */

1215 static int

1216 snbfs_access_rwx(vfs_t *vfsp, int vtype, int node, cred_t *cr)

1217 {

1218 /* See the secpolicy call below */

1219 static const vnode_t tnpl_vdir ={ .v_type = VDIR };
1220 static const vnode_t tnpl_vreg = { .v_type = VREG };
1221 vattr_t va;

1222 vnode_t *tvp;

1223 struct srrbrmtl nfo *sm = VFTOSM (vfsp);

1224 int shift = 0;

1226 /

*
1227 * Build our (fabricated) vnode attributes.
1228 * XXX: Coul d nake these tenplates in the
*

1229 per-nmount struct and use them here.

1230

1231 bzero(&va, sizeof (va))

1232 va.va_nmask = AT_TYPE | AT MODE | AT_UD | AT_GD;
1233 va.va_type = vtype;

1234 va.va_node = (vtype == VDIR) ?

1235 sm ->sm _dnode : sni->sni _f node;

1236 va.va_uid = sm->sm _uid;

1237 va.va_gid = sm->sm _gid;

1239 I*

1240 * Disallow wite attenpts on read-only file systens,
1241 * unless the file is a device or fifo node. Note:
1242 * Inline vn_is_readonly and |'S_DEVWP here because
1243 * we nmay not have a vnode ptr. Oiginal expr. was:
1244 */(rrode & WRI TE) && vn_is_readonly(vp) && !1S_DEVVP(vp))
1245 *

1246 if ((mde & WRITE) &&

1247 (vfsp- >vfs flag & VFS_RDONLY) &&

1248 I(vtype == VCHR || vtype == VBLK || vtype == VFIFQ))
1249 return (ERCFS);

1251 I*

1252 * Disallow attenpts to access mandatory lock files.
1253 * Simlarly, expand MANDLOCK here.

1254 * XXX: not sure we need this.

1255 */

1256 if ((mde & (WRITE | VREAD | VEXEQ)) &&

1257 va.va_type == VREG & MANDMODE(va. va_node))

new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢ 9 new usr/src/uts/comon/ fs/snbcl nt/snbf s/ snbfs_vnops. ¢
1258 return (EACCES); 3038 * which we don’t support.
3039 */
1260 /* 3040 *val p = _ACL_ACE_ENABLED;
1261 * Access check is based on only 3041 br eak;
1262 * one of owner, group, public.
1263 * |f not owner, then check group. 3043 case _PC_SYM.I NK_MAX: /* No syminks until we do Unix extensions */
1264 * |f not a nenber of the group, 3044 *valp = 0;
1265 * then check public access. 3045 br eak;
1266 */
1267 if (crgetuid(cr) !'=va.va_uid) { 3047 case _PC _XATTR_EXI STS:
1268 shift += 3; 3048 if (vfs->vfs flag & VFS XATTR) {
1269 if (!groupnenber(va.va_gid, cr)) 3049 *val p = snbfs_xa_exists(vp, cr);
1270 shift += 3; 3050 br eak;
1271 } 3051 }
3052 return (EINVAL);
1273 /*
1274 * We need a vnode for secpolicy_vnode_access, 3054 case _PC _SATTR_ENABLED:
1275 * but the only thing it |ooks at is v_type, 3055 case _PC_SATTR EXI STS:
1276 * so pass one of the tenpl ates above. 3056 *valp = 1;
1277 */ 3057 br eak;
1278 tvp = (va.va_type == VDIR) ?
1279 (vnode_t *)& npl _vdir : 3059 case _PC_TI MESTAMP_RESOLUTI ON:
1280 (vnode_t *) &t npl _vreg; 3060 I*
3061 * Wndows times are tenths of nicroseconds
1282 return (secpolicy_vnode_access2(cr, tvp, va.va_uid, 3062 * (nul tiples of 100 nanoseconds).
1283 va.va_nmode << shift, node)); 3063 */
1284 } 3064 *val p = 100L;
__unchanged_portion_omtted_ 3065 br eak;
3001 /* ARGSUSED */ 3067 defaul t:
3002 static int 3068 return (fs_pathconf(vp, cnd, valp, cr, ct));
3003 snbfs_pat hconf (vnode_t *vp, int cnd, ulong_t *valp, cred_t *cr, 3069 }
3004 caller_context_t *ct) 3070 return (0);
3005 { 3071 }
3006 vfs_t *vfs; __unchanged_portion_onitted_
3007 smbmtinfo_t *sm;
3008 struct snb_share *ssp;
3010 vfs = vp->v_vfsp;
3011 sni = VFTOSM (vfs);
3013 if (curproc->p_zone != sm->sm _zone_ref.zref_zone)
3014 return (EIO;
3016 if (smi->snmi_flags & SM_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
3017 return (EIO;
3019 switch (cnd) {
3020 case _PC_FI LESI ZEBI TS:
3021 ssp = sm ->smi _share;
3022 if (SSTOVC(ssp)->vc_sopt.sv_caps & SMB_CAP_LARGE_FI LES)
3023 *valp = 64;
3024 el se
3025 *valp = 32;
3026 br eak;
3028 case _PC LI NK_MAX:
3029 /* We only ever report one link to an object */
3030 *valp = 1;
3031 br eak;
3033 case _PC_ACL_ENABLED:
3034 /*
3035 * Always indicate that ACLs are enabl ed and
3036 * that we support ACE_T format, otherw se
3037 * libsec will ask for ACLENT_T format data

new usr/src/uts/comon/fs/xattr.c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
39409 Tue Aug 31 13:02: 05 2010

new usr/src/uts/comon/fs/xattr.c

6975745 xattr directories should be nore transparent

R R R R R

____unchanged_portion_onitted_

55 typedef struct {
56 i

of s_dir_t xattr_gfs_private;
57 vnode_t *xattr_real vp;
57 vnode_t *xattr_realvp; /* Only used for VOP_REALVP */
58 } xattr_dir_t;
60 /*
61 xattr_realvp is only used for VOP_REALVP, this is so we don't

*

* keep an unnecessary hold on the *real* xattr dir unless we have
63 * no other choice.

&/

60 /* ARGSUSED */
61 static int
62 xattr_file_open(vnode_t **vpp, int flags, cred_t *cr, caller_context_t *ct)

63 {

64 xattr_file_t *np = (*vpp)->v_data;

66 if ((np->xattr_view == XATTR VI EW READONLY) && (flags & FWRI TE))
67 return (EACCES);

69 return (0);

70 }

____unchanged_portion_onitted_

872 static int
873 xattr_dir_realdir(vnode_t *dvp, vnode_t **real dvp, int |ookup_flags,

874 cred_t *cr, caller_context_t *ct)

875 {

876 xattr_dir_t *xattr_dir;

882 vnode_t *pvp;

877 int error;

884 struct pathnane pn;

885 char *startnm="";

879 *real dvp = NULL;

881 if (dvp->v_type != VDR

882 return (EINVAL);

889 pvp = gfs_file_parent(dvp);

884 mut ex_ent er (&dvp- >v_| ock) ;

885 xattr_dir = dvp->v_data;

886 *real dvp = xattr_dir->xattr_real vp;
887 mut ex_exi t (&dJvp->v_| ock) ;

891 error = pn_get(startnm U O _SYSSPACE, &pn);
892 if (error) {

893 VN_RELE(pvp) ;

894 return (error);

895 1

889 if (*realdvp !'= NULL) {

890 VN_HOLD(*r eal dvp) ;

891 error = 0;

892 } else

893 error = ENCENT;

897 /*

898 * Set the LOOKUP_HAVE SYSATTR DIR flag so that we don't get into an

899 * infinite loop with fop_|l ookup calling back to xattr_dir_| ookup.

new usr/src/uts/comon/fs/xattr.c
900 */
901 | ookup_flags | = LOOKUP_HAVE_SYSATTR DI R;
902 error = VOP_LOOKUP(pvp, startnm real dvp, &pn, |ookup_flags,
903 rootvp, cr, ct, NULL, NULL);
904 pn_free(&pn);
895 return (error);
896 }
898 /* ARGSUSED */
899 static int
900 xattr_dir_open(vnode_t **vpp, int flags, cred_t *cr, caller_context_t *ct)
901 {
902 vnode_t *real vp;
903 int error;
905 if (flags & FWRITE) {
906 return (EACCES);
907 }
909 /*
910 * The underlying FS may need this VOP call.
911 */
912 error = xattr_dir_realdir(*vpp, & ealvp, LOKUP_XATTR, cr, ct);
913 if (error == 0)
914 error = VOP_OPEN(&real vp, flags, cr, ct);
915 VN_RELE(r eal vp);
916 if (error)
917 return (error);
918 } /* else ignore this error */
920 return (0);
921 }
923 /* ARGSUSED */
924 static int
925 xattr_dir_close(vnode_t *vp, int flags, int count, offset_t off, cred_t *cr,
922 xattr_dir_close(vnode_t *vpp, int flags, int count, offset_t off, cred_t *cr,
926 cal | er_context_t *ct)
927 {
928 vnode_t *real vp;
929 int error;
931 *
932 * The underlying FS may need this VOP call.
933 */
934 error = xattr_dir_realdir(vp, & ealvp, LOOKUP_XATTR, cr, ct);
935 if (error == 0) {
936 error = VOP_CLOSE(real vp, flags, count, off, cr, ct);
937 VN_RELE(real vp);
938 if (error)
939 return (error);
940 } /* else ignore this error */
942 return (0);
943 }
____unchanged_portion_onitted_
1372 /* ARGSUSED */

1373
1374
1375
1359

1361
1362

static int
xattr_dir_real vp(vnode_t *vp, vnode_t **realvp, caller_context_t *ct)

{

xattr_dir_t *xattr_dir;

mut ex_ent er (&p->v_| ock) ;
xattr_dir = vp->v_data;

new usr/src/uts/comon/fs/xattr.c

1363
1364
1365
1366
1367
1368
1376

1378
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1379

1390
1381 }

if (xattr_dir->xattr_realvp) {
*realvp = xattr_dir->xattr_real vp;
mut ex_exi t (& p->v_| ock);

return (0);
} else {

vnode_t *xdvp;
int error;

error = xattr_dir_realdir(vp, realvp, LOOKUP_XATTR, kcred, NULL);

mut ex_exi t (&p->v_| ock);
if ((error = xattr_dir_realdir(vp, &xdvp,
LOOKUP_XATTR, kcred, NULL)) == 0) {
/*

* verify we aren’t racing with another thread

* to find the xattr_real vp

*

/

nut ex_ent er (&vp->v_| ock) ;

if (xattr_dir->xattr r eal vp == NULL) {
xattr_dir- >xattr _realvp = xdvp;
*real vp = xdvp
mut ex eX|t(&vp >v_| ock);

} else {
*realvp = xattr_dir->xattr_real vp;
mut ex_exi t (& p->v_l ock);
VN_RELE(xdvp) ;

}
return (error);

}

__unchanged_portion_onitted_

1463 /* See vnode.c: fop_l ookup()

1464 int
1465 xattr
1466 {
1467

1468

1469

1470

1471

1472

1474

1476
1477

1479

1481
1482
1483
1484
1485
1486
1487
1488

1490
1491
1492
1495
1496
1493

_dir_l ookup(vnode_t *dvp, vnode_t **vpp, int flags, cred_t *cr)

int error = 0;

vnode_t *gfs_vp = NULL;
vnode_t *real _vp = NULL;
xattr_dir_t *xattr_dir;
struct pathnama pn;

char *nm="";

*vpp = NULL

if (dvp->v_type != VDIR && dvp->v_type ! = VREG
return (EINVAL);

nmut ex_ent er (&dvp- >v_| ock) ;

/*
* |f we're already in sysattr space, don’t allow creation
* of another |evel of sysattrs.
*/
if (dvp->v_flag & V_SYSATTR) {
mut ex_exi t (&Jvp->v_| ock);
return (EINVAL);
}

if (dvp->v_xattrdir !'= NULL) {
gfs_vp = dvp->v_xattrdir;
VN_HOLD(gf s_vp);
*vpp = dvp->v_xattrdir;
VN_HOLD(*vpp) ;

} else {

new usr/src/uts/comon/fs/xattr.c

1494
1495
1496

1498
1499
1500
1501
1502

1504
1505
1506
1507
1508
1509
1510
1511
1512

1514
1515

1517
1522
1523

1518
1519
1520
1521
1522
1523
1524
1525
1526

1528
1529
1530
1531
1532
1539
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1550

1545
1546
1552
1553

1548
1549
1550
1551

ulong_t val;
int xattrs_all owed = dvp->v_vfsp->vfs_flag & VFS_XATTR
int sysattrs_allowed = 1;

/*
* We have to drop the lock on dvp. gfs_dir_create wll
* grab it for a VN_HOLD.
*
/
mut ex_exi t (&vp->v_| ock);

/*

* |f dvp allows xattr creation, but not sysattr

* creation, return the real xattr dir vp. W can't

* use the vfs feature nask here because _PC _SATTR _ENABLED

* has vnode-level granularity (e.g. .zfs).

*

/
error = VOP_PATHCONF(dvp, _PC SATTR ENABLED, &val, cr, NULL);
if (error =0]| val == 0)

sysattrs_all owed = O;

if (!xattrs_allowed && !sysattrs_all owed)
return (EI NVAL);

if (!sysattrs_allowed) {
struct pathname pn;
char *nm = ;

error = pn_get(nm U O _SYSSPACE, &pn);
if (error)
return (error);
error = VOP_LOOKUP(dvp, nm vpp, &pn,
fl ags| LOOKUP_HAVE_SYSATTR DI R, rootvp, cr, NULL,
NULL, NULL);
pn_free(&pn) ;
return (error);

}

/*

* Note that we act as if we were given CREATE_XATTR DI R,
* but only for creation of the GFS directory.

*

gfs_vp = gfs_dir_create(
*vpp = gfs_dir_create(
sizeof (xattr_dir_t), dvp, xattr_dir_ops, xattr_dirents,
xattrdir_do_ino, NAXNAIVELEN NULL, xattr_| ookup_cb);
mut ex_ent er (&dvp- >v_| ock) ;
if (dvp->v_xattrdir I= NULL) {
/*
* W lost the race to create the xattr dir.
* Destroy this one, use the winner. W can't
* just call VN_RELE(*vpp), because the vnode
* Is only partially initialized.
*
/

gfs_dir_t *dp
gfs_dir_t *dp

= gf s_vp->v_data;
= (*vpp)->v_dat a;
ASSERT(gf s_vp->v_count == 1);
vn_free(gfs_vp);
ASSERT((*vpp) - >v_count == 1);
vn_free(*vpp);

nmut ex_dest r oy(&dp- >gf sd_I ock) ;
knEmfree(dp >gf sd_static,

dp->gf sd_nstatic * si zeof (gfs_dirent_t));
kmem free(dp, dp->gfsd_file.gfs_size);

new usr/src/uts/comon/fs/xattr.c

1553
1554
1555
1556
1563
1557
1558

1560
1561
1567
1568
1562
1563
1564
1570
1571
1565
1566
1567

1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595

1597
1598
1576
1599 }

/
There is an inplied VN _HOLD(dvp) here. W should
be doing a VN _RELE(dvp) to clean up the reference
fromgfs_vp, and then a VN _HOLD(dvp) for the new
from*vpp, and then a VN _HOLD(dvp) for the new
reference. |Instead, we just |eave the count alone.

/

* Ok kR kb ¥

gfs_vp = dvp->v_xattrdir;
VN HC]_D(gfs vp);
*vpp = dvp->v_xattrdir;
VN_HOLD(*vpp) ;

} else {

gf s_vp->v_flag | = (V_XATTRDI R V_SYSATTR) ;
dvp->v_xattrdir = gf _Vvp;

(*vpp)->v_flag | = (V_XATTRDI R| V_SYSATTR) ;
dvp->v_xattrdir = *vpp;

}
mut ex_exi t (&Jvp->v_I ock);

~

—hQ) Kk ok ok kK ok * *

In order to make this nodule relatively transparent
to the underlying filesystem we need to |ookup the
xattr dir in the lower filesystemand (if found)
keep a hold on it for as long as there is a hold
on the gfs_vp we’'re about to return. This hold is
rel eased in xattr_dir_inactive.

-~

tr_dir = gfs_vp->v_data;
((dvp->v_vfsp->vfs_flag & VFS , XATTR) &&
(xattr_ d|r->xattr real vp == NULL))
error = pn_| get(nn] U O_SYSSPACE, &pn);
if (error ==)
error VOP_LOOKUP(dvp, nm &real _vp, &pn,
fl ags| LOOKUP_HAVE_SYSATTR DI R, rootvp, cr, NULL,
NULL, NULL);

pn_free(&pn) ;

}
if (error == 0) {
mut ex_ent er (&gf s_vp->v_I ock) ;
if (xattr_dir->xattr_realvp == NULL)
xattr_dir->xattr_real vp = real _vp;

- X

el se
VN_RELE(real _vp);
mut ex_exi t (&gfs_vp->v Iock)

}
}
*vpp = gfs_vp;
return (0);

return (error);

__unchanged_portion_omtted_

