
new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_client.c 1

**
 17940 Tue Aug 31 13:02:02 2010
new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_client.c
6879933 Let SMBFS support extensible attributes per. PSARC 2007/315
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
24 *
25 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T.
26 * All rights reserved.
27 */

29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/thread.h>
32 #include <sys/t_lock.h>
33 #include <sys/time.h>
34 #include <sys/vnode.h>
35 #include <sys/vfs.h>
36 #include <sys/errno.h>
37 #include <sys/buf.h>
38 #include <sys/stat.h>
39 #include <sys/cred.h>
40 #include <sys/kmem.h>
41 #include <sys/debug.h>
42 #include <sys/vmsystm.h>
43 #include <sys/flock.h>
44 #include <sys/share.h>
45 #include <sys/cmn_err.h>
46 #include <sys/tiuser.h>
47 #include <sys/sysmacros.h>
48 #include <sys/callb.h>
49 #include <sys/acl.h>
50 #include <sys/kstat.h>
51 #include <sys/signal.h>
52 #include <sys/list.h>
53 #include <sys/zone.h>

55 #include <netsmb/smb.h>
56 #include <netsmb/smb_conn.h>
57 #include <netsmb/smb_subr.h>

59 #include <smbfs/smbfs.h>
60 #include <smbfs/smbfs_node.h>
61 #include <smbfs/smbfs_subr.h>

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_client.c 2

63 #include <vm/hat.h>
64 #include <vm/as.h>
65 #include <vm/page.h>
66 #include <vm/pvn.h>
67 #include <vm/seg.h>
68 #include <vm/seg_map.h>
69 #include <vm/seg_vn.h>

71 static int smbfs_getattr_cache(vnode_t *, smbfattr_t *);
72 static void smbfattr_to_vattr(vnode_t *, smbfattr_t *, vattr_t *);
73 static void smbfattr_to_xvattr(vnode_t *, smbfattr_t *, vattr_t *);
71 static int smbfs_getattr_cache(vnode_t *, struct smbfattr *);
72 static int smbfattr_to_vattr(vnode_t *, struct smbfattr *,
73 struct vattr *);

75 /*
76 * The following code provide zone support in order to perform an action
77 * for each smbfs mount in a zone. This is also where we would add
78 * per-zone globals and kernel threads for the smbfs module (since
79 * they must be terminated by the shutdown callback).
80 */

82 struct smi_globals {
83 kmutex_t smg_lock; /* lock protecting smg_list */
84 list_t smg_list; /* list of SMBFS mounts in zone */
85 boolean_t smg_destructor_called;
86 };

______unchanged_portion_omitted_

404 /*
405 * Return either cached or remote attributes. If get remote attr
406 * use them to check and invalidate caches, then cache the new attributes.
407 *
408 * From NFS: nfsgetattr()
409 */
410 int
411 smbfsgetattr(vnode_t *vp, struct vattr *vap, cred_t *cr)
412 {
413 struct smbfattr fa;
414 smbmntinfo_t *smi;
415 uint_t mask;
416 int error;

418 smi = VTOSMI(vp);

420 ASSERT(curproc->p_zone == smi->smi_zone_ref.zref_zone);

422 /*
423 * If asked for UID or GID, update n_uid, n_gid.
424 */
425 mask = AT_ALL;
426 if (vap->va_mask & (AT_UID | AT_GID)) {
427 if (smi->smi_flags & SMI_ACL)
428 (void) smbfs_acl_getids(vp, cr);
429 /* else leave as set in make_smbnode */
430 } else {
431 mask &= ~(AT_UID | AT_GID);
432 }

434 /*
435 * If we’ve got cached attributes, just use them;
436 * otherwise go to the server to get attributes,
437 * which will update the cache in the process.
438 */
439 error = smbfs_getattr_cache(vp, &fa);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_client.c 3

440 if (error)
441 error = smbfs_getattr_otw(vp, &fa, cr);
442 if (error)
443 return (error);
444 vap->va_mask |= mask;

446 /*
447 * Re. client’s view of the file size, see:
448 * smbfs_attrcache_fa, smbfs_getattr_otw
449 */
450 smbfattr_to_vattr(vp, &fa, vap);
451 if (vap->va_mask & AT_XVATTR)
452 smbfattr_to_xvattr(vp, &fa, vap);
453
454 return (0);
450 error = smbfattr_to_vattr(vp, &fa, vap);
451 vap->va_mask = mask;

453 return (error);
455 }

458 /*
459 * Convert SMB over the wire attributes to vnode form.
460 * Returns 0 for success, error if failed (overflow, etc).
461 * From NFS: nattr_to_vattr()
462 */
463 void
462 int
464 smbfattr_to_vattr(vnode_t *vp, struct smbfattr *fa, struct vattr *vap)
465 {
466 struct smbnode *np = VTOSMB(vp);

467 /* Set va_mask in caller */

468 /*
469 * Take type, mode, uid, gid from the smbfs node,
470 * which has have been updated by _getattr_otw.
471 */
472 vap->va_type = vp->v_type;
473 vap->va_mode = np->n_mode;

475 vap->va_uid = np->n_uid;
476 vap->va_gid = np->n_gid;

478 vap->va_fsid = vp->v_vfsp->vfs_dev;
479 vap->va_nodeid = np->n_ino;
480 vap->va_nlink = 1;

482 /*
483 * Difference from NFS here: We cache attributes as
484 * reported by the server, so r_attr.fa_size is the
485 * server’s idea of the file size. This is called
486 * for getattr, so we want to return the client’s
487 * idea of the file size. NFS deals with that in
488 * nfsgetattr(), the equivalent of our caller.
489 */
490 vap->va_size = np->r_size;

492 /*
493 * Times. Note, already converted from NT to
494 * Unix form (in the unmarshalling code).
495 */
496 vap->va_atime = fa->fa_atime;
497 vap->va_mtime = fa->fa_mtime;
498 vap->va_ctime = fa->fa_ctime;

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_client.c 4

500 /*
501 * rdev, blksize, seq are made up.
502 * va_nblocks is 512 byte blocks.
503 */
504 vap->va_rdev = vp->v_rdev;
505 vap->va_blksize = MAXBSIZE;
506 vap->va_nblocks = (fsblkcnt64_t)btod(np->r_attr.fa_allocsz);
507 vap->va_seq = 0;
508 }

510 /*
511 * smbfattr_to_xvattr: like smbfattr_to_vattr but for
512 * Extensible system attributes (PSARC 2007/315)
513 */
514 static void
515 smbfattr_to_xvattr(vnode_t *vp, struct smbfattr *fa, struct vattr *vap)
516 {
517 struct smbnode *np = VTOSMB(vp);
518 xvattr_t *xvap = (xvattr_t *)vap; /* *vap may be xvattr_t */
519 xoptattr_t *xoap = NULL;

521 if ((xoap = xva_getxoptattr(xvap)) == NULL)
522 return;

524 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
525 xoap->xoa_createtime = fa->fa_createtime;
526 XVA_SET_RTN(xvap, XAT_CREATETIME);
527 }

529 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
530 xoap->xoa_archive =
531 ((fa->fa_attr & SMB_FA_ARCHIVE) != 0);
532 XVA_SET_RTN(xvap, XAT_ARCHIVE);
533 }

535 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
536 xoap->xoa_system =
537 ((fa->fa_attr & SMB_FA_SYSTEM) != 0);
538 XVA_SET_RTN(xvap, XAT_SYSTEM);
539 }

541 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
542 xoap->xoa_readonly =
543 ((fa->fa_attr & SMB_FA_RDONLY) != 0);
544 XVA_SET_RTN(xvap, XAT_READONLY);
545 }

547 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
548 xoap->xoa_hidden =
549 ((fa->fa_attr & SMB_FA_HIDDEN) != 0);
550 XVA_SET_RTN(xvap, XAT_HIDDEN);
551 }
510 return (0);
552 }

554 /*
555 * SMB Client initialization and cleanup.
556 * Much of it is per-zone now.
557 */

560 /* ARGSUSED */
561 static void *
562 smbfs_zone_init(zoneid_t zoneid)

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_client.c 5

563 {
564 smi_globals_t *smg;

566 smg = kmem_alloc(sizeof (*smg), KM_SLEEP);
567 mutex_init(&smg->smg_lock, NULL, MUTEX_DEFAULT, NULL);
568 list_create(&smg->smg_list, sizeof (smbmntinfo_t),
569 offsetof(smbmntinfo_t, smi_zone_node));
570 smg->smg_destructor_called = B_FALSE;
571 return (smg);
572 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vfsops.c 1

**
 24755 Tue Aug 31 13:02:03 2010
new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vfsops.c
6879933 Let SMBFS support extensible attributes per. PSARC 2007/315
**
______unchanged_portion_omitted_

331 /*
332 * smbfs mount vfsop
333 * Set up mount info record and attach it to vfs struct.
334 */
335 static int
336 smbfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
337 {
338 char *data = uap->dataptr;
339 int error;
340 smbnode_t *rtnp = NULL; /* root of this fs */
341 smbmntinfo_t *smi = NULL;
342 dev_t smbfs_dev;
343 int version;
344 int devfd;
345 zone_t *zone = curproc->p_zone;
346 zone_t *mntzone = NULL;
347 smb_share_t *ssp = NULL;
348 smb_cred_t scred;
349 int flags, sec;

351 STRUCT_DECL(smbfs_args, args); /* smbfs mount arguments */

353 if ((error = secpolicy_fs_mount(cr, mvp, vfsp)) != 0)
354 return (error);

356 if (mvp->v_type != VDIR)
357 return (ENOTDIR);

359 /*
360 * get arguments
361 *
362 * uap->datalen might be different from sizeof (args)
363 * in a compatible situation.
364 */
365 STRUCT_INIT(args, get_udatamodel());
366 bzero(STRUCT_BUF(args), SIZEOF_STRUCT(smbfs_args, DATAMODEL_NATIVE));
367 if (copyin(data, STRUCT_BUF(args), MIN(uap->datalen,
368 SIZEOF_STRUCT(smbfs_args, DATAMODEL_NATIVE))))
369 return (EFAULT);

371 /*
372 * Check mount program version
373 */
374 version = STRUCT_FGET(args, version);
375 if (version != SMBFS_VERSION) {
376 cmn_err(CE_WARN, "mount version mismatch:"
377 " kernel=%d, mount=%d\n",
378 SMBFS_VERSION, version);
379 return (EINVAL);
380 }

382 /*
383 * Deal with re-mount requests.
384 */
385 if (uap->flags & MS_REMOUNT) {
386 cmn_err(CE_WARN, "MS_REMOUNT not implemented");
387 return (ENOTSUP);
388 }

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vfsops.c 2

390 /*
391 * Check for busy
392 */
393 mutex_enter(&mvp->v_lock);
394 if (!(uap->flags & MS_OVERLAY) &&
395 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
396 mutex_exit(&mvp->v_lock);
397 return (EBUSY);
398 }
399 mutex_exit(&mvp->v_lock);

401 /*
402 * Get the "share" from the netsmb driver (ssp).
403 * It is returned with a "ref" (hold) for us.
404 * Release this hold: at errout below, or in
405 * smbfs_freevfs().
406 */
407 devfd = STRUCT_FGET(args, devfd);
408 error = smb_dev2share(devfd, &ssp);
409 if (error) {
410 cmn_err(CE_WARN, "invalid device handle %d (%d)\n",
411 devfd, error);
412 return (error);
413 }

415 /*
416 * Use "goto errout" from here on.
417 * See: ssp, smi, rtnp, mntzone
418 */

420 /*
421 * Determine the zone we’re being mounted into.
422 */
423 zone_hold(mntzone = zone); /* start with this assumption */
424 if (getzoneid() == GLOBAL_ZONEID) {
425 zone_rele(mntzone);
426 mntzone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
427 ASSERT(mntzone != NULL);
428 if (mntzone != zone) {
429 error = EBUSY;
430 goto errout;
431 }
432 }

434 /*
435 * Stop the mount from going any further if the zone is going away.
436 */
437 if (zone_status_get(mntzone) >= ZONE_IS_SHUTTING_DOWN) {
438 error = EBUSY;
439 goto errout;
440 }

442 /*
443 * On a Trusted Extensions client, we may have to force read-only
444 * for read-down mounts.
445 */
446 if (is_system_labeled()) {
447 void *addr;
448 int ipvers = 0;
449 struct smb_vc *vcp;

451 vcp = SSTOVC(ssp);
452 addr = smb_vc_getipaddr(vcp, &ipvers);
453 error = smbfs_mount_label_policy(vfsp, addr, ipvers, cr);

455 if (error > 0)

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vfsops.c 3

456 goto errout;

458 if (error == -1) {
459 /* change mount to read-only to prevent write-down */
460 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
461 }
462 }

464 /* Prevent unload. */
465 atomic_inc_32(&smbfs_mountcount);

467 /*
468 * Create a mount record and link it to the vfs struct.
469 * No more possiblities for errors from here on.
470 * Tear-down of this stuff is in smbfs_free_smi()
471 *
472 * Compare with NFS: nfsrootvp()
473 */
474 smi = kmem_zalloc(sizeof (*smi), KM_SLEEP);

476 mutex_init(&smi->smi_lock, NULL, MUTEX_DEFAULT, NULL);
477 cv_init(&smi->smi_statvfs_cv, NULL, CV_DEFAULT, NULL);

479 rw_init(&smi->smi_hash_lk, NULL, RW_DEFAULT, NULL);
480 smbfs_init_hash_avl(&smi->smi_hash_avl);

482 smi->smi_share = ssp;
483 ssp = NULL;

485 /*
486 * Convert the anonymous zone hold acquired via zone_hold() above
487 * into a zone reference.
488 */
489 zone_init_ref(&smi->smi_zone_ref);
490 zone_hold_ref(mntzone, &smi->smi_zone_ref, ZONE_REF_SMBFS);
491 zone_rele(mntzone);
492 mntzone = NULL;

494 /*
495 * Initialize option defaults
496 */
497 smi->smi_flags = SMI_LLOCK;
498 smi->smi_acregmin = SEC2HR(SMBFS_ACREGMIN);
499 smi->smi_acregmax = SEC2HR(SMBFS_ACREGMAX);
500 smi->smi_acdirmin = SEC2HR(SMBFS_ACDIRMIN);
501 smi->smi_acdirmax = SEC2HR(SMBFS_ACDIRMAX);

503 /*
504 * All "generic" mount options have already been
505 * handled in vfs.c:domount() - see mntopts stuff.
506 * Query generic options using vfs_optionisset().
507 */
508 if (vfs_optionisset(vfsp, MNTOPT_INTR, NULL))
509 smi->smi_flags |= SMI_INT;
510 if (vfs_optionisset(vfsp, MNTOPT_ACL, NULL))
511 smi->smi_flags |= SMI_ACL;

513 /*
514 * Get the mount options that come in as smbfs_args,
515 * starting with args.flags (SMBFS_MF_xxx)
516 */
517 flags = STRUCT_FGET(args, flags);
518 smi->smi_uid = STRUCT_FGET(args, uid);
519 smi->smi_gid = STRUCT_FGET(args, gid);
520 smi->smi_fmode = STRUCT_FGET(args, file_mode) & 0777;
521 smi->smi_dmode = STRUCT_FGET(args, dir_mode) & 0777;

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vfsops.c 4

523 /*
524 * Hande the SMBFS_MF_xxx flags.
525 */
526 if (flags & SMBFS_MF_NOAC)
527 smi->smi_flags |= SMI_NOAC;
528 if (flags & SMBFS_MF_ACREGMIN) {
529 sec = STRUCT_FGET(args, acregmin);
530 if (sec < 0 || sec > SMBFS_ACMINMAX)
531 sec = SMBFS_ACMINMAX;
532 smi->smi_acregmin = SEC2HR(sec);
533 }
534 if (flags & SMBFS_MF_ACREGMAX) {
535 sec = STRUCT_FGET(args, acregmax);
536 if (sec < 0 || sec > SMBFS_ACMAXMAX)
537 sec = SMBFS_ACMAXMAX;
538 smi->smi_acregmax = SEC2HR(sec);
539 }
540 if (flags & SMBFS_MF_ACDIRMIN) {
541 sec = STRUCT_FGET(args, acdirmin);
542 if (sec < 0 || sec > SMBFS_ACMINMAX)
543 sec = SMBFS_ACMINMAX;
544 smi->smi_acdirmin = SEC2HR(sec);
545 }
546 if (flags & SMBFS_MF_ACDIRMAX) {
547 sec = STRUCT_FGET(args, acdirmax);
548 if (sec < 0 || sec > SMBFS_ACMAXMAX)
549 sec = SMBFS_ACMAXMAX;
550 smi->smi_acdirmax = SEC2HR(sec);
551 }

553 /*
554 * Get attributes of the remote file system,
555 * i.e. ACL support, named streams, etc.
556 */
557 smb_credinit(&scred, cr);
558 error = smbfs_smb_qfsattr(smi->smi_share, &smi->smi_fsa, &scred);
559 smb_credrele(&scred);
560 if (error) {
561 SMBVDEBUG("smbfs_smb_qfsattr error %d\n", error);
562 }

564 /*
565 * We enable XATTR by default (via smbfs_mntopts)
566 * but if the share does not support named streams,
567 * force the NOXATTR option (also clears XATTR).
568 * Caller will set or clear VFS_XATTR after this.
569 */
570 if ((smi->smi_fsattr & FILE_NAMED_STREAMS) == 0)
571 vfs_setmntopt(vfsp, MNTOPT_NOXATTR, NULL, 0);

573 /*
574 * Ditto ACLs (disable if not supported on this share)
575 */
576 if ((smi->smi_fsattr & FILE_PERSISTENT_ACLS) == 0) {
577 vfs_setmntopt(vfsp, MNTOPT_NOACL, NULL, 0);
578 smi->smi_flags &= ~SMI_ACL;
579 }

581 /*
582 * Assign a unique device id to the mount
583 */
584 mutex_enter(&smbfs_minor_lock);
585 do {
586 smbfs_minor = (smbfs_minor + 1) & MAXMIN32;
587 smbfs_dev = makedevice(smbfs_major, smbfs_minor);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vfsops.c 5

588 } while (vfs_devismounted(smbfs_dev));
589 mutex_exit(&smbfs_minor_lock);

591 vfsp->vfs_dev = smbfs_dev;
592 vfs_make_fsid(&vfsp->vfs_fsid, smbfs_dev, smbfsfstyp);
593 vfsp->vfs_data = (caddr_t)smi;
594 vfsp->vfs_fstype = smbfsfstyp;
595 vfsp->vfs_bsize = MAXBSIZE;
596 vfsp->vfs_bcount = 0;

598 smi->smi_vfsp = vfsp;
599 smbfs_zonelist_add(smi); /* undo in smbfs_freevfs */

601 /* PSARC 2007/227 VFS Feature Registration */
602 vfs_set_feature(vfsp, VFSFT_XVATTR);
603 vfs_set_feature(vfsp, VFSFT_SYSATTR_VIEWS);

605 /*
606 * Create the root vnode, which we need in unmount
607 * for the call to smbfs_check_table(), etc.
608 * Release this hold in smbfs_unmount.
609 */
610 rtnp = smbfs_node_findcreate(smi, "\\", 1, NULL, 0, 0,
611 &smbfs_fattr0);
612 ASSERT(rtnp != NULL);
613 rtnp->r_vnode->v_type = VDIR;
614 rtnp->r_vnode->v_flag |= VROOT;
615 smi->smi_root = rtnp;

617 /*
618 * NFS does other stuff here too:
619 * async worker threads
620 * init kstats
621 *
622 * End of code from NFS nfsrootvp()
623 */
624 return (0);

626 errout:
627 vfsp->vfs_data = NULL;
628 if (smi != NULL)
629 smbfs_free_smi(smi);

631 if (mntzone != NULL)
632 zone_rele(mntzone);

634 if (ssp != NULL)
635 smb_share_rele(ssp);

637 return (error);
638 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 1

**
 78744 Tue Aug 31 13:02:04 2010
new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c
6879933 Let SMBFS support extensible attributes per. PSARC 2007/315
**
______unchanged_portion_omitted_

97 /*
98 * Turning this on causes nodes to be created in the cache
99 * during directory listings, normally avoiding a second
100 * OtW attribute fetch just after a readdir.
101 */
102 int smbfs_fastlookup = 1;

104 /* local static function defines */

106 static int smbfslookup_cache(vnode_t *, char *, int, vnode_t **,
107 cred_t *);
108 static int smbfslookup(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr,
109 int cache_ok, caller_context_t *);
110 static int smbfsrename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm,
111 cred_t *cr, caller_context_t *);
112 static int smbfssetattr(vnode_t *, struct vattr *, int, cred_t *);
113 static int smbfs_accessx(void *, int, cred_t *);
114 static int smbfs_readvdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
115 caller_context_t *);
116 static void smbfs_rele_fid(smbnode_t *, struct smb_cred *);
117 static uint32_t xvattr_to_dosattr(smbnode_t *, struct vattr *);

119 /*
120 * These are the vnode ops routines which implement the vnode interface to
121 * the networked file system. These routines just take their parameters,
122 * make them look networkish by putting the right info into interface structs,
123 * and then calling the appropriate remote routine(s) to do the work.
124 *
125 * Note on directory name lookup cacheing: If we detect a stale fhandle,
126 * we purge the directory cache relative to that vnode. This way, the
127 * user won’t get burned by the cache repeatedly. See <smbfs/smbnode.h> for
128 * more details on smbnode locking.
129 */

131 static int smbfs_open(vnode_t **, int, cred_t *, caller_context_t *);
132 static int smbfs_close(vnode_t *, int, int, offset_t, cred_t *,
133 caller_context_t *);
134 static int smbfs_read(vnode_t *, struct uio *, int, cred_t *,
135 caller_context_t *);
136 static int smbfs_write(vnode_t *, struct uio *, int, cred_t *,
137 caller_context_t *);
138 static int smbfs_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *,
139 caller_context_t *);
140 static int smbfs_getattr(vnode_t *, struct vattr *, int, cred_t *,
141 caller_context_t *);
142 static int smbfs_setattr(vnode_t *, struct vattr *, int, cred_t *,
143 caller_context_t *);
144 static int smbfs_access(vnode_t *, int, int, cred_t *, caller_context_t *);
145 static int smbfs_fsync(vnode_t *, int, cred_t *, caller_context_t *);
146 static void smbfs_inactive(vnode_t *, cred_t *, caller_context_t *);
147 static int smbfs_lookup(vnode_t *, char *, vnode_t **, struct pathname *,
148 int, vnode_t *, cred_t *, caller_context_t *,
149 int *, pathname_t *);
150 static int smbfs_create(vnode_t *, char *, struct vattr *, enum vcexcl,
151 int, vnode_t **, cred_t *, int, caller_context_t *,
152 vsecattr_t *);
153 static int smbfs_remove(vnode_t *, char *, cred_t *, caller_context_t *,
154 int);
155 static int smbfs_rename(vnode_t *, char *, vnode_t *, char *, cred_t *,

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 2

156 caller_context_t *, int);
157 static int smbfs_mkdir(vnode_t *, char *, struct vattr *, vnode_t **,
158 cred_t *, caller_context_t *, int, vsecattr_t *);
159 static int smbfs_rmdir(vnode_t *, char *, vnode_t *, cred_t *,
160 caller_context_t *, int);
161 static int smbfs_readdir(vnode_t *, struct uio *, cred_t *, int *,
162 caller_context_t *, int);
163 static int smbfs_rwlock(vnode_t *, int, caller_context_t *);
164 static void smbfs_rwunlock(vnode_t *, int, caller_context_t *);
165 static int smbfs_seek(vnode_t *, offset_t, offset_t *, caller_context_t *);
166 static int smbfs_frlock(vnode_t *, int, struct flock64 *, int, offset_t,
167 struct flk_callback *, cred_t *, caller_context_t *);
168 static int smbfs_space(vnode_t *, int, struct flock64 *, int, offset_t,
169 cred_t *, caller_context_t *);
170 static int smbfs_pathconf(vnode_t *, int, ulong_t *, cred_t *,
171 caller_context_t *);
172 static int smbfs_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
173 caller_context_t *);
174 static int smbfs_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
175 caller_context_t *);
176 static int smbfs_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *,
177 caller_context_t *);

179 /* Dummy function to use until correct function is ported in */
180 int noop_vnodeop() {
181 return (0);
182 }

______unchanged_portion_omitted_

839 /*
840 * Return either cached or remote attributes. If get remote attr
841 * use them to check and invalidate caches, then cache the new attributes.
841 *
842 * XXX
843 * This op should eventually support PSARC 2007/315, Extensible Attribute
844 * Interfaces, for richer metadata.
842 */
843 /* ARGSUSED */
844 static int
845 smbfs_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
846 caller_context_t *ct)
847 {
848 smbnode_t *np;
849 smbmntinfo_t *smi;

851 smi = VTOSMI(vp);

853 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
854 return (EIO);

856 if (smi->smi_flags & SMI_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
857 return (EIO);

859 /*
860 * If it has been specified that the return value will
861 * just be used as a hint, and we are only being asked
862 * for size, fsid or rdevid, then return the client’s
863 * notion of these values without checking to make sure
864 * that the attribute cache is up to date.
865 * The whole point is to avoid an over the wire GETATTR
866 * call.
867 */
868 np = VTOSMB(vp);
869 if (flags & ATTR_HINT) {
870 if (vap->va_mask ==

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 3

871 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) {
872 mutex_enter(&np->r_statelock);
873 if (vap->va_mask | AT_SIZE)
874 vap->va_size = np->r_size;
875 if (vap->va_mask | AT_FSID)
876 vap->va_fsid = vp->v_vfsp->vfs_dev;
877 if (vap->va_mask | AT_RDEV)
878 vap->va_rdev = vp->v_rdev;
879 mutex_exit(&np->r_statelock);
880 return (0);
881 }
882 }

884 return (smbfsgetattr(vp, vap, cr));
885 }

887 /* smbfsgetattr() in smbfs_client.c */

892 /*
893 * XXX
894 * This op should eventually support PSARC 2007/315, Extensible Attribute
895 * Interfaces, for richer metadata.
896 */
889 /*ARGSUSED4*/
890 static int
891 smbfs_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
892 caller_context_t *ct)
893 {
894 vfs_t *vfsp;
895 smbmntinfo_t *smi;
896 int error;
897 uint_t mask;
898 struct vattr oldva;

900 vfsp = vp->v_vfsp;
901 smi = VFTOSMI(vfsp);

903 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
904 return (EIO);

906 if (smi->smi_flags & SMI_DEAD || vfsp->vfs_flag & VFS_UNMOUNTED)
907 return (EIO);

909 mask = vap->va_mask;
910 if (mask & AT_NOSET)
911 return (EINVAL);

913 if (vfsp->vfs_flag & VFS_RDONLY)
914 return (EROFS);

916 /*
917 * This is a _local_ access check so that only the owner of
918 * this mount can set attributes. With ACLs enabled, the
919 * file owner can be different from the mount owner, and we
920 * need to check the _mount_ owner here. See _access_rwx
921 */
922 bzero(&oldva, sizeof (oldva));
923 oldva.va_mask = AT_TYPE | AT_MODE;
924 error = smbfsgetattr(vp, &oldva, cr);
925 if (error)
926 return (error);
927 oldva.va_mask |= AT_UID | AT_GID;
928 oldva.va_uid = smi->smi_uid;
929 oldva.va_gid = smi->smi_gid;

931 error = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 4

932 smbfs_accessx, vp);
933 if (error)
934 return (error);

936 if (mask & (AT_UID | AT_GID)) {
937 if (smi->smi_flags & SMI_ACL)
938 error = smbfs_acl_setids(vp, vap, cr);
939 else
940 error = ENOSYS;
941 if (error != 0) {
942 SMBVDEBUG("error %d seting UID/GID on %s",
943 error, VTOSMB(vp)->n_rpath);
944 /*
945 * It might be more correct to return the
946 * error here, but that causes complaints
947 * when root extracts a cpio archive, etc.
948 * So ignore this error, and go ahead with
949 * the rest of the setattr work.
950 */
951 }
952 }

954 return (smbfssetattr(vp, vap, flags, cr));
955 }

957 /*
958 * Mostly from Darwin smbfs_setattr()
959 * but then modified a lot.
960 */
961 /* ARGSUSED */
962 static int
963 smbfssetattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr)
964 {
965 int error = 0;
966 smbnode_t *np = VTOSMB(vp);
967 uint_t mask = vap->va_mask;
968 struct timespec *mtime, *atime;
969 struct smb_cred scred;
970 int cerror, modified = 0;
971 unsigned short fid;
972 int have_fid = 0;
973 uint32_t rights = 0;
974 uint32_t dosattr = 0;

976 ASSERT(curproc->p_zone == VTOSMI(vp)->smi_zone_ref.zref_zone);

978 /*
979 * There are no settable attributes on the XATTR dir,
980 * so just silently ignore these. On XATTR files,
981 * you can set the size but nothing else.
982 */
983 if (vp->v_flag & V_XATTRDIR)
984 return (0);
985 if (np->n_flag & N_XATTR) {
986 if (mask & AT_TIMES)
987 SMBVDEBUG("ignore set time on xattr\n");
988 mask &= AT_SIZE;
989 }

991 /*
992 * If our caller is trying to set multiple attributes, they
993 * can make no assumption about what order they are done in.
994 * Here we try to do them in order of decreasing likelihood
995 * of failure, just to minimize the chance we’ll wind up
996 * with a partially complete request.
997 */

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 5

999 /* Shared lock for (possible) n_fid use. */
1000 if (smbfs_rw_enter_sig(&np->r_lkserlock, RW_READER, SMBINTR(vp)))
1001 return (EINTR);
1002 smb_credinit(&scred, cr);

1004 /*
1005 * If the caller has provided extensible attributes,
1006 * map those into DOS attributes supported by SMB.
1007 * Note: zero means "no change".
1008 */
1009 if (mask & AT_XVATTR)
1010 dosattr = xvattr_to_dosattr(np, vap);

1012 /*
1013 * Will we need an open handle for this setattr?
1014 * If so, what rights will we need?
1015 */
1016 if (dosattr || (mask & (AT_ATIME | AT_MTIME))) {
1015 if (mask & (AT_ATIME | AT_MTIME)) {
1017 rights |=
1018 SA_RIGHT_FILE_WRITE_ATTRIBUTES;
1019 }
1020 if (mask & AT_SIZE) {
1021 rights |=
1022 SA_RIGHT_FILE_WRITE_DATA |
1023 SA_RIGHT_FILE_APPEND_DATA;
1024 }

1026 /*
1027 * Only SIZE really requires a handle, but it’s
1028 * simpler and more reliable to set via a handle.
1029 * Some servers like NT4 won’t set times by path.
1030 * Also, we’re usually setting everything anyway.
1031 */
1032 if (rights != 0) {
1031 if (mask & (AT_SIZE | AT_ATIME | AT_MTIME)) {
1033 error = smbfs_smb_tmpopen(np, rights, &scred, &fid);
1034 if (error) {
1035 SMBVDEBUG("error %d opening %s\n",
1036 error, np->n_rpath);
1037 goto out;
1038 }
1039 have_fid = 1;
1040 }

1042 /*
1043 * If the server supports the UNIX extensions, right here is where
1044 * we’d support changes to uid, gid, mode, and possibly va_flags.
1045 * For now we claim to have made any such changes.
1046 */

1048 if (mask & AT_SIZE) {
1049 /*
1050 * If the new file size is less than what the client sees as
1051 * the file size, then just change the size and invalidate
1052 * the pages.
1053 * I am commenting this code at present because the function
1054 * smbfs_putapage() is not yet implemented.
1055 */

1057 /*
1058 * Set the file size to vap->va_size.
1059 */
1060 ASSERT(have_fid);
1061 error = smbfs_smb_setfsize(np, fid, vap->va_size, &scred);

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 6

1062 if (error) {
1063 SMBVDEBUG("setsize error %d file %s\n",
1064 error, np->n_rpath);
1065 } else {
1066 /*
1067 * Darwin had code here to zero-extend.
1068 * Tests indicate the server will zero-fill,
1069 * so looks like we don’t need to do this.
1070 * Good thing, as this could take forever.
1071 *
1072 * XXX: Reportedly, writing one byte of zero
1073 * at the end offset avoids problems here.
1074 */
1075 mutex_enter(&np->r_statelock);
1076 np->r_size = vap->va_size;
1077 mutex_exit(&np->r_statelock);
1078 modified = 1;
1079 }
1080 }

1082 /*
1083 * XXX: When Solaris has create_time, set that too.
1084 * Note: create_time is different from ctime.
1085 */
1086 mtime = ((mask & AT_MTIME) ? &vap->va_mtime : 0);
1087 atime = ((mask & AT_ATIME) ? &vap->va_atime : 0);

1089 if (dosattr || mtime || atime) {
1088 if (mtime || atime) {
1090 /*
1091 * Always use the handle-based set attr call now.
1092 * Not trying to set DOS attributes here so pass zero.
1093 */
1094 ASSERT(have_fid);
1095 error = smbfs_smb_setfattr(np, fid,
1096 dosattr, mtime, atime, &scred);
1095 0, mtime, atime, &scred);
1097 if (error) {
1098 SMBVDEBUG("set times error %d file %s\n",
1099 error, np->n_rpath);
1100 } else {
1101 modified = 1;
1102 }
1103 }

1105 out:
1106 if (modified) {
1107 /*
1108 * Invalidate attribute cache in case the server
1109 * doesn’t set exactly the attributes we asked.
1110 */
1111 smbfs_attrcache_remove(np);
1112 }

1114 if (have_fid) {
1115 cerror = smbfs_smb_tmpclose(np, fid, &scred);
1116 if (cerror)
1117 SMBVDEBUG("error %d closing %s\n",
1118 cerror, np->n_rpath);
1119 }

1121 smb_credrele(&scred);
1122 smbfs_rw_exit(&np->r_lkserlock);

1124 return (error);
1125 }

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 7

1127 /*
1128 * Helper function for extensible system attributes (PSARC 2007/315)
1129 * Compute the DOS attribute word to pass to _setfattr (see above).
1130 * This returns zero IFF no change is being made to attributes.
1131 * Otherwise return the new attributes or SMB_EFA_NORMAL.
1132 */
1133 static uint32_t
1134 xvattr_to_dosattr(smbnode_t *np, struct vattr *vap)
1135 {
1136 xvattr_t *xvap = (xvattr_t *)vap;
1137 xoptattr_t *xoap = NULL;
1138 uint32_t attr = np->r_attr.fa_attr;
1139 boolean_t anyset = B_FALSE;

1141 if ((xoap = xva_getxoptattr(xvap)) == NULL)
1142 return (0);

1144 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
1145 if (xoap->xoa_archive)
1146 attr |= SMB_FA_ARCHIVE;
1147 else
1148 attr &= ~SMB_FA_ARCHIVE;
1149 XVA_SET_RTN(xvap, XAT_ARCHIVE);
1150 anyset = B_TRUE;
1151 }
1152 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
1153 if (xoap->xoa_system)
1154 attr |= SMB_FA_SYSTEM;
1155 else
1156 attr &= ~SMB_FA_SYSTEM;
1157 XVA_SET_RTN(xvap, XAT_SYSTEM);
1158 anyset = B_TRUE;
1159 }
1160 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
1161 if (xoap->xoa_readonly)
1162 attr |= SMB_FA_RDONLY;
1163 else
1164 attr &= ~SMB_FA_RDONLY;
1165 XVA_SET_RTN(xvap, XAT_READONLY);
1166 anyset = B_TRUE;
1167 }
1168 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
1169 if (xoap->xoa_hidden)
1170 attr |= SMB_FA_HIDDEN;
1171 else
1172 attr &= ~SMB_FA_HIDDEN;
1173 XVA_SET_RTN(xvap, XAT_HIDDEN);
1174 anyset = B_TRUE;
1175 }

1177 if (anyset == B_FALSE)
1178 return (0); /* no change */
1179 if (attr == 0)
1180 attr = SMB_EFA_NORMAL;

1182 return (attr);
1183 }

1185 /*
1186 * smbfs_access_rwx()
1187 * Common function for smbfs_access, etc.
1188 *
1189 * The security model implemented by the FS is unusual
1190 * due to the current "single user mounts" restriction:
1191 * All access under a given mount point uses the CIFS

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 8

1192 * credentials established by the owner of the mount.
1193 *
1194 * Most access checking is handled by the CIFS server,
1195 * but we need sufficient Unix access checks here to
1196 * prevent other local Unix users from having access
1197 * to objects under this mount that the uid/gid/mode
1198 * settings in the mount would not allow.
1199 *
1200 * With this model, there is a case where we need the
1201 * ability to do an access check before we have the
1202 * vnode for an object. This function takes advantage
1203 * of the fact that the uid/gid/mode is per mount, and
1204 * avoids the need for a vnode.
1205 *
1206 * We still (sort of) need a vnode when we call
1207 * secpolicy_vnode_access, but that only uses
1208 * the vtype field, so we can use a pair of fake
1209 * vnodes that have only v_type filled in.
1210 *
1211 * XXX: Later, add a new secpolicy_vtype_access()
1212 * that takes the vtype instead of a vnode, and
1213 * get rid of the tmpl_vxxx fake vnodes below.
1214 */
1215 static int
1216 smbfs_access_rwx(vfs_t *vfsp, int vtype, int mode, cred_t *cr)
1217 {
1218 /* See the secpolicy call below. */
1219 static const vnode_t tmpl_vdir = { .v_type = VDIR };
1220 static const vnode_t tmpl_vreg = { .v_type = VREG };
1221 vattr_t va;
1222 vnode_t *tvp;
1223 struct smbmntinfo *smi = VFTOSMI(vfsp);
1224 int shift = 0;

1226 /*
1227 * Build our (fabricated) vnode attributes.
1228 * XXX: Could make these templates in the
1229 * per-mount struct and use them here.
1230 */
1231 bzero(&va, sizeof (va));
1232 va.va_mask = AT_TYPE | AT_MODE | AT_UID | AT_GID;
1233 va.va_type = vtype;
1234 va.va_mode = (vtype == VDIR) ?
1235 smi->smi_dmode : smi->smi_fmode;
1236 va.va_uid = smi->smi_uid;
1237 va.va_gid = smi->smi_gid;

1239 /*
1240 * Disallow write attempts on read-only file systems,
1241 * unless the file is a device or fifo node. Note:
1242 * Inline vn_is_readonly and IS_DEVVP here because
1243 * we may not have a vnode ptr. Original expr. was:
1244 * (mode & VWRITE) && vn_is_readonly(vp) && !IS_DEVVP(vp))
1245 */
1246 if ((mode & VWRITE) &&
1247 (vfsp->vfs_flag & VFS_RDONLY) &&
1248 !(vtype == VCHR || vtype == VBLK || vtype == VFIFO))
1249 return (EROFS);

1251 /*
1252 * Disallow attempts to access mandatory lock files.
1253 * Similarly, expand MANDLOCK here.
1254 * XXX: not sure we need this.
1255 */
1256 if ((mode & (VWRITE | VREAD | VEXEC)) &&
1257 va.va_type == VREG && MANDMODE(va.va_mode))

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 9

1258 return (EACCES);

1260 /*
1261 * Access check is based on only
1262 * one of owner, group, public.
1263 * If not owner, then check group.
1264 * If not a member of the group,
1265 * then check public access.
1266 */
1267 if (crgetuid(cr) != va.va_uid) {
1268 shift += 3;
1269 if (!groupmember(va.va_gid, cr))
1270 shift += 3;
1271 }

1273 /*
1274 * We need a vnode for secpolicy_vnode_access,
1275 * but the only thing it looks at is v_type,
1276 * so pass one of the templates above.
1277 */
1278 tvp = (va.va_type == VDIR) ?
1279 (vnode_t *)&tmpl_vdir :
1280 (vnode_t *)&tmpl_vreg;

1282 return (secpolicy_vnode_access2(cr, tvp, va.va_uid,
1283 va.va_mode << shift, mode));
1284 }
______unchanged_portion_omitted_

3001 /* ARGSUSED */
3002 static int
3003 smbfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
3004 caller_context_t *ct)
3005 {
3006 vfs_t *vfs;
3007 smbmntinfo_t *smi;
3008 struct smb_share *ssp;

3010 vfs = vp->v_vfsp;
3011 smi = VFTOSMI(vfs);

3013 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
3014 return (EIO);

3016 if (smi->smi_flags & SMI_DEAD || vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
3017 return (EIO);

3019 switch (cmd) {
3020 case _PC_FILESIZEBITS:
3021 ssp = smi->smi_share;
3022 if (SSTOVC(ssp)->vc_sopt.sv_caps & SMB_CAP_LARGE_FILES)
3023 *valp = 64;
3024 else
3025 *valp = 32;
3026 break;

3028 case _PC_LINK_MAX:
3029 /* We only ever report one link to an object */
3030 *valp = 1;
3031 break;

3033 case _PC_ACL_ENABLED:
3034 /*
3035 * Always indicate that ACLs are enabled and
3036 * that we support ACE_T format, otherwise
3037 * libsec will ask for ACLENT_T format data

new/usr/src/uts/common/fs/smbclnt/smbfs/smbfs_vnops.c 10

3038 * which we don’t support.
3039 */
3040 *valp = _ACL_ACE_ENABLED;
3041 break;

3043 case _PC_SYMLINK_MAX: /* No symlinks until we do Unix extensions */
3044 *valp = 0;
3045 break;

3047 case _PC_XATTR_EXISTS:
3048 if (vfs->vfs_flag & VFS_XATTR) {
3049 *valp = smbfs_xa_exists(vp, cr);
3050 break;
3051 }
3052 return (EINVAL);

3054 case _PC_SATTR_ENABLED:
3055 case _PC_SATTR_EXISTS:
3056 *valp = 1;
3057 break;

3059 case _PC_TIMESTAMP_RESOLUTION:
3060 /*
3061 * Windows times are tenths of microseconds
3062 * (multiples of 100 nanoseconds).
3063 */
3064 *valp = 100L;
3065 break;

3067 default:
3068 return (fs_pathconf(vp, cmd, valp, cr, ct));
3069 }
3070 return (0);
3071 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/xattr.c 1

**
 39409 Tue Aug 31 13:02:05 2010
new/usr/src/uts/common/fs/xattr.c
6975745 xattr directories should be more transparent
**
______unchanged_portion_omitted_

55 typedef struct {
56 gfs_dir_t xattr_gfs_private;
57 vnode_t *xattr_realvp;
57 vnode_t *xattr_realvp; /* Only used for VOP_REALVP */
58 } xattr_dir_t;

60 /*
61 * xattr_realvp is only used for VOP_REALVP, this is so we don’t
62 * keep an unnecessary hold on the *real* xattr dir unless we have
63 * no other choice.
64 */

60 /* ARGSUSED */
61 static int
62 xattr_file_open(vnode_t **vpp, int flags, cred_t *cr, caller_context_t *ct)
63 {
64 xattr_file_t *np = (*vpp)->v_data;

66 if ((np->xattr_view == XATTR_VIEW_READONLY) && (flags & FWRITE))
67 return (EACCES);

69 return (0);
70 }

______unchanged_portion_omitted_

872 static int
873 xattr_dir_realdir(vnode_t *dvp, vnode_t **realdvp, int lookup_flags,
874 cred_t *cr, caller_context_t *ct)
875 {
876 xattr_dir_t *xattr_dir;
882 vnode_t *pvp;
877 int error;
884 struct pathname pn;
885 char *startnm = "";

879 *realdvp = NULL;

881 if (dvp->v_type != VDIR)
882 return (EINVAL);
889 pvp = gfs_file_parent(dvp);

884 mutex_enter(&dvp->v_lock);
885 xattr_dir = dvp->v_data;
886 *realdvp = xattr_dir->xattr_realvp;
887 mutex_exit(&dvp->v_lock);
891 error = pn_get(startnm, UIO_SYSSPACE, &pn);
892 if (error) {
893 VN_RELE(pvp);
894 return (error);
895 }

889 if (*realdvp != NULL) {
890 VN_HOLD(*realdvp);
891 error = 0;
892 } else
893 error = ENOENT;
897 /*
898 * Set the LOOKUP_HAVE_SYSATTR_DIR flag so that we don’t get into an
899 * infinite loop with fop_lookup calling back to xattr_dir_lookup.

new/usr/src/uts/common/fs/xattr.c 2

900 */
901 lookup_flags |= LOOKUP_HAVE_SYSATTR_DIR;
902 error = VOP_LOOKUP(pvp, startnm, realdvp, &pn, lookup_flags,
903 rootvp, cr, ct, NULL, NULL);
904 pn_free(&pn);

895 return (error);
896 }

898 /* ARGSUSED */
899 static int
900 xattr_dir_open(vnode_t **vpp, int flags, cred_t *cr, caller_context_t *ct)
901 {
902 vnode_t *realvp;
903 int error;

905 if (flags & FWRITE) {
906 return (EACCES);
907 }

909 /*
910 * The underlying FS may need this VOP call.
911 */
912 error = xattr_dir_realdir(*vpp, &realvp, LOOKUP_XATTR, cr, ct);
913 if (error == 0) {
914 error = VOP_OPEN(&realvp, flags, cr, ct);
915 VN_RELE(realvp);
916 if (error)
917 return (error);
918 } /* else ignore this error */

920 return (0);
921 }

923 /* ARGSUSED */
924 static int
925 xattr_dir_close(vnode_t *vp, int flags, int count, offset_t off, cred_t *cr,
922 xattr_dir_close(vnode_t *vpp, int flags, int count, offset_t off, cred_t *cr,
926 caller_context_t *ct)
927 {
928 vnode_t *realvp;
929 int error;

931 /*
932 * The underlying FS may need this VOP call.
933 */
934 error = xattr_dir_realdir(vp, &realvp, LOOKUP_XATTR, cr, ct);
935 if (error == 0) {
936 error = VOP_CLOSE(realvp, flags, count, off, cr, ct);
937 VN_RELE(realvp);
938 if (error)
939 return (error);
940 } /* else ignore this error */

942 return (0);
943 }

______unchanged_portion_omitted_

1372 /* ARGSUSED */
1373 static int
1374 xattr_dir_realvp(vnode_t *vp, vnode_t **realvp, caller_context_t *ct)
1375 {
1359 xattr_dir_t *xattr_dir;

1361 mutex_enter(&vp->v_lock);
1362 xattr_dir = vp->v_data;

new/usr/src/uts/common/fs/xattr.c 3

1363 if (xattr_dir->xattr_realvp) {
1364 *realvp = xattr_dir->xattr_realvp;
1365 mutex_exit(&vp->v_lock);
1366 return (0);
1367 } else {
1368 vnode_t *xdvp;
1376 int error;

1378 error = xattr_dir_realdir(vp, realvp, LOOKUP_XATTR, kcred, NULL);
1371 mutex_exit(&vp->v_lock);
1372 if ((error = xattr_dir_realdir(vp, &xdvp,
1373 LOOKUP_XATTR, kcred, NULL)) == 0) {
1374 /*
1375 * verify we aren’t racing with another thread
1376 * to find the xattr_realvp
1377 */
1378 mutex_enter(&vp->v_lock);
1379 if (xattr_dir->xattr_realvp == NULL) {
1380 xattr_dir->xattr_realvp = xdvp;
1381 *realvp = xdvp;
1382 mutex_exit(&vp->v_lock);
1383 } else {
1384 *realvp = xattr_dir->xattr_realvp;
1385 mutex_exit(&vp->v_lock);
1386 VN_RELE(xdvp);
1387 }
1388 }
1379 return (error);

1390 }
1381 }
______unchanged_portion_omitted_

1463 /* See vnode.c: fop_lookup() */
1464 int
1465 xattr_dir_lookup(vnode_t *dvp, vnode_t **vpp, int flags, cred_t *cr)
1466 {
1467 int error = 0;
1468 vnode_t *gfs_vp = NULL;
1469 vnode_t *real_vp = NULL;
1470 xattr_dir_t *xattr_dir;
1471 struct pathname pn;
1472 char *nm = "";

1474 *vpp = NULL;

1476 if (dvp->v_type != VDIR && dvp->v_type != VREG)
1477 return (EINVAL);

1479 mutex_enter(&dvp->v_lock);

1481 /*
1482 * If we’re already in sysattr space, don’t allow creation
1483 * of another level of sysattrs.
1484 */
1485 if (dvp->v_flag & V_SYSATTR) {
1486 mutex_exit(&dvp->v_lock);
1487 return (EINVAL);
1488 }

1490 if (dvp->v_xattrdir != NULL) {
1491 gfs_vp = dvp->v_xattrdir;
1492 VN_HOLD(gfs_vp);
1495 *vpp = dvp->v_xattrdir;
1496 VN_HOLD(*vpp);
1493 } else {

new/usr/src/uts/common/fs/xattr.c 4

1494 ulong_t val;
1495 int xattrs_allowed = dvp->v_vfsp->vfs_flag & VFS_XATTR;
1496 int sysattrs_allowed = 1;

1498 /*
1499 * We have to drop the lock on dvp. gfs_dir_create will
1500 * grab it for a VN_HOLD.
1501 */
1502 mutex_exit(&dvp->v_lock);

1504 /*
1505 * If dvp allows xattr creation, but not sysattr
1506 * creation, return the real xattr dir vp. We can’t
1507 * use the vfs feature mask here because _PC_SATTR_ENABLED
1508 * has vnode-level granularity (e.g. .zfs).
1509 */
1510 error = VOP_PATHCONF(dvp, _PC_SATTR_ENABLED, &val, cr, NULL);
1511 if (error != 0 || val == 0)
1512 sysattrs_allowed = 0;

1514 if (!xattrs_allowed && !sysattrs_allowed)
1515 return (EINVAL);

1517 if (!sysattrs_allowed) {
1522 struct pathname pn;
1523 char *nm = "";

1518 error = pn_get(nm, UIO_SYSSPACE, &pn);
1519 if (error)
1520 return (error);
1521 error = VOP_LOOKUP(dvp, nm, vpp, &pn,
1522 flags|LOOKUP_HAVE_SYSATTR_DIR, rootvp, cr, NULL,
1523 NULL, NULL);
1524 pn_free(&pn);
1525 return (error);
1526 }

1528 /*
1529 * Note that we act as if we were given CREATE_XATTR_DIR,
1530 * but only for creation of the GFS directory.
1531 */
1532 gfs_vp = gfs_dir_create(
1539 *vpp = gfs_dir_create(
1533 sizeof (xattr_dir_t), dvp, xattr_dir_ops, xattr_dirents,
1534 xattrdir_do_ino, MAXNAMELEN, NULL, xattr_lookup_cb);
1535 mutex_enter(&dvp->v_lock);
1536 if (dvp->v_xattrdir != NULL) {
1537 /*
1538 * We lost the race to create the xattr dir.
1539 * Destroy this one, use the winner. We can’t
1540 * just call VN_RELE(*vpp), because the vnode
1541 * is only partially initialized.
1542 */
1543 gfs_dir_t *dp = gfs_vp->v_data;
1550 gfs_dir_t *dp = (*vpp)->v_data;

1545 ASSERT(gfs_vp->v_count == 1);
1546 vn_free(gfs_vp);
1552 ASSERT((*vpp)->v_count == 1);
1553 vn_free(*vpp);

1548 mutex_destroy(&dp->gfsd_lock);
1549 kmem_free(dp->gfsd_static,
1550 dp->gfsd_nstatic * sizeof (gfs_dirent_t));
1551 kmem_free(dp, dp->gfsd_file.gfs_size);

new/usr/src/uts/common/fs/xattr.c 5

1553 /*
1554 * There is an implied VN_HOLD(dvp) here. We should
1555 * be doing a VN_RELE(dvp) to clean up the reference
1556 * from gfs_vp, and then a VN_HOLD(dvp) for the new
1563 * from *vpp, and then a VN_HOLD(dvp) for the new
1557 * reference. Instead, we just leave the count alone.
1558 */

1560 gfs_vp = dvp->v_xattrdir;
1561 VN_HOLD(gfs_vp);
1567 *vpp = dvp->v_xattrdir;
1568 VN_HOLD(*vpp);
1562 } else {
1563 gfs_vp->v_flag |= (V_XATTRDIR|V_SYSATTR);
1564 dvp->v_xattrdir = gfs_vp;
1570 (*vpp)->v_flag |= (V_XATTRDIR|V_SYSATTR);
1571 dvp->v_xattrdir = *vpp;
1565 }
1566 }
1567 mutex_exit(&dvp->v_lock);

1569 /*
1570 * In order to make this module relatively transparent
1571 * to the underlying filesystem, we need to lookup the
1572 * xattr dir in the lower filesystem and (if found)
1573 * keep a hold on it for as long as there is a hold
1574 * on the gfs_vp we’re about to return. This hold is
1575 * released in xattr_dir_inactive.
1576 */
1577 xattr_dir = gfs_vp->v_data;
1578 if ((dvp->v_vfsp->vfs_flag & VFS_XATTR) &&
1579 (xattr_dir->xattr_realvp == NULL)) {
1580 error = pn_get(nm, UIO_SYSSPACE, &pn);
1581 if (error == 0) {
1582 error = VOP_LOOKUP(dvp, nm, &real_vp, &pn,
1583 flags|LOOKUP_HAVE_SYSATTR_DIR, rootvp, cr, NULL,
1584 NULL, NULL);
1585 pn_free(&pn);
1586 }
1587 if (error == 0) {
1588 mutex_enter(&gfs_vp->v_lock);
1589 if (xattr_dir->xattr_realvp == NULL)
1590 xattr_dir->xattr_realvp = real_vp;
1591 else
1592 VN_RELE(real_vp);
1593 mutex_exit(&gfs_vp->v_lock);
1594 }
1595 }

1597 *vpp = gfs_vp;
1598 return (0);
1576 return (error);
1599 }
______unchanged_portion_omitted_

