1 /*
2 * Copyright (c) 2000-2001, Boris Popov
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by Boris Popov.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * $Id: smbfs_vfsops.c,v 1.73.64.1 2005/05/27 02:35:28 lindak Exp $
33 */
34
35 /*
36 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
37 * Copyright 2012 Nexenta Systems, Inc. All rights reserved.
38 * Copyright 2013, Joyent, Inc. All rights reserved.
39 * Copyright (c) 2016 by Delphix. All rights reserved.
40 */
41
42 #include <sys/systm.h>
43 #include <sys/cred.h>
44 #include <sys/time.h>
45 #include <sys/vfs.h>
46 #include <sys/vnode.h>
47 #include <fs/fs_subr.h>
48 #include <sys/sysmacros.h>
49 #include <sys/kmem.h>
50 #include <sys/mkdev.h>
51 #include <sys/mount.h>
52 #include <sys/statvfs.h>
53 #include <sys/errno.h>
54 #include <sys/debug.h>
55 #include <sys/cmn_err.h>
56 #include <sys/modctl.h>
57 #include <sys/policy.h>
58 #include <sys/atomic.h>
59 #include <sys/zone.h>
60 #include <sys/vfs_opreg.h>
61 #include <sys/mntent.h>
62 #include <sys/priv.h>
63 #include <sys/tsol/label.h>
64 #include <sys/tsol/tndb.h>
65 #include <inet/ip.h>
66
67 #include <netsmb/smb_osdep.h>
68 #include <netsmb/smb.h>
69 #include <netsmb/smb_conn.h>
70 #include <netsmb/smb_subr.h>
71 #include <netsmb/smb_dev.h>
72
73 #include <smbfs/smbfs.h>
74 #include <smbfs/smbfs_node.h>
75 #include <smbfs/smbfs_subr.h>
76
77 /*
78 * Should smbfs mount enable "-o acl" by default? There are good
79 * arguments for both. The most common use case is individual users
80 * accessing files on some SMB server, for which "noacl" is the more
81 * convenient default. A less common use case is data migration,
82 * where the "acl" option might be a desirable default. We'll make
83 * the common use case the default. This default can be changed via
84 * /etc/system, and/or set per-mount via the "acl" mount option.
85 */
86 int smbfs_default_opt_acl = 0;
87
88 /*
89 * Local functions definitions.
90 */
91 int smbfsinit(int fstyp, char *name);
92 void smbfsfini();
93 static int smbfs_mount_label_policy(vfs_t *, void *, int, cred_t *);
94
95 /*
96 * SMBFS Mount options table for MS_OPTIONSTR
97 * Note: These are not all the options.
98 * Some options come in via MS_DATA.
99 * Others are generic (see vfs.c)
100 */
101 static char *intr_cancel[] = { MNTOPT_NOINTR, NULL };
102 static char *nointr_cancel[] = { MNTOPT_INTR, NULL };
103 static char *acl_cancel[] = { MNTOPT_NOACL, NULL };
104 static char *noacl_cancel[] = { MNTOPT_ACL, NULL };
105 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
106 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
107
108 static mntopt_t mntopts[] = {
109 /*
110 * option name cancel option default arg flags
111 * ufs arg flag
112 */
113 { MNTOPT_INTR, intr_cancel, NULL, MO_DEFAULT, 0 },
114 { MNTOPT_NOINTR, nointr_cancel, NULL, 0, 0 },
115 { MNTOPT_ACL, acl_cancel, NULL, 0, 0 },
116 { MNTOPT_NOACL, noacl_cancel, NULL, 0, 0 },
117 { MNTOPT_XATTR, xattr_cancel, NULL, MO_DEFAULT, 0 },
118 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, 0 }
119 };
120
121 static mntopts_t smbfs_mntopts = {
122 sizeof (mntopts) / sizeof (mntopt_t),
123 mntopts
124 };
125
126 static const char fs_type_name[FSTYPSZ] = "smbfs";
127
128 static vfsdef_t vfw = {
129 VFSDEF_VERSION,
130 (char *)fs_type_name,
131 smbfsinit, /* init routine */
132 VSW_HASPROTO|VSW_NOTZONESAFE, /* flags */
133 &smbfs_mntopts /* mount options table prototype */
134 };
135
136 static struct modlfs modlfs = {
137 &mod_fsops,
138 "SMBFS filesystem",
139 &vfw
140 };
141
142 static struct modlinkage modlinkage = {
143 MODREV_1, (void *)&modlfs, NULL
144 };
145
146 /*
147 * Mutex to protect the following variables:
148 * smbfs_major
149 * smbfs_minor
150 */
151 extern kmutex_t smbfs_minor_lock;
152 extern int smbfs_major;
153 extern int smbfs_minor;
154
155 /*
156 * Prevent unloads while we have mounts
157 */
158 uint32_t smbfs_mountcount;
159
160 /*
161 * smbfs vfs operations.
162 */
163 static int smbfs_mount(vfs_t *, vnode_t *, struct mounta *, cred_t *);
164 static int smbfs_unmount(vfs_t *, int, cred_t *);
165 static int smbfs_root(vfs_t *, vnode_t **);
166 static int smbfs_statvfs(vfs_t *, statvfs64_t *);
167 static int smbfs_sync(vfs_t *, short, cred_t *);
168 static void smbfs_freevfs(vfs_t *);
169
170 /*
171 * Module loading
172 */
173
174 /*
175 * This routine is invoked automatically when the kernel module
176 * containing this routine is loaded. This allows module specific
177 * initialization to be done when the module is loaded.
178 */
179 int
180 _init(void)
181 {
182 int error;
183
184 /*
185 * Check compiled-in version of "nsmb"
186 * that we're linked with. (paranoid)
187 */
188 if (nsmb_version != NSMB_VERSION) {
189 cmn_err(CE_WARN, "_init: nsmb version mismatch");
190 return (ENOTTY);
191 }
192
193 smbfs_mountcount = 0;
194
195 /*
196 * NFS calls these two in _clntinit
197 * Easier to follow this way.
198 */
199 if ((error = smbfs_subrinit()) != 0) {
200 cmn_err(CE_WARN, "_init: smbfs_subrinit failed");
201 return (error);
202 }
203
204 if ((error = smbfs_vfsinit()) != 0) {
205 cmn_err(CE_WARN, "_init: smbfs_vfsinit failed");
206 smbfs_subrfini();
207 return (error);
208 }
209
210 if ((error = smbfs_clntinit()) != 0) {
211 cmn_err(CE_WARN, "_init: smbfs_clntinit failed");
212 smbfs_vfsfini();
213 smbfs_subrfini();
214 return (error);
215 }
216
217 error = mod_install((struct modlinkage *)&modlinkage);
218 return (error);
219 }
220
221 /*
222 * Free kernel module resources that were allocated in _init
223 * and remove the linkage information into the kernel
224 */
225 int
226 _fini(void)
227 {
228 int error;
229
230 /*
231 * If a forcedly unmounted instance is still hanging around,
232 * we cannot allow the module to be unloaded because that would
233 * cause panics once the VFS framework decides it's time to call
234 * into VFS_FREEVFS().
235 */
236 if (smbfs_mountcount)
237 return (EBUSY);
238
239 error = mod_remove(&modlinkage);
240 if (error)
241 return (error);
242
243 /*
244 * Free the allocated smbnodes, etc.
245 */
246 smbfs_clntfini();
247
248 /* NFS calls these two in _clntfini */
249 smbfs_vfsfini();
250 smbfs_subrfini();
251
252 /*
253 * Free the ops vectors
254 */
255 smbfsfini();
256 return (0);
257 }
258
259 /*
260 * Return information about the module
261 */
262 int
263 _info(struct modinfo *modinfop)
264 {
265 return (mod_info((struct modlinkage *)&modlinkage, modinfop));
266 }
267
268 /*
269 * Initialize the vfs structure
270 */
271
272 int smbfsfstyp;
273 vfsops_t *smbfs_vfsops = NULL;
274
275 static const fs_operation_def_t smbfs_vfsops_template[] = {
276 { VFSNAME_MOUNT, { .vfs_mount = smbfs_mount } },
277 { VFSNAME_UNMOUNT, { .vfs_unmount = smbfs_unmount } },
278 { VFSNAME_ROOT, { .vfs_root = smbfs_root } },
279 { VFSNAME_STATVFS, { .vfs_statvfs = smbfs_statvfs } },
280 { VFSNAME_SYNC, { .vfs_sync = smbfs_sync } },
281 { VFSNAME_VGET, { .error = fs_nosys } },
282 { VFSNAME_MOUNTROOT, { .error = fs_nosys } },
283 { VFSNAME_FREEVFS, { .vfs_freevfs = smbfs_freevfs } },
284 { NULL, NULL }
285 };
286
287 int
288 smbfsinit(int fstyp, char *name)
289 {
290 int error;
291
292 error = vfs_setfsops(fstyp, smbfs_vfsops_template, &smbfs_vfsops);
293 if (error != 0) {
294 zcmn_err(GLOBAL_ZONEID, CE_WARN,
295 "smbfsinit: bad vfs ops template");
296 return (error);
297 }
298
299 error = vn_make_ops(name, smbfs_vnodeops_template, &smbfs_vnodeops);
300 if (error != 0) {
301 (void) vfs_freevfsops_by_type(fstyp);
302 zcmn_err(GLOBAL_ZONEID, CE_WARN,
303 "smbfsinit: bad vnode ops template");
304 return (error);
305 }
306
307 smbfsfstyp = fstyp;
308
309 return (0);
310 }
311
312 void
313 smbfsfini()
314 {
315 if (smbfs_vfsops) {
316 (void) vfs_freevfsops_by_type(smbfsfstyp);
317 smbfs_vfsops = NULL;
318 }
319 if (smbfs_vnodeops) {
320 vn_freevnodeops(smbfs_vnodeops);
321 smbfs_vnodeops = NULL;
322 }
323 }
324
325 void
326 smbfs_free_smi(smbmntinfo_t *smi)
327 {
328 if (smi == NULL)
329 return;
330
331 if (smi->smi_zone_ref.zref_zone != NULL)
332 zone_rele_ref(&smi->smi_zone_ref, ZONE_REF_SMBFS);
333
334 if (smi->smi_share != NULL)
335 smb_share_rele(smi->smi_share);
336
337 avl_destroy(&smi->smi_hash_avl);
338 rw_destroy(&smi->smi_hash_lk);
339 cv_destroy(&smi->smi_statvfs_cv);
340 mutex_destroy(&smi->smi_lock);
341
342 kmem_free(smi, sizeof (smbmntinfo_t));
343 }
344
345 /*
346 * smbfs mount vfsop
347 * Set up mount info record and attach it to vfs struct.
348 */
349 static int
350 smbfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
351 {
352 char *data = uap->dataptr;
353 int error;
354 smbnode_t *rtnp = NULL; /* root of this fs */
355 smbmntinfo_t *smi = NULL;
356 dev_t smbfs_dev;
357 int version;
358 int devfd;
359 zone_t *zone = curproc->p_zone;
360 zone_t *mntzone = NULL;
361 smb_share_t *ssp = NULL;
362 smb_cred_t scred;
363 int flags, sec;
364
365 STRUCT_DECL(smbfs_args, args); /* smbfs mount arguments */
366
367 if ((error = secpolicy_fs_mount(cr, mvp, vfsp)) != 0)
368 return (error);
369
370 if (mvp->v_type != VDIR)
371 return (ENOTDIR);
372
373 /*
374 * get arguments
375 *
376 * uap->datalen might be different from sizeof (args)
377 * in a compatible situation.
378 */
379 STRUCT_INIT(args, get_udatamodel());
380 bzero(STRUCT_BUF(args), SIZEOF_STRUCT(smbfs_args, DATAMODEL_NATIVE));
381 if (copyin(data, STRUCT_BUF(args), MIN(uap->datalen,
382 SIZEOF_STRUCT(smbfs_args, DATAMODEL_NATIVE))))
383 return (EFAULT);
384
385 /*
386 * Check mount program version
387 */
388 version = STRUCT_FGET(args, version);
389 if (version != SMBFS_VERSION) {
390 cmn_err(CE_WARN, "mount version mismatch:"
391 " kernel=%d, mount=%d\n",
392 SMBFS_VERSION, version);
393 return (EINVAL);
394 }
395
396 /*
397 * Deal with re-mount requests.
398 */
399 if (uap->flags & MS_REMOUNT) {
400 cmn_err(CE_WARN, "MS_REMOUNT not implemented");
401 return (ENOTSUP);
402 }
403
404 /*
405 * Check for busy
406 */
407 mutex_enter(&mvp->v_lock);
408 if (!(uap->flags & MS_OVERLAY) &&
409 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
410 mutex_exit(&mvp->v_lock);
411 return (EBUSY);
412 }
413 mutex_exit(&mvp->v_lock);
414
415 /*
416 * Get the "share" from the netsmb driver (ssp).
417 * It is returned with a "ref" (hold) for us.
418 * Release this hold: at errout below, or in
419 * smbfs_freevfs().
420 */
421 devfd = STRUCT_FGET(args, devfd);
422 error = smb_dev2share(devfd, &ssp);
423 if (error) {
424 cmn_err(CE_WARN, "invalid device handle %d (%d)\n",
425 devfd, error);
426 return (error);
427 }
428
429 /*
430 * Use "goto errout" from here on.
431 * See: ssp, smi, rtnp, mntzone
432 */
433
434 /*
435 * Determine the zone we're being mounted into.
436 */
437 zone_hold(mntzone = zone); /* start with this assumption */
438 if (getzoneid() == GLOBAL_ZONEID) {
439 zone_rele(mntzone);
440 mntzone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
441 ASSERT(mntzone != NULL);
442 if (mntzone != zone) {
443 error = EBUSY;
444 goto errout;
445 }
446 }
447
448 /*
449 * Stop the mount from going any further if the zone is going away.
450 */
451 if (zone_status_get(mntzone) >= ZONE_IS_SHUTTING_DOWN) {
452 error = EBUSY;
453 goto errout;
454 }
455
456 /*
457 * On a Trusted Extensions client, we may have to force read-only
458 * for read-down mounts.
459 */
460 if (is_system_labeled()) {
461 void *addr;
462 int ipvers = 0;
463 struct smb_vc *vcp;
464
465 vcp = SSTOVC(ssp);
466 addr = smb_vc_getipaddr(vcp, &ipvers);
467 error = smbfs_mount_label_policy(vfsp, addr, ipvers, cr);
468
469 if (error > 0)
470 goto errout;
471
472 if (error == -1) {
473 /* change mount to read-only to prevent write-down */
474 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
475 }
476 }
477
478 /* Prevent unload. */
479 atomic_inc_32(&smbfs_mountcount);
480
481 /*
482 * Create a mount record and link it to the vfs struct.
483 * No more possiblities for errors from here on.
484 * Tear-down of this stuff is in smbfs_free_smi()
485 *
486 * Compare with NFS: nfsrootvp()
487 */
488 smi = kmem_zalloc(sizeof (*smi), KM_SLEEP);
489
490 mutex_init(&smi->smi_lock, NULL, MUTEX_DEFAULT, NULL);
491 cv_init(&smi->smi_statvfs_cv, NULL, CV_DEFAULT, NULL);
492
493 rw_init(&smi->smi_hash_lk, NULL, RW_DEFAULT, NULL);
494 smbfs_init_hash_avl(&smi->smi_hash_avl);
495
496 smi->smi_share = ssp;
497 ssp = NULL;
498
499 /*
500 * Convert the anonymous zone hold acquired via zone_hold() above
501 * into a zone reference.
502 */
503 zone_init_ref(&smi->smi_zone_ref);
504 zone_hold_ref(mntzone, &smi->smi_zone_ref, ZONE_REF_SMBFS);
505 zone_rele(mntzone);
506 mntzone = NULL;
507
508 /*
509 * Initialize option defaults
510 */
511 smi->smi_flags = SMI_LLOCK;
512 smi->smi_acregmin = SEC2HR(SMBFS_ACREGMIN);
513 smi->smi_acregmax = SEC2HR(SMBFS_ACREGMAX);
514 smi->smi_acdirmin = SEC2HR(SMBFS_ACDIRMIN);
515 smi->smi_acdirmax = SEC2HR(SMBFS_ACDIRMAX);
516
517 /*
518 * All "generic" mount options have already been
519 * handled in vfs.c:domount() - see mntopts stuff.
520 * Query generic options using vfs_optionisset().
521 * Give ACL an adjustable system-wide default.
522 */
523 if (smbfs_default_opt_acl ||
524 vfs_optionisset(vfsp, MNTOPT_ACL, NULL))
525 smi->smi_flags |= SMI_ACL;
526 if (vfs_optionisset(vfsp, MNTOPT_NOACL, NULL))
527 smi->smi_flags &= ~SMI_ACL;
528 if (vfs_optionisset(vfsp, MNTOPT_INTR, NULL))
529 smi->smi_flags |= SMI_INT;
530
531 /*
532 * Get the mount options that come in as smbfs_args,
533 * starting with args.flags (SMBFS_MF_xxx)
534 */
535 flags = STRUCT_FGET(args, flags);
536 smi->smi_uid = STRUCT_FGET(args, uid);
537 smi->smi_gid = STRUCT_FGET(args, gid);
538 smi->smi_fmode = STRUCT_FGET(args, file_mode) & 0777;
539 smi->smi_dmode = STRUCT_FGET(args, dir_mode) & 0777;
540
541 /*
542 * Hande the SMBFS_MF_xxx flags.
543 */
544 if (flags & SMBFS_MF_NOAC)
545 smi->smi_flags |= SMI_NOAC;
546 if (flags & SMBFS_MF_ACREGMIN) {
547 sec = STRUCT_FGET(args, acregmin);
548 if (sec < 0 || sec > SMBFS_ACMINMAX)
549 sec = SMBFS_ACMINMAX;
550 smi->smi_acregmin = SEC2HR(sec);
551 }
552 if (flags & SMBFS_MF_ACREGMAX) {
553 sec = STRUCT_FGET(args, acregmax);
554 if (sec < 0 || sec > SMBFS_ACMAXMAX)
555 sec = SMBFS_ACMAXMAX;
556 smi->smi_acregmax = SEC2HR(sec);
557 }
558 if (flags & SMBFS_MF_ACDIRMIN) {
559 sec = STRUCT_FGET(args, acdirmin);
560 if (sec < 0 || sec > SMBFS_ACMINMAX)
561 sec = SMBFS_ACMINMAX;
562 smi->smi_acdirmin = SEC2HR(sec);
563 }
564 if (flags & SMBFS_MF_ACDIRMAX) {
565 sec = STRUCT_FGET(args, acdirmax);
566 if (sec < 0 || sec > SMBFS_ACMAXMAX)
567 sec = SMBFS_ACMAXMAX;
568 smi->smi_acdirmax = SEC2HR(sec);
569 }
570
571 /*
572 * Get attributes of the remote file system,
573 * i.e. ACL support, named streams, etc.
574 */
575 smb_credinit(&scred, cr);
576 error = smbfs_smb_qfsattr(smi->smi_share, &smi->smi_fsa, &scred);
577 smb_credrele(&scred);
578 if (error) {
579 SMBVDEBUG("smbfs_smb_qfsattr error %d\n", error);
580 }
581
582 /*
583 * We enable XATTR by default (via smbfs_mntopts)
584 * but if the share does not support named streams,
585 * force the NOXATTR option (also clears XATTR).
586 * Caller will set or clear VFS_XATTR after this.
587 */
588 if ((smi->smi_fsattr & FILE_NAMED_STREAMS) == 0)
589 vfs_setmntopt(vfsp, MNTOPT_NOXATTR, NULL, 0);
590
591 /*
592 * Ditto ACLs (disable if not supported on this share)
593 */
594 if ((smi->smi_fsattr & FILE_PERSISTENT_ACLS) == 0) {
595 vfs_setmntopt(vfsp, MNTOPT_NOACL, NULL, 0);
596 smi->smi_flags &= ~SMI_ACL;
597 }
598
599 /*
600 * Assign a unique device id to the mount
601 */
602 mutex_enter(&smbfs_minor_lock);
603 do {
604 smbfs_minor = (smbfs_minor + 1) & MAXMIN32;
605 smbfs_dev = makedevice(smbfs_major, smbfs_minor);
606 } while (vfs_devismounted(smbfs_dev));
607 mutex_exit(&smbfs_minor_lock);
608
609 vfsp->vfs_dev = smbfs_dev;
610 vfs_make_fsid(&vfsp->vfs_fsid, smbfs_dev, smbfsfstyp);
611 vfsp->vfs_data = (caddr_t)smi;
612 vfsp->vfs_fstype = smbfsfstyp;
613 vfsp->vfs_bsize = MAXBSIZE;
614 vfsp->vfs_bcount = 0;
615
616 smi->smi_vfsp = vfsp;
617 smbfs_zonelist_add(smi); /* undo in smbfs_freevfs */
618
619 /* PSARC 2007/227 VFS Feature Registration */
620 vfs_set_feature(vfsp, VFSFT_XVATTR);
621 vfs_set_feature(vfsp, VFSFT_SYSATTR_VIEWS);
622
623 /*
624 * Create the root vnode, which we need in unmount
625 * for the call to smbfs_check_table(), etc.
626 * Release this hold in smbfs_unmount.
627 */
628 rtnp = smbfs_node_findcreate(smi, "\\", 1, NULL, 0, 0,
629 &smbfs_fattr0);
630 ASSERT(rtnp != NULL);
631 rtnp->r_vnode->v_type = VDIR;
632 rtnp->r_vnode->v_flag |= VROOT;
633 smi->smi_root = rtnp;
634
635 /*
636 * NFS does other stuff here too:
637 * async worker threads
638 * init kstats
639 *
640 * End of code from NFS nfsrootvp()
641 */
642 return (0);
643
644 errout:
645 vfsp->vfs_data = NULL;
646 if (smi != NULL)
647 smbfs_free_smi(smi);
648
649 if (mntzone != NULL)
650 zone_rele(mntzone);
651
652 if (ssp != NULL)
653 smb_share_rele(ssp);
654
655 return (error);
656 }
657
658 /*
659 * vfs operations
660 */
661 static int
662 smbfs_unmount(vfs_t *vfsp, int flag, cred_t *cr)
663 {
664 smbmntinfo_t *smi;
665 smbnode_t *rtnp;
666
667 smi = VFTOSMI(vfsp);
668
669 if (secpolicy_fs_unmount(cr, vfsp) != 0)
670 return (EPERM);
671
672 if ((flag & MS_FORCE) == 0) {
673 smbfs_rflush(vfsp, cr);
674
675 /*
676 * If there are any active vnodes on this file system,
677 * (other than the root vnode) then the file system is
678 * busy and can't be umounted.
679 */
680 if (smbfs_check_table(vfsp, smi->smi_root))
681 return (EBUSY);
682
683 /*
684 * We normally hold a ref to the root vnode, so
685 * check for references beyond the one we expect:
686 * smbmntinfo_t -> smi_root
687 * Note that NFS does not hold the root vnode.
688 */
689 if (smi->smi_root &&
690 smi->smi_root->r_vnode->v_count > 1)
691 return (EBUSY);
692 }
693
694 /*
695 * common code for both forced and non-forced
696 *
697 * Setting VFS_UNMOUNTED prevents new operations.
698 * Operations already underway may continue,
699 * but not for long.
700 */
701 vfsp->vfs_flag |= VFS_UNMOUNTED;
702
703 /*
704 * Shutdown any outstanding I/O requests on this share,
705 * and force a tree disconnect. The share object will
706 * continue to hang around until smb_share_rele().
707 * This should also cause most active nodes to be
708 * released as their operations fail with EIO.
709 */
710 smb_share_kill(smi->smi_share);
711
712 /*
713 * If we hold the root VP (and we normally do)
714 * then it's safe to release it now.
715 */
716 if (smi->smi_root) {
717 rtnp = smi->smi_root;
718 smi->smi_root = NULL;
719 VN_RELE(rtnp->r_vnode); /* release root vnode */
720 }
721
722 /*
723 * Remove all nodes from the node hash tables.
724 * This (indirectly) calls: smbfs_addfree, smbinactive,
725 * which will try to flush dirty pages, etc. so
726 * don't destroy the underlying share just yet.
727 *
728 * Also, with a forced unmount, some nodes may
729 * remain active, and those will get cleaned up
730 * after their last vn_rele.
731 */
732 smbfs_destroy_table(vfsp);
733
734 /*
735 * Delete our kstats...
736 *
737 * Doing it here, rather than waiting until
738 * smbfs_freevfs so these are not visible
739 * after the unmount.
740 */
741 if (smi->smi_io_kstats) {
742 kstat_delete(smi->smi_io_kstats);
743 smi->smi_io_kstats = NULL;
744 }
745 if (smi->smi_ro_kstats) {
746 kstat_delete(smi->smi_ro_kstats);
747 smi->smi_ro_kstats = NULL;
748 }
749
750 /*
751 * The rest happens in smbfs_freevfs()
752 */
753 return (0);
754 }
755
756
757 /*
758 * find root of smbfs
759 */
760 static int
761 smbfs_root(vfs_t *vfsp, vnode_t **vpp)
762 {
763 smbmntinfo_t *smi;
764 vnode_t *vp;
765
766 smi = VFTOSMI(vfsp);
767
768 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
769 return (EPERM);
770
771 if (smi->smi_flags & SMI_DEAD || vfsp->vfs_flag & VFS_UNMOUNTED)
772 return (EIO);
773
774 /*
775 * The root vp is created in mount and held
776 * until unmount, so this is paranoia.
777 */
778 if (smi->smi_root == NULL)
779 return (EIO);
780
781 /* Just take a reference and return it. */
782 vp = SMBTOV(smi->smi_root);
783 VN_HOLD(vp);
784 *vpp = vp;
785
786 return (0);
787 }
788
789 /*
790 * Get file system statistics.
791 */
792 static int
793 smbfs_statvfs(vfs_t *vfsp, statvfs64_t *sbp)
794 {
795 int error;
796 smbmntinfo_t *smi = VFTOSMI(vfsp);
797 smb_share_t *ssp = smi->smi_share;
798 statvfs64_t stvfs;
799 hrtime_t now;
800 smb_cred_t scred;
801
802 if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
803 return (EPERM);
804
805 if (smi->smi_flags & SMI_DEAD || vfsp->vfs_flag & VFS_UNMOUNTED)
806 return (EIO);
807
808 mutex_enter(&smi->smi_lock);
809
810 /*
811 * Use cached result if still valid.
812 */
813 recheck:
814 now = gethrtime();
815 if (now < smi->smi_statfstime) {
816 error = 0;
817 goto cache_hit;
818 }
819
820 /*
821 * FS attributes are stale, so someone
822 * needs to do an OTW call to get them.
823 * Serialize here so only one thread
824 * does the OTW call.
825 */
826 if (smi->smi_status & SM_STATUS_STATFS_BUSY) {
827 smi->smi_status |= SM_STATUS_STATFS_WANT;
828 if (!cv_wait_sig(&smi->smi_statvfs_cv, &smi->smi_lock)) {
829 mutex_exit(&smi->smi_lock);
830 return (EINTR);
831 }
832 /* Hope status is valid now. */
833 goto recheck;
834 }
835 smi->smi_status |= SM_STATUS_STATFS_BUSY;
836 mutex_exit(&smi->smi_lock);
837
838 /*
839 * Do the OTW call. Note: lock NOT held.
840 */
841 smb_credinit(&scred, NULL);
842 bzero(&stvfs, sizeof (stvfs));
843 error = smbfs_smb_statfs(ssp, &stvfs, &scred);
844 smb_credrele(&scred);
845 if (error) {
846 SMBVDEBUG("statfs error=%d\n", error);
847 } else {
848
849 /*
850 * Set a few things the OTW call didn't get.
851 */
852 stvfs.f_frsize = stvfs.f_bsize;
853 stvfs.f_favail = stvfs.f_ffree;
854 stvfs.f_fsid = (unsigned long)vfsp->vfs_fsid.val[0];
855 bcopy(fs_type_name, stvfs.f_basetype, FSTYPSZ);
856 stvfs.f_flag = vf_to_stf(vfsp->vfs_flag);
857 stvfs.f_namemax = smi->smi_fsa.fsa_maxname;
858
859 /*
860 * Save the result, update lifetime
861 */
862 now = gethrtime();
863 smi->smi_statfstime = now +
864 (SM_MAX_STATFSTIME * (hrtime_t)NANOSEC);
865 smi->smi_statvfsbuf = stvfs; /* struct assign! */
866 }
867
868 mutex_enter(&smi->smi_lock);
869 if (smi->smi_status & SM_STATUS_STATFS_WANT)
870 cv_broadcast(&smi->smi_statvfs_cv);
871 smi->smi_status &= ~(SM_STATUS_STATFS_BUSY | SM_STATUS_STATFS_WANT);
872
873 /*
874 * Copy the statvfs data to caller's buf.
875 * Note: struct assignment
876 */
877 cache_hit:
878 if (error == 0)
879 *sbp = smi->smi_statvfsbuf;
880 mutex_exit(&smi->smi_lock);
881 return (error);
882 }
883
884 /*
885 * Flush dirty smbfs files for file system vfsp.
886 * If vfsp == NULL, all smbfs files are flushed.
887 */
888 /*ARGSUSED*/
889 static int
890 smbfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
891 {
892
893 /*
894 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS
895 * to sync metadata, which they would otherwise cache indefinitely.
896 * Semantically, the only requirement is that the sync be initiated.
897 * Assume the server-side takes care of attribute sync.
898 */
899 if (flag & SYNC_ATTR)
900 return (0);
901
902 if (vfsp == NULL) {
903 /*
904 * Flush ALL smbfs mounts in this zone.
905 */
906 smbfs_flushall(cr);
907 return (0);
908 }
909
910 smbfs_rflush(vfsp, cr);
911
912 return (0);
913 }
914
915 /*
916 * Initialization routine for VFS routines. Should only be called once
917 */
918 int
919 smbfs_vfsinit(void)
920 {
921 return (0);
922 }
923
924 /*
925 * Shutdown routine for VFS routines. Should only be called once
926 */
927 void
928 smbfs_vfsfini(void)
929 {
930 }
931
932 void
933 smbfs_freevfs(vfs_t *vfsp)
934 {
935 smbmntinfo_t *smi;
936
937 /* free up the resources */
938 smi = VFTOSMI(vfsp);
939
940 /*
941 * By this time we should have already deleted the
942 * smi kstats in the unmount code. If they are still around
943 * something is wrong
944 */
945 ASSERT(smi->smi_io_kstats == NULL);
946
947 smbfs_zonelist_remove(smi);
948
949 smbfs_free_smi(smi);
950
951 /*
952 * Allow _fini() to succeed now, if so desired.
953 */
954 atomic_dec_32(&smbfs_mountcount);
955 }
956
957 /*
958 * smbfs_mount_label_policy:
959 * Determine whether the mount is allowed according to MAC check,
960 * by comparing (where appropriate) label of the remote server
961 * against the label of the zone being mounted into.
962 *
963 * Returns:
964 * 0 : access allowed
965 * -1 : read-only access allowed (i.e., read-down)
966 * >0 : error code, such as EACCES
967 *
968 * NB:
969 * NFS supports Cipso labels by parsing the vfs_resource
970 * to see what the Solaris server global zone has shared.
971 * We can't support that for CIFS since resource names
972 * contain share names, not paths.
973 */
974 static int
975 smbfs_mount_label_policy(vfs_t *vfsp, void *ipaddr, int addr_type, cred_t *cr)
976 {
977 bslabel_t *server_sl, *mntlabel;
978 zone_t *mntzone = NULL;
979 ts_label_t *zlabel;
980 tsol_tpc_t *tp;
981 ts_label_t *tsl = NULL;
982 int retv;
983
984 /*
985 * Get the zone's label. Each zone on a labeled system has a label.
986 */
987 mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
988 zlabel = mntzone->zone_slabel;
989 ASSERT(zlabel != NULL);
990 label_hold(zlabel);
991
992 retv = EACCES; /* assume the worst */
993
994 /*
995 * Next, get the assigned label of the remote server.
996 */
997 tp = find_tpc(ipaddr, addr_type, B_FALSE);
998 if (tp == NULL)
999 goto out; /* error getting host entry */
1000
1001 if (tp->tpc_tp.tp_doi != zlabel->tsl_doi)
1002 goto rel_tpc; /* invalid domain */
1003 if ((tp->tpc_tp.host_type != UNLABELED))
1004 goto rel_tpc; /* invalid hosttype */
1005
1006 server_sl = &tp->tpc_tp.tp_def_label;
1007 mntlabel = label2bslabel(zlabel);
1008
1009 /*
1010 * Now compare labels to complete the MAC check. If the labels
1011 * are equal or if the requestor is in the global zone and has
1012 * NET_MAC_AWARE, then allow read-write access. (Except for
1013 * mounts into the global zone itself; restrict these to
1014 * read-only.)
1015 *
1016 * If the requestor is in some other zone, but their label
1017 * dominates the server, then allow read-down.
1018 *
1019 * Otherwise, access is denied.
1020 */
1021 if (blequal(mntlabel, server_sl) ||
1022 (crgetzoneid(cr) == GLOBAL_ZONEID &&
1023 getpflags(NET_MAC_AWARE, cr) != 0)) {
1024 if ((mntzone == global_zone) ||
1025 !blequal(mntlabel, server_sl))
1026 retv = -1; /* read-only */
1027 else
1028 retv = 0; /* access OK */
1029 } else if (bldominates(mntlabel, server_sl)) {
1030 retv = -1; /* read-only */
1031 } else {
1032 retv = EACCES;
1033 }
1034
1035 if (tsl != NULL)
1036 label_rele(tsl);
1037
1038 rel_tpc:
1039 /*LINTED*/
1040 TPC_RELE(tp);
1041 out:
1042 if (mntzone)
1043 zone_rele(mntzone);
1044 label_rele(zlabel);
1045 return (retv);
1046 }