
new/usr/src/lib/smbsrv/libmlsvc/common/libmlsvc.h 1

**
 9255 Sun Mar 18 01:12:55 2018
new/usr/src/lib/smbsrv/libmlsvc/common/libmlsvc.h
1575 untangle libmlrpc ... pre2:
 Get rid of ndr_rpc_server_{info,os}
**
______unchanged_portion_omitted_

130 /*
131 * Information about a server as reported by NetServerGetInfo.
132 * The SV_PLATFORM and SV_TYPE definitions are in srvsvc.ndl.
133 */
134 typedef struct srvsvc_server_info {
135 uint32_t sv_platform_id;
136 char *sv_name;
137 uint32_t sv_version_major;
138 uint32_t sv_version_minor;
139 uint32_t sv_type;
140 char *sv_comment;
141 uint32_t sv_os;
142 } srvsvc_server_info_t;

144 int srvsvc_net_server_getinfo(char *, char *, srvsvc_server_info_t *);
130 int srvsvc_net_remote_tod(char *, char *, struct timeval *, struct tm *);

133 /*
134 * A client_t is created while binding a client connection to hold the
135 * context for calls made using that connection.
136 *
137 * Handles are RPC call specific and we use an inheritance mechanism to
138 * ensure that each handle has a pointer to the client_t. When the top
139 * level (bind) handle is released, we close the connection.
140 */
141 typedef struct mlsvc_handle {
142 ndr_hdid_t handle;
143 ndr_client_t *clnt;
159 srvsvc_server_info_t svinfo;
144 } mlsvc_handle_t;

146 void ndr_rpc_init(void);
147 void ndr_rpc_fini(void);
148 uint32_t ndr_rpc_bind(mlsvc_handle_t *, char *, char *, char *, const char *);
149 void ndr_rpc_unbind(mlsvc_handle_t *);
150 int ndr_rpc_call(mlsvc_handle_t *, int, void *);
151 void ndr_rpc_set_nonull(mlsvc_handle_t *);
168 const srvsvc_server_info_t *ndr_rpc_server_info(mlsvc_handle_t *);
169 uint32_t ndr_rpc_server_os(mlsvc_handle_t *);
152 int ndr_rpc_get_ssnkey(mlsvc_handle_t *, unsigned char *, size_t);
153 void *ndr_rpc_malloc(mlsvc_handle_t *, size_t);
154 ndr_heap_t *ndr_rpc_get_heap(mlsvc_handle_t *);
155 void ndr_rpc_release(mlsvc_handle_t *);
156 boolean_t ndr_is_null_handle(mlsvc_handle_t *);
157 boolean_t ndr_is_bind_handle(mlsvc_handle_t *);
158 void ndr_inherit_handle(mlsvc_handle_t *, mlsvc_handle_t *);
159 void ndr_rpc_status(mlsvc_handle_t *, int, uint32_t);

161 /* SVCCTL service */
162 /*
163 * Calculate the wide-char equivalent string length required to
164 * store a string - including the terminating null wide-char.
165 */
166 #define SVCCTL_WNSTRLEN(S) ((strlen((S)) + 1) * sizeof (smb_wchar_t))

168 /* An AVL-storable node representing each service in the SCM database. */
169 typedef struct svcctl_svc_node {

new/usr/src/lib/smbsrv/libmlsvc/common/libmlsvc.h 2

170 uu_avl_node_t sn_node;
171 char *sn_name; /* Service Name (Key) */
172 char *sn_fmri; /* Display Name (FMRI) */
173 char *sn_desc; /* Description */
174 char *sn_state; /* State */
175 } svcctl_svc_node_t;

______unchanged_portion_omitted_

new/usr/src/lib/smbsrv/libmlsvc/common/lsar_clnt.c 1

**
 36674 Sun Mar 18 01:12:55 2018
new/usr/src/lib/smbsrv/libmlsvc/common/lsar_clnt.c
1575 untangle libmlrpc ... pre2:
 Get rid of ndr_rpc_server_{info,os}
**
______unchanged_portion_omitted_

373 /*
374 * Lookup a name and obtain the sid/rid.
375 * This is a wrapper for the various lookup sid RPCs.
376 */
377 uint32_t
378 lsar_lookup_names(mlsvc_handle_t *lsa_handle, char *name, smb_account_t *info)
379 {
380 static lsar_nameop_t ops[] = {
381 lsar_lookup_names3,
382 lsar_lookup_names2,
383 lsar_lookup_names1
384 };

386 const srvsvc_server_info_t *svinfo;
386 lsa_names_t names;
387 char *p;
388 uint32_t length;
389 uint32_t status = NT_STATUS_INVALID_PARAMETER;
390 int n_op = (sizeof (ops) / sizeof (ops[0]));
391 int i;

393 if (lsa_handle == NULL || name == NULL || info == NULL)
394 return (NT_STATUS_INVALID_PARAMETER);

396 bzero(info, sizeof (smb_account_t));

399 svinfo = ndr_rpc_server_info(lsa_handle);
400 if (svinfo->sv_os == NATIVE_OS_WIN2000 &&
401 svinfo->sv_version_major == 5 && svinfo->sv_version_minor == 0) {
398 /*
399 * Windows 2000 (or later) doesn’t like an LSA lookup for
403 * Windows 2000 doesn’t like an LSA lookup for
400 * DOMAIN\Administrator.
401 */
402 if ((p = strchr(name, ’\\’)) != 0) {
403 ++p;

405 if (strcasecmp(p, "administrator") == 0)
406 name = p;
407 }

413 }

409 length = smb_wcequiv_strlen(name);
410 names.name[0].length = length;
411 names.name[0].allosize = length;
412 names.name[0].str = (unsigned char *)name;
413 names.n_entry = 1;

421 if (ndr_rpc_server_os(lsa_handle) == NATIVE_OS_WIN2000) {
415 for (i = 0; i < n_op; ++i) {
416 ndr_rpc_set_nonull(lsa_handle);
417 status = (*ops[i])(lsa_handle, &names, info);

419 if (status != NT_STATUS_INVALID_PARAMETER)
420 break;
421 }
429 } else {

new/usr/src/lib/smbsrv/libmlsvc/common/lsar_clnt.c 2

430 ndr_rpc_set_nonull(lsa_handle);
431 status = lsar_lookup_names1(lsa_handle, &names, info);
432 }

423 if (status == NT_STATUS_SUCCESS) {
424 info->a_name = lsar_get_username(name);

426 if (!smb_account_validate(info)) {
427 smb_account_free(info);
428 status = NT_STATUS_NO_MEMORY;
429 } else {
430 smb_account_trace(info);
431 }
432 }

434 return (status);
435 }

______unchanged_portion_omitted_

699 /*
700 * Lookup a sid and obtain the domain sid and account name.
701 * This is a wrapper for the various lookup sid RPCs.
702 */
703 uint32_t
704 lsar_lookup_sids(mlsvc_handle_t *lsa_handle, smb_sid_t *sid,
705 smb_account_t *account)
706 {
707 char sidbuf[SMB_SID_STRSZ];
708 uint32_t status;

710 if (lsa_handle == NULL || sid == NULL || account == NULL)
711 return (NT_STATUS_INVALID_PARAMETER);

713 bzero(account, sizeof (smb_account_t));
714 bzero(sidbuf, SMB_SID_STRSZ);
715 smb_sid_tostr(sid, sidbuf);
716 smb_tracef("%s", sidbuf);

718 status = lsar_lookup_sids2(lsa_handle, (lsa_sid_t *)sid, account);
719 if (status == RPC_NT_PROCNUM_OUT_OF_RANGE)
729 if (ndr_rpc_server_os(lsa_handle) == NATIVE_OS_WIN2000)
730 status = lsar_lookup_sids2(lsa_handle, (lsa_sid_t *)sid,
731 account);
732 else
720 status = lsar_lookup_sids1(lsa_handle, (lsa_sid_t *)sid,
721 account);

723 if (status == NT_STATUS_SUCCESS) {
724 if (!smb_account_validate(account)) {
725 smb_account_free(account);
726 status = NT_STATUS_NO_MEMORY;
727 } else {
728 smb_account_trace(account);
729 }
730 }

732 return (status);
733 }

______unchanged_portion_omitted_

1130 /*
1131 * lsar_lookup_priv_value
1132 *
1133 * Map a privilege name to a local unique id (LUID). Privilege names
1134 * are consistent across the network. LUIDs are machine specific.
1135 * This function provides the means to map a privilege name to the

new/usr/src/lib/smbsrv/libmlsvc/common/lsar_clnt.c 3

1136 * LUID used by a remote server to represent it. The handle here is
1137 * a policy handle.
1138 */
1139 int
1140 lsar_lookup_priv_value(mlsvc_handle_t *lsa_handle, char *name,
1141 struct ms_luid *luid)
1142 {
1143 struct mslsa_LookupPrivValue arg;
1144 int opnum;
1145 int rc;
1146 size_t length;

1148 if (lsa_handle == NULL || name == NULL || luid == NULL)
1149 return (-1);

1151 opnum = LSARPC_OPNUM_LookupPrivValue;

1153 bzero(&arg, sizeof (struct mslsa_LookupPrivValue));
1154 (void) memcpy(&arg.handle, lsa_handle, sizeof (mslsa_handle_t));

1156 length = smb_wcequiv_strlen(name);
1170 if (ndr_rpc_server_os(lsa_handle) == NATIVE_OS_WIN2000)
1157 length += sizeof (smb_wchar_t);

1159 arg.name.length = length;
1160 arg.name.allosize = length;
1161 arg.name.str = (unsigned char *)name;

1163 rc = ndr_rpc_call(lsa_handle, opnum, &arg);
1164 if (rc == 0) {
1165 if (arg.status != 0)
1166 rc = -1;
1167 else
1168 (void) memcpy(luid, &arg.luid, sizeof (struct ms_luid));
1169 }

1171 ndr_rpc_release(lsa_handle);
1172 return (rc);
1173 }
______unchanged_portion_omitted_

new/usr/src/lib/smbsrv/libmlsvc/common/mlsvc_client.c 1

**
 13629 Sun Mar 18 01:12:55 2018
new/usr/src/lib/smbsrv/libmlsvc/common/mlsvc_client.c
1575 untangle libmlrpc ... pre2:
 Get rid of ndr_rpc_server_{info,os}
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
25 */

27 /*
28 * Client NDR RPC interface.
29 */

31 #include <sys/types.h>
32 #include <sys/errno.h>
33 #include <sys/fcntl.h>
34 #include <time.h>
35 #include <strings.h>
36 #include <assert.h>
37 #include <errno.h>
38 #include <thread.h>
39 #include <syslog.h>
40 #include <synch.h>

42 #include <netsmb/smbfs_api.h>
43 #include <smbsrv/libsmb.h>
44 #include <smbsrv/libsmbns.h>
45 #include <smbsrv/libmlrpc.h>
46 #include <smbsrv/libmlsvc.h>
47 #include <smbsrv/ndl/srvsvc.ndl>
48 #include <libsmbrdr.h>
49 #include <mlsvc.h>

51 static int ndr_xa_init(ndr_client_t *, ndr_xa_t *);
52 static int ndr_xa_exchange(ndr_client_t *, ndr_xa_t *);
53 static int ndr_xa_read(ndr_client_t *, ndr_xa_t *);
54 static void ndr_xa_preserve(ndr_client_t *, ndr_xa_t *);
55 static void ndr_xa_destruct(ndr_client_t *, ndr_xa_t *);
56 static void ndr_xa_release(ndr_client_t *);

59 /*
60 * This call must be made to initialize an RPC client structure and bind

new/usr/src/lib/smbsrv/libmlsvc/common/mlsvc_client.c 2

61 * to the remote service before any RPCs can be exchanged with that service.
62 *
63 * The mlsvc_handle_t is a wrapper that is used to associate an RPC handle
64 * with the client context for an instance of the interface. The handle
65 * is zeroed to ensure that it doesn’t look like a valid handle -
66 * handle content is provided by the remove service.
67 *
68 * The client points to this top-level handle so that we know when to
69 * unbind and teardown the connection. As each handle is initialized it
70 * will inherit a reference to the client context.
71 *
72 * Returns 0 or an NT_STATUS:
73 * NT_STATUS_BAD_NETWORK_PATH (get server addr)
74 * NT_STATUS_NETWORK_ACCESS_DENIED (connect, auth)
75 * NT_STATUS_BAD_NETWORK_NAME (tcon, open)
76 * NT_STATUS_ACCESS_DENIED (open pipe)
77 * NT_STATUS_INVALID_PARAMETER (rpc bind)
78 *
79 * NT_STATUS_INTERNAL_ERROR (bad args etc)
80 * NT_STATUS_NO_MEMORY
81 */
82 DWORD
83 ndr_rpc_bind(mlsvc_handle_t *handle, char *server, char *domain,
84 char *username, const char *service)
85 {
86 struct smb_ctx *ctx = NULL;
87 ndr_client_t *clnt = NULL;
88 ndr_service_t *svc;
89 srvsvc_server_info_t svinfo;
89 DWORD status;
90 int fd = -1;
91 int rc;

93 if (handle == NULL || server == NULL || server[0] == ’\0’ ||
94 domain == NULL || username == NULL)
95 return (NT_STATUS_INTERNAL_ERROR);

97 /* In case the service was not registered... */
98 if ((svc = ndr_svc_lookup_name(service)) == NULL)
99 return (NT_STATUS_INTERNAL_ERROR);

101 /*
103 * Set the default based on the assumption that most
104 * servers will be Windows 2000 or later. This used to
105 * try to get the actual server version, but that RPC
106 * is not necessarily allowed anymore, so don’t bother.
107 */
108 bzero(&svinfo, sizeof (srvsvc_server_info_t));
109 svinfo.sv_platform_id = SV_PLATFORM_ID_NT;
110 svinfo.sv_version_major = 5;
111 svinfo.sv_version_minor = 0;
112 svinfo.sv_type = SV_TYPE_DEFAULT;
113 svinfo.sv_os = NATIVE_OS_WIN2000;

115 /*
102 * Some callers pass this when they want a NULL session.
103 * Todo: have callers pass an empty string for that.
104 */
105 if (strcmp(username, MLSVC_ANON_USER) == 0)
106 username = "";

108 /*
109 * Setup smbfs library handle, authenticate, connect to
110 * the IPC$ share. This will reuse an existing connection
111 * if the driver already has one for this combination of
112 * server, user, domain. It may return any of:

new/usr/src/lib/smbsrv/libmlsvc/common/mlsvc_client.c 3

113 * NT_STATUS_BAD_NETWORK_PATH (get server addr)
114 * NT_STATUS_NETWORK_ACCESS_DENIED (connect, auth)
115 * NT_STATUS_BAD_NETWORK_NAME (tcon)
116 */
117 status = smbrdr_ctx_new(&ctx, server, domain, username);
118 if (status != NT_STATUS_SUCCESS) {
119 syslog(LOG_ERR, "ndr_rpc_bind: smbrdr_ctx_new"
120 "(Srv=%s Dom=%s User=%s), %s (0x%x)",
121 server, domain, username,
122 xlate_nt_status(status), status);
123 /* Tell the DC Locator this DC failed. */
124 smb_ddiscover_bad_dc(server);
125 goto errout;
126 }

128 /*
129 * Open the named pipe.
130 */
131 fd = smb_fh_open(ctx, svc->endpoint, O_RDWR);
132 if (fd < 0) {
133 rc = errno;
134 syslog(LOG_DEBUG, "ndr_rpc_bind: "
135 "smb_fh_open (%s) err=%d",
136 svc->endpoint, rc);
137 switch (rc) {
138 case EACCES:
139 status = NT_STATUS_ACCESS_DENIED;
140 break;
141 default:
142 status = NT_STATUS_BAD_NETWORK_NAME;
143 break;
144 }
145 goto errout;
146 }

148 /*
149 * Setup the RPC client handle.
150 */
151 if ((clnt = malloc(sizeof (ndr_client_t))) == NULL) {
152 status = NT_STATUS_NO_MEMORY;
153 goto errout;
154 }
155 bzero(clnt, sizeof (ndr_client_t));

157 clnt->handle = &handle->handle;
158 clnt->xa_init = ndr_xa_init;
159 clnt->xa_exchange = ndr_xa_exchange;
160 clnt->xa_read = ndr_xa_read;
161 clnt->xa_preserve = ndr_xa_preserve;
162 clnt->xa_destruct = ndr_xa_destruct;
163 clnt->xa_release = ndr_xa_release;
164 clnt->xa_private = ctx;
165 clnt->xa_fd = fd;

167 ndr_svc_binding_pool_init(&clnt->binding_list,
168 clnt->binding_pool, NDR_N_BINDING_POOL);

170 if ((clnt->heap = ndr_heap_create()) == NULL) {
171 status = NT_STATUS_NO_MEMORY;
172 goto errout;
173 }

175 /*
176 * Fill in the caller’s handle.
177 */
178 bzero(&handle->handle, sizeof (ndr_hdid_t));

new/usr/src/lib/smbsrv/libmlsvc/common/mlsvc_client.c 4

179 handle->clnt = clnt;
194 bcopy(&svinfo, &handle->svinfo, sizeof (srvsvc_server_info_t));

181 /*
182 * Do the OtW RPC bind.
183 */
184 rc = ndr_clnt_bind(clnt, service, &clnt->binding);
185 switch (rc) {
186 case NDR_DRC_FAULT_OUT_OF_MEMORY:
187 status = NT_STATUS_NO_MEMORY;
188 break;
189 case NDR_DRC_FAULT_API_SERVICE_INVALID: /* not registered */
190 status = NT_STATUS_INTERNAL_ERROR;
191 break;
192 default:
193 if (NDR_DRC_IS_FAULT(rc)) {
194 status = NT_STATUS_INVALID_PARAMETER;
195 break;
196 }
197 /* FALLTHROUGH */
198 case NDR_DRC_OK:
199 return (NT_STATUS_SUCCESS);
200 }

202 syslog(LOG_DEBUG, "ndr_rpc_bind: "
203 "ndr_clnt_bind, %s (0x%x)",
204 xlate_nt_status(status), status);

206 errout:
207 handle->clnt = NULL;
208 if (clnt != NULL) {
209 ndr_heap_destroy(clnt->heap);
210 free(clnt);
211 }
212 if (ctx != NULL) {
213 if (fd != -1)
214 (void) smb_fh_close(fd);
215 smbrdr_ctx_free(ctx);
216 }

218 return (status);
219 }

______unchanged_portion_omitted_

290 /*
306 * Return a reference to the server info.
307 */
308 const srvsvc_server_info_t *
309 ndr_rpc_server_info(mlsvc_handle_t *handle)
310 {
311 return (&handle->svinfo);
312 }

314 /*
315 * Return the RPC server OS level.
316 */
317 uint32_t
318 ndr_rpc_server_os(mlsvc_handle_t *handle)
319 {
320 return (handle->svinfo.sv_os);
321 }

323 /*
291 * Get the session key from a bound RPC client handle.
292 *
293 * The key returned is the 16-byte "user session key"

new/usr/src/lib/smbsrv/libmlsvc/common/mlsvc_client.c 5

294 * established by the underlying authentication protocol
295 * (either Kerberos or NTLM). This key is needed for
296 * SAM RPC calls such as SamrSetInformationUser, etc.
297 * See [MS-SAMR] sections: 2.2.3.3, 2.2.7.21, 2.2.7.25.
298 *
299 * Returns zero (success) or an errno.
300 */
301 int
302 ndr_rpc_get_ssnkey(mlsvc_handle_t *handle,
303 unsigned char *ssn_key, size_t len)
304 {
305 ndr_client_t *clnt = handle->clnt;
306 int rc;

308 if (clnt == NULL)
309 return (EINVAL);

311 rc = smb_fh_getssnkey(clnt->xa_fd, ssn_key, len);
312 return (rc);
313 }

______unchanged_portion_omitted_

384 /*
385 * Pass the client reference from parent to child.
386 */
387 void
388 ndr_inherit_handle(mlsvc_handle_t *child, mlsvc_handle_t *parent)
389 {
390 child->clnt = parent->clnt;
424 bcopy(&parent->svinfo, &child->svinfo, sizeof (srvsvc_server_info_t));
391 }

______unchanged_portion_omitted_

new/usr/src/lib/smbsrv/libmlsvc/common/netr_auth.c 1

**
 16191 Sun Mar 18 01:12:55 2018
new/usr/src/lib/smbsrv/libmlsvc/common/netr_auth.c
1575 untangle libmlrpc ... pre2:
 Get rid of ndr_rpc_server_{info,os}
**
______unchanged_portion_omitted_

194 uint32_t netr_server_auth2_flags =
195 NETR_NEGOTIATE_BASE_FLAGS |
196 NETR_NEGOTIATE_STRONGKEY_FLAG;

198 /*
199 * netr_server_authenticate2
200 */
201 static int
202 netr_server_authenticate2(mlsvc_handle_t *netr_handle, netr_info_t *netr_info)
203 {
204 struct netr_ServerAuthenticate2 arg;
205 /* sizeof netr_info->hostname, + 1 for the ’$’ */
206 char account_name[(NETBIOS_NAME_SZ * 2) + 1];
207 int opnum;
208 int rc;

210 bzero(&arg, sizeof (struct netr_ServerAuthenticate2));
211 opnum = NETR_OPNUM_ServerAuthenticate2;

213 (void) snprintf(account_name, sizeof (account_name), "%s$",
214 netr_info->hostname);

216 smb_tracef("server=[%s] account_name=[%s] hostname=[%s]\n",
217 netr_info->server, account_name, netr_info->hostname);

219 arg.servername = (unsigned char *)netr_info->server;
220 arg.account_name = (unsigned char *)account_name;
221 arg.account_type = NETR_WKSTA_TRUST_ACCOUNT_TYPE;
222 arg.hostname = (unsigned char *)netr_info->hostname;
223 arg.negotiate_flags = netr_server_auth2_flags;
219 arg.negotiate_flags = NETR_NEGOTIATE_BASE_FLAGS;

225 if (arg.negotiate_flags & NETR_NEGOTIATE_STRONGKEY_FLAG) {
221 if (ndr_rpc_server_os(netr_handle) == NATIVE_OS_WIN2000) {
222 arg.negotiate_flags |= NETR_NEGOTIATE_STRONGKEY_FLAG;
226 if (netr_gen_skey128(netr_info) != SMBAUTH_SUCCESS)
227 return (-1);
228 } else {
229 if (netr_gen_skey64(netr_info) != SMBAUTH_SUCCESS)
230 return (-1);
231 }

233 if (netr_gen_credentials(netr_info->session_key.key,
234 &netr_info->client_challenge, 0,
235 &netr_info->client_credential) != SMBAUTH_SUCCESS) {
236 return (-1);
237 }

239 if (netr_gen_credentials(netr_info->session_key.key,
240 &netr_info->server_challenge, 0,
241 &netr_info->server_credential) != SMBAUTH_SUCCESS) {
242 return (-1);
243 }

245 (void) memcpy(&arg.client_credential, &netr_info->client_credential,
246 sizeof (struct netr_credential));

248 if (ndr_rpc_call(netr_handle, opnum, &arg) != 0)

new/usr/src/lib/smbsrv/libmlsvc/common/netr_auth.c 2

249 return (-1);

251 if (arg.status != 0) {
252 ndr_rpc_status(netr_handle, opnum, arg.status);
253 ndr_rpc_release(netr_handle);
254 return (-1);
255 }

257 rc = memcmp(&netr_info->server_credential, &arg.server_credential,
258 sizeof (struct netr_credential));

260 ndr_rpc_release(netr_handle);
261 return (rc);
262 }

______unchanged_portion_omitted_

new/usr/src/lib/smbsrv/libmlsvc/common/srvsvc_clnt.c 1

**
 13246 Sun Mar 18 01:12:55 2018
new/usr/src/lib/smbsrv/libmlsvc/common/srvsvc_clnt.c
1575 untangle libmlrpc ... pre2:
 Get rid of ndr_rpc_server_{info,os}
**
______unchanged_portion_omitted_

352 /*
353 * Windows 95+ and Windows NT4.0 both report the version as 4.0.
354 * Windows 2000+ reports the version as 5.x.
355 */
356 int
357 srvsvc_net_server_getinfo(char *server, char *domain,
358 srvsvc_server_info_t *svinfo)
359 {
360 mlsvc_handle_t handle;
361 struct mslm_NetServerGetInfo arg;
362 struct mslm_SERVER_INFO_101 *sv101;
363 int len, opnum, rc;
364 char user[SMB_USERNAME_MAXLEN];

366 smb_ipc_get_user(user, SMB_USERNAME_MAXLEN);

368 if (srvsvc_open(server, domain, user, &handle) != 0)
369 return (-1);

371 opnum = SRVSVC_OPNUM_NetServerGetInfo;
372 bzero(&arg, sizeof (arg));

374 len = strlen(server) + 4;
375 arg.servername = ndr_rpc_malloc(&handle, len);
376 if (arg.servername == NULL)
377 return (-1);

379 (void) snprintf((char *)arg.servername, len, "\\\\%s", server);
380 arg.level = 101;

382 rc = ndr_rpc_call(&handle, opnum, &arg);
383 if ((rc != 0) || (arg.status != 0)) {
384 srvsvc_close(&handle);
385 return (-1);
386 }

388 sv101 = arg.result.bufptr.bufptr101;

390 bzero(svinfo, sizeof (srvsvc_server_info_t));
391 svinfo->sv_platform_id = sv101->sv101_platform_id;
392 svinfo->sv_version_major = sv101->sv101_version_major;
393 svinfo->sv_version_minor = sv101->sv101_version_minor;
394 svinfo->sv_type = sv101->sv101_type;
395 if (sv101->sv101_name)
396 svinfo->sv_name = strdup((char *)sv101->sv101_name);
397 if (sv101->sv101_comment)
398 svinfo->sv_comment = strdup((char *)sv101->sv101_comment);

400 if (svinfo->sv_type & SV_TYPE_WFW)
401 svinfo->sv_os = NATIVE_OS_WIN95;
402 if (svinfo->sv_type & SV_TYPE_WINDOWS)
403 svinfo->sv_os = NATIVE_OS_WIN95;
404 if ((svinfo->sv_type & SV_TYPE_NT) ||
405 (svinfo->sv_type & SV_TYPE_SERVER_NT))
406 svinfo->sv_os = NATIVE_OS_WINNT;
407 if (svinfo->sv_version_major > 4)
408 svinfo->sv_os = NATIVE_OS_WIN2000;

new/usr/src/lib/smbsrv/libmlsvc/common/srvsvc_clnt.c 2

410 srvsvc_close(&handle);
411 return (0);
412 }

414 /*
353 * Compare the time here with the remote time on the server
354 * and report clock skew.
355 */
356 void
357 srvsvc_timecheck(char *server, char *domain)
358 {
359 char hostname[MAXHOSTNAMELEN];
360 struct timeval dc_tv;
361 struct tm dc_tm;
362 struct tm *tm;
363 time_t tnow;
364 time_t tdiff;
365 int priority;

367 if (srvsvc_net_remote_tod(server, domain, &dc_tv, &dc_tm) < 0) {
368 syslog(LOG_DEBUG, "srvsvc_net_remote_tod failed");
369 return;
370 }

372 tnow = time(NULL);

374 if (tnow > dc_tv.tv_sec)
375 tdiff = (tnow - dc_tv.tv_sec) / SECSPERMIN;
376 else
377 tdiff = (dc_tv.tv_sec - tnow) / SECSPERMIN;

379 if (tdiff != 0) {
380 (void) strlcpy(hostname, "localhost", MAXHOSTNAMELEN);
381 (void) gethostname(hostname, MAXHOSTNAMELEN);

383 priority = (tdiff > 2) ? LOG_NOTICE : LOG_DEBUG;
384 syslog(priority, "DC [%s] clock skew detected: %u minutes",
385 server, tdiff);

387 tm = gmtime(&dc_tv.tv_sec);
388 syslog(priority, "%-8s UTC: %s", server, asctime(tm));
389 tm = gmtime(&tnow);
390 syslog(priority, "%-8s UTC: %s", hostname, asctime(tm));
391 }
392 }

______unchanged_portion_omitted_

441 /*
442 * This is a client side routine for NetRemoteTOD, which gets the time
443 * and date from a remote system. The time information is returned in
444 * the timeval and tm.
445 *
446 * typedef struct _TIME_OF_DAY_INFO {
447 * DWORD tod_elapsedt; // seconds since 00:00:00 January 1 1970 GMT
448 * DWORD tod_msecs; // arbitrary milliseconds (since reset)
449 * DWORD tod_hours; // current hour [0-23]
450 * DWORD tod_mins; // current minute [0-59]
451 * DWORD tod_secs; // current second [0-59]
452 * DWORD tod_hunds; // current hundredth (0.01) second [0-99]
453 * LONG tod_timezone; // time zone of the server
454 * DWORD tod_tinterval; // clock tick time interval
455 * DWORD tod_day; // day of the month [1-31]
456 * DWORD tod_month; // month of the year [1-12]
457 * DWORD tod_year; // current year
458 * DWORD tod_weekday; // day of the week since sunday [0-6]
459 * } TIME_OF_DAY_INFO;

new/usr/src/lib/smbsrv/libmlsvc/common/srvsvc_clnt.c 3

460 *
461 * The time zone of the server is calculated in minutes from Greenwich
462 * Mean Time (GMT). For time zones west of Greenwich, the value is
463 * positive; for time zones east of Greenwich, the value is negative.
464 * A value of -1 indicates that the time zone is undefined.
465 *
466 * The clock tick value represents a resolution of one ten-thousandth
467 * (0.0001) second.
468 */
469 int
470 srvsvc_net_remote_tod(char *server, char *domain, struct timeval *tv,
471 struct tm *tm)
472 {
473 struct mslm_NetRemoteTOD arg;
474 struct mslm_TIME_OF_DAY_INFO *tod;
475 mlsvc_handle_t handle;
476 int rc;
477 int opnum;
478 int len;
479 char user[SMB_USERNAME_MAXLEN];

481 smb_ipc_get_user(user, SMB_USERNAME_MAXLEN);

483 rc = srvsvc_open(server, domain, user, &handle);
484 if (rc != 0)
485 return (-1);

487 opnum = SRVSVC_OPNUM_NetRemoteTOD;
488 bzero(&arg, sizeof (struct mslm_NetRemoteTOD));

490 len = strlen(server) + 4;
491 arg.servername = ndr_rpc_malloc(&handle, len);
492 if (arg.servername == NULL) {
493 srvsvc_close(&handle);
494 return (-1);
495 }

497 (void) snprintf((char *)arg.servername, len, "\\\\%s", server);

499 rc = ndr_rpc_call(&handle, opnum, &arg);
500 if ((rc != 0) || (arg.status != 0)) {
501 srvsvc_close(&handle);
502 return (-1);
503 }

505 /*
506 * We’re assigning milliseconds to microseconds
507 * here but the value’s not really relevant.
508 */
509 tod = arg.bufptr;

511 if (tv) {
512 tv->tv_sec = tod->tod_elapsedt;
513 tv->tv_usec = tod->tod_msecs;
514 }

516 if (tm) {
517 tm->tm_sec = tod->tod_secs;
518 tm->tm_min = tod->tod_mins;
519 tm->tm_hour = tod->tod_hours;
520 tm->tm_mday = tod->tod_day;
521 tm->tm_mon = tod->tod_month - 1;
522 tm->tm_year = tod->tod_year - 1900;
523 tm->tm_wday = tod->tod_weekday;
524 }

new/usr/src/lib/smbsrv/libmlsvc/common/srvsvc_clnt.c 4

526 srvsvc_close(&handle);
527 return (0);
590 }

592 void
593 srvsvc_net_test(char *server, char *domain, char *netname)
594 {
595 smb_domainex_t di;
596 srvsvc_server_info_t svinfo;

598 (void) smb_tracef("%s %s %s", server, domain, netname);

600 if (smb_domain_getinfo(&di)) {
601 server = di.d_dci.dc_name;
602 domain = di.d_primary.di_nbname;
603 }

605 if (srvsvc_net_server_getinfo(server, domain, &svinfo) == 0) {
606 smb_tracef("NetServerGetInfo: %s %s (%d.%d) id=%d type=0x%08x",
607 svinfo.sv_name ? svinfo.sv_name : "NULL",
608 svinfo.sv_comment ? svinfo.sv_comment : "NULL",
609 svinfo.sv_version_major, svinfo.sv_version_minor,
610 svinfo.sv_platform_id, svinfo.sv_type);

612 free(svinfo.sv_name);
613 free(svinfo.sv_comment);
614 }

616 (void) srvsvc_net_share_get_info(server, domain, netname);
617 #if 0
618 /*
619 * The NetSessionEnum server-side definition was updated.
620 * Disabled until the client-side has been updated.
621 */
622 (void) srvsvc_net_session_enum(server, domain, netname);
623 #endif
624 (void) srvsvc_net_connect_enum(server, domain, netname, 0);
625 (void) srvsvc_net_connect_enum(server, domain, netname, 1);
528 }

______unchanged_portion_omitted_

