new usr/src/lib/snbsrv/libm svc/comon/libnm svc. h 1 new usr/src/lib/snbsrv/libm svc/comon/libn svc. h

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 170 uu avl node t Sn node

9255 Sun Mar 18 01:12:55 2018 171 char - *sn_name; /* Service Name (Key) */
new usr/src/lib/snbsrv/libm svc/comon/libn svc. h 172 char *sn_fori; /* Display Nane (FMRI) */
1575 untangle libmrpc ... pre2: 173 char *sn_desc; /* Description */
Get rid of ndr_rpc_server_{info, os} 174 char *sn_state; /* State */
EEEEEEEEEEEEEEEEEEEEESESEEEREEEEEEEEEREEEEEERERERERERESRESRSESESE] 175 } SVCC'[| SVC node t

__unchanged_portion_omtted_ __unchanged_portion om tted_
130 /*

131 * Information about a server as reported by NetServerGetlnfo.
132 * The SV_PLATFORM and SV_TYPE definitions are in srvsvc.ndl .

133

134 typedef struct srvsvc_server_info {

135 ui nt 32_t sv_platformid;
136 char *sv_nane;

137 ui nt 32_t sv_versi on_mgj or;
138 ui nt 32_t sv_versi on_mi nor;
139 ui nt 32_t sv_type;

140 char *sv_comment ;

141 ui nt 32_t SV_0S;

142 } srvsvc_server_info_t;

144 int srvsvc_net_server_getinfo(char *, char *, srvsvc_server_info_t *);
130 int srvsvc_net_renote_tod(char *, char *, struct tineval *, struct tm*);

133 /*

134 * Aclient_t is created while binding a client connection to hold the
135 * context for calls made using that connection.

136 *

137 * Handles are RPC call specific and we use an inheritance nechanismto
138 * ensure that each handle has a pointer to the client_t. Wen the top
139 * level (bind) handle is released, we close the connection.

140 */

141 typedef struct msvc_handle {

142 ndr _hdi d_t handl e;

143 ndr_client_t *clnt;

159 srvsvc_server _info_t svi nf o;

144 } m svc_handle_t;

146 void ndr_rpc_init(void);
147 void ndr_rpc_fini(void);
148 uint32_t ndr_rpc_bind(m svc_handle_t *, char *, char *, char *, const char *);
149 void ndr_rpc_unbi nd(m svc_handle_t *);

150 int ndr_rpc_call(msvc_handle_t *, int, void *);

151 voi d ndr_rpc_set_nonul T(m svc_handle_t *);

168 const srvsvc_server_info_t *ndr_rpc_ser ver_i nfo(m svc_handle_t *);
169 uint32_t ndr_rpc_server_os(m svc_handle_t *);

152 int ndr_rpc_get_ssnkey(nl svc_handle_t *, unsigned char *, size_t);
153 void *ndr_rpc_mal l oc(m svc_handle_t *, size_t);

154 ndr_heap_t *ndr_rpc_get _heap(nm svc_handle_t *);

155 voi d ndr_rpc_release(m svc_handle_t *);

156 bool ean_t ndr_is_null _handle(m svc_handl e_t *);

157 bool ean_t ndr_i s_bi nd_handl e(m svc_handl e_t *);

158 void ndr_inherit_handl e(m svc_handle_t *, ni svc_handl e_t *);

159 void ndr_rpc_status(m svc_handle_t *, int, uint32_t);

161 /* SVCCTL service */

162 /*

163 * Calculate the w de-char equivalent string length required to

164 * store a string - including the term nating null wide-char.

165 */

166 #define SVCCTL_WNSTRLEN(S) ((strlen((S)) + 1) * sizeof (smb_wchar_t))

168 /* An AVL-storable node representing each service in the SCM dat abase. */
169 typedef struct svcctl_svc_node {

new usr/src/lib/snmbsrv/libm svc/common/lsar_clnt.c

R R R R

36674 Sun Mar 18 01:12:55 2018
new usr/src/lib/snmbsrv/libm svc/common/lsar_clnt.c
1575 untangle libmrpc ... pre2:
Get rid of ndr_rpc_server_{info, os}

LR R R

____unchanged_portion_onitted_

373 /| *
374 * Lookup a nane and obtain the sid/rid.
375 * This Is a wapper for the various |ookup sid RPCs.

376 */

377 uint32_t

378 | sar_| ookup_nanmes(m svc_handl e_t *Isa_handl e, char *name, snb_account_t *info)
379 {

380 static |sar_naneop_t ops[] = {

381 | sar _| ookup_nanes3,

382 | sar _| ookup_nanes2,

383 | sar _| ookup_nanes1

384 }i

386 const srvsvc_server_info_t *svi nf o;

386 | sa_nanes_t nanes;

387 char *p;

388 ui nt32_t | engt h;

389 ui nt 32_t status = NT_STATUS_I NVALI D_PARAMETER,;
390 int n_op = (sizeof (ops) / sizeof (ops[0]));
391 int i;

393 if (Isa_handle == NULL || name == NULL || info == NULL)
394 return (NT_STATUS | NVALI D_PARAMETER) ;

396 bzero(info, sizeof (snb_account_t));

399 svinfo = ndr_rpc_server_i nfo(l sa_handl e);

400 if (svinfo->sv_os == NATI VE_OS_W N2000 &&

401 svi nfo->sv_version_major == 5 && svinfo->sv_version_m nor == 0) {
398 /*

399 * Wndows 2000 (or later) doesn’t |ike an LSA | ookup for
403 * Wndows 2000 doesn’t |ike an LSA | ookup for
400 * DOVAI N\ Admi ni strator.

401 */

402 if ((p = strchr(name, "\\")) I'=0) {

403 ++p;

405 if (strcasecnp(p, "administrator") == 0)

406 nane = p;

407 1

413 }

409 length = snmb_wcequi v_strl en(nane);

410 nanes. nane[0] .l ength = | ength;

411 names. nare[0] . al | osi ze = | ength;

412 names. nanme[0] . str = (unsi gned char *)nane;

413 names. n_entry = 1;

421 if (ndr_rpc_server_os(lsa_handl e) == NATIVE_OS_W N2000) {
415 for (i =0; i < n_op; ++i)

416 ndr_rpc_set_nonul | (I sa_handl e);

417 status = (*ops[i])(lsa_handl e, &nanes, info);
419 if (status != NT_STATUS_| NVALI D_PARAMETER)

420 break;

421 1
429 } else {

new usr/src/lib/snmbsrv/libm sve/common/lsar_clnt.c

430 ndr _rpc_set _nonul | (I sa_handl e);

431 status = | sar_| ookup_nanesl1(lsa_handl e, &nanes, info);
432 }

423 if (status == NT_STATUS_SUCCESS)

424 info->a_name = | sar_get_usernane(nane);
426 if (!'smb_account_validate(info)) {

427 snmb_account _free(info);

428 status = NT_STATUS_NO_ MEMCORY;
429 } else {

430 snb_account _trace(info);

431 }

432 }

434 return (status);

435 }

____unchanged_portion_onitted_

699 /*
700 * Lookup a sid and obtain the domain sid and account nane.
701 * This Is a wapper for the various |ookup sid RPCs.

702 */
703 uint32_t
704 | sar_| ookup_si ds(m svc_handl e_t *lsa_handle, snb_sid_t *sid,
705 snmb_account _t *account)
706 {
707 char si dbuf [SMB_SI D_STRSZ] ;
708 ui nt32_t st at us;
710 if (Isa_handle == NULL || sid == NULL || account == NULL)
711 return (NT_STATUS | NVALI D_PARAVETER) ;
713 bzero(account, sizeof (smb_account_t));
714 bzero(si dbuf, SMB_SID STRSZ);
715 snb_sid_tostr(sid, sidbuf);
716 snb_tracef ("%", sidbuf);
718 status = |sar_| ookup_si ds2(lsa_handle, (lsa_sid_t *)sid, account);
719 if (status == RPC_NT_PROCNUM OUT_OF RANGE)
729 if (ndr_rpc_server_os(lsa_handl e) == NATI VE_OS_W N2000)
730 status = | sar_| ookup_sids2(lsa_handle, (lsa_sid_t *)sid,
731 account) ;
732 el se
720 status = | sar_| ookup_sidsl(lsa_handle, (lsa_sid_t *)sid,
721 account);
723 if (status == NT_STATUS SUCCESS) {
724 if (!snb_account_validate(account)) {
725 snmb_account _free(account);
726 status = NT_STATUS_NO_ MEMCORY;
727 } else {
728 snb_account _trace(account);
729 }
730 }
732 return (status);
733 }
____unchanged_portion_onitted_
1130 /*
1131 * Isar_l ookup_priv_val ue
1132 *
1133 * Map a privilege name to a local unique id (LUD). Privilege names
1134 * are consistent across the network. LU Ds are nmachine specific.
1135 * This function provides the neans to map a privilege nane to the

new usr/src/lib/snmbsrv/libm svc/common/lsar_clnt.c 3

1136 * LUID used by a renpte server to represent it. The handle here is
1137 * a policy handle.

1138 */

1139 int

1140 | sar_| ookup_priv_val ue(m svc_handl e_t *|sa_handl e, char *nane,
1141 struct ms_luid *luid)

1142 {

1143 struct msl sa_LookupPrivVal ue arg;

1144 int opnum

1145 int rc;

1146 size_t length;

1148 if (Isa_handle == NULL || name == NULL || luid == NULL)
1149 return (-1);

1151 opnum = LSARPC_OPNUM LookupPri vVal ue;

1153 bzero(&arg, sizeof (struct mslsa_LookupPrivValue));
1154 (void) mencpy(&arg. handl e, |sa_handle, sizeof (nslsa_handle_t));
1156 I ength = snb_wcequi v_strl en(nane);

1170 if (ndr_rpc_server_os(lsa_handl e) == NATI VE_OS_W N2000)
1157 length += sizeof (smb_wchar_t);

1159 arg. name. |l ength = | ength;

1160 arg. nane. al | osi ze = | ength;

1161 arg. nanme.str = (unsigned char *)nane;

1163 rc = ndr_rpc_call (lsa_handl e, opnum &arg);

1164 if (rc == 0) {

1165 if (arg.status != 0)

1166 rc = -1;

1167 el se

1168 (void) nencpy(luid, &rg.luid, sizeof (struct ns_luid));
1169 }

1171 ndr_rpc_rel ease(l sa_handl e);

1172 return (rc);

1173 }

__unchanged_portion_onitted_

new usr/src/lib/snmbsrv/libm sve/ common/ m sve_client.c 1 new usr/src/lib/snmbsrv/libm sve/ common/ m sve_client.c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 61 * to the renDte SerVI ce before any RP& can be exchanged Wth that SeTVI ce.
13629 Sun Mar 18 01:12:55 2018 62 *
new usr/src/lib/snmbsrv/libm svc/ common/ m sve_client.c 63 * The msvc_handle_t is a wapper that is used to associate an RPC handl e
1575 untangle libmrpc ... pre2: 64 * with the client context for an instance of the interface. The handle
Get rid of ndr_rpc_server_{info, os} 65 * is zeroed to ensure that it doesn't look like a valid handle -
EEEEEEEEEEEEEEEEEEEEESESEEEREEEEEEEEEREEEEEERERERERERESRESRSESESE] 66 * handle COntent IS provl ded by the r enove SerVI ce.
1/* 67 *
2 * CDDL HEADER START 68 * The client points to this top-level handle so that we know when to
3 = 69 * unbind and teardown the connection. As each handle is initialized it
4 * The contents of this file are subject to the terms of the 70 * will inherit a reference to the client context.
5 * Common Devel opnent and Distribution License (the "License"). 71 *
6 * You may not use this file except in conpliance with the License. 72 * Returns 0 or an NT_STATUS:
7 0% 73 * NT_STATUS_BAD_NETWORK_PATH (get server addr)
8 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE 74 * NT_STATUS_NETWORK_ACCESS_DENI ED (connect, aut h)
9 * or http://ww. opensol aris.org/os/licensing. 75 * NT_STATUS_BAD_NETWORK_NANVE (t con, open)
10 * See the License for the specific |anguage governing pernissions 76 * NT_STATUS_ACCESS_DENI ED pen p| pe)
11 * and linmtations under the License. 77 * NT_STATUS_I NVALI D_PARAMETER (rpc I nd)
12 = 78 *
13 * When distributing Covered Code, include this CDDL HEADER i n each 79 * NT_STATUS_| NTERNAL_ERROR (bad args etc)
14 * file and include the License file at usr/src/OPENSOLARI S. LI CENSE. 80 * NT_STATUS_NO_MEMORY
15 * |f applicable, add the follow ng below this CODL HEADER, with the 81 */
16 * fields enclosed by brackets "[]" replaced with your own identifying 82 DWORD
17 * information: Portions Copyright [yyyy]l [nane of copyright owner] 83 ndr_rpc_bi nd(n svc_handl e_t *handl e, char *server, char *domain,
18 * 84 char *usernane, const char *service)
19 * CDDL HEADER END 85 {
20 */ 86 struct snmb_ctx *ctx = NULL;
87 ndr_client_t *clnt = NULL;
22 | * 88 ndr_service_t *svc,
23 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. Al rights reserved. 89 srvsvc_server_info_t svi nfo;
24 * Copyright 2015 Nexent a Systenms, Inc. Al rights reserved. 89 DWORD st at us;
25 */ 90 int fd=-1;
91 int rc;
27 | *
28 * Cient NDR RPC interface. 93 if (handle == NULL || server == NULL || server[0] == "'\0" ||
29 */ 94 domain == NULL || usernanme == NULL)
95 return (NT_STATUS | NTERNAL_ERROR);
31 #include <sys/types. h>
32 #include <sys/errno. h> 97 /* In case the service was not registered... */
33 #include <sys/fcntl. h> 98 if ((svc = ndr_svc_| ookup_name(service)) == NULL)
34 #include <tine.h> 99 return (NT_STATUS_I NTERNAL_ERRCR) ;
35 #include <strings. h>
36 #include <assert.h> 101 /*
37 #include <errno. h> 103 * Set the default based on the assunption that nost
38 #include <thread. h> 104 * servers will be Wndows 2000 or later. This used to
39 #include <sysl og. h> 105 * try to get the actual server version, but that RPC
40 #i ncl ude <synch. h> 106 */ is not necessarily allowed anynore, so don’t bother.
107 *
42 #incl ude <netsnb/ snbfs_api.h> 108 bzero(&svinfo, sizeof (srvsvc server_info_t));
43 #include <snbsrv/libsnb. h> 109 svi nfo.sv_pl atform id = SV_PLATFORM I D_NT;
44 #include <snbsrv/|ibsnbns. h> 110 svinfo.sv_version_mgjor = 5;
45 #include <snbsrv/|ibnlrpc. h> 111 svi nfo.sv_version_mnor = 0;
46 #include <snbsrv/Ilibnm svc. h> 112 svinfo.sv_type = SV_TYPE DEFAULT;
47 #include <snbsrv/ndl/srvsvc. ndl > 113 svinfo.sv_os = NATI VE_OS_W N2000;
48 #include <libsnbrdr. h>
49 #include <m svc. h> 115 /*
102 * Sone callers pass this when they want a NULL session.
51 static int ndr_xa_init(ndr_client_t *, ndr_xa_t *); 103 * Todo: have callers pass an enpty string for that.
52 static int ndr_xa_exchange(ndr_client_t *, ndr_xa_t *); 104 */
53 static int ndr_xa_read(ndr_client_t *, ndr_xa_t *); 105 if (strcr’rp(username NLSVC ANON_USER) == 0)
54 static void ndr_xa_preserve(ndr_client_t *, ndr_xa_t *); 106 user name = ;
55 static void ndr_xa_destruct(ndr_client_t *, ndr_xa_t *);
56 static void ndr_xa_rel ease(ndr_client_t *); 108 I *
109 * Setup snbfs library handle, authenticate, connect to
110 * the | PC$ share. This will reuse an existing connection
59 /* 111 * if the driver already has one for this conbination of
60 * This call nust be made to initialize an RPC client structure and bind 112 * server, user, donmmin. It may return any of:

new usr/src/lib/snmbsrv/libm sve/ common/ m sve_client.c

113 * NT_STATUS_BAD NETWORK_PATH (get server addr)
114 * NT_STATUS_NETWORK_ACCESS_DENI ED (connect, aut h)
115 * NT_STATUS_BAD NETWORK_NANVE (tcon)

116 */

117 status = snbrdr_ctx_new(&ctx, server, domain, username);
118 if (status != NT_STATUS SUCCESS) {

119 sysl og(LOG ERR, "ndr _rpc_bi nd: snbrdr_ctx_new'
120 "(Srv=% Donr% User=9%), % (O0x%)",
121 server, domain, usernane,

122 x|l ate_nt _status(status), status);

123 /* Tell the DC Locator this DC failed. */
124 snb_ddi scover _bad_dc(server);

125 goto errout;

126 }

128 /*

129 * Open the nanmed pi pe.

130 */

131 fd = snb_fh_open(ctx, svc->endpoint, O RDWR);

132 if (fd <0) {

133 rc = errno;

134 sysl og(LOG DEBUG, "ndr_rpc_bind:

135 "snmb_fh_open (%) err=%",

136 svc->endpoint, rc);

137 switch (rc)

138 case EACCES:

139 status = NT_STATUS_ACCESS_DEN ED;
140 br eak;

141 defaul t:

142 status = NT_STATUS_BAD_NETWORK_NAME;
143 break;

144 }

145 goto errout;

146 }

148 I*

149 * Setup the RPC client handle.

150 */

151 if ((clnt = malloc(sizeof (ndr_client_t))) == NULL) {
152 status = NT_STATUS_NO MEMORY;

153 goto errout;

154

155 bzero(clnt, sizeof (ndr_client_t));

157 cl nt->handl e = &handl e- >handl e;

158 clnt->xa_init = ndr_xa_init;

159 cl nt->xa_exchange = ndr_xa_exchange;

160 clnt->xa_read = ndr_xa_read;

161 cl nt->xa_preserve = ndr_xa_preserve;

162 cl nt->xa_destruct = ndr_xa_destruct;

163 clnt->xa_rel ease = ndr_xa_rel ease;

164 cl nt->xa prlvate = ctx;

165 clnt->xa_fd = fd;

167 ndr _svc_bi ndi ng_pool _i ni t (&l nt - >bi ndi ng_I i st,

168 cl nt - >bi ndi ng_pool, NDR_N_BI NDI NG_PCQL) ;

170 if ((cl nt->heap ndr _heap_create()) == NULL) {

171 status = NT_STATUS_NO MEMORY;

172 goto errout;

173 1

175 /*

176 * Fill in the caller’s handle.

177 */

178 bzer o(&andl e- >handl e, sizeof (ndr_hdid_t));

new usr/src/lib/snmbsrv/libm sve/ common/ M sve_client.c

179 handl e->clnt = clnt;

194 bcopy(&svi nfo, &handl e->svinfo, sizeof (srvsvc_server_info_t));
181 /*

182 * Do the O WRPC bind.

183 */

184 rc = ndr_clnt_bind(clnt, service, &clnt->binding);
185 switch (rc) {

186 case NDR_DRC_FAULT_OUT_OF_MEMORY:

187 status = NT_STATUS_NO_ MEMORY;

188 br eak;

189 case NDR_DRC_FAULT_API _SERVI CE_I NVALID: /* not registered */
190 status = NT_STATUS_| NTERNAL_ERROR;

191 break;

192 defaul t:

193 if (NDR_DRC_IS FAULT(rc)) {

194 status = NT_STATUS_I NVALI D_PARAMETER;
195 break;

196 }

197 /* FALLTHROUCH */

198 case NDR_DRC_OK:

199 return (NT_STATUS_SUCCESS) ;

200 }

202 sysl og(L(ﬁ DEBUG, "ndr_rpc_bind: "

203 ndr_clnt_bind, % (O0x%)"

204 xl ate_nt_stat us(st atus), status);

206 errout:
207 handl e- >cl nt = NULL;

208 if (clnt !'= NULL)
209 ndr _heap_destroy(cl nt->heap);
210 free(clnt);
211 }
212 if (ctx !'= NULL)
213 if (fd 1= -1)
214 (void) snmb_fh_close(fd);
215 snbrdr_ctx_free(ctx);
216 }
218 return (status);
219 }
__unchanged_portion_onitted_
290 /*
306 * Return a reference to the server info.
307 */

308 const srvsvc_server_info_t *

309 ndr_rpc_server_info(m svc_handl e_t *handl e)
310 {

311 return (&handl e->svinfo);

312 }

314 /*

315 * Return the RPC server CS |evel.

316 */

317 uint32_t

318 ?dr_r pc_server _os(m svc_handl e_t *handl e)
319

320 return (handl e->svinfo.sv_os);
321 }

323 /*
291 * Get the session key froma bound RPC client handle.
292 *
293 * The key returned is the 16-byte "user session key"

new usr/src/lib/snmbsrv/libm sve/ common/ m sve_client.c

294 * established by the underlying authentication protocol
295 * (either Kerberos or NTLM. This key is needed for
296 * SAM RPC cal | s such as Sanr Set|nformationUser, etc.
297 * See [Ms5-SAMR] sections: 2.2.3.3, 2.2.7.21, 2.2.7.25.
298 *

299 * Returns zero (success) or an errno.

300 */
301 int
302 ndr_rpc_get _ssnkey(nl svc_handl e_t *handl e,
303 unsi gned char *ssn_key, size_t len)
304 {
305 ndr_client_t *clnt = handl e->clnt;
306 int rc;
308 if (clnt == NULL)
309 return (EINVAL);
311 rc = snb_fh_getssnkey(clnt->xa_fd, ssn_key, len);
312 return (rc);
313 }
__unchanged_portion_omtted_
384 /*
385 * Pass the client reference fromparent to child.
386 */
387 void

388 ndr_i nherit_handl e(n svc_handl e_t *child, msvc_handle_t *parent)
389 {

390 child->clnt = parent->clnt;
424 bcopy(&par ent - >svi nfo, &child->svinfo, sizeof (srvsvc_server_info_t));
391 }

__unchanged_portion_onitted_

new usr/src/lib/snmbsrv/libm svc/common/netr_auth.c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
16191 Sun Mar 18 01:12:55 2018

new usr/src/lib/snmbsrv/libm svc/ common/netr_auth.c

1575 untangle libmrpc ... pre2:

Get rid of ndr_rpc_server_{info, os}

LR R R

__unchanged_portion_omtted_

194 uint32_t netr_server_auth2_flags =

195 NETR_NEGOT| ATE_BASE_FLAGS |
196 NETR_NEGOT| ATE_STRONGKEY_FLAG,
198 /*

199 * netr_server_authenticate2

200 */

201 static int
202 netr_server_authenticate2(n svc_handl e_t *netr_handl e, netr_info_t *netr_info)

203 {

204 struct netr_ServerAuthenticate2 arg;

205 /* sizeof netr_info->hostname, + 1 for the '$ */

206 char account _nane[(NETBI OS_NAME_SZ * 2) + 1];

207 int opnum

208 int rc;

210 bzero(&arg, sizeof (struct netr_ServerAuthenticate2));

211 opnum = NETR_OPNUM Ser ver Aut hent i cat e2;

213 (void) snprintf(account_nane, sizeof (account_nane), "%$",
214 netr _i nf o- >host nane) ;

216 snb_tracef ("server=[%] account _nane=[%] host name=[%]\ n",
217 netr_i nfo->server, account_nane, netr_info->hostnane);
219 arg. servername = (unsigned char *)netr_info->server;

220 arg. account _nanme = (unsigned char *)account_nane;

221 arg. account _type = NETR VWKSTA TRUST ACCOUNT_TYPE;

222 arg. host nane = (unsigned char *)netr_i nfo->host nane;

223 arg.negotiate_flags = netr_server_auth2_fl ags;

219 arg. negotiate_flags = NETR_NEGOTI ATE_BASE_FLAGS;

225 if (arg.negotiate_flags & NETR_NEGOTI ATE_STRONGKEY_FLAG {
221 if (ndr_rpc_server_os(netr_handl e) == NATI VE_OS_W N2000) {
222 arg. negotiate_flags | = NETR_NEGOTI ATE_STRONGKEY_FLAG,
226 if (netr_gen_skeyl28(netr_info) != SMBAUTH_ SUCCESS)
227 return (-1);

228 } else {

229 if (netr_gen_skey64(netr_info) != SMBAUTH_ SUCCESS)
230 return (-1);

231 }

233 if (netr_gen_credential s(netr_info->session_key. key,

234 &netr_info->client_chall enge, O,

235 &netr_info->client_credential) != SMBAUTH SUCCESS) {
236 return (-1);

237 }

239 if (netr_gen_credential s(netr_info->session_key. key,

240 &netr _i nfo->server_chal | enge, O,

241 &netr _info->server_credential) != SMBAUTH SUCCESS) {
242 return (-1);

243 1

245 (void) nenctpy(&arg.client_credential, &ietr_info->client_credential,
246 si zeof (struct netr_credential));

248 if (ndr_rpc_call(netr_handl e, opnum &arg) != 0)

new usr/src/lib/snmbsrv/libm svc/common/netr_auth.c

249 return (-1);

251 if (arg.status != 0)

252 ndr _rpc_status(netr_handl e, opnum
253 ndr _rpc_rel ease(netr_handl e);

254 return (-1);

255 }

257 rc = mencnp(&netr_i nfo->server_credenti al,
258 sizeof (struct netr_credential));

260 ndr_rpc_rel ease(netr_handl e);

261 return (rc);

262 }

__unchanged_portion_onitted_

arg.status);

&ar g. server _credential ,

new usr/src/lib/snbsrv/libm svc/ common/srvsve_clnt.c 1

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
13246 Sun Mar 18 01:12:55 2018

new usr/src/lib/snmbsrv/libm svc/ common/srvsve_clnt.c

1575 untangle libmrpc ... pre2:

Get rid of ndr_rpc_server_{info, os}

LR R R

__unchanged_portion_omtted_

352 /*
353 * Wndows 95+ and Wndows NT4.0 both report the version as 4.0.
354 * Wndows 2000+ reports the version as 5. x.

355 */

356 int

357 srvsvc_net_server_getinfo(char *server, char *domain,

358 srvsvc_server_info_t *svinfo)

359 {

360 m svc_handl e_t handl e;

361 struct msl m Net ServerGetInfo arg;

362 struct msl m_ SERVER | NFO 101 *sv101;

363 int len, opnum rc;

364 char user[SIVB_USERNANE_NAXLEN];

366 smb_i pc_get _user (user, SVB_USERNAME MAXLEN) ;

368 if (srvsvc_open(server, domain, user, &handle) != 0)
369 return (-1);

371 opnum = SRVSVC_OPNUM Net Ser ver Get | nf o;

372 bzero(&arg, sizeof (arg));

374 len = strlen(server) + 4;

375 arg. servernane = ndr_rpc_nall oc(&handl e, |en);

376 if (arg.servername == NULL)

377 return (-1);

379 (void) snprintf((char *)arg.servernane, len, "\\\\9%", server);
380 arg.level = 101;

382 rc = ndr_rpc_call (&andl e, opnum &arg);

383 if ((rc!=0) || (arg. status != 0)) {

384 srvsvc_cl ose(&handl e) ;

385 return (-1);

386 }

388 sv101l = arg.result. bufptr. bufptr101;

390 bzero(svinfo, sizeof (srvsvc_server_info_t));

391 svinfo->sv_platformid = sv101 >sv101_pl atform id;

392 svi nfo->sv_version_ngj or = sv101->sv101_versi on_mgj or;
393 svi nf o- >sv_versi on_mi nor = sv101->sv101_versi on_ni nor;
394 svinfo->sv_type = sv101->sv101_type;

395 if (sv101l->sv101_nane)

396 svi nfo->sv_nane = strdup((char *)sv101->sv101_nane);
397 if (sv101->sv101_conment)

398 svi nfo->sv_coment = strdup((char *)sv101->sv101_conmment);
400 if (svinfo->sv_type & SV TYPE_WFW

401 svi nf o->sv_os = NATI VE_OS_W N95;

402 if (svinfo->sv_type & SV_TYPE W NDO\S)

403 svi nfo->sv_os = NATI VE_OS_W N95;

404 if ((svinfo->sv_type & SV_TYPE_NT)

405 (svinfo->sv_type & SV_TYPE_SERVER NT))

406 svi nfo->sv_os = NATI VE_OS_W NNT;

407 if (svinfo->sv_version_major > 4)

408 svi nfo->sv_os = NATI VE_OS_W N2000;

new usr/src/lib/snmbsrv/libm svc/ common/srvsve_clnt.c

410 srvsvc_cl ose(&andl e) ;
411 return (0);
412 }
414 [*
353 * Conpare the tine here with the renbte time on the server
354 * and report clock skew.
355 */
356 void
357 srvsvc_timecheck(char *server, char *domain)
358 {
359 char host name[MAXHOSTNAMELEN] ;
360 struct tineval dc_tv;
361 struct tm dc_tm
362 struct tm *tm
363 tinme_t t now;
364 tinme_t tdiff;
365 int priority;
367 if (srvsvc_net_renote_tod(server, donmin, &Jc_tv, &dc tnj < 0) {
368 sysl og(LOG DEBUG "srvsvc_net_renote_tod failed");
369 return;
370 }
372 tnow = time(NULL);
374 if (tnow > dc_tv.tv_sec)
375 tdiff = (tnow - dc_tv.tv_sec) / SECSPERM N,
376 el se
377 tdiff = (dc_tv.tv_sec - tnow) / SECSPERM N;
379 if (tdiff '=0) {
380 (void) strlcpy(hostnane, "local host", MAXHOSTNAMELEN);
381 (voi d) get host nane(host name, MAXHOSTNAMELEN) ;
383 priority = (tdiff > 2) ? LOG NOTICE : LOG DEBUG
384 syslog(priority, "DC [%] clock skew det ected: % m nut es",
385 server, tdiff);
387 tm= gntine(&c_tv.tv_sec);
388 syslog(priority, "%8s UTC. %", server, asctime(tm);
389 tm= gntime(& now);
390 syslog(priority, "%8s UTC. %", hostname, asctime(tm);
391 }
392 }
__unchanged_portion_omtted_
441 | *
442 * This is a client side routine for Net RenoteTOD, which gets the tine
443 * and date froma renpte system The tine information is returned in
444 * the timeval and tm
445 *
446 * typedef struct _TIME_OF_DAY_I NFO {
447 = DWORD tod_el apsedt; /7 seconds since 00:00: 00 January 1 1970 GMI
448 = DWORD t od_nsecs; /1l arbitrary mlliseconds (since reset)
449 * DWORD t od_hours; /1 current hour [0-23]
450 * DWORD t od_nmi ns; /1 current mnute [0-59]
451 * DWORD t od_secs; /1 current second [0-59]
452 = DWORD t od_hunds; /1 current hundredth (0.01) second [0-99]
453 * LONG tod_ti nmezone; /!l tinme zone of the server
454 * DWORD tod_tinterval; // clock tick tine interval
455 * DWORD t od_day; /1 day of the nonth [1-31]
456 * DWORD t od_nont h; /1 month of the year [1-12]
457 * DWORD t od_year; /1 current year
458 * DWORD t od_weekday; /1 day of the week since sunday [O0-6]
459 * } TIME_OF_DAY_TNFO,

new usr/src/lib/snmbsrv/libm sve/ common/srvsve_clnt.c 3 new usr/src/lib/snmbsrv/libm svc/ common/srvsve_clnt.c
460 * 526 srvsvc_cl ose(&andl e) ;
461 * The tine zone of the server is calculated in mnutes from G eenw ch 527 return (0);
462 * Mean Time (GMI). For tine zones west of Geenwi ch, the value is 590 }
463 * positive; for tinme zones east of Greenw ch, the value is negative.
464 * A value of -1 indicates that the time zone is undefined. 592 void
465 * 593 srvsvc_net _test(char *server, char *dommi n, char *netnane)
466 * The clock tick value represents a resolution of one ten-thousandth 594 {
467 * (0.0001) second. 595 snmb_domai nex_t di;
468 */ 596 srvsvc_server_info_t svinfo;
469 int
470 srvsvc_net _renote_tod(char *server, char *domain, struct timeval *tv, 598 (void) snb_tracef ("% % %", server, donmin, netnane);
471 struct tm*tm
472 { 600 if (smb_domain_getinfo(&di)) {
473 struct msl m Net Renpt eTOD arg; 601 server = di.d_dci.dc_nane;
474 struct nsl mTI ME_OF_DAY_I NFO *tod; 602 domain = di.d_primary.di _nbnaneg;
475 m svc_handl e_t handl e; 603 }
476 int rc;
477 int opnum 605 if (srvsvc_net_server_getinfo(server, donain, &svinfo) == 0) {
478 int | en; 606 snb_tracef ("Net ServerGetinfo: % % (%. %) id=% type=0x%08x",
479 char user [SMB_USERNAME_NMAXLEN] ; 607 svinfo.sv_name ? svinfo.sv_nanme : "NULL",
608 svi nfo.sv_comrent ? svinfo.sv_coment : "NULL",
481 smb_i pc_get _user (user, SWVB_USERNAME_MAXLEN) ; 609 svi nfo. sv_version_major, svinfo.sv_version_m nor,
610 svinfo.sv_platformid, svinfo.sv_type);
483 rc = srvsvc_open(server, donmin, user, &handle);
484 if (rc!=0) 612 free(svinfo.sv_nane);
485 return (-1); 613 free(svinfo.sv_conment);
614 }
487 opnum = SRVSVC_OPNUM Net Renot eTCD;
488 bzero(&arg, sizeof (struct nsl m NetRenoteTCD)); 616 ‘ (void) srvsvc_net_share_get_info(server, domain, netnane);
617 #if 0
490 len = strlen(server) + 4; 618 /*
491 arg. servernane = ndr_rpc_nall oc(&handl e, |en); 619 * The Net Sessi onEnum server-side definition was updated.
492 if (arg.servernane == NULL) { 620 * Disabled until the client-side has been updated.
493 srvsvc_cl ose(&andl e) ; 621 */
494 return (-1); 622 (voi d) srvsvc_net_sessi on_enun(server, donmin, netnane);
495 } 623 #endi f
624 (voi d) srvsvc_net_connect_enun(server, donmin, netnane, 0);
497 (void) snprintf((char *)arg.servernanme, len, "\\\\%", server); 625 (void) srvsvc_net_connect_enun(server, donmain, netnanme, 1);
528 }
499 rc = ndr_rpc_call (&andl e, opnum &arg); __unchanged_portion_onitted_
500 if ((rc!=0) || (arg.status !'=0)) {
501 srvsvc_cl ose(&andl e) ;
502 return (-1);
503 1
505 I
506 * We're assigning mlliseconds to m croseconds
507 * here but the value's not really relevant.
508 */
509 tod = arg. bufptr;
511 if (tv) {
512 tv->tv_sec = tod->tod_el apsedt;
513 tv->tv_usec = tod->tod_nsecs;
514 }
516 if (tm {
517 tm>tmsec = tod->tod_secs;
518 tm>mmn = tod->tod_m ns;
519 tm >t m hour = tod->tod_hours;
520 tm >t mnday = tod->tod_day;
521 tm>tmnon = tod->tod_nonth - 1;
522 tm>tmyear = tod->tod_year - 1900;
523 tm>tmwday = tod->tod_weekday;
524 1

