
new/usr/src/pkg/manifests/system-test-libctest.mf 1

**
 5071 Mon Mar 30 10:49:09 2015
new/usr/src/pkg/manifests/system-test-libctest.mf
Incorporate rmustacc’s review feedback.
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright (c) 2012 by Delphix. All rights reserved.
14 # Copyright 2014, OmniTI Computer Consulting, Inc. All rights reserved.
15 # Copyright 2015 Garrett D’Amore <garrett@damore.org>
16 #

18 set name=pkg.fmri value=pkg:/system/test/libctest@$(PKGVERS)
19 set name=pkg.description value="C library Unit Tests"
20 set name=pkg.summary value="C Library Unit Test Suite"
21 set name=info.classification \
22 value=org.opensolaris.category.2008:Development/System
23 set name=variant.arch value=$(ARCH)
24 dir path=opt/libc-tests
25 dir path=opt/libc-tests/bin
26 dir path=opt/libc-tests/cfg
27 dir path=opt/libc-tests/cfg/symbols
28 dir path=opt/libc-tests/runfiles
29 dir path=opt/libc-tests/tests
30 dir path=opt/libc-tests/tests
31 dir path=opt/libc-tests/tests/symbols
32 file path=opt/libc-tests/README mode=0444
33 file path=opt/libc-tests/bin/libctest mode=0555
34 file path=opt/libc-tests/cfg/README mode=0444
35 file path=opt/libc-tests/cfg/compilation.cfg mode=0444
36 file path=opt/libc-tests/cfg/symbols/README mode=0444
37 file path=opt/libc-tests/cfg/symbols/ctype_h.cfg mode=0444
38 file path=opt/libc-tests/cfg/symbols/dirent_h.cfg mode=0444
39 file path=opt/libc-tests/cfg/symbols/fcntl_h.cfg mode=0444
40 file path=opt/libc-tests/cfg/symbols/locale_h.cfg mode=0444
41 file path=opt/libc-tests/cfg/symbols/math_h.cfg mode=0444
42 file path=opt/libc-tests/cfg/symbols/netdb_h.cfg mode=0444
43 file path=opt/libc-tests/cfg/symbols/pthread_h.cfg mode=0444
44 file path=opt/libc-tests/cfg/symbols/signal_h.cfg mode=0444
45 file path=opt/libc-tests/cfg/symbols/stdio_h.cfg mode=0444
46 file path=opt/libc-tests/cfg/symbols/stdlib_h.cfg mode=0444
47 file path=opt/libc-tests/cfg/symbols/strings_h.cfg mode=0444
48 file path=opt/libc-tests/cfg/symbols/sys_stat_h.cfg mode=0444
49 file path=opt/libc-tests/cfg/symbols/sys_time_h.cfg mode=0444
50 file path=opt/libc-tests/cfg/symbols/sys_timeb_h.cfg mode=0444
51 file path=opt/libc-tests/cfg/symbols/ucontext_h.cfg mode=0444
52 file path=opt/libc-tests/cfg/symbols/unistd_h.cfg mode=0444
53 file path=opt/libc-tests/cfg/symbols/wchar_h.cfg mode=0444
54 file path=opt/libc-tests/cfg/symbols/wctype_h.cfg mode=0444
55 file path=opt/libc-tests/runfiles/default.run mode=0444
56 file path=opt/libc-tests/tests/fpround_test mode=0555
57 file path=opt/libc-tests/tests/fpround_test.$(ARCH) mode=0555
58 file path=opt/libc-tests/tests/fpround_test.$(ARCH64) mode=0555
59 file path=opt/libc-tests/tests/newlocale_test mode=0555
60 file path=opt/libc-tests/tests/newlocale_test.$(ARCH) mode=0555
61 file path=opt/libc-tests/tests/newlocale_test.$(ARCH64) mode=0555

new/usr/src/pkg/manifests/system-test-libctest.mf 2

62 file path=opt/libc-tests/tests/nl_langinfo_test mode=0555
63 file path=opt/libc-tests/tests/nl_langinfo_test.$(ARCH) mode=0555
64 file path=opt/libc-tests/tests/nl_langinfo_test.$(ARCH64) mode=0555
65 file path=opt/libc-tests/tests/symbols/setup mode=0555
66 file path=opt/libc-tests/tests/symbols/symbols_test.$(ARCH) mode=0555
67 file path=opt/libc-tests/tests/symbols/symbols_test.$(ARCH64) mode=0555
68 file path=opt/libc-tests/tests/wcsrtombs_test mode=0555
69 file path=opt/libc-tests/tests/wcsrtombs_test.$(ARCH) mode=0555
70 file path=opt/libc-tests/tests/wcsrtombs_test.$(ARCH64) mode=0555
71 file path=opt/libc-tests/tests/wctype_test mode=0555
72 file path=opt/libc-tests/tests/wctype_test.$(ARCH) mode=0555
73 file path=opt/libc-tests/tests/wctype_test.$(ARCH64) mode=0555
74 hardlink path=opt/libc-tests/tests/symbols/ctype_h target=setup
75 hardlink path=opt/libc-tests/tests/symbols/dirent_h target=setup
76 hardlink path=opt/libc-tests/tests/symbols/fcntl_h target=setup
77 hardlink path=opt/libc-tests/tests/symbols/locale_h target=setup
78 hardlink path=opt/libc-tests/tests/symbols/math_h target=setup
79 hardlink path=opt/libc-tests/tests/symbols/netdb_h target=setup
80 hardlink path=opt/libc-tests/tests/symbols/pthread_h target=setup
81 hardlink path=opt/libc-tests/tests/symbols/signal_h target=setup
82 hardlink path=opt/libc-tests/tests/symbols/stdio_h target=setup
83 hardlink path=opt/libc-tests/tests/symbols/stdlib_h target=setup
84 hardlink path=opt/libc-tests/tests/symbols/strings_h target=setup
85 hardlink path=opt/libc-tests/tests/symbols/sys_stat_h target=setup
86 hardlink path=opt/libc-tests/tests/symbols/sys_time_h target=setup
87 hardlink path=opt/libc-tests/tests/symbols/sys_timeb_h target=setup
88 hardlink path=opt/libc-tests/tests/symbols/ucontext_h target=setup
89 hardlink path=opt/libc-tests/tests/symbols/unistd_h target=setup
90 hardlink path=opt/libc-tests/tests/symbols/wchar_h target=setup
91 hardlink path=opt/libc-tests/tests/symbols/wctype_h target=setup
92 license lic_CDDL license=lic_CDDL
93 depend fmri=locale/de type=require
94 depend fmri=locale/en type=require
95 depend fmri=locale/en-extra type=require
96 depend fmri=locale/ja type=require
97 depend fmri=locale/ru type=require
98 depend fmri=system/test/testrunner type=require

new/usr/src/test/libc-tests/cfg/Makefile 1

**
 1431 Mon Mar 30 10:49:09 2015
new/usr/src/test/libc-tests/cfg/Makefile
Incorporate rmustacc’s review feedback.
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright 2015 Garrett D’Amore <garrett@damore.org>
13 # Copyright 2014 Garrett D’Amore <garrett@damore.org>
14 # Copyright (c) 2012 by Delphix. All rights reserved.
15 #

17 include $(SRC)/Makefile.master

19 CFGS = README \
20 compilation.cfg \
21 symbols/README \
22 symbols/ctype_h.cfg \
23 symbols/dirent_h.cfg \
24 symbols/fcntl_h.cfg \
25 symbols/locale_h.cfg \
26 symbols/math_h.cfg \
27 symbols/netdb_h.cfg \
28 symbols/pthread_h.cfg \
29 symbols/signal_h.cfg \
30 symbols/stdio_h.cfg \
31 symbols/stdlib_h.cfg \
32 symbols/strings_h.cfg \
33 symbols/sys_stat_h.cfg \
34 symbols/sys_time_h.cfg \
35 symbols/sys_timeb_h.cfg \
36 symbols/ucontext_h.cfg \
37 symbols/unistd_h.cfg \
38 symbols/wchar_h.cfg \
39 symbols/wctype_h.cfg

41 ROOTOPTPKG = $(ROOT)/opt/libc-tests
42 ROOTOPTPKGCFG = $(ROOT)/opt/libc-tests/cfg
43 ROOTOPTPKGDIRS = $(ROOTOPTPKG) \
44 $(ROOTOPTPKGCFG) \
45 $(ROOTOPTPKGCFG)/symbols

47 FILES = $(CFGS:%=$(ROOTOPTPKGCFG)/%)
48 $(FILES) := FILEMODE = 0444

50 all: $(CFGS)

52 install: $(ROOTOPTPKG) $(ROOTOPTPKGCFG) $(FILES)

54 clean lint clobber:

56 $(ROOTOPTPKGDIRS):
57 $(INS.dir)

59 $(ROOTOPTPKGCFG)/%: % $(ROOTOPTPKGDIRS)
60 $(INS.file)

new/usr/src/test/libc-tests/cfg/README 1

**
 3377 Mon Mar 30 10:49:09 2015
new/usr/src/test/libc-tests/cfg/README
Incorporate rmustacc’s review feedback.
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright 2014 Garrett D’Amore <garrett@damore.org>
14 #

16 The configuration files in this directory are structured as lines,
17 where each line is made up of fields, separated by "|" characters,
18 possibly surrounded by whitespace.

20 New lines preceeded by backslashes are ignored, allowing for a continuation
21 of lines, in the usual UNIX way.

23 A line beginning with a hashmark is a comment, and is ignored, as are lines
23 A line beginning with a hashmark is comment, and is ignore, as are lines
24 consisting solely of whitespace.

26 The first field is always the "keyword", which determines the meaning and
27 presence of any other fields.

29 These files are parsed using the test_load_config() function. This
30 function has the following prototype:

32 int test_load_config(test_t, const char *, ...);

34 The variable arguments are the keywords and handling functions. These
35 must be supplied in pairs and the list is terminated with a NULL, like this:

37 test_config_load(t, "myfile.cfg", "mykeyword", keywordcb, NULL);

39 The test_config_load function will search for the named file (provided it
40 is not an absolute path) in a few locations:

42 * relative to the current directory, exactly as specified
43 * relative to $STF_SUITE/cfg/ (if $STF_SUITE is defined)
44 * relative to ../../cfg/ (if $STF_SUITE is undefined)
45 * relative to cfg/

47 The handling functions (keywordcb in the example above) have the following
48 typedef:

50 typedef int (*test_cfg_func_t)(char **fields, int nfields, char **err);

52 so for example, keywordcb should be declared thusly:

54 int keywordcb(char **fields, int nfields, char **err);

56 These functions are called each time a paired keyword is seen in the file.
57 "fields" is an array of fields, pre-split with surrounding whitespace removed,
58 and contains "nfields" items. Internal whitespace is unaffected.

60 The function should return 0 on successful handling, or -1 on failure. In

new/usr/src/test/libc-tests/cfg/README 2

61 the event of failure, it should record an error string in "err" using
62 asprintf() or strdup(). ("err" should be unmodified otherwise.)

64 This parser is rather simplistic, and it lacks support for embedding "|"
65 fields in lines, and also doesn’t support escaping, so you can’t add "\"
66 at the end of a line (if you need that, leave some trailing whitespace).

68 There are also some internal limits on the length of lines (1K), and on the
69 number of fields (20). As this is only used for these test suites, this
70 should not be a significant limitation.

72 Please see ../tests/symbols/symbols_test.c for an example of correct usage.

74 Aside:

76 Astute readers may ask why invent a new configuration file, and why use
77 position based parsing instead of name value pairs. These files are
78 optimized for specific needs, and intended to support relatively dense
79 information in a format that is easy for humans to work with. JSON or XML
80 or even YAML could have served, but the overhead of a syntax was more than
81 we wanted to introduce. Test suites are free to use other formats if they
82 choose, but this simple format has the advantage of being built-in and
83 easy to use.

new/usr/src/test/libc-tests/cfg/compilation.cfg 1

**
 2850 Mon Mar 30 10:49:09 2015
new/usr/src/test/libc-tests/cfg/compilation.cfg
Incorporate rmustacc’s review feedback.
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright 2015 Garrett D’Amore <garrett@damore.org>
13 # Copyright 2014 Garrett D’Amore <garrett@damore.org>
14 #

16 #
17 # Compilation environments.
18 #
19 # Each compilation environment is declared using the keyword "env", like
20 # this:
21 #
22 # env | <name> | <std> | <defs>
23 #
24 # <name> is just a symbolic name for environment.
25 # <std> indicates either c89 or c99, i.e. which C standard to compile
26 # under. This infuences choice of compiler and switches.
27 # <defs> is a list of CPP style -D or -U flags to define C preprocessor
28 # symbols.
29 #
30 # Groups of compilation environments can be named, using the "env_group"
31 # keyword (this can also be used to create aliases):
32 #
33 # env_group | <name> | <envs>
34 #
35 # <name> is a name for the group or alias
36 # <envs> is a whitespace separated list of previously declared environments
37 # or environment groups (or aliases).
38 #

40 env | XPG3 | c89 | -D_XOPEN_SOURCE
41 env | XPG4 | c89 | -D_XOPEN_SOURCE -D_XOPEN_VERSION=4
42 env | SUSv1 | c89 | -D_XOPEN_SOURCE -D_XOPEN_SOURCE_EXTENDED=1
43 env | SUSv2 | c89 | -D_XOPEN_SOURCE=500
44 env | SUSv3 | c99 | -D_XOPEN_SOURCE=600
45 env | SUSv4 | c99 | -D_XOPEN_SOURCE=700
46 env | POSIX-1990 | c89 | -D_POSIX_SOURCE
47 env | POSIX-1992 | c89 | -D_POSIX_SOURCE -D_POSIX_C_SOURCE=2
48 env | POSIX-1993 | c89 | -D_POSIX_C_SOURCE=199309L
49 env | POSIX-1995 | c89 | -D_POSIX_C_SOURCE=199506L
50 env | POSIX-2001 | c99 | -D_POSIX_C_SOURCE=200112L
51 env | POSIX-2008 | c99 | -D_POSIX_C_SOURCE=200809L
52 env | C90 | c89 |
53 env | C99 | c99 |

55 #
56 # These are ordered from less inclusive (most recent) to most inclusive.
57 # This allows for us to "include" by reference.
58 #
59 env_group | POSIX-2008+ | POSIX-2008
60 env_group | POSIX-2001+ | POSIX-2008+ POSIX-2001

new/usr/src/test/libc-tests/cfg/compilation.cfg 2

61 env_group | POSIX-1995+ | POSIX-2001+ POSIX-1995
62 env_group | POSIX-1993+ | POSIX-1995+ POSIX-1993
63 env_group | POSIX-1992+ | POSIX-1993+ POSIX-1992
64 env_group | POSIX-1990+ | POSIX-1992+ POSIX-1990
65 env_group | POSIX+ | POSIX-1990+
66 env_group | SUSv4+ | SUSv4 POSIX-2008+
67 env_group | SUSv3+ | SUSv3 SUSv4+ POSIX-2001+
68 env_group | SUSv2+ | SUSv2 SUSv3+
69 env_group | SUSv1+ | SUSv1 SUSv2+
70 env_group | SUS+ | SUSv1+
71 env_group | XPG4+ | XPG4 SUSv1+
72 env_group | XPG3+ | XPG3 XPG4+
73 env_group | C99+ | C99 POSIX-2001+ SUSv3+
74 env_group | C+ | C90 C99 POSIX+ SUS+
75 env_group | ALL | C+

77 #
78 # Aliases.
79 #
80 env_group | XPG4v2 | SUSv1
81 env_group | XPG4v2+ | SUSv1+
82 env_group | XPG5 | SUSv2
83 env_group | XPG5+ | SUSv2+
84 env_group | XPG6 | SUSv3
85 env_group | XPG6+ | SUSv3+
86 env_group | XPG7 | SUSv4
87 env_group | XPG7+ | SUSv4+

new/usr/src/test/libc-tests/cfg/symbols/README 1

**
 3049 Mon Mar 30 10:49:09 2015
new/usr/src/test/libc-tests/cfg/symbols/README
Incorporate rmustacc’s review feedback.
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright 2015 Garrett D’Amore <garrett@damore.org>
14 #

16 The configuration files in this directory are structured using the
17 syntax defined in the ../README file. They make use of the compilation
18 environments declared in ../compilation.cfg, and are processed by the
19 symbols test.

21 We have organized the files by header file, that is the tests for symbols
22 declared in a header file (e.g. <unistd.h> appear in a file based on that
23 header file’s name (e.g. unistd_h.cfg.) This is purely for convenience.

25 Within these various declarations, we have the following field types:

27 <envs> This is a list of compilation environments where the symbol
28 should be legal. To indicate that the symbol must not be legal
29 an environment group can be prefixed with "-". For example,
30 "SUS -SUSv4+" indicates a symbol that is legal in all SUS
31 environments up to SUSv3, and was removed in SUSv4 and subsequent
32 versions of SUS. As you can see, we can list multiple environments
33 or environment groups, and we can add or remove to previous groups
34 with subsequent ones.

36 <name> This is a symbol name. It follows the rules for C symbol names.

38 <header> This is a header file, for example, unistd.h. Conventionally,
39 the header files used should match the file where the test is
40 declared.

42 <type> This is a C type. Function types can be declared without their
43 names, e.g. "void (*)(int)". Structures (e.g. "struct stat") and
44 pointer types (e.g. "pthead_t *") are legal as well.

46 Here are the types of declarations in these files:

48 type | <name> | <header> | <envs>

50 Tests for a C type with <name>. The test verifies that a variable with
51 this type can be declared when the <header> is included.

53 value | <name> | <type> | <header> | <envs>

55 Tests for a value named <name>, of type <type>. The test attempts to
56 assign the given value to a scratch variable declared with the given
57 type. The value can be a macro or other C symbol.

59 func | <name> | <type> | <type> [; <type>]... | <header> | <envs>

61 Tests whether a function <name>, returning the first <type>, and

new/usr/src/test/libc-tests/cfg/symbols/README 2

62 taking arguments of following <type> values, is declared. Note that
63 the argument types are separated by semicolons. For varargs style
64 functions, leave out the ... part. For function declarations
65 that have no declared arguments, either void can specified, or
66 the type list can be omitted.

68 Examples:

70 type | size_t | sys/types.h | ALL
71 value | NULL | void * | stdlib.h | ALL
72 func strnlen | int | const char *; int | string.h | ALL

new/usr/src/test/libc-tests/tests/common/test_common.c 1

**
 7523 Mon Mar 30 10:49:09 2015
new/usr/src/test/libc-tests/tests/common/test_common.c
Incorporate rmustacc’s review feedback.
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.

10 */

12 /*
13 * Copyright 2015 Garrett D’Amore <garrett@damore.org>
13 * Copyright 2014 Garrett D’Amore <garrett@damore.org>
14 */

16 /*
17 * Common handling for test programs.
18 */

20 #include <stdio.h>
21 #include <stdlib.h>
22 #include <stdarg.h>
23 #include <string.h>
24 #include <errno.h>
25 #include <pthread.h>
26 #include <ctype.h>
27 #include <unistd.h>
28 #include <sys/param.h>
29 #include "test_common.h"

31 static int debug = 0;
32 static int force = 0;
33 static pthread_mutex_t lk;

35 static int passes;
36 static int tests;

38 struct test {
39 char *name;
40 int ntids;
41 pthread_t *tids;
42 int fails;
43 void *arg;
44 void (*func)(test_t t, void *);
45 };

______unchanged_portion_omitted_

175 void
176 test_debugf(test_t t, const char *format, ...)
177 {
178 va_list args;

180 if (!debug)
181 return;

183 (void) pthread_mutex_lock(&lk);
184 if (t) {
185 (void) printf("TEST DEBUG %s: ", t->name);
186 } else {
187 (void) printf("TEST DEBUG: ");

new/usr/src/test/libc-tests/tests/common/test_common.c 2

188 }
189 va_start(args, format);
190 (void) vprintf(format, args);
191 va_end(args);
192 (void) printf("\n");
193 (void) fflush(stdout);
194 (void) pthread_mutex_unlock(&lk);
195 }

______unchanged_portion_omitted_

260 #define MAXCB 20
261 #define MAXFIELD 20

263 int
264 test_load_config(test_t t, const char *fname, ...)
265 {
266 va_list va;
267 const char *keyws[MAXCB];
268 test_cfg_func_t callbs[MAXCB];
269 char *fields[MAXFIELD];
270 int nfields;

272 FILE *cfg;
273 char line[1024];
274 char buf[1024];
275 int done;
276 char *ptr;
277 char *tok;
278 char *err;
279 int lineno;
280 int rv;
281 int found;
282 char path[MAXPATHLEN];
283 int i;

285 va_start(va, fname);
286 for (i = 0; i < MAXCB; i++) {
284 for (int i = 0; i < MAXCB; i++) {
287 keyws[i] = (const char *)va_arg(va, const char *);
288 if (keyws[i] == NULL)
289 break;
290 callbs[i] = (test_cfg_func_t)va_arg(va, test_cfg_func_t);
291 }
292 va_end(va);
293 if (i == MAXCB) {
294 test_debugf(t, "too many arguments to function >= %d", MAXCB);
295 }

297 found = 0;

299 if (access(fname, F_OK) == 0) {
300 found++;
301 }
302 if (!found && fname[0] != ’/’) {
303 char *stf = getenv("STF_SUITE");
304 if (stf == NULL) {
305 stf = "../..";
306 }
307 (void) snprintf(path, sizeof (path), "%s/cfg/%s", stf, fname);
308 if (access(path, F_OK) == 0) {
309 fname = path;
310 found++;
311 } else {
312 (void) snprintf(path, sizeof (path), "cfg/%s", fname);
313 if (access(path, F_OK) == 0) {
314 fname = path;

new/usr/src/test/libc-tests/tests/common/test_common.c 3

315 found++;
316 }
317 }
318 }

320 if ((cfg = fopen(fname, "r")) == NULL) {
321 test_failed(t, "open(%s): %s", fname, strerror(errno));
322 return (-1);
323 }

325 line[0] = 0;
326 done = 0;
327 lineno = 0;

329 while (!done) {

331 lineno++;

333 if (fgets(buf, sizeof (buf), cfg) == NULL) {
334 done++;
335 } else {
336 (void) strtok(buf, "\n");
337 if ((*buf != 0) && (buf[strlen(buf)-1] == ’\\’)) {
338 /*
339 * Continuation. This isn’t quite right,
340 * as it doesn’t allow for a "\" at the
341 * end of line (no escaping).
342 */
343 buf[strlen(buf)-1] = 0;
344 (void) strlcat(line, buf, sizeof (line));
345 continue;
346 }
347 (void) strlcat(line, buf, sizeof (line));
348 }

350 /* got a line */
351 ptr = line;
352 test_trim(&ptr);

354 /* skip comments and empty lines */
355 if (ptr[0] == 0 || ptr[0] == ’#’) {
356 line[0] = 0;
357 continue;
358 }

360 tok = strsep(&ptr, "|");
361 if (tok == NULL) {
362 break;
363 }
364 test_trim(&tok);

366 for (nfields = 0; nfields < MAXFIELD; nfields++) {
367 fields[nfields] = strsep(&ptr, "|");
368 if (fields[nfields] == NULL) {
369 break;
370 }
371 test_trim(&fields[nfields]);
372 }

374 found = 0;
375 rv = 0;

377 for (int i = 0; keyws[i] != NULL; i++) {
378 if (strcmp(tok, keyws[i]) == 0) {
379 found++;
380 err = NULL;

new/usr/src/test/libc-tests/tests/common/test_common.c 4

381 rv = callbs[i](fields, nfields, &err);
382 }
383 }
384 if (!found) {
385 rv = -1;
386 err = NULL;
387 (void) asprintf(&err, "unknown keyword %s", tok);
388 }
389 if (rv != 0) {
390 if (err) {
391 test_failed(t, "%s:%d: %s", fname,
392 lineno, err);
393 free(err);
394 } else {
395 test_failed(t, "%s:%d: unknown error",
396 fname, lineno);
397 }
398 (void) fclose(cfg);
399 return (rv);
400 }

402 line[0] = 0;
403 }
404 (void) fclose(cfg);
405 return (0);
406 }

______unchanged_portion_omitted_

new/usr/src/test/libc-tests/tests/symbols/symbols_test.c 1

**
 17808 Mon Mar 30 10:49:09 2015
new/usr/src/test/libc-tests/tests/symbols/symbols_test.c
Incorporate rmustacc’s review feedback.
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.

10 */

12 /*
13 * Copyright 2015 Garrett D’Amore <garrett@damore.org>
13 * Copyright 2014 Garrett D’Amore <garrett@damore.org>
14 */

16 /*
17 * This program tests symbol visibility using the /usr/bin/c89 and
18 * /usr/bin/c99 programs.
19 *
20 * See symbols_defs.c for the actual list of symbols tested.
19 */

21 #include <stdio.h>
22 #include <stdlib.h>
23 #include <string.h>
24 #include <errno.h>
25 #include <err.h>
26 #include <unistd.h>
27 #include <sys/types.h>
28 #include <sys/stat.h>
29 #include <note.h>
30 #include <sys/wait.h>
31 #include "test_common.h"

33 char *dname;
34 char *cfile;
35 char *ofile;
36 char *lfile;
37 char *efile;

39 const char *sym = NULL;

41 static int good_count = 0;
42 static int fail_count = 0;
43 static int full_count = 0;
44 static int extra_debug = 0;
45 static char *compilation = "compilation.cfg";

47 #if defined(_LP64)
48 #define MFLAG "-m64"
49 #elif defined(_ILP32)
50 #define MFLAG "-m32"
51 #endif

53 const char *compilers[] = {
54 "cc",
55 "gcc",
56 "/opt/SUNWspro/bin/cc",
57 "/opt/gcc/4.4.4/bin/gcc",
58 "/opt/sunstudio12.1/bin/cc",

new/usr/src/test/libc-tests/tests/symbols/symbols_test.c 2

59 "/opt/sfw/bin/gcc",
60 "/usr/local/bin/gcc",
61 NULL
62 };

65 const char *puname[] = {
66 "",
67 "/usr/bin/puname -S "
68 };

64 char *compiler = NULL;
65 const char *c89flags = NULL;
66 const char *c99flags = NULL;

68 #define MAXENV 64 /* maximum number of environments (bitmask width) */
74 /* ====== BEGIN ======== */

76 #include <errno.h>
77 #include <string.h>
78 #include <stdio.h>
79 #include <stdlib.h>
80 #include <ctype.h>
81 #include <stdint.h>

83 #define MAXENV 64 /* bits */
69 #define MAXHDR 10 /* maximum # headers to require to access symbol */
70 #define MAXARG 20 /* maximum # of arguments */

72 #define WS " \t"

74 static int next_env = 0;

76 struct compile_env {
77 char *name;
78 char *lang;
79 char *defs;
80 int index;
81 };

______unchanged_portion_omitted_

105 struct env_group *env_groups = NULL;

107 struct sym_test *sym_tests = NULL;
108 struct sym_test **sym_insert = &sym_tests;

110 static char *
111 mystrdup(const char *s)
112 {
113 char *r;
114 if ((r = strdup(s)) == NULL) {
115 perror("strdup");
116 exit(1);
117 }
118 return (r);
119 }

121 static void *
122 myzalloc(size_t sz)
123 {
124 void *buf;
125 if ((buf = calloc(1, sz)) == NULL) {
126 perror("calloc");
127 exit(1);
128 }
129 return (buf);
130 }

new/usr/src/test/libc-tests/tests/symbols/symbols_test.c 3

132 static void
133 myasprintf(char **buf, const char *fmt, ...)
134 {
135 int rv;
136 va_list va;
137 va_start(va, fmt);
138 rv = vasprintf(buf, fmt, va);
139 va_end(va);
140 if (rv < 0) {
141 perror("vasprintf");
142 exit(1);
143 }
144 }

146 static void
147 append_sym_test(struct sym_test *st)
148 {
149 *sym_insert = st;
150 sym_insert = &st->next;
151 }

______unchanged_portion_omitted_

227 static int
228 do_env(char **fields, int nfields, char **err)
229 {
230 char *name;
231 char *lang;
232 char *defs;

234 if (nfields != 3) {
235 myasprintf(err, "number of fields (%d) != 3", nfields);
214 (void) asprintf(err, "number of fields (%d) != 3", nfields);
236 return (-1);
237 }

239 if (next_env >= MAXENV) {
240 myasprintf(err, "too many environments");
219 (void) asprintf(err, "too many environments");
241 return (-1);
242 }

244 name = fields[0];
245 lang = fields[1];
246 defs = fields[2];

248 compile_env[next_env].name = mystrdup(name);
249 compile_env[next_env].lang = mystrdup(lang);
250 compile_env[next_env].defs = mystrdup(defs);
227 compile_env[next_env].name = strdup(name);
228 compile_env[next_env].lang = strdup(lang);
229 compile_env[next_env].defs = strdup(defs);
251 compile_env[next_env].index = next_env;
252 next_env++;
253 return (0);
254 }

256 static int
257 do_env_group(char **fields, int nfields, char **err)
258 {
259 char *name;
260 char *list;
261 struct env_group *eg;
262 uint64_t mask;
263 char *item;

new/usr/src/test/libc-tests/tests/symbols/symbols_test.c 4

265 if (nfields != 2) {
266 myasprintf(err, "number of fields (%d) != 2", nfields);
245 (void) asprintf(err, "number of fields (%d) != 2", nfields);
267 return (-1);
268 }

270 name = fields[0];
271 list = fields[1];
272 mask = 0;

274 if (expand_env(list, &mask, &item) < 0) {
275 myasprintf(err, "reference to undefined env %s", item);
254 (void) asprintf(err, "reference to undefined env %s", item);
276 return (-1);
277 }

279 eg = myzalloc(sizeof (*eg));
280 eg->name = mystrdup(name);
258 eg = calloc(1, sizeof (*eg));
259 eg->name = strdup(name);
281 eg->mask = mask;
282 eg->next = env_groups;
283 env_groups = eg;
284 return (0);
285 }

287 static char *progbuf = NULL;
288 size_t proglen = 0;
289 size_t progsiz = 0;

291 static void
292 addprogch(char c)
293 {
294 while (progsiz <= (proglen + 1)) {
295 progbuf = realloc(progbuf, progsiz + 4096);
296 if (progbuf == NULL) {
297 perror("realloc");
298 exit(1);
299 }
300 progsiz += 1024;
301 }
302 progbuf[proglen++] = c;
303 progbuf[proglen] = 0;
304 }

306 static void
307 addprogstr(char *s)
308 {
309 while (*s != NULL) {
310 addprogch(*s);
311 s++;
312 }
313 }

315 static void
316 addprogfmt(const char *fmt, ...)
317 {
318 va_list va;
319 char *buf = NULL;
320 va_start(va, fmt);
321 if (vasprintf(&buf, fmt, va) < 0) {
322 perror("vasprintf");
323 exit(1);
324 }
325 va_end(va);
326 addprogstr(buf);

new/usr/src/test/libc-tests/tests/symbols/symbols_test.c 5

327 free(buf);
328 }

330 static void
331 mkprog(struct sym_test *st)
332 {
269 static char buf[2048];
333 char *s;
271 char *prog = buf;

335 proglen = 0;
273 *prog = 0;

275 #define ADDSTR(p, str) (void) strcpy(p, str); p += strlen(p)
276 #define ADDFMT(p, ...) \
277 (void) snprintf(p, sizeof (buf) - (p-buf), __VA_ARGS__); \
278 p += strlen(p)
279 #define ADDCHR(p, c) *p++ = c; *p = 0

337 for (int i = 0; i < MAXHDR && st->hdrs[i] != NULL; i++) {
338 addprogfmt("#include <%s>\n", st->hdrs[i]);
282 ADDFMT(prog, "#include <%s>\n", st->hdrs[i]);
339 }

341 for (s = st->rtype; *s; s++) {
342 addprogch(*s);
286 ADDCHR(prog, *s);
343 if (*s == ’(’) {
344 s++;
345 addprogch(*s);
289 ADDCHR(prog, *s);
346 s++;
347 break;
348 }
349 }
350 addprogch(’ ’);
294 ADDCHR(prog, ’ ’);

352 /* for function pointers, s is closing suffix, otherwise empty */

354 switch (st->type) {
355 case SYM_TYPE:
356 addprogstr("test_type;");
300 ADDFMT(prog, "test_type;", st->rtype);
357 break;

359 case SYM_VALUE:
360 addprogfmt("test_value%s;\n", s); /* s usually empty */
361 addprogstr("void\ntest_func(void)\n{\n");
362 addprogfmt("\ttest_value = %s;\n}", st->name);
304 ADDFMT(prog, "test_value%s;\n", s); /* s usually empty */
305 ADDSTR(prog, "void\ntest_func(void)\n{\n");
306 ADDFMT(prog, "\ttest_value = %s;\n}",
307 st->name);
363 break;

365 case SYM_FUNC:
366 addprogstr("\ntest_func(");
311 ADDSTR(prog, "\ntest_func(");
367 for (int i = 0; st->atypes[i] != NULL && i < MAXARG; i++) {
368 int didname = 0;
369 if (i > 0) {
370 addprogstr(", ");
315 ADDSTR(prog, ", ");
371 }
372 if (strcmp(st->atypes[i], "void") == 0) {

new/usr/src/test/libc-tests/tests/symbols/symbols_test.c 6

373 didname = 1;
374 }
375 if (strcmp(st->atypes[i], "") == 0) {
376 didname = 1;
377 addprogstr("void");
322 ADDSTR(prog, "void");
378 }

380 /* print the argument list */
381 for (char *a = st->atypes[i]; *a; a++) {
382 if (*a == ’(’ && a[1] == ’*’ && !didname) {
383 addprogfmt("(*a%d", i);
328 ADDFMT(prog, "(*a%d", i);
384 didname = 1;
385 a++;
386 } else if (*a == ’[’ && !didname) {
387 addprogfmt("a%d[", i);
332 ADDFMT(prog, "a%d[", i);
388 didname = 1;
389 } else {
390 addprogch(*a);
335 ADDCHR(prog, *a);
391 }
392 }
393 if (!didname) {
394 addprogfmt(" a%d", i);
339 ADDFMT(prog, " a%d", i);
395 }
396 }

398 if (st->atypes[0] == NULL) {
399 addprogstr("void");
344 ADDSTR(prog, "void");
400 }

402 /* close argument list, and closing ")" for func ptrs */
403 addprogfmt(")%s\n{\n\t", s); /* NB: s is normally empty */
348 ADDFMT(prog, ")%s\n{\n\t", s); /* NB: s is normally empty */

405 if (strcmp(st->rtype, "") != 0 &&
406 strcmp(st->rtype, "void") != 0) {
407 addprogstr("return ");
352 ADDSTR(prog, "return ");
408 }

410 /* add the function call */
411 addprogfmt("%s(", st->name);
356 ADDFMT(prog, "%s(", st->name);
412 for (int i = 0; st->atypes[i] != NULL && i < MAXARG; i++) {
413 if (strcmp(st->atypes[i], "") != 0 &&
414 strcmp(st->atypes[i], "void") != 0) {
415 addprogfmt("%sa%d", i > 0 ? ", " : "", i);
360 ADDFMT(prog, "%sa%d", i > 0 ? ", " : "", i);
416 }
417 }

419 addprogstr(");\n}");
364 ADDSTR(prog, ");\n}");
420 break;
421 }

423 addprogch(’\n’);
368 ADDCHR(prog, ’\n’);

425 st->prog = progbuf;
370 st->prog = strdup(buf);

new/usr/src/test/libc-tests/tests/symbols/symbols_test.c 7

426 }

428 static int
429 add_envs(struct sym_test *st, char *envs, char **err)
430 {
431 char *item;
432 if (expand_env_list(envs, &st->test_mask, &st->need_mask, &item) < 0) {
433 myasprintf(err, "bad env action %s", item);
378 (void) asprintf(err, "bad env action %s", item);
434 return (-1);
435 }
436 return (0);
437 }

439 static int
440 add_headers(struct sym_test *st, char *hdrs, char **err)
441 {
442 int i = 0;

444 for (char *h = strsep(&hdrs, ";"); h != NULL; h = strsep(&hdrs, ";")) {
445 if (i >= MAXHDR) {
446 myasprintf(err, "too many headers");
391 (void) asprintf(err, "too many headers");
447 return (-1);
448 }
449 test_trim(&h);
450 st->hdrs[i++] = mystrdup(h);
395 st->hdrs[i++] = strdup(h);
451 }

453 return (0);
454 }

456 static int
457 add_arg_types(struct sym_test *st, char *atype, char **err)
458 {
459 int i = 0;
460 char *a;
461 for (a = strsep(&atype, ";"); a != NULL; a = strsep(&atype, ";")) {
462 if (i >= MAXARG) {
463 myasprintf(err, "too many arguments");
408 (void) asprintf(err, "too many arguments");
464 return (-1);
465 }
466 test_trim(&a);
467 st->atypes[i++] = mystrdup(a);
412 st->atypes[i++] = strdup(a);
468 }

470 return (0);
471 }

473 static int
474 do_type(char **fields, int nfields, char **err)
475 {
476 char *decl;
477 char *hdrs;
478 char *envs;
479 struct sym_test *st;

481 if (nfields != 3) {
482 myasprintf(err, "number of fields (%d) != 3", nfields);
427 (void) asprintf(err, "number of fields (%d) != 3", nfields);
483 return (-1);
484 }
485 decl = fields[0];

new/usr/src/test/libc-tests/tests/symbols/symbols_test.c 8

486 hdrs = fields[1];
487 envs = fields[2];

489 st = myzalloc(sizeof (*st));
434 st = calloc(1, sizeof (*st));
490 st->type = SYM_TYPE;
491 st->name = mystrdup(decl);
492 st->rtype = mystrdup(decl);
436 st->name = strdup(decl);
437 st->rtype = strdup(decl);

494 if ((add_envs(st, envs, err) < 0) ||
495 (add_headers(st, hdrs, err) < 0)) {
496 return (-1);
497 }
498 append_sym_test(st);

500 return (0);
501 }

503 static int
504 do_value(char **fields, int nfields, char **err)
505 {
506 char *name;
507 char *type;
508 char *hdrs;
509 char *envs;
510 struct sym_test *st;

512 if (nfields != 4) {
513 myasprintf(err, "number of fields (%d) != 4", nfields);
458 (void) asprintf(err, "number of fields (%d) != 4", nfields);
514 return (-1);
515 }
516 name = fields[0];
517 type = fields[1];
518 hdrs = fields[2];
519 envs = fields[3];

521 st = myzalloc(sizeof (*st));
466 st = calloc(1, sizeof (*st));
522 st->type = SYM_VALUE;
523 st->name = mystrdup(name);
524 st->rtype = mystrdup(type);
468 st->name = strdup(name);
469 st->rtype = strdup(type);

526 if ((add_envs(st, envs, err) < 0) ||
527 (add_headers(st, hdrs, err) < 0)) {
528 return (-1);
529 }
530 append_sym_test(st);

532 return (0);
533 }

535 static int
536 do_func(char **fields, int nfields, char **err)
537 {
538 char *name;
539 char *rtype;
540 char *atype;
541 char *hdrs;
542 char *envs;
543 struct sym_test *st;

new/usr/src/test/libc-tests/tests/symbols/symbols_test.c 9

545 if (nfields != 5) {
546 myasprintf(err, "number of fields (%d) != 5", nfields);
491 (void) asprintf(err, "number of fields (%d) != 5", nfields);
547 return (-1);
548 }
549 name = fields[0];
550 rtype = fields[1];
551 atype = fields[2];
552 hdrs = fields[3];
553 envs = fields[4];

555 st = myzalloc(sizeof (*st));
500 st = calloc(1, sizeof (*st));
556 st->type = SYM_FUNC;
557 st->name = mystrdup(name);
558 st->rtype = mystrdup(rtype);
502 st->name = strdup(name);
503 st->rtype = strdup(rtype);

560 if ((add_envs(st, envs, err) < 0) ||
561 (add_headers(st, hdrs, err) < 0) ||
562 (add_arg_types(st, atype, err) < 0)) {
563 return (-1);
564 }
565 append_sym_test(st);

567 return (0);
568 }

______unchanged_portion_omitted_

591 /*
592 * Iterate through tests. Pass in NULL for cenv to begin the iteration. For
593 * subsequent iterations, use the return value from the previous iteration.
594 * Returns NULL when there are no more environments.
537 * Iterate through tests. Pass NULL for cenv first time, and previous result
538 * the next. Returns NULL when no more environments.
595 */
596 struct compile_env *
597 sym_test_env(struct sym_test *st, struct compile_env *cenv, int *need)
598 {
599 int i = cenv ? cenv->index + 1: 0;
600 uint64_t b = 1ULL << i;

602 while ((i < MAXENV) && (b != 0)) {
603 cenv = &compile_env[i];
604 if (b & st->test_mask) {
605 *need = (st->need_mask & b) ? 1 : 0;
606 return (cenv);
607 }
608 b <<= 1;
609 i++;
610 }
611 return (NULL);
612 }

______unchanged_portion_omitted_

632 static void
633 show_file(test_t t, const char *path)
634 {
635 FILE *f;
636 char *buf = NULL;
637 size_t cap = 0;
638 int line = 1;

640 f = fopen(path, "r");
641 if (f == NULL) {

new/usr/src/test/libc-tests/tests/symbols/symbols_test.c 10

642 test_debugf(t, "fopen(%s): %s", path, strerror(errno));
643 return;
644 }

646 test_debugf(t, "----->> begin (%s) <<------", path);
647 while (getline(&buf, &cap, f) >= 0) {
648 (void) strtok(buf, "\r\n");
649 test_debugf(t, "%d: %s", line, buf);
650 line++;
651 }
652 test_debugf(t, "----->> end (%s) <<------", path);
653 (void) fclose(f);
654 }

656 static void
657 cleanup(void)
658 {
659 if (ofile != NULL) {
660 (void) unlink(ofile);
661 free(ofile);
662 ofile = NULL;
663 }
664 if (lfile != NULL) {
665 (void) unlink(lfile);
666 free(lfile);
667 lfile = NULL;
668 }
669 if (cfile != NULL) {
670 (void) unlink(cfile);
671 free(cfile);
672 cfile = NULL;
673 }
674 if (efile != NULL) {
675 (void) unlink(efile);
676 free(efile);
677 efile = NULL;
678 }
679 if (dname) {
680 (void) rmdir(dname);
681 free(dname);
682 dname = NULL;
683 }
684 }

686 static int
687 mkworkdir(void)
688 {
689 char b[32];
690 char *d;

692 cleanup();

694 (void) strlcpy(b, "/tmp/symbols_testXXXXXX", sizeof (b));
695 if ((d = mkdtemp(b)) == NULL) {
696 perror("mkdtemp");
697 return (-1);
698 }
699 dname = mystrdup(d);
700 myasprintf(&cfile, "%s/compile_test.c", d);
701 myasprintf(&ofile, "%s/compile_test.o", d);
702 myasprintf(&lfile, "%s/compile_test.log", d);
703 myasprintf(&efile, "%s/compile_test.exe", d);
634 dname = strdup(d);
635 (void) asprintf(&cfile, "%s/compile_test.c", d);
636 (void) asprintf(&ofile, "%s/compile_test.o", d);
637 (void) asprintf(&lfile, "%s/compile_test.log", d);

new/usr/src/test/libc-tests/tests/symbols/symbols_test.c 11

704 return (0);
705 }

707 void
708 find_compiler(void)
709 {
710 test_t t;
711 int i;
712 FILE *cf;

714 t = test_start("finding compiler");

716 if ((cf = fopen(cfile, "w+")) == NULL) {
717 test_failed(t, "Unable to open %s for write: %s", cfile,
718 strerror(errno));
719 return;
720 }
721 (void) fprintf(cf, "#include <stdio.h>\n");
722 (void) fprintf(cf, "int main(int argc, char **argv) {\n");
723 (void) fprintf(cf, "#if defined(__SUNPRO_C)\n");
724 (void) fprintf(cf, "exit(51);\n");
725 (void) fprintf(cf, "#elif defined(__GNUC__)\n");
726 (void) fprintf(cf, "exit(52);\n");
727 (void) fprintf(cf, "#else\n");
728 (void) fprintf(cf, "exit(99)\n");
729 (void) fprintf(cf, "#endif\n}\n");
730 (void) fclose(cf);

732 for (i = 0; compilers[i] != NULL; i++) {
664 for (i = 0; compilers[i/2] != NULL; i++) {
733 char cmd[256];
734 int rv;

736 (void) snprintf(cmd, sizeof (cmd),
737 "%s %s %s -o %s >/dev/null 2>&1",
738 compilers[i], MFLAG, cfile, efile);
669 "%s%s %s %s -o %s >/dev/null 2>&1",
670 puname[i%2], compilers[i/2], MFLAG, cfile, ofile);
739 test_debugf(t, "trying %s", cmd);
740 rv = system(cmd);

742 test_debugf(t, "result: %d", rv);

744 if ((rv < 0) || !WIFEXITED(rv) || WEXITSTATUS(rv) != 0)
745 continue;

747 rv = system(efile);
679 rv = system(ofile);
748 if (rv >= 0 && WIFEXITED(rv)) {
749 rv = WEXITSTATUS(rv);
750 } else {
751 rv = -1;
752 }

754 switch (rv) {
755 case 51: /* STUDIO */
756 test_debugf(t, "Found Studio C");
757 c89flags = "-Xc -errwarn=%all -v -xc99=%none " MFLAG;
758 c99flags = "-Xc -errwarn=%all -v -xc99=%all " MFLAG;
759 if (extra_debug) {
760 test_debugf(t, "c89flags: %s", c89flags);
761 test_debugf(t, "c99flags: %s", c99flags);
762 }
763 test_passed(t);
764 break;
765 case 52: /* GCC */

new/usr/src/test/libc-tests/tests/symbols/symbols_test.c 12

766 test_debugf(t, "Found GNU C");
767 c89flags = "-Wall -Werror -std=c89 " MFLAG;
768 c99flags = "-Wall -Werror -std=c99 " MFLAG;
769 if (extra_debug) {
770 test_debugf(t, "c89flags: %s", c89flags);
771 test_debugf(t, "c99flags: %s", c99flags);
772 }
773 test_passed(t);
774 break;
775 default:
776 continue;
777 }
778 myasprintf(&compiler, "%s", compilers[i]);
710 (void) asprintf(&compiler,
711 "%s%s", puname[i%2], compilers[i/2]);
779 test_debugf(t, "compiler: %s", compiler);
780 return;
781 }
782 test_failed(t, "No compiler found.");
783 }

785 int
786 do_compile(test_t t, struct sym_test *st, struct compile_env *cenv, int need)
787 {
788 char *cmd;
789 FILE *logf;
790 FILE *dotc;
791 const char *prog;

793 full_count++;

795 if ((dotc = fopen(cfile, "w+")) == NULL) {
796 test_failed(t, "fopen(%s): %s", cfile, strerror(errno));
797 return (-1);
798 }
799 prog = sym_test_prog(st);
800 if (fwrite(prog, 1, strlen(prog), dotc) < strlen(prog)) {
801 test_failed(t, "fwrite: %s", strerror(errno));
802 (void) fclose(dotc);
803 return (-1);
804 }
805 if (fclose(dotc) < 0) {
806 test_failed(t, "fclose: %s", strerror(errno));
807 return (-1);
808 }

810 (void) unlink(ofile);

812 myasprintf(&cmd, "%s %s %s -c %s -o %s >>%s 2>&1",
745 if (asprintf(&cmd, "%s %s %s -c %s -o %s >>%s 2>&1",
813 compiler, strcmp(env_lang(cenv), "c99") == 0 ? c99flags : c89flags,
814 env_defs(cenv), cfile, ofile, lfile);
747 env_defs(cenv), cfile, ofile, lfile) < 0) {
748 test_failed(t, "asprintf: %s", strerror(errno));
749 return (-1);
750 }

816 if (extra_debug) {
817 test_debugf(t, "command: %s", cmd);
818 }

820 if ((logf = fopen(lfile, "w+")) == NULL) {
821 test_failed(t, "fopen: %s", strerror(errno));
822 return (-1);
823 }

new/usr/src/test/libc-tests/tests/symbols/symbols_test.c 13

824 (void) fprintf(logf, "===================\n");
825 (void) fprintf(logf, "PROGRAM:\n%s\n", sym_test_prog(st));
826 (void) fprintf(logf, "COMMAND: %s\n", cmd);
827 (void) fprintf(logf, "EXPECT: %s\n", need ? "OK" : "FAIL");
828 (void) fclose(logf);

830 switch (system(cmd)) {
831 case -1:
832 test_failed(t, "error compiling in %s: %s", env_name(cenv),
833 strerror(errno));
834 return (-1);
835 case 0:
836 if (!need) {
767 if (system(cmd) != 0) {
768 if (need) {
837 fail_count++;
838 show_file(t, lfile);
839 test_failed(t, "symbol visible in %s", env_name(cenv));
771 test_failed(t, "error compiling in %s", env_name(cenv));
840 return (-1);
841 }
842 break;
843 default:
844 if (need) {
774 } else {
775 if (!need) {
845 fail_count++;
846 show_file(t, lfile);
847 test_failed(t, "error compiling in %s", env_name(cenv));
778 test_failed(t, "symbol visible in %s", env_name(cenv));
848 return (-1);
849 }
850 break;
851 }
852 good_count++;
853 return (0);
854 }

______unchanged_portion_omitted_

885 int
886 main(int argc, char **argv)
887 {
888 int optc;
889 int optC = 0;

891 while ((optc = getopt(argc, argv, "DdfCs:c:")) != EOF) {
892 switch (optc) {
893 case ’d’:
894 test_set_debug();
895 break;
896 case ’f’:
897 test_set_force();
898 break;
899 case ’D’:
900 test_set_debug();
901 extra_debug++;
902 break;
903 case ’c’:
904 compilation = optarg;
905 break;
906 case ’C’:
907 optC++;
908 break;
909 case ’s’:
910 sym = optarg;
911 break;

new/usr/src/test/libc-tests/tests/symbols/symbols_test.c 14

912 default:
913 (void) fprintf(stderr, "Usage: %s [-df]\n", argv[0]);
914 exit(1);
915 }
916 }

918 if (test_load_config(NULL, compilation,
919 "env", do_env, "env_group", do_env_group, NULL) < 0) {
920 exit(1);
921 }

923 while (optind < argc) {
924 if (test_load_config(NULL, argv[optind++],
925 "type", do_type,
926 "value", do_value,
927 "func", do_func,
928 NULL) < 0) {
929 exit(1);
930 }
931 }

933 if (atexit(cleanup) != 0) {
934 perror("atexit");
935 exit(1);
936 }
863 (void) atexit(cleanup);

938 if (mkworkdir() < 0) {
939 perror("mkdir");
940 exit(1);
941 }

943 find_compiler();
944 if (!optC)
945 test_compile();

947 exit(0);
948 }

______unchanged_portion_omitted_

