new usr/ src/ pkg/ mani f est s/ systemtest-libctest.nf 1

R R R R

5071 Mon Mar 30 10:49:09 2015
new usr/ src/ pkg/ mani f est s/ systemtest-libctest.nf
I ncorporate rnustacc’s revi ew feedback.

R R R R

1#

2 # This file and its contents are supplied under the terms of the

3 # Common Devel opent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terns of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this

8 # source. A copy of the CDDL is also available via the Internet at
9 # http://ww.illunos.org/license/ CDDL.

10 #

12 #

13 # Copyright (c) 2012 by Del phix. Al rights reserved.

14 # Copyright 2014, Omi TI Conputer Consulting, Inc. Al rights reserved.
15 # Copyright 2015 Garrett D Anore <garrett @anore. org>

16 #

18 set name=pkg.fnri val ue=pkg:/systenm test/|ibctest @(PKGVERS)
19 set nane=pkg.description value="C library Unit Tests"

20 set nane=pkg.sunmmary val ue="C Library Unit Test Suite"

21 set name=info.classification \

22 val ue=or g. opensol ari s. cat egory. 2008: Devel opnent / Syst em
23 set name=variant.arch val ue=$(ARCH)

24 dir path=opt/libc-tests

25 dir path=opt/libc-tests/bin

26 dir path=opt/libc-tests/cfg

27 dir path=opt/libc-tests/cfg/synbols

28 dir path=opt/libc-tests/runfiles

29 dir path=opt/libc-tests/tests

30 dir path=opt/libc-tests/tests

31 dir path=opt/libc-tests/tests/synbols

32 file path=opt/libc-tests/ READVE node=0444

33 file path=opt/libc-tests/bin/libctest nbde=0555

34 file path=opt/libc-tests/cfg/ READVE nbde=0444

35 file path=opt/libc-tests/cfg/conpilation.cfg node=0444

36 file path=opt/libc-tests/cfg/synbol s/ READVE node=0444

37 file path=opt/libc-tests/cfg/synmbols/ctype_h.cfg node=0444

38 file path=opt/libc-tests/cfg/synbols/dirent_h.cfg node=0444

39 file path=opt/libc-tests/cfg/synbols/fcntl_h.cfg node=0444

40 file path=opt/libc-tests/cfg/synbols/locale_h.cfg node=0444

41 file path=opt/libc-tests/cfg/synmbols/math_h.cfg node=0444

42 file path=opt/libc-tests/cfg/synbols/netdb_h.cfg node=0444

43 file path=opt/libc-tests/cfg/synbols/pthread_h.cfg node=0444
44 file path=opt/libc-tests/cfg/synbols/signal_h.cfg node=0444

45 file path=opt/libc-tests/cfg/synmbols/stdio_h.cfg node=0444

46 file path=opt/libc-tests/cfg/synmbols/stdlib_h.cfg node=0444

47 file path=opt/libc-tests/cfg/synbols/strings_h.cfg node=0444
48 file path=opt/libc-tests/cfg/synbols/sys_stat_h.cfg node=0444
49 file path=opt/libc-tests/cfg/synmbols/sys_tinme_h.cfg node=0444
50 file path=opt/libc-tests/cfg/synmbols/sys_tinmeb_h.cfg node=0444
51 file path=opt/libc-tests/cfg/synbol s/ucontext_h.cfg node=0444
52 file path=opt/libc-tests/cfg/synbols/unistd_h.cfg node=0444

53 file path=opt/libc-tests/cfg/synmbols/whar_h.cfg node=0444

54 file path=opt/libc-tests/cfg/synmbol s/wetype_h.cfg node=0444

55 file path=opt/libc-tests/runfiles/default.run node=0444

56 file path=opt/libc-tests/tests/fpround_test nbde=0555

57 file path=opt/libc-tests/tests/fpround_test.$(ARCH nopde=0555
58 file path=opt/libc-tests/tests/fpround_test.$(ARCH64) node=0555
59 file path=opt/libc-tests/tests/new ocal e_test npde=0555

60 file path=opt/libc-tests/tests/new ocal e_test.$(ARCH npde=0555
61 file path=opt/libc-tests/tests/new ocal e_test.$(ARCH64) npde=0555

new usr/ src/ pkg/ mani f est s/ systemtest-libctest.nf

file path=opt/libc-tests/tests/nl_|anginfo_test nbde=0555

file path=opt/libc-tests/tests/nl_langi nfo_t est.$(ARCH) node=0555
file path=opt/libc-tests/tests/nl_|anginfo_test.$(ARCH64) npde=0555
file path=opt/libc-tests/tests/synbols/setup node=0555

file path=opt/libc-tests/tests/synbols/synbols_test.$(ARCH node=0555
file path=opt/libc-tests/tests/synmbols/synmbols_test.$(ARCH64) node=0555
file path=opt/libc-tests/tests/wesrtonbs_test node=0555

file path=opt/libc-tests/tests/wesrtonbs_test.$(ARCH) npde=0555
file path=opt/libc-tests/tests/wesrtonbs_test.$(ARCH64) node=0555
file path=opt/libc-tests/tests/wtype_test node=0555

file path=opt/libc-tests/tests/wetype_test.$(ARCH) npde=0555

file path=opt/libc-tests/tests/wtype_test.$(ARCH64) npde=0555
hardl i nk path=opt/|ibc-tests/tests/synbols/ctype_h target=setup
hardl i nk path=opt/libc-tests/tests/synbols/dirent_h target=setup
hardl i nk path=opt/libc-tests/tests/synbols/fcntl_h target=setup
hardl i nk path=opt/libc-tests/tests/synbols/locale_h target=setup
hardl i nk path=opt/|ibc-tests/tests/synbols/math_h target=setup

hardl i nk path=opt/|ibc-tests/tests/synbols/netdb_h target=setup
hardl i nk path=opt/libc-tests/tests/synbols/pthread_h target=setup
hardl i nk path=opt/libc-tests/tests/synbols/signal_h target=setup
hardl i nk path=opt/|ibc-tests/tests/synbols/stdio_h target=setup
hardl i nk path=opt/|ibc-tests/tests/synbols/stdlib_h target=setup
hardl i nk path=opt/libc-tests/tests/synbols/strings_h target=setup
hardl i nk path=opt/libc-tests/tests/synbols/sys_stat_h target=setup
hardl i nk path=opt/|ibc-tests/tests/synbols/sys_tinme_h target=setup
hardl i nk path=opt/|ibc-tests/tests/synbols/sys_tinmeb_h target=setup
hardl i nk path=opt/libc-tests/tests/synbol s/ucontext_h target=setup
hardl i nk path=opt/libc-tests/tests/synbols/unistd_h target=setup
hardl i nk path=opt/|ibc-tests/tests/synbols/whar_h target=setup
hardl i nk path=opt/|ibc-tests/tests/synbols/wtype_h target=setup

license I'1c_CDDL |icense=lic_CDDL

depend fnri=local e/ de type= reqm re

depend fnri=local e/en type=require

depend fnri=l ocal e/en-extra type=require

depend fnri=localel/ja type=require

depend fnri=locale/ru type=require

depend fnri=system test/testrunner type=require

new usr/src/test/libc-tests/cfg/ Makefile

R R R R

1431 Mon Mar 30 10:49:09 2015
new usr/src/test/libc-tests/cfg/ Makefile
I ncorporate rnustacc’s revi ew feedback.

R R R R

1#

2 # This file and its contents are supplied under the terms of the

3 # Common Devel opent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terns of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://ww.illunos.org/license/ CDDL.

10 #

12 #

13 # Copyright 2015 Garrett D Anore <garrett @anore. or g>

13 # Copyright 2014 Garrett D Anpre <garrett @anore. org>

14 # Copyright (c) 2012 by Del phix. Al rights reserved.

15 #

17 include $(SRC)/ Makefile. master
19 CFGS = README \

20 conpi | ation. cfg \

21 synbol s/ README \

22 synbol s/ctype_h.cfg \
23 synbol s/dirent_h.cfg \
24 synbol s/ fentl _h.cfg\
25 synbol s/ | ocal e_h. cf g \
26 synbol s/ math_h.cfg \

27 synbol s/ netdb_h.cfg \

28 synbol s/ pthread h.cfg \
29 synbol s/ si gnal _h. cf g \
30 synbol s/ stdio_h. cfg

31 synbol s/ stdlib_h.cfg \
32 synbol s/ strings_h.cfg \
33 synbol s/sys_stat _h.cfg \
34 synbol s/sys_tine_h.cfg \
35 synbol s/sys_tinmeb_h.cfg \
36 synbol s/ ucontext _h.cfg \
37 synbol s/ unistd_h.cfg \
38 synbol s/wchar _h.cfg \

39 synbol s/ wetype_h. cfg

41 ROOTOPTPKG = $(ROOT)/opt/libc-tests

42 ROOTOPTPKGCFG = $(ROOT)/opt/libc-tests/cfg
43 ROOTOPTPKGDI RS = $(ROOTOPTPKG) \

44 $(ROOTOPTPKGCFG) |\

45 $(ROOTOPTPKGCFG) / synbol s

47 FILES = $(CFGS: %=3$(RCDTCPTPKGCFG) 1%
48 $(FILES) := FILEMODE = 044

50 all: $(CFGS)
52 install: $(ROOTOPTPKG $(ROOTOPTPKGCFG) $(FI LES)
54 clean lint clobber:

56 $(ROOTOPTPKGDI RS) :
57 $(INS. dir)

59 $(ROOTOPTPKGCFG)/ % % $(ROOTOPTPKGDI RS)
60 $(INS. file)

new usr/src/test/libc-tests/cfg/ READVE

R R R R

3377 Mon Mar 30 10:49:09 2015

new usr/src/test/libc-tests/cfg/ READVE
I ncorporate rnustacc’s revi ew feedback.

R R R R

This file and its contents are supplied under the terms of the
Common Devel opnent and Distribution License ("CDDL"), version 1.0.
You may only use this file in accordance with the ternms of version
1.0 of the CDDL.

A full copy of the text of the CDDL shoul d have acconpanied this

source. A copy of the CDDL is also available via the Internet at
http://ww.illunos.org/license/ CDDL.

Copyright 2014 Garrett D Anpre <garrett @anore. org>

HHHF HHFHHFHFFHHHR

The configuration files in this directory are structured as lines,
where each line is made up of fields, separated by "|" characters,
possi bly surrounded by whitespace.

New |'ines preceeded by backslashes are ignored, allowing for a continuation
of lines, in the usual UNI X way.

A line beginning with a hashmark is a comment,
A line beginning with a hashmark is comment,
consisting solely of whitespace.

and is ignored, as are lines
and is ignore, as are lines

The first field is always the "keyword",
presence of any other fields.

whi ch determ nes the nmeani ng and

These files are parsed using the test_load_config() function. This
function has the follow ng prototype:

int test_load_config(test_t, const char *, ...);
The variable argunents are the keywords and handling functions. These
nmust be supplied in pairs and the list is termnated with a NULL, like this:

test_config_load(t, "nyfile.cfg", "nykeyword", keywordcb, NULL);
The test_config_load function will search for the naned file (provided it

is not an absolute path) in a few |ocations:

relative to the current directory, exactly as specified
relative to $STF_SU TE/ cf g/ (if $STF_SUITE is defined)
relative to ../../cfgl/ (if $STF_SU TE i s undefi ned)
relative to cfg/

* ok * ok

The handling functions (keywordcb in the exanple above) have the follow ng
typedef:

typedef int (*test_cfg_func_t)(char **fields, int nfields, char **err);

so for exanple, keywordcb should be declared thusly:
int keywordcb(char **fields, int nfields, char **err);

These functions are called each tinme a paired keyword is seen in the file.

"fields" is an array of fields, pre-split with surroundi ng whitespace renoved,

and contains "nfields" itens. Internal whitespace is unaffected.

The function should return O on successful handling, or -1 on failure. |In

new usr/src/test/libc-tests/cfg/ READVE

61
62

64
65
66

68
69
70

72

the event of failure, it should record an error string in "err"
asprintf() or strdup(). ("err" should be unnodified otherw se.)

usi ng

This parser is rather sinplistic, and it |acks support for errbeddl ng '
fields in lines, and also doesn’'t support escaping, so you can’'t add "\"
at the end of a line (if you need that, |eave sonme trailing whitespace).

There are also sone internal limts on the length of lines (1K), and on the
nunber of fields (20). As this is only used for these test suites, this
shoul d not be a significant linitation.

Pl ease see ../tests/synbol s/synbols_test.c for an exanple of correct usage.

Asi de:
Astute readers may ask why invent a new configuration file, and why use
posi tion based parsing instead of name value pairs. These files are
optim zed for specific needs, and intended to support relatively dense
information in a format that is easy for hunmans to work with. JSON or XML
or even YAML coul d have served, but the overhead of a syntax was nore than
we wanted to introduce. Test suites are free to use other formats if they
choose, but this sinple format has the advantage of being built-in and
easy to use.

new usr/src/test/libc-tests/cfg/conpilation.cfg

R R R R

2850 Mon Mar 30 10:49:09 2015

new usr/src/test/libc-tests/cfg/conpilation.cfg
I ncorporate rnustacc’s revi ew feedback.

R R R R

HHEHFHHHHHHFHHHHHHFF TS FHHHT HHFHFHHF R

This file and its contents are supplied under the terms of the
Common Devel opnent and Distribution License ("CDDL"), version 1.0.
You may only use this file in accordance with the ternms of version
1.0 of the CDDL.

A full copy of the text of the CDDL shoul d have acconpanied this
source. A copy of the CDDL is also available via the Internet at
http://ww.illunos.org/license/ CDDL.

Copyright 2015 Garrett D Anpre <garrett @anore. or g>
Copyright 2014 Garrett D Anpbre <garrett @anore. org>

Conpi | ati on environnents.
Each conpilation environment is declared using the keyword "env", |ike
this:

env | <nane> | <std> | <defs>

<name> is just a synbolic nane for environnent.

<std> indicates either c89 or c99, i.e. which C standard to conpile
under. This infuences choice of conpiler and switches.

<defs>is a list of CPP style -D or -U flags to define C preprocessor
synbol s.

G oups of conpilation environnents can be naned, using the "env_group”
keyword (this can also be used to create aliases):

env_group | <name> | <envs>
<name> is a nane for the group or alias

<envs> i s a whitespace separated |list of previously declared environnents
or environment groups (or aliases).

env | XPG3 c89 | - D _XOPEN_SOURCE

env XPG4 c89 D XODEN SCQURCE - D_XOPEN_VERSI ON=4

env SUSv1 c89 - D_XOPEN_SOURCE - D_XOPEN_SOURCE_EXTENDED=1
env SUSv2 c89 | -D_XOPEN_SOURCE=500

env SUSv3 c99 | - D_XOPEN_SOURCE=600

env | SUSv4 c99 | - D_XOPEN_SOURCE=700

env PCsI X- 1990 c89 - D_POsI X_SOURCE

env PCOSI X- 1992 c89 - D_POSI X_SOURCE - D_POSI X_C_SOURCE=2

env PCSI X- 1993 c89 | -D_POSI X_C_SOURCE=199309L

env POSI X- 1995 c89 | -D_POSI X_C_SOURCE=199506L

env POSI X- 2001 c99 | -D_POSI X_C SOURCE=200112L

env PCsSI X- 2008 c99 - D_POsI X_C_SOURCE=200809L

env C90 c89

env C99 c99

#

These are ordered fromless inclusive (nost recent) to nost inclusive.
This allows for us to "include" by reference.

#

env_group | POSI X-2008+ |

PCSI X- 2008

env_group | POCSI X-2001+ | PGSl X-2008+ PCsS| X-2001

new usr/src/test/libc-tests/cfg/conpilation.cfg

61 env_group
62 env_group
63 env_group
64 env_group
65 env_group
66 env_group
67 env_group
68 env_group
69 env_group
70 env_group
71 env_group
72 env_group
73 env_group
74 env_group
75 env_group

77 #

78 # Aliases.

79 #

80 env_group
81 env_group
82 env_group
83 env_group
84 env_group
85 env_group
86 env_group
87 env_group

PCSI X- 1995+
POSI X- 1993+
PCSI X- 1992+
PCSI X- 1990+
POSI X+
SUSv4+
SUSv3+
SUSv2+
SUSv1+

SUS+

XPGA+

XPG3+

C99+

C+

ALL

XPGAv2
XPGAv2+
XPG5
XPGb+
XPG5
XPG5+
XPG7
XPGr+

PCS| X- 2001+ PQOS| X- 1995
POS| X- 1995+ POSI X- 1993
PCSI X- 1993+ PGCSI X- 1992
PCSI X- 1992+ POSI X- 1990
PCS| X- 1990+

SUSv4 PQOSI X- 2008+
SUSv3 SUSv4+ POSI X- 2001+
SUSv2 SUSv3+

SUSv1l SUSv2+

SUSv1+

XPGA SUSv1+

XPG XPA+

C99 PCSI X- 2001+ SUSv3+
C90 C99 POSI X+ SUS+

C+

SUSv1
SUSv 1+
SUSv2
SUSv2+
SUSv3
SUSv 3+
SuUSv4
SUSv4+

new usr/src/test/libc-tests/cfg/ synbol s/ READVE

R R R R

3049 Mon Mar 30 10:49:09 2015

new usr/src/test/libc-tests/cfg/ synbol s/ READVE
I ncorporate rnustacc’s revi ew feedback.

R R R R

61

This file and its contents are supplied under the terms of the
Common Devel opnent and Distribution License ("CDDL"), version 1.0.
You may only use this file in accordance with the ternms of version
1.0 of the CDDL.

A full copy of the text of the CDDL shoul d have acconpanied this

source. A copy of the CDDL is also available via the Internet at
http://ww.illunos.org/license/ CDDL.

Copyright 2015 Garrett D Anpre <garrett @anore. or g>

HHHF HHFHHFFFHHHR

The configuration files in this directory are structured using the
syntax defined in the ../READVE file. They make use of the conpilation
environments declared in ../conpilation.cfg, and are processed by the
synbol s test.

W have organized the files by header file, that is the tests for synbols
declared in a header file (e.g. <unistd.h> appear in a file based on that
header file's name (e.g. unistd_h.cfg.) This is purely for convenience.

Wthin these various declarations, we have the following field types:

<envs> This is a list of conpilation environnents where the synbol
should be legal. To indicate that the synmbol nust not be |egal
an environnent group can be prefixed with "-". For exanple,
"SUS - SUSv4+" indicates a synbol that is legal in all SUS
environnents up to SUSv3, and was renpved in SUSv4 and subsequent
versions of SUS. As you can see, we can |list nultiple environments
or environnent groups, and we can add or renpve to previous groups
Wit h subsequent ones.

<nane> This is a synbol name. It follows the rules for C synbol nanes.

<header> This is a header file, for exanple, unistd.h. Conventionally,
the header files used should match the file where the test is
decl ared.

<type> This is a Ctype. Function types can be declared without their

names, e.g. "void (*)(int)" Structures (e.g. "struct stat") and
pointer types (e.g. "pthead_t *") are legal as well.

Here are the types of declarations in these files:

type | <name> | <header> | <envs>

Tests for a C type with <name> The test verifies that a variable with
this type can be decl ared when the <header> is included.

val ue | <nane> | <type> | <header> | <envs>
Tests for a value naned <nane>, of type <type> The test attenpts to
assign the given value to a scratch variabl e declared with the given
type. The value can be a macro or other C synbol.

func | <nane> | <type> | <type> [; <type>]... | <header> | <envs>

Tests whether a function <name>, returning the first <type> and

new usr/src/test/libc-tests/cfg/ synbol s/ READVE

72

taking argunents of followi ng <type> values, is declared. Note that
the argunent types are separated by sem colons. For varargs style
functions, leave out the ... part. For function declarations
that have no declared argunents, either void can specified, or
the type list can be omtted.
Exanpl es:
type | size_t | sys/types.h | ALL
value | NULL | void * | stdlib.h | ALL
func strnlen | int | const char *; int | string.h | ALL

new usr/src/test/libc-tests/tests/comon/test_common.c 1

R R R R

7523 Mon Mar 30 10:49:09 2015
new usr/src/test/libc-tests/tests/comon/test_conmmon.c
I ncorporate rnustacc’s revi ew feedback.

R R R R

This file and its contents are supplied under the terms of the
Common Devel opnent and Distribution License ("CDDL"), version 1.0.
You may only use this file in accordance with the terns of version
1.0 of the CDDL.

A full copy of the text of the CDDL shoul d have acconpanied this
source. A copy of the CDDL is also available via the Internet at
http://ww.illunos.org/license/ CDDL.

-~

13 * Copyright 2015 Garrett D Anpre <garrett @anore. org>
13 * Copyright 2014 Garrett D Anpre <garrett @anore. or g>
*/

16 /*
17 * Common handling for test prograns.
*/

20 #include <stdio.h>

21 #include <stdlib.h>

22 #include <stdarg. h>

23 #include <string. h>

24 #include <errno. h>

25 #include <pthread. h>

26 #include <ctype. h>

27 #include <unistd. h>

28 #incl ude <sys/param h>
29 #include "test_comon. h"

31 static int debug
32 static int force
33 static pthread_nutex_t IKk;

0;
o

35 static int passes;
36 static int tests;

38 struct test {

39 char *nare;
40 int ntids;
41 pt hread_t *tids;
42 I nt fails;
43 voi d *arg;
44 voi d (*func)(test_t t, void *);
45 };
__unchanged_portion_onitted_
175 voi d
176 test_debugf(test_t t, const char *format, ...)
177 {
178 va_list args;
180 if (!debug)
181 return;
183 (voi d) pthread_nutex_| ock(& k);
184 if (t) {
185 (void) printf("TEST DEBUG %: ", t->nane);
186 } else {

187 (void) printf("TEST DEBUG ");

new usr/src/test/libc-tests/tests/comon/test_common.c

188
189 va_start(args, format);
190 (void) vprintf(format, args);
191 va_end(args);
192 (voi d) prlntf("\n")
193 (void) fflush(st dout);
194 (voi d) pthread_nutex_unl ock(& k);
195 }
__unchanged_portion_omtted_
260 #define MAXCB 20
261 #define MAXFI ELD 20
263 int
264 test_l oad_config(test_t t, const char *fnane, ...)
265 {
266 va_li st va;
267 const char *keyws[MAXCB] ;
268 test_cfg_func_t call bs[MAXCB];
269 char *fiel ds[MAXFI ELD] ;
270 int nfiel ds;
272 FI LE *cfg;
273 char |'i ne[1024];
274 char buf [1024] ;
275 int done;
276 char *ptr;
277 char *t ok;
278 char *err;
279 int I'i neno;
280 int rv;
281 int fou
282 char pat h[MAXPATHLEN]
283 int
285 va_start(va, fnane);
286 for (i =0; i < NAXOB i++) {
284 for (int i =0; i < MAXCB; i++) {
287 keyws[i] = (const char *)va_arg(va, const char *);
288 if (keyws[|] == NULL)
289 br eak'
290 callbs[i] = (test_cfg_func_t)va_arg(va, test_cfg_func_t);
291 }
292 va_end(va);
293 if (i ==
294) t est debugf(t "too many argunents to function >= %", MAXCB);
295
297 found =
299 if (access(fnane, F_OK) == 0) {
300 f ound++;
301 }
302 if (!found & fname[0] !="/") {
303 char *stf = getenv("STF_SU TE");
304 if (stf == NULL) {
305 stf ="../..";
306 }
307 (void) snprintf(path, sizeof (path), "%/cfg/ %", stf, fnanme);
308 if (access(path F O() == 0) {
309 fnane = path;
310 f ound++;
311 } else {
312 (void) snprintf(path, sizeof (path), "cfg/ %", fnane);
313 if (access(path, F_OK) == 0) {
314 fnane = path;

new usr/src/test/libc-tests/tests/comon/test_common.c

315 found++;
316 }

317 }

318 }

320 if ((cfg = fopen(fnane,
321 test_failed(t,
322 return (-1);
323 }

325 line[0] = O;
326 done = 0;
327 l'ineno = 0;

“rt)) == NULL) {

329 while (!done) {
331 i neno++;

333 if (fgets(buf, sizeof (buf), cfg) == NULL) {
334 done++;

335 } else {

336 (void) strtok(buf, "\n");

337 if ((*buf 1= 0) &&(buf[strlen(buf) 1] ==
338 /*

339 * Continuation.

341 * end of line (no escaping).
342 */
343 buf [strlen(buf)-1]

"open(%): %", fname, strerror(errno));

W) o

This isn’t quite right,
340 * as it doesn't allow for a "\" at th

e

= 0;
344 (void) strlcat(line, buf, sizeof (line));

345 conti nue;

346 }

347 (void) strlcat(line, buf, sizeof (line));
348 }

350 /* got a line */
351 ptr = line;
352 test_trim(&ptr);

354 /* skip comments and enpty lines */
355 if (ptr[0] ——0|| ptr[0] =="#) {
356 I'i ne[0] 0;

357 cont i nue;

358 }

360 tok = strsep(&ptr, "|");
361 if (tok == NULL) {

362 break;

363 }

364 test_trim(& ok);

366 for (nfields = 0; nfields < MAXFIELD;, nfields++) {
367 fields[nfields] —strsep(&ptr ")

368 if (fields[nfields] == NULL) {

369 br eak;

370 }

371 test_trin(&ields[nfields]);

372 }

374 found = 0;
375 rv = 0;

377 for (int i = 0; keyws[i] !'= NULL; i++) {
378 if (strcrrp(tok keyws[i]) == 0) {
379 found++;

380 err = NULL;

new usr/src/test/libc-tests/tests/comon/test_common.c

381 rv = callbs[i](fields,
382 }

383 }

384 if (! found) {

385 = -1,

386 err = NULL

387 (voi d) aspr| ntf(&err,
388 }

389 if (rv!=0) {

390 if (err) {

391 test _failed(t, "%: %:
392 l'ineno, err);

393 free(err);

394 } else {

395 test_failed(t, "%: %:
396 fnanme, lineno);
397 }

398 (void) fclose(cfg);

399 return (rv);

400 }

"unknown

402 line[0] = O;

403 1

404 (void) fclose(cfq);

405 return (0);

406 }
__unchanged_portion_onitted_

nfields, &err);

keyword 9", tok);

%", fnane,

unknown error",

new usr/src/test/libc-tests/tests/synbols/synbols_test.c

R R R R

17808 Mon Mar 30 10:49:09 2015
new usr/src/test/libc-tests/tests/synbols/synbols_test.c
I ncorporate rnustacc’s revi ew feedback.
LEEE R R R R EE SRR EEEEEEEEEEE RS SRR EEEEEEEEEEEEREEEEEEEEEESE]

1/*
This file and its contents are supplied under the terms of the
Common Devel opnent and Distribution License ("CDDL"), version 1
You may only use this file in accordance with the terns of vers
1.0 of the CDDL.

A full copy of the text of the CDDL shoul d have acconpanied thi
source. A copy of the CDDL is also available via the Internet
http://ww.illunos.org/license/ CDDL.

[y
QOONOUTAWN
E I I

13 * Copyright 2015 Garrett D Anpre <garrett @anore. org>
13 * Copyright 2014 Garrett D Anpre <garrett @anore. or g>
*/

16 /*

17 * This programtests synbol visibility using the /usr/bin/c89 and
18 * /[usr/bin/c99 prograns.

19 =

20 * See synbols_defs.c for the actual |ist of synbols tested.

19 =/

21 #include <stdio.h>

22 #include <stdlib. h>

23 #include <string. h>

24 #include <errno. h>

25 #include <err. h>

26 #include <unistd. h>

27 #include <sys/types. h>
28 #include <sys/stat.h>
29 #include <note. h>

30 #include <sys/wait.h>
31 #include "test_comon. h"

33 char *dnarne;
34 char *cfile;
35 char *ofi
36 char *Ifi
37 char *ef

39 const char *sym = NULL;

41 static int good_count = 0;
42 static int fail_count = O;
43 static int full_count = 0;
44 static int extra_debug = 0;
45 static char *conpilation = "conpilation.cfg";

47 #if defined(_LP64)

48 #define MFLAG "- nb4"
49 #elif defined(_ILP32)
50 #define MFLAG "-nB2"

51 #endif

53 const char *conpilers[] = {

54 "cc",

55 "gee",

56 "/ opt/ SUNWpr o/ bi n/ cc",
57 "/opt/gcc/ 4. 4.4/ bin/gce",

58 "/ opt/sunstudi 0l2. 1/ bi n/ cc",

. 0.
ion

S
at

new usr/src/test/libc-tests/tests/synbols/synbols_test.c

59 "/ opt/sfw bin/gcc",
60 "/usr/local/bin/gcc",
61 NULL

62 }.

65 const char *punane[] = {

66 "y

67 "/usr/bin/puname -S "
68 };

64 char *conpiler = NULL;

65 const char *c89flags = NULL;
66 const char *c99flags = NULL;

68 #define MAXENV 64

74 |* BEG N

76 #include <errno. h>
77 #include <string. h>
78 #include <stdio. h>
79 #include <stdlib.h>
80 #include <ctype. h>
81 #include <stdint.h>

83 #define MAXENV 64

69 #define MAXHDR 10

70 #define MAXARG 20

72 #define Wb oAt
74 static int next_env = 0;

76 struct conpile_env {

/* maxi mum nunber of environments (bitmask w dth) */
*/

/* bits */
/* maxi mum # headers to require to access synbol
/* maxi num # of argunents */

77 char *nane;
78 char *| ang;
79 char *defs;
80 int i ndex;
81 };

_hnchanged_port ion_omtted_

105 struct env_group *env_groups = NULL;

107 struct symtest *symtests = NULL;
108 struct symtest **syminsert = &ymtests;

110 static char *
111 nystrdup(const char *s)

112 {

113 char *r;

114 if ((r = strdup(s)) == NULL) {
115 perror("strdup");

116 exit(1);

117 1

118 return (r);

119 }

121 static void *
122 nyzal | oc(size_t sz)

123 {

124 voi d *buf;

125 if ((buf = calloc(1, sz)) == NULL) {
126 perror("calloc");

127 exit(1);

128 }

129 return (buf);

130 }

*/

new usr/src/test/libc-tests/tests/synbols/synbols_test.c

132 static void

133 nyasprintf(char **buf, const char *fnt, ...)
134

135 int rv;

136 va_list va;

137 va_start(va, fnt);

138 rv = vasprintf (bu, fmt, va);
139 va_end(va);

140 if (rv <0) {

141 perror("vasprintf");
142 exit(1);

143 }

144 }

146 static void
147 append_sym test(struct symtest *st)

148 {

149 *syminsert = st;

150 sym.insert = &st->next;
151 }

__unchanged_portion_onitted_

227 static int
228 do_env(char **fields, int nfields, char **err)
29 {

230 char *nane;

231 char *| ang;

232 char *defs;

234 if (nfields !'=3) {

235 nmyasprintf(err, "nunber of fields (%) != 3",
214 (void) asprlntf(err "number of fields (%) !=
236 return (-1);

237 }

239 if (next_env >= MAXENV)

240 nyasprintf(err, "too many environnments");

219 (void) asprintf(err, "too nmany environnents");
241 return (-1);

242 1

244 name = fields[O0];

245 lang = fields[1];

246 defs = fields[2];

248 conpi | e_env[next_env].name = nystrdup(nane);

249 conpi | e_env[next _env].lang = nystrdup(l ang);

250 conpi | e_env[next _env].defs = nystrdup(defs);

227 conpi | e_env[next_env].nane = strdup(nane);

228 conpi | e_env[next_env].lang = strdup(l ang);

229 conpi | e_env[next _env].defs = strdup(defs);

251 conpi | e_env[next_env].index = next_env;

252 next _env++,

253 return (0);

254 }

256 static int
257 do_env_group(char **fields, int nfields, char **err)

258 {

259 char *nane;

260 char *list;

261 struct env_group *eg;
262 ui nt64_t mask;

263 char *item

nfields);

3",

nfields);

new usr/src/test/libc-tests/tests/synbols/synbols_test.c

265 if (nfields '=2) {

266 nmyasprintf(err, "nunber of fields (%) !
245 (void) asprintf(err, "nunber of fields (%)
267 return (-1);

268 }

270 nane = fields[0];

271 list = fields[1];

272 mask = 0;

274 if (expand_env(list, &mask, & tem) < 0) {

275 nmyasprintf(err, "reference to undefined env %",
254 (void) asprintf(err, "reference to undefined env %",
276 return (-1);

277 }

279 eg = nyzal |l oc(sizeof (*eg));

280 eg- >nanme = nystrdup(nane);

258 eg = calloc(l, sizeof (*eg));

259 eg- >nane = strdup(nane);

281 eg- >mask = nask;

282 eg- >next = env_groups;

283 env_groups = eg;

284 return (0);

285 }

287 static char *progbuf = NULL;
288 size_t proglen = 0;
289 size_t progsiz = 0;

291 static void
292 addprogch(char c)

293 {

294 while (progsiz <= (proglen + 1)) {
295 progbuf = reall oc(progbuf, progsiz + 4096);
296 1 f (progbuf == NULL)

297 perror("realloc");
298 exit(1);

299 }

300 progsi z += 1024;

301 }

302 progbuf [progl en++] = c;

303 progbuf [proglen] = 0;

304 }

306 static void

307 addprogstr(char *s)

308 {

309 while (*s !'= NULL)

310 addpr ogch(*s);

311 S++;

312 }

313 }

315 static void

316 addprogfnt(const char *fnt, ...)

317 {

318 va_li st va;

319 char *buf = NULL;

320 va_start(va, fnt);

321 if (vasprlntf(&buf fnm, va) < 0) {
322 perror (" vaspri ntf");

323 exit(1);

324 }

325 va_end(va);

326 addpr ogst r (buf);

new usr/src/test/libc-tests/tests/synbols/synbols_test.c 5 new usr/src/test/libc-tests/tests/synbols/synbols_test.c
327 free(buf); 373 di dnane = 1;
328 } 374 }
375 if (strcnp(st->atypes[|] "")y == 0) {
330 static void 376 di dnarme = 1,
331 nkprog(struct symtest *st) 377 addpr ogstr (" v0| d");
332 { 322 ADDSTR(prog, "void");
269 static char buf[2048]; 378 }
333 char *s;
271 char *prog = buf; 380 /* print the argunent list */
381 for (char *a = st->atypes[i]; *a, a++)
335 proglen = 0; 382 if (*a =="(&% a[] == '*' && !ldidnane) {
273 *prog = O; 383 addprogfnt ("(*a%", i);
328 ADDFMT(prog "(*a%j" |);
275 #define ADDSTR(p, str) (void) strcpy(p, str); p += strlen(p) 384 di dname = 1;
276 #define ADDFMI(p, ...) \ 385 a++;
277 (void) snprintf(p, sizeof (buf) - (p-buf), __VA ARGS); \ 386 } elseif (*a =="[' && !didnane) {
278 p += strlen(p) 387 addpr ogf nt (" ao/d[‘ﬂ i)
279 #define ADDCHR(p, c) *p++ = ¢c; *p =0 332 ADDFMT(prog, "a%l[" |);
388 di dnanme = 1;
337 for (int i =0; i < MAXHDR && st->hdrs[i] != NULL; i++) { 389 } else {
338 addpr ogf nt ("#i ncl ude <¥%>\n", st->hdrs[i]) 390 addpr ogch(*a);
282 ADDFMT(prog, "#i nclude <%>\n" st—>hdrs[|]), 335 ADDCHR(prog, *a);
339 1 391 }
392 }
341 for (s = st->rtype; *s; s++) { 393 if (!didname) {
342 addpr ogch(*s); 394 addprogf nt (" a% ", i);
286 ADDCHR(prog, *s); 339 ADDFMT(prog, " a%d", i);
343 if (*s =="(0) { 395 }
344 S++; 396 }
345 addpr ogch(*s);
289 ADDCHR(prog, *s); 398 if (st->atypes[0] == NULL) {
346 S++; 399 addprogstr("void");
347 br eak; 344 ADDSTR(prog, "void");
348 } 400 }
349 }
350 addprogch(’ '); 402 /* close argunent list, and closing ")" for func ptrs */
294 ADDCHR(prog, ' '); 403 addprogfmt (") %\ n{\n\t", s); /* NB: s is nornmally enpty */
348 ADDFMT(prog, ")%\n{\n\t", s); /* NB: s is normally enpty */
352 /* for function pointers, s is closing suffix, otherw se enpty */
405 if (strenp(st->rtype, "") 1= 0 &&
354 switch (st->type) { 406 strcnp(st->rtype, "void") !=0) {
355 case SYM TYPE: 407 addprogstr(“return ");
356 addpr ogstr (" test _type;") 352 ADDSTR(prog, “return ");
300 ADDFMT(prog, "test_type;", st->rtype); 408 }
357 br eak;
410 /* add the function call */
359 case SYM VALUE: 411 addprogfnt ("%(", st->nane);
360 addprogf nt ("test _val ue%;\n", s); /* s usually enpty */ 356 ADDFMT(prog, "%(", st->nane);
361 addpr ogst r (" voi d\ nt est func(v0| d)\n{\n) 412 for (int i = 0; st->atypes[i] != NULL i < MAXARG i++) {
362 addprogfm("\ttest value = %;\n}", st- >nama) 413 if (strcnp(st->atypes[i], "") 1= 0 &&
304 ADDFMT(prog, "test_val ue¥%s;\n" s)' /* s usual | y enpty */ 414 strcnp(st—>atypes[|] "void') I'=0) {
305 ADDSTR(prog, "voi d\nt est func(v0| d)\n{\n) 415 addpr ogf nt (" %;a%j i>07?2", ": ,)5
306 ADDFMT(prog, "\ttest_value = %;\n}", 360 ADDFMT (pr og, "ysa%d”, i > 0 ? , "),
307 st - >nane) ; 416 }
363 br eak; 417 }
365 case SYM FUNC: 419 addprogstr(");\n}");
366 addprogstr (" \nt est_func("); 364 ADDSTR(pr og, ") \'n} ');
311 ADDSTR(prog, “"\ntest_func("); 420 br eak;
367 for (int i = 0; st->atypes[i] != NULL & i < MAXARG i ++) { 421 }
368 int didnane = O;
369 if (i >0) { 423 addprogch(’'\n");
370 addprogstr (", "); 368 ADDCHR(prog, '\n’);
315 ADDSTR(prog, ", ");
371 } 425 st->prog = progbuf;
372 if (strcnp(st->atypes[i], "void") == 0) { 370 st->prog = strdup(buf);

new usr/src/test/libc-tests/tests/synbols/synbols_test.c

426 }

428 static int

429 ?dd_envs(struct symtest *st, char *envs, char **err)

430

431 char *item

432 if (expand_env_list(envs, &st->test_mask, &st->need_nask, & tem) < 0) {
433 nyasprintf(err, "bad env action %", iten);

378 (void) asprintf(err, "bad env action %", itenm;
434 return (-1);

435 1

436 return (0);

437 }

439 static int

440 ?dd_headers(struct symtest *st, char *hdrs, char **err)

441

442 int i =0;

444 for (char *h = strsep(&hdrs, ";"); h I= NULL; h = strsep(&hdrs, ";")) {
445 if (i >= MAXHDR)

446 nyasprintf(err, "too many headers");

391 (void) asprintf(err, "too nany headers");
447 return (-1);

448 }

449 test_trim&h);

450 st->hdrs[i++] = nystrdup(h);

395 st->hdrs[i++] = strdup(h);

451 }

453 return (0);

454 }

456 static int

457 add_arg_types(struct symtest *st, char *atype, char **err)

458 {

459 int i =0;

460 char *a;

461 for (a = strsep(&type, ";"); a != NULL; a = strsep(&atype, ";")) {
462 if (i >= MAXAI

463 nyasprintf(err, "too many argunents");

408 (void) asprintf(err, "too nany argunents");
464 return (-1);

465 }

466 test_trin(&a);

467 st->atypes[i++] = nystrdup(a);

412 st->atypes[i++] = strdup(a);

468 1

470 return (0);

471 }

473 static int

474 do_type(char **fields, int nfields, char **err)

475 {

476 char *decl;

477 char *hdrs;

478 char *envs;

479 struct symtest *st;

481 if (nfields !'=3) {

482 nyasprintf(err, "nunmber of fields (%) != 3", nfields);
427 (void) asprintf(err, "nunber of fields (%) != 3", nfields);
483 return (-1);

484

485 decl = fields[0];

new usr/src/test/libc-tests/tests/synbols/synbols_test.c

486 hdrs = fields[1];

487 envs = fields[2];

489 st = nyzall oc(sizeof (*st));

434 st = calloc(1, sizeof (*st));

490 st->type = SYM TYPE;

491 st->nane = nystrdup(decl);

492 st->rtype = nystrdup(decl);

436 st->nanme = strdup(decl);

437 st->rtype = strdup(decl);

494 if ((add_envs(st, envs, err) < 0) ||
495 (add_headers(st, hdrs, err) < 0)) {
496 return (-1);

497 1

498 append_sym test(st);

500 return (0);

501 }

503 static int

504 do_val ue(char **fields, int nfields, char **err)
505 {

506 char *nane;

507 char *type;

508 char *hdrs;

509 char *envs;

510 struct symtest *st;

512 if (nfields !'= 4) {

513 nmyasprintf(err, "nunber of fields (%) != 4", nfields);
458 (void) asprintf(err, "nunber of fields (%) != 4", nfields);
514 return (-1);

515 }

516 name = fields[O0];

517 type = fields[1];

518 hdrs = fields[2];

519 envs = fields[3];

521 st = nyzal |l oc(sizeof (*st));

466 st = calloc(l, sizeof (*st));

522 st->type = SYM VALUE;

523 st->nanme = nystrdup(nane);

524 st->rtype = nystrdup(type);

468 st->nane = strdup(nane);

469 st->rtype = strdup(type);

526 if ((add_envs(st, envs, err) < 0) |]
527 (add_headers(st, hdrs, err) <0)) {
528 return (-1);

529 }

530 append_sym test(st);

532 return (0);

533 }

535 static int

536 do_func(char **fields, int nfields, char **err)
537 {

538 char *nane;

539 char *rtype;

540 char *atype;

541 char *hdrs;

542 char *envs;

543 struct symtest *st;

new usr/src/test/libc-tests/tests/synbols/synbols_test.c

545
546
491
547
548
549
550
551
552
553

555
500
556
5514
558
502
503

560
561
562
563
564
565

567
568 }

if (nfields !'=5) {
nyasprintf(err,
(void) asprintf(err,
return (-1);

"nunber of fields (%) != 5", erldS)
"nunber of fields (%) !'= 5" nf|elds);

}

name = fields[0];
rtype = fields[1];
atype = fields[2];
hdrs = fields[3];
envs = fields[4];

st = nyzal | oc(si zeof (*st));
st = calloc(1, sizeof (*st));
st->type = SYM FUNC,
st->nane = nystrdup(nane);
st->rtype = nystrdup(rtype);
st->nanme = strdup(nane);
st->rtype = strdup(rtype);

if ((add_envs(st, envs, err) < 0) ||
(add_headers(st, hdrs, err) < 0) ||
(add_ar g_| types(st atype, err) <0)) {
return (-1);
}
append_sym test(st);

return (0);

__unchanged_portion_omtted_

591 /
592
593
594
537
538
595

596 struct

*

* Iterate through tests.
subsequent iterations, use the return value fromthe previous iteration.
Returns NULL when there are no nore environments.

Iterate through tests.
the next.

*

*
*
*

*/

Pass in NULL for cenv to begin the iteration. For

Pass NULL for cenv first time, and previous result
Returns NULL when no nore environnents.

conpil e_env *

597 symtest_env(struct symtest *st, struct conpile_env *cenv, int *need)

598 {
599
600

602
603
604
605
606
607
608
609
610
611
612 }

int i =cenv ? cenv->index + 1. O;
uint64 t b = 1ULL << i;

while ((i < MAXENV) && (b !'=0)) {
cenv = &conpile_env[i];
if (b & st->test_mask) {
*need = (st->need_mask & b) ? 1 : O;
return (cenv);

}
b <<= 1;
i ++;

}
return (NULL);

__unchanged_portion_omtted_

632 static void
633 show file(test_t t, const char *path)

634 {
635
636
637
638

640
641

FI LE *f;

char *buf = NULL;
size_t cap = O;
int line = 1;

f = fopen(path, "r");
if (f == NULL) {

new usr/src/test/libc-tests/tests/synbols/synbols_test.c

642 test_debugf(t, "fopen(%): %", path, strerror(errno));
643 return;

644 }

646 test_debugf (t, "----- >> begin (%) <<------ ", path);
647 while (getline(&uf, &cap, f) >= 0) {

648 (void) strtok(buf, "\r\n");

649 test_debugf(t, "%: %", line, buf);
650 i ne++;

651 }

652 test _debugf (t, "----- >> end (%) <<------ ", path);
653 (void) fclose(f);

654 }

656 static void

657 cl eanup(voi d)

658

659 if (ofile !'= NULL) {

660 (void) unlink(ofile);

661 free(ofile);

662 ofile = NULL;

663 }

664 if (Ifile !'= NULL) {

665 (voi d) unl|nk(lf|Ie)

666 free(lfile);

667 Ifile = NULL,

668 }

669 if (cfile !'= NULL) {

670 (void) unlink(cfile);

671 free(cfile);

672 cfile = NULL;

673 1

674 if (efile !'= NULL) {

675 (void) unlink(efile);

676 free(efile);

677 efile = NULL;

678 }

679 if (dnane) {

680 (void) rndir(dnane);

681 free(dnane);

682 dnanme = NULL;

683 }

684 }

686 static int

687 nkwor kdi r (voi d)

688 {

689 char b[32]

690 char *d;

692 cl eanup();

694 (oid) strlcpy(b, "/tnp/synbols_test XXXXXX", sizeof (b));
695 if ((d = nkdtenp(b)) == NULL) {

696 perror (" nkdtemp");

697 return (-1);

698 1

699 dnane = nystrdup(d);

700 nyasprintf(&file, "%/conmpile_test.c", d);

701 nmyasprintf(&ofile, "%/ conpile_test.o", d);

702 nmyasprintf(& file, "%/ conpile_test.log", d);
703 nyasprintf(&efile, "%/ conpile_test.exe", d);
634 dnane = strdup(d);

635 (voi d) asprintf(&flle, "%/ conpile_test.c d);
636 (voi d) asprintf(&flle, "%/ conpile_test.o d);
637 (void) asprintf(&file, "%/conpile_test.log", d);

10

new usr/src/test/libc-tests/tests/synbols/synbols_test.c

704 return (0);

705 }

707 void

708 find_conpiler(void)

709 {

710 test t t;

711 int i;

712 FI LE *cf;

714 t = test_start("finding conpiler");

716 if ((cf = fopen(cfile, "w+")) == NULL)

717 test _failed(t, "Unable to open % for wite: ", cfile,
718 strerror(errno));

719 return;

720 }

721 (void) fprintf(cf, "#include <stdio.h>n");

722 (void) fprintf(cf, "int main(int argc, char **argv) {\n");

723 (void) fprintf(cf, "#if defined(__SUNPRO C)\n");

724 (void) fprintf(cf, "exit(51);\n");

725 (void) fprintf(cf, "#elif defined(__GNUC _)\n");

726 (void) fprintf(cf, "exit(52);\n");

727 (void) fprintf(cf, "#else\n");

728 (void) fprintf(cf, "exit(99)\n");

729 (void) fprintf(cf, "#endif\n}\n");

730 (void) fclose(cf);

732 for (i = 0; conpilers[i] != NULL; i++) {

664 for (i = 0; conpilers[i/2] !'= NULL; i++) {

733 char cnd[256] ;

734 int rv;

736 (void) snprintf(cnd, sizeof (cnd),

737 "% % % -0 Y% >/dev/null 2>&1",

738 conpilers[i], MFLAG cfile, efile);

669 "%% % % -0 % >/dev/null 2>&1",

670 punane[i %], conpilers[i/2], MLAG cfile, ofile);
739 test _debugf (t, "trying %", cnd);

740 rv = systen(cnd);

742 test_debugf(t, "result: %", rv);

744 if ((rv <0) || 'WFEXITED(rv) || VEXI TSTATUS(rv) != 0)
745 conti nue;

747 rv = systen(efile);

679 rv = system(ofile);

748 if (rv ' >= 0 & WFEXI TED(rv)) {

749 rv = WEXI TSTATUS(rv);

750 } else {

751 rv =-1;

752 }

754 switch (rv) {

755 case 51: /* STUDI O */

756 test _debugf (t, "Found Studio C")

757 c89flags = "-Xc -errwarn=%l | -v -xc99=%one " MLAG
758 c99flags = "-Xc -errwarn=%l | -v -xc99=%l| " M-LAG
759 if (extra_debug) {

760 test _debugf (t, "c89fl ags: c89fl ags) ;
761) test _debugf (t, "c99flags: %", c99fl ags);
762

763 test _passed(t);

764 break;

765 case 52: /* GCC */

11

766
767
768
769
770
771
772
773
774
775
776
777
778
710
711
779
780
781
782
783

785
786

i nt
do_conpi

787 {

788
789
790
791

793

795
796
797
798
799
800
801
802
803
804
805
806
807
808

810

812
745

new usr/src/test/libc-tests/tests/synbols/synbols_test.c 12
test_debugf (t, "Found GNU C');
c89flags = "-Wall -Werror -std=c89 " MFLAG
c99flags = "-Vall -Werror -std=c99 " MLAG
if (extra_debug) {
test_debugf (t, "c89flags: %", c89fl ags);
test_debugf (t, "c99flags: %", c99flags);
}
test_passed(t);
br eak;
defaul t:
cont i nue;
}
nyasprintf(&conpiler, "%", conpilers[i]);
(void) asprintf(&conpiler,
"Us%", punanme[i %], conpilers[i/2]);
test _debugf (t, "conpiler: %", conpiler);
return;
}
test_failed(t, "No conpiler found.");
le(test_t t, struct symtest *st, struct conpile_env *cenv, int need)
char *cnd;
FILE *| ogf;
FI LE *dotc;
const char *prog;
full _count ++;
if ((dotc = fopen(cfile, "wt")) == NULL) {
test_failed(t, "fopen(%): %", cfile, strerror(errno));
return (-1);
}
prog = symtest_prog(st);
if (fwite(prog, 1, strlen(prog), dotc) < strlen(prog)) {
test_failed(t, "fwite: %", strerror(errno));
(void) fclose(dotc);
return (-1);
}
if (fclose(dotc) < 0) {
test_failed(t, "fclose: %", strerror(errno));
return (-1);
}
(void) unlink(ofile);
nyasprintf(&nd, "% % % -c % -0 % >>U% 2>&1",
if (asprintf(&nd, "% % % -c % -0 % >>% 2>&1",
conpi l er, strcnmp(env_lang(cenv), "c99") == 0 ? c99flags : c89fl ags,

813
814
747
748
749
750

816
817
818

820
821
822
823

env_defs(cenv), cfile, ofile, Ifile);

env_defs(cenv), cfile, ofile, Ifile) < 0) {
test_failed(t, "asprintf: %", strerror(errno));
return (-1);

}

if (extra_debug) {

test_debugf(t, "command: %", cnd);
}

if ((logf = fopen(lfile, "w+")) == NULL)
test_failed(t, "fopen: %", strerror(errno));
return (-1);

911 br eak;

new usr/src/test/libc-tests/tests/synbols/synbols_test.c 13
824 (void) fprintf(logf, " \n");
825 (void) fprintf(logf, "PROGRAM \n%\n", symtest_prog(st));
826 (void) fprintf(logf, "COWAND: %s\n", cnd);
827 (void) fprintf(logf, "EXPECT: %\n", need ? "OK" "FAIL");
828 (void) fclose(logf);
830 switch (systen{cnd)) {
831 case -1:
832 test_failed(t, "error conpiling in %: %", env_nane(cenv),
833 strerror(errno));
834 return (-1);
835 case O:
836 if (!'need) {
767 if (system(cmd) != 0) {
768 if (need) {
837 fail _count ++;
838 show file(t, Ifile);
839 test _failed(t, "synbol visible in %", env_nane(cenv));
771 test_failed(t, "error conpiling in %", env_nane(cenv));
840 return (-1);
841 }
842 br eak;
843 defaul t:
844 if (need) {
774 } else {
775 if (!'need) {
845 fail _count ++;
846 show file(t, Ifile);
847 test_failed(t, "error conpiling in %", env_nanme(cenv));
778 test_failed(t, "synbol visible in %", env_nane(cenv));
848 return (-1);
849 }
850 br eak;
851 }
852 good_count ++;
853 return (0);
854 }
__unchanged_portion_omtted_
885 int
886 mmin(int argc, char **argv)
887 {
888 int optc;
889 int optC = 0;
891 while ((optc = getopt(argc, argv, "DdfCs:c:")) != EOF) {
892 switch (optc) {
893 case 'd:
894 test _set _debug();
895 br eak;
896 case 'f':
897 test_set_force();
898 br eak;
899 case 'D:
900 test_set_debug();
901 extra_debug++;
902 break;
903 case 'c’:
904 conpi l ation = optarg;
905 break;
906 case 'C:
907 opt C++;
908 br eak;
909 case 's’:
910 sym = optarg;

new usr/src/test/libc-tests/tests/synbols/synbols_test.c

912 defaul t:

913 (void) fprintf(stderr, "Usage: % [-df]\n",
914 exit(1);

915 }

916 }

918 if (test_load_config(NULL, conpilation,
919 "env", do_env, "env_group", do_env_group, NULL) < 0) {
920 exit(1);

921 }

923 while (optind < argc) {

924 if (test_load_config(NULL, argv[optind++],
925 "type", do_type,

926 "val ue", do_val ue,

927 "func", do_func,

928 NULL) < 0) {

929 exit(1);

930 }

931 }

933 if (atexit(cleanup) != 0) {

934 perror("atexit");

935 exit(1);

936 }

863 (void) atexit(cleanup);

938 if (nmkworkdir() < 0) {

939 perror("nkdir");

940 exit(1);

941 }

943 find_conpiler();

944 if (loptQ

945 test _conpile();

947 exit(0);

948 }

__unchanged_portion_onitted_

argv[0]);

14

