1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26 /*
27 * Copyright 2012 Garrett D'Amore <garrett@damore.org>. All rights reserved.
28 */
29
30 /*
31 * sun4 specific DDI implementation
32 */
33 #include <sys/cpuvar.h>
34 #include <sys/ddi_subrdefs.h>
35 #include <sys/machsystm.h>
36 #include <sys/sunndi.h>
37 #include <sys/sysmacros.h>
38 #include <sys/ontrap.h>
39 #include <vm/seg_kmem.h>
40 #include <sys/membar.h>
41 #include <sys/dditypes.h>
42 #include <sys/ndifm.h>
43 #include <sys/fm/io/ddi.h>
44 #include <sys/ivintr.h>
45 #include <sys/bootconf.h>
46 #include <sys/conf.h>
47 #include <sys/ethernet.h>
48 #include <sys/idprom.h>
49 #include <sys/promif.h>
50 #include <sys/prom_plat.h>
51 #include <sys/systeminfo.h>
52 #include <sys/fpu/fpusystm.h>
53 #include <sys/vm.h>
54 #include <sys/ddi_isa.h>
55 #include <sys/modctl.h>
56
57 dev_info_t *get_intr_parent(dev_info_t *, dev_info_t *,
58 ddi_intr_handle_impl_t *);
59 #pragma weak get_intr_parent
60
61 int process_intr_ops(dev_info_t *, dev_info_t *, ddi_intr_op_t,
62 ddi_intr_handle_impl_t *, void *);
63 #pragma weak process_intr_ops
64
65 void cells_1275_copy(prop_1275_cell_t *, prop_1275_cell_t *, int32_t);
66 prop_1275_cell_t *cells_1275_cmp(prop_1275_cell_t *, prop_1275_cell_t *,
67 int32_t len);
68 #pragma weak cells_1275_copy
69
70 /*
71 * Wrapper for ddi_prop_lookup_int_array().
72 * This is handy because it returns the prop length in
73 * bytes which is what most of the callers require.
74 */
75
76 static int
77 get_prop_int_array(dev_info_t *di, char *pname, int **pval, uint_t *plen)
78 {
79 int ret;
80
81 if ((ret = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, di,
82 DDI_PROP_DONTPASS, pname, pval, plen)) == DDI_PROP_SUCCESS) {
83 *plen = (*plen) * (uint_t)sizeof (int);
84 }
85 return (ret);
86 }
87
88 /*
89 * SECTION: DDI Node Configuration
90 */
91
92 /*
93 * init_regspec_64:
94 *
95 * If the parent #size-cells is 2, convert the upa-style or
96 * safari-style reg property from 2-size cells to 1 size cell
97 * format, ignoring the size_hi, which must be zero for devices.
98 * (It won't be zero in the memory list properties in the memory
99 * nodes, but that doesn't matter here.)
100 */
101 struct ddi_parent_private_data *
102 init_regspec_64(dev_info_t *dip)
103 {
104 struct ddi_parent_private_data *pd;
105 dev_info_t *parent;
106 int size_cells;
107
108 /*
109 * If there are no "reg"s in the child node, return.
110 */
111 pd = ddi_get_parent_data(dip);
112 if ((pd == NULL) || (pd->par_nreg == 0)) {
113 return (pd);
114 }
115 parent = ddi_get_parent(dip);
116
117 size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent,
118 DDI_PROP_DONTPASS, "#size-cells", 1);
119
120 if (size_cells != 1) {
121
122 int n, j;
123 struct regspec *irp;
124 struct reg_64 {
125 uint_t addr_hi, addr_lo, size_hi, size_lo;
126 };
127 struct reg_64 *r64_rp;
128 struct regspec *rp;
129 uint_t len = 0;
130 int *reg_prop;
131
132 ASSERT(size_cells == 2);
133
134 /*
135 * We already looked the property up once before if
136 * pd is non-NULL.
137 */
138 (void) ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip,
139 DDI_PROP_DONTPASS, OBP_REG, ®_prop, &len);
140 ASSERT(len != 0);
141
142 n = sizeof (struct reg_64) / sizeof (int);
143 n = len / n;
144
145 /*
146 * We're allocating a buffer the size of the PROM's property,
147 * but we're only using a smaller portion when we assign it
148 * to a regspec. We do this so that in the
149 * impl_ddi_sunbus_removechild function, we will
150 * always free the right amount of memory.
151 */
152 irp = rp = (struct regspec *)reg_prop;
153 r64_rp = (struct reg_64 *)pd->par_reg;
154
155 for (j = 0; j < n; ++j, ++rp, ++r64_rp) {
156 ASSERT(r64_rp->size_hi == 0);
157 rp->regspec_bustype = r64_rp->addr_hi;
158 rp->regspec_addr = r64_rp->addr_lo;
159 rp->regspec_size = r64_rp->size_lo;
160 }
161
162 ddi_prop_free((void *)pd->par_reg);
163 pd->par_nreg = n;
164 pd->par_reg = irp;
165 }
166 return (pd);
167 }
168
169 /*
170 * Create a ddi_parent_private_data structure from the ddi properties of
171 * the dev_info node.
172 *
173 * The "reg" is required if the driver wishes to create mappings on behalf
174 * of the device. The "reg" property is assumed to be a list of at least
175 * one triplet
176 *
177 * <bustype, address, size>*1
178 *
179 * The "interrupt" property is no longer part of parent private data on
180 * sun4u. The interrupt parent is may not be the device tree parent.
181 *
182 * The "ranges" property describes the mapping of child addresses to parent
183 * addresses.
184 *
185 * N.B. struct rangespec is defined for the following default values:
186 * parent child
187 * #address-cells 2 2
188 * #size-cells 1 1
189 * This function doesn't deal with non-default cells and will not create
190 * ranges in such cases.
191 */
192 void
193 make_ddi_ppd(dev_info_t *child, struct ddi_parent_private_data **ppd)
194 {
195 struct ddi_parent_private_data *pdptr;
196 int *reg_prop, *rng_prop;
197 uint_t reg_len = 0, rng_len = 0;
198 dev_info_t *parent;
199 int parent_addr_cells, parent_size_cells;
200 int child_addr_cells, child_size_cells;
201
202 *ppd = pdptr = kmem_zalloc(sizeof (*pdptr), KM_SLEEP);
203
204 /*
205 * root node has no parent private data, so *ppd should
206 * be initialized for naming to work properly.
207 */
208 if ((parent = ddi_get_parent(child)) == NULL)
209 return;
210
211 /*
212 * Set reg field of parent data from "reg" property
213 */
214 if ((get_prop_int_array(child, OBP_REG, ®_prop, ®_len)
215 == DDI_PROP_SUCCESS) && (reg_len != 0)) {
216 pdptr->par_nreg = (int)(reg_len / sizeof (struct regspec));
217 pdptr->par_reg = (struct regspec *)reg_prop;
218 }
219
220 /*
221 * "ranges" property ...
222 *
223 * This function does not handle cases where #address-cells != 2
224 * and * min(parent, child) #size-cells != 1 (see bugid 4211124).
225 *
226 * Nexus drivers with such exceptions (e.g. pci ranges)
227 * should either create a separate function for handling
228 * ranges or not use parent private data to store ranges.
229 */
230
231 /* root node has no ranges */
232 if ((parent = ddi_get_parent(child)) == NULL)
233 return;
234
235 child_addr_cells = ddi_prop_get_int(DDI_DEV_T_ANY, child,
236 DDI_PROP_DONTPASS, "#address-cells", 2);
237 child_size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, child,
238 DDI_PROP_DONTPASS, "#size-cells", 1);
239 parent_addr_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent,
240 DDI_PROP_DONTPASS, "#address-cells", 2);
241 parent_size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent,
242 DDI_PROP_DONTPASS, "#size-cells", 1);
243 if (child_addr_cells != 2 || parent_addr_cells != 2 ||
244 (child_size_cells != 1 && parent_size_cells != 1)) {
245 NDI_CONFIG_DEBUG((CE_NOTE, "!ranges not made in parent data; "
246 "#address-cells or #size-cells have non-default value"));
247 return;
248 }
249
250 if (get_prop_int_array(child, OBP_RANGES, &rng_prop, &rng_len)
251 == DDI_PROP_SUCCESS) {
252 pdptr->par_nrng = rng_len / (int)(sizeof (struct rangespec));
253 pdptr->par_rng = (struct rangespec *)rng_prop;
254 }
255 }
256
257 /*
258 * Free ddi_parent_private_data structure
259 */
260 void
261 impl_free_ddi_ppd(dev_info_t *dip)
262 {
263 struct ddi_parent_private_data *pdptr = ddi_get_parent_data(dip);
264
265 if (pdptr == NULL)
266 return;
267
268 if (pdptr->par_nrng != 0)
269 ddi_prop_free((void *)pdptr->par_rng);
270
271 if (pdptr->par_nreg != 0)
272 ddi_prop_free((void *)pdptr->par_reg);
273
274 kmem_free(pdptr, sizeof (*pdptr));
275 ddi_set_parent_data(dip, NULL);
276 }
277
278 /*
279 * Name a child of sun busses based on the reg spec.
280 * Handles the following properties:
281 *
282 * Property value
283 * Name type
284 *
285 * reg register spec
286 * interrupts new (bus-oriented) interrupt spec
287 * ranges range spec
288 *
289 * This may be called multiple times, independent of
290 * initchild calls.
291 */
292 static int
293 impl_sunbus_name_child(dev_info_t *child, char *name, int namelen)
294 {
295 struct ddi_parent_private_data *pdptr;
296 struct regspec *rp;
297
298 /*
299 * Fill in parent-private data and this function returns to us
300 * an indication if it used "registers" to fill in the data.
301 */
302 if (ddi_get_parent_data(child) == NULL) {
303 make_ddi_ppd(child, &pdptr);
304 ddi_set_parent_data(child, pdptr);
305 }
306
307 /*
308 * No reg property, return null string as address
309 * (e.g. root node)
310 */
311 name[0] = '\0';
312 if (sparc_pd_getnreg(child) == 0) {
313 return (DDI_SUCCESS);
314 }
315
316 rp = sparc_pd_getreg(child, 0);
317 (void) snprintf(name, namelen, "%x,%x",
318 rp->regspec_bustype, rp->regspec_addr);
319 return (DDI_SUCCESS);
320 }
321
322
323 /*
324 * Called from the bus_ctl op of some drivers.
325 * to implement the DDI_CTLOPS_INITCHILD operation.
326 *
327 * NEW drivers should NOT use this function, but should declare
328 * there own initchild/uninitchild handlers. (This function assumes
329 * the layout of the parent private data and the format of "reg",
330 * "ranges", "interrupts" properties and that #address-cells and
331 * #size-cells of the parent bus are defined to be default values.)
332 */
333 int
334 impl_ddi_sunbus_initchild(dev_info_t *child)
335 {
336 char name[MAXNAMELEN];
337
338 (void) impl_sunbus_name_child(child, name, MAXNAMELEN);
339 ddi_set_name_addr(child, name);
340
341 /*
342 * Try to merge .conf node. If successful, return failure to
343 * remove this child.
344 */
345 if ((ndi_dev_is_persistent_node(child) == 0) &&
346 (ndi_merge_node(child, impl_sunbus_name_child) == DDI_SUCCESS)) {
347 impl_ddi_sunbus_removechild(child);
348 return (DDI_FAILURE);
349 }
350 return (DDI_SUCCESS);
351 }
352
353 /*
354 * A better name for this function would be impl_ddi_sunbus_uninitchild()
355 * It does not remove the child, it uninitializes it, reclaiming the
356 * resources taken by impl_ddi_sunbus_initchild.
357 */
358 void
359 impl_ddi_sunbus_removechild(dev_info_t *dip)
360 {
361 impl_free_ddi_ppd(dip);
362 ddi_set_name_addr(dip, NULL);
363 /*
364 * Strip the node to properly convert it back to prototype form
365 */
366 impl_rem_dev_props(dip);
367 }
368
369 /*
370 * SECTION: DDI Interrupt
371 */
372
373 void
374 cells_1275_copy(prop_1275_cell_t *from, prop_1275_cell_t *to, int32_t len)
375 {
376 int i;
377 for (i = 0; i < len; i++)
378 *to = *from;
379 }
380
381 prop_1275_cell_t *
382 cells_1275_cmp(prop_1275_cell_t *cell1, prop_1275_cell_t *cell2, int32_t len)
383 {
384 prop_1275_cell_t *match_cell = 0;
385 int32_t i;
386
387 for (i = 0; i < len; i++)
388 if (cell1[i] != cell2[i]) {
389 match_cell = &cell1[i];
390 break;
391 }
392
393 return (match_cell);
394 }
395
396 /*
397 * get_intr_parent() is a generic routine that process a 1275 interrupt
398 * map (imap) property. This function returns a dev_info_t structure
399 * which claims ownership of the interrupt domain.
400 * It also returns the new interrupt translation within this new domain.
401 * If an interrupt-parent or interrupt-map property are not found,
402 * then we fallback to using the device tree's parent.
403 *
404 * imap entry format:
405 * <reg>,<interrupt>,<phandle>,<translated interrupt>
406 * reg - The register specification in the interrupts domain
407 * interrupt - The interrupt specification
408 * phandle - PROM handle of the device that owns the xlated interrupt domain
409 * translated interrupt - interrupt specifier in the parents domain
410 * note: <reg>,<interrupt> - The reg and interrupt can be combined to create
411 * a unique entry called a unit interrupt specifier.
412 *
413 * Here's the processing steps:
414 * step1 - If the interrupt-parent property exists, create the ispec and
415 * return the dip of the interrupt parent.
416 * step2 - Extract the interrupt-map property and the interrupt-map-mask
417 * If these don't exist, just return the device tree parent.
418 * step3 - build up the unit interrupt specifier to match against the
419 * interrupt map property
420 * step4 - Scan the interrupt-map property until a match is found
421 * step4a - Extract the interrupt parent
422 * step4b - Compare the unit interrupt specifier
423 */
424 dev_info_t *
425 get_intr_parent(dev_info_t *pdip, dev_info_t *dip, ddi_intr_handle_impl_t *hdlp)
426 {
427 prop_1275_cell_t *imap, *imap_mask, *scan, *reg_p, *match_req;
428 int32_t imap_sz, imap_cells, imap_scan_cells, imap_mask_sz,
429 addr_cells, intr_cells, reg_len, i, j;
430 int32_t match_found = 0;
431 dev_info_t *intr_parent_dip = NULL;
432 uint32_t *intr = &hdlp->ih_vector;
433 uint32_t nodeid;
434 #ifdef DEBUG
435 static int debug = 0;
436 #endif
437
438 /*
439 * step1
440 * If we have an interrupt-parent property, this property represents
441 * the nodeid of our interrupt parent.
442 */
443 if ((nodeid = ddi_getprop(DDI_DEV_T_ANY, dip, 0,
444 "interrupt-parent", -1)) != -1) {
445 intr_parent_dip = e_ddi_nodeid_to_dip(nodeid);
446 ASSERT(intr_parent_dip);
447
448 /*
449 * Attach the interrupt parent.
450 *
451 * N.B. e_ddi_nodeid_to_dip() isn't safe under DR.
452 * Also, interrupt parent isn't held. This needs
453 * to be revisited if DR-capable platforms implement
454 * interrupt redirection.
455 */
456 if (i_ddi_attach_node_hierarchy(intr_parent_dip)
457 != DDI_SUCCESS) {
458 ndi_rele_devi(intr_parent_dip);
459 return (NULL);
460 }
461
462 return (intr_parent_dip);
463 }
464
465 /*
466 * step2
467 * Get interrupt map structure from PROM property
468 */
469 if (ddi_getlongprop(DDI_DEV_T_ANY, pdip, DDI_PROP_DONTPASS,
470 "interrupt-map", (caddr_t)&imap, &imap_sz)
471 != DDI_PROP_SUCCESS) {
472 /*
473 * If we don't have an imap property, default to using the
474 * device tree.
475 */
476
477 ndi_hold_devi(pdip);
478 return (pdip);
479 }
480
481 /* Get the interrupt mask property */
482 if (ddi_getlongprop(DDI_DEV_T_ANY, pdip, DDI_PROP_DONTPASS,
483 "interrupt-map-mask", (caddr_t)&imap_mask, &imap_mask_sz)
484 != DDI_PROP_SUCCESS) {
485 /*
486 * If we don't find this property, we have to fail the request
487 * because the 1275 imap property wasn't defined correctly.
488 */
489 ASSERT(intr_parent_dip == NULL);
490 goto exit2;
491 }
492
493 /* Get the address cell size */
494 addr_cells = ddi_getprop(DDI_DEV_T_ANY, pdip, 0,
495 "#address-cells", 2);
496
497 /* Get the interrupts cell size */
498 intr_cells = ddi_getprop(DDI_DEV_T_ANY, pdip, 0,
499 "#interrupt-cells", 1);
500
501 /*
502 * step3
503 * Now lets build up the unit interrupt specifier e.g. reg,intr
504 * and apply the imap mask. match_req will hold this when we're
505 * through.
506 */
507 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "reg",
508 (caddr_t)®_p, ®_len) != DDI_SUCCESS) {
509 ASSERT(intr_parent_dip == NULL);
510 goto exit3;
511 }
512
513 match_req = kmem_alloc(CELLS_1275_TO_BYTES(addr_cells) +
514 CELLS_1275_TO_BYTES(intr_cells), KM_SLEEP);
515
516 for (i = 0; i < addr_cells; i++)
517 match_req[i] = (reg_p[i] & imap_mask[i]);
518
519 for (j = 0; j < intr_cells; i++, j++)
520 match_req[i] = (intr[j] & imap_mask[i]);
521
522 /* Calculate the imap size in cells */
523 imap_cells = BYTES_TO_1275_CELLS(imap_sz);
524
525 #ifdef DEBUG
526 if (debug)
527 prom_printf("reg cell size 0x%x, intr cell size 0x%x, "
528 "match_request 0x%p, imap 0x%p\n", addr_cells, intr_cells,
529 (void *)match_req, (void *)imap);
530 #endif
531
532 /*
533 * Scan the imap property looking for a match of the interrupt unit
534 * specifier. This loop is rather complex since the data within the
535 * imap property may vary in size.
536 */
537 for (scan = imap, imap_scan_cells = i = 0;
538 imap_scan_cells < imap_cells; scan += i, imap_scan_cells += i) {
539 int new_intr_cells;
540
541 /* Set the index to the nodeid field */
542 i = addr_cells + intr_cells;
543
544 /*
545 * step4a
546 * Translate the nodeid field to a dip
547 */
548 ASSERT(intr_parent_dip == NULL);
549 intr_parent_dip = e_ddi_nodeid_to_dip((uint_t)scan[i++]);
550
551 ASSERT(intr_parent_dip != 0);
552 #ifdef DEBUG
553 if (debug)
554 prom_printf("scan 0x%p\n", (void *)scan);
555 #endif
556 /*
557 * The tmp_dip describes the new domain, get it's interrupt
558 * cell size
559 */
560 new_intr_cells = ddi_getprop(DDI_DEV_T_ANY, intr_parent_dip, 0,
561 "#interrupts-cells", 1);
562
563 /*
564 * step4b
565 * See if we have a match on the interrupt unit specifier
566 */
567 if (cells_1275_cmp(match_req, scan, addr_cells + intr_cells)
568 == 0) {
569 uint32_t *intr;
570
571 match_found = 1;
572
573 /*
574 * If we have an imap parent whose not in our device
575 * tree path, we need to hold and install that driver.
576 */
577 if (i_ddi_attach_node_hierarchy(intr_parent_dip)
578 != DDI_SUCCESS) {
579 ndi_rele_devi(intr_parent_dip);
580 intr_parent_dip = (dev_info_t *)NULL;
581 goto exit4;
582 }
583
584 /*
585 * We need to handcraft an ispec along with a bus
586 * interrupt value, so we can dup it into our
587 * standard ispec structure.
588 */
589 /* Extract the translated interrupt information */
590 intr = kmem_alloc(
591 CELLS_1275_TO_BYTES(new_intr_cells), KM_SLEEP);
592
593 for (j = 0; j < new_intr_cells; j++, i++)
594 intr[j] = scan[i];
595
596 cells_1275_copy(intr, &hdlp->ih_vector, new_intr_cells);
597
598 kmem_free(intr, CELLS_1275_TO_BYTES(new_intr_cells));
599
600 #ifdef DEBUG
601 if (debug)
602 prom_printf("dip 0x%p\n",
603 (void *)intr_parent_dip);
604 #endif
605 break;
606 } else {
607 #ifdef DEBUG
608 if (debug)
609 prom_printf("dip 0x%p\n",
610 (void *)intr_parent_dip);
611 #endif
612 ndi_rele_devi(intr_parent_dip);
613 intr_parent_dip = NULL;
614 i += new_intr_cells;
615 }
616 }
617
618 /*
619 * If we haven't found our interrupt parent at this point, fallback
620 * to using the device tree.
621 */
622 if (!match_found) {
623 ndi_hold_devi(pdip);
624 ASSERT(intr_parent_dip == NULL);
625 intr_parent_dip = pdip;
626 }
627
628 ASSERT(intr_parent_dip != NULL);
629
630 exit4:
631 kmem_free(reg_p, reg_len);
632 kmem_free(match_req, CELLS_1275_TO_BYTES(addr_cells) +
633 CELLS_1275_TO_BYTES(intr_cells));
634
635 exit3:
636 kmem_free(imap_mask, imap_mask_sz);
637
638 exit2:
639 kmem_free(imap, imap_sz);
640
641 return (intr_parent_dip);
642 }
643
644 /*
645 * process_intr_ops:
646 *
647 * Process the interrupt op via the interrupt parent.
648 */
649 int
650 process_intr_ops(dev_info_t *pdip, dev_info_t *rdip, ddi_intr_op_t op,
651 ddi_intr_handle_impl_t *hdlp, void *result)
652 {
653 int ret = DDI_FAILURE;
654
655 if (NEXUS_HAS_INTR_OP(pdip)) {
656 ret = (*(DEVI(pdip)->devi_ops->devo_bus_ops->
657 bus_intr_op)) (pdip, rdip, op, hdlp, result);
658 } else {
659 cmn_err(CE_WARN, "Failed to process interrupt "
660 "for %s%d due to down-rev nexus driver %s%d",
661 ddi_get_name(rdip), ddi_get_instance(rdip),
662 ddi_get_name(pdip), ddi_get_instance(pdip));
663 }
664
665 return (ret);
666 }
667
668 /*ARGSUSED*/
669 uint_t
670 softlevel1(caddr_t arg)
671 {
672 softint();
673 return (1);
674 }
675
676 /*
677 * indirection table, to save us some large switch statements
678 * NOTE: This must agree with "INTLEVEL_foo" constants in
679 * <sys/avintr.h>
680 */
681 struct autovec *const vectorlist[] = { 0 };
682
683 /*
684 * This value is exported here for the functions in avintr.c
685 */
686 const uint_t maxautovec = (sizeof (vectorlist) / sizeof (vectorlist[0]));
687
688 /*
689 * Check for machine specific interrupt levels which cannot be reassigned by
690 * settrap(), sun4u version.
691 *
692 * sun4u does not support V8 SPARC "fast trap" handlers.
693 */
694 /*ARGSUSED*/
695 int
696 exclude_settrap(int lvl)
697 {
698 return (1);
699 }
700
701 /*
702 * Check for machine specific interrupt levels which cannot have interrupt
703 * handlers added. We allow levels 1 through 15; level 0 is nonsense.
704 */
705 /*ARGSUSED*/
706 int
707 exclude_level(int lvl)
708 {
709 return ((lvl < 1) || (lvl > 15));
710 }
711
712 /*
713 * Wrapper functions used by New DDI interrupt framework.
714 */
715
716 /*
717 * i_ddi_intr_ops:
718 */
719 int
720 i_ddi_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t op,
721 ddi_intr_handle_impl_t *hdlp, void *result)
722 {
723 dev_info_t *pdip = ddi_get_parent(dip);
724 int ret = DDI_FAILURE;
725
726 /*
727 * The following check is required to address
728 * one of the test case of ADDI test suite.
729 */
730 if (pdip == NULL)
731 return (DDI_FAILURE);
732
733 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
734 return (process_intr_ops(pdip, rdip, op, hdlp, result));
735
736 if (hdlp->ih_vector == 0)
737 hdlp->ih_vector = i_ddi_get_inum(rdip, hdlp->ih_inum);
738
739 if (hdlp->ih_pri == 0)
740 hdlp->ih_pri = i_ddi_get_intr_pri(rdip, hdlp->ih_inum);
741
742 switch (op) {
743 case DDI_INTROP_ADDISR:
744 case DDI_INTROP_REMISR:
745 case DDI_INTROP_GETTARGET:
746 case DDI_INTROP_SETTARGET:
747 case DDI_INTROP_ENABLE:
748 case DDI_INTROP_DISABLE:
749 case DDI_INTROP_BLOCKENABLE:
750 case DDI_INTROP_BLOCKDISABLE:
751 /*
752 * Try and determine our parent and possibly an interrupt
753 * translation. intr parent dip returned held
754 */
755 if ((pdip = get_intr_parent(pdip, dip, hdlp)) == NULL)
756 goto done;
757 }
758
759 ret = process_intr_ops(pdip, rdip, op, hdlp, result);
760
761 done:
762 switch (op) {
763 case DDI_INTROP_ADDISR:
764 case DDI_INTROP_REMISR:
765 case DDI_INTROP_ENABLE:
766 case DDI_INTROP_DISABLE:
767 case DDI_INTROP_BLOCKENABLE:
768 case DDI_INTROP_BLOCKDISABLE:
769 /* Release hold acquired in get_intr_parent() */
770 if (pdip)
771 ndi_rele_devi(pdip);
772 }
773
774 hdlp->ih_vector = 0;
775
776 return (ret);
777 }
778
779 /*
780 * i_ddi_add_ivintr:
781 */
782 /*ARGSUSED*/
783 int
784 i_ddi_add_ivintr(ddi_intr_handle_impl_t *hdlp)
785 {
786 /*
787 * If the PIL was set and is valid use it, otherwise
788 * default it to 1
789 */
790 if ((hdlp->ih_pri < 1) || (hdlp->ih_pri > PIL_MAX))
791 hdlp->ih_pri = 1;
792
793 VERIFY(add_ivintr(hdlp->ih_vector, hdlp->ih_pri,
794 (intrfunc)hdlp->ih_cb_func, hdlp->ih_cb_arg1,
795 hdlp->ih_cb_arg2, NULL) == 0);
796
797 return (DDI_SUCCESS);
798 }
799
800 /*
801 * i_ddi_rem_ivintr:
802 */
803 /*ARGSUSED*/
804 void
805 i_ddi_rem_ivintr(ddi_intr_handle_impl_t *hdlp)
806 {
807 VERIFY(rem_ivintr(hdlp->ih_vector, hdlp->ih_pri) == 0);
808 }
809
810 /*
811 * i_ddi_get_inum - Get the interrupt number property from the
812 * specified device. Note that this function is called only for
813 * the FIXED interrupt type.
814 */
815 uint32_t
816 i_ddi_get_inum(dev_info_t *dip, uint_t inumber)
817 {
818 int32_t intrlen, intr_cells, max_intrs;
819 prop_1275_cell_t *ip, intr_sz;
820 uint32_t intr = 0;
821
822 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS |
823 DDI_PROP_CANSLEEP,
824 "interrupts", (caddr_t)&ip, &intrlen) == DDI_SUCCESS) {
825
826 intr_cells = ddi_getprop(DDI_DEV_T_ANY, dip, 0,
827 "#interrupt-cells", 1);
828
829 /* adjust for number of bytes */
830 intr_sz = CELLS_1275_TO_BYTES(intr_cells);
831
832 /* Calculate the number of interrupts */
833 max_intrs = intrlen / intr_sz;
834
835 if (inumber < max_intrs) {
836 prop_1275_cell_t *intrp = ip;
837
838 /* Index into interrupt property */
839 intrp += (inumber * intr_cells);
840
841 cells_1275_copy(intrp, &intr, intr_cells);
842 }
843
844 kmem_free(ip, intrlen);
845 }
846
847 return (intr);
848 }
849
850 /*
851 * i_ddi_get_intr_pri - Get the interrupt-priorities property from
852 * the specified device. Note that this function is called only for
853 * the FIXED interrupt type.
854 */
855 uint32_t
856 i_ddi_get_intr_pri(dev_info_t *dip, uint_t inumber)
857 {
858 uint32_t *intr_prio_p;
859 uint32_t pri = 0;
860 int32_t i;
861
862 /*
863 * Use the "interrupt-priorities" property to determine the
864 * the pil/ipl for the interrupt handler.
865 */
866 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
867 "interrupt-priorities", (caddr_t)&intr_prio_p,
868 &i) == DDI_SUCCESS) {
869 if (inumber < (i / sizeof (int32_t)))
870 pri = intr_prio_p[inumber];
871 kmem_free(intr_prio_p, i);
872 }
873
874 return (pri);
875 }
876
877 int
878 i_ddi_get_intx_nintrs(dev_info_t *dip)
879 {
880 int32_t intrlen;
881 prop_1275_cell_t intr_sz;
882 prop_1275_cell_t *ip;
883 int32_t ret = 0;
884
885 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS |
886 DDI_PROP_CANSLEEP,
887 "interrupts", (caddr_t)&ip, &intrlen) == DDI_SUCCESS) {
888
889 intr_sz = ddi_getprop(DDI_DEV_T_ANY, dip, 0,
890 "#interrupt-cells", 1);
891 /* adjust for number of bytes */
892 intr_sz = CELLS_1275_TO_BYTES(intr_sz);
893
894 ret = intrlen / intr_sz;
895
896 kmem_free(ip, intrlen);
897 }
898
899 return (ret);
900 }
901
902 /*
903 * i_ddi_add_softint - allocate and add a software interrupt.
904 *
905 * NOTE: All software interrupts that are registered through DDI
906 * should be triggered only on a single target or CPU.
907 */
908 int
909 i_ddi_add_softint(ddi_softint_hdl_impl_t *hdlp)
910 {
911 if ((hdlp->ih_private = (void *)add_softintr(hdlp->ih_pri,
912 hdlp->ih_cb_func, hdlp->ih_cb_arg1, SOFTINT_ST)) == NULL)
913 return (DDI_FAILURE);
914
915 return (DDI_SUCCESS);
916 }
917
918 /*
919 * i_ddi_remove_softint - remove and free a software interrupt.
920 */
921 void
922 i_ddi_remove_softint(ddi_softint_hdl_impl_t *hdlp)
923 {
924 ASSERT(hdlp->ih_private != NULL);
925
926 if (rem_softintr((uint64_t)hdlp->ih_private) == 0)
927 hdlp->ih_private = NULL;
928 }
929
930 /*
931 * i_ddi_trigger_softint - trigger a software interrupt.
932 */
933 int
934 i_ddi_trigger_softint(ddi_softint_hdl_impl_t *hdlp, void *arg2)
935 {
936 int ret;
937
938 ASSERT(hdlp->ih_private != NULL);
939
940 /* Update the second argument for the software interrupt */
941 if ((ret = update_softint_arg2((uint64_t)hdlp->ih_private, arg2)) == 0)
942 setsoftint((uint64_t)hdlp->ih_private);
943
944 return (ret ? DDI_EPENDING : DDI_SUCCESS);
945 }
946
947 /*
948 * i_ddi_set_softint_pri - change software interrupt priority.
949 */
950 /* ARGSUSED */
951 int
952 i_ddi_set_softint_pri(ddi_softint_hdl_impl_t *hdlp, uint_t old_pri)
953 {
954 int ret;
955
956 ASSERT(hdlp->ih_private != NULL);
957
958 /* Update the interrupt priority for the software interrupt */
959 ret = update_softint_pri((uint64_t)hdlp->ih_private, hdlp->ih_pri);
960
961 return (ret ? DDI_FAILURE : DDI_SUCCESS);
962 }
963
964 /*ARGSUSED*/
965 void
966 i_ddi_alloc_intr_phdl(ddi_intr_handle_impl_t *hdlp)
967 {
968 }
969
970 /*ARGSUSED*/
971 void
972 i_ddi_free_intr_phdl(ddi_intr_handle_impl_t *hdlp)
973 {
974 }
975
976 /*
977 * SECTION: DDI Memory/DMA
978 */
979
980 /* set HAT endianess attributes from ddi_device_acc_attr */
981 void
982 i_ddi_devacc_to_hatacc(ddi_device_acc_attr_t *devaccp, uint_t *hataccp)
983 {
984 if (devaccp != NULL) {
985 if (devaccp->devacc_attr_endian_flags == DDI_STRUCTURE_LE_ACC) {
986 *hataccp &= ~HAT_ENDIAN_MASK;
987 *hataccp |= HAT_STRUCTURE_LE;
988 }
989 }
990 }
991
992 /*
993 * Check if the specified cache attribute is supported on the platform.
994 * This function must be called before i_ddi_cacheattr_to_hatacc().
995 */
996 boolean_t
997 i_ddi_check_cache_attr(uint_t flags)
998 {
999 /*
1000 * The cache attributes are mutually exclusive. Any combination of
1001 * the attributes leads to a failure.
1002 */
1003 uint_t cache_attr = IOMEM_CACHE_ATTR(flags);
1004 if ((cache_attr != 0) && ((cache_attr & (cache_attr - 1)) != 0))
1005 return (B_FALSE);
1006
1007 /*
1008 * On the sparc architecture, only IOMEM_DATA_CACHED is meaningful,
1009 * but others lead to a failure.
1010 */
1011 if (cache_attr & IOMEM_DATA_CACHED)
1012 return (B_TRUE);
1013 else
1014 return (B_FALSE);
1015 }
1016
1017 /* set HAT cache attributes from the cache attributes */
1018 void
1019 i_ddi_cacheattr_to_hatacc(uint_t flags, uint_t *hataccp)
1020 {
1021 uint_t cache_attr = IOMEM_CACHE_ATTR(flags);
1022 static char *fname = "i_ddi_cacheattr_to_hatacc";
1023 #if defined(lint)
1024 *hataccp = *hataccp;
1025 #endif
1026 /*
1027 * set HAT attrs according to the cache attrs.
1028 */
1029 switch (cache_attr) {
1030 /*
1031 * The cache coherency is always maintained on SPARC, and
1032 * nothing is required.
1033 */
1034 case IOMEM_DATA_CACHED:
1035 break;
1036 /*
1037 * Both IOMEM_DATA_UC_WRITE_COMBINED and IOMEM_DATA_UNCACHED are
1038 * not supported on SPARC -- this case must not occur because the
1039 * cache attribute is scrutinized before this function is called.
1040 */
1041 case IOMEM_DATA_UNCACHED:
1042 case IOMEM_DATA_UC_WR_COMBINE:
1043 default:
1044 cmn_err(CE_WARN, "%s: cache_attr=0x%x is ignored.",
1045 fname, cache_attr);
1046 }
1047 }
1048
1049 static vmem_t *little_endian_arena;
1050 static vmem_t *big_endian_arena;
1051
1052 static void *
1053 segkmem_alloc_le(vmem_t *vmp, size_t size, int flag)
1054 {
1055 return (segkmem_xalloc(vmp, NULL, size, flag, HAT_STRUCTURE_LE,
1056 segkmem_page_create, NULL));
1057 }
1058
1059 static void *
1060 segkmem_alloc_be(vmem_t *vmp, size_t size, int flag)
1061 {
1062 return (segkmem_xalloc(vmp, NULL, size, flag, HAT_STRUCTURE_BE,
1063 segkmem_page_create, NULL));
1064 }
1065
1066 void
1067 ka_init(void)
1068 {
1069 little_endian_arena = vmem_create("little_endian", NULL, 0, 1,
1070 segkmem_alloc_le, segkmem_free, heap_arena, 0, VM_SLEEP);
1071 big_endian_arena = vmem_create("big_endian", NULL, 0, 1,
1072 segkmem_alloc_be, segkmem_free, heap_arena, 0, VM_SLEEP);
1073 }
1074
1075 /*
1076 * Allocate from the system, aligned on a specific boundary.
1077 * The alignment, if non-zero, must be a power of 2.
1078 */
1079 static void *
1080 kalloca(size_t size, size_t align, int cansleep, uint_t endian_flags)
1081 {
1082 size_t *addr, *raddr, rsize;
1083 size_t hdrsize = 4 * sizeof (size_t); /* must be power of 2 */
1084
1085 align = MAX(align, hdrsize);
1086 ASSERT((align & (align - 1)) == 0);
1087
1088 /*
1089 * We need to allocate
1090 * rsize = size + hdrsize + align - MIN(hdrsize, buffer_alignment)
1091 * bytes to be sure we have enough freedom to satisfy the request.
1092 * Since the buffer alignment depends on the request size, this is
1093 * not straightforward to use directly.
1094 *
1095 * kmem guarantees that any allocation of a 64-byte multiple will be
1096 * 64-byte aligned. Since rounding up the request could add more
1097 * than we save, we compute the size with and without alignment, and
1098 * use the smaller of the two.
1099 */
1100 rsize = size + hdrsize + align;
1101
1102 if (endian_flags == DDI_STRUCTURE_LE_ACC) {
1103 raddr = vmem_alloc(little_endian_arena, rsize,
1104 cansleep ? VM_SLEEP : VM_NOSLEEP);
1105 } else {
1106 raddr = vmem_alloc(big_endian_arena, rsize,
1107 cansleep ? VM_SLEEP : VM_NOSLEEP);
1108 }
1109
1110 if (raddr == NULL)
1111 return (NULL);
1112
1113 addr = (size_t *)P2ROUNDUP((uintptr_t)raddr + hdrsize, align);
1114 ASSERT((uintptr_t)addr + size - (uintptr_t)raddr <= rsize);
1115
1116 addr[-3] = (size_t)endian_flags;
1117 addr[-2] = (size_t)raddr;
1118 addr[-1] = rsize;
1119
1120 return (addr);
1121 }
1122
1123 static void
1124 kfreea(void *addr)
1125 {
1126 size_t *saddr = addr;
1127
1128 if (saddr[-3] == DDI_STRUCTURE_LE_ACC)
1129 vmem_free(little_endian_arena, (void *)saddr[-2], saddr[-1]);
1130 else
1131 vmem_free(big_endian_arena, (void *)saddr[-2], saddr[-1]);
1132 }
1133
1134 int
1135 i_ddi_mem_alloc(dev_info_t *dip, ddi_dma_attr_t *attr,
1136 size_t length, int cansleep, int flags,
1137 ddi_device_acc_attr_t *accattrp,
1138 caddr_t *kaddrp, size_t *real_length, ddi_acc_hdl_t *handlep)
1139 {
1140 caddr_t a;
1141 int iomin, align, streaming;
1142 uint_t endian_flags = DDI_NEVERSWAP_ACC;
1143
1144 #if defined(lint)
1145 *handlep = *handlep;
1146 #endif
1147
1148 /*
1149 * Check legality of arguments
1150 */
1151 if (length == 0 || kaddrp == NULL || attr == NULL) {
1152 return (DDI_FAILURE);
1153 }
1154
1155 if (attr->dma_attr_minxfer == 0 || attr->dma_attr_align == 0 ||
1156 (attr->dma_attr_align & (attr->dma_attr_align - 1)) ||
1157 (attr->dma_attr_minxfer & (attr->dma_attr_minxfer - 1))) {
1158 return (DDI_FAILURE);
1159 }
1160
1161 /*
1162 * check if a streaming sequential xfer is requested.
1163 */
1164 streaming = (flags & DDI_DMA_STREAMING) ? 1 : 0;
1165
1166 /*
1167 * Drivers for 64-bit capable SBus devices will encode
1168 * the burtsizes for 64-bit xfers in the upper 16-bits.
1169 * For DMA alignment, we use the most restrictive
1170 * alignment of 32-bit and 64-bit xfers.
1171 */
1172 iomin = (attr->dma_attr_burstsizes & 0xffff) |
1173 ((attr->dma_attr_burstsizes >> 16) & 0xffff);
1174 /*
1175 * If a driver set burtsizes to 0, we give him byte alignment.
1176 * Otherwise align at the burtsizes boundary.
1177 */
1178 if (iomin == 0)
1179 iomin = 1;
1180 else
1181 iomin = 1 << (ddi_fls(iomin) - 1);
1182 iomin = maxbit(iomin, attr->dma_attr_minxfer);
1183 iomin = maxbit(iomin, attr->dma_attr_align);
1184 iomin = ddi_iomin(dip, iomin, streaming);
1185 if (iomin == 0)
1186 return (DDI_FAILURE);
1187
1188 ASSERT((iomin & (iomin - 1)) == 0);
1189 ASSERT(iomin >= attr->dma_attr_minxfer);
1190 ASSERT(iomin >= attr->dma_attr_align);
1191
1192 length = P2ROUNDUP(length, iomin);
1193 align = iomin;
1194
1195 if (accattrp != NULL)
1196 endian_flags = accattrp->devacc_attr_endian_flags;
1197
1198 a = kalloca(length, align, cansleep, endian_flags);
1199 if ((*kaddrp = a) == 0) {
1200 return (DDI_FAILURE);
1201 } else {
1202 if (real_length) {
1203 *real_length = length;
1204 }
1205 if (handlep) {
1206 /*
1207 * assign handle information
1208 */
1209 impl_acc_hdl_init(handlep);
1210 }
1211 return (DDI_SUCCESS);
1212 }
1213 }
1214
1215 /* ARGSUSED */
1216 void
1217 i_ddi_mem_free(caddr_t kaddr, ddi_acc_hdl_t *ap)
1218 {
1219 kfreea(kaddr);
1220 }
1221
1222 /*
1223 * SECTION: DDI Data Access
1224 */
1225
1226 static uintptr_t impl_acc_hdl_id = 0;
1227
1228 /*
1229 * access handle allocator
1230 */
1231 ddi_acc_hdl_t *
1232 impl_acc_hdl_get(ddi_acc_handle_t hdl)
1233 {
1234 /*
1235 * Extract the access handle address from the DDI implemented
1236 * access handle
1237 */
1238 return (&((ddi_acc_impl_t *)hdl)->ahi_common);
1239 }
1240
1241 ddi_acc_handle_t
1242 impl_acc_hdl_alloc(int (*waitfp)(caddr_t), caddr_t arg)
1243 {
1244 ddi_acc_impl_t *hp;
1245 on_trap_data_t *otp;
1246 int sleepflag;
1247
1248 sleepflag = ((waitfp == (int (*)())KM_SLEEP) ? KM_SLEEP : KM_NOSLEEP);
1249
1250 /*
1251 * Allocate and initialize the data access handle and error status.
1252 */
1253 if ((hp = kmem_zalloc(sizeof (ddi_acc_impl_t), sleepflag)) == NULL)
1254 goto fail;
1255 if ((hp->ahi_err = (ndi_err_t *)kmem_zalloc(
1256 sizeof (ndi_err_t), sleepflag)) == NULL) {
1257 kmem_free(hp, sizeof (ddi_acc_impl_t));
1258 goto fail;
1259 }
1260 if ((otp = (on_trap_data_t *)kmem_zalloc(
1261 sizeof (on_trap_data_t), sleepflag)) == NULL) {
1262 kmem_free(hp->ahi_err, sizeof (ndi_err_t));
1263 kmem_free(hp, sizeof (ddi_acc_impl_t));
1264 goto fail;
1265 }
1266 hp->ahi_err->err_ontrap = otp;
1267 hp->ahi_common.ah_platform_private = (void *)hp;
1268
1269 return ((ddi_acc_handle_t)hp);
1270 fail:
1271 if ((waitfp != (int (*)())KM_SLEEP) &&
1272 (waitfp != (int (*)())KM_NOSLEEP))
1273 ddi_set_callback(waitfp, arg, &impl_acc_hdl_id);
1274 return (NULL);
1275 }
1276
1277 void
1278 impl_acc_hdl_free(ddi_acc_handle_t handle)
1279 {
1280 ddi_acc_impl_t *hp;
1281
1282 /*
1283 * The supplied (ddi_acc_handle_t) is actually a (ddi_acc_impl_t *),
1284 * because that's what we allocated in impl_acc_hdl_alloc() above.
1285 */
1286 hp = (ddi_acc_impl_t *)handle;
1287 if (hp) {
1288 kmem_free(hp->ahi_err->err_ontrap, sizeof (on_trap_data_t));
1289 kmem_free(hp->ahi_err, sizeof (ndi_err_t));
1290 kmem_free(hp, sizeof (ddi_acc_impl_t));
1291 if (impl_acc_hdl_id)
1292 ddi_run_callback(&impl_acc_hdl_id);
1293 }
1294 }
1295
1296 #define PCI_GET_MP_PFN(mp, page_no) ((mp)->dmai_ndvmapages == 1 ? \
1297 (pfn_t)(mp)->dmai_iopte:(((pfn_t *)(mp)->dmai_iopte)[page_no]))
1298
1299 /*
1300 * Function called after a dma fault occurred to find out whether the
1301 * fault address is associated with a driver that is able to handle faults
1302 * and recover from faults.
1303 */
1304 /* ARGSUSED */
1305 int
1306 impl_dma_check(dev_info_t *dip, const void *handle, const void *addr,
1307 const void *not_used)
1308 {
1309 ddi_dma_impl_t *mp = (ddi_dma_impl_t *)handle;
1310 pfn_t fault_pfn = mmu_btop(*(uint64_t *)addr);
1311 pfn_t comp_pfn;
1312
1313 /*
1314 * The driver has to set DDI_DMA_FLAGERR to recover from dma faults.
1315 */
1316 int page;
1317
1318 ASSERT(mp);
1319 for (page = 0; page < mp->dmai_ndvmapages; page++) {
1320 comp_pfn = PCI_GET_MP_PFN(mp, page);
1321 if (fault_pfn == comp_pfn)
1322 return (DDI_FM_NONFATAL);
1323 }
1324 return (DDI_FM_UNKNOWN);
1325 }
1326
1327 /*
1328 * Function used to check if a given access handle owns the failing address.
1329 * Called by ndi_fmc_error, when we detect a PIO error.
1330 */
1331 /* ARGSUSED */
1332 static int
1333 impl_acc_check(dev_info_t *dip, const void *handle, const void *addr,
1334 const void *not_used)
1335 {
1336 pfn_t pfn, fault_pfn;
1337 ddi_acc_hdl_t *hp;
1338
1339 hp = impl_acc_hdl_get((ddi_acc_handle_t)handle);
1340
1341 ASSERT(hp);
1342
1343 if (addr != NULL) {
1344 pfn = hp->ah_pfn;
1345 fault_pfn = mmu_btop(*(uint64_t *)addr);
1346 if (fault_pfn >= pfn && fault_pfn < (pfn + hp->ah_pnum))
1347 return (DDI_FM_NONFATAL);
1348 }
1349 return (DDI_FM_UNKNOWN);
1350 }
1351
1352 void
1353 impl_acc_err_init(ddi_acc_hdl_t *handlep)
1354 {
1355 int fmcap;
1356 ndi_err_t *errp;
1357 on_trap_data_t *otp;
1358 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handlep;
1359
1360 fmcap = ddi_fm_capable(handlep->ah_dip);
1361
1362 if (handlep->ah_acc.devacc_attr_version < DDI_DEVICE_ATTR_V1 ||
1363 !DDI_FM_ACC_ERR_CAP(fmcap)) {
1364 handlep->ah_acc.devacc_attr_access = DDI_DEFAULT_ACC;
1365 } else if (DDI_FM_ACC_ERR_CAP(fmcap)) {
1366 if (handlep->ah_acc.devacc_attr_access == DDI_DEFAULT_ACC) {
1367 if (handlep->ah_xfermodes)
1368 return;
1369 i_ddi_drv_ereport_post(handlep->ah_dip, DVR_EFMCAP,
1370 NULL, DDI_NOSLEEP);
1371 } else {
1372 errp = hp->ahi_err;
1373 otp = (on_trap_data_t *)errp->err_ontrap;
1374 otp->ot_handle = (void *)(hp);
1375 otp->ot_prot = OT_DATA_ACCESS;
1376 if (handlep->ah_acc.devacc_attr_access ==
1377 DDI_CAUTIOUS_ACC)
1378 otp->ot_trampoline =
1379 (uintptr_t)&i_ddi_caut_trampoline;
1380 else
1381 otp->ot_trampoline =
1382 (uintptr_t)&i_ddi_prot_trampoline;
1383 errp->err_status = DDI_FM_OK;
1384 errp->err_expected = DDI_FM_ERR_UNEXPECTED;
1385 errp->err_cf = impl_acc_check;
1386 }
1387 }
1388 }
1389
1390 void
1391 impl_acc_hdl_init(ddi_acc_hdl_t *handlep)
1392 {
1393 ddi_acc_impl_t *hp;
1394
1395 ASSERT(handlep);
1396
1397 hp = (ddi_acc_impl_t *)handlep;
1398
1399 /*
1400 * check for SW byte-swapping
1401 */
1402 hp->ahi_get8 = i_ddi_get8;
1403 hp->ahi_put8 = i_ddi_put8;
1404 hp->ahi_rep_get8 = i_ddi_rep_get8;
1405 hp->ahi_rep_put8 = i_ddi_rep_put8;
1406 if (handlep->ah_acc.devacc_attr_endian_flags & DDI_STRUCTURE_LE_ACC) {
1407 hp->ahi_get16 = i_ddi_swap_get16;
1408 hp->ahi_get32 = i_ddi_swap_get32;
1409 hp->ahi_get64 = i_ddi_swap_get64;
1410 hp->ahi_put16 = i_ddi_swap_put16;
1411 hp->ahi_put32 = i_ddi_swap_put32;
1412 hp->ahi_put64 = i_ddi_swap_put64;
1413 hp->ahi_rep_get16 = i_ddi_swap_rep_get16;
1414 hp->ahi_rep_get32 = i_ddi_swap_rep_get32;
1415 hp->ahi_rep_get64 = i_ddi_swap_rep_get64;
1416 hp->ahi_rep_put16 = i_ddi_swap_rep_put16;
1417 hp->ahi_rep_put32 = i_ddi_swap_rep_put32;
1418 hp->ahi_rep_put64 = i_ddi_swap_rep_put64;
1419 } else {
1420 hp->ahi_get16 = i_ddi_get16;
1421 hp->ahi_get32 = i_ddi_get32;
1422 hp->ahi_get64 = i_ddi_get64;
1423 hp->ahi_put16 = i_ddi_put16;
1424 hp->ahi_put32 = i_ddi_put32;
1425 hp->ahi_put64 = i_ddi_put64;
1426 hp->ahi_rep_get16 = i_ddi_rep_get16;
1427 hp->ahi_rep_get32 = i_ddi_rep_get32;
1428 hp->ahi_rep_get64 = i_ddi_rep_get64;
1429 hp->ahi_rep_put16 = i_ddi_rep_put16;
1430 hp->ahi_rep_put32 = i_ddi_rep_put32;
1431 hp->ahi_rep_put64 = i_ddi_rep_put64;
1432 }
1433
1434 /* Legacy fault flags and support */
1435 hp->ahi_fault_check = i_ddi_acc_fault_check;
1436 hp->ahi_fault_notify = i_ddi_acc_fault_notify;
1437 hp->ahi_fault = 0;
1438 impl_acc_err_init(handlep);
1439 }
1440
1441 void
1442 i_ddi_acc_set_fault(ddi_acc_handle_t handle)
1443 {
1444 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handle;
1445
1446 if (!hp->ahi_fault) {
1447 hp->ahi_fault = 1;
1448 (*hp->ahi_fault_notify)(hp);
1449 }
1450 }
1451
1452 void
1453 i_ddi_acc_clr_fault(ddi_acc_handle_t handle)
1454 {
1455 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handle;
1456
1457 if (hp->ahi_fault) {
1458 hp->ahi_fault = 0;
1459 (*hp->ahi_fault_notify)(hp);
1460 }
1461 }
1462
1463 /* ARGSUSED */
1464 void
1465 i_ddi_acc_fault_notify(ddi_acc_impl_t *hp)
1466 {
1467 /* Default version, does nothing */
1468 }
1469
1470 /*
1471 * SECTION: Misc functions
1472 */
1473
1474 /*
1475 * instance wrappers
1476 */
1477 /*ARGSUSED*/
1478 uint_t
1479 impl_assign_instance(dev_info_t *dip)
1480 {
1481 return ((uint_t)-1);
1482 }
1483
1484 /*ARGSUSED*/
1485 int
1486 impl_keep_instance(dev_info_t *dip)
1487 {
1488 return (DDI_FAILURE);
1489 }
1490
1491 /*ARGSUSED*/
1492 int
1493 impl_free_instance(dev_info_t *dip)
1494 {
1495 return (DDI_FAILURE);
1496 }
1497
1498 /*ARGSUSED*/
1499 int
1500 impl_check_cpu(dev_info_t *devi)
1501 {
1502 return (DDI_SUCCESS);
1503 }
1504
1505
1506 static const char *nocopydevs[] = {
1507 "SUNW,ffb",
1508 "SUNW,afb",
1509 NULL
1510 };
1511
1512 /*
1513 * Perform a copy from a memory mapped device (whose devinfo pointer is devi)
1514 * separately mapped at devaddr in the kernel to a kernel buffer at kaddr.
1515 */
1516 /*ARGSUSED*/
1517 int
1518 e_ddi_copyfromdev(dev_info_t *devi,
1519 off_t off, const void *devaddr, void *kaddr, size_t len)
1520 {
1521 const char **argv;
1522
1523 for (argv = nocopydevs; *argv; argv++)
1524 if (strcmp(ddi_binding_name(devi), *argv) == 0) {
1525 bzero(kaddr, len);
1526 return (0);
1527 }
1528
1529 bcopy(devaddr, kaddr, len);
1530 return (0);
1531 }
1532
1533 /*
1534 * Perform a copy to a memory mapped device (whose devinfo pointer is devi)
1535 * separately mapped at devaddr in the kernel from a kernel buffer at kaddr.
1536 */
1537 /*ARGSUSED*/
1538 int
1539 e_ddi_copytodev(dev_info_t *devi,
1540 off_t off, const void *kaddr, void *devaddr, size_t len)
1541 {
1542 const char **argv;
1543
1544 for (argv = nocopydevs; *argv; argv++)
1545 if (strcmp(ddi_binding_name(devi), *argv) == 0)
1546 return (1);
1547
1548 bcopy(kaddr, devaddr, len);
1549 return (0);
1550 }
1551
1552 /*
1553 * Boot Configuration
1554 */
1555 idprom_t idprom;
1556
1557 /*
1558 * Configure the hardware on the system.
1559 * Called before the rootfs is mounted
1560 */
1561 void
1562 configure(void)
1563 {
1564 extern void i_ddi_init_root();
1565
1566 /* We better have released boot by this time! */
1567 ASSERT(!bootops);
1568
1569 /*
1570 * Determine whether or not to use the fpu, V9 SPARC cpus
1571 * always have one. Could check for existence of a fp queue,
1572 * Ultra I, II and IIa do not have a fp queue.
1573 */
1574 if (fpu_exists)
1575 fpu_probe();
1576 else
1577 cmn_err(CE_CONT, "FPU not in use\n");
1578
1579 #if 0 /* XXXQ - not necessary for sun4u */
1580 /*
1581 * This following line fixes bugid 1041296; we need to do a
1582 * prom_nextnode(0) because this call ALSO patches the DMA+
1583 * bug in Campus-B and Phoenix. The prom uncaches the traptable
1584 * page as a side-effect of devr_next(0) (which prom_nextnode calls),
1585 * so this *must* be executed early on. (XXX This is untrue for sun4u)
1586 */
1587 (void) prom_nextnode((pnode_t)0);
1588 #endif
1589
1590 /*
1591 * Initialize devices on the machine.
1592 * Uses configuration tree built by the PROMs to determine what
1593 * is present, and builds a tree of prototype dev_info nodes
1594 * corresponding to the hardware which identified itself.
1595 */
1596 i_ddi_init_root();
1597
1598 #ifdef DDI_PROP_DEBUG
1599 (void) ddi_prop_debug(1); /* Enable property debugging */
1600 #endif /* DDI_PROP_DEBUG */
1601 }
1602
1603 /*
1604 * The "status" property indicates the operational status of a device.
1605 * If this property is present, the value is a string indicating the
1606 * status of the device as follows:
1607 *
1608 * "okay" operational.
1609 * "disabled" not operational, but might become operational.
1610 * "fail" not operational because a fault has been detected,
1611 * and it is unlikely that the device will become
1612 * operational without repair. no additional details
1613 * are available.
1614 * "fail-xxx" not operational because a fault has been detected,
1615 * and it is unlikely that the device will become
1616 * operational without repair. "xxx" is additional
1617 * human-readable information about the particular
1618 * fault condition that was detected.
1619 *
1620 * The absence of this property means that the operational status is
1621 * unknown or okay.
1622 *
1623 * This routine checks the status property of the specified device node
1624 * and returns 0 if the operational status indicates failure, and 1 otherwise.
1625 *
1626 * The property may exist on plug-in cards the existed before IEEE 1275-1994.
1627 * And, in that case, the property may not even be a string. So we carefully
1628 * check for the value "fail", in the beginning of the string, noting
1629 * the property length.
1630 */
1631 int
1632 status_okay(int id, char *buf, int buflen)
1633 {
1634 char status_buf[OBP_MAXPROPNAME];
1635 char *bufp = buf;
1636 int len = buflen;
1637 int proplen;
1638 static const char *status = "status";
1639 static const char *fail = "fail";
1640 size_t fail_len = strlen(fail);
1641
1642 /*
1643 * Get the proplen ... if it's smaller than "fail",
1644 * or doesn't exist ... then we don't care, since
1645 * the value can't begin with the char string "fail".
1646 *
1647 * NB: proplen, if it's a string, includes the NULL in the
1648 * the size of the property, and fail_len does not.
1649 */
1650 proplen = prom_getproplen((pnode_t)id, (caddr_t)status);
1651 if (proplen <= fail_len) /* nonexistent or uninteresting len */
1652 return (1);
1653
1654 /*
1655 * if a buffer was provided, use it
1656 */
1657 if ((buf == (char *)NULL) || (buflen <= 0)) {
1658 bufp = status_buf;
1659 len = sizeof (status_buf);
1660 }
1661 *bufp = (char)0;
1662
1663 /*
1664 * Get the property into the buffer, to the extent of the buffer,
1665 * and in case the buffer is smaller than the property size,
1666 * NULL terminate the buffer. (This handles the case where
1667 * a buffer was passed in and the caller wants to print the
1668 * value, but the buffer was too small).
1669 */
1670 (void) prom_bounded_getprop((pnode_t)id, (caddr_t)status,
1671 (caddr_t)bufp, len);
1672 *(bufp + len - 1) = (char)0;
1673
1674 /*
1675 * If the value begins with the char string "fail",
1676 * then it means the node is failed. We don't care
1677 * about any other values. We assume the node is ok
1678 * although it might be 'disabled'.
1679 */
1680 if (strncmp(bufp, fail, fail_len) == 0)
1681 return (0);
1682
1683 return (1);
1684 }
1685
1686
1687 /*
1688 * We set the cpu type from the idprom, if we can.
1689 * Note that we just read out the contents of it, for the most part.
1690 */
1691 void
1692 setcputype(void)
1693 {
1694 /*
1695 * We cache the idprom info early on so that we don't
1696 * rummage through the NVRAM unnecessarily later.
1697 */
1698 (void) prom_getidprom((caddr_t)&idprom, sizeof (idprom));
1699 }
1700
1701 /*
1702 * Here is where we actually infer meanings to the members of idprom_t
1703 */
1704 void
1705 parse_idprom(void)
1706 {
1707 if (idprom.id_format == IDFORM_1) {
1708 (void) localetheraddr((struct ether_addr *)idprom.id_ether,
1709 (struct ether_addr *)NULL);
1710 (void) snprintf(hw_serial, HW_HOSTID_LEN, "%u",
1711 (idprom.id_machine << 24) + idprom.id_serial);
1712 } else
1713 prom_printf("Invalid format code in IDprom.\n");
1714 }
1715
1716 /*
1717 * Allow for implementation specific correction of PROM property values.
1718 */
1719 /*ARGSUSED*/
1720 void
1721 impl_fix_props(dev_info_t *dip, dev_info_t *ch_dip, char *name, int len,
1722 caddr_t buffer)
1723 {
1724 /*
1725 * There are no adjustments needed in this implementation.
1726 */
1727 }
1728
1729 /*
1730 * The following functions ready a cautious request to go up to the nexus
1731 * driver. It is up to the nexus driver to decide how to process the request.
1732 * It may choose to call i_ddi_do_caut_get/put in this file, or do it
1733 * differently.
1734 */
1735
1736 static void
1737 i_ddi_caut_getput_ctlops(
1738 ddi_acc_impl_t *hp, uint64_t host_addr, uint64_t dev_addr, size_t size,
1739 size_t repcount, uint_t flags, ddi_ctl_enum_t cmd)
1740 {
1741 peekpoke_ctlops_t cautacc_ctlops_arg;
1742
1743 cautacc_ctlops_arg.size = size;
1744 cautacc_ctlops_arg.dev_addr = dev_addr;
1745 cautacc_ctlops_arg.host_addr = host_addr;
1746 cautacc_ctlops_arg.handle = (ddi_acc_handle_t)hp;
1747 cautacc_ctlops_arg.repcount = repcount;
1748 cautacc_ctlops_arg.flags = flags;
1749
1750 (void) ddi_ctlops(hp->ahi_common.ah_dip, hp->ahi_common.ah_dip, cmd,
1751 &cautacc_ctlops_arg, NULL);
1752 }
1753
1754 uint8_t
1755 i_ddi_caut_get8(ddi_acc_impl_t *hp, uint8_t *addr)
1756 {
1757 uint8_t value;
1758 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1759 sizeof (uint8_t), 1, 0, DDI_CTLOPS_PEEK);
1760
1761 return (value);
1762 }
1763
1764 uint16_t
1765 i_ddi_caut_get16(ddi_acc_impl_t *hp, uint16_t *addr)
1766 {
1767 uint16_t value;
1768 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1769 sizeof (uint16_t), 1, 0, DDI_CTLOPS_PEEK);
1770
1771 return (value);
1772 }
1773
1774 uint32_t
1775 i_ddi_caut_get32(ddi_acc_impl_t *hp, uint32_t *addr)
1776 {
1777 uint32_t value;
1778 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1779 sizeof (uint32_t), 1, 0, DDI_CTLOPS_PEEK);
1780
1781 return (value);
1782 }
1783
1784 uint64_t
1785 i_ddi_caut_get64(ddi_acc_impl_t *hp, uint64_t *addr)
1786 {
1787 uint64_t value;
1788 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1789 sizeof (uint64_t), 1, 0, DDI_CTLOPS_PEEK);
1790
1791 return (value);
1792 }
1793
1794 void
1795 i_ddi_caut_put8(ddi_acc_impl_t *hp, uint8_t *addr, uint8_t value)
1796 {
1797 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1798 sizeof (uint8_t), 1, 0, DDI_CTLOPS_POKE);
1799 }
1800
1801 void
1802 i_ddi_caut_put16(ddi_acc_impl_t *hp, uint16_t *addr, uint16_t value)
1803 {
1804 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1805 sizeof (uint16_t), 1, 0, DDI_CTLOPS_POKE);
1806 }
1807
1808 void
1809 i_ddi_caut_put32(ddi_acc_impl_t *hp, uint32_t *addr, uint32_t value)
1810 {
1811 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1812 sizeof (uint32_t), 1, 0, DDI_CTLOPS_POKE);
1813 }
1814
1815 void
1816 i_ddi_caut_put64(ddi_acc_impl_t *hp, uint64_t *addr, uint64_t value)
1817 {
1818 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1819 sizeof (uint64_t), 1, 0, DDI_CTLOPS_POKE);
1820 }
1821
1822 void
1823 i_ddi_caut_rep_get8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr,
1824 size_t repcount, uint_t flags)
1825 {
1826 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1827 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_PEEK);
1828 }
1829
1830 void
1831 i_ddi_caut_rep_get16(ddi_acc_impl_t *hp, uint16_t *host_addr,
1832 uint16_t *dev_addr, size_t repcount, uint_t flags)
1833 {
1834 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1835 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_PEEK);
1836 }
1837
1838 void
1839 i_ddi_caut_rep_get32(ddi_acc_impl_t *hp, uint32_t *host_addr,
1840 uint32_t *dev_addr, size_t repcount, uint_t flags)
1841 {
1842 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1843 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_PEEK);
1844 }
1845
1846 void
1847 i_ddi_caut_rep_get64(ddi_acc_impl_t *hp, uint64_t *host_addr,
1848 uint64_t *dev_addr, size_t repcount, uint_t flags)
1849 {
1850 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1851 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_PEEK);
1852 }
1853
1854 void
1855 i_ddi_caut_rep_put8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr,
1856 size_t repcount, uint_t flags)
1857 {
1858 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1859 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_POKE);
1860 }
1861
1862 void
1863 i_ddi_caut_rep_put16(ddi_acc_impl_t *hp, uint16_t *host_addr,
1864 uint16_t *dev_addr, size_t repcount, uint_t flags)
1865 {
1866 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1867 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_POKE);
1868 }
1869
1870 void
1871 i_ddi_caut_rep_put32(ddi_acc_impl_t *hp, uint32_t *host_addr,
1872 uint32_t *dev_addr, size_t repcount, uint_t flags)
1873 {
1874 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1875 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_POKE);
1876 }
1877
1878 void
1879 i_ddi_caut_rep_put64(ddi_acc_impl_t *hp, uint64_t *host_addr,
1880 uint64_t *dev_addr, size_t repcount, uint_t flags)
1881 {
1882 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1883 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_POKE);
1884 }
1885
1886 /*
1887 * This is called only to process peek/poke when the DIP is NULL.
1888 * Assume that this is for memory, as nexi take care of device safe accesses.
1889 */
1890 int
1891 peekpoke_mem(ddi_ctl_enum_t cmd, peekpoke_ctlops_t *in_args)
1892 {
1893 int err = DDI_SUCCESS;
1894 on_trap_data_t otd;
1895
1896 /* Set up protected environment. */
1897 if (!on_trap(&otd, OT_DATA_ACCESS)) {
1898 uintptr_t tramp = otd.ot_trampoline;
1899
1900 if (cmd == DDI_CTLOPS_POKE) {
1901 otd.ot_trampoline = (uintptr_t)&poke_fault;
1902 err = do_poke(in_args->size, (void *)in_args->dev_addr,
1903 (void *)in_args->host_addr);
1904 } else {
1905 otd.ot_trampoline = (uintptr_t)&peek_fault;
1906 err = do_peek(in_args->size, (void *)in_args->dev_addr,
1907 (void *)in_args->host_addr);
1908 }
1909 otd.ot_trampoline = tramp;
1910 } else
1911 err = DDI_FAILURE;
1912
1913 /* Take down protected environment. */
1914 no_trap();
1915
1916 return (err);
1917 }