1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright 2014 Garrett D'Amore <garrett@damore.org>
  25  */
  26 
  27 #include <sys/note.h>
  28 #include <sys/types.h>
  29 #include <sys/param.h>
  30 #include <sys/systm.h>
  31 #include <sys/buf.h>
  32 #include <sys/uio.h>
  33 #include <sys/cred.h>
  34 #include <sys/poll.h>
  35 #include <sys/mman.h>
  36 #include <sys/kmem.h>
  37 #include <sys/model.h>
  38 #include <sys/file.h>
  39 #include <sys/proc.h>
  40 #include <sys/open.h>
  41 #include <sys/user.h>
  42 #include <sys/t_lock.h>
  43 #include <sys/vm.h>
  44 #include <sys/stat.h>
  45 #include <vm/hat.h>
  46 #include <vm/seg.h>
  47 #include <vm/seg_vn.h>
  48 #include <vm/seg_dev.h>
  49 #include <vm/as.h>
  50 #include <sys/cmn_err.h>
  51 #include <sys/cpuvar.h>
  52 #include <sys/debug.h>
  53 #include <sys/autoconf.h>
  54 #include <sys/sunddi.h>
  55 #include <sys/esunddi.h>
  56 #include <sys/sunndi.h>
  57 #include <sys/kstat.h>
  58 #include <sys/conf.h>
  59 #include <sys/ddi_impldefs.h>     /* include implementation structure defs */
  60 #include <sys/ndi_impldefs.h>     /* include prototypes */
  61 #include <sys/ddi_periodic.h>
  62 #include <sys/hwconf.h>
  63 #include <sys/pathname.h>
  64 #include <sys/modctl.h>
  65 #include <sys/epm.h>
  66 #include <sys/devctl.h>
  67 #include <sys/callb.h>
  68 #include <sys/cladm.h>
  69 #include <sys/sysevent.h>
  70 #include <sys/dacf_impl.h>
  71 #include <sys/ddidevmap.h>
  72 #include <sys/bootconf.h>
  73 #include <sys/disp.h>
  74 #include <sys/atomic.h>
  75 #include <sys/promif.h>
  76 #include <sys/instance.h>
  77 #include <sys/sysevent/eventdefs.h>
  78 #include <sys/task.h>
  79 #include <sys/project.h>
  80 #include <sys/taskq.h>
  81 #include <sys/devpolicy.h>
  82 #include <sys/ctype.h>
  83 #include <net/if.h>
  84 #include <sys/rctl.h>
  85 #include <sys/zone.h>
  86 #include <sys/clock_impl.h>
  87 #include <sys/ddi.h>
  88 #include <sys/modhash.h>
  89 #include <sys/sunldi_impl.h>
  90 #include <sys/fs/dv_node.h>
  91 #include <sys/fs/snode.h>
  92 
  93 extern  pri_t   minclsyspri;
  94 
  95 extern  rctl_hndl_t rc_project_locked_mem;
  96 extern  rctl_hndl_t rc_zone_locked_mem;
  97 
  98 #ifdef DEBUG
  99 static int sunddi_debug = 0;
 100 #endif /* DEBUG */
 101 
 102 /* ddi_umem_unlock miscellaneous */
 103 
 104 static  void    i_ddi_umem_unlock_thread_start(void);
 105 
 106 static  kmutex_t        ddi_umem_unlock_mutex; /* unlock list mutex */
 107 static  kcondvar_t      ddi_umem_unlock_cv; /* unlock list block/unblock */
 108 static  kthread_t       *ddi_umem_unlock_thread;
 109 /*
 110  * The ddi_umem_unlock FIFO list.  NULL head pointer indicates empty list.
 111  */
 112 static  struct  ddi_umem_cookie *ddi_umem_unlock_head = NULL;
 113 static  struct  ddi_umem_cookie *ddi_umem_unlock_tail = NULL;
 114 
 115 /*
 116  * DDI(Sun) Function and flag definitions:
 117  */
 118 
 119 #if defined(__x86)
 120 /*
 121  * Used to indicate which entries were chosen from a range.
 122  */
 123 char    *chosen_reg = "chosen-reg";
 124 #endif
 125 
 126 /*
 127  * Function used to ring system console bell
 128  */
 129 void (*ddi_console_bell_func)(clock_t duration);
 130 
 131 /*
 132  * Creating register mappings and handling interrupts:
 133  */
 134 
 135 /*
 136  * Generic ddi_map: Call parent to fulfill request...
 137  */
 138 
 139 int
 140 ddi_map(dev_info_t *dp, ddi_map_req_t *mp, off_t offset,
 141     off_t len, caddr_t *addrp)
 142 {
 143         dev_info_t *pdip;
 144 
 145         ASSERT(dp);
 146         pdip = (dev_info_t *)DEVI(dp)->devi_parent;
 147         return ((DEVI(pdip)->devi_ops->devo_bus_ops->bus_map)(pdip,
 148             dp, mp, offset, len, addrp));
 149 }
 150 
 151 /*
 152  * ddi_apply_range: (Called by nexi only.)
 153  * Apply ranges in parent node dp, to child regspec rp...
 154  */
 155 
 156 int
 157 ddi_apply_range(dev_info_t *dp, dev_info_t *rdip, struct regspec *rp)
 158 {
 159         return (i_ddi_apply_range(dp, rdip, rp));
 160 }
 161 
 162 int
 163 ddi_map_regs(dev_info_t *dip, uint_t rnumber, caddr_t *kaddrp, off_t offset,
 164     off_t len)
 165 {
 166         ddi_map_req_t mr;
 167 #if defined(__x86)
 168         struct {
 169                 int     bus;
 170                 int     addr;
 171                 int     size;
 172         } reg, *reglist;
 173         uint_t  length;
 174         int     rc;
 175 
 176         /*
 177          * get the 'registers' or the 'reg' property.
 178          * We look up the reg property as an array of
 179          * int's.
 180          */
 181         rc = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip,
 182             DDI_PROP_DONTPASS, "registers", (int **)&reglist, &length);
 183         if (rc != DDI_PROP_SUCCESS)
 184                 rc = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip,
 185                     DDI_PROP_DONTPASS, "reg", (int **)&reglist, &length);
 186         if (rc == DDI_PROP_SUCCESS) {
 187                 /*
 188                  * point to the required entry.
 189                  */
 190                 reg = reglist[rnumber];
 191                 reg.addr += offset;
 192                 if (len != 0)
 193                         reg.size = len;
 194                 /*
 195                  * make a new property containing ONLY the required tuple.
 196                  */
 197                 if (ddi_prop_update_int_array(DDI_DEV_T_NONE, dip,
 198                     chosen_reg, (int *)&reg, (sizeof (reg)/sizeof (int)))
 199                     != DDI_PROP_SUCCESS) {
 200                         cmn_err(CE_WARN, "%s%d: cannot create '%s' "
 201                             "property", DEVI(dip)->devi_name,
 202                             DEVI(dip)->devi_instance, chosen_reg);
 203                 }
 204                 /*
 205                  * free the memory allocated by
 206                  * ddi_prop_lookup_int_array ().
 207                  */
 208                 ddi_prop_free((void *)reglist);
 209         }
 210 #endif
 211         mr.map_op = DDI_MO_MAP_LOCKED;
 212         mr.map_type = DDI_MT_RNUMBER;
 213         mr.map_obj.rnumber = rnumber;
 214         mr.map_prot = PROT_READ | PROT_WRITE;
 215         mr.map_flags = DDI_MF_KERNEL_MAPPING;
 216         mr.map_handlep = NULL;
 217         mr.map_vers = DDI_MAP_VERSION;
 218 
 219         /*
 220          * Call my parent to map in my regs.
 221          */
 222 
 223         return (ddi_map(dip, &mr, offset, len, kaddrp));
 224 }
 225 
 226 void
 227 ddi_unmap_regs(dev_info_t *dip, uint_t rnumber, caddr_t *kaddrp, off_t offset,
 228     off_t len)
 229 {
 230         ddi_map_req_t mr;
 231 
 232         mr.map_op = DDI_MO_UNMAP;
 233         mr.map_type = DDI_MT_RNUMBER;
 234         mr.map_flags = DDI_MF_KERNEL_MAPPING;
 235         mr.map_prot = PROT_READ | PROT_WRITE;   /* who cares? */
 236         mr.map_obj.rnumber = rnumber;
 237         mr.map_handlep = NULL;
 238         mr.map_vers = DDI_MAP_VERSION;
 239 
 240         /*
 241          * Call my parent to unmap my regs.
 242          */
 243 
 244         (void) ddi_map(dip, &mr, offset, len, kaddrp);
 245         *kaddrp = (caddr_t)0;
 246 #if defined(__x86)
 247         (void) ddi_prop_remove(DDI_DEV_T_NONE, dip, chosen_reg);
 248 #endif
 249 }
 250 
 251 int
 252 ddi_bus_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp,
 253         off_t offset, off_t len, caddr_t *vaddrp)
 254 {
 255         return (i_ddi_bus_map(dip, rdip, mp, offset, len, vaddrp));
 256 }
 257 
 258 /*
 259  * nullbusmap:  The/DDI default bus_map entry point for nexi
 260  *              not conforming to the reg/range paradigm (i.e. scsi, etc.)
 261  *              with no HAT/MMU layer to be programmed at this level.
 262  *
 263  *              If the call is to map by rnumber, return an error,
 264  *              otherwise pass anything else up the tree to my parent.
 265  */
 266 int
 267 nullbusmap(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp,
 268         off_t offset, off_t len, caddr_t *vaddrp)
 269 {
 270         _NOTE(ARGUNUSED(rdip))
 271         if (mp->map_type == DDI_MT_RNUMBER)
 272                 return (DDI_ME_UNSUPPORTED);
 273 
 274         return (ddi_map(dip, mp, offset, len, vaddrp));
 275 }
 276 
 277 /*
 278  * ddi_rnumber_to_regspec: Not for use by leaf drivers.
 279  *                         Only for use by nexi using the reg/range paradigm.
 280  */
 281 struct regspec *
 282 ddi_rnumber_to_regspec(dev_info_t *dip, int rnumber)
 283 {
 284         return (i_ddi_rnumber_to_regspec(dip, rnumber));
 285 }
 286 
 287 
 288 /*
 289  * Note that we allow the dip to be nil because we may be called
 290  * prior even to the instantiation of the devinfo tree itself - all
 291  * regular leaf and nexus drivers should always use a non-nil dip!
 292  *
 293  * We treat peek in a somewhat cavalier fashion .. assuming that we'll
 294  * simply get a synchronous fault as soon as we touch a missing address.
 295  *
 296  * Poke is rather more carefully handled because we might poke to a write
 297  * buffer, "succeed", then only find some time later that we got an
 298  * asynchronous fault that indicated that the address we were writing to
 299  * was not really backed by hardware.
 300  */
 301 
 302 static int
 303 i_ddi_peekpoke(dev_info_t *devi, ddi_ctl_enum_t cmd, size_t size,
 304     void *addr, void *value_p)
 305 {
 306         union {
 307                 uint64_t        u64;
 308                 uint32_t        u32;
 309                 uint16_t        u16;
 310                 uint8_t         u8;
 311         } peekpoke_value;
 312 
 313         peekpoke_ctlops_t peekpoke_args;
 314         uint64_t dummy_result;
 315         int rval;
 316 
 317         /* Note: size is assumed to be correct;  it is not checked. */
 318         peekpoke_args.size = size;
 319         peekpoke_args.dev_addr = (uintptr_t)addr;
 320         peekpoke_args.handle = NULL;
 321         peekpoke_args.repcount = 1;
 322         peekpoke_args.flags = 0;
 323 
 324         if (cmd == DDI_CTLOPS_POKE) {
 325                 switch (size) {
 326                 case sizeof (uint8_t):
 327                         peekpoke_value.u8 = *(uint8_t *)value_p;
 328                         break;
 329                 case sizeof (uint16_t):
 330                         peekpoke_value.u16 = *(uint16_t *)value_p;
 331                         break;
 332                 case sizeof (uint32_t):
 333                         peekpoke_value.u32 = *(uint32_t *)value_p;
 334                         break;
 335                 case sizeof (uint64_t):
 336                         peekpoke_value.u64 = *(uint64_t *)value_p;
 337                         break;
 338                 }
 339         }
 340 
 341         peekpoke_args.host_addr = (uintptr_t)&peekpoke_value.u64;
 342 
 343         if (devi != NULL)
 344                 rval = ddi_ctlops(devi, devi, cmd, &peekpoke_args,
 345                     &dummy_result);
 346         else
 347                 rval = peekpoke_mem(cmd, &peekpoke_args);
 348 
 349         /*
 350          * A NULL value_p is permitted by ddi_peek(9F); discard the result.
 351          */
 352         if ((cmd == DDI_CTLOPS_PEEK) & (value_p != NULL)) {
 353                 switch (size) {
 354                 case sizeof (uint8_t):
 355                         *(uint8_t *)value_p = peekpoke_value.u8;
 356                         break;
 357                 case sizeof (uint16_t):
 358                         *(uint16_t *)value_p = peekpoke_value.u16;
 359                         break;
 360                 case sizeof (uint32_t):
 361                         *(uint32_t *)value_p = peekpoke_value.u32;
 362                         break;
 363                 case sizeof (uint64_t):
 364                         *(uint64_t *)value_p = peekpoke_value.u64;
 365                         break;
 366                 }
 367         }
 368 
 369         return (rval);
 370 }
 371 
 372 /*
 373  * Keep ddi_peek() and ddi_poke() in case 3rd parties are calling this.
 374  * they shouldn't be, but the 9f manpage kind of pseudo exposes it.
 375  */
 376 int
 377 ddi_peek(dev_info_t *devi, size_t size, void *addr, void *value_p)
 378 {
 379         switch (size) {
 380         case sizeof (uint8_t):
 381         case sizeof (uint16_t):
 382         case sizeof (uint32_t):
 383         case sizeof (uint64_t):
 384                 break;
 385         default:
 386                 return (DDI_FAILURE);
 387         }
 388 
 389         return (i_ddi_peekpoke(devi, DDI_CTLOPS_PEEK, size, addr, value_p));
 390 }
 391 
 392 int
 393 ddi_poke(dev_info_t *devi, size_t size, void *addr, void *value_p)
 394 {
 395         switch (size) {
 396         case sizeof (uint8_t):
 397         case sizeof (uint16_t):
 398         case sizeof (uint32_t):
 399         case sizeof (uint64_t):
 400                 break;
 401         default:
 402                 return (DDI_FAILURE);
 403         }
 404 
 405         return (i_ddi_peekpoke(devi, DDI_CTLOPS_POKE, size, addr, value_p));
 406 }
 407 
 408 int
 409 ddi_peek8(dev_info_t *dip, int8_t *addr, int8_t *val_p)
 410 {
 411         return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr,
 412             val_p));
 413 }
 414 
 415 int
 416 ddi_peek16(dev_info_t *dip, int16_t *addr, int16_t *val_p)
 417 {
 418         return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr,
 419             val_p));
 420 }
 421 
 422 int
 423 ddi_peek32(dev_info_t *dip, int32_t *addr, int32_t *val_p)
 424 {
 425         return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr,
 426             val_p));
 427 }
 428 
 429 int
 430 ddi_peek64(dev_info_t *dip, int64_t *addr, int64_t *val_p)
 431 {
 432         return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr,
 433             val_p));
 434 }
 435 
 436 
 437 /*
 438  * We need to separate the old interfaces from the new ones and leave them
 439  * in here for a while. Previous versions of the OS defined the new interfaces
 440  * to the old interfaces. This way we can fix things up so that we can
 441  * eventually remove these interfaces.
 442  * e.g. A 3rd party module/driver using ddi_peek8 and built against S10
 443  * or earlier will actually have a reference to ddi_peekc in the binary.
 444  */
 445 #ifdef _ILP32
 446 int
 447 ddi_peekc(dev_info_t *dip, int8_t *addr, int8_t *val_p)
 448 {
 449         return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr,
 450             val_p));
 451 }
 452 
 453 int
 454 ddi_peeks(dev_info_t *dip, int16_t *addr, int16_t *val_p)
 455 {
 456         return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr,
 457             val_p));
 458 }
 459 
 460 int
 461 ddi_peekl(dev_info_t *dip, int32_t *addr, int32_t *val_p)
 462 {
 463         return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr,
 464             val_p));
 465 }
 466 
 467 int
 468 ddi_peekd(dev_info_t *dip, int64_t *addr, int64_t *val_p)
 469 {
 470         return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr,
 471             val_p));
 472 }
 473 #endif /* _ILP32 */
 474 
 475 int
 476 ddi_poke8(dev_info_t *dip, int8_t *addr, int8_t val)
 477 {
 478         return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val));
 479 }
 480 
 481 int
 482 ddi_poke16(dev_info_t *dip, int16_t *addr, int16_t val)
 483 {
 484         return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val));
 485 }
 486 
 487 int
 488 ddi_poke32(dev_info_t *dip, int32_t *addr, int32_t val)
 489 {
 490         return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val));
 491 }
 492 
 493 int
 494 ddi_poke64(dev_info_t *dip, int64_t *addr, int64_t val)
 495 {
 496         return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val));
 497 }
 498 
 499 /*
 500  * We need to separate the old interfaces from the new ones and leave them
 501  * in here for a while. Previous versions of the OS defined the new interfaces
 502  * to the old interfaces. This way we can fix things up so that we can
 503  * eventually remove these interfaces.
 504  * e.g. A 3rd party module/driver using ddi_poke8 and built against S10
 505  * or earlier will actually have a reference to ddi_pokec in the binary.
 506  */
 507 #ifdef _ILP32
 508 int
 509 ddi_pokec(dev_info_t *dip, int8_t *addr, int8_t val)
 510 {
 511         return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val));
 512 }
 513 
 514 int
 515 ddi_pokes(dev_info_t *dip, int16_t *addr, int16_t val)
 516 {
 517         return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val));
 518 }
 519 
 520 int
 521 ddi_pokel(dev_info_t *dip, int32_t *addr, int32_t val)
 522 {
 523         return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val));
 524 }
 525 
 526 int
 527 ddi_poked(dev_info_t *dip, int64_t *addr, int64_t val)
 528 {
 529         return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val));
 530 }
 531 #endif /* _ILP32 */
 532 
 533 /*
 534  * ddi_peekpokeio() is used primarily by the mem drivers for moving
 535  * data to and from uio structures via peek and poke.  Note that we
 536  * use "internal" routines ddi_peek and ddi_poke to make this go
 537  * slightly faster, avoiding the call overhead ..
 538  */
 539 int
 540 ddi_peekpokeio(dev_info_t *devi, struct uio *uio, enum uio_rw rw,
 541     caddr_t addr, size_t len, uint_t xfersize)
 542 {
 543         int64_t ibuffer;
 544         int8_t w8;
 545         size_t sz;
 546         int o;
 547 
 548         if (xfersize > sizeof (long))
 549                 xfersize = sizeof (long);
 550 
 551         while (len != 0) {
 552                 if ((len | (uintptr_t)addr) & 1) {
 553                         sz = sizeof (int8_t);
 554                         if (rw == UIO_WRITE) {
 555                                 if ((o = uwritec(uio)) == -1)
 556                                         return (DDI_FAILURE);
 557                                 if (ddi_poke8(devi, (int8_t *)addr,
 558                                     (int8_t)o) != DDI_SUCCESS)
 559                                         return (DDI_FAILURE);
 560                         } else {
 561                                 if (i_ddi_peekpoke(devi, DDI_CTLOPS_PEEK, sz,
 562                                     (int8_t *)addr, &w8) != DDI_SUCCESS)
 563                                         return (DDI_FAILURE);
 564                                 if (ureadc(w8, uio))
 565                                         return (DDI_FAILURE);
 566                         }
 567                 } else {
 568                         switch (xfersize) {
 569                         case sizeof (int64_t):
 570                                 if (((len | (uintptr_t)addr) &
 571                                     (sizeof (int64_t) - 1)) == 0) {
 572                                         sz = xfersize;
 573                                         break;
 574                                 }
 575                                 /*FALLTHROUGH*/
 576                         case sizeof (int32_t):
 577                                 if (((len | (uintptr_t)addr) &
 578                                     (sizeof (int32_t) - 1)) == 0) {
 579                                         sz = xfersize;
 580                                         break;
 581                                 }
 582                                 /*FALLTHROUGH*/
 583                         default:
 584                                 /*
 585                                  * This still assumes that we might have an
 586                                  * I/O bus out there that permits 16-bit
 587                                  * transfers (and that it would be upset by
 588                                  * 32-bit transfers from such locations).
 589                                  */
 590                                 sz = sizeof (int16_t);
 591                                 break;
 592                         }
 593 
 594                         if (rw == UIO_READ) {
 595                                 if (i_ddi_peekpoke(devi, DDI_CTLOPS_PEEK, sz,
 596                                     addr, &ibuffer) != DDI_SUCCESS)
 597                                         return (DDI_FAILURE);
 598                         }
 599 
 600                         if (uiomove(&ibuffer, sz, rw, uio))
 601                                 return (DDI_FAILURE);
 602 
 603                         if (rw == UIO_WRITE) {
 604                                 if (i_ddi_peekpoke(devi, DDI_CTLOPS_POKE, sz,
 605                                     addr, &ibuffer) != DDI_SUCCESS)
 606                                         return (DDI_FAILURE);
 607                         }
 608                 }
 609                 addr += sz;
 610                 len -= sz;
 611         }
 612         return (DDI_SUCCESS);
 613 }
 614 
 615 /*
 616  * These routines are used by drivers that do layered ioctls
 617  * On sparc, they're implemented in assembler to avoid spilling
 618  * register windows in the common (copyin) case ..
 619  */
 620 #if !defined(__sparc)
 621 int
 622 ddi_copyin(const void *buf, void *kernbuf, size_t size, int flags)
 623 {
 624         if (flags & FKIOCTL)
 625                 return (kcopy(buf, kernbuf, size) ? -1 : 0);
 626         return (copyin(buf, kernbuf, size));
 627 }
 628 
 629 int
 630 ddi_copyout(const void *buf, void *kernbuf, size_t size, int flags)
 631 {
 632         if (flags & FKIOCTL)
 633                 return (kcopy(buf, kernbuf, size) ? -1 : 0);
 634         return (copyout(buf, kernbuf, size));
 635 }
 636 #endif  /* !__sparc */
 637 
 638 /*
 639  * Conversions in nexus pagesize units.  We don't duplicate the
 640  * 'nil dip' semantics of peek/poke because btopr/btop/ptob are DDI/DKI
 641  * routines anyway.
 642  */
 643 unsigned long
 644 ddi_btop(dev_info_t *dip, unsigned long bytes)
 645 {
 646         unsigned long pages;
 647 
 648         (void) ddi_ctlops(dip, dip, DDI_CTLOPS_BTOP, &bytes, &pages);
 649         return (pages);
 650 }
 651 
 652 unsigned long
 653 ddi_btopr(dev_info_t *dip, unsigned long bytes)
 654 {
 655         unsigned long pages;
 656 
 657         (void) ddi_ctlops(dip, dip, DDI_CTLOPS_BTOPR, &bytes, &pages);
 658         return (pages);
 659 }
 660 
 661 unsigned long
 662 ddi_ptob(dev_info_t *dip, unsigned long pages)
 663 {
 664         unsigned long bytes;
 665 
 666         (void) ddi_ctlops(dip, dip, DDI_CTLOPS_PTOB, &pages, &bytes);
 667         return (bytes);
 668 }
 669 
 670 unsigned int
 671 ddi_enter_critical(void)
 672 {
 673         return ((uint_t)spl7());
 674 }
 675 
 676 void
 677 ddi_exit_critical(unsigned int spl)
 678 {
 679         splx((int)spl);
 680 }
 681 
 682 /*
 683  * Nexus ctlops punter
 684  */
 685 
 686 #if !defined(__sparc)
 687 /*
 688  * Request bus_ctl parent to handle a bus_ctl request
 689  *
 690  * (The sparc version is in sparc_ddi.s)
 691  */
 692 int
 693 ddi_ctlops(dev_info_t *d, dev_info_t *r, ddi_ctl_enum_t op, void *a, void *v)
 694 {
 695         int (*fp)();
 696 
 697         if (!d || !r)
 698                 return (DDI_FAILURE);
 699 
 700         if ((d = (dev_info_t *)DEVI(d)->devi_bus_ctl) == NULL)
 701                 return (DDI_FAILURE);
 702 
 703         fp = DEVI(d)->devi_ops->devo_bus_ops->bus_ctl;
 704         return ((*fp)(d, r, op, a, v));
 705 }
 706 
 707 #endif
 708 
 709 /*
 710  * DMA/DVMA setup
 711  */
 712 
 713 #if !defined(__sparc)
 714 /*
 715  * Request bus_dma_ctl parent to fiddle with a dma request.
 716  *
 717  * (The sparc version is in sparc_subr.s)
 718  */
 719 int
 720 ddi_dma_mctl(dev_info_t *dip, dev_info_t *rdip,
 721     ddi_dma_handle_t handle, enum ddi_dma_ctlops request,
 722     off_t *offp, size_t *lenp, caddr_t *objp, uint_t flags)
 723 {
 724         int (*fp)();
 725 
 726         if (dip != ddi_root_node())
 727                 dip = (dev_info_t *)DEVI(dip)->devi_bus_dma_ctl;
 728         fp = DEVI(dip)->devi_ops->devo_bus_ops->bus_dma_ctl;
 729         return ((*fp) (dip, rdip, handle, request, offp, lenp, objp, flags));
 730 }
 731 #endif
 732 
 733 /*
 734  * For all DMA control functions, call the DMA control
 735  * routine and return status.
 736  *
 737  * Just plain assume that the parent is to be called.
 738  * If a nexus driver or a thread outside the framework
 739  * of a nexus driver or a leaf driver calls these functions,
 740  * it is up to them to deal with the fact that the parent's
 741  * bus_dma_ctl function will be the first one called.
 742  */
 743 
 744 #define HD      ((ddi_dma_impl_t *)h)->dmai_rdip
 745 
 746 /*
 747  * This routine is left in place to satisfy link dependencies
 748  * for any 3rd party nexus drivers that rely on it.  It is never
 749  * called, though.
 750  */
 751 /*ARGSUSED*/
 752 int
 753 ddi_dma_map(dev_info_t *dip, dev_info_t *rdip,
 754     struct ddi_dma_req *dmareqp, ddi_dma_handle_t *handlep)
 755 {
 756         return (DDI_FAILURE);
 757 }
 758 
 759 #if !defined(__sparc)
 760 
 761 /*
 762  * The SPARC versions of these routines are done in assembler to
 763  * save register windows, so they're in sparc_subr.s.
 764  */
 765 
 766 int
 767 ddi_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr,
 768     int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep)
 769 {
 770         int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_attr_t *,
 771             int (*)(caddr_t), caddr_t, ddi_dma_handle_t *);
 772 
 773         if (dip != ddi_root_node())
 774                 dip = (dev_info_t *)DEVI(dip)->devi_bus_dma_allochdl;
 775 
 776         funcp = DEVI(dip)->devi_ops->devo_bus_ops->bus_dma_allochdl;
 777         return ((*funcp)(dip, rdip, attr, waitfp, arg, handlep));
 778 }
 779 
 780 int
 781 ddi_dma_freehdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handlep)
 782 {
 783         int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t);
 784 
 785         if (dip != ddi_root_node())
 786                 dip = (dev_info_t *)DEVI(dip)->devi_bus_dma_allochdl;
 787 
 788         funcp = DEVI(dip)->devi_ops->devo_bus_ops->bus_dma_freehdl;
 789         return ((*funcp)(dip, rdip, handlep));
 790 }
 791 
 792 int
 793 ddi_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip,
 794     ddi_dma_handle_t handle, struct ddi_dma_req *dmareq,
 795     ddi_dma_cookie_t *cp, uint_t *ccountp)
 796 {
 797         int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t,
 798             struct ddi_dma_req *, ddi_dma_cookie_t *, uint_t *);
 799 
 800         if (dip != ddi_root_node())
 801                 dip = (dev_info_t *)DEVI(dip)->devi_bus_dma_bindhdl;
 802 
 803         funcp = DEVI(dip)->devi_ops->devo_bus_ops->bus_dma_bindhdl;
 804         return ((*funcp)(dip, rdip, handle, dmareq, cp, ccountp));
 805 }
 806 
 807 int
 808 ddi_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
 809     ddi_dma_handle_t handle)
 810 {
 811         int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t);
 812 
 813         if (dip != ddi_root_node())
 814                 dip = (dev_info_t *)DEVI(dip)->devi_bus_dma_unbindhdl;
 815 
 816         funcp = DEVI(dip)->devi_ops->devo_bus_ops->bus_dma_unbindhdl;
 817         return ((*funcp)(dip, rdip, handle));
 818 }
 819 
 820 
 821 int
 822 ddi_dma_flush(dev_info_t *dip, dev_info_t *rdip,
 823     ddi_dma_handle_t handle, off_t off, size_t len,
 824     uint_t cache_flags)
 825 {
 826         int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t,
 827             off_t, size_t, uint_t);
 828 
 829         if (dip != ddi_root_node())
 830                 dip = (dev_info_t *)DEVI(dip)->devi_bus_dma_flush;
 831 
 832         funcp = DEVI(dip)->devi_ops->devo_bus_ops->bus_dma_flush;
 833         return ((*funcp)(dip, rdip, handle, off, len, cache_flags));
 834 }
 835 
 836 int
 837 ddi_dma_win(dev_info_t *dip, dev_info_t *rdip,
 838     ddi_dma_handle_t handle, uint_t win, off_t *offp,
 839     size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp)
 840 {
 841         int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t,
 842             uint_t, off_t *, size_t *, ddi_dma_cookie_t *, uint_t *);
 843 
 844         if (dip != ddi_root_node())
 845                 dip = (dev_info_t *)DEVI(dip)->devi_bus_dma_win;
 846 
 847         funcp = DEVI(dip)->devi_ops->devo_bus_ops->bus_dma_win;
 848         return ((*funcp)(dip, rdip, handle, win, offp, lenp,
 849             cookiep, ccountp));
 850 }
 851 
 852 int
 853 ddi_dma_sync(ddi_dma_handle_t h, off_t o, size_t l, uint_t whom)
 854 {
 855         ddi_dma_impl_t *hp = (ddi_dma_impl_t *)h;
 856         dev_info_t *dip, *rdip;
 857         int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t, off_t,
 858             size_t, uint_t);
 859 
 860         /*
 861          * the DMA nexus driver will set DMP_NOSYNC if the
 862          * platform does not require any sync operation. For
 863          * example if the memory is uncached or consistent
 864          * and without any I/O write buffers involved.
 865          */
 866         if ((hp->dmai_rflags & DMP_NOSYNC) == DMP_NOSYNC)
 867                 return (DDI_SUCCESS);
 868 
 869         dip = rdip = hp->dmai_rdip;
 870         if (dip != ddi_root_node())
 871                 dip = (dev_info_t *)DEVI(dip)->devi_bus_dma_flush;
 872         funcp = DEVI(dip)->devi_ops->devo_bus_ops->bus_dma_flush;
 873         return ((*funcp)(dip, rdip, h, o, l, whom));
 874 }
 875 
 876 int
 877 ddi_dma_unbind_handle(ddi_dma_handle_t h)
 878 {
 879         ddi_dma_impl_t *hp = (ddi_dma_impl_t *)h;
 880         dev_info_t *dip, *rdip;
 881         int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t);
 882 
 883         dip = rdip = hp->dmai_rdip;
 884         if (dip != ddi_root_node())
 885                 dip = (dev_info_t *)DEVI(dip)->devi_bus_dma_unbindhdl;
 886         funcp = DEVI(rdip)->devi_bus_dma_unbindfunc;
 887         return ((*funcp)(dip, rdip, h));
 888 }
 889 
 890 #endif  /* !__sparc */
 891 
 892 /*
 893  * DMA burst sizes, and transfer minimums
 894  */
 895 
 896 int
 897 ddi_dma_burstsizes(ddi_dma_handle_t handle)
 898 {
 899         ddi_dma_impl_t *dimp = (ddi_dma_impl_t *)handle;
 900 
 901         if (!dimp)
 902                 return (0);
 903         else
 904                 return (dimp->dmai_burstsizes);
 905 }
 906 
 907 /*
 908  * Given two DMA attribute structures, apply the attributes
 909  * of one to the other, following the rules of attributes
 910  * and the wishes of the caller.
 911  *
 912  * The rules of DMA attribute structures are that you cannot
 913  * make things *less* restrictive as you apply one set
 914  * of attributes to another.
 915  *
 916  */
 917 void
 918 ddi_dma_attr_merge(ddi_dma_attr_t *attr, ddi_dma_attr_t *mod)
 919 {
 920         attr->dma_attr_addr_lo =
 921             MAX(attr->dma_attr_addr_lo, mod->dma_attr_addr_lo);
 922         attr->dma_attr_addr_hi =
 923             MIN(attr->dma_attr_addr_hi, mod->dma_attr_addr_hi);
 924         attr->dma_attr_count_max =
 925             MIN(attr->dma_attr_count_max, mod->dma_attr_count_max);
 926         attr->dma_attr_align =
 927             MAX(attr->dma_attr_align,  mod->dma_attr_align);
 928         attr->dma_attr_burstsizes =
 929             (uint_t)(attr->dma_attr_burstsizes & mod->dma_attr_burstsizes);
 930         attr->dma_attr_minxfer =
 931             maxbit(attr->dma_attr_minxfer, mod->dma_attr_minxfer);
 932         attr->dma_attr_maxxfer =
 933             MIN(attr->dma_attr_maxxfer, mod->dma_attr_maxxfer);
 934         attr->dma_attr_seg = MIN(attr->dma_attr_seg, mod->dma_attr_seg);
 935         attr->dma_attr_sgllen = MIN((uint_t)attr->dma_attr_sgllen,
 936             (uint_t)mod->dma_attr_sgllen);
 937         attr->dma_attr_granular =
 938             MAX(attr->dma_attr_granular, mod->dma_attr_granular);
 939 }
 940 
 941 /*
 942  * mmap/segmap interface:
 943  */
 944 
 945 /*
 946  * ddi_segmap:          setup the default segment driver. Calls the drivers
 947  *                      XXmmap routine to validate the range to be mapped.
 948  *                      Return ENXIO of the range is not valid.  Create
 949  *                      a seg_dev segment that contains all of the
 950  *                      necessary information and will reference the
 951  *                      default segment driver routines. It returns zero
 952  *                      on success or non-zero on failure.
 953  */
 954 int
 955 ddi_segmap(dev_t dev, off_t offset, struct as *asp, caddr_t *addrp, off_t len,
 956     uint_t prot, uint_t maxprot, uint_t flags, cred_t *credp)
 957 {
 958         extern int spec_segmap(dev_t, off_t, struct as *, caddr_t *,
 959             off_t, uint_t, uint_t, uint_t, struct cred *);
 960 
 961         return (spec_segmap(dev, offset, asp, addrp, len,
 962             prot, maxprot, flags, credp));
 963 }
 964 
 965 /*
 966  * ddi_map_fault:       Resolve mappings at fault time.  Used by segment
 967  *                      drivers. Allows each successive parent to resolve
 968  *                      address translations and add its mappings to the
 969  *                      mapping list supplied in the page structure. It
 970  *                      returns zero on success or non-zero on failure.
 971  */
 972 
 973 int
 974 ddi_map_fault(dev_info_t *dip, struct hat *hat, struct seg *seg,
 975     caddr_t addr, struct devpage *dp, pfn_t pfn, uint_t prot, uint_t lock)
 976 {
 977         return (i_ddi_map_fault(dip, dip, hat, seg, addr, dp, pfn, prot, lock));
 978 }
 979 
 980 /*
 981  * ddi_device_mapping_check:    Called from ddi_segmap_setup.
 982  *      Invokes platform specific DDI to determine whether attributes specified
 983  *      in attr(9s) are valid for the region of memory that will be made
 984  *      available for direct access to user process via the mmap(2) system call.
 985  */
 986 int
 987 ddi_device_mapping_check(dev_t dev, ddi_device_acc_attr_t *accattrp,
 988     uint_t rnumber, uint_t *hat_flags)
 989 {
 990         ddi_acc_handle_t handle;
 991         ddi_map_req_t mr;
 992         ddi_acc_hdl_t *hp;
 993         int result;
 994         dev_info_t *dip;
 995 
 996         /*
 997          * we use e_ddi_hold_devi_by_dev to search for the devi.  We
 998          * release it immediately since it should already be held by
 999          * a devfs vnode.
1000          */
1001         if ((dip =
1002             e_ddi_hold_devi_by_dev(dev, E_DDI_HOLD_DEVI_NOATTACH)) == NULL)
1003                 return (-1);
1004         ddi_release_devi(dip);          /* for e_ddi_hold_devi_by_dev() */
1005 
1006         /*
1007          * Allocate and initialize the common elements of data
1008          * access handle.
1009          */
1010         handle = impl_acc_hdl_alloc(KM_SLEEP, NULL);
1011         if (handle == NULL)
1012                 return (-1);
1013 
1014         hp = impl_acc_hdl_get(handle);
1015         hp->ah_vers = VERS_ACCHDL;
1016         hp->ah_dip = dip;
1017         hp->ah_rnumber = rnumber;
1018         hp->ah_offset = 0;
1019         hp->ah_len = 0;
1020         hp->ah_acc = *accattrp;
1021 
1022         /*
1023          * Set up the mapping request and call to parent.
1024          */
1025         mr.map_op = DDI_MO_MAP_HANDLE;
1026         mr.map_type = DDI_MT_RNUMBER;
1027         mr.map_obj.rnumber = rnumber;
1028         mr.map_prot = PROT_READ | PROT_WRITE;
1029         mr.map_flags = DDI_MF_KERNEL_MAPPING;
1030         mr.map_handlep = hp;
1031         mr.map_vers = DDI_MAP_VERSION;
1032         result = ddi_map(dip, &mr, 0, 0, NULL);
1033 
1034         /*
1035          * Region must be mappable, pick up flags from the framework.
1036          */
1037         *hat_flags = hp->ah_hat_flags;
1038 
1039         impl_acc_hdl_free(handle);
1040 
1041         /*
1042          * check for end result.
1043          */
1044         if (result != DDI_SUCCESS)
1045                 return (-1);
1046         return (0);
1047 }
1048 
1049 
1050 /*
1051  * Property functions:   See also, ddipropdefs.h.
1052  *
1053  * These functions are the framework for the property functions,
1054  * i.e. they support software defined properties.  All implementation
1055  * specific property handling (i.e.: self-identifying devices and
1056  * PROM defined properties are handled in the implementation specific
1057  * functions (defined in ddi_implfuncs.h).
1058  */
1059 
1060 /*
1061  * nopropop:    Shouldn't be called, right?
1062  */
1063 int
1064 nopropop(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
1065     char *name, caddr_t valuep, int *lengthp)
1066 {
1067         _NOTE(ARGUNUSED(dev, dip, prop_op, mod_flags, name, valuep, lengthp))
1068         return (DDI_PROP_NOT_FOUND);
1069 }
1070 
1071 #ifdef  DDI_PROP_DEBUG
1072 int ddi_prop_debug_flag = 0;
1073 
1074 int
1075 ddi_prop_debug(int enable)
1076 {
1077         int prev = ddi_prop_debug_flag;
1078 
1079         if ((enable != 0) || (prev != 0))
1080                 printf("ddi_prop_debug: debugging %s\n",
1081                     enable ? "enabled" : "disabled");
1082         ddi_prop_debug_flag = enable;
1083         return (prev);
1084 }
1085 
1086 #endif  /* DDI_PROP_DEBUG */
1087 
1088 /*
1089  * Search a property list for a match, if found return pointer
1090  * to matching prop struct, else return NULL.
1091  */
1092 
1093 ddi_prop_t *
1094 i_ddi_prop_search(dev_t dev, char *name, uint_t flags, ddi_prop_t **list_head)
1095 {
1096         ddi_prop_t      *propp;
1097 
1098         /*
1099          * find the property in child's devinfo:
1100          * Search order defined by this search function is first matching
1101          * property with input dev == DDI_DEV_T_ANY matching any dev or
1102          * dev == propp->prop_dev, name == propp->name, and the correct
1103          * data type as specified in the flags.  If a DDI_DEV_T_NONE dev
1104          * value made it this far then it implies a DDI_DEV_T_ANY search.
1105          */
1106         if (dev == DDI_DEV_T_NONE)
1107                 dev = DDI_DEV_T_ANY;
1108 
1109         for (propp = *list_head; propp != NULL; propp = propp->prop_next)  {
1110 
1111                 if (!DDI_STRSAME(propp->prop_name, name))
1112                         continue;
1113 
1114                 if ((dev != DDI_DEV_T_ANY) && (propp->prop_dev != dev))
1115                         continue;
1116 
1117                 if (((propp->prop_flags & flags) & DDI_PROP_TYPE_MASK) == 0)
1118                         continue;
1119 
1120                 return (propp);
1121         }
1122 
1123         return ((ddi_prop_t *)0);
1124 }
1125 
1126 /*
1127  * Search for property within devnames structures
1128  */
1129 ddi_prop_t *
1130 i_ddi_search_global_prop(dev_t dev, char *name, uint_t flags)
1131 {
1132         major_t         major;
1133         struct devnames *dnp;
1134         ddi_prop_t      *propp;
1135 
1136         /*
1137          * Valid dev_t value is needed to index into the
1138          * correct devnames entry, therefore a dev_t
1139          * value of DDI_DEV_T_ANY is not appropriate.
1140          */
1141         ASSERT(dev != DDI_DEV_T_ANY);
1142         if (dev == DDI_DEV_T_ANY) {
1143                 return ((ddi_prop_t *)0);
1144         }
1145 
1146         major = getmajor(dev);
1147         dnp = &(devnamesp[major]);
1148 
1149         if (dnp->dn_global_prop_ptr == NULL)
1150                 return ((ddi_prop_t *)0);
1151 
1152         LOCK_DEV_OPS(&dnp->dn_lock);
1153 
1154         for (propp = dnp->dn_global_prop_ptr->prop_list;
1155             propp != NULL;
1156             propp = (ddi_prop_t *)propp->prop_next) {
1157 
1158                 if (!DDI_STRSAME(propp->prop_name, name))
1159                         continue;
1160 
1161                 if ((!(flags & DDI_PROP_ROOTNEX_GLOBAL)) &&
1162                     (!(flags & LDI_DEV_T_ANY)) && (propp->prop_dev != dev))
1163                         continue;
1164 
1165                 if (((propp->prop_flags & flags) & DDI_PROP_TYPE_MASK) == 0)
1166                         continue;
1167 
1168                 /* Property found, return it */
1169                 UNLOCK_DEV_OPS(&dnp->dn_lock);
1170                 return (propp);
1171         }
1172 
1173         UNLOCK_DEV_OPS(&dnp->dn_lock);
1174         return ((ddi_prop_t *)0);
1175 }
1176 
1177 static char prop_no_mem_msg[] = "can't allocate memory for ddi property <%s>";
1178 
1179 /*
1180  * ddi_prop_search_global:
1181  *      Search the global property list within devnames
1182  *      for the named property.  Return the encoded value.
1183  */
1184 static int
1185 i_ddi_prop_search_global(dev_t dev, uint_t flags, char *name,
1186     void *valuep, uint_t *lengthp)
1187 {
1188         ddi_prop_t      *propp;
1189         caddr_t         buffer;
1190 
1191         propp =  i_ddi_search_global_prop(dev, name, flags);
1192 
1193         /* Property NOT found, bail */
1194         if (propp == (ddi_prop_t *)0)
1195                 return (DDI_PROP_NOT_FOUND);
1196 
1197         if (propp->prop_flags & DDI_PROP_UNDEF_IT)
1198                 return (DDI_PROP_UNDEFINED);
1199 
1200         if ((buffer = kmem_alloc(propp->prop_len,
1201             (flags & DDI_PROP_CANSLEEP) ? KM_SLEEP : KM_NOSLEEP)) == NULL) {
1202                 cmn_err(CE_CONT, prop_no_mem_msg, name);
1203                 return (DDI_PROP_NO_MEMORY);
1204         }
1205 
1206         /*
1207          * Return the encoded data
1208          */
1209         *(caddr_t *)valuep = buffer;
1210         *lengthp = propp->prop_len;
1211         bcopy(propp->prop_val, buffer, propp->prop_len);
1212 
1213         return (DDI_PROP_SUCCESS);
1214 }
1215 
1216 /*
1217  * ddi_prop_search_common:      Lookup and return the encoded value
1218  */
1219 int
1220 ddi_prop_search_common(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1221     uint_t flags, char *name, void *valuep, uint_t *lengthp)
1222 {
1223         ddi_prop_t      *propp;
1224         int             i;
1225         caddr_t         buffer;
1226         caddr_t         prealloc = NULL;
1227         int             plength = 0;
1228         dev_info_t      *pdip;
1229         int             (*bop)();
1230 
1231         /*CONSTANTCONDITION*/
1232         while (1)  {
1233 
1234                 mutex_enter(&(DEVI(dip)->devi_lock));
1235 
1236 
1237                 /*
1238                  * find the property in child's devinfo:
1239                  * Search order is:
1240                  *      1. driver defined properties
1241                  *      2. system defined properties
1242                  *      3. driver global properties
1243                  *      4. boot defined properties
1244                  */
1245 
1246                 propp = i_ddi_prop_search(dev, name, flags,
1247                     &(DEVI(dip)->devi_drv_prop_ptr));
1248                 if (propp == NULL)  {
1249                         propp = i_ddi_prop_search(dev, name, flags,
1250                             &(DEVI(dip)->devi_sys_prop_ptr));
1251                 }
1252                 if ((propp == NULL) && DEVI(dip)->devi_global_prop_list) {
1253                         propp = i_ddi_prop_search(dev, name, flags,
1254                             &DEVI(dip)->devi_global_prop_list->prop_list);
1255                 }
1256 
1257                 if (propp == NULL)  {
1258                         propp = i_ddi_prop_search(dev, name, flags,
1259                             &(DEVI(dip)->devi_hw_prop_ptr));
1260                 }
1261 
1262                 /*
1263                  * Software property found?
1264                  */
1265                 if (propp != (ddi_prop_t *)0)   {
1266 
1267                         /*
1268                          * If explicit undefine, return now.
1269                          */
1270                         if (propp->prop_flags & DDI_PROP_UNDEF_IT) {
1271                                 mutex_exit(&(DEVI(dip)->devi_lock));
1272                                 if (prealloc)
1273                                         kmem_free(prealloc, plength);
1274                                 return (DDI_PROP_UNDEFINED);
1275                         }
1276 
1277                         /*
1278                          * If we only want to know if it exists, return now
1279                          */
1280                         if (prop_op == PROP_EXISTS) {
1281                                 mutex_exit(&(DEVI(dip)->devi_lock));
1282                                 ASSERT(prealloc == NULL);
1283                                 return (DDI_PROP_SUCCESS);
1284                         }
1285 
1286                         /*
1287                          * If length only request or prop length == 0,
1288                          * service request and return now.
1289                          */
1290                         if ((prop_op == PROP_LEN) ||(propp->prop_len == 0)) {
1291                                 *lengthp = propp->prop_len;
1292 
1293                                 /*
1294                                  * if prop_op is PROP_LEN_AND_VAL_ALLOC
1295                                  * that means prop_len is 0, so set valuep
1296                                  * also to NULL
1297                                  */
1298                                 if (prop_op == PROP_LEN_AND_VAL_ALLOC)
1299                                         *(caddr_t *)valuep = NULL;
1300 
1301                                 mutex_exit(&(DEVI(dip)->devi_lock));
1302                                 if (prealloc)
1303                                         kmem_free(prealloc, plength);
1304                                 return (DDI_PROP_SUCCESS);
1305                         }
1306 
1307                         /*
1308                          * If LEN_AND_VAL_ALLOC and the request can sleep,
1309                          * drop the mutex, allocate the buffer, and go
1310                          * through the loop again.  If we already allocated
1311                          * the buffer, and the size of the property changed,
1312                          * keep trying...
1313                          */
1314                         if ((prop_op == PROP_LEN_AND_VAL_ALLOC) &&
1315                             (flags & DDI_PROP_CANSLEEP))  {
1316                                 if (prealloc && (propp->prop_len != plength)) {
1317                                         kmem_free(prealloc, plength);
1318                                         prealloc = NULL;
1319                                 }
1320                                 if (prealloc == NULL)  {
1321                                         plength = propp->prop_len;
1322                                         mutex_exit(&(DEVI(dip)->devi_lock));
1323                                         prealloc = kmem_alloc(plength,
1324                                             KM_SLEEP);
1325                                         continue;
1326                                 }
1327                         }
1328 
1329                         /*
1330                          * Allocate buffer, if required.  Either way,
1331                          * set `buffer' variable.
1332                          */
1333                         i = *lengthp;                   /* Get callers length */
1334                         *lengthp = propp->prop_len;  /* Set callers length */
1335 
1336                         switch (prop_op) {
1337 
1338                         case PROP_LEN_AND_VAL_ALLOC:
1339 
1340                                 if (prealloc == NULL) {
1341                                         buffer = kmem_alloc(propp->prop_len,
1342                                             KM_NOSLEEP);
1343                                 } else {
1344                                         buffer = prealloc;
1345                                 }
1346 
1347                                 if (buffer == NULL)  {
1348                                         mutex_exit(&(DEVI(dip)->devi_lock));
1349                                         cmn_err(CE_CONT, prop_no_mem_msg, name);
1350                                         return (DDI_PROP_NO_MEMORY);
1351                                 }
1352                                 /* Set callers buf ptr */
1353                                 *(caddr_t *)valuep = buffer;
1354                                 break;
1355 
1356                         case PROP_LEN_AND_VAL_BUF:
1357 
1358                                 if (propp->prop_len > (i)) {
1359                                         mutex_exit(&(DEVI(dip)->devi_lock));
1360                                         return (DDI_PROP_BUF_TOO_SMALL);
1361                                 }
1362 
1363                                 buffer = valuep;  /* Get callers buf ptr */
1364                                 break;
1365 
1366                         default:
1367                                 break;
1368                         }
1369 
1370                         /*
1371                          * Do the copy.
1372                          */
1373                         bcopy(propp->prop_val, buffer, propp->prop_len);
1374                         mutex_exit(&(DEVI(dip)->devi_lock));
1375                         return (DDI_PROP_SUCCESS);
1376                 }
1377 
1378                 mutex_exit(&(DEVI(dip)->devi_lock));
1379                 if (prealloc)
1380                         kmem_free(prealloc, plength);
1381                 prealloc = NULL;
1382 
1383                 /*
1384                  * Prop not found, call parent bus_ops to deal with possible
1385                  * h/w layer (possible PROM defined props, etc.) and to
1386                  * possibly ascend the hierarchy, if allowed by flags.
1387                  */
1388                 pdip = (dev_info_t *)DEVI(dip)->devi_parent;
1389 
1390                 /*
1391                  * One last call for the root driver PROM props?
1392                  */
1393                 if (dip == ddi_root_node())  {
1394                         return (ddi_bus_prop_op(dev, dip, dip, prop_op,
1395                             flags, name, valuep, (int *)lengthp));
1396                 }
1397 
1398                 /*
1399                  * We may have been called to check for properties
1400                  * within a single devinfo node that has no parent -
1401                  * see make_prop()
1402                  */
1403                 if (pdip == NULL) {
1404                         ASSERT((flags &
1405                             (DDI_PROP_DONTPASS | DDI_PROP_NOTPROM)) ==
1406                             (DDI_PROP_DONTPASS | DDI_PROP_NOTPROM));
1407                         return (DDI_PROP_NOT_FOUND);
1408                 }
1409 
1410                 /*
1411                  * Instead of recursing, we do iterative calls up the tree.
1412                  * As a bit of optimization, skip the bus_op level if the
1413                  * node is a s/w node and if the parent's bus_prop_op function
1414                  * is `ddi_bus_prop_op', because we know that in this case,
1415                  * this function does nothing.
1416                  *
1417                  * 4225415: If the parent isn't attached, or the child
1418                  * hasn't been named by the parent yet, use the default
1419                  * ddi_bus_prop_op as a proxy for the parent.  This
1420                  * allows property lookups in any child/parent state to
1421                  * include 'prom' and inherited properties, even when
1422                  * there are no drivers attached to the child or parent.
1423                  */
1424 
1425                 bop = ddi_bus_prop_op;
1426                 if (i_ddi_devi_attached(pdip) &&
1427                     (i_ddi_node_state(dip) >= DS_INITIALIZED))
1428                         bop = DEVI(pdip)->devi_ops->devo_bus_ops->bus_prop_op;
1429 
1430                 i = DDI_PROP_NOT_FOUND;
1431 
1432                 if ((bop != ddi_bus_prop_op) || ndi_dev_is_prom_node(dip)) {
1433                         i = (*bop)(dev, pdip, dip, prop_op,
1434                             flags | DDI_PROP_DONTPASS,
1435                             name, valuep, lengthp);
1436                 }
1437 
1438                 if ((flags & DDI_PROP_DONTPASS) ||
1439                     (i != DDI_PROP_NOT_FOUND))
1440                         return (i);
1441 
1442                 dip = pdip;
1443         }
1444         /*NOTREACHED*/
1445 }
1446 
1447 
1448 /*
1449  * ddi_prop_op: The basic property operator for drivers.
1450  *
1451  * In ddi_prop_op, the type of valuep is interpreted based on prop_op:
1452  *
1453  *      prop_op                 valuep
1454  *      ------                  ------
1455  *
1456  *      PROP_LEN                <unused>
1457  *
1458  *      PROP_LEN_AND_VAL_BUF    Pointer to callers buffer
1459  *
1460  *      PROP_LEN_AND_VAL_ALLOC  Address of callers pointer (will be set to
1461  *                              address of allocated buffer, if successful)
1462  */
1463 int
1464 ddi_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
1465     char *name, caddr_t valuep, int *lengthp)
1466 {
1467         int     i;
1468 
1469         ASSERT((mod_flags & DDI_PROP_TYPE_MASK) == 0);
1470 
1471         /*
1472          * If this was originally an LDI prop lookup then we bail here.
1473          * The reason is that the LDI property lookup interfaces first call
1474          * a drivers prop_op() entry point to allow it to override
1475          * properties.  But if we've made it here, then the driver hasn't
1476          * overriden any properties.  We don't want to continue with the
1477          * property search here because we don't have any type inforamtion.
1478          * When we return failure, the LDI interfaces will then proceed to
1479          * call the typed property interfaces to look up the property.
1480          */
1481         if (mod_flags & DDI_PROP_DYNAMIC)
1482                 return (DDI_PROP_NOT_FOUND);
1483 
1484         /*
1485          * check for pre-typed property consumer asking for typed property:
1486          * see e_ddi_getprop_int64.
1487          */
1488         if (mod_flags & DDI_PROP_CONSUMER_TYPED)
1489                 mod_flags |= DDI_PROP_TYPE_INT64;
1490         mod_flags |= DDI_PROP_TYPE_ANY;
1491 
1492         i = ddi_prop_search_common(dev, dip, prop_op,
1493             mod_flags, name, valuep, (uint_t *)lengthp);
1494         if (i == DDI_PROP_FOUND_1275)
1495                 return (DDI_PROP_SUCCESS);
1496         return (i);
1497 }
1498 
1499 /*
1500  * ddi_prop_op_nblocks_blksize: The basic property operator for drivers that
1501  * maintain size in number of blksize blocks.  Provides a dynamic property
1502  * implementation for size oriented properties based on nblocks64 and blksize
1503  * values passed in by the driver.  Fallback to ddi_prop_op if the nblocks64
1504  * is too large.  This interface should not be used with a nblocks64 that
1505  * represents the driver's idea of how to represent unknown, if nblocks is
1506  * unknown use ddi_prop_op.
1507  */
1508 int
1509 ddi_prop_op_nblocks_blksize(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1510     int mod_flags, char *name, caddr_t valuep, int *lengthp,
1511     uint64_t nblocks64, uint_t blksize)
1512 {
1513         uint64_t size64;
1514         int     blkshift;
1515 
1516         /* convert block size to shift value */
1517         ASSERT(BIT_ONLYONESET(blksize));
1518         blkshift = highbit(blksize) - 1;
1519 
1520         /*
1521          * There is no point in supporting nblocks64 values that don't have
1522          * an accurate uint64_t byte count representation.
1523          */
1524         if (nblocks64 >= (UINT64_MAX >> blkshift))
1525                 return (ddi_prop_op(dev, dip, prop_op, mod_flags,
1526                     name, valuep, lengthp));
1527 
1528         size64 = nblocks64 << blkshift;
1529         return (ddi_prop_op_size_blksize(dev, dip, prop_op, mod_flags,
1530             name, valuep, lengthp, size64, blksize));
1531 }
1532 
1533 /*
1534  * ddi_prop_op_nblocks: ddi_prop_op_nblocks_blksize with DEV_BSIZE blksize.
1535  */
1536 int
1537 ddi_prop_op_nblocks(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1538     int mod_flags, char *name, caddr_t valuep, int *lengthp, uint64_t nblocks64)
1539 {
1540         return (ddi_prop_op_nblocks_blksize(dev, dip, prop_op,
1541             mod_flags, name, valuep, lengthp, nblocks64, DEV_BSIZE));
1542 }
1543 
1544 /*
1545  * ddi_prop_op_size_blksize: The basic property operator for block drivers that
1546  * maintain size in bytes. Provides a of dynamic property implementation for
1547  * size oriented properties based on size64 value and blksize passed in by the
1548  * driver.  Fallback to ddi_prop_op if the size64 is too large. This interface
1549  * should not be used with a size64 that represents the driver's idea of how
1550  * to represent unknown, if size is unknown use ddi_prop_op.
1551  *
1552  * NOTE: the legacy "nblocks"/"size" properties are treated as 32-bit unsigned
1553  * integers. While the most likely interface to request them ([bc]devi_size)
1554  * is declared int (signed) there is no enforcement of this, which means we
1555  * can't enforce limitations here without risking regression.
1556  */
1557 int
1558 ddi_prop_op_size_blksize(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1559     int mod_flags, char *name, caddr_t valuep, int *lengthp, uint64_t size64,
1560     uint_t blksize)
1561 {
1562         uint64_t nblocks64;
1563         int     callers_length;
1564         caddr_t buffer;
1565         int     blkshift;
1566 
1567         /*
1568          * This is a kludge to support capture of size(9P) pure dynamic
1569          * properties in snapshots for non-cmlb code (without exposing
1570          * i_ddi_prop_dyn changes). When everyone uses cmlb, this code
1571          * should be removed.
1572          */
1573         if (i_ddi_prop_dyn_driver_get(dip) == NULL) {
1574                 static i_ddi_prop_dyn_t prop_dyn_size[] = {
1575                     {"Size",            DDI_PROP_TYPE_INT64,    S_IFCHR},
1576                     {"Nblocks",         DDI_PROP_TYPE_INT64,    S_IFBLK},
1577                     {NULL}
1578                 };
1579                 i_ddi_prop_dyn_driver_set(dip, prop_dyn_size);
1580         }
1581 
1582         /* convert block size to shift value */
1583         ASSERT(BIT_ONLYONESET(blksize));
1584         blkshift = highbit(blksize) - 1;
1585 
1586         /* compute DEV_BSIZE nblocks value */
1587         nblocks64 = size64 >> blkshift;
1588 
1589         /* get callers length, establish length of our dynamic properties */
1590         callers_length = *lengthp;
1591 
1592         if (strcmp(name, "Nblocks") == 0)
1593                 *lengthp = sizeof (uint64_t);
1594         else if (strcmp(name, "Size") == 0)
1595                 *lengthp = sizeof (uint64_t);
1596         else if ((strcmp(name, "nblocks") == 0) && (nblocks64 < UINT_MAX))
1597                 *lengthp = sizeof (uint32_t);
1598         else if ((strcmp(name, "size") == 0) && (size64 < UINT_MAX))
1599                 *lengthp = sizeof (uint32_t);
1600         else if ((strcmp(name, "blksize") == 0) && (blksize < UINT_MAX))
1601                 *lengthp = sizeof (uint32_t);
1602         else {
1603                 /* fallback to ddi_prop_op */
1604                 return (ddi_prop_op(dev, dip, prop_op, mod_flags,
1605                     name, valuep, lengthp));
1606         }
1607 
1608         /* service request for the length of the property */
1609         if (prop_op == PROP_LEN)
1610                 return (DDI_PROP_SUCCESS);
1611 
1612         switch (prop_op) {
1613         case PROP_LEN_AND_VAL_ALLOC:
1614                 if ((buffer = kmem_alloc(*lengthp,
1615                     (mod_flags & DDI_PROP_CANSLEEP) ?
1616                     KM_SLEEP : KM_NOSLEEP)) == NULL)
1617                         return (DDI_PROP_NO_MEMORY);
1618 
1619                 *(caddr_t *)valuep = buffer;    /* set callers buf ptr */
1620                 break;
1621 
1622         case PROP_LEN_AND_VAL_BUF:
1623                 /* the length of the property and the request must match */
1624                 if (callers_length != *lengthp)
1625                         return (DDI_PROP_INVAL_ARG);
1626 
1627                 buffer = valuep;                /* get callers buf ptr */
1628                 break;
1629 
1630         default:
1631                 return (DDI_PROP_INVAL_ARG);
1632         }
1633 
1634         /* transfer the value into the buffer */
1635         if (strcmp(name, "Nblocks") == 0)
1636                 *((uint64_t *)buffer) = nblocks64;
1637         else if (strcmp(name, "Size") == 0)
1638                 *((uint64_t *)buffer) = size64;
1639         else if (strcmp(name, "nblocks") == 0)
1640                 *((uint32_t *)buffer) = (uint32_t)nblocks64;
1641         else if (strcmp(name, "size") == 0)
1642                 *((uint32_t *)buffer) = (uint32_t)size64;
1643         else if (strcmp(name, "blksize") == 0)
1644                 *((uint32_t *)buffer) = (uint32_t)blksize;
1645         return (DDI_PROP_SUCCESS);
1646 }
1647 
1648 /*
1649  * ddi_prop_op_size: ddi_prop_op_size_blksize with DEV_BSIZE block size.
1650  */
1651 int
1652 ddi_prop_op_size(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1653     int mod_flags, char *name, caddr_t valuep, int *lengthp, uint64_t size64)
1654 {
1655         return (ddi_prop_op_size_blksize(dev, dip, prop_op,
1656             mod_flags, name, valuep, lengthp, size64, DEV_BSIZE));
1657 }
1658 
1659 /*
1660  * Variable length props...
1661  */
1662 
1663 /*
1664  * ddi_getlongprop:     Get variable length property len+val into a buffer
1665  *              allocated by property provider via kmem_alloc. Requester
1666  *              is responsible for freeing returned property via kmem_free.
1667  *
1668  *      Arguments:
1669  *
1670  *      dev_t:  Input:  dev_t of property.
1671  *      dip:    Input:  dev_info_t pointer of child.
1672  *      flags:  Input:  Possible flag modifiers are:
1673  *              DDI_PROP_DONTPASS:      Don't pass to parent if prop not found.
1674  *              DDI_PROP_CANSLEEP:      Memory allocation may sleep.
1675  *      name:   Input:  name of property.
1676  *      valuep: Output: Addr of callers buffer pointer.
1677  *      lengthp:Output: *lengthp will contain prop length on exit.
1678  *
1679  *      Possible Returns:
1680  *
1681  *              DDI_PROP_SUCCESS:       Prop found and returned.
1682  *              DDI_PROP_NOT_FOUND:     Prop not found
1683  *              DDI_PROP_UNDEFINED:     Prop explicitly undefined.
1684  *              DDI_PROP_NO_MEMORY:     Prop found, but unable to alloc mem.
1685  */
1686 
1687 int
1688 ddi_getlongprop(dev_t dev, dev_info_t *dip, int flags,
1689     char *name, caddr_t valuep, int *lengthp)
1690 {
1691         return (ddi_prop_op(dev, dip, PROP_LEN_AND_VAL_ALLOC,
1692             flags, name, valuep, lengthp));
1693 }
1694 
1695 /*
1696  *
1697  * ddi_getlongprop_buf:         Get long prop into pre-allocated callers
1698  *                              buffer. (no memory allocation by provider).
1699  *
1700  *      dev_t:  Input:  dev_t of property.
1701  *      dip:    Input:  dev_info_t pointer of child.
1702  *      flags:  Input:  DDI_PROP_DONTPASS or NULL
1703  *      name:   Input:  name of property
1704  *      valuep: Input:  ptr to callers buffer.
1705  *      lengthp:I/O:    ptr to length of callers buffer on entry,
1706  *                      actual length of property on exit.
1707  *
1708  *      Possible returns:
1709  *
1710  *              DDI_PROP_SUCCESS        Prop found and returned
1711  *              DDI_PROP_NOT_FOUND      Prop not found
1712  *              DDI_PROP_UNDEFINED      Prop explicitly undefined.
1713  *              DDI_PROP_BUF_TOO_SMALL  Prop found, callers buf too small,
1714  *                                      no value returned, but actual prop
1715  *                                      length returned in *lengthp
1716  *
1717  */
1718 
1719 int
1720 ddi_getlongprop_buf(dev_t dev, dev_info_t *dip, int flags,
1721     char *name, caddr_t valuep, int *lengthp)
1722 {
1723         return (ddi_prop_op(dev, dip, PROP_LEN_AND_VAL_BUF,
1724             flags, name, valuep, lengthp));
1725 }
1726 
1727 /*
1728  * Integer/boolean sized props.
1729  *
1730  * Call is value only... returns found boolean or int sized prop value or
1731  * defvalue if prop not found or is wrong length or is explicitly undefined.
1732  * Only flag is DDI_PROP_DONTPASS...
1733  *
1734  * By convention, this interface returns boolean (0) sized properties
1735  * as value (int)1.
1736  *
1737  * This never returns an error, if property not found or specifically
1738  * undefined, the input `defvalue' is returned.
1739  */
1740 
1741 int
1742 ddi_getprop(dev_t dev, dev_info_t *dip, int flags, char *name, int defvalue)
1743 {
1744         int     propvalue = defvalue;
1745         int     proplength = sizeof (int);
1746         int     error;
1747 
1748         error = ddi_prop_op(dev, dip, PROP_LEN_AND_VAL_BUF,
1749             flags, name, (caddr_t)&propvalue, &proplength);
1750 
1751         if ((error == DDI_PROP_SUCCESS) && (proplength == 0))
1752                 propvalue = 1;
1753 
1754         return (propvalue);
1755 }
1756 
1757 /*
1758  * Get prop length interface: flags are 0 or DDI_PROP_DONTPASS
1759  * if returns DDI_PROP_SUCCESS, length returned in *lengthp.
1760  */
1761 
1762 int
1763 ddi_getproplen(dev_t dev, dev_info_t *dip, int flags, char *name, int *lengthp)
1764 {
1765         return (ddi_prop_op(dev, dip, PROP_LEN, flags, name, NULL, lengthp));
1766 }
1767 
1768 /*
1769  * Allocate a struct prop_driver_data, along with 'size' bytes
1770  * for decoded property data.  This structure is freed by
1771  * calling ddi_prop_free(9F).
1772  */
1773 static void *
1774 ddi_prop_decode_alloc(size_t size, void (*prop_free)(struct prop_driver_data *))
1775 {
1776         struct prop_driver_data *pdd;
1777 
1778         /*
1779          * Allocate a structure with enough memory to store the decoded data.
1780          */
1781         pdd = kmem_zalloc(sizeof (struct prop_driver_data) + size, KM_SLEEP);
1782         pdd->pdd_size = (sizeof (struct prop_driver_data) + size);
1783         pdd->pdd_prop_free = prop_free;
1784 
1785         /*
1786          * Return a pointer to the location to put the decoded data.
1787          */
1788         return ((void *)((caddr_t)pdd + sizeof (struct prop_driver_data)));
1789 }
1790 
1791 /*
1792  * Allocated the memory needed to store the encoded data in the property
1793  * handle.
1794  */
1795 static int
1796 ddi_prop_encode_alloc(prop_handle_t *ph, size_t size)
1797 {
1798         /*
1799          * If size is zero, then set data to NULL and size to 0.  This
1800          * is a boolean property.
1801          */
1802         if (size == 0) {
1803                 ph->ph_size = 0;
1804                 ph->ph_data = NULL;
1805                 ph->ph_cur_pos = NULL;
1806                 ph->ph_save_pos = NULL;
1807         } else {
1808                 if (ph->ph_flags == DDI_PROP_DONTSLEEP) {
1809                         ph->ph_data = kmem_zalloc(size, KM_NOSLEEP);
1810                         if (ph->ph_data == NULL)
1811                                 return (DDI_PROP_NO_MEMORY);
1812                 } else
1813                         ph->ph_data = kmem_zalloc(size, KM_SLEEP);
1814                 ph->ph_size = size;
1815                 ph->ph_cur_pos = ph->ph_data;
1816                 ph->ph_save_pos = ph->ph_data;
1817         }
1818         return (DDI_PROP_SUCCESS);
1819 }
1820 
1821 /*
1822  * Free the space allocated by the lookup routines.  Each lookup routine
1823  * returns a pointer to the decoded data to the driver.  The driver then
1824  * passes this pointer back to us.  This data actually lives in a struct
1825  * prop_driver_data.  We use negative indexing to find the beginning of
1826  * the structure and then free the entire structure using the size and
1827  * the free routine stored in the structure.
1828  */
1829 void
1830 ddi_prop_free(void *datap)
1831 {
1832         struct prop_driver_data *pdd;
1833 
1834         /*
1835          * Get the structure
1836          */
1837         pdd = (struct prop_driver_data *)
1838             ((caddr_t)datap - sizeof (struct prop_driver_data));
1839         /*
1840          * Call the free routine to free it
1841          */
1842         (*pdd->pdd_prop_free)(pdd);
1843 }
1844 
1845 /*
1846  * Free the data associated with an array of ints,
1847  * allocated with ddi_prop_decode_alloc().
1848  */
1849 static void
1850 ddi_prop_free_ints(struct prop_driver_data *pdd)
1851 {
1852         kmem_free(pdd, pdd->pdd_size);
1853 }
1854 
1855 /*
1856  * Free a single string property or a single string contained within
1857  * the argv style return value of an array of strings.
1858  */
1859 static void
1860 ddi_prop_free_string(struct prop_driver_data *pdd)
1861 {
1862         kmem_free(pdd, pdd->pdd_size);
1863 
1864 }
1865 
1866 /*
1867  * Free an array of strings.
1868  */
1869 static void
1870 ddi_prop_free_strings(struct prop_driver_data *pdd)
1871 {
1872         kmem_free(pdd, pdd->pdd_size);
1873 }
1874 
1875 /*
1876  * Free the data associated with an array of bytes.
1877  */
1878 static void
1879 ddi_prop_free_bytes(struct prop_driver_data *pdd)
1880 {
1881         kmem_free(pdd, pdd->pdd_size);
1882 }
1883 
1884 /*
1885  * Reset the current location pointer in the property handle to the
1886  * beginning of the data.
1887  */
1888 void
1889 ddi_prop_reset_pos(prop_handle_t *ph)
1890 {
1891         ph->ph_cur_pos = ph->ph_data;
1892         ph->ph_save_pos = ph->ph_data;
1893 }
1894 
1895 /*
1896  * Restore the current location pointer in the property handle to the
1897  * saved position.
1898  */
1899 void
1900 ddi_prop_save_pos(prop_handle_t *ph)
1901 {
1902         ph->ph_save_pos = ph->ph_cur_pos;
1903 }
1904 
1905 /*
1906  * Save the location that the current location pointer is pointing to..
1907  */
1908 void
1909 ddi_prop_restore_pos(prop_handle_t *ph)
1910 {
1911         ph->ph_cur_pos = ph->ph_save_pos;
1912 }
1913 
1914 /*
1915  * Property encode/decode functions
1916  */
1917 
1918 /*
1919  * Decode a single integer property
1920  */
1921 static int
1922 ddi_prop_fm_decode_int(prop_handle_t *ph, void *data, uint_t *nelements)
1923 {
1924         int     i;
1925         int     tmp;
1926 
1927         /*
1928          * If there is nothing to decode return an error
1929          */
1930         if (ph->ph_size == 0)
1931                 return (DDI_PROP_END_OF_DATA);
1932 
1933         /*
1934          * Decode the property as a single integer and return it
1935          * in data if we were able to decode it.
1936          */
1937         i = DDI_PROP_INT(ph, DDI_PROP_CMD_DECODE, &tmp);
1938         if (i < DDI_PROP_RESULT_OK) {
1939                 switch (i) {
1940                 case DDI_PROP_RESULT_EOF:
1941                         return (DDI_PROP_END_OF_DATA);
1942 
1943                 case DDI_PROP_RESULT_ERROR:
1944                         return (DDI_PROP_CANNOT_DECODE);
1945                 }
1946         }
1947 
1948         *(int *)data = tmp;
1949         *nelements = 1;
1950         return (DDI_PROP_SUCCESS);
1951 }
1952 
1953 /*
1954  * Decode a single 64 bit integer property
1955  */
1956 static int
1957 ddi_prop_fm_decode_int64(prop_handle_t *ph, void *data, uint_t *nelements)
1958 {
1959         int     i;
1960         int64_t tmp;
1961 
1962         /*
1963          * If there is nothing to decode return an error
1964          */
1965         if (ph->ph_size == 0)
1966                 return (DDI_PROP_END_OF_DATA);
1967 
1968         /*
1969          * Decode the property as a single integer and return it
1970          * in data if we were able to decode it.
1971          */
1972         i = DDI_PROP_INT64(ph, DDI_PROP_CMD_DECODE, &tmp);
1973         if (i < DDI_PROP_RESULT_OK) {
1974                 switch (i) {
1975                 case DDI_PROP_RESULT_EOF:
1976                         return (DDI_PROP_END_OF_DATA);
1977 
1978                 case DDI_PROP_RESULT_ERROR:
1979                         return (DDI_PROP_CANNOT_DECODE);
1980                 }
1981         }
1982 
1983         *(int64_t *)data = tmp;
1984         *nelements = 1;
1985         return (DDI_PROP_SUCCESS);
1986 }
1987 
1988 /*
1989  * Decode an array of integers property
1990  */
1991 static int
1992 ddi_prop_fm_decode_ints(prop_handle_t *ph, void *data, uint_t *nelements)
1993 {
1994         int     i;
1995         int     cnt = 0;
1996         int     *tmp;
1997         int     *intp;
1998         int     n;
1999 
2000         /*
2001          * Figure out how many array elements there are by going through the
2002          * data without decoding it first and counting.
2003          */
2004         for (;;) {
2005                 i = DDI_PROP_INT(ph, DDI_PROP_CMD_SKIP, NULL);
2006                 if (i < 0)
2007                         break;
2008                 cnt++;
2009         }
2010 
2011         /*
2012          * If there are no elements return an error
2013          */
2014         if (cnt == 0)
2015                 return (DDI_PROP_END_OF_DATA);
2016 
2017         /*
2018          * If we cannot skip through the data, we cannot decode it
2019          */
2020         if (i == DDI_PROP_RESULT_ERROR)
2021                 return (DDI_PROP_CANNOT_DECODE);
2022 
2023         /*
2024          * Reset the data pointer to the beginning of the encoded data
2025          */
2026         ddi_prop_reset_pos(ph);
2027 
2028         /*
2029          * Allocated memory to store the decoded value in.
2030          */
2031         intp = ddi_prop_decode_alloc((cnt * sizeof (int)),
2032             ddi_prop_free_ints);
2033 
2034         /*
2035          * Decode each element and place it in the space we just allocated
2036          */
2037         tmp = intp;
2038         for (n = 0; n < cnt; n++, tmp++) {
2039                 i = DDI_PROP_INT(ph, DDI_PROP_CMD_DECODE, tmp);
2040                 if (i < DDI_PROP_RESULT_OK) {
2041                         /*
2042                          * Free the space we just allocated
2043                          * and return an error.
2044                          */
2045                         ddi_prop_free(intp);
2046                         switch (i) {
2047                         case DDI_PROP_RESULT_EOF:
2048                                 return (DDI_PROP_END_OF_DATA);
2049 
2050                         case DDI_PROP_RESULT_ERROR:
2051                                 return (DDI_PROP_CANNOT_DECODE);
2052                         }
2053                 }
2054         }
2055 
2056         *nelements = cnt;
2057         *(int **)data = intp;
2058 
2059         return (DDI_PROP_SUCCESS);
2060 }
2061 
2062 /*
2063  * Decode a 64 bit integer array property
2064  */
2065 static int
2066 ddi_prop_fm_decode_int64_array(prop_handle_t *ph, void *data, uint_t *nelements)
2067 {
2068         int     i;
2069         int     n;
2070         int     cnt = 0;
2071         int64_t *tmp;
2072         int64_t *intp;
2073 
2074         /*
2075          * Count the number of array elements by going
2076          * through the data without decoding it.
2077          */
2078         for (;;) {
2079                 i = DDI_PROP_INT64(ph, DDI_PROP_CMD_SKIP, NULL);
2080                 if (i < 0)
2081                         break;
2082                 cnt++;
2083         }
2084 
2085         /*
2086          * If there are no elements return an error
2087          */
2088         if (cnt == 0)
2089                 return (DDI_PROP_END_OF_DATA);
2090 
2091         /*
2092          * If we cannot skip through the data, we cannot decode it
2093          */
2094         if (i == DDI_PROP_RESULT_ERROR)
2095                 return (DDI_PROP_CANNOT_DECODE);
2096 
2097         /*
2098          * Reset the data pointer to the beginning of the encoded data
2099          */
2100         ddi_prop_reset_pos(ph);
2101 
2102         /*
2103          * Allocate memory to store the decoded value.
2104          */
2105         intp = ddi_prop_decode_alloc((cnt * sizeof (int64_t)),
2106             ddi_prop_free_ints);
2107 
2108         /*
2109          * Decode each element and place it in the space allocated
2110          */
2111         tmp = intp;
2112         for (n = 0; n < cnt; n++, tmp++) {
2113                 i = DDI_PROP_INT64(ph, DDI_PROP_CMD_DECODE, tmp);
2114                 if (i < DDI_PROP_RESULT_OK) {
2115                         /*
2116                          * Free the space we just allocated
2117                          * and return an error.
2118                          */
2119                         ddi_prop_free(intp);
2120                         switch (i) {
2121                         case DDI_PROP_RESULT_EOF:
2122                                 return (DDI_PROP_END_OF_DATA);
2123 
2124                         case DDI_PROP_RESULT_ERROR:
2125                                 return (DDI_PROP_CANNOT_DECODE);
2126                         }
2127                 }
2128         }
2129 
2130         *nelements = cnt;
2131         *(int64_t **)data = intp;
2132 
2133         return (DDI_PROP_SUCCESS);
2134 }
2135 
2136 /*
2137  * Encode an array of integers property (Can be one element)
2138  */
2139 int
2140 ddi_prop_fm_encode_ints(prop_handle_t *ph, void *data, uint_t nelements)
2141 {
2142         int     i;
2143         int     *tmp;
2144         int     cnt;
2145         int     size;
2146 
2147         /*
2148          * If there is no data, we cannot do anything
2149          */
2150         if (nelements == 0)
2151                 return (DDI_PROP_CANNOT_ENCODE);
2152 
2153         /*
2154          * Get the size of an encoded int.
2155          */
2156         size = DDI_PROP_INT(ph, DDI_PROP_CMD_GET_ESIZE, NULL);
2157 
2158         if (size < DDI_PROP_RESULT_OK) {
2159                 switch (size) {
2160                 case DDI_PROP_RESULT_EOF:
2161                         return (DDI_PROP_END_OF_DATA);
2162 
2163                 case DDI_PROP_RESULT_ERROR:
2164                         return (DDI_PROP_CANNOT_ENCODE);
2165                 }
2166         }
2167 
2168         /*
2169          * Allocate space in the handle to store the encoded int.
2170          */
2171         if (ddi_prop_encode_alloc(ph, size * nelements) !=
2172             DDI_PROP_SUCCESS)
2173                 return (DDI_PROP_NO_MEMORY);
2174 
2175         /*
2176          * Encode the array of ints.
2177          */
2178         tmp = (int *)data;
2179         for (cnt = 0; cnt < nelements; cnt++, tmp++) {
2180                 i = DDI_PROP_INT(ph, DDI_PROP_CMD_ENCODE, tmp);
2181                 if (i < DDI_PROP_RESULT_OK) {
2182                         switch (i) {
2183                         case DDI_PROP_RESULT_EOF:
2184                                 return (DDI_PROP_END_OF_DATA);
2185 
2186                         case DDI_PROP_RESULT_ERROR:
2187                                 return (DDI_PROP_CANNOT_ENCODE);
2188                         }
2189                 }
2190         }
2191 
2192         return (DDI_PROP_SUCCESS);
2193 }
2194 
2195 
2196 /*
2197  * Encode a 64 bit integer array property
2198  */
2199 int
2200 ddi_prop_fm_encode_int64(prop_handle_t *ph, void *data, uint_t nelements)
2201 {
2202         int i;
2203         int cnt;
2204         int size;
2205         int64_t *tmp;
2206 
2207         /*
2208          * If there is no data, we cannot do anything
2209          */
2210         if (nelements == 0)
2211                 return (DDI_PROP_CANNOT_ENCODE);
2212 
2213         /*
2214          * Get the size of an encoded 64 bit int.
2215          */
2216         size = DDI_PROP_INT64(ph, DDI_PROP_CMD_GET_ESIZE, NULL);
2217 
2218         if (size < DDI_PROP_RESULT_OK) {
2219                 switch (size) {
2220                 case DDI_PROP_RESULT_EOF:
2221                         return (DDI_PROP_END_OF_DATA);
2222 
2223                 case DDI_PROP_RESULT_ERROR:
2224                         return (DDI_PROP_CANNOT_ENCODE);
2225                 }
2226         }
2227 
2228         /*
2229          * Allocate space in the handle to store the encoded int.
2230          */
2231         if (ddi_prop_encode_alloc(ph, size * nelements) !=
2232             DDI_PROP_SUCCESS)
2233                 return (DDI_PROP_NO_MEMORY);
2234 
2235         /*
2236          * Encode the array of ints.
2237          */
2238         tmp = (int64_t *)data;
2239         for (cnt = 0; cnt < nelements; cnt++, tmp++) {
2240                 i = DDI_PROP_INT64(ph, DDI_PROP_CMD_ENCODE, tmp);
2241                 if (i < DDI_PROP_RESULT_OK) {
2242                         switch (i) {
2243                         case DDI_PROP_RESULT_EOF:
2244                                 return (DDI_PROP_END_OF_DATA);
2245 
2246                         case DDI_PROP_RESULT_ERROR:
2247                                 return (DDI_PROP_CANNOT_ENCODE);
2248                         }
2249                 }
2250         }
2251 
2252         return (DDI_PROP_SUCCESS);
2253 }
2254 
2255 /*
2256  * Decode a single string property
2257  */
2258 static int
2259 ddi_prop_fm_decode_string(prop_handle_t *ph, void *data, uint_t *nelements)
2260 {
2261         char            *tmp;
2262         char            *str;
2263         int             i;
2264         int             size;
2265 
2266         /*
2267          * If there is nothing to decode return an error
2268          */
2269         if (ph->ph_size == 0)
2270                 return (DDI_PROP_END_OF_DATA);
2271 
2272         /*
2273          * Get the decoded size of the encoded string.
2274          */
2275         size = DDI_PROP_STR(ph, DDI_PROP_CMD_GET_DSIZE, NULL);
2276         if (size < DDI_PROP_RESULT_OK) {
2277                 switch (size) {
2278                 case DDI_PROP_RESULT_EOF:
2279                         return (DDI_PROP_END_OF_DATA);
2280 
2281                 case DDI_PROP_RESULT_ERROR:
2282                         return (DDI_PROP_CANNOT_DECODE);
2283                 }
2284         }
2285 
2286         /*
2287          * Allocated memory to store the decoded value in.
2288          */
2289         str = ddi_prop_decode_alloc((size_t)size, ddi_prop_free_string);
2290 
2291         ddi_prop_reset_pos(ph);
2292 
2293         /*
2294          * Decode the str and place it in the space we just allocated
2295          */
2296         tmp = str;
2297         i = DDI_PROP_STR(ph, DDI_PROP_CMD_DECODE, tmp);
2298         if (i < DDI_PROP_RESULT_OK) {
2299                 /*
2300                  * Free the space we just allocated
2301                  * and return an error.
2302                  */
2303                 ddi_prop_free(str);
2304                 switch (i) {
2305                 case DDI_PROP_RESULT_EOF:
2306                         return (DDI_PROP_END_OF_DATA);
2307 
2308                 case DDI_PROP_RESULT_ERROR:
2309                         return (DDI_PROP_CANNOT_DECODE);
2310                 }
2311         }
2312 
2313         *(char **)data = str;
2314         *nelements = 1;
2315 
2316         return (DDI_PROP_SUCCESS);
2317 }
2318 
2319 /*
2320  * Decode an array of strings.
2321  */
2322 int
2323 ddi_prop_fm_decode_strings(prop_handle_t *ph, void *data, uint_t *nelements)
2324 {
2325         int             cnt = 0;
2326         char            **strs;
2327         char            **tmp;
2328         char            *ptr;
2329         int             i;
2330         int             n;
2331         int             size;
2332         size_t          nbytes;
2333 
2334         /*
2335          * Figure out how many array elements there are by going through the
2336          * data without decoding it first and counting.
2337          */
2338         for (;;) {
2339                 i = DDI_PROP_STR(ph, DDI_PROP_CMD_SKIP, NULL);
2340                 if (i < 0)
2341                         break;
2342                 cnt++;
2343         }
2344 
2345         /*
2346          * If there are no elements return an error
2347          */
2348         if (cnt == 0)
2349                 return (DDI_PROP_END_OF_DATA);
2350 
2351         /*
2352          * If we cannot skip through the data, we cannot decode it
2353          */
2354         if (i == DDI_PROP_RESULT_ERROR)
2355                 return (DDI_PROP_CANNOT_DECODE);
2356 
2357         /*
2358          * Reset the data pointer to the beginning of the encoded data
2359          */
2360         ddi_prop_reset_pos(ph);
2361 
2362         /*
2363          * Figure out how much memory we need for the sum total
2364          */
2365         nbytes = (cnt + 1) * sizeof (char *);
2366 
2367         for (n = 0; n < cnt; n++) {
2368                 /*
2369                  * Get the decoded size of the current encoded string.
2370                  */
2371                 size = DDI_PROP_STR(ph, DDI_PROP_CMD_GET_DSIZE, NULL);
2372                 if (size < DDI_PROP_RESULT_OK) {
2373                         switch (size) {
2374                         case DDI_PROP_RESULT_EOF:
2375                                 return (DDI_PROP_END_OF_DATA);
2376 
2377                         case DDI_PROP_RESULT_ERROR:
2378                                 return (DDI_PROP_CANNOT_DECODE);
2379                         }
2380                 }
2381 
2382                 nbytes += size;
2383         }
2384 
2385         /*
2386          * Allocate memory in which to store the decoded strings.
2387          */
2388         strs = ddi_prop_decode_alloc(nbytes, ddi_prop_free_strings);
2389 
2390         /*
2391          * Set up pointers for each string by figuring out yet
2392          * again how long each string is.
2393          */
2394         ddi_prop_reset_pos(ph);
2395         ptr = (caddr_t)strs + ((cnt + 1) * sizeof (char *));
2396         for (tmp = strs, n = 0; n < cnt; n++, tmp++) {
2397                 /*
2398                  * Get the decoded size of the current encoded string.
2399                  */
2400                 size = DDI_PROP_STR(ph, DDI_PROP_CMD_GET_DSIZE, NULL);
2401                 if (size < DDI_PROP_RESULT_OK) {
2402                         ddi_prop_free(strs);
2403                         switch (size) {
2404                         case DDI_PROP_RESULT_EOF:
2405                                 return (DDI_PROP_END_OF_DATA);
2406 
2407                         case DDI_PROP_RESULT_ERROR:
2408                                 return (DDI_PROP_CANNOT_DECODE);
2409                         }
2410                 }
2411 
2412                 *tmp = ptr;
2413                 ptr += size;
2414         }
2415 
2416         /*
2417          * String array is terminated by a NULL
2418          */
2419         *tmp = NULL;
2420 
2421         /*
2422          * Finally, we can decode each string
2423          */
2424         ddi_prop_reset_pos(ph);
2425         for (tmp = strs, n = 0; n < cnt; n++, tmp++) {
2426                 i = DDI_PROP_STR(ph, DDI_PROP_CMD_DECODE, *tmp);
2427                 if (i < DDI_PROP_RESULT_OK) {
2428                         /*
2429                          * Free the space we just allocated
2430                          * and return an error
2431                          */
2432                         ddi_prop_free(strs);
2433                         switch (i) {
2434                         case DDI_PROP_RESULT_EOF:
2435                                 return (DDI_PROP_END_OF_DATA);
2436 
2437                         case DDI_PROP_RESULT_ERROR:
2438                                 return (DDI_PROP_CANNOT_DECODE);
2439                         }
2440                 }
2441         }
2442 
2443         *(char ***)data = strs;
2444         *nelements = cnt;
2445 
2446         return (DDI_PROP_SUCCESS);
2447 }
2448 
2449 /*
2450  * Encode a string.
2451  */
2452 int
2453 ddi_prop_fm_encode_string(prop_handle_t *ph, void *data, uint_t nelements)
2454 {
2455         char            **tmp;
2456         int             size;
2457         int             i;
2458 
2459         /*
2460          * If there is no data, we cannot do anything
2461          */
2462         if (nelements == 0)
2463                 return (DDI_PROP_CANNOT_ENCODE);
2464 
2465         /*
2466          * Get the size of the encoded string.
2467          */
2468         tmp = (char **)data;
2469         size = DDI_PROP_STR(ph, DDI_PROP_CMD_GET_ESIZE, *tmp);
2470         if (size < DDI_PROP_RESULT_OK) {
2471                 switch (size) {
2472                 case DDI_PROP_RESULT_EOF:
2473                         return (DDI_PROP_END_OF_DATA);
2474 
2475                 case DDI_PROP_RESULT_ERROR:
2476                         return (DDI_PROP_CANNOT_ENCODE);
2477                 }
2478         }
2479 
2480         /*
2481          * Allocate space in the handle to store the encoded string.
2482          */
2483         if (ddi_prop_encode_alloc(ph, size) != DDI_PROP_SUCCESS)
2484                 return (DDI_PROP_NO_MEMORY);
2485 
2486         ddi_prop_reset_pos(ph);
2487 
2488         /*
2489          * Encode the string.
2490          */
2491         tmp = (char **)data;
2492         i = DDI_PROP_STR(ph, DDI_PROP_CMD_ENCODE, *tmp);
2493         if (i < DDI_PROP_RESULT_OK) {
2494                 switch (i) {
2495                 case DDI_PROP_RESULT_EOF:
2496                         return (DDI_PROP_END_OF_DATA);
2497 
2498                 case DDI_PROP_RESULT_ERROR:
2499                         return (DDI_PROP_CANNOT_ENCODE);
2500                 }
2501         }
2502 
2503         return (DDI_PROP_SUCCESS);
2504 }
2505 
2506 
2507 /*
2508  * Encode an array of strings.
2509  */
2510 int
2511 ddi_prop_fm_encode_strings(prop_handle_t *ph, void *data, uint_t nelements)
2512 {
2513         int             cnt = 0;
2514         char            **tmp;
2515         int             size;
2516         uint_t          total_size;
2517         int             i;
2518 
2519         /*
2520          * If there is no data, we cannot do anything
2521          */
2522         if (nelements == 0)
2523                 return (DDI_PROP_CANNOT_ENCODE);
2524 
2525         /*
2526          * Get the total size required to encode all the strings.
2527          */
2528         total_size = 0;
2529         tmp = (char **)data;
2530         for (cnt = 0; cnt < nelements; cnt++, tmp++) {
2531                 size = DDI_PROP_STR(ph, DDI_PROP_CMD_GET_ESIZE, *tmp);
2532                 if (size < DDI_PROP_RESULT_OK) {
2533                         switch (size) {
2534                         case DDI_PROP_RESULT_EOF:
2535                                 return (DDI_PROP_END_OF_DATA);
2536 
2537                         case DDI_PROP_RESULT_ERROR:
2538                                 return (DDI_PROP_CANNOT_ENCODE);
2539                         }
2540                 }
2541                 total_size += (uint_t)size;
2542         }
2543 
2544         /*
2545          * Allocate space in the handle to store the encoded strings.
2546          */
2547         if (ddi_prop_encode_alloc(ph, total_size) != DDI_PROP_SUCCESS)
2548                 return (DDI_PROP_NO_MEMORY);
2549 
2550         ddi_prop_reset_pos(ph);
2551 
2552         /*
2553          * Encode the array of strings.
2554          */
2555         tmp = (char **)data;
2556         for (cnt = 0; cnt < nelements; cnt++, tmp++) {
2557                 i = DDI_PROP_STR(ph, DDI_PROP_CMD_ENCODE, *tmp);
2558                 if (i < DDI_PROP_RESULT_OK) {
2559                         switch (i) {
2560                         case DDI_PROP_RESULT_EOF:
2561                                 return (DDI_PROP_END_OF_DATA);
2562 
2563                         case DDI_PROP_RESULT_ERROR:
2564                                 return (DDI_PROP_CANNOT_ENCODE);
2565                         }
2566                 }
2567         }
2568 
2569         return (DDI_PROP_SUCCESS);
2570 }
2571 
2572 
2573 /*
2574  * Decode an array of bytes.
2575  */
2576 static int
2577 ddi_prop_fm_decode_bytes(prop_handle_t *ph, void *data, uint_t *nelements)
2578 {
2579         uchar_t         *tmp;
2580         int             nbytes;
2581         int             i;
2582 
2583         /*
2584          * If there are no elements return an error
2585          */
2586         if (ph->ph_size == 0)
2587                 return (DDI_PROP_END_OF_DATA);
2588 
2589         /*
2590          * Get the size of the encoded array of bytes.
2591          */
2592         nbytes = DDI_PROP_BYTES(ph, DDI_PROP_CMD_GET_DSIZE,
2593             data, ph->ph_size);
2594         if (nbytes < DDI_PROP_RESULT_OK) {
2595                 switch (nbytes) {
2596                 case DDI_PROP_RESULT_EOF:
2597                         return (DDI_PROP_END_OF_DATA);
2598 
2599                 case DDI_PROP_RESULT_ERROR:
2600                         return (DDI_PROP_CANNOT_DECODE);
2601                 }
2602         }
2603 
2604         /*
2605          * Allocated memory to store the decoded value in.
2606          */
2607         tmp = ddi_prop_decode_alloc(nbytes, ddi_prop_free_bytes);
2608 
2609         /*
2610          * Decode each element and place it in the space we just allocated
2611          */
2612         i = DDI_PROP_BYTES(ph, DDI_PROP_CMD_DECODE, tmp, nbytes);
2613         if (i < DDI_PROP_RESULT_OK) {
2614                 /*
2615                  * Free the space we just allocated
2616                  * and return an error
2617                  */
2618                 ddi_prop_free(tmp);
2619                 switch (i) {
2620                 case DDI_PROP_RESULT_EOF:
2621                         return (DDI_PROP_END_OF_DATA);
2622 
2623                 case DDI_PROP_RESULT_ERROR:
2624                         return (DDI_PROP_CANNOT_DECODE);
2625                 }
2626         }
2627 
2628         *(uchar_t **)data = tmp;
2629         *nelements = nbytes;
2630 
2631         return (DDI_PROP_SUCCESS);
2632 }
2633 
2634 /*
2635  * Encode an array of bytes.
2636  */
2637 int
2638 ddi_prop_fm_encode_bytes(prop_handle_t *ph, void *data, uint_t nelements)
2639 {
2640         int             size;
2641         int             i;
2642 
2643         /*
2644          * If there are no elements, then this is a boolean property,
2645          * so just create a property handle with no data and return.
2646          */
2647         if (nelements == 0) {
2648                 (void) ddi_prop_encode_alloc(ph, 0);
2649                 return (DDI_PROP_SUCCESS);
2650         }
2651 
2652         /*
2653          * Get the size of the encoded array of bytes.
2654          */
2655         size = DDI_PROP_BYTES(ph, DDI_PROP_CMD_GET_ESIZE, (uchar_t *)data,
2656             nelements);
2657         if (size < DDI_PROP_RESULT_OK) {
2658                 switch (size) {
2659                 case DDI_PROP_RESULT_EOF:
2660                         return (DDI_PROP_END_OF_DATA);
2661 
2662                 case DDI_PROP_RESULT_ERROR:
2663                         return (DDI_PROP_CANNOT_DECODE);
2664                 }
2665         }
2666 
2667         /*
2668          * Allocate space in the handle to store the encoded bytes.
2669          */
2670         if (ddi_prop_encode_alloc(ph, (uint_t)size) != DDI_PROP_SUCCESS)
2671                 return (DDI_PROP_NO_MEMORY);
2672 
2673         /*
2674          * Encode the array of bytes.
2675          */
2676         i = DDI_PROP_BYTES(ph, DDI_PROP_CMD_ENCODE, (uchar_t *)data,
2677             nelements);
2678         if (i < DDI_PROP_RESULT_OK) {
2679                 switch (i) {
2680                 case DDI_PROP_RESULT_EOF:
2681                         return (DDI_PROP_END_OF_DATA);
2682 
2683                 case DDI_PROP_RESULT_ERROR:
2684                         return (DDI_PROP_CANNOT_ENCODE);
2685                 }
2686         }
2687 
2688         return (DDI_PROP_SUCCESS);
2689 }
2690 
2691 /*
2692  * OBP 1275 integer, string and byte operators.
2693  *
2694  * DDI_PROP_CMD_DECODE:
2695  *
2696  *      DDI_PROP_RESULT_ERROR:          cannot decode the data
2697  *      DDI_PROP_RESULT_EOF:            end of data
2698  *      DDI_PROP_OK:                    data was decoded
2699  *
2700  * DDI_PROP_CMD_ENCODE:
2701  *
2702  *      DDI_PROP_RESULT_ERROR:          cannot encode the data
2703  *      DDI_PROP_RESULT_EOF:            end of data
2704  *      DDI_PROP_OK:                    data was encoded
2705  *
2706  * DDI_PROP_CMD_SKIP:
2707  *
2708  *      DDI_PROP_RESULT_ERROR:          cannot skip the data
2709  *      DDI_PROP_RESULT_EOF:            end of data
2710  *      DDI_PROP_OK:                    data was skipped
2711  *
2712  * DDI_PROP_CMD_GET_ESIZE:
2713  *
2714  *      DDI_PROP_RESULT_ERROR:          cannot get encoded size
2715  *      DDI_PROP_RESULT_EOF:            end of data
2716  *      > 0:                         the encoded size
2717  *
2718  * DDI_PROP_CMD_GET_DSIZE:
2719  *
2720  *      DDI_PROP_RESULT_ERROR:          cannot get decoded size
2721  *      DDI_PROP_RESULT_EOF:            end of data
2722  *      > 0:                         the decoded size
2723  */
2724 
2725 /*
2726  * OBP 1275 integer operator
2727  *
2728  * OBP properties are a byte stream of data, so integers may not be
2729  * properly aligned.  Therefore we need to copy them one byte at a time.
2730  */
2731 int
2732 ddi_prop_1275_int(prop_handle_t *ph, uint_t cmd, int *data)
2733 {
2734         int     i;
2735 
2736         switch (cmd) {
2737         case DDI_PROP_CMD_DECODE:
2738                 /*
2739                  * Check that there is encoded data
2740                  */
2741                 if (ph->ph_cur_pos == NULL || ph->ph_size == 0)
2742                         return (DDI_PROP_RESULT_ERROR);
2743                 if (ph->ph_flags & PH_FROM_PROM) {
2744                         i = MIN(ph->ph_size, PROP_1275_INT_SIZE);
2745                         if ((int *)ph->ph_cur_pos > ((int *)ph->ph_data +
2746                             ph->ph_size - i))
2747                                 return (DDI_PROP_RESULT_ERROR);
2748                 } else {
2749                         if (ph->ph_size < sizeof (int) ||
2750                             ((int *)ph->ph_cur_pos > ((int *)ph->ph_data +
2751                             ph->ph_size - sizeof (int))))
2752                                 return (DDI_PROP_RESULT_ERROR);
2753                 }
2754 
2755                 /*
2756                  * Copy the integer, using the implementation-specific
2757                  * copy function if the property is coming from the PROM.
2758                  */
2759                 if (ph->ph_flags & PH_FROM_PROM) {
2760                         *data = impl_ddi_prop_int_from_prom(
2761                             (uchar_t *)ph->ph_cur_pos,
2762                             (ph->ph_size < PROP_1275_INT_SIZE) ?
2763                             ph->ph_size : PROP_1275_INT_SIZE);
2764                 } else {
2765                         bcopy(ph->ph_cur_pos, data, sizeof (int));
2766                 }
2767 
2768                 /*
2769                  * Move the current location to the start of the next
2770                  * bit of undecoded data.
2771                  */
2772                 ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos +
2773                     PROP_1275_INT_SIZE;
2774                 return (DDI_PROP_RESULT_OK);
2775 
2776         case DDI_PROP_CMD_ENCODE:
2777                 /*
2778                  * Check that there is room to encoded the data
2779                  */
2780                 if (ph->ph_cur_pos == NULL || ph->ph_size == 0 ||
2781                     ph->ph_size < PROP_1275_INT_SIZE ||
2782                     ((int *)ph->ph_cur_pos > ((int *)ph->ph_data +
2783                     ph->ph_size - sizeof (int))))
2784                         return (DDI_PROP_RESULT_ERROR);
2785 
2786                 /*
2787                  * Encode the integer into the byte stream one byte at a
2788                  * time.
2789                  */
2790                 bcopy(data, ph->ph_cur_pos, sizeof (int));
2791 
2792                 /*
2793                  * Move the current location to the start of the next bit of
2794                  * space where we can store encoded data.
2795                  */
2796                 ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos + PROP_1275_INT_SIZE;
2797                 return (DDI_PROP_RESULT_OK);
2798 
2799         case DDI_PROP_CMD_SKIP:
2800                 /*
2801                  * Check that there is encoded data
2802                  */
2803                 if (ph->ph_cur_pos == NULL || ph->ph_size == 0 ||
2804                     ph->ph_size < PROP_1275_INT_SIZE)
2805                         return (DDI_PROP_RESULT_ERROR);
2806 
2807 
2808                 if ((caddr_t)ph->ph_cur_pos ==
2809                     (caddr_t)ph->ph_data + ph->ph_size) {
2810                         return (DDI_PROP_RESULT_EOF);
2811                 } else if ((caddr_t)ph->ph_cur_pos >
2812                     (caddr_t)ph->ph_data + ph->ph_size) {
2813                         return (DDI_PROP_RESULT_EOF);
2814                 }
2815 
2816                 /*
2817                  * Move the current location to the start of the next bit of
2818                  * undecoded data.
2819                  */
2820                 ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos + PROP_1275_INT_SIZE;
2821                 return (DDI_PROP_RESULT_OK);
2822 
2823         case DDI_PROP_CMD_GET_ESIZE:
2824                 /*
2825                  * Return the size of an encoded integer on OBP
2826                  */
2827                 return (PROP_1275_INT_SIZE);
2828 
2829         case DDI_PROP_CMD_GET_DSIZE:
2830                 /*
2831                  * Return the size of a decoded integer on the system.
2832                  */
2833                 return (sizeof (int));
2834 
2835         default:
2836 #ifdef DEBUG
2837                 panic("ddi_prop_1275_int: %x impossible", cmd);
2838                 /*NOTREACHED*/
2839 #else
2840                 return (DDI_PROP_RESULT_ERROR);
2841 #endif  /* DEBUG */
2842         }
2843 }
2844 
2845 /*
2846  * 64 bit integer operator.
2847  *
2848  * This is an extension, defined by Sun, to the 1275 integer
2849  * operator.  This routine handles the encoding/decoding of
2850  * 64 bit integer properties.
2851  */
2852 int
2853 ddi_prop_int64_op(prop_handle_t *ph, uint_t cmd, int64_t *data)
2854 {
2855 
2856         switch (cmd) {
2857         case DDI_PROP_CMD_DECODE:
2858                 /*
2859                  * Check that there is encoded data
2860                  */
2861                 if (ph->ph_cur_pos == NULL || ph->ph_size == 0)
2862                         return (DDI_PROP_RESULT_ERROR);
2863                 if (ph->ph_flags & PH_FROM_PROM) {
2864                         return (DDI_PROP_RESULT_ERROR);
2865                 } else {
2866                         if (ph->ph_size < sizeof (int64_t) ||
2867                             ((int64_t *)ph->ph_cur_pos >
2868                             ((int64_t *)ph->ph_data +
2869                             ph->ph_size - sizeof (int64_t))))
2870                                 return (DDI_PROP_RESULT_ERROR);
2871                 }
2872                 /*
2873                  * Copy the integer, using the implementation-specific
2874                  * copy function if the property is coming from the PROM.
2875                  */
2876                 if (ph->ph_flags & PH_FROM_PROM) {
2877                         return (DDI_PROP_RESULT_ERROR);
2878                 } else {
2879                         bcopy(ph->ph_cur_pos, data, sizeof (int64_t));
2880                 }
2881 
2882                 /*
2883                  * Move the current location to the start of the next
2884                  * bit of undecoded data.
2885                  */
2886                 ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos +
2887                     sizeof (int64_t);
2888                         return (DDI_PROP_RESULT_OK);
2889 
2890         case DDI_PROP_CMD_ENCODE:
2891                 /*
2892                  * Check that there is room to encoded the data
2893                  */
2894                 if (ph->ph_cur_pos == NULL || ph->ph_size == 0 ||
2895                     ph->ph_size < sizeof (int64_t) ||
2896                     ((int64_t *)ph->ph_cur_pos > ((int64_t *)ph->ph_data +
2897                     ph->ph_size - sizeof (int64_t))))
2898                         return (DDI_PROP_RESULT_ERROR);
2899 
2900                 /*
2901                  * Encode the integer into the byte stream one byte at a
2902                  * time.
2903                  */
2904                 bcopy(data, ph->ph_cur_pos, sizeof (int64_t));
2905 
2906                 /*
2907                  * Move the current location to the start of the next bit of
2908                  * space where we can store encoded data.
2909                  */
2910                 ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos +
2911                     sizeof (int64_t);
2912                 return (DDI_PROP_RESULT_OK);
2913 
2914         case DDI_PROP_CMD_SKIP:
2915                 /*
2916                  * Check that there is encoded data
2917                  */
2918                 if (ph->ph_cur_pos == NULL || ph->ph_size == 0 ||
2919                     ph->ph_size < sizeof (int64_t))
2920                         return (DDI_PROP_RESULT_ERROR);
2921 
2922                 if ((caddr_t)ph->ph_cur_pos ==
2923                     (caddr_t)ph->ph_data + ph->ph_size) {
2924                         return (DDI_PROP_RESULT_EOF);
2925                 } else if ((caddr_t)ph->ph_cur_pos >
2926                     (caddr_t)ph->ph_data + ph->ph_size) {
2927                         return (DDI_PROP_RESULT_EOF);
2928                 }
2929 
2930                 /*
2931                  * Move the current location to the start of
2932                  * the next bit of undecoded data.
2933                  */
2934                 ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos +
2935                     sizeof (int64_t);
2936                         return (DDI_PROP_RESULT_OK);
2937 
2938         case DDI_PROP_CMD_GET_ESIZE:
2939                 /*
2940                  * Return the size of an encoded integer on OBP
2941                  */
2942                 return (sizeof (int64_t));
2943 
2944         case DDI_PROP_CMD_GET_DSIZE:
2945                 /*
2946                  * Return the size of a decoded integer on the system.
2947                  */
2948                 return (sizeof (int64_t));
2949 
2950         default:
2951 #ifdef DEBUG
2952                 panic("ddi_prop_int64_op: %x impossible", cmd);
2953                 /*NOTREACHED*/
2954 #else
2955                 return (DDI_PROP_RESULT_ERROR);
2956 #endif  /* DEBUG */
2957         }
2958 }
2959 
2960 /*
2961  * OBP 1275 string operator.
2962  *
2963  * OBP strings are NULL terminated.
2964  */
2965 int
2966 ddi_prop_1275_string(prop_handle_t *ph, uint_t cmd, char *data)
2967 {
2968         int     n;
2969         char    *p;
2970         char    *end;
2971 
2972         switch (cmd) {
2973         case DDI_PROP_CMD_DECODE:
2974                 /*
2975                  * Check that there is encoded data
2976                  */
2977                 if (ph->ph_cur_pos == NULL || ph->ph_size == 0) {
2978                         return (DDI_PROP_RESULT_ERROR);
2979                 }
2980 
2981                 /*
2982                  * Match DDI_PROP_CMD_GET_DSIZE logic for when to stop and
2983                  * how to NULL terminate result.
2984                  */
2985                 p = (char *)ph->ph_cur_pos;
2986                 end = (char *)ph->ph_data + ph->ph_size;
2987                 if (p >= end)
2988                         return (DDI_PROP_RESULT_EOF);
2989 
2990                 while (p < end) {
2991                         *data++ = *p;
2992                         if (*p++ == 0) {        /* NULL from OBP */
2993                                 ph->ph_cur_pos = p;
2994                                 return (DDI_PROP_RESULT_OK);
2995                         }
2996                 }
2997 
2998                 /*
2999                  * If OBP did not NULL terminate string, which happens
3000                  * (at least) for 'true'/'false' boolean values, account for
3001                  * the space and store null termination on decode.
3002                  */
3003                 ph->ph_cur_pos = p;
3004                 *data = 0;
3005                 return (DDI_PROP_RESULT_OK);
3006 
3007         case DDI_PROP_CMD_ENCODE:
3008                 /*
3009                  * Check that there is room to encoded the data
3010                  */
3011                 if (ph->ph_cur_pos == NULL || ph->ph_size == 0) {
3012                         return (DDI_PROP_RESULT_ERROR);
3013                 }
3014 
3015                 n = strlen(data) + 1;
3016                 if ((char *)ph->ph_cur_pos > ((char *)ph->ph_data +
3017                     ph->ph_size - n)) {
3018                         return (DDI_PROP_RESULT_ERROR);
3019                 }
3020 
3021                 /*
3022                  * Copy the NULL terminated string
3023                  */
3024                 bcopy(data, ph->ph_cur_pos, n);
3025 
3026                 /*
3027                  * Move the current location to the start of the next bit of
3028                  * space where we can store encoded data.
3029                  */
3030                 ph->ph_cur_pos = (char *)ph->ph_cur_pos + n;
3031                 return (DDI_PROP_RESULT_OK);
3032 
3033         case DDI_PROP_CMD_SKIP:
3034                 /*
3035                  * Check that there is encoded data
3036                  */
3037                 if (ph->ph_cur_pos == NULL || ph->ph_size == 0) {
3038                         return (DDI_PROP_RESULT_ERROR);
3039                 }
3040 
3041                 /*
3042                  * Return the string length plus one for the NULL
3043                  * We know the size of the property, we need to
3044                  * ensure that the string is properly formatted,
3045                  * since we may be looking up random OBP data.
3046                  */
3047                 p = (char *)ph->ph_cur_pos;
3048                 end = (char *)ph->ph_data + ph->ph_size;
3049                 if (p >= end)
3050                         return (DDI_PROP_RESULT_EOF);
3051 
3052                 while (p < end) {
3053                         if (*p++ == 0) {        /* NULL from OBP */
3054                                 ph->ph_cur_pos = p;
3055                                 return (DDI_PROP_RESULT_OK);
3056                         }
3057                 }
3058 
3059                 /*
3060                  * Accommodate the fact that OBP does not always NULL
3061                  * terminate strings.
3062                  */
3063                 ph->ph_cur_pos = p;
3064                 return (DDI_PROP_RESULT_OK);
3065 
3066         case DDI_PROP_CMD_GET_ESIZE:
3067                 /*
3068                  * Return the size of the encoded string on OBP.
3069                  */
3070                 return (strlen(data) + 1);
3071 
3072         case DDI_PROP_CMD_GET_DSIZE:
3073                 /*
3074                  * Return the string length plus one for the NULL.
3075                  * We know the size of the property, we need to
3076                  * ensure that the string is properly formatted,
3077                  * since we may be looking up random OBP data.
3078                  */
3079                 p = (char *)ph->ph_cur_pos;
3080                 end = (char *)ph->ph_data + ph->ph_size;
3081                 if (p >= end)
3082                         return (DDI_PROP_RESULT_EOF);
3083 
3084                 for (n = 0; p < end; n++) {
3085                         if (*p++ == 0) {        /* NULL from OBP */
3086                                 ph->ph_cur_pos = p;
3087                                 return (n + 1);
3088                         }
3089                 }
3090 
3091                 /*
3092                  * If OBP did not NULL terminate string, which happens for
3093                  * 'true'/'false' boolean values, account for the space
3094                  * to store null termination here.
3095                  */
3096                 ph->ph_cur_pos = p;
3097                 return (n + 1);
3098 
3099         default:
3100 #ifdef DEBUG
3101                 panic("ddi_prop_1275_string: %x impossible", cmd);
3102                 /*NOTREACHED*/
3103 #else
3104                 return (DDI_PROP_RESULT_ERROR);
3105 #endif  /* DEBUG */
3106         }
3107 }
3108 
3109 /*
3110  * OBP 1275 byte operator
3111  *
3112  * Caller must specify the number of bytes to get.  OBP encodes bytes
3113  * as a byte so there is a 1-to-1 translation.
3114  */
3115 int
3116 ddi_prop_1275_bytes(prop_handle_t *ph, uint_t cmd, uchar_t *data,
3117         uint_t nelements)
3118 {
3119         switch (cmd) {
3120         case DDI_PROP_CMD_DECODE:
3121                 /*
3122                  * Check that there is encoded data
3123                  */
3124                 if (ph->ph_cur_pos == NULL || ph->ph_size == 0 ||
3125                     ph->ph_size < nelements ||
3126                     ((char *)ph->ph_cur_pos > ((char *)ph->ph_data +
3127                     ph->ph_size - nelements)))
3128                         return (DDI_PROP_RESULT_ERROR);
3129 
3130                 /*
3131                  * Copy out the bytes
3132                  */
3133                 bcopy(ph->ph_cur_pos, data, nelements);
3134 
3135                 /*
3136                  * Move the current location
3137                  */
3138                 ph->ph_cur_pos = (char *)ph->ph_cur_pos + nelements;
3139                 return (DDI_PROP_RESULT_OK);
3140 
3141         case DDI_PROP_CMD_ENCODE:
3142                 /*
3143                  * Check that there is room to encode the data
3144                  */
3145                 if (ph->ph_cur_pos == NULL || ph->ph_size == 0 ||
3146                     ph->ph_size < nelements ||
3147                     ((char *)ph->ph_cur_pos > ((char *)ph->ph_data +
3148                     ph->ph_size - nelements)))
3149                         return (DDI_PROP_RESULT_ERROR);
3150 
3151                 /*
3152                  * Copy in the bytes
3153                  */
3154                 bcopy(data, ph->ph_cur_pos, nelements);
3155 
3156                 /*
3157                  * Move the current location to the start of the next bit of
3158                  * space where we can store encoded data.
3159                  */
3160                 ph->ph_cur_pos = (char *)ph->ph_cur_pos + nelements;
3161                 return (DDI_PROP_RESULT_OK);
3162 
3163         case DDI_PROP_CMD_SKIP:
3164                 /*
3165                  * Check that there is encoded data
3166                  */
3167                 if (ph->ph_cur_pos == NULL || ph->ph_size == 0 ||
3168                     ph->ph_size < nelements)
3169                         return (DDI_PROP_RESULT_ERROR);
3170 
3171                 if ((char *)ph->ph_cur_pos > ((char *)ph->ph_data +
3172                     ph->ph_size - nelements))
3173                         return (DDI_PROP_RESULT_EOF);
3174 
3175                 /*
3176                  * Move the current location
3177                  */
3178                 ph->ph_cur_pos = (char *)ph->ph_cur_pos + nelements;
3179                 return (DDI_PROP_RESULT_OK);
3180 
3181         case DDI_PROP_CMD_GET_ESIZE:
3182                 /*
3183                  * The size in bytes of the encoded size is the
3184                  * same as the decoded size provided by the caller.
3185                  */
3186                 return (nelements);
3187 
3188         case DDI_PROP_CMD_GET_DSIZE:
3189                 /*
3190                  * Just return the number of bytes specified by the caller.
3191                  */
3192                 return (nelements);
3193 
3194         default:
3195 #ifdef DEBUG
3196                 panic("ddi_prop_1275_bytes: %x impossible", cmd);
3197                 /*NOTREACHED*/
3198 #else
3199                 return (DDI_PROP_RESULT_ERROR);
3200 #endif  /* DEBUG */
3201         }
3202 }
3203 
3204 /*
3205  * Used for properties that come from the OBP, hardware configuration files,
3206  * or that are created by calls to ddi_prop_update(9F).
3207  */
3208 static struct prop_handle_ops prop_1275_ops = {
3209         ddi_prop_1275_int,
3210         ddi_prop_1275_string,
3211         ddi_prop_1275_bytes,
3212         ddi_prop_int64_op
3213 };
3214 
3215 
3216 /*
3217  * Interface to create/modify a managed property on child's behalf...
3218  * Flags interpreted are:
3219  *      DDI_PROP_CANSLEEP:      Allow memory allocation to sleep.
3220  *      DDI_PROP_SYSTEM_DEF:    Manipulate system list rather than driver list.
3221  *
3222  * Use same dev_t when modifying or undefining a property.
3223  * Search for properties with DDI_DEV_T_ANY to match first named
3224  * property on the list.
3225  *
3226  * Properties are stored LIFO and subsequently will match the first
3227  * `matching' instance.
3228  */
3229 
3230 /*
3231  * ddi_prop_add:        Add a software defined property
3232  */
3233 
3234 /*
3235  * define to get a new ddi_prop_t.
3236  * km_flags are KM_SLEEP or KM_NOSLEEP.
3237  */
3238 
3239 #define DDI_NEW_PROP_T(km_flags)        \
3240         (kmem_zalloc(sizeof (ddi_prop_t), km_flags))
3241 
3242 static int
3243 ddi_prop_add(dev_t dev, dev_info_t *dip, int flags,
3244     char *name, caddr_t value, int length)
3245 {
3246         ddi_prop_t      *new_propp, *propp;
3247         ddi_prop_t      **list_head = &(DEVI(dip)->devi_drv_prop_ptr);
3248         int             km_flags = KM_NOSLEEP;
3249         int             name_buf_len;
3250 
3251         /*
3252          * If dev_t is DDI_DEV_T_ANY or name's length is zero return error.
3253          */
3254 
3255         if (dev == DDI_DEV_T_ANY || name == (char *)0 || strlen(name) == 0)
3256                 return (DDI_PROP_INVAL_ARG);
3257 
3258         if (flags & DDI_PROP_CANSLEEP)
3259                 km_flags = KM_SLEEP;
3260 
3261         if (flags & DDI_PROP_SYSTEM_DEF)
3262                 list_head = &(DEVI(dip)->devi_sys_prop_ptr);
3263         else if (flags & DDI_PROP_HW_DEF)
3264                 list_head = &(DEVI(dip)->devi_hw_prop_ptr);
3265 
3266         if ((new_propp = DDI_NEW_PROP_T(km_flags)) == NULL)  {
3267                 cmn_err(CE_CONT, prop_no_mem_msg, name);
3268                 return (DDI_PROP_NO_MEMORY);
3269         }
3270 
3271         /*
3272          * If dev is major number 0, then we need to do a ddi_name_to_major
3273          * to get the real major number for the device.  This needs to be
3274          * done because some drivers need to call ddi_prop_create in their
3275          * attach routines but they don't have a dev.  By creating the dev
3276          * ourself if the major number is 0, drivers will not have to know what
3277          * their major number.  They can just create a dev with major number
3278          * 0 and pass it in.  For device 0, we will be doing a little extra
3279          * work by recreating the same dev that we already have, but its the
3280          * price you pay :-).
3281          *
3282          * This fixes bug #1098060.
3283          */
3284         if (getmajor(dev) == DDI_MAJOR_T_UNKNOWN) {
3285                 new_propp->prop_dev =
3286                     makedevice(ddi_name_to_major(DEVI(dip)->devi_binding_name),
3287                     getminor(dev));
3288         } else
3289                 new_propp->prop_dev = dev;
3290 
3291         /*
3292          * Allocate space for property name and copy it in...
3293          */
3294 
3295         name_buf_len = strlen(name) + 1;
3296         new_propp->prop_name = kmem_alloc(name_buf_len, km_flags);
3297         if (new_propp->prop_name == 0)       {
3298                 kmem_free(new_propp, sizeof (ddi_prop_t));
3299                 cmn_err(CE_CONT, prop_no_mem_msg, name);
3300                 return (DDI_PROP_NO_MEMORY);
3301         }
3302         bcopy(name, new_propp->prop_name, name_buf_len);
3303 
3304         /*
3305          * Set the property type
3306          */
3307         new_propp->prop_flags = flags & DDI_PROP_TYPE_MASK;
3308 
3309         /*
3310          * Set length and value ONLY if not an explicit property undefine:
3311          * NOTE: value and length are zero for explicit undefines.
3312          */
3313 
3314         if (flags & DDI_PROP_UNDEF_IT) {
3315                 new_propp->prop_flags |= DDI_PROP_UNDEF_IT;
3316         } else {
3317                 if ((new_propp->prop_len = length) != 0) {
3318                         new_propp->prop_val = kmem_alloc(length, km_flags);
3319                         if (new_propp->prop_val == 0)  {
3320                                 kmem_free(new_propp->prop_name, name_buf_len);
3321                                 kmem_free(new_propp, sizeof (ddi_prop_t));
3322                                 cmn_err(CE_CONT, prop_no_mem_msg, name);
3323                                 return (DDI_PROP_NO_MEMORY);
3324                         }
3325                         bcopy(value, new_propp->prop_val, length);
3326                 }
3327         }
3328 
3329         /*
3330          * Link property into beginning of list. (Properties are LIFO order.)
3331          */
3332 
3333         mutex_enter(&(DEVI(dip)->devi_lock));
3334         propp = *list_head;
3335         new_propp->prop_next = propp;
3336         *list_head = new_propp;
3337         mutex_exit(&(DEVI(dip)->devi_lock));
3338         return (DDI_PROP_SUCCESS);
3339 }
3340 
3341 
3342 /*
3343  * ddi_prop_change:     Modify a software managed property value
3344  *
3345  *                      Set new length and value if found.
3346  *                      returns DDI_PROP_INVAL_ARG if dev is DDI_DEV_T_ANY or
3347  *                      input name is the NULL string.
3348  *                      returns DDI_PROP_NO_MEMORY if unable to allocate memory
3349  *
3350  *                      Note: an undef can be modified to be a define,
3351  *                      (you can't go the other way.)
3352  */
3353 
3354 static int
3355 ddi_prop_change(dev_t dev, dev_info_t *dip, int flags,
3356     char *name, caddr_t value, int length)
3357 {
3358         ddi_prop_t      *propp;
3359         ddi_prop_t      **ppropp;
3360         caddr_t         p = NULL;
3361 
3362         if ((dev == DDI_DEV_T_ANY) || (name == NULL) || (strlen(name) == 0))
3363                 return (DDI_PROP_INVAL_ARG);
3364 
3365         /*
3366          * Preallocate buffer, even if we don't need it...
3367          */
3368         if (length != 0)  {
3369                 p = kmem_alloc(length, (flags & DDI_PROP_CANSLEEP) ?
3370                     KM_SLEEP : KM_NOSLEEP);
3371                 if (p == NULL)  {
3372                         cmn_err(CE_CONT, prop_no_mem_msg, name);
3373                         return (DDI_PROP_NO_MEMORY);
3374                 }
3375         }
3376 
3377         /*
3378          * If the dev_t value contains DDI_MAJOR_T_UNKNOWN for the major
3379          * number, a real dev_t value should be created based upon the dip's
3380          * binding driver.  See ddi_prop_add...
3381          */
3382         if (getmajor(dev) == DDI_MAJOR_T_UNKNOWN)
3383                 dev = makedevice(
3384                     ddi_name_to_major(DEVI(dip)->devi_binding_name),
3385                     getminor(dev));
3386 
3387         /*
3388          * Check to see if the property exists.  If so we modify it.
3389          * Else we create it by calling ddi_prop_add().
3390          */
3391         mutex_enter(&(DEVI(dip)->devi_lock));
3392         ppropp = &DEVI(dip)->devi_drv_prop_ptr;
3393         if (flags & DDI_PROP_SYSTEM_DEF)
3394                 ppropp = &DEVI(dip)->devi_sys_prop_ptr;
3395         else if (flags & DDI_PROP_HW_DEF)
3396                 ppropp = &DEVI(dip)->devi_hw_prop_ptr;
3397 
3398         if ((propp = i_ddi_prop_search(dev, name, flags, ppropp)) != NULL) {
3399                 /*
3400                  * Need to reallocate buffer?  If so, do it
3401                  * carefully (reuse same space if new prop
3402                  * is same size and non-NULL sized).
3403                  */
3404                 if (length != 0)
3405                         bcopy(value, p, length);
3406 
3407                 if (propp->prop_len != 0)
3408                         kmem_free(propp->prop_val, propp->prop_len);
3409 
3410                 propp->prop_len = length;
3411                 propp->prop_val = p;
3412                 propp->prop_flags &= ~DDI_PROP_UNDEF_IT;
3413                 mutex_exit(&(DEVI(dip)->devi_lock));
3414                 return (DDI_PROP_SUCCESS);
3415         }
3416 
3417         mutex_exit(&(DEVI(dip)->devi_lock));
3418         if (length != 0)
3419                 kmem_free(p, length);
3420 
3421         return (ddi_prop_add(dev, dip, flags, name, value, length));
3422 }
3423 
3424 /*
3425  * Common update routine used to update and encode a property.  Creates
3426  * a property handle, calls the property encode routine, figures out if
3427  * the property already exists and updates if it does.  Otherwise it
3428  * creates if it does not exist.
3429  */
3430 int
3431 ddi_prop_update_common(dev_t match_dev, dev_info_t *dip, int flags,
3432     char *name, void *data, uint_t nelements,
3433     int (*prop_create)(prop_handle_t *, void *data, uint_t nelements))
3434 {
3435         prop_handle_t   ph;
3436         int             rval;
3437         uint_t          ourflags;
3438 
3439         /*
3440          * If dev_t is DDI_DEV_T_ANY or name's length is zero,
3441          * return error.
3442          */
3443         if (match_dev == DDI_DEV_T_ANY || name == NULL || strlen(name) == 0)
3444                 return (DDI_PROP_INVAL_ARG);
3445 
3446         /*
3447          * Create the handle
3448          */
3449         ph.ph_data = NULL;
3450         ph.ph_cur_pos = NULL;
3451         ph.ph_save_pos = NULL;
3452         ph.ph_size = 0;
3453         ph.ph_ops = &prop_1275_ops;
3454 
3455         /*
3456          * ourflags:
3457          * For compatibility with the old interfaces.  The old interfaces
3458          * didn't sleep by default and slept when the flag was set.  These
3459          * interfaces to the opposite.  So the old interfaces now set the
3460          * DDI_PROP_DONTSLEEP flag by default which tells us not to sleep.
3461          *
3462          * ph.ph_flags:
3463          * Blocked data or unblocked data allocation
3464          * for ph.ph_data in ddi_prop_encode_alloc()
3465          */
3466         if (flags & DDI_PROP_DONTSLEEP) {
3467                 ourflags = flags;
3468                 ph.ph_flags = DDI_PROP_DONTSLEEP;
3469         } else {
3470                 ourflags = flags | DDI_PROP_CANSLEEP;
3471                 ph.ph_flags = DDI_PROP_CANSLEEP;
3472         }
3473 
3474         /*
3475          * Encode the data and store it in the property handle by
3476          * calling the prop_encode routine.
3477          */
3478         if ((rval = (*prop_create)(&ph, data, nelements)) !=
3479             DDI_PROP_SUCCESS) {
3480                 if (rval == DDI_PROP_NO_MEMORY)
3481                         cmn_err(CE_CONT, prop_no_mem_msg, name);
3482                 if (ph.ph_size != 0)
3483                         kmem_free(ph.ph_data, ph.ph_size);
3484                 return (rval);
3485         }
3486 
3487         /*
3488          * The old interfaces use a stacking approach to creating
3489          * properties.  If we are being called from the old interfaces,
3490          * the DDI_PROP_STACK_CREATE flag will be set, so we just do a
3491          * create without checking.
3492          */
3493         if (flags & DDI_PROP_STACK_CREATE) {
3494                 rval = ddi_prop_add(match_dev, dip,
3495                     ourflags, name, ph.ph_data, ph.ph_size);
3496         } else {
3497                 rval = ddi_prop_change(match_dev, dip,
3498                     ourflags, name, ph.ph_data, ph.ph_size);
3499         }
3500 
3501         /*
3502          * Free the encoded data allocated in the prop_encode routine.
3503          */
3504         if (ph.ph_size != 0)
3505                 kmem_free(ph.ph_data, ph.ph_size);
3506 
3507         return (rval);
3508 }
3509 
3510 
3511 /*
3512  * ddi_prop_create:     Define a managed property:
3513  *                      See above for details.
3514  */
3515 
3516 int
3517 ddi_prop_create(dev_t dev, dev_info_t *dip, int flag,
3518     char *name, caddr_t value, int length)
3519 {
3520         if (!(flag & DDI_PROP_CANSLEEP)) {
3521                 flag |= DDI_PROP_DONTSLEEP;
3522 #ifdef DDI_PROP_DEBUG
3523                 if (length != 0)
3524                         cmn_err(CE_NOTE, "!ddi_prop_create: interface obsolete,"
3525                             "use ddi_prop_update (prop = %s, node = %s%d)",
3526                             name, ddi_driver_name(dip), ddi_get_instance(dip));
3527 #endif /* DDI_PROP_DEBUG */
3528         }
3529         flag &= ~DDI_PROP_SYSTEM_DEF;
3530         flag |= DDI_PROP_STACK_CREATE | DDI_PROP_TYPE_ANY;
3531         return (ddi_prop_update_common(dev, dip, flag, name,
3532             value, length, ddi_prop_fm_encode_bytes));
3533 }
3534 
3535 int
3536 e_ddi_prop_create(dev_t dev, dev_info_t *dip, int flag,
3537     char *name, caddr_t value, int length)
3538 {
3539         if (!(flag & DDI_PROP_CANSLEEP))
3540                 flag |= DDI_PROP_DONTSLEEP;
3541         flag |= DDI_PROP_SYSTEM_DEF | DDI_PROP_STACK_CREATE | DDI_PROP_TYPE_ANY;
3542         return (ddi_prop_update_common(dev, dip, flag,
3543             name, value, length, ddi_prop_fm_encode_bytes));
3544 }
3545 
3546 int
3547 ddi_prop_modify(dev_t dev, dev_info_t *dip, int flag,
3548     char *name, caddr_t value, int length)
3549 {
3550         ASSERT((flag & DDI_PROP_TYPE_MASK) == 0);
3551 
3552         /*
3553          * If dev_t is DDI_DEV_T_ANY or name's length is zero,
3554          * return error.
3555          */
3556         if (dev == DDI_DEV_T_ANY || name == NULL || strlen(name) == 0)
3557                 return (DDI_PROP_INVAL_ARG);
3558 
3559         if (!(flag & DDI_PROP_CANSLEEP))
3560                 flag |= DDI_PROP_DONTSLEEP;
3561         flag &= ~DDI_PROP_SYSTEM_DEF;
3562         if (ddi_prop_exists(dev, dip, (flag | DDI_PROP_NOTPROM), name) == 0)
3563                 return (DDI_PROP_NOT_FOUND);
3564 
3565         return (ddi_prop_update_common(dev, dip,
3566             (flag | DDI_PROP_TYPE_BYTE), name,
3567             value, length, ddi_prop_fm_encode_bytes));
3568 }
3569 
3570 int
3571 e_ddi_prop_modify(dev_t dev, dev_info_t *dip, int flag,
3572     char *name, caddr_t value, int length)
3573 {
3574         ASSERT((flag & DDI_PROP_TYPE_MASK) == 0);
3575 
3576         /*
3577          * If dev_t is DDI_DEV_T_ANY or name's length is zero,
3578          * return error.
3579          */
3580         if (dev == DDI_DEV_T_ANY || name == NULL || strlen(name) == 0)
3581                 return (DDI_PROP_INVAL_ARG);
3582 
3583         if (ddi_prop_exists(dev, dip, (flag | DDI_PROP_SYSTEM_DEF), name) == 0)
3584                 return (DDI_PROP_NOT_FOUND);
3585 
3586         if (!(flag & DDI_PROP_CANSLEEP))
3587                 flag |= DDI_PROP_DONTSLEEP;
3588         return (ddi_prop_update_common(dev, dip,
3589             (flag | DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_BYTE),
3590             name, value, length, ddi_prop_fm_encode_bytes));
3591 }
3592 
3593 
3594 /*
3595  * Common lookup routine used to lookup and decode a property.
3596  * Creates a property handle, searches for the raw encoded data,
3597  * fills in the handle, and calls the property decode functions
3598  * passed in.
3599  *
3600  * This routine is not static because ddi_bus_prop_op() which lives in
3601  * ddi_impl.c calls it.  No driver should be calling this routine.
3602  */
3603 int
3604 ddi_prop_lookup_common(dev_t match_dev, dev_info_t *dip,
3605     uint_t flags, char *name, void *data, uint_t *nelements,
3606     int (*prop_decoder)(prop_handle_t *, void *data, uint_t *nelements))
3607 {
3608         int             rval;
3609         uint_t          ourflags;
3610         prop_handle_t   ph;
3611 
3612         if ((match_dev == DDI_DEV_T_NONE) ||
3613             (name == NULL) || (strlen(name) == 0))
3614                 return (DDI_PROP_INVAL_ARG);
3615 
3616         ourflags = (flags & DDI_PROP_DONTSLEEP) ? flags :
3617             flags | DDI_PROP_CANSLEEP;
3618 
3619         /*
3620          * Get the encoded data
3621          */
3622         bzero(&ph, sizeof (prop_handle_t));
3623 
3624         if ((flags & DDI_UNBND_DLPI2) || (flags & DDI_PROP_ROOTNEX_GLOBAL)) {
3625                 /*
3626                  * For rootnex and unbound dlpi style-2 devices, index into
3627                  * the devnames' array and search the global
3628                  * property list.
3629                  */
3630                 ourflags &= ~DDI_UNBND_DLPI2;
3631                 rval = i_ddi_prop_search_global(match_dev,
3632                     ourflags, name, &ph.ph_data, &ph.ph_size);
3633         } else {
3634                 rval = ddi_prop_search_common(match_dev, dip,
3635                     PROP_LEN_AND_VAL_ALLOC, ourflags, name,
3636                     &ph.ph_data, &ph.ph_size);
3637 
3638         }
3639 
3640         if (rval != DDI_PROP_SUCCESS && rval != DDI_PROP_FOUND_1275) {
3641                 ASSERT(ph.ph_data == NULL);
3642                 ASSERT(ph.ph_size == 0);
3643                 return (rval);
3644         }
3645 
3646         /*
3647          * If the encoded data came from a OBP or software
3648          * use the 1275 OBP decode/encode routines.
3649          */
3650         ph.ph_cur_pos = ph.ph_data;
3651         ph.ph_save_pos = ph.ph_data;
3652         ph.ph_ops = &prop_1275_ops;
3653         ph.ph_flags = (rval == DDI_PROP_FOUND_1275) ? PH_FROM_PROM : 0;
3654 
3655         rval = (*prop_decoder)(&ph, data, nelements);
3656 
3657         /*
3658          * Free the encoded data
3659          */
3660         if (ph.ph_size != 0)
3661                 kmem_free(ph.ph_data, ph.ph_size);
3662 
3663         return (rval);
3664 }
3665 
3666 /*
3667  * Lookup and return an array of composite properties.  The driver must
3668  * provide the decode routine.
3669  */
3670 int
3671 ddi_prop_lookup(dev_t match_dev, dev_info_t *dip,
3672     uint_t flags, char *name, void *data, uint_t *nelements,
3673     int (*prop_decoder)(prop_handle_t *, void *data, uint_t *nelements))
3674 {
3675         return (ddi_prop_lookup_common(match_dev, dip,
3676             (flags | DDI_PROP_TYPE_COMPOSITE), name,
3677             data, nelements, prop_decoder));
3678 }
3679 
3680 /*
3681  * Return 1 if a property exists (no type checking done).
3682  * Return 0 if it does not exist.
3683  */
3684 int
3685 ddi_prop_exists(dev_t match_dev, dev_info_t *dip, uint_t flags, char *name)
3686 {
3687         int     i;
3688         uint_t  x = 0;
3689 
3690         i = ddi_prop_search_common(match_dev, dip, PROP_EXISTS,
3691             flags | DDI_PROP_TYPE_MASK, name, NULL, &x);
3692         return (i == DDI_PROP_SUCCESS || i == DDI_PROP_FOUND_1275);
3693 }
3694 
3695 
3696 /*
3697  * Update an array of composite properties.  The driver must
3698  * provide the encode routine.
3699  */
3700 int
3701 ddi_prop_update(dev_t match_dev, dev_info_t *dip,
3702     char *name, void *data, uint_t nelements,
3703     int (*prop_create)(prop_handle_t *, void *data, uint_t nelements))
3704 {
3705         return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_COMPOSITE,
3706             name, data, nelements, prop_create));
3707 }
3708 
3709 /*
3710  * Get a single integer or boolean property and return it.
3711  * If the property does not exists, or cannot be decoded,
3712  * then return the defvalue passed in.
3713  *
3714  * This routine always succeeds.
3715  */
3716 int
3717 ddi_prop_get_int(dev_t match_dev, dev_info_t *dip, uint_t flags,
3718     char *name, int defvalue)
3719 {
3720         int     data;
3721         uint_t  nelements;
3722         int     rval;
3723 
3724         if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
3725             LDI_DEV_T_ANY | DDI_UNBND_DLPI2 | DDI_PROP_ROOTNEX_GLOBAL)) {
3726 #ifdef DEBUG
3727                 if (dip != NULL) {
3728                         cmn_err(CE_WARN, "ddi_prop_get_int: invalid flag"
3729                             " 0x%x (prop = %s, node = %s%d)", flags,
3730                             name, ddi_driver_name(dip), ddi_get_instance(dip));
3731                 }
3732 #endif /* DEBUG */
3733                 flags &= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
3734                     LDI_DEV_T_ANY | DDI_UNBND_DLPI2;
3735         }
3736 
3737         if ((rval = ddi_prop_lookup_common(match_dev, dip,
3738             (flags | DDI_PROP_TYPE_INT), name, &data, &nelements,
3739             ddi_prop_fm_decode_int)) != DDI_PROP_SUCCESS) {
3740                 if (rval == DDI_PROP_END_OF_DATA)
3741                         data = 1;
3742                 else
3743                         data = defvalue;
3744         }
3745         return (data);
3746 }
3747 
3748 /*
3749  * Get a single 64 bit integer or boolean property and return it.
3750  * If the property does not exists, or cannot be decoded,
3751  * then return the defvalue passed in.
3752  *
3753  * This routine always succeeds.
3754  */
3755 int64_t
3756 ddi_prop_get_int64(dev_t match_dev, dev_info_t *dip, uint_t flags,
3757     char *name, int64_t defvalue)
3758 {
3759         int64_t data;
3760         uint_t  nelements;
3761         int     rval;
3762 
3763         if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
3764             LDI_DEV_T_ANY | DDI_UNBND_DLPI2 | DDI_PROP_ROOTNEX_GLOBAL)) {
3765 #ifdef DEBUG
3766                 if (dip != NULL) {
3767                         cmn_err(CE_WARN, "ddi_prop_get_int64: invalid flag"
3768                             " 0x%x (prop = %s, node = %s%d)", flags,
3769                             name, ddi_driver_name(dip), ddi_get_instance(dip));
3770                 }
3771 #endif /* DEBUG */
3772                 return (DDI_PROP_INVAL_ARG);
3773         }
3774 
3775         if ((rval = ddi_prop_lookup_common(match_dev, dip,
3776             (flags | DDI_PROP_TYPE_INT64 | DDI_PROP_NOTPROM),
3777             name, &data, &nelements, ddi_prop_fm_decode_int64))
3778             != DDI_PROP_SUCCESS) {
3779                 if (rval == DDI_PROP_END_OF_DATA)
3780                         data = 1;
3781                 else
3782                         data = defvalue;
3783         }
3784         return (data);
3785 }
3786 
3787 /*
3788  * Get an array of integer property
3789  */
3790 int
3791 ddi_prop_lookup_int_array(dev_t match_dev, dev_info_t *dip, uint_t flags,
3792     char *name, int **data, uint_t *nelements)
3793 {
3794         if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
3795             LDI_DEV_T_ANY | DDI_UNBND_DLPI2 | DDI_PROP_ROOTNEX_GLOBAL)) {
3796 #ifdef DEBUG
3797                 if (dip != NULL) {
3798                         cmn_err(CE_WARN, "ddi_prop_lookup_int_array: "
3799                             "invalid flag 0x%x (prop = %s, node = %s%d)",
3800                             flags, name, ddi_driver_name(dip),
3801                             ddi_get_instance(dip));
3802                 }
3803 #endif /* DEBUG */
3804                 flags &= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
3805                     LDI_DEV_T_ANY | DDI_UNBND_DLPI2;
3806         }
3807 
3808         return (ddi_prop_lookup_common(match_dev, dip,
3809             (flags | DDI_PROP_TYPE_INT), name, data,
3810             nelements, ddi_prop_fm_decode_ints));
3811 }
3812 
3813 /*
3814  * Get an array of 64 bit integer properties
3815  */
3816 int
3817 ddi_prop_lookup_int64_array(dev_t match_dev, dev_info_t *dip, uint_t flags,
3818     char *name, int64_t **data, uint_t *nelements)
3819 {
3820         if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
3821             LDI_DEV_T_ANY | DDI_UNBND_DLPI2 | DDI_PROP_ROOTNEX_GLOBAL)) {
3822 #ifdef DEBUG
3823                 if (dip != NULL) {
3824                         cmn_err(CE_WARN, "ddi_prop_lookup_int64_array: "
3825                             "invalid flag 0x%x (prop = %s, node = %s%d)",
3826                             flags, name, ddi_driver_name(dip),
3827                             ddi_get_instance(dip));
3828                 }
3829 #endif /* DEBUG */
3830                 return (DDI_PROP_INVAL_ARG);
3831         }
3832 
3833         return (ddi_prop_lookup_common(match_dev, dip,
3834             (flags | DDI_PROP_TYPE_INT64 | DDI_PROP_NOTPROM),
3835             name, data, nelements, ddi_prop_fm_decode_int64_array));
3836 }
3837 
3838 /*
3839  * Update a single integer property.  If the property exists on the drivers
3840  * property list it updates, else it creates it.
3841  */
3842 int
3843 ddi_prop_update_int(dev_t match_dev, dev_info_t *dip,
3844     char *name, int data)
3845 {
3846         return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_INT,
3847             name, &data, 1, ddi_prop_fm_encode_ints));
3848 }
3849 
3850 /*
3851  * Update a single 64 bit integer property.
3852  * Update the driver property list if it exists, else create it.
3853  */
3854 int
3855 ddi_prop_update_int64(dev_t match_dev, dev_info_t *dip,
3856     char *name, int64_t data)
3857 {
3858         return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_INT64,
3859             name, &data, 1, ddi_prop_fm_encode_int64));
3860 }
3861 
3862 int
3863 e_ddi_prop_update_int(dev_t match_dev, dev_info_t *dip,
3864     char *name, int data)
3865 {
3866         return (ddi_prop_update_common(match_dev, dip,
3867             DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_INT,
3868             name, &data, 1, ddi_prop_fm_encode_ints));
3869 }
3870 
3871 int
3872 e_ddi_prop_update_int64(dev_t match_dev, dev_info_t *dip,
3873     char *name, int64_t data)
3874 {
3875         return (ddi_prop_update_common(match_dev, dip,
3876             DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_INT64,
3877             name, &data, 1, ddi_prop_fm_encode_int64));
3878 }
3879 
3880 /*
3881  * Update an array of integer property.  If the property exists on the drivers
3882  * property list it updates, else it creates it.
3883  */
3884 int
3885 ddi_prop_update_int_array(dev_t match_dev, dev_info_t *dip,
3886     char *name, int *data, uint_t nelements)
3887 {
3888         return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_INT,
3889             name, data, nelements, ddi_prop_fm_encode_ints));
3890 }
3891 
3892 /*
3893  * Update an array of 64 bit integer properties.
3894  * Update the driver property list if it exists, else create it.
3895  */
3896 int
3897 ddi_prop_update_int64_array(dev_t match_dev, dev_info_t *dip,
3898     char *name, int64_t *data, uint_t nelements)
3899 {
3900         return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_INT64,
3901             name, data, nelements, ddi_prop_fm_encode_int64));
3902 }
3903 
3904 int
3905 e_ddi_prop_update_int64_array(dev_t match_dev, dev_info_t *dip,
3906     char *name, int64_t *data, uint_t nelements)
3907 {
3908         return (ddi_prop_update_common(match_dev, dip,
3909             DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_INT64,
3910             name, data, nelements, ddi_prop_fm_encode_int64));
3911 }
3912 
3913 int
3914 e_ddi_prop_update_int_array(dev_t match_dev, dev_info_t *dip,
3915     char *name, int *data, uint_t nelements)
3916 {
3917         return (ddi_prop_update_common(match_dev, dip,
3918             DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_INT,
3919             name, data, nelements, ddi_prop_fm_encode_ints));
3920 }
3921 
3922 /*
3923  * Get a single string property.
3924  */
3925 int
3926 ddi_prop_lookup_string(dev_t match_dev, dev_info_t *dip, uint_t flags,
3927     char *name, char **data)
3928 {
3929         uint_t x;
3930 
3931         if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
3932             LDI_DEV_T_ANY | DDI_UNBND_DLPI2 | DDI_PROP_ROOTNEX_GLOBAL)) {
3933 #ifdef DEBUG
3934                 if (dip != NULL) {
3935                         cmn_err(CE_WARN, "%s: invalid flag 0x%x "
3936                             "(prop = %s, node = %s%d); invalid bits ignored",
3937                             "ddi_prop_lookup_string", flags, name,
3938                             ddi_driver_name(dip), ddi_get_instance(dip));
3939                 }
3940 #endif /* DEBUG */
3941                 flags &= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
3942                     LDI_DEV_T_ANY | DDI_UNBND_DLPI2;
3943         }
3944 
3945         return (ddi_prop_lookup_common(match_dev, dip,
3946             (flags | DDI_PROP_TYPE_STRING), name, data,
3947             &x, ddi_prop_fm_decode_string));
3948 }
3949 
3950 /*
3951  * Get an array of strings property.
3952  */
3953 int
3954 ddi_prop_lookup_string_array(dev_t match_dev, dev_info_t *dip, uint_t flags,
3955     char *name, char ***data, uint_t *nelements)
3956 {
3957         if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
3958             LDI_DEV_T_ANY | DDI_UNBND_DLPI2 | DDI_PROP_ROOTNEX_GLOBAL)) {
3959 #ifdef DEBUG
3960                 if (dip != NULL) {
3961                         cmn_err(CE_WARN, "ddi_prop_lookup_string_array: "
3962                             "invalid flag 0x%x (prop = %s, node = %s%d)",
3963                             flags, name, ddi_driver_name(dip),
3964                             ddi_get_instance(dip));
3965                 }
3966 #endif /* DEBUG */
3967                 flags &= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
3968                     LDI_DEV_T_ANY | DDI_UNBND_DLPI2;
3969         }
3970 
3971         return (ddi_prop_lookup_common(match_dev, dip,
3972             (flags | DDI_PROP_TYPE_STRING), name, data,
3973             nelements, ddi_prop_fm_decode_strings));
3974 }
3975 
3976 /*
3977  * Update a single string property.
3978  */
3979 int
3980 ddi_prop_update_string(dev_t match_dev, dev_info_t *dip,
3981     char *name, char *data)
3982 {
3983         return (ddi_prop_update_common(match_dev, dip,
3984             DDI_PROP_TYPE_STRING, name, &data, 1,
3985             ddi_prop_fm_encode_string));
3986 }
3987 
3988 int
3989 e_ddi_prop_update_string(dev_t match_dev, dev_info_t *dip,
3990     char *name, char *data)
3991 {
3992         return (ddi_prop_update_common(match_dev, dip,
3993             DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_STRING,
3994             name, &data, 1, ddi_prop_fm_encode_string));
3995 }
3996 
3997 
3998 /*
3999  * Update an array of strings property.
4000  */
4001 int
4002 ddi_prop_update_string_array(dev_t match_dev, dev_info_t *dip,
4003     char *name, char **data, uint_t nelements)
4004 {
4005         return (ddi_prop_update_common(match_dev, dip,
4006             DDI_PROP_TYPE_STRING, name, data, nelements,
4007             ddi_prop_fm_encode_strings));
4008 }
4009 
4010 int
4011 e_ddi_prop_update_string_array(dev_t match_dev, dev_info_t *dip,
4012     char *name, char **data, uint_t nelements)
4013 {
4014         return (ddi_prop_update_common(match_dev, dip,
4015             DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_STRING,
4016             name, data, nelements,
4017             ddi_prop_fm_encode_strings));
4018 }
4019 
4020 
4021 /*
4022  * Get an array of bytes property.
4023  */
4024 int
4025 ddi_prop_lookup_byte_array(dev_t match_dev, dev_info_t *dip, uint_t flags,
4026     char *name, uchar_t **data, uint_t *nelements)
4027 {
4028         if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
4029             LDI_DEV_T_ANY | DDI_UNBND_DLPI2 | DDI_PROP_ROOTNEX_GLOBAL)) {
4030 #ifdef DEBUG
4031                 if (dip != NULL) {
4032                         cmn_err(CE_WARN, "ddi_prop_lookup_byte_array: "
4033                             " invalid flag 0x%x (prop = %s, node = %s%d)",
4034                             flags, name, ddi_driver_name(dip),
4035                             ddi_get_instance(dip));
4036                 }
4037 #endif /* DEBUG */
4038                 flags &= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
4039                     LDI_DEV_T_ANY | DDI_UNBND_DLPI2;
4040         }
4041 
4042         return (ddi_prop_lookup_common(match_dev, dip,
4043             (flags | DDI_PROP_TYPE_BYTE), name, data,
4044             nelements, ddi_prop_fm_decode_bytes));
4045 }
4046 
4047 /*
4048  * Update an array of bytes property.
4049  */
4050 int
4051 ddi_prop_update_byte_array(dev_t match_dev, dev_info_t *dip,
4052     char *name, uchar_t *data, uint_t nelements)
4053 {
4054         if (nelements == 0)
4055                 return (DDI_PROP_INVAL_ARG);
4056 
4057         return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_BYTE,
4058             name, data, nelements, ddi_prop_fm_encode_bytes));
4059 }
4060 
4061 
4062 int
4063 e_ddi_prop_update_byte_array(dev_t match_dev, dev_info_t *dip,
4064     char *name, uchar_t *data, uint_t nelements)
4065 {
4066         if (nelements == 0)
4067                 return (DDI_PROP_INVAL_ARG);
4068 
4069         return (ddi_prop_update_common(match_dev, dip,
4070             DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_BYTE,
4071             name, data, nelements, ddi_prop_fm_encode_bytes));
4072 }
4073 
4074 
4075 /*
4076  * ddi_prop_remove_common:      Undefine a managed property:
4077  *                      Input dev_t must match dev_t when defined.
4078  *                      Returns DDI_PROP_NOT_FOUND, possibly.
4079  *                      DDI_PROP_INVAL_ARG is also possible if dev is
4080  *                      DDI_DEV_T_ANY or incoming name is the NULL string.
4081  */
4082 int
4083 ddi_prop_remove_common(dev_t dev, dev_info_t *dip, char *name, int flag)
4084 {
4085         ddi_prop_t      **list_head = &(DEVI(dip)->devi_drv_prop_ptr);
4086         ddi_prop_t      *propp;
4087         ddi_prop_t      *lastpropp = NULL;
4088 
4089         if ((dev == DDI_DEV_T_ANY) || (name == (char *)0) ||
4090             (strlen(name) == 0)) {
4091                 return (DDI_PROP_INVAL_ARG);
4092         }
4093 
4094         if (flag & DDI_PROP_SYSTEM_DEF)
4095                 list_head = &(DEVI(dip)->devi_sys_prop_ptr);
4096         else if (flag & DDI_PROP_HW_DEF)
4097                 list_head = &(DEVI(dip)->devi_hw_prop_ptr);
4098 
4099         mutex_enter(&(DEVI(dip)->devi_lock));
4100 
4101         for (propp = *list_head; propp != NULL; propp = propp->prop_next)  {
4102                 if (DDI_STRSAME(propp->prop_name, name) &&
4103                     (dev == propp->prop_dev)) {
4104                         /*
4105                          * Unlink this propp allowing for it to
4106                          * be first in the list:
4107                          */
4108 
4109                         if (lastpropp == NULL)
4110                                 *list_head = propp->prop_next;
4111                         else
4112                                 lastpropp->prop_next = propp->prop_next;
4113 
4114                         mutex_exit(&(DEVI(dip)->devi_lock));
4115 
4116                         /*
4117                          * Free memory and return...
4118                          */
4119                         kmem_free(propp->prop_name,
4120                             strlen(propp->prop_name) + 1);
4121                         if (propp->prop_len != 0)
4122                                 kmem_free(propp->prop_val, propp->prop_len);
4123                         kmem_free(propp, sizeof (ddi_prop_t));
4124                         return (DDI_PROP_SUCCESS);
4125                 }
4126                 lastpropp = propp;
4127         }
4128         mutex_exit(&(DEVI(dip)->devi_lock));
4129         return (DDI_PROP_NOT_FOUND);
4130 }
4131 
4132 int
4133 ddi_prop_remove(dev_t dev, dev_info_t *dip, char *name)
4134 {
4135         return (ddi_prop_remove_common(dev, dip, name, 0));
4136 }
4137 
4138 int
4139 e_ddi_prop_remove(dev_t dev, dev_info_t *dip, char *name)
4140 {
4141         return (ddi_prop_remove_common(dev, dip, name, DDI_PROP_SYSTEM_DEF));
4142 }
4143 
4144 /*
4145  * e_ddi_prop_list_delete: remove a list of properties
4146  *      Note that the caller needs to provide the required protection
4147  *      (eg. devi_lock if these properties are still attached to a devi)
4148  */
4149 void
4150 e_ddi_prop_list_delete(ddi_prop_t *props)
4151 {
4152         i_ddi_prop_list_delete(props);
4153 }
4154 
4155 /*
4156  * ddi_prop_remove_all_common:
4157  *      Used before unloading a driver to remove
4158  *      all properties. (undefines all dev_t's props.)
4159  *      Also removes `explicitly undefined' props.
4160  *      No errors possible.
4161  */
4162 void
4163 ddi_prop_remove_all_common(dev_info_t *dip, int flag)
4164 {
4165         ddi_prop_t      **list_head;
4166 
4167         mutex_enter(&(DEVI(dip)->devi_lock));
4168         if (flag & DDI_PROP_SYSTEM_DEF) {
4169                 list_head = &(DEVI(dip)->devi_sys_prop_ptr);
4170         } else if (flag & DDI_PROP_HW_DEF) {
4171                 list_head = &(DEVI(dip)->devi_hw_prop_ptr);
4172         } else {
4173                 list_head = &(DEVI(dip)->devi_drv_prop_ptr);
4174         }
4175         i_ddi_prop_list_delete(*list_head);
4176         *list_head = NULL;
4177         mutex_exit(&(DEVI(dip)->devi_lock));
4178 }
4179 
4180 
4181 /*
4182  * ddi_prop_remove_all:         Remove all driver prop definitions.
4183  */
4184 
4185 void
4186 ddi_prop_remove_all(dev_info_t *dip)
4187 {
4188         i_ddi_prop_dyn_driver_set(dip, NULL);
4189         ddi_prop_remove_all_common(dip, 0);
4190 }
4191 
4192 /*
4193  * e_ddi_prop_remove_all:       Remove all system prop definitions.
4194  */
4195 
4196 void
4197 e_ddi_prop_remove_all(dev_info_t *dip)
4198 {
4199         ddi_prop_remove_all_common(dip, (int)DDI_PROP_SYSTEM_DEF);
4200 }
4201 
4202 
4203 /*
4204  * ddi_prop_undefine:   Explicitly undefine a property.  Property
4205  *                      searches which match this property return
4206  *                      the error code DDI_PROP_UNDEFINED.
4207  *
4208  *                      Use ddi_prop_remove to negate effect of
4209  *                      ddi_prop_undefine
4210  *
4211  *                      See above for error returns.
4212  */
4213 
4214 int
4215 ddi_prop_undefine(dev_t dev, dev_info_t *dip, int flag, char *name)
4216 {
4217         if (!(flag & DDI_PROP_CANSLEEP))
4218                 flag |= DDI_PROP_DONTSLEEP;
4219         flag |= DDI_PROP_STACK_CREATE | DDI_PROP_UNDEF_IT | DDI_PROP_TYPE_ANY;
4220         return (ddi_prop_update_common(dev, dip, flag,
4221             name, NULL, 0, ddi_prop_fm_encode_bytes));
4222 }
4223 
4224 int
4225 e_ddi_prop_undefine(dev_t dev, dev_info_t *dip, int flag, char *name)
4226 {
4227         if (!(flag & DDI_PROP_CANSLEEP))
4228                 flag |= DDI_PROP_DONTSLEEP;
4229         flag |= DDI_PROP_SYSTEM_DEF | DDI_PROP_STACK_CREATE |
4230             DDI_PROP_UNDEF_IT | DDI_PROP_TYPE_ANY;
4231         return (ddi_prop_update_common(dev, dip, flag,
4232             name, NULL, 0, ddi_prop_fm_encode_bytes));
4233 }
4234 
4235 /*
4236  * Support for gathering dynamic properties in devinfo snapshot.
4237  */
4238 void
4239 i_ddi_prop_dyn_driver_set(dev_info_t *dip, i_ddi_prop_dyn_t *dp)
4240 {
4241         DEVI(dip)->devi_prop_dyn_driver = dp;
4242 }
4243 
4244 i_ddi_prop_dyn_t *
4245 i_ddi_prop_dyn_driver_get(dev_info_t *dip)
4246 {
4247         return (DEVI(dip)->devi_prop_dyn_driver);
4248 }
4249 
4250 void
4251 i_ddi_prop_dyn_parent_set(dev_info_t *dip, i_ddi_prop_dyn_t *dp)
4252 {
4253         DEVI(dip)->devi_prop_dyn_parent = dp;
4254 }
4255 
4256 i_ddi_prop_dyn_t *
4257 i_ddi_prop_dyn_parent_get(dev_info_t *dip)
4258 {
4259         return (DEVI(dip)->devi_prop_dyn_parent);
4260 }
4261 
4262 void
4263 i_ddi_prop_dyn_cache_invalidate(dev_info_t *dip, i_ddi_prop_dyn_t *dp)
4264 {
4265         /* for now we invalidate the entire cached snapshot */
4266         if (dip && dp)
4267                 i_ddi_di_cache_invalidate();
4268 }
4269 
4270 /* ARGSUSED */
4271 void
4272 ddi_prop_cache_invalidate(dev_t dev, dev_info_t *dip, char *name, int flags)
4273 {
4274         /* for now we invalidate the entire cached snapshot */
4275         i_ddi_di_cache_invalidate();
4276 }
4277 
4278 
4279 /*
4280  * Code to search hardware layer (PROM), if it exists, on behalf of child.
4281  *
4282  * if input dip != child_dip, then call is on behalf of child
4283  * to search PROM, do it via ddi_prop_search_common() and ascend only
4284  * if allowed.
4285  *
4286  * if input dip == ch_dip (child_dip), call is on behalf of root driver,
4287  * to search for PROM defined props only.
4288  *
4289  * Note that the PROM search is done only if the requested dev
4290  * is either DDI_DEV_T_ANY or DDI_DEV_T_NONE. PROM properties
4291  * have no associated dev, thus are automatically associated with
4292  * DDI_DEV_T_NONE.
4293  *
4294  * Modifying flag DDI_PROP_NOTPROM inhibits the search in the h/w layer.
4295  *
4296  * Returns DDI_PROP_FOUND_1275 if found to indicate to framework
4297  * that the property resides in the prom.
4298  */
4299 int
4300 impl_ddi_bus_prop_op(dev_t dev, dev_info_t *dip, dev_info_t *ch_dip,
4301     ddi_prop_op_t prop_op, int mod_flags,
4302     char *name, caddr_t valuep, int *lengthp)
4303 {
4304         int     len;
4305         caddr_t buffer;
4306 
4307         /*
4308          * If requested dev is DDI_DEV_T_NONE or DDI_DEV_T_ANY, then
4309          * look in caller's PROM if it's a self identifying device...
4310          *
4311          * Note that this is very similar to ddi_prop_op, but we
4312          * search the PROM instead of the s/w defined properties,
4313          * and we are called on by the parent driver to do this for
4314          * the child.
4315          */
4316 
4317         if (((dev == DDI_DEV_T_NONE) || (dev == DDI_DEV_T_ANY)) &&
4318             ndi_dev_is_prom_node(ch_dip) &&
4319             ((mod_flags & DDI_PROP_NOTPROM) == 0)) {
4320                 len = prom_getproplen((pnode_t)DEVI(ch_dip)->devi_nodeid, name);
4321                 if (len == -1) {
4322                         return (DDI_PROP_NOT_FOUND);
4323                 }
4324 
4325                 /*
4326                  * If exists only request, we're done
4327                  */
4328                 if (prop_op == PROP_EXISTS) {
4329                         return (DDI_PROP_FOUND_1275);
4330                 }
4331 
4332                 /*
4333                  * If length only request or prop length == 0, get out
4334                  */
4335                 if ((prop_op == PROP_LEN) || (len == 0)) {
4336                         *lengthp = len;
4337                         return (DDI_PROP_FOUND_1275);
4338                 }
4339 
4340                 /*
4341                  * Allocate buffer if required... (either way `buffer'
4342                  * is receiving address).
4343                  */
4344 
4345                 switch (prop_op) {
4346 
4347                 case PROP_LEN_AND_VAL_ALLOC:
4348 
4349                         buffer = kmem_alloc((size_t)len,
4350                             mod_flags & DDI_PROP_CANSLEEP ?
4351                             KM_SLEEP : KM_NOSLEEP);
4352                         if (buffer == NULL) {
4353                                 return (DDI_PROP_NO_MEMORY);
4354                         }
4355                         *(caddr_t *)valuep = buffer;
4356                         break;
4357 
4358                 case PROP_LEN_AND_VAL_BUF:
4359 
4360                         if (len > (*lengthp)) {
4361                                 *lengthp = len;
4362                                 return (DDI_PROP_BUF_TOO_SMALL);
4363                         }
4364 
4365                         buffer = valuep;
4366                         break;
4367 
4368                 default:
4369                         break;
4370                 }
4371 
4372                 /*
4373                  * Call the PROM function to do the copy.
4374                  */
4375                 (void) prom_getprop((pnode_t)DEVI(ch_dip)->devi_nodeid,
4376                     name, buffer);
4377 
4378                 *lengthp = len; /* return the actual length to the caller */
4379                 (void) impl_fix_props(dip, ch_dip, name, len, buffer);
4380                 return (DDI_PROP_FOUND_1275);
4381         }
4382 
4383         return (DDI_PROP_NOT_FOUND);
4384 }
4385 
4386 /*
4387  * The ddi_bus_prop_op default bus nexus prop op function.
4388  *
4389  * Code to search hardware layer (PROM), if it exists,
4390  * on behalf of child, then, if appropriate, ascend and check
4391  * my own software defined properties...
4392  */
4393 int
4394 ddi_bus_prop_op(dev_t dev, dev_info_t *dip, dev_info_t *ch_dip,
4395     ddi_prop_op_t prop_op, int mod_flags,
4396     char *name, caddr_t valuep, int *lengthp)
4397 {
4398         int     error;
4399 
4400         error = impl_ddi_bus_prop_op(dev, dip, ch_dip, prop_op, mod_flags,
4401             name, valuep, lengthp);
4402 
4403         if (error == DDI_PROP_SUCCESS || error == DDI_PROP_FOUND_1275 ||
4404             error == DDI_PROP_BUF_TOO_SMALL)
4405                 return (error);
4406 
4407         if (error == DDI_PROP_NO_MEMORY) {
4408                 cmn_err(CE_CONT, prop_no_mem_msg, name);
4409                 return (DDI_PROP_NO_MEMORY);
4410         }
4411 
4412         /*
4413          * Check the 'options' node as a last resort
4414          */
4415         if ((mod_flags & DDI_PROP_DONTPASS) != 0)
4416                 return (DDI_PROP_NOT_FOUND);
4417 
4418         if (ch_dip == ddi_root_node())  {
4419                 /*
4420                  * As a last resort, when we've reached
4421                  * the top and still haven't found the
4422                  * property, see if the desired property
4423                  * is attached to the options node.
4424                  *
4425                  * The options dip is attached right after boot.
4426                  */
4427                 ASSERT(options_dip != NULL);
4428                 /*
4429                  * Force the "don't pass" flag to *just* see
4430                  * what the options node has to offer.
4431                  */
4432                 return (ddi_prop_search_common(dev, options_dip, prop_op,
4433                     mod_flags|DDI_PROP_DONTPASS, name, valuep,
4434                     (uint_t *)lengthp));
4435         }
4436 
4437         /*
4438          * Otherwise, continue search with parent's s/w defined properties...
4439          * NOTE: Using `dip' in following call increments the level.
4440          */
4441 
4442         return (ddi_prop_search_common(dev, dip, prop_op, mod_flags,
4443             name, valuep, (uint_t *)lengthp));
4444 }
4445 
4446 /*
4447  * External property functions used by other parts of the kernel...
4448  */
4449 
4450 /*
4451  * e_ddi_getlongprop: See comments for ddi_get_longprop.
4452  */
4453 
4454 int
4455 e_ddi_getlongprop(dev_t dev, vtype_t type, char *name, int flags,
4456     caddr_t valuep, int *lengthp)
4457 {
4458         _NOTE(ARGUNUSED(type))
4459         dev_info_t *devi;
4460         ddi_prop_op_t prop_op = PROP_LEN_AND_VAL_ALLOC;
4461         int error;
4462 
4463         if ((devi = e_ddi_hold_devi_by_dev(dev, 0)) == NULL)
4464                 return (DDI_PROP_NOT_FOUND);
4465 
4466         error = cdev_prop_op(dev, devi, prop_op, flags, name, valuep, lengthp);
4467         ddi_release_devi(devi);
4468         return (error);
4469 }
4470 
4471 /*
4472  * e_ddi_getlongprop_buf:       See comments for ddi_getlongprop_buf.
4473  */
4474 
4475 int
4476 e_ddi_getlongprop_buf(dev_t dev, vtype_t type, char *name, int flags,
4477     caddr_t valuep, int *lengthp)
4478 {
4479         _NOTE(ARGUNUSED(type))
4480         dev_info_t *devi;
4481         ddi_prop_op_t prop_op = PROP_LEN_AND_VAL_BUF;
4482         int error;
4483 
4484         if ((devi = e_ddi_hold_devi_by_dev(dev, 0)) == NULL)
4485                 return (DDI_PROP_NOT_FOUND);
4486 
4487         error = cdev_prop_op(dev, devi, prop_op, flags, name, valuep, lengthp);
4488         ddi_release_devi(devi);
4489         return (error);
4490 }
4491 
4492 /*
4493  * e_ddi_getprop:       See comments for ddi_getprop.
4494  */
4495 int
4496 e_ddi_getprop(dev_t dev, vtype_t type, char *name, int flags, int defvalue)
4497 {
4498         _NOTE(ARGUNUSED(type))
4499         dev_info_t *devi;
4500         ddi_prop_op_t prop_op = PROP_LEN_AND_VAL_BUF;
4501         int     propvalue = defvalue;
4502         int     proplength = sizeof (int);
4503         int     error;
4504 
4505         if ((devi = e_ddi_hold_devi_by_dev(dev, 0)) == NULL)
4506                 return (defvalue);
4507 
4508         error = cdev_prop_op(dev, devi, prop_op,
4509             flags, name, (caddr_t)&propvalue, &proplength);
4510         ddi_release_devi(devi);
4511 
4512         if ((error == DDI_PROP_SUCCESS) && (proplength == 0))
4513                 propvalue = 1;
4514 
4515         return (propvalue);
4516 }
4517 
4518 /*
4519  * e_ddi_getprop_int64:
4520  *
4521  * This is a typed interfaces, but predates typed properties. With the
4522  * introduction of typed properties the framework tries to ensure
4523  * consistent use of typed interfaces. This is why TYPE_INT64 is not
4524  * part of TYPE_ANY.  E_ddi_getprop_int64 is a special case where a
4525  * typed interface invokes legacy (non-typed) interfaces:
4526  * cdev_prop_op(), prop_op(9E), ddi_prop_op(9F)).  In this case the
4527  * fact that TYPE_INT64 is not part of TYPE_ANY matters.  To support
4528  * this type of lookup as a single operation we invoke the legacy
4529  * non-typed interfaces with the special CONSUMER_TYPED bit set. The
4530  * framework ddi_prop_op(9F) implementation is expected to check for
4531  * CONSUMER_TYPED and, if set, expand type bits beyond TYPE_ANY
4532  * (currently TYPE_INT64).
4533  */
4534 int64_t
4535 e_ddi_getprop_int64(dev_t dev, vtype_t type, char *name,
4536     int flags, int64_t defvalue)
4537 {
4538         _NOTE(ARGUNUSED(type))
4539         dev_info_t      *devi;
4540         ddi_prop_op_t   prop_op = PROP_LEN_AND_VAL_BUF;
4541         int64_t         propvalue = defvalue;
4542         int             proplength = sizeof (propvalue);
4543         int             error;
4544 
4545         if ((devi = e_ddi_hold_devi_by_dev(dev, 0)) == NULL)
4546                 return (defvalue);
4547 
4548         error = cdev_prop_op(dev, devi, prop_op, flags |
4549             DDI_PROP_CONSUMER_TYPED, name, (caddr_t)&propvalue, &proplength);
4550         ddi_release_devi(devi);
4551 
4552         if ((error == DDI_PROP_SUCCESS) && (proplength == 0))
4553                 propvalue = 1;
4554 
4555         return (propvalue);
4556 }
4557 
4558 /*
4559  * e_ddi_getproplen:    See comments for ddi_getproplen.
4560  */
4561 int
4562 e_ddi_getproplen(dev_t dev, vtype_t type, char *name, int flags, int *lengthp)
4563 {
4564         _NOTE(ARGUNUSED(type))
4565         dev_info_t *devi;
4566         ddi_prop_op_t prop_op = PROP_LEN;
4567         int error;
4568 
4569         if ((devi = e_ddi_hold_devi_by_dev(dev, 0)) == NULL)
4570                 return (DDI_PROP_NOT_FOUND);
4571 
4572         error = cdev_prop_op(dev, devi, prop_op, flags, name, NULL, lengthp);
4573         ddi_release_devi(devi);
4574         return (error);
4575 }
4576 
4577 /*
4578  * Routines to get at elements of the dev_info structure
4579  */
4580 
4581 /*
4582  * ddi_binding_name: Return the driver binding name of the devinfo node
4583  *              This is the name the OS used to bind the node to a driver.
4584  */
4585 char *
4586 ddi_binding_name(dev_info_t *dip)
4587 {
4588         return (DEVI(dip)->devi_binding_name);
4589 }
4590 
4591 /*
4592  * ddi_driver_major: Return the major number of the driver that
4593  *      the supplied devinfo is bound to.  If not yet bound,
4594  *      DDI_MAJOR_T_NONE.
4595  *
4596  * When used by the driver bound to 'devi', this
4597  * function will reliably return the driver major number.
4598  * Other ways of determining the driver major number, such as
4599  *      major = ddi_name_to_major(ddi_get_name(devi));
4600  *      major = ddi_name_to_major(ddi_binding_name(devi));
4601  * can return a different result as the driver/alias binding
4602  * can change dynamically, and thus should be avoided.
4603  */
4604 major_t
4605 ddi_driver_major(dev_info_t *devi)
4606 {
4607         return (DEVI(devi)->devi_major);
4608 }
4609 
4610 /*
4611  * ddi_driver_name: Return the normalized driver name. this is the
4612  *              actual driver name
4613  */
4614 const char *
4615 ddi_driver_name(dev_info_t *devi)
4616 {
4617         major_t major;
4618 
4619         if ((major = ddi_driver_major(devi)) != DDI_MAJOR_T_NONE)
4620                 return (ddi_major_to_name(major));
4621 
4622         return (ddi_node_name(devi));
4623 }
4624 
4625 /*
4626  * i_ddi_set_binding_name:      Set binding name.
4627  *
4628  *      Set the binding name to the given name.
4629  *      This routine is for use by the ddi implementation, not by drivers.
4630  */
4631 void
4632 i_ddi_set_binding_name(dev_info_t *dip, char *name)
4633 {
4634         DEVI(dip)->devi_binding_name = name;
4635 
4636 }
4637 
4638 /*
4639  * ddi_get_name: A synonym of ddi_binding_name() ... returns a name
4640  * the implementation has used to bind the node to a driver.
4641  */
4642 char *
4643 ddi_get_name(dev_info_t *dip)
4644 {
4645         return (DEVI(dip)->devi_binding_name);
4646 }
4647 
4648 /*
4649  * ddi_node_name: Return the name property of the devinfo node
4650  *              This may differ from ddi_binding_name if the node name
4651  *              does not define a binding to a driver (i.e. generic names).
4652  */
4653 char *
4654 ddi_node_name(dev_info_t *dip)
4655 {
4656         return (DEVI(dip)->devi_node_name);
4657 }
4658 
4659 
4660 /*
4661  * ddi_get_nodeid:      Get nodeid stored in dev_info structure.
4662  */
4663 int
4664 ddi_get_nodeid(dev_info_t *dip)
4665 {
4666         return (DEVI(dip)->devi_nodeid);
4667 }
4668 
4669 int
4670 ddi_get_instance(dev_info_t *dip)
4671 {
4672         return (DEVI(dip)->devi_instance);
4673 }
4674 
4675 struct dev_ops *
4676 ddi_get_driver(dev_info_t *dip)
4677 {
4678         return (DEVI(dip)->devi_ops);
4679 }
4680 
4681 void
4682 ddi_set_driver(dev_info_t *dip, struct dev_ops *devo)
4683 {
4684         DEVI(dip)->devi_ops = devo;
4685 }
4686 
4687 /*
4688  * ddi_set_driver_private/ddi_get_driver_private:
4689  * Get/set device driver private data in devinfo.
4690  */
4691 void
4692 ddi_set_driver_private(dev_info_t *dip, void *data)
4693 {
4694         DEVI(dip)->devi_driver_data = data;
4695 }
4696 
4697 void *
4698 ddi_get_driver_private(dev_info_t *dip)
4699 {
4700         return (DEVI(dip)->devi_driver_data);
4701 }
4702 
4703 /*
4704  * ddi_get_parent, ddi_get_child, ddi_get_next_sibling
4705  */
4706 
4707 dev_info_t *
4708 ddi_get_parent(dev_info_t *dip)
4709 {
4710         return ((dev_info_t *)DEVI(dip)->devi_parent);
4711 }
4712 
4713 dev_info_t *
4714 ddi_get_child(dev_info_t *dip)
4715 {
4716         return ((dev_info_t *)DEVI(dip)->devi_child);
4717 }
4718 
4719 dev_info_t *
4720 ddi_get_next_sibling(dev_info_t *dip)
4721 {
4722         return ((dev_info_t *)DEVI(dip)->devi_sibling);
4723 }
4724 
4725 dev_info_t *
4726 ddi_get_next(dev_info_t *dip)
4727 {
4728         return ((dev_info_t *)DEVI(dip)->devi_next);
4729 }
4730 
4731 void
4732 ddi_set_next(dev_info_t *dip, dev_info_t *nextdip)
4733 {
4734         DEVI(dip)->devi_next = DEVI(nextdip);
4735 }
4736 
4737 /*
4738  * ddi_root_node:               Return root node of devinfo tree
4739  */
4740 
4741 dev_info_t *
4742 ddi_root_node(void)
4743 {
4744         extern dev_info_t *top_devinfo;
4745 
4746         return (top_devinfo);
4747 }
4748 
4749 /*
4750  * Miscellaneous functions:
4751  */
4752 
4753 /*
4754  * Implementation specific hooks
4755  */
4756 
4757 void
4758 ddi_report_dev(dev_info_t *d)
4759 {
4760         char *b;
4761 
4762         (void) ddi_ctlops(d, d, DDI_CTLOPS_REPORTDEV, (void *)0, (void *)0);
4763 
4764         /*
4765          * If this devinfo node has cb_ops, it's implicitly accessible from
4766          * userland, so we print its full name together with the instance
4767          * number 'abbreviation' that the driver may use internally.
4768          */
4769         if (DEVI(d)->devi_ops->devo_cb_ops != (struct cb_ops *)0 &&
4770             (b = kmem_zalloc(MAXPATHLEN, KM_NOSLEEP))) {
4771                 cmn_err(CE_CONT, "?%s%d is %s\n",
4772                     ddi_driver_name(d), ddi_get_instance(d),
4773                     ddi_pathname(d, b));
4774                 kmem_free(b, MAXPATHLEN);
4775         }
4776 }
4777 
4778 /*
4779  * ddi_ctlops() is described in the assembler not to buy a new register
4780  * window when it's called and can reduce cost in climbing the device tree
4781  * without using the tail call optimization.
4782  */
4783 int
4784 ddi_dev_regsize(dev_info_t *dev, uint_t rnumber, off_t *result)
4785 {
4786         int ret;
4787 
4788         ret = ddi_ctlops(dev, dev, DDI_CTLOPS_REGSIZE,
4789             (void *)&rnumber, (void *)result);
4790 
4791         return (ret == DDI_SUCCESS ? DDI_SUCCESS : DDI_FAILURE);
4792 }
4793 
4794 int
4795 ddi_dev_nregs(dev_info_t *dev, int *result)
4796 {
4797         return (ddi_ctlops(dev, dev, DDI_CTLOPS_NREGS, 0, (void *)result));
4798 }
4799 
4800 int
4801 ddi_dev_is_sid(dev_info_t *d)
4802 {
4803         return (ddi_ctlops(d, d, DDI_CTLOPS_SIDDEV, (void *)0, (void *)0));
4804 }
4805 
4806 int
4807 ddi_slaveonly(dev_info_t *d)
4808 {
4809         return (ddi_ctlops(d, d, DDI_CTLOPS_SLAVEONLY, (void *)0, (void *)0));
4810 }
4811 
4812 int
4813 ddi_dev_affinity(dev_info_t *a, dev_info_t *b)
4814 {
4815         return (ddi_ctlops(a, a, DDI_CTLOPS_AFFINITY, (void *)b, (void *)0));
4816 }
4817 
4818 int
4819 ddi_streams_driver(dev_info_t *dip)
4820 {
4821         if (i_ddi_devi_attached(dip) &&
4822             (DEVI(dip)->devi_ops->devo_cb_ops != NULL) &&
4823             (DEVI(dip)->devi_ops->devo_cb_ops->cb_str != NULL))
4824                 return (DDI_SUCCESS);
4825         return (DDI_FAILURE);
4826 }
4827 
4828 /*
4829  * callback free list
4830  */
4831 
4832 static int ncallbacks;
4833 static int nc_low = 170;
4834 static int nc_med = 512;
4835 static int nc_high = 2048;
4836 static struct ddi_callback *callbackq;
4837 static struct ddi_callback *callbackqfree;
4838 
4839 /*
4840  * set/run callback lists
4841  */
4842 struct  cbstats {
4843         kstat_named_t   cb_asked;
4844         kstat_named_t   cb_new;
4845         kstat_named_t   cb_run;
4846         kstat_named_t   cb_delete;
4847         kstat_named_t   cb_maxreq;
4848         kstat_named_t   cb_maxlist;
4849         kstat_named_t   cb_alloc;
4850         kstat_named_t   cb_runouts;
4851         kstat_named_t   cb_L2;
4852         kstat_named_t   cb_grow;
4853 } cbstats = {
4854         {"asked",       KSTAT_DATA_UINT32},
4855         {"new",         KSTAT_DATA_UINT32},
4856         {"run",         KSTAT_DATA_UINT32},
4857         {"delete",      KSTAT_DATA_UINT32},
4858         {"maxreq",      KSTAT_DATA_UINT32},
4859         {"maxlist",     KSTAT_DATA_UINT32},
4860         {"alloc",       KSTAT_DATA_UINT32},
4861         {"runouts",     KSTAT_DATA_UINT32},
4862         {"L2",          KSTAT_DATA_UINT32},
4863         {"grow",        KSTAT_DATA_UINT32},
4864 };
4865 
4866 #define nc_asked        cb_asked.value.ui32
4867 #define nc_new          cb_new.value.ui32
4868 #define nc_run          cb_run.value.ui32
4869 #define nc_delete       cb_delete.value.ui32
4870 #define nc_maxreq       cb_maxreq.value.ui32
4871 #define nc_maxlist      cb_maxlist.value.ui32
4872 #define nc_alloc        cb_alloc.value.ui32
4873 #define nc_runouts      cb_runouts.value.ui32
4874 #define nc_L2           cb_L2.value.ui32
4875 #define nc_grow         cb_grow.value.ui32
4876 
4877 static kmutex_t ddi_callback_mutex;
4878 
4879 /*
4880  * callbacks are handled using a L1/L2 cache. The L1 cache
4881  * comes out of kmem_cache_alloc and can expand/shrink dynamically. If
4882  * we can't get callbacks from the L1 cache [because pageout is doing
4883  * I/O at the time freemem is 0], we allocate callbacks out of the
4884  * L2 cache. The L2 cache is static and depends on the memory size.
4885  * [We might also count the number of devices at probe time and
4886  * allocate one structure per device and adjust for deferred attach]
4887  */
4888 void
4889 impl_ddi_callback_init(void)
4890 {
4891         int     i;
4892         uint_t  physmegs;
4893         kstat_t *ksp;
4894 
4895         physmegs = physmem >> (20 - PAGESHIFT);
4896         if (physmegs < 48) {
4897                 ncallbacks = nc_low;
4898         } else if (physmegs < 128) {
4899                 ncallbacks = nc_med;
4900         } else {
4901                 ncallbacks = nc_high;
4902         }
4903 
4904         /*
4905          * init free list
4906          */
4907         callbackq = kmem_zalloc(
4908             ncallbacks * sizeof (struct ddi_callback), KM_SLEEP);
4909         for (i = 0; i < ncallbacks-1; i++)
4910                 callbackq[i].c_nfree = &callbackq[i+1];
4911         callbackqfree = callbackq;
4912 
4913         /* init kstats */
4914         if (ksp = kstat_create("unix", 0, "cbstats", "misc", KSTAT_TYPE_NAMED,
4915             sizeof (cbstats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL)) {
4916                 ksp->ks_data = (void *) &cbstats;
4917                 kstat_install(ksp);
4918         }
4919 
4920 }
4921 
4922 static void
4923 callback_insert(int (*funcp)(caddr_t), caddr_t arg, uintptr_t *listid,
4924         int count)
4925 {
4926         struct ddi_callback *list, *marker, *new;
4927         size_t size = sizeof (struct ddi_callback);
4928 
4929         list = marker = (struct ddi_callback *)*listid;
4930         while (list != NULL) {
4931                 if (list->c_call == funcp && list->c_arg == arg) {
4932                         list->c_count += count;
4933                         return;
4934                 }
4935                 marker = list;
4936                 list = list->c_nlist;
4937         }
4938         new = kmem_alloc(size, KM_NOSLEEP);
4939         if (new == NULL) {
4940                 new = callbackqfree;
4941                 if (new == NULL) {
4942                         new = kmem_alloc_tryhard(sizeof (struct ddi_callback),
4943                             &size, KM_NOSLEEP | KM_PANIC);
4944                         cbstats.nc_grow++;
4945                 } else {
4946                         callbackqfree = new->c_nfree;
4947                         cbstats.nc_L2++;
4948                 }
4949         }
4950         if (marker != NULL) {
4951                 marker->c_nlist = new;
4952         } else {
4953                 *listid = (uintptr_t)new;
4954         }
4955         new->c_size = size;
4956         new->c_nlist = NULL;
4957         new->c_call = funcp;
4958         new->c_arg = arg;
4959         new->c_count = count;
4960         cbstats.nc_new++;
4961         cbstats.nc_alloc++;
4962         if (cbstats.nc_alloc > cbstats.nc_maxlist)
4963                 cbstats.nc_maxlist = cbstats.nc_alloc;
4964 }
4965 
4966 void
4967 ddi_set_callback(int (*funcp)(caddr_t), caddr_t arg, uintptr_t *listid)
4968 {
4969         mutex_enter(&ddi_callback_mutex);
4970         cbstats.nc_asked++;
4971         if ((cbstats.nc_asked - cbstats.nc_run) > cbstats.nc_maxreq)
4972                 cbstats.nc_maxreq = (cbstats.nc_asked - cbstats.nc_run);
4973         (void) callback_insert(funcp, arg, listid, 1);
4974         mutex_exit(&ddi_callback_mutex);
4975 }
4976 
4977 static void
4978 real_callback_run(void *Queue)
4979 {
4980         int (*funcp)(caddr_t);
4981         caddr_t arg;
4982         int count, rval;
4983         uintptr_t *listid;
4984         struct ddi_callback *list, *marker;
4985         int check_pending = 1;
4986         int pending = 0;
4987 
4988         do {
4989                 mutex_enter(&ddi_callback_mutex);
4990                 listid = Queue;
4991                 list = (struct ddi_callback *)*listid;
4992                 if (list == NULL) {
4993                         mutex_exit(&ddi_callback_mutex);
4994                         return;
4995                 }
4996                 if (check_pending) {
4997                         marker = list;
4998                         while (marker != NULL) {
4999                                 pending += marker->c_count;
5000                                 marker = marker->c_nlist;
5001                         }
5002                         check_pending = 0;
5003                 }
5004                 ASSERT(pending > 0);
5005                 ASSERT(list->c_count > 0);
5006                 funcp = list->c_call;
5007                 arg = list->c_arg;
5008                 count = list->c_count;
5009                 *(uintptr_t *)Queue = (uintptr_t)list->c_nlist;
5010                 if (list >= &callbackq[0] &&
5011                     list <= &callbackq[ncallbacks-1]) {
5012                         list->c_nfree = callbackqfree;
5013                         callbackqfree = list;
5014                 } else
5015                         kmem_free(list, list->c_size);
5016 
5017                 cbstats.nc_delete++;
5018                 cbstats.nc_alloc--;
5019                 mutex_exit(&ddi_callback_mutex);
5020 
5021                 do {
5022                         if ((rval = (*funcp)(arg)) == 0) {
5023                                 pending -= count;
5024                                 mutex_enter(&ddi_callback_mutex);
5025                                 (void) callback_insert(funcp, arg, listid,
5026                                     count);
5027                                 cbstats.nc_runouts++;
5028                         } else {
5029                                 pending--;
5030                                 mutex_enter(&ddi_callback_mutex);
5031                                 cbstats.nc_run++;
5032                         }
5033                         mutex_exit(&ddi_callback_mutex);
5034                 } while (rval != 0 && (--count > 0));
5035         } while (pending > 0);
5036 }
5037 
5038 void
5039 ddi_run_callback(uintptr_t *listid)
5040 {
5041         softcall(real_callback_run, listid);
5042 }
5043 
5044 /*
5045  * ddi_periodic_t
5046  * ddi_periodic_add(void (*func)(void *), void *arg, hrtime_t interval,
5047  *     int level)
5048  *
5049  * INTERFACE LEVEL
5050  *      Solaris DDI specific (Solaris DDI)
5051  *
5052  * PARAMETERS
5053  *      func: the callback function
5054  *
5055  *            The callback function will be invoked. The function is invoked
5056  *            in kernel context if the argument level passed is the zero.
5057  *            Otherwise it's invoked in interrupt context at the specified
5058  *            level.
5059  *
5060  *       arg: the argument passed to the callback function
5061  *
5062  *  interval: interval time
5063  *
5064  *    level : callback interrupt level
5065  *
5066  *            If the value is the zero, the callback function is invoked
5067  *            in kernel context. If the value is more than the zero, but
5068  *            less than or equal to ten, the callback function is invoked in
5069  *            interrupt context at the specified interrupt level, which may
5070  *            be used for real time applications.
5071  *
5072  *            This value must be in range of 0-10, which can be a numeric
5073  *            number or a pre-defined macro (DDI_IPL_0, ... , DDI_IPL_10).
5074  *
5075  * DESCRIPTION
5076  *      ddi_periodic_add(9F) schedules the specified function to be
5077  *      periodically invoked in the interval time.
5078  *
5079  *      As well as timeout(9F), the exact time interval over which the function
5080  *      takes effect cannot be guaranteed, but the value given is a close
5081  *      approximation.
5082  *
5083  *      Drivers waiting on behalf of processes with real-time constraints must
5084  *      pass non-zero value with the level argument to ddi_periodic_add(9F).
5085  *
5086  * RETURN VALUES
5087  *      ddi_periodic_add(9F) returns a non-zero opaque value (ddi_periodic_t),
5088  *      which must be used for ddi_periodic_delete(9F) to specify the request.
5089  *
5090  * CONTEXT
5091  *      ddi_periodic_add(9F) can be called in user or kernel context, but
5092  *      it cannot be called in interrupt context, which is different from
5093  *      timeout(9F).
5094  */
5095 ddi_periodic_t
5096 ddi_periodic_add(void (*func)(void *), void *arg, hrtime_t interval, int level)
5097 {
5098         /*
5099          * Sanity check of the argument level.
5100          */
5101         if (level < DDI_IPL_0 || level > DDI_IPL_10)
5102                 cmn_err(CE_PANIC,
5103                     "ddi_periodic_add: invalid interrupt level (%d).", level);
5104 
5105         /*
5106          * Sanity check of the context. ddi_periodic_add() cannot be
5107          * called in either interrupt context or high interrupt context.
5108          */
5109         if (servicing_interrupt())
5110                 cmn_err(CE_PANIC,
5111                     "ddi_periodic_add: called in (high) interrupt context.");
5112 
5113         return ((ddi_periodic_t)i_timeout(func, arg, interval, level));
5114 }
5115 
5116 /*
5117  * void
5118  * ddi_periodic_delete(ddi_periodic_t req)
5119  *
5120  * INTERFACE LEVEL
5121  *     Solaris DDI specific (Solaris DDI)
5122  *
5123  * PARAMETERS
5124  *     req: ddi_periodic_t opaque value ddi_periodic_add(9F) returned
5125  *     previously.
5126  *
5127  * DESCRIPTION
5128  *     ddi_periodic_delete(9F) cancels the ddi_periodic_add(9F) request
5129  *     previously requested.
5130  *
5131  *     ddi_periodic_delete(9F) will not return until the pending request
5132  *     is canceled or executed.
5133  *
5134  *     As well as untimeout(9F), calling ddi_periodic_delete(9F) for a
5135  *     timeout which is either running on another CPU, or has already
5136  *     completed causes no problems. However, unlike untimeout(9F), there is
5137  *     no restrictions on the lock which might be held across the call to
5138  *     ddi_periodic_delete(9F).
5139  *
5140  *     Drivers should be structured with the understanding that the arrival of
5141  *     both an interrupt and a timeout for that interrupt can occasionally
5142  *     occur, in either order.
5143  *
5144  * CONTEXT
5145  *     ddi_periodic_delete(9F) can be called in user or kernel context, but
5146  *     it cannot be called in interrupt context, which is different from
5147  *     untimeout(9F).
5148  */
5149 void
5150 ddi_periodic_delete(ddi_periodic_t req)
5151 {
5152         /*
5153          * Sanity check of the context. ddi_periodic_delete() cannot be
5154          * called in either interrupt context or high interrupt context.
5155          */
5156         if (servicing_interrupt())
5157                 cmn_err(CE_PANIC,
5158                     "ddi_periodic_delete: called in (high) interrupt context.");
5159 
5160         i_untimeout((timeout_t)req);
5161 }
5162 
5163 dev_info_t *
5164 nodevinfo(dev_t dev, int otyp)
5165 {
5166         _NOTE(ARGUNUSED(dev, otyp))
5167         return ((dev_info_t *)0);
5168 }
5169 
5170 /*
5171  * A driver should support its own getinfo(9E) entry point. This function
5172  * is provided as a convenience for ON drivers that don't expect their
5173  * getinfo(9E) entry point to be called. A driver that uses this must not
5174  * call ddi_create_minor_node.
5175  */
5176 int
5177 ddi_no_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
5178 {
5179         _NOTE(ARGUNUSED(dip, infocmd, arg, result))
5180         return (DDI_FAILURE);
5181 }
5182 
5183 /*
5184  * A driver should support its own getinfo(9E) entry point. This function
5185  * is provided as a convenience for ON drivers that where the minor number
5186  * is the instance. Drivers that do not have 1:1 mapping must implement
5187  * their own getinfo(9E) function.
5188  */
5189 int
5190 ddi_getinfo_1to1(dev_info_t *dip, ddi_info_cmd_t infocmd,
5191     void *arg, void **result)
5192 {
5193         _NOTE(ARGUNUSED(dip))
5194         int     instance;
5195 
5196         if (infocmd != DDI_INFO_DEVT2INSTANCE)
5197                 return (DDI_FAILURE);
5198 
5199         instance = getminor((dev_t)(uintptr_t)arg);
5200         *result = (void *)(uintptr_t)instance;
5201         return (DDI_SUCCESS);
5202 }
5203 
5204 int
5205 ddifail(dev_info_t *devi, ddi_attach_cmd_t cmd)
5206 {
5207         _NOTE(ARGUNUSED(devi, cmd))
5208         return (DDI_FAILURE);
5209 }
5210 
5211 int
5212 ddi_no_dma_map(dev_info_t *dip, dev_info_t *rdip,
5213     struct ddi_dma_req *dmareqp, ddi_dma_handle_t *handlep)
5214 {
5215         _NOTE(ARGUNUSED(dip, rdip, dmareqp, handlep))
5216         return (DDI_DMA_NOMAPPING);
5217 }
5218 
5219 int
5220 ddi_no_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr,
5221     int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep)
5222 {
5223         _NOTE(ARGUNUSED(dip, rdip, attr, waitfp, arg, handlep))
5224         return (DDI_DMA_BADATTR);
5225 }
5226 
5227 int
5228 ddi_no_dma_freehdl(dev_info_t *dip, dev_info_t *rdip,
5229     ddi_dma_handle_t handle)
5230 {
5231         _NOTE(ARGUNUSED(dip, rdip, handle))
5232         return (DDI_FAILURE);
5233 }
5234 
5235 int
5236 ddi_no_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip,
5237     ddi_dma_handle_t handle, struct ddi_dma_req *dmareq,
5238     ddi_dma_cookie_t *cp, uint_t *ccountp)
5239 {
5240         _NOTE(ARGUNUSED(dip, rdip, handle, dmareq, cp, ccountp))
5241         return (DDI_DMA_NOMAPPING);
5242 }
5243 
5244 int
5245 ddi_no_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
5246     ddi_dma_handle_t handle)
5247 {
5248         _NOTE(ARGUNUSED(dip, rdip, handle))
5249         return (DDI_FAILURE);
5250 }
5251 
5252 int
5253 ddi_no_dma_flush(dev_info_t *dip, dev_info_t *rdip,
5254     ddi_dma_handle_t handle, off_t off, size_t len,
5255     uint_t cache_flags)
5256 {
5257         _NOTE(ARGUNUSED(dip, rdip, handle, off, len, cache_flags))
5258         return (DDI_FAILURE);
5259 }
5260 
5261 int
5262 ddi_no_dma_win(dev_info_t *dip, dev_info_t *rdip,
5263     ddi_dma_handle_t handle, uint_t win, off_t *offp,
5264     size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp)
5265 {
5266         _NOTE(ARGUNUSED(dip, rdip, handle, win, offp, lenp, cookiep, ccountp))
5267         return (DDI_FAILURE);
5268 }
5269 
5270 int
5271 ddi_no_dma_mctl(dev_info_t *dip, dev_info_t *rdip,
5272     ddi_dma_handle_t handle, enum ddi_dma_ctlops request,
5273     off_t *offp, size_t *lenp, caddr_t *objp, uint_t flags)
5274 {
5275         _NOTE(ARGUNUSED(dip, rdip, handle, request, offp, lenp, objp, flags))
5276         return (DDI_FAILURE);
5277 }
5278 
5279 void
5280 ddivoid(void)
5281 {}
5282 
5283 int
5284 nochpoll(dev_t dev, short events, int anyyet, short *reventsp,
5285     struct pollhead **pollhdrp)
5286 {
5287         _NOTE(ARGUNUSED(dev, events, anyyet, reventsp, pollhdrp))
5288         return (ENXIO);
5289 }
5290 
5291 cred_t *
5292 ddi_get_cred(void)
5293 {
5294         return (CRED());
5295 }
5296 
5297 clock_t
5298 ddi_get_lbolt(void)
5299 {
5300         return ((clock_t)lbolt_hybrid());
5301 }
5302 
5303 int64_t
5304 ddi_get_lbolt64(void)
5305 {
5306         return (lbolt_hybrid());
5307 }
5308 
5309 time_t
5310 ddi_get_time(void)
5311 {
5312         time_t  now;
5313 
5314         if ((now = gethrestime_sec()) == 0) {
5315                 timestruc_t ts;
5316                 mutex_enter(&tod_lock);
5317                 ts = tod_get();
5318                 mutex_exit(&tod_lock);
5319                 return (ts.tv_sec);
5320         } else {
5321                 return (now);
5322         }
5323 }
5324 
5325 pid_t
5326 ddi_get_pid(void)
5327 {
5328         return (ttoproc(curthread)->p_pid);
5329 }
5330 
5331 kt_did_t
5332 ddi_get_kt_did(void)
5333 {
5334         return (curthread->t_did);
5335 }
5336 
5337 /*
5338  * This function returns B_TRUE if the caller can reasonably expect that a call
5339  * to cv_wait_sig(9F), cv_timedwait_sig(9F), or qwait_sig(9F) could be awakened
5340  * by user-level signal.  If it returns B_FALSE, then the caller should use
5341  * other means to make certain that the wait will not hang "forever."
5342  *
5343  * It does not check the signal mask, nor for reception of any particular
5344  * signal.
5345  *
5346  * Currently, a thread can receive a signal if it's not a kernel thread and it
5347  * is not in the middle of exit(2) tear-down.  Threads that are in that
5348  * tear-down effectively convert cv_wait_sig to cv_wait, cv_timedwait_sig to
5349  * cv_timedwait, and qwait_sig to qwait.
5350  */
5351 boolean_t
5352 ddi_can_receive_sig(void)
5353 {
5354         proc_t *pp;
5355 
5356         if (curthread->t_proc_flag & TP_LWPEXIT)
5357                 return (B_FALSE);
5358         if ((pp = ttoproc(curthread)) == NULL)
5359                 return (B_FALSE);
5360         return (pp->p_as != &kas);
5361 }
5362 
5363 /*
5364  * Swap bytes in 16-bit [half-]words
5365  */
5366 void
5367 swab(void *src, void *dst, size_t nbytes)
5368 {
5369         uchar_t *pf = (uchar_t *)src;
5370         uchar_t *pt = (uchar_t *)dst;
5371         uchar_t tmp;
5372         int nshorts;
5373 
5374         nshorts = nbytes >> 1;
5375 
5376         while (--nshorts >= 0) {
5377                 tmp = *pf++;
5378                 *pt++ = *pf++;
5379                 *pt++ = tmp;
5380         }
5381 }
5382 
5383 static void
5384 ddi_append_minor_node(dev_info_t *ddip, struct ddi_minor_data *dmdp)
5385 {
5386         int                     circ;
5387         struct ddi_minor_data   *dp;
5388 
5389         ndi_devi_enter(ddip, &circ);
5390         if ((dp = DEVI(ddip)->devi_minor) == (struct ddi_minor_data *)NULL) {
5391                 DEVI(ddip)->devi_minor = dmdp;
5392         } else {
5393                 while (dp->next != (struct ddi_minor_data *)NULL)
5394                         dp = dp->next;
5395                 dp->next = dmdp;
5396         }
5397         ndi_devi_exit(ddip, circ);
5398 }
5399 
5400 /*
5401  * Part of the obsolete SunCluster DDI Hooks.
5402  * Keep for binary compatibility
5403  */
5404 minor_t
5405 ddi_getiminor(dev_t dev)
5406 {
5407         return (getminor(dev));
5408 }
5409 
5410 static int
5411 i_log_devfs_minor_create(dev_info_t *dip, char *minor_name)
5412 {
5413         int se_flag;
5414         int kmem_flag;
5415         int se_err;
5416         char *pathname, *class_name;
5417         sysevent_t *ev = NULL;
5418         sysevent_id_t eid;
5419         sysevent_value_t se_val;
5420         sysevent_attr_list_t *ev_attr_list = NULL;
5421 
5422         /* determine interrupt context */
5423         se_flag = (servicing_interrupt()) ? SE_NOSLEEP : SE_SLEEP;
5424         kmem_flag = (se_flag == SE_SLEEP) ? KM_SLEEP : KM_NOSLEEP;
5425 
5426         i_ddi_di_cache_invalidate();
5427 
5428 #ifdef DEBUG
5429         if ((se_flag == SE_NOSLEEP) && sunddi_debug) {
5430                 cmn_err(CE_CONT, "ddi_create_minor_node: called from "
5431                     "interrupt level by driver %s",
5432                     ddi_driver_name(dip));
5433         }
5434 #endif /* DEBUG */
5435 
5436         ev = sysevent_alloc(EC_DEVFS, ESC_DEVFS_MINOR_CREATE, EP_DDI, se_flag);
5437         if (ev == NULL) {
5438                 goto fail;
5439         }
5440 
5441         pathname = kmem_alloc(MAXPATHLEN, kmem_flag);
5442         if (pathname == NULL) {
5443                 sysevent_free(ev);
5444                 goto fail;
5445         }
5446 
5447         (void) ddi_pathname(dip, pathname);
5448         ASSERT(strlen(pathname));
5449         se_val.value_type = SE_DATA_TYPE_STRING;
5450         se_val.value.sv_string = pathname;
5451         if (sysevent_add_attr(&ev_attr_list, DEVFS_PATHNAME,
5452             &se_val, se_flag) != 0) {
5453                 kmem_free(pathname, MAXPATHLEN);
5454                 sysevent_free(ev);
5455                 goto fail;
5456         }
5457         kmem_free(pathname, MAXPATHLEN);
5458 
5459         /* add the device class attribute */
5460         if ((class_name = i_ddi_devi_class(dip)) != NULL) {
5461                 se_val.value_type = SE_DATA_TYPE_STRING;
5462                 se_val.value.sv_string = class_name;
5463                 if (sysevent_add_attr(&ev_attr_list,
5464                     DEVFS_DEVI_CLASS, &se_val, SE_SLEEP) != 0) {
5465                         sysevent_free_attr(ev_attr_list);
5466                         goto fail;
5467                 }
5468         }
5469 
5470         /*
5471          * allow for NULL minor names
5472          */
5473         if (minor_name != NULL) {
5474                 se_val.value.sv_string = minor_name;
5475                 if (sysevent_add_attr(&ev_attr_list, DEVFS_MINOR_NAME,
5476                     &se_val, se_flag) != 0) {
5477                         sysevent_free_attr(ev_attr_list);
5478                         sysevent_free(ev);
5479                         goto fail;
5480                 }
5481         }
5482 
5483         if (sysevent_attach_attributes(ev, ev_attr_list) != 0) {
5484                 sysevent_free_attr(ev_attr_list);
5485                 sysevent_free(ev);
5486                 goto fail;
5487         }
5488 
5489         if ((se_err = log_sysevent(ev, se_flag, &eid)) != 0) {
5490                 if (se_err == SE_NO_TRANSPORT) {
5491                         cmn_err(CE_WARN, "/devices or /dev may not be current "
5492                             "for driver %s (%s). Run devfsadm -i %s",
5493                             ddi_driver_name(dip), "syseventd not responding",
5494                             ddi_driver_name(dip));
5495                 } else {
5496                         sysevent_free(ev);
5497                         goto fail;
5498                 }
5499         }
5500 
5501         sysevent_free(ev);
5502         return (DDI_SUCCESS);
5503 fail:
5504         cmn_err(CE_WARN, "/devices or /dev may not be current "
5505             "for driver %s. Run devfsadm -i %s",
5506             ddi_driver_name(dip), ddi_driver_name(dip));
5507         return (DDI_SUCCESS);
5508 }
5509 
5510 /*
5511  * failing to remove a minor node is not of interest
5512  * therefore we do not generate an error message
5513  */
5514 static int
5515 i_log_devfs_minor_remove(dev_info_t *dip, char *minor_name)
5516 {
5517         char *pathname, *class_name;
5518         sysevent_t *ev;
5519         sysevent_id_t eid;
5520         sysevent_value_t se_val;
5521         sysevent_attr_list_t *ev_attr_list = NULL;
5522 
5523         /*
5524          * only log ddi_remove_minor_node() calls outside the scope
5525          * of attach/detach reconfigurations and when the dip is
5526          * still initialized.
5527          */
5528         if (DEVI_IS_ATTACHING(dip) || DEVI_IS_DETACHING(dip) ||
5529             (i_ddi_node_state(dip) < DS_INITIALIZED)) {
5530                 return (DDI_SUCCESS);
5531         }
5532 
5533         i_ddi_di_cache_invalidate();
5534 
5535         ev = sysevent_alloc(EC_DEVFS, ESC_DEVFS_MINOR_REMOVE, EP_DDI, SE_SLEEP);
5536         if (ev == NULL) {
5537                 return (DDI_SUCCESS);
5538         }
5539 
5540         pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5541         if (pathname == NULL) {
5542                 sysevent_free(ev);
5543                 return (DDI_SUCCESS);
5544         }
5545 
5546         (void) ddi_pathname(dip, pathname);
5547         ASSERT(strlen(pathname));
5548         se_val.value_type = SE_DATA_TYPE_STRING;
5549         se_val.value.sv_string = pathname;
5550         if (sysevent_add_attr(&ev_attr_list, DEVFS_PATHNAME,
5551             &se_val, SE_SLEEP) != 0) {
5552                 kmem_free(pathname, MAXPATHLEN);
5553                 sysevent_free(ev);
5554                 return (DDI_SUCCESS);
5555         }
5556 
5557         kmem_free(pathname, MAXPATHLEN);
5558 
5559         /*
5560          * allow for NULL minor names
5561          */
5562         if (minor_name != NULL) {
5563                 se_val.value.sv_string = minor_name;
5564                 if (sysevent_add_attr(&ev_attr_list, DEVFS_MINOR_NAME,
5565                     &se_val, SE_SLEEP) != 0) {
5566                         sysevent_free_attr(ev_attr_list);
5567                         goto fail;
5568                 }
5569         }
5570 
5571         if ((class_name = i_ddi_devi_class(dip)) != NULL) {
5572                 /* add the device class, driver name and instance attributes */
5573 
5574                 se_val.value_type = SE_DATA_TYPE_STRING;
5575                 se_val.value.sv_string = class_name;
5576                 if (sysevent_add_attr(&ev_attr_list,
5577                     DEVFS_DEVI_CLASS, &se_val, SE_SLEEP) != 0) {
5578                         sysevent_free_attr(ev_attr_list);
5579                         goto fail;
5580                 }
5581 
5582                 se_val.value_type = SE_DATA_TYPE_STRING;
5583                 se_val.value.sv_string = (char *)ddi_driver_name(dip);
5584                 if (sysevent_add_attr(&ev_attr_list,
5585                     DEVFS_DRIVER_NAME, &se_val, SE_SLEEP) != 0) {
5586                         sysevent_free_attr(ev_attr_list);
5587                         goto fail;
5588                 }
5589 
5590                 se_val.value_type = SE_DATA_TYPE_INT32;
5591                 se_val.value.sv_int32 = ddi_get_instance(dip);
5592                 if (sysevent_add_attr(&ev_attr_list,
5593                     DEVFS_INSTANCE, &se_val, SE_SLEEP) != 0) {
5594                         sysevent_free_attr(ev_attr_list);
5595                         goto fail;
5596                 }
5597 
5598         }
5599 
5600         if (sysevent_attach_attributes(ev, ev_attr_list) != 0) {
5601                 sysevent_free_attr(ev_attr_list);
5602         } else {
5603                 (void) log_sysevent(ev, SE_SLEEP, &eid);
5604         }
5605 fail:
5606         sysevent_free(ev);
5607         return (DDI_SUCCESS);
5608 }
5609 
5610 /*
5611  * Derive the device class of the node.
5612  * Device class names aren't defined yet. Until this is done we use
5613  * devfs event subclass names as device class names.
5614  */
5615 static int
5616 derive_devi_class(dev_info_t *dip, char *node_type, int flag)
5617 {
5618         int rv = DDI_SUCCESS;
5619 
5620         if (i_ddi_devi_class(dip) == NULL) {
5621                 if (strncmp(node_type, DDI_NT_BLOCK,
5622                     sizeof (DDI_NT_BLOCK) - 1) == 0 &&
5623                     (node_type[sizeof (DDI_NT_BLOCK) - 1] == '\0' ||
5624                     node_type[sizeof (DDI_NT_BLOCK) - 1] == ':') &&
5625                     strcmp(node_type, DDI_NT_FD) != 0) {
5626 
5627                         rv = i_ddi_set_devi_class(dip, ESC_DISK, flag);
5628 
5629                 } else if (strncmp(node_type, DDI_NT_NET,
5630                     sizeof (DDI_NT_NET) - 1) == 0 &&
5631                     (node_type[sizeof (DDI_NT_NET) - 1] == '\0' ||
5632                     node_type[sizeof (DDI_NT_NET) - 1] == ':')) {
5633 
5634                         rv = i_ddi_set_devi_class(dip, ESC_NETWORK, flag);
5635 
5636                 } else if (strncmp(node_type, DDI_NT_PRINTER,
5637                     sizeof (DDI_NT_PRINTER) - 1) == 0 &&
5638                     (node_type[sizeof (DDI_NT_PRINTER) - 1] == '\0' ||
5639                     node_type[sizeof (DDI_NT_PRINTER) - 1] == ':')) {
5640 
5641                         rv = i_ddi_set_devi_class(dip, ESC_PRINTER, flag);
5642 
5643                 } else if (strncmp(node_type, DDI_PSEUDO,
5644                     sizeof (DDI_PSEUDO) -1) == 0 &&
5645                     (strncmp(ESC_LOFI, ddi_node_name(dip),
5646                     sizeof (ESC_LOFI) -1) == 0)) {
5647                         rv = i_ddi_set_devi_class(dip, ESC_LOFI, flag);
5648                 }
5649         }
5650 
5651         return (rv);
5652 }
5653 
5654 /*
5655  * Check compliance with PSARC 2003/375:
5656  *
5657  * The name must contain only characters a-z, A-Z, 0-9 or _ and it must not
5658  * exceed IFNAMSIZ (16) characters in length.
5659  */
5660 static boolean_t
5661 verify_name(char *name)
5662 {
5663         size_t  len = strlen(name);
5664         char    *cp;
5665 
5666         if (len == 0 || len > IFNAMSIZ)
5667                 return (B_FALSE);
5668 
5669         for (cp = name; *cp != '\0'; cp++) {
5670                 if (!isalnum(*cp) && *cp != '_')
5671                         return (B_FALSE);
5672         }
5673 
5674         return (B_TRUE);
5675 }
5676 
5677 /*
5678  * ddi_create_minor_common:     Create a  ddi_minor_data structure and
5679  *                              attach it to the given devinfo node.
5680  */
5681 
5682 int
5683 ddi_create_minor_common(dev_info_t *dip, char *name, int spec_type,
5684     minor_t minor_num, char *node_type, int flag, ddi_minor_type mtype,
5685     const char *read_priv, const char *write_priv, mode_t priv_mode)
5686 {
5687         struct ddi_minor_data *dmdp;
5688         major_t major;
5689 
5690         if (spec_type != S_IFCHR && spec_type != S_IFBLK)
5691                 return (DDI_FAILURE);
5692 
5693         if (name == NULL)
5694                 return (DDI_FAILURE);
5695 
5696         /*
5697          * Log a message if the minor number the driver is creating
5698          * is not expressible on the on-disk filesystem (currently
5699          * this is limited to 18 bits both by UFS). The device can
5700          * be opened via devfs, but not by device special files created
5701          * via mknod().
5702          */
5703         if (minor_num > L_MAXMIN32) {
5704                 cmn_err(CE_WARN,
5705                     "%s%d:%s minor 0x%x too big for 32-bit applications",
5706                     ddi_driver_name(dip), ddi_get_instance(dip),
5707                     name, minor_num);
5708                 return (DDI_FAILURE);
5709         }
5710 
5711         /* dip must be bound and attached */
5712         major = ddi_driver_major(dip);
5713         ASSERT(major != DDI_MAJOR_T_NONE);
5714 
5715         /*
5716          * Default node_type to DDI_PSEUDO and issue notice in debug mode
5717          */
5718         if (node_type == NULL) {
5719                 node_type = DDI_PSEUDO;
5720                 NDI_CONFIG_DEBUG((CE_NOTE, "!illegal node_type NULL for %s%d "
5721                     " minor node %s; default to DDI_PSEUDO",
5722                     ddi_driver_name(dip), ddi_get_instance(dip), name));
5723         }
5724 
5725         /*
5726          * If the driver is a network driver, ensure that the name falls within
5727          * the interface naming constraints specified by PSARC/2003/375.
5728          */
5729         if (strcmp(node_type, DDI_NT_NET) == 0) {
5730                 if (!verify_name(name))
5731                         return (DDI_FAILURE);
5732 
5733                 if (mtype == DDM_MINOR) {
5734                         struct devnames *dnp = &devnamesp[major];
5735 
5736                         /* Mark driver as a network driver */
5737                         LOCK_DEV_OPS(&dnp->dn_lock);
5738                         dnp->dn_flags |= DN_NETWORK_DRIVER;
5739 
5740                         /*
5741                          * If this minor node is created during the device
5742                          * attachment, this is a physical network device.
5743                          * Mark the driver as a physical network driver.
5744                          */
5745                         if (DEVI_IS_ATTACHING(dip))
5746                                 dnp->dn_flags |= DN_NETWORK_PHYSDRIVER;
5747                         UNLOCK_DEV_OPS(&dnp->dn_lock);
5748                 }
5749         }
5750 
5751         if (mtype == DDM_MINOR) {
5752                 if (derive_devi_class(dip,  node_type, KM_NOSLEEP) !=
5753                     DDI_SUCCESS)
5754                         return (DDI_FAILURE);
5755         }
5756 
5757         /*
5758          * Take care of minor number information for the node.
5759          */
5760 
5761         if ((dmdp = kmem_zalloc(sizeof (struct ddi_minor_data),
5762             KM_NOSLEEP)) == NULL) {
5763                 return (DDI_FAILURE);
5764         }
5765         if ((dmdp->ddm_name = i_ddi_strdup(name, KM_NOSLEEP)) == NULL) {
5766                 kmem_free(dmdp, sizeof (struct ddi_minor_data));
5767                 return (DDI_FAILURE);
5768         }
5769         dmdp->dip = dip;
5770         dmdp->ddm_dev = makedevice(major, minor_num);
5771         dmdp->ddm_spec_type = spec_type;
5772         dmdp->ddm_node_type = node_type;
5773         dmdp->type = mtype;
5774         if (flag & CLONE_DEV) {
5775                 dmdp->type = DDM_ALIAS;
5776                 dmdp->ddm_dev = makedevice(ddi_driver_major(clone_dip), major);
5777         }
5778         if (flag & PRIVONLY_DEV) {
5779                 dmdp->ddm_flags |= DM_NO_FSPERM;
5780         }
5781         if (read_priv || write_priv) {
5782                 dmdp->ddm_node_priv =
5783                     devpolicy_priv_by_name(read_priv, write_priv);
5784         }
5785         dmdp->ddm_priv_mode = priv_mode;
5786 
5787         ddi_append_minor_node(dip, dmdp);
5788 
5789         /*
5790          * only log ddi_create_minor_node() calls which occur
5791          * outside the scope of attach(9e)/detach(9e) reconfigurations
5792          */
5793         if (!(DEVI_IS_ATTACHING(dip) || DEVI_IS_DETACHING(dip)) &&
5794             mtype != DDM_INTERNAL_PATH) {
5795                 (void) i_log_devfs_minor_create(dip, name);
5796         }
5797 
5798         /*
5799          * Check if any dacf rules match the creation of this minor node
5800          */
5801         dacfc_match_create_minor(name, node_type, dip, dmdp, flag);
5802         return (DDI_SUCCESS);
5803 }
5804 
5805 int
5806 ddi_create_minor_node(dev_info_t *dip, char *name, int spec_type,
5807     minor_t minor_num, char *node_type, int flag)
5808 {
5809         return (ddi_create_minor_common(dip, name, spec_type, minor_num,
5810             node_type, flag, DDM_MINOR, NULL, NULL, 0));
5811 }
5812 
5813 int
5814 ddi_create_priv_minor_node(dev_info_t *dip, char *name, int spec_type,
5815     minor_t minor_num, char *node_type, int flag,
5816     const char *rdpriv, const char *wrpriv, mode_t priv_mode)
5817 {
5818         return (ddi_create_minor_common(dip, name, spec_type, minor_num,
5819             node_type, flag, DDM_MINOR, rdpriv, wrpriv, priv_mode));
5820 }
5821 
5822 int
5823 ddi_create_default_minor_node(dev_info_t *dip, char *name, int spec_type,
5824     minor_t minor_num, char *node_type, int flag)
5825 {
5826         return (ddi_create_minor_common(dip, name, spec_type, minor_num,
5827             node_type, flag, DDM_DEFAULT, NULL, NULL, 0));
5828 }
5829 
5830 /*
5831  * Internal (non-ddi) routine for drivers to export names known
5832  * to the kernel (especially ddi_pathname_to_dev_t and friends)
5833  * but not exported externally to /dev
5834  */
5835 int
5836 ddi_create_internal_pathname(dev_info_t *dip, char *name, int spec_type,
5837     minor_t minor_num)
5838 {
5839         return (ddi_create_minor_common(dip, name, spec_type, minor_num,
5840             "internal", 0, DDM_INTERNAL_PATH, NULL, NULL, 0));
5841 }
5842 
5843 void
5844 ddi_remove_minor_node(dev_info_t *dip, char *name)
5845 {
5846         int                     circ;
5847         struct ddi_minor_data   *dmdp, *dmdp1;
5848         struct ddi_minor_data   **dmdp_prev;
5849 
5850         ndi_devi_enter(dip, &circ);
5851         dmdp_prev = &DEVI(dip)->devi_minor;
5852         dmdp = DEVI(dip)->devi_minor;
5853         while (dmdp != NULL) {
5854                 dmdp1 = dmdp->next;
5855                 if ((name == NULL || (dmdp->ddm_name != NULL &&
5856                     strcmp(name, dmdp->ddm_name) == 0))) {
5857                         if (dmdp->ddm_name != NULL) {
5858                                 if (dmdp->type != DDM_INTERNAL_PATH)
5859                                         (void) i_log_devfs_minor_remove(dip,
5860                                             dmdp->ddm_name);
5861                                 kmem_free(dmdp->ddm_name,
5862                                     strlen(dmdp->ddm_name) + 1);
5863                         }
5864                         /*
5865                          * Release device privilege, if any.
5866                          * Release dacf client data associated with this minor
5867                          * node by storing NULL.
5868                          */
5869                         if (dmdp->ddm_node_priv)
5870                                 dpfree(dmdp->ddm_node_priv);
5871                         dacf_store_info((dacf_infohdl_t)dmdp, NULL);
5872                         kmem_free(dmdp, sizeof (struct ddi_minor_data));
5873                         *dmdp_prev = dmdp1;
5874                         /*
5875                          * OK, we found it, so get out now -- if we drive on,
5876                          * we will strcmp against garbage.  See 1139209.
5877                          */
5878                         if (name != NULL)
5879                                 break;
5880                 } else {
5881                         dmdp_prev = &dmdp->next;
5882                 }
5883                 dmdp = dmdp1;
5884         }
5885         ndi_devi_exit(dip, circ);
5886 }
5887 
5888 
5889 int
5890 ddi_in_panic()
5891 {
5892         return (panicstr != NULL);
5893 }
5894 
5895 
5896 /*
5897  * Find first bit set in a mask (returned counting from 1 up)
5898  */
5899 
5900 int
5901 ddi_ffs(long mask)
5902 {
5903         return (ffs(mask));
5904 }
5905 
5906 /*
5907  * Find last bit set. Take mask and clear
5908  * all but the most significant bit, and
5909  * then let ffs do the rest of the work.
5910  *
5911  * Algorithm courtesy of Steve Chessin.
5912  */
5913 
5914 int
5915 ddi_fls(long mask)
5916 {
5917         while (mask) {
5918                 long nx;
5919 
5920                 if ((nx = (mask & (mask - 1))) == 0)
5921                         break;
5922                 mask = nx;
5923         }
5924         return (ffs(mask));
5925 }
5926 
5927 /*
5928  * The ddi_soft_state_* routines comprise generic storage management utilities
5929  * for driver soft state structures (in "the old days," this was done with
5930  * statically sized array - big systems and dynamic loading and unloading
5931  * make heap allocation more attractive).
5932  */
5933 
5934 /*
5935  * Allocate a set of pointers to 'n_items' objects of size 'size'
5936  * bytes.  Each pointer is initialized to nil.
5937  *
5938  * The 'size' and 'n_items' values are stashed in the opaque
5939  * handle returned to the caller.
5940  *
5941  * This implementation interprets 'set of pointers' to mean 'array
5942  * of pointers' but note that nothing in the interface definition
5943  * precludes an implementation that uses, for example, a linked list.
5944  * However there should be a small efficiency gain from using an array
5945  * at lookup time.
5946  *
5947  * NOTE As an optimization, we make our growable array allocations in
5948  *      powers of two (bytes), since that's how much kmem_alloc (currently)
5949  *      gives us anyway.  It should save us some free/realloc's ..
5950  *
5951  *      As a further optimization, we make the growable array start out
5952  *      with MIN_N_ITEMS in it.
5953  */
5954 
5955 #define MIN_N_ITEMS     8       /* 8 void *'s == 32 bytes */
5956 
5957 int
5958 ddi_soft_state_init(void **state_p, size_t size, size_t n_items)
5959 {
5960         i_ddi_soft_state        *ss;
5961 
5962         if (state_p == NULL || size == 0)
5963                 return (EINVAL);
5964 
5965         ss = kmem_zalloc(sizeof (*ss), KM_SLEEP);
5966         mutex_init(&ss->lock, NULL, MUTEX_DRIVER, NULL);
5967         ss->size = size;
5968 
5969         if (n_items < MIN_N_ITEMS)
5970                 ss->n_items = MIN_N_ITEMS;
5971         else {
5972                 int bitlog;
5973 
5974                 if ((bitlog = ddi_fls(n_items)) == ddi_ffs(n_items))
5975                         bitlog--;
5976                 ss->n_items = 1 << bitlog;
5977         }
5978 
5979         ASSERT(ss->n_items >= n_items);
5980 
5981         ss->array = kmem_zalloc(ss->n_items * sizeof (void *), KM_SLEEP);
5982 
5983         *state_p = ss;
5984         return (0);
5985 }
5986 
5987 /*
5988  * Allocate a state structure of size 'size' to be associated
5989  * with item 'item'.
5990  *
5991  * In this implementation, the array is extended to
5992  * allow the requested offset, if needed.
5993  */
5994 int
5995 ddi_soft_state_zalloc(void *state, int item)
5996 {
5997         i_ddi_soft_state        *ss = (i_ddi_soft_state *)state;
5998         void                    **array;
5999         void                    *new_element;
6000 
6001         if ((state == NULL) || (item < 0))
6002                 return (DDI_FAILURE);
6003 
6004         mutex_enter(&ss->lock);
6005         if (ss->size == 0) {
6006                 mutex_exit(&ss->lock);
6007                 cmn_err(CE_WARN, "ddi_soft_state_zalloc: bad handle: %s",
6008                     mod_containing_pc(caller()));
6009                 return (DDI_FAILURE);
6010         }
6011 
6012         array = ss->array;   /* NULL if ss->n_items == 0 */
6013         ASSERT(ss->n_items != 0 && array != NULL);
6014 
6015         /*
6016          * refuse to tread on an existing element
6017          */
6018         if (item < ss->n_items && array[item] != NULL) {
6019                 mutex_exit(&ss->lock);
6020                 return (DDI_FAILURE);
6021         }
6022 
6023         /*
6024          * Allocate a new element to plug in
6025          */
6026         new_element = kmem_zalloc(ss->size, KM_SLEEP);
6027 
6028         /*
6029          * Check if the array is big enough, if not, grow it.
6030          */
6031         if (item >= ss->n_items) {
6032                 void                    **new_array;
6033                 size_t                  new_n_items;
6034                 struct i_ddi_soft_state *dirty;
6035 
6036                 /*
6037                  * Allocate a new array of the right length, copy
6038                  * all the old pointers to the new array, then
6039                  * if it exists at all, put the old array on the
6040                  * dirty list.
6041                  *
6042                  * Note that we can't kmem_free() the old array.
6043                  *
6044                  * Why -- well the 'get' operation is 'mutex-free', so we
6045                  * can't easily catch a suspended thread that is just about
6046                  * to dereference the array we just grew out of.  So we
6047                  * cons up a header and put it on a list of 'dirty'
6048                  * pointer arrays.  (Dirty in the sense that there may
6049                  * be suspended threads somewhere that are in the middle
6050                  * of referencing them).  Fortunately, we -can- garbage
6051                  * collect it all at ddi_soft_state_fini time.
6052                  */
6053                 new_n_items = ss->n_items;
6054                 while (new_n_items < (1 + item))
6055                         new_n_items <<= 1;        /* double array size .. */
6056 
6057                 ASSERT(new_n_items >= (1 + item));   /* sanity check! */
6058 
6059                 new_array = kmem_zalloc(new_n_items * sizeof (void *),
6060                     KM_SLEEP);
6061                 /*
6062                  * Copy the pointers into the new array
6063                  */
6064                 bcopy(array, new_array, ss->n_items * sizeof (void *));
6065 
6066                 /*
6067                  * Save the old array on the dirty list
6068                  */
6069                 dirty = kmem_zalloc(sizeof (*dirty), KM_SLEEP);
6070                 dirty->array = ss->array;
6071                 dirty->n_items = ss->n_items;
6072                 dirty->next = ss->next;
6073                 ss->next = dirty;
6074 
6075                 ss->array = (array = new_array);
6076                 ss->n_items = new_n_items;
6077         }
6078 
6079         ASSERT(array != NULL && item < ss->n_items && array[item] == NULL);
6080 
6081         array[item] = new_element;
6082 
6083         mutex_exit(&ss->lock);
6084         return (DDI_SUCCESS);
6085 }
6086 
6087 /*
6088  * Fetch a pointer to the allocated soft state structure.
6089  *
6090  * This is designed to be cheap.
6091  *
6092  * There's an argument that there should be more checking for
6093  * nil pointers and out of bounds on the array.. but we do a lot
6094  * of that in the alloc/free routines.
6095  *
6096  * An array has the convenience that we don't need to lock read-access
6097  * to it c.f. a linked list.  However our "expanding array" strategy
6098  * means that we should hold a readers lock on the i_ddi_soft_state
6099  * structure.
6100  *
6101  * However, from a performance viewpoint, we need to do it without
6102  * any locks at all -- this also makes it a leaf routine.  The algorithm
6103  * is 'lock-free' because we only discard the pointer arrays at
6104  * ddi_soft_state_fini() time.
6105  */
6106 void *
6107 ddi_get_soft_state(void *state, int item)
6108 {
6109         i_ddi_soft_state        *ss = (i_ddi_soft_state *)state;
6110 
6111         ASSERT((ss != NULL) && (item >= 0));
6112 
6113         if (item < ss->n_items && ss->array != NULL)
6114                 return (ss->array[item]);
6115         return (NULL);
6116 }
6117 
6118 /*
6119  * Free the state structure corresponding to 'item.'   Freeing an
6120  * element that has either gone or was never allocated is not
6121  * considered an error.  Note that we free the state structure, but
6122  * we don't shrink our pointer array, or discard 'dirty' arrays,
6123  * since even a few pointers don't really waste too much memory.
6124  *
6125  * Passing an item number that is out of bounds, or a null pointer will
6126  * provoke an error message.
6127  */
6128 void
6129 ddi_soft_state_free(void *state, int item)
6130 {
6131         i_ddi_soft_state        *ss = (i_ddi_soft_state *)state;
6132         void                    **array;
6133         void                    *element;
6134         static char             msg[] = "ddi_soft_state_free:";
6135 
6136         if (ss == NULL) {
6137                 cmn_err(CE_WARN, "%s null handle: %s",
6138                     msg, mod_containing_pc(caller()));
6139                 return;
6140         }
6141 
6142         element = NULL;
6143 
6144         mutex_enter(&ss->lock);
6145 
6146         if ((array = ss->array) == NULL || ss->size == 0) {
6147                 cmn_err(CE_WARN, "%s bad handle: %s",
6148                     msg, mod_containing_pc(caller()));
6149         } else if (item < 0 || item >= ss->n_items) {
6150                 cmn_err(CE_WARN, "%s item %d not in range [0..%lu]: %s",
6151                     msg, item, ss->n_items - 1, mod_containing_pc(caller()));
6152         } else if (array[item] != NULL) {
6153                 element = array[item];
6154                 array[item] = NULL;
6155         }
6156 
6157         mutex_exit(&ss->lock);
6158 
6159         if (element)
6160                 kmem_free(element, ss->size);
6161 }
6162 
6163 /*
6164  * Free the entire set of pointers, and any
6165  * soft state structures contained therein.
6166  *
6167  * Note that we don't grab the ss->lock mutex, even though
6168  * we're inspecting the various fields of the data structure.
6169  *
6170  * There is an implicit assumption that this routine will
6171  * never run concurrently with any of the above on this
6172  * particular state structure i.e. by the time the driver
6173  * calls this routine, there should be no other threads
6174  * running in the driver.
6175  */
6176 void
6177 ddi_soft_state_fini(void **state_p)
6178 {
6179         i_ddi_soft_state        *ss, *dirty;
6180         int                     item;
6181         static char             msg[] = "ddi_soft_state_fini:";
6182 
6183         if (state_p == NULL ||
6184             (ss = (i_ddi_soft_state *)(*state_p)) == NULL) {
6185                 cmn_err(CE_WARN, "%s null handle: %s",
6186                     msg, mod_containing_pc(caller()));
6187                 return;
6188         }
6189 
6190         if (ss->size == 0) {
6191                 cmn_err(CE_WARN, "%s bad handle: %s",
6192                     msg, mod_containing_pc(caller()));
6193                 return;
6194         }
6195 
6196         if (ss->n_items > 0) {
6197                 for (item = 0; item < ss->n_items; item++)
6198                         ddi_soft_state_free(ss, item);
6199                 kmem_free(ss->array, ss->n_items * sizeof (void *));
6200         }
6201 
6202         /*
6203          * Now delete any dirty arrays from previous 'grow' operations
6204          */
6205         for (dirty = ss->next; dirty; dirty = ss->next) {
6206                 ss->next = dirty->next;
6207                 kmem_free(dirty->array, dirty->n_items * sizeof (void *));
6208                 kmem_free(dirty, sizeof (*dirty));
6209         }
6210 
6211         mutex_destroy(&ss->lock);
6212         kmem_free(ss, sizeof (*ss));
6213 
6214         *state_p = NULL;
6215 }
6216 
6217 #define SS_N_ITEMS_PER_HASH     16
6218 #define SS_MIN_HASH_SZ          16
6219 #define SS_MAX_HASH_SZ          4096
6220 
6221 int
6222 ddi_soft_state_bystr_init(ddi_soft_state_bystr **state_p, size_t size,
6223     int n_items)
6224 {
6225         i_ddi_soft_state_bystr  *sss;
6226         int                     hash_sz;
6227 
6228         ASSERT(state_p && size && n_items);
6229         if ((state_p == NULL) || (size == 0) || (n_items == 0))
6230                 return (EINVAL);
6231 
6232         /* current implementation is based on hash, convert n_items to hash */
6233         hash_sz = n_items / SS_N_ITEMS_PER_HASH;
6234         if (hash_sz < SS_MIN_HASH_SZ)
6235                 hash_sz = SS_MIN_HASH_SZ;
6236         else if (hash_sz > SS_MAX_HASH_SZ)
6237                 hash_sz = SS_MAX_HASH_SZ;
6238 
6239         /* allocate soft_state pool */
6240         sss = kmem_zalloc(sizeof (*sss), KM_SLEEP);
6241         sss->ss_size = size;
6242         sss->ss_mod_hash = mod_hash_create_strhash("soft_state_bystr",
6243             hash_sz, mod_hash_null_valdtor);
6244         *state_p = (ddi_soft_state_bystr *)sss;
6245         return (0);
6246 }
6247 
6248 int
6249 ddi_soft_state_bystr_zalloc(ddi_soft_state_bystr *state, const char *str)
6250 {
6251         i_ddi_soft_state_bystr  *sss = (i_ddi_soft_state_bystr *)state;
6252         void                    *sso;
6253         char                    *dup_str;
6254 
6255         ASSERT(sss && str && sss->ss_mod_hash);
6256         if ((sss == NULL) || (str == NULL) || (sss->ss_mod_hash == NULL))
6257                 return (DDI_FAILURE);
6258         sso = kmem_zalloc(sss->ss_size, KM_SLEEP);
6259         dup_str = i_ddi_strdup((char *)str, KM_SLEEP);
6260         if (mod_hash_insert(sss->ss_mod_hash,
6261             (mod_hash_key_t)dup_str, (mod_hash_val_t)sso) == 0)
6262                 return (DDI_SUCCESS);
6263 
6264         /*
6265          * The only error from an strhash insert is caused by a duplicate key.
6266          * We refuse to tread on an existing elements, so free and fail.
6267          */
6268         kmem_free(dup_str, strlen(dup_str) + 1);
6269         kmem_free(sso, sss->ss_size);
6270         return (DDI_FAILURE);
6271 }
6272 
6273 void *
6274 ddi_soft_state_bystr_get(ddi_soft_state_bystr *state, const char *str)
6275 {
6276         i_ddi_soft_state_bystr  *sss = (i_ddi_soft_state_bystr *)state;
6277         void                    *sso;
6278 
6279         ASSERT(sss && str && sss->ss_mod_hash);
6280         if ((sss == NULL) || (str == NULL) || (sss->ss_mod_hash == NULL))
6281                 return (NULL);
6282 
6283         if (mod_hash_find(sss->ss_mod_hash,
6284             (mod_hash_key_t)str, (mod_hash_val_t *)&sso) == 0)
6285                 return (sso);
6286         return (NULL);
6287 }
6288 
6289 void
6290 ddi_soft_state_bystr_free(ddi_soft_state_bystr *state, const char *str)
6291 {
6292         i_ddi_soft_state_bystr  *sss = (i_ddi_soft_state_bystr *)state;
6293         void                    *sso;
6294 
6295         ASSERT(sss && str && sss->ss_mod_hash);
6296         if ((sss == NULL) || (str == NULL) || (sss->ss_mod_hash == NULL))
6297                 return;
6298 
6299         (void) mod_hash_remove(sss->ss_mod_hash,
6300             (mod_hash_key_t)str, (mod_hash_val_t *)&sso);
6301         kmem_free(sso, sss->ss_size);
6302 }
6303 
6304 void
6305 ddi_soft_state_bystr_fini(ddi_soft_state_bystr **state_p)
6306 {
6307         i_ddi_soft_state_bystr  *sss;
6308 
6309         ASSERT(state_p);
6310         if (state_p == NULL)
6311                 return;
6312 
6313         sss = (i_ddi_soft_state_bystr *)(*state_p);
6314         if (sss == NULL)
6315                 return;
6316 
6317         ASSERT(sss->ss_mod_hash);
6318         if (sss->ss_mod_hash) {
6319                 mod_hash_destroy_strhash(sss->ss_mod_hash);
6320                 sss->ss_mod_hash = NULL;
6321         }
6322 
6323         kmem_free(sss, sizeof (*sss));
6324         *state_p = NULL;
6325 }
6326 
6327 /*
6328  * The ddi_strid_* routines provide string-to-index management utilities.
6329  */
6330 /* allocate and initialize an strid set */
6331 int
6332 ddi_strid_init(ddi_strid **strid_p, int n_items)
6333 {
6334         i_ddi_strid     *ss;
6335         int             hash_sz;
6336 
6337         if (strid_p == NULL)
6338                 return (DDI_FAILURE);
6339 
6340         /* current implementation is based on hash, convert n_items to hash */
6341         hash_sz = n_items / SS_N_ITEMS_PER_HASH;
6342         if (hash_sz < SS_MIN_HASH_SZ)
6343                 hash_sz = SS_MIN_HASH_SZ;
6344         else if (hash_sz > SS_MAX_HASH_SZ)
6345                 hash_sz = SS_MAX_HASH_SZ;
6346 
6347         ss = kmem_alloc(sizeof (*ss), KM_SLEEP);
6348         ss->strid_chunksz = n_items;
6349         ss->strid_spacesz = n_items;
6350         ss->strid_space = id_space_create("strid", 1, n_items);
6351         ss->strid_bystr = mod_hash_create_strhash("strid_bystr", hash_sz,
6352             mod_hash_null_valdtor);
6353         ss->strid_byid = mod_hash_create_idhash("strid_byid", hash_sz,
6354             mod_hash_null_valdtor);
6355         *strid_p = (ddi_strid *)ss;
6356         return (DDI_SUCCESS);
6357 }
6358 
6359 /* allocate an id mapping within the specified set for str, return id */
6360 static id_t
6361 i_ddi_strid_alloc(ddi_strid *strid, char *str)
6362 {
6363         i_ddi_strid     *ss = (i_ddi_strid *)strid;
6364         id_t            id;
6365         char            *s;
6366 
6367         ASSERT(ss && str);
6368         if ((ss == NULL) || (str == NULL))
6369                 return (0);
6370 
6371         /*
6372          * Allocate an id using VM_FIRSTFIT in order to keep allocated id
6373          * range as compressed as possible.  This is important to minimize
6374          * the amount of space used when the id is used as a ddi_soft_state
6375          * index by the caller.
6376          *
6377          * If the id list is exhausted, increase the size of the list
6378          * by the chuck size specified in ddi_strid_init and reattempt
6379          * the allocation
6380          */
6381         if ((id = id_allocff_nosleep(ss->strid_space)) == (id_t)-1) {
6382                 id_space_extend(ss->strid_space, ss->strid_spacesz,
6383                     ss->strid_spacesz + ss->strid_chunksz);
6384                 ss->strid_spacesz += ss->strid_chunksz;
6385                 if ((id = id_allocff_nosleep(ss->strid_space)) == (id_t)-1)
6386                         return (0);
6387         }
6388 
6389         /*
6390          * NOTE: since we create and destroy in unison we can save space by
6391          * using bystr key as the byid value.  This means destroy must occur
6392          * in (byid, bystr) order.
6393          */
6394         s = i_ddi_strdup(str, KM_SLEEP);
6395         if (mod_hash_insert(ss->strid_bystr, (mod_hash_key_t)s,
6396             (mod_hash_val_t)(intptr_t)id) != 0) {
6397                 ddi_strid_free(strid, id);
6398                 return (0);
6399         }
6400         if (mod_hash_insert(ss->strid_byid, (mod_hash_key_t)(intptr_t)id,
6401             (mod_hash_val_t)s) != 0) {
6402                 ddi_strid_free(strid, id);
6403                 return (0);
6404         }
6405 
6406         /* NOTE: s if freed on mod_hash_destroy by mod_hash_strval_dtor */
6407         return (id);
6408 }
6409 
6410 /* allocate an id mapping within the specified set for str, return id */
6411 id_t
6412 ddi_strid_alloc(ddi_strid *strid, char *str)
6413 {
6414         return (i_ddi_strid_alloc(strid, str));
6415 }
6416 
6417 /* return the id within the specified strid given the str */
6418 id_t
6419 ddi_strid_str2id(ddi_strid *strid, char *str)
6420 {
6421         i_ddi_strid     *ss = (i_ddi_strid *)strid;
6422         id_t            id = 0;
6423         mod_hash_val_t  hv;
6424 
6425         ASSERT(ss && str);
6426         if (ss && str && (mod_hash_find(ss->strid_bystr,
6427             (mod_hash_key_t)str, &hv) == 0))
6428                 id = (int)(intptr_t)hv;
6429         return (id);
6430 }
6431 
6432 /* return str within the specified strid given the id */
6433 char *
6434 ddi_strid_id2str(ddi_strid *strid, id_t id)
6435 {
6436         i_ddi_strid     *ss = (i_ddi_strid *)strid;
6437         char            *str = NULL;
6438         mod_hash_val_t  hv;
6439 
6440         ASSERT(ss && id > 0);
6441         if (ss && (id > 0) && (mod_hash_find(ss->strid_byid,
6442             (mod_hash_key_t)(uintptr_t)id, &hv) == 0))
6443                 str = (char *)hv;
6444         return (str);
6445 }
6446 
6447 /* free the id mapping within the specified strid */
6448 void
6449 ddi_strid_free(ddi_strid *strid, id_t id)
6450 {
6451         i_ddi_strid     *ss = (i_ddi_strid *)strid;
6452         char            *str;
6453 
6454         ASSERT(ss && id > 0);
6455         if ((ss == NULL) || (id <= 0))
6456                 return;
6457 
6458         /* bystr key is byid value: destroy order must be (byid, bystr) */
6459         str = ddi_strid_id2str(strid, id);
6460         (void) mod_hash_destroy(ss->strid_byid, (mod_hash_key_t)(uintptr_t)id);
6461         id_free(ss->strid_space, id);
6462 
6463         if (str)
6464                 (void) mod_hash_destroy(ss->strid_bystr, (mod_hash_key_t)str);
6465 }
6466 
6467 /* destroy the strid set */
6468 void
6469 ddi_strid_fini(ddi_strid **strid_p)
6470 {
6471         i_ddi_strid     *ss;
6472 
6473         ASSERT(strid_p);
6474         if (strid_p == NULL)
6475                 return;
6476 
6477         ss = (i_ddi_strid *)(*strid_p);
6478         if (ss == NULL)
6479                 return;
6480 
6481         /* bystr key is byid value: destroy order must be (byid, bystr) */
6482         if (ss->strid_byid)
6483                 mod_hash_destroy_hash(ss->strid_byid);
6484         if (ss->strid_byid)
6485                 mod_hash_destroy_hash(ss->strid_bystr);
6486         if (ss->strid_space)
6487                 id_space_destroy(ss->strid_space);
6488         kmem_free(ss, sizeof (*ss));
6489         *strid_p = NULL;
6490 }
6491 
6492 /*
6493  * This sets the devi_addr entry in the dev_info structure 'dip' to 'name'.
6494  * Storage is double buffered to prevent updates during devi_addr use -
6495  * double buffering is adaquate for reliable ddi_deviname() consumption.
6496  * The double buffer is not freed until dev_info structure destruction
6497  * (by i_ddi_free_node).
6498  */
6499 void
6500 ddi_set_name_addr(dev_info_t *dip, char *name)
6501 {
6502         char    *buf = DEVI(dip)->devi_addr_buf;
6503         char    *newaddr;
6504 
6505         if (buf == NULL) {
6506                 buf = kmem_zalloc(2 * MAXNAMELEN, KM_SLEEP);
6507                 DEVI(dip)->devi_addr_buf = buf;
6508         }
6509 
6510         if (name) {
6511                 ASSERT(strlen(name) < MAXNAMELEN);
6512                 newaddr = (DEVI(dip)->devi_addr == buf) ?
6513                     (buf + MAXNAMELEN) : buf;
6514                 (void) strlcpy(newaddr, name, MAXNAMELEN);
6515         } else
6516                 newaddr = NULL;
6517 
6518         DEVI(dip)->devi_addr = newaddr;
6519 }
6520 
6521 char *
6522 ddi_get_name_addr(dev_info_t *dip)
6523 {
6524         return (DEVI(dip)->devi_addr);
6525 }
6526 
6527 void
6528 ddi_set_parent_data(dev_info_t *dip, void *pd)
6529 {
6530         DEVI(dip)->devi_parent_data = pd;
6531 }
6532 
6533 void *
6534 ddi_get_parent_data(dev_info_t *dip)
6535 {
6536         return (DEVI(dip)->devi_parent_data);
6537 }
6538 
6539 /*
6540  * ddi_name_to_major: returns the major number of a named module,
6541  * derived from the current driver alias binding.
6542  *
6543  * Caveat: drivers should avoid the use of this function, in particular
6544  * together with ddi_get_name/ddi_binding name, as per
6545  *      major = ddi_name_to_major(ddi_get_name(devi));
6546  * ddi_name_to_major() relies on the state of the device/alias binding,
6547  * which can and does change dynamically as aliases are administered
6548  * over time.  An attached device instance cannot rely on the major
6549  * number returned by ddi_name_to_major() to match its own major number.
6550  *
6551  * For driver use, ddi_driver_major() reliably returns the major number
6552  * for the module to which the device was bound at attach time over
6553  * the life of the instance.
6554  *      major = ddi_driver_major(dev_info_t *)
6555  */
6556 major_t
6557 ddi_name_to_major(char *name)
6558 {
6559         return (mod_name_to_major(name));
6560 }
6561 
6562 /*
6563  * ddi_major_to_name: Returns the module name bound to a major number.
6564  */
6565 char *
6566 ddi_major_to_name(major_t major)
6567 {
6568         return (mod_major_to_name(major));
6569 }
6570 
6571 /*
6572  * Return the name of the devinfo node pointed at by 'dip' in the buffer
6573  * pointed at by 'name.'  A devinfo node is named as a result of calling
6574  * ddi_initchild().
6575  *
6576  * Note: the driver must be held before calling this function!
6577  */
6578 char *
6579 ddi_deviname(dev_info_t *dip, char *name)
6580 {
6581         char *addrname;
6582         char none = '\0';
6583 
6584         if (dip == ddi_root_node()) {
6585                 *name = '\0';
6586                 return (name);
6587         }
6588 
6589         if (i_ddi_node_state(dip) < DS_BOUND) {
6590                 addrname = &none;
6591         } else {
6592                 /*
6593                  * Use ddi_get_name_addr() without checking state so we get
6594                  * a unit-address if we are called after ddi_set_name_addr()
6595                  * by nexus DDI_CTL_INITCHILD code, but before completing
6596                  * node promotion to DS_INITIALIZED.  We currently have
6597                  * two situations where we are called in this state:
6598                  *   o  For framework processing of a path-oriented alias.
6599                  *   o  If a SCSA nexus driver calls ddi_devid_register()
6600                  *      from it's tran_tgt_init(9E) implementation.
6601                  */
6602                 addrname = ddi_get_name_addr(dip);
6603                 if (addrname == NULL)
6604                         addrname = &none;
6605         }
6606 
6607         if (*addrname == '\0') {
6608                 (void) sprintf(name, "/%s", ddi_node_name(dip));
6609         } else {
6610                 (void) sprintf(name, "/%s@%s", ddi_node_name(dip), addrname);
6611         }
6612 
6613         return (name);
6614 }
6615 
6616 /*
6617  * Spits out the name of device node, typically name@addr, for a given node,
6618  * using the driver name, not the nodename.
6619  *
6620  * Used by match_parent. Not to be used elsewhere.
6621  */
6622 char *
6623 i_ddi_parname(dev_info_t *dip, char *name)
6624 {
6625         char *addrname;
6626 
6627         if (dip == ddi_root_node()) {
6628                 *name = '\0';
6629                 return (name);
6630         }
6631 
6632         ASSERT(i_ddi_node_state(dip) >= DS_INITIALIZED);
6633 
6634         if (*(addrname = ddi_get_name_addr(dip)) == '\0')
6635                 (void) sprintf(name, "%s", ddi_binding_name(dip));
6636         else
6637                 (void) sprintf(name, "%s@%s", ddi_binding_name(dip), addrname);
6638         return (name);
6639 }
6640 
6641 static char *
6642 pathname_work(dev_info_t *dip, char *path)
6643 {
6644         char *bp;
6645 
6646         if (dip == ddi_root_node()) {
6647                 *path = '\0';
6648                 return (path);
6649         }
6650         (void) pathname_work(ddi_get_parent(dip), path);
6651         bp = path + strlen(path);
6652         (void) ddi_deviname(dip, bp);
6653         return (path);
6654 }
6655 
6656 char *
6657 ddi_pathname(dev_info_t *dip, char *path)
6658 {
6659         return (pathname_work(dip, path));
6660 }
6661 
6662 char *
6663 ddi_pathname_minor(struct ddi_minor_data *dmdp, char *path)
6664 {
6665         if (dmdp->dip == NULL)
6666                 *path = '\0';
6667         else {
6668                 (void) ddi_pathname(dmdp->dip, path);
6669                 if (dmdp->ddm_name) {
6670                         (void) strcat(path, ":");
6671                         (void) strcat(path, dmdp->ddm_name);
6672                 }
6673         }
6674         return (path);
6675 }
6676 
6677 static char *
6678 pathname_work_obp(dev_info_t *dip, char *path)
6679 {
6680         char *bp;
6681         char *obp_path;
6682 
6683         /*
6684          * look up the "obp-path" property, return the path if it exists
6685          */
6686         if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
6687             "obp-path", &obp_path) == DDI_PROP_SUCCESS) {
6688                 (void) strcpy(path, obp_path);
6689                 ddi_prop_free(obp_path);
6690                 return (path);
6691         }
6692 
6693         /*
6694          * stop at root, no obp path
6695          */
6696         if (dip == ddi_root_node()) {
6697                 return (NULL);
6698         }
6699 
6700         obp_path = pathname_work_obp(ddi_get_parent(dip), path);
6701         if (obp_path == NULL)
6702                 return (NULL);
6703 
6704         /*
6705          * append our component to parent's obp path
6706          */
6707         bp = path + strlen(path);
6708         if (*(bp - 1) != '/')
6709                 (void) strcat(bp++, "/");
6710         (void) ddi_deviname(dip, bp);
6711         return (path);
6712 }
6713 
6714 /*
6715  * return the 'obp-path' based path for the given node, or NULL if the node
6716  * does not have a different obp path. NOTE: Unlike ddi_pathname, this
6717  * function can't be called from interrupt context (since we need to
6718  * lookup a string property).
6719  */
6720 char *
6721 ddi_pathname_obp(dev_info_t *dip, char *path)
6722 {
6723         ASSERT(!servicing_interrupt());
6724         if (dip == NULL || path == NULL)
6725                 return (NULL);
6726 
6727         /* split work into a separate function to aid debugging */
6728         return (pathname_work_obp(dip, path));
6729 }
6730 
6731 int
6732 ddi_pathname_obp_set(dev_info_t *dip, char *component)
6733 {
6734         dev_info_t *pdip;
6735         char *obp_path = NULL;
6736         int rc = DDI_FAILURE;
6737 
6738         if (dip == NULL)
6739                 return (DDI_FAILURE);
6740 
6741         obp_path = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
6742 
6743         pdip = ddi_get_parent(dip);
6744 
6745         if (ddi_pathname_obp(pdip, obp_path) == NULL) {
6746                 (void) ddi_pathname(pdip, obp_path);
6747         }
6748 
6749         if (component) {
6750                 (void) strncat(obp_path, "/", MAXPATHLEN);
6751                 (void) strncat(obp_path, component, MAXPATHLEN);
6752         }
6753         rc = ndi_prop_update_string(DDI_DEV_T_NONE, dip, "obp-path",
6754             obp_path);
6755 
6756         if (obp_path)
6757                 kmem_free(obp_path, MAXPATHLEN);
6758 
6759         return (rc);
6760 }
6761 
6762 /*
6763  * Given a dev_t, return the pathname of the corresponding device in the
6764  * buffer pointed at by "path."  The buffer is assumed to be large enough
6765  * to hold the pathname of the device (MAXPATHLEN).
6766  *
6767  * The pathname of a device is the pathname of the devinfo node to which
6768  * the device "belongs," concatenated with the character ':' and the name
6769  * of the minor node corresponding to the dev_t.  If spec_type is 0 then
6770  * just the pathname of the devinfo node is returned without driving attach
6771  * of that node.  For a non-zero spec_type, an attach is performed and a
6772  * search of the minor list occurs.
6773  *
6774  * It is possible that the path associated with the dev_t is not
6775  * currently available in the devinfo tree.  In order to have a
6776  * dev_t, a device must have been discovered before, which means
6777  * that the path is always in the instance tree.  The one exception
6778  * to this is if the dev_t is associated with a pseudo driver, in
6779  * which case the device must exist on the pseudo branch of the
6780  * devinfo tree as a result of parsing .conf files.
6781  */
6782 int
6783 ddi_dev_pathname(dev_t devt, int spec_type, char *path)
6784 {
6785         int             circ;
6786         major_t         major = getmajor(devt);
6787         int             instance;
6788         dev_info_t      *dip;
6789         char            *minorname;
6790         char            *drvname;
6791 
6792         if (major >= devcnt)
6793                 goto fail;
6794         if (major == clone_major) {
6795                 /* clone has no minor nodes, manufacture the path here */
6796                 if ((drvname = ddi_major_to_name(getminor(devt))) == NULL)
6797                         goto fail;
6798 
6799                 (void) snprintf(path, MAXPATHLEN, "%s:%s", CLONE_PATH, drvname);
6800                 return (DDI_SUCCESS);
6801         }
6802 
6803         /* extract instance from devt (getinfo(9E) DDI_INFO_DEVT2INSTANCE). */
6804         if ((instance = dev_to_instance(devt)) == -1)
6805                 goto fail;
6806 
6807         /* reconstruct the path given the major/instance */
6808         if (e_ddi_majorinstance_to_path(major, instance, path) != DDI_SUCCESS)
6809                 goto fail;
6810 
6811         /* if spec_type given we must drive attach and search minor nodes */
6812         if ((spec_type == S_IFCHR) || (spec_type == S_IFBLK)) {
6813                 /* attach the path so we can search minors */
6814                 if ((dip = e_ddi_hold_devi_by_path(path, 0)) == NULL)
6815                         goto fail;
6816 
6817                 /* Add minorname to path. */
6818                 ndi_devi_enter(dip, &circ);
6819                 minorname = i_ddi_devtspectype_to_minorname(dip,
6820                     devt, spec_type);
6821                 if (minorname) {
6822                         (void) strcat(path, ":");
6823                         (void) strcat(path, minorname);
6824                 }
6825                 ndi_devi_exit(dip, circ);
6826                 ddi_release_devi(dip);
6827                 if (minorname == NULL)
6828                         goto fail;
6829         }
6830         ASSERT(strlen(path) < MAXPATHLEN);
6831         return (DDI_SUCCESS);
6832 
6833 fail:   *path = 0;
6834         return (DDI_FAILURE);
6835 }
6836 
6837 /*
6838  * Given a major number and an instance, return the path.
6839  * This interface does NOT drive attach.
6840  */
6841 int
6842 e_ddi_majorinstance_to_path(major_t major, int instance, char *path)
6843 {
6844         struct devnames *dnp;
6845         dev_info_t      *dip;
6846 
6847         if ((major >= devcnt) || (instance == -1)) {
6848                 *path = 0;
6849                 return (DDI_FAILURE);
6850         }
6851 
6852         /* look for the major/instance in the instance tree */
6853         if (e_ddi_instance_majorinstance_to_path(major, instance,
6854             path) == DDI_SUCCESS) {
6855                 ASSERT(strlen(path) < MAXPATHLEN);
6856                 return (DDI_SUCCESS);
6857         }
6858 
6859         /*
6860          * Not in instance tree, find the instance on the per driver list and
6861          * construct path to instance via ddi_pathname(). This is how paths
6862          * down the 'pseudo' branch are constructed.
6863          */
6864         dnp = &(devnamesp[major]);
6865         LOCK_DEV_OPS(&(dnp->dn_lock));
6866         for (dip = dnp->dn_head; dip;
6867             dip = (dev_info_t *)DEVI(dip)->devi_next) {
6868                 /* Skip if instance does not match. */
6869                 if (DEVI(dip)->devi_instance != instance)
6870                         continue;
6871 
6872                 /*
6873                  * An ndi_hold_devi() does not prevent DS_INITIALIZED->DS_BOUND
6874                  * node demotion, so it is not an effective way of ensuring
6875                  * that the ddi_pathname result has a unit-address.  Instead,
6876                  * we reverify the node state after calling ddi_pathname().
6877                  */
6878                 if (i_ddi_node_state(dip) >= DS_INITIALIZED) {
6879                         (void) ddi_pathname(dip, path);
6880                         if (i_ddi_node_state(dip) < DS_INITIALIZED)
6881                                 continue;
6882                         UNLOCK_DEV_OPS(&(dnp->dn_lock));
6883                         ASSERT(strlen(path) < MAXPATHLEN);
6884                         return (DDI_SUCCESS);
6885                 }
6886         }
6887         UNLOCK_DEV_OPS(&(dnp->dn_lock));
6888 
6889         /* can't reconstruct the path */
6890         *path = 0;
6891         return (DDI_FAILURE);
6892 }
6893 
6894 #define GLD_DRIVER_PPA "SUNW,gld_v0_ppa"
6895 
6896 /*
6897  * Given the dip for a network interface return the ppa for that interface.
6898  *
6899  * In all cases except GLD v0 drivers, the ppa == instance.
6900  * In the case of GLD v0 drivers, the ppa is equal to the attach order.
6901  * So for these drivers when the attach routine calls gld_register(),
6902  * the GLD framework creates an integer property called "gld_driver_ppa"
6903  * that can be queried here.
6904  *
6905  * The only time this function is used is when a system is booting over nfs.
6906  * In this case the system has to resolve the pathname of the boot device
6907  * to it's ppa.
6908  */
6909 int
6910 i_ddi_devi_get_ppa(dev_info_t *dip)
6911 {
6912         return (ddi_prop_get_int(DDI_DEV_T_ANY, dip,
6913             DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
6914             GLD_DRIVER_PPA, ddi_get_instance(dip)));
6915 }
6916 
6917 /*
6918  * i_ddi_devi_set_ppa() should only be called from gld_register()
6919  * and only for GLD v0 drivers
6920  */
6921 void
6922 i_ddi_devi_set_ppa(dev_info_t *dip, int ppa)
6923 {
6924         (void) e_ddi_prop_update_int(DDI_DEV_T_NONE, dip, GLD_DRIVER_PPA, ppa);
6925 }
6926 
6927 
6928 /*
6929  * Private DDI Console bell functions.
6930  */
6931 void
6932 ddi_ring_console_bell(clock_t duration)
6933 {
6934         if (ddi_console_bell_func != NULL)
6935                 (*ddi_console_bell_func)(duration);
6936 }
6937 
6938 void
6939 ddi_set_console_bell(void (*bellfunc)(clock_t duration))
6940 {
6941         ddi_console_bell_func = bellfunc;
6942 }
6943 
6944 int
6945 ddi_dma_alloc_handle(dev_info_t *dip, ddi_dma_attr_t *attr,
6946         int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep)
6947 {
6948         int (*funcp)() = ddi_dma_allochdl;
6949         ddi_dma_attr_t dma_attr;
6950         struct bus_ops *bop;
6951 
6952         if (attr == (ddi_dma_attr_t *)0)
6953                 return (DDI_DMA_BADATTR);
6954 
6955         dma_attr = *attr;
6956 
6957         bop = DEVI(dip)->devi_ops->devo_bus_ops;
6958         if (bop && bop->bus_dma_allochdl)
6959                 funcp = bop->bus_dma_allochdl;
6960 
6961         return ((*funcp)(dip, dip, &dma_attr, waitfp, arg, handlep));
6962 }
6963 
6964 void
6965 ddi_dma_free_handle(ddi_dma_handle_t *handlep)
6966 {
6967         ddi_dma_handle_t h = *handlep;
6968         (void) ddi_dma_freehdl(HD, HD, h);
6969 }
6970 
6971 static uintptr_t dma_mem_list_id = 0;
6972 
6973 
6974 int
6975 ddi_dma_mem_alloc(ddi_dma_handle_t handle, size_t length,
6976         ddi_device_acc_attr_t *accattrp, uint_t flags,
6977         int (*waitfp)(caddr_t), caddr_t arg, caddr_t *kaddrp,
6978         size_t *real_length, ddi_acc_handle_t *handlep)
6979 {
6980         ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
6981         dev_info_t *dip = hp->dmai_rdip;
6982         ddi_acc_hdl_t *ap;
6983         ddi_dma_attr_t *attrp = &hp->dmai_attr;
6984         uint_t sleepflag, xfermodes;
6985         int (*fp)(caddr_t);
6986         int rval;
6987 
6988         if (waitfp == DDI_DMA_SLEEP)
6989                 fp = (int (*)())KM_SLEEP;
6990         else if (waitfp == DDI_DMA_DONTWAIT)
6991                 fp = (int (*)())KM_NOSLEEP;
6992         else
6993                 fp = waitfp;
6994         *handlep = impl_acc_hdl_alloc(fp, arg);
6995         if (*handlep == NULL)
6996                 return (DDI_FAILURE);
6997 
6998         /* check if the cache attributes are supported */
6999         if (i_ddi_check_cache_attr(flags) == B_FALSE)
7000                 return (DDI_FAILURE);
7001 
7002         /*
7003          * Transfer the meaningful bits to xfermodes.
7004          * Double-check if the 3rd party driver correctly sets the bits.
7005          * If not, set DDI_DMA_STREAMING to keep compatibility.
7006          */
7007         xfermodes = flags & (DDI_DMA_CONSISTENT | DDI_DMA_STREAMING);
7008         if (xfermodes == 0) {
7009                 xfermodes = DDI_DMA_STREAMING;
7010         }
7011 
7012         /*
7013          * initialize the common elements of data access handle
7014          */
7015         ap = impl_acc_hdl_get(*handlep);
7016         ap->ah_vers = VERS_ACCHDL;
7017         ap->ah_dip = dip;
7018         ap->ah_offset = 0;
7019         ap->ah_len = 0;
7020         ap->ah_xfermodes = flags;
7021         ap->ah_acc = *accattrp;
7022 
7023         sleepflag = ((waitfp == DDI_DMA_SLEEP) ? 1 : 0);
7024         if (xfermodes == DDI_DMA_CONSISTENT) {
7025                 rval = i_ddi_mem_alloc(dip, attrp, length, sleepflag,
7026                     flags, accattrp, kaddrp, NULL, ap);
7027                 *real_length = length;
7028         } else {
7029                 rval = i_ddi_mem_alloc(dip, attrp, length, sleepflag,
7030                     flags, accattrp, kaddrp, real_length, ap);
7031         }
7032         if (rval == DDI_SUCCESS) {
7033                 ap->ah_len = (off_t)(*real_length);
7034                 ap->ah_addr = *kaddrp;
7035         } else {
7036                 impl_acc_hdl_free(*handlep);
7037                 *handlep = (ddi_acc_handle_t)NULL;
7038                 if (waitfp != DDI_DMA_SLEEP && waitfp != DDI_DMA_DONTWAIT) {
7039                         ddi_set_callback(waitfp, arg, &dma_mem_list_id);
7040                 }
7041                 rval = DDI_FAILURE;
7042         }
7043         return (rval);
7044 }
7045 
7046 void
7047 ddi_dma_mem_free(ddi_acc_handle_t *handlep)
7048 {
7049         ddi_acc_hdl_t *ap;
7050 
7051         ap = impl_acc_hdl_get(*handlep);
7052         ASSERT(ap);
7053 
7054         i_ddi_mem_free((caddr_t)ap->ah_addr, ap);
7055 
7056         /*
7057          * free the handle
7058          */
7059         impl_acc_hdl_free(*handlep);
7060         *handlep = (ddi_acc_handle_t)NULL;
7061 
7062         if (dma_mem_list_id != 0) {
7063                 ddi_run_callback(&dma_mem_list_id);
7064         }
7065 }
7066 
7067 int
7068 ddi_dma_buf_bind_handle(ddi_dma_handle_t handle, struct buf *bp,
7069         uint_t flags, int (*waitfp)(caddr_t), caddr_t arg,
7070         ddi_dma_cookie_t *cookiep, uint_t *ccountp)
7071 {
7072         ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
7073         dev_info_t *dip, *rdip;
7074         struct ddi_dma_req dmareq;
7075         int (*funcp)();
7076 
7077         dmareq.dmar_flags = flags;
7078         dmareq.dmar_fp = waitfp;
7079         dmareq.dmar_arg = arg;
7080         dmareq.dmar_object.dmao_size = (uint_t)bp->b_bcount;
7081 
7082         if (bp->b_flags & B_PAGEIO) {
7083                 dmareq.dmar_object.dmao_type = DMA_OTYP_PAGES;
7084                 dmareq.dmar_object.dmao_obj.pp_obj.pp_pp = bp->b_pages;
7085                 dmareq.dmar_object.dmao_obj.pp_obj.pp_offset =
7086                     (uint_t)(((uintptr_t)bp->b_un.b_addr) & MMU_PAGEOFFSET);
7087         } else {
7088                 dmareq.dmar_object.dmao_obj.virt_obj.v_addr = bp->b_un.b_addr;
7089                 if (bp->b_flags & B_SHADOW) {
7090                         dmareq.dmar_object.dmao_obj.virt_obj.v_priv =
7091                             bp->b_shadow;
7092                         dmareq.dmar_object.dmao_type = DMA_OTYP_BUFVADDR;
7093                 } else {
7094                         dmareq.dmar_object.dmao_type =
7095                             (bp->b_flags & (B_PHYS | B_REMAPPED)) ?
7096                             DMA_OTYP_BUFVADDR : DMA_OTYP_VADDR;
7097                         dmareq.dmar_object.dmao_obj.virt_obj.v_priv = NULL;
7098                 }
7099 
7100                 /*
7101                  * If the buffer has no proc pointer, or the proc
7102                  * struct has the kernel address space, or the buffer has
7103                  * been marked B_REMAPPED (meaning that it is now
7104                  * mapped into the kernel's address space), then
7105                  * the address space is kas (kernel address space).
7106                  */
7107                 if ((bp->b_proc == NULL) || (bp->b_proc->p_as == &kas) ||
7108                     (bp->b_flags & B_REMAPPED)) {
7109                         dmareq.dmar_object.dmao_obj.virt_obj.v_as = 0;
7110                 } else {
7111                         dmareq.dmar_object.dmao_obj.virt_obj.v_as =
7112                             bp->b_proc->p_as;
7113                 }
7114         }
7115 
7116         dip = rdip = hp->dmai_rdip;
7117         if (dip != ddi_root_node())
7118                 dip = (dev_info_t *)DEVI(dip)->devi_bus_dma_bindhdl;
7119         funcp = DEVI(rdip)->devi_bus_dma_bindfunc;
7120         return ((*funcp)(dip, rdip, handle, &dmareq, cookiep, ccountp));
7121 }
7122 
7123 int
7124 ddi_dma_addr_bind_handle(ddi_dma_handle_t handle, struct as *as,
7125         caddr_t addr, size_t len, uint_t flags, int (*waitfp)(caddr_t),
7126         caddr_t arg, ddi_dma_cookie_t *cookiep, uint_t *ccountp)
7127 {
7128         ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
7129         dev_info_t *dip, *rdip;
7130         struct ddi_dma_req dmareq;
7131         int (*funcp)();
7132 
7133         if (len == (uint_t)0) {
7134                 return (DDI_DMA_NOMAPPING);
7135         }
7136         dmareq.dmar_flags = flags;
7137         dmareq.dmar_fp = waitfp;
7138         dmareq.dmar_arg = arg;
7139         dmareq.dmar_object.dmao_size = len;
7140         dmareq.dmar_object.dmao_type = DMA_OTYP_VADDR;
7141         dmareq.dmar_object.dmao_obj.virt_obj.v_as = as;
7142         dmareq.dmar_object.dmao_obj.virt_obj.v_addr = addr;
7143         dmareq.dmar_object.dmao_obj.virt_obj.v_priv = NULL;
7144 
7145         dip = rdip = hp->dmai_rdip;
7146         if (dip != ddi_root_node())
7147                 dip = (dev_info_t *)DEVI(dip)->devi_bus_dma_bindhdl;
7148         funcp = DEVI(rdip)->devi_bus_dma_bindfunc;
7149         return ((*funcp)(dip, rdip, handle, &dmareq, cookiep, ccountp));
7150 }
7151 
7152 void
7153 ddi_dma_nextcookie(ddi_dma_handle_t handle, ddi_dma_cookie_t *cookiep)
7154 {
7155         ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
7156         ddi_dma_cookie_t *cp;
7157 
7158         cp = hp->dmai_cookie;
7159         ASSERT(cp);
7160 
7161         cookiep->dmac_notused = cp->dmac_notused;
7162         cookiep->dmac_type = cp->dmac_type;
7163         cookiep->dmac_address = cp->dmac_address;
7164         cookiep->dmac_size = cp->dmac_size;
7165         hp->dmai_cookie++;
7166 }
7167 
7168 int
7169 ddi_dma_numwin(ddi_dma_handle_t handle, uint_t *nwinp)
7170 {
7171         ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
7172         if ((hp->dmai_rflags & DDI_DMA_PARTIAL) == 0) {
7173                 return (DDI_FAILURE);
7174         } else {
7175                 *nwinp = hp->dmai_nwin;
7176                 return (DDI_SUCCESS);
7177         }
7178 }
7179 
7180 int
7181 ddi_dma_getwin(ddi_dma_handle_t h, uint_t win, off_t *offp,
7182         size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp)
7183 {
7184         int (*funcp)() = ddi_dma_win;
7185         struct bus_ops *bop;
7186 
7187         bop = DEVI(HD)->devi_ops->devo_bus_ops;
7188         if (bop && bop->bus_dma_win)
7189                 funcp = bop->bus_dma_win;
7190 
7191         return ((*funcp)(HD, HD, h, win, offp, lenp, cookiep, ccountp));
7192 }
7193 
7194 int
7195 ddi_dma_set_sbus64(ddi_dma_handle_t h, ulong_t burstsizes)
7196 {
7197         return (ddi_dma_mctl(HD, HD, h, DDI_DMA_SET_SBUS64, 0,
7198             &burstsizes, 0, 0));
7199 }
7200 
7201 int
7202 i_ddi_dma_fault_check(ddi_dma_impl_t *hp)
7203 {
7204         return (hp->dmai_fault);
7205 }
7206 
7207 int
7208 ddi_check_dma_handle(ddi_dma_handle_t handle)
7209 {
7210         ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
7211         int (*check)(ddi_dma_impl_t *);
7212 
7213         if ((check = hp->dmai_fault_check) == NULL)
7214                 check = i_ddi_dma_fault_check;
7215 
7216         return (((*check)(hp) == DDI_SUCCESS) ? DDI_SUCCESS : DDI_FAILURE);
7217 }
7218 
7219 void
7220 i_ddi_dma_set_fault(ddi_dma_handle_t handle)
7221 {
7222         ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
7223         void (*notify)(ddi_dma_impl_t *);
7224 
7225         if (!hp->dmai_fault) {
7226                 hp->dmai_fault = 1;
7227                 if ((notify = hp->dmai_fault_notify) != NULL)
7228                         (*notify)(hp);
7229         }
7230 }
7231 
7232 void
7233 i_ddi_dma_clr_fault(ddi_dma_handle_t handle)
7234 {
7235         ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
7236         void (*notify)(ddi_dma_impl_t *);
7237 
7238         if (hp->dmai_fault) {
7239                 hp->dmai_fault = 0;
7240                 if ((notify = hp->dmai_fault_notify) != NULL)
7241                         (*notify)(hp);
7242         }
7243 }
7244 
7245 /*
7246  * register mapping routines.
7247  */
7248 int
7249 ddi_regs_map_setup(dev_info_t *dip, uint_t rnumber, caddr_t *addrp,
7250         offset_t offset, offset_t len, ddi_device_acc_attr_t *accattrp,
7251         ddi_acc_handle_t *handle)
7252 {
7253         ddi_map_req_t mr;
7254         ddi_acc_hdl_t *hp;
7255         int result;
7256 
7257         /*
7258          * Allocate and initialize the common elements of data access handle.
7259          */
7260         *handle = impl_acc_hdl_alloc(KM_SLEEP, NULL);
7261         hp = impl_acc_hdl_get(*handle);
7262         hp->ah_vers = VERS_ACCHDL;
7263         hp->ah_dip = dip;
7264         hp->ah_rnumber = rnumber;
7265         hp->ah_offset = offset;
7266         hp->ah_len = len;
7267         hp->ah_acc = *accattrp;
7268 
7269         /*
7270          * Set up the mapping request and call to parent.
7271          */
7272         mr.map_op = DDI_MO_MAP_LOCKED;
7273         mr.map_type = DDI_MT_RNUMBER;
7274         mr.map_obj.rnumber = rnumber;
7275         mr.map_prot = PROT_READ | PROT_WRITE;
7276         mr.map_flags = DDI_MF_KERNEL_MAPPING;
7277         mr.map_handlep = hp;
7278         mr.map_vers = DDI_MAP_VERSION;
7279         result = ddi_map(dip, &mr, offset, len, addrp);
7280 
7281         /*
7282          * check for end result
7283          */
7284         if (result != DDI_SUCCESS) {
7285                 impl_acc_hdl_free(*handle);
7286                 *handle = (ddi_acc_handle_t)NULL;
7287         } else {
7288                 hp->ah_addr = *addrp;
7289         }
7290 
7291         return (result);
7292 }
7293 
7294 void
7295 ddi_regs_map_free(ddi_acc_handle_t *handlep)
7296 {
7297         ddi_map_req_t mr;
7298         ddi_acc_hdl_t *hp;
7299 
7300         hp = impl_acc_hdl_get(*handlep);
7301         ASSERT(hp);
7302 
7303         mr.map_op = DDI_MO_UNMAP;
7304         mr.map_type = DDI_MT_RNUMBER;
7305         mr.map_obj.rnumber = hp->ah_rnumber;
7306         mr.map_prot = PROT_READ | PROT_WRITE;
7307         mr.map_flags = DDI_MF_KERNEL_MAPPING;
7308         mr.map_handlep = hp;
7309         mr.map_vers = DDI_MAP_VERSION;
7310 
7311         /*
7312          * Call my parent to unmap my regs.
7313          */
7314         (void) ddi_map(hp->ah_dip, &mr, hp->ah_offset,
7315             hp->ah_len, &hp->ah_addr);
7316         /*
7317          * free the handle
7318          */
7319         impl_acc_hdl_free(*handlep);
7320         *handlep = (ddi_acc_handle_t)NULL;
7321 }
7322 
7323 int
7324 ddi_device_zero(ddi_acc_handle_t handle, caddr_t dev_addr, size_t bytecount,
7325         ssize_t dev_advcnt, uint_t dev_datasz)
7326 {
7327         uint8_t *b;
7328         uint16_t *w;
7329         uint32_t *l;
7330         uint64_t *ll;
7331 
7332         /* check for total byte count is multiple of data transfer size */
7333         if (bytecount != ((bytecount / dev_datasz) * dev_datasz))
7334                 return (DDI_FAILURE);
7335 
7336         switch (dev_datasz) {
7337         case DDI_DATA_SZ01_ACC:
7338                 for (b = (uint8_t *)dev_addr;
7339                     bytecount != 0; bytecount -= 1, b += dev_advcnt)
7340                         ddi_put8(handle, b, 0);
7341                 break;
7342         case DDI_DATA_SZ02_ACC:
7343                 for (w = (uint16_t *)dev_addr;
7344                     bytecount != 0; bytecount -= 2, w += dev_advcnt)
7345                         ddi_put16(handle, w, 0);
7346                 break;
7347         case DDI_DATA_SZ04_ACC:
7348                 for (l = (uint32_t *)dev_addr;
7349                     bytecount != 0; bytecount -= 4, l += dev_advcnt)
7350                         ddi_put32(handle, l, 0);
7351                 break;
7352         case DDI_DATA_SZ08_ACC:
7353                 for (ll = (uint64_t *)dev_addr;
7354                     bytecount != 0; bytecount -= 8, ll += dev_advcnt)
7355                         ddi_put64(handle, ll, 0x0ll);
7356                 break;
7357         default:
7358                 return (DDI_FAILURE);
7359         }
7360         return (DDI_SUCCESS);
7361 }
7362 
7363 int
7364 ddi_device_copy(
7365         ddi_acc_handle_t src_handle, caddr_t src_addr, ssize_t src_advcnt,
7366         ddi_acc_handle_t dest_handle, caddr_t dest_addr, ssize_t dest_advcnt,
7367         size_t bytecount, uint_t dev_datasz)
7368 {
7369         uint8_t *b_src, *b_dst;
7370         uint16_t *w_src, *w_dst;
7371         uint32_t *l_src, *l_dst;
7372         uint64_t *ll_src, *ll_dst;
7373 
7374         /* check for total byte count is multiple of data transfer size */
7375         if (bytecount != ((bytecount / dev_datasz) * dev_datasz))
7376                 return (DDI_FAILURE);
7377 
7378         switch (dev_datasz) {
7379         case DDI_DATA_SZ01_ACC:
7380                 b_src = (uint8_t *)src_addr;
7381                 b_dst = (uint8_t *)dest_addr;
7382 
7383                 for (; bytecount != 0; bytecount -= 1) {
7384                         ddi_put8(dest_handle, b_dst,
7385                             ddi_get8(src_handle, b_src));
7386                         b_dst += dest_advcnt;
7387                         b_src += src_advcnt;
7388                 }
7389                 break;
7390         case DDI_DATA_SZ02_ACC:
7391                 w_src = (uint16_t *)src_addr;
7392                 w_dst = (uint16_t *)dest_addr;
7393 
7394                 for (; bytecount != 0; bytecount -= 2) {
7395                         ddi_put16(dest_handle, w_dst,
7396                             ddi_get16(src_handle, w_src));
7397                         w_dst += dest_advcnt;
7398                         w_src += src_advcnt;
7399                 }
7400                 break;
7401         case DDI_DATA_SZ04_ACC:
7402                 l_src = (uint32_t *)src_addr;
7403                 l_dst = (uint32_t *)dest_addr;
7404 
7405                 for (; bytecount != 0; bytecount -= 4) {
7406                         ddi_put32(dest_handle, l_dst,
7407                             ddi_get32(src_handle, l_src));
7408                         l_dst += dest_advcnt;
7409                         l_src += src_advcnt;
7410                 }
7411                 break;
7412         case DDI_DATA_SZ08_ACC:
7413                 ll_src = (uint64_t *)src_addr;
7414                 ll_dst = (uint64_t *)dest_addr;
7415 
7416                 for (; bytecount != 0; bytecount -= 8) {
7417                         ddi_put64(dest_handle, ll_dst,
7418                             ddi_get64(src_handle, ll_src));
7419                         ll_dst += dest_advcnt;
7420                         ll_src += src_advcnt;
7421                 }
7422                 break;
7423         default:
7424                 return (DDI_FAILURE);
7425         }
7426         return (DDI_SUCCESS);
7427 }
7428 
7429 #define swap16(value)  \
7430         ((((value) & 0xff) << 8) | ((value) >> 8))
7431 
7432 #define swap32(value)   \
7433         (((uint32_t)swap16((uint16_t)((value) & 0xffff)) << 16) | \
7434         (uint32_t)swap16((uint16_t)((value) >> 16)))
7435 
7436 #define swap64(value)   \
7437         (((uint64_t)swap32((uint32_t)((value) & 0xffffffff)) \
7438             << 32) | \
7439         (uint64_t)swap32((uint32_t)((value) >> 32)))
7440 
7441 uint16_t
7442 ddi_swap16(uint16_t value)
7443 {
7444         return (swap16(value));
7445 }
7446 
7447 uint32_t
7448 ddi_swap32(uint32_t value)
7449 {
7450         return (swap32(value));
7451 }
7452 
7453 uint64_t
7454 ddi_swap64(uint64_t value)
7455 {
7456         return (swap64(value));
7457 }
7458 
7459 /*
7460  * Convert a binding name to a driver name.
7461  * A binding name is the name used to determine the driver for a
7462  * device - it may be either an alias for the driver or the name
7463  * of the driver itself.
7464  */
7465 char *
7466 i_binding_to_drv_name(char *bname)
7467 {
7468         major_t major_no;
7469 
7470         ASSERT(bname != NULL);
7471 
7472         if ((major_no = ddi_name_to_major(bname)) == -1)
7473                 return (NULL);
7474         return (ddi_major_to_name(major_no));
7475 }
7476 
7477 /*
7478  * Search for minor name that has specified dev_t and spec_type.
7479  * If spec_type is zero then any dev_t match works.  Since we
7480  * are returning a pointer to the minor name string, we require the
7481  * caller to do the locking.
7482  */
7483 char *
7484 i_ddi_devtspectype_to_minorname(dev_info_t *dip, dev_t dev, int spec_type)
7485 {
7486         struct ddi_minor_data   *dmdp;
7487 
7488         /*
7489          * The did layered driver currently intentionally returns a
7490          * devinfo ptr for an underlying sd instance based on a did
7491          * dev_t. In this case it is not an error.
7492          *
7493          * The did layered driver is associated with Sun Cluster.
7494          */
7495         ASSERT((ddi_driver_major(dip) == getmajor(dev)) ||
7496             (strcmp(ddi_major_to_name(getmajor(dev)), "did") == 0));
7497 
7498         ASSERT(DEVI_BUSY_OWNED(dip));
7499         for (dmdp = DEVI(dip)->devi_minor; dmdp; dmdp = dmdp->next) {
7500                 if (((dmdp->type == DDM_MINOR) ||
7501                     (dmdp->type == DDM_INTERNAL_PATH) ||
7502                     (dmdp->type == DDM_DEFAULT)) &&
7503                     (dmdp->ddm_dev == dev) &&
7504                     ((((spec_type & (S_IFCHR|S_IFBLK))) == 0) ||
7505                     (dmdp->ddm_spec_type == spec_type)))
7506                         return (dmdp->ddm_name);
7507         }
7508 
7509         return (NULL);
7510 }
7511 
7512 /*
7513  * Find the devt and spectype of the specified minor_name.
7514  * Return DDI_FAILURE if minor_name not found. Since we are
7515  * returning everything via arguments we can do the locking.
7516  */
7517 int
7518 i_ddi_minorname_to_devtspectype(dev_info_t *dip, char *minor_name,
7519         dev_t *devtp, int *spectypep)
7520 {
7521         int                     circ;
7522         struct ddi_minor_data   *dmdp;
7523 
7524         /* deal with clone minor nodes */
7525         if (dip == clone_dip) {
7526                 major_t major;
7527                 /*
7528                  * Make sure minor_name is a STREAMS driver.
7529                  * We load the driver but don't attach to any instances.
7530                  */
7531 
7532                 major = ddi_name_to_major(minor_name);
7533                 if (major == DDI_MAJOR_T_NONE)
7534                         return (DDI_FAILURE);
7535 
7536                 if (ddi_hold_driver(major) == NULL)
7537                         return (DDI_FAILURE);
7538 
7539                 if (STREAMSTAB(major) == NULL) {
7540                         ddi_rele_driver(major);
7541                         return (DDI_FAILURE);
7542                 }
7543                 ddi_rele_driver(major);
7544 
7545                 if (devtp)
7546                         *devtp = makedevice(clone_major, (minor_t)major);
7547 
7548                 if (spectypep)
7549                         *spectypep = S_IFCHR;
7550 
7551                 return (DDI_SUCCESS);
7552         }
7553 
7554         ndi_devi_enter(dip, &circ);
7555         for (dmdp = DEVI(dip)->devi_minor; dmdp; dmdp = dmdp->next) {
7556                 if (((dmdp->type != DDM_MINOR) &&
7557                     (dmdp->type != DDM_INTERNAL_PATH) &&
7558                     (dmdp->type != DDM_DEFAULT)) ||
7559                     strcmp(minor_name, dmdp->ddm_name))
7560                         continue;
7561 
7562                 if (devtp)
7563                         *devtp = dmdp->ddm_dev;
7564 
7565                 if (spectypep)
7566                         *spectypep = dmdp->ddm_spec_type;
7567 
7568                 ndi_devi_exit(dip, circ);
7569                 return (DDI_SUCCESS);
7570         }
7571         ndi_devi_exit(dip, circ);
7572 
7573         return (DDI_FAILURE);
7574 }
7575 
7576 static kmutex_t devid_gen_mutex;
7577 static short    devid_gen_number;
7578 
7579 #ifdef DEBUG
7580 
7581 static int      devid_register_corrupt = 0;
7582 static int      devid_register_corrupt_major = 0;
7583 static int      devid_register_corrupt_hint = 0;
7584 static int      devid_register_corrupt_hint_major = 0;
7585 
7586 static int devid_lyr_debug = 0;
7587 
7588 #define DDI_DEBUG_DEVID_DEVTS(msg, ndevs, devs)         \
7589         if (devid_lyr_debug)                                    \
7590                 ddi_debug_devid_devts(msg, ndevs, devs)
7591 
7592 #else
7593 
7594 #define DDI_DEBUG_DEVID_DEVTS(msg, ndevs, devs)
7595 
7596 #endif /* DEBUG */
7597 
7598 
7599 #ifdef  DEBUG
7600 
7601 static void
7602 ddi_debug_devid_devts(char *msg, int ndevs, dev_t *devs)
7603 {
7604         int i;
7605 
7606         cmn_err(CE_CONT, "%s:\n", msg);
7607         for (i = 0; i < ndevs; i++) {
7608                 cmn_err(CE_CONT, "    0x%lx\n", devs[i]);
7609         }
7610 }
7611 
7612 static void
7613 ddi_debug_devid_paths(char *msg, int npaths, char **paths)
7614 {
7615         int i;
7616 
7617         cmn_err(CE_CONT, "%s:\n", msg);
7618         for (i = 0; i < npaths; i++) {
7619                 cmn_err(CE_CONT, "    %s\n", paths[i]);
7620         }
7621 }
7622 
7623 static void
7624 ddi_debug_devid_devts_per_path(char *path, int ndevs, dev_t *devs)
7625 {
7626         int i;
7627 
7628         cmn_err(CE_CONT, "dev_ts per path %s\n", path);
7629         for (i = 0; i < ndevs; i++) {
7630                 cmn_err(CE_CONT, "    0x%lx\n", devs[i]);
7631         }
7632 }
7633 
7634 #endif  /* DEBUG */
7635 
7636 /*
7637  * Register device id into DDI framework.
7638  * Must be called when the driver is bound.
7639  */
7640 static int
7641 i_ddi_devid_register(dev_info_t *dip, ddi_devid_t devid)
7642 {
7643         impl_devid_t    *i_devid = (impl_devid_t *)devid;
7644         size_t          driver_len;
7645         const char      *driver_name;
7646         char            *devid_str;
7647         major_t         major;
7648 
7649         if ((dip == NULL) ||
7650             ((major = ddi_driver_major(dip)) == DDI_MAJOR_T_NONE))
7651                 return (DDI_FAILURE);
7652 
7653         /* verify that the devid is valid */
7654         if (ddi_devid_valid(devid) != DDI_SUCCESS)
7655                 return (DDI_FAILURE);
7656 
7657         /* Updating driver name hint in devid */
7658         driver_name = ddi_driver_name(dip);
7659         driver_len = strlen(driver_name);
7660         if (driver_len > DEVID_HINT_SIZE) {
7661                 /* Pick up last four characters of driver name */
7662                 driver_name += driver_len - DEVID_HINT_SIZE;
7663                 driver_len = DEVID_HINT_SIZE;
7664         }
7665         bzero(i_devid->did_driver, DEVID_HINT_SIZE);
7666         bcopy(driver_name, i_devid->did_driver, driver_len);
7667 
7668 #ifdef DEBUG
7669         /* Corrupt the devid for testing. */
7670         if (devid_register_corrupt)
7671                 i_devid->did_id[0] += devid_register_corrupt;
7672         if (devid_register_corrupt_major &&
7673             (major == devid_register_corrupt_major))
7674                 i_devid->did_id[0] += 1;
7675         if (devid_register_corrupt_hint)
7676                 i_devid->did_driver[0] += devid_register_corrupt_hint;
7677         if (devid_register_corrupt_hint_major &&
7678             (major == devid_register_corrupt_hint_major))
7679                 i_devid->did_driver[0] += 1;
7680 #endif /* DEBUG */
7681 
7682         /* encode the devid as a string */
7683         if ((devid_str = ddi_devid_str_encode(devid, NULL)) == NULL)
7684                 return (DDI_FAILURE);
7685 
7686         /* add string as a string property */
7687         if (ndi_prop_update_string(DDI_DEV_T_NONE, dip,
7688             DEVID_PROP_NAME, devid_str) != DDI_SUCCESS) {
7689                 cmn_err(CE_WARN, "%s%d: devid property update failed",
7690                     ddi_driver_name(dip), ddi_get_instance(dip));
7691                 ddi_devid_str_free(devid_str);
7692                 return (DDI_FAILURE);
7693         }
7694 
7695         /* keep pointer to devid string for interrupt context fma code */
7696         if (DEVI(dip)->devi_devid_str)
7697                 ddi_devid_str_free(DEVI(dip)->devi_devid_str);
7698         DEVI(dip)->devi_devid_str = devid_str;
7699         return (DDI_SUCCESS);
7700 }
7701 
7702 int
7703 ddi_devid_register(dev_info_t *dip, ddi_devid_t devid)
7704 {
7705         int rval;
7706 
7707         rval = i_ddi_devid_register(dip, devid);
7708         if (rval == DDI_SUCCESS) {
7709                 /*
7710                  * Register devid in devid-to-path cache
7711                  */
7712                 if (e_devid_cache_register(dip, devid) == DDI_SUCCESS) {
7713                         mutex_enter(&DEVI(dip)->devi_lock);
7714                         DEVI(dip)->devi_flags |= DEVI_CACHED_DEVID;
7715                         mutex_exit(&DEVI(dip)->devi_lock);
7716                 } else if (ddi_get_name_addr(dip)) {
7717                         /*
7718                          * We only expect cache_register DDI_FAILURE when we
7719                          * can't form the full path because of NULL devi_addr.
7720                          */
7721                         cmn_err(CE_WARN, "%s%d: failed to cache devid",
7722                             ddi_driver_name(dip), ddi_get_instance(dip));
7723                 }
7724         } else {
7725                 cmn_err(CE_WARN, "%s%d: failed to register devid",
7726                     ddi_driver_name(dip), ddi_get_instance(dip));
7727         }
7728         return (rval);
7729 }
7730 
7731 /*
7732  * Remove (unregister) device id from DDI framework.
7733  * Must be called when device is detached.
7734  */
7735 static void
7736 i_ddi_devid_unregister(dev_info_t *dip)
7737 {
7738         if (DEVI(dip)->devi_devid_str) {
7739                 ddi_devid_str_free(DEVI(dip)->devi_devid_str);
7740                 DEVI(dip)->devi_devid_str = NULL;
7741         }
7742 
7743         /* remove the devid property */
7744         (void) ndi_prop_remove(DDI_DEV_T_NONE, dip, DEVID_PROP_NAME);
7745 }
7746 
7747 void
7748 ddi_devid_unregister(dev_info_t *dip)
7749 {
7750         mutex_enter(&DEVI(dip)->devi_lock);
7751         DEVI(dip)->devi_flags &= ~DEVI_CACHED_DEVID;
7752         mutex_exit(&DEVI(dip)->devi_lock);
7753         e_devid_cache_unregister(dip);
7754         i_ddi_devid_unregister(dip);
7755 }
7756 
7757 /*
7758  * Allocate and initialize a device id.
7759  */
7760 int
7761 ddi_devid_init(
7762         dev_info_t      *dip,
7763         ushort_t        devid_type,
7764         ushort_t        nbytes,
7765         void            *id,
7766         ddi_devid_t     *ret_devid)
7767 {
7768         impl_devid_t    *i_devid;
7769         int             sz = sizeof (*i_devid) + nbytes - sizeof (char);
7770         int             driver_len;
7771         const char      *driver_name;
7772 
7773         switch (devid_type) {
7774         case DEVID_SCSI3_WWN:
7775                 /*FALLTHRU*/
7776         case DEVID_SCSI_SERIAL:
7777                 /*FALLTHRU*/
7778         case DEVID_ATA_SERIAL:
7779                 /*FALLTHRU*/
7780         case DEVID_ENCAP:
7781                 if (nbytes == 0)
7782                         return (DDI_FAILURE);
7783                 if (id == NULL)
7784                         return (DDI_FAILURE);
7785                 break;
7786         case DEVID_FAB:
7787                 if (nbytes != 0)
7788                         return (DDI_FAILURE);
7789                 if (id != NULL)
7790                         return (DDI_FAILURE);
7791                 nbytes = sizeof (int) +
7792                     sizeof (struct timeval32) + sizeof (short);
7793                 sz += nbytes;
7794                 break;
7795         default:
7796                 return (DDI_FAILURE);
7797         }
7798 
7799         if ((i_devid = kmem_zalloc(sz, KM_SLEEP)) == NULL)
7800                 return (DDI_FAILURE);
7801 
7802         i_devid->did_magic_hi = DEVID_MAGIC_MSB;
7803         i_devid->did_magic_lo = DEVID_MAGIC_LSB;
7804         i_devid->did_rev_hi = DEVID_REV_MSB;
7805         i_devid->did_rev_lo = DEVID_REV_LSB;
7806         DEVID_FORMTYPE(i_devid, devid_type);
7807         DEVID_FORMLEN(i_devid, nbytes);
7808 
7809         /* Fill in driver name hint */
7810         driver_name = ddi_driver_name(dip);
7811         driver_len = strlen(driver_name);
7812         if (driver_len > DEVID_HINT_SIZE) {
7813                 /* Pick up last four characters of driver name */
7814                 driver_name += driver_len - DEVID_HINT_SIZE;
7815                 driver_len = DEVID_HINT_SIZE;
7816         }
7817 
7818         bcopy(driver_name, i_devid->did_driver, driver_len);
7819 
7820         /* Fill in id field */
7821         if (devid_type == DEVID_FAB) {
7822                 char            *cp;
7823                 uint32_t        hostid;
7824                 struct timeval32 timestamp32;
7825                 int             i;
7826                 int             *ip;
7827                 short           gen;
7828 
7829                 /* increase the generation number */
7830                 mutex_enter(&devid_gen_mutex);
7831                 gen = devid_gen_number++;
7832                 mutex_exit(&devid_gen_mutex);
7833 
7834                 cp = i_devid->did_id;
7835 
7836                 /* Fill in host id (big-endian byte ordering) */
7837                 hostid = zone_get_hostid(NULL);
7838                 *cp++ = hibyte(hiword(hostid));
7839                 *cp++ = lobyte(hiword(hostid));
7840                 *cp++ = hibyte(loword(hostid));
7841                 *cp++ = lobyte(loword(hostid));
7842 
7843                 /*
7844                  * Fill in timestamp (big-endian byte ordering)
7845                  *
7846                  * (Note that the format may have to be changed
7847                  * before 2038 comes around, though it's arguably
7848                  * unique enough as it is..)
7849                  */
7850                 uniqtime32(&timestamp32);
7851                 ip = (int *)&timestamp32;
7852                 for (i = 0;
7853                     i < sizeof (timestamp32) / sizeof (int); i++, ip++) {
7854                         int     val;
7855                         val = *ip;
7856                         *cp++ = hibyte(hiword(val));
7857                         *cp++ = lobyte(hiword(val));
7858                         *cp++ = hibyte(loword(val));
7859                         *cp++ = lobyte(loword(val));
7860                 }
7861 
7862                 /* fill in the generation number */
7863                 *cp++ = hibyte(gen);
7864                 *cp++ = lobyte(gen);
7865         } else
7866                 bcopy(id, i_devid->did_id, nbytes);
7867 
7868         /* return device id */
7869         *ret_devid = (ddi_devid_t)i_devid;
7870         return (DDI_SUCCESS);
7871 }
7872 
7873 int
7874 ddi_devid_get(dev_info_t *dip, ddi_devid_t *ret_devid)
7875 {
7876         return (i_ddi_devi_get_devid(DDI_DEV_T_ANY, dip, ret_devid));
7877 }
7878 
7879 int
7880 i_ddi_devi_get_devid(dev_t dev, dev_info_t *dip, ddi_devid_t *ret_devid)
7881 {
7882         char            *devidstr;
7883 
7884         ASSERT(dev != DDI_DEV_T_NONE);
7885 
7886         /* look up the property, devt specific first */
7887         if (ddi_prop_lookup_string(dev, dip, DDI_PROP_DONTPASS,
7888             DEVID_PROP_NAME, &devidstr) != DDI_PROP_SUCCESS) {
7889                 if ((dev == DDI_DEV_T_ANY) ||
7890                     (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip,
7891                     DDI_PROP_DONTPASS, DEVID_PROP_NAME, &devidstr) !=
7892                     DDI_PROP_SUCCESS)) {
7893                         return (DDI_FAILURE);
7894                 }
7895         }
7896 
7897         /* convert to binary form */
7898         if (ddi_devid_str_decode(devidstr, ret_devid, NULL) == -1) {
7899                 ddi_prop_free(devidstr);
7900                 return (DDI_FAILURE);
7901         }
7902         ddi_prop_free(devidstr);
7903         return (DDI_SUCCESS);
7904 }
7905 
7906 /*
7907  * Return a copy of the device id for dev_t
7908  */
7909 int
7910 ddi_lyr_get_devid(dev_t dev, ddi_devid_t *ret_devid)
7911 {
7912         dev_info_t      *dip;
7913         int             rval;
7914 
7915         /* get the dip */
7916         if ((dip = e_ddi_hold_devi_by_dev(dev, 0)) == NULL)
7917                 return (DDI_FAILURE);
7918 
7919         rval = i_ddi_devi_get_devid(dev, dip, ret_devid);
7920 
7921         ddi_release_devi(dip);          /* e_ddi_hold_devi_by_dev() */
7922         return (rval);
7923 }
7924 
7925 /*
7926  * Return a copy of the minor name for dev_t and spec_type
7927  */
7928 int
7929 ddi_lyr_get_minor_name(dev_t dev, int spec_type, char **minor_name)
7930 {
7931         char            *buf;
7932         int             circ;
7933         dev_info_t      *dip;
7934         char            *nm;
7935         int             rval;
7936 
7937         if ((dip = e_ddi_hold_devi_by_dev(dev, 0)) == NULL) {
7938                 *minor_name = NULL;
7939                 return (DDI_FAILURE);
7940         }
7941 
7942         /* Find the minor name and copy into max size buf */
7943         buf = kmem_alloc(MAXNAMELEN, KM_SLEEP);
7944         ndi_devi_enter(dip, &circ);
7945         nm = i_ddi_devtspectype_to_minorname(dip, dev, spec_type);
7946         if (nm)
7947                 (void) strcpy(buf, nm);
7948         ndi_devi_exit(dip, circ);
7949         ddi_release_devi(dip);  /* e_ddi_hold_devi_by_dev() */
7950 
7951         if (nm) {
7952                 /* duplicate into min size buf for return result */
7953                 *minor_name = i_ddi_strdup(buf, KM_SLEEP);
7954                 rval = DDI_SUCCESS;
7955         } else {
7956                 *minor_name = NULL;
7957                 rval = DDI_FAILURE;
7958         }
7959 
7960         /* free max size buf and return */
7961         kmem_free(buf, MAXNAMELEN);
7962         return (rval);
7963 }
7964 
7965 int
7966 ddi_lyr_devid_to_devlist(
7967         ddi_devid_t     devid,
7968         char            *minor_name,
7969         int             *retndevs,
7970         dev_t           **retdevs)
7971 {
7972         ASSERT(ddi_devid_valid(devid) == DDI_SUCCESS);
7973 
7974         if (e_devid_cache_to_devt_list(devid, minor_name,
7975             retndevs, retdevs) == DDI_SUCCESS) {
7976                 ASSERT(*retndevs > 0);
7977                 DDI_DEBUG_DEVID_DEVTS("ddi_lyr_devid_to_devlist",
7978                     *retndevs, *retdevs);
7979                 return (DDI_SUCCESS);
7980         }
7981 
7982         if (e_ddi_devid_discovery(devid) == DDI_FAILURE) {
7983                 return (DDI_FAILURE);
7984         }
7985 
7986         if (e_devid_cache_to_devt_list(devid, minor_name,
7987             retndevs, retdevs) == DDI_SUCCESS) {
7988                 ASSERT(*retndevs > 0);
7989                 DDI_DEBUG_DEVID_DEVTS("ddi_lyr_devid_to_devlist",
7990                     *retndevs, *retdevs);
7991                 return (DDI_SUCCESS);
7992         }
7993 
7994         return (DDI_FAILURE);
7995 }
7996 
7997 void
7998 ddi_lyr_free_devlist(dev_t *devlist, int ndevs)
7999 {
8000         kmem_free(devlist, sizeof (dev_t) * ndevs);
8001 }
8002 
8003 /*
8004  * Note: This will need to be fixed if we ever allow processes to
8005  * have more than one data model per exec.
8006  */
8007 model_t
8008 ddi_mmap_get_model(void)
8009 {
8010         return (get_udatamodel());
8011 }
8012 
8013 model_t
8014 ddi_model_convert_from(model_t model)
8015 {
8016         return ((model & DDI_MODEL_MASK) & ~DDI_MODEL_NATIVE);
8017 }
8018 
8019 /*
8020  * ddi interfaces managing storage and retrieval of eventcookies.
8021  */
8022 
8023 /*
8024  * Invoke bus nexus driver's implementation of the
8025  * (*bus_remove_eventcall)() interface to remove a registered
8026  * callback handler for "event".
8027  */
8028 int
8029 ddi_remove_event_handler(ddi_callback_id_t id)
8030 {
8031         ndi_event_callbacks_t *cb = (ndi_event_callbacks_t *)id;
8032         dev_info_t *ddip;
8033 
8034         ASSERT(cb);
8035         if (!cb) {
8036                 return (DDI_FAILURE);
8037         }
8038 
8039         ddip = NDI_EVENT_DDIP(cb->ndi_evtcb_cookie);
8040         return (ndi_busop_remove_eventcall(ddip, id));
8041 }
8042 
8043 /*
8044  * Invoke bus nexus driver's implementation of the
8045  * (*bus_add_eventcall)() interface to register a callback handler
8046  * for "event".
8047  */
8048 int
8049 ddi_add_event_handler(dev_info_t *dip, ddi_eventcookie_t event,
8050     void (*handler)(dev_info_t *, ddi_eventcookie_t, void *, void *),
8051     void *arg, ddi_callback_id_t *id)
8052 {
8053         return (ndi_busop_add_eventcall(dip, dip, event, handler, arg, id));
8054 }
8055 
8056 
8057 /*
8058  * Return a handle for event "name" by calling up the device tree
8059  * hierarchy via  (*bus_get_eventcookie)() interface until claimed
8060  * by a bus nexus or top of dev_info tree is reached.
8061  */
8062 int
8063 ddi_get_eventcookie(dev_info_t *dip, char *name,
8064     ddi_eventcookie_t *event_cookiep)
8065 {
8066         return (ndi_busop_get_eventcookie(dip, dip,
8067             name, event_cookiep));
8068 }
8069 
8070 /*
8071  * This procedure is provided as the general callback function when
8072  * umem_lockmemory calls as_add_callback for long term memory locking.
8073  * When as_unmap, as_setprot, or as_free encounter segments which have
8074  * locked memory, this callback will be invoked.
8075  */
8076 void
8077 umem_lock_undo(struct as *as, void *arg, uint_t event)
8078 {
8079         _NOTE(ARGUNUSED(as, event))
8080         struct ddi_umem_cookie *cp = (struct ddi_umem_cookie *)arg;
8081 
8082         /*
8083          * Call the cleanup function.  Decrement the cookie reference
8084          * count, if it goes to zero, return the memory for the cookie.
8085          * The i_ddi_umem_unlock for this cookie may or may not have been
8086          * called already.  It is the responsibility of the caller of
8087          * umem_lockmemory to handle the case of the cleanup routine
8088          * being called after a ddi_umem_unlock for the cookie
8089          * was called.
8090          */
8091 
8092         (*cp->callbacks.cbo_umem_lock_cleanup)((ddi_umem_cookie_t)cp);
8093 
8094         /* remove the cookie if reference goes to zero */
8095         if (atomic_add_long_nv((ulong_t *)(&(cp->cook_refcnt)), -1) == 0) {
8096                 kmem_free(cp, sizeof (struct ddi_umem_cookie));
8097         }
8098 }
8099 
8100 /*
8101  * The following two Consolidation Private routines provide generic
8102  * interfaces to increase/decrease the amount of device-locked memory.
8103  *
8104  * To keep project_rele and project_hold consistent, i_ddi_decr_locked_memory()
8105  * must be called every time i_ddi_incr_locked_memory() is called.
8106  */
8107 int
8108 /* ARGSUSED */
8109 i_ddi_incr_locked_memory(proc_t *procp, rctl_qty_t inc)
8110 {
8111         ASSERT(procp != NULL);
8112         mutex_enter(&procp->p_lock);
8113         if (rctl_incr_locked_mem(procp, NULL, inc, 1)) {
8114                 mutex_exit(&procp->p_lock);
8115                 return (ENOMEM);
8116         }
8117         mutex_exit(&procp->p_lock);
8118         return (0);
8119 }
8120 
8121 /*
8122  * To keep project_rele and project_hold consistent, i_ddi_incr_locked_memory()
8123  * must be called every time i_ddi_decr_locked_memory() is called.
8124  */
8125 /* ARGSUSED */
8126 void
8127 i_ddi_decr_locked_memory(proc_t *procp, rctl_qty_t dec)
8128 {
8129         ASSERT(procp != NULL);
8130         mutex_enter(&procp->p_lock);
8131         rctl_decr_locked_mem(procp, NULL, dec, 1);
8132         mutex_exit(&procp->p_lock);
8133 }
8134 
8135 /*
8136  * The cookie->upd_max_lock_rctl flag is used to determine if we should
8137  * charge device locked memory to the max-locked-memory rctl.  Tracking
8138  * device locked memory causes the rctl locks to get hot under high-speed
8139  * I/O such as RDSv3 over IB.  If there is no max-locked-memory rctl limit,
8140  * we bypass charging the locked memory to the rctl altogether.  The cookie's
8141  * flag tells us if the rctl value should be updated when unlocking the memory,
8142  * in case the rctl gets changed after the memory was locked.  Any device
8143  * locked memory in that rare case will not be counted toward the rctl limit.
8144  *
8145  * When tracking the locked memory, the kproject_t parameter is always NULL
8146  * in the code paths:
8147  *      i_ddi_incr_locked_memory -> rctl_incr_locked_mem
8148  *      i_ddi_decr_locked_memory -> rctl_decr_locked_mem
8149  * Thus, we always use the tk_proj member to check the projp setting.
8150  */
8151 static void
8152 init_lockedmem_rctl_flag(struct ddi_umem_cookie *cookie)
8153 {
8154         proc_t          *p;
8155         kproject_t      *projp;
8156         zone_t          *zonep;
8157 
8158         ASSERT(cookie);
8159         p = cookie->procp;
8160         ASSERT(p);
8161 
8162         zonep = p->p_zone;
8163         projp = p->p_task->tk_proj;
8164 
8165         ASSERT(zonep);
8166         ASSERT(projp);
8167 
8168         if (zonep->zone_locked_mem_ctl == UINT64_MAX &&
8169             projp->kpj_data.kpd_locked_mem_ctl == UINT64_MAX)
8170                 cookie->upd_max_lock_rctl = 0;
8171         else
8172                 cookie->upd_max_lock_rctl = 1;
8173 }
8174 
8175 /*
8176  * This routine checks if the max-locked-memory resource ctl is
8177  * exceeded, if not increments it, grabs a hold on the project.
8178  * Returns 0 if successful otherwise returns error code
8179  */
8180 static int
8181 umem_incr_devlockmem(struct ddi_umem_cookie *cookie)
8182 {
8183         proc_t          *procp;
8184         int             ret;
8185 
8186         ASSERT(cookie);
8187         if (cookie->upd_max_lock_rctl == 0)
8188                 return (0);
8189 
8190         procp = cookie->procp;
8191         ASSERT(procp);
8192 
8193         if ((ret = i_ddi_incr_locked_memory(procp,
8194             cookie->size)) != 0) {
8195                 return (ret);
8196         }
8197         return (0);
8198 }
8199 
8200 /*
8201  * Decrements the max-locked-memory resource ctl and releases
8202  * the hold on the project that was acquired during umem_incr_devlockmem
8203  */
8204 static void
8205 umem_decr_devlockmem(struct ddi_umem_cookie *cookie)
8206 {
8207         proc_t          *proc;
8208 
8209         if (cookie->upd_max_lock_rctl == 0)
8210                 return;
8211 
8212         proc = (proc_t *)cookie->procp;
8213         if (!proc)
8214                 return;
8215 
8216         i_ddi_decr_locked_memory(proc, cookie->size);
8217 }
8218 
8219 /*
8220  * A consolidation private function which is essentially equivalent to
8221  * ddi_umem_lock but with the addition of arguments ops_vector and procp.
8222  * A call to as_add_callback is done if DDI_UMEMLOCK_LONGTERM is set, and
8223  * the ops_vector is valid.
8224  *
8225  * Lock the virtual address range in the current process and create a
8226  * ddi_umem_cookie (of type UMEM_LOCKED). This can be used to pass to
8227  * ddi_umem_iosetup to create a buf or do devmap_umem_setup/remap to export
8228  * to user space.
8229  *
8230  * Note: The resource control accounting currently uses a full charge model
8231  * in other words attempts to lock the same/overlapping areas of memory
8232  * will deduct the full size of the buffer from the projects running
8233  * counter for the device locked memory.
8234  *
8235  * addr, size should be PAGESIZE aligned
8236  *
8237  * flags - DDI_UMEMLOCK_READ, DDI_UMEMLOCK_WRITE or both
8238  *      identifies whether the locked memory will be read or written or both
8239  *      DDI_UMEMLOCK_LONGTERM  must be set when the locking will
8240  * be maintained for an indefinitely long period (essentially permanent),
8241  * rather than for what would be required for a typical I/O completion.
8242  * When DDI_UMEMLOCK_LONGTERM is set, umem_lockmemory will return EFAULT
8243  * if the memory pertains to a regular file which is mapped MAP_SHARED.
8244  * This is to prevent a deadlock if a file truncation is attempted after
8245  * after the locking is done.
8246  *
8247  * Returns 0 on success
8248  *      EINVAL - for invalid parameters
8249  *      EPERM, ENOMEM and other error codes returned by as_pagelock
8250  *      ENOMEM - is returned if the current request to lock memory exceeds
8251  *              *.max-locked-memory resource control value.
8252  *      EFAULT - memory pertains to a regular file mapped shared and
8253  *              and DDI_UMEMLOCK_LONGTERM flag is set
8254  *      EAGAIN - could not start the ddi_umem_unlock list processing thread
8255  */
8256 int
8257 umem_lockmemory(caddr_t addr, size_t len, int flags, ddi_umem_cookie_t *cookie,
8258                 struct umem_callback_ops *ops_vector,
8259                 proc_t *procp)
8260 {
8261         int     error;
8262         struct ddi_umem_cookie *p;
8263         void    (*driver_callback)() = NULL;
8264         struct as *as;
8265         struct seg              *seg;
8266         vnode_t                 *vp;
8267 
8268         /* Allow device drivers to not have to reference "curproc" */
8269         if (procp == NULL)
8270                 procp = curproc;
8271         as = procp->p_as;
8272         *cookie = NULL;         /* in case of any error return */
8273 
8274         /* These are the only three valid flags */
8275         if ((flags & ~(DDI_UMEMLOCK_READ | DDI_UMEMLOCK_WRITE |
8276             DDI_UMEMLOCK_LONGTERM)) != 0)
8277                 return (EINVAL);
8278 
8279         /* At least one (can be both) of the two access flags must be set */
8280         if ((flags & (DDI_UMEMLOCK_READ | DDI_UMEMLOCK_WRITE)) == 0)
8281                 return (EINVAL);
8282 
8283         /* addr and len must be page-aligned */
8284         if (((uintptr_t)addr & PAGEOFFSET) != 0)
8285                 return (EINVAL);
8286 
8287         if ((len & PAGEOFFSET) != 0)
8288                 return (EINVAL);
8289 
8290         /*
8291          * For longterm locking a driver callback must be specified; if
8292          * not longterm then a callback is optional.
8293          */
8294         if (ops_vector != NULL) {
8295                 if (ops_vector->cbo_umem_callback_version !=
8296                     UMEM_CALLBACK_VERSION)
8297                         return (EINVAL);
8298                 else
8299                         driver_callback = ops_vector->cbo_umem_lock_cleanup;
8300         }
8301         if ((driver_callback == NULL) && (flags & DDI_UMEMLOCK_LONGTERM))
8302                 return (EINVAL);
8303 
8304         /*
8305          * Call i_ddi_umem_unlock_thread_start if necessary.  It will
8306          * be called on first ddi_umem_lock or umem_lockmemory call.
8307          */
8308         if (ddi_umem_unlock_thread == NULL)
8309                 i_ddi_umem_unlock_thread_start();
8310 
8311         /* Allocate memory for the cookie */
8312         p = kmem_zalloc(sizeof (struct ddi_umem_cookie), KM_SLEEP);
8313 
8314         /* Convert the flags to seg_rw type */
8315         if (flags & DDI_UMEMLOCK_WRITE) {
8316                 p->s_flags = S_WRITE;
8317         } else {
8318                 p->s_flags = S_READ;
8319         }
8320 
8321         /* Store procp in cookie for later iosetup/unlock */
8322         p->procp = (void *)procp;
8323 
8324         /*
8325          * Store the struct as pointer in cookie for later use by
8326          * ddi_umem_unlock.  The proc->p_as will be stale if ddi_umem_unlock
8327          * is called after relvm is called.
8328          */
8329         p->asp = as;
8330 
8331         /*
8332          * The size field is needed for lockmem accounting.
8333          */
8334         p->size = len;
8335         init_lockedmem_rctl_flag(p);
8336 
8337         if (umem_incr_devlockmem(p) != 0) {
8338                 /*
8339                  * The requested memory cannot be locked
8340                  */
8341                 kmem_free(p, sizeof (struct ddi_umem_cookie));
8342                 *cookie = (ddi_umem_cookie_t)NULL;
8343                 return (ENOMEM);
8344         }
8345 
8346         /* Lock the pages corresponding to addr, len in memory */
8347         error = as_pagelock(as, &(p->pparray), addr, len, p->s_flags);
8348         if (error != 0) {
8349                 umem_decr_devlockmem(p);
8350                 kmem_free(p, sizeof (struct ddi_umem_cookie));
8351                 *cookie = (ddi_umem_cookie_t)NULL;
8352                 return (error);
8353         }
8354 
8355         /*
8356          * For longterm locking the addr must pertain to a seg_vn segment or
8357          * or a seg_spt segment.
8358          * If the segment pertains to a regular file, it cannot be
8359          * mapped MAP_SHARED.
8360          * This is to prevent a deadlock if a file truncation is attempted
8361          * after the locking is done.
8362          * Doing this after as_pagelock guarantees persistence of the as; if
8363          * an unacceptable segment is found, the cleanup includes calling
8364          * as_pageunlock before returning EFAULT.
8365          *
8366          * segdev is allowed here as it is already locked.  This allows
8367          * for memory exported by drivers through mmap() (which is already
8368          * locked) to be allowed for LONGTERM.
8369          */
8370         if (flags & DDI_UMEMLOCK_LONGTERM) {
8371                 extern  struct seg_ops segspt_shmops;
8372                 extern  struct seg_ops segdev_ops;
8373                 AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
8374                 for (seg = as_segat(as, addr); ; seg = AS_SEGNEXT(as, seg)) {
8375                         if (seg == NULL || seg->s_base > addr + len)
8376                                 break;
8377                         if (seg->s_ops == &segdev_ops)
8378                                 continue;
8379                         if (((seg->s_ops != &segvn_ops) &&
8380                             (seg->s_ops != &segspt_shmops)) ||
8381                             ((SEGOP_GETVP(seg, addr, &vp) == 0 &&
8382                             vp != NULL && vp->v_type == VREG) &&
8383                             (SEGOP_GETTYPE(seg, addr) & MAP_SHARED))) {
8384                                 as_pageunlock(as, p->pparray,
8385                                     addr, len, p->s_flags);
8386                                 AS_LOCK_EXIT(as, &as->a_lock);
8387                                 umem_decr_devlockmem(p);
8388                                 kmem_free(p, sizeof (struct ddi_umem_cookie));
8389                                 *cookie = (ddi_umem_cookie_t)NULL;
8390                                 return (EFAULT);
8391                         }
8392                 }
8393                 AS_LOCK_EXIT(as, &as->a_lock);
8394         }
8395 
8396 
8397         /* Initialize the fields in the ddi_umem_cookie */
8398         p->cvaddr = addr;
8399         p->type = UMEM_LOCKED;
8400         if (driver_callback != NULL) {
8401                 /* i_ddi_umem_unlock and umem_lock_undo may need the cookie */
8402                 p->cook_refcnt = 2;
8403                 p->callbacks = *ops_vector;
8404         } else {
8405                 /* only i_ddi_umme_unlock needs the cookie */
8406                 p->cook_refcnt = 1;
8407         }
8408 
8409         *cookie = (ddi_umem_cookie_t)p;
8410 
8411         /*
8412          * If a driver callback was specified, add an entry to the
8413          * as struct callback list. The as_pagelock above guarantees
8414          * the persistence of as.
8415          */
8416         if (driver_callback) {
8417                 error = as_add_callback(as, umem_lock_undo, p, AS_ALL_EVENT,
8418                     addr, len, KM_SLEEP);
8419                 if (error != 0) {
8420                         as_pageunlock(as, p->pparray,
8421                             addr, len, p->s_flags);
8422                         umem_decr_devlockmem(p);
8423                         kmem_free(p, sizeof (struct ddi_umem_cookie));
8424                         *cookie = (ddi_umem_cookie_t)NULL;
8425                 }
8426         }
8427         return (error);
8428 }
8429 
8430 /*
8431  * Unlock the pages locked by ddi_umem_lock or umem_lockmemory and free
8432  * the cookie.  Called from i_ddi_umem_unlock_thread.
8433  */
8434 
8435 static void
8436 i_ddi_umem_unlock(struct ddi_umem_cookie *p)
8437 {
8438         uint_t  rc;
8439 
8440         /*
8441          * There is no way to determine whether a callback to
8442          * umem_lock_undo was registered via as_add_callback.
8443          * (i.e. umem_lockmemory was called with DDI_MEMLOCK_LONGTERM and
8444          * a valid callback function structure.)  as_delete_callback
8445          * is called to delete a possible registered callback.  If the
8446          * return from as_delete_callbacks is AS_CALLBACK_DELETED, it
8447          * indicates that there was a callback registered, and that is was
8448          * successfully deleted.  Thus, the cookie reference count
8449          * will never be decremented by umem_lock_undo.  Just return the
8450          * memory for the cookie, since both users of the cookie are done.
8451          * A return of AS_CALLBACK_NOTFOUND indicates a callback was
8452          * never registered.  A return of AS_CALLBACK_DELETE_DEFERRED
8453          * indicates that callback processing is taking place and, and
8454          * umem_lock_undo is, or will be, executing, and thus decrementing
8455          * the cookie reference count when it is complete.
8456          *
8457          * This needs to be done before as_pageunlock so that the
8458          * persistence of as is guaranteed because of the locked pages.
8459          *
8460          */
8461         rc = as_delete_callback(p->asp, p);
8462 
8463 
8464         /*
8465          * The proc->p_as will be stale if i_ddi_umem_unlock is called
8466          * after relvm is called so use p->asp.
8467          */
8468         as_pageunlock(p->asp, p->pparray, p->cvaddr, p->size, p->s_flags);
8469 
8470         /*
8471          * Now that we have unlocked the memory decrement the
8472          * *.max-locked-memory rctl
8473          */
8474         umem_decr_devlockmem(p);
8475 
8476         if (rc == AS_CALLBACK_DELETED) {
8477                 /* umem_lock_undo will not happen, return the cookie memory */
8478                 ASSERT(p->cook_refcnt == 2);
8479                 kmem_free(p, sizeof (struct ddi_umem_cookie));
8480         } else {
8481                 /*
8482                  * umem_undo_lock may happen if as_delete_callback returned
8483                  * AS_CALLBACK_DELETE_DEFERRED.  In that case, decrement the
8484                  * reference count, atomically, and return the cookie
8485                  * memory if the reference count goes to zero.  The only
8486                  * other value for rc is AS_CALLBACK_NOTFOUND.  In that
8487                  * case, just return the cookie memory.
8488                  */
8489                 if ((rc != AS_CALLBACK_DELETE_DEFERRED) ||
8490                     (atomic_add_long_nv((ulong_t *)(&(p->cook_refcnt)), -1)
8491                     == 0)) {
8492                         kmem_free(p, sizeof (struct ddi_umem_cookie));
8493                 }
8494         }
8495 }
8496 
8497 /*
8498  * i_ddi_umem_unlock_thread - deferred ddi_umem_unlock list handler.
8499  *
8500  * Call i_ddi_umem_unlock for entries in the ddi_umem_unlock list
8501  * until it is empty.  Then, wait for more to be added.  This thread is awoken
8502  * via calls to ddi_umem_unlock.
8503  */
8504 
8505 static void
8506 i_ddi_umem_unlock_thread(void)
8507 {
8508         struct ddi_umem_cookie  *ret_cookie;
8509         callb_cpr_t     cprinfo;
8510 
8511         /* process the ddi_umem_unlock list */
8512         CALLB_CPR_INIT(&cprinfo, &ddi_umem_unlock_mutex,
8513             callb_generic_cpr, "unlock_thread");
8514         for (;;) {
8515                 mutex_enter(&ddi_umem_unlock_mutex);
8516                 if (ddi_umem_unlock_head != NULL) {     /* list not empty */
8517                         ret_cookie = ddi_umem_unlock_head;
8518                         /* take if off the list */
8519                         if ((ddi_umem_unlock_head =
8520                             ddi_umem_unlock_head->unl_forw) == NULL) {
8521                                 ddi_umem_unlock_tail = NULL;
8522                         }
8523                         mutex_exit(&ddi_umem_unlock_mutex);
8524                         /* unlock the pages in this cookie */
8525                         (void) i_ddi_umem_unlock(ret_cookie);
8526                 } else {   /* list is empty, wait for next ddi_umem_unlock */
8527                         CALLB_CPR_SAFE_BEGIN(&cprinfo);
8528                         cv_wait(&ddi_umem_unlock_cv, &ddi_umem_unlock_mutex);
8529                         CALLB_CPR_SAFE_END(&cprinfo, &ddi_umem_unlock_mutex);
8530                         mutex_exit(&ddi_umem_unlock_mutex);
8531                 }
8532         }
8533         /* ddi_umem_unlock_thread does not exit */
8534         /* NOTREACHED */
8535 }
8536 
8537 /*
8538  * Start the thread that will process the ddi_umem_unlock list if it is
8539  * not already started (i_ddi_umem_unlock_thread).
8540  */
8541 static void
8542 i_ddi_umem_unlock_thread_start(void)
8543 {
8544         mutex_enter(&ddi_umem_unlock_mutex);
8545         if (ddi_umem_unlock_thread == NULL) {
8546                 ddi_umem_unlock_thread = thread_create(NULL, 0,
8547                     i_ddi_umem_unlock_thread, NULL, 0, &p0,
8548                     TS_RUN, minclsyspri);
8549         }
8550         mutex_exit(&ddi_umem_unlock_mutex);
8551 }
8552 
8553 /*
8554  * Lock the virtual address range in the current process and create a
8555  * ddi_umem_cookie (of type UMEM_LOCKED). This can be used to pass to
8556  * ddi_umem_iosetup to create a buf or do devmap_umem_setup/remap to export
8557  * to user space.
8558  *
8559  * Note: The resource control accounting currently uses a full charge model
8560  * in other words attempts to lock the same/overlapping areas of memory
8561  * will deduct the full size of the buffer from the projects running
8562  * counter for the device locked memory. This applies to umem_lockmemory too.
8563  *
8564  * addr, size should be PAGESIZE aligned
8565  * flags - DDI_UMEMLOCK_READ, DDI_UMEMLOCK_WRITE or both
8566  *      identifies whether the locked memory will be read or written or both
8567  *
8568  * Returns 0 on success
8569  *      EINVAL - for invalid parameters
8570  *      EPERM, ENOMEM and other error codes returned by as_pagelock
8571  *      ENOMEM - is returned if the current request to lock memory exceeds
8572  *              *.max-locked-memory resource control value.
8573  *      EAGAIN - could not start the ddi_umem_unlock list processing thread
8574  */
8575 int
8576 ddi_umem_lock(caddr_t addr, size_t len, int flags, ddi_umem_cookie_t *cookie)
8577 {
8578         int     error;
8579         struct ddi_umem_cookie *p;
8580 
8581         *cookie = NULL;         /* in case of any error return */
8582 
8583         /* These are the only two valid flags */
8584         if ((flags & ~(DDI_UMEMLOCK_READ | DDI_UMEMLOCK_WRITE)) != 0) {
8585                 return (EINVAL);
8586         }
8587 
8588         /* At least one of the two flags (or both) must be set */
8589         if ((flags & (DDI_UMEMLOCK_READ | DDI_UMEMLOCK_WRITE)) == 0) {
8590                 return (EINVAL);
8591         }
8592 
8593         /* addr and len must be page-aligned */
8594         if (((uintptr_t)addr & PAGEOFFSET) != 0) {
8595                 return (EINVAL);
8596         }
8597 
8598         if ((len & PAGEOFFSET) != 0) {
8599                 return (EINVAL);
8600         }
8601 
8602         /*
8603          * Call i_ddi_umem_unlock_thread_start if necessary.  It will
8604          * be called on first ddi_umem_lock or umem_lockmemory call.
8605          */
8606         if (ddi_umem_unlock_thread == NULL)
8607                 i_ddi_umem_unlock_thread_start();
8608 
8609         /* Allocate memory for the cookie */
8610         p = kmem_zalloc(sizeof (struct ddi_umem_cookie), KM_SLEEP);
8611 
8612         /* Convert the flags to seg_rw type */
8613         if (flags & DDI_UMEMLOCK_WRITE) {
8614                 p->s_flags = S_WRITE;
8615         } else {
8616                 p->s_flags = S_READ;
8617         }
8618 
8619         /* Store curproc in cookie for later iosetup/unlock */
8620         p->procp = (void *)curproc;
8621 
8622         /*
8623          * Store the struct as pointer in cookie for later use by
8624          * ddi_umem_unlock.  The proc->p_as will be stale if ddi_umem_unlock
8625          * is called after relvm is called.
8626          */
8627         p->asp = curproc->p_as;
8628         /*
8629          * The size field is needed for lockmem accounting.
8630          */
8631         p->size = len;
8632         init_lockedmem_rctl_flag(p);
8633 
8634         if (umem_incr_devlockmem(p) != 0) {
8635                 /*
8636                  * The requested memory cannot be locked
8637                  */
8638                 kmem_free(p, sizeof (struct ddi_umem_cookie));
8639                 *cookie = (ddi_umem_cookie_t)NULL;
8640                 return (ENOMEM);
8641         }
8642 
8643         /* Lock the pages corresponding to addr, len in memory */
8644         error = as_pagelock(((proc_t *)p->procp)->p_as, &(p->pparray),
8645             addr, len, p->s_flags);
8646         if (error != 0) {
8647                 umem_decr_devlockmem(p);
8648                 kmem_free(p, sizeof (struct ddi_umem_cookie));
8649                 *cookie = (ddi_umem_cookie_t)NULL;
8650                 return (error);
8651         }
8652 
8653         /* Initialize the fields in the ddi_umem_cookie */
8654         p->cvaddr = addr;
8655         p->type = UMEM_LOCKED;
8656         p->cook_refcnt = 1;
8657 
8658         *cookie = (ddi_umem_cookie_t)p;
8659         return (error);
8660 }
8661 
8662 /*
8663  * Add the cookie to the ddi_umem_unlock list.  Pages will be
8664  * unlocked by i_ddi_umem_unlock_thread.
8665  */
8666 
8667 void
8668 ddi_umem_unlock(ddi_umem_cookie_t cookie)
8669 {
8670         struct ddi_umem_cookie  *p = (struct ddi_umem_cookie *)cookie;
8671 
8672         ASSERT(p->type == UMEM_LOCKED);
8673         ASSERT(CPU_ON_INTR(CPU) == 0); /* cannot be high level */
8674         ASSERT(ddi_umem_unlock_thread != NULL);
8675 
8676         p->unl_forw = (struct ddi_umem_cookie *)NULL;        /* end of list */
8677         /*
8678          * Queue the unlock request and notify i_ddi_umem_unlock thread
8679          * if it's called in the interrupt context. Otherwise, unlock pages
8680          * immediately.
8681          */
8682         if (servicing_interrupt()) {
8683                 /* queue the unlock request and notify the thread */
8684                 mutex_enter(&ddi_umem_unlock_mutex);
8685                 if (ddi_umem_unlock_head == NULL) {
8686                         ddi_umem_unlock_head = ddi_umem_unlock_tail = p;
8687                         cv_broadcast(&ddi_umem_unlock_cv);
8688                 } else {
8689                         ddi_umem_unlock_tail->unl_forw = p;
8690                         ddi_umem_unlock_tail = p;
8691                 }
8692                 mutex_exit(&ddi_umem_unlock_mutex);
8693         } else {
8694                 /* unlock the pages right away */
8695                 (void) i_ddi_umem_unlock(p);
8696         }
8697 }
8698 
8699 /*
8700  * Create a buf structure from a ddi_umem_cookie
8701  * cookie - is a ddi_umem_cookie for from ddi_umem_lock and ddi_umem_alloc
8702  *              (only UMEM_LOCKED & KMEM_NON_PAGEABLE types supported)
8703  * off, len - identifies the portion of the memory represented by the cookie
8704  *              that the buf points to.
8705  *      NOTE: off, len need to follow the alignment/size restrictions of the
8706  *              device (dev) that this buf will be passed to. Some devices
8707  *              will accept unrestricted alignment/size, whereas others (such as
8708  *              st) require some block-size alignment/size. It is the caller's
8709  *              responsibility to ensure that the alignment/size restrictions
8710  *              are met (we cannot assert as we do not know the restrictions)
8711  *
8712  * direction - is one of B_READ or B_WRITE and needs to be compatible with
8713  *              the flags used in ddi_umem_lock
8714  *
8715  * The following three arguments are used to initialize fields in the
8716  * buf structure and are uninterpreted by this routine.
8717  *
8718  * dev
8719  * blkno
8720  * iodone
8721  *
8722  * sleepflag - is one of DDI_UMEM_SLEEP or DDI_UMEM_NOSLEEP
8723  *
8724  * Returns a buf structure pointer on success (to be freed by freerbuf)
8725  *      NULL on any parameter error or memory alloc failure
8726  *
8727  */
8728 struct buf *
8729 ddi_umem_iosetup(ddi_umem_cookie_t cookie, off_t off, size_t len,
8730         int direction, dev_t dev, daddr_t blkno,
8731         int (*iodone)(struct buf *), int sleepflag)
8732 {
8733         struct ddi_umem_cookie *p = (struct ddi_umem_cookie *)cookie;
8734         struct buf *bp;
8735 
8736         /*
8737          * check for valid cookie offset, len
8738          */
8739         if ((off + len) > p->size) {
8740                 return (NULL);
8741         }
8742 
8743         if (len > p->size) {
8744                 return (NULL);
8745         }
8746 
8747         /* direction has to be one of B_READ or B_WRITE */
8748         if ((direction != B_READ) && (direction != B_WRITE)) {
8749                 return (NULL);
8750         }
8751 
8752         /* These are the only two valid sleepflags */
8753         if ((sleepflag != DDI_UMEM_SLEEP) && (sleepflag != DDI_UMEM_NOSLEEP)) {
8754                 return (NULL);
8755         }
8756 
8757         /*
8758          * Only cookies of type UMEM_LOCKED and KMEM_NON_PAGEABLE are supported
8759          */
8760         if ((p->type != UMEM_LOCKED) && (p->type != KMEM_NON_PAGEABLE)) {
8761                 return (NULL);
8762         }
8763 
8764         /* If type is KMEM_NON_PAGEABLE procp is NULL */
8765         ASSERT((p->type == KMEM_NON_PAGEABLE) ?
8766             (p->procp == NULL) : (p->procp != NULL));
8767 
8768         bp = kmem_alloc(sizeof (struct buf), sleepflag);
8769         if (bp == NULL) {
8770                 return (NULL);
8771         }
8772         bioinit(bp);
8773 
8774         bp->b_flags = B_BUSY | B_PHYS | direction;
8775         bp->b_edev = dev;
8776         bp->b_lblkno = blkno;
8777         bp->b_iodone = iodone;
8778         bp->b_bcount = len;
8779         bp->b_proc = (proc_t *)p->procp;
8780         ASSERT(((uintptr_t)(p->cvaddr) & PAGEOFFSET) == 0);
8781         bp->b_un.b_addr = (caddr_t)((uintptr_t)(p->cvaddr) + off);
8782         if (p->pparray != NULL) {
8783                 bp->b_flags |= B_SHADOW;
8784                 ASSERT(((uintptr_t)(p->cvaddr) & PAGEOFFSET) == 0);
8785                 bp->b_shadow = p->pparray + btop(off);
8786         }
8787         return (bp);
8788 }
8789 
8790 /*
8791  * Fault-handling and related routines
8792  */
8793 
8794 ddi_devstate_t
8795 ddi_get_devstate(dev_info_t *dip)
8796 {
8797         if (DEVI_IS_DEVICE_OFFLINE(dip))
8798                 return (DDI_DEVSTATE_OFFLINE);
8799         else if (DEVI_IS_DEVICE_DOWN(dip) || DEVI_IS_BUS_DOWN(dip))
8800                 return (DDI_DEVSTATE_DOWN);
8801         else if (DEVI_IS_BUS_QUIESCED(dip))
8802                 return (DDI_DEVSTATE_QUIESCED);
8803         else if (DEVI_IS_DEVICE_DEGRADED(dip))
8804                 return (DDI_DEVSTATE_DEGRADED);
8805         else
8806                 return (DDI_DEVSTATE_UP);
8807 }
8808 
8809 void
8810 ddi_dev_report_fault(dev_info_t *dip, ddi_fault_impact_t impact,
8811         ddi_fault_location_t location, const char *message)
8812 {
8813         struct ddi_fault_event_data fd;
8814         ddi_eventcookie_t ec;
8815 
8816         /*
8817          * Assemble all the information into a fault-event-data structure
8818          */
8819         fd.f_dip = dip;
8820         fd.f_impact = impact;
8821         fd.f_location = location;
8822         fd.f_message = message;
8823         fd.f_oldstate = ddi_get_devstate(dip);
8824 
8825         /*
8826          * Get eventcookie from defining parent.
8827          */
8828         if (ddi_get_eventcookie(dip, DDI_DEVI_FAULT_EVENT, &ec) !=
8829             DDI_SUCCESS)
8830                 return;
8831 
8832         (void) ndi_post_event(dip, dip, ec, &fd);
8833 }
8834 
8835 char *
8836 i_ddi_devi_class(dev_info_t *dip)
8837 {
8838         return (DEVI(dip)->devi_device_class);
8839 }
8840 
8841 int
8842 i_ddi_set_devi_class(dev_info_t *dip, char *devi_class, int flag)
8843 {
8844         struct dev_info *devi = DEVI(dip);
8845 
8846         mutex_enter(&devi->devi_lock);
8847 
8848         if (devi->devi_device_class)
8849                 kmem_free(devi->devi_device_class,
8850                     strlen(devi->devi_device_class) + 1);
8851 
8852         if ((devi->devi_device_class = i_ddi_strdup(devi_class, flag))
8853             != NULL) {
8854                 mutex_exit(&devi->devi_lock);
8855                 return (DDI_SUCCESS);
8856         }
8857 
8858         mutex_exit(&devi->devi_lock);
8859 
8860         return (DDI_FAILURE);
8861 }
8862 
8863 
8864 /*
8865  * Task Queues DDI interfaces.
8866  */
8867 
8868 /* ARGSUSED */
8869 ddi_taskq_t *
8870 ddi_taskq_create(dev_info_t *dip, const char *name, int nthreads,
8871     pri_t pri, uint_t cflags)
8872 {
8873         char full_name[TASKQ_NAMELEN];
8874         const char *tq_name;
8875         int nodeid = 0;
8876 
8877         if (dip == NULL)
8878                 tq_name = name;
8879         else {
8880                 nodeid = ddi_get_instance(dip);
8881 
8882                 if (name == NULL)
8883                         name = "tq";
8884 
8885                 (void) snprintf(full_name, sizeof (full_name), "%s_%s",
8886                     ddi_driver_name(dip), name);
8887 
8888                 tq_name = full_name;
8889         }
8890 
8891         return ((ddi_taskq_t *)taskq_create_instance(tq_name, nodeid, nthreads,
8892             pri == TASKQ_DEFAULTPRI ? minclsyspri : pri,
8893             nthreads, INT_MAX, TASKQ_PREPOPULATE));
8894 }
8895 
8896 void
8897 ddi_taskq_destroy(ddi_taskq_t *tq)
8898 {
8899         taskq_destroy((taskq_t *)tq);
8900 }
8901 
8902 int
8903 ddi_taskq_dispatch(ddi_taskq_t *tq, void (* func)(void *),
8904     void *arg, uint_t dflags)
8905 {
8906         taskqid_t id = taskq_dispatch((taskq_t *)tq, func, arg,
8907             dflags == DDI_SLEEP ? TQ_SLEEP : TQ_NOSLEEP);
8908 
8909         return (id != 0 ? DDI_SUCCESS : DDI_FAILURE);
8910 }
8911 
8912 void
8913 ddi_taskq_wait(ddi_taskq_t *tq)
8914 {
8915         taskq_wait((taskq_t *)tq);
8916 }
8917 
8918 void
8919 ddi_taskq_suspend(ddi_taskq_t *tq)
8920 {
8921         taskq_suspend((taskq_t *)tq);
8922 }
8923 
8924 boolean_t
8925 ddi_taskq_suspended(ddi_taskq_t *tq)
8926 {
8927         return (taskq_suspended((taskq_t *)tq));
8928 }
8929 
8930 void
8931 ddi_taskq_resume(ddi_taskq_t *tq)
8932 {
8933         taskq_resume((taskq_t *)tq);
8934 }
8935 
8936 int
8937 ddi_parse(
8938         const char      *ifname,
8939         char            *alnum,
8940         uint_t          *nump)
8941 {
8942         const char      *p;
8943         int             l;
8944         ulong_t         num;
8945         boolean_t       nonum = B_TRUE;
8946         char            c;
8947 
8948         l = strlen(ifname);
8949         for (p = ifname + l; p != ifname; l--) {
8950                 c = *--p;
8951                 if (!isdigit(c)) {
8952                         (void) strlcpy(alnum, ifname, l + 1);
8953                         if (ddi_strtoul(p + 1, NULL, 10, &num) != 0)
8954                                 return (DDI_FAILURE);
8955                         break;
8956                 }
8957                 nonum = B_FALSE;
8958         }
8959         if (l == 0 || nonum)
8960                 return (DDI_FAILURE);
8961 
8962         *nump = num;
8963         return (DDI_SUCCESS);
8964 }
8965 
8966 /*
8967  * Default initialization function for drivers that don't need to quiesce.
8968  */
8969 /* ARGSUSED */
8970 int
8971 ddi_quiesce_not_needed(dev_info_t *dip)
8972 {
8973         return (DDI_SUCCESS);
8974 }
8975 
8976 /*
8977  * Initialization function for drivers that should implement quiesce()
8978  * but haven't yet.
8979  */
8980 /* ARGSUSED */
8981 int
8982 ddi_quiesce_not_supported(dev_info_t *dip)
8983 {
8984         return (DDI_FAILURE);
8985 }
8986 
8987 char *
8988 ddi_strdup(const char *str, int flag)
8989 {
8990         int     n;
8991         char    *ptr;
8992 
8993         ASSERT(str != NULL);
8994         ASSERT((flag == KM_SLEEP) || (flag == KM_NOSLEEP));
8995 
8996         n = strlen(str);
8997         if ((ptr = kmem_alloc(n + 1, flag)) == NULL)
8998                 return (NULL);
8999         bcopy(str, ptr, n + 1);
9000         return (ptr);
9001 }
9002 
9003 char *
9004 strdup(const char *str)
9005 {
9006         return (ddi_strdup(str, KM_SLEEP));
9007 }
9008 
9009 void
9010 strfree(char *str)
9011 {
9012         ASSERT(str != NULL);
9013         kmem_free(str, strlen(str) + 1);
9014 }
9015 
9016 /*
9017  * Generic DDI callback interfaces.
9018  */
9019 
9020 int
9021 ddi_cb_register(dev_info_t *dip, ddi_cb_flags_t flags, ddi_cb_func_t cbfunc,
9022     void *arg1, void *arg2, ddi_cb_handle_t *ret_hdlp)
9023 {
9024         ddi_cb_t        *cbp;
9025 
9026         ASSERT(dip != NULL);
9027         ASSERT(DDI_CB_FLAG_VALID(flags));
9028         ASSERT(cbfunc != NULL);
9029         ASSERT(ret_hdlp != NULL);
9030 
9031         /* Sanity check the context */
9032         ASSERT(!servicing_interrupt());
9033         if (servicing_interrupt())
9034                 return (DDI_FAILURE);
9035 
9036         /* Validate parameters */
9037         if ((dip == NULL) || !DDI_CB_FLAG_VALID(flags) ||
9038             (cbfunc == NULL) || (ret_hdlp == NULL))
9039                 return (DDI_EINVAL);
9040 
9041         /* Check for previous registration */
9042         if (DEVI(dip)->devi_cb_p != NULL)
9043                 return (DDI_EALREADY);
9044 
9045         /* Allocate and initialize callback */
9046         cbp = kmem_zalloc(sizeof (ddi_cb_t), KM_SLEEP);
9047         cbp->cb_dip = dip;
9048         cbp->cb_func = cbfunc;
9049         cbp->cb_arg1 = arg1;
9050         cbp->cb_arg2 = arg2;
9051         cbp->cb_flags = flags;
9052         DEVI(dip)->devi_cb_p = cbp;
9053 
9054         /* If adding an IRM callback, notify IRM */
9055         if (flags & DDI_CB_FLAG_INTR)
9056                 i_ddi_irm_set_cb(dip, B_TRUE);
9057 
9058         *ret_hdlp = (ddi_cb_handle_t)&(DEVI(dip)->devi_cb_p);
9059         return (DDI_SUCCESS);
9060 }
9061 
9062 int
9063 ddi_cb_unregister(ddi_cb_handle_t hdl)
9064 {
9065         ddi_cb_t        *cbp;
9066         dev_info_t      *dip;
9067 
9068         ASSERT(hdl != NULL);
9069 
9070         /* Sanity check the context */
9071         ASSERT(!servicing_interrupt());
9072         if (servicing_interrupt())
9073                 return (DDI_FAILURE);
9074 
9075         /* Validate parameters */
9076         if ((hdl == NULL) || ((cbp = *(ddi_cb_t **)hdl) == NULL) ||
9077             ((dip = cbp->cb_dip) == NULL))
9078                 return (DDI_EINVAL);
9079 
9080         /* If removing an IRM callback, notify IRM */
9081         if (cbp->cb_flags & DDI_CB_FLAG_INTR)
9082                 i_ddi_irm_set_cb(dip, B_FALSE);
9083 
9084         /* Destroy the callback */
9085         kmem_free(cbp, sizeof (ddi_cb_t));
9086         DEVI(dip)->devi_cb_p = NULL;
9087 
9088         return (DDI_SUCCESS);
9089 }
9090 
9091 /*
9092  * Platform independent DR routines
9093  */
9094 
9095 static int
9096 ndi2errno(int n)
9097 {
9098         int err = 0;
9099 
9100         switch (n) {
9101                 case NDI_NOMEM:
9102                         err = ENOMEM;
9103                         break;
9104                 case NDI_BUSY:
9105                         err = EBUSY;
9106                         break;
9107                 case NDI_FAULT:
9108                         err = EFAULT;
9109                         break;
9110                 case NDI_FAILURE:
9111                         err = EIO;
9112                         break;
9113                 case NDI_SUCCESS:
9114                         break;
9115                 case NDI_BADHANDLE:
9116                 default:
9117                         err = EINVAL;
9118                         break;
9119         }
9120         return (err);
9121 }
9122 
9123 /*
9124  * Prom tree node list
9125  */
9126 struct ptnode {
9127         pnode_t         nodeid;
9128         struct ptnode   *next;
9129 };
9130 
9131 /*
9132  * Prom tree walk arg
9133  */
9134 struct pta {
9135         dev_info_t      *pdip;
9136         devi_branch_t   *bp;
9137         uint_t          flags;
9138         dev_info_t      *fdip;
9139         struct ptnode   *head;
9140 };
9141 
9142 static void
9143 visit_node(pnode_t nodeid, struct pta *ap)
9144 {
9145         struct ptnode   **nextp;
9146         int             (*select)(pnode_t, void *, uint_t);
9147 
9148         ASSERT(nodeid != OBP_NONODE && nodeid != OBP_BADNODE);
9149 
9150         select = ap->bp->create.prom_branch_select;
9151 
9152         ASSERT(select);
9153 
9154         if (select(nodeid, ap->bp->arg, 0) == DDI_SUCCESS) {
9155 
9156                 for (nextp = &ap->head; *nextp; nextp = &(*nextp)->next)
9157                         ;
9158 
9159                 *nextp = kmem_zalloc(sizeof (struct ptnode), KM_SLEEP);
9160 
9161                 (*nextp)->nodeid = nodeid;
9162         }
9163 
9164         if ((ap->flags & DEVI_BRANCH_CHILD) == DEVI_BRANCH_CHILD)
9165                 return;
9166 
9167         nodeid = prom_childnode(nodeid);
9168         while (nodeid != OBP_NONODE && nodeid != OBP_BADNODE) {
9169                 visit_node(nodeid, ap);
9170                 nodeid = prom_nextnode(nodeid);
9171         }
9172 }
9173 
9174 /*
9175  * NOTE: The caller of this function must check for device contracts
9176  * or LDI callbacks against this dip before setting the dip offline.
9177  */
9178 static int
9179 set_infant_dip_offline(dev_info_t *dip, void *arg)
9180 {
9181         char    *path = (char *)arg;
9182 
9183         ASSERT(dip);
9184         ASSERT(arg);
9185 
9186         if (i_ddi_node_state(dip) >= DS_ATTACHED) {
9187                 (void) ddi_pathname(dip, path);
9188                 cmn_err(CE_WARN, "Attempt to set offline flag on attached "
9189                     "node: %s", path);
9190                 return (DDI_FAILURE);
9191         }
9192 
9193         mutex_enter(&(DEVI(dip)->devi_lock));
9194         if (!DEVI_IS_DEVICE_OFFLINE(dip))
9195                 DEVI_SET_DEVICE_OFFLINE(dip);
9196         mutex_exit(&(DEVI(dip)->devi_lock));
9197 
9198         return (DDI_SUCCESS);
9199 }
9200 
9201 typedef struct result {
9202         char    *path;
9203         int     result;
9204 } result_t;
9205 
9206 static int
9207 dip_set_offline(dev_info_t *dip, void *arg)
9208 {
9209         int end;
9210         result_t *resp = (result_t *)arg;
9211 
9212         ASSERT(dip);
9213         ASSERT(resp);
9214 
9215         /*
9216          * We stop the walk if e_ddi_offline_notify() returns
9217          * failure, because this implies that one or more consumers
9218          * (either LDI or contract based) has blocked the offline.
9219          * So there is no point in conitnuing the walk
9220          */
9221         if (e_ddi_offline_notify(dip) == DDI_FAILURE) {
9222                 resp->result = DDI_FAILURE;
9223                 return (DDI_WALK_TERMINATE);
9224         }
9225 
9226         /*
9227          * If set_infant_dip_offline() returns failure, it implies
9228          * that we failed to set a particular dip offline. This
9229          * does not imply that the offline as a whole should fail.
9230          * We want to do the best we can, so we continue the walk.
9231          */
9232         if (set_infant_dip_offline(dip, resp->path) == DDI_SUCCESS)
9233                 end = DDI_SUCCESS;
9234         else
9235                 end = DDI_FAILURE;
9236 
9237         e_ddi_offline_finalize(dip, end);
9238 
9239         return (DDI_WALK_CONTINUE);
9240 }
9241 
9242 /*
9243  * The call to e_ddi_offline_notify() exists for the
9244  * unlikely error case that a branch we are trying to
9245  * create already exists and has device contracts or LDI
9246  * event callbacks against it.
9247  *
9248  * We allow create to succeed for such branches only if
9249  * no constraints block the offline.
9250  */
9251 static int
9252 branch_set_offline(dev_info_t *dip, char *path)
9253 {
9254         int             circ;
9255         int             end;
9256         result_t        res;
9257 
9258 
9259         if (e_ddi_offline_notify(dip) == DDI_FAILURE) {
9260                 return (DDI_FAILURE);
9261         }
9262 
9263         if (set_infant_dip_offline(dip, path) == DDI_SUCCESS)
9264                 end = DDI_SUCCESS;
9265         else
9266                 end = DDI_FAILURE;
9267 
9268         e_ddi_offline_finalize(dip, end);
9269 
9270         if (end == DDI_FAILURE)
9271                 return (DDI_FAILURE);
9272 
9273         res.result = DDI_SUCCESS;
9274         res.path = path;
9275 
9276         ndi_devi_enter(dip, &circ);
9277         ddi_walk_devs(ddi_get_child(dip), dip_set_offline, &res);
9278         ndi_devi_exit(dip, circ);
9279 
9280         return (res.result);
9281 }
9282 
9283 /*ARGSUSED*/
9284 static int
9285 create_prom_branch(void *arg, int has_changed)
9286 {
9287         int             circ;
9288         int             exists, rv;
9289         pnode_t         nodeid;
9290         struct ptnode   *tnp;
9291         dev_info_t      *dip;
9292         struct pta      *ap = arg;
9293         devi_branch_t   *bp;
9294         char            *path;
9295 
9296         ASSERT(ap);
9297         ASSERT(ap->fdip == NULL);
9298         ASSERT(ap->pdip && ndi_dev_is_prom_node(ap->pdip));
9299 
9300         bp = ap->bp;
9301 
9302         nodeid = ddi_get_nodeid(ap->pdip);
9303         if (nodeid == OBP_NONODE || nodeid == OBP_BADNODE) {
9304                 cmn_err(CE_WARN, "create_prom_branch: invalid "
9305                     "nodeid: 0x%x", nodeid);
9306                 return (EINVAL);
9307         }
9308 
9309         ap->head = NULL;
9310 
9311         nodeid = prom_childnode(nodeid);
9312         while (nodeid != OBP_NONODE && nodeid != OBP_BADNODE) {
9313                 visit_node(nodeid, ap);
9314                 nodeid = prom_nextnode(nodeid);
9315         }
9316 
9317         if (ap->head == NULL)
9318                 return (ENODEV);
9319 
9320         path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
9321         rv = 0;
9322         while ((tnp = ap->head) != NULL) {
9323                 ap->head = tnp->next;
9324 
9325                 ndi_devi_enter(ap->pdip, &circ);
9326 
9327                 /*
9328                  * Check if the branch already exists.
9329                  */
9330                 exists = 0;
9331                 dip = e_ddi_nodeid_to_dip(tnp->nodeid);
9332                 if (dip != NULL) {
9333                         exists = 1;
9334 
9335                         /* Parent is held busy, so release hold */
9336                         ndi_rele_devi(dip);
9337 #ifdef  DEBUG
9338                         cmn_err(CE_WARN, "create_prom_branch: dip(%p) exists"
9339                             " for nodeid 0x%x", (void *)dip, tnp->nodeid);
9340 #endif
9341                 } else {
9342                         dip = i_ddi_create_branch(ap->pdip, tnp->nodeid);
9343                 }
9344 
9345                 kmem_free(tnp, sizeof (struct ptnode));
9346 
9347                 /*
9348                  * Hold the branch if it is not already held
9349                  */
9350                 if (dip && !exists) {
9351                         e_ddi_branch_hold(dip);
9352                 }
9353 
9354                 ASSERT(dip == NULL || e_ddi_branch_held(dip));
9355 
9356                 /*
9357                  * Set all dips in the newly created branch offline so that
9358                  * only a "configure" operation can attach
9359                  * the branch
9360                  */
9361                 if (dip == NULL || branch_set_offline(dip, path)
9362                     == DDI_FAILURE) {
9363                         ndi_devi_exit(ap->pdip, circ);
9364                         rv = EIO;
9365                         continue;
9366                 }
9367 
9368                 ASSERT(ddi_get_parent(dip) == ap->pdip);
9369 
9370                 ndi_devi_exit(ap->pdip, circ);
9371 
9372                 if (ap->flags & DEVI_BRANCH_CONFIGURE) {
9373                         int error = e_ddi_branch_configure(dip, &ap->fdip, 0);
9374                         if (error && rv == 0)
9375                                 rv = error;
9376                 }
9377 
9378                 /*
9379                  * Invoke devi_branch_callback() (if it exists) only for
9380                  * newly created branches
9381                  */
9382                 if (bp->devi_branch_callback && !exists)
9383                         bp->devi_branch_callback(dip, bp->arg, 0);
9384         }
9385 
9386         kmem_free(path, MAXPATHLEN);
9387 
9388         return (rv);
9389 }
9390 
9391 static int
9392 sid_node_create(dev_info_t *pdip, devi_branch_t *bp, dev_info_t **rdipp)
9393 {
9394         int                     rv, circ, len;
9395         int                     i, flags, ret;
9396         dev_info_t              *dip;
9397         char                    *nbuf;
9398         char                    *path;
9399         static const char       *noname = "<none>";
9400 
9401         ASSERT(pdip);
9402         ASSERT(DEVI_BUSY_OWNED(pdip));
9403 
9404         flags = 0;
9405 
9406         /*
9407          * Creating the root of a branch ?
9408          */
9409         if (rdipp) {
9410                 *rdipp = NULL;
9411                 flags = DEVI_BRANCH_ROOT;
9412         }
9413 
9414         ndi_devi_alloc_sleep(pdip, (char *)noname, DEVI_SID_NODEID, &dip);
9415         rv = bp->create.sid_branch_create(dip, bp->arg, flags);
9416 
9417         nbuf = kmem_alloc(OBP_MAXDRVNAME, KM_SLEEP);
9418 
9419         if (rv == DDI_WALK_ERROR) {
9420                 cmn_err(CE_WARN, "e_ddi_branch_create: Error setting"
9421                     " properties on devinfo node %p",  (void *)dip);
9422                 goto fail;
9423         }
9424 
9425         len = OBP_MAXDRVNAME;
9426         if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip,
9427             DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "name", nbuf, &len)
9428             != DDI_PROP_SUCCESS) {
9429                 cmn_err(CE_WARN, "e_ddi_branch_create: devinfo node %p has"
9430                     "no name property", (void *)dip);
9431                 goto fail;
9432         }
9433 
9434         ASSERT(i_ddi_node_state(dip) == DS_PROTO);
9435         if (ndi_devi_set_nodename(dip, nbuf, 0) != NDI_SUCCESS) {
9436                 cmn_err(CE_WARN, "e_ddi_branch_create: cannot set name (%s)"
9437                     " for devinfo node %p", nbuf, (void *)dip);
9438                 goto fail;
9439         }
9440 
9441         kmem_free(nbuf, OBP_MAXDRVNAME);
9442 
9443         /*
9444          * Ignore bind failures just like boot does
9445          */
9446         (void) ndi_devi_bind_driver(dip, 0);
9447 
9448         switch (rv) {
9449         case DDI_WALK_CONTINUE:
9450         case DDI_WALK_PRUNESIB:
9451                 ndi_devi_enter(dip, &circ);
9452 
9453                 i = DDI_WALK_CONTINUE;
9454                 for (; i == DDI_WALK_CONTINUE; ) {
9455                         i = sid_node_create(dip, bp, NULL);
9456                 }
9457 
9458                 ASSERT(i == DDI_WALK_ERROR || i == DDI_WALK_PRUNESIB);
9459                 if (i == DDI_WALK_ERROR)
9460                         rv = i;
9461                 /*
9462                  * If PRUNESIB stop creating siblings
9463                  * of dip's child. Subsequent walk behavior
9464                  * is determined by rv returned by dip.
9465                  */
9466 
9467                 ndi_devi_exit(dip, circ);
9468                 break;
9469         case DDI_WALK_TERMINATE:
9470                 /*
9471                  * Don't create children and ask our parent
9472                  * to not create siblings either.
9473                  */
9474                 rv = DDI_WALK_PRUNESIB;
9475                 break;
9476         case DDI_WALK_PRUNECHILD:
9477                 /*
9478                  * Don't create children, but ask parent to continue
9479                  * with siblings.
9480                  */
9481                 rv = DDI_WALK_CONTINUE;
9482                 break;
9483         default:
9484                 ASSERT(0);
9485                 break;
9486         }
9487 
9488         if (rdipp)
9489                 *rdipp = dip;
9490 
9491         /*
9492          * Set device offline - only the "configure" op should cause an attach.
9493          * Note that it is safe to set the dip offline without checking
9494          * for either device contract or layered driver (LDI) based constraints
9495          * since there cannot be any contracts or LDI opens of this device.
9496          * This is because this node is a newly created dip with the parent busy
9497          * held, so no other thread can come in and attach this dip. A dip that
9498          * has never been attached cannot have contracts since by definition
9499          * a device contract (an agreement between a process and a device minor
9500          * node) can only be created against a device that has minor nodes
9501          * i.e is attached. Similarly an LDI open will only succeed if the
9502          * dip is attached. We assert below that the dip is not attached.
9503          */
9504         ASSERT(i_ddi_node_state(dip) < DS_ATTACHED);
9505         path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
9506         ret = set_infant_dip_offline(dip, path);
9507         ASSERT(ret == DDI_SUCCESS);
9508         kmem_free(path, MAXPATHLEN);
9509 
9510         return (rv);
9511 fail:
9512         (void) ndi_devi_free(dip);
9513         kmem_free(nbuf, OBP_MAXDRVNAME);
9514         return (DDI_WALK_ERROR);
9515 }
9516 
9517 static int
9518 create_sid_branch(
9519         dev_info_t      *pdip,
9520         devi_branch_t   *bp,
9521         dev_info_t      **dipp,
9522         uint_t          flags)
9523 {
9524         int             rv = 0, state = DDI_WALK_CONTINUE;
9525         dev_info_t      *rdip;
9526 
9527         while (state == DDI_WALK_CONTINUE) {
9528                 int     circ;
9529 
9530                 ndi_devi_enter(pdip, &circ);
9531 
9532                 state = sid_node_create(pdip, bp, &rdip);
9533                 if (rdip == NULL) {
9534                         ndi_devi_exit(pdip, circ);
9535                         ASSERT(state == DDI_WALK_ERROR);
9536                         break;
9537                 }
9538 
9539                 e_ddi_branch_hold(rdip);
9540 
9541                 ndi_devi_exit(pdip, circ);
9542 
9543                 if (flags & DEVI_BRANCH_CONFIGURE) {
9544                         int error = e_ddi_branch_configure(rdip, dipp, 0);
9545                         if (error && rv == 0)
9546                                 rv = error;
9547                 }
9548 
9549                 /*
9550                  * devi_branch_callback() is optional
9551                  */
9552                 if (bp->devi_branch_callback)
9553                         bp->devi_branch_callback(rdip, bp->arg, 0);
9554         }
9555 
9556         ASSERT(state == DDI_WALK_ERROR || state == DDI_WALK_PRUNESIB);
9557 
9558         return (state == DDI_WALK_ERROR ? EIO : rv);
9559 }
9560 
9561 int
9562 e_ddi_branch_create(
9563         dev_info_t      *pdip,
9564         devi_branch_t   *bp,
9565         dev_info_t      **dipp,
9566         uint_t          flags)
9567 {
9568         int prom_devi, sid_devi, error;
9569 
9570         if (pdip == NULL || bp == NULL || bp->type == 0)
9571                 return (EINVAL);
9572 
9573         prom_devi = (bp->type == DEVI_BRANCH_PROM) ? 1 : 0;
9574         sid_devi = (bp->type == DEVI_BRANCH_SID) ? 1 : 0;
9575 
9576         if (prom_devi && bp->create.prom_branch_select == NULL)
9577                 return (EINVAL);
9578         else if (sid_devi && bp->create.sid_branch_create == NULL)
9579                 return (EINVAL);
9580         else if (!prom_devi && !sid_devi)
9581                 return (EINVAL);
9582 
9583         if (flags & DEVI_BRANCH_EVENT)
9584                 return (EINVAL);
9585 
9586         if (prom_devi) {
9587                 struct pta pta = {0};
9588 
9589                 pta.pdip = pdip;
9590                 pta.bp = bp;
9591                 pta.flags = flags;
9592 
9593                 error = prom_tree_access(create_prom_branch, &pta, NULL);
9594 
9595                 if (dipp)
9596                         *dipp = pta.fdip;
9597                 else if (pta.fdip)
9598                         ndi_rele_devi(pta.fdip);
9599         } else {
9600                 error = create_sid_branch(pdip, bp, dipp, flags);
9601         }
9602 
9603         return (error);
9604 }
9605 
9606 int
9607 e_ddi_branch_configure(dev_info_t *rdip, dev_info_t **dipp, uint_t flags)
9608 {
9609         int             rv;
9610         char            *devnm;
9611         dev_info_t      *pdip;
9612 
9613         if (dipp)
9614                 *dipp = NULL;
9615 
9616         if (rdip == NULL || flags != 0 || (flags & DEVI_BRANCH_EVENT))
9617                 return (EINVAL);
9618 
9619         pdip = ddi_get_parent(rdip);
9620 
9621         ndi_hold_devi(pdip);
9622 
9623         if (!e_ddi_branch_held(rdip)) {
9624                 ndi_rele_devi(pdip);
9625                 cmn_err(CE_WARN, "e_ddi_branch_configure: "
9626                     "dip(%p) not held", (void *)rdip);
9627                 return (EINVAL);
9628         }
9629 
9630         if (i_ddi_node_state(rdip) < DS_INITIALIZED) {
9631                 /*
9632                  * First attempt to bind a driver. If we fail, return
9633                  * success (On some platforms, dips for some device
9634                  * types (CPUs) may not have a driver)
9635                  */
9636                 if (ndi_devi_bind_driver(rdip, 0) != NDI_SUCCESS) {
9637                         ndi_rele_devi(pdip);
9638                         return (0);
9639                 }
9640 
9641                 if (ddi_initchild(pdip, rdip) != DDI_SUCCESS) {
9642                         rv = NDI_FAILURE;
9643                         goto out;
9644                 }
9645         }
9646 
9647         ASSERT(i_ddi_node_state(rdip) >= DS_INITIALIZED);
9648 
9649         devnm = kmem_alloc(MAXNAMELEN + 1, KM_SLEEP);
9650 
9651         (void) ddi_deviname(rdip, devnm);
9652 
9653         if ((rv = ndi_devi_config_one(pdip, devnm+1, &rdip,
9654             NDI_DEVI_ONLINE | NDI_CONFIG)) == NDI_SUCCESS) {
9655                 /* release hold from ndi_devi_config_one() */
9656                 ndi_rele_devi(rdip);
9657         }
9658 
9659         kmem_free(devnm, MAXNAMELEN + 1);
9660 out:
9661         if (rv != NDI_SUCCESS && dipp && rdip) {
9662                 ndi_hold_devi(rdip);
9663                 *dipp = rdip;
9664         }
9665         ndi_rele_devi(pdip);
9666         return (ndi2errno(rv));
9667 }
9668 
9669 void
9670 e_ddi_branch_hold(dev_info_t *rdip)
9671 {
9672         if (e_ddi_branch_held(rdip)) {
9673                 cmn_err(CE_WARN, "e_ddi_branch_hold: branch already held");
9674                 return;
9675         }
9676 
9677         mutex_enter(&DEVI(rdip)->devi_lock);
9678         if ((DEVI(rdip)->devi_flags & DEVI_BRANCH_HELD) == 0) {
9679                 DEVI(rdip)->devi_flags |= DEVI_BRANCH_HELD;
9680                 DEVI(rdip)->devi_ref++;
9681         }
9682         ASSERT(DEVI(rdip)->devi_ref > 0);
9683         mutex_exit(&DEVI(rdip)->devi_lock);
9684 }
9685 
9686 int
9687 e_ddi_branch_held(dev_info_t *rdip)
9688 {
9689         int rv = 0;
9690 
9691         mutex_enter(&DEVI(rdip)->devi_lock);
9692         if ((DEVI(rdip)->devi_flags & DEVI_BRANCH_HELD) &&
9693             DEVI(rdip)->devi_ref > 0) {
9694                 rv = 1;
9695         }
9696         mutex_exit(&DEVI(rdip)->devi_lock);
9697 
9698         return (rv);
9699 }
9700 
9701 void
9702 e_ddi_branch_rele(dev_info_t *rdip)
9703 {
9704         mutex_enter(&DEVI(rdip)->devi_lock);
9705         DEVI(rdip)->devi_flags &= ~DEVI_BRANCH_HELD;
9706         DEVI(rdip)->devi_ref--;
9707         mutex_exit(&DEVI(rdip)->devi_lock);
9708 }
9709 
9710 int
9711 e_ddi_branch_unconfigure(
9712         dev_info_t *rdip,
9713         dev_info_t **dipp,
9714         uint_t flags)
9715 {
9716         int     circ, rv;
9717         int     destroy;
9718         char    *devnm;
9719         uint_t  nflags;
9720         dev_info_t *pdip;
9721 
9722         if (dipp)
9723                 *dipp = NULL;
9724 
9725         if (rdip == NULL)
9726                 return (EINVAL);
9727 
9728         pdip = ddi_get_parent(rdip);
9729 
9730         ASSERT(pdip);
9731 
9732         /*
9733          * Check if caller holds pdip busy - can cause deadlocks during
9734          * devfs_clean()
9735          */
9736         if (DEVI_BUSY_OWNED(pdip)) {
9737                 cmn_err(CE_WARN, "e_ddi_branch_unconfigure: failed: parent"
9738                     " devinfo node(%p) is busy held", (void *)pdip);
9739                 return (EINVAL);
9740         }
9741 
9742         destroy = (flags & DEVI_BRANCH_DESTROY) ? 1 : 0;
9743 
9744         devnm = kmem_alloc(MAXNAMELEN + 1, KM_SLEEP);
9745 
9746         ndi_devi_enter(pdip, &circ);
9747         (void) ddi_deviname(rdip, devnm);
9748         ndi_devi_exit(pdip, circ);
9749 
9750         /*
9751          * ddi_deviname() returns a component name with / prepended.
9752          */
9753         (void) devfs_clean(pdip, devnm + 1, DV_CLEAN_FORCE);
9754 
9755         ndi_devi_enter(pdip, &circ);
9756 
9757         /*
9758          * Recreate device name as it may have changed state (init/uninit)
9759          * when parent busy lock was dropped for devfs_clean()
9760          */
9761         (void) ddi_deviname(rdip, devnm);
9762 
9763         if (!e_ddi_branch_held(rdip)) {
9764                 kmem_free(devnm, MAXNAMELEN + 1);
9765                 ndi_devi_exit(pdip, circ);
9766                 cmn_err(CE_WARN, "e_ddi_%s_branch: dip(%p) not held",
9767                     destroy ? "destroy" : "unconfigure", (void *)rdip);
9768                 return (EINVAL);
9769         }
9770 
9771         /*
9772          * Release hold on the branch. This is ok since we are holding the
9773          * parent busy. If rdip is not removed, we must do a hold on the
9774          * branch before returning.
9775          */
9776         e_ddi_branch_rele(rdip);
9777 
9778         nflags = NDI_DEVI_OFFLINE;
9779         if (destroy || (flags & DEVI_BRANCH_DESTROY)) {
9780                 nflags |= NDI_DEVI_REMOVE;
9781                 destroy = 1;
9782         } else {
9783                 nflags |= NDI_UNCONFIG;         /* uninit but don't remove */
9784         }
9785 
9786         if (flags & DEVI_BRANCH_EVENT)
9787                 nflags |= NDI_POST_EVENT;
9788 
9789         if (i_ddi_devi_attached(pdip) &&
9790             (i_ddi_node_state(rdip) >= DS_INITIALIZED)) {
9791                 rv = ndi_devi_unconfig_one(pdip, devnm+1, dipp, nflags);
9792         } else {
9793                 rv = e_ddi_devi_unconfig(rdip, dipp, nflags);
9794                 if (rv == NDI_SUCCESS) {
9795                         ASSERT(!destroy || ddi_get_child(rdip) == NULL);
9796                         rv = ndi_devi_offline(rdip, nflags);
9797                 }
9798         }
9799 
9800         if (!destroy || rv != NDI_SUCCESS) {
9801                 /* The dip still exists, so do a hold */
9802                 e_ddi_branch_hold(rdip);
9803         }
9804 out:
9805         kmem_free(devnm, MAXNAMELEN + 1);
9806         ndi_devi_exit(pdip, circ);
9807         return (ndi2errno(rv));
9808 }
9809 
9810 int
9811 e_ddi_branch_destroy(dev_info_t *rdip, dev_info_t **dipp, uint_t flag)
9812 {
9813         return (e_ddi_branch_unconfigure(rdip, dipp,
9814             flag|DEVI_BRANCH_DESTROY));
9815 }
9816 
9817 /*
9818  * Number of chains for hash table
9819  */
9820 #define NUMCHAINS       17
9821 
9822 /*
9823  * Devinfo busy arg
9824  */
9825 struct devi_busy {
9826         int dv_total;
9827         int s_total;
9828         mod_hash_t *dv_hash;
9829         mod_hash_t *s_hash;
9830         int (*callback)(dev_info_t *, void *, uint_t);
9831         void *arg;
9832 };
9833 
9834 static int
9835 visit_dip(dev_info_t *dip, void *arg)
9836 {
9837         uintptr_t sbusy, dvbusy, ref;
9838         struct devi_busy *bsp = arg;
9839 
9840         ASSERT(bsp->callback);
9841 
9842         /*
9843          * A dip cannot be busy if its reference count is 0
9844          */
9845         if ((ref = e_ddi_devi_holdcnt(dip)) == 0) {
9846                 return (bsp->callback(dip, bsp->arg, 0));
9847         }
9848 
9849         if (mod_hash_find(bsp->dv_hash, dip, (mod_hash_val_t *)&dvbusy))
9850                 dvbusy = 0;
9851 
9852         /*
9853          * To catch device opens currently maintained on specfs common snodes.
9854          */
9855         if (mod_hash_find(bsp->s_hash, dip, (mod_hash_val_t *)&sbusy))
9856                 sbusy = 0;
9857 
9858 #ifdef  DEBUG
9859         if (ref < sbusy || ref < dvbusy) {
9860                 cmn_err(CE_WARN, "dip(%p): sopen = %lu, dvopen = %lu "
9861                     "dip ref = %lu\n", (void *)dip, sbusy, dvbusy, ref);
9862         }
9863 #endif
9864 
9865         dvbusy = (sbusy > dvbusy) ? sbusy : dvbusy;
9866 
9867         return (bsp->callback(dip, bsp->arg, dvbusy));
9868 }
9869 
9870 static int
9871 visit_snode(struct snode *sp, void *arg)
9872 {
9873         uintptr_t sbusy;
9874         dev_info_t *dip;
9875         int count;
9876         struct devi_busy *bsp = arg;
9877 
9878         ASSERT(sp);
9879 
9880         /*
9881          * The stable lock is held. This prevents
9882          * the snode and its associated dip from
9883          * going away.
9884          */
9885         dip = NULL;
9886         count = spec_devi_open_count(sp, &dip);
9887 
9888         if (count <= 0)
9889                 return (DDI_WALK_CONTINUE);
9890 
9891         ASSERT(dip);
9892 
9893         if (mod_hash_remove(bsp->s_hash, dip, (mod_hash_val_t *)&sbusy))
9894                 sbusy = count;
9895         else
9896                 sbusy += count;
9897 
9898         if (mod_hash_insert(bsp->s_hash, dip, (mod_hash_val_t)sbusy)) {
9899                 cmn_err(CE_WARN, "%s: s_hash insert failed: dip=0x%p, "
9900                     "sbusy = %lu", "e_ddi_branch_referenced",
9901                     (void *)dip, sbusy);
9902         }
9903 
9904         bsp->s_total += count;
9905 
9906         return (DDI_WALK_CONTINUE);
9907 }
9908 
9909 static void
9910 visit_dvnode(struct dv_node *dv, void *arg)
9911 {
9912         uintptr_t dvbusy;
9913         uint_t count;
9914         struct vnode *vp;
9915         struct devi_busy *bsp = arg;
9916 
9917         ASSERT(dv && dv->dv_devi);
9918 
9919         vp = DVTOV(dv);
9920 
9921         mutex_enter(&vp->v_lock);
9922         count = vp->v_count;
9923         mutex_exit(&vp->v_lock);
9924 
9925         if (!count)
9926                 return;
9927 
9928         if (mod_hash_remove(bsp->dv_hash, dv->dv_devi,
9929             (mod_hash_val_t *)&dvbusy))
9930                 dvbusy = count;
9931         else
9932                 dvbusy += count;
9933 
9934         if (mod_hash_insert(bsp->dv_hash, dv->dv_devi,
9935             (mod_hash_val_t)dvbusy)) {
9936                 cmn_err(CE_WARN, "%s: dv_hash insert failed: dip=0x%p, "
9937                     "dvbusy=%lu", "e_ddi_branch_referenced",
9938                     (void *)dv->dv_devi, dvbusy);
9939         }
9940 
9941         bsp->dv_total += count;
9942 }
9943 
9944 /*
9945  * Returns reference count on success or -1 on failure.
9946  */
9947 int
9948 e_ddi_branch_referenced(
9949         dev_info_t *rdip,
9950         int (*callback)(dev_info_t *dip, void *arg, uint_t ref),
9951         void *arg)
9952 {
9953         int circ;
9954         char *path;
9955         dev_info_t *pdip;
9956         struct devi_busy bsa = {0};
9957 
9958         ASSERT(rdip);
9959 
9960         path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
9961 
9962         ndi_hold_devi(rdip);
9963 
9964         pdip = ddi_get_parent(rdip);
9965 
9966         ASSERT(pdip);
9967 
9968         /*
9969          * Check if caller holds pdip busy - can cause deadlocks during
9970          * devfs_walk()
9971          */
9972         if (!e_ddi_branch_held(rdip) || DEVI_BUSY_OWNED(pdip)) {
9973                 cmn_err(CE_WARN, "e_ddi_branch_referenced: failed: "
9974                     "devinfo branch(%p) not held or parent busy held",
9975                     (void *)rdip);
9976                 ndi_rele_devi(rdip);
9977                 kmem_free(path, MAXPATHLEN);
9978                 return (-1);
9979         }
9980 
9981         ndi_devi_enter(pdip, &circ);
9982         (void) ddi_pathname(rdip, path);
9983         ndi_devi_exit(pdip, circ);
9984 
9985         bsa.dv_hash = mod_hash_create_ptrhash("dv_node busy hash", NUMCHAINS,
9986             mod_hash_null_valdtor, sizeof (struct dev_info));
9987 
9988         bsa.s_hash = mod_hash_create_ptrhash("snode busy hash", NUMCHAINS,
9989             mod_hash_null_valdtor, sizeof (struct snode));
9990 
9991         if (devfs_walk(path, visit_dvnode, &bsa)) {
9992                 cmn_err(CE_WARN, "e_ddi_branch_referenced: "
9993                     "devfs walk failed for: %s", path);
9994                 kmem_free(path, MAXPATHLEN);
9995                 bsa.s_total = bsa.dv_total = -1;
9996                 goto out;
9997         }
9998 
9999         kmem_free(path, MAXPATHLEN);
10000 
10001         /*
10002          * Walk the snode table to detect device opens, which are currently
10003          * maintained on specfs common snodes.
10004          */
10005         spec_snode_walk(visit_snode, &bsa);
10006 
10007         if (callback == NULL)
10008                 goto out;
10009 
10010         bsa.callback = callback;
10011         bsa.arg = arg;
10012 
10013         if (visit_dip(rdip, &bsa) == DDI_WALK_CONTINUE) {
10014                 ndi_devi_enter(rdip, &circ);
10015                 ddi_walk_devs(ddi_get_child(rdip), visit_dip, &bsa);
10016                 ndi_devi_exit(rdip, circ);
10017         }
10018 
10019 out:
10020         ndi_rele_devi(rdip);
10021         mod_hash_destroy_ptrhash(bsa.s_hash);
10022         mod_hash_destroy_ptrhash(bsa.dv_hash);
10023         return (bsa.s_total > bsa.dv_total ? bsa.s_total : bsa.dv_total);
10024 }