1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  *
  25  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
  26  */
  27 
  28 #ifndef _SYS_KSTAT_H
  29 #define _SYS_KSTAT_H
  30 
  31 /*
  32  * Definition of general kernel statistics structures and /dev/kstat ioctls
  33  */
  34 
  35 #include <sys/types.h>
  36 #include <sys/time.h>
  37 
  38 #ifdef  __cplusplus
  39 extern "C" {
  40 #endif
  41 
  42 typedef int     kid_t;          /* unique kstat id */
  43 
  44 /*
  45  * Kernel statistics driver (/dev/kstat) ioctls
  46  */
  47 
  48 #define KSTAT_IOC_BASE          ('K' << 8)
  49 
  50 #define KSTAT_IOC_CHAIN_ID      KSTAT_IOC_BASE | 0x01
  51 #define KSTAT_IOC_READ          KSTAT_IOC_BASE | 0x02
  52 #define KSTAT_IOC_WRITE         KSTAT_IOC_BASE | 0x03
  53 
  54 /*
  55  * /dev/kstat ioctl usage (kd denotes /dev/kstat descriptor):
  56  *
  57  *      kcid = ioctl(kd, KSTAT_IOC_CHAIN_ID, NULL);
  58  *      kcid = ioctl(kd, KSTAT_IOC_READ, kstat_t *);
  59  *      kcid = ioctl(kd, KSTAT_IOC_WRITE, kstat_t *);
  60  */
  61 
  62 #define KSTAT_STRLEN    31      /* 30 chars + NULL; must be 16 * n - 1 */
  63 
  64 /*
  65  * The generic kstat header
  66  */
  67 
  68 typedef struct kstat {
  69         /*
  70          * Fields relevant to both kernel and user
  71          */
  72         hrtime_t        ks_crtime;      /* creation time (from gethrtime()) */
  73         struct kstat    *ks_next;       /* kstat chain linkage */
  74         kid_t           ks_kid;         /* unique kstat ID */
  75         char            ks_module[KSTAT_STRLEN]; /* provider module name */
  76         uchar_t         ks_resv;        /* reserved, currently just padding */
  77         int             ks_instance;    /* provider module's instance */
  78         char            ks_name[KSTAT_STRLEN]; /* kstat name */
  79         uchar_t         ks_type;        /* kstat data type */
  80         char            ks_class[KSTAT_STRLEN]; /* kstat class */
  81         uchar_t         ks_flags;       /* kstat flags */
  82         void            *ks_data;       /* kstat type-specific data */
  83         uint_t          ks_ndata;       /* # of type-specific data records */
  84         size_t          ks_data_size;   /* total size of kstat data section */
  85         hrtime_t        ks_snaptime;    /* time of last data shapshot */
  86         /*
  87          * Fields relevant to kernel only
  88          */
  89         int             (*ks_update)(struct kstat *, int); /* dynamic update */
  90         void            *ks_private;    /* arbitrary provider-private data */
  91         int             (*ks_snapshot)(struct kstat *, void *, int);
  92         void            *ks_lock;       /* protects this kstat's data */
  93 } kstat_t;
  94 
  95 #ifdef _SYSCALL32
  96 
  97 typedef int32_t kid32_t;
  98 
  99 typedef struct kstat32 {
 100         /*
 101          * Fields relevant to both kernel and user
 102          */
 103         hrtime_t        ks_crtime;
 104         caddr32_t       ks_next;                /* struct kstat pointer */
 105         kid32_t         ks_kid;
 106         char            ks_module[KSTAT_STRLEN];
 107         uint8_t         ks_resv;
 108         int32_t         ks_instance;
 109         char            ks_name[KSTAT_STRLEN];
 110         uint8_t         ks_type;
 111         char            ks_class[KSTAT_STRLEN];
 112         uint8_t         ks_flags;
 113         caddr32_t       ks_data;                /* type-specific data */
 114         uint32_t        ks_ndata;
 115         size32_t        ks_data_size;
 116         hrtime_t        ks_snaptime;
 117         /*
 118          * Fields relevant to kernel only (only needed here for padding)
 119          */
 120         int32_t         _ks_update;
 121         caddr32_t       _ks_private;
 122         int32_t         _ks_snapshot;
 123         caddr32_t       _ks_lock;
 124 } kstat32_t;
 125 
 126 #endif  /* _SYSCALL32 */
 127 
 128 /*
 129  * kstat structure and locking strategy
 130  *
 131  * Each kstat consists of a header section (a kstat_t) and a data section.
 132  * The system maintains a set of kstats, protected by kstat_chain_lock.
 133  * kstat_chain_lock protects all additions to/deletions from this set,
 134  * as well as all changes to kstat headers.  kstat data sections are
 135  * *optionally* protected by the per-kstat ks_lock.  If ks_lock is non-NULL,
 136  * kstat clients (e.g. /dev/kstat) will acquire this lock for all of their
 137  * operations on that kstat.  It is up to the kstat provider to decide whether
 138  * guaranteeing consistent data to kstat clients is sufficiently important
 139  * to justify the locking cost.  Note, however, that most statistic updates
 140  * already occur under one of the provider's mutexes, so if the provider sets
 141  * ks_lock to point to that mutex, then kstat data locking is free.
 142  *
 143  * NOTE: variable-size kstats MUST employ kstat data locking, to prevent
 144  * data-size races with kstat clients.
 145  *
 146  * NOTE: ks_lock is really of type (kmutex_t *); it is declared as (void *)
 147  * in the kstat header so that users don't have to be exposed to all of the
 148  * kernel's lock-related data structures.
 149  */
 150 
 151 #if     defined(_KERNEL)
 152 
 153 #define KSTAT_ENTER(k)  \
 154         { kmutex_t *lp = (k)->ks_lock; if (lp) mutex_enter(lp); }
 155 
 156 #define KSTAT_EXIT(k)   \
 157         { kmutex_t *lp = (k)->ks_lock; if (lp) mutex_exit(lp); }
 158 
 159 #define KSTAT_UPDATE(k, rw)             (*(k)->ks_update)((k), (rw))
 160 
 161 #define KSTAT_SNAPSHOT(k, buf, rw)      (*(k)->ks_snapshot)((k), (buf), (rw))
 162 
 163 #endif  /* defined(_KERNEL) */
 164 
 165 /*
 166  * kstat time
 167  *
 168  * All times associated with kstats (e.g. creation time, snapshot time,
 169  * kstat_timer_t and kstat_io_t timestamps, etc.) are 64-bit nanosecond values,
 170  * as returned by gethrtime().  The accuracy of these timestamps is machine
 171  * dependent, but the precision (units) is the same across all platforms.
 172  */
 173 
 174 /*
 175  * kstat identity (KID)
 176  *
 177  * Each kstat is assigned a unique KID (kstat ID) when it is added to the
 178  * global kstat chain.  The KID is used as a cookie by /dev/kstat to
 179  * request information about the corresponding kstat.  There is also
 180  * an identity associated with the entire kstat chain, kstat_chain_id,
 181  * which is bumped each time a kstat is added or deleted.  /dev/kstat uses
 182  * the chain ID to detect changes in the kstat chain (e.g., a new disk
 183  * coming online) between ioctl()s.
 184  */
 185 
 186 /*
 187  * kstat module, kstat instance
 188  *
 189  * ks_module and ks_instance contain the name and instance of the module
 190  * that created the kstat.  In cases where there can only be one instance,
 191  * ks_instance is 0.  The kernel proper (/kernel/unix) uses "unix" as its
 192  * module name.
 193  */
 194 
 195 /*
 196  * kstat name
 197  *
 198  * ks_name gives a meaningful name to a kstat.  The full kstat namespace
 199  * is module.instance.name, so the name only need be unique within a
 200  * module.  kstat_create() will fail if you try to create a kstat with
 201  * an already-used (ks_module, ks_instance, ks_name) triplet.  Spaces are
 202  * allowed in kstat names, but strongly discouraged, since they hinder
 203  * awk-style processing at user level.
 204  */
 205 
 206 /*
 207  * kstat type
 208  *
 209  * The kstat mechanism provides several flavors of kstat data, defined
 210  * below.  The "raw" kstat type is just treated as an array of bytes; you
 211  * can use this to export any kind of data you want.
 212  *
 213  * Some kstat types allow multiple data structures per kstat, e.g.
 214  * KSTAT_TYPE_NAMED; others do not.  This is part of the spec for each
 215  * kstat data type.
 216  *
 217  * User-level tools should *not* rely on the #define KSTAT_NUM_TYPES.  To
 218  * get this information, read out the standard system kstat "kstat_types".
 219  */
 220 
 221 #define KSTAT_TYPE_RAW          0       /* can be anything */
 222                                         /* ks_ndata >= 1 */
 223 #define KSTAT_TYPE_NAMED        1       /* name/value pair */
 224                                         /* ks_ndata >= 1 */
 225 #define KSTAT_TYPE_INTR         2       /* interrupt statistics */
 226                                         /* ks_ndata == 1 */
 227 #define KSTAT_TYPE_IO           3       /* I/O statistics */
 228                                         /* ks_ndata == 1 */
 229 #define KSTAT_TYPE_TIMER        4       /* event timer */
 230                                         /* ks_ndata >= 1 */
 231 
 232 #define KSTAT_NUM_TYPES         5
 233 
 234 /*
 235  * kstat class
 236  *
 237  * Each kstat can be characterized as belonging to some broad class
 238  * of statistics, e.g. disk, tape, net, vm, streams, etc.  This field
 239  * can be used as a filter to extract related kstats.  The following
 240  * values are currently in use: disk, tape, net, controller, vm, kvm,
 241  * hat, streams, kstat, and misc.  (The kstat class encompasses things
 242  * like kstat_types.)
 243  */
 244 
 245 /*
 246  * kstat flags
 247  *
 248  * Any of the following flags may be passed to kstat_create().  They are
 249  * all zero by default.
 250  *
 251  *      KSTAT_FLAG_VIRTUAL:
 252  *
 253  *              Tells kstat_create() not to allocate memory for the
 254  *              kstat data section; instead, you will set the ks_data
 255  *              field to point to the data you wish to export.  This
 256  *              provides a convenient way to export existing data
 257  *              structures.
 258  *
 259  *      KSTAT_FLAG_VAR_SIZE:
 260  *
 261  *              The size of the kstat you are creating will vary over time.
 262  *              For example, you may want to use the kstat mechanism to
 263  *              export a linked list.  NOTE: The kstat framework does not
 264  *              manage the data section, so all variable-size kstats must be
 265  *              virtual kstats.  Moreover, variable-size kstats MUST employ
 266  *              kstat data locking to prevent data-size races with kstat
 267  *              clients.  See the section on "kstat snapshot" for details.
 268  *
 269  *      KSTAT_FLAG_WRITABLE:
 270  *
 271  *              Makes the kstat's data section writable by root.
 272  *              The ks_snapshot routine (see below) does not need to check for
 273  *              this; permission checking is handled in the kstat driver.
 274  *
 275  *      KSTAT_FLAG_PERSISTENT:
 276  *
 277  *              Indicates that this kstat is to be persistent over time.
 278  *              For persistent kstats, kstat_delete() simply marks the
 279  *              kstat as dormant; a subsequent kstat_create() reactivates
 280  *              the kstat.  This feature is provided so that statistics
 281  *              are not lost across driver close/open (e.g., raw disk I/O
 282  *              on a disk with no mounted partitions.)
 283  *              NOTE: Persistent kstats cannot be virtual, since ks_data
 284  *              points to garbage as soon as the driver goes away.
 285  *
 286  * The following flags are maintained by the kstat framework:
 287  *
 288  *      KSTAT_FLAG_DORMANT:
 289  *
 290  *              For persistent kstats, indicates that the kstat is in the
 291  *              dormant state (e.g., the corresponding device is closed).
 292  *
 293  *      KSTAT_FLAG_INVALID:
 294  *
 295  *              This flag is set when a kstat is in a transitional state,
 296  *              e.g. between kstat_create() and kstat_install().
 297  *              kstat clients must not attempt to access the kstat's data
 298  *              if this flag is set.
 299  *
 300  *      KSTAT_FLAG_LONGSTRINGS:
 301  *
 302  *              Indicates that this kstat contains long strings (which
 303  *              are stored outside of the kstat data section). When copied
 304  *              out to user space the string data will be held in the data
 305  *              section provided by the user.
 306  */
 307 
 308 #define KSTAT_FLAG_VIRTUAL              0x01
 309 #define KSTAT_FLAG_VAR_SIZE             0x02
 310 #define KSTAT_FLAG_WRITABLE             0x04
 311 #define KSTAT_FLAG_PERSISTENT           0x08
 312 #define KSTAT_FLAG_DORMANT              0x10
 313 #define KSTAT_FLAG_INVALID              0x20
 314 #define KSTAT_FLAG_LONGSTRINGS          0x40
 315 
 316 /*
 317  * Dynamic update support
 318  *
 319  * The kstat mechanism allows for an optional ks_update function to update
 320  * kstat data.  This is useful for drivers where the underlying device
 321  * keeps cheap hardware stats, but extraction is expensive.  Instead of
 322  * constantly keeping the kstat data section up to date, you can supply a
 323  * ks_update function which updates the kstat's data section on demand.
 324  * To take advantage of this feature, simply set the ks_update field before
 325  * calling kstat_install().
 326  *
 327  * The ks_update function, if supplied, must have the following structure:
 328  *
 329  *      int
 330  *      foo_kstat_update(kstat_t *ksp, int rw)
 331  *      {
 332  *              if (rw == KSTAT_WRITE) {
 333  *                      ... update the native stats from ksp->ks_data;
 334  *                              return EACCES if you don't support this
 335  *              } else {
 336  *                      ... update ksp->ks_data from the native stats
 337  *              }
 338  *      }
 339  *
 340  * The ks_update return codes are: 0 for success, EACCES if you don't allow
 341  * KSTAT_WRITE, and EIO for any other type of error.
 342  *
 343  * In general, the ks_update function may need to refer to provider-private
 344  * data; for example, it may need a pointer to the provider's raw statistics.
 345  * The ks_private field is available for this purpose.  Its use is entirely
 346  * at the provider's discretion.
 347  *
 348  * All variable-size kstats MUST supply a ks_update routine, which computes
 349  * and sets ks_data_size (and ks_ndata if that is meaningful), since these
 350  * are needed to perform kstat snapshots (see below).
 351  *
 352  * No kstat locking should be done inside the ks_update routine.  The caller
 353  * will already be holding the kstat's ks_lock (to ensure consistent data).
 354  */
 355 
 356 #define KSTAT_READ      0
 357 #define KSTAT_WRITE     1
 358 
 359 /*
 360  * Kstat snapshot
 361  *
 362  * In order to get a consistent view of a kstat's data, clients must obey
 363  * the kstat's locking strategy.  However, these clients may need to perform
 364  * operations on the data which could cause a fault (e.g. copyout()), or
 365  * operations which are simply expensive.  Doing so could cause deadlock
 366  * (e.g. if you're holding a disk's kstat lock which is ultimately required
 367  * to resolve a copyout() fault), performance degradation (since the providers'
 368  * activity is serialized at the kstat lock), device timing problems, etc.
 369  *
 370  * To avoid these problems, kstat data is provided via snapshots.  Taking
 371  * a snapshot is a simple process: allocate a wired-down kernel buffer,
 372  * acquire the kstat's data lock, copy the data into the buffer ("take the
 373  * snapshot"), and release the lock.  This ensures that the kstat's data lock
 374  * will be held as briefly as possible, and that no faults will occur while
 375  * the lock is held.
 376  *
 377  * Normally, the snapshot is taken by default_kstat_snapshot(), which
 378  * timestamps the data (sets ks_snaptime), copies it, and does a little
 379  * massaging to deal with incomplete transactions on i/o kstats.  However,
 380  * this routine only works for kstats with contiguous data (the typical case).
 381  * If you create a kstat whose data is, say, a linked list, you must provide
 382  * your own ks_snapshot routine.  The routine you supply must have the
 383  * following prototype (replace "foo" with something appropriate):
 384  *
 385  *      int foo_kstat_snapshot(kstat_t *ksp, void *buf, int rw);
 386  *
 387  * The minimal snapshot routine -- one which copies contiguous data that
 388  * doesn't need any massaging -- would be this:
 389  *
 390  *      ksp->ks_snaptime = gethrtime();
 391  *      if (rw == KSTAT_WRITE)
 392  *              bcopy(buf, ksp->ks_data, ksp->ks_data_size);
 393  *      else
 394  *              bcopy(ksp->ks_data, buf, ksp->ks_data_size);
 395  *      return (0);
 396  *
 397  * A more illuminating example is taking a snapshot of a linked list:
 398  *
 399  *      ksp->ks_snaptime = gethrtime();
 400  *      if (rw == KSTAT_WRITE)
 401  *              return (EACCES);                ... See below ...
 402  *      for (foo = first_foo; foo; foo = foo->next) {
 403  *              bcopy((char *) foo, (char *) buf, sizeof (struct foo));
 404  *              buf = ((struct foo *) buf) + 1;
 405  *      }
 406  *      return (0);
 407  *
 408  * In the example above, we have decided that we don't want to allow
 409  * KSTAT_WRITE access, so we return EACCES if this is attempted.
 410  *
 411  * The key points are:
 412  *
 413  *      (1) ks_snaptime must be set (via gethrtime()) to timestamp the data.
 414  *      (2) Data gets copied from the kstat to the buffer on KSTAT_READ,
 415  *              and from the buffer to the kstat on KSTAT_WRITE.
 416  *      (3) ks_snapshot return values are: 0 for success, EACCES if you
 417  *              don't allow KSTAT_WRITE, and EIO for any other type of error.
 418  *
 419  * Named kstats (see section on "Named statistics" below) containing long
 420  * strings (KSTAT_DATA_STRING) need special handling.  The kstat driver
 421  * assumes that all strings are copied into the buffer after the array of
 422  * named kstats, and the pointers (KSTAT_NAMED_STR_PTR()) are updated to point
 423  * into the copy within the buffer. The default snapshot routine does this,
 424  * but overriding routines should contain at least the following:
 425  *
 426  * if (rw == KSTAT_READ) {
 427  *      kstat_named_t *knp = buf;
 428  *      char *end = knp + ksp->ks_ndata;
 429  *      uint_t i;
 430  *
 431  *      ... Do the regular copy ...
 432  *      bcopy(ksp->ks_data, buf, sizeof (kstat_named_t) * ksp->ks_ndata);
 433  *
 434  *      for (i = 0; i < ksp->ks_ndata; i++, knp++) {
 435  *              if (knp[i].data_type == KSTAT_DATA_STRING &&
 436  *                  KSTAT_NAMED_STR_PTR(knp) != NULL) {
 437  *                      bcopy(KSTAT_NAMED_STR_PTR(knp), end,
 438  *                          KSTAT_NAMED_STR_BUFLEN(knp));
 439  *                      KSTAT_NAMED_STR_PTR(knp) = end;
 440  *                      end += KSTAT_NAMED_STR_BUFLEN(knp);
 441  *              }
 442  *      }
 443  */
 444 
 445 /*
 446  * Named statistics.
 447  *
 448  * List of arbitrary name=value statistics.
 449  */
 450 
 451 typedef struct kstat_named {
 452         char    name[KSTAT_STRLEN];     /* name of counter */
 453         uchar_t data_type;              /* data type */
 454         union {
 455                 char            c[16];  /* enough for 128-bit ints */
 456                 int32_t         i32;
 457                 uint32_t        ui32;
 458                 struct {
 459                         union {
 460                                 char            *ptr;   /* NULL-term string */
 461 #if defined(_KERNEL) && defined(_MULTI_DATAMODEL)
 462                                 caddr32_t       ptr32;
 463 #endif
 464                                 char            __pad[8]; /* 64-bit padding */
 465                         } addr;
 466                         uint32_t        len;    /* # bytes for strlen + '\0' */
 467                 } str;
 468 /*
 469  * The int64_t and uint64_t types are not valid for a maximally conformant
 470  * 32-bit compilation environment (cc -Xc) using compilers prior to the
 471  * introduction of C99 conforming compiler (reference ISO/IEC 9899:1990).
 472  * In these cases, the visibility of i64 and ui64 is only permitted for
 473  * 64-bit compilation environments or 32-bit non-maximally conformant
 474  * C89 or C90 ANSI C compilation environments (cc -Xt and cc -Xa). In the
 475  * C99 ANSI C compilation environment, the long long type is supported.
 476  * The _INT64_TYPE is defined by the implementation (see sys/int_types.h).
 477  */
 478 #if defined(_INT64_TYPE)
 479                 int64_t         i64;
 480                 uint64_t        ui64;
 481 #endif
 482                 long            l;
 483                 ulong_t         ul;
 484 
 485                 /* These structure members are obsolete */
 486 
 487                 longlong_t      ll;
 488                 u_longlong_t    ull;
 489                 float           f;
 490                 double          d;
 491         } value;                        /* value of counter */
 492 } kstat_named_t;
 493 
 494 #define KSTAT_DATA_CHAR         0
 495 #define KSTAT_DATA_INT32        1
 496 #define KSTAT_DATA_UINT32       2
 497 #define KSTAT_DATA_INT64        3
 498 #define KSTAT_DATA_UINT64       4
 499 
 500 #if !defined(_LP64)
 501 #define KSTAT_DATA_LONG         KSTAT_DATA_INT32
 502 #define KSTAT_DATA_ULONG        KSTAT_DATA_UINT32
 503 #else
 504 #if !defined(_KERNEL)
 505 #define KSTAT_DATA_LONG         KSTAT_DATA_INT64
 506 #define KSTAT_DATA_ULONG        KSTAT_DATA_UINT64
 507 #else
 508 #define KSTAT_DATA_LONG         7       /* only visible to the kernel */
 509 #define KSTAT_DATA_ULONG        8       /* only visible to the kernel */
 510 #endif  /* !_KERNEL */
 511 #endif  /* !_LP64 */
 512 
 513 /*
 514  * Statistics exporting named kstats with long strings (KSTAT_DATA_STRING)
 515  * may not make the assumption that ks_data_size is equal to (ks_ndata * sizeof
 516  * (kstat_named_t)).  ks_data_size in these cases is equal to the sum of the
 517  * amount of space required to store the strings (ie, the sum of
 518  * KSTAT_NAMED_STR_BUFLEN() for all KSTAT_DATA_STRING statistics) plus the
 519  * space required to store the kstat_named_t's.
 520  *
 521  * The default update routine will update ks_data_size automatically for
 522  * variable-length kstats containing long strings (using the default update
 523  * routine only makes sense if the string is the only thing that is changing
 524  * in size, and ks_ndata is constant).  Fixed-length kstats containing long
 525  * strings must explicitly change ks_data_size (after creation but before
 526  * initialization) to reflect the correct amount of space required for the
 527  * long strings and the kstat_named_t's.
 528  */
 529 #define KSTAT_DATA_STRING       9
 530 
 531 /* These types are obsolete */
 532 
 533 #define KSTAT_DATA_LONGLONG     KSTAT_DATA_INT64
 534 #define KSTAT_DATA_ULONGLONG    KSTAT_DATA_UINT64
 535 #define KSTAT_DATA_FLOAT        5
 536 #define KSTAT_DATA_DOUBLE       6
 537 
 538 #define KSTAT_NAMED_PTR(kptr)   ((kstat_named_t *)(kptr)->ks_data)
 539 
 540 /*
 541  * Retrieve the pointer of the string contained in the given named kstat.
 542  */
 543 #define KSTAT_NAMED_STR_PTR(knptr) ((knptr)->value.str.addr.ptr)
 544 
 545 /*
 546  * Retrieve the length of the buffer required to store the string in the given
 547  * named kstat.
 548  */
 549 #define KSTAT_NAMED_STR_BUFLEN(knptr) ((knptr)->value.str.len)
 550 
 551 /*
 552  * Interrupt statistics.
 553  *
 554  * An interrupt is a hard interrupt (sourced from the hardware device
 555  * itself), a soft interrupt (induced by the system via the use of
 556  * some system interrupt source), a watchdog interrupt (induced by
 557  * a periodic timer call), spurious (an interrupt entry point was
 558  * entered but there was no interrupt condition to service),
 559  * or multiple service (an interrupt condition was detected and
 560  * serviced just prior to returning from any of the other types).
 561  *
 562  * Measurement of the spurious class of interrupts is useful for
 563  * autovectored devices in order to pinpoint any interrupt latency
 564  * problems in a particular system configuration.
 565  *
 566  * Devices that have more than one interrupt of the same
 567  * type should use multiple structures.
 568  */
 569 
 570 #define KSTAT_INTR_HARD                 0
 571 #define KSTAT_INTR_SOFT                 1
 572 #define KSTAT_INTR_WATCHDOG             2
 573 #define KSTAT_INTR_SPURIOUS             3
 574 #define KSTAT_INTR_MULTSVC              4
 575 
 576 #define KSTAT_NUM_INTRS                 5
 577 
 578 typedef struct kstat_intr {
 579         uint_t  intrs[KSTAT_NUM_INTRS]; /* interrupt counters */
 580 } kstat_intr_t;
 581 
 582 #define KSTAT_INTR_PTR(kptr)    ((kstat_intr_t *)(kptr)->ks_data)
 583 
 584 /*
 585  * I/O statistics.
 586  */
 587 
 588 typedef struct kstat_io {
 589 
 590         /*
 591          * Basic counters.
 592          *
 593          * The counters should be updated at the end of service
 594          * (e.g., just prior to calling biodone()).
 595          */
 596 
 597         u_longlong_t    nread;          /* number of bytes read */
 598         u_longlong_t    nwritten;       /* number of bytes written */
 599         uint_t          reads;          /* number of read operations */
 600         uint_t          writes;         /* number of write operations */
 601 
 602         /*
 603          * Accumulated time and queue length statistics.
 604          *
 605          * Accumulated time statistics are kept as a running sum
 606          * of "active" time.  Queue length statistics are kept as a
 607          * running sum of the product of queue length and elapsed time
 608          * at that length -- i.e., a Riemann sum for queue length
 609          * integrated against time.  (You can also think of the active time
 610          * as a Riemann sum, for the boolean function (queue_length > 0)
 611          * integrated against time, or you can think of it as the
 612          * Lebesgue measure of the set on which queue_length > 0.)
 613          *
 614          *              ^
 615          *              |                       _________
 616          *              8                       | i4    |
 617          *              |                       |       |
 618          *      Queue   6                       |       |
 619          *      Length  |       _________       |       |
 620          *              4       | i2    |_______|       |
 621          *              |       |           i3          |
 622          *              2_______|                       |
 623          *              |    i1                         |
 624          *              |_______________________________|
 625          *              Time->       t1      t2      t3      t4
 626          *
 627          * At each change of state (entry or exit from the queue),
 628          * we add the elapsed time (since the previous state change)
 629          * to the active time if the queue length was non-zero during
 630          * that interval; and we add the product of the elapsed time
 631          * times the queue length to the running length*time sum.
 632          *
 633          * This method is generalizable to measuring residency
 634          * in any defined system: instead of queue lengths, think
 635          * of "outstanding RPC calls to server X".
 636          *
 637          * A large number of I/O subsystems have at least two basic
 638          * "lists" of transactions they manage: one for transactions
 639          * that have been accepted for processing but for which processing
 640          * has yet to begin, and one for transactions which are actively
 641          * being processed (but not done). For this reason, two cumulative
 642          * time statistics are defined here: wait (pre-service) time,
 643          * and run (service) time.
 644          *
 645          * All times are 64-bit nanoseconds (hrtime_t), as returned by
 646          * gethrtime().
 647          *
 648          * The units of cumulative busy time are accumulated nanoseconds.
 649          * The units of cumulative length*time products are elapsed time
 650          * times queue length.
 651          *
 652          * Updates to the fields below are performed implicitly by calls to
 653          * these five functions:
 654          *
 655          *      kstat_waitq_enter()
 656          *      kstat_waitq_exit()
 657          *      kstat_runq_enter()
 658          *      kstat_runq_exit()
 659          *
 660          *      kstat_waitq_to_runq()           (see below)
 661          *      kstat_runq_back_to_waitq()      (see below)
 662          *
 663          * Since kstat_waitq_exit() is typically followed immediately
 664          * by kstat_runq_enter(), there is a single kstat_waitq_to_runq()
 665          * function which performs both operations.  This is a performance
 666          * win since only one timestamp is required.
 667          *
 668          * In some instances, it may be necessary to move a request from
 669          * the run queue back to the wait queue, e.g. for write throttling.
 670          * For these situations, call kstat_runq_back_to_waitq().
 671          *
 672          * These fields should never be updated by any other means.
 673          */
 674 
 675         hrtime_t wtime;         /* cumulative wait (pre-service) time */
 676         hrtime_t wlentime;      /* cumulative wait length*time product */
 677         hrtime_t wlastupdate;   /* last time wait queue changed */
 678         hrtime_t rtime;         /* cumulative run (service) time */
 679         hrtime_t rlentime;      /* cumulative run length*time product */
 680         hrtime_t rlastupdate;   /* last time run queue changed */
 681 
 682         uint_t  wcnt;           /* count of elements in wait state */
 683         uint_t  rcnt;           /* count of elements in run state */
 684 
 685 } kstat_io_t;
 686 
 687 #define KSTAT_IO_PTR(kptr)      ((kstat_io_t *)(kptr)->ks_data)
 688 
 689 /*
 690  * Event timer statistics - cumulative elapsed time and number of events.
 691  *
 692  * Updates to these fields are performed implicitly by calls to
 693  * kstat_timer_start() and kstat_timer_stop().
 694  */
 695 
 696 typedef struct kstat_timer {
 697         char            name[KSTAT_STRLEN];     /* event name */
 698         uchar_t         resv;                   /* reserved */
 699         u_longlong_t    num_events;             /* number of events */
 700         hrtime_t        elapsed_time;           /* cumulative elapsed time */
 701         hrtime_t        min_time;               /* shortest event duration */
 702         hrtime_t        max_time;               /* longest event duration */
 703         hrtime_t        start_time;             /* previous event start time */
 704         hrtime_t        stop_time;              /* previous event stop time */
 705 } kstat_timer_t;
 706 
 707 #define KSTAT_TIMER_PTR(kptr)   ((kstat_timer_t *)(kptr)->ks_data)
 708 
 709 #if     defined(_KERNEL) || defined(_FAKE_KERNEL)
 710 
 711 #include <sys/t_lock.h>
 712 
 713 extern kid_t    kstat_chain_id;         /* bumped at each state change */
 714 extern void     kstat_init(void);       /* initialize kstat framework */
 715 
 716 /*
 717  * Adding and deleting kstats.
 718  *
 719  * The typical sequence to add a kstat is:
 720  *
 721  *      ksp = kstat_create(module, instance, name, class, type, ndata, flags);
 722  *      if (ksp) {
 723  *              ... provider initialization, if necessary
 724  *              kstat_install(ksp);
 725  *      }
 726  *
 727  * There are three logically distinct steps here:
 728  *
 729  * Step 1: System Initialization (kstat_create)
 730  *
 731  * kstat_create() performs system initialization.  kstat_create()
 732  * allocates memory for the entire kstat (header plus data), initializes
 733  * all header fields, initializes the data section to all zeroes, assigns
 734  * a unique KID, and puts the kstat onto the system's kstat chain.
 735  * The returned kstat is marked invalid (KSTAT_FLAG_INVALID is set),
 736  * because the provider (caller) has not yet had a chance to initialize
 737  * the data section.
 738  *
 739  * By default, kstats are exported to all zones on the system.  A kstat may be
 740  * created via kstat_create_zone() to specify a zone to which the statistics
 741  * should be exported.  kstat_zone_add() may be used to specify additional
 742  * zones to which the statistics are to be exported.
 743  *
 744  * Step 2: Provider Initialization
 745  *
 746  * The provider performs any necessary initialization of the data section,
 747  * e.g. setting the name fields in a KSTAT_TYPE_NAMED.  Virtual kstats set
 748  * the ks_data field at this time.  The provider may also set the ks_update,
 749  * ks_snapshot, ks_private, and ks_lock fields if necessary.
 750  *
 751  * Step 3: Installation (kstat_install)
 752  *
 753  * Once the kstat is completely initialized, kstat_install() clears the
 754  * INVALID flag, thus making the kstat accessible to the outside world.
 755  * kstat_install() also clears the DORMANT flag for persistent kstats.
 756  *
 757  * Removing a kstat from the system
 758  *
 759  * kstat_delete(ksp) removes ksp from the kstat chain and frees all
 760  * associated system resources.  NOTE: When you call kstat_delete(),
 761  * you must NOT be holding that kstat's ks_lock.  Otherwise, you may
 762  * deadlock with a kstat reader.
 763  *
 764  * Persistent kstats
 765  *
 766  * From the provider's point of view, persistence is transparent.  The only
 767  * difference between ephemeral (normal) kstats and persistent kstats
 768  * is that you pass KSTAT_FLAG_PERSISTENT to kstat_create().  Magically,
 769  * this has the effect of making your data visible even when you're
 770  * not home.  Persistence is important to tools like iostat, which want
 771  * to get a meaningful picture of disk activity.  Without persistence,
 772  * raw disk i/o statistics could never accumulate: they would come and
 773  * go with each open/close of the raw device.
 774  *
 775  * The magic of persistence works by slightly altering the behavior of
 776  * kstat_create() and kstat_delete().  The first call to kstat_create()
 777  * creates a new kstat, as usual.  However, kstat_delete() does not
 778  * actually delete the kstat: it performs one final update of the data
 779  * (i.e., calls the ks_update routine), marks the kstat as dormant, and
 780  * sets the ks_lock, ks_update, ks_private, and ks_snapshot fields back
 781  * to their default values (since they might otherwise point to garbage,
 782  * e.g. if the provider is going away).  kstat clients can still access
 783  * the dormant kstat just like a live kstat; they just continue to see
 784  * the final data values as long as the kstat remains dormant.
 785  * All subsequent kstat_create() calls simply find the already-existing,
 786  * dormant kstat and return a pointer to it, without altering any fields.
 787  * The provider then performs its usual initialization sequence, and
 788  * calls kstat_install().  kstat_install() uses the old data values to
 789  * initialize the native data (i.e., ks_update is called with KSTAT_WRITE),
 790  * thus making it seem like you were never gone.
 791  */
 792 
 793 extern kstat_t *kstat_create(const char *, int, const char *, const char *,
 794     uchar_t, uint_t, uchar_t);
 795 extern kstat_t *kstat_create_zone(const char *, int, const char *,
 796     const char *, uchar_t, uint_t, uchar_t, zoneid_t);
 797 extern void kstat_install(kstat_t *);
 798 extern void kstat_delete(kstat_t *);
 799 extern void kstat_named_setstr(kstat_named_t *knp, const char *src);
 800 extern void kstat_set_string(char *, const char *);
 801 extern void kstat_delete_byname(const char *, int, const char *);
 802 extern void kstat_delete_byname_zone(const char *, int, const char *, zoneid_t);
 803 extern void kstat_named_init(kstat_named_t *, const char *, uchar_t);
 804 extern void kstat_timer_init(kstat_timer_t *, const char *);
 805 extern void kstat_waitq_enter(kstat_io_t *);
 806 extern void kstat_waitq_exit(kstat_io_t *);
 807 extern void kstat_runq_enter(kstat_io_t *);
 808 extern void kstat_runq_exit(kstat_io_t *);
 809 extern void kstat_waitq_to_runq(kstat_io_t *);
 810 extern void kstat_runq_back_to_waitq(kstat_io_t *);
 811 extern void kstat_timer_start(kstat_timer_t *);
 812 extern void kstat_timer_stop(kstat_timer_t *);
 813 
 814 extern void kstat_zone_add(kstat_t *, zoneid_t);
 815 extern void kstat_zone_remove(kstat_t *, zoneid_t);
 816 extern int kstat_zone_find(kstat_t *, zoneid_t);
 817 
 818 extern kstat_t *kstat_hold_bykid(kid_t kid, zoneid_t);
 819 extern kstat_t *kstat_hold_byname(const char *, int, const char *, zoneid_t);
 820 extern void kstat_rele(kstat_t *);
 821 
 822 #endif  /* defined(_KERNEL) */
 823 
 824 #ifdef  __cplusplus
 825 }
 826 #endif
 827 
 828 #endif  /* _SYS_KSTAT_H */